WorldWideScience

Sample records for fibroblast cyclooxygenase expression

  1. Breast cancer cell cyclooxygenase-2 expression alters extracellular matrix structure and function and numbers of cancer associated fibroblasts.

    Science.gov (United States)

    Krishnamachary, Balaji; Stasinopoulos, Ioannis; Kakkad, Samata; Penet, Marie-France; Jacob, Desmond; Wildes, Flonne; Mironchik, Yelena; Pathak, Arvind P; Solaiyappan, Meiyappan; Bhujwalla, Zaver M

    2017-03-14

    Cyclooxygenase-2 (COX-2) is a critically important mediator of inflammation that significantly influences tumor angiogenesis, invasion, and metastasis. We investigated the role of COX-2 expressed by triple negative breast cancer cells in altering the structure and function of the extracellular matrix (ECM). COX-2 downregulation effects on ECM structure and function were investigated using magnetic resonance imaging (MRI) and second harmonic generation (SHG) microscopy of tumors derived from triple negative MDA-MB-231 breast cancer cells, and a derived clone stably expressing a short hairpin (shRNA) molecule downregulating COX-2. MRI of albumin-GdDTPA was used to characterize macromolecular fluid transport in vivo and SHG microscopy was used to quantify collagen 1 (Col1) fiber morphology. COX-2 downregulation decreased Col1 fiber density and altered macromolecular fluid transport. Immunohistochemistry identified significantly fewer activated cancer associated fibroblasts (CAFs) in low COX-2 expressing tumors. Metastatic lung nodules established by COX-2 downregulated cells were infrequent, smaller, and contained fewer Col1 fibers.COX-2 overexpression studies were performed with tumors derived from triple negative SUM-149 breast cancer cells lentivirally transduced to overexpress COX-2. SHG microscopy identified significantly higher Col1 fiber density in COX-2 overexpressing tumors with an increase of CAFs. These data expand upon the roles of COX-2 in shaping the structure and function of the ECM in primary and metastatic tumors, and identify the potential role of COX-2 in modifying the number of CAFs in tumors that may have contributed to the altered ECM.

  2. Sustained Release of Prostaglandin E2 in Fibroblasts Expressing Ectopically Cyclooxygenase 2 Impairs P2Y-Dependent Ca2+-Mobilization

    Directory of Open Access Journals (Sweden)

    María Pimentel-Santillana

    2014-01-01

    Full Text Available The nucleotide uridine trisphosphate (UTP released to the extracellular milieu acts as a signaling molecule via activation of specific pyrimidine receptors (P2Y. P2Y receptors are G protein-coupled receptors expressed in many cell types. These receptors mediate several cell responses and they are involved in intracellular calcium mobilization. We investigated the role of the prostanoid PGE2 in P2Y signaling in mouse embryonic fibroblasts (MEFs, since these cells are involved in different ontogenic and physiopathological processes, among them is tissue repair following proinflammatory activation. Interestingly, Ca2+-mobilization induced by UTP-dependent P2Y activation was reduced by PGE2 when this prostanoid was produced by MEFs transfected with COX-2 or when PGE2 was added exogenously to the culture medium. This Ca2+-mobilization was important for the activation of different metabolic pathways in fibroblasts. Moreover, inhibition of COX-2 with selective coxibs prevented UTP-dependent P2Y activation in these cells. The inhibition of P2Y responses by PGE2 involves the activation of PKCs and PKD, a response that can be suppressed after pharmacological inhibition of these protein kinases. In addition to this, PGE2 reduces the fibroblast migration induced by P2Y-agonists such as UTP. Taken together, these data demonstrate that PGE2 is involved in the regulation of P2Y signaling in these cells.

  3. Platelet cyclooxygenase expression in normal dogs.

    Science.gov (United States)

    Thomason, J; Lunsford, K; Mullins, K; Stokes, J; Pinchuk, L; Wills, R; McLaughlin, R; Langston, C; Pruett, S; Mackin, A

    2011-01-01

    Human platelets express both cyclooxygenase-1 (COX-1) and cyclooxygenase-2 (COX-2). Variation in COX-2 expression could be a mechanism for variable response to aspirin. The hypotheses were that circulating canine platelets express COX-1 and COX-2, and that aspirin alters COX expression. The objective was to identify changes in platelet COX expression and in platelet function caused by aspirin administration to dogs. Eight female, intact hounds. A single population, repeated measures design was used to evaluate platelet COX-1 and COX-2 expression by flow cytometry before and after aspirin (10 mg/kg Q12h for 10 days). Platelet function was analyzed via PFA-100(®) (collagen/epinephrine), and urine 11-dehydro-thromboxane B(2) (11-dTXB(2)) was measured and normalized to urinary creatinine. Differences in COX expression, PFA-100(®) closure times, and urine 11-dTXB(2 ): creatinine ratio were analyzed before and after aspirin administration. Both COX-1 and COX-2 were expressed in canine platelets. COX-1 mean fluorescent intensity (MFI) increased in all dogs, by 250% (range 63-476%), while COX-2 expression did not change significantly (P = 0.124) after aspirin exposure, with large interindividual variation. PFA-100(®) closure times were prolonged and urine 11-dTXB(2) concentration decreased in all dogs after aspirin administration. Canine platelets express both COX isoforms. After aspirin exposure, COX-1 expression increased despite impairment of platelet function, while COX-2 expression varied markedly among dogs. Variability in platelet COX-2 expression should be explored as a potential mechanism for, or marker of, variable aspirin responsiveness. Copyright © 2011 by the American College of Veterinary Internal Medicine.

  4. Cyclooxygenase-2 expression in the normal human eye and its expression pattern in selected eye tumours

    DEFF Research Database (Denmark)

    Wang, Jinmei; Wu, Yazhen; Heegaard, Steffen

    2011-01-01

    Purpose: Cyclooxygenase-2 (COX-2) is an enzyme involved in neoplastic processes. The purpose of the present study is to investigate COX-2 expression in the normal human eye and the expression pattern in selected eye tumours involving COX-2 expressing cells. Methods: Immunohistochemical staining...... using antibodies against COX-2 was performed on paraffin sections of normal human eyes and selected eye tumours arising from cells expressing COX-2. Results: Cyclooxygenase-2 expression was found in various structures of the normal eye. Abundant expression was seen in the cornea, iris, ciliary body...... and retina. The COX-2 expression was less in tumours deriving from the ciliary epithelium and also in retinoblastoma. Conclusion: Cyclooxygenase-2 is constitutively expressed in normal human eyes. The expression of COX-2 is much lower in selected eye tumours involving COX-2 expressing cells....

  5. Water avoidance stress induces frequency through cyclooxygenase-2 expression: a bladder rat model.

    Science.gov (United States)

    Yamamoto, Keisuke; Takao, Tetsuya; Nakayama, Jiro; Kiuchi, Hiroshi; Okuda, Hidenobu; Fukuhara, Shinichiro; Yoshioka, Iwao; Matsuoka, Yasuhiro; Miyagawa, Yasushi; Tsujimura, Akira; Nonomura, Norio

    2012-02-01

    Water avoidance stress is a potent psychological stressor and it is associated with visceral hyperalgesia, which shows degeneration of the urothelial layer mimicking interstitial cystitis. Cyclooxygenase-2 inhibitors have been recognized to ameliorate frequency both in clinical and experimental settings. We investigated the voiding pattern and cyclooxygenase-2 expression in a rat bladder model of water avoidance stress. After being subjected to water avoidance stress or a sham procedure, rats underwent metabolic cage analysis and cystometrography. Real time reverse transcription polymerase chain reaction was carried out to examine cyclooxygenase-2 messenger ribonucleic acid in bladders of rats. Protein expression of cyclooxygenase-2 was analyzed with immunohistochemistry and western blotting. Furthermore, the effects of the cyclooxygenase-2 inhibitor, etodolac, were investigated by carrying out cystometrography, immunohistochemistry and western blotting. Metabolic cage analysis and cystometrography showed significantly shorter intervals and less volume of voiding in water avoidance stress rats. Significantly higher expression of cyclooxygenase-2 messenger ribonucleic acid was verified by reverse transcription polymerase chain reaction. Immunohistochemistry and western blotting showed significantly higher cyclooxygenase-2 protein levels in water avoidance stress bladders. Furthermore, immunohistochemistry showed high cyclooxygenase-2 expression exclusively in smooth muscle cells. All water avoidance stress-induced changes were reduced by cyclooxygenase-2 inhibitor pretreatment. Chronic stress might cause frequency through cyclooxygenase-2 gene upregulation in bladder smooth muscle cells. Further study of cyclooxygenase-2 in the water avoidance stress bladder might provide novel therapeutic modalities for interstitial cystitis. © 2011 The Japanese Urological Association.

  6. Regulation of cyclooxygenase expression in cultured vascular cells

    International Nuclear Information System (INIS)

    Pash, J.M.

    1988-01-01

    Arachidonic acid metabolism in vascular tissue results in synthesis of prostacylin. The key enzyme in this synthesis pathway, cyclooxygenase, is down-regulated through self-inactivation. An analogous refractory state is produced by aspirin which irreversibly acetylates the enzyme. To further understand this phenomenon, the inactivation and recovery of cyclooxygenase activity was assayed in cultured ray vascular smooth muscle cells using exogenously added arachidonic acid. Self-inactivation of cyclooxygenase was observed following treatment with micromolar amounts of arachidonic acid. The recovery of cyclooxygenase activity following self-inactivation was analogous to that observed following aspirin-inactivation in that it depended on protein synthesis and required either serum or EGF. Two additional factors, TGF-β and uric acid, were found to enhance the stimulation of cyclooxygenase recovery by EGF. A defined medium containing 10 ng/mL EGF, 1 ng/mL TGFβ and 0.1 mM uric acid duplicated the cyclooxygenase recovery activity of 10% serum. Stimulation of cyclooxygenase activity by EGF and TGF-β was inhibited by cycloheximide but not by actinomycin-D, indicating a link to increased translation of pre-existing mRNA. A lack of significant effect on overall protein synthesis by EGF and TGF-β, measured by [ 35 S]-methionine incorporation under conditions where a multi-fold increase in cyclooxygenase activity was seen, indicates that the translational regulation of a small fraction of total mRNA and possibly cyclooxygenase is occurring

  7. Transgenic expression of cyclooxygenase-2 (COX2) causes premature aging phenotypes in mice.

    Science.gov (United States)

    Kim, Joohwee; Vaish, Vivek; Feng, Mingxiao; Field, Kevin; Chatzistamou, Ioulia; Shim, Minsub

    2016-10-07

    Cyclooxygenase (COX) is a key enzyme in the biosynthesis of prostanoids, lipid signaling molecules that regulate various physiological processes. COX2, one of the isoforms of COX, is highly inducible in response to a wide variety of cellular and environmental stresses. Increased COX2 expression is thought to play a role in the pathogenesis of many age-related diseases. COX2 expression is also reported to be increased in the tissues of aged humans and mice, which suggests the involvement of COX2 in the aging process. However, it is not clear whether the increased COX2 expression is causal to or a result of aging. We have now addressed this question by creating an inducible COX2 transgenic mouse model. Here we show that post-natal expression of COX2 led to a panel of aging-related phenotypes. The expression of p16, p53, and phospho-H2AX was increased in the tissues of COX2 transgenic mice. Additionally, adult mouse lung fibroblasts from COX2 transgenic mice exhibited increased expression of the senescence-associated β-galactosidase. Our study reveals that the increased COX2 expression has an impact on the aging process and suggests that modulation of COX2 and its downstream signaling may be an approach for intervention of age-related disorders.

  8. Cyclooxygenase-2 expression in oligodendrocytes increases sensitivity to excitotoxic death

    Directory of Open Access Journals (Sweden)

    Rojas Monica A

    2010-04-01

    Full Text Available Abstract Background We previously found that cyclooxygenase 2 (COX-2 was expressed in dying oligodendrocytes at the onset of demyelination in the Theiler's murine encephalomyelitis virus-induced demyelinating disease (TMEV-IDD model of multiple sclerosis (MS (Carlson et al. J.Neuroimmunology 2006, 149:40. This suggests that COX-2 may contribute to death of oligodendrocytes. Objective The goal of this study was to examine whether COX-2 contributes to excitotoxic death of oligodendrocytes and potentially contributes to demyelination. Methods The potential link between COX-2 and oligodendrocyte death was approached using histopathology of MS lesions to examine whether COX-2 was expressed in dying oligodendrocytes. COX-2 inhibitors were examined for their ability to limit demyelination in the TMEV-IDD model of MS and to limit excitotoxic death of oligodendrocytes in vitro. Genetic manipulation of COX-2 expression was used to determine whether COX-2 contributes to excitotoxic death of oligodendrocytes. A transgenic mouse line was generated that overexpressed COX-2 in oligodendrocytes. Oligodendrocyte cultures derived from these transgenic mice were used to examine whether increased expression of COX-2 enhanced the vulnerability of oligodendrocytes to excitotoxic death. Oligodendrocytes derived from COX-2 knockout mice were evaluated to determine if decreased COX-2 expression promotes a greater resistance to excitotoxic death. Results COX-2 was expressed in dying oligodendrocytes in MS lesions. COX-2 inhibitors limited demyelination in the TMEV-IDD model of MS and protected oligodendrocytes against excitotoxic death in vitro. COX-2 expression was increased in wild-type oligodendrocytes following treatment with Kainic acid (KA. Overexpression of COX-2 in oligodendrocytes increased the sensitivity of oligodendrocytes to KA-induced excitotoxic death eight-fold compared to wild-type. Conversely, oligodendrocytes prepared from COX-2 knockout mice showed a

  9. Changes in the Expression of Cyclooxygenase-2 in Polycystic Ovary Syndrome in Wistar Rats

    Directory of Open Access Journals (Sweden)

    Karimzadeh L

    2011-12-01

    Full Text Available Background: Cyclooxygenase 2 is a key enzyme which converts arachidonic acid into prostaglandins. Cyclooxygenase 2 is triggered by inflammatory stimuli, such as cytokines. Its expression increases in tumors and Alzheimer's disease and ovarian hyperstimulation syndrome. Polycystic ovarian syndrome is a heterogeneous disease characterized by pathological angiogenesis and chronic anovulation. In the present study, the probable role of cyclooxygenase 2 in Wistar rats with polycystic ovarian syndrome was investigated.Methods: Thirty female Wistar rats (170-200 gr were equally divided into three groups: 2 mg estradiol valerate was intramuscularly administered to each rat in the experiment group or group 1; the rats in group 2 were regarded as the sham group and received sesame oil injections and group 3 or the control group received no injections. After 60 days of treatment, animals were anaesthetized with chloroform and killed by decapitation. Ovaries were collected for histological and immunohistochemical evaluations. All the experiments were repeated three times.Results: Morphologically, ovaries from the control group exhibited follicles in various stages of development and many fresh corpus luteum. In estradiol valerate group small follicles in early development were observed in addition to follicles showing evidence of atresia and many large cysts with thickened theca cell layer. Corpus luteum was rare or absent in group 2. The immunohistochemical analysis for cyclooxygenase 2 expression showed an increased expression of cyclooxygenase 2 enzyme in group 1.Conclusion: The results suggested the involvement of cyclooxygenase 2 in the progression to polycystic ovarian syndrome in a rat model.

  10. The enhancement of radiosensitivity by celecoxib, selective cyclooxygenase-2 inhibitor, on human cancer cells expressing differential levels of cyclooxygenase-2

    International Nuclear Information System (INIS)

    Pyo, Hong Ryull; Shin, You Keun; Kim, Hyun Seok; Seong, Jin Sil; Suh, Chang Ok; Kim, Gwi Eon

    2003-01-01

    To investigate the modulation of radiosensitivity by celecoxib, a selective cyclooxygenase-2 (COX-2) inhibitor, on cancer cells over- and under-expressing COX-2. A clonogenic radiation survival analysis was performed on A549 human lung and MCF-7 human breast cancer cell lines incubated in both 1 and 10% fetal bovine serum (FBS) containing media. The apoptosis in both cell lines was measured after treatment with radiation and/or celecoxib. Celecoxib enhanced the radiation sensitivity of the A549 cells in the medium containing the 10% FBS, with radiation enhancement ratios of 1.58 and 1.81 respectively, at surviving fractions of 0.1, with 30 μ M and 50 μ M celecoxib. This enhanced radiosensitivity disappeared in the medium containing the 1% FBS. Celecoxib did not change the radiation sensitivity of the MCF-7 cells in either media. The induction of apoptosis by celecoxib and radiation was not synergistic in either cell line. Celecoxib, a selective COX-2 inhibitor, preferentially enhanced the effect of radiation on COX-2 over-expressing cancer cells compared to the cells with a low expression, and this effect disappeared on incubation of the cells during drug treatment in the medium with suboptimal serum concentration. Apoptosis did not appear to be the underlying mechanism of this radiation enhancement effect due to celecoxib on the A549 cells. These findings suggest radiosensitization by a selective COX-2 inhibitor is COX-2 dependent

  11. Furosemide stimulates macula densa cyclooxygenase-2 expression in rats

    DEFF Research Database (Denmark)

    Mann, Birgitte; Hartner, A; Jensen, B L

    2001-01-01

    of the loop diuretic furosemide (12 mg/day) or were fed with the diuretic hydrochlorothiazide (30 mg/kg day) for seven days each. To compensate for their salt and water loss, the animals had free access to normal water and to salt water (0.9% NaCl, 0.1% KCl). COX-2 expression in kidney cortex was assessed...

  12. Cyclooxygenase-2 Expression in Chronic Gastritis and Gastric Carcinoma, Correlation with Prognostic Parameters

    International Nuclear Information System (INIS)

    Samaka, R.M.; Abdou, A.G.; Abd El-Wahed, M.M.; Kandil, M.A.; El-Kady, N.M.

    2006-01-01

    Background: Cyclooxygenase-2 (Cox-2) is the inducible form of cyclooxygenase enzyme. Cox-2 is induced in numerous processes such as cellular growth, differentiation, inflammation and tumorigenesis. Purpose: Assessment of Cox-2 expression in chronic gastritis s and gastric carcinoma. Material and Methods: Sixteen chronic gastritis (CG) and 43 gastric carcinoma cases were subjected to an immunohistochemical approach using anti Cox-2 antibody. Results: All CG cases displayed positive epithelial Cox-2 expression with only 25% positivity for stromal expression. Eighty six percent of gastric carcinoma showed epithelial Cox-2 expression that was significantly correlated with lymph node involvement (p=0.01), advanced stage (p=0.01), high micro vessel density (MVD) (p=0.0001), vascular invasion (p=0.002), peri neural invasion (p=0.0 I) and low apoptotic count (p<0.0001). Stromal Cox-2 expression was seen in 79% of gastric carcinoma cases and was significantly associated with low apoptotic count (p=0.0007), vascular invasion (p=0.001) and high micro vessel density (MVD) (p=0.0003). Only stromal Cox2 expression was significantly higher in gastric carcinoma than chronic gastritis (p=0.0001). Conclusions: Cox-2 appears to be involved in gastric carcinoma progression as it promotes angio genesis, suppresses apoptosis and facilitates invasion and metastasis Double expression of Cox-2 in gastric carcinoma epithelium and stroma and significant association between them demonstrate a paracrine cross effect between stromal and malignant epithelium

  13. Analysis of angiogenic factors and cyclooxygenase-2 expression in cartilaginous tumors: clinical and histological correlation

    Directory of Open Access Journals (Sweden)

    Francisco Fontes Cintra

    2011-01-01

    Full Text Available OBJECTIVES: To study the role of angiogenesis and cyclooxygenase-2 expression in cartilaginous tumors and correlate these factors with prognosis. INTRODUCTION: For chondrosarcoma, the histological grade is the current standard for predicting tumor outcome. However, a low-grade chondrosarcoma can follow an aggressive course-as monitored by sequential imaging techniques-even when it is histologically indistinguishable from an enchondroma. Therefore, additional tools are needed to help identify the biological potential of these tumors. The degree of angiogenesis that is induced by the tumor could assist in this task. Angiogenesis can be quantified by measuring the expression of vascular endothelial growth factor and CD34, and cyclooxygenase-2 can induce angiogenesis by stimulating the production of proangiogenic factors. METHODS: In total, 21 enchondromas and 58 conventional chondrosarcomas were studied by examining the clinical and histopathological findings in conjunction with the immunostaining markers of angiogenesis and cyclooxygenase- 2 expression. RESULTS: The significant variables that were associated with poor outcome were 1 higher-grade chondrosarcomas, 2 tumors that developed in flat bones, and 3 over-expression of CD34 (with a median count that was higher than 5.9 vessels in 5 high power fields. Moreover, CD34 expression (measured using the Chalkley method revealed significantly higher microvessel density in flat bone chondrosarcomas. DISCUSSION: Previous studies have shown a positive correlation between Chalkley microvessel density and histological grade; however, in our sample, we found that the former is predictive of the outcome. Chondrosarcomas in flat bones have been shown to correlate with a poor prognosis. We also found that CD34 microvessel density values were significantly higher in flat-bone chondrosarcomas. This could explain-at least in part-the more aggressive biological course that is taken by these tumors. CONCLUSIONS

  14. Cyclooxygenase and lipoxygenase gene expression in the inflammogenesis of breast cancer.

    Science.gov (United States)

    Kennedy, Brian M; Harris, Randall E

    2018-05-07

    We examined the expression of major inflammatory genes, cyclooxygenase-1 and 2 (COX1, COX2) and arachidonate 5-lipoxygenase (ALOX5) in 1090 tumor samples of invasive breast cancer from The Cancer Genome Atlas (TCGA). Mean cyclooxygenase expression (COX1 + COX2) ranked in the upper 99th percentile of all 20,531 genes and surprisingly, the mean expression of COX1 was more than tenfold higher than COX2. Highly significant correlations were observed between COX2 with eight tumor-promoting genes (EGR2, IL6, RGS2, B3GNT5, SGK1, SLC2A3, SFRP1 and ETS2) and between ALOX5 and ten tumor promoter genes (CD33, MYOF1, NLRP1, GAB3, CD4, IFR8, CYTH4, BTK, FGR, CD37). Expression of CYP19A1 (aromatase) was significantly correlated with COX2, but only in tumors positive for ER, PR and HER2. Tumor-promoting genes correlated with the expression of COX1, COX2, and ALOX5 are known to effectively increase mitogenesis, mutagenesis, angiogenesis, cell survival, immunosuppression and metastasis in the pathogenesis of breast cancer.

  15. Inflammatory mammary carcinoma in 12 dogs: Clinical features, cyclooxygenase-2 expression, and response to piroxicam treatment

    Science.gov (United States)

    de M. Souza, Carlos H.; Toledo-Piza, Evandro; Amorin, Renee; Barboza, Andrigo; Tobias, Karen M.

    2009-01-01

    Canine inflammatory mammary carcinoma (IMC) is a rare, locally aggressive, highly metastatic tumor that is poorly responsive to treatment. The purposes of this study were to retrospectively evaluate the history, signalment, and clinical signs of dogs with IMC; compare the outcome of affected dogs treated with traditional chemotherapy with those treated with piroxicam; evaluate Cox-2 expression of IMC cells; and correlate Cox-2 expression with outcome based on treatment. Strong cyclooxygenase-2 expression was present in all tumors. Improvement in clinical condition and disease stability was achieved in all dogs treated with piroxicam, with mean and median progression-free survival of 171 and 183 days, respectively. Median survival time of 3 dogs treated with doxorubicin-based protocols was 7 days, which was significantly less than that of dogs treated with piroxicam (median, 185 days). In conclusion, piroxicam should be considered as a single agent for the treatment of dogs with inflammatory mammary carcinoma. PMID:19436636

  16. Relationship among expression of basic-fibroblast growth factor ...

    African Journals Online (AJOL)

    Relationship among expression of basic-fibroblast growth factor, MTDH/Astrocyte elevated gene-1, adenomatous polyposis coli, matrix metalloproteinase 9,and COX-2 markers with prognostic factors in prostate carcinomas.

  17. Expression of p63 and Cyclooxygenase-2 and Their Correlation in Skin Tumors

    Institute of Scientific and Technical Information of China (English)

    WU Yan; LIU Houjun; LI Jiawen

    2007-01-01

    To study the expression of p63 and cyclooxygenase-2 (cox-2) in skin tumors and evaluate the correlation between p63 and cox-2, the expressions of cox-2 and p63 were measured by streptavidin-peroxidase complex immunohistochemical technique in 17 cases of skin squamous cell carcinoma (SCC), 19 cases of Bowen's disease(Bowen), 11 cases of actinic keratosis(AK), 12 cases of seborreic keratosis(SK) and 13 specimens of normal skin. Our results showed that the expression of p63 in skin squamous cell carcinoma, Bowen's disease and actinic keratosis were significantly higher than that in seborreic keratosis, while the expression of p63 in seborreic keratosis was significantly higher than that in normal skin. The expression of cox-2 in skin squamous cell carcinoma,Bowen's disease and actinic keratosis were significantly higher than that in seborreic keratosis, while no statistical difference was noted in the expression of cox-2 between seborreic keratosis and normal skin. Cox-2 expression was positively correlated with the high p63 expression in malignant skin tumors. The increased expression of cox-2 and p63 may play an important role in the development of skin tumors and work synergetically in malignant skin tumors.

  18. Cyclooxygenase expression in canine platelets and Madin-Darby canine kidney cells.

    Science.gov (United States)

    Kay-Mugford, P A; Benn, S J; LaMarre, J; Conlon, P D

    2000-12-01

    To examine cyclooxygenase (COX) expression in canine platelets and Madin-Darby canine kidney (MDCK) cells in culture. Canine platelets and MDCK cells. Total RNA was recovered from isolated canine platelets and MDCK cells. Northern blot analysis and reverse transcription-polymerase chain reaction (RT-PCR), using complementary DNA probes and primers designed from the human COX sequences, were used to determine COX-1 and -2 (cyclooxygenase isoforms 1 and 2) messenger RNA (mRNA) expression. Following northern blot analysis, canine platelets were found to express only the 2.8-kb COX-1 transcript; COX-2 was not detected. Canine MDCK cells expressed the 4.5-kb COX-2 transcript, in addition to the 2.8-kb COX-1 transcript. A single DNA band of 270 base pairs was identified following gel electrophoresis of the product obtained from RT-PCR of mRNA from canine platelets. Sequencing revealed that this PCR product was 90% homologous to a portion of the human COX-1 gene (Genbank M59979). Detection of COX-1 by RT-PCR of RNA obtained from canine platelets is a novel finding. The 90% homology of the PCR product with the human sequence suggests strong conservation between the canine and human COX-1 gene. Cloning and sequencing of the canine gene will be required to fully characterize homologous regions. Because of the importance of COX in the inflammatory process and as a potential target of currently available nonsteroidal anti-inflammatory drugs (NSAID), a better understanding of canine COX may improve our ability to use NSAID appropriately, achieve efficacy, and avoid potential adverse drug effects in dogs.

  19. Factor XIIIa is expressed by fibroblasts in fibrovascular tumors.

    Science.gov (United States)

    Nemeth, A J; Penneys, N S

    1989-10-01

    Factor XIIIa (FXIIIa), a blood and intracellularly produced coagulation factor, has been found in a variety of cell types including fibroblast-like mesenchymal cells, and has been shown to stimulate the proliferation of fibroblasts and some neoplastic cells in vitro. We have already shown that the dendritic fibroblasts composing the fibrous papule contain this factor. We hypothesized that histopathologically similar fibrovascular tumors may also express FXIIIa and, in this report, show that the large stellate fibroblasts found in acquired digital fibrokeratomas, angiofibromas (adenoma sebaceum of Pringle), and oral fibroma (oral fibrous hyperplasia) also express FXIIIa. We postulate that FXIIIa, possibly acting as a growth factor, may be a common denominator in the pathogenesis of these tumors. Another possibility is that these tumors may be the consequence of a local overproduction of FXIIIa in response to an, as yet, unidentified stimulus.

  20. Kupffer cell ablation attenuates cyclooxygenase-2 expression after trauma and sepsis.

    Science.gov (United States)

    Keller, Steve A; Paxian, Marcus; Lee, Sun M; Clemens, Mark G; Huynh, Toan

    2005-03-01

    Prostaglandins, synthesized by cyclooxygenase (COX), play an important role in the pathophysiology of inflammation. Severe injuries result in immunosuppression, mediated, in part, by maladaptive changes in macrophages. Herein, we assessed Kupffer cell-mediated cyclooxygenase-2 (COX-2) expression on liver function and damage after trauma and sepsis. To ablate Kupffer cells, Sprague Dawley rats were treated with gadolinium chloride (GdCl3) 48 and 24 h before experimentation. Animals then underwent femur fracture (FFx) followed 48 h later by cecal ligation and puncture (CLP). Controls received sham operations. After 24 h, liver samples were obtained, and mRNA and protein expression were determined by PCR, Western blot, and immunohistochemistry. Indocyanine-Green (ICG) clearance and plasma alanine aminotransferase (ALT) levels were determined to assess liver function and damage, respectively. One-way analysis of variance (ANOVA) with Student-Newman-Keuls test was used to assess statistical significance. After CLP alone, FFx+CLP, and GdCl3+FFx+CLP, clearance of ICG decreased. Plasma ALT levels increased in parallel with severity of injury. Kupffer cell depletion attenuated the increased ALT levels after FFx+CLP. Femur fracture alone did not alter COX-2 protein compared with sham. By contrast, COX-2 protein increased after CLP and was potentiated by sequential stress. Again, Kupffer cell depletion abrogated the increase in COX-2 after sequential stress. Immunohistochemical data confirmed COX-2 positive cells to be Kupffer cells. In this study, sequential stress increased hepatic COX-2 protein. Depletion of Kupffer cells reduced COX-2 and attenuated hepatocellular injuries. Our data suggest that Kupffer cell-dependent pathways may contribute to the inflammatory response leading to increased mortality after sequential stress.

  1. The effect of tranilast on fibroblast activation protein α (FAP-α expression in normal and keloid fibroblasts in vitro

    Directory of Open Access Journals (Sweden)

    Paweł P. Antończak

    2017-07-01

    Full Text Available Introduction . Tranilast (N-(3’,4’-demethoxycinnamoyl-anthranilic acid is an anti-allergic drug. Its mechanism of action is based on the inhibition of antigen-induced release of chemical mediators from mast cells and basophils. It also reveals antifibroproliferative activities. These properties of tranilast are used in the treatment of hypertrophic scars and keloids. Keloids are characterized by incorrect extracellular matrix components turnover. Fibroblasts derived from keloids reveal overproduction of collagen type I and decreased degradation of extracellular matrix in comparison with normal fibroblasts. Fibroblast activation protein α (FAP-α may play an important role in remodeling of extracellular matrix and the invasive properties of keloids. Objective . In the present study, the effect of tranilast on expression of FAP-α gene and its protein was evaluated in normal human dermal fibroblasts and fibroblasts derived from keloids cultured in vitro . Materials and methods. In the first stage of the study, the influence of tranilast on cell viability was estimated. The second stage of the study included the quantitative evaluation of FAP-α mRNA expression in normal and keloid fibroblasts treated with tranilast. The third stage of the study comprised fibroblast activation protein α expression analysis in the examined cells treated with tranilast. Results and conclusions . The expression of FAP-α gene and fibroblast activation protein α is higher in keloid fibroblasts. Tranilast at concentrations of 3 μM and 30 μM up-regulated mRNA FAP-α expression in normal fibroblasts but did not influence keloid fibroblasts. The drug, at concentrations of 30 μM and 300 μM up-regulated fibroblast activation protein α expression in normal fibroblasts and did not influence keloid fibroblasts. Tranilast antiproliferative effect is not associated with FAP-α expression in keloid fibroblasts.

  2. Predictive utility of cyclo-oxygenase-2 expression by colon and rectal cancer.

    Science.gov (United States)

    Lobo Prabhu, Kristel C; Vu, Lan; Chan, Simon K; Phang, Terry; Gown, Allen; Jones, Steven J; Wiseman, Sam M

    2014-05-01

    Cyclo-oxygenase-2 (COX-2), an inducible enzyme expressed in areas of inflammation, is a target of interest for colorectal cancer therapy. Currently, the predictive significance of COX-2 in colorectal cancer remains unclear. Tissue microarrays were constructed using 118 colon cancer and 85 rectal cancer specimens; 44 synchronous metastatic colon cancer and 22 rectal cancer lymph nodes were also evaluated. COX-2 expression was assessed by immunohistochemistry. Univariate analysis was used to determine the predictive significance of clinicopathologic variables. Overall survival, disease-specific survival, and disease-free survival were the main outcomes examined. COX-2 was found to be expressed in 93% of colon cancers and 87% of rectal cancers. Decreased COX-2 expression was related to decreased disease-specific survival (P = .016) and decreased disease-free survival (P = .019) in the rectal cancer cohort but not in the colon cancer cohort. COX-2 expression has predictive utility for management of rectal but not colon cancer. Copyright © 2014 Elsevier Inc. All rights reserved.

  3. Interleukin-1beta induced cyclooxygenase 2 expression and prostaglandin E2 secretion by human neuroblastoma cells: implications for Alzheimer's disease

    NARCIS (Netherlands)

    Hoozemans, J. J.; Veerhuis, R.; Janssen, I.; Rozemuller, A. J.; Eikelenboom, P.

    2001-01-01

    Non-steroidal anti-inflammatory drugs (NSAIDs) may decrease the risk of developing Alzheimer's disease (AD). Cyclooxygenase 2 (COX-2), one of the targets of NSAIDs, is increasingly expressed in neuronal cells in AD brain. In this study, of the cytokines that are found at increased levels in AD brain

  4. Upregulation of cyclooxygenase-2 expression in porcine macula densa with chronic nitric oxide synthase inhibition.

    Science.gov (United States)

    Kommareddy, M; McAllister, R M; Ganjam, V K; Turk, J R; Laughlin, M Harold

    2011-11-01

    The objective of this study was to investigate the effects of chronic inhibition of nitric oxide synthase (NOS) on cyclooxygenase-2 (COX-2) expression in the macula densa (MD) of swine, as well as the effects on expression of related proteins. Adult female Yucatan swine were given either tap water (control, n = 6) or water with N (G)-nitro-L-arginine methyl ester (L-NAME, 100 mg/liter, n = 5) for a minimum of 30 days. Duplicate samples of kidney were fixed or snap frozen. There was a significant (P = .0082) upregulation of COX-2 mRNA expression in the MD of L-NAME, as well as an apparent increase in COX-2 protein. Plasma renin activity also increased with L-NAME treatment (control, 0.34 ± 0.08 ng/ml; L-NAME, 1.26 ± 0.03 ng/ml; P = .00000003). There were no differences between groups in expression of either inducible NOS or renin protein or in serum electrolyte concentrations. In conclusion, with chronic inhibition of NOS, COX-2 in MD is upregulated, perhaps to compensate for loss of nitric oxide. Increases in COX-2 products may counteract renal arteriolar constriction and sustain renin release.

  5. Atorvastatin reduces lipopolysaccharide-induced expression of cyclooxygenase-2 in human pulmonary epithelial cells

    Directory of Open Access Journals (Sweden)

    Chen Ping

    2005-04-01

    Full Text Available Abstract Objective To explore the effects of atorvastatin on expression of cyclooxygenase-2 (COX-2 in human pulmonary epithelial cells (A549. Methods A549 cells were incubated in DMEM medium containing lipopolysaccharide (LPS in the presence or absence of atorvastatin. After incubation, the medium was collected and the amount of prostaglandin E2 (PGE2 was measured by enzyme-linked immunosorbent assay (ELISA. The cells were harvested, and COX-2 mRNA and protein were analyzed by RT-PCR and western-blot respectively. Results LPS increased the expression of COX-2 mRNA and production of PGE2 in a dose- and time-dependent manner in A549. Induction of COX-2 mRNA and protein by LPS were inhibited by atorvastatin in a dose-dependent manner. Atorvastatin also significantly decreased LPS-induced production of PGE2. There was a positive correlation between reduced of COX-2 mRNA and decreased of PGE2 (r = 0.947, P Conclusion Atorvastatin down-regulates LPS-induced expression of the COX-2 and consequently inhibits production of PGE2 in cultured A549 cells.

  6. Tropoelastin regulates chemokine expression in fibroblasts in Costello syndrome

    International Nuclear Information System (INIS)

    Tatano, Yutaka; Fujinawa, Reiko; Kozutsumi, Yasunori; Takahashi, Tsutomu; Tsuji, Daisuke; Takeuchi, Naohiro; Tsuta, Kohji; Takada, Goro; Sakuraba, Hitoshi; Itoh, Kohji

    2008-01-01

    Costello syndrome is a multiple congenital anomaly associated with growth and mental retardation, cardiac and skeletal anomalies, and a predisposition to develop neoplasia. Comprehensive expression analysis revealed remarkable up-regulation of several cytokines and chemokines including Gro family proteins, interleukin-1β (IL-1β), IL-8 and MCP-1 but down-regulation of extracellular matrix components including collagens and proteoglycans of skin fibroblasts derived from a Japanese Costello syndrome patient characterized by significantly reduced tropoelastin mRNA, impaired elastogenesis and enhanced cell proliferation. In contrast, decreases in these chemokines and IL-1β expression were observed in Costello fibroblastic cell lines stably expressing the bovine tropoelastin (btEln) gene and in restored elastic fibers. These results strongly suggest that the human TE gene (ELN) transfer could be applicable for the gene therapy of a group of Costello syndrome patients with reduced ELN gene expression

  7. Synthesis and evaluation of a radioiodinated lumiracoxib derivative for the imaging of cyclooxygenase-2 expression

    International Nuclear Information System (INIS)

    Kuge, Yuji; Obokata, Naoyuki; Kimura, Hiroyuki; Katada, Yumiko; Temma, Takashi; Sugimoto, Yukihiko; Aita, Kazuki; Seki, Koh-ichi; Tamaki, Nagara; Saji, Hideo

    2009-01-01

    Introduction: Despite extensive attempts to develop cyclooxygenase (COX)-2 imaging radiotracers, no suitable positron emission tomography (PET)/single photon emission computed tomography (SPECT) tracers are currently available for in vivo imaging of COX-2 expression. The aims of this study were to synthesize and evaluate a radioiodinated derivative of lumiracoxib, 2-[(2-fluoro-6-iodophenyl)-amino]-5-methylphenylacetic acid (FIMA), which is structurally distinct from other drugs in the class and has weakly acidic properties, as a SPECT tracer for imaging COX-2 expression. Methods: The COX inhibitory potency was assessed by measuring COX-catalyzed oxidation with hydrogen peroxide. Cell uptake characteristics of 125 I-FIMA were assessed in control and linterfero/interferon-γ-stimulated macrophages. The biodistribution of 125 I-FIMA was determined by the ex vivo tissue counting method in rats. Results: The COX-2 inhibitory potency of FIMA (IC 50 =2.46 μM) was higher than that of indomethacin (IC 50 =20.9 μM) and was comparable to lumiracoxib (IC 50 =0.77 μM) and diclofenac (IC 50 =0.98 μM). The IC 50 ratio (COX-1/COX-2=182) indicated FIMA has a high isoform selectivity for COX-2. 125 I-FIMA showed a significantly higher accumulation in COX-2 induced macrophages than in control macrophages, which decreased with nonradioactive FIMA in a concentration dependent manner. The biodistribution study showed rapid clearance of 125 I-FIMA from the blood and most organs including the liver and kidneys. No significant in vivo deiodination was observed with radioiodinated FIMA. Conclusions: FIMA showed high inhibitory potency and selectivity for COX-2. Radioiodinated FIMA showed specific accumulation into COX-2 induced macrophages, no significant in vivo deiodination and rapid blood clearance. Radioiodinated FIMA deserves further investigation as a SPECT radiopharmaceutical for imaging COX-2 expression.

  8. Synthesis and evaluation of a radioiodinated lumiracoxib derivative for the imaging of cyclooxygenase-2 expression

    Energy Technology Data Exchange (ETDEWEB)

    Kuge, Yuji [Department of Patho-Functional Bioanalysis, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto 606-8501 (Japan); Department of Tracer Kinetics and Bioanalysis, Graduate School of Medicine, Hokkaido University, Sapporo 060-8638 (Japan)], E-mail: kuge@med.hokudai.ac.jp; Obokata, Naoyuki; Kimura, Hiroyuki; Katada, Yumiko; Temma, Takashi [Department of Patho-Functional Bioanalysis, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto 606-8501 (Japan); Sugimoto, Yukihiko [Department of Physiological Chemistry, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto 606-8501 (Japan); Aita, Kazuki [Department of Patho-Functional Bioanalysis, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto 606-8501 (Japan); Central Institute of Isotope Science, Hokkaido University, Sapporo 060-8638 (Japan); Seki, Koh-ichi [Central Institute of Isotope Science, Hokkaido University, Sapporo 060-8638 (Japan); Tamaki, Nagara [Department of Nuclear Medicine, Graduate School of Medicine, Hokkaido University, Sapporo 060-8638 (Japan); Saji, Hideo [Department of Patho-Functional Bioanalysis, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto 606-8501 (Japan)

    2009-11-15

    Introduction: Despite extensive attempts to develop cyclooxygenase (COX)-2 imaging radiotracers, no suitable positron emission tomography (PET)/single photon emission computed tomography (SPECT) tracers are currently available for in vivo imaging of COX-2 expression. The aims of this study were to synthesize and evaluate a radioiodinated derivative of lumiracoxib, 2-[(2-fluoro-6-iodophenyl)-amino]-5-methylphenylacetic acid (FIMA), which is structurally distinct from other drugs in the class and has weakly acidic properties, as a SPECT tracer for imaging COX-2 expression. Methods: The COX inhibitory potency was assessed by measuring COX-catalyzed oxidation with hydrogen peroxide. Cell uptake characteristics of {sup 125}I-FIMA were assessed in control and linterfero/interferon-{gamma}-stimulated macrophages. The biodistribution of {sup 125}I-FIMA was determined by the ex vivo tissue counting method in rats. Results: The COX-2 inhibitory potency of FIMA (IC{sub 50}=2.46 {mu}M) was higher than that of indomethacin (IC{sub 50}=20.9 {mu}M) and was comparable to lumiracoxib (IC{sub 50}=0.77 {mu}M) and diclofenac (IC{sub 50}=0.98 {mu}M). The IC{sub 50} ratio (COX-1/COX-2=182) indicated FIMA has a high isoform selectivity for COX-2. {sup 125}I-FIMA showed a significantly higher accumulation in COX-2 induced macrophages than in control macrophages, which decreased with nonradioactive FIMA in a concentration dependent manner. The biodistribution study showed rapid clearance of {sup 125}I-FIMA from the blood and most organs including the liver and kidneys. No significant in vivo deiodination was observed with radioiodinated FIMA. Conclusions: FIMA showed high inhibitory potency and selectivity for COX-2. Radioiodinated FIMA showed specific accumulation into COX-2 induced macrophages, no significant in vivo deiodination and rapid blood clearance. Radioiodinated FIMA deserves further investigation as a SPECT radiopharmaceutical for imaging COX-2 expression.

  9. Quercetin suppresses cyclooxygenase-2 expression and angiogenesis through inactivation of P300 signaling.

    Directory of Open Access Journals (Sweden)

    Xiangsheng Xiao

    Full Text Available Quercetin, a polyphenolic bioflavonoid, possesses multiple pharmacological actions including anti-inflammatory and antitumor properties. However, the precise action mechanisms of quercetin remain unclear. Here, we reported the regulatory actions of quercetin on cyclooxygenase-2 (COX-2, an important mediator in inflammation and tumor promotion, and revealed the underlying mechanisms. Quercetin significantly suppressed COX-2 mRNA and protein expression and prostaglandin (PG E(2 production, as well as COX-2 promoter activation in breast cancer cells. Quercetin also significantly inhibited COX-2-mediated angiogenesis in human endothelial cells in a dose-dependent manner. The in vitro streptavidin-agarose pulldown assay and in vivo chromatin immunoprecipitation assay showed that quercetin considerably inhibited the binding of the transactivators CREB2, C-Jun, C/EBPβ and NF-κB and blocked the recruitment of the coactivator p300 to COX-2 promoter. Moreover, quercetin effectively inhibited p300 histone acetyltransferase (HAT activity, thereby attenuating the p300-mediated acetylation of NF-κB. Treatment of cells with p300 HAT inhibitor roscovitine was as effective as quercetin at inhibiting p300 HAT activity. Addition of quercetin to roscovitine-treated cells did not change the roscovitine-induced inhibition of p300 HAT activity. Conversely, gene delivery of constitutively active p300 significantly reversed the quercetin-mediated inhibition of endogenous HAT activity. These results indicate that quercetin suppresses COX-2 expression by inhibiting the p300 signaling and blocking the binding of multiple transactivators to COX-2 promoter. Our findings therefore reveal a novel mechanism of action of quercetin and suggest a potential use for quercetin in the treatment of COX-2-mediated diseases such as breast cancers.

  10. Cyclooxygenase-2 and hypoxia-regulated proteins are modulated by basic fibroblast growth factor in acute renal failure

    Directory of Open Access Journals (Sweden)

    Sandra Villanueva

    2012-01-01

    Full Text Available Acute renal failure (ARF can be caused by injuries that induce tissue hypoxia, which in turn can trigger adaptive or inflammatory responses. We previously showed the participation of basic fibroblast growth factor (FGF-2 in renal repair. Based on this, the aim of this study was to analyze the effect of FGF-2 signaling pathway manipulation at hypoxia-induced protein levels, as well as in key proteins from the vasoactive systems of the kidney. We injected rat kidneys with FGF-2 recombinant protein (r-FGF or FGF-2 receptor antisense oligonucleotide (FGFR2-ASO after bilateral ischemia, and evaluated the presence of iNOS, EPO and HO-1, in representation of hypoxia-induced proteins, as well as COX-2, renin, kallikrein, and B2KR, in representation of the vasoactive systems of the kidney. A reduction in iNOS, HO-1, EPO, renin, kallikrein, B2KR, and in renal damage was observed in animals treated with r-FGF. The opposite effect was found with FGF-2 receptor down-regulation. In contrast, COX-2 protein levels were higher in kidneys treated with r-FGF and lower in those that received FGFR2-ASO, as compared to saline treated kidneys. These results suggest that the protective role of FGF-2 in the pathogenesis of ARF induced by I/R is a complex process, through which a differential regulation of metabolic pathways takes place.

  11. Activation of endogenous opioid gene expression in human keratinocytes and fibroblasts by pulsed radiofrequency energy fields

    Directory of Open Access Journals (Sweden)

    Moffett J

    2012-09-01

    Full Text Available John Moffett,1 Linley M Fray,1 Nicole J Kubat21Life Science Department, 2Independent Consultant, Regenesis Biomedical Inc, Scottsdale, AZ, USABackground: Pulsed radiofrequency energy (PRFE fields are being used increasingly for the treatment of pain arising from dermal trauma. However, despite their increased use, little is known about the biological and molecular mechanism(s responsible for PRFE-mediated analgesia. In general, current therapeutics used for analgesia target either endogenous factors involved in inflammation, or act on endogenous opioid pathways.Methods and Results: Using cultured human dermal fibroblasts (HDF and human epidermal keratinocytes (HEK, we investigated the effect of PRFE treatment on factors, which are involved in modulating peripheral analgesia in vivo. We found that PRFE treatment did not inhibit cyclooxygenase enzyme activity, but instead had a positive effect on levels of endogenous opioid precursor mRNA (proenkephalin, pro-opiomelanocortin, prodynorphin and corresponding opioid peptide. In HEK cells, increases in opioid mRNA were dependent, at least in part, on endothelin-1. In HDF cells, additional pathways also appear to be involved. PRFE treatment was also followed by changes in endogenous expression of several cytokines, including increased levels of interleukin-10 mRNA and decreased levels of interleukin-1β mRNA in both cell types.Conclusion: These findings provide a new insight into the molecular mechanism underlying PRFE-mediated analgesia reported in the clinical setting.Keywords: peripheral analgesia, endogenous opioids, endothelin-1, endothelin receptor A, endothelin receptor B, pulsed radiofrequency energy field, cyclooxygenase

  12. Alterations in Lipoxygenase and Cyclooxygenase-2 Catalytic Activity and mRNA Expression in Prostate Carcinoma

    Directory of Open Access Journals (Sweden)

    Scott B. Shappell

    2001-01-01

    Full Text Available Recent studies in prostate tissues and especially cell lines have suggested roles for arachidonic acid (AA metabolizing enzymes in prostate adenocarcinoma (Pca development or progression. The goal of this study was to more fully characterize lipoxygenase (LOX and cyclooxygenase-2 (COX-2 gene expression and AA metabolism in benign and malignant prostate using snap-frozen tissues obtained intraoperatively and mRNA analyses and enzyme assays. Formation of 15-hydroxyeicosatetraenoic acid (15-HETE was detected in 23/29 benign samples and 15-LOX-2 mRNA was detected in 21/25 benign samples. In pairs of pure benign and Pca from the same patients, 15-HETE production and 15-LOX-2 mRNA were reduced in Pca versus benign in 9/14 (P=.04 and 14/17 (P=.002, respectively. Under the same conditions, neither 5HETE nor 12-HETE formation was detectable in 29 benign and 24 tumor samples; with a more sensitive assay, traces were detected in some samples, but there was no clear association with tumor tissue. COX-2 mRNA was detected by nuclease protection assay in 7/16 benign samples and 5/16 tumors. In benign and tumor pairs from 10 patients, COX-2 was higher in tumor versus benign in only 2, with similar results by in situ hybridization. Paraffin immunoperoxidase for COX2 was performed in whole mount sections from 87 additional radical prostatectomy specimens, with strong expression in ejaculatory duct as a positive control and corroboration with in situ hybridization. No immunostaining was detected in benign prostate or tumor in 45% of cases. Greater immunostaining in tumor versus benign was present in only 17% of cases, and correlated with high tumor grade (Gleason score 8 and 9 vs. 5 to 7. In conclusion, reduced 15-LOX-2 expression and 15-HETE formation is the most characteristic alteration of AA metabolism in Pca. Increased 12-HETE and 5-HETE formation in Pca were not discernible. Increased COX-2 expression is not a typical abnormality in Pca in general, but

  13. Radiation Therapy Overcomes Adverse Prognostic Role of Cyclooxygenase-2 Expression on Reed-Sternberg Cells in Early Hodgkin Lymphoma

    Energy Technology Data Exchange (ETDEWEB)

    Mestre, Francisco [Service of Radiation Therapy, University Hospital Son Espases, Instituto de Investigación Sanitaria de Palma, Palma de Mallorca (Spain); Gutiérrez, Antonio, E-mail: antoniom.gutierrez@ssib.es [Service of Hematology, University Hospital Son Espases, Instituto de Investigación Sanitaria de Palma, Palma de Mallorca (Spain); Rodriguez, Jose [MD Anderson Cancer Center, Madrid (Spain); Ramos, Rafael [Service of Pathology, University Hospital Son Espases, Instituto de Investigación Sanitaria de Palma, Palma de Mallorca (Spain); Garcia, Juan Fernando [Spanish National Cancer Research Centre, Madrid (Spain); Martinez-Serra, Jordi [Service of Hematology, University Hospital Son Espases, Instituto de Investigación Sanitaria de Palma, Palma de Mallorca (Spain); Casasus, Marta; Nicolau, Cristina [Service of Radiation Therapy, Policlinica Miramar, Palma de Mallorca (Spain); Bento, Leyre; Herraez, Ines [Service of Hematology, University Hospital Son Espases, Instituto de Investigación Sanitaria de Palma, Palma de Mallorca (Spain); Lopez-Perezagua, Paloma [Service of Radiology, IDISPA, Palma de Mallorca (Spain); Daumal, Jaime [Service of Nuclear Medicine, IDISPA, Palma de Mallorca (Spain); Besalduch, Joan [Service of Hematology, University Hospital Son Espases, Instituto de Investigación Sanitaria de Palma, Palma de Mallorca (Spain)

    2015-05-01

    Purpose: To analyze the role of radiation therapy (RT) on the adverse prognostic influence of cyclooxygenase-2 (COX-2) expression on Reed-Sternberg (RS) cells, in the setting of early Hodgkin lymphoma (HL) treated with ABVD (adriamycin, vinblastine, bleomycin, dacarbazine). Methods and Materials: In the present study we retrospectively investigated the prognostic value of COX-2 expression in a large (n=143), uniformly treated early HL population from the Spanish Network of HL using tissue microarrays. Univariate and multivariate analyses were done, including the most recognized clinical variables and the potential role of administration of adjuvant RT. Results: Median age was 31 years; the expression of COX-2 defined a subgroup with significantly worse prognosis. Considering COX-2{sup +} patients, those who received RT had significantly better 5-year progression-free survival (PFS) (80% vs 54% if no RT; P=.008). In contrast, COX-2{sup −} patients only had a modest, nonsignificant benefit from RT in terms of 5-year PFS (90% vs 79%; P=.13). When we compared the outcome of patients receiving RT considering the expression of COX-2 on RS cells, we found a nonsignificant 10% difference in terms of PFS between COX-2{sup +} and COX-2{sup −} patients (P=.09), whereas the difference between the 2 groups was important (25%) in patients not receiving RT (P=.04). Conclusions: Cyclooxygenase-2 RS cell expression is an adverse independent prognostic factor in early HL. Radiation therapy overcomes the worse prognosis associated with COX-2 expression on RS cells, acting in a chemotherapy-independent way. Cyclooxygenase-2 RS cell expression may be useful for determining patient candidates with early HL to receive consolidation with RT.

  14. Radiation Therapy Overcomes Adverse Prognostic Role of Cyclooxygenase-2 Expression on Reed-Sternberg Cells in Early Hodgkin Lymphoma

    International Nuclear Information System (INIS)

    Mestre, Francisco; Gutiérrez, Antonio; Rodriguez, Jose; Ramos, Rafael; Garcia, Juan Fernando; Martinez-Serra, Jordi; Casasus, Marta; Nicolau, Cristina; Bento, Leyre; Herraez, Ines; Lopez-Perezagua, Paloma; Daumal, Jaime; Besalduch, Joan

    2015-01-01

    Purpose: To analyze the role of radiation therapy (RT) on the adverse prognostic influence of cyclooxygenase-2 (COX-2) expression on Reed-Sternberg (RS) cells, in the setting of early Hodgkin lymphoma (HL) treated with ABVD (adriamycin, vinblastine, bleomycin, dacarbazine). Methods and Materials: In the present study we retrospectively investigated the prognostic value of COX-2 expression in a large (n=143), uniformly treated early HL population from the Spanish Network of HL using tissue microarrays. Univariate and multivariate analyses were done, including the most recognized clinical variables and the potential role of administration of adjuvant RT. Results: Median age was 31 years; the expression of COX-2 defined a subgroup with significantly worse prognosis. Considering COX-2 + patients, those who received RT had significantly better 5-year progression-free survival (PFS) (80% vs 54% if no RT; P=.008). In contrast, COX-2 − patients only had a modest, nonsignificant benefit from RT in terms of 5-year PFS (90% vs 79%; P=.13). When we compared the outcome of patients receiving RT considering the expression of COX-2 on RS cells, we found a nonsignificant 10% difference in terms of PFS between COX-2 + and COX-2 − patients (P=.09), whereas the difference between the 2 groups was important (25%) in patients not receiving RT (P=.04). Conclusions: Cyclooxygenase-2 RS cell expression is an adverse independent prognostic factor in early HL. Radiation therapy overcomes the worse prognosis associated with COX-2 expression on RS cells, acting in a chemotherapy-independent way. Cyclooxygenase-2 RS cell expression may be useful for determining patient candidates with early HL to receive consolidation with RT

  15. Cyclooxygenase 2 and neuronal nitric oxide synthase expression in the renal cortex are not interdependent in states of salt deficiency

    DEFF Research Database (Denmark)

    Castrop, H; Kammerl, M; Mann, Birgitte

    2000-01-01

    Neuronal nitric oxide synthase (nNOS) and cyclooxygenase-2 (COX-2) expression in the kidney are localized to the cortical thick ascending limb of the loop of Henle (cTALH), including the macula region, and increase after salt restriction. Because of the similar localization and regulation of n...... excretion. These findings suggest that under these conditions the control of nNOS and COX-2 gene expression in the macula densa regions of the kidney cortex are not dependent on each other....

  16. A Marfan syndrome gene expression phenotype in cultured skin fibroblasts

    Directory of Open Access Journals (Sweden)

    Emond Mary

    2007-09-01

    Full Text Available Abstract Background Marfan syndrome (MFS is a heritable connective tissue disorder caused by mutations in the fibrillin-1 gene. This syndrome constitutes a significant identifiable subtype of aortic aneurysmal disease, accounting for over 5% of ascending and thoracic aortic aneurysms. Results We used spotted membrane DNA macroarrays to identify genes whose altered expression levels may contribute to the phenotype of the disease. Our analysis of 4132 genes identified a subset with significant expression differences between skin fibroblast cultures from unaffected controls versus cultures from affected individuals with known fibrillin-1 mutations. Subsequently, 10 genes were chosen for validation by quantitative RT-PCR. Conclusion Differential expression of many of the validated genes was associated with MFS samples when an additional group of unaffected and MFS affected subjects were analyzed (p-value -6 under the null hypothesis that expression levels in cultured fibroblasts are unaffected by MFS status. An unexpected observation was the range of individual gene expression. In unaffected control subjects, expression ranges exceeding 10 fold were seen in many of the genes selected for qRT-PCR validation. The variation in expression in the MFS affected subjects was even greater.

  17. Keratinocyte growth factor mRNA expression in periodontal ligament fibroblasts

    DEFF Research Database (Denmark)

    Dabelsteen, S; Wandall, H H; Grøn, B

    1997-01-01

    Keratinocyte growth factor (KGF) is a fibroblast growth factor which mediates epithelial growth and differentiation. KGF is expressed in subepithelial fibroblasts, but generally not in fibroblasts of deep connective tissue, such as fascia and ligaments. Here we demonstrate that KGF mRNA is expres......Keratinocyte growth factor (KGF) is a fibroblast growth factor which mediates epithelial growth and differentiation. KGF is expressed in subepithelial fibroblasts, but generally not in fibroblasts of deep connective tissue, such as fascia and ligaments. Here we demonstrate that KGF m......RNA is expressed in periodontal ligament fibroblasts, and that the expression is increased upon serum stimulation. Fibroblasts from human periodontal ligament, from buccal mucosa, from gingiva, and from skin were established from explants. Alkaline phosphatase activity was used as an indicator of the periodontal...

  18. Celecoxib suppresses fibroblast growth factor-2 expression in pancreatic ductal adenocarcinoma PANC-1 cells.

    Science.gov (United States)

    Li, Jing; Luo, Miaosha; Wang, Yan; Shang, Boxin; Dong, Lei

    2016-09-01

    The inhibition of cyclooxygenase (COX)-2 has been reported to suppress growth and induce apoptosis in human pancreatic cancer cells. Nevertheless, the precise biological mechanism of how celecoxib, a selective COX-2 inhibitor, regulates the growth and invasion of pancreatic tumors is not completely understood. It has been shown that fibroblast growth factor-2 (FGF-2) and its receptor levels correlate with the inhibition of cancer cell proliferation, migration and invasion in pancreatic ductal adenocarcinoma (PDAC). Therefore, the aim of the present study was to examine the hypothesis that the antitumor activity of celecoxib in PDAC may be exerted through modulation of FGF-2 function. In the present study, we evaluated the effects of celecoxib on the proliferation, migration, invasion and apoptosis of the PANC-1 cell line. Western blotting and quantitative real-time polymerase chain reaction (qRT-PCR) were used to examine the expression of FGF-2, FGFR-2, ERK1/2 and MMPs. In the present study, FGF-2 and FGFR-2 were expressed in PANC-1 cells and FGF-2 exerted a stimulatory effect on phosphorylated extracellular signal regulated kinase (p-ERK) expression. Celecoxib treatment suppressed FGF-2 and FGFR-2 expression and decreased MMP-2, MMP-9 and p-ERK expression in the PANC-1 cells. Furthermore, celecoxib treatment caused the resistance of PANC-1 cells to FGF-2 induced proliferation, migration and invasion ability, as well as the increase in their apoptotic rate. Our data provide evidence that targeting FGF-2 with celecoxib may be used as an effective treatment in PDAC.

  19. Glutamine deprivation induces interleukin-8 expression in ataxia telangiectasia fibroblasts.

    Science.gov (United States)

    Kim, Min-Hyun; Kim, Aryung; Yu, Ji Hoon; Lim, Joo Weon; Kim, Hyeyoung

    2014-05-01

    To investigate whether glutamine deprivation induces expression of inflammatory cytokine interleukin-8 (IL-8) by determining NF-κB activity and levels of oxidative indices (ROS, reactive oxygen species; hydrogen peroxide; GSH, glutathione) in fibroblasts isolated from patients with ataxia telangiectasia (A-T). We used A-T fibroblasts stably transfected with empty vector (Mock) or with human full-length ataxia telangiectasia mutated (ATM) cDNA (YZ5) and mouse embryonic fibroblasts (MEFs) transiently transfected with ATM small interfering RNA (siRNA) or with non-specific control siRNA. The cells were cultured with or without glutamine or GSH. ROS levels were determined using a fluorescence reader and confocal microscopy. IL-8 or murine IL-8 homolog, keratinocyte chemoattractant (KC), and hydrogen peroxide levels in the medium were determined by enzyme-linked immunosorbent assay and colorimetric assay. GSH level was assessed by enzymatic assay, while IL-8 (KC) mRNA level was measured by reverse transcription-polymerase chain reaction (RT-PCR) and/or quantitative real-time PCR. NF-κB DNA-binding activity was determined by electrophoretic mobility shift assay. Catalase activity and ATM protein levels were determined by O2 generation and Western blotting. While glutamine deprivation induced IL-8 expression and increased NF-κB DNA-binding activity in Mock cells, both processes were decreased by treatment of cells with glutamine or GSH or both glutamine and GSH. Glutamine deprivation had no effect on IL-8 expression or NF-κB DNA-binding activity in YZ5 cells. Glutamine-deprived Mock cells had higher oxidative stress indices (increases in ROS and hydrogen peroxide, reduction in GSH) than glutamine-deprived YZ5 cells. In Mock cells, glutamine deprivation-induced oxidative stress indices were suppressed by treatment with glutamine or GSH or both glutamine and GSH. GSH levels and catalase activity were lower in Mock cells than YZ5 cells. MEFs transfected with ATM siRNA and

  20. Differential Gene Expression of Fibroblasts: Keloid versus Normal

    Directory of Open Access Journals (Sweden)

    Michael F. Angel

    2002-11-01

    Full Text Available Abstract: This study investigated gene regulation and unique gene products in both keloid (KDF and normal (NDF dermal fibroblasts in established cell lines. For gene regulation, NDF versus KDF were compared using Clontech's Atlas™ Human cDNA Expression Array while unique gene products were studied using RNA Fingerprinting Kit. RNA from each sample was converted to cDNA using oligo-dT primers. Down-regulated genes using Atlas Array in KDF were 1 60 S ribosomal protein, 2 Thioredoxin dependent peroxidase, 3 Nuclease sensitive element DNA binding protein, 4 c-myc purine-binding transcription factor, 5 c-AMP dependent protein kinase, and, 6 Heat Shock Protein 90 kDa. Genes that are up regulated in KDF were 1 Tubulin and 2 Heat Shock Protein 27 kDa. With the differential display, we found 17 bands unique to both KDF and NDF. The specific gene and the manner in which they were differentially regulated have direct implications to understanding keloid fibroblast proliferation.

  1. Microarray mRNA expression analysis of Fanconi anemia fibroblasts.

    Science.gov (United States)

    Galetzka, D; Weis, E; Rittner, G; Schindler, D; Haaf, T

    2008-01-01

    Fanconi anemia (FA) cells are generally hypersensitive to DNA cross-linking agents, implying that mutations in the different FANC genes cause a similar DNA repair defect(s). By using a customized cDNA microarray chip for DNA repair- and cell cycle-associated genes, we identified three genes, cathepsin B (CTSB), glutaredoxin (GLRX), and polo-like kinase 2 (PLK2), that were misregulated in untreated primary fibroblasts from three unrelated FA-D2 patients, compared to six controls. Quantitative real-time RT PCR was used to validate these results and to study possible molecular links between FA-D2 and other FA subtypes. GLRX was misregulated to opposite directions in a variety of different FA subtypes. Increased CTSB and decreased PLK2 expression was found in all or almost all of the analyzed complementation groups and, therefore, may be related to the defective FA pathway. Transcriptional upregulation of the CTSB proteinase appears to be a secondary phenomenon due to proliferation differences between FA and normal fibroblast cultures. In contrast, PLK2 is known to play a pivotal role in processes that are linked to FA defects and may contribute in multiple ways to the FA phenotype: PLK2 is a target gene for TP53, is likely to function as a tumor suppressor gene in hematologic neoplasia, and Plk2(-/-) mice are small because of defective embryonal development. (c) 2008 S. Karger AG, Basel.

  2. Clinical significance of cyclooxygenase-2 expression in extranodal natural killer (NK)/T-cell lymphoma, nasal type

    International Nuclear Information System (INIS)

    Shim, Su Jung; Yang, Woo-Ick; Shin, Eunah; Koom, Woong Sub; Kim, Yong Bae; Cho, Jae Ho; Suh, Chang Ok; Kim, Joo Hang; Kim, Gwi Eon

    2007-01-01

    Purpose: To determine whether there are any differences in therapeutic response, patterns of systemic recurrence, and prognosis of patients with extranodal natural killer (NK)/T-cell lymphoma, nasal type, by the cyclooxygenase-2 (COX-2) expression. Patients and Methods: Thirty-four patients with Ann Arbor Stage I and II extranodal NK/T-cell lymphoma who underwent chemotherapy or radiotherapy, or both, were retrospectively reviewed. These patients were divided into two groups according to their immunohistochemical staining for COX-2 expressions: a COX-2-negative group (n = 10 patients) and a COX-2-positive group (n = 24 patients). The treatment response, patterns of treatment failure, and survival data for the patients were compared between the COX-2-positive and negative groups. Results: There was no significant difference in the clinical profiles between the COX-2-negative and COX-2-positive groups. All patients (100%) in the COX-2-negative group achieved complete response after initial treatment, whereas only 14 patients (58%) in the COX-2-positive group achieved complete response (p = 0.03). Compared with the patients in the COX-2-negative group, those in the COX-2-positive group had a significantly lower 2-year systemic recurrence-free survival rate (100% for the COX-2-negative group vs. 54% for the COX-2-positive group) (p = 0.02) and a decreased 5-year overall survival rate (70% for the COX-2-negative group vs. 32% for the COX-2-positive group) (p = 0.06). Conclusion: Cyclooxygenase-2 expression can serve as a predictive factor for poor treatment response, higher systemic recurrence, and unfavorable prognosis in patients with extranodal NK/T-cell lymphoma, nasal type

  3. The fibroblast surface markers FAP, anti-fibroblast, and FSP are expressed by cells of epithelial origin and may be altered during epithelial-to-mesenchymal transition.

    Science.gov (United States)

    Kahounová, Zuzana; Kurfürstová, Daniela; Bouchal, Jan; Kharaishvili, Gvantsa; Navrátil, Jiří; Remšík, Ján; Šimečková, Šárka; Študent, Vladimír; Kozubík, Alois; Souček, Karel

    2017-04-06

    The identification of fibroblasts and cancer-associated fibroblasts from human cancer tissue using surface markers is difficult, especially because the markers used currently are usually not expressed solely by fibroblasts, and the identification of fibroblast-specific surface molecules is still under investigation. It was aimed to compare three commercially available antibodies in the detection of different surface epitopes of fibroblasts (anti-fibroblast, fibroblast activation protein α, and fibroblast surface protein). The specificity of their expression, employing fibroblast cell lines and tumor-derived fibroblasts from breast and prostate tissues was investigated. Both the established fibroblast cell line HFF-1 and ex vivo primary fibroblasts isolated from breast and prostate cancer tissues expressed the tested surface markers to different degrees. Surprisingly, those markers were expressed also by permanent cell lines of epithelial origin, both benign and cancer-derived (breast-cell lines MCF 10A, HMLE and prostate-cell lines BPH-1, DU 145, and PC-3). The expression of fibroblast activation protein α increased on the surface of previously described models of epithelial cells undergoing epithelial-to-mesenchymal transition in response to treatment with TGF-β1. To prove the co-expression of the fibroblast markers on cells of epithelial origin, we used freshly dissociated human prostate and breast cancer tissues. The results confirmed the co-expression of anti-fibroblast and fibroblast surface protein on CD31/CD45-negative/EpCAM-positive epithelial cells. In summary, our data support the findings that the tested fibroblast markers are not fibroblast specific and may be expressed also by cells of epithelial origin (e.g., cells undergoing EMT). Therefore, the expression of these markers should be interpreted with caution, and the combination of several epitopes for both positive (anti-fibroblast or fibroblast activation protein α) and negative (Ep

  4. Expression of cyclooxygenase-1 and cyclooxygenase-2, syndecan-1 and connective tissue growth factor in benign and malignant breast tissue from premenopausal women.

    Science.gov (United States)

    Fahlén, M; Zhang, H; Löfgren, L; Masironi, B; von Schoultz, E; von Schoultz, B; Sahlin, L

    2017-05-01

    Stromal factors have been identified as important for tumorigenesis and metastases of breast cancer. From 49 premenopausal women, samples were collected from benign or malignant tumors and the seemingly normal tissue adjacent to the tumor. The factors studied, with real-time polymerase chain reaction (PCR) and immunohistochemistry, were cyclooxygenase-1 and cyclooxygenase-2 (COX-1 and COX-2), syndecan-1 (S-1) and connective tissue growth factor (CTGF). COX-1 and S-1 mRNA levels were higher in the malignant tumors than in normal and benign tissues. The COX-2 mRNA level was lower in the malignant tumor than in the normal tissue, while CTGF mRNA did not differ between the groups. COX-1 immunostaining was higher in stroma from malignant tumors than in benign tissues, whereas COX-2 immunostaining was higher in the malignant tissue. Glandular S-1 immunostaining was lower in malignant tumors compared to benign and normal tissues, and the opposite was found in stroma. Conclusively, mRNA levels of COX-1 and COX-2 were oppositely regulated, with COX-1 being increased in the malignant tumor while COX-2 was decreased. S-1 protein localization switched from glandular to stromal cells in malignant tissues. Thus, these markers are, in premenopausal women, localized and regulated differently in normal/benign breast tissue as compared to the malignant tumor.

  5. Cyclooxygenase-2 expression and clinical parameters in laryngeal squamous cell carcinoma, vocal fold nodule, and laryngeal atypical hyperplasia.

    Science.gov (United States)

    Sayar, Cağdaş; Sayar, Hamide; Özdemir, Süleyman; Selçuk, Tahsin; Görgülü, Orhan; Akbaş, Yücel; Kemal Olgun, Mustafa

    2013-01-01

    The diagnostic role of cyclooxygenase-2 (COX-2) expression in laryngeal atypical hyperplasia, vocal fold nodule, and laryngeal squamous cell carcinoma was examined. Specimens obtained from patients diagnosed with vocal fold nodule (n = 35), atypical hyperplasia (n = 35), laryngeal squamous cell carcinoma (n = 35), and clinical parameters were evaluated retrospectively. Although no staining was observed in patients with vocal fold nodules, staining was noted in laryngeal atypical hyperplasia and squamous cell carcinoma. The percentage of COX-2 staining was the highest in the carcinoma group. It was determined that COX-2 staining was significantly associated with laryngeal squamous cell carcinoma. It should be noted that overexpression of COX-2, a potentially important factor in the evolution of carcinogenesis in precancerous lesions, might be an indicator of the development of carcinoma. Copyright © 2012 Wiley Periodicals, Inc.

  6. Fibroblast and keratinocyte gene expression following exposure to the extracts of holy basil plant (Ocimum tenuiflorum, malabar nut plant (Justicia adhatoda, and emblic myrobalan plant (Phyllanthus emblica

    Directory of Open Access Journals (Sweden)

    Takao Someya

    2018-04-01

    Full Text Available This data article provides gene expression profiles, determined by using real-time PCR, of fibroblasts and keratinocytes treated with 0.01% and 0.001% extracts of holy basil plant (Ocimum tenuiflorum, sri lankan local name “maduruthala”, 0.1% and 0.01% extracts of malabar nut plant (Justicia adhatoda, sri lankan local name “adayhoda” and 0.003% and 0.001% extracts of emblic myrobalan plant (Phyllanthus emblica, sri lankan local name “nelli”, harvested in Sri Lanka. For fibroblasts, the dataset includes expression profiles for genes encoding hyaluronan synthase 1 (HAS1, hyaluronan synthase 2 (HAS2, hyaluronidase-1 (HYAL1, hyaluronidase-2 (HYAL2, versican, aggrecan, CD44, collagen, type I, alpha 1 (COL1A1, collagen, type III, alpha 1 (COL3A1, collagen, type VII, alpha 1 (COL7A1, matrix metalloproteinase 1 (MMP1, acid ceramidase, basic fibroblast growth factor (bFGF, fibroblast growth factor-7 (FGF7, vascular endothelial growth factor (VEGF, interleukin-1 alpha (IL-1α, cyclooxygenase-2 (cox2, transforming growth factor beta (TGF-β, and aquaporin 3 (AQP3. For keratinocytes, the expression profiles are for genes encoding HAS1, HAS2, HYAL1, HYAL2, versican, CD44, IL-1α, cox2, TGF-β, AQP3, Laminin5, collagen, type XVII, alpha 1 (COL17A1, integrin alpha-6 (ITGA6, ceramide synthase 3 (CERS3, elongation of very long chain fatty acids protein 1 (ELOVL1, elongation of very long chain fatty acids protein 4 (ELOVL4, filaggrin (FLG, transglutaminase 1 (TGM1, and keratin 1 (KRT1. The expression profiles are provided as bar graphs. Keywords: Real-time PCR, Gene expression profile, Fibroblast, Keratinocyte, Holy basil extract, Ocimum tenuiflorum, Maduruthala, Malabar nut plant extract, Justicia adhatoda, Adayhoda, Emblic myrobalan extract, Phyllanthus emblica, Nelli

  7. Photobiomodulation changes type 1 collagen gene expression by pulp fibroblasts

    Science.gov (United States)

    Lourenço Ribeiro Vitor, Luciana; Tavares Oliveira Prado, Mariel; Lourenço Neto, Natalino; Cardoso de Oliveira, Rodrigo; Ferreira Santos, Carlos; Moreira Machado, Maria Aparecida Andrade; Marchini Oliveira, Thais

    2018-06-01

    This study aimed to evaluate type 1 collagen (COL1) gene expression by human pulp fibroblasts from primary teeth (HPF) after the variation of photobiomodulation (PBM) parameters. HPF were obtained from a biorepository, used at 4th passage, and irradiated (InGaAlP—660 nm) varying the power and application time according to the following groups: G1: 1.2 J cm‑2–05 mW–10 s G2: 2.5 J cm‑2–05 mW–20 s G3: 3.7 J cm‑2–05 mW–30 s G4: 5.0 J cm‑2–05 mW–40 s G5: 6.2 J cm‑2–05 mW–50 s G6: 2.5 J cm‑2–10 mW–10 s G7: 3.7 J cm‑2–15 mW–10 s G8: 5.0 J cm‑2–20 mW–10 s G9: 6.2 J cm‑2–25 mW–10 s. The control group (G10) was not irradiated and maintained with DMEM  +  10% SFB. RT-PCR was used to evaluate COL1 gene expression at 6, 12, and 24 h after irradiation. Intra- and intergroup comparisons were performed by two-way ANOVA followed by Tukey test (p  differences among periods (p  differences (p  >  0.05). The energy densities from 2.5 to 5 J cm‑2, regardless of the variation in PBM parameters, biomodulated the COL1 gene expression. At the energy density of 6.2 J cm‑2, longer application time and smaller power changed the pattern of COL1 gene expression by pulp fibroblasts from human primary teeth.

  8. Effects of the estrous cycle, pregnancy and interferon tau on expression of cyclooxygenase two (COX-2 in ovine endometrium

    Directory of Open Access Journals (Sweden)

    Bazer Fuller W

    2003-08-01

    Full Text Available Abstract In sheep, the uterus produces luteolytic pulses of prostaglandin F2α (PGF on Days 15 to 16 of estrous cycle to regress the corpus luteum (CL. These PGF pulses are produced by the endometrial lumenal epithelium (LE and superficial ductal glandular epithelium (sGE in response to binding of pituitary and/or luteal oxytocin to oxytocin receptors (OTR and liberation of arachidonic acid, the precursor of PGF. Cyclooxygenase-one (COX-1 and COX-2 are rate-limiting enzymes in PGF synthesis, and COX-2 is the major form expressed in ovine endometrium. During pregnancy recognition, interferon tau (IFNτ, produced by the conceptus trophectoderm, acts in a paracrine manner to suppress development of the endometrial epithelial luteolytic mechanism by inhibiting transcription of estrogen receptor α (ERα (directly and OTR (indirectly genes. Conflicting studies indicate that IFNτ increases, decreases or has no effect on COX-2 expression in bovine and ovine endometrial cells. In Study One, COX-2 mRNA and protein were detected solely in endometrial LE and sGE of both cyclic and pregnant ewes. During the estrous cycle, COX-2 expression increased from Days 10 to 12 and then decreased to Day 16. During early pregnancy, COX-2 expression increased from Days 10 to 12 and remained higher than in cyclic ewes. In Study Two, intrauterine infusion of recombinant ovine IFNτ in cyclic ewes from Days 11 to 16 post-estrus did not affect COX-2 expression in the endometrial epithelium. These results clearly indicate that IFNτ has no effect on expression of the COX-2 gene in the ovine endometrium. Therefore, antiluteolytic effects of IFNτ are to inhibit ERα and OTR gene transcription, thereby preventing endometrial production of luteolytic pulses of PGF. Indeed, expression of COX-2 in the endometrial epithelia as well as conceptus is likely to have a beneficial regulatory role in implantation and development of the conceptus.

  9. Effect of quercetin on metallothionein, nitric oxide synthases and cyclooxygenase-2 expression on experimental chronic cadmium nephrotoxicity in rats

    International Nuclear Information System (INIS)

    Morales, Ana I.; Vicente-Sanchez, Cesar; Jerkic, Mirjana; Santiago, Jose M.; Sanchez-Gonzalez, Penelope D.; Perez-Barriocanal, Fernando; Lopez-Novoa, Jose M.

    2006-01-01

    Inflammation can play a key role in Cd-induced dysfunctions. Quercetin is a potent oxygen free radical scavenger and a metal chelator. Our aim was to study the effect of quercetin on Cd-induced kidney damage and metallothionein expression. The study was performed in Wistar rats that were administered during 9 weeks with either cadmium (1.2 mg Cd/kg/day, s.c.), quercetin (50 mg/kg/day, i.p.) or cadmium + quercetin. Renal toxicity was evaluated by measuring blood urea nitrogen concentration and urinary excretion of enzymes marker of tubular damage. Endothelial nitric oxide synthase (eNOS), inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) renal expression were assessed by Western blot. Renal expression of metallothionein 1 and 2 (MT-1, MT-2) and eNOS mRNA was assessed by Northern blot. Our data demonstrated that Cd-induced renal toxicity was markedly reduced in rats that also received quercetin. MT-1 and MT-2 mRNA levels in kidney were substantially increased during treatment with Cd, being even higher when the animals received Cd and quercetin. Renal eNOS expression was significantly higher in rats receiving Cd and quercetin than in animals receiving Cd alone or in control rats. In the group that received Cd, COX-2 and iNOS expression was markedly higher than in control rats. In the group Cd + quercetin, no changes in COX-2 and iNOS expression were observed compared with the control group. Our results demonstrate that quercetin treatment prevents Cd-induced overexpression of iNOS and COX-2, and increases MT expression. These effects can explain the protection by quercetin of Cd-induced nephrotoxicity

  10. Piroxicam inhibits Masitinib-induced cyclooxygenase 2 expression in oral squamous cell carcinoma cells in vitro.

    Science.gov (United States)

    Rathore, Kusum; Alexander, Mary; Cekanova, Maria

    2014-08-01

    Development and characterization of animal models for human cancers is important for the improvement of diagnosis and therapy. The oral squamous cell carcinoma (OSCC) of domestic animals resembles human OSCC in many aspects; thus, cell lines derived from OSCC of cats and dogs are a valuable model for human OSCC. We characterized 1 feline OSCC (FeOSCC-Sidney) and 1 canine OSCC (K9OSCC-Abby) cell line and compared their characteristics with human OSCC cell line hSCC-25. We calculated the doubling time of the new OSCC cell lines and evaluated the expression profiles of cancer-related markers and cell-cycle proteins such as c-kit, platelet-derived growth factor receptor, vascular endothelial growth factor receptor, epidermal growth factor receptor, cyclooxygenase (COX)-1, COX-2, and p27 by immunocytochemistry and Western blot analysis. We evaluated the effects of novel receptor tyrosine kinase inhibitor (Masitinib, AB1010) and the nonsteroidal anti-inflammatory drug piroxicam on the previously mentioned OSCC cells. Interestingly, AB1010 increased expression levels of COX-2 in all tested OSCCs. Cotreatment of piroxicam with Masitinib significantly inhibited cell proliferation of OSCC as compared to either drug alone through the c-kit and AKT signaling pathways. Piroxicam inhibited Masitinib-induced COX-2 expression in all tested OSCCs. Therefore, targeting these two signaling pathways simultaneously was more efficient for inhibition of OSCCs across these species. Copyright © 2014 Mosby, Inc. All rights reserved.

  11. Collagen expression in fibroblasts with a novel LMNA mutation

    International Nuclear Information System (INIS)

    Nguyen, Desiree; Leistritz, Dru F.; Turner, Lesley; MacGregor, David; Ohson, Kamal; Dancey, Paul; Martin, George M.; Oshima, Junko

    2007-01-01

    Laminopathies are a group of genetic disorders caused by LMNA mutations; they include muscular dystrophies, lipodystrophies, and progeroid syndromes. We identified a novel heterozygous LMNA mutation, L59R, in a patient with the general appearance of mandibuloacral dysplasia and progeroid features. Examination of the nuclei of dermal fibroblasts revealed the irregular morphology characteristic of LMNA mutant cells. The nuclear morphological abnormalities of LMNA mutant lymphoblastoid cell lines were less prominent compared to those of primary fibroblasts. Since it has been reported that progeroid features are associated with increased extracellular matrix in dermal tissues, we compared a subset of these components in fibroblast cultures from LMNA mutants with those of control fibroblasts. There was no evidence of intracellular accumulation or altered mobility of collagen chains, or altered conversion of procollagen to collagen, suggesting that skin fibroblast-mediated matrix production may not play a significant role in the pathogenesis of this particular laminopathy

  12. Increased cyclooxygenase 2 expression in association with oral lichen planus severity

    Directory of Open Access Journals (Sweden)

    Thaneeya Chankong

    2016-09-01

    Conclusion: Enhanced COX-2 expression in both OLP epithelium and inflammatory infiltrates correlates well with the clinical severity. An association between VAS score and COX-2 expression in OLP inflammatory infiltrates suggests an important role of additional COX-2 expression from inflammation in causing pain in OLP patients.

  13. Tumor-produced, active Interleukin-1 β regulates gene expression in carcinoma-associated fibroblasts

    International Nuclear Information System (INIS)

    Dudas, Jozsef; Fullar, Alexandra; Bitsche, Mario; Schartinger, Volker; Kovalszky, Ilona; Sprinzl, Georg Mathias; Riechelmann, Herbert

    2011-01-01

    Recently we described a co-culture model of periodontal ligament (PDL) fibroblasts and SCC-25 lingual squamous carcinoma cells, which resulted in conversion of normal fibroblasts into carcinoma-associated fibroblasts (CAFs), and in epithelial-mesenchymal transition (EMT) of SCC-25 cells. We have found a constitutive high interleukin-1β (IL1-β) expression in SCC-25 cells in normal and in co-cultured conditions. In our hypothesis a constitutive IL1-β expression in SCC-25 regulates gene expression in fibroblasts during co-culture. Co-cultures were performed between PDL fibroblasts and SCC-25 cells with and without dexamethasone (DEX) treatment; IL1-β processing was investigated in SCC-25 cells, tumor cells and PDL fibroblasts were treated with IL1-β. IL1-β signaling was investigated by western blot and immunocytochemistry. IL1-β-regulated genes were analyzed by real-time qPCR. SCC-25 cells produced 16 kD active IL1-β, its receptor was upregulated in PDL fibroblasts during co-culture, which induced phosphorylation of interleukin-1 receptor-associated kinase-1 (IRAK-1), and nuclear translocalization of NFκBα. Several genes, including interferon regulatory factor 1 (IRF1) interleukin-6 (IL-6) and prostaglandin-endoperoxide synthase 2 (COX-2) were induced in CAFs during co-culture. The most enhanced induction was found for IL-6 and COX-2. Treatment of PDL fibroblasts with IL1-β reproduced a time- and dose-dependent upregulation of IL1-receptor, IL-6 and COX-2. A further proof was achieved by DEX inhibition for IL1-β-stimulated IL-6 and COX-2 gene expression. Constitutive expression of IL1-β in the tumor cells leads to IL1-β-stimulated gene expression changes in tumor-associated fibroblasts, which are involved in tumor progression. -- Graphical abstract: SCC-25 cells produce active, processed IL1-β. PDL fibroblasts possess receptor for IL1-β, and its expression is increased 4.56-times in the presence of SCC-25 tumor cells. IL1-β receptor expression in

  14. Tumor-produced, active Interleukin-1 {beta} regulates gene expression in carcinoma-associated fibroblasts

    Energy Technology Data Exchange (ETDEWEB)

    Dudas, Jozsef, E-mail: Jozsef.Dudas@i-med.ac.at [Department of Otorhinolaryngology, Medical University Innsbruck, Anichstrasse 35, A-6020 Innsbruck (Austria); Fullar, Alexandra, E-mail: fullarsz@gmail.com [Department of Otorhinolaryngology, Medical University Innsbruck, Anichstrasse 35, A-6020 Innsbruck (Austria); 1st Institute of Pathology and Experimental Cancer Research, Semmelweis University, Ulloei ut 26, H-1085 Budapest (Hungary); Bitsche, Mario, E-mail: Mario.Bitsche@i-med.ac.at [Department of Otorhinolaryngology, Medical University Innsbruck, Anichstrasse 35, A-6020 Innsbruck (Austria); Schartinger, Volker, E-mail: Volker.Schartinger@i-med.ac.at [Department of Otorhinolaryngology, Medical University Innsbruck, Anichstrasse 35, A-6020 Innsbruck (Austria); Kovalszky, Ilona, E-mail: koval@korb1.sote.hu [1st Institute of Pathology and Experimental Cancer Research, Semmelweis University, Ulloei ut 26, H-1085 Budapest (Hungary); Sprinzl, Georg Mathias, E-mail: Georg.Sprinzl@i-med.ac.at [Department of Otorhinolaryngology, Medical University Innsbruck, Anichstrasse 35, A-6020 Innsbruck (Austria); Riechelmann, Herbert, E-mail: Herbert.Riechelmann@i-med.ac.at [Department of Otorhinolaryngology, Medical University Innsbruck, Anichstrasse 35, A-6020 Innsbruck (Austria)

    2011-09-10

    Recently we described a co-culture model of periodontal ligament (PDL) fibroblasts and SCC-25 lingual squamous carcinoma cells, which resulted in conversion of normal fibroblasts into carcinoma-associated fibroblasts (CAFs), and in epithelial-mesenchymal transition (EMT) of SCC-25 cells. We have found a constitutive high interleukin-1{beta} (IL1-{beta}) expression in SCC-25 cells in normal and in co-cultured conditions. In our hypothesis a constitutive IL1-{beta} expression in SCC-25 regulates gene expression in fibroblasts during co-culture. Co-cultures were performed between PDL fibroblasts and SCC-25 cells with and without dexamethasone (DEX) treatment; IL1-{beta} processing was investigated in SCC-25 cells, tumor cells and PDL fibroblasts were treated with IL1-{beta}. IL1-{beta} signaling was investigated by western blot and immunocytochemistry. IL1-{beta}-regulated genes were analyzed by real-time qPCR. SCC-25 cells produced 16 kD active IL1-{beta}, its receptor was upregulated in PDL fibroblasts during co-culture, which induced phosphorylation of interleukin-1 receptor-associated kinase-1 (IRAK-1), and nuclear translocalization of NF{kappa}B{alpha}. Several genes, including interferon regulatory factor 1 (IRF1) interleukin-6 (IL-6) and prostaglandin-endoperoxide synthase 2 (COX-2) were induced in CAFs during co-culture. The most enhanced induction was found for IL-6 and COX-2. Treatment of PDL fibroblasts with IL1-{beta} reproduced a time- and dose-dependent upregulation of IL1-receptor, IL-6 and COX-2. A further proof was achieved by DEX inhibition for IL1-{beta}-stimulated IL-6 and COX-2 gene expression. Constitutive expression of IL1-{beta} in the tumor cells leads to IL1-{beta}-stimulated gene expression changes in tumor-associated fibroblasts, which are involved in tumor progression. -- Graphical abstract: SCC-25 cells produce active, processed IL1-{beta}. PDL fibroblasts possess receptor for IL1-{beta}, and its expression is increased 4.56-times in the

  15. Transient expression of acidic fibroblast growth factor in pea (Pisum ...

    African Journals Online (AJOL)

    Yomi

    2012-03-15

    Mar 15, 2012 ... a 100 W, long-wave UV lamp (Black Ray model B-100 AP; Ultra- ... frequency) was used to estimate the treatment efficiency during 15 days post .... Crystal structure of fibroblast growth factor receptor ectodomain bound to.

  16. SIRT-1 regulates TGF-β-induced dermal fibroblast migration via modulation of Cyr61 expression.

    Science.gov (United States)

    Kwon, Eun-Jeong; Park, Eun-Jung; Yu, Hyeran; Huh, Jung-Sik; Kim, Jinseok; Cho, Moonjae

    2018-05-01

    SIRT1 is a NAD-dependent protein deacetylase that participates in cellular regulation. The increased migration of fibroblasts is an important phenotype in fibroblast activation. The role of SIRT1 in cell migration remains controversial as to whether SIRT1 acts as an activator or suppressor of cell migration. Therefore, we have established the role of SIRT1 in the migration of human dermal fibroblasts and explored targets of SIRT1 during dermal fibroblast migration. SIRT1 and Cyr61 were expressed in human dermal fibroblasts and the stimulation with TGF-β further induced their expression. Treatment with resveratrol (RSV), a SIRT1 agonist, or overexpression of SIRT1 also promoted the expression Cyr61 in human dermal fibroblasts, whereas the inhibition of SIRT1 activity by nicotinamide or knockdown of SIRT1 decreased the level of Cyr61, as well as TGF-β or RSV-induced Cyr61 expression. Blocking of ERK signaling by PD98509 reduced the expression of Cyr61 induced by TGF-β or RSV. TGF-β, RSV, or SIRT1 overexpression enhanced β-catenin as well as Cyr61 expression. This stimulation was reduced by the Wnt inhibitor XAV939. RSV increased migration and nicotinamide attenuated RSV-induced migration of human dermal fibroblasts. Furthermore, SIRT1 overexpression promoted cell migration, whereas blocking Cyr61 attenuated SIRT1-stimulated migration of human dermal fibroblasts. SIRT1 increased cell migration by stimulating Cyr61 expression and the ERK and Wnt/β-catenin signaling. SIRT1-induced Cyr61 activity is very important for human dermal fibroblasts migration.

  17. Evaluation of cyclooxygenase protein expression in traumatized versus normal tissues from eastern box turtles (Terrapene carolina carolina).

    Science.gov (United States)

    Royal, Lillian W; Lascelles, B Duncan X; Lewbart, Gregory A; Correa, Maria T; Jones, Samuel L

    2012-06-01

    This pilot study was designed to determine whether cyclooxygenase (COX)-1, COX-2, or both are expressed in normal turtle tissues and whether level of expression changes when tissue becomes inflamed. Five eastern box turtles, Terrapene carolina carolina, that either died or were euthanatized due to disease or injuries were used for this work. Tissues were obtained from the five turtles. Western blot analysis was used to evaluate tissues for COX-1 and COX-2 proteins. Densiometric analysis was used to compare Western blot bands within each turtle. COX-1 and COX-2 were found in the liver, kidney, grossly normal muscle, and grossly traumatized (inflamed) muscle of all study turtles. In all cases, COX-1 and COX-2 proteins were increased in traumatized muscle over grossly normal nontraumatized muscle. The highest levels of COX-1 and COX-2 proteins were found in kidney and liver. There was no statistical difference between the amount of COX-1 protein in liver and kidney, but traumatized muscle compared with grossly normal muscle had significantly greater COX-1 but not COX 2 protein concentrations. There was no statistical difference between the amount of COX-2 protein in liver and kidney. Traumatized muscle expressed nonstatistically significant greater amounts of COX-2 compared with grossly normal muscle. COX-1 and COX-2 proteins are expressed in turtle tissues, and both isoforms are upregulated during inflammation of muscle tissue. Traditional nonsteroidal anti-inflammatory drugs (NSAIDs) that block both COX isoforms might be more efficacious than COX-2-selective drugs. This work suggests that NSAIDs should be evaluated for potential liver and kidney toxicity in turtles.

  18. Expression of integrin α3β1 and cyclooxygenase-2 (COX2) are positively correlated in human breast cancer

    International Nuclear Information System (INIS)

    Aggarwal, Anshu; Al-Rohil, Rami N; Batra, Anupam; Feustel, Paul J; Jones, David M; DiPersio, C Michael

    2014-01-01

    Expression of integrin α3β1 is associated with tumor progression, metastasis, and poor prognosis in several cancers, including breast cancer. Moreover, preclinical studies have revealed important pro-tumorigenic and pro-metastatic functions for this integrin, including tumor growth, survival, invasion, and paracrine induction of angiogenesis. Our previously published work in a preclinical breast cancer model showed that integrin α3β1 promotes expression of cyclooxygenase-2 (COX2/PTGS2), a known driver of breast cancer progression. However, the clinical significance of this regulation was unknown. The objective of the current study was to assess the clinical relevance of the relationship between integrin α3β1 and COX2 by testing for their correlated expression among various forms of human breast cancer. Immunohistochemistry was performed to assess co-expression of α3 and COX2 in specimens of human invasive ductal carcinoma (IDC), either on a commercial tissue microarray (n = 59 samples) or obtained from Albany Medical Center archives (n = 68 samples). Immunostaining intensity for the integrin α3 subunit or COX2 was scored, and Spearman’s rank correlation coefficient analysis was performed to assess their co-expression across and within different tumor subtypes or clinicopathologic criteria. Although expression of integrin α3 or COX2 varied among clinical IDC samples, a statistically significant, positive correlation was detected between α3 and COX2 in both tissue microarrays (r s = 0.49, p < 0.001, n = 59) and archived samples (r s = 0.59, p < 0.0001, n = 68). In both sample sets, this correlation was independent of hormone receptor status, histological grade, or disease stage. COX2 and α3 are correlated in IDC independently of hormone receptor status or other clinicopathologic features, supporting the hypothesis that integrin α3β1 is a determinant of COX2 expression in human breast cancer. These results support the clinical relevance of α3β1

  19. Increased cyclooxygenase-2 and thromboxane synthase expression is implicated in diosgenin-induced megakaryocytic differentiation in human erythroleukemia cells.

    Science.gov (United States)

    Cailleteau, C; Liagre, B; Battu, S; Jayat-Vignoles, C; Beneytout, J L

    2008-09-01

    Differentiation induction as a therapeutic strategy has, so far, the greatest impact in hematopoietic malignancies, most notably leukemia. Diosgenin is a very interesting natural product because, depending on the specific dose used, its biological effect is very different in HEL (human erythroleukemia) cells. For example, at 10 microM, diosgenin induced megakaryocytic differentiation, in contrast to 40 microM diosgenin, which induced apoptosis in HEL cells previously demonstrated using sedimentation field-flow fractionation (SdFFF). The goal of this work focused on the correlation between cyclooxygenase-2 (COX-2) and thromboxane synthase (TxS) and megakaryocytic differentiation induced by diosgenin in HEL cells. Furthermore, the technique of SdFFF, having been validated in our models, was used in this new study as an analytical tool that provided us with more or less enriched differentiated cell fractions that could then be used for further analyses of enzyme protein expression and activity for the first time. In our study, we showed the implication of COX-2 and TxS in diosgenin-induced megakaryocytic differentiation in HEL cells. Furthermore, we showed that the analytical technique of SdFFF may be used as a tool to confirm our results as a function of the degree of cell differentiation.

  20. Identification of specific gene expression profiles in fibroblasts derived from middle ear cholesteatoma.

    Science.gov (United States)

    Yoshikawa, Mamoru; Kojima, Hiromi; Wada, Kota; Tsukidate, Toshiharu; Okada, Naoko; Saito, Hirohisa; Moriyama, Hiroshi

    2006-07-01

    To investigate the role of fibroblasts in the pathogenesis of cholesteatoma. Tissue specimens were obtained from our patients. Middle ear cholesteatoma-derived fibroblasts (MECFs) and postauricular skin-derived fibroblasts (SFs) as controls were then cultured for a few weeks. These fibroblasts were stimulated with interleukin (IL) 1alpha and/or IL-1beta before gene expression assays. We used the human genome U133A probe array (GeneChip) and real-time polymerase chain reaction to examine and compare the gene expression profiles of the MECFs and SFs. Six patients who had undergone tympanoplasty. The IL-1alpha-regulated genes were classified into 4 distinct clusters on the basis of profiles differentially regulated by SF and MECF using a hierarchical clustering analysis. The messenger RNA expressions of LARC (liver and activation-regulated chemokine), GMCSF (granulocyte-macrophage colony-stimulating factor), epiregulin, ICAM1 (intercellular adhesion molecule 1), and TGFA (transforming growth factor alpha) were more strongly up-regulated by IL-1alpha and/or IL-1beta in MECF than in SF, suggesting that these fibroblasts derived from different tissues retained their typical gene expression profiles. Fibroblasts may play a role in hyperkeratosis of middle ear cholesteatoma by releasing molecules involved in inflammation and epidermal growth. These fibroblasts may retain tissue-specific characteristics presumably controlled by epigenetic mechanisms.

  1. Effects of cyclooxygenase inhibitor pretreatment on nitric oxide production, nNOS and iNOS expression in rat cerebellum.

    Science.gov (United States)

    Di Girolamo, G; Farina, M; Riberio, M L; Ogando, D; Aisemberg, J; de los Santos, A R; Martí, M L; Franchi, A M

    2003-07-01

    1. The therapeutic effect of nonsteroidal anti-inflammatory drugs (NSAIDs) is thought to be due mainly to its inhibition of cyclooxygenase (COX) enzymes, but there is a growing body of research that now demonstrates a variety of NSAIDs effects on cellular signal transduction pathways other than those involving prostaglandins. 2. Nitric oxide (NO) as a free radical and an agent that gives rise to highly toxic oxidants (peroxynitrile, nitric dioxide, nitron ion), becomes a cause of neuronal damage and death in some brain lesions such as Parkinson and Alzheimer disease, and Huntington's chorea. 3. In the present study, the in vivo effect of three NSAIDs (lysine clonixinate (LC), indomethacine (INDO) and meloxicam (MELO)) on NO production and nitric oxide synthase expression in rat cerebellar slices was analysed. Rats were treated with (a) saline, (b) lipopolysaccharide (LPS) (5 mg kg(-1), i.p.), (c) saline in combination with different doses of NSAIDs and (d) LPS in combination with different doses of NSAIDs and then killed 6 h after treatment. 4. NO synthesis, evaluated by Bred and Snyder technique, was increased by LPS. This augmentation was inhibited by coadministration of the three NSAIDs assayed. None of the NSAIDs tested was able to modify control NO synthesis. 5. Expression of iNOS and neural NOS (nNOS) was detected by Western blotting in control and LPS-treated rats. LC and INDO, but not MELO, were able to inhibit the expression of these enzymes. 6. Therefore, reduction of iNOS and nNOS levels in cerebellum may explain, in part, the anti-inflammatory effect of these NSAIDs and may also have importance in the prevention of NO-mediated neuronal injury.

  2. Expression of cyclooxygenase-2 in intestine of pigs of different ages and hygiene status

    DEFF Research Database (Denmark)

    Lauridsen, Charlotte; Whiting, C; Lewis, M

    2010-01-01

    treatments: One group of piglets suckled the sow, a second group was put into an isolator and fed a milk formula, and a third group was put into the isolator fed milk formula and injected with broad spectrum antibiotics. Samples were collected from the 75% level of the small intestine at day 5, 28 and 56...... of age. Tissue section from four piglets from each of these six treatment groups was analysed by immunofluorescence for COX-2 and type-IV collagen (basement membrane, defining lamina propria (LP)). Image analysis was used to determine the number of positive pixels expressing LP and epithelial COX-2. COX......-2 expressing cells were observed in LP and epithelium in all porcine intestinal samples. When analysing images obtained on day 28, injection of antibiotics seemed to reduce the COX-2 expression in intestinal samples of piglets when compared to other treatments (P = 0.053). No significant effect...

  3. Expression of TGF-β3 in Isolated Fibroblasts from Foreskin

    Directory of Open Access Journals (Sweden)

    Mahnaz Mahmoudi Rad

    2015-05-01

    Full Text Available Background: The multifunctional transforming growth factor beta (TGF-β is a glycoprotein that exists in three isoforms. TGF-β3 expression increases in fetal wound healing and reduces fibronectin and collagen I and III deposition, and also improves the architecture of the neodermis which is a combination of blood vessels and connective tissue during wound healing. Fibroblasts are key cells in the wound healing process. TGF-β3 plays a critical role in scar-free wound healing and fibroblast actions in the wound healing process. The aim of this study was to express the TGF-β3 gene (tgf-b3 in human foreskin fibroblasts (HFF’s. Methods: We obtained HFF’s from a newborn and a primary fibroblast culture was prepared. The cells were transfected with TGF-β3-pCMV6-XL5 plasmid DNA by both lipofection and electroporation. Expression of TGF-β3 was measured by enzyme-linked immunosorbent assay (ELISA. Results: The highest TGF-β3 expression (8.3-fold greater than control was obtained by lipofection after 72 hours using 3 μl of transfection reagent. Expression was 1.4-fold greater than control by electroporation. Conclusions: In this study, we successfully increased TGF-β3 expression in primary fibroblast cells. In the future, grafting these transfected fibroblasts onto wounds can help the healing process without scarring.

  4. Cyclooxygenase 1 (COX1 expression in Type 2 diabetes mellitus: A preliminary study from north India

    Directory of Open Access Journals (Sweden)

    Sushma Verma

    2016-01-01

    Conclusion: Although COX1 is known to be a “housekeeping” gene, our study showed that its expression can be correlated with the disease condition and be used as a marker. However, further studies are required in more number of samples from other ethnic populations to confirm the findings.

  5. Oleuropein Decreases Cyclooxygenase-2 and Interleukin-17 Expression and Attenuates Inflammatory Damage in Colonic Samples from Ulcerative Colitis Patients.

    Science.gov (United States)

    Larussa, Tiziana; Oliverio, Manuela; Suraci, Evelina; Greco, Marta; Placida, Roberta; Gervasi, Serena; Marasco, Raffaella; Imeneo, Maria; Paolino, Donatella; Tucci, Luigi; Gulletta, Elio; Fresta, Massimo; Procopio, Antonio; Luzza, Francesco

    2017-04-15

    Oleuropein (OLE) is the major phenolic secoiridoid of olive tree leaves, and its antioxidant and anti-inflammatory activities have been demonstrated in in vitro and in vivo animal models. The aim of this study was to investigate the activity of OLE in the colonic mucosa from patients with ulcerative colitis (UC). Biopsies obtained during colonoscopy from 14 patients with active UC were immediately placed in an organ culture chamber and challenged with lipopolysaccharide from Escherichia coli (EC-LPS) at 1 μg/mL in the presence or absence of 3 mM OLE. The expression of cyclooxygenase (COX)-2 and interleukin (IL)-17 was assessed in total protein extracts from treated colonic biopsies by Western blotting. Levels of IL-17 were also measured in culture supernatant by ELISA. A microscopic evaluation of the cultured biopsies was performed by conventional histology and immunohistochemistry. The expression of COX-2 and IL-17 were significantly lower in samples treated with OLE + EC-LPS compared with those treated with EC-LPS alone (0.80 ± 0.15 arbitrary units (a.u.) vs. 1.06 ± 0.19 a.u., p = 0.003, and 0.71 ± 0.08 a.u. vs. 1.26 ± 0.42 a.u., p = 0.03, respectively) as were the levels of IL-17 in culture supernatants of OLE + EC-LPS treated colonic samples (21.16 ± 8.64 pg/mL vs. 40.67 ± 9.24 pg/mL, p = 0.01). Histologically, OLE-treated colonic samples showed an amelioration of inflammatory damage with reduced infiltration of CD3, CD4, and CD20 cells, while CD68 numbers increased. The anti-inflammatory activity of OLE was demonstrated in colonic biopsies from UC patients. These new data support a potential role of OLE in the treatment of UC.

  6. Study of Cyclooxygenase-2 Expression in Sprague Dawley Rat Gastric Cancer Induced by H. Pylori

    Directory of Open Access Journals (Sweden)

    Pooladi A

    2011-01-01

    Full Text Available Background and Objectives: Gastric cancer is one of the most common gastrointestinal tumors; the incidence and mortality of gastric cancer are on the increase nowadays. Helicobacter pylori(H.Pylori causes chronic active gastritis and peptic ulcer disease. Cycloocygenase-2 (COX-2 is the central enzyme in the biosynthetic pathway to prostaglandins. Studies from different laboratories suggested that over-expression of COX-2 was detected in colon and other tumors. To obtain direct evidence concerning this relationship, we investigated the immunohistochemical findings of gastric mucosa using an animal model of gastric cancer induced by H. pylori in sprague dawley rat.Methods: The rats were randomly assigned into three groups(n=5. Those of experimental group2 were given MNU. one week after completion of MNU administration, rats in experimental groups 1 were inoculated with H. pylori three times every other day. Rats in control group(group 3 received neither MNU nor H. pylori. Rats of groups 1, 2, and control group were maintained on standard diets throughout the experiment. Rat were weighed and sacrificed under anesthesia with ether at 20 weeks after infection. One half of the excised stomachs, were fixed in neutral-buffered 10% formalin and were cut into approximately six strips, which were processed by standard methods, embedded in paraffin, sectioned at 6 µm, and stained with hematoxylin and eosin (H&E and immunohistochemistry for Cox-2 protein detection. To confirm H. pylori infection, samples ( 3-mm2 of stomach mucosa transferred to appropriate medium and Colonies were identified by characteristic Gram’s stain morphology, and by urease, catalase, and oxidase activity sample was also placed into the gel of a rapid urease test kit.Results: Data showed a significant decrease of animal body weight in experimental groups compared with control group. Histopathological studies showed severe infiltration of the lamina propria and submucusaal layer by

  7. Study of Cyclooxygenase-2 Expression in Sprague Dawley Rat Gastric Cancer Induced by H. Pylori

    Directory of Open Access Journals (Sweden)

    F Aeini

    2012-05-01

    Full Text Available

    Background and Objectives: Gastric cancer is one of the most common gastrointestinal tumors; the incidence and mortality of gastric cancer are on the increase nowadays. Helicobacter pylori(H.Pylori causes chronic active gastritis and peptic ulcer disease. Cycloocygenase-2 (COX-2 is the central enzyme in the biosynthetic pathway to prostaglandins. Studies from different laboratories suggested that over-expression of COX-2 was detected in colon and other tumors. To obtain direct evidence concerning this relationship, we investigated the immunohistochemical findings of gastric mucosa using an animal model of gastric cancer induced by H. pylori in sprague dawley rat. Methods: The rats were randomly assigned into three groups(n=5. Those of experimental group2 were given MNU. one week after completion of MNU administration, rats in experimental groups 1 were inoculated with H. pylori three times every other day. Rats in control group(group 3 received neither MNU nor H. pylori. Rats of groups 1, 2, and control group were maintained on standard diets throughout the experiment. Rat were weighed and sacrificed under anesthesia with ether at 20 weeks after infection. One half of the excised stomachs, were fixed in neutral-buffered 10% formalin and were cut into approximately six strips, which were processed by standard methods, embedded in paraffin, sectioned at 6 µm, and stained with hematoxylin and eosin (H&E and immunohistochemistry for Cox-2 protein detection. To confirm H. pylori infection, samples ( 3-mm2 of stomach mucosa transferred to appropriate medium  and Colonies were identified by characteristic Gram’s stain morphology, and by urease, catalase, and oxidase activity sample was also placed into the gel of a rapid urease test kit. Results: Data showed a significant decrease of animal body weight in experimental groups compared with control group

  8. Expression and significance of cyclooxygenase-2 mRNA in benign and malignant ascites

    Science.gov (United States)

    Lu, Jing; Li, Xiao-Feng; Kong, Li-Xia; Ma, Lin; Liao, Su-Huan; Jiang, Chang-You

    2013-01-01

    AIM: To investigate the mRNA expression of cyclooxygensae-2 (COX-2) in benign and malignant ascites, and to explore the difference in COX-2 mRNA expression among different diseases. METHODS: A total of 36 samples were collected from the Fifth Affiliated Hospital of Sun Yat-Sen University and divided into two experimental groups: benign ascites (n = 21) and malignant ascites (n = 15). Benign ascites included cirrhotic ascites (n = 10) and tuberculous ascites (n = 5). Malignant ascites included oophoroma (n = 7), cancer of colon (n = 5), cancer of the liver (n = 6), gastric cancer (n = 2), and bladder carcinoma (n = 1). The mRNA expression of COX-2 in ascites was examined with reverse transcriptase polymerase chain reaction (RT-PCR) technology, and the positive rate of COX-2 mRNA was compared between different diseases. RESULTS: The positive rate of COX-2 mRNA in malignant ascites was 42.9% (9/21), which was significantly higher than in benign ascites, 6.7% (1/15), difference being significant between these two groups (χ2 = 4.051, P = 0.044). The proportion of the positive rate in the malignant ascites was as follows: ovarian cancers 57.1% (4/7), colon cancer 40.0% (2/5), liver cancer 33.3% (2/6), gastric cancer 50.0% (1/2), and bladder cancer 0.00% (0/1). However, there was no significant difference in COX-2 mRNA expression among various tumors with malignant ascites (χ2 = 1.614, P = 0.806). Among the benign ascites, COX-2 mRNA levels were different between the tuberculous ascites (0/5) and cirrhotic ascites (1/10), but there was no significant difference (P = 1.000). CONCLUSION: COX-2 mRNA, detected by RT-PCR, is useful in the differential diagnosis of benign and malignant ascites, which also has potential value in the clinical diagnosis of tumors. PMID:24187465

  9. Signal Transduction Pathways (MAPKs, NF-κB, and C/EBP) Regulating COX-2 Expression in Nasal Fibroblasts from Asthma Patients with Aspirin Intolerance

    Science.gov (United States)

    Garcia-Garcia, Francesc Josep; Mullol, Joaquim; Perez-Gonzalez, Maria; Pujols, Laura; Alobid, Isam

    2012-01-01

    Background Recent studies have revealed that cyclooxygenase-2 (COX-2) expression is down-regulated in aspirin-induced asthma (AIA). Various signal pathways (MAPKs, NF-κB and C/EBP) are involved in COX-2 regulation. Objective To investigate the regulation of COX-2 expression through MAP-kinase pathway activation and nuclear factor translocation in aspirin-induced asthma (AIA). Methods Fibroblasts were isolated from specimens of nasal mucosa (NM, N = 5) and nasal polyps (NP, N = 5). After IL-1β (1 ng/ml) incubation, COX-2 and phosphorylated forms of ERK, JNK and p38 MAPK were measured by Western blot. MAPK’s role in IL-1β-induced COX-2 expression was assessed by treating cells with ERK (PD98059), JNK (SP600125) and p38 MAPK (SB203580) inhibitors (0.1–10 µM) prior to IL-1β exposure. NF-κB and C/EBP nuclear translocation was measured by Western blot and TransAM® after IL-1β (10 ng/ml) exposure. Results No differences were observed in the MAPK phosphorylation time-course between NM and NP-AIA fibroblasts. The p38 MAPK inhibitor at 10 µM significantly reduced IL-1β-induced COX-2 expression in NM fibroblasts (85%). In NP-AIA fibroblasts the COX-2 inhibition (65%) at 1 and 10 µM was not statistically significant compared to non-treated cells. ERK and JNK inhibitors had no significant effect in either the NM or NP-AIA cultures. The effect of IL-1β on NF-κB and C/EBP subunits’ nuclear translocation was similar between NM and NP-AIA fibroblasts. Conclusions These results suggest that p38 MAPK is the only MAPK involved in IL-1β-induced COX-2 expression. NM and NP-AIA fibroblasts have similar MAPK phosphorylation dynamics and nuclear factor translocation (NF-κB and C/EBP). COX-2 downregulation observed in AIA patients appears not to be caused by differences in MAPK dynamics or transcription factor translocation. PMID:23240010

  10. Expression of cyclooxygenase-2 in the endometrium of gilts with different stages of endometritis.

    Science.gov (United States)

    Roongsitthichai, Atthaporn; Srisuwatanasagul, Sayamon; Koonjaenak, Seri; Tummaruk, Padet

    2011-11-01

    The present study determined the association among the expression of COX-2, stages of endometritis, and types and number of local immune cells infiltrating into the gilts' endometrium. The uterine tissues from 24 Landrace x Yorkshire gilts identified as acute endometritis (n = 7), chronic endometritis (n = 7), and normal endometrium (n = 10) were included. The tissues were prepared for both histological and immunohistochemical investigations. The immunoexpression of COX-2 in every layer of the gilts' endometria was appraised by avidin-biotin-peroxidase complex method via image analysis; and was reported as percentage of positive area and staining index. The results revealed that the immunoexpression of COX-2 was found only in the surface epithelial layer. The gilts with acute endometritis possessed higher both percentage of positive area (68.99% versus 4.50% and 3.43%, P < 0.001) and staining index (1.13 versus 0.05 and 0.04, P < 0.001) than those with chronic endometritis and normal endometrium, respectively. Positive correlations between the number of surface epithelial neutrophils and percentage of COX-2 positive area (r = 0.47, P = 0.022), as well as mean staining index (r = 0.44, P = 0.032) were observed. In conclusion, the immunoexpression of COX-2 was found strongest in the gilts with acute endometritis, meanwhile it was not different between those with chronic endometritis and normal endometrium. This suggested that the expression of COX-2 might be dependent not only on the infiltration of local immune cells in the endometrium, but also on the duration of exposure with inflammatory agents.

  11. Transitional cell carcinoma in fishing cats (Prionailurus viverrinus): pathology and expression of cyclooxygenase-1, -2, and p53.

    Science.gov (United States)

    Landolfi, J A; Terio, K A

    2006-09-01

    A high prevalence of urinary bladder transitional-cell carcinoma (TCC) has been noted in captive fishing cats (Prionailurus viverrinus). Of the 91 adult deaths between 1995 and 2004, 12 (13%) were attributed to TCC. To help elucidate mechanisms of carcinogenesis, archival sections of urinary bladder from 14 fishing cats were examined histologically and immunohistochemically for p53, cyclooxygenase (COX)-1, and COX-2 expression. Ten cats had TCC, and 4 were unaffected. The average age at death was 10.8 years in affected individuals and 10.5 years in unaffected individuals. There was no sex predilection. Fishing cat TCCs were characterized histologically as papillary and infiltrating (n = 6), nonpapillary and infiltrating (n = 3), or carcinoma in situ (n = 1). Glandular and squamous metaplasia, necrosis, and lymphatic invasion were prominent histologic features. Two individuals had documented metastasis. p53 nuclear immunolabeling was detected in 4/10 (40%) TCCs. In two cases, immunolabeling was limited to less than 10% of the neoplastic cellular population and was comparable to staining of normal fishing cat bladder. Therefore, p53 gene mutation did not appear to be an essential component of TCC carcinogenesis in examined fishing cats. COX-1 immunohistochemistry was negative in all cases. All TCCs had some degree of COX-2 cytoplasmic immunolabeling, which was exclusively within the invasive portions of the neoplasms. Papillary portions were uniformly negative. COX-2 overexpression was a prominent feature in the majority of the examined fishing cat TCCs, suggesting that COX-2-mediated mechanisms of carcinogenesis are important in this species and that COX-inhibiting drugs may be of therapeutic benefit.

  12. Areca nut extract up-regulates prostaglandin production, cyclooxygenase-2 mRNA and protein expression of human oral keratinocytes.

    Science.gov (United States)

    Jeng, J H; Ho, Y S; Chan, C P; Wang, Y J; Hahn, L J; Lei, D; Hsu, C C; Chang, M C

    2000-07-01

    There are about 600 million betel quid (BQ) chewers in the world. BQ chewing is associated with increased incidence of oral cancer and submucous fibrosis. In this study, areca nut (AN) extract (200-800 microg/ml) induced the prostaglandin E(2) (PGE(2)) production by 1. 4-3.4-fold and 6-keto-PGF(1 alpha) production by 1.1-1.7-fold of gingival keratinocytes (GK), respectively, following 24 h of exposure. Exposure of GK to AN extract (>400 microg/ml) led to cell retraction and intracellular vacuoles formation. At concentrations of 800 and 1200 microg/ml, AN extract induced cell death at 21-24 and 32-52% as detected by MTT assay and cellular lactate dehydrogenase release, respectively. Interestingly, AN-induced morphological changes of GK are reversible. GK can still proliferate following exposure to AN extract. Cytotoxicity of AN extract cannot be inhibited by indomethacin (1 microM) and aspirin (50 microM), indicating that prostaglandin (PG) production is not the major factor responsible for AN cytotoxicity. PGE(2) exhibited little effect on the growth of GK at concentrations ranging from 100-1000 pg/ml. Stimulating GK production of PGs by AN extract could be due to induction of cyclooxygenase-2 (COX-2) mRNA expression and protein production. These results suggest that AN ingredients are critical in the pathogenesis of oral submucous fibrosis and oral cancer via their stimulatory effects on the PGs, COX-2 production and associated tissue inflammatory responses. AN cytotoxicity to GK is not directly mediated by COX-2 stimulation and PG production.

  13. PAMPs and DAMPs stimulate the expression of pro-inflammatory cytokines in vitro in fibroblasts from fish

    DEFF Research Database (Denmark)

    Ingerslev, Hans-Christian; Ossum, C.G.; Przybylska, Dominika

    . It is believed that this expression to a large extend is mediated by fibroblasts in the musculature. To investigate this, a fibroblast cell-line (RTHDF1) from the rainbow trout was stimulated with either LPS from E. coli, cell debris or supernatant from sonicated fibroblasts. Whereas LPS stimulation resulted...

  14. Differential Gene Expression in Primary Human Skin Keratinocytes and Fibroblasts in Response to Ionizing Radiation

    Science.gov (United States)

    Warters, Raymond L.; Packard, Ann T.; Kramer, Gwen F.; Gaffney, David K.; Moos, Philip J.

    2009-01-01

    Although skin is usually exposed during human exposures to ionizing radiation, there have been no thorough examinations of the transcriptional response of skin fibroblasts and keratinocytes to radiation. The transcriptional response of quiescent primary fibroblasts and keratinocytes exposed to from 10 cGy to 5 Gy and collected 4 h after treatment was examined. RNA was isolated and examined by microarray analysis for changes in the levels of gene expression. Exposure to ionizing radiation altered the expression of 279 genes across both cell types. Changes in RNA expression could be arranged into three main categories: (1) changes in keratinocytes but not in fibroblasts, (2) changes in fibroblasts but not in keratinocytes, and (3) changes in both. All of these changes were primarily of p53 target genes. Similar radiation-induced changes were induced in immortalized fibroblasts or keratinocytes. In separate experiments, protein was collected and analyzed by Western blotting for expression of proteins observed in microarray experiments to be overexpressed at the mRNA level. Both Q-PCR and Western blot analysis experiments validated these transcription changes. Our results are consistent with changes in the expression of p53 target genes as indicating the magnitude of cell responses to ionizing radiation. PMID:19580510

  15. Individual Differences in the Expression of Conditioned Fear Are Associated with Endogenous Fibroblast Growth Factor 2

    Science.gov (United States)

    Graham, Bronwyn M.; Richardson, Rick

    2016-01-01

    These experiments examined the relationship between the neurotrophic factor fibroblast growth factor 2 (FGF2) and individual differences in the expression of conditioned fear. Experiments 1 and 2 demonstrated that rats naturally expressing low levels of contextual or cued fear have higher levels of hippocampal FGF2 relative to rats that express…

  16. Pentadecapeptide BPC 157 Enhances the Growth Hormone Receptor Expression in Tendon Fibroblasts

    Directory of Open Access Journals (Sweden)

    Chung-Hsun Chang

    2014-11-01

    Full Text Available BPC 157, a pentadecapeptide derived from human gastric juice, has been demonstrated to promote the healing of different tissues, including skin, muscle, bone, ligament and tendon in many animal studies. However, the underlying mechanism has not been fully clarified. The present study aimed to explore the effect of BPC 157 on tendon fibroblasts isolated from Achilles tendon of male Sprague-Dawley rat. From the result of cDNA microarray analysis, growth hormone receptor was revealed as one of the most abundantly up-regulated genes in tendon fibroblasts by BPC 157. BPC 157 dose- and time-dependently increased the expression of growth hormone receptor in tendon fibroblasts at both the mRNA and protein levels as measured by RT/real-time PCR and Western blot, respectively. The addition of growth hormone to BPC 157-treated tendon fibroblasts dose- and time-dependently increased the cell proliferation as determined by MTT assay and PCNA expression by RT/real-time PCR. Janus kinase 2, the downstream signal pathway of growth hormone receptor, was activated time-dependently by stimulating the BPC 157-treated tendon fibroblasts with growth hormone. In conclusion, the BPC 157-induced increase of growth hormone receptor in tendon fibroblasts may potentiate the proliferation-promoting effect of growth hormone and contribute to the healing of tendon.

  17. Phenotypic differences between oral and skin fibroblasts in wound contraction and growth factor expression.

    Science.gov (United States)

    Shannon, Diane B; McKeown, Scott T W; Lundy, Fionnuala T; Irwin, Chris R

    2006-01-01

    Wounds of the oral mucosa heal in an accelerated fashion with reduced scarring compared with cutaneous wounds. The differences in healing outcome between oral mucosa and skin could be because of phenotypic differences between the respective fibroblast populations. This study compared paired mucosal and dermal fibroblasts in terms of collagen gel contraction, alpha-smooth muscle actin expression (alpha-SMA), and production of the epithelial growth factors: keratinocyte growth factor (KGF) and hepatocyte growth factor/scatter factor (HGF). The effects of transforming growth factor -beta1 and -beta3 on each parameter were also determined. Gel contraction in floating collagen lattices was determined over a 7-day period. alpha-SMA expression by fibroblasts was determined by Western blotting. KGF and HGF expression were determined by an enzyme-linked immunosorbent assay. Oral fibroblasts induced accelerated collagen gel contraction, yet surprisingly expressed lower levels of alpha-SMA. Oral cells also produced significantly greater levels of both KGF and HGF than their dermal counterparts. Transforming growth factor-beta1 and -beta3, over the concentration range of 0.1-10 ng/mL, had similar effects on cell function, stimulating both gel contraction and alpha-SMA production, but inhibiting KGF and HGF production by both cell types. These data indicate phenotypic differences between oral and dermal fibroblasts that may well contribute to the differences in healing outcome between these two tissues.

  18. Highly Efficient Stable Expression of Indoleamine 2,3 Dioxygenase Gene in Primary Fibroblasts

    Directory of Open Access Journals (Sweden)

    Rezakhanlou Alireza

    2010-03-01

    Full Text Available Abstract Indoleamine 2,3 dioxygenase (IDO is a potent immunomodulatory enzyme that has recently attracted significant attention for its potential application as an inducer of immunotolerance in transplantation. We have previously demonstrated that a collagen matrix populated with IDO-expressing fibroblasts can be applied successfully in suppressing islet allogeneic immune response. Meanwhile, a critical aspect of such immunological intervention relies largely on effective long-term expression of the IDO gene. Moreover, gene manipulation of primary cells is known to be challenging due to unsatisfactory expression of the exogenous gene. In this study, a lentiviral gene delivery system has been employed to transduce primary fibroblasts. We used polybrene to efficiently deliver the IDO gene into primary fibroblasts and showed a significant increase (about tenfold in the rate of gene transfection. In addition, by the use of fluorescence-activated cell sorting, a 95% pure population of IDO-expressing fibroblasts was successfully obtained. The efficiency of the IDO expression and the activity of the enzyme have been confirmed by Western blotting, fluorescence-activated cell sorting analysis, and Kynurenine assay, respectively. The findings of this study revealed simple and effective strategies through which an efficient and stable expression of IDO can be achieved for primary cells which, in turn, significantly improves its potential as a tool for achieving immunotolerance in different types of transplantation.

  19. Hemin inhibits cyclooxygenase-2 expression through nuclear factor-kappa B activation and ornithine decarboxylase expression in 12-O-tetradecanoylphorbol-13-acetate-treated mouse skin

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jae Hee; Lee, Chang Ki [Department of Oral Biology, Yonsei University College of Dentistry, 134 Shinchon-Dong, Seodaemoon-Ku, Seoul 120-752 (Korea, Republic of); Oral Cancer Research Institute, Yonsei University College of Dentistry, 134 Shinchon-Dong, Seodaemoon-Ku, Seoul 120-752 (Korea, Republic of); Hwang, Young Sun [Department of Applied Life Science and Brain Korea 21 Project, Yonsei University College of Dentistry, 134 Shinchon-Dong, Seodaemoon-Ku, Seoul 120-752 (Korea, Republic of); Park, Kwang-Kyun [Department of Oral Biology, Yonsei University College of Dentistry, 134 Shinchon-Dong, Seodaemoon-Ku, Seoul 120-752 (Korea, Republic of); Department of Applied Life Science and Brain Korea 21 Project, Yonsei University College of Dentistry, 134 Shinchon-Dong, Seodaemoon-Ku, Seoul 120-752 (Korea, Republic of); Chung, Won-Yoon [Department of Oral Biology, Yonsei University College of Dentistry, 134 Shinchon-Dong, Seodaemoon-Ku, Seoul 120-752 (Korea, Republic of); Department of Applied Life Science and Brain Korea 21 Project, Yonsei University College of Dentistry, 134 Shinchon-Dong, Seodaemoon-Ku, Seoul 120-752 (Korea, Republic of)], E-mail: wychung@yuhs.ac

    2008-07-03

    Inflammation induced by various stimuli has been found to be associated with increased risk for most types of human cancer. Inflammation facilitates the initiation of normal cells, as well as the growth of initiated cells and their progression to malignancy through production of proinflammatory cytokines and diverse reactive oxygen/nitrogen species. These also activate the signaling molecules that are involved in inflammation and carcinogenesis. Our previous studies have demonstrated that hemin inhibited 7,12-dimethylbenz[a]anthracene (DMBA)-induced bacterial mutagenesis and oxidative DNA damage, reduced the level of DNA-DMBA adduct and 12-O-tetradecanoylphorobl-13-acetate (TPA)-induced tumor formation in DMBA-initiated ICR mouse skin, and inhibited myeloperoxidase and ornithine decarboxylase (ODC) activity and H{sub 2}O{sub 2} formation in TPA-treated mouse skin. In the present study, to further elucidate the molecular mechanisms underlying the chemopreventive activity of hemin, its effect on the expression of ODC and cyclooxygenase (COX)-2, and the activation of nuclear factor-kappa B (NF-{kappa}B) and mitogen-activated protein kinases (MAPKs) regulating these proteins were explored in mouse skin with TPA-induced inflammation. Topically applied hemin inhibited ear edema and epidermal thickness in mice treated with TPA. Pretreatment with hemin reduced the expression of ODC and COX-2, and also reduced NF-{kappa}B activation in TPA-stimulated mouse skin. In addition, hemin suppressed the TPA-induced activation of extracellular signal-regulated protein kinase (ERK) and p38 MAPK in a dose-dependent manner. Taken together, hemin inhibited TPA-induced COX-2 expression by altering NF-{kappa}B signaling pathway via ERK and p38 MAPK, as well as TPA-induced ODC expression in mouse skin. Thereby, hemin may be an attractive candidate for a chemopreventive agent.

  20. Hemin inhibits cyclooxygenase-2 expression through nuclear factor-kappa B activation and ornithine decarboxylase expression in 12-O-tetradecanoylphorbol-13-acetate-treated mouse skin

    International Nuclear Information System (INIS)

    Park, Jae Hee; Lee, Chang Ki; Hwang, Young Sun; Park, Kwang-Kyun; Chung, Won-Yoon

    2008-01-01

    Inflammation induced by various stimuli has been found to be associated with increased risk for most types of human cancer. Inflammation facilitates the initiation of normal cells, as well as the growth of initiated cells and their progression to malignancy through production of proinflammatory cytokines and diverse reactive oxygen/nitrogen species. These also activate the signaling molecules that are involved in inflammation and carcinogenesis. Our previous studies have demonstrated that hemin inhibited 7,12-dimethylbenz[a]anthracene (DMBA)-induced bacterial mutagenesis and oxidative DNA damage, reduced the level of DNA-DMBA adduct and 12-O-tetradecanoylphorobl-13-acetate (TPA)-induced tumor formation in DMBA-initiated ICR mouse skin, and inhibited myeloperoxidase and ornithine decarboxylase (ODC) activity and H 2 O 2 formation in TPA-treated mouse skin. In the present study, to further elucidate the molecular mechanisms underlying the chemopreventive activity of hemin, its effect on the expression of ODC and cyclooxygenase (COX)-2, and the activation of nuclear factor-kappa B (NF-κB) and mitogen-activated protein kinases (MAPKs) regulating these proteins were explored in mouse skin with TPA-induced inflammation. Topically applied hemin inhibited ear edema and epidermal thickness in mice treated with TPA. Pretreatment with hemin reduced the expression of ODC and COX-2, and also reduced NF-κB activation in TPA-stimulated mouse skin. In addition, hemin suppressed the TPA-induced activation of extracellular signal-regulated protein kinase (ERK) and p38 MAPK in a dose-dependent manner. Taken together, hemin inhibited TPA-induced COX-2 expression by altering NF-κB signaling pathway via ERK and p38 MAPK, as well as TPA-induced ODC expression in mouse skin. Thereby, hemin may be an attractive candidate for a chemopreventive agent

  1. Radiation-induced gene expression in human subcutaneous fibroblasts is predictive of radiation-induced fibrosis

    DEFF Research Database (Denmark)

    Rødningen, Olaug Kristin; Børresen-Dale, Anne-Lise; Alsner, Jan

    2008-01-01

    BACKGROUND AND PURPOSE: Breast cancer patients show a large variation in normal tissue reactions after ionizing radiation (IR) therapy. One of the most common long-term adverse effects of ionizing radiotherapy is radiation-induced fibrosis (RIF), and several attempts have been made over the last...... years to develop predictive assays for RIF. Our aim was to identify basal and radiation-induced transcriptional profiles in fibroblasts from breast cancer patients that might be related to the individual risk of RIF in these patients. MATERIALS AND METHODS: Fibroblast cell lines from 31 individuals......-treated fibroblasts. Transcriptional differences in basal and radiation-induced gene expression profiles were investigated using 15K cDNA microarrays, and results analyzed by both SAM and PAM. RESULTS: Sixty differentially expressed genes were identified by applying SAM on 10 patients with the highest risk of RIF...

  2. Prevalence of 5-lipoxygenase expression in canine osteosarcoma and the effects of a dual 5-lipoxygenase/cyclooxygenase inhibitor on osteosarcoma cells in vitro and in vivo.

    Science.gov (United States)

    Goupil, R C; Bushey, J J; Peters-Kennedy, J; Wakshlag, J J

    2012-09-01

    Canine osteosarcoma is an insidious disease with few effective treatment modalities; therefore, use of pharmacologic intervention to improve mortality or morbidity is constantly sought. The use of cyclooxygenase enzyme inhibitors has been an area of interest with limited efficacy based on retrospective examination of tumor expression and in vivo cell proliferation models. Recently, examination of dual cyclooxygenase and 5-lipoxygenase inhibitors in human and canine oncology suggests that 5-lipoxygenase inhibitors may be an effective approach in vitro and during tumor induction in rodent models. Therefore, the authors decided to examine 5-lipoxygenase expression in primary canine osteosarcoma samples and have shown that approximately 65% of osteosarcomas label positive for cytoplasmic 5-lipoxygenase. Further examination of a cell culture and xenograft model shows similar 5-lipoxygenase expression. Surprisingly, a canine 5-lipoxygenase inhibitor (tepoxalin) significantly reduced cell proliferation at physiologic doses in vitro and diminished xenograft tumor growth in nude mice, suggesting that further investigation is needed. Traditionally, 5-lipoxygense leads to production of lipid mediators, such as leukotriene B(4) and 5-oxo-eicosatetraenoic acid, which, when added back to the media of tepoxalin-treated cells, did not recover cell proliferation. The lack of nuclear staining in primary and xenografted tumors and the lack of response to eicoasanoids suggest that lipid mediator production is not the primary means by which tepoxalin acts to alter proliferation. Regardless of the mechanisms involved in retarding cell proliferation, future investigation is warranted.

  3. p53/PUMA expression in human pulmonary fibroblasts mediates cell activation and migration in silicosis.

    Science.gov (United States)

    Wang, Wei; Liu, Haijun; Dai, Xiaoniu; Fang, Shencun; Wang, Xingang; Zhang, Yingming; Yao, Honghong; Zhang, Xilong; Chao, Jie

    2015-11-18

    Phagocytosis of SiO2 into the lung causes an inflammatory cascade that results in fibroblast proliferation and migration, followed by fibrosis. Clinical evidence has indicated that the activation of alveolar macrophages by SiO2 produces rapid and sustained inflammation characterized by the generation of monocyte chemotactic protein 1, which, in turn, induces fibrosis. However, the details of events downstream of monocyte chemotactic protein 1 activity in pulmonary fibroblasts remain unclear. Here, to elucidate the role of p53 in fibrosis induced by silica, both the upstream molecular mechanisms and the functional effects on cell proliferation and migration were investigated. Experiments using primary cultured adult human pulmonary fibroblasts led to the following results: 1) SiO2 treatment resulted in a rapid and sustained increase in p53 and PUMA protein levels; 2) the MAPK and PI3K pathways were involved in the SiO2-induced alteration of p53 and PUMA expression; and 3) RNA interference targeting p53 and PUMA prevented the SiO2-induced increases in fibroblast activation and migration. Our study elucidated a link between SiO2-induced p53/PUMA expression in fibroblasts and cell migration, thereby providing novel insight into the potential use of p53/PUMA in the development of novel therapeutic strategies for silicosis treatment.

  4. DsRed gene expression by doxycycline in porcine fibroblasts and ...

    African Journals Online (AJOL)

    DsRed gene expression by doxycycline in porcine fibroblasts and cloned embryos using transposon. SuJin Kim, JoonHo Moon, BegoRoibas da Torre, Islam M Saadeldin, JungTaek Kang, JiYei Choi, SolJi Park, Byeong-Chun Lee, Goo Jang Goo Jang ...

  5. Analysis of plasma membrane Ca(2+)-ATPase expression in control and SV40-transformed human fibroblasts.

    Science.gov (United States)

    Reisner, P D; Brandt, P C; Vanaman, T C

    1997-01-01

    It has been long known that neoplastic transformation is accompanied by a lowered requirement for extracellular Ca2+ for growth. The studies presented here demonstrate that human fibroblastic cell lines produce the two commonly found 'housekeeping' isoforms of the plasma membrane Ca(2+)-ATPase (PMCA), PMCA1b and 4b, and at the expression of both is demonstrably lower in cell lines neoplastically transformed by SV40 than in the corresponding parental cell lines. Western blot analyses of lysates from control (GM00037) and SV40-transformed (GM00637) skin fibroblasts revealed a 138 kDa PMCA whose level was significantly lower in the SV40-transformed cells relative to either total cellular protein or alpha-tubulin. Similar analyses of plasma membrane preparations from control WI-38) and SV40-transformed (WI-38VA13) lung fibroblasts revealed 3-4-fold lower levels of PMCA in the SV40-transformed cells. Competitive ELISAs performed on detergent solubilized plasma membrane preparations indicated at least 3-4-fold lower levels of PMCA in the SV40-transformed cell lines compared to controls. Reverse transcriptase coupled-PCR analyses showed that PMCA1b and PMCA4b were the only isoforms expressed in all four cell lines. The PMCA4b mRNA level detected by Northern analysis also was substantially lower in SV40 transformed skin fibroblasts than in non-transformed fibroblasts. Quantitative RT-PCR analyses showed levels of PMCA1b and 4b mRNAs to be 5 and 10-fold lower, respectively, in GM00637 than in GM00037 when the levels of PCR products were normalized to glyceraldehyde-3-phosphate dehydrogenase (G3PDH) mRNA. These results demonstrate that the expression of these distinct PMCA genes is substantially lower in SV40 transformed human skin and lung fibroblasts and may be coordinately regulated in these cells.

  6. Identification of SSEA-1 expressing enhanced reprogramming (SEER) cells in porcine embryonic fibroblasts

    DEFF Research Database (Denmark)

    Li, Dong; Secher, Jan Ole Bertelsen; Juhl, Morten

    2017-01-01

    Previous research has shown that a subpopulation of cells within cultured human dermal fibroblasts, termed multilineage-differentiating stress enduring (Muse) cells, are preferentially reprogrammed into induced pluripotent stem cells. However, controversy exists over whether these cells...... are the only cells capable of being reprogrammed from a heterogeneous population of fibroblasts. Similarly, there is little research to suggest such cells may exist in embryonic tissues or other species. To address if such a cell population exists in pigs, we investigated porcine embryonic fibroblast...... populations (pEFs) and identified heterogeneous expression of several key cell surface markers. Strikingly, we discovered a small population of stage-specific embryonic antigen 1 positive cells (SSEA-1+) in Danish Landrace and Göttingen minipig pEFs, which were absent in the Yucatan pEFs. Furthermore...

  7. Basic calcium phosphate crystal-induced Egr-1 expression stimulates mitogenesis in human fibroblasts

    International Nuclear Information System (INIS)

    Zeng, Xiao R.; Sun Yubo; Wenger, Leonor; Cheung, Herman S.

    2005-01-01

    Previously, we have reported that basic calcium phosphate (BCP) crystals stimulate mitogenesis and synthesis of matrix metalloproteinases in cultured human foreskin and synovial fibroblasts. However, the detailed mechanisms involved are still unclear. In the present study, using RT-PCR and Egr-1 promoter analysis we showed that BCP crystals could stimulate early growth response gene Egr-1 transcription through a PKCα-dependent p44/p42 MAPK pathway. Using a retrovirus gene expression system (Clontech) to overexpress Egr-1 in human fibroblast BJ-1 cells resulted in promotion of mitogenesis measured either by MTT cell proliferation analysis or by direct cell counting. The results demonstrate that Egr-1 may play a key role in mediating BCP crystal-induced synovial fibroblast mitogenesis

  8. The AP-1 Transcription Factor c-Jun Promotes Arthritis by Regulating Cyclooxygenase-2 and Arginase-1 Expression in Macrophages.

    Science.gov (United States)

    Hannemann, Nicole; Jordan, Jutta; Paul, Sushmita; Reid, Stephen; Baenkler, Hanns-Wolf; Sonnewald, Sophia; Bäuerle, Tobias; Vera, Julio; Schett, Georg; Bozec, Aline

    2017-05-01

    Activation of proinflammatory macrophages is associated with the inflammatory state of rheumatoid arthritis. Their polarization and activation are controlled by transcription factors such as NF-κB and the AP-1 transcription factor member c-Fos. Surprisingly, little is known about the role of the AP-1 transcription factor c-Jun in macrophage activation. In this study, we show that mRNA and protein levels of c-Jun are increased in macrophages following pro- or anti-inflammatory stimulations. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway enrichment cluster analyses of microarray data using wild-type and c-Jun-deleted macrophages highlight the central function of c-Jun in macrophages, in particular for immune responses, IL production, and hypoxia pathways. Mice deficient for c-Jun in macrophages show an amelioration of inflammation and bone destruction in the serum-induced arthritis model. In vivo and in vitro gene profiling, together with chromatin immunoprecipitation analysis of macrophages, revealed direct activation of the proinflammatory factor cyclooxygenase-2 and indirect inhibition of the anti-inflammatory factor arginase-1 by c-Jun. Thus, c-Jun regulates the activation state of macrophages and promotes arthritis via differentially regulating cyclooxygenase-2 and arginase-1 levels. Copyright © 2017 by The American Association of Immunologists, Inc.

  9. Degradation and inhibition of cyclooxygenase

    OpenAIRE

    Neuß, Heiko

    2011-01-01

    The cyclooxygenase (COX) is a central enzyme in the genesis of pain, inflammation and carcinogenesis. Two major isoforms, COX-1 and COX-2, have been described. The COX-1 is constitutively expressed in most tissues and has housekeeping functions, whereas the COX-2 is the inducible isoform, expressed under conditions of inflammation and tumor growth. First, we researched the degradation of the COX-2 enzyme. We were able to demonstrate, that the COX-2 protein was ubiquitinated before prote...

  10. Regulation of gene expression by tobacco product preparations in cultured human dermal fibroblasts

    International Nuclear Information System (INIS)

    Malpass, Gloria E.; Arimilli, Subhashini; Prasad, G.L.; Howlett, Allyn C.

    2014-01-01

    Skin fibroblasts comprise the first barrier of defense against wounds, and tobacco products directly contact the oral cavity. Cultured human dermal fibroblasts were exposed to smokeless tobacco extract (STE), total particulate matter (TPM) from tobacco smoke, or nicotine at concentrations comparable to those found in these extracts for 1 h or 5 h. Differences were identified in pathway-specific genes between treatments and vehicle using qRT-PCR. At 1 h, IL1α was suppressed significantly by TPM and less significantly by STE. Neither FOS nor JUN was suppressed at 1 h by tobacco products. IL8, TNFα, VCAM1, and NFκB1 were suppressed after 5 h with STE, whereas only TNFα and NFκB1 were suppressed by TPM. At 1 h with TPM, secreted levels of IL10 and TNFα were increased. Potentially confounding effects of nicotine were exemplified by genes such as ATF3 (5 h), which was increased by nicotine but suppressed by other components of STE. Within 2 h, TPM stimulated nitric oxide production, and both STE and TPM increased reactive oxygen species. The biological significance of these findings and utilization of the gene expression changes reported herein regarding effects of the tobacco product preparations on dermal fibroblasts will require additional research. - Highlights: • Tobacco product preparations (TPPs) alter gene expression in dermal fibroblasts. • Some immediate early genes critical to the inflammatory process are affected. • Different TPPs produce differential responses in certain pro-inflammatory genes

  11. Regulation of gene expression by tobacco product preparations in cultured human dermal fibroblasts

    Energy Technology Data Exchange (ETDEWEB)

    Malpass, Gloria E., E-mail: gloria.malpass@gmail.com [Department of Physiology and Pharmacology, Wake Forest University Health Sciences, Winston-Salem, NC 27157 (United States); Arimilli, Subhashini, E-mail: sarimill@wakehealth.edu [Department of Microbiology and Immunology, Wake Forest University Health Sciences, Winston-Salem, NC 27157 (United States); Prasad, G.L., E-mail: prasadg@rjrt.com [R and D Department, R.J. Reynolds Tobacco Company, Winston-Salem, NC 27102 (United States); Howlett, Allyn C., E-mail: ahowlett@wakehealth.edu [Department of Physiology and Pharmacology, Wake Forest University Health Sciences, Winston-Salem, NC 27157 (United States)

    2014-09-01

    Skin fibroblasts comprise the first barrier of defense against wounds, and tobacco products directly contact the oral cavity. Cultured human dermal fibroblasts were exposed to smokeless tobacco extract (STE), total particulate matter (TPM) from tobacco smoke, or nicotine at concentrations comparable to those found in these extracts for 1 h or 5 h. Differences were identified in pathway-specific genes between treatments and vehicle using qRT-PCR. At 1 h, IL1α was suppressed significantly by TPM and less significantly by STE. Neither FOS nor JUN was suppressed at 1 h by tobacco products. IL8, TNFα, VCAM1, and NFκB1 were suppressed after 5 h with STE, whereas only TNFα and NFκB1 were suppressed by TPM. At 1 h with TPM, secreted levels of IL10 and TNFα were increased. Potentially confounding effects of nicotine were exemplified by genes such as ATF3 (5 h), which was increased by nicotine but suppressed by other components of STE. Within 2 h, TPM stimulated nitric oxide production, and both STE and TPM increased reactive oxygen species. The biological significance of these findings and utilization of the gene expression changes reported herein regarding effects of the tobacco product preparations on dermal fibroblasts will require additional research. - Highlights: • Tobacco product preparations (TPPs) alter gene expression in dermal fibroblasts. • Some immediate early genes critical to the inflammatory process are affected. • Different TPPs produce differential responses in certain pro-inflammatory genes.

  12. Amelogenin is phagocytized and induces changes in integrin configuration, gene expression and proliferation of cultured normal human dermal fibroblasts

    DEFF Research Database (Denmark)

    Almqvist, Sofia; Werthén, Maria; Johansson, Anna

    2010-01-01

    Fibroblasts are central in wound healing by expressing important mediators and producing and remodelling extracellular matrix (ECM) components. This study aimed at elucidating possible mechanisms of action of the ECM protein amelogenin on normal human dermal fibroblasts (NHDF). Amelogenin at 100...

  13. PTEN gene and phosphorylation of Akt protein expression in the LPS-induced lung fibroblast

    Directory of Open Access Journals (Sweden)

    Mao-lin HUANG

    2014-09-01

    Full Text Available Objective: To investigate PTEN gene expression and the Akt phosphorylation of protein expression in the LPS-induced lung fibroblast, to initially reveal the relation between PTEN gene and the Akt phosphorylated proteins to LPS-induced lung fibroblast proliferation mechanism. Methods: BrdU experiments was performed to evaluate the LPS-induced lung fibroblast proliferation,  RT-PCR and Western Blot analysis were used to analyze the PTEN gene expression and Western blot was performed to analyze Akt phosphorylated protein expression. Results: PTEN mRNA level of the experimental group were significantly lower than the control group (P<0.05 with LPS simulation for 24h and 72h , and there were no significant difference between the experimental group and control group the experimental group and control group (P>0.05 . PTEN protein expression levels of the experimental group were significantly lower than the control group (P<0.05 , at 72h, and PTEN mRNA levels had no significant differences between these of the experimental and control group at 6h,12h and 24h(p>0.05. Phosphorylation Akt protein level (relative to total Akt protein was significantly higer than the control group (P<0.05 at 24h and 72h, and phosphorylation Akt protein levels had no significant differences between these of the experimental and control group at 6h and 12h (P>0.05 .Conclusion: PTEN gene and phosphorylation Akt protein involve in LPS-induced lung fibroblast proliferation signal transduction pathway.

  14. Expression of platelet-derived growth factor and its receptors in proliferative disorders of fibroblastic origin.

    OpenAIRE

    Smits, A.; Funa, K.; Vassbotn, F. S.; Beausang-Linder, M.; af Ekenstam, F.; Heldin, C. H.; Westermark, B.; Nistér, M.

    1992-01-01

    Platelet-derived growth factor (PDGF) is known to stimulate the proliferation of connective tissue-derived cells in vitro. Less is known about its functions in vivo, and the role of PDGF in the development of human tumors has not been clarified. The authors have investigated the occurrence of PDGF and PDGF receptors in a series of proliferative disorders of fibroblastic origin using immunohistochemical and in situ hybridization techniques. High expression of PDGF beta-receptor mRNA and protei...

  15. Efficient inhibition of fibroblast proliferation and collagen expression by ERK2 siRNAs

    International Nuclear Information System (INIS)

    Li, Fengfeng; Fan, Cunyi; Cheng, Tao; Jiang, Chaoyin; Zeng, Bingfang

    2009-01-01

    Transforming growth factor-β1 and fibroblast growth factor-2 play very important roles in fibroblast proliferation and collagen expression. These processes lead to the formation of joint adhesions through the SMAD and MAPK pathways, in which ERK2 is supposed to be crucial. Based on these assumptions, lentivirus (LV)-mediated small interfering RNAs (siRNAs) targeting ERK2 were used to suppress the proliferation and collagen expression of rat joint adhesion tissue fibroblasts (RJATFs). Among four siRNAs examined, siRNA1 caused an 84% reduction in ERK2 expression (p < 0.01) and was selected as the most efficient siRNA for use in this study. In subsequent experiments, significant downregulation of types I and III collagen were observed by quantitative RT-PCR and Western blot analyses. MTT assays and flow cytometry revealed marked inhibition of RJATF proliferation, but no apoptosis. In conclusion, LV-mediated ERK2 siRNAs may represent novel therapies or drug targets for preventing joint adhesion formation.

  16. The gene expression program of prostate fibroblast senescence modulates neoplastic epithelial cell proliferation through paracrine mechanisms.

    Science.gov (United States)

    Bavik, Claes; Coleman, Ilsa; Dean, James P; Knudsen, Beatrice; Plymate, Steven; Nelson, Peter S

    2006-01-15

    The greatest risk factor for developing carcinoma of the prostate is advanced age. Potential molecular and physiologic contributors to the frequency of cancer occurrence in older individuals include the accumulation of somatic mutations through defects in genome maintenance, epigenetic gene silencing, oxidative stress, loss of immune surveillance, telomere dysfunction, chronic inflammation, and alterations in tissue microenvironment. In this context, the process of prostate carcinogenesis can be influenced through interactions between intrinsic cellular alterations and the extrinsic microenvironment and macroenvironment, both of which change substantially as a consequence of aging. In this study, we sought to characterize the molecular alterations that occur during the process of prostate fibroblast senescence to identify factors in the aged tissue microenvironment capable of promoting the proliferation and potentially the neoplastic progression of prostate epithelium. We evaluated three mechanisms leading to cell senescence: oxidative stress, DNA damage, and replicative exhaustion. We identified a consistent program of gene expression that includes a subset of paracrine factors capable of influencing adjacent prostate epithelial growth. Both direct coculture and conditioned medium from senescent prostate fibroblasts stimulated epithelial cell proliferation, 3-fold and 2-fold, respectively. The paracrine-acting proteins fibroblast growth factor 7, hepatocyte growth factor, and amphiregulin (AREG) were elevated in the extracellular environment of senescent prostate fibroblasts. Exogenous AREG alone stimulated prostate epithelial cell growth, and neutralizing antibodies and small interfering RNA targeting AREG attenuated, but did not completely abrogate the growth-promoting effects of senescent fibroblast conditioned medium. These results support the concept that aging-related changes in the prostate microenvironment may contribute to the progression of prostate

  17. Mesenchymal stem cells restore frataxin expression and increase hydrogen peroxide scavenging enzymes in Friedreich ataxia fibroblasts.

    Directory of Open Access Journals (Sweden)

    Kevin Kemp

    Full Text Available Dramatic advances in recent decades in understanding the genetics of Friedreich ataxia (FRDA--a GAA triplet expansion causing greatly reduced expression of the mitochondrial protein frataxin--have thus far yielded no therapeutic dividend, since there remain no effective treatments that prevent or even slow the inevitable progressive disability in affected individuals. Clinical interventions that restore frataxin expression are attractive therapeutic approaches, as, in theory, it may be possible to re-establish normal function in frataxin deficient cells if frataxin levels are increased above a specific threshold. With this in mind several drugs and cytokines have been tested for their ability to increase frataxin levels. Cell transplantation strategies may provide an alternative approach to this therapeutic aim, and may also offer more widespread cellular protective roles in FRDA. Here we show a direct link between frataxin expression in fibroblasts derived from FRDA patients with both decreased expression of hydrogen peroxide scavenging enzymes and increased sensitivity to hydrogen peroxide-mediated toxicity. We demonstrate that normal human mesenchymal stem cells (MSCs induce both an increase in frataxin gene and protein expression in FRDA fibroblasts via secretion of soluble factors. Finally, we show that exposure to factors produced by human MSCs increases resistance to hydrogen peroxide-mediated toxicity in FRDA fibroblasts through, at least in part, restoring the expression of the hydrogen peroxide scavenging enzymes catalase and glutathione peroxidase 1. These findings suggest, for the first time, that stem cells may increase frataxin levels in FRDA and transplantation of MSCs may offer an effective treatment for these patients.

  18. Nuclear factor κB (NFκB) and cyclooxygenase-2 (Cox-2) expression in the irradiated colorectum is associated with subsequent histopathological changes

    International Nuclear Information System (INIS)

    Yeoh, Ann S.J.; Bowen, Joanne M.; Gibson, Rachel J.; Keefe, Dorothy M.K.

    2005-01-01

    Purpose: Recent studies have proposed that mucositis development is the same throughout the gastrointestinal tract (GIT), as it is formed from one structure embryologically. Radiation-induced oral mucositis studies have outlined the key involvement of nuclear factor κB (NFκB) and cyclooxygenase-2 (Cox-2) in its pathobiology. The purpose of this study was therefore to investigate the expression of NFκB and Cox-2 in the irradiated colorectum and to correlate these with the associated histopathologic changes. Methods and Materials: Colorectal tissues from 28 colorectal cancer patients treated with preoperative radiotherapy were analyzed for histopathologic changes using a variety of tissue staining methods. The expression of NFκB and Cox-2 in these tissues was investigated using immunohistochemistry. Changes in expression of these proteins were then correlated with the histopathologic changes. Results: Radiation therapy caused injury to the normal colorectal tissue surrounding tumor site, particularly around the blood vessels. These changes were reflected in changes in NFκB and Cox-2 expression. Conclusions: We conclude that different regions of the GIT, the colorectum, and oral cavity have similar underlying mechanisms of radiation-induced mucositis. Understanding these mechanisms will allow new approaches to be developed to specifically target steps in the evolution of alimentary mucositis

  19. IL-34 Expression in Gingival Fibroblasts, Gingival Crevicular Fluid and Gingival Tissue

    OpenAIRE

    Kreidly, Mariam

    2014-01-01

    IL-34 is a protein associated with bone degenerative diseases but the role in periodontal disease is unknown. The aim of this study was to assess the expression of IL-34 in primary human gingival fibroblasts (GF) and investigate if the expression is regulated by the pro-inflammatory cytokines interleukin-1 (IL-1β) and tumor necrosis factor α(TNF-α). We also investigated if IL-34 is detectible in gingival crevicular fluid (GCF) in healthy, gingivitis and periodontitis sites. Furthermore, we e...

  20. Treatment-related survival associations of claudin-2 expression in fibroblasts of colorectal cancer

    DEFF Research Database (Denmark)

    Mezheyeuski, Artur; Strell, Carina; Hrynchyk, Ina

    2018-01-01

    Claudin-2 is a trans-membrane protein—component of tight junctions in epithelial cells. Elevated claudin-2 expression has been reported in colorectal cancer (CRC). The aim of this study was to investigate the expression patterns of claudin-2 in human CRC samples and analyze its association...... with clinical characteristics and treatment outcome. TMAs of primary tumors from two cohorts of metastatic CRC (mCRC) were used. Claudin-2 IHC staining was evaluated in a semi-quantitative manner in different regions and cell types. Claudin-2 expression was also analyzed by immunofluorescence in primary...... cultures of human CRC cancer-associated fibroblasts (CAFs). Initial analyses identified previously unrecognized expression patterns of claudin-2 in CAFs of human CRC. Claudin-2 expression in CAFs of the invasive margin was associated with shorter progression-free survival. Subgroup analyses demonstrated...

  1. RhoA signaling modulates cyclin D1 expression in human lung fibroblasts; implications for idiopathic pulmonary fibrosis

    Directory of Open Access Journals (Sweden)

    Hoban PR

    2006-06-01

    Full Text Available Abstract Background Idiopathic Pulmonary Fibrosis (IPF is a debilitating disease characterized by exaggerated extracellular matrix deposition and aggressive lung structural remodeling. Disease pathogenesis is driven by fibroblastic foci formation, consequent on growth factor overexpression and myofibroblast proliferation. We have previously shown that both CTGF overexpression and myofibroblast formation in IPF cell lines are dependent on RhoA signaling. As RhoA-mediated regulation is also involved in cell cycle progression, we hypothesise that this pathway is key to lung fibroblast turnover through modulation of cyclin D1 kinetic expression. Methods Cyclin D1 expression was compared in primary IPF patient-derived fibroblasts and equivalent normal control cells. Quantitative real time PCR was employed to examine relative expression levels of cyclin D1 mRNA; protein expression was confirmed by western blotting. Effects of Rho signaling were investigated using transient transfection of constitutively active and dominant negative RhoA constructs as well as pharmacological inhibitors. Cellular proliferation of lung fibroblasts was determined by BrdU incorporation ELISA. To further explore RhoA regulation of cyclin D1 in lung fibroblasts and associated cell cycle progression, an established Rho inhibitor, Simvastatin, was incorporated in our studies. Results Cyclin D1 expression was upregulated in IPF compared to normal lung fibroblasts under exponential growth conditions (p Conclusion These findings report for the first time that cyclin D1 expression is deregulated in IPF through a RhoA dependent mechanism that influences lung fibroblast proliferation. This potentially unravels new molecular targets for future anti-IPF strategies; accordingly, Simvastatin inhibition of Rho-mediated cyclin D1 expression in IPF fibroblasts merits further exploitation.

  2. Mesenchymal stromal cells reverse hypoxia-mediated suppression of α-smooth muscle actin expression in human dermal fibroblasts

    International Nuclear Information System (INIS)

    Faulknor, Renea A.; Olekson, Melissa A.; Nativ, Nir I.; Ghodbane, Mehdi; Gray, Andrea J.; Berthiaume, François

    2015-01-01

    During wound healing, fibroblasts deposit extracellular matrix that guides angiogenesis and supports the migration and proliferation of cells that eventually form the scar. They also promote wound closure via differentiation into α-smooth muscle actin (SMA)-expressing myofibroblasts, which cause wound contraction. Low oxygen tension typical of chronic nonhealing wounds inhibits fibroblast collagen production and differentiation. It has been suggested that hypoxic mesenchymal stromal cells (MSCs) secrete factors that promote wound healing in animal models; however, it is unclear whether these factors are equally effective on the target cells in a hypoxic wound environment. Here we investigated the impact of MSC-derived soluble factors on the function of fibroblasts cultured in hypoxic fibroblast-populated collagen lattices (FPCLs). Hypoxia alone significantly decreased FPCL contraction and α-SMA expression. MSC-conditioned medium restored hypoxic FPCL contraction and α-SMA expression to levels similar to normoxic FPCLs. (SB431542), an inhibitor of transforming growth factor-β 1 (TGF-β 1 )-mediated signaling, blocked most of the MSC effect on FPCL contraction, while exogenous TGF-β 1 at levels similar to that secreted by MSCs reproduced the MSC effect. These results suggest that TGF-β 1 is a major paracrine signal secreted by MSCs that can restore fibroblast functions relevant to the wound healing process and that are impaired in hypoxia. - Highlights: • Fibroblasts were cultured in collagen lattices (FPCLs) as model contracting wounds. • Hypoxia decreased FPCL contraction and fibroblast α-smooth muscle actin expression. • Mesenchymal stromal cells (MSCs) restored function of hypoxic fibroblasts. • MSCs regulate fibroblast function mainly via secreted transforming growth factor-β 1

  3. Mesenchymal stromal cells reverse hypoxia-mediated suppression of α-smooth muscle actin expression in human dermal fibroblasts

    Energy Technology Data Exchange (ETDEWEB)

    Faulknor, Renea A.; Olekson, Melissa A.; Nativ, Nir I.; Ghodbane, Mehdi; Gray, Andrea J.; Berthiaume, François, E-mail: fberthia@rci.rutgers.edu

    2015-02-27

    During wound healing, fibroblasts deposit extracellular matrix that guides angiogenesis and supports the migration and proliferation of cells that eventually form the scar. They also promote wound closure via differentiation into α-smooth muscle actin (SMA)-expressing myofibroblasts, which cause wound contraction. Low oxygen tension typical of chronic nonhealing wounds inhibits fibroblast collagen production and differentiation. It has been suggested that hypoxic mesenchymal stromal cells (MSCs) secrete factors that promote wound healing in animal models; however, it is unclear whether these factors are equally effective on the target cells in a hypoxic wound environment. Here we investigated the impact of MSC-derived soluble factors on the function of fibroblasts cultured in hypoxic fibroblast-populated collagen lattices (FPCLs). Hypoxia alone significantly decreased FPCL contraction and α-SMA expression. MSC-conditioned medium restored hypoxic FPCL contraction and α-SMA expression to levels similar to normoxic FPCLs. (SB431542), an inhibitor of transforming growth factor-β{sub 1} (TGF-β{sub 1})-mediated signaling, blocked most of the MSC effect on FPCL contraction, while exogenous TGF-β{sub 1} at levels similar to that secreted by MSCs reproduced the MSC effect. These results suggest that TGF-β{sub 1} is a major paracrine signal secreted by MSCs that can restore fibroblast functions relevant to the wound healing process and that are impaired in hypoxia. - Highlights: • Fibroblasts were cultured in collagen lattices (FPCLs) as model contracting wounds. • Hypoxia decreased FPCL contraction and fibroblast α-smooth muscle actin expression. • Mesenchymal stromal cells (MSCs) restored function of hypoxic fibroblasts. • MSCs regulate fibroblast function mainly via secreted transforming growth factor-β{sub 1}.

  4. Date syrup-derived polyphenols attenuate angiogenic responses and exhibits anti-inflammatory activity mediated by vascular endothelial growth factor and cyclooxygenase-2 expression in endothelial cells.

    Science.gov (United States)

    Taleb, Hajer; Morris, R Keith; Withycombe, Cathryn E; Maddocks, Sarah E; Kanekanian, Ara D

    2016-07-01

    Bioactive components such as polyphenols, present in many plants, are purported to have anti-inflammatory and antiangiogenic properties. Date syrup, produced from date fruit of the date palm tree, has traditionally been used to treat a wide range of diseases with etiologies involving angiogenesis and inflammation. It was hypothesized that polyphenols in date syrup reduce angiogenic responses such as cell migration, tube formation, and matrix metalloproteinase activity in an inflammatory model by exhibiting anti-inflammatory activity mediated by vascular endothelial growth factor (VEGF) and the prostaglandin enzyme cyclooxygenase-2 (COX-2) in endothelial cells. Date syrup polyphenols at 60 and 600μg/mL reduced inflammation and suppressed several stages of angiogenesis, including endothelial cell migration, invasion, matrix metalloproteinase activity, and tube formation, without evidence of cytotoxicity. VEGF and COX-2 expression induced by tumor necrosis factor-alpha at both gene expression and protein level was significantly reduced by date syrup polyphenols in comparison to untreated cells. In conclusion, polyphenols in date syrup attenuated angiogenic responses and exhibited anti-inflammatory activity mediated by VEGF and COX-2 expression in endothelial cells. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. A Soft Coral Natural Product, 11-Episinulariolide Acetate, Inhibits Gene Expression of Cyclooxygenase-2 and Interleukin-8 through Attenuation of Calcium Signaling

    Directory of Open Access Journals (Sweden)

    Wei-Chiao Chang

    2013-06-01

    Full Text Available Epidermal growth factor receptor (EGFR is overexpressed in many types of cancer cells. EGFR-mediated signaling involves inflammatory gene expression including cyclooxygenase (COX-2 and interleukin (IL-8, and is associated with cancer pathogenesis. In a search of phytochemicals with anti-inflammatory activity, the COX-2 and IL-8 inhibitory activities of some marine compounds were examined. After screening these compounds 11-episinulariolide acetate (1 from soft coral exhibited the most potent activity. Reverse-transcription PCR; western blotting; ELISA and luciferase assays were used to test the effect of compound 1 on EGF-stimulated expressions of COX-2 and IL-8 in A431 human epidermoid carcinoma cells. After exposure to 10 μM of compound 1, expression levels of COX-2 and IL-8 were reduced. In addition; intracellular Ca2+ increase and Ca2+-dependent transcription factor activation were blocked by compound 1. Thus, compound 1 can potentially serve as a lead compound for targeting Ca2+ signaling-dependent inflammatory diseases.

  6. The effects of a cyclooxygenase-2 (COX-2 expression and inhibition on human uveal melanoma cell proliferation and macrophage nitric oxide production

    Directory of Open Access Journals (Sweden)

    Marshall Jean-Claude

    2007-01-01

    Full Text Available Abstract Background Cyclooxygenase-2 (COX-2 expression has previously been identified in uveal melanoma although the biological role of COX-2 in this intraocular malignancy has not been elucidated. This study aimed to investigate the effect of a COX-2 inhibitor on the proliferation rate of human uveal melanoma cells, as well as its effect on the cytotoxic response of macrophages. Methods Human uveal melanoma cell lines were transfected to constitutively express COX-2 and the proliferative rate of these cells using two different methods, with and without the addition of Amfenac, was measured. Nitric oxide production by macrophages was measured after exposure to melanoma-conditioned medium from both groups of cells as well as with and without Amfenac, the active metabolite of Nepafenac. Results Cells transfected to express COX-2 had a higher proliferation rate than those that did not. The addition of Amfenac significantly decreased the proliferation rate of all cell lines. Nitric oxide production by macrophages was inhibited by the addition of melanoma conditioned medium, the addition of Amfenac partially overcame this inhibition. Conclusion Amfenac affected both COX-2 transfected and non-transfected uveal melanoma cells in terms of their proliferation rates as well as their suppressive effects on macrophage cytotoxic activity.

  7. Botulinum Toxin Type A Inhibits α-Smooth Muscle Actin and Myosin II Expression in Fibroblasts Derived From Scar Contracture.

    Science.gov (United States)

    Chen, Minliang; Yan, Tongtong; Ma, Kui; Lai, Linying; Liu, Chang; Liang, Liming; Fu, Xiaobing

    2016-09-01

    Scar contracture (SC) is one of the most common complications resulting from major burn injuries. Numerous treatments are currently available but they do not always yield excellent therapeutic results. Recent reports suggest that botulinum toxin type A (BTXA) is effective at reducing SC clinically, but the molecular mechanism for this action is unknown. α-Smooth muscle actin (α-SMA) and myosin II are the main components of stress fibers, which are the contractile structures of fibroblasts. The effects of BTXA on α-SMA and myosin II in SC are still unknown. This study aimed to explore the effect of BTXA on α-SMA and myosin II expression in fibroblasts derived from SC and to elucidate its actual mechanism further. Fibroblasts were isolated from tissue specimens of SC. Fibroblasts were cultured in Dulbecco modified Eagle medium with different concentrations of BTXA and their proliferation was analyzed through the tetrazolium-based colorimetric method at 1, 4, and 7 days. Proteins of α-SMA and myosin II were checked using Western blot in fibroblasts treated with different concentrations of BTXA at 1, 4, and 7 days. Fibroblasts without BTXA treatment had a higher proliferation than that in other groups, which indicated that the proliferation of fibroblasts was significantly inhibited by BTXA (P < 0.05). Proteins of α-SMA and myosin II between fibroblasts with BTXA and fibroblasts without BTXA are statistically significant (P < 0.05). These results suggest that BTXA effectively inhibited the growth of fibroblasts derived from SC and reduced the expression of α-SMA and myosin II, which provided theoretical support for the application of BTXA to control SC.

  8. [Cloning and characterization of genes differentially expressed in human dental pulp cells and gingival fibroblasts].

    Science.gov (United States)

    Wang, Zhong-dong; Wu, Ji-nan; Zhou, Lin; Ling, Jun-qi; Guo, Xi-min; Xiao, Ming-zhen; Zhu, Feng; Pu, Qin; Chai, Yu-bo; Zhao, Zhong-liang

    2007-02-01

    To study the biological properties of human dental pulp cells (HDPC) by cloning and analysis of genes differentially expressed in HDPC in comparison with human gingival fibroblasts (HGF). HDPC and HGF were cultured and identified by immunocytochemistry. HPDC and HGF subtractive cDNA library was established by PCR-based modified subtractive hybridization, genes differentially expressed by HPDC were cloned, sequenced and compared to find homogeneous sequence in GenBank by BLAST. Cloning and sequencing analysis indicate 12 genes differentially expressed were obtained, in which two were unknown genes. Among the 10 known genes, 4 were related to signal transduction, 2 were related to trans-membrane transportation (both cell membrane and nuclear membrane), and 2 were related to RNA splicing mechanisms. The biological properties of HPDC are determined by the differential expression of some genes and the growth and differentiation of HPDC are associated to the dynamic protein synthesis and secretion activities of the cell.

  9. Regulation of matrix metalloproteinase-9 expression between gingival fibroblast cells from old and young rats

    International Nuclear Information System (INIS)

    Kim, Su-Jung; Chung, Yong-Koo; Chung, Tae-Wook; Kim, Jeong-Ran; Moon, Sung-Kwon; Kim, Cheorl-Ho; Park, Young-Guk

    2009-01-01

    Gingival fibroblast cells (rGF) from aged rats have an age-related decline in proliferative capacity compared with young rats. We investigated G1 phase cell cycle regulation and MMP-9 expression in both young and aged rGF. G1 cell cycle protein levels and activity were significantly reduced in response to interleukin-1β (IL-1β) stimulation with increasing in vitro age. Tumor necrosis factor-α (TNF-α)-induced matrix metalloproteinase-9 (MMP-9) expression was also decreased in aged rGF in comparison with young rGF. Mutational analysis and gel shift assays demonstrated that the lower MMP-9 expression in aged rGF is associated with lower activities of transcription factors NF-κB and AP-1. These results suggest that cell cycle dysregulation and down-regulation of MMP-9 expression in rGF may play a role in gingival remodeling during in vitro aging.

  10. Genome-wide expression analysis in fibroblast cell lines from probands with Pallister Killian syndrome.

    Directory of Open Access Journals (Sweden)

    Maninder Kaur

    Full Text Available Pallister Killian syndrome (OMIM: # 601803 is a rare multisystem disorder typically caused by tissue limited mosaic tetrasomy of chromosome 12p (isochromosome 12p. The clinical manifestations of Pallister Killian syndrome are variable with the most common findings including craniofacial dysmorphia, hypotonia, cognitive impairment, hearing loss, skin pigmentary differences and epilepsy. Isochromosome 12p is identified primarily in skin fibroblast cultures and in chorionic villus and amniotic fluid cell samples and may be identified in blood lymphocytes during the neonatal and early childhood period. We performed genomic expression profiling correlated with interphase fluorescent in situ hybridization and single nucleotide polymorphism array quantification of degree of mosaicism in fibroblasts from 17 Caucasian probands with Pallister Killian syndrome and 9 healthy age, gender and ethnicity matched controls. We identified a characteristic profile of 354 (180 up- and 174 down-regulated differentially expressed genes in Pallister Killian syndrome probands and supportive evidence for a Pallister Killian syndrome critical region on 12p13.31. The differentially expressed genes were enriched for developmentally important genes such as homeobox genes. Among the differentially expressed genes, we identified several genes whose misexpression may be associated with the clinical phenotype of Pallister Killian syndrome such as downregulation of ZFPM2, GATA6 and SOX9, and overexpression of IGFBP2.

  11. Expression of cyclo-oxygenase-2 enzyme in the tissue samples of patients with various clinicopathological stages of oral leukoplakia and oral squamous cell carcinoma

    Directory of Open Access Journals (Sweden)

    Nelson Aruldoss

    2016-01-01

    Full Text Available Aim: The purpose of this study was to evaluate the expression of cyclo-oxygenase-2 (COX-2 enzyme in the tissue samples of patients with various clinicopathological stages of oral leukoplakia and oral squamous cell carcinoma (OSCC. Materials and Methods: The samples for the study were divided into 4 groups. Group A comprised 20 healthy individuals with no habits. Twenty healthy individuals with habitual tobacco usage and no oral lesions were included in Group B. Twenty cases of leukoplakia diagnosed clinically and histopathologically were included in Group C. Staging was done using the modified classification and staging system of oral leukoplakia. Twenty cases of OSCC diagnosed clinically and histopathologically were included in Group D. Immunohistochemical staining was done on these 80 samples (paraffin blocks for COX-2 expression by indirect method using polymer based Horseradish peroxidase system. Statistical analysis was performed using Kruskal-Wallis test and Spearman′s rank correlation test. Results: Significant and proportional increase of COX-2 staining was noted with the increase in the severity of dysplasia. Eighty percent of OSCC expressed COX-2, increasing in its intensity of staining with the decrease in differentiation. Seventy five percent of leukoplakia showed positive COX-2 expression. Only 15% of positive controls were COX-2 positive. No normal mucosa showed positive expression of COX-2. Conclusion: High expression of COX-2 is seen in advanced stages of leukoplakia and OSCC. Hence, COX-2 enzyme increases cell proliferation, promotes angiogenesis and inhibits immune surveillance in carcinogenesis; it can be an early detection marker in oral leukoplakia and a prognostic marker of OSCC.

  12. Cyclooxygenase-2 up-regulates CCR7 expression via AKT-mediated phosphorylation and activation of Sp1 in breast cancer cells.

    Science.gov (United States)

    Chuang, Chun-Wei; Pan, Mei-Ren; Hou, Ming-Feng; Hung, Wen-Chun

    2013-02-01

    Up-regulation of cyclooxygenase-2 (COX-2) is frequently found in human cancers and is significantly associated with tumor metastasis. Our previous results demonstrate that COX-2 and its metabolite prostaglandin E2 (PGE2) stimulate the expression of CCR7 chemokine receptor via EP2/EP4 receptors to promote lymphatic invasion in breast cancer cells. In this study, we address the underlying mechanism of COX-2/PGE2-induced CCR7 expression. We find that COX-2/PGE2 increase CCR7 expression via the AKT signaling pathway in breast cancer cells. Promoter deletion and mutation assays identify the Sp1 site located at the -60/-57 region of CCR7 gene promoter is critical for stimulation. Chromatin immunoprecipitation (ChIP) assay confirms that in vivo binding of Sp1 to human CCR7 promoter is increased by COX-2 and PGE2. Knockdown of Sp1 by shRNA reduces the induction of CCR7 by PGE2. We demonstrate for the first time that AKT may directly phosphorylate Sp1 at S42, T679, and S698. Phosphorylation-mimic Sp1 protein harboring S42D, T679D, and S698D mutation strongly activates CCR7 expression. In contrast, change of these three residues to alanine completely blocks the induction of CCR7 by PGE2. Pathological investigation demonstrates that CCR7 expression is strongly associated with phospho-AKT and Sp1 in 120 breast cancer tissues. Collectively, our results demonstrate that COX-2 up-regulates CCR7 expression via AKT-mediated phosphorylation and activation of Sp1 and this pathway is highly activated in metastatic breast cancer. Copyright © 2012 Wiley Periodicals, Inc.

  13. Resveratrol Modulation of Protein Expression in parkin-Mutant Human Skin Fibroblasts: A Proteomic Approach

    Directory of Open Access Journals (Sweden)

    Daniele Vergara

    2017-01-01

    Full Text Available In this study, we investigated by two-dimensional gel electrophoresis (2-DE and mass spectrometry (MS analysis the effects of resveratrol treatment on skin primary fibroblasts from a healthy subject and from a parkin-mutant early onset Parkinson’s disease patient. Parkin, an E3 ubiquitin ligase, is the most frequently mutated gene in hereditary Parkinson’s disease. Functional alteration of parkin leads to impairment of the ubiquitin-proteasome system, resulting in the accumulation of misfolded or aggregated proteins accountable for the neurodegenerative process. The identification of proteins differentially expressed revealed that resveratrol treatment can act on deregulated specific biological process and molecular function such as cellular redox balance and protein homeostasis. In particular, resveratrol was highly effective at restoring the heat-shock protein network and the protein degradation systems. Moreover, resveratrol treatment led to a significant increase in GSH level, reduction of GSSG/GSH ratio, and decrease of reduced free thiol content in patient cells compared to normal fibroblasts. Thus, our findings provide an experimental evidence of the beneficial effects by which resveratrol could contribute to preserve the cellular homeostasis in parkin-mutant fibroblasts.

  14. Resveratrol Modulation of Protein Expression in parkin-Mutant Human Skin Fibroblasts: A Proteomic Approach

    Science.gov (United States)

    Gaballo, Antonio; Signorile, Anna; Tanzarella, Paola; Pacelli, Consiglia; Di Paola, Marco

    2017-01-01

    In this study, we investigated by two-dimensional gel electrophoresis (2-DE) and mass spectrometry (MS) analysis the effects of resveratrol treatment on skin primary fibroblasts from a healthy subject and from a parkin-mutant early onset Parkinson's disease patient. Parkin, an E3 ubiquitin ligase, is the most frequently mutated gene in hereditary Parkinson's disease. Functional alteration of parkin leads to impairment of the ubiquitin-proteasome system, resulting in the accumulation of misfolded or aggregated proteins accountable for the neurodegenerative process. The identification of proteins differentially expressed revealed that resveratrol treatment can act on deregulated specific biological process and molecular function such as cellular redox balance and protein homeostasis. In particular, resveratrol was highly effective at restoring the heat-shock protein network and the protein degradation systems. Moreover, resveratrol treatment led to a significant increase in GSH level, reduction of GSSG/GSH ratio, and decrease of reduced free thiol content in patient cells compared to normal fibroblasts. Thus, our findings provide an experimental evidence of the beneficial effects by which resveratrol could contribute to preserve the cellular homeostasis in parkin-mutant fibroblasts. PMID:29138676

  15. CD117 expression in fibroblasts-like stromal cells indicates unfavorable clinical outcomes in ovarian carcinoma patients.

    Directory of Open Access Journals (Sweden)

    Ruixia Huang

    Full Text Available The stem cell factor (SCF receptor CD117 (c-kit, is widely used for identification of hematopoietic stem cells and cancer stem cells. Moreover, CD117 expression in carcinoma cells indicates a poor prognosis in a variety of cancers. However the potential expression in tumor microenvironment and the biological and clinical impact are currently not reported. The expression of CD117 was immunohistochemically evaluated in a serial of 242 epithelial ovarian cancer (EOC cases. Thirty-eight out of 242 cases were CD117 positive in fibroblast-like stromal cells and 22 cases were positive in EOC cells. Four cases were both positive in fibroblast-like stromal cells and EOC cells for CD117. CD117 expression in fibroblast-like stromal cells in ovarian carcinoma was closely linked to advanced FIGO stage, poor differentiation grade and histological subtype (p<0.05, and it was significantly associated with poor overall survival (OS and progression free survival (PFS (Kaplan-Meier analysis; p<0.05, log-rank test. CD117 expression in ovarian carcinoma cells was not associated with these clinicopathological variables. The CD117 positive fibroblast-like stromal cells were all positive for mesenchymal stem/stromal cell (MSC marker CD73 but negative for fibroblast markers fibroblast activation protein (FAP and α smooth muscle actin (α-SMA, indicating that the CD117+/CD73+ fibroblast-like stromal cells are a subtype of mesenchymal stem cells in tumor stroma, although further characterization of these cells are needed. It is concluded herewith that the presence of CD117+/CD73+ fibroblast-like stromal cells in ovarian carcinoma is an unfavorable clinical outcome indication.

  16. Transient Gene and miRNA Expression Profile Changes of Confluent Human Fibroblast Cells in Space

    Science.gov (United States)

    Zhang, Ye; Lu, Tao; Wong, Michael; Feiveson, Alan; Stodieck, Louis; Karouia, Fathi; Wang, Xiaoyu; Wu, Honglu

    2015-01-01

    Microgravity or an altered gravity environment from the static 1 gravitational constant has been shown to influence global gene expression patterns and protein levels in cultured cells. However, most of the reported studies conducted in space or using simulated microgravity on the ground have focused on the growth or differentiation of the cells. Whether non-dividing cultured cells will sense the presence of microgravity in space has not been specifically addressed. In an experiment conducted on the International Space Station, confluent human fibroblast cells were fixed after being cultured in space for 3 and 14 days for investigations of gene and miRNA (microRNA) expression profile changes in these cells. A fibroblast is a type of cell that synthesizes the extracellular matrix and collagen, the structural framework for tissues, and plays a critical role in wound healing and other functions. Results of the experiment showed that on Day 3, both the flown and ground cells were still proliferating slowly even though they were confluent, as measured by the expression of the protein Ki-67 positive cells, and the cells in space grew slightly faster. Gene and miRNA expression data indicated activation of NF(sub kappa)B (nuclear factor kappa-light-chain-enhancer of activated B cells) and other growth related pathways involving HGF and VEGF in the flown cells. On Day 14 when the cells were mostly non-dividing, the gene and miRNA expression profiles between the flight and ground samples were indistinguishable. Comparison of gene and miRNA expressions in the Day 3 samples in respect to Day 14 revealed that most of the changes observed on Day 3 were related to cell growth for both the flown and ground cells. Analysis of cytoskeleton changes by immunohistochemistry staining of the cells with antibodies for alpha-tubulin showed no difference between the flight and ground samples. Results of our study suggest that in true non-dividing human fibroblast cells, microgravity in

  17. Regulation of HGF and SDF-1 expression by oral fibroblasts--implications for invasion of oral cancer.

    Science.gov (United States)

    Daly, Aisling J; McIlreavey, Leanne; Irwin, Chris R

    2008-07-01

    Invasion and metastasis of oral squamous cell carcinoma (OSCC) is dependent on signals received from stromal fibroblasts present in the surrounding connective tissue. The aim of this study was to investigate the regulation of expression of two important signaling molecules--HGF and SDF-1--by both stromal fibroblasts and their 'activated' form, myofibroblasts, and to determine the role of these two factors in stimulating OSCC cell invasion in vitro. Fibroblasts and myofibroblasts produced similar levels of HGF and SDF-1. IL-1alpha and OSCC cell conditioned medium both stimulated HGF and SDF-1 expression, while TGF-beta(1) inhibited production of each factor. Myofibroblast-derived conditioned medium stimulated OSCC cell invasion through matrigel. Blocking antibodies to both HGF and SDF-1 reduced the level of invasion. In fibroblast-free organotypic raft cultures, addition of HGF and SDF-1 stimulated OSCC cell invasion into the underlying collagen gel, although the pattern of invasion differed from that induced by fibroblasts. Fibroblast-derived HGF and SDF-1 appear to play central roles in the reciprocal interactions between OSCC cells and underlying stromal fibroblasts leading to the local invasion of oral cancer.

  18. Preparation of procyanidin B2 from apple pomace and its inhibitory effect on the expression of cyclooxygenase-2 in lipopolysaccharide-treated RAW264.7 macrophages

    Directory of Open Access Journals (Sweden)

    Huawei Zhang

    2011-06-01

    Full Text Available Dimeric procyanidin B2 (PB2 is one of phenolic compounds in apple pomace, an agro-industrial byproduct in apple juice processing. This work focused on purification of PB2 from apple pomace using sephadex column chromatography and its potential effect on lipopolysaccharide (LPS-induced inflammation using RAW264.7 macrophages. PB2 with the purity of 72.28 ± 1.85% was successfully afforded using resin and gel column chromatographic technique. Anti-inflammatory tests suggested that the expression of cyclooxygenase-2 (COX-2 in LPS-induced murine RAW264.7 macrophages was suppressed in a PB2 concentration-dependent manner. PB2 at no less than 50 μg·mL-1 could significantly suppress inflammation in the LPS-induced cells. Moreover, this suppressive effect was not correlated with PB2 pretreating. However, the COX-2 expression was not reduced in LPS pretreatment way followed by PB2 exposure, which suggested that PB2 has no repairing function. The results showed that high pure PB2 prepared from apple pomace has a remarkable anti-inflammatory property.

  19. MicroRNA Expression Profiles in Cultured Human Fibroblasts in Space

    Science.gov (United States)

    Wu, Honglu; Lu, Tao; Jeevarajan, John; Rohde, Larry; Zhang, Ye

    2014-01-01

    Microgravity, or an altered gravity environment from the static 1g, has been shown to influence global gene expression patterns and protein levels in living organisms. However, it is unclear how these changes in gene and protein expressions are related to each other or are related to other factors regulating such changes. A different class of RNA, the small non-coding microRNA (miRNA), can have a broad effect on gene expression networks by mainly inhibiting the translation process. Previously, we investigated changes in the expression of miRNA and related genes under simulated microgravity conditions on the ground using the NASA invented bioreactor. In comparison to static 1 g, simulated microgravity altered a number of miRNAs in human lymphoblastoid cells. Pathway analysis with the altered miRNAs and RNA expressions revealed differential involvement of cell communication and catalytic activity, as well as immune response signaling and NGF activation of NF-kB pathways under simulated microgravity condition. The network analysis also identified several projected networks with c- Rel, ETS1 and Ubiquitin C as key factors. In a flight experiment on the International Space Station (ISS), we will investigate the effects of actual spaceflight on miRNA expressions in nondividing human fibroblast cells in mostly G1 phase of the cell cycle. A fibroblast is a type of cell that synthesizes the extracellular matrix and collagen, the structural framework for tissues, and plays a critical role in wound healing and other functions. In addition to miRNA expressions, we will investigate the effects of spaceflight on the cellular response to DNA damages from bleomycin treatment.

  20. Expression and secretory profile of buffalo fetal fibroblasts and Wharton's jelly feeder layers.

    Science.gov (United States)

    Parmar, Mehtab S; Mishra, Smruti Ranjan; Somal, Anjali; Pandey, Sriti; Kumar, G Sai; Sarkar, Mihir; Chandra, Vikash; Sharma, G Taru

    2017-05-01

    The present study examined the comparative expression and secretory profile of vital signaling molecules in buffalo fetal fibroblasts (BFF) and Wharton's jelly (BWJ) feeder layers at different passages. Both feeder layers were expanded up to 8th passage. Signaling molecules viz. bone morphogenetic protein 4 (BMP4), fibroblast growth factor 2 (FGF2), leukemia inhibitory factor (LIF) and transforming growth factor beta 1 (TGFB1) and pluripotency-associated transcriptional factors (POU5F1, SOX2, NANOG, KLF4, MYC and FOXD3) were immunolocalized in the both feeder types. A clear variation in the expression pattern of key signaling molecules with passaging was registered in both feeders compared to primary culture (0 passage). The conditioned media (CM) was collected from different passages (2, 4, 6, 8) of both the feeder layers and was quantified using enzyme-linked immunosorbent assay (ELISA). Concomitant to expression profile, protein quantification also revealed differences in the concentration of signaling molecules at different time points. Conjointly, expression and secretory profile revealed that 2nd passage of BFF and 6th passage of BWJ exhibit optimal levels of key signaling molecules thus may be selected as best passages for embryonic stem cells (ESCs) propagation. Further, the effect of mitomycin-C (MMC) treatment on the expression profile of signaling molecules in the selected passages of BFF and BWJ revealed that MMC modulates the expression profile of these molecules. In conclusion, the results indicate that feeder layers vary in expression and secretory pattern of vital signaling molecules with passaging. Based on these findings, the appropriate feeder passages may be selected for the quality propagation of buffalo ESCs. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Differential gene expression in primary fibroblasts induced by proton and cobalt-60 beam irradiation

    DEFF Research Database (Denmark)

    Nielsen, Steffen; Bassler, Niels; Grzanka, Leszek

    2017-01-01

    profile: entrance, mid-SOBP and at the SOBP distal edge. Dose was delivered in three fractions × 3.5 Gy(RBE) (RBE 1.1). Cobalt-60 (Co-60) irradiation was used as reference. Real-time qPCR was performed to determine gene expression levels for 17 genes associated with inflammation response, fibrosis...... and angiogenesis. RESULTS: Differences in median gene expression levels were observed for multiple genes such as IL6, IL8 and CXCL12. Median IL6 expression was 30%, 24% and 47% lower in entrance, mid-SOBP and SOBP distal edge groups than in Co-60 irradiated cells. No genes were found to be oppositely regulated...... fibroblast cultures. Inflammatory factors were generally less extensively upregulated by proton irradiation compared with Co-60 photon irradiation. These effects may possibly influence the development of normal tissue damage in patients treated with proton beam therapy....

  2. Human Cementum Protein 1 induces expression of bone and cementum proteins by human gingival fibroblasts

    International Nuclear Information System (INIS)

    Carmona-Rodriguez, Bruno; Alvarez-Perez, Marco Antonio; Narayanan, A. Sampath; Zeichner-David, Margarita; Reyes-Gasga, Jose; Molina-Guarneros, Juan; Garcia-Hernandez, Ana Lilia; Suarez-Franco, Jose Luis; Chavarria, Ivet Gil; Villarreal-Ramirez, Eduardo; Arzate, Higinio

    2007-01-01

    We recently presented evidence showing that a human cementoblastoma-derived protein, named Cementum Protein 1 (CEMP1) may play a role as a local regulator of cementoblast differentiation and cementum-matrix mineralization. This protein was shown to be expressed by cementoblasts and progenitor cells localized in the periodontal ligament. In this study we demonstrate that transfection of CEMP1 into human gingival fibroblasts (HGF) induces mineralization and expression of bone and cementum-matrix proteins. The transfected HGF cells had higher alkaline phosphatase activity and proliferation rate and they expressed genes for alkaline phosphatase, bone sialoprotein, osteocalcin, osteopontin, the transcription factor Runx2/Cbfa1, and cementum attachment protein (CAP). They also produced biological-type hydroxyapatite. These findings indicate that the CEMP1 might participate in differentiation and mineralization of nonosteogenic cells, and that it might have a potential function in cementum and bone formation

  3. Recombinant Human Acidic Fibroblast Growth Factor (aFGF) Expressed in Nicotiana benthamiana Potentially Inhibits Skin Photoaging.

    Science.gov (United States)

    Ha, Jang-Ho; Kim, Ha-Neul; Moon, Ki-Beom; Jeon, Jae-Heung; Jung, Dai-Hyun; Kim, Su-Jung; Mason, Hugh S; Shin, Seo-Yeon; Kim, Hyun-Soon; Park, Kyung-Mok

    2017-07-01

    Responding to the need for recombinant acidic fibroblast growth factor in the pharmaceutical and cosmetic industries, we established a scalable expression system for recombinant human aFGF using transient and a DNA replicon vector expression in Nicotiana benthamiana . Recombinant human-acidic fibroblast growth factor was recovered following Agrobacterium infiltration of N. benthamiana . The optimal time point at which to harvest recombinant human acidic fibroblast growth factor expressing leaves was found to be 4 days post-infiltration, before necrosis was evident. Commassie-stained SDS-PAGE gels of His-tag column eluates, concentrated using a 10 000 molecular weight cut-off column, showed an intense band at the expected molecular weight for recombinant human acidic fibroblast growth factor. An immunoblot confirmed that this band was recombinant human acidic fibroblast growth factor. Up to 10 µg recombinant human-acidic fibroblast growth factor/g of fresh leaves were achieved by a simple affinity purification protocol using protein extract from the leaves of agroinfiltrated N. benthamiana . The purified recombinant human acidic fibroblast growth factor improved the survival rate of UVB-irradiated HaCaT and CCD-986sk cells approximately 89 and 81 %, respectively. N. benthamiana -derived recombinant human acidic fibroblast growth factor showed similar effects on skin cell proliferation and UVB protection compared to those of Escherichia coli -derived recombinant human acidic fibroblast growth factor. Additionally, N. benthamiana- derived recombinant human acidic fibroblast growth factor increased type 1 procollagen synthesis up to 30 % as well as reduced UVB-induced intracellular reactive oxygen species generation in fibroblast (CCD-986sk) cells.UVB is a well-known factor that causes various types of skin damage and premature aging. Therefore, the present study demonstrated that N. benthamiana -derived recombinant human acidic fibroblast growth factor

  4. The molecular mechanism of leptin secretion and expression induced by aristolochic acid in kidney fibroblast.

    Directory of Open Access Journals (Sweden)

    Tsung-Chieh Lin

    Full Text Available BACKGROUND: Leptin is a peptide hormone playing pivotal role in regulating food intake and energy expenditure. Growing evidence has suggested the pro-inflammatory and fibrogenic properties of leptin. In addition, patients with renal fibrosis have higher level of plasma leptin, which was due to the increased leptin production. Aristolochic acid (AA is a botanical toxin characterized to associate with the development of renal fibrosis including tubulointerstitial fibrosis. However, whether leptin is upregulated to participate in AA-induced kidney fibrosis remain completely unknown. METHODOLOGY/PRINCIPAL FINDINGS: In this study, leptin expression was increased by sublethal dose of AA in kidney fibroblast NRK49f determined by enzyme-linked immunosorbent assay and Western blot. Data from real-time reverse transcriptase-polymerase chain reaction revealed that leptin was upregulated by AA at transcriptional level. DNA binding activity of CCAAT enhancer binding protein α (C/EBP α, one of the transcription factors for leptin gene, was enhanced in DNA affinity precipitation assay and chromatin immunoprecipitation experiments. Knockdown of C/EBP α expression by small interfering RNA markedly reduced AA-induced leptin expression. Moreover, AA promoted Akt interaction with p-PDK1, and increased phosphorylated activation of Akt. Akt knockdown, and inhibition of Akt signaling by LY294002 and mTOR inhibitor rapamycin reduced leptin expression. Furthermore, treatment of LY294002 or rapamycin significantly suppressed AA-induced C/EBP α DNA-binding activity. These results suggest that Akt and C/EBP α activation were involved in AA-regulated leptin expression. CONCLUSIONS/SIGNIFICANCE: Our findings demonstrate the first that AA could induce secretion and expression of fibrogenic leptin in kidney fibroblasts, which reveal potential involvement of leptin in the progression of kidney fibrosis in aristolochic acid nephropathy.

  5. Expression and clinical significance of fibroblast growth factor 1 in gastric adenocarcinoma

    Directory of Open Access Journals (Sweden)

    Liu NQ

    2015-03-01

    Full Text Available Naiqing Liu,1,2,* Jingyu Zhang,2,* Shuxiang Sun,2 Liguang Yang,2 Zhongjin Zhou,2 Qinli Sun,2 Jun Niu11Department of General Surgery, Qilu Hospital Affiliated to Shandong University, Jinan, People’s Republic of China; 2Department of General Surgery, Yishui Central Hospital, Linyi, People’s Republic of China*These authors contributed equally to this workBackground: The clinical significance of fibroblast growth factor 1 (FGF1 has been revealed in several cancers, including ovarian cancer, breast cancer, and bladder cancer. However, the clinical significance of FGF1 in gastric adenocarcinoma has not been explored.Patients and methods: In our experiments, we systematically evaluated FGF1 expression in 178 cases of gastric adenocarcinoma with immunohistochemistry, and subsequently analyzed the correlation between FGF1 expression and clinicopathologic features. Moreover, FGF1 expression in tumor tissue and corresponding adjacent tissue was detected and compared by real-time polymerase chain reaction. The Kaplan–Meier method and the Cox-regression model were used with univariate and multivariate analysis, respectively, to evaluate the prognostic value of FGF1 in gastric adenocarcinoma.Results: Higher FGF1 expression rate is 56.7% (101/178 in gastric adenocarcinoma. FGF1 expression in gastric adenocarcinoma was significantly higher than adjacent tissue (P<0.0001. Expression of FGF1 is significantly associated with lymph node invasion (P<0.001, distant metastasis (P=0.013, and differentiation (P=0.015. Moreover, FGF1 overexpression was closely related to unfavorable overall survival rate (P=0.021, and can be identified to be an independent unfavorable prognostic factor (P=0.004.Conclusion: FGF1 is an independent prognostic factor, indicating that FGF1 could be a potential molecular drug target in gastric adenocarcinoma.Keywords: fibroblast growth factor 1, gastric adenocarcinoma, prognosis, biomarker, lymph node, gene fusion

  6. Analysis of FBN1 allele expression by dermal fibroblasts from Marfan syndrome patients

    Energy Technology Data Exchange (ETDEWEB)

    Putman, E.A.; Cao, S.N.; Milewicz, D.M. [Univ. of Texas Medical School, Houston, TX (United States)

    1994-09-01

    Screening for mutations in the FBN1 cDNA from Marfan patient cell strains has detected mutations in only 10-15% of patients. In an attempt to explain this poor detection rate, we examined FBN1 allele expression and fibrillin synthesis by 26 cell strains from Marfan patients. DNA from the patients and 10 controls was assessed for the presence of a polymorphic Rsa I restriction site in the 3{prime} untranslated region of the FBN1 gene. Twelve of 26 patient and 5 of 10 control DNAs were heterozygous. Fibroblast RNA from the heterozygous cell strains was reverse-transcribed and subsequently PCR amplified using a [{sup 32}P]-labelled primer, digested with Rsa I and analyzed. Although 3 samples showed no transcript from one allele by ethidium bromide staining, a Betagen scanner detected low levels (10-15%) of that allele. In addition, there was unequal expression of the two alleles in three other patients; for example, only 30% expression from one allele. The remaining patients and the controls had equal expression of each allele. Fibrillin protein synthesis by fibroblasts from these heterozygous patients was also examined. After a 30 minute pulse with [{sup 35}S]-cysteine, cell lysates were collected and proteins analyzed by SDS-PAGE. The amount of fibrillin produced relative to a reference protein was determined using a Betagen scanner. Fibrillin protein synthesis was reduced in 2 of the 3 patients with very low RNA production from one of the FBN1 alleles. All other Marfan and control cell strains showed normal amounts of fibrillin synthesized. The low expression levels from one allele may contribute to, but not fully account for, the low detection rate of FBN1 mutations. Interestingly, protein synthesis levels were not affected in 4 of 6 cell strains demonstrating low levels of RNA expression.

  7. Changes in p53 expression in mouse fibroblasts can modify motility and extracellular matrix organization.

    Science.gov (United States)

    Alexandrova, A; Ivanov, A; Chumakov, P; Kopnin, B; Vasiliev, J

    2000-11-23

    Effects of p53 expression on cell morphology and motility were studied using the derivatives of p53-null 10(1) mouse fibroblasts with tetracycline-regulated expression of exogenous human p53. Induction of p53 expression was accompanied by significant decrease in extracellular matrix (fibronectin) and reduction of matrix fibrils, diminution of the number and size of focal contacts, decrease of cell areas, establishment of more elongated cell shape and alterations of actin cytoskeleton (actin bundles became thinner, their number and size decreased). Expression of His175 and Gln22/ Ser23 p53 mutants caused no such effects. To study the influence of p53 expression on cell motility we used wound technique and videomicroscopy observation of single living cells. It was found that induction of p53 expression led to increase of lamellar activity of cell edge. However, in spite of enhanced lamellar activity p53-expressing cells migrated to shorter distance and filled the narrow wound in longer time as compared with their p53-null counterparts. Possible mechanisms of the influence of p53 expression on cell morphology and motility are discussed.

  8. Correlation of beta-catenin localization with cyclooxygenase-2 expression and CpG island methylator phenotype (CIMP) in colorectal cancer.

    Science.gov (United States)

    Kawasaki, Takako; Nosho, Katsuhiko; Ohnishi, Mutsuko; Suemoto, Yuko; Kirkner, Gregory J; Dehari, Reiko; Meyerhardt, Jeffrey A; Fuchs, Charles S; Ogino, Shuji

    2007-07-01

    The WNT/beta-catenin (CTNNB1) pathway is commonly activated in the carcinogenic process. Cross-talks between the WNT and cyclooxygenase-2 (COX-2 or PTGS2)/prostaglandin pathways have been suggested. The relationship between beta-catenin activation and microsatellite instability (MSI) in colorectal cancer has been controversial. The CpG island methylator phenotype (CIMP or CIMP-high) with widespread promoter methylation is a distinct epigenetic phenotype in colorectal cancer, which is associated with MSI-high. However, no study has examined the relationship between beta-catenin activation and CIMP status. Using 832 population-based colorectal cancer specimens, we assessed beta-catenin localization by immunohistochemistry. We quantified DNA methylation in eight CIMP-specific promoters [CACNA1G, CDKN2A(p16), CRABP1, IGF2, MLH1, NEUROG1, RUNX3, and SOCS1] by real-time polymerase chain reaction (MethyLight). MSI-high, CIMP-high, and BRAF mutation were associated inversely with cytoplasmic and nuclear beta-catenin expressions (i.e., beta-catenin activation) and associated positively with membrane expression. The inverse relation between beta-catenin activation and CIMP was independent of MSI. COX-2 overexpression correlated with cytoplasmic beta-catenin expression (even after tumors were stratified by CIMP status), but did not correlate significantly with nuclear or membrane expression. In conclusion, beta-catenin activation is inversely associated with CIMP-high independent of MSI status. Cytoplasmic beta-catenin is associated with COX-2 overexpression, supporting the role of cytoplasmic beta-catenin in stabilizing PTGS2 (COX-2) mRNA.

  9. Correlation of β-Catenin Localization with Cyclooxygenase-2 Expression and CpG Island Methylator Phenotype (CIMP in Colorectal Cancer

    Directory of Open Access Journals (Sweden)

    Takako Kawasaki

    2007-07-01

    Full Text Available The WNT/β-catenin (CTNNB1 pathway is commonly activated in the carcinogenic process. Cross-talks between the WNT and cyclooxygenase-2 (COX-2 or PTGS2/prostaglandin pathways have been suggested. The relationship between (3-catenin activation and microsatellite instability (MSI in colorectal cancer has been controversial. The CpG island methylator phenotype (CIMP or CIMP-high with widespread promoter methylation is a distinct epigenetic phenotype in colorectal cancer, which is associated with MSI-high. However, no study has examined the relationship between (β-catenin activation and CIMP status. Using 832 population-based colorectal cancer specimens, we assessed (3-catenin localization by immunohistochemistry. We quantified DNA methylation in eight CIMP-specific promoters [CACNA1G, CDKN2A(p16, CRABP1, IGF2, MLH1, NEUROG1, RUNX3, and SOCS1] by real-time polymerase chain reaction (MethyLight. MSI-high, CIMP-high, and BRAF mutation were associated inversely with cytoplasmic and nuclear (β-catenin expressions (i.e., β-catenin activation and associated positively with membrane expression. The inverse relation between (β-catenin activation and CIMP was independent of MSI. COX-2 overexpression correlated with cytoplasmic (β-catenin expression (even after tumors were stratified by CIMP status, but did not correlate significantly with nuclear or membrane expression. In conclusion, β-catenin activation is inversely associated with CIMP-high independent of MSI status. Cytoplasmic β-catenin is associated with COX-2 overexpression, supporting the role of cytoplasmic β-catenin in stabilizing PTGS2(COX-2 mRNA.

  10. Regulation of cyclooxygenase-2 expression by cAMP response element and mRNA stability in a human airway epithelial cell line exposed to zinc

    Science.gov (United States)

    Exposure to zinc-laden particulate matter in ambient and occupational settings has been associated with proinflammatory responses in the lung. Cyclooxygenase 2-derived eicosanoids are important modulators of airway inflammation. In this study, we characterized the transcriptional...

  11. Egr-1 Upregulates Siva-1 Expression and Induces Cardiac Fibroblast Apoptosis

    Directory of Open Access Journals (Sweden)

    Karin Zins

    2014-01-01

    Full Text Available The early growth response transcription factor Egr-1 controls cell specific responses to proliferation, differentiation and apoptosis. Expression of Egr-1 and downstream transcription is closely controlled and cell specific upregulation induced by processes such as hypoxia and ischemia has been previously linked to multiple aspects of cardiovascular injury. In this study, we showed constitutive expression of Egr-1 in cultured human ventricular cardiac fibroblasts, used adenoviral mediated gene transfer to study the effects of continuous Egr-1 overexpression and studied downstream transcription by Western blotting, immunohistochemistry and siRNA transfection. Apoptosis was assessed by fluorescence microscopy and flow cytometry in the presence of caspase inhibitors. Overexpression of Egr-1 directly induced apoptosis associated with caspase activation in human cardiac fibroblast cultures in vitro assessed by fluorescence microscopy and flow cytometry. Apoptotic induction was associated with a caspase activation associated loss of mitochondrial membrane potential and transient downstream transcriptional up-regulation of the pro-apoptotic gene product Siva-1. Suppression of Siva-1 induction by siRNA partially reversed Egr-1 mediated loss of cell viability. These findings suggest a previously unknown role for Egr-1 and transcriptional regulation of Siva-1 in the control of cardiac accessory cell death.

  12. Rare pneumoconiosis induced by long-term amorphous silica exposure: the histological characteristics and expression of cyclooxygenase-2 as an antifibrogenic mediator in macrophages.

    Science.gov (United States)

    Kumasaka, Toshio; Akaike, Yasushi; Nakamura, Osamu; Yamazaki, Kazuma; Moriyama, Hiroshi; Takemura, Tamiko

    2011-11-01

    Pneumoconiosis induced by non-crystalline silica is considered rare, although silicosis resulting from contact with crystalline silica is a well-known hazard associated with progressive pulmonary fibrosis. Here we describe a patient with pneumoconiosis induced by diatomaceous earth composed of amorphous silica detected by two-dimensional imaging of chemical elements. The histology revealed that the disease was characterized by a granulomatous reaction in the lung. A large number of macrophages laden with yellow and black pigments accumulated in alveolar spaces and were incorporated into the interstitial sites. Bronchiolar walls were destroyed by palisade macrophages, suggesting airflow obstruction. Packed macrophages adhering to and covering the denuded interstitium indicated that macrophages might be incorporated into pulmonary interstitium in this fashion. Immunohistochemistry showed that cyclooxygenase-2, an antifibrogenic mediator, was intensely expressed in the macrophages compared with macrophages in control lungs. No birefringent material was found in the tissues. When two-dimensional analysis of chemical elements was performed using an electron probe microanalyzer with a wavelength-dispersive spectrometer, the resultant fine mapping of silicon and oxygen on the tissue indicated that the pigments phagocytosed by macrophages corresponded to amorphous silica. In conclusion, two-dimensional analysis of elements is very useful for pathologists in correlating the presence of chemical elements with histological changes. © 2011 The Authors. Pathology International © 2011 Japanese Society of Pathology and Blackwell Publishing Asia Pty Ltd.

  13. Differential gene expression in human fibroblasts after alpha-particle emitter (211)At compared with (60)Co irradiation

    DEFF Research Database (Denmark)

    Danielsson, Anna; Claesson, Kristina; Parris, Toshima Z

    2013-01-01

    trastuzumab monoclonal antibody (0.25, 0.5, and 1 Gy) and (60)Co (1, 2, and 3 Gy). Results: We report gene expression profiles that distinguish the effect different radiation qualities and absorbed doses have on cellular functions in human fibroblasts. In addition, we identified commonly expressed transcripts...

  14. A high-fat diet generates alterations in nuclear receptor expression: prevention by vitamin A and links with cyclooxygenase-2 and beta-catenin.

    Science.gov (United States)

    Delage, Barbara; Bairras, Céline; Buaud, Benjamin; Pallet, Véronique; Cassand, Pierrette

    2005-10-10

    Epidemiologic studies suggest that intake of high energy from fat, inducing overweight, increases the risk of cancer development and promotes colon carcinogenesis. It is therefore important to understand which parameters are affected early on by a high-fat diet in order to devise and improve protective nutritional strategies. We investigated the effect of high energy/fat intake on colon mucosa of male Wistar rats induced by a single 1,2-dimethylhydrazine (DMH) injection. Aberrant crypt foci (ACF) were numbered and modifications in cyclooxygenase-2 (COX-2) and beta-catenin levels assessed. Peroxisome proliferator- and retinoic acid-activated receptors (PPAR and RAR, RXR) are key transcription factors regulating gene expression in response to nutrient-activated signals. A short-term study was designed to evaluate whether alterations in mRNA expression of nuclear receptors can be detected at the beginning of the weight gain phase induced by an appetizing hyperlipidic diet (HLD). HLD consumption induced early downregulation of PPARgamma (-33.1%) and RARbeta (-53.1%) mRNA expression concomitant with an increase in levels of COX-2 (+45.5%) and beta-catenin (+84.56%) and in the number of ACF (191.56 +/- 88.60 vs. 21.14 +/- 11.64, p nuclear receptors. Moreover, the use HLD rich in retinyl esters or supplemented with all-trans retinoic acid led to a reduction in the number of ACF. Vitamin A also prevented HLD-induced alterations and the increase in levels of COX-2 and beta-catenin. The present observations show a protective role for vitamin A against disturbances associated with HLD exposure in induced colon carcinogenesis.

  15. Aryl hydrocarbon receptor-dependent retention of nuclear HuR suppresses cigarette smoke-induced cyclooxygenase-2 expression independent of DNA-binding.

    Science.gov (United States)

    Zago, Michela; Sheridan, Jared A; Nair, Parameswaran; Rico de Souza, Angela; Gallouzi, Imed-Eddine; Rousseau, Simon; Di Marco, Sergio; Hamid, Qutayba; Eidelman, David H; Baglole, Carolyn J

    2013-01-01

    The aryl hydrocarbon receptor (AhR), a ligand-activated transcription factor that responds to man-made environmental toxicants, has emerged as an endogenous regulator of cyclooxygenase-2 (Cox-2) by a mechanism that is poorly understood. In this study, we first used AhR-deficient (AhR(-/-) ) primary pulmonary cells, together with pharmacological tools to inhibit new RNA synthesis, to show that the AhR is a prominent factor in the destabilization of Cox-2 mRNA. The destabilization of Cox-2 mRNA and subsequent suppression of cigarette smoke-induced COX-2 protein expression by the AhR was independent of its ability to bind the dioxin response element (DRE), thereby differentiating the DRE-driven toxicological AhR pathway from its anti-inflammatory abilities. We further describe that the AhR destabilizes Cox-2 mRNA by sequestering HuR within the nucleus. The role of HuR in AhR stabilization of Cox-2 mRNA was confirmed by knockdown of HuR, which resulted in rapid Cox-2 mRNA degradation. Finally, in the lungs of AhR(-/-) mice exposed to cigarette smoke, there was little Cox-2 mRNA despite robust COX-2 protein expression, a finding that correlates with almost exclusive cytoplasmic HuR within the lungs of AhR(-/-) mice. Therefore, we propose that the AhR plays an important role in suppressing the expression of inflammatory proteins, a function that extends beyond the ability of the AhR to respond to man-made toxicants. These findings open the possibility that a DRE-independent AhR pathway may be exploited therapeutically as an anti-inflammatory target.

  16. The NF-κB family member RelB regulates microRNA miR-146a to suppress cigarette smoke-induced COX-2 protein expression in lung fibroblasts.

    Science.gov (United States)

    Zago, Michela; Rico de Souza, Angela; Hecht, Emelia; Rousseau, Simon; Hamid, Qutayba; Eidelman, David H; Baglole, Carolyn J

    2014-04-21

    Diseases due to cigarette smoke exposure, including chronic obstructive pulmonary disease (COPD) and lung cancer, are associated with chronic inflammation typified by the increased expression of cyclooxygenase-2 (COX-2) protein. RelB is an NF-κB family member that suppresses cigarette smoke induction of COX-2 through an unknown mechanism. The ability of RelB to regulate COX-2 expression may be via miR-146a, a miRNA that attenuates COX-2 in lung fibroblasts. In this study we tested whether RelB attenuation of cigarette smoke-induced COX-2 protein is due to miR-146a. Utilizing pulmonary fibroblasts deficient in RelB expression, together with siRNA knock-down of RelB, we show the essential role of RelB in diminishing smoke-induced COX-2 protein expression despite robust activation of the canonical NF-κB pathway and subsequent induction of Cox-2 mRNA. RelB did not regulate COX-2 protein expression at the level of mRNA stability. Basal levels of miR-146a were significantly lower in Relb-deficient cells and cigarette smoke increased miR-146a expression only in Relb-expressing cells. Inhibition of miR-146a had no effects on Relb expression or induction of Cox-2 mRNA by cigarette smoke but significantly increased COX-2 protein. These data highlight the potential of a RelB-miR-146a axis as a novel regulatory pathway that attenuates inflammation in response to respiratory toxicants. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  17. Cyclooxygenase-2 Pathway Correlates with VEGF Expression in Head and Neck Cancer. Implications for Tumor Angiogenesis and Metastasis

    Directory of Open Access Journals (Sweden)

    Oreste Gallo

    2001-01-01

    Full Text Available We evaluated the role of COX-2 pathway in 35 head and neck cancers (HNCs by analyzing COX-2 expression and prostaglandin E2 (PGE2 production in relation to tumor angiogenesis and lymph node metastasis. COX-2 activity was also correlated to vascular endothelial growth factor (VEGF mRNA and protein expression. COX-2 mRNA and protein expression was higher in tumor samples than in normal mucosa. PGE2 levels were higher in the tumor front zone in comparison with tumor core and normal mucosa (P<0001. Specimens from patients with lymph node metastasis exhibited higher COX-2 protein expression (P=.0074, PGEZ levels (P=.0011 and microvessel density (P<.0001 than specimens from patients without metastasis. A significant correlation between COX-2 and tumor vascularization (rs=0.450, P=.007 as well as between COX-2 and microvessel density with VEGF expression in tumor tissues was found (rs=0.450, P=.007; rs=0.620, P=.0001, respectively. The induction of COX-2 mRNA and PGE2 synthesis by EGF and Escherichia coli lipopolysaccharide (LPS in A-431 and SCC-9 cell lines, resulted in an increase in VEGF mRNA and protein production. Indomethacin and celecoxib reversed the EGF- and LPS-dependent COX-2, VEGF, and PGE2 increases. This study suggests a central role of COX-2 pathway in HNC angiogenesis by modulating VEGF production and indicates that COX-2 inhibitors may be useful in HNC treatment.

  18. Thy-1 attenuates TNF-alpha-activated gene expression in mouse embryonic fibroblasts via Src family kinase.

    Directory of Open Access Journals (Sweden)

    Bin Shan

    Full Text Available Heterogeneous surface expression of Thy-1 in fibroblasts modulates inflammation and may thereby modulate injury and repair. As a paradigm, patients with idiopathic pulmonary fibrosis, a disease with pathologic features of chronic inflammation, demonstrate an absence of Thy-1 immunoreactivity within areas of fibrotic activity (fibroblast foci in contrast to the predominant Thy-1 expressing fibroblasts in the normal lung. Likewise, Thy-1 deficient mice display more severe lung fibrosis in response to an inflammatory injury than wildtype littermates. We investigated the role of Thy-1 in the response of fibroblasts to the pro-inflammatory cytokine TNF-alpha. Our study demonstrates distinct profiles of TNF-alpha-activated gene expression in Thy-1 positive (Thy-1+ and negative (Thy-1- subsets of mouse embryonic fibroblasts (MEF. TNF-alpha induced a robust activation of MMP-9, ICAM-1, and the IL-8 promoter driven reporter in Thy-1- MEFs, in contrast to only a modest increase in Thy-1+ counterparts. Consistently, ectopic expression of Thy-1 in Thy-1- MEFs significantly attenuated TNF-alpha-activated gene expression. Mechanistically, TNF-alpha activated Src family kinase (SFK only in Thy-1- MEFs. Blockade of SFK activation abrogated TNF-alpha-activated gene expression in Thy-1- MEFs, whereas restoration of SFK activation rescued the TNF-alpha response in Thy-1+ MEFs. Our findings suggest that Thy-1 down-regulates TNF-alpha-activated gene expression via interfering with SFK- and NF-kappaB-mediated transactivation. The current study provides a novel mechanistic insight to the distinct roles of fibroblast Thy-1 subsets in inflammation.

  19. Endogenous and ectopic expression of telomere regulating genes in chicken embryonic fibroblasts

    International Nuclear Information System (INIS)

    Michailidis, Georgios; Saretzki, Gabriele; Hall, Judith

    2005-01-01

    In this study, we compared the endogenous expression of genes encoding telomere regulating proteins in cultured chicken embryonic fibroblasts (CEFs) and 10-day-old chicken embryos. CEFs maintained in vitro senesced and senescence was accompanied by reduced telomere length, telomerase activity, and expression of the chicken (c) TRF1 gene. There was no change in TRF2 gene expression although the major TRF2 transcript identified in 10-day-old chicken embryos encoded a truncated TRF2 protein (TRF2'), containing an N-terminal dimerisation domain but lacking a myb-related DNA binding domain and nuclear localisation signal. Senescence of the CEFs in vitro was associated with the loss of the TRF2' transcript, indicative of a novel function for the encoded protein. Senescence was also coupled with decreased expression of RAD51, but increased RAD52 expression. These data support that RAD51 independent recombination mechanisms do not function in vitro to maintain chicken telomeres. To attempt to rescue the CEFs from replicative senescence, we stably transfected passage 3 CEFs with the human telomerase reverse transcriptase (hTERT) catalytic subunit. While hTERT expression was detected in the stable transfectants neither telomerase activity nor the stabilisation of telomere length was observed, and the transfectant cells senesced at the same passage number as the untransfected cells. These data indicate that the human TERT is incompatible with the avian telomere maintenance apparatus and suggest the functioning of a species specific telomere system in the avian

  20. Expression and role of fibroblast activation protein-alpha in microinvasive breast carcinoma

    Directory of Open Access Journals (Sweden)

    Hua Xing

    2011-11-01

    Full Text Available Abstract Background Diagnosis of ductal carcinoma in situ (DCIS in breast cancer cases is challenging for pathologist due to a variety of in situ patterns and artefacts, which could be misinterpreted as stromal invasion. Microinvasion is detected by the presence of cytologically malignant cells outside the confines of the basement membrane and myoepithelium. When malignant cells invade the stroma, there is tissue remodeling induced by perturbed stromal-epithelial interactions. Carcinoma-associated fibroblasts (CAFs are main cells in the microenvironment of the remodeled tumor-host interface. They are characterized by the expression of the specific fibroblast activation protein-alpha (FAP-α, and differ from that of normal fibroblasts exhibiting an immunophenotype of CD34. We hypothesized that staining for FAP-α may be helpful in determining whether DCIS has microinvasion. Methods 349 excised breast specimens were immunostained for smooth muscle actin SMA, CD34, FAP-α, and Calponin. Study material was divided into 5 groups: group 1: normal mammary tissues of healthy women after plastic surgery; group 2: usual ductal hyperplasia (UDH; group 3: DCIS without microinvasion on H & E stain; group 4: DCIS with microinvasion on H & E stain (DCIS-MI, and group 5: invasive ductal carcinoma (IDC. A comparative evaluation of the four immunostains was conducted. Results Our results demonstrated that using FAP-α and Calponin adjunctively improved the sensitivity of pathological diagnosis of DCIS-MI by 11.29%, whereas the adjunctive use of FAP-α and Calponin improved the sensitivity of pathological diagnosis of DCIS by 13.6%. Conclusions This study provides the first evidence that immunostaining with FAP-α and Calponin can serve as a novel marker for pathologically diagnosing whether DCIS has microinvasion.

  1. Regulation of p53, nuclear factor κB and cyclooxygenase-2 expression by bromelain through targeting mitogen-activated protein kinase pathway in mouse skin

    International Nuclear Information System (INIS)

    Kalra, Neetu; Bhui, Kulpreet; Roy, Preeti; Srivastava, Smita; George, Jasmine; Prasad, Sahdeo; Shukla, Yogeshwer

    2008-01-01

    Bromelain is a pharmacologically active compound, present in stems and immature fruits of pineapples (Ananas cosmosus), which has been shown to have anti-edematous, anti-inflammatory, anti-thrombotic and anti-metastatic properties. In the present study, antitumorigenic activity of bromelain was recorded in 7,12-dimethylbenz(a)anthracene (DMBA)-initiated and 12-O-tetradecanoylphorbol-13-acetate (TPA)-promoted 2-stage mouse skin model. Results showed that bromelain application delayed the onset of tumorigenesis and reduced the cumulative number of tumors, tumor volume and the average number of tumors/mouse. To establish a cause and effect relationship, we targeted the proteins involved in the cell death pathway. Bromelain treatment resulted in upregulation of p53 and Bax and subsequent activation of caspase 3 and caspase 9 with concomitant decrease in antiapoptotic protein Bcl-2 in mouse skin. Since persistent induction of cyclooxygenase-2 (Cox-2) is frequently implicated in tumorigenesis and is regulated by nuclear factor-kappa B (NF-κB), we also investigated the effect of bromelain on Cox-2 and NF-κB expression. Results showed that bromelain application significantly inhibited Cox-2 and inactivated NF-κB by blocking phosphorylation and subsequent degradation of IκBα. In addition, bromelain treatment attenuated DMBA-TPA-induced phosphorylation of extracellular signal-regulated protein kinase (ERK1/2), mitogen-activated protein kinase (MAPK) and Akt. Taken together, we conclude that bromelain induces apoptosis-related proteins along with inhibition of NF-κB-driven Cox-2 expression by blocking the MAPK and Akt/protein kinase B signaling in DMBA-TPA-induced mouse skin tumors, which may account for its anti-tumorigenic effects

  2. Inhibition of lipopolysaccharide-induced inducible nitric oxide synthase and cyclooxygenase-2 expression by xanthanolides isolated from Xanthium strumarium.

    Science.gov (United States)

    Yoon, Jeong Hoon; Lim, Hyo Jin; Lee, Hwa Jin; Kim, Hee-Doo; Jeon, Raok; Ryu, Jae-Ha

    2008-03-15

    Three sesquiterpenoids, xanthatin (1), xanthinosin (2), and 4-oxo-bedfordia acid (3) were isolated from Xanthium strumarium as inhibitors of nitric oxide synthesis in activated microglia (IC(50) values: 0.47, 11.2, 136.5 microM, respectively). Compounds 1 and 2 suppressed the expression of iNOS and COX-2 and the activity of NF-kappaB through the inhibition of LPS-induced I-kappaB-alpha degradation in microglia.

  3. Myoblast sensitivity and fibroblast insensitivity to osteogenic conversion by BMP-2 correlates with the expression of Bmpr-1a

    Directory of Open Access Journals (Sweden)

    North Kathryn N

    2009-05-01

    Full Text Available Abstract Background Osteoblasts are considered to primarily arise from osseous progenitors within the periosteum or bone marrow. We have speculated that cells from local soft tissues may also take on an osteogenic phenotype. Myoblasts are known to adopt a bone gene program upon treatment with the osteogenic bone morphogenetic proteins (BMP-2,-4,-6,-7,-9, but their osteogenic capacity relative to other progenitor types is unclear. We further hypothesized that the sensitivity of cells to BMP-2 would correlate with BMP receptor expression. Methods We directly compared the BMP-2 sensitivity of myoblastic murine cell lines and primary cells with osteoprogenitors from osseous tissues and fibroblasts. Fibroblasts forced to undergo myogenic conversion by transduction with a MyoD-expressing lentiviral vector (LV-MyoD were also examined. Outcome measures included alkaline phosphatase expression, matrix mineralization, and expression of osteogenic genes (alkaline phosphatase, osteocalcin and bone morphogenetic protein receptor-1A as measured by quantitative PCR. Results BMP-2 induced a rapid and robust osteogenic response in myoblasts and osteoprogenitors, but not in fibroblasts. Myoblasts and osteoprogenitors grown in osteogenic media rapidly upregulated Bmpr-1a expression. Chronic BMP-2 treatment resulted in peak Bmpr-1a expression at day 6 before declining, suggestive of a negative feedback mechanism. In contrast, fibroblasts expressed low levels of Bmpr-1a that was only weakly up-regulated by BMP-2 treatment. Bioinformatics analysis confirmed the presence of myogenic responsive elements in the proximal promoter region of human and murine BMPR-1A/Bmpr-1a. Forced myogenic gene expression in fibroblasts was associated with a significant increase in Bmpr-1a expression and a synergistic increase in the osteogenic response to BMP-2. Conclusion These data demonstrate the osteogenic sensitivity of muscle progenitors and provide a mechanistic insight into the

  4. Establishment of a pig fibroblast-derived cell line for locus-directed transgene expression in cell cultures and blastocysts

    DEFF Research Database (Denmark)

    Jakobsen, Jannik E; Li, Juan; Moldt, Brian

    2011-01-01

    We report the establishment of a spontaneously immortalized pig cell line designated Pig Flip-in Visualize (PFV) for locus-directed transgene expression in pig cells and blastocysts. The PFV cell line was isolated from pig ear fibroblasts transfected with a Sleeping Beauty DNA transposon-based do......We report the establishment of a spontaneously immortalized pig cell line designated Pig Flip-in Visualize (PFV) for locus-directed transgene expression in pig cells and blastocysts. The PFV cell line was isolated from pig ear fibroblasts transfected with a Sleeping Beauty DNA transposon...

  5. Deletion of Protein Tyrosine Phosphatase 1B (PTP1B Enhances Endothelial Cyclooxygenase 2 Expression and Protects Mice from Type 1 Diabetes-Induced Endothelial Dysfunction.

    Directory of Open Access Journals (Sweden)

    David J Herren

    Full Text Available Protein tyrosine phosphatase 1B (PTP1B dephosphorylates receptors tyrosine kinase and acts as a molecular brake on insulin signaling pathway. Conditions of metabolic dysfunction increase PTP1B, when deletion of PTP1B protects against metabolic disorders by increasing insulin signaling. Although vascular insulin signaling contributes to the control of glucose disposal, little is known regarding the direct role of PTP1B in the control of endothelial function. We hypothesized that metabolic dysfunctions increase PTP1B expression in endothelial cells and that PTP1B deletion prevents endothelial dysfunction in situation of diminished insulin secretion. Type I diabetes (T1DM was induced in wild-type (WT and PTP1B-deficient mice (KO with streptozotocin (STZ injection. After 28 days of T1DM, KO mice exhibited a similar reduction in body weight and plasma insulin levels and a comparable increase in glycemia (WT: 384 ± 20 vs. Ko: 432 ± 29 mg/dL, cholesterol and triglycerides, as WT mice. T1DM increased PTP1B expression and impaired endothelial NO-dependent relaxation, in mouse aorta. PTP1B deletion did not affect baseline endothelial function, but preserved endothelium-dependent relaxation, in T1DM mice. NO synthase inhibition with L-NAME abolished endothelial relaxation in control and T1DM WT mice, whereas L-NAME and the cyclooxygenases inhibitor indomethacin were required to abolish endothelium relaxation in T1DM KO mice. PTP1B deletion increased COX-2 expression and PGI2 levels, in mouse aorta and plasma respectively, in T1DM mice. In parallel, simulation of diabetic conditions increased PTP1B expression and knockdown of PTP1B increased COX-2 but not COX-1 expression, in primary human aortic endothelial cells. Taken together these data indicate that deletion of PTP1B protected endothelial function by compensating the reduction in NO bioavailability by increasing COX-2-mediated release of the vasodilator prostanoid PGI2, in T1DM mice.

  6. The shunt from the cyclooxygenase to lipoxygenase pathway in human osteoarthritic subchondral osteoblasts is linked with a variable expression of the 5-lipoxygenase-activating protein.

    Science.gov (United States)

    Maxis, Kelitha; Delalandre, Aline; Martel-Pelletier, Johanne; Pelletier, Jean-Pierre; Duval, Nicolas; Lajeunesse, Daniel

    2006-01-01

    Osteoarthritis (OA) is characterized by articular cartilage degradation and hypertrophic bone changes with osteophyte formation and abnormal bone remodeling. Two groups of OA patients were identified via the production of variable and opposite levels of prostaglandin E2 (PGE2) or leukotriene B4 (LTB4) by subchondral osteoblasts, PGE2 levels discriminating between low and high subgroups. We studied whether the expression of 5-lipoxygenase (5-LO) or 5-LO-activating protein (FLAP) is responsible for the shunt from prostaglandins to leukotrienes. FLAP mRNA levels varied in low and high OA groups compared with normal, whereas mRNA levels of 5-LO were similar in all osteoblasts. Selective inhibition of cyclooxygenase-2 (COX-2) with NS-398-stimulated FLAP expression in the high OA osteoblasts subgroup, whereas it was without effect in the low OA osteoblasts subgroup. The addition of PGE2 to the low OA osteoblasts subgroup decreased FLAP expression but failed to affect it in the high OA osteoblasts subgroup. LTB4 levels in OA osteoblasts were stimulated about twofold by 1,25-dihydroxyvitamin D3 (1,25(OH)2D3) plus transforming growth factor-beta (TGF-beta), a situation corresponding to their effect on FLAP mRNA levels. Treatments with 1,25(OH)2D3 and TGF-beta also modulated PGE2 production. TGF-beta stimulated PGE2 production in both OA osteoblast groups, whereas 1,25(OH)2D3 alone had a limited effect but decreased the effect of TGF-beta in the low OA osteoblasts subgroup. This modulation of PGE2 production was mirrored by the synthesis of COX-2. IL-18 levels were only slightly increased in a subgroup of OA osteoblasts compared with normal; however, no relationship was observed overall between IL-18 and PGE2 levels in normal and OA osteoblasts. These results suggest that the shunt from the production of PGE2 to LTB4 is through regulation of the expression of FLAP, not 5-LO, in OA osteoblasts. The expression of FLAP in OA osteoblasts is also modulated differently by 1,25(OH

  7. Vascular endothelial growth factor and basic fibroblast growth factor expression positively correlates with angiogenesis and peritumoural brain oedema in astrocytoma

    International Nuclear Information System (INIS)

    Jang, F.F.; Wei, W.

    2008-01-01

    Astrocytoma is the most malignant intracranial neoplasm and is characterized by high neovascularization and peritumoural brain oedema. Angiogenesis is a complicated process in oncogenesis regulated by the balance between angiogenic and antiangiogenic factors. The expression of two angiogenic growth factors, vascular endothelial growth factor and basic fibroblast growth factor were investigated using immunohistochemistry for astrocytoma from 82 patients and 11 normal human tissues. The expression of vascular endothelial growth factor and basic fibroblast growth factor positively correlate with the pathological grade of astrocytoma, microvessel density numbers and brain oedema, which may be responsible for the increased tumour neovascularization and peritumoural brain oedema. The results support the idea that inhibiting vascular endothelial growth factor and basic fibroblast growth factor are useful for the treatment of human astrocytoma and to improve patient's clinical outcomes and prognosis. (author)

  8. Regulation and inhibition of collagenase expression by long-wavelength ultraviolet radiation in cultured human skin fibroblasts

    International Nuclear Information System (INIS)

    Petersen, Marta; Hamilton, Tiffani; Haili Li

    1995-01-01

    The cellular mechanisms responsible for the connective tissue changes produced by chronic exposure to UV light are poorly understood. collagenase, a metalloproteinase, initiates degradation of types I and III collagen and thus plays a key role in the remodeling of dermal collagen. Collagenase synthesis by fibroblasts and keratinocytes involves the protein kinase C (PKC) second messenger system, and corticosteroids have been shown to suppress its synthesis at the level of gene transcription. Long-wavelength UV light (UVA, 320-400 nm) stimulates the synthesis of interstitial collagenase, as well as increasing PKC activity, in human skin fibroblasts in vitro. This study explores the regulation of collagenase expression by UVA in cultured human skin fibroblasts. Specifically, the time course, the effect of actinomycin D, an inhibitor of RNA synthesis, as well as the effect of PKC inhibitors and dexamethansone on expression of collagenase following UVA irradiation were examined. (Author)

  9. Transfer of an expression YAC into goat fetal fibroblasts by cell fusion for mammary gland bioreactor

    International Nuclear Information System (INIS)

    Zhang Xufeng; Wu Guoxiang; Chen, Jian-Quan; Zhang Aimin; Liu Siguo; Jiao Binghua; Cheng Guoxiang

    2005-01-01

    Yeast artificial chromosomes (YACs) as transgenes in transgenic animals are likely to ensure optimal expression levels. Microinjection of YACs is the exclusive technique used to produce YACs transgenic livestock so far. However, low efficiency and high cost are its critical restrictive factors. In this study, we presented a novel procedure to produce YACs transgenic livestock as mammary gland bioreactor. A targeting vector, containing the gene of interest-a human serum albumin minigene (intron 1, 2), yeast selectable marker (G418R), and mammalian cell resistance marker (neo r ), replaced the α-lactalbumin gene in a 210 kb human α-lactalbumin YAC by homogeneous recombination in yeasts. The chimeric YAC was introduced into goat fetal fibroblasts using polyethylene glycol-mediated spheroplast fusion. PCR and Southern analysis showed that intact YAC was integrated in the genome of resistant cells. Perhaps, it may offer a cell-based route by nuclear transfer to produce YACs transgenic livestock

  10. Expression of tenascin-C in a rat vocal fold injury model and its regulation of fibroblasts.

    Science.gov (United States)

    Li, Juan; Liu, Yiqiong; Wang, Yiming; Xu, Wen

    2018-03-23

    Tenascin-C (Tnc) is an extracellular matrix (ECM) glycoprotein that plays a vital role in wound healing and fibrotic disease. Tnc is highly upregulated soon after vocal fold injury, but its function in the vocal fold has not yet been defined. In this study, we investigated Tnc expression in a rat vocal fold injury model in vivo and its roles in fibroblasts in vitro. In vivo and in vitro. Tnc mRNA and protein expression levels were quantified on days 3, 7, 14, 28, and 56 after vocal fold injury in Sprague-Dawley rats. In vitro, immunocytochemistry, Western blot, and quantitative real-time polymerase chain reaction (qRT-PCR) analyses were performed in primary rat vocal fold fibroblasts following Tnc or transforming growth factor (TGF)-β1 stimulation to investigate the phenotypic effects. Tnc mRNA and protein expression was upregulated dramatically on days 3 and 7 after injury, and significant differences were observed by qRT-PCR (P vocal fold fibroblasts. Following incubation with Tnc for 72 hours, α-smooth muscle actin, collagen I, and fibronectin expression was significantly upregulated (P vocal fold fibroblast migration, transdifferentiation, and ECM protein synthesis in vitro. Tnc was induced by TGF-β1 in a SMAD3-dependent manner. Transient expression of Tnc is likely to promote regeneration, but its potential role in fibrosis requires further study. NA Laryngoscope, 2018. © 2018 The American Laryngological, Rhinological and Otological Society, Inc.

  11. Piper betle L. Modulates Senescence-Associated Genes Expression in Replicative Senescent Human Diploid Fibroblasts

    Directory of Open Access Journals (Sweden)

    Lina Wati Durani

    2017-01-01

    Full Text Available Piper betle (PB is a traditional medicine that is widely used to treat different diseases around Asian region. The leaf extracts contain various bioactive compounds, which were reported to have antidiabetic, antibacterial, anti-inflammatory, antioxidant, and anticancer effects. In this study, the effect of PB aqueous extracts on replicative senescent human diploid fibroblasts (HDFs was investigated by determining the expressions of senescence-associated genes using quantitative PCR. Our results showed that PB extracts at 0.4 mg/ml can improve cell proliferation of young (143%, presenescent (127.3%, and senescent (157.3% HDFs. Increased expressions of PRDX6, TP53, CDKN2A, PAK2, and MAPK14 were observed in senescent HDFs compared to young and/or presenescent HDFs. Treatment with PB extracts modulates the transcriptional profile changes in senescent HDFs. By contrast, expressions of SOD1 increased, whereas GPX1, PRDX6, TP53, CDKN2A, PAK2, and MAPK14 were decreased in PB-treated senescent HDFs compared to untreated senescent HDFs. In conclusion, this study indicates the modulation of PB extracts on senescence-associated genes expression of replicative senescent HDFs. Further studies warrant determining the mechanism of PB in modulating replicative senescence of HDFs through these signaling pathways.

  12. Piper betle L. Modulates Senescence-Associated Genes Expression in Replicative Senescent Human Diploid Fibroblasts.

    Science.gov (United States)

    Durani, Lina Wati; Khor, Shy Cian; Tan, Jen Kit; Chua, Kien Hui; Mohd Yusof, Yasmin Anum; Makpol, Suzana

    2017-01-01

    Piper betle (PB) is a traditional medicine that is widely used to treat different diseases around Asian region. The leaf extracts contain various bioactive compounds, which were reported to have antidiabetic, antibacterial, anti-inflammatory, antioxidant, and anticancer effects. In this study, the effect of PB aqueous extracts on replicative senescent human diploid fibroblasts (HDFs) was investigated by determining the expressions of senescence-associated genes using quantitative PCR. Our results showed that PB extracts at 0.4 mg/ml can improve cell proliferation of young (143%), presenescent (127.3%), and senescent (157.3%) HDFs. Increased expressions of PRDX6 , TP53 , CDKN2A , PAK2 , and MAPK14 were observed in senescent HDFs compared to young and/or presenescent HDFs. Treatment with PB extracts modulates the transcriptional profile changes in senescent HDFs. By contrast, expressions of SOD1 increased, whereas GPX1 , PRDX6 , TP53 , CDKN2A , PAK2 , and MAPK14 were decreased in PB-treated senescent HDFs compared to untreated senescent HDFs. In conclusion, this study indicates the modulation of PB extracts on senescence-associated genes expression of replicative senescent HDFs. Further studies warrant determining the mechanism of PB in modulating replicative senescence of HDFs through these signaling pathways.

  13. Caveolin-1 expression level in cancer associated fibroblasts predicts outcome in gastric cancer.

    Directory of Open Access Journals (Sweden)

    Xianda Zhao

    Full Text Available AIMS: Altered expression of epithelial or stromal caveolin-1 (Cav-1 is observed in various types of human cancers. However, the clinical significance of Cav-1 expression in gastric cancer (GC remains largely unknown. The present study aims to explore the clinicopathological significance and prognostic value of both tumor cells and cancer associated fibroblasts (CAFs Cav-1 in GC. METHODS AND RESULTS: Quantum dots immunofluorescence histochemistry was performed to examine the expression of Cav-1 in 20 cases of gastritis without intestinal metaplasia (IM, 20 cases of gastritis with IM and 286 cases of GC. Positive rates of epithelial Cav-1 in gastritis without IM, gastritis with IM and GC showed a decreasing trend (P = 0.012. Low expression of Cav-1 in CAFs but not in tumor cells was an independent predictor of poor prognosis in GC patients (P = 0.034 and 0.005 respectively in disease free survival and overall survival. Cav-1 level in tumor cells and CAFs showed no significant correlation with classic clinicopathological features. CONCLUSIONS: Loss of epithelial Cav-1 may promote malignant progression and low CAFs Cav-1 level herald worse outcome of GC patient, suggesting CAFs Cav-1 may be a candidate therapeutic target and a useful prognostic marker of GC.

  14. Different expressions of connexin 43 and 32 in the fibroblasts of human dental pulp.

    Science.gov (United States)

    Ibuki, N; Yamaoka, Y; Sawa, Y; Kawasaki, T; Yoshida, S

    2002-06-01

    The expression and localization of gap junctional proteins connexin (Cx) 26, 32, and 43 was examined in human dental pulp. Dental pulp tissues were obtained from human third molars immediately after extraction. Some pulp tissues were used for cell culture, and the rest for histological observations. Immunostaining for cultured dental pulp fibroblasts (DPFs) showed that Cx32 and 43 were expressed in human DPFs, and proteins corresponding to 27 (Cx32) and 43kDa (Cx43) were identified by Western blot analysis. Immunostaining for tissue sections showed that the expression of Cx32 and 43 was observed in the entire region of the pulp and further strong expression of Cx32 was established beneath the cell-rich zone. Considering the close relationship between Cx types and cell functions, the results indicate that DPFs beneath the cell-rich zone may have specific, Cx32-related functions. The cell rich zone is thought to contain progenitor odontoblasts that can be induced to differentiate into mature odontoblasts in response to wounding. Therefore, it may be hypothesized that DPFs just beneath the cell-rich zone produce proteins and induce odontoblast differentiation from the cells in the cell-rich zone.

  15. The Neurokinin-1 Receptor Contributes to the Early Phase of Lipopolysaccharide-Induced Fever via Stimulation of Peripheral Cyclooxygenase-2 Protein Expression in Mice

    Directory of Open Access Journals (Sweden)

    Eszter Pakai

    2018-02-01

    Full Text Available Neurokinin (NK signaling is involved in various inflammatory processes. A common manifestation of systemic inflammation is fever, which is usually induced in animal models with the administration of bacterial lipopolysaccharide (LPS. A role for the NK1 receptor was shown in LPS-induced fever, but the underlying mechanisms of how the NK1 receptor contributes to febrile response, especially in the early phase, have remained unknown. We administered LPS (120 µg/kg, intraperitoneally to mice with the Tacr1 gene, i.e., the gene encoding the NK1 receptor, either present (Tacr1+/+ or absent (Tacr1−/− and measured their thermoregulatory responses, serum cytokine levels, tissue cyclooxygenase-2 (COX-2 expression, and prostaglandin (PG E2 concentration. We found that the LPS-induced febrile response was attenuated in Tacr1−/− compared to their Tacr1+/+ littermates starting from 40 min postinfusion. The febrigenic effect of intracerebroventricularly administered PGE2 was not suppressed in the Tacr1−/− mice. Serum concentration of pyrogenic cytokines did not differ between Tacr1−/− and Tacr1+/+ at 40 min post-LPS infusion. Administration of LPS resulted in amplification of COX-2 mRNA expression in the lungs, liver, and brain of the mice, which was statistically indistinguishable between the genotypes. In contrast, the LPS-induced augmentation of COX-2 protein expression was attenuated in the lungs and tended to be suppressed in the liver of Tacr1−/− mice compared with Tacr1+/+ mice. The Tacr1+/+ mice responded to LPS with a significant surge of PGE2 production in the lungs, whereas Tacr1−/− mice did not. In conclusion, the NK1 receptor is necessary for normal fever genesis. Our results suggest that the NK1 receptor contributes to the early phase of LPS-induced fever by enhancing COX-2 protein expression in the periphery. These findings advance the understanding of the crosstalk between NK signaling and the “cytokine-COX-2

  16. Leptin deficiency-induced obesity exacerbates ultraviolet B radiation-induced cyclooxygenase-2 expression and cell survival signals in ultraviolet B-irradiated mouse skin

    International Nuclear Information System (INIS)

    Sharma, Som D.; Katiyar, Santosh K.

    2010-01-01

    Obesity has been implicated in several inflammatory diseases and in different types of cancer. Chronic inflammation induced by exposure to ultraviolet (UV) radiation has been implicated in various skin diseases, including melanoma and nonmelanoma skin cancers. As the relationship between obesity and susceptibility to UV radiation-caused inflammation is not clearly understood, we assessed the role of obesity on UVB-induced inflammation, and mediators of this inflammatory response, using the genetically obese (leptin-deficient) mouse model. Leptin-deficient obese (ob/ob) mice and wild-type counterparts (C57/BL6 mice) were exposed to UVB radiation (120 mJ/cm 2 ) on alternate days for 1 month. The mice were then euthanized and skin samples collected for analysis of biomarkers of inflammatory responses using immunohistochemistry, western blotting, ELISA and real-time PCR. Here, we report that the levels of inflammatory responses were higher in the UVB-exposed skin of the ob/ob obese mice than those in the UVB-exposed skin of the wild-type non-obese mice. The levels of UVB-induced cyclooxygenase-2 expression, prostaglandin-E 2 production, proinflammatory cytokines (i.e., tumor necrosis factor-α, interleukin-1β, interleukin-6), and proliferating cell nuclear antigen and cell survival signals (phosphatidylinositol-3-kinase and p-Akt-Ser 473 ) were higher in the skin of the ob/ob obese mice than the those in skin of their wild-type non-obese counterparts. Compared with the wild-type non-obese mice, the leptin-deficient obese mice also exhibited greater activation of NF-κB/p65 and fewer apoptotic cells in the UVB-irradiated skin. Our study suggests for the first time that obesity in mice is associated with greater susceptibility to UVB-induced inflammatory responses and, therefore, obesity may increase susceptibility to UVB-induced inflammation-associated skin diseases, including the risk of skin cancer.

  17. Quantitative assessment of fibroblast growth factor receptor 1 expression in neurons and glia

    Directory of Open Access Journals (Sweden)

    Lisha Choubey

    2017-04-01

    Full Text Available Background Fibroblast growth factors (FGFs and their receptors (FGFRs have numerous functions in the developing and adult central nervous system (CNS. For example, the FGFR1 receptor is important for proliferation and fate specification of radial glial cells in the cortex and hippocampus, oligodendrocyte proliferation and regeneration, midline glia morphology and soma translocation, Bergmann glia morphology, and cerebellar morphogenesis. In addition, FGFR1 signaling in astrocytes is required for postnatal maturation of interneurons expressing parvalbumin (PV. FGFR1 is implicated in synapse formation in the hippocampus, and alterations in the expression of Fgfr1 and its ligand, Fgf2 accompany major depression. Understanding which cell types express Fgfr1 during development may elucidate its roles in normal development of the brain as well as illuminate possible causes of certain neuropsychiatric disorders. Methods Here, we used a BAC transgenic reporter line to trace Fgfr1 expression in the developing postnatal murine CNS. The specific transgenic line employed was created by the GENSAT project, tgFGFR1-EGFPGP338Gsat, and includes a gene encoding enhanced green fluorescent protein (EGFP under the regulation of the Fgfr1 promoter, to trace Fgfr1 expression in the developing CNS. Unbiased stereological counts were performed for several cell types in the cortex and hippocampus. Results This model reveals that Fgfr1 is primarily expressed in glial cells, in both astrocytes and oligodendrocytes, along with some neurons. Dual labeling experiments indicate that the proportion of GFP+ (Fgfr1+ cells that are also GFAP+ increases from postnatal day 7 (P7 to 1 month, illuminating dynamic changes in Fgfr1 expression during postnatal development of the cortex. In postnatal neurogenic areas, GFP expression was also observed in SOX2, doublecortin (DCX, and brain lipid-binding protein (BLBP expressing cells. Fgfr1 is also highly expressed in DCX positive cells of

  18. IL-15 expression on RA synovial fibroblasts promotes B cell survival.

    Directory of Open Access Journals (Sweden)

    Marta Benito-Miguel

    Full Text Available INTRODUCTION: The purpose of this study was to examine the role of RA Synovial Fibroblast (RASFib IL-15 expression on B cell survival. METHODS: Magnetically sorted peripheral blood memory B cells from 15 healthy subjects were cocultured with RASFib. RESULTS: RASFib constitutively expressed membrane IL-15. Survival of isolated B cells cultured for 6 days, below 5%, was extended in coculture with RASFib to 52+/-8% (p<0.001. IL-15 neutralizing agents but not isotype controls, reduced this rate to 31+/-6% (p<0.05. Interestingly, rhIL-15 had no effect on isolated B cells but significantly increased their survival in coculture with RASFib. In parallel, B cell IL-15R chains were upregulated in cocultures. BAFF and VCAM-1, that are expressed on RASFib, were tested as potential candidates involved in upregulating B cell IL-15R. Culture of B cells in the presence of rhBAFF or rhVCAM-1 resulted in significantly increased survival, together with upregulation of all three IL-15R chains; in parallel, rhIL-15 potentiated the anti-apoptotic effect of BAFF and VCAM-1. Both BAFF and VCAM-1 neutralizing agents downmodulated the effect of RASFib on B cell survival and IL-15R expression. In parallel, rhIL-15 had a lower effect on the survival of B cells cocultured with RASFib in the presence of BAFF or VCAM-1 neutralizing agents. Peripheral blood B cells from 15 early RA patients demonstrated an upregulated IL-15R and increased survival in cocultures. CONCLUSION: IL-15 expression on RASFib significantly contributes to the anti-apoptotic effect of RASFib on B cells. IL-15 action is facilitated by BAFF and VCAM-1 expressed on RASFib, through an upregulation of IL-15R chains.

  19. Changes in CD11b and L-selectin expression on eosinophils are mediated by human lung fibroblasts in vitro

    NARCIS (Netherlands)

    Spoelstra, FM; Hovenga, H; Noordhoek, JA; Postma, DS; Kauffman, HF

    Eosinophilic airway infiltration is a central feature in asthma. Eosinophils recovered from bronchoalveolar fluid show an activated phenotype, e.g., increased CD11b and decreased L-selectin expression. We investigated whether lung fibroblasts are able to activate eosinophils in vitro, and if so,

  20. Expression of Heat Shock Proteins in Human Fibroblast Cells under Magnetic Resonant Coupling Wireless Power Transfer

    Directory of Open Access Journals (Sweden)

    Kohei Mizuno

    2015-10-01

    Full Text Available Since 2007, resonant coupling wireless power transfer (WPT technology has been attracting attention and has been widely researched for practical use. Moreover, dosimetric evaluation has also been discussed to evaluate the potential health risks of the electromagnetic field from this WPT technology based on the International Commission on Non-Ionizing Radiation Protection (ICNIRP guidelines. However, there has not been much experimental evaluation of the potential health risks of this WPT technology. In this study, to evaluate whether magnetic resonant coupling WPT induces cellular stress, we focused on heat shock proteins (Hsps and determined the expression level of Hsps 27, 70 and 90 in WI38VA13 subcloned 2RA human fibroblast cells using a western blotting method. The expression level of Hsps under conditions of magnetic resonant coupling WPT for 24 h was not significantly different compared with control cells, although the expression level of Hsps for cells exposed to heat stress conditions was significantly increased. These results suggested that exposure to magnetic resonant coupling WPT did not cause detectable cell stress.

  1. Cancer Associated Fibroblasts express pro-inflammatory factors in human breast and ovarian tumors

    Energy Technology Data Exchange (ETDEWEB)

    Erez, Neta, E-mail: netaerez@post.tau.ac.il [Department of Pathology, Sackler School of Medicine, Tel Aviv University, Tel-Aviv 69978 (Israel); Glanz, Sarah [Department of Pathology, Sackler School of Medicine, Tel Aviv University, Tel-Aviv 69978 (Israel); Raz, Yael [Department of Pathology, Sackler School of Medicine, Tel Aviv University, Tel-Aviv 69978 (Israel); Department of Obstetrics and Gynecology, LIS Maternity Hospital, Tel Aviv Sourasky Medical Center, affiliated with Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv (Israel); Avivi, Camilla [Department of Pathology, Sheba Medical Center, Tel Hashomer, affiliated with Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv (Israel); Barshack, Iris [Department of Pathology, Sackler School of Medicine, Tel Aviv University, Tel-Aviv 69978 (Israel); Department of Pathology, Sheba Medical Center, Tel Hashomer, affiliated with Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv (Israel)

    2013-08-02

    Highlights: •CAFs in human breast and ovarian tumors express pro-inflammatory factors. •Expression of pro-inflammatory factors correlates with tumor invasiveness. •Expression of pro-inflammatory factors is associated with NF-κb activation in CAFs. -- Abstract: Inflammation has been established in recent years as a hallmark of cancer. Cancer Associated Fibroblasts (CAFs) support tumorigenesis by stimulating angiogenesis, cancer cell proliferation and invasion. We previously demonstrated that CAFs also mediate tumor-enhancing inflammation in a mouse model of skin carcinoma. Breast and ovarian carcinomas are amongst the leading causes of cancer-related mortality in women and cancer-related inflammation is linked with both these tumor types. However, the role of CAFs in mediating inflammation in these malignancies remains obscure. Here we show that CAFs in human breast and ovarian tumors express high levels of the pro-inflammatory factors IL-6, COX-2 and CXCL1, previously identified to be part of a CAF pro-inflammatory gene signature. Moreover, we show that both pro-inflammatory signaling by CAFs and leukocyte infiltration of tumors are enhanced in invasive ductal carcinoma as compared with ductal carcinoma in situ. The pro-inflammatory genes expressed by CAFs are known NF-κB targets and we show that NF-κB is up-regulated in breast and ovarian CAFs. Our data imply that CAFs mediate tumor-promoting inflammation in human breast and ovarian tumors and thus may be an attractive target for stromal-directed therapeutics.

  2. Cancer Associated Fibroblasts express pro-inflammatory factors in human breast and ovarian tumors

    International Nuclear Information System (INIS)

    Erez, Neta; Glanz, Sarah; Raz, Yael; Avivi, Camilla; Barshack, Iris

    2013-01-01

    Highlights: •CAFs in human breast and ovarian tumors express pro-inflammatory factors. •Expression of pro-inflammatory factors correlates with tumor invasiveness. •Expression of pro-inflammatory factors is associated with NF-κb activation in CAFs. -- Abstract: Inflammation has been established in recent years as a hallmark of cancer. Cancer Associated Fibroblasts (CAFs) support tumorigenesis by stimulating angiogenesis, cancer cell proliferation and invasion. We previously demonstrated that CAFs also mediate tumor-enhancing inflammation in a mouse model of skin carcinoma. Breast and ovarian carcinomas are amongst the leading causes of cancer-related mortality in women and cancer-related inflammation is linked with both these tumor types. However, the role of CAFs in mediating inflammation in these malignancies remains obscure. Here we show that CAFs in human breast and ovarian tumors express high levels of the pro-inflammatory factors IL-6, COX-2 and CXCL1, previously identified to be part of a CAF pro-inflammatory gene signature. Moreover, we show that both pro-inflammatory signaling by CAFs and leukocyte infiltration of tumors are enhanced in invasive ductal carcinoma as compared with ductal carcinoma in situ. The pro-inflammatory genes expressed by CAFs are known NF-κB targets and we show that NF-κB is up-regulated in breast and ovarian CAFs. Our data imply that CAFs mediate tumor-promoting inflammation in human breast and ovarian tumors and thus may be an attractive target for stromal-directed therapeutics

  3. Bone marrow stromal elements in murine leukemia; Decreased CSF-producing fibroblasts and normal IL-1 expression by macrophages

    Energy Technology Data Exchange (ETDEWEB)

    Ben-Ishay, Z [Laboratory of Experimental Hematology, Department of Anatomy and Embryology, Hebrew University-Hadassah Medical School (Israel); Barak, V [Laboratory of Immunology, Department of Oncology, Hadassah University Hospital (Israel); Shoshan, S [Faculty of Dental Medicine, Connective Tissue Research Laboratory, Hebrew University, Jerusalem (Israel); Prindull, G [Department of Pediatrics, University of Gottingen, Gottingen (Germany, F.R.)

    1990-01-01

    A study of bone marrow stromal elements in murine acute myeloid leukemia (AML) was carried out. Our previous studies had indicated marrow stromal deficiency in murine AML. In the current investigation, separate stromal cells were cultured and the results obtained have shown that, while marrow stromal macrophages are normal in leukemia and express adequate amounts of IL-1, the fibroblasts are markedly reduced. However, if sufficient fibroblasts are pooled in vitro, they produce adequate amounts of CSF. Test of TNF{alpha} in leukemic cells CM, as possible cause of marrow stromal inhibition in leukemia, had not disclosed this cytokine. Further, it was observed that total body lethal irradiation of leukemic mice aggravates the stromal deficiency, confirming results of our previous investigations. It is concluded that bone marrow stromal deficiency in murine AML is due to decreased fibroblasts and, implicity, reduced CSF production. (author).

  4. Patterns of some extracellular matrix gene expression are similar in cells from cleft lip-palate patients and in human palatal fibroblasts exposed to diazepam in culture

    International Nuclear Information System (INIS)

    Marinucci, Lorella; Balloni, Stefania; Bodo, Maria; Carinci, Francesco; Pezzetti, Furio; Stabellini, Giordano; Carmela, Conte; Lumare, Eleonora

    2009-01-01

    Prenatal exposure to diazepam, a prototype sedative drug that belongs to Benzodiazepines, can lead to orofacial clefting in human newborns. By using real-time PCR, in the present study we investigated whether diazepam elicits gene expression alterations in extracellular matrix (ECM) components, growth factors and gamma-aminobutyric acid receptor (GABRB3), implicated in the coordinate regulation of palate development. Palate fibroblasts were treated with diazepam (Dz-N fibroblasts) and compared to cleft lip-palate (CLP) fibroblasts obtained from patients with no known exposure to diazepam or other teratogens. Untreated fibroblasts from non-CLP patients were used as control. The results showed significant convergences in gene expression pattern of collagens, fibromodulin, vitronectin, tenascin C, integrins and metalloprotease MMP13 between Dz-N and CLP fibroblasts. Among the growth factors, constitutive Fibroblast Growth Factor 2 (FGF2) was greatly enhanced in Dz-N and CLP fibroblasts and associated with a higher reduction of FGF receptor. Transforming Growth Factor beta 3 (TGFβ 3 ) resulted up-regulated in CLP fibroblasts and decreased in Dz-N fibroblasts. We found phenotypic differences exhibited by Dz-N and CLP fibroblasts in GABRB3 gene regulation, so further studies are necessary to determine whether GABAergic system could be involved in the development of diazepam mediated CLP phenotype. Taken together the results elucidate the molecular mechanisms underlying possible toxicology effects induced by diazepam. Counselling of women on the safety of diazepam exposure is clinically important, also for the forensic consequences

  5. Dietary moderately oxidized oil induces expression of fibroblast growth factor 21 in the liver of pigs

    Directory of Open Access Journals (Sweden)

    Varady Juliane

    2012-03-01

    Full Text Available Abstract Background Fibroblast growth factor 21 (FGF21, whose expression is induced by peroxisome proliferator-activated receptor α (PPARα, has been recently identified as a novel metabolic regulator which plays a crucial role in glucose homeostasis, lipid metabolism, insulin sensitivity and obesity. Previous studies have shown that administration of oxidized fats leads to an activation of PPARα in the liver. Therefore, the present study investigated the hypothesis that feeding of oxidized fats causes an induction of FGF21 in the liver. Methods Twenty four crossbred pigs were allocated to two groups of 12 pigs each and fed nutritionally adequate diets with either fresh rapeseed oil or oxidized rapeseed oil prepared by heating at a temperature of 175°C for 72 h. Results In pigs fed the oxidized fat mRNA abundance and protein concentrations of FGF21 in liver were significantly increased (P P P Conclusion The present study shows for the first time that administration of an oxidized fat induces the expression of FGF21 in the liver, probably mediated by activation of PPARα. Induction of FGF21 could be involved in several effects observed in animals administered an oxidized fat.

  6. Expression of platelet-derived growth factor and its receptors in proliferative disorders of fibroblastic origin.

    Science.gov (United States)

    Smits, A; Funa, K; Vassbotn, F S; Beausang-Linder, M; af Ekenstam, F; Heldin, C H; Westermark, B; Nistér, M

    1992-03-01

    Platelet-derived growth factor (PDGF) is known to stimulate the proliferation of connective tissue-derived cells in vitro. Less is known about its functions in vivo, and the role of PDGF in the development of human tumors has not been clarified. The authors have investigated the occurrence of PDGF and PDGF receptors in a series of proliferative disorders of fibroblastic origin using immunohistochemical and in situ hybridization techniques. High expression of PDGF beta-receptor mRNA and protein was found in the malignant tumors, and also in some benign lesions, such as dermatofibroma. In all these cases, benign as well as malignant, the PDGF B-chain mRNA, and less clearly, the PDGF A-chain mRNA, were coexpressed with the beta-receptor. In contrast, high expression of PDGF alpha-receptor mRNA was only found in fully malignant lesions, i.e., malignant fibrous histiocytoma. These data indicate that an autocrine growth stimulation via the PDGF beta-receptor could occur in an early phase of tumorigenesis, and may be a necessary but insufficient event for the progression into fully malignant human connective tissue lesions.

  7. Interleukin-6 secreted by oral cancer- associated fibroblast accelerated VEGF expression in tumor and stroma cells.

    Science.gov (United States)

    Mirkeshavarz, M; Ganjibakhsh, M; Aminishakib, P; Farzaneh, P; Mahdavi, N; Vakhshiteh, F; Karimi, A; Gohari, N S; Kamali, F; Kharazifard, M J; Shahzadeh Fazeli, S A; Nasimian, A

    2017-10-31

    Oral cancer represents the sixth most common cancer type worldwide. Patients with oral cancer express high levels of IL-6 which is associated with very poor prognosis. Previous studies illustrated that IL-6 cytokine induces angiogenesis. It has also been reported that the presence of Cancer- Associated Fibroblasts (CAFs) is essential for angiogenesis. In this study, we examined the correlation between IL-6 and CAF and the role of this correlation on VEGF production. In this study, quantitative expression level of IL-6 and VEGF in CAF and Oral Cancer Cells (OCCs) examined through Real Time PCR and ELISA and western blot analysis. In addition, maintenance and retention of IL-6 and VEGF checked out in co-culture experiment of CAF and OCC cells. These experiments demonstrated that in oral cancer, CAF cell line secretes significantly more IL-6 than OCC. Also IL-6 is a factor that causes VEGF secretion in CAF cell line. CAF is the basic and the most essential source for producing IL-6 in patients with oral cancer. Secreted IL-6 is able to induce VEGF production in both CAF and OCCs. Correlation between CAF, IL-6 and VEGF could be considered as an approach for cancer therapy.

  8. Gene expression profiling in wild-type and metallothionein mutant fibroblast cell lines

    Directory of Open Access Journals (Sweden)

    ÁNGELA D ARMENDÁRIZ

    2006-01-01

    Full Text Available The role of metallothioneins (MT in copper homeostasis is of great interest, as it appears to be partially responsible for the regulation of intracellular copper levels during adaptation to extracellular excess of the metal. To further investigate a possible role of MTs in copper metabolism, a genomics approach was utilized to evaluate the role of MT on gene expression. Microarray analysis was used to examine the effects of copper overload in fibroblast cells from normal and MT I and II double knock-out mice (MT-/-. As a first step, we compared genes that were significantly upregulated in wild-type and MT-/- cells exposed to copper. Even though wild-type and mutant cells are undistinguishable in terms of their morphological features and rates of growth, our results show that MT-/- cells do not respond with induction of typical markers of cellular stress under copper excess conditions, as observed in the wild-type cell line, suggesting that the transcription initiation rate or the mRNA stability of stress genes is affected when there is an alteration in the copper store capacity. The functional classification of other up-regulated genes in both cell lines indicates that a large proportion (>80% belong to two major categories: 1 metabolism; and 2 cellular physiological processes, suggesting that at the transcriptional level copper overload induces the expression of genes associated with diverse molecular functions. These results open the possibility to understand how copper homeostasis is being coordinated with other metabolic pathways.

  9. Curcumin induces differential expression of cytoprotective enzymes but similar apoptotic responses in fibroblasts and myofibroblasts

    NARCIS (Netherlands)

    Lundvig, D.M.S.; Pennings, S.W.C.; Brouwer, K.M.; Mtaya-Mlangwa, M.; Mugonzibwa, E.A.; Kuijpers-Jagtman, A.M.; Hoff, J.W. Von den; Wagener, F.A.D.T.G.

    2015-01-01

    Excessive extracellular matrix (ECM) deposition and tissue contraction after injury can lead to esthetic and functional problems. Fibroblasts and myofibroblasts activated by transforming growth factor (TGF)-beta1 play a key role in these processes. The persistence of (myo)fibroblasts and their

  10. Gene expression of fibroblast growth factors in human gliomas and meningiomas: Demonstration of cellular source of basic fibroblast growth factor mRNA and peptide in tumor tissues

    International Nuclear Information System (INIS)

    Takahashi, J.A.; Mori, Hirotaka; Fukumoto, Manabu; Oda, Yoshifumi; Kikuchi, Haruhiko; Hatanaka, Masakazu; Igarashi, Koichi; Jaye, M.

    1990-01-01

    The growth autonomy of human tumor cells is considered due to the endogenous production of growth factors. Transcriptional expression of candidates for autocrine stimulatory factors such as basic fibroblast growth factor (FGF), acidic FGF, and transforming growth factor type β were determined in human brain tumors. Basic FGF was expressed abundantly in 17 of 18 gliomas, 20 of 22 meningiomas, and 0 of 5 metastatic brain tumors. The level of mRNA expression of acidic FGF in gliomas was significant. In contrast, transforming growth factor type β1 was expressed in all the samples investigated. The mRNA for basic FGF and its peptide were localized in tumor cells in vivo by in situ hybridization and immunohistochemistry, showing that basic FGF is actually produced in tumor cells. The results suggest that tumor-derived basic FGF is involved in the progression of gliomas and meningiomas in vivo, whereas acidic FGF is expressed in a tumor origin-specific manner, suggesting that acidic FGF works in tandem with basic FGF in glioma tumorigenesis

  11. Quantum Dots-Based Immunofluorescent Imaging of Stromal Fibroblasts Caveolin-1 and Light Chain 3B Expression and Identification of Their Clinical Significance in Human Gastric Cancer

    Directory of Open Access Journals (Sweden)

    Honglei Chen

    2012-10-01

    Full Text Available Caveolin-1 (Cav-1 expression deficiency and autophagy in tumor stromal fibroblasts (hereafter fibroblasts are involved in tumor proliferation and progression, particularly in breast and prostate cancer. The aim of this study was to detect the expression of fibroblastic Cav-1 and LC3B, markers of autophagy, in gastric cancer (GC and to analyze their clinical significances. Furthermore, because Epstein-Barr virus (EBV-associated GC (EBVaGC is a unique subtype of GC; we compared the differential expression of fibroblastic Cav-1 and LC3B in EBVaGC and non-EBVaGC. Quantum dots (QDs-based immunofluorescence histochemistry was used to examine the expression of fibroblastic Cav-1 and LC3B in 118 cases of GC with adequate stroma. QDs-based double immunofluorescence labeling was performed to detect the coexpression of Cav-1 and LC3B proteins. EBV-encoded small RNA was detected by QDs-based fluorescence in situ hybridization to identify EBVaGC. Multivariate analysis indicated that low fibroblastic Cav-1 level was an independent prognosticator (p = 0.029 that predicted poorer survival of GC patients. Positive fibroblastic LC3B was correlated with lower invasion (p = 0.032 and was positively associated with Cav-1 expression (r = 0.432, p < 0.001. EBV infection did not affect fibroblastic Cav-1 and LC3B expression. In conclusion, positive fibroblastic LC3B correlates with lower invasion, and low expression of fibroblastic Cav-1 is a novel predictor of poor GC prognosis.

  12. Delayed changes in gene expression in human fibroblasts after alpha irradiation

    International Nuclear Information System (INIS)

    Salo, A.; Peraelae, M.; Mustonen, R.; Kadhim, M.; Marsden, S.; Sabatier, L.; Martins, L.

    2003-01-01

    endpoints with radiation-induced cancer. Gene expression changes in human fibroblast cells at delayed time points after alpha particle irradiation were studied. The aim was to identify genes playing pivotal role in inducing genomic instability. (orig.)

  13. Expression profiles are different in carbon ion-irradiated normal human fibroblasts and their bystander cells

    International Nuclear Information System (INIS)

    Iwakawa, Mayumi; Hamada, Nobuyuki; Imadome, Kaori; Funayama, Tomoo; Sakashita, Testuya; Kobayashi, Yasuhiko; Imai, Takashi

    2008-01-01

    Evidence has accumulated that ionizing radiation induces biological effects in non-irradiated bystander cells having received signals from directly irradiated cells; however, energetic heavy ion-induced bystander response is incompletely characterized. Here we performed microarray analysis of irradiated and bystander fibroblasts in confluent cultures. To see the effects in bystander cells, each of 1, 5 and 25 sites was targeted with 10 particles of carbon ions (18.3 MeV/u, 103 keV/μm) using microbeams, where particles traversed 0.00026, 0.0013 and 0.0066% of cells, respectively. diated cells, cultures were exposed to 10% survival dose (D), 0.1D and 0.01D of corresponding broadbeams (108 keV/μm). Irrespective of the target numbers (1, 5 or 25 sites) and the time (2 or 6 h postirradiation), similar expression changes were observed in bystander cells. Among 874 probes that showed more than 1.5-fold changes in bystander cells, 25% were upregulated and the remainder downregulated. These included genes related to cell communication (PIK3C2A, GNA13, FN1, ANXA1 and IL1RAP), stress response (RAD23B, ATF4 and EIF2AK4) and cell cycle (MYCN, RBBP4 and NEUROG1). Pathway analysis revealed serial bystander activation of G protein/PI-3 kinase pathways. Instead, genes related to cell cycle or death (CDKN1A, GADD45A, NOTCH1 and BCL2L1), and cell communication (IL1B, TCF7 and ID1) were upregulated in irradiated cells, but not in bystander cells. Our results indicate different expression profiles in irradiated and bystander cells, and imply that intercellular signaling between irradiated and bystander cells activate intracellular signaling, leading to the transcriptional stress response in bystander cells

  14. Control of fibroblast fibronectin expression and alternative splicing via the PI3K/Akt/mTOR pathway

    International Nuclear Information System (INIS)

    White, Eric S.; Sagana, Rommel L.; Booth, Adam J.; Yan, Mei; Cornett, Ashley M.; Bloomheart, Christopher A.; Tsui, Jessica L.; Wilke, Carol A.; Moore, Bethany B.; Ritzenthaler, Jeffrey D.; Roman, Jesse; Muro, Andres F.

    2010-01-01

    Fibronectin (FN), a ubiquitous glycoprotein that plays critical roles in physiologic and pathologic conditions, undergoes alternative splicing which distinguishes plasma FN (pFN) from cellular FN (cFN). Although both pFN and cFN can be incorporated into the extracellular matrix, a distinguishing feature of cFN is the inclusion of an alternatively spliced exon termed EDA (for extra type III domain A). The molecular steps involved in EDA splicing are well-characterized, but pathways influencing EDA splicing are less clear. We have previously found an obligate role for inhibition of the tumor suppressor phosphatase and tensin homologue on chromosome 10 (PTEN), the primary regulator of the PI3K/Akt pathway, in fibroblast activation. Here we show TGF-β, a potent inducer of both EDA splicing and fibroblast activation, inhibits PTEN expression and activity in mesenchymal cells, corresponding with enhanced PI3K/Akt signaling. In pten -/- fibroblasts, which resemble activated fibroblasts, inhibition of Akt attenuated FN production and decreased EDA alternative splicing. Moreover, inhibition of mammalian target of rapamycin (mTOR) in pten -/- cells also blocked FN production and EDA splicing. This effect was due to inhibition of Akt-mediated phosphorylation of the primary EDA splicing regulatory protein SF2/ASF. Importantly, FN silencing in pten -/- cells resulted in attenuated proliferation and migration. Thus, our results demonstrate that the PI3K/Akt/mTOR axis is instrumental in FN transcription and alternative splicing, which regulates cell behavior.

  15. Transforming growth factor β1 induces the expression of collagen type I by DNA methylation in cardiac fibroblasts.

    Directory of Open Access Journals (Sweden)

    Xiaodong Pan

    Full Text Available Transforming growth factor-beta (TGF-β, a key mediator of cardiac fibroblast activation, has a major influence on collagen type I production. However, the epigenetic mechanisms by which TGF-β induces collagen type I alpha 1 (COL1A1 expression are not fully understood. This study was designed to examine whether or not DNA methylation is involved in TGF-β-induced COL1A1 expression in cardiac fibroblasts. Cells isolated from neonatal Sprague-Dawley rats were cultured and stimulated with TGF-β1. The mRNA levels of COL1A1 and DNA methyltransferases (DNMTs were determined via quantitative polymerase chain reaction and the protein levels of collagen type I were determined via Western blot as well as enzyme-linked immunosorbent assay. The quantitative methylation of the COL1A1 promoter region was analyzed using the MassARRAY platform of Sequenom. Results showed that TGF-β1 upregulated the mRNA expression of COL1A1 and induced the synthesis of cell-associated and secreted collagen type I in cardiac fibroblasts. DNMT1 and DNMT3a expressions were significantly downregulated and the global DNMT activity was inhibited when treated with 10 ng/mL of TGF-β1 for 48 h. TGF-β1 treatment resulted in a significant reduction of the DNA methylation percentage across multiple CpG sites in the rat COL1A1 promoter. Thus, TGF-β1 can induce collagen type I expression through the inhibition of DNMT1 and DNMT3a expressions as well as global DNMT activity, thereby resulting in DNA demethylation of the COL1A1 promoter. These findings suggested that the DNMT-mediated DNA methylation is an important mechanism in regulating the TGF-β1-induced COL1A1 gene expression.

  16. Cumulus expansion, nuclear maturation and connexin 43, cyclooxygenase-2 and FSH receptor mRNA expression in equine cumulus-oocyte complexes cultured in vitro in the presence of FSH and precursors for hyaluronic acid synthesis

    Directory of Open Access Journals (Sweden)

    Aiudi Giulio

    2004-06-01

    Full Text Available Abstract The aim of this study was to investigate cumulus expansion, nuclear maturation and expression of connexin 43, cyclooxygenase-2 and FSH receptor transcripts in equine cumuli oophori during in vivo and in vitro maturation in the presence of equine FSH (eFSH and precursors for hyaluronic acid synthesis. Equine cumulus-oocyte complexes (COC were cultured in a control defined medium supplemented with eFSH (0 to 5 micrograms/ml, Fetal Calf Serum (FCS, precursors for hyaluronic acid synthesis or glutamine according to the experiments. After in vitro maturation, the cumulus expansion rate was increased with 1 microgram/ml eFSH, and was the highest with 20% FCS. It was not influenced by precursors for hyaluronic acid synthesis or glutamine. The expression of transcripts related to cumulus expansion was analyzed in equine cumulus cells before maturation, and after in vivo and in vitro maturation, by using reverse transcription-polymerase chain reaction (RT-PCR with specific primers. Connexin 43, cyclooxygenase-2 (COX-2 and FSH receptor (FSHr mRNA were detected in equine cumulus cells before and after maturation. Their level did not vary during in vivo or in vitro maturation and was influenced neither by FSH nor by precursors for hyaluronic acid synthesis. Results indicate that previously reported regulation of connexin 43 and COX-2 proteins during equine COC maturation may involve post-transcriptional mechanisms.

  17. Synergistic Induction of Eotaxin and VCAM-1 Expression in Human Corneal Fibroblasts by Staphylococcal Peptidoglycan and Either IL-4 or IL-13

    Directory of Open Access Journals (Sweden)

    Ken Fukuda

    2011-01-01

    Conclusions: Interaction of innate and adaptive immunity, as manifested by synergistic stimulation of eotaxin and VCAM-1 expression in corneal fibroblasts by peptidoglycan and Th2 cytokines, may play an important role in tissue eosinophilia associated with ocular allergy.

  18. Clinicopathological correlations of podoplanin (gp38 expression in rheumatoid synovium and its potential contribution to fibroblast platelet crosstalk.

    Directory of Open Access Journals (Sweden)

    Manuel J Del Rey

    Full Text Available Synovial fibroblasts (SF undergo phenotypic changes in rheumatoid arthritis (RA that contribute to inflammatory joint destruction. This study was undertaken to evaluate the clinical and functional significance of ectopic podoplanin (gp38 expression by RA SF.Expression of gp38 and its CLEC2 receptor was analyzed by immunohistochemistry in synovial arthroscopic biopsies from RA patients and normal and osteoarthritic controls. Correlation between gp38 expression and RA clinicopathological variables was analyzed. In patients rebiopsied after anti-TNF-α therapy, changes in gp38 expression were determined. Platelet-SF coculture and gp38 silencing in SF were used to analyze the functional contribution of gp38 to SF migratory and invasive properties, and to SF platelet crosstalk.gp38 was abundantly but variably expressed in RA, and it was undetectable in normal synovial tissues. Among clinicopathologigal RA variables, significantly increased gp38 expression was only found in patients with lymphoid neogenesis (LN, and RF or ACPA autoantibodies. Cultured synovial but not dermal fibroblasts showed strong constitutive gp38 expression that was further induced by TNF-α. In RA patients, anti-TNF-α therapy significantly reduced synovial gp38 expression. In RA synovium, CLEC2 receptor expression was only observed in platelets. gp38 silencing in cultured SF did not modify their migratory and invasive properties but reduced the expression of IL-6 and IL-8 genes induced by SF-platelet interaction.In RA, synovial expression of gp38 is strongly associated to LN and it is reduced after anti-TNF-α therapy. Interaction between gp38 and CLEC2 platelet receptor is feasible in RA synovium in vivo and can specifically contribute to gene expression by SF.

  19. Fibroblast growth factor 21, fibroblast growth factor receptor 1, and β-Klotho expression in bovine growth hormone transgenic and growth hormone receptor knockout mice.

    Science.gov (United States)

    Brooks, Nicole E; Hjortebjerg, Rikke; Henry, Brooke E; List, Edward O; Kopchick, John J; Berryman, Darlene E

    Although growth hormone (GH) and fibroblast growth factor 21 (FGF21) have a reported relationship, FGF21 and its receptor, fibroblast growth factor receptor 1 (FGFR1) and cofactor β-Klotho (KLB), have not been analyzed in chronic states of altered GH action. The objective of this study was to quantify circulating FGF21 and tissue specific expression of Fgf21, Fgfr1, and Klb in mice with modified GH action. Based on previous studies, we hypothesized that bovine GH transgenic (bGH) mice will be FGF21 resistant and GH receptor knockout (GHR-/-) mice will have normal FGF21 action. Seven-month-old male bGH mice (n=9) and wild type (WT) controls (n=10), and GHR-/- mice (n=8) and WT controls (n=8) were used for all measurements. Body composition was determined before dissection, and tissue weights were measured at the time of dissection. Serum FGF21 levels were evaluated by ELISA. Expression of Fgf21, Fgfr1, and Klb mRNA in white adipose tissue (AT), brown AT, and liver were evaluated by reverse transcription quantitative PCR. As expected, bGH mice had increased body weight (p=3.70E -8 ) but decreased percent fat mass (p=4.87E -4 ). Likewise, GHR-/- mice had decreased body weight (p=1.78E -10 ) but increased percent fat mass (p=1.52E -9 ), due to increased size of the subcutaneous AT depot when normalized to body weight (p=1.60E -10 ). Serum FGF21 levels were significantly elevated in bGH mice (p=0.041) and unchanged in GHR-/- mice (p=0.88). Expression of Fgf21, Fgfr1, and Klb mRNA in white AT and liver were downregulated or unchanged in both bGH and GHR-/- mice. The only exception was Fgf21 expression in brown AT of GHR-/-, which trended toward increased expression (p=0.075). In accordance with our hypothesis, we provide evidence that circulating FGF21 is increased in bGH animals, but remains unchanged in GHR-/- mice. Downregulation or no change in Fgf21, Fgfr1, and Klb expression are seen in white AT, brown AT, and liver of bGH and GHR-/- mice when compared to their

  20. Functional heterogeneity of cancer-associated fibroblasts from human colon tumors shows specific prognostic gene expression signature.

    Science.gov (United States)

    Herrera, Mercedes; Islam, Abul B M M K; Herrera, Alberto; Martín, Paloma; García, Vanesa; Silva, Javier; Garcia, Jose M; Salas, Clara; Casal, Ignacio; de Herreros, Antonio García; Bonilla, Félix; Peña, Cristina

    2013-11-01

    Cancer-associated fibroblasts (CAF) actively participate in reciprocal communication with tumor cells and with other cell types in the microenvironment, contributing to a tumor-permissive neighborhood and promoting tumor progression. The aim of this study is the characterization of how CAFs from primary human colon tumors promote migration of colon cancer cells. Primary CAF cultures from 15 primary human colon tumors were established. Their enrichment in CAFs was evaluated by the expression of various epithelial and myofibroblast specific markers. Coculture assays of primary CAFs with different colon tumor cells were performed to evaluate promigratory CAF-derived effects on cancer cells. Gene expression profiles were developed to further investigate CAF characteristics. Coculture assays showed significant differences in fibroblast-derived paracrine promigratory effects on cancer cells. Moreover, the association between CAFs' promigratory effects on cancer cells and classic fibroblast activation or stemness markers was observed. CAF gene expression profiles were analyzed by microarray to identify deregulated genes in different promigratory CAFs. The gene expression signature, derived from the most protumorogenic CAFs, was identified. Interestingly, this "CAF signature" showed a remarkable prognostic value for the clinical outcome of patients with colon cancer. Moreover, this prognostic value was validated in an independent series of 142 patients with colon cancer, by quantitative real-time PCR (qRT-PCR), with a set of four genes included in the "CAF signature." In summary, these studies show for the first time the heterogeneity of primary CAFs' effect on colon cancer cell migration. A CAF gene expression signature able to classify patients with colon cancer into high- and low-risk groups was identified.

  1. Angiotensin II increases CTGF expression via MAPKs/TGF-{beta}1/TRAF6 pathway in atrial fibroblasts

    Energy Technology Data Exchange (ETDEWEB)

    Gu, Jun [Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiaotong University School of medicine, Shanghai (China); Liu, Xu, E-mail: xkliuxu@yahoo.cn [Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiaotong University School of medicine, Shanghai (China); Wang, Quan-xing, E-mail: shmywqx@126.com [National Key Laboratory of Medical Immunology, Second Military Medical University, Shanghai (China); Tan, Hong-wei [Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiaotong University School of medicine, Shanghai (China); Guo, Meng [National Key Laboratory of Medical Immunology, Second Military Medical University, Shanghai (China); Jiang, Wei-feng; Zhou, Li [Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiaotong University School of medicine, Shanghai (China)

    2012-10-01

    The activation of transforming growth factor-{beta}1(TGF-{beta}1)/Smad signaling pathway and increased expression of connective tissue growth factor (CTGF) induced by angiotensin II (AngII) have been proposed as a mechanism for atrial fibrosis. However, whether TGF{beta}1/non-Smad signaling pathways involved in AngII-induced fibrogenetic factor expression remained unknown. Recently tumor necrosis factor receptor associated factor 6 (TRAF6)/TGF{beta}-associated kinase 1 (TAK1) has been shown to be crucial for the activation of TGF-{beta}1/non-Smad signaling pathways. In the present study, we explored the role of TGF-{beta}1/TRAF6 pathway in AngII-induced CTGF expression in cultured adult atrial fibroblasts. AngII (1 {mu}M) provoked the activation of P38 mitogen activated protein kinase (P38 MAPK), extracellular signal-regulated kinase 1/2(ERK1/2) and c-Jun NH(2)-terminal kinase (JNK). AngII (1 {mu}M) also promoted TGF{beta}1, TRAF6, CTGF expression and TAK1 phosphorylation, which were suppressed by angiotensin type I receptor antagonist (Losartan) as well as p38 MAPK inhibitor (SB202190), ERK1/2 inhibitor (PD98059) and JNK inhibitor (SP600125). Meanwhile, both TGF{beta}1 antibody and TRAF6 siRNA decreased the stimulatory effect of AngII on TRAF6, CTGF expression and TAK1 phosphorylation, which also attenuated AngII-induced atrial fibroblasts proliferation. In summary, the MAPKs/TGF{beta}1/TRAF6 pathway is an important signaling pathway in AngII-induced CTGF expression, and inhibition of TRAF6 may therefore represent a new target for reversing Ang II-induced atrial fibrosis. -- Highlights: Black-Right-Pointing-Pointer MAPKs/TGF{beta}1/TRAF6 participates in AngII-induced CTGF expression in atrial fibroblasts. Black-Right-Pointing-Pointer TGF{beta}1/TRAF6 participates in AngII-induced atrial fibroblasts proliferation. Black-Right-Pointing-Pointer TRAF6 may represent a new target for reversing Ang II-induced atrial fibrosis.

  2. Correlation of Hypoxia and Pro-senescence Protein Expression in Green Sea Turtle (Chelonia mydas Lung Epithelial and Dermal Fibroblast Cell Culture

    Directory of Open Access Journals (Sweden)

    Anggraini Barlian

    2018-03-01

    Full Text Available Recent studies have shown hypoxia-induced gene expression correlated with cellular senescence. HIF-1α (hypoxia-inducible factor 1-alpha, p53, and pRB were induced under hypoxia and correlated with cellular senescence. The localization and expression of HIF-1α, p53, and pRB in Chelonia mydas lung epithelial and dermal fibroblast cell cultures were analyzed under normoxic and hypoxic conditions (at 4 and 24 hours. Human dermal fibroblast was used for comparison purposes. Protein localization was analyzed with immunocytochemistry, while protein expression was analyzed with the Western blot and enhanced chemiluminescence (ECL method. HIF-1α, p53, and pRB were localized in the nuclei of the C. mydas cell cultures treated with hypoxia. The C. mydas lung epithelial cell cultures had a higher increase of HIF-1α expression than the human dermal fibroblast cell culture. The hypoxic conditions did not affect p53 expression significantly in C. mydas lung epithelial and dermal fibroblast cell cultures. Meanwhile, pRB expression changed significantly under hypoxia in the C. mydas dermal fibroblast cells. Expression of p53 and pRB in the human cell cultures was higher than in the C. mydas cell cultures. This research suggests that C. mydas and human cell cultures have different pro-senescence protein expression responses under hypoxic conditions.

  3. Genetherapy with adenovirus expressing ATF-BPTI hybrid protein inhibits proteolysis by rheumatoid synovial fibroblasts

    NARCIS (Netherlands)

    Laan, W.H. van der; Grimbergen, J.M.; Verheijen, J.H.; Pha, Q.

    1998-01-01

    In rheumatoid arthritis (RA), irreversible joint damage is the result of degradation of articular structures such as cartilage, bone and tendons. The plasminogen activator (PA) system has been shown to be involved in the proteolytic degradation of cartilage matrix by rheumatoid synovial fibroblasts

  4. Weak expression of cyclooxygenase-2 is associated with poorer outcome in endemic nasopharyngeal carcinoma: analysis of data from randomized trial between radiation alone versus concurrent chemo-radiation (SQNP-01)

    International Nuclear Information System (INIS)

    Loong, Susan Li Er; Hwang, Jacqueline Siok Gek; Li, Hui Hua; Wee, Joseph Tien Seng; Yap, Swee Peng; Chua, Melvin Lee Kiang; Fong, Kam Weng; Tan, Terence Wee Kiat

    2009-01-01

    Over-expression of cyclooxygenase-2 (COX-2) enzyme has been reported in nasopharyngeal carcinoma (NPC). However, the prognostic significance of this has yet to be conclusively determined. Thus, from our randomized trial of radiation versus concurrent chemoradiation in endemic NPC, we analyzed a cohort of tumour samples collected from participants from one referral hospital. 58 out of 88 patients from this institution had samples available for analysis. COX-2 expression levels were stratified by immunohistochemistry, into negligible, weak, moderate and strong, and correlated with overall and disease specific survivals. 58% had negligible or weak COX-2 expression, while 14% and 28% had moderate and strong expression respectively. Weak COX-2 expression conferred a poorer median overall survival, 1.3 years for weak versus 6.3 years for negligible, 7.8 years, strong and not reached for moderate. There was a similar trend for disease specific survival. Contrary to literature published on other malignancies, our findings seemed to indicate that over-expression of COX-2 confer a better prognosis in patients with endemic NPC. Larger studies are required to conclusively determine the significance of COX-2 expression in these patients

  5. Eupafolin inhibits PGE2 production and COX2 expression in LPS-stimulated human dermal fibroblasts by blocking JNK/AP-1 and Nox2/p47{sup phox} pathway

    Energy Technology Data Exchange (ETDEWEB)

    Tsai, Ming-Horng [Department of Pediatrics, Division of Neonatology and Pediatric Hematology/Oncology, Chang Gung Memorial Hospital, Yunlin, Taiwan (China); Lin, Zih-Chan [Department of Fragrance and Cosmetic Science, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan (China); Liang, Chan-Jung [Department of Anatomy and Cell Biology, College of Medicine, National Taiwan University, Taipei, Taiwan (China); Yen, Feng-Lin [Department of Fragrance and Cosmetic Science, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan (China); Institute of Biomedical Sciences, Sun Yat-Sen University, 70 Lienhai Rd., Kaohsiung, Taiwan (China); Chiang, Yao-Chang [Center for Drug Abuse and Addiction, China Medical University Hospital, Taichung, Taiwan (China); China Medical University, Taichung, Taiwan (China); Lee, Chiang-Wen, E-mail: cwlee@gw.cgust.edu.tw [Department of Nursing, Division of Basic Medical Sciences, Chang Gung University of Science and Technology, Chia-Yi, Taiwan (China); Chronic Diseases and Health Promotion Research Center, Chang Gung University of Science and Technology, Chia-Yi, Taiwan (China); Research Center for Industry of Human Ecology, Chang Gung University of Science and Technology, Taoyuan, Taiwan (China)

    2014-09-01

    Eupafolin, a major active component found in the methanol extracts of Phyla nodiflora, has been used to treat inflammation of skin. We examined its effects on cyclooxygenase-2 (COX-2) expression in LPS-treated human dermal fibroblasts. Lipopolysaccharide (LPS) significantly increased prostaglandin-E2 (PGE2) production associated with increased COX-2 expression in Hs68 cells. This effect was blocked by eupafolin, TLR-4 antibody, antioxidants (APO and NAC), as well as inhibitors, including U0126 (ERK1/2), SB202190 (p38), SP600125 (JNK1/2), and Tanshinone IIA (AP-1). In gene regulation level, qPCR and promoter assays revealed that COX-2 expression was attenuated by eupafolin. In addition, eupafolin also ameliorated LPS-induced p47 phox activation and decreased reactive oxygen species (ROS) generation and NADPH oxidase (Nox) activity. Moreover, pretreatment with eupafolin and APO led to reduced LPS-induced phosphorylation of ERK1/2, JNK, and p38. Further, eupafolin attenuated LPS-induced increase in AP-1 transcription factor binding activity as well as the increase in the phosphorylation of c-Jun and c-Fos. In vivo studies have shown that in dermal fibroblasts of LPS treated mice, eupafolin exerted anti-inflammation effects by decreasing COX-2 protein levels. Our results reveal a novel mechanism for anti-inflammatory and anti-oxidative effects of eupafolin that involved inhibition of LPS-induced ROS generation, suppression of MAPK phosphorylation, diminished DNA binding activity of AP-1 and attenuated COX-2 expression leading to reduced production of prostaglandin E2 (PGE2). Our results demonstrate that eupafolin may be used to treat inflammatory responses associated with dermatologic diseases. - Highlights: • LPS activates the Nox2/p47{sup phox}/JNK/AP-1 and induces COX2 expression in Hs68 cells. • Eupafolin inhibits LPS-induced COX-2 expression via Nox2/p47{sup phox} inhibition. • Eupafolin may be used in the treatment of skin diseases involving inflammation.

  6. Eupafolin inhibits PGE2 production and COX2 expression in LPS-stimulated human dermal fibroblasts by blocking JNK/AP-1 and Nox2/p47phox pathway

    International Nuclear Information System (INIS)

    Tsai, Ming-Horng; Lin, Zih-Chan; Liang, Chan-Jung; Yen, Feng-Lin; Chiang, Yao-Chang; Lee, Chiang-Wen

    2014-01-01

    Eupafolin, a major active component found in the methanol extracts of Phyla nodiflora, has been used to treat inflammation of skin. We examined its effects on cyclooxygenase-2 (COX-2) expression in LPS-treated human dermal fibroblasts. Lipopolysaccharide (LPS) significantly increased prostaglandin-E2 (PGE2) production associated with increased COX-2 expression in Hs68 cells. This effect was blocked by eupafolin, TLR-4 antibody, antioxidants (APO and NAC), as well as inhibitors, including U0126 (ERK1/2), SB202190 (p38), SP600125 (JNK1/2), and Tanshinone IIA (AP-1). In gene regulation level, qPCR and promoter assays revealed that COX-2 expression was attenuated by eupafolin. In addition, eupafolin also ameliorated LPS-induced p47 phox activation and decreased reactive oxygen species (ROS) generation and NADPH oxidase (Nox) activity. Moreover, pretreatment with eupafolin and APO led to reduced LPS-induced phosphorylation of ERK1/2, JNK, and p38. Further, eupafolin attenuated LPS-induced increase in AP-1 transcription factor binding activity as well as the increase in the phosphorylation of c-Jun and c-Fos. In vivo studies have shown that in dermal fibroblasts of LPS treated mice, eupafolin exerted anti-inflammation effects by decreasing COX-2 protein levels. Our results reveal a novel mechanism for anti-inflammatory and anti-oxidative effects of eupafolin that involved inhibition of LPS-induced ROS generation, suppression of MAPK phosphorylation, diminished DNA binding activity of AP-1 and attenuated COX-2 expression leading to reduced production of prostaglandin E2 (PGE2). Our results demonstrate that eupafolin may be used to treat inflammatory responses associated with dermatologic diseases. - Highlights: • LPS activates the Nox2/p47 phox /JNK/AP-1 and induces COX2 expression in Hs68 cells. • Eupafolin inhibits LPS-induced COX-2 expression via Nox2/p47 phox inhibition. • Eupafolin may be used in the treatment of skin diseases involving inflammation

  7. Extracellular matrix metalloproteinase inducer (EMMPRIN) expression correlates positively with active angiogenesis and negatively with basic fibroblast growth factor expression in epithelial ovarian cancer.

    Science.gov (United States)

    Szubert, Sebastian; Szpurek, Dariusz; Moszynski, Rafal; Nowicki, Michal; Frankowski, Andrzej; Sajdak, Stefan; Michalak, Slawomir

    2014-03-01

    The primary aim of this paper was to evaluate the expression of extracellular matrix metalloproteinase inducer (EMMPRIN) and its relationship with proangiogenic factors and microvessel density (MVD) in ovarian cancer. The study group included 58 epithelial ovarian cancers (EOCs), 35 benign ovarian tumors, and 21 normal ovaries. The expression of EMMPRIN, vascular endothelial growth factor (VEGF), and basic fibroblast growth factor (bFGF) was assessed by ELISA of tissue homogenates. Antibodies against CD105, CD31, and CD34 were used to immunohistochemically assess MVD. We have found significantly higher EMMPRIN expression in EOC than in benign ovarian tumors and normal ovaries. Similarly, the VEGF expression was higher in EOC than in benign ovarian tumors and normal ovaries. By contrast, bFGF expression was lower in EOC than in benign ovarian tumors and ovary samples. EMMPRIN expression in EOC was directly correlated with VEGF expression and CD105-MVD, but inversely correlated with bFGF expression. Grade 2/3 ovarian cancers had increased expression of EMMPRIN and VEGF, increased CD105-MVD, and lowered expression of bFGF compared to grade 1 ovarian cancers. Moreover, EMMPRIN expression was higher in advanced (FIGO III and IV) ovarian cancer. The upregulation of EMMPRIN and VEGF expression is correlated with increased CD105-MVD and silenced bFGF, which suggests early and/or reactivated angiogenesis in ovarian cancer. Aggressive EOC is characterized by the following: high expression of EMMPRIN and VEGF, high CD105-MVD, and low expression of bFGF.

  8. Differential gene expression before and after ionizing radiation of subcutaneous fibroblasts identifies breast cancer patients resistant to radiation-induced fibrosis

    DEFF Research Database (Denmark)

    Alsner, Jan; Rødningen, Olaug K.; Overgaard, Jens

    2007-01-01

    BACKGROUND AND PURPOSE: Differentially gene expression between patients with either very low or very high risk of radiation-induced fibrosis (RIF) in patient-derived fibroblasts after irradiation has previously been reported. In the present study, we are investigating the robustness of radiation...... and changes in radiation-induced gene expression in fibroblasts. MATERIAL AND METHODS: Gene expression was analysed by quantitative real-time PCR before and after a fractionated scheme with 3x3.5Gy/3 days in fibroblasts derived from 26 patients with breast cancer treated with post-mastectomy radiotherapy....... RESULTS: Robust radiation-induced changes in gene expression were observed, with differential gene expression between low and high risk patients being most pronounced for the fold induction level ('after' value divided by 'before' value for each patient). When including patients with intermediate risk...

  9. Co-expression of podoplanin and fibroblast growth factor 1 predicts poor prognosis in patients with lung squamous cell carcinoma.

    Science.gov (United States)

    Li, Juan; Chen, Han; Li, Xiaoqing; Wang, Linlin; Gao, Aiqin; Zhang, Pei; Lin, Wenli; Gao, Wei; Yang, Dong; Guo, Xiaosun; Liu, Jie; Dang, Qi; Sun, Yuping

    2017-08-01

    Podoplanin and fibroblast growth factor (FGF) 1 have been detected more frequently in lung squamous cell carcinoma (SQCC) compared with lung adenocarcinoma. Furthermore, it has been previous demonstrated that FGF1 is located on the edge of tumor nests in certain lung SQCC sections, which resembles the characteristic expression pattern of podoplanin. Podoplanin and FGF1 have roles in lymphangiogenesis and angiogenesis. Based on their consistently specific expression in lung SQCC and similar localization patterns, the present study aimed to investigate whether the expression of podoplanin in tumor cells is correlated with FGF1 expression in lung SQCC and whether their co‑expression has clinicopathological significance, particularly for lymphangiogenesis/angiogenesis. The correlation between podoplanin and FGF1 expression in tumor cells of 82 lung SQCC cases was investigated by immunohistochemical staining and the association between the co‑expression of podoplanin and FGF1, and clinicopathological factors such as microvessel density (MVD), was examined in these samples. In addition, the prognostic value of co‑expression of podoplanin and FGF1 in tumor cells was determined, and the regulation of FGF1 expression and angiogenesis by podoplanin was examined in vitro in a human lung SQCC cell line. Immunohistochemical analysis demonstrated that there was a significant correlation between podoplanin and FGF1 expression in lung SQCC tumor cells (R=0.591; P<0.0001). Co‑expression of podoplanin and FGF1 was significantly associated with larger primary tumor size, advanced TNM stage and higher intratumoral MVD. Survival analysis demonstrated that cases with podoplanin and FGF1 double‑positive staining had a significantly lower survival rate compared with cases with double‑negative staining. In vitro experiments revealed that podoplanin regulated FGF1 expression and affected tube formation of human umbilical vein endothelial cells. Combined, the results

  10. c-fos/c-jun expression and AP-1 activation in skin fibroblasts from centenarians.

    Science.gov (United States)

    Grassilli, E; Bellesia, E; Salomoni, P; Croce, M A; Sikora, E; Radziszewska, E; Tesco, G; Vergelli, M; Latorraca, S; Barbieri, D; Fagiolo, U; Santacaterina, S; Amaducci, L; Tiozzo, R; Sorbi, S; Franceschi, C

    1996-09-13

    In vitro replicative senescence is characterized by an irreversible growth arrest due to the inability of the cell to induce some key regulators of cell cycle progression, such as c-fos and AP-1, in response to mitogenic stimuli. In vitro replicative senescence and in vivo aging have been assumed to be two related phenomena, likely controlled by overlapping or interacting genes. As a corollary, fibroblasts from centenarians, which have undergone a long process of senescence in vivo should have very limited proliferative capability. On the contrary, in a previous work we found that fibroblasts from centenarians exhibited the same capacity to respond to different mitogenic stimuli as fibroblasts from young donors. Here we provide evidences that the well preserved proliferative response is likely due to the fact that some pivotal regulators- c-fos, c-jun and AP-1-are still fully inducible, despite a long process of in vivo senescence. Our data therefore suggest that in vivo and in vitro aging are separate phenomena whose possible relationships, if any, have to be ascertained very carefully.

  11. Disentangling the multifactorial contributions of fibronectin, collagen and cyclic strain on MMP expression and extracellular matrix remodeling by fibroblasts.

    Science.gov (United States)

    Zhang, Yang; Lin, Zhe; Foolen, Jasper; Schoen, Ingmar; Santoro, Alberto; Zenobi-Wong, Marcy; Vogel, Viola

    2014-11-01

    Early wound healing is associated with fibroblasts assembling a provisional fibronectin-rich extracellular matrix (ECM), which is subsequently remodeled and interlaced by type I collagen. This exposes fibroblasts to time-variant sets of matrices during different stages of wound healing. Our goal was thus to gain insight into the ECM-driven functional regulation of human foreskin fibroblasts (HFFs) being either anchored to a fibronectin (Fn) or to a collagen-decorated matrix, in the absence or presence of cyclic mechanical strain. While the cells reoriented in response to the onset of uniaxial cyclic strain, cells assembled exogenously added Fn with a preferential Fn-fiber alignment along their new orientation. Exposure of HFFs to exogenous Fn resulted in an increase in matrix metalloproteinase (MMP) expression levels, i.e. MMP-15 (RT-qPCR), and MMP-9 activity (zymography), while subsequent exposure to collagen slightly reduced MMP-15 expression and MMP-9 activity compared to Fn-exposure alone. Cyclic strain upregulated Fn fibrillogenesis and actin stress fiber formation, but had comparatively little effect on MMP activity. We thus propose that the appearance of collagen might start to steer HFFs towards homeostasis, as it decreased both MMP secretion and the tension of Fn matrix fibrils as assessed by Fluorescence Resonance Energy Transfer. These results suggest that HFFs might have a high ECM remodeling or repair capacity in contact with Fn alone (early event), which is reduced in the presence of Col1 (later event), thereby down-tuning HFF activity, a processes which would be required in a tissue repair process to finally reach tissue homeostasis. Copyright © 2014. Published by Elsevier B.V.

  12. Arginase II expressed in cancer-associated fibroblasts indicates tissue hypoxia and predicts poor outcome in patients with pancreatic cancer.

    Directory of Open Access Journals (Sweden)

    Yoshinori Ino

    Full Text Available An adequate level of arginine in the tissue microenvironment is essential for T cell activity and survival. Arginine levels are regulated by the arginine-catabolizing enzyme, arginase (ARG. It has been reported that arginase II (ARG2, one of two ARGs, is aberrantly expressed in prostate cancer cells, which convert arginine into ornithine, resulting in a lack of arginine that weakens tumor-infiltrating lymphocytes and renders them dysfunctional. However, immune suppression mediated by ARG2-expressing cancer cells in lung cancer has not been observed. Here we studied the expression of ARG2 in pancreatic ductal carcinoma (PDC tissue clinicopathologically by examining over 200 cases of PDC. In contrast to prostate cancer, ARG2 expression was rarely demonstrated in PDC cells by immunohistochemistry, and instead ARG2 was characteristically expressed in α-smooth muscle actin-positive cancer-associated fibroblasts (CAFs, especially those located within and around necrotic areas in PDC. The presence of ARG2-expressing CAFs was closely correlated with shorter overall survival (OS; P  = 0.003 and disease-free survival (DFS; P  = 0.0006. Multivariate Cox regression analysis showed that the presence of ARG2-expressing CAFs in PDC tissue was an independent predictor of poorer OS (hazard ratio [HR]  = 1.582, P  = 0.007 and DFS (HR  = 1.715, P  = 0.001 in PDC patients. In addition to the characteristic distribution of ARG2-expressing CAFs, such CAFs co-expressed carbonic anhydrase IX, SLC2A1, or HIF-1α, markers of hypoxia, in PDC tissue. Furthermore, in vitro experiments revealed that cultured fibroblasts extracted from PDC tissue expressed the ARG2 transcript after exposure to hypoxia, which had arginase activity. These results indicate that cancer cell-mediated immune suppression through ARG2 expression is not a general event and that the presence of ARG2-expressing CAFs is an indicator of poor prognosis, as well as hypoxia, in PDC

  13. Cytosolic phospholipase A2 alpha amplifies early cyclooxygenase-2 expression, oxidative stress and MAP kinase phosphorylation after cerebral ischemia in mice

    Directory of Open Access Journals (Sweden)

    Koehler Raymond C

    2010-07-01

    Full Text Available Abstract Background The enzyme cytosolic phospholipase A2 alpha (cPLA2α has been implicated in the progression of cerebral injury following ischemia and reperfusion. Previous studies in rodents suggest that cPLA2α enhances delayed injury extension and disruption of the blood brain barrier many hours after reperfusion. In this study we investigated the role of cPLA2α in early ischemic cerebral injury. Methods Middle cerebral artery occlusion (MCAO was performed on cPLA2α+/+ and cPLA2α-/- mice for 2 hours followed by 0, 2, or 6 hours of reperfusion. The levels of cPLA2α, cyclooxygenase-2, neuronal morphology and reactive oxygen species in the ischemic and contralateral hemispheres were evaluated by light and fluorescent microscopy. PGE2 content was compared between genotypes and hemispheres after MCAO and MCAO and 6 hours reperfusion. Regional cerebral blood flow was measured during MCAO and phosphorylation of relevant MAPKs in brain protein homogenates was measured by Western analysis after 6 hours of reperfusion. Results Neuronal cPLA2α protein increased by 2-fold immediately after MCAO and returned to pre-MCAO levels after 2 hours reperfusion. Neuronal cyclooxygenase-2 induction and PGE2 concentration were greater in cPLA2α+/+ compared to cPLA2α-/- ischemic cortex. Neuronal swelling in ischemic regions was significantly greater in the cPLA2α+/+ than in cPLA2α-/- brains (+/+: 2.2 ± 0.3 fold vs. -/-: 1.7 ± 0.4 fold increase; P 2α+/+ ischemic core than in cPLA2α-/- (+/+: 7.12 ± 1.2 fold vs. -/-: 3.1 ± 1.4 fold; P 2α+/+, but not cPLA2α-/-, had disruption of neuron morphology and decreased PGE2 content. Phosphorylation of the MAPKs-p38, ERK 1/2, and MEK 1/2-was significantly greater in cPLA2a+/+ than in cPLA2α-/- ischemic cortex 6 hours after reperfusion. Conclusions These results indicate that cPLA2α modulates the earliest molecular and injury responses after cerebral ischemia and have implications for the potential clinical

  14. Expression of cancer-associated fibroblast-related proteins differs between invasive lobular carcinoma and invasive ductal carcinoma.

    Science.gov (United States)

    Park, Cheol Keun; Jung, Woo Hee; Koo, Ja Seung

    2016-08-01

    Cancer-associated fibroblasts (CAFs) are classified into various functional subtypes such as fibroblast activation protein-α (FAP-α), fibroblast specific protein-1 (FSP-1), platelet-derived growth factor receptor-α (PDGFR-α), and PDGFR-β. In this study, we compared the expression of CAF-related proteins in invasive lobular carcinoma (ILC) with those in invasive carcinoma of no special type (NST) and assessed the implications of the differences observed. Using tissue microarrays of 104 ILC and 524 invasive carcinoma (NST) cases, immunohistochemistry for CAF-related proteins [podoplanin, prolyl 4-hydroxylase, FAP-α, FSP-1/S100A4, PDGFR-α, PDGFR-β, and chondroitin sulfate proteoglycan (NG2)] was conducted. In invasive carcinoma (NST), tumor cells expressed a high level of PDGFR-α, whereas ILC tumor cells expressed high levels of podoplanin, prolyl 4-hydroxylase, FAP-α, and FSP-1/S100A4. In stromal cells of invasive carcinoma (NST), high expression levels of prolyl 4-hydroxylase, PDGFR-α, and NG2 were observed, whereas ILC stromal cells expressed high levels of FAP-α, FSP-1/S100A4, and PDGFR-β. In ILC, tumoral FSP-1/S100A4 positivity was associated with higher Ki-67 labeling index (p = 0.010) and non-luminal A type cancer (p = 0.014). Stromal PDGFR-α positivity was associated with lymph node metastasis (p = 0.011). On survival analysis of entire cases, tumoral FSP-1/S100A4 positivity (p = 0.002), stromal podoplanin positivity (p = 0.041), and stromal FSP-1/S100A4 negativity (p = 0.041) were associated with shorter disease-free survival; only tumoral FSP-1/S100A4 positivity (p = 0.044) was associated with shorter overall survival. In ILC, the expression of FAP-α and FSP-1/S100A4 was higher in both tumor and stromal cells than that observed in invasive carcinoma (NST). These results indicate that CAFs are a potential target in ILC treatment.

  15. Aryl hydrocarbon receptor-dependent regulation of miR-196a expression controls lung fibroblast apoptosis but not proliferation

    International Nuclear Information System (INIS)

    Hecht, Emelia; Zago, Michela; Sarill, Miles; Rico de Souza, Angela; Gomez, Alvin; Matthews, Jason; Hamid, Qutayba; Eidelman, David H.; Baglole, Carolyn J.

    2014-01-01

    The aryl hydrocarbon receptor (AhR) is a ligand-activated transcription factor implicated in the regulation of apoptosis and proliferation. Although activation of the AhR by xenobiotics such as dioxin inhibits the cell cycle and control apoptosis, paradoxically, AhR expression also promotes cell proliferation and survival independent of exogenous ligands. The microRNA (miRNA) miR-196a has also emerged as a regulator of proliferation and apoptosis but a relationship between the AhR and miR-196a is not known. Therefore, we hypothesized that AhR-dependent regulation of endogenous miR-196a expression would promote cell survival and proliferation. Utilizing lung fibroblasts from AhR deficient (AhR −/− ) and wild-type (AhR +/+ ) mice, we show that there is ligand-independent regulation of miRNA, including low miR-196a in AhR −/− cells. Validation by qRT-PCR revealed a significant decrease in basal expression of miR-196a in AhR −/− compared to AhR +/+ cells. Exposure to AhR agonists benzo[a]pyrene (B[a]P) and FICZ as well as AhR antagonist CH-223191 decreased miR-196a expression in AhR +/+ fibroblasts concomitant with decreased AhR protein levels. There was increased proliferation only in AhR +/+ lung fibroblasts in response to serum, corresponding to a decrease in p27 KIP1 protein, a cyclin-dependent kinase inhibitor. Increasing the cellular levels of miR-196a had no effect on proliferation or expression of p27 KIP1 in AhR −/− fibroblasts but attenuated cigarette smoke-induced apoptosis. This study provides the first evidence that AhR expression is essential for the physiological regulation of cellular miRNA levels- including miR-196a. Future experiments designed to elucidate the functional relationship between the AhR and miR-196a may delineate additional novel ligand-independent roles for the AhR. - Highlights: • The AhR controls proliferation and apoptosis in lung cells. • The AhR regulates the expression of the microRNA miR-196a independent of

  16. Aryl hydrocarbon receptor-dependent regulation of miR-196a expression controls lung fibroblast apoptosis but not proliferation

    Energy Technology Data Exchange (ETDEWEB)

    Hecht, Emelia [Department of Medicine, McGill University, Montreal, Quebec (Canada); Zago, Michela [Research Institute of the McGill University Health Centre, McGill University, Montreal, Quebec (Canada); Sarill, Miles [Department of Medicine, McGill University, Montreal, Quebec (Canada); Rico de Souza, Angela [Research Institute of the McGill University Health Centre, McGill University, Montreal, Quebec (Canada); Gomez, Alvin; Matthews, Jason [Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON (Canada); Hamid, Qutayba; Eidelman, David H. [Department of Medicine, McGill University, Montreal, Quebec (Canada); Research Institute of the McGill University Health Centre, McGill University, Montreal, Quebec (Canada); Baglole, Carolyn J., E-mail: Carolyn.baglole@McGill.ca [Department of Medicine, McGill University, Montreal, Quebec (Canada); Research Institute of the McGill University Health Centre, McGill University, Montreal, Quebec (Canada)

    2014-11-01

    The aryl hydrocarbon receptor (AhR) is a ligand-activated transcription factor implicated in the regulation of apoptosis and proliferation. Although activation of the AhR by xenobiotics such as dioxin inhibits the cell cycle and control apoptosis, paradoxically, AhR expression also promotes cell proliferation and survival independent of exogenous ligands. The microRNA (miRNA) miR-196a has also emerged as a regulator of proliferation and apoptosis but a relationship between the AhR and miR-196a is not known. Therefore, we hypothesized that AhR-dependent regulation of endogenous miR-196a expression would promote cell survival and proliferation. Utilizing lung fibroblasts from AhR deficient (AhR{sup −/−}) and wild-type (AhR{sup +/+}) mice, we show that there is ligand-independent regulation of miRNA, including low miR-196a in AhR{sup −/−} cells. Validation by qRT-PCR revealed a significant decrease in basal expression of miR-196a in AhR{sup −/−} compared to AhR{sup +/+} cells. Exposure to AhR agonists benzo[a]pyrene (B[a]P) and FICZ as well as AhR antagonist CH-223191 decreased miR-196a expression in AhR{sup +/+} fibroblasts concomitant with decreased AhR protein levels. There was increased proliferation only in AhR{sup +/+} lung fibroblasts in response to serum, corresponding to a decrease in p27{sup KIP1} protein, a cyclin-dependent kinase inhibitor. Increasing the cellular levels of miR-196a had no effect on proliferation or expression of p27{sup KIP1} in AhR{sup −/−} fibroblasts but attenuated cigarette smoke-induced apoptosis. This study provides the first evidence that AhR expression is essential for the physiological regulation of cellular miRNA levels- including miR-196a. Future experiments designed to elucidate the functional relationship between the AhR and miR-196a may delineate additional novel ligand-independent roles for the AhR. - Highlights: • The AhR controls proliferation and apoptosis in lung cells. • The AhR regulates the

  17. Gene expression profiling of mucolipidosis type IV fibroblasts reveals deregulation of genes with relevant functions in lysosome physiology.

    Science.gov (United States)

    Bozzato, Andrea; Barlati, Sergio; Borsani, Giuseppe

    2008-04-01

    Mucolipidosis type IV (MLIV, MIM 252650) is an autosomal recessive lysosomal storage disorder that causes mental and motor retardation as well as visual impairment. The lysosomal storage defect in MLIV is consistent with abnormalities of membrane traffic and organelle dynamics in the late endocytic pathway. MLIV is caused by mutations in the MCOLN1 gene, which codes for mucolipin-1 (MLN1), a member of the large family of transient receptor potential (TRP) cation channels. Although a number of studies have been performed on mucolipin-1, the pathological mechanisms underlying MLIV are not fully understood. To identify genes that characterize pathogenic changes in mucolipidosis type IV, we compared the expression profiles of three MLIV and three normal skin fibroblasts cell lines using oligonucleotide microarrays. Genes that were differentially expressed in patients' cells were identified. 231 genes were up-regulated, and 116 down-regulated. Real-Time RT-PCR performed on selected genes in six independent MLIV fibroblasts cell lines was generally consistent with the microarray findings. This study allowed to evidence the modulation at the transcriptional level of a discrete number of genes relevant in biological processes which are altered in the disease such as endosome/lysosome trafficking, lysosome biogenesis, organelle acidification and lipid metabolism.

  18. Alterations in TNF- and IL-related gene expression in space-flown WI38 human fibroblasts

    Science.gov (United States)

    Semov, Alexandre; Semova, Nathalia; Lacelle, Chantale; Marcotte, Richard; Petroulakis, Emmanuel; Proestou, Gregory; Wang, Eugenia

    2002-01-01

    Spaceflight, just like aging, causes profound changes in musculoskeletal parameters, which result in decreased bone density and muscular weakness. As these conditions decrease our ability to conduct long-term manned space missions, and increase bone frailty in the elderly, the identification of genes responsible for the apparition of these physiological changes will be of great benefit. Thus, we developed and implemented a new microarray approach to investigate the changes in normal WI38 human fibroblast gene expression that arise as a consequence of space flight. Using our microarray, we identified changes in the level of expression of 10 genes, belonging to either the tumor necrosis factor- (TNF) or interleukin- (IL) related gene families in fibroblasts when WI38 cells exposed to microgravity during the STS-93 Space Shuttle mission were compared with ground controls. The genes included two ligands from the TNF superfamily, TWEAK and TNFSF15; two TNF receptor-associated proteins, NSMAF and PTPN13; three TNF-inducible genes, ABC50, PTX3, and SCYA13; TNF-alpha converting enzyme, IL-1 receptor antagonist, and IL-15 receptor alpha chain. Most of these are involved in either the regulation of bone density, and as such the development of spaceflight osteopenia, or in the development of proinflammatory status.

  19. Cytogenetic responses to ionizing radiation exposure of human fibroblasts with knocked-down expressions of various DNA damage signaling genes

    Science.gov (United States)

    Zhang, Ye; Rohde, Larry; Wu, Honglu

    Changes of gene expression profile are one of the most important biological responses in living cells after ionizing radiation (IR) exposure. Although some studies have demonstrated that genes with up-regulated expression induced by IR may play important roles in DNA damage sensing, cell cycle checkpoint and chromosomal repair, the relationship between the regulation of gene expression by IR and its impact on cytogenetic responses to ionizing radiation has not been systematically studied. Here, the expression of 25 genes selected based on their transcriptional changes in response to IR or from their known DNA repair roles were individually knocked down by siRNA transfection in human fibroblast cells. Chromosome aberrations (CA) and micronuclei (MN) formation were measured as the cytogenetic endpoints. Our results showed that the yields of MN and/or CA formation were significantly increased by suppressed expression of some of the selected genes in DSB and other DNA repair pathways. Knocked-down expression of other genes showed significant impact on cell cycle progression, possibly because of severe impairment of DNA damage repair. Of these 11 genes that affected the cytogenetic response, 9 were up-regulated in the cells exposed to gamma radiation, suggesting that genes transcriptionally modulated by IR were critical to regulating the biological consequences after IR. Failure to express these IR-responsive genes, such as by gene mutation, could seriously change the outcome of the post IR scenario and lead to carcinogenesis.

  20. An Asp49 Phospholipase A2 from Snake Venom Induces Cyclooxygenase-2 Expression and Prostaglandin E2 Production via Activation of NF-κB, p38MAPK, and PKC in Macrophages

    Directory of Open Access Journals (Sweden)

    Vanessa Moreira

    2014-01-01

    Full Text Available Phospholipases A2 (PLA2 are key enzymes for production of lipid mediators. We previously demonstrated that a snake venom sPLA2 named MT-III leads to prostaglandin (PGE2 biosynthesis in macrophages by inducing the expression of cyclooxygenase-2 (COX-2. Herein, we explored the molecular mechanisms and signaling pathways leading to these MT-III-induced effects. Results demonstrated that MT-III induced activation of the transcription factor NF-κB in isolated macrophages. By using NF-κB selective inhibitors, the involvement of this factor in MT-III-induced COX-2 expression and PGE2 production was demonstrated. Moreover, MT-III-induced COX-2 protein expression and PGE2 release were attenuated by pretreatment of macrophages with SB202190, and Ly294002, and H-7-dihydro compounds, indicating the involvement of p38MAPK, PI3K, and PKC pathways, respectively. Consistent with this, MT-III triggered early phosphorylation of p38MAPK, PI3K, and PKC. Furthermore, SB202190, H-7-dihydro, but not Ly294002 treatment, abrogated activation of NF-κB induced by MT-III. Altogether, these results show for the first time that the induction of COX-2 protein expression and PGE2 release, which occur via NF-κB activation induced by the sPLA2-MT-III in macrophages, are modulated by p38MAPK and PKC, but not by PI3K signaling proteins.

  1. Differential gene expression before and after ionizing radiation of subcutaneous fibroblasts identifies breast cancer patients resistant to radiation-induced fibrosis

    International Nuclear Information System (INIS)

    Alsner, Jan; Rodningen, Olaug K.; Overgaard, Jens

    2007-01-01

    Background and purpose: Differentially gene expression between patients with either very low or very high risk of radiation-induced fibrosis (RIF) in patient-derived fibroblasts after irradiation has previously been reported. In the present study, we are investigating the robustness of radiation-induced changes in gene expression in fibroblasts, whether differential expression is more pronounced when looking at the fold induction levels, taking into account the differences in background expression levels between patients, and whether there is a linear correlation between individual risk of RIF and changes in radiation-induced gene expression in fibroblasts. Material and methods: Gene expression was analysed by quantitative real-time PCR before and after a fractionated scheme with 3 x 3.5 Gy/3 days in fibroblasts derived from 26 patients with breast cancer treated with post-mastectomy radiotherapy. Results: Robust radiation-induced changes in gene expression were observed, with differential gene expression between low and high risk patients being most pronounced for the fold induction level ('after' value divided by 'before' value for each patient). When including patients with intermediate risk, there was no linear correlation between individual risk of RIF and differential expression of the genes investigated. Rather, differential gene expression could divide patients into two clearly separated groups, a larger, sensitive group and a smaller resistant group. Conclusions: Differential gene expression in irradiated fibroblasts might be an important tool in the identification of differences in the genetic background between patients with variable risk of RIF, and in the identification of new targets for prevention and intervention of the fibrotic process

  2. Proliferating fibroblasts and HeLa cells co-cultured in vitro reciprocally influence growth patterns, protein expression, chromatin features and cell survival.

    Science.gov (United States)

    Delinasios, John G; Angeli, Flora; Koumakis, George; Kumar, Shant; Kang, Wen-Hui; Sica, Gigliola; Iacopino, Fortunata; Lama, Gina; Lamprecht, Sergio; Sigal-Batikoff, Ina; Tsangaris, George T; Farfarelos, Christos D; Farfarelos, Maria C; Vairaktaris, Eleftherios; Vassiliou, Stavros; Delinasios, George J

    2015-04-01

    to identify biological interactions between proliferating fibroblasts and HeLa cells in vitro. Fibroblasts were isolated from both normal and tumour human tissues. Coverslip co-cultures of HeLa and fibroblasts in various ratios with medium replacement every 48 h were studied using fixed cell staining with dyes such as Giemsa and silver staining, with immunochemistry for Ki-67 and E-cadherin, with dihydrofolate reductase (DHFR) enzyme reaction, as well as live cell staining for non-specific esterases and lipids. Other techniques included carmine cell labeling, autoradiography and apoptosis assessment. Under conditions of feeding and cell: cell ratios allowing parallel growth of human fibroblasts and HeLa cells, co-cultured for up to 20 days, a series of phenomena occur consecutively: profound affinity between the two cell types and exchange of small molecules; encircling of the HeLa colonies by the fibroblasts and enhanced growth of both cell types at their contact areas; expression of carbonic anhydrase in both cell types and high expression of non-specific esterases and cytoplasmic argyrophilia in the surrounding fibroblasts; intense production and secretion of lipid droplets by the surrounding fibroblasts; development of a complex net of argyrophilic projections of the fibroblasts; E-cadherin expression in the HeLa cells; from the 10th day onwards, an increasing detachment of batches of HeLa cells at the peripheries of colonies and appearance of areas with many multi-nucleated and apoptotic HeLa cells, and small HeLa fragments; from the 17th day, appearance of fibroblasts blocked at the G2-M phase. Co-cultures at approximately 17-20 days display a cell-cell fight with foci of (a) sparse growth of both cell types, (b) overgrowth of the fibroblasts and (c) regrowth of HeLa in small colonies. These results indicate that during their interaction with HeLa cells in vitro, proliferating fibroblasts can be activated against HeLa. This type of activation is not observed

  3. Largazole, a class I histone deacetylase inhibitor, enhances TNF-α-induced ICAM-1 and VCAM-1 expression in rheumatoid arthritis synovial fibroblasts

    Energy Technology Data Exchange (ETDEWEB)

    Ahmed, Salahuddin, E-mail: Salah.Ahmed@utoledo.edu [Department of Pharmacology, College of Pharmacy and Pharmaceutical Sciences, The University of Toledo, OH (United States); Riegsecker, Sharayah; Beamer, Maria; Rahman, Ayesha; Bellini, Joseph V. [Department of Pharmacology, College of Pharmacy and Pharmaceutical Sciences, The University of Toledo, OH (United States); Bhansali, Pravin; Tillekeratne, L.M. Viranga [Department of Medicinal and Biological Chemistry, College of Pharmacy and Pharmaceutical Sciences, The University of Toledo, OH (United States)

    2013-07-15

    In the present study, we evaluated the effect of largazole (LAR), a marine-derived class I HDAC inhibitor, on tumor necrosis factor-α (TNF-α)-induced expression of intercellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1), and matrix metalloproteinase-2 (MMP-2) activity. LAR (1–5 μM) had no adverse effect on the viability of RA synovial fibroblasts. Among the different class I HDACs screened, LAR (0.5–5 μM) inhibited the constitutive expression of HDAC1 (0–30%). Surprisingly, LAR increased class II HDAC [HDAC6] by ∼ 220% with a concomitant decrease in HDAC5 [30–58%] expression in RA synovial fibroblasts. SAHA (5 μM), a pan-HDAC inhibitor, also induced HDAC6 expression in RA synovial fibroblasts. Pretreatment of RA synovial fibroblasts with LAR further enhanced TNF-α-induced ICAM-1 and VCAM-1 expression. However, LAR inhibited TNF-α-induced MMP-2 activity in RA synovial fibroblasts by 35% when compared to the TNF-α-treated group. Further, the addition of HDAC6 specific inhibitor Tubastatin A with LAR suppressed TNF-α + LAR-induced ICAM-1 and VCAM-1 expression and completely blocked MMP-2 activity, suggesting a role of HDAC6 in LAR-induced ICAM-1 and VCAM-1 expression. LAR also enhanced TNF-α-induced phospho-p38 and phospho-AKT expression, but inhibited the expression of phospho-JNK and nuclear translocation of NF-κBp65 in RA synovial fibroblasts. These results suggest that LAR activates p38 and Akt pathways and influences class II HDACs, in particular HDAC6, to enhance some of the detrimental effects of TNF-α in RA synovial fibroblasts. Understanding the exact role of different HDAC isoenzymes in RA pathogenesis is extremely important in order to develop highly effective HDAC inhibitors for the treatment of RA. - Highlights: • Largazole enhances TNF-α-induced ICAM-1 and VCAM-1. • Largazole upregulates class II HDAC (HDAC6) in RA synovial fibroblasts. • Largazole also induces the expression of phospho-p38

  4. Effect of human vascular endothelial growth factor gene transfer on endogenous vascular endothelial growth factor mRNA expression in a rat fibroblast and osteoblast culture model.

    Science.gov (United States)

    Li, Ru; Li, Claire H; Nauth, Aaron; McKee, Michael D; Schemitsch, Emil H

    2010-09-01

    Vascular endothelial growth factor (VEGF) plays an important role in promoting angiogenesis and osteogenesis during fracture repair. Our previous studies have shown that cell-based VEGF gene therapy enhances bone healing of a rabbit tibia segmental bone defect in vivo. The aim of this project was to examine the effect of exogenous human VEGF on the endogenous rat VEGF messenger RNA (mRNA) expression in a cell-based gene transfer model. Rat fibroblasts and osteoblasts were harvested from the dermal tissue and periosteum, respectively, of Fisher 344 rats. The cells were then cultured and transfected with pcDNA-human VEGF using Superfect reagent (Qiagen). Four experimental groups were created: 1) fibroblast-VEGF; 2) osteoblast-VEGF; 3) nontransfected fibroblast controls; and 4) nontransfected osteoblast controls. The cultured cells were harvested at 1, 3, and 7 days after the gene transfection. The total mRNA was extracted (Trizol; Invitrogen); both human VEGF and rat VEGF mRNA were measured by reverse transcriptase-polymerase chain reaction and quantified by VisionWorksLS. The human VEGF165 mRNA was detected by reverse transcriptase-polymerase chain reaction from transfected fibroblasts and osteoblasts at 1, 3, and 7 days after gene transfection. The human VEGF165 levels peaked at Day 1 and then gradually reduced expression in both transfected fibroblasts and osteoblasts. Two endogenous rat VEGF isoforms were detected in this cell culture model: rat VEGF120 and rat VEGF164. We compared the rat VEGF120 and rat VEGF164 expression level of the fibroblasts or osteoblasts that were transfected with human VEGF165, with nontransfected control cells. Both the transfected fibroblasts and osteoblasts showed greater expression of rat VEGF164 than nontransfected controls at Day 1 (peak level) and Day 3, but not at Day 7. The expression of rat VEGF120 was lower in transfected fibroblasts, but higher in transfected osteoblasts, than the relevant control groups at any time point

  5. Minoxidil specifically decreases the expression of lysine hydroxylase in cultured human skin fibroblasts.

    Science.gov (United States)

    Hautala, T; Heikkinen, J; Kivirikko, K I; Myllylä, R

    1992-01-01

    The levels of lysine hydroxylase protein and the levels of the mRNAs for lysine hydroxylase and the alpha- and beta-subunits of proline 4-hydroxylase were measured in cultured human skin fibroblasts treated with 1 mM-minoxidil. The data demonstrate that minoxidil decreases the amount of lysine hydroxylase protein, this being due to a decrease in the level of lysine hydroxylase mRNA. The effect of minoxidil appears to be highly specific, as no changes were observed in the amounts of mRNAs for the alpha- and beta-subunits of proline 4-hydroxylase. Images Fig. 1. Fig. 2. Fig. 3. PMID:1314568

  6. Cellular phenotype-dependent and -independent effects of vitamin C on the renewal and gene expression of mouse embryonic fibroblasts.

    Directory of Open Access Journals (Sweden)

    Shiu-Ming Kuo

    Full Text Available Vitamin C has been shown to delay the cellular senescence and was considered a candidate for chemoprevention and cancer therapy. To understand the reported contrasting roles of vitamin C: growth-promoting in the primary cells and growth-inhibiting in cancer cells, primary mouse embryonic fibroblasts (MEF and their isogenic spontaneously immortalized fibroblasts with unlimited cell division potential were used as the model pair. We used microarray gene expression profiling to show that the immortalized MEF possess human cancer gene expression fingerprints including a pattern of up-regulation of inflammatory response-related genes. Using the MEF model, we found that a physiological treatment level of vitamin C (10(-5 M, but not other unrelated antioxidants, enhanced cell growth. The growth-promoting effect was associated with a pattern of enhanced expression of cell cycle- and cell division-related genes in both primary and immortalized cells. In the immortalized MEF, physiological treatment levels of vitamin C also enhanced the expression of immortalization-associated genes including a down-regulation of genes in the extracellular matrix functional category. In contrast, confocal immunofluorescence imaging of the primary MEF suggested an increase in collagen IV protein upon vitamin C treatment. Similar to the cancer cells, the growth-inhibitory effect of the redox-active form of vitamin C was preferentially observed in immortalized MEF. All effects of vitamin C required its intracellular presence since the transporter-deficient SVCT2-/- MEF did not respond to vitamin C. SVCT2-/- MEF divided and became immortalized readily indicating little dependence on vitamin C for the cell division. Immortalized SVCT2-/- MEF required higher concentration of vitamin C for the growth inhibition compared to the immortalized wildtype MEF suggesting an intracellular vitamin C toxicity. The relevance of our observation in aging and human cancer prevention was

  7. 10-Hydroxy-2-decenoic acid prevents ultraviolet A-induced damage and matrix metalloproteinases expression in human dermal fibroblasts.

    Science.gov (United States)

    Zheng, Jinfen; Lai, Wei; Zhu, Guoxing; Wan, Miaojian; Chen, Jian; Tai, Yan; Lu, Chun

    2013-10-01

    10-Hydroxy-2-decenoic acid (10-HDA) is a major fatty acid component of royal jelly, which has been reported to have a variety of beneficial pharmacological characteristics. However, the effects of 10-HDA on skin photoageing and its potential mechanism of action are unclear. We investigated the protective effects of 10-HDA on ultraviolet (UV) A-induced damage in human dermal fibroblasts (HDFs). We then explored the inhibitory effects of 10-HDA on UVA-induced matrix metalloproteinases (MMPs) expression and elucidated the signalling pathways controlling MMPs inhibition. Primary human dermal fibroblasts were exposed to UVA. Cell proliferation, cellular senescent state and collagen content were analysed using CCK-8, senescence-associated β-galactosidase staining and Sircol collagen assay, respectively. Fluorometric assays were performed to detect the formation of reactive oxygen species (ROS) in the cells. The mRNA levels of MMP-1, MMP-3 and type I (α1) collagen were determined by quantitative real-time PCR. Western blot was applied to detect the expression of MMP-1, MMP-3, JNK and p38 MAPK. HDFs treated with 10-HDA were significantly protected from UVA-induced cytotoxicity, ROS, cellular senescence and stimulated collagen production. Moreover, 10-HDA suppressed the UVA-induced expression of MMP-1 and MMP-3 at both the transcriptional and protein levels. Treatment with 10-HDA also reduced the UVA-induced activation of the JNK and p38 MAPK pathways. The data obtained in this study provide evidence that 10-HDA could prevent UVA-induced damage and inhibit MMP-1 and MMP-3 expressions. Therefore, 10-HDA may be a potential agent for the prevention and treatment of skin photoageing. © 2012 The Authors. Journal of the European Academy of Dermatology and Venereology © 2012 European Academy of Dermatology and Venereology.

  8. Pharmaceutical studies for gene therapy: expression of human Cu, Zn-superoxide dismutase gene transfected by lipofection in rat skin fibroblasts.

    Science.gov (United States)

    Nishiguchi, K; Ishida, K; Nakajima, M; Maeda, T; Komada, F; Iwakawa, S; Tanigawara, Y; Okumura, K

    1996-08-01

    To evaluate whether lipofection using Lipofectin is suitable for delivering foreign genes into skin fibroblasts as target cells, we performed experiments using human superoxide dismutase (hSOD) and neomycin-resistance (Neo) genes as models in rat skin fibroblasts (FR and primary cells) in vitro. The amounts of DNA used in the lipofection procedure significantly affected the transfection efficiencies, and the optimal amounts were determined for all cells used. However, the efficiencies in rat skin fibroblasts were about 20-fold higher than that in rat lung epithelial-like cells (L2 cells). The differences in plasmid vectors (pRc/RSV-SOD and pRc/CMV-SOD) hardly affected the transfection efficiencies. The amounts of Lipofectin significantly affected the transfection efficiencies, and the optimal amounts were determined for both types of skin fibroblasts. However, cytotoxic effects in both skin fibroblasts were observed with high doses of Lipofectin. On the other hand, with optimal amounts of DNA and Lipofectin, the reporter gene (NeoT) introduced into cells was mainly integrated into the host cell chromosome. Western blot analysis showed the continuous expression of hSOD protein for at least 45 d in skin fibroblasts transfected with the expression plasmid for hSOD by Lipofectin under the optimal conditions, and the cellular SOD activity fluctuated in parallel with the expression of hSOD protein. Differences in the type of cells also affected the expression of hSOD. These results indicate that it is necessary to set up optimal conditions for transfection using Lipofectin for each cell type, and that transfection with Lipofectin under optimal conditions may be an efficient method for introduction of foreign genes into skin fibroblasts for use as a clinical delivery system of therapeutic protein.

  9. Lung Myofibroblasts Are Characterized by Down-Regulated Cyclooxygenase-2 and Its Main Metabolite, Prostaglandin E2

    Science.gov (United States)

    Gabasa, Marta; Royo, Dolores; Molina-Molina, Maria; Roca-Ferrer, Jordi; Pujols, Laura; Picado, Cesar

    2013-01-01

    Background Prostaglandin E2 (PGE2), the main metabolite of cyclooxygenase (COX), is a well-known anti-fibrotic agent. Moreover, myofibroblasts expressing α-smooth muscle actin (α-SMA), fibroblast expansion and epithelial-mesenchymal transition (EMT) are critical to the pathogenesis of idiopathic pulmonary fibrosis (IPF). Our aim was to investigate the expression of COX-2 and PGE2 in human lung myofibroblasts and establish whether fibroblast-myofibroblast transition (FMT) and EMT are associated with COX-2 and PGE2 down-regulation. Methods Fibroblasts obtained from IPF patients (n = 6) and patients undergoing spontaneous pneumothorax (control, n = 6) and alveolar epithelial cell line A549 were incubated with TGF-β1 and FMT and EMT markers were evaluated. COX-2 and α-SMA expression, PGE2 secretion and cell proliferation were measured after IL-1β and PGE2 incubation. Results Myofibroblasts from both control and IPF fibroblast cultures stimulated with IL-1β showed no COX-2 expression. IPF fibroblasts showed increased myofibroblast population and reduced COX-2 expression in response to IL-1β. TGF-β1 increased the number of myofibroblasts in a time-dependent manner. In contrast, TGF-β1 induced slight COX-2 expression at 4 h (without increase in myofibroblasts) and 24 h, but not at 72 h. Both IPF and control cultures incubated with TGF-β1 for 72 h showed diminished COX-2 induction, PGE2 secretion and α-SMA expression after IL-1β addition. The latter decreased proliferation in fibroblasts but not in myofibroblasts. A549 cells incubated with TGF-β1 for 72 h showed down-regulated COX-2 expression and low basal PGE2 secretion in response to IL-1β. Immuno-histochemical analysis of IPF lung tissue showed no COX-2 immuno-reactivity in myofibroblast foci. Conclusions Myofibroblasts are associated with COX-2 down-regulation and reduced PGE2 production, which could be crucial in IPF development and progression. PMID:23755232

  10. Expression of WNT5A in Idiopathic Pulmonary Fibrosis and Its Control by TGF-β and WNT7B in Human Lung Fibroblasts.

    Science.gov (United States)

    Newman, Donna R; Sills, W Shane; Hanrahan, Katherine; Ziegler, Amanda; Tidd, Kathleen McGinnis; Cook, Elizabeth; Sannes, Philip L

    2016-02-01

    The wingless (Wnt) family of signaling ligands contributes significantly to lung development and is highly expressed in patients with usual interstitial pneumonia (UIP). We sought to define the cellular distribution of Wnt5A in the lung tissue of patients with idiopathic pulmonary fibrosis (IPF) and the signaling ligands that control its expression in human lung fibroblasts and IPF myofibroblasts. Tissue sections from 40 patients diagnosed with IPF or UIP were probed for the immunolocalization of Wnt5A. Further, isolated lung fibroblasts from normal or IPF human lungs, adenovirally transduced for the overexpression or silencing of Wnt7B or treated with TGF-β1 or its inhibitor, were analyzed for Wnt5A protein expression. Wnt5A was expressed in IPF lungs by airway and alveolar epithelium, smooth muscle cells, endothelium, and myofibroblasts of fibroblastic foci and throughout the interstitium. Forced overexpression of Wnt7B with or without TGF-β1 treatment significantly increased Wnt5A protein expression in normal human smooth muscle cells and fibroblasts but not in IPF myofibroblasts where Wnt5A was already highly expressed. The results demonstrate a wide distribution of Wnt5A expression in cells of the IPF lung and reveal that it is significantly increased by Wnt7B and TGF-β1, which, in combination, could represent key signaling pathways that modulate the pathogenesis of IPF. © 2016 The Histochemical Society.

  11. Inhibitory effects of tocopherols on expression of the cyclooxygenase-2 gene in RAW264.7 cells stimulated by lipopolysaccharide, tumor necrosis factor-α or Porphyromonas gingivalis fimbriae.

    Science.gov (United States)

    Murakami, Yukio; Kawata, Akifumi; Koh, Teho; Seki, Yuya; Tamura, Seiko; Katayama, Tadashi; Fujisawa, Seiichiro

    2013-01-01

    Tocopherols, which include α-, β-, γ-, and δ-tocopherol, protect cells against harmful free radicals and play an important role in preventing many human diseases such as cancer, inflammatory disorders, and ageing itself. However, the causal relationships between periodontal or oral chronic diseases and tocopherols have not been sufficiently studied. The present study investigated the inhibitory effects of these compounds on the expression of cyclooxygenase-2 (COX2) mRNA in RAW264.7 cells stimulated with lipopolysaccharide (LPS), tumor necrosis factor-α (TNFα) or fimbriae of Poryphyromonas gingivalis (Pg), an oral anaerobe. The cytotoxicity (EC₅₀) of tocopherols toward RAW cells was determined using a cell counting kit (CCK-8). The regulatory effect of these compounds on the expression of COX2 mRNA stimulated with LPS, TNFα or Pg fimbriae was investigated using real-time polymerase chain reaction (PCR). Each tocopherol had similarly low cytotoxicity. COX2 gene expression in RAW cells after exposure to the three different macrophage activators was inhibited by the tocopherols (ptocopherol, β-, γ- and δ-tocopherol exhibited greater inhibitory effects (pTocopherols exhibit anti-inflammatory activity, and β-, γ- and δ-tocopherol have particularly more potent anti-inflammatory activity than α-tocopherol. Tocopherols may have potential utility for prevention of periodontal and chronic oral diseases.

  12. Differential expression of insulin like growth factor I and other fibroblast mitogens in porcine colostrum and milk

    International Nuclear Information System (INIS)

    Tan, T.J.; Simmen, R.C.M.; Simmen, F.A.

    1987-01-01

    Sow mammary secretions contain at least 3 distinct growth factor activities, distinguished by their size and relative abundance in colostrum or later milk. Gel filtration of colostrum in Sephadex G-200 columns, followed by acid-ethanol extraction and radioimmunoassay (RIA) for insulin like growth factor I (IGF-I) revealed high levels of this factor in the 150K and 50K MW regions, characteristic of IGF-I: binding protein complexes. Acid treatment of these fractions yielded free IGF-I peptide (7.5K). Parallel mitogen assays with a fibroblast cell line (AKR-2B) demonstrated a predominant peak of high MW activity (sow colostral growth factor-I, SCGF-I) eluting near the column void volume (MW > 150K). Treatment of SCGF-I with 1M acetic acid resulted in a size reduction of the mitogenic activity (MW < 10K), suggesting association of SCGF-I with a binding protein. The SCGF-I peptide was noncompetitive in IGF-I RIA, was distinct in MW from free IGF-I, and was not mitogenic for chick embryo fibroblasts. Sow milk contains less IGF-I and SCGF-I but does display a predominant peak of small MW (∼ 3K) AKR-2B activity. The changes in expression of these growth factors during lactation may reflect differing roles in lactogenesis and/or neonatal growth and development

  13. Expression of podoplanin in stromal fibroblasts plays a pivotal role in the prognosis of patients with pancreatic cancer.

    Science.gov (United States)

    Hirayama, Kazuyoshi; Kono, Hiroshi; Nakata, Yuuki; Akazawa, Yoshihiro; Wakana, Hiroyuki; Fukushima, Hisataka; Fujii, Hideki

    2018-01-01

    To investigate the role of podoplanin (PDPN) expression in invasive ductal carcinoma of the pancreas (IDCP) in humans. Tumor samples were obtained from 95 patients with IDCP. Immunohistochemical staining was done to evaluate the expression of PDPN in cancer tissues. PDPN was detected predominantly in stromal fibroblasts, stained with α-smooth muscle actin. The cutoff value of PDPN-positive areas was calculated according to a histogram. There was no significant difference in clinicopathologic factors between patients with high vs. those with low PDPN expression. The high PDPN group showed significantly poorer disease-free and disease-specific survival rates than the low PDPN group. Among patients from the high PDPN group, those with lymph node metastases and those with a tumor larger than 20 cm in diameter had significantly poorer prognoses than similar patients from the low PDPN group. Multivariate Cox proportional hazards analysis indicated that a high expression of PDPN was an independent risk factor for disease-specific survival. PDPN expression in cancer-related fibrotic tissues is associated with a poor prognosis, especially in patients with large tumors or lymph node metastases.

  14. Porcine Knock-in Fibroblasts Expressing hDAF on α-1,3-Galactosyltransferase (GGTA1) Gene Locus.

    Science.gov (United States)

    Kim, Ji Woo; Kim, Hye-Min; Lee, Sang Mi; Kang, Man-Jong

    2012-10-01

    The Galactose-α1,3-galactose (α1,3Gal) epitope is responsible for hyperacute rejection in pig-to-human xenotransplantation. Human decay-accelerating factor (hDAF) is a cell surface regulatory protein that serves as a complement inhibitor to protect self cells from complement attack. The generation of α1,3-galactosyltransferase (GGTA1) knock-out pigs expressing DAF is a necessary step for their use as organ donors for humans. In this study, we established GGTA1 knock-out cell lines expressing DAF from pig ear fibroblasts for somatic cell nuclear transfer. hDAF expression was detected in hDAF knock-in heterozygous cells, but not in normal pig cells. Expression of the GGTA1 gene was lower in the knock-in heterozygous cell line compared to the normal pig cell. Knock-in heterozygous cells afforded more effective protection against cytotoxicity with human serum than with GGTA1 knock-out heterozygous and control cells. These cell lines may be used in the production of GGTA1 knock-out and DAF expression pigs for xenotransplantation.

  15. Expression of the small T antigen of Lymphotropic Papovavirus is sufficient to transform primary mouse embryo fibroblasts

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, Tushar; Robles, Maria Teresa Sáenz [Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260 (United States); Schowalter, Rachel M.; Buck, Christopher B. [Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892-4263 (United States); Pipas, James M., E-mail: pipas@pitt.edu [Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260 (United States)

    2016-01-15

    Polyomaviruses induce cell proliferation and transformation through different oncoproteins encoded within the early region (ER): large T antigen (LT), small T antigen (sT) and, in some cases, additional components. Each virus utilizes different mechanisms to achieve transformation. For instance, the LTs of Simian virus 40 (SV40), BK and/or JC virus can induce transformation; but Merkel Cell Polyomavirus (MCPyV) requires expression of sT. Lymphotropic Papovavirus (LPV) is closely related to Human Polyomavirus 9 (HuPyV9) and, under similar conditions, mice expressing LPV.ER exhibit higher rates of tumor formation than mice expressing SV40.ER. We have investigated the contributions of individual LPV.ER components to cell transformation. In contrast to SV40, LPV.ER transforms mouse embryonic fibroblasts (MEFs), but expression of LPV LT is insufficient to transform MEFs. Furthermore, LPV sT induces immortalization and transformation of MEFs. Thus, in the case of LPV, sT is the main mediator of oncogenesis. - Highlights: • Characterization of early region products from the Lymphotropic Polyomavirus (LPV). • On its own, sT immortalizes and transforms mouse primary cells, and is able to block p53 activation. • Combined LT and sT expression induces a greater rate of proliferation than either LT or sT alone.

  16. Transcriptome-Wide Expression Profiling in Skin Fibroblasts of Patients with Joint Hypermobility Syndrome/Ehlers-Danlos Syndrome Hypermobility Type.

    Science.gov (United States)

    Chiarelli, Nicola; Carini, Giulia; Zoppi, Nicoletta; Dordoni, Chiara; Ritelli, Marco; Venturini, Marina; Castori, Marco; Colombi, Marina

    2016-01-01

    Joint hypermobility syndrome/Ehlers-Danlos syndrome hypermobility type (JHS/EDS-HT), is likely the most common systemic heritable connective tissue disorder, and is mostly recognized by generalized joint hypermobility, joint instability complications, minor skin changes and a wide range of satellite features. JHS/EDS-HT is considered an autosomal dominant trait but is still without a defined molecular basis. The absence of (a) causative gene(s) for JHS/EDS-HT is likely attributable to marked genetic heterogeneity and/or interaction of multiple loci. In order to help in deciphering such a complex molecular background, we carried out a comprehensive immunofluorescence analysis and gene expression profiling in cultured skin fibroblasts from five women affected with JHS/EDS-HT. Protein study revealed disarray of several matrix structural components such as fibrillins, tenascins, elastin, collagens, fibronectin, and their integrin receptors. Transcriptome analysis indicated perturbation of different signaling cascades that are required for homeostatic regulation either during development or in adult tissues as well as altered expression of several genes involved in maintenance of extracellular matrix architecture and homeostasis (e.g., SPON2, TGM2, MMP16, GPC4, SULF1), cell-cell adhesion (e.g., CDH2, CHD10, PCDH9, CLDN11, FLG, DSP), immune/inflammatory/pain responses (e.g., CFD, AQP9, COLEC12, KCNQ5, PRLR), and essential for redox balance (e.g., ADH1C, AKR1C2, AKR1C3, MAOB, GSTM5). Our findings provide a picture of the gene expression profile and dysregulated pathways in JHS/EDS-HT skin fibroblasts that correlate well with the systemic phenotype of the patients.

  17. Krüppel-Like Factor 4 Is a Regulator of Proinflammatory Signaling in Fibroblast-Like Synoviocytes through Increased IL-6 Expression

    Directory of Open Access Journals (Sweden)

    Xinjing Luo

    2016-01-01

    Full Text Available Human fibroblast-like synoviocytes play a vital role in joint synovial inflammation in rheumatoid arthritis (RA. Proinflammatory cytokines induce fibroblast-like synoviocyte activation and dysfunction. The inflammatory mediator Krüppel-like factor 4 is upregulated during inflammation and plays an important role in endothelial and macrophage activation during inflammation. However, the role of Krüppel-like factor 4 in fibroblast-like synoviocyte activation and RA inflammation remains to be defined. In this study, we identify the notion that Krüppel-like factor 4 is higher expressed in synovial tissues and fibroblast-like synoviocytes from RA patients than those from osteoarthritis patients. In vitro, the expression of Krüppel-like factor 4 in RA fibroblast-like synoviocytes is induced by proinflammatory cytokine tumor necrosis factor-α. Overexpression of Krüppel-like factor 4 in RA fibroblast-like synoviocytes robustly induced interleukin-6 production in the presence or absence of tumor necrosis factor-α. Conversely, knockdown of Krüppel-like factor 4 markedly attenuated interleukin-6 production in the presence or absence of tumor necrosis factor-α. Krüppel-like factor 4 not only can bind to and activate the interleukin-6 promoter, but also may interact directly with nuclear factor-kappa B. These results suggest that Krüppel-like factor 4 may act as a transcription factor mediating the activation of fibroblast-like synoviocytes in RA by inducing interleukin-6 expression in response to tumor necrosis factor-α.

  18. Ablation of the mitochondrial complex IV assembly protein Surf1 leads to increased expression of the UPRMT and increased resistance to oxidative stress in primary cultures of fibroblasts

    Directory of Open Access Journals (Sweden)

    Gavin Pharaoh

    2016-08-01

    Full Text Available Mice deficient in the electron transport chain (ETC complex IV assembly protein SURF1 have reduced assembly and activity of cytochrome c oxidase that is associated with an upregulation of components of the mitochondrial unfolded protein response (UPRMT and increased mitochondrial number. We hypothesized that the upregulation of proteins associated with the UPRMT in response to reduced cytochrome c oxidase activity in Surf1−/− mice might contribute to increased stress resistance. To test this hypothesis we asked whether primary cultures of fibroblasts from Surf1−/− mice exhibit enhanced resistance to stressors compared to wild-type fibroblasts. Here we show that primary dermal fibroblasts isolated from Surf1−/− mice have increased expression of UPRMT components ClpP and Hsp60, and increased expression of Lon protease. Fibroblasts from Surf1−/− mice are significantly more resistant to cell death caused by oxidative stress induced by paraquat or tert-Butyl hydroperoxide compared to cells from wild-type mice. In contrast, Surf1−/− fibroblasts show no difference in sensitivity to hydrogen peroxide stress. The enhanced cell survival in response to paraquat or tert-Butyl hydroperoxide in Surf1−/− fibroblasts compared to wild-type fibroblasts is associated with induced expression of Lon, ClpP, and Hsp60, increased maximal respiration, and increased reserve capacity as measured using the Seahorse Extracellular Flux Analyzer. Overall these data support a protective role for the activation of the UPRMT in cell survival.

  19. Lack of co-ordinate expression of the alpha1(I) and alpha1(III) procollagen genes in fibroblast clonal cultures.

    Science.gov (United States)

    Yamaguchi, Y; Crane, S; Zhou, L; Ochoa, S M; Falanga, V

    2000-12-01

    Several extracellular matrix genes, most notably alpha1(I) and alpha1(III) procollagen, are reported to be co-ordinately expressed in cultures of dermal fibroblasts. However, it remains unclear whether the expression of these genes is truly co-ordinate or whether it may be the result of averaging the phenotypic expression of different fibroblast subpopulations present within each culture. Objectives To determine by Northern analysis the correlation between alpha1(I) and alpha1(III) procollagen mRNA levels in clonal populations of human dermal fibroblasts. As previously described, clonal cultures were derived from parent strains of human dermal fibroblasts by a microscopically controlled dilution technique and by stimulation of single cells with low oxygen tension in the early phases of clonal growth. In agreement with previous reports, we found that baseline steady-state levels of alpha1(I) procollagen mRNA were co-ordinately regulated with the alpha1(III) procollagen mRNA in 26 parent strains (r = 0. 9003; P ordinate regulation observed in non-clonal cultures, suggesting that these two genes operate under different sets of regulatory controls. This clonal heterogeneity may provide additional flexibility to the process of tissue repair and fibroblast clonal expansion.

  20. Downregulation of survivin expression and concomitant induction of apoptosis by celecoxib and its non-cyclooxygenase-2-inhibitory analog, dimethyl-celecoxib (DMC, in tumor cells in vitro and in vivo

    Directory of Open Access Journals (Sweden)

    Hofman Florence M

    2006-05-01

    Full Text Available Abstract Background 2,5-Dimethyl-celecoxib (DMC is a close structural analog of the selective cyclooxygenase-2 (COX-2 inhibitor celecoxib (Celebrex® that lacks COX-2-inhibitory function. However, despite its inability to block COX-2 activity, DMC is able to potently mimic the anti-tumor effects of celecoxib in vitro and in vivo, indicating that both of these drugs are able to involve targets other than COX-2 to exert their recognized cytotoxic effects. However, the molecular components that are involved in mediating these drugs' apoptosis-stimulatory consequences are incompletely understood. Results We present evidence that celecoxib and DMC are able to down-regulate the expression of survivin, an anti-apoptotic protein that is highly expressed in tumor cells and known to confer resistance of such cells to anti-cancer treatments. Suppression of survivin is specific to these two drugs, as other coxibs (valdecoxib, rofecoxib or traditional NSAIDs (flurbiprofen, indomethacin, sulindac do not affect survivin expression at similar concentrations. The extent of survivin down-regulation by celecoxib and DMC in different tumor cell lines is somewhat variable, but closely correlates with the degree of drug-induced growth inhibition and apoptosis. When combined with irinotecan, a widely used anticancer drug, celecoxib and DMC greatly enhance the cytotoxic effects of this drug, in keeping with a model that suppression of survivin may be beneficial to sensitize cancer cells to chemotherapy. Remarkably, these effects are not restricted to in vitro conditions, but also take place in tumors from drug-treated animals, where both drugs similarly repress survivin, induce apoptosis, and inhibit tumor growth in vivo. Conclusion In consideration of survivin's recognized role as a custodian of tumor cell survival, our results suggest that celecoxib and DMC might exert their cytotoxic anti-tumor effects at least in part via the down-regulation of survivin – in a

  1. Fibroblast growth factor receptor 1 and cytokeratin 20 expressions and their relation to prognostic variables in bladder cancer.

    Science.gov (United States)

    Abdul-Maksoud, Rehab S; Shalaby, Sally M; Elsayed, Walid S H; Elkady, Saad

    2016-10-15

    Tumor grade and stage are currently the most important prognostic variables in bladder cancer but establishing additional criteria is still needed for effective treatment. The aim of the study was to assess the expression of fibroblast growth factor receptor 1 (FGFR1) and cytokeratin 20 (CK20) in cancer bladder (CB) and to evaluate their association with the clinicopathological features of the disease. The study included 80 patients diagnosed as bladder cancer of different stages and grades and 80 patients with nonmalignant urothelial diseases of matched age and sex to the malignant group. The expressions of FGFR1 and CK20 in tissue samples were determined by RT-PCR and immunohistochemistry. The expression levels of FGFR1 and CK20 were increased in the malignant group when compared to the control group (Pbladder cancer reached 97.5% and 92.5%, respectively. Our results determined overexpression of both FGFR1 and CK20 in CB specimens. The alterations in the expression of FGFR1 and CK20 were associated with disease stage and grade. Lastly, combined detection of FGFR1 and CK20 had a high predictive prognostic value in differentiating invasive from non-invasive carcinoma. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Low Endogenous Fibroblast Growth Factor 2 Levels Are Associated With Heightened Conditioned Fear Expression in Rats and Humans.

    Science.gov (United States)

    Graham, Bronwyn M; Zagic, Dino; Richardson, Rick

    2017-10-15

    Hippocampal concentrations of the neurotrophic factor fibroblast growth factor 2 (FGF2) are negatively associated with the expression of fear following conditioning in rats. Heightened conditioned fear expression may be a prospective risk factor for the development of human anxiety and trauma disorders. However, the relationship between conditioned fear expression and FGF2 is yet to be established in humans. Using a cross-species approach, we first investigated the relationship between serum concentrations of FGF2 and individual differences in conditioned fear expression in rats (n = 19). We then subjected 88 human participants, who were recruited from university and community advertisements, to a differential fear conditioning procedure and assessed the relationship between salivary concentrations of FGF2 and fear expression to a conditioned stimulus (CS) (a stimulus paired with a shock) and a CS that was never paired with shock. Rats with low serum levels of FGF2 exhibited significantly more freezing than rats with high serum levels of FGF2. Similarly, relative to those with high salivary FGF2, human participants with low salivary FGF2 exhibited significantly heightened skin conductance responses to the CS without shock during fear conditioning and to both the CS with shock and CS without shock during fear recall. These studies establish that peripheral markers of FGF2 concentrations are negatively associated with fear expression in both rats and humans. To the extent that conditioned fear expression predicts anxiety and trauma disorder vulnerability, FGF2 may be a clinically useful biomarker in the prediction and eventual prevention of these disorders. Copyright © 2017 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  3. Orf virus interleukin-10 and vascular endothelial growth factor-E modulate gene expression in cultured equine dermal fibroblasts.

    Science.gov (United States)

    Wise, Lyn M; Bodaan, Christa J; Mercer, Andrew A; Riley, Christopher B; Theoret, Christine L

    2016-10-01

    Wounds in horses often exhibit sustained inflammation and inefficient vascularization, leading to excessive fibrosis and clinical complications such as "proud flesh". Orf virus-derived proteins, vascular endothelial growth factor (VEGF)-E and interleukin (ovIL)-10, enhance angiogenesis and control inflammation and fibrosis in skin wounds of laboratory animals. The study aimed to determine if equine dermal cells respond to VEGF-E and ovIL-10. Equine dermal cells are expected to express VEGF and IL-10 receptors, so viral protein treatment is likely to alter cellular gene expression and behaviour in a manner conducive to healing. Skin samples were harvested from the lateral thoracic wall of two healthy thoroughbred horses. Equine dermal cells were isolated using a skin explant method and their phenotype assessed by immunofluorescence. Cells were treated with recombinant proteins, with or without inflammatory stimuli. Gene expression was examined using standard and quantitative reverse transcriptase PCR. Cell behaviour was evaluated in a scratch assay. Cultured cells were half vimentin(+ve) fibroblasts and half alpha smooth muscle actin(+ve) and vimentin(+ve) myofibroblasts. VEGF-E increased basal expression of IL-10 mRNA, whereas VEGF-A and collagenase-1 mRNA expression was increased by ovIL-10. In cells exposed to inflammatory stimulus, both treatments dampened tumour necrosis factor mRNA expression, and ovIL-10 exacerbated expression of monocyte chemoattractant protein. Neither viral protein influenced cell migration greatly. This study shows that VEGF-E and ovIL-10 are active on equine dermal cells and exert anti-inflammatory and anti-fibrotic effects that may enhance skin wound healing in horses. © 2016 ESVD and ACVD.

  4. The Effect of Botulinum Toxin Type A on Expression Profiling of Long Noncoding RNAs in Human Dermal Fibroblasts

    Directory of Open Access Journals (Sweden)

    Ying-ying Miao

    2017-01-01

    Full Text Available Objective. This study was aimed at analyzing the expressions of long noncoding RNAs (lncRNAs in Botulinum Toxin Type A (BoNTA treated human dermal fibroblasts (HDFs in vitro. Methods. We used RNA sequencing to characterize the lncRNAs and mRNAs transcriptome in the control and BoNTA treated group, in conjunction with application of GO (gene ontology analysis and KEGG (kyoto encyclopedia of genes and genomes analysis to delineate the alterations in gene expression. We also obtained quantitative real time polymerase chain reaction (qRT-PCR to confirm some differentially expressed genes. Results. Numerous differentially expressed genes were observed by microarrays between the two groups. qRT-PCR confirmed the changes of six lncRNAs (RP11-517C16.2-001, FR271872, LOC283352, RP11-401E9.3, FGFR3P, and XXbac-BPG16N22.5 and nine mRNAs (NOS2, C13orf15, FOS, FCN2, SPINT1, PLAC8, BIRC5, NOS2, and COL19A1. Farther studies indicated that the downregulating effect of BoNTA on the expression of FGFR3P was time-related and the dosage of BoNTA at a range from 2.5 U/106 cells to 7.5 U/106 cells increased the expression of FGFR3P and COL19A1 in HDFs as well. Conclusion. The expression profiling of lncRNAs was visibly changed in BoNTA treated HDFs. Further studies should focus on several lncRNAs to investigate their functions in BoNTA treated HDFs and the underlying mechanisms.

  5. Aspirin suppresses cardiac fibroblast proliferation and collagen formation through downregulation of angiotensin type 1 receptor transcription

    International Nuclear Information System (INIS)

    Wang, Xianwei; Lu, Jingjun; Khaidakov, Magomed; Mitra, Sona; Ding, Zufeng; Raina, Sameer; Goyal, Tanu; Mehta, Jawahar L.

    2012-01-01

    Aspirin (acetyl salicylic acid, ASA) is a common drug used for its analgesic and antipyretic effects. Recent studies show that ASA not only blocks cyclooxygenase, but also inhibits NADPH oxidase and resultant reactive oxygen species (ROS) generation, a pathway that underlies pathogenesis of several ailments, including hypertension and tissue remodeling after injury. In these disease states, angiotensin II (Ang II) activates NADPH oxidase via its type 1 receptor (AT1R) and leads to fibroblast growth and collagen synthesis. In this study, we examined if ASA would inhibit NADPH oxidase activation, upregulation of AT1R transcription, and subsequent collagen generation in mouse cardiac fibroblasts challenged with Ang II. Mouse heart fibroblasts were isolated and treated with Ang II with or without ASA. As expected, Ang II induced AT1R expression, and stimulated cardiac fibroblast growth and collagen synthesis. The AT1R blocker losartan attenuated these effects of Ang II. Similarly to losartan, ASA, and its SA moiety suppressed Ang II-mediated AT1R transcription and fibroblast proliferation as well as expression of collagens and MMPs. ASA also suppressed the expression of NADPH oxidase subunits (p22 phox , p47 phox , p67 phox , NOX2 and NOX4) and ROS generation. ASA did not affect total NF-κB p65, but inhibited its phosphorylation and activation. These observations suggest that ASA inhibits Ang II-induced NADPH oxidase expression, NF-κB activation and AT1R transcription in cardiac fibroblasts, and fibroblast proliferation and collagen expression. The critical role of NADPH oxidase activity in stimulation of AT1R transcription became apparent in experiments where ASA also inhibited AT1R transcription in cardiac fibroblasts challenged with H 2 O 2 . Since SA had similar effect as ASA on AT1R expression, we suggest that ASA's effect is mediated by its SA moiety. -- Highlights: ► Aspirin in therapeutic concentrations decreases mouse cardiac fibroblast growth and collagen

  6. Aspirin suppresses cardiac fibroblast proliferation and collagen formation through downregulation of angiotensin type 1 receptor transcription

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xianwei, E-mail: XWang2@UAMS.edu; Lu, Jingjun; Khaidakov, Magomed; Mitra, Sona; Ding, Zufeng; Raina, Sameer; Goyal, Tanu; Mehta, Jawahar L., E-mail: MehtaJL@UAMS.edu

    2012-03-15

    Aspirin (acetyl salicylic acid, ASA) is a common drug used for its analgesic and antipyretic effects. Recent studies show that ASA not only blocks cyclooxygenase, but also inhibits NADPH oxidase and resultant reactive oxygen species (ROS) generation, a pathway that underlies pathogenesis of several ailments, including hypertension and tissue remodeling after injury. In these disease states, angiotensin II (Ang II) activates NADPH oxidase via its type 1 receptor (AT1R) and leads to fibroblast growth and collagen synthesis. In this study, we examined if ASA would inhibit NADPH oxidase activation, upregulation of AT1R transcription, and subsequent collagen generation in mouse cardiac fibroblasts challenged with Ang II. Mouse heart fibroblasts were isolated and treated with Ang II with or without ASA. As expected, Ang II induced AT1R expression, and stimulated cardiac fibroblast growth and collagen synthesis. The AT1R blocker losartan attenuated these effects of Ang II. Similarly to losartan, ASA, and its SA moiety suppressed Ang II-mediated AT1R transcription and fibroblast proliferation as well as expression of collagens and MMPs. ASA also suppressed the expression of NADPH oxidase subunits (p22{sup phox}, p47{sup phox}, p67{sup phox}, NOX2 and NOX4) and ROS generation. ASA did not affect total NF-κB p65, but inhibited its phosphorylation and activation. These observations suggest that ASA inhibits Ang II-induced NADPH oxidase expression, NF-κB activation and AT1R transcription in cardiac fibroblasts, and fibroblast proliferation and collagen expression. The critical role of NADPH oxidase activity in stimulation of AT1R transcription became apparent in experiments where ASA also inhibited AT1R transcription in cardiac fibroblasts challenged with H{sub 2}O{sub 2}. Since SA had similar effect as ASA on AT1R expression, we suggest that ASA's effect is mediated by its SA moiety. -- Highlights: ► Aspirin in therapeutic concentrations decreases mouse cardiac

  7. Inhibition of Cyclooxygenase-2 Prevents Chronic and Recurrent Cystitis

    Directory of Open Access Journals (Sweden)

    Thomas J. Hannan

    2014-11-01

    Full Text Available The spread of multidrug-resistant microorganisms globally has created an urgent need for novel therapeutic strategies to combat urinary tract infections (UTIs. Immunomodulatory therapy may provide benefit, as treatment of mice with dexamethasone during acute UTI improved outcome by reducing the development of chronic cystitis, which predisposes to recurrent infection. Here we discovered soluble biomarkers engaged in myeloid cell development and chemotaxis that were predictive of future UTI recurrence when elevated in the sera of young women with UTI. Translation of these findings revealed that temperance of the neutrophil response early during UTI, and specifically disruption of bladder epithelial transmigration of neutrophils by inhibition of cyclooxygenase-2, protected mice against chronic and recurrent cystitis. Further, proteomics identified bladder epithelial remodeling consequent to chronic infection that enhances sensitivity to neutrophil damage. Thus, cyclooxygenase-2 expression during acute UTI is a critical molecular trigger determining disease outcome and drugs targeting cyclooxygenase-2 could prevent recurrent UTI.

  8. Effects of fibroblast growth factor-2 on the expression and regulation of chemokines in human dental pulp cells.

    Science.gov (United States)

    Kim, Young-Suk; Min, Kyung-San; Jeong, Dong-Ho; Jang, Jun-Hyeog; Kim, Hae-Won; Kim, Eun-Cheol

    2010-11-01

    Fibroblast growth factor-2 (FGF-2) participates in both hematopoiesis and osteogenesis; however, the effects of FGF-2 on chemokines during odontoblastic differentiation have not been reported. This study investigated whether human dental pulp cells (HDPCs) treated with FGF-2 could express chemokines during differentiation into odontoblastic cells and sought to identify its underlying mechanism of action. To analyze differentiation, we measured alkaline phosphatase (ALP) activity, calcified nodule formation by alizarin red staining, and marker RNA (mRNA) expression by reverse-transcriptase polymerase chain reaction (RT-PCR). Expression of chemokines, such as interleukin-6 (IL-6), IL-8, monocyte chemoattractant protein-1 (MCP-1), macrophage inflammatory protein-1α (MIP-1α), and MIP-3α, were evaluated by RT-PCR. ALP activity, the mineralization, and mRNA expression for odontoblastic markers were enhanced by FGF-2 in HDPCs. FGF-2 also up-regulated the expression of IL-6, IL-8, MCP-1, MIP-1α, and MIP-3α mRNAs, which were attenuated by inhibitors of p38, ERK1/2 and p38 MAP kinases, protein kinase C, phosphoinositide-3 kinase, and NF-κB. Taken together, these data suggest that FGF-2 plays a role not only as a differentiation inducing factor in the injury repair processes of pulpal tissue but also as a positive regulator of chemokine expression, which may help in tissue engineering and pulp regeneration using HDPCs. However, the fate of odontoblastic or osteoblastic differentiation, effective local delivery for FGF-2, interaction of chemotatic and odontogenic factors, and other limitations will need to be overcome before a major modality for the treatment of pulp disease. Copyright © 2010 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  9. TEM1 expression in cancer-associated fibroblasts is correlated with a poor prognosis in patients with gastric cancer

    International Nuclear Information System (INIS)

    Fujii, Satoshi; Fujihara, Ayano; Natori, Kei; Abe, Anna; Kuboki, Yasutoshi; Higuchi, Youichi; Aizawa, Masaki; Kuwata, Takeshi; Kinoshita, Takahiro; Yasui, Wataru; Ochiai, Atsushi

    2015-01-01

    The cancer stroma, including cancer-associated fibroblasts (CAFs), is known to contribute to cancer cell progression and metastasis, suggesting that functional proteins expressed specifically in CAFs might be candidate molecular targets for cancer treatment. The purpose of the present study was to explore the possibility of using TEM1 (tumor endothelial marker 1), which is known to be expressed in several types of mesenchymal cells, as a molecular target by examining the impact of TEM1 expression on clinicopathological factors in gastric cancer patients. A total of 945 consecutive patients with gastric cancer who underwent surgery at the National Cancer Center Hospital East between January 2003 and July 2007 were examined using a tissue microarray approach. TEM1 expression in CAFs or vessel-associated cells was determined using immunohistochemical staining. Three items (CAF-TEM1-positivity, CAF-TEM1-intensity, and vessel-TEM1-intensity) were then examined to determine the correlations between the TEM1 expression status and the recurrence-free survival (RFS), overall survival (OS), cancer-related survival (COS), and other clinicopathological factors. Significant correlations between CAF-TEM1-positivity or CAF-TEM1-intensity and RFS, OS, or COS were observed (P < 0.001, Kaplan–Meier curves); however, no significant correlation between vessel-TEM1-intensity and RFS, OS, or COS was observed. A univariate analysis showed that CAF-TEM1-positivity and CAF-TEM1-intensity were each correlated with a scirrhous subtype, tumor depth, nodal status, distant metastasis, serosal invasion, lymphatic or venous vessel infiltrations, and pTMN stage. This study suggests that the inhibition of TEM1 expression specifically in the CAFs of gastric carcinoma might represent a new strategy for the treatment of gastric cancer

  10. Podoplanin Expression in Cancer-associated Fibroblasts Predicts Poor Prognosis in Patients with Squamous Cell Carcinoma of the Lung.

    Science.gov (United States)

    Yurugi, Yohei; Wakahara, Makoto; Matsuoka, Yuki; Sakabe, Tomohiko; Kubouchi, Yasuaki; Haruki, Tomohiro; Nosaka, Kanae; Miwa, Ken; Araki, Kunio; Taniguchi, Yuji; Shiomi, Tatsushi; Nakamura, Hiroshige; Umekita, Yoshihisa

    2017-01-01

    Podoplanin is a candidate cancer stem cell marker in squamous cell carcinoma (SCC). Several studies have reported the prognostic value of podoplanin expression in tumor cells in lung SCC but few have focused on its expression in cancer-associated fibroblasts (CAFs). The aim of this study was to analyze the prognostic significance of podoplanin expression, with special reference to the expression pattern in both tumor cells and CAFs. Immunohistochemical analyses using anti-podoplanin antibody were performed on 126 resected specimens of lung SCC. When more than 10% of tumor cells or CAFs showed immunoreactivity with podoplanin levels as strong as those of the positive controls, the specimens were classified as a podoplanin-positive. Podoplanin-positive status in tumor cells (n=54) was correlated with a lower incidence of lymphatic invasion (p=0.031) but there were no significant differences in disease-free survival (DFS) and disease-specific survival (DSS) by the log-rank test. Podoplanin-positive status in CAFs (n=41) was correlated with more advanced stage (p=0.008), higher frequency of pleural invasion (p=0.002) and both shorter DFS (p=0.006) and DSS (p=0.006). In Cox's multivariate analysis, podoplanin-positive status in CAFs was an independent negative prognostic factor for DFS (p=0.027) and DSS (p=0.027). Podoplanin expression in CAFs might be an independent unfavorable prognostic indicator in patients with lung SCC, irrespective of the expression status of tumor cells. Copyright© 2017 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  11. Further statistical analysis for genome-wide expression evolution in primate brain/liver/fibroblast tissue

    Directory of Open Access Journals (Sweden)

    Gu Jianying

    2004-05-01

    Full Text Available Abstract In spite of only a 1-2 per cent genomic DNA sequence difference, humans and chimpanzees differ considerably in behaviour and cognition. Affymetrix microarray technology provides a novel approach to addressing a long-term debate on whether the difference between humans and chimpanzees results from the alteration of gene expressions. Here, we used several statistical methods (distance method, two-sample t-tests, regularised t-tests, ANOVA and bootstrapping to detect the differential expression pattern between humans and great apes. Our analysis shows that the pattern we observed before is robust against various statistical methods; that is, the pronounced expression changes occurred on the human lineage after the split from chimpanzees, and that the dramatic brain expression alterations in humans may be mainly driven by a set of genes with increased expression (up-regulated rather than decreased expression (down-regulated.

  12. mRNA expression of genes involved in inflammation and haemostasis in equine fibroblast-like synoviocytes following exposure to lipopolysaccharide, fibrinogen and thrombin

    DEFF Research Database (Denmark)

    Andreassen, Stine Mandrup; Berg, Lise Charlotte; Nielsen, Søren Saxmose

    2015-01-01

    Background: Studies in humans have shown that haemostatic and inflammatory pathways both play important roles in the pathogenesis of joint disease. The aim of this study was to assess mRNA expression of haemostatic and inflammatory factors in cultured equine fibroblast-like synoviocytes exposed t...

  13. Transcriptional Profiling of Host Gene Expression in Chicken Embryo Fibroblasts Infected with Reticuloendotheliosis Virus Strain HA1101.

    Directory of Open Access Journals (Sweden)

    Ji Miao

    Full Text Available Reticuloendotheliosis virus (REV, a member of the Gammaretrovirus genus in the Retroviridae family, causes an immunosuppressive, oncogenic and runting-stunting syndrome in multiple avian hosts. To better understand the host interactions at the transcriptional level, microarray data analysis was performed in chicken embryo fibroblast cells at 1, 3, 5, and 7 days after infection with REV. This study identified 1,785 differentially expressed genes that were classified into several functional groups including signal transduction, immune response, biological adhesion and endocytosis. Significant differences were mainly observed in the expression of genes involved in the immune response, especially during the later post-infection time points. These results revealed that differentially expressed genes IL6, STAT1, MyD88, TLRs, NF-κB, IRF-7, and ISGs play important roles in the pathogenicity of REV infection. Our study is the first to use microarray analysis to investigate REV, and these findings provide insights into the underlying mechanisms of the host antiviral response and the molecular basis of viral pathogenesis.

  14. Stable suppression of myostatin gene expression in goat fetal fibroblast cells by lentiviral vector-mediated RNAi.

    Science.gov (United States)

    Patel, Utsav A; Patel, Amrutlal K; Joshi, Chaitanya G

    2015-01-01

    Myostatin (MSTN) is a secreted growth factor that negatively regulates skeletal muscle mass, and therefore, strategies to block myostatin-signaling pathway have been extensively pursued to increase the muscle mass in livestock. Here, we report a lentiviral vector-based delivery of shRNA to disrupt myostatin expression into goat fetal fibroblasts (GFFs) that were commonly used as karyoplast donors in somatic-cell nuclear transfer (SCNT) studies. Sh-RNA positive cells were screened by puromycin selection. Using real-time polymerase chain reaction (PCR), we demonstrated efficient knockdown of endogenous myostatin mRNA with 64% down-regulation in sh2 shRNA-treated GFF cells compared to GFF cells treated by control lentivirus without shRNA. Moreover, we have also demonstrated both the induction of interferon response and the expression of genes regulating myogenesis in GFF cells. The results indicate that myostatin-targeting siRNA produced endogenously could efficiently down-regulate myostatin expression. Therefore, targeted knockdown of the MSTN gene using lentivirus-mediated shRNA transgenics would facilitate customized cell engineering, allowing potential use in the establishment of stable cell lines to produce genetically engineered animals. © 2014 American Institute of Chemical Engineers.

  15. Expression of the stem cell factor in fibroblasts, endothelial cells, and macrophages in periapical tissues in human chronic periapical diseases.

    Science.gov (United States)

    Shen, S Q; Wang, R; Huang, S G

    2017-03-08

    Stem cell factor (SCF), an important stem cell cytokine, has multiple functions. Fibroblasts (FBs), mature mast cells, endothelial cells (ECs), and eosinophil granulocytes can produce SCF in the inflammatory process. Therefore, we aimed to observe SCF expression in FBs, ECs, and macrophages (MPs) in periapical tissues in human chronic periapical disease and investigate the effects of cells expressing SCF in pathogenesis of the disease. Healthy (N = 20), periapical cyst (N = 15), and periapical granuloma (N = 15) tissues were fixed in 10% formalin for 48 h, embedded in paraffin, and stained with hematoxylin and eosin to observe histological changes. SCF expression was observed in FBs, ECs, and MPs in periapical tissues by double immunofluorescence. CD334, CD31, and CD14 are specific markers of FBs, ECs, and MPs, respectively. Results showed that densities of CD334-SCF double-positive FBs, CD31-SCF double-positive ECs, and CD14-SCF double-positive MPs were significantly increased in periapical tissue groups (P periapical tissue groups (P > 0.05). CD14-SCF double-positive MP density was considerably higher in periapical granulomas than in cysts (P periapical tissues, suggesting that the cells might be related to occurrence, development, and pathogenesis of chronic periapical disease.

  16. Changes in the gene expression of co-cultured human fibroblast cells and osteosarcoma cells: the role of microenvironment.

    Science.gov (United States)

    Salvatore, Viviana; Focaroli, Stefano; Teti, Gabriella; Mazzotti, Antonio; Falconi, Mirella

    2015-10-06

    The progression of malignant tumors does not depend exclusively on the autonomous properties of cancer cells; it is also influenced by tumor stroma reactivity and is under strict microenvironmental control. By themselves, stromal cells are not malignant, and they maintain normal tissue structure and function. However, through intercellular interactions or by paracrine secretions from cancer cells, normal stromal cells acquire abnormal phenotypes that sustain cancer cell growth and tumor progression. In their dysfunctional state, fibroblast and immune cells produce chemokines and growth factors that stimulate cancer cell growth and invasion. In our previous work, we established an in vitro model based on a monolayer co-culture system of healthy human fibroblasts (HFs) and human osteosarcoma cells (the MG-63 cell line) that simulates the microenvironment of tumor cells and healthy cells. The coexistence between MG-63 cells and HFs allowed us to identify the YKL-40 protein as the main marker for verifying the influence of tumor cells grown in contact with healthy cells. In this study, we evaluated the interactions of HFs and MG-63 cells in a transwell co-culture system over 24 h, 48 h, 72 h, and 96 h. We analyzed the contributions of these populations to the tumor microenvironment during cancer progression, as measured by multiple markers. We examined the effect of siRNA knockdown of YKL-40 by tracking the subsequent changes in gene expression within the co-culture. We validated the expression of several genes, focusing on those involved in cancer cell invasion, inflammatory responses, and angiogenesis: TNF alpha, IL-6, MMP-1, MMP-9, and VEGF. We compared the results to those from a transwell co-culture without the YKL-40 knockdown. In a pro-inflammatory environment promoted by TNF alpha and IL-6, siRNA knockdown of YKL-40 caused a down-regulation of VEGF and MMP-1 expression in HFs. These findings demonstrated that the tumor microenvironment has an influence on the

  17. Expression of intracellular interferon-alpha confers antiviral properties in transfected bovine fetal fibroblasts and does not affect the full development of SCNT embryos.

    Directory of Open Access Journals (Sweden)

    Dawei Yu

    Full Text Available Foot-and-mouth disease, one of the most significant diseases of dairy herds, has substantial effects on farm economics, and currently, disease control measures are limited. In this study, we constructed a vector with a human interferon-α (hIFN-α (without secretory signal sequence gene cassette containing the immediate early promoter of human cytomegalovirus. Stably transfected bovine fetal fibroblasts were obtained by G418 selection, and hIFN-α transgenic embryos were produced by somatic cell nuclear transfer (SCNT. Forty-six transgenic embryos were transplanted into surrogate cows, and five cows (10.9% became pregnant. Two male cloned calves were born. Expression of hIFN-α was detected in transfected bovine fetal fibroblasts, transgenic SCNT embryos, and different tissues from a transgenic SCNT calf at two days old. In transfected bovine fetal fibroblasts, expression of intracellular IFN-α induced resistance to vesicular stomatitis virus infection, increased apoptosis, and induced the expression of double-stranded RNA-activated protein kinase gene (PKR and the 2'-5'-oligoadenylate synthetase gene (2'-5' OAS, which are IFN-inducible genes with antiviral activity. Analysis by qRT-PCR showed that the mRNA expression levels of PKR, 2'-5' OAS, and P53 were significantly increased in wild-type bovine fetal fibroblasts stimulated with extracellular recombinant human IFN-α-2b, showing that intracellular IFN-α induces biological functions similar to extracellular IFN-α. In conclusion, expression of intracellular hIFN-α conferred antiviral properties in transfected bovine fetal fibroblasts and did not significantly affect the full development of SCNT embryos. Thus, IFN-α transgenic technology may provide a revolutionary way to achieve elite breeding of livestock.

  18. Regulation of early signaling and gene expression in the α-particle and bystander response of IMR-90 human fibroblasts

    Directory of Open Access Journals (Sweden)

    Hei Tom K

    2010-07-01

    Full Text Available Abstract Background The existence of a radiation bystander effect, in which non-irradiated cells respond to signals from irradiated cells, is well established. To understand early signaling and gene regulation in bystander cells, we used a bio-informatics approach, measuring global gene expression at 30 minutes and signaling pathways between 30 minutes and 4 hours after exposure to α-particles in IMR-90 fibroblasts. Methods We used whole human genome microarrays and real time quantitative PCR to measure and validate gene expression. Microarray analysis was done using BRB-Array Tools; pathway and ontology analyses were done using Ingenuity Pathway Analysis and PANTHER, respectively. We studied signaling in irradiated and bystander cells using immunoblotting and semi-quantitative image analysis. Results Gene ontology suggested signal transduction and transcriptional regulation responding 30 minutes after treatment affected cell structure, motility and adhesion, and interleukin synthesis. We measured time-dependent expression of genes controlled by the NF-κB pathway; matrix metalloproteinases 1 and 3; chemokine ligands 2, 3 and 5 and interleukins 1β, 6 and 33. There was an increased response of this set of genes 30 minutes after treatment and another wave of induction at 4 hours. We investigated AKT-GSK3β signaling and found both AKT and GSK3β are hyper-phosphorylated 30 minutes after irradiation and this effect is maintained through 4 hours. In bystander cells, a similar response was seen with a delay of 30 minutes. We proposed a network model where the observed decrease in phosphorylation of β-catenin protein after GSK3β dependent inactivation can trigger target gene expression at later times after radiation exposure Conclusions These results are the first to show that the radiation induced bystander signal induces a widespread gene expression response at 30 minutes after treatment and these changes are accompanied by modification of

  19. The Janus kinase inhibitor tofacitinib inhibits TNF-α-induced gliostatin expression in rheumatoid fibroblast-like synoviocytes.

    Science.gov (United States)

    Kawaguchi, Yohei; Waguri-Nagaya, Yuko; Tatematsu, Naoe; Oguri, Yusuke; Kobayashi, Masaaki; Nozaki, Masahiro; Asai, Kiyofumi; Aoyama, Mineyoshi; Otsuka, Takanobu

    2018-01-15

    Gliostatin (GLS) is known to have angiogenic and arthritogenic activity, and GLS expression levels in serum from patients with rheumatoid arthritis (RA) are significantly correlated with the disease activity. Tofacitinib is a novel oral Janus kinase (JAK) inhibitor and is effective in treating RA. However, the mechanism of action of tofacitinib in fibroblast-like synoviocytes (FLSs) has not been elucidated. The purpose of this study was to investigate the modulatory effects of tofacitinib on serum GLS levels in patients with RA and GLS production in FLSs derived from patients with RA. Six patients with RA who had failed therapy with at least one TNF inhibitor and were receiving tofacitinib therapy were included in the study. Serum samples were collected to measure CRP, MMP-3 and GLS expression. FLSs derived from patients with RA were cultured and stimulated by TNFα with or without tofacitinib. GLS expression levels were determined using reverse transcription-polymerase chain reaction (RT-PCR), EIA and immunocytochemistry, and signal transducer and activator of transcription (STAT) protein phosphorylation levels were determined by western blotting. Treatment with tofacitinib decreased serum GLS levels in all patients. GLS mRNA and protein expression levels were significantly increased by treatment with TNF-α alone, and these increases were suppressed by treatment with tofacitinib, which also inhibited TNF-α-induced STAT1 phosphorylation. JAK/STAT activation plays a pivotal role in TNF-α-mediated GLS up-regulation in RA. Suppression of GLS expression in FLSs has been suggested to be one of the mechanisms through which tofacitinib exerts its anti-inflammatory effects.

  20. In normal human fibroblasts variation in DSB repair capacity cannot be ascribed to radiation-induced changes in the localisation, expression or activity of major NHEJ proteins

    DEFF Research Database (Denmark)

    Kasten-Pisula, Ulla; Vronskaja, Svetlana; Overgaard, Jens

    2008-01-01

    in the activity of the DNA-PK complex induced upon irradiation. CONCLUSIONS: For normal human fibroblasts, the level or activity of NHEJ proteins measured prior to or after irradiation cannot be used to predict the DSB repair capacity or cellular radiosensitivity. Udgivelsesdato: 2008-Mar......BACKGROUND AND PURPOSE: The aim of the present study was to test whether for normal human fibroblasts the variation in double-strand break (DSB) repair capacity results from radiation-induced differences in localisation, expression or activity of major non-homologous end-joining (NHEJ) proteins....... MATERIALS AND METHODS: Experiments were performed with 11 normal human fibroblast strains AF01-11. NHEJ proteins were determined by Western blot and DNA-PK activity by pulldown-assay. RESULTS: The four NHEJ proteins tested (Ku70, Ku80, XRCC4 and DNA-PKcs) were found to be localised almost exclusively...

  1. Relative Expression of Vitamin D Hydroxylases, CYP27B1 and CYP24A1, and of Cyclooxygenase-2 and Heterogeneity of Human Colorectal Cancer in Relation to Age, Gender, Tumor Location, and Malignancy: Results from Factor and Cluster Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Brozek, Wolfgang, E-mail: wolfgang.brozek@gmx.at; Manhardt, Teresa; Kállay, Enikö; Peterlik, Meinrad; Cross, Heide S. [Department of Pathophysiology, Medical University of Vienna, Waehringer Guertel 18-20, A-1090 Vienna (Austria)

    2012-07-26

    Previous studies on the significance of vitamin D insufficiency and chronic inflammation in colorectal cancer development clearly indicated that maintenance of cellular homeostasis in the large intestinal epithelium requires balanced interaction of 1,25-(OH){sub 2}D{sub 3} and prostaglandin cellular signaling networks. The present study addresses the question how colorectal cancer pathogenesis depends on alterations of activities of vitamin D hydroxylases, i.e., CYP27B1-encoded 25-hydroxyvitamin D-1α-hydroxylase and CYP24A1-encoded 25-hydroxyvitamin D-24-hydroxylase, and inflammation-induced cyclooxygenase-2 (COX-2). Data from 105 cancer patients on CYP27B1, VDR, CYP24A1, and COX-2 mRNA expression in relation to tumor grade, anatomical location, gender and age were fit into a multivariate model of exploratory factor analysis. Nearly identical results were obtained by the principal factor and the maximum likelihood method, and these were confirmed by hierarchical cluster analysis: Within the eight mutually dependent variables studied four independent constellations were found that identify different features of colorectal cancer pathogenesis: (i) Escape of COX-2 activity from restraints by the CYP27B1/VDR system can initiate cancer growth anywhere in the colorectum regardless of age and gender; (ii) variations in COX-2 expression are mainly responsible for differences in cancer incidence in relation to tumor location; (iii) advancing age has a strong gender-specific influence on cancer incidence; (iv) progression from well differentiated to undifferentiated cancer is solely associated with a rise in CYP24A1 expression.

  2. Relative Expression of Vitamin D Hydroxylases, CYP27B1 and CYP24A1, and of Cyclooxygenase-2 and Heterogeneity of Human Colorectal Cancer in Relation to Age, Gender, Tumor Location, and Malignancy: Results from Factor and Cluster Analysis

    International Nuclear Information System (INIS)

    Brozek, Wolfgang; Manhardt, Teresa; Kállay, Enikö; Peterlik, Meinrad; Cross, Heide S.

    2012-01-01

    Previous studies on the significance of vitamin D insufficiency and chronic inflammation in colorectal cancer development clearly indicated that maintenance of cellular homeostasis in the large intestinal epithelium requires balanced interaction of 1,25-(OH) 2 D 3 and prostaglandin cellular signaling networks. The present study addresses the question how colorectal cancer pathogenesis depends on alterations of activities of vitamin D hydroxylases, i.e., CYP27B1-encoded 25-hydroxyvitamin D-1α-hydroxylase and CYP24A1-encoded 25-hydroxyvitamin D-24-hydroxylase, and inflammation-induced cyclooxygenase-2 (COX-2). Data from 105 cancer patients on CYP27B1, VDR, CYP24A1, and COX-2 mRNA expression in relation to tumor grade, anatomical location, gender and age were fit into a multivariate model of exploratory factor analysis. Nearly identical results were obtained by the principal factor and the maximum likelihood method, and these were confirmed by hierarchical cluster analysis: Within the eight mutually dependent variables studied four independent constellations were found that identify different features of colorectal cancer pathogenesis: (i) Escape of COX-2 activity from restraints by the CYP27B1/VDR system can initiate cancer growth anywhere in the colorectum regardless of age and gender; (ii) variations in COX-2 expression are mainly responsible for differences in cancer incidence in relation to tumor location; (iii) advancing age has a strong gender-specific influence on cancer incidence; (iv) progression from well differentiated to undifferentiated cancer is solely associated with a rise in CYP24A1 expression

  3. Gene expression profiling in human fibroblast after low-LET irradiation

    Data.gov (United States)

    National Aeronautics and Space Administration — Exposure to radiation provokes cellular responses controlled in part by gene expression networks. MicroRNAs (miRNAs) are small non-coding RNAs which mostly regulate...

  4. Transient gene expression profile changes of confluent human fibroblast cells in spaceflight

    Data.gov (United States)

    National Aeronautics and Space Administration — Microgravity or an altered gravity environment from the static 1g has been shown to influence global gene expression patterns and protein levels in cultured cells or...

  5. Ethanol enhances arsenic-induced cyclooxygenase-2 expression via both NFAT and NF-κB signalings in colorectal cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Lei; Hitron, John Andrew [Center for Research on Environmental Disease, College of Medicine, University of Kentucky, Lexington, KY 40536 (United States); Toxicology and Cancer Biology, College of Medicine, University of Kentucky, Lexington, KY 40536 (United States); Wise, James T.F. [Pharmacology and Nutritional Sciences, College of Medicine, University of Kentucky, Lexington, KY 40536 (United States); Son, Young-Ok; Roy, Ram Vinod [Center for Research on Environmental Disease, College of Medicine, University of Kentucky, Lexington, KY 40536 (United States); Toxicology and Cancer Biology, College of Medicine, University of Kentucky, Lexington, KY 40536 (United States); Kim, Donghern; Dai, Jin [Toxicology and Cancer Biology, College of Medicine, University of Kentucky, Lexington, KY 40536 (United States); Pratheeshkumar, Poyil [Center for Research on Environmental Disease, College of Medicine, University of Kentucky, Lexington, KY 40536 (United States); Toxicology and Cancer Biology, College of Medicine, University of Kentucky, Lexington, KY 40536 (United States); Zhang, Zhuo [Toxicology and Cancer Biology, College of Medicine, University of Kentucky, Lexington, KY 40536 (United States); Xu, Mei; Luo, Jia [Pharmacology and Nutritional Sciences, College of Medicine, University of Kentucky, Lexington, KY 40536 (United States); Shi, Xianglin, E-mail: xshi5@uky.edu [Center for Research on Environmental Disease, College of Medicine, University of Kentucky, Lexington, KY 40536 (United States); Toxicology and Cancer Biology, College of Medicine, University of Kentucky, Lexington, KY 40536 (United States)

    2015-10-15

    Arsenic is a known carcinogen to humans, and chronic exposure to environmental arsenic is a worldwide health concern. As a dietary factor, ethanol carries a well-established risk for malignancies, but the effects of co-exposure to arsenic and ethanol on tumor development are not well understood. In the present study, we hypothesized that ethanol would enhance the function of an environmental carcinogen such as arsenic through increase in COX-2 expression. Our in vitro results show that ethanol enhanced arsenic-induced COX-2 expression. We also show that the increased COX-2 expression associates with intracellular ROS generation, up-regulated AKT signaling, with activation of both NFAT and NF-κB pathways. We demonstrate that antioxidant enzymes have an inhibitory effect on arsenic/ethanol-induced COX-2 expression, indicating that the responsive signaling pathways from co-exposure to arsenic and ethanol relate to ROS generation. In vivo results also show that co-exposure to arsenic and ethanol increased COX-2 expression in mice. We conclude that ethanol enhances arsenic-induced COX-2 expression in colorectal cancer cells via both the NFAT and NF-κB pathways. These results imply that, as a common dietary factor, ethanol ingestion may be a compounding risk factor for arsenic-induced carcinogenesis/cancer development. - Highlights: • Arsenic is able to induce Cox-2 expression in colorectal cancer cells. • Ethanol, a diet nutritional factor, could enhance arsenic-induced Cox-2. • The up-regulation of Cox-2 via both NFAT and NF-κB activities.

  6. Ethanol enhances arsenic-induced cyclooxygenase-2 expression via both NFAT and NF-κB signalings in colorectal cancer cells

    International Nuclear Information System (INIS)

    Wang, Lei; Hitron, John Andrew; Wise, James T.F.; Son, Young-Ok; Roy, Ram Vinod; Kim, Donghern; Dai, Jin; Pratheeshkumar, Poyil; Zhang, Zhuo; Xu, Mei; Luo, Jia; Shi, Xianglin

    2015-01-01

    Arsenic is a known carcinogen to humans, and chronic exposure to environmental arsenic is a worldwide health concern. As a dietary factor, ethanol carries a well-established risk for malignancies, but the effects of co-exposure to arsenic and ethanol on tumor development are not well understood. In the present study, we hypothesized that ethanol would enhance the function of an environmental carcinogen such as arsenic through increase in COX-2 expression. Our in vitro results show that ethanol enhanced arsenic-induced COX-2 expression. We also show that the increased COX-2 expression associates with intracellular ROS generation, up-regulated AKT signaling, with activation of both NFAT and NF-κB pathways. We demonstrate that antioxidant enzymes have an inhibitory effect on arsenic/ethanol-induced COX-2 expression, indicating that the responsive signaling pathways from co-exposure to arsenic and ethanol relate to ROS generation. In vivo results also show that co-exposure to arsenic and ethanol increased COX-2 expression in mice. We conclude that ethanol enhances arsenic-induced COX-2 expression in colorectal cancer cells via both the NFAT and NF-κB pathways. These results imply that, as a common dietary factor, ethanol ingestion may be a compounding risk factor for arsenic-induced carcinogenesis/cancer development. - Highlights: • Arsenic is able to induce Cox-2 expression in colorectal cancer cells. • Ethanol, a diet nutritional factor, could enhance arsenic-induced Cox-2. • The up-regulation of Cox-2 via both NFAT and NF-κB activities.

  7. Autologous implantation of BMP2-expressing dermal fibroblasts to improve bone mineral density and architecture in rabbit long bones.

    Science.gov (United States)

    Ishihara, Akikazu; Weisbrode, Steve E; Bertone, Alicia L

    2015-10-01

    Cell-mediated gene therapy may treat bone fragility disorders. Dermal fibroblasts (DFb) may be an alternative cell source to stem cells for orthopedic gene therapy because of their rapid cell yield and excellent plasticity with bone morphogenetic protein-2 (BMP2) gene transduction. Autologous DFb or BMP2-expressing autologous DFb were administered in twelve rabbits by two delivery routes; a transcortical intra-medullar infusion into tibiae and delayed intra-osseous injection into femoral drill defects. Both delivery methods of DFb-BMP2 resulted in a successful cell engraftment, increased bone volume, bone mineral density, improved trabecular bone microarchitecture, greater bone defect filling, external callus formation, and trabecular surface area, compared to non-transduced DFb or no cells. Cell engraftment within trabecular bone and bone marrow tissue was most efficiently achieved by intra-osseous injection of DFb-BMP2. Our results suggested that BMP2-expressing autologous DFb have enhanced efficiency of engraftment in target bones resulting in a measurable biologic response by the bone of improved bone mineral density and bone microarchitecture. These results support that autologous implantation of DFb-BMP2 warrants further study on animal models of bone fragility disorders, such as osteogenesis imperfecta and osteoporosis to potentially enhance bone quality, particularly along with other gene modification of these diseases. © 2015 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  8. Delayed expression of enhanced reactivation and decreased mutagenesis of UV-irradiated adenovirus in UV-irradiated ataxia telangiectasia fibroblasts

    International Nuclear Information System (INIS)

    Bennett, C.B.; Rainbow, A.J.

    1988-01-01

    In this study the authors examined UV-enhanced reactivation (UVER) and UV-enhanced mutagenesis (UVEM) of UV-irradiated adenovirus in AT fibroblasts. UVER factors for Ad V antigen expression were significantly less than normal in AT strains tested when infection occurred immediately after UV-irradiation of cells. However, UVER factors were >1 and similar to those found for normal strains when cells were infected 24 h after UV-irradiation, indicating delay in the expression of UVER for Ad V antigen in AT cells. UV-irradiation of both normal and AT cells 24 h prior to infection also resulted in a significant increase in progeny survival for UV-irradiated Ad. In normal cells, this progeny UVER was concomitant with a significant increase in the mutation frequency for UV-irradiated virus (increase in targeted mutagenesis) suggesting existence of an inducible error-prone DNA repair mode in normal human cells. In contrast, pre-UV-irradiation of AT cells resulted in a significant decrease in the mutation frequency for UV-irradiated virus. (author)

  9. Icariin Regulates Cellular Functions and Gene Expression of Osteoarthritis Patient-Derived Human Fibroblast-Like Synoviocytes

    Directory of Open Access Journals (Sweden)

    Lianhong Pan

    2017-12-01

    Full Text Available Synovial inflammation plays an important role in the pathogenesis and progress of osteoarthritis (OA. There is an urgent need to find safe and effective drugs that can reduce the inflammation and regulate the pathogenesis of cytokines of the OA disease. Here, we investigated the effect of icariin, the major pharmacological active component of herb Epimedium on human osteoarthritis fibroblast-like synoviocytes (OA–FLSs. The OA–FLSs were isolated from patients with osteoarthritis and cultured in vitro with different concentrations of icariin. Then, cell viability, proliferation, and migration were investigated; MMP14, GRP78, and IL-1β gene expression levels were detected via qRT-PCR. Icariin showed low cytotoxicity to OA–FLSs at a concentration of under 10 μM and decreased the proliferation of the cells at concentrations of 1 and 10 μM. Icariin inhibited cell migration with concentrations ranging from 0.1 to 1 μM. Also, the expression of three cytokines for the pathogenesis of OA which include IL-1β, MMP14 and GRP78 was decreased by the various concentrations of icariin. These preliminary results imply that icariin might be an effective compound for the treatment of OA disease.

  10. Cyclooxygenase inhibitors induce apoptosis in oral cavity cancer cells by increased expression of nonsteroidal anti-inflammatory drug-activated gene

    International Nuclear Information System (INIS)

    Kim, Kyung-Su; Yoon, Joo-Heon; Kim, Jin Kook; Baek, Seung Joon; Eling, Thomas E.; Lee, Won Jae; Ryu, Ji-Hwan; Lee, Jeung Gweon; Lee, Joo-Hwan; Yoo, Jong-Bum

    2004-01-01

    We have investigated whether NAG-1 is induced in oral cavity cancer cells by various NSAIDs and if apoptosis induced by NSAIDs can be linked directly with the induction of NAG-1. NAG-1 expression was increased by diclofenac, aceclofenac, indomethacin, ibuprofen, and sulindac sulfide, in the order of NAG-1 induction, but not by acetaminophen, piroxicam or NS-398. Diclofenac was the most effective NAG-1 inducer. Incubation with diclofenac inhibited cell proliferation and induced apoptosis. The expression of NAG-1 was observed in advance of the induction of apoptosis. Conditioned medium from NAG-1-overexpressing Drosophila cells inhibited SCC 1483 cells proliferation and induced apoptosis. In summary, some NSAIDs induce NAG-1 expression in oral cavity cancer cells and the induced NAG-1 protein appears to mediate apoptosis. Therefore, NSAIDs may be considered as a possible chemopreventive agent against oral cavity cancer

  11. Curcumin inhibits TGF-β1-induced connective tissue growth factor expression through the interruption of Smad2 signaling in human gingival fibroblasts.

    Science.gov (United States)

    Chen, Jung-Tsu; Wang, Chen-Ying; Chen, Min-Huey

    2018-01-13

    Many fibrotic processes are associated with an increased level of transforming growth factor-β1 (TGF-β1). TGF-β1 can increase synthesis of matrix proteins and enhance secretion of protease inhibitors, resulting in matrix accumulation. Connective tissue growth factor (CTGF) is a downstream profibrotic effector of TGF-β1 and is associated with the fibrosis in several human organs. Curcumin has been applied to reduce matrix accumulation in fibrotic diseases. This study was aimed to evaluate whether curcumin could suppress TGF-β1-induced CTGF expression and its related signaling pathway involving in this inhibitory action in primary human gingival fibroblasts. The differences in CTGF expression among three types of gingival overgrowth and normal gingival tissues were assessed by immunohistochemistry. Gingival fibroblast viability in cultured media with different concentrations of curcumin was studied by MTT assay. The effect of curcumin on TGF-β1-induced CTGF expression in primary human gingival fibroblasts was examined by immunoblotting. Moreover, the proteins involved in TGF-β1 signaling pathways including TGF-β1 receptors and Smad2 were also analyzed by immunoblotting. CTGF was highly expressed in fibroblasts, epithelial cells and some of endothelial cells, smooth muscle cells, and inflammatory cells in phenytoin-induced gingival overgrowth tissues rather than in those of hereditary and inflammatory gingival overgrowth tissues. Moreover, CTGF expression in the epithelial and connective tissue layers was higher in phenytoin-induced gingival overgrowth tissues than in normal gingival tissues. Curcumin was nontoxic and could reduce TGF-β1-induced CTGF expression by attenuating the phosphorylation and nuclear translocation of Smad2. Curcumin can suppress TGF-β1-induced CTGF expression through the interruption of Smad2 signaling. Copyright © 2018. Published by Elsevier B.V.

  12. Expression of the human growth hormone variant gene in cultured fibroblasts and transgenic mice

    International Nuclear Information System (INIS)

    Selden, R.F.; Wagner, T.E.; Blethen, S.; Yun, J.S.; Rowe, M.E.; Goodman, H.M.

    1988-01-01

    The nucleotide sequence of the human growth hormone variant gene, one of the five members of the growth hormone gene family, predicts that it encodes a growth hormone-like protein. As a first step in determining whether this gene is functional in humans, the authors have expressed a mouse methallothionein I/human growth hormone variant fusion gene in mouse L cells and in transgenic mice. The growth hormone variant protein expressed in transiently transfected L cells is distinct from growth hormone itself with respect to reactivity with anti-growth hormone monoclonal antibodies, behavior during column chromatography, and isoelectric point. Transgenic mice expressing the growth hormone variant protein are 1.4- to 1.9-fold larger than nontransgenic controls, suggesting that the protein has growth-promoting properties

  13. Cytokine and matrix metalloproteinase expression in fibroblasts from peri-implantitis lesions in response to viable Porphyromonas gingivalis

    NARCIS (Netherlands)

    Irshad, M.; Scheres, N.; Anssari Moin, D.; Crielaard, W.; Loos, B.G.; Wismeijer, D.; Laine, M.L.

    2013-01-01

    Background and Objective To assess inflammatory reactions of fibroblasts in the pathophysiology of peri-implantitis, we compared the pro-inflammatory and matrix-degrading responses of gingival and granulation tissue fibroblasts from periodontally healthy controls, peri-implantitis, and periodontitis

  14. Disentangling the multifactorial contributions of fibronectin, collagen and cyclic strain on MMP expression and extracellular matrix remodeling by fibroblasts

    NARCIS (Netherlands)

    Zhang, Y.; Lin, Z.; Foolen, J.; Schoen, I.; Santoro, A.; Zenobi-Wong, M.; Vogel, Viola

    2014-01-01

    Early wound healing is associated with fibroblasts assembling a provisional fibronectin-rich extracellular matrix (ECM), which is subsequently remodeled and interlaced by type I collagen. This exposes fibroblasts to time-variant sets of matrices during different stages of wound healing. Our goal was

  15. Expression and Functions of Immediate Early Response Gene X-1 (IEX-1 in Rheumatoid Arthritis Synovial Fibroblasts.

    Directory of Open Access Journals (Sweden)

    Akio Morinobu

    Full Text Available In rheumatoid arthritis (RA, synovial fibroblasts (RA-SFs accumulate in affected joints, where they play roles in inflammation and joint destruction. RA-SFs exhibit tumor-like proliferation and are resistant to apoptosis. Although RA-SF activation is well described, negative regulators of RA-SF activation are unknown. We previously reported that histone deacetylase (HDAC inhibitors facilitate apoptosis in RA-SFs. Here we found that RA-SFs treated with the HDAC inhibitor Trichostatin A (TSA exhibited an upregulation of the immediate early response gene X-1 (IEX-1. IEX-1 has roles in apoptosis sensitivity, cell-cycle progression, and proliferation, and is reported to be involved in immune responses, inflammation, and tumorigenesis, and to have anti-arthritic properties. To investigate IEX-1's role in RA-SFs, we used in vitro-cultured synovial fibroblasts from RA and osteoarthritis (OA patients. We confirmed that TSA upregulated the IEX-1 protein and mRNA expressions in RA-SFs by western blotting and quantitative RT-PCR. Inhibiting HDAC1, 2, and 3 (but not 6 or 8 also upregulated IEX-1. The IEX-1 mRNA levels were higher in RA-SFs than in OA-SFs, and were further upregulated in RA-SFs by the pro-inflammatory cytokines TNFα and IL-1β. The staining of surgical specimens showed that IEX-1 was present in the pannus from affected RA joints. Si-RNA-mediated IEX-1 knockdown upregulated the lipopolysaccharide (LPS-induced expression of TNFα and various chemokine mRNAs, indicating that IEX-1 downregulates TNFα and chemokines. Furthermore, apoptosis analysis showed that IEX-1 knockdown protected RA-SFs from apoptosis induced by TSA or by an anti-Fas mAb, indicating that IEX-1 is pro-apoptotic in RA-SFs. Collectively, our results showed that IEX-1 is induced by TNFα and IL-1β in RA-SFs, in which it suppresses TNFα and chemokine production and induces apoptosis; thus, IEX-1 negatively regulates RA-SF activation. Further investigation of IEX1's functions

  16. Budesonide and formoterol inhibit ICAM-1 and VCAM-1 expression of human lung fibroblasts

    NARCIS (Netherlands)

    Spoelstra, FM; Postma, DS; Hovenga, H; Noordhoek, JA; Kauffman, HF

    The glucocorticoid budesonide and the long-acting beta(2)-adrenoceptor agonist formoterol are used in asthma therapy for their anti-inflammatory and bronchodilating effects, respectively. Since expression of adhesion molecules on resident cells in the lung plays an important role in asthmatic

  17. Cytogenetic Response to Ionizing Radiation Exposure in Human Fibroblasts with Suppressed Expression of Non-DSB Repair Genes

    Science.gov (United States)

    Zhang, Ye; Rohde, Larry H.; Emami, Kamal; Hammond, Dianne; Mehta, Satish K.; Jeevarajan, Antony S.; Pierson, Duane L.; Wu, Honglu

    2009-01-01

    Changes of gene expression profile are one of the most important biological responses in living cells after ionizing radiation (IR) exposure. Although some studies have shown that genes up-regulated by IR may play important roles in DNA damage repair, the relationship between the regulation of gene expression by IR, particularly genes not known for their roles in double-strand break (DSB) repair, and its impact on cytogenetic responses has not been well studied. The purpose of this study is to identify new roles of IR inducible genes in radiation-induced chromosome aberrations and micronuclei formation. In the study, the expression of 25 genes selected on the basis of their transcriptional changes in response to IR was individually knocked down by small interfering RNA in human fibroblast cells. Frequencies of micronuclei (MN) formation and chromosome aberrations were measured to determine the efficiency of cytogenetic repair, and the fraction of bi-nucleated cells in the MN analysis was used as a marker for cell cycle progression. In response to gamma radiation, the formation of MN was significantly increased by suppressed expression of five genes: Ku70 (DSB repair pathway), XPA (nucleotide excision repair pathway), RPA1 (mismatch repair pathway), RAD17 and RBBP8 (cell cycle control). Knocked-down expression of four genes (MRE11A, RAD51 in the DSB pathway, SESN1, and SUMO1) significantly inhibited cell cycle progression, possibly because of severe impairment of DNA damage repair. Moreover, decreased XPA, p21, or MLH1 expression resulted in both significantly enhanced cell cycle progression and increased yields of chromosome aberrations, indicating that these gene products modulate both cell cycle control and DNA damage repair. Nine of these eleven genes, whose knock-down expression affected cytogenetic repair, were up-regulated in cells exposed to gamma radiation, suggesting that genes transcriptionally modulated by IR were critical to regulate IR

  18. Poly(I:C) induces expressions of MMP-1, -2, and -3 through various signaling pathways including IRF3 in human skin fibroblasts.

    Science.gov (United States)

    Yao, Cheng; Lee, Dong Hun; Oh, Jang-Hee; Kim, Min-Kyoung; Kim, Kyu Han; Park, Chi-Hyun; Chung, Jin Ho

    2015-10-01

    Ultraviolet (UV) irradiation can result in premature skin aging (photoaging) which is characterized by decreased expression of collagen and increased expression of matrix metalloproteinases (MMPs). Double-stranded RNAs (dsRNAs) can be generated at various conditions including virally infected cells or UV-damaged skin cells. Recent studies have shown that a synthetic dsRNA, polyinosinic-polycytidylic acid (poly(I:C)), can reduce procollagen expression in human skin fibroblasts. However, little is known about the effect of poly(I:C) on the expression of MMPs in skin fibroblasts and its underlying mechanisms. We examined the effect of poly(I:C) on MMP-1, -2, and -3 expressions in human skin fibroblasts. Then, we further explored the underlying signaling pathways involved in the processes. Human skin fibroblasts were treated with poly(I:C) for the indicated times in the presence or the absence of various chemical inhibitors or small interfering RNAs (siRNAs) at the indicated concentrations. Protein and mRNA levels of various target molecules were examined by Western blotting and quantitative real-time PCR, respectively. Poly(I:C) induced MMP-1, -2, and -3 expressions, which were dependent on TLR3. Poly(I:C) also induced activations of the mitogen-activated protein kinases (MAPKs), the nuclear factor-kappaB (NF-κB) and the interferon regulatory factor 3 (IRF3) pathways. By using specific inhibitors, we found that poly(I:C)-induced expressions of MMP-1, -2, and -3 were differentially regulated by these signaling pathways. In particular, we found that the inhibition of IRF3 signaling pathways attenuated poly(I:C)-induced expressions of all the three MMPs. Our data show that the expressions of MMP-1, -2, and -3 are induced by poly(I:C) through various signaling pathways in human skin fibroblasts and suggest that TLR3 and/or IRF3 may be good targets for regulating the expressions of MMP-1, -2, and -3 induced by dsRNAs. Copyright © 2015 Elsevier Ireland Ltd. All rights

  19. Solar-simulated radiation and heat treatment induced metalloproteinase-1 expression in cultured dermal fibroblasts via distinct pathways: implications on reduction of sun-associated aging.

    Science.gov (United States)

    Lan, Cheng-Che E; Wu, Ching-Shang; Yu, Hsin-Su

    2013-12-01

    Sun exposure is an important environmental factor affecting human beings. Most knowledge regarding solar aging focused on light radiation (photoaging), and little emphasis has been placed on heat, a factor that is also closely associated with sun exposure. This study was launched to evaluate the effects of simulated solar radiation (SSR) and environmental heat on skin fibroblasts in terms of dermal aging. Cultured human dermal fibroblasts were treated with moderate amount of SSR (200J/cm(2)) and heat (+2°C). The metalloproteinase-1 (MMP-1) expression was used as a surrogate marker for dermal aging and the involved regulatory mechanisms were explored. Both treatment conditions did not affect viability but significantly increased the expressions of MMP-1. In parallel, both treatments increased the intracellular levels of reactive oxygen species (ROS), but the increase induced by SSR is much greater than heat. In contrast, transient receptor potential vanilloid 1 (TRPV-1), the sensor of environmental heat, was upregulated by heat but not SSR treatment. Pretreating fibroblasts with antioxidant abrogated the SSR-induced MMP-1 but has limited effect on heat-induced MMP-1. On the other hand, TRPV-1 antagonist pretreatment reduced heat-induced MMP-1 in fibroblasts but not their SSR-treated counterparts. Both SSR and heat induced MMP-1 expression in dermal fibroblasts but through different pathways. As current strategies for reducing sun-related aging focused on filtering of light and use of antioxidants, future strategies design to reduce solar aging should also incorporate heat-induced aging into consideration. Copyright © 2013 Japanese Society for Investigative Dermatology. Published by Elsevier Ireland Ltd. All rights reserved.

  20. Th1-Induced CD106 Expression Mediates Leukocytes Adhesion on Synovial Fibroblasts from Juvenile Idiopathic Arthritis Patients.

    Science.gov (United States)

    Maggi, Laura; Margheri, Francesca; Luciani, Cristina; Capone, Manuela; Rossi, Maria Caterina; Chillà, Anastasia; Santarlasci, Veronica; Mazzoni, Alessio; Cimaz, Rolando; Liotta, Francesco; Maggi, Enrico; Cosmi, Lorenzo; Del Rosso, Mario; Annunziato, Francesco

    2016-01-01

    This study tested the hypothesis that subsets of human T helper cells can orchestrate leukocyte adhesion to synovial fibroblasts (SFbs), thus regulating the retention of leukocytes in the joints of juvenile idiopathic arthritis (JIA) patients. Several cell types, such as monocytes/macrophages, granulocytes, T and B lymphocytes, SFbs and osteoclasts participate in joint tissue damage JIA. Among T cells, an enrichment of classic and non-classic Th1 subsets, has been found in JIA synovial fluid (SF), compared to peripheral blood (PB). Moreover, it has been shown that IL-12 in the SF of inflamed joints mediates the shift of Th17 lymphocytes towards the non-classic Th1 subset. Culture supernatants of Th17, classic and non-classic Th1 clones, have been tested for their ability to stimulate proliferation, and to induce expression of adhesion molecules on SFbs, obtained from healthy donors. Culture supernatants of both classic and non-classic Th1, but not of Th17, clones, were able to induce CD106 (VCAM-1) up-regulation on SFbs. This effect, mediated by tumor necrosis factor (TNF)-α, was crucial for the adhesion of circulating leukocytes on SFbs. Finally, we found that SFbs derived from SF of JIA patients expressed higher levels of CD106 than those from healthy donors, resembling the phenotype of SFbs activated in vitro with Th1-clones supernatants. On the basis of these findings, we conclude that classic and non-classic Th1 cells induce CD106 expression on SFbs through TNF-α, an effect that could play a role in leukocytes retention in inflamed joints.

  1. Modulation of fibroblast growth factor 19 expression by bile acids, meal replacement and energy drinks, milk, and coffee.

    Directory of Open Access Journals (Sweden)

    Amanda M Styer

    Full Text Available BACKGROUND: The enterohepatic pathway involving the fibroblast growth factor 19 (FGF19 and bile acids (BA has been linked with the etiology and remission of type 2 diabetes (T2D following Roux-en-Y gastric bypass (RYGB surgery. Specifically, diabetic patients had lower FGF19 circulating levels but postoperative FGF19 and BA levels were higher in diabetic patients that experience remission of T2D, as compared to non-diabetic patients and diabetic patients that do not experience remission. It has been proposed that this may be due to the direct flow of digestate-free bile acids into the ileum benefiting mostly T2D patients without severe diabetes. METHODS/RESULTS: We used a human colorectal cell line (LS174T that endogenously expresses FGF19, real time PCR, and Elisas for precise quantitation of FGF19 mRNA and secreted protein levels. We report here that BA and fractions of BA stimulated FGF19 in vitro but this effect was partially blocked when BA were pre-incubated with a lipoprotein mix which emulates digested food. In addition, we show that FGF19 mRNA was stimulated by meal replacement drinks (Ensure, Glucerna, SlimFast, non-fat milk, and coffee which has been linked with reduced risk for developing diabetes. Pure caffeine and the 5-hour Energy drink, on the other hand, decreased FGF19 mRNA. CONCLUSIONS: In summary, FGF19 expression in vitro is modifiable by popular drinks suggesting that such approaches could potentially be used for modulating FGF19 expression in humans.

  2. Modulation of fibroblast growth factor 19 expression by bile acids, meal replacement and energy drinks, milk, and coffee.

    Science.gov (United States)

    Styer, Amanda M; Roesch, Stephen L; Argyropoulos, George

    2014-01-01

    The enterohepatic pathway involving the fibroblast growth factor 19 (FGF19) and bile acids (BA) has been linked with the etiology and remission of type 2 diabetes (T2D) following Roux-en-Y gastric bypass (RYGB) surgery. Specifically, diabetic patients had lower FGF19 circulating levels but postoperative FGF19 and BA levels were higher in diabetic patients that experience remission of T2D, as compared to non-diabetic patients and diabetic patients that do not experience remission. It has been proposed that this may be due to the direct flow of digestate-free bile acids into the ileum benefiting mostly T2D patients without severe diabetes. We used a human colorectal cell line (LS174T) that endogenously expresses FGF19, real time PCR, and Elisas for precise quantitation of FGF19 mRNA and secreted protein levels. We report here that BA and fractions of BA stimulated FGF19 in vitro but this effect was partially blocked when BA were pre-incubated with a lipoprotein mix which emulates digested food. In addition, we show that FGF19 mRNA was stimulated by meal replacement drinks (Ensure, Glucerna, SlimFast), non-fat milk, and coffee which has been linked with reduced risk for developing diabetes. Pure caffeine and the 5-hour Energy drink, on the other hand, decreased FGF19 mRNA. In summary, FGF19 expression in vitro is modifiable by popular drinks suggesting that such approaches could potentially be used for modulating FGF19 expression in humans.

  3. Vitamin K2 downregulates the expression of fibroblast growth factor receptor 3 in human hepatocellular carcinoma cells.

    Science.gov (United States)

    Cao, Ke; Liu, Weidong; Nakamura, Hideji; Enomoto, Hirayuki; Yamamoto, Teruhisa; Saito, Masaki; Imanishi, Hiroyasu; Shimomura, Soji; Cao, Peiguo; Nishiguchi, Shuhei

    2009-11-01

    Vitamin K2 exerts an antitumor activity on human hepatocellular carcinoma (HCC), however, its inhibitory mechanism has not yet been clarified. This study was designed to identify the attractive target molecule of vitamin K2 and shed some light on its effects on fibroblast growth factor receptor (FGFR)3 in HCC cells. The changes in the gene expression of HuH-7 after vitamin K2 treatment were evaluated by a DNA chip analysis. The mRNA and protein levels of FGFR were evaluated by semiquantitative reverse transcription polymerase chain reaction (RT-PCR), real-time PCR and western blot analysis. The promoter activity of the FGFR3 gene was measured by a dual-luciferase assay. The DNA chip analysis revealed different inhibitory rates of gene expression of FGFR3 (60.6%) and FGFR1 (19.4%) after vitamin K2 treatment. Vitamin K2 suppresses the proliferation of HuH-7 in a dose-dependent manner and its inhibitory rate reached approximately 61.8% at the dose of 30 microM. FGFR3 mRNA was significantly reduced based on semiquantitative RT-PCR and decreased 61.5% by a real-time PCR method after vitamin K2 treatment, but FGFR1 mRNA was not. The level of FGFR3 protein was also reduced by vitamin K2 treatment. The luciferase assay demonstrated that vitamin K2 significantly suppressed the promoter activity of FGFR3. Furthermore, the FGFR3-ERK1/2 signaling pathway was suppressed by vitamin K2 treatment. These findings suggest that vitamin K2 may suppress the proliferation of HCC cells through the downregulation of the FGFR3 expression. The transcriptional suppression of FGFR3 may be a novel mechanism of the vitamin K2 action for HCC cells.

  4. Application of chitosan scaffolds on vascular endothelial growth factor and fibroblast growth factor 2 expressions in tissue engineering principles

    Directory of Open Access Journals (Sweden)

    Ariyati Retno Pratiwi

    2015-12-01

    Full Text Available Background: Tissue engineering has given satisfactory results as biological tissue substitutes to restore, replace, or regenerate tissues that have a defect. Chitosan is an organic biomaterial often used in the biomedical field. Chitosan has biocompatible, antifungal, and antibacterial properties. Chitosan is osteoconductive, suitable for bone regeneration applications. Bone defect healing begins with inflammatory phase as a response to the presence of vascular injury, so new vascularization is required. Vascular endothelial growth factor (VEGF and basic fibroblast growth factor-2 (FGF2 are indicators of the beginning of bone regeneration process, playing an important role in angiogenesis. Purpose: This research was aimed to determine the effects of chitosan scaffold application on the expressions of VEGF and FGF2 in tissue engineering principles. Method: Chitosan was dissolved in CH3COOH and NaOH to form a gel. Chitosan gel was then printed in mould to freeze dry for 24 hours. Those rats with defected bones were divided into two groups. Group 1 was the control group which defected bones were not administrated with chitosan scaffolds. Group 2 was the treatment group which defected bones were administrated with chitosan scaffolds. Those rats were sacrificed on day 14. Tissue preparations were made, and then immunohistochemical staining was conducted. Finally, a statistical analysis was conducted using Kruskal Wallis test. Result: There was no significant difference in the expressions of VEGF and FGF2 between the control group and the treatment group (p>0.05. Conclusion: Chitosan scaffolds do not affect the expressions of VEGF and FGF2 during bone regeneration process on day 14 in tissue engineering principles

  5. Podoplanin expression in cancer-associated fibroblasts predicts unfavourable prognosis in patients with pathological stage IA lung adenocarcinoma.

    Science.gov (United States)

    Kubouchi, Yasuaki; Yurugi, Yohei; Wakahara, Makoto; Sakabe, Tomohiko; Haruki, Tomohiro; Nosaka, Kanae; Miwa, Ken; Araki, Kunio; Taniguchi, Yuji; Shiomi, Tatsushi; Nakamura, Hiroshige; Umekita, Yoshihisa

    2018-02-01

    Podoplanin expression in cancer-associated fibroblasts (CAFs) has been proposed as an unfavourable indicator in squamous cell carcinoma of the lung, but little is known about its clinical significance in early-stage lung adenocarcinoma. We evaluated the prognostic impact of podoplanin expression in patients with pathological stage (p-stage) IA lung adenocarcinoma as categorised by the 8th edition of the tumour-node-metastasis classification for lung cancer. Immunohistochemical analyses using anti-podoplanin antibody were performed on resected specimens from 158 patients with p-stage IA lung adenocarcinoma. When more than 10% of cancer cells or CAFs showed immunoreactivity with podoplanin, the specimens were classified as podoplanin-positive. Podoplanin-positive status in cancer cells (n = 8) was not correlated with clinicopathological factors or with patient prognosis. Podoplanin-positive status in CAFs (n = 41) was correlated significantly with poorer tumour differentiation (P < 0.001), the presence of lymphatic invasion (P < 0.001) and high-grade (solid and/or micropapillary) components constituting ≥1% of the entire tumour (P < 0.001). The log-rank test showed that podoplanin-positive status in CAFs was associated significantly with shorter disease-free survival (DFS) (P < 0.001) and disease-specific survival (P = 0.015). In Cox's multivariate analysis, podoplanin-positive status in CAFs had the most significant effect on shorter DFS [hazard ratio (HR) = 4.411, P = 0.004], followed by the presence of high-grade components (HR = 3.581, P = 0.013). Podoplanin expression in CAFs could be an independent predictor of increased risk of recurrence in patients with p-stage IA lung adenocarcinoma. © 2017 John Wiley & Sons Ltd.

  6. FGF-2 expression and the amount of fibroblast in the incised wounds of Rattus norvegicus rats induced with Mauli banana (Musa acuminata stem extract

    Directory of Open Access Journals (Sweden)

    Didit Aspriyanto

    2017-09-01

    Full Text Available Background: Traditional wound treatment using herbal medicine is thought to maintain the health of families and society in general economically, effectively, and efficiently without inducing side effects. One genus of plant that can be used as a traditional medicine is the Mauli banana, indigenous to South Borneo. Mauli banana stem contains bioactive compounds, most of which are tannins along with ascorbic acid, saponin, β-carotene, flavonoids, lycopene, alkaloids, and flavonoids. Tanin has antibacterial and antioxidant effects at low concentrations, as wells as antifungal ones at high concentrations. Purpose: This study aimed to analyze the effects of Mauli banana stem extract at concentrations of 25%, 37.5%, and 50% on the quality of incised wound healing in male Rattus norvegicus rats by assessing FGF-2 expression and fibroblast concentration on days 3 and 7. Methods: This research represented an experimental laboratory-based investigation involving 32 rats of the Rattus norvegicus strain aged 2-2.5 months old. Sampling was performed using a simple random sampling technique since the research population was considered homogeneous and divided into 8 treatment groups (C3, M3-25, M3-37.5, M3-50, C7, M7-25, M7-37.5, M7-50. The rats in each group were anesthetized before their back was incised with length and width of 15x15mm with a depth of 2mm. Gel hydroxy propyl cellulose medium (HPMC was applied to the incised wound of each rat in the control group, while stem Mauli banana extract was applied to that of each rat in the treatment groups three times a day at an interval of 6-8 hours. On day 3, four rats from each group were sacrificed, while, in the remaining groups, the same procedure was performed until day 7, at which point they (8 groups were sacrificed for HE examination in order to assess the amount of fibroblast and for IHC examination to examine FGF-2 expression. Data regarding FGF-2 expression and the amount of fibroblast were analysed

  7. Evaluating Electroporation and Lipofectamine Approaches for Transient and Stable Transgene Expressions in Human Fibroblasts and Embryonic Stem Cells

    Science.gov (United States)

    Sharifi Tabar, Mehdi; Hesaraki, Mahdi; Esfandiari, Fereshteh; Sahraneshin Samani, Fazel; Vakilian, Haghighat; Baharvand, Hossein

    2015-01-01

    Objective Genetic modification of human embryonic stem cells (hESCs) is critical for their extensive use as a fundamental tool for cell therapy and basic research. Despite the fact that various methods such as lipofection and electroporation have been applied to transfer the gene of interest (GOI) into the target cell line, however, there are few re- ports that compare all parameters, which influence transfection efficiency. In this study, we examine all parameters that affect the efficiency of electroporation and lipofection for transient and long-term gene expression in three different cell lines to introduce the best method and determinant factor. Materials and Methods In this experimental study, both electroporation and lipofection approaches were employed for genetic modification. pCAG-EGFP was applied for tran- sient expression of green fluorescent protein in two genetically different hESC lines, Roy- an H5 (XX) and Royan H6 (XY), as well as human foreskin fibroblasts (hFF). For long-term EGFP expression VASA and OLIG2 promoters (germ cell and motoneuron specific genes, respectively), were isolated and subsequently cloned into a pBluMAR5 plasmid backbone to drive EGFP expression. Flow cytometry analysis was performed two days after trans- fection to determine transient expression efficiency. Differentiation of drug resistant hESC colonies toward primordial germ cells (PGCs) was conducted to confirm stable integration of the transgene. Results Transient and stable expression suggested a variable potential for different cell lines against transfection. Analysis of parameters that influenced gene transformation ef- ficiency revealed that the vector concentrations from 20-60 μg and the density of the sub- jected cells (5×105and 1×106cells) were not as effective as the genetic background and voltage rate. The present data indicated that in contrast to the circular form, the linearized vector generated more distinctive drug resistant colonies. Conclusion

  8. Thyroid hormone increases fibroblast growth factor receptor expression and disrupts cell mechanics in the developing organ of corti

    Science.gov (United States)

    2013-01-01

    Background Thyroid hormones regulate growth and development. However, the molecular mechanisms by which thyroid hormone regulates cell structural development are not fully understood. The mammalian cochlea is an intriguing system to examine these mechanisms, as cellular structure plays a key role in tissue development, and thyroid hormone is required for the maturation of the cochlea in the first postnatal week. Results In hypothyroid conditions, we found disruptions in sensory outer hair cell morphology and fewer microtubules in non-sensory supporting pillar cells. To test the functional consequences of these cytoskeletal defects on cell mechanics, we combined atomic force microscopy with live cell imaging. Hypothyroidism stiffened outer hair cells and supporting pillar cells, but pillar cells ultimately showed reduced cell stiffness, in part from a lack of microtubules. Analyses of changes in transcription and protein phosphorylation suggest that hypothyroidism prolonged expression of fibroblast growth factor receptors, and decreased phosphorylated Cofilin. Conclusions These findings demonstrate that thyroid hormones may be involved in coordinating the processes that regulate cytoskeletal dynamics and suggest that manipulating thyroid hormone sensitivity might provide insight into the relationship between cytoskeletal formation and developing cell mechanical properties. PMID:23394545

  9. Transforming growth factor-β1 induces expression of human coagulation factor XII via Smad3 and JNK signaling pathways in human lung fibroblasts.

    Science.gov (United States)

    Jablonska, Ewa; Markart, Philipp; Zakrzewicz, Dariusz; Preissner, Klaus T; Wygrecka, Malgorzata

    2010-04-09

    Coagulation factor XII (FXII) is a liver-derived serine protease involved in fibrinolysis, coagulation, and inflammation. The regulation of FXII expression is largely unknown. Transforming growth factor-beta1 (TGF-beta1) is a multifunctional cytokine that has been linked to several pathological processes, including tissue fibrosis by modulating procoagulant and fibrinolytic activities. This study investigated whether TGF-beta1 may regulate FXII expression in human lung fibroblasts. Treatment of human lung fibroblasts with TGF-beta1 resulted in a time-dependent increase in FXII production, activation of p44/42, p38, JNK, and Akt, and phosphorylation and translocation into the nucleus of Smad3. However, TGF-beta1-induced FXII expression was repressed only by the JNK inhibitor and JNK and Smad3 antisense oligonucleotides but not by MEK, p38, or phosphoinositide 3-kinase blockers. JNK inhibition had no effect on TGF-beta1-induced Smad3 phosphorylation, association with Smad4, and its translocation into the nucleus but strongly suppressed Smad3-DNA complex formation. FXII promoter analysis revealed that the -299/+1 region was sufficient for TGF-beta1 to induce FXII expression. Sequence analysis of this region detected a potential Smad-binding element at position -272/-269 (SBE-(-272/-269)). Chromatin immunoprecipitation and streptavidin pulldown assays demonstrated TGF-beta1-dependent Smad3 binding to SBE-(-272/-269). Mutation or deletion of SBE-(-272/-269) substantially reduced TGF-beta1-mediated activation of the FXII promoter. Clinical relevance was demonstrated by elevated FXII levels and its co-localization with fibroblasts in the lungs of patients with acute respiratory distress syndrome. Our results show that JNK/Smad3 pathway plays a critical role in TGF-beta1-induced FXII expression in human lung fibroblasts and implicate its possible involvement in pathological conditions characterized by elevated TGF-beta1 levels.

  10. Low intensity 635 nm diode laser irradiation inhibits fibroblast-myofibroblast transition reducing TRPC1 channel expression/activity: New perspectives for tissue fibrosis treatment.

    Science.gov (United States)

    Sassoli, Chiara; Chellini, Flaminia; Squecco, Roberta; Tani, Alessia; Idrizaj, Eglantina; Nosi, Daniele; Giannelli, Marco; Zecchi-Orlandini, Sandra

    2016-03-01

    Low-level laser therapy (LLLT) or photobiomodulation therapy is emerging as a promising new therapeutic option for fibrosis in different damaged and/or diseased organs. However, the anti-fibrotic potential of this treatment needs to be elucidated and the cellular and molecular targets of the laser clarified. Here, we investigated the effects of a low intensity 635 ± 5 nm diode laser irradiation on fibroblast-myofibroblast transition, a key event in the onset of fibrosis, and elucidated some of the underlying molecular mechanisms. NIH/3T3 fibroblasts were cultured in a low serum medium in the presence of transforming growth factor (TGF)-β1 and irradiated with a 635 ± 5 nm diode laser (continuous wave, 89 mW, 0.3 J/cm(2) ). Fibroblast-myofibroblast differentiation was assayed by morphological, biochemical, and electrophysiological approaches. Expression of matrix metalloproteinase (MMP)-2 and MMP-9 and of Tissue inhibitor of MMPs, namely TIMP-1 and TIMP-2, after laser exposure was also evaluated by confocal immunofluorescence analyses. Moreover, the effect of the diode laser on transient receptor potential canonical channel (TRPC) 1/stretch-activated channel (SAC) expression and activity and on TGF-β1/Smad3 signaling was investigated. Diode laser treatment inhibited TGF-β1-induced fibroblast-myofibroblast transition as judged by reduction of stress fibers formation, α-smooth muscle actin (sma) and type-1 collagen expression and by changes in electrophysiological properties such as resting membrane potential, cell capacitance and inwardly rectifying K(+) currents. In addition, the irradiation up-regulated the expression of MMP-2 and MMP-9 and downregulated that of TIMP-1 and TIMP-2 in TGF-β1-treated cells. This laser effect was shown to involve TRPC1/SAC channel functionality. Finally, diode laser stimulation and TRPC1 functionality negatively affected fibroblast-myofibroblast transition by interfering with TGF-β1 signaling, namely reducing the

  11. Characterization of the growth of murine fibroblasts that express human insulin receptors. II. Interaction of insulin with other growth factors

    International Nuclear Information System (INIS)

    Randazzo, P.A.; Jarett, L.

    1990-01-01

    The effects of insulin-like growth factor-1 (IGF-1), epidermal growth factor (EGF), platelet-derived growth factor (PDGF), and insulin on DNA synthesis were studied in murine fibroblasts transfected with an expression vector containing human insulin receptor cDNA (NIH 3T3/HIR) and the parental NIH 3T3 cells. In NIH 3T3/HIR cells, individual growth factors in serum-free medium stimulated DNA synthesis with the following relative efficacies: insulin greater than or equal to 10% fetal calf serum greater than PDGF greater than IGF-1 much greater than EGF. In comparison, the relative efficacies of these factors in stimulating DNA synthesis by NIH 3T3 cells were 10% fetal calf serum greater than PDGF greater than EGF much greater than IGF-1 = insulin. In NIH 3T3/HIR cells, EGF was synergistic with 1-10 ng/ml insulin but not with 100 ng/ml insulin or more. Synergy of PDGF or IGF-1 with insulin was not detected. In the parental NIH 3T3 cells, insulin and IGF-1 were found to be synergistic with EGF (1 ng/ml), PDGF (100 ng/ml), and PDGF plus EGF. In NIH 3T3/HIR cells, the lack of interaction of insulin with other growth factors was also observed when the percentage of cells synthesizing DNA was examined. Despite insulin's inducing only 60% of NIH 3T3/HIR cells to incorporate thymidine, addition of PDGF, EGF, or PDGF plus EGF had no further effect. In contrast, combinations of growth factors resulted in 95% of the parental NIH 3T3 cells synthesizing DNA. The independence of insulin-stimulated DNA synthesis from other mitogens in the NIH 3T3/HIR cells is atypical for progression factor-stimulated DNA synthesis and is thought to be partly the result of insulin receptor expression in an inappropriate context or quantity

  12. Cyclooxygenase 2 Promotes Parathyroid Hyperplasia in ESRD

    Science.gov (United States)

    Zhang, Qian; Qiu, Junsi; Li, Haiming; Lu, Yanwen; Wang, Xiaoyun; Yang, Junwei; Wang, Shaoqing; Zhang, Liyin; Gu, Yong; Hao, Chuan-Ming

    2011-01-01

    Hyperplasia of the PTG underlies the secondary hyperparathyroidism (SHPT) observed in CKD, but the mechanism underlying this hyperplasia is incompletely understood. Because aberrant cyclooxygenase 2 (COX2) expression promotes epithelial cell proliferation, we examined the effects of COX2 on the parathyroid gland in uremia. In patients with ESRD who underwent parathyroidectomy, clusters of cells within the parathyroid glands had increased COX2 expression. Some COX2-positive cells exhibited two nuclei, consistent with proliferation. Furthermore, nearly 78% of COX2-positive cells expressed proliferating cell nuclear antigen (PCNA). In the 5/6-nephrectomy rat model, rats fed a high-phosphate diet had significantly higher serum PTH levels and larger parathyroid glands than sham-operated rats. Compared with controls, the parathyroid glands of uremic rats exhibited more PCNA-positive cells and greater COX2 expression in the chief cells. Treatment with COX2 inhibitor celecoxib significantly reduced PCNA expression, attenuated serum PTH levels, and reduced the size of the glands. In conclusion, COX2 promotes the pathogenesis of hyperparathyroidism in ESRD, suggesting that inhibiting the COX2 pathway could be a potential therapeutic target. PMID:21335517

  13. Stimulation of MMP-11 (stromelysin-3) expression in mouse fibroblasts by cytokines, collagen and co-culture with human breast cancer cell lines

    International Nuclear Information System (INIS)

    Selvey, Saxon; Haupt, Larisa M; Thompson, Erik W; Matthaei, Klaus I; Irving, Michael G; Griffiths, Lyn R

    2004-01-01

    Matrix metalloproteinases (MMPs) are central to degradation of the extracellular matrix and basement membrane during both normal and carcinogenic tissue remodeling. MT1-MMP (MMP-14) and stromelysin-3 (MMP-11) are two members of the MMP family of proteolytic enzymes that have been specifically implicated in breast cancer progression. Expressed in stromal fibroblasts adjacent to epithelial tumour cells, the mechanism of MT1-MMP and MMP-11 induction remains unknown. To investigate possible mechanisms of induction, we examined the effects of a number of plausible regulatory agents and treatments that may physiologically influence MMP expression during tumour progression. Thus NIH3T3 and primary mouse embryonic fibroblasts (MEFs) were: a) treated with the cytokines IL-1β, IL-2, IL-6, IL-8 and TGF-β for 3, 6, 12, 24, and 48 hours; b) grown on collagens I, IV and V; c) treated with fibronectin, con-A and matrigel; and d) co-cultured with a range of HBC (human breast cancer) cell lines of varied invasive and metastatic potential. Competitive quantitative RT-PCR indicated that MMP-11 expression was stimulated to a level greater than 100%, by 48 hour treatments of IL-1β, IL-2, TGF-β, fibronectin and collagen V. No other substantial changes in expression of MMP-11 or MT1-MMP in either tested fibroblast culture, under any treatment conditions, were observed. We have demonstrated significant MMP-11 stimulation in mouse fibroblasts using cytokines, matrix constituents and HBC cell lines, and also some inhibition of MT1-MMP. Our data suggest that the regulation of these genes in the complex stromal-epithelial interactions that occur in human breast carcinoma, is influenced by several mechanisms

  14. Stimulation of MMP-11 (stromelysin-3 expression in mouse fibroblasts by cytokines, collagen and co-culture with human breast cancer cell lines

    Directory of Open Access Journals (Sweden)

    Matthaei Klaus I

    2004-07-01

    Full Text Available Abstract Background Matrix metalloproteinases (MMPs are central to degradation of the extracellular matrix and basement membrane during both normal and carcinogenic tissue remodeling. MT1-MMP (MMP-14 and stromelysin-3 (MMP-11 are two members of the MMP family of proteolytic enzymes that have been specifically implicated in breast cancer progression. Expressed in stromal fibroblasts adjacent to epithelial tumour cells, the mechanism of MT1-MMP and MMP-11 induction remains unknown. Methods To investigate possible mechanisms of induction, we examined the effects of a number of plausible regulatory agents and treatments that may physiologically influence MMP expression during tumour progression. Thus NIH3T3 and primary mouse embryonic fibroblasts (MEFs were: a treated with the cytokines IL-1β, IL-2, IL-6, IL-8 and TGF-β for 3, 6, 12, 24, and 48 hours; b grown on collagens I, IV and V; c treated with fibronectin, con-A and matrigel; and d co-cultured with a range of HBC (human breast cancer cell lines of varied invasive and metastatic potential. Results Competitive quantitative RT-PCR indicated that MMP-11 expression was stimulated to a level greater than 100%, by 48 hour treatments of IL-1β, IL-2, TGF-β, fibronectin and collagen V. No other substantial changes in expression of MMP-11 or MT1-MMP in either tested fibroblast culture, under any treatment conditions, were observed. Conclusion We have demonstrated significant MMP-11 stimulation in mouse fibroblasts using cytokines, matrix constituents and HBC cell lines, and also some inhibition of MT1-MMP. Our data suggest that the regulation of these genes in the complex stromal-epithelial interactions that occur in human breast carcinoma, is influenced by several mechanisms.

  15. Global gene expression changes in human embryonic lung fibroblasts induced by organic extracts from respirable air particles

    Directory of Open Access Journals (Sweden)

    Líbalová Helena

    2012-01-01

    Full Text Available Abstract Background Recently, we used cell-free assays to demonstrate the toxic effects of complex mixtures of organic extracts from urban air particles (PM2.5 collected in four localities of the Czech Republic (Ostrava-Bartovice, Ostrava-Poruba, Karvina and Trebon which differed in the extent and sources of air pollution. To obtain further insight into the biological mechanisms of action of the extractable organic matter (EOM from ambient air particles, human embryonic lung fibroblasts (HEL12469 were treated with the same four EOMs to assess changes in the genome-wide expression profiles compared to DMSO treated controls. Method For this purpose, HEL cells were incubated with subtoxic EOM concentrations of 10, 30, and 60 μg EOM/ml for 24 hours and global gene expression changes were analyzed using human whole genome microarrays (Illumina. The expression of selected genes was verified by quantitative real-time PCR. Results Dose-dependent increases in the number of significantly deregulated transcripts as well as dose-response relationships in the levels of individual transcripts were observed. The transcriptomic data did not differ substantially between the localities, suggesting that the air pollution originating mainly from various sources may have similar biological effects. This was further confirmed by the analysis of deregulated pathways and by identification of the most contributing gene modulations. The number of significantly deregulated KEGG pathways, as identified by Goeman's global test, varied, depending on the locality, between 12 to 29. The Metabolism of xenobiotics by cytochrome P450 exhibited the strongest upregulation in all 4 localities and CYP1B1 had a major contribution to the upregulation of this pathway. Other important deregulated pathways in all 4 localities were ABC transporters (involved in the translocation of exogenous and endogenous metabolites across membranes and DNA repair, the Wnt and TGF-β signaling pathways

  16. Pinus densiflora extract protects human skin fibroblasts against UVB-induced photoaging by inhibiting the expression of MMPs and increasing type I procollagen expression

    Directory of Open Access Journals (Sweden)

    Hoe-Yune Jung

    2014-01-01

    Full Text Available Exposure to ultraviolet (UV light can cause skin photoaging, which is associated with upregulation of matrix metalloproteinases (MMPs and downregulation of collagen synthesis. It has been reported that MMPs, especially MMP-1, MMP-3 and MMP-9, decrease the elasticity of the dermis by degrading collagen. In this study, we assessed the effects of Pinus densiflora extract (PDE on photoaging and investigated its mechanism of action in human skin fibroblast (Hs68 cells after UVB exposure using real-time polymerase chain reaction, Western blot analysis, and enzymatic activity assays. PDE exhibited an antioxidant activity and inhibited elastase activities in vitro. We also found that PDE inhibited UVB-induced cytotoxicity, MMP-1 production and expression of MMP-1, -3 and -9 mRNA in Hs68 cells. In addition, PDE decreased UVB-induced MMP-2 activity and MMP-2 mRNA expression. Moreover, PDE prevented the decrease of type I procollagen mediated by exposure to UVB irradiation, an effect that is linked to the upregulation and downregulation of Smad3 and Smad7, respectively. Another effect of UV irradiation is to stimulate activator protein 1 (AP-1 activity via overexpression of c-Jun/c-Fos, which, in turn, upregulates MMP-1, -3, and -9. In this study, we found that PDE suppressed UV-induced c-Jun and c-Fos mRNA expression. Taken together, these results demonstrate that PDE regulates UVB-induced expression of MMPs and type I procollagen synthesis by inhibiting AP-1 activity and restoring impaired Smad signaling, suggesting that PDE may be useful as an effective anti-photoaging agent.

  17. The gene expression profiles of canine mammary cancer cells grown with carcinoma-associated fibroblasts (CAFs as a co-culture in vitro

    Directory of Open Access Journals (Sweden)

    Król Magdalena

    2012-03-01

    Full Text Available Abstract Background It is supposed that fibroblasts present in tumour microenvironment increase cancer invasiveness and its ability to metastasize but the mechanisms have not been clearly defined yet. Thus, the current study was designed to assess changes in gene expression in five various cancer cell lines grown as a co-culture with the carcinoma-associated fibroblasts (CAFs in vitro. Results A carcinoma-associated fibroblast cell line was isolated from a canine mammary cancer. Then, a co-culture of cancer cells with the CAFs was established and maintained for 72 hrs. Having sorted the cells, a global gene expression in cancer cells using DNA microarrays was examined. The analysis revealed an up-regulation of 100 genes and a down-regulation of 106 genes in the cancer cells grown as a co-culture with the CAFs in comparison to control conditions. The PANTHER binomial statistics tool was applied to determine statistically over-manifested pathways (p Conclusion The results of the current study showed that the co-culturing of cancer cells and the CAFs caused significant changes to the cancer gene expression. The presence of the CAFs in a microenvironment of cancer cells promotes adhesion, angiogenesis and EMT.

  18. Effect of ProRoot MTA, Portland cement, and amalgam on the expression of fibronectin, collagen I, and TGFβ by human periodontal ligament fibroblasts in vitro.

    Science.gov (United States)

    Fayazi, Sara; Ostad, Seyed Nasser; Razmi, Hasan

    2011-01-01

    Today many materials have been introduced for root-end filling materials. One of them is mineral trioxide aggregate (MTA) that is mentioned as a gold standard. The purpose of this in vitro study was to evaluate the reaction of human periodontal ligament fibroblasts to the root-end filling materials, such as ProRoot MTA, Portland cement, and amalgam. Eight impacted teeth were extracted in aseptic condition. The tissues around the roots were used to obtain fibroblast cells. After cell proliferation, they were cultured in the chamber slides and the extracts of the materials were added to the wells. Immunocytochemical method for measuring the expression of Fibronectin, collagen I and transforming growth factor beta (TGF®) was performed by Olysia Bioreport Imaging Software. The results were analyzed by SPSS 13.0 and Tukey post hoc test with PPortland cement group showed the most expression of collagen significantly and after 1 week, Portland cement and MTA groups had the most expression of collagen but there was no significant difference between these 2 groups. After 1 week, the Portland cement group demonstrated a higher amount of TGF® and fibronectin. The results suggest that Portland cement can be used as a less expensive root filling material with low toxicity. It has better effects than amalgam on the fibroblasts.

  19. Expression and loss of alleles in cultured mouse embryonic fibroblasts and stem cells carrying allelic fluorescent protein genes

    Directory of Open Access Journals (Sweden)

    Stringer Saundra L

    2006-10-01

    Full Text Available Abstract Background Loss of heterozygosity (LOH contributes to many cancers, but the rate at which these events occur in normal cells of the body is not clear. LOH would be detectable in diverse cell types in the body if this event were to confer an obvious cellular phenotype. Mice that carry two different fluorescent protein genes as alleles of a locus would seem to be a useful tool for addressing this issue because LOH would change a cell's phenotype from dichromatic to monochromatic. In addition, LOH caused by mitotic crossing over might be discernable in tissues because this event produces a pair of neighboring monochromatic cells that are different colors. Results As a step in assessing the utility of this approach, we derived primary embryonic fibroblast populations and embryonic stem cell lines from mice that carried two different fluorescent protein genes as alleles at the chromosome 6 locus, ROSA26. Fluorescence activated cell sorting (FACS showed that the vast majority of cells in each line expressed the two marker proteins at similar levels, and that populations exhibited expression noise similar to that seen in bacteria and yeast. Cells with a monochromatic phenotype were present at frequencies on the order of 10-4 and appeared to be produced at a rate of approximately 10-5 variant cells per mitosis. 45 of 45 stably monochromatic ES cell clones exhibited loss of the expected allele at the ROSA26 locus. More than half of these clones retained heterozygosity at a locus between ROSA26 and the centromere. Other clones exhibited LOH near the centromere, but were disomic for chromosome 6. Conclusion Allelic fluorescent markers allowed LOH at the ROSA26 locus to be detected by FACS. LOH at this locus was usually not accompanied by LOH near the centromere, suggesting that mitotic recombination was the major cause of ROSA26 LOH. Dichromatic mouse embryonic cells provide a novel system for studying genetic/karyotypic stability and factors

  20. Opposing roles of C/EBPbeta and AP-1 in the control of fibroblast proliferation and growth arrest-specific gene expression

    DEFF Research Database (Denmark)

    Gagliardi, Mark; Maynard, Scott; Miyake, Tetsuaki

    2003-01-01

    in the levels of AP-1 proteins. Therefore, C/EBPbeta is a negative regulator of AP-1 expression and activity in CEF. The expression of cyclin D1 and cell proliferation were stimulated by the dominant negative mutant of C/EBPbeta but not in the presence of TAM67, a dominant negative mutant of c-Jun and AP-1. CEF......Chicken embryo fibroblasts (CEF) express several growth arrest-specific (GAS) gene products in G0. In contact-inhibited cells, the expression of the most abundant of these proteins, the p20K lipocalin, is activated at the transcriptional level by C/EBPbeta. In this report, we describe the role of C....../EBPbeta in CEF proliferation. We show that the expression of a dominant negative mutant of C/EBPbeta (designated Delta184-C/EBPbeta) completely inhibited p20K expression at confluence and stimulated the proliferation of CEF without inducing transformation. Mouse embryo fibroblasts nullizygous for C/EBPbeta had...

  1. Corn silk induced cyclooxygenase-2 in murine macrophages.

    Science.gov (United States)

    Kim, Kyung A; Shin, Hyun-Hee; Choi, Sang Kyu; Choi, Hye-Seon

    2005-10-01

    Stimulation of murine macrophages with corn silk induced cyclooxygenase (COX)-2 with secretion of PGE2. Expression of COX-2 was inhibited by pyrolidine dithiocarbamate (PDTC), and increased DNA binding by nuclear factor kappa B (NF-kappaB), indicating that COX-2 induction proceeds also via the NF-kappaB signaling pathway. A specific inhibitor of COX-2 decreased the expression level of inducible nitric oxide synthase (iNOS) stimulated by corn silk. PGE2 elevated the expression level of iNOS, probably via EP2 and EP4 receptors on the surface of the macrophages.

  2. RAGE-dependent activation of gene expression of superoxide dismutase and vanins by AGE-rich extracts in mice cardiac tissue and murine cardiac fibroblasts.

    Science.gov (United States)

    Leuner, Beatrice; Ruhs, Stefanie; Brömme, Hans-Jürgen; Bierhaus, Angelika; Sel, Saadettin; Silber, Rolf-Edgar; Somoza, Veronika; Simm, Andreas; Nass, Norbert

    2012-10-01

    Advanced glycation end products (AGEs) are stable compounds formed from initial Maillard reaction products. They are considered as markers for ageing and often associated with age-related, degenerative diseases. Bread crust represents an established model for nutritional compounds rich in AGEs and is able to induce antioxidative defense genes such as superoxide dismutases and vanins in cardiac cells. The aim of this study was to investigate to what extend the receptor for AGEs (RAGE) contributes to this response. Signal transduction in response to bread crust extract was analysed in cardiac fibroblasts derived from C57/B6-NCrl (RAGE +/+) and the corresponding RAGE-knock out C57/B6-NCrl mouse strain (RAGE -/-). Activation of superoxide dismutases in animals was then analysed upon bread crust feeding in these two mice strains. Cardiac fibroblasts from RAGE -/- mice did not express RAGE, but the expression of AGER-1 and AGER-3 was up-regulated, whereas the expression of SR-B1 was down-regulated. RAGE -/- cells were less sensitive to BCE in terms of MAP-kinase phosphorylation and NF-κB reporter gene activation. Bread crust extract induced mRNA levels of MnSOD and Vnn-1 were also reduced in RAGE -/- cells, whereas Vnn-3 mRNA accumulation seemed to be RAGE receptor independent. In bread crust feeding experiments, RAGE -/- mice did not exhibit an activation of MnSOD-mRNA and -protein accumulation as observed for the RAGE +/+ animals. In conclusion, RAGE was clearly a major factor for the induction of antioxidant defense signals derived from bread crust in cardiac fibroblast and mice. Nevertheless higher doses of bread crust extract could overcome the RAGE dependency in cell cultures, indicating that additional mechanisms are involved in BCE-mediated activation of SOD and vanin expression.

  3. Inflammatory microenvironment and tumor necrosis factor alpha as modulators of periostin and CCN2 expression in human non-healing skin wounds and dermal fibroblasts.

    Science.gov (United States)

    Elliott, Christopher G; Forbes, Thomas L; Leask, Andrew; Hamilton, Douglas W

    2015-04-01

    Non-healing skin wounds remain a significant clinical burden, and in recent years, the regulatory role of matricellular proteins in skin healing has received significant attention. Periostin and CCN2 are both upregulated at day 3 post-wounding in murine skin, where they regulate aspects of the proliferative phase of repair including mesenchymal cell infiltration and myofibroblast differentiation. In this study, we examined 1) the wound phenotype and expression patterns of periostin and CCN2 in non-healing skin wounds in humans and 2) the regulation of their expression in wound fibroblasts by tumor necrosis factor α (TNFα) and transforming growth factor-β1 (TGF-β1). Chronic skin wounds had a pro-inflammatory phenotype, characterized by macrophage infiltration, TNFα immunoreactivity, and neutrophil infiltration. Periostin, but not CCN2, was significantly suppressed in non-healing wound edge tissue at the mRNA and protein level compared with non-involved skin. In vitro, human wound edge fibroblasts populations were still able to proliferate and contract collagen gels. Compared to cells from non-involved skin, periostin and α-SMA mRNA levels increased significantly in the presence of TGF-β1 in wound cells and were significantly decreased by TNFα, but not those of Col1A2 or CCN2. In the presence of both TGF-β1 and TNFα, periostin and α-SMA mRNA levels were significantly reduced compared to TGF-β1 treated wound cells. Effects of TGF-β1 and TNFα on gene expression were also more pronounced in wound edge cells compared to non-involved fibroblasts. We conclude that variations in the expression of periostin and CCN2, are related to an inflammatory microenvironment and the presence of TNFα in human chronic wounds. Copyright © 2015. Published by Elsevier B.V.

  4. Defining Optimized Properties of Modified mRNA to Enhance Virus- and DNA- Independent Protein Expression in Adult Stem Cells and Fibroblasts

    Directory of Open Access Journals (Sweden)

    Frauke Hausburg

    2015-02-01

    Full Text Available Background: By far, most strategies for cell reprogramming and gene therapy are based on the introduction of DNA after viral delivery. To avoid the high risks accompanying these goals, non-viral and DNA-free delivery methods for various cell types are required. Methods: Relying on an initially established PCR-based protocol for convenient template DNA production, we synthesized five differently modified EGFP mRNA (mmRNA species, incorporating various degrees of 5-methylcytidine-5'-triphosphate (5mC and pseudouridine-5'-triphosphate (Ψ. We then investigated their effect on i protein expression efficiencies and ii cell viability for human mesenchymal stem cells (hMSCs and fibroblasts from different origins. Results: Our protocol allows highly efficient mmRNA production in vitro, enabling rapid and stable protein expression after cell transfection. However, our results also demonstrate that the terminally optimal modification needs to be defined in pilot experiments for each particular cell type. Transferring our approach to the conversion of fibroblasts into skeletal myoblasts using mmRNA encoding MyoD, we confirm the huge potential of mmRNA based protein expression for virus- and DNA-free reprogramming strategies. Conclusion: The achieved high protein expression levels combined with good cell viability not only in fibroblasts but also in hMSCs provides a promising option for mmRNA based modification of various cell types including slowly proliferating adult stem cells. Therefore, we are confident that our findings will substantially contribute to the improvement of efficient cell reprogramming and gene therapy approaches.

  5. Adaptive response to ionizing radiation in normal human skin fibroblasts. Enhancement of DNA repair rate and modulation of gene expression

    International Nuclear Information System (INIS)

    Toledo, S.M. de; Mitchel, R.E.J.; Azzam, E.; Ottawa Univ., ON; Raaphorst, G.P.

    1994-01-01

    Low doses and dose rates of ionizing radiation enhance the rate of DNA repair in human fibroblasts and protect the cells against radiation-induced micronucleus formation. Chronic exposures reduce the mRNA levels of the genes topoisomerase II and FACC-1 (Fanconi's anemia, group C). (authors). 11 refs., 1 tab., 2 figs

  6. Curcumin induces apoptosis and inhibits prostaglandin E(2) production in synovial fibroblasts of patients with rheumatoid arthritis.

    Science.gov (United States)

    Park, Cheol; Moon, Dong-Oh; Choi, Il-Whan; Choi, Byung Tae; Nam, Taek-Jeong; Rhu, Chung-Ho; Kwon, Taeg Kyu; Lee, Won Ho; Kim, Gi-Young; Choi, Yung Hyun

    2007-09-01

    Rheumatoid arthritis (RA) is a chronic inflammatory disease that is characterized by hyperplasia of the synovial fibroblasts, which is partly the result of decreased apoptosis. This study investigated the mechanisms through which curcumin, a polyphenolic compound from the rhizome of Curcuma longa, exerts its anti-proliferative action in the synovial fibroblasts obtained from patients with RA. Exposure of the synovial fibroblasts to curcumin resulted in growth inhibition and the induction of apoptosis, as measured by MTT assay, fluorescent microscopy and Annexin-V-based assay. RT-PCR and immunoblotting showed that treating the cells with curcumin resulted in the down-regulation of anti-apoptotic Bcl-2 and the X-linked inhibitor of the apoptosis protein as well as the up-regulation of pro-apoptotic Bax expression in a concentration-dependent manner. Curcumin-induced apoptosis was also associated with the proteolytic activation of caspase-3 and caspase-9, and the concomitant degradation of poly(ADP-ribose) polymerase protein. Furthermore, curcumin decreased the expression levels of the cyclooxygenase (COX)-2 mRNA and protein without causing significant changes in the COX-1 levels, which was correlated with the inhibition of prostaglandin E(2) synthesis. These results show that curcumin might help identify a new therapeutic pathway against hyperplasia of the synovial fibroblasts in RA.

  7. Aryl hydrocarbon receptor–ligand axis mediates pulmonary fibroblast migration and differentiation through increased arachidonic acid metabolism

    International Nuclear Information System (INIS)

    Su, Hsiang-Han; Lin, Hsin-Ting; Suen, Jau-Ling; Sheu, Chau Chyun; Yokoyama, Kazunari K.; Huang, Shau-Ku; Cheng, Chih Mei

    2016-01-01

    Pulmonary fibroblast migration and differentiation are critical events in fibrogenesis; meanwhile, fibrosis characterizes the pathology of many respiratory diseases. The role of aryl hydrocarbon receptor (AhR), a unique cellular chemical sensor, has been suggested in tissue fibrosis, but the mechanisms through which the AhR-ligand axis influences the fibrotic process remain undefined. In this study, the potential impact of the AhR-ligand axis on pulmonary fibroblast migration and differentiation was analyzed using human primary lung fibroblasts HFL-1 and CCL-202 cells. Boyden chamber-based cell migration assay showed that activated AhR in HFL-1cells significantly enhanced cell migration in response to 2, 3, 7, 8-tetrachlorodibenzo-p-dioxin (TCDD), and a known AhR antagonist, CH223191, inhibited its migratory activity. Furthermore, the calcium mobilization and subsequent upregulated expression of arachidonic acid metabolizing enzymes, including cyclooxygenase2 (COX-2) and 5-lipoxygenase (5-LOX), were observed in TCDD-treated HFL-1 cells, concomitant with elevated levels of prostaglandin E2 (PGE2) and leukotriene B4 (LTB4) secretion. Also, significantly increased expression of α-smooth muscle actin α-SMA), a fibroblast differentiation marker, was also noted in TCDD-treated HFL-1 cells (p < 0.05), resulting in a dynamic change in cytoskeleton protein levels and an increase in the nuclear translocation of the myocardin-related transcription factor. Moreover, the enhanced levels of α-SMA expression and fibroblast migration induced by TCDD, PGE2 and LTB4 were abrogated by selective inhibitors for COX-2 and 5-LOX. Knockdown of AhR by siRNA Completely diminished intracellular calcium uptake and reduced α-SMA protein verified by promoter-reporter assays and chromatin immunoprecipitation. Taken together, our results suggested the importance of the AhR-ligand axis in fibroblast migration and differentiation through its capacity in enhancing arachidonic acid metabolism.

  8. PAMPs and DAMPs stimulate the expression of pro-inflammatory cytokines in vitro in a fibroblast cell-line from rainbow trout (Oncorhynchus mykiss)

    DEFF Research Database (Denmark)

    Ingerslev, Hans-Christian; Ossum, CarlobG.; Nielsen, Michael Engelbrecht

    The recognition of PAMPs by immune cells relies on conserved PRRs such as TLRs, NLRs and RLRs leading to activation of NFκB signalling pathways. These receptors are activated upon stimulation by different ligands such as bacterial or viral components. The binding of ligands to the receptors...... in this evolutionary lineage of the bony fishes. The expression of TLR-3 and -9 receptors were significantly up-regulated following physical damage of muscle tissue as well as in stimulated fibroblasts, where LPS induced both TLR-3 and -9, supernatant from sonicated cells only TLR-9 while debris caused no induction...

  9. Effects of macelignan isolated from Myristica fragrans (nutmeg) on expression of matrix metalloproteinase-1 and type I procollagen in UVB-irradiated human skin fibroblasts

    International Nuclear Information System (INIS)

    Lee, Kyung-Eun; Mun, Sukyeong; Pyun, Hee-Bong; Kim, Myung-Suk; Hwang, Jae-Kwan

    2012-01-01

    Exposure to ultraviolet (UV) light causes premature skin aging that is associated with upregulated matrix metalloproteinases (MMPs) and decreased collagen synthesis. Macelignan, a natural lignan compound isolated from Myristica fragrans HOUTT. (nutmeg), has been reported to possess antioxidant and antiinflammatory activities. This study assessed the effects of macelignan on photoaging and investigated its mechanisms of action in UV-irradiated human skin fibroblasts (Hs68) by reverse transcription-polymerase chain reaction, Western blot analysis, 2', 7'-dichlorofluorescein diacetate assay, and enzyme-linked immunosorbent assay. Our results show that macelignan attenuated UV-induced MMP-1 expression by suppressing phosphorylation of mitogen-activated protein kinases (MAPKs) induced by reactive oxygen species. Macelignan also increased type I procollagen expression and secretion through transforming growth factor β (TGF-β)/Smad signaling. These findings indicate that macelignan regulates the expression of MMP-1 and type I procollagen in UV-irradiated human skin fibroblasts by modulating MAPK and TGF-β/Smad signaling, suggesting its potential as an efficacious antiphotoaging agent. (author)

  10. IL-34 Upregulated Th17 Production through Increased IL-6 Expression by Rheumatoid Fibroblast-Like Synoviocytes

    OpenAIRE

    Wang, Bing; Ma, Zijian; Wang, Miaomiao; Sun, Xiaotong; Tang, Yawei; Li, Ming; Zhang, Yan; Li, Fang; Li, Xia

    2017-01-01

    Rheumatoid arthritis (RA) is a chronic autoimmune disease which is characterized by synovial inflammation and cartilage damage for which causes articular dysfunction. Activation of fibroblast-like synoviocytes (FLS) is a critical step that promotes disease progression. In this study, we aimed to explore the effect of interleukin-34 (IL-34) on RA FLS as a proinflammatory factor and IL-34-stimulated FLS on the production of Th17. We found that serum IL-34 levels were increased compared to those...

  11. Fibroblast growth factor-2 up-regulates the expression of nestin through the Ras–Raf–ERK–Sp1 signaling axis in C6 glioma cells

    International Nuclear Information System (INIS)

    Chang, Kai-Wei; Huang, Yuan-Li; Wong, Zong-Ruei; Su, Peng-Han; Huang, Bu-Miin; Ju, Tsai-Kai; Yang, Hsi-Yuan

    2013-01-01

    Highlights: •Nestin expression in C6 glioma cells is induced by FGF-2. •Nestin expression is induced by FGF-2 via de novo RNA and protein synthesis. •The FGFR inhibitor SU5402 blocks the FGF-2-induced nestin expression. •The mRNA of FGFR1 and 3 are detected in C6 glioma cells. •Ras–Raf–ERK–Sp1 signaling pathway is responsibe for FGF-2-induced nestin expression. -- Abstract: Nestin is a 240-kDa intermediate filament protein expressed mainly in neural and myogenic stem cells. Although a substantial number of studies have focused on the expression of nestin during development of the central nervous system, little is known about the factors that induce and regulate its expression. Fibroblast growth factor-2 (FGF-2) is an effective mitogen and stimulates the proliferation and differentiation of a subset of nestin-expressing cells, including neural progenitor cells, glial precursor cells, and smooth muscle cells. To assess whether FGF-2 is a potent factor that induces the expression of nestin, C6 glioma cells were used. The results showed that nestin expression was up-regulated by FGF-2 via de novo RNA and protein synthesis. Our RT-PCR results showed that C6 glioma cells express FGFR1/3, and FGFRs is required for FGF-2-induced nestin expression. Further signaling analysis also revealed that FGF-2-induced nestin expression is mediated through FGFR–MAPK–ERK signaling axis and the transcriptional factor Sp1. These findings provide new insight into the regulation of nestin in glial system and enable the further studies on the function of nestin in glial cells

  12. Fibroblast growth factor-2 up-regulates the expression of nestin through the Ras–Raf–ERK–Sp1 signaling axis in C6 glioma cells

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Kai-Wei [Institute of Molecular and Cellular Biology, National Taiwan University, Taipei 106, Taiwan (China); Huang, Yuan-Li [Department of Biotechnology, College of Health Science, Asia University, Taichung 413, Taiwan (China); Wong, Zong-Ruei; Su, Peng-Han [Institute of Molecular and Cellular Biology, National Taiwan University, Taipei 106, Taiwan (China); Huang, Bu-Miin [Department of Cell Biology and Anatomy, National Cheng-Kung University, Tainan 701, Taiwan (China); Ju, Tsai-Kai [Instrumentation Center, National Taiwan University, Taipei 106, Taiwan (China); Technology Commons, College of Life Science, National Taiwan University, Taipei 106, Taiwan (China); Yang, Hsi-Yuan, E-mail: hyhy@ntu.edu.tw [Institute of Molecular and Cellular Biology, National Taiwan University, Taipei 106, Taiwan (China)

    2013-05-17

    Highlights: •Nestin expression in C6 glioma cells is induced by FGF-2. •Nestin expression is induced by FGF-2 via de novo RNA and protein synthesis. •The FGFR inhibitor SU5402 blocks the FGF-2-induced nestin expression. •The mRNA of FGFR1 and 3 are detected in C6 glioma cells. •Ras–Raf–ERK–Sp1 signaling pathway is responsibe for FGF-2-induced nestin expression. -- Abstract: Nestin is a 240-kDa intermediate filament protein expressed mainly in neural and myogenic stem cells. Although a substantial number of studies have focused on the expression of nestin during development of the central nervous system, little is known about the factors that induce and regulate its expression. Fibroblast growth factor-2 (FGF-2) is an effective mitogen and stimulates the proliferation and differentiation of a subset of nestin-expressing cells, including neural progenitor cells, glial precursor cells, and smooth muscle cells. To assess whether FGF-2 is a potent factor that induces the expression of nestin, C6 glioma cells were used. The results showed that nestin expression was up-regulated by FGF-2 via de novo RNA and protein synthesis. Our RT-PCR results showed that C6 glioma cells express FGFR1/3, and FGFRs is required for FGF-2-induced nestin expression. Further signaling analysis also revealed that FGF-2-induced nestin expression is mediated through FGFR–MAPK–ERK signaling axis and the transcriptional factor Sp1. These findings provide new insight into the regulation of nestin in glial system and enable the further studies on the function of nestin in glial cells.

  13. Quantitative proteomics reveals altered expression of extracellular matrix related proteins of human primary dermal fibroblasts in response to sulfated hyaluronan and collagen applied as artificial extracellular matrix.

    Science.gov (United States)

    Müller, Stephan A; van der Smissen, Anja; von Feilitzsch, Margarete; Anderegg, Ulf; Kalkhof, Stefan; von Bergen, Martin

    2012-12-01

    Fibroblasts are the main matrix producing cells of the dermis and are also strongly regulated by their matrix environment which can be used to improve and guide skin wound healing processes. Here, we systematically investigated the molecular effects on primary dermal fibroblasts in response to high-sulfated hyaluronan [HA] (hsHA) by quantitative proteomics. The comparison of non- and high-sulfated HA revealed regulation of 84 of more than 1,200 quantified proteins. Based on gene enrichment we found that sulfation of HA alters extracellular matrix remodeling. The collagen degrading enzymes cathepsin K, matrix metalloproteinases-2 and -14 were found to be down-regulated on hsHA. Additionally protein expression of thrombospondin-1, decorin, collagen types I and XII were reduced, whereas the expression of trophoblast glycoprotein and collagen type VI were slightly increased. This study demonstrates that global proteomics provides a valuable tool for revealing proteins involved in molecular effects of growth substrates for further material optimization.

  14. Proteomic Analysis Shows Constitutive Secretion of MIF and p53-associated Activity of COX-2−/− Lung Fibroblasts

    Directory of Open Access Journals (Sweden)

    Mandar Dave

    2017-12-01

    Full Text Available The differential expression of two closelyassociated cyclooxygenase isozymes, COX-1 and COX-2, exhibited functions beyond eicosanoid metabolism. We hypothesized that COX-1 or COX-2 knockout lung fibroblasts may display altered protein profiles which may allow us to further differentiate the functional roles of these isozymes at the molecular level. Proteomic analysis shows constitutive production of macrophage migration inhibitory factor (MIF in lung fibroblasts derived from COX-2−/− but not wild-type (WT or COX-1−/− mice. MIF was spontaneously released in high levels into the extracellular milieu of COX2−/− fibroblasts seemingly from the preformed intracellular stores, with no change in the basal gene expression of MIF. The secretion and regulation of MIF in COX-2−/− was “prostaglandin-independent.” GO analysis showed that concurrent with upregulation of MIF, there is a significant surge in expression of genes related to fibroblast growth, FK506 binding proteins, and isomerase activity in COX-2−/− cells. Furthermore, COX-2−/− fibroblasts also exhibit a significant increase in transcriptional activity of various regulators, antagonists, and co-modulators of p53, as well as in the expression of oncogenes and related transcripts. Integrative Oncogenomics Cancer Browser (IntroGen analysis shows downregulation of COX-2 and amplification of MIF and/or p53 activity during development of glioblastomas, ependymoma, and colon adenomas. These data indicate the functional role of the MIF-COX-p53 axis in inflammation and cancer at the genomic and proteomic levels in COX-2-ablated cells. This systematic analysis not only shows the proinflammatory state but also unveils a molecular signature of a pro-oncogenic state of COX-1 in COX-2 ablated cells.

  15. Dual expression of Epstein-Barr virus, latent membrane protein-1 and human papillomavirus-16 E6 transform primary mouse embryonic fibroblasts through NF-κB signaling.

    Science.gov (United States)

    Shimabuku, Tetsuya; Tamanaha, Ayumi; Kitamura, Bunta; Tanabe, Yasuka; Tawata, Natsumi; Ikehara, Fukino; Arakaki, Kazunari; Kinjo, Takao

    2014-01-01

    The prevalence of Epstein-Barr virus (EBV) and high-risk human papilloma virus (HPV) infections in patients with oral cancer in Okinawa, southwest islands of Japan, has led to the hypothesis that carcinogenesis is related to EBV and HPV co-infection. To explore the mechanisms of transformation induced by EBV and HPV co-infection, we analyzed the transformation of primary mouse embryonic fibroblasts (MEFs) expressing EBV and HPV-16 genes, alone or in combination. Expression of EBV latent membrane protein-1 (LMP-1) alone or in combination with HPV-16 E6 increased cell proliferation and decreased apoptosis, whereas single expression of EBV nuclear antigen-1 (EBNA-1), or HPV-16 E6 did not. Co-expression of LMP-1 and E6 induced anchorage-independent growth and tumor formation in nude mice, whereas expression of LMP-1 alone did not. Although the singular expression of these viral genes showed increased DNA damage and DNA damage response (DDR), co-expression of LMP-1 and E6 did not induce DDR, which is frequently seen in cancer cells. Furthermore, co-expression of LMP-1 with E6 increased NF-κB signaling, and the knockdown of LMP-1 or E6 in co-expressing cells decreased cell proliferation, anchorage independent growth, and NF-κB activation. These data suggested that expression of individual viral genes is insufficient for inducing transformation and that co-expression of LMP-1 and E6, which is associated with suppression of DDR and increased NF-κB activity, lead to transformation. Our findings demonstrate the synergistic effect by the interaction of oncogenes from different viruses on the transformation of primary MEFs.

  16. Fibroblastic rheumatism

    Directory of Open Access Journals (Sweden)

    Jyoti Ranjan Parida

    2017-01-01

    Full Text Available Fibroblastic rheumatism (FR is a rare dermoarthopathy reported from different parts of the world since 1980. Although the exact cause is unknown, few reports implicate infection may be a triggering event. Patients usually present with multiple skin nodules and polyarthropathy with progressive skin contractures. Laboratory parameters including acute phase reactants are usually normal. The confirmatory diagnosis is based on histopathologic study of skin nodules, which demonstrate fibroblastic proliferation, thickened collagen fibers, dermal fibrosis, and decreased number of elastic fibers. Immunoreactivity for b-catenin, smooth muscle actin, and the monoclonal antibody HHF35 show myofibroblastic differentiation. Treatments with oral prednisolone and other disease-modifying drugs such as methotrexate, infliximab, and interferon have been tried with variable success. In general, skin lesions respond more aptly than joint symptoms indicating that skin fibroblast is more amenable to treatment than synovial fibroblasts. Awareness regarding this orphan disease among clinicians and pathologists will help in more reporting of such cases and finding out optimal treatment regimen.

  17. The expression change of β-arrestins in fibroblast-like synoviocytes from rats with collagen-induced arthritis and the effect of total glucosides of paeony.

    Science.gov (United States)

    Wang, Qing-Tong; Zhang, Ling-Ling; Wu, Hua-Xun; Wei, Wei

    2011-01-27

    To investigate the expression of β-arrestins in fibroblast-like synoviocytes (FLS) from collagen-induced arthritis (CIA) rats and the effect of total glucosides of paeony (TGP). TGP and glucosides of tripterygium wilfordii (GTW) were intragastriclly administrated to collagen-induced arthritis (CIA) rats after immunization. The secondary inflammatory reaction was evaluated by hind paw swelling, polyarthritis index and histopathological changes. Antibodies to type II collagen (CII) were determined by enzyme-linked immunosorbent assay (ELISA). Synoviocyte proliferations were determined by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl (MTT) assay. The expression of β-arrestins in synoviocytes from CIA rats was measured by western blot. The administration of TGP (25, 50, 100 mg/kg) depressed hind paw swelling and decreased the arthritis scores of CIA rats. TGP improved the pathologic manifestations of CIA. Serum anti-CII antibodies level increased significantly in CIA rats, while TGP had no effect on it. Fibroblast-like synoviocytes (FLS) proliferation was inhibited by TGP (50, 100 mg/kg). On d14, d28 after immunization, β-arrestins expression greatly up-regulated in synoviocytes from CIA rats and then returned to baseline levels on d42 after immunization. TGP (50, 100 mg/kg) significantly reduced the expression of β-arrestins. An inflammatory process in vivo induces an up-regulation of β-arrestins in synoviocytes from CIA rats while TGP can inhibit this change, which might be one of the important mechanisms for TGP to produce a marked therapeutic effect on RA. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.

  18. Proteasome activity or expression is not altered by activation of the heat shock transcription factor Hsf1 in cultured fibroblasts or myoblasts.

    Science.gov (United States)

    Taylor, David M; Kabashi, Edor; Agar, Jeffrey N; Minotti, Sandra; Durham, Heather D

    2005-01-01

    Heat shock proteins (Hsps) with chaperoning function work together with the ubiquitin-proteasome pathway to prevent the accumulation of misfolded, potentially toxic proteins, as well as to control catabolism of the bulk of cytoplasmic, cellular protein. There is evidence for the involvement of both systems in neurodegenerative disease, and a therapeutic target is the heat shock transcription factor, Hsf1, which mediates upregulation of Hsps in response to cellular stress. The mechanisms regulating expression of proteasomal proteins in mammalian cells are less well defined. To assess any direct effect of Hsf1 on expression of proteasomal subunits and activity in mammalian cells, a plasmid encoding a constitutively active form of Hsf1 (Hsf1act) was expressed in mouse embryonic fibroblasts lacking Hsf1 and in cultured human myoblasts. Plasmid encoding an inactivatible form of Hsf1 (Hsf1inact) served as control. In cultures transfected with plasmid hsf1act, robust expression of the major stress-inducible Hsp, Hsp70, occurred but not in cultures transfected with hsf1inact. No significant changes in the level of expression of representative proteasomal proteins (structural [20Salpha], a nonpeptidase beta subunit [20Sbeta3], or 2 regulatory subunits [19S subunit 6b, 11 Salpha]) or in chymotrypsin-, trypsin-, and caspaselike activities of the proteasome were measured. Thus, stress-induced or pharmacological activation of Hsf1 in mammalian cells would upregulate Hsps but not directly affect expression or activity of proteasomes.

  19. Expression levels of novel cytokine IL-32 in periodontitis and its role in the suppression of IL-8 production by human gingival fibroblasts stimulated with Porphyromonas gingivalis

    Directory of Open Access Journals (Sweden)

    Kazuhisa Ouhara

    2012-03-01

    Full Text Available Background:IL-32 was recently found to be elevated in the tissue of rheumatoid arthritis and inflammatory bowel disease. Periodontitis is a chronic inflammatory disease caused by polymicrobial infections that result in soft tissue destruction and alveolar bone loss. Although IL-32 is also thought to be associated with periodontal disease, its expression and possible role in periodontal tissue remain unclear. Therefore, this study investigated the expression patterns of IL-32 in healthy and periodontally diseased gingival tissue. The expression of IL-32 in cultured human gingival fibroblasts (HGF as well as effects of autocrine IL-32 on IL-8 production from HGF were also examined.Methods:Periodontal tissue was collected from both healthy volunteers and periodontitis patients, and immunofluorescent staining was performed in order to determine the production of IL-32. Using real-time PCR and ELISA, mRNA expression and protein production of IL-32 in HGF, stimulated by Porphyromonas gingivalis (Pg, were also investigated.Results:Contrary to our expectation, the production of IL-32 in the periodontitis patients was significantly lower than in the healthy volunteers. According to immunofluorescent microscopy, positive staining for IL-32 was detected in prickle and basal cell layers in the epithelium as well as fibroblastic cells in connective tissue. Addition of fixed Pg in vitro was found to suppress the otherwise constitutive expression of IL-32 mRNA and protein in HGF. However, recombinant IL-32 in vitro inhibited the expression of IL-8 mRNA by HGF stimulated with Pg. Interestingly, anti-IL-32 neutralizing antibody upregulated the IL-8 mRNA expression in non-stimulated HGF, indicating that constitutive expression of IL-32 in HGF suppressed IL-8 mRNA expression in the absence of bacterial stimulation.Conclusion:These results indicate that IL-32 is constitutively produced by HGF which can be suppressed by Pg and may play a role in the downregulation

  20. Fibroblast spheroids as a model to study sustained fibroblast quiescence and their crosstalk with tumor cells

    Energy Technology Data Exchange (ETDEWEB)

    Salmenperä, Pertteli, E-mail: pertteli.salmenpera@helsinki.fi [Department of Virology, Medicum, Faculty of Medicine, University of Helsinki, P.O. Box 21, FIN-00014 (Finland); Karhemo, Piia-Riitta [Research Programs Unit, Translational Cancer Biology, and Institute of Biomedicine, University of Helsinki, P.O. Box 63, FIN-00014 (Finland); Räsänen, Kati [Department of Virology, Medicum, Faculty of Medicine, University of Helsinki, P.O. Box 21, FIN-00014 (Finland); Laakkonen, Pirjo [Research Programs Unit, Translational Cancer Biology, and Institute of Biomedicine, University of Helsinki, P.O. Box 63, FIN-00014 (Finland); Vaheri, Antti [Department of Virology, Medicum, Faculty of Medicine, University of Helsinki, P.O. Box 21, FIN-00014 (Finland)

    2016-07-01

    Stromal fibroblasts have an important role in regulating tumor progression. Normal and quiescent fibroblasts have been shown to restrict and control cancer cell growth, while cancer-associated, i. e. activated fibroblasts have been shown to enhance proliferation and metastasis of cancer cells. In this study we describe generation of quiescent fibroblasts in multicellular spheroids and their effects on squamous cell carcinoma (SCC) growth in soft-agarose and xenograft models. Quiescent phenotype of fibroblasts was determined by global down-regulation of expression of genes related to cell cycle and increased expression of p27. Interestingly, microarray analysis showed that fibroblast quiescence was associated with similar secretory phenotype as seen in senescence and they expressed senescence-associated-β-galactosidase. Quiescent fibroblasts spheroids also restricted the growth of RT3 SCC cells both in soft-agarose and xenograft models unlike proliferating fibroblasts. Restricted tumor growth was associated with marginally increased tumor cell senescence and cellular differentiation, showed with senescence-associated-β-galactosidase and cytokeratin 7 staining. Our results show that the fibroblasts spheroids can be used as a model to study cellular quiescence and their effects on cancer cell progression. - Highlights: • Fibroblasts acquire a sustained quiescence when grown as multicellular spheroids. • This quiescence is associated with drastic change in gene expression. • Fibroblasts spheroids secrete various inflammation-linked cytokines and chemokines. • Fibroblasts spheroids reduced growth of RT3 SCC cells in xenograft model.

  1. Cyclooxygenase inhibition improves endothelial vasomotor dysfunction of visceral adipose arterioles in human obesity

    Science.gov (United States)

    Farb, Melissa G.; Tiwari, Stephanie; Karki, Shakun; Ngo, Doan TM; Carmine, Brian; Hess, Donald T.; Zuriaga, Maria A.; Walsh, Kenneth; Fetterman, Jessica L.; Hamburg, Naomi M.; Vita, Joseph A.; Apovian, Caroline M.; Gokce, Noyan

    2013-01-01

    Objective The purpose of this study was to determine whether cyclooxygenase inhibition improves vascular dysfunction of adipose microvessels from obese humans. Design and Methods In 20 obese subjects (age 37±12 yrs, BMI 47±8 kg/m2) we collected subcutaneous and visceral fat during bariatric surgery and characterized adipose depot-specific gene expression, endothelial cell phenotype, and microvascular function. Vasomotor function was assessed in response to endothelium-dependent agonists using videomicroscopy of small arterioles from fat. Results Arterioles from visceral fat exhibited impaired endothelium-dependent, acetylcholine-mediated vasodilation, compared to the subcutaneous depot (p<0.001). Expression of mRNA transcripts relevant to the cyclooxygenase pathway were upregulated in visceral compared to subcutaneous fat. Pharmacological inhibition of cyclooxygenase with indomethacin improved endothelium-dependent vasodilator function of arterioles from visceral fat by 2-fold (p=0.01), whereas indomethacin had no effect in the subcutaneous depot. Indomethacin increased activation via serine-1177 phosphorylation of endothelial nitric oxide synthase in response to acetylcholine in endothelial cells from visceral fat. Inhibition of endothelial nitric oxide synthase with Nω-nitro-L-arginine methyl ester abrogated the effects of cyclooxygenase-inhibition suggesting that vascular actions of indomethacin were related to increased nitric oxide bioavailability. Conclusions Our findings suggest that cyclooxygenase-mediated vasoconstrictor prostanoids partly contribute to endothelial dysfunction of visceral adipose arterioles in human obesity. PMID:23640904

  2. Characterization of the growth of murine fibroblasts that express human insulin receptors. I. The effect of insulin in the absence of other growth factors

    International Nuclear Information System (INIS)

    Randazzo, P.A.; Morey, V.A.; Polishook, A.K.; Jarett, L.

    1990-01-01

    The effect of insulin on the growth of murine fibroblasts transfected with an expression vector containing human insulin receptor cDNA (NIH 3T3/HIR) and the parental cells (NIH/3T3) was characterized. Insulin in the absence of other mitogens increased the rate of incorporation of thymidine into NIH 3T3/HIR cells with a half-maximal response occurring at an insulin concentration of 35 ng/ml and a maximal response that was equivalent to that elicited by 10% fetal calf serum. The thymidine incorporation rate was increased by 12 h, was maximal at approximately 16 h, and returned to basal rates at 24 h after the addition of insulin. Insulin induced a maximum of 65% of cells to incorporate thymidine. The increased DNA synthesis was accompanied by net growth. Addition of insulin to the NIH 3T3/HIR cells resulted in increased DNA content with a half-maximal response occurring at approximately 30 ng/ml insulin and a maximal response equivalent to that elicited by serum. An increase in cell number detected after the addition of insulin to the NIH 3T3/HIR suggests that the cells had progressed through mitosis. Insulin did not increase the rate of thymidine incorporation, DNA content, or number of the parental NIH 3T3 cells. These data show that insulin, in the absence of a second mitogen, is able to induce NIH 3T3/HIR fibroblasts to traverse the cell cycle

  3. Simultaneous Expression of Cancer Stem Cell-Like Properties and Cancer-Associated Fibroblast-Like Properties in a Primary Culture of Breast Cancer Cells

    Energy Technology Data Exchange (ETDEWEB)

    Ishikawa, Mami; Inoue, Takahiro; Shirai, Takuma; Takamatsu, Kazuhiko; Kunihiro, Shiori; Ishii, Hirokazu [Frontiers of Innovative Research in Science and Technology (FIRST), Konan University, Kobe 650-0047 (Japan); Nishikata, Takahito, E-mail: nisikata@konan-u.ac.jp [Frontiers of Innovative Research in Science and Technology (FIRST), Konan University, Kobe 650-0047 (Japan); Frontier Institute for Biomolecular Engineering Research (FIBER), Konan University, Kobe 650-0047 (Japan)

    2014-07-31

    The importance of cancer-associated fibroblasts (CAFs) in cancer biology has been recently highlighted owing to their critical roles in cancer growth, progression, metastasis, and therapeutic resistance. We have previously established a primary culture of breast cancer cells, which showed epithelial-mesenchymal transition and cancer stem cell-like properties. In this study, we found that the primary culture also showed CAF-like properties. For example, hypoxia inducible factor 1α (HIF1A) and its downstream genes, nuclear factor-kappa B2 (NF-κB2) and BCL2/adenovirus E1B 19 kd-interacting protein 3 (BNIP3), and many enzymes involved in glycolysis, such as GAPDH, LDH, PGAM1, and PKM2, were highly overexpressed in the primary culture. Moreover, media conditioned with the primary culture cells enhanced the growth of breast cancer cells. Similar to previous CAF studies, this enhancement suggested to be occurred through fibroblast growth factor signaling. This MCKH primary culture cell, which showed simultaneous expression of tumorigenic and CAF properties, offers a unique experimental system for studying the biology of CAFs.

  4. Cyclophilin A secreted from fibroblast-like synoviocytes is involved in the induction of CD147 expression in macrophages of mice with collagen-induced arthritis

    Directory of Open Access Journals (Sweden)

    Nishioku Tsuyoshi

    2012-11-01

    Full Text Available Abstract Background Cyclophilin A (CypA, a member of the immunophilin family, is a ubiquitously distributed intracellular protein. Recent studies have shown that CypA is secreted by cells in response to inflammatory stimuli. Elevated levels of extracellular CypA and its receptor, CD147 have been detected in the synovium of patients with RA. However, the precise process of interaction between CypA and CD147 in the development of RA remains unclear. This study aimed to investigate CypA secretion from fibroblast-like synoviocytes (FLS isolated from mice with collagen-induced arthritis (CIA and CypA-induced CD147 expression in mouse macrophages. Findings CIA was induced by immunization with type II collagen in mice. The expression and localization of CypA and CD147 was investigated by immunoblotting and immunostaining. Both CypA and CD147 were highly expressed in the joints of CIA mice. CD147 was expressed in the infiltrated macrophages in the synovium of CIA mice. In vitro, spontaneous CypA secretion from FLS was detected and this secretion was increased by stimulation with lipopolysaccharide. CypA markedly increased CD147 levels in macrophages. Conclusions These findings suggest that an interaction in the synovial joints between extracellular CypA and CD147 expressed by macrophages may be involved in the mechanisms underlying the development of arthritis.

  5. TCDD and a putative endogenous AhR ligand, ITE, elicit the same immediate changes in gene expression in mouse lung fibroblasts.

    Science.gov (United States)

    Henry, Ellen C; Welle, Stephen L; Gasiewicz, Thomas A

    2010-03-01

    The aryl hydrocarbon receptor (AhR), a ligand-dependent transcription factor, mediates toxicity of several classes of xenobiotics and also has important physiological roles in differentiation, reproduction, and immunity, although the endogenous ligand(s) mediating these functions is/are as yet unidentified. One candidate endogenous ligand, 2-(1'H-indolo-3'-carbonyl)-thiazole-4-carboxylic acid methyl ester (ITE), is a potent AhR agonist in vitro, activates the murine AhR in vivo, but does not induce toxicity. We hypothesized that ITE and the toxic ligand, 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), may modify transcription of different sets of genes to account for their different toxicity. To test this hypothesis, primary mouse lung fibroblasts were exposed to 0.5muM ITE, 0.2nM TCDD, or vehicle for 4 h, and total gene expression was evaluated using microarrays. After this short-term and low-dose treatment, several hundred genes were changed significantly, and the response to ITE and TCDD was remarkably similar, both qualitatively and quantitatively. Induced gene sets included the expected battery of AhR-dependent xenobiotic-metabolizing enzymes, as well as several sets that reflect the inflammatory role of lung fibroblasts. Real time quantitative RT-qPCR assay of several selected genes confirmed these microarray data and further suggested that there may be kinetic differences in expression between ligands. These data suggest that ITE and TCDD elicit an analogous change in AhR conformation such that the initial transcription response is the same. Furthermore, if the difference in toxicity between TCDD and ITE is mediated by differences in gene expression, then it is likely that secondary changes enabled by the persistent TCDD, but not by the shorter lived ITE, are responsible.

  6. Cationic star-shaped polymer as an siRNA carrier for reducing MMP-9 expression in skin fibroblast cells and promoting wound healing in diabetic rats

    Directory of Open Access Journals (Sweden)

    Li N

    2014-07-01

    Full Text Available Na Li,1,* Heng-Cong Luo,1,* Chuan Yang,1 Jun-Jie Deng,2 Meng Ren,1 Xiao-Ying Xie,1 Diao-Zhu Lin,1 Li Yan,1 Li-Ming Zhang2 1Department of Endocrinology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, People’s Republic of China; 2DSAPM Lab and PCFM Lab, Institute of Polymer Science, Department of Polymer and Materials Science, School of Chemistry and Chemical Engineering, Sun Yat-sen University, Guangzhou, People’s Republic of China *These authors contributed equally to this work Background: Excessive expression of matrix metalloproteinase-9 (MMP-9 is deleterious to the cutaneous wound-healing process in the context of diabetes. The aim of the present study was to explore whether a cationic star-shaped polymer consisting of ß-cyclodextrin (ß-CD core and poly(amidoamine dendron arms (ß-CD-[D3]7 could be used as the gene carrier of small interfering RNA (siRNA to reduce MMP-9 expression for enhanced diabetic wound healing. Methods: The cytotoxicity of ß-CD-(D37 was investigated by 3-(4,5-Dimethylthiazol-2-yl-2,5-diphenyltetrazolium bromide assay (MMT method in the rat CRL1213 skin fibroblast cell line. The transfection efficiency of ß-CD-(D37/MMP-9-small interfering RNA (siRNA complexes was determined by confocal microscopy and flow cytometry. Quantitative real time (RT polymerase chain reaction was performed to measure the gene expression of MMP-9 after the transfection by ß-CD-(D37/MMP-9-siRNA complexes. The ß-CD-(D37/MMP-9-siRNA complexes were injected on the wounds of streptozocin-induced diabetic rats. Wound closure was measured on days 4 and 7 post-wounding. Results: ß-CD-(D37 exhibited low cytotoxicity in fibroblast cells, and easily formed the complexes with MMP-9-siRNA. The ß-CD-(D37/MMP-9-siRNA complexes were readily taken up by fibroblast cells, resulting in the downregulation of MMP-9 gene expression (P<0.01. Animal experiments revealed that the treatment by ß-CD-(D37/MMP-9-siRNA complexes enhanced wound

  7. Expression and Purification of Recombinant Human Basic Fibroblast Growth Factor Fusion Proteins and Their Uses in Human Stem Cell Culture.

    Science.gov (United States)

    Imsoonthornruksa, Sumeth; Pruksananonda, Kamthorn; Parnpai, Rangsun; Rungsiwiwut, Ruttachuk; Ketudat-Cairns, Mariena

    2015-01-01

    To reduce the cost of cytokines and growth factors in stem cell research, a simple method for the production of soluble and biological active human basic fibroblast growth factor (hbFGF) fusion protein in Escherichia coli was established. Under optimal conditions, approximately 60-80 mg of >95% pure hbFGF fusion proteins (Trx-6xHis-hbFGF and 6xHis-hbFGF) were obtained from 1 liter of culture broth. The purified hbFGF proteins, both with and without the fusion tags, were biologically active, which was confirmed by their ability to stimulate proliferation of NIH3T3 cells. The fusion proteins also have the ability to support several culture passages of undifferentiated human embryonic stem cells and induce pluripotent stem cells. This paper describes a low-cost and uncomplicated method for the production and purification of biologically active hbFGF fusion proteins. © 2015 S. Karger AG, Basel.

  8. Triggering of the dsRNA sensors TLR3, MDA5, and RIG-I induces CD55 expression in synovial fibroblasts.

    Directory of Open Access Journals (Sweden)

    Olga N Karpus

    Full Text Available CD55 (decay-accelerating factor is a complement-regulatory protein highly expressed on fibroblast-like synoviocytes (FLS. CD55 is also a ligand for CD97, an adhesion-type G protein-coupled receptor abundantly present on leukocytes. Little is known regarding the regulation of CD55 expression in FLS.FLS isolated from arthritis patients were stimulated with pro-inflammatory cytokines and Toll-like receptor (TLR ligands. Transfection with polyinosinic-polycytidylic acid (poly(I:C and 5'-triphosphate RNA were used to activate the cytoplasmic double-stranded (dsRNA sensors melanoma differentiation-associated gene 5 (MDA5 and retinoic acid-inducible gene-I (RIG-I. CD55 expression, cell viability, and binding of CD97-loaded beads were quantified by flow cytometry.CD55 was expressed at equal levels on FLS isolated from patients with rheumatoid arthritis (RA, osteoarthritis, psoriatic arthritis and spondyloarthritis. CD55 expression in RA FLS was significantly induced by IL-1β and especially by the TLR3 ligand poly(I:C. Activation of MDA5 and RIG-I also enhanced CD55 expression. Notably, activation of MDA5 dose-dependently induced cell death, while triggering of TLR3 or RIG-I had a minor effect on viability. Upregulation of CD55 enhanced the binding capacity of FLS to CD97-loaded beads, which could be blocked by antibodies against CD55.Activation of dsRNA sensors enhances the expression of CD55 in cultured FLS, which increases the binding to CD97. Our findings suggest that dsRNA promotes the interaction between FLS and CD97-expressing leukocytes.

  9. Overexpression of LncRNA AC067945.2 Down-Regulates Collagen Expression in Skin Fibroblasts and Possibly Correlates with the VEGF and Wnt Signalling Pathways.

    Science.gov (United States)

    Chen, Ling; Li, Jingyun; Li, Qian; Li, Xue; Gao, Yanli; Hua, Xiangdong; Zhou, Bei; Li, Jun

    2018-01-01

    Long non-coding RNAs (lncRNAs) are thought to play crucial roles in human diseases. However, the function of lncRNAs in hypertrophic scar formation remains poorly understood. Utilizing qRT-PCR, we explored the expression changes of AC067945.2. Overexpression of AC067945.2 in normal skin fibroblasts was performed by transient plasmid transfection. Western blot was used to check the proteins' expression changes. Cell Counting Kit-8 (CCK-8) assay and Annexin V/7-AAD staining were used to examine cell proliferation and apoptosis, respectively. mRNA-seq was applied to dissect the differentially expressed mRNAs in AC067945.2 overexpressed cells. We also performed ELISA to detect the VEGF secretion. AC067945.2 was down-regulated in hypertrophic scar tissues. Overexpression of AC067945.2 did not affect cell proliferation, but it mildly promoted early apoptosis in normal skin fibroblasts. Furthermore, AC067945.2 overexpression inhibited the expression of COL1A1, COL1A2, COL3A1 and α-SMA proteins. Transforming growth factor-β1 (TGF-β1) could inhibit the expression of AC067945.2. Based on mRNA-seq data, compared with mRNAs in the control group, 138 mRNAs were differentially expressed, including 14 up-regulated and 124 down-regulated transcripts, in the AC067945.2 overexpression group. Gene ontology and pathway analyses revealed that AC067945.2 overexpression was correlated with developmental processes, binding, extracellular region, and the vascular endothelial cell growth factor (VEGF) and Wnt signalling pathways. ELISA confirmed that AC067945.2 overexpression could repress VEGF secretion. Taken together, our data uncovered the functions of a novel lncRNA AC067945.2, which might help us understand the mechanisms regulated by AC067945.2 in the pathogenesis of hypertrophic scar formation. © 2018 The Author(s). Published by S. Karger AG, Basel.

  10. A feeder- and xeno-free human induced pluripotent stem cell line obtained from primary human dermal fibroblasts with epigenetic repression of reprogramming factors expression: GPCCi001-A

    Directory of Open Access Journals (Sweden)

    Michał Stefan Lach

    2017-04-01

    Full Text Available The primary human dermal fibroblasts (PHDFs from breast cancer patient were obtained to generate the human induced pluripotent stem cell line GPCCi001-A via lentiviral transfection. Thus, a modified EF1a-hSTEMCCA-loxP with tetO operator which regulates transgene expression was used. This method takes advantage of epigenetic regulation of transcription and allows for stable silencing of the reprogramming factors in obtained hiPS cells. To increase the potential utility of hiPSCs for clinical applications, they were adapted to feeder- and xeno-free conditions. The pluripotency of GPCCi001-A cell line and ability to differentiate into three germ layers was confirmed.

  11. Cutis laxa: reduced elastin gene expression in skin fibroblast cultures as determined by hybridizations with a homologous cDNA and an exon 1-specific oligonucleotide

    International Nuclear Information System (INIS)

    Olsen, D.R.; Fazio, M.J.; Shamban, A.T.; Rosenbloom, J.; Uitto, J.

    1988-01-01

    Fibroblast cultures were established from six patients with cutis laxa, and elastin gene expression was analyzed by RNA hybridizations with a 2.5-kilobase human elastin cDNA or an exon 1-specific 35-base oligomer. Northern analyses using either probe detected mRNA transcripts of ∼ 3.5 kilobases, and no qualitative difference between the control and cutis laxa mRNAs was detected. However, quantitation of the elastin mRNA abundance by slot blot hybridizations revealed markedly reduced levels in all cutis laxa cell strains. Assuming equal translational activity of the control and cutix laxa mRNAs, the reduced mRNA levels could result in diminished elastin production, providing an explanation for the paucity of elastic fibers in the skin and other tissues in cutis laxa

  12. IFN-ε is constitutively expressed by cells of the reproductive tract and is inefficiently secreted by fibroblasts and cell lines.

    Directory of Open Access Journals (Sweden)

    Pascale Hermant

    Full Text Available Type-I interferons (IFNs form a large family of cytokines that primarily act to control the early development of viral infections. Typical type-I IFN genes, such as those encoding IFN-α or IFN-β are upregulated by viral infection in many cell types. In contrast, the gene encoding IFN-ε was reported to be constitutively expressed by cells of the female reproductive tract and to contribute to the protection against vaginal infections with herpes simplex virus 2 and Chlamydia muridarum. Our data confirm the lack of induction of IFN-ε expression after viral infection and the constitutive expression of IFN-ε by cells of the female but also of the male reproductive organs. Interestingly, when expressed from transfected expression plasmids in 293T, HeLa or Neuro2A cells, the mouse and human IFN-ε precursors were inefficiently processed and secretion of IFN-ε was minimal. Analysis of chimeric constructs produced between IFN-ε and limitin (IFN-ζ showed that both the signal peptide and the mature moiety of IFN-ε contribute to poor processing of the precursor. Immunofluorescent detection of FLAG-tagged IFN-ε in transfected cells suggested that IFN-ε and chimeric proteins were defective for progression through the secretory pathway. IFN-ε did not, however, act intracellularly and impart an antiviral state to producing cells. Given the constitutive expression of IFN-ε in specialized cells and the poor processing of IFN-ε precursor in fibroblasts and cell lines, we hypothesize that IFN-ε secretion may require a co-factor specifically expressed in cells of the reproductive organs, that might secure the system against aberrant release of this IFN.

  13. Knock-in fibroblasts and transgenic blastocysts for expression of human FGF2 in the bovine β-casein gene locus using CRISPR/Cas9 nuclease-mediated homologous recombination.

    Science.gov (United States)

    Jeong, Young-Hee; Kim, Yeong Ji; Kim, Eun Young; Kim, Se Eun; Kim, Jiwoo; Park, Min Jee; Lee, Hong-Gu; Park, Se Pill; Kang, Man-Jong

    2016-06-01

    Many transgenic domestic animals have been developed to produce therapeutic proteins in the mammary gland, and this approach is one of the most important methods for agricultural and biomedical applications. However, expression and secretion of a protein varies because transgenes are integrated at random sites in the genome. In addition, distal enhancers are very important for transcriptional gene regulation and tissue-specific gene expression. Development of a vector system regulated accurately in the genome is needed to improve production of therapeutic proteins. The objective of this study was to develop a knock-in system for expression of human fibroblast growth factor 2 (FGF2) in the bovine β-casein gene locus. The F2A sequence was fused to the human FGF2 gene and inserted into exon 3 of the β-casein gene. We detected expression of human FGF2 mRNA in the HC11 mouse mammary epithelial cells by RT-PCR and human FGF2 protein in the culture media using western blot analysis when the knock-in vector was introduced. We transfected the knock-in vector into bovine ear fibroblasts and produced knock-in fibroblasts using the clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 system. Moreover, the CRISPR/Cas9 system was more efficient than conventional methods. In addition, we produced knock-in blastocysts by somatic cell nuclear transfer using the knock-in fibroblasts. Our knock-in fibroblasts may help to create cloned embryos for development of transgenic dairy cattle expressing human FGF2 protein in the mammary gland via the expression system of the bovine β-casein gene.

  14. Transcription Factor SOX5 Promotes the Migration and Invasion of Fibroblast-Like Synoviocytes in Part by Regulating MMP-9 Expression in Collagen-Induced Arthritis

    Directory of Open Access Journals (Sweden)

    Yumeng Shi

    2018-04-01

    Full Text Available ObjectivesFibroblast-like synoviocytes (FLS exhibit a unique aggressive phenotype in rheumatoid arthritis (RA. Increased FLS migration and subsequent invasion of the extracellular matrix are essential to joint destruction in RA. Our previous research reported that transcription factor SOX5 was highly expressed in RA-FLS. Here, the effects of SOX5 in RA-FLS migration and invasion will be investigated.MethodsThe migration and invasion of RA-FLS were evaluated using a transwell chamber assay. The expression of several potential SOX5-targeted genes, including matrix metalloproteinases (MMP-1, 2, 3 and 9, chemokines (CCL4, CCL2, CCR5 and CCR2, and pro-inflammatory cytokines (TNF-α and IL-6, were examined in RA-FLS using SOX5 gain- and loss-of-function study. The molecular mechanisms of SOX5-mediated MMP-9 expressions were assayed by luciferase reporter gene and chromatin immunoprecipitation (ChIP studies. The in vivo effect of SOX5 on FLS migration and invasion was examined using collagen-induced arthritis (CIA in DBA/1J mice.ResultsKnockdown SOX5 decreased lamellipodium formation, migration, and invasion of RA-FLS. The expression of MMP-9 was the only gene tested to be concomitantly affected by silencing or overexpressing SOX5. ChIP assay revealed that SOX5 was bound to the MMP-9 promoter in RA-FLS. The overexpression of SOX5 markedly enhanced the MMP-9 promoter activity, and specific deletion of a putative SOX5-binding site in MMP-9 promoter diminished this promoter-driven transcription in FLS. Locally knocked down SOX5 inhibited MMP-9 expression in the joint tissue and reduced pannus migration and invasion into the cartilage in CIA mice.ConclusionSOX5 plays a novel role in mediating migration and invasion of FLS in part by regulating MMP-9 expression in RA.

  15. Transcription Factor SOX5 Promotes the Migration and Invasion of Fibroblast-Like Synoviocytes in Part by Regulating MMP-9 Expression in Collagen-Induced Arthritis.

    Science.gov (United States)

    Shi, Yumeng; Wu, Qin; Xuan, Wenhua; Feng, Xiaoke; Wang, Fang; Tsao, Betty P; Zhang, Miaojia; Tan, Wenfeng

    2018-01-01

    Fibroblast-like synoviocytes (FLS) exhibit a unique aggressive phenotype in rheumatoid arthritis (RA). Increased FLS migration and subsequent invasion of the extracellular matrix are essential to joint destruction in RA. Our previous research reported that transcription factor SOX5 was highly expressed in RA-FLS. Here, the effects of SOX5 in RA-FLS migration and invasion will be investigated. The migration and invasion of RA-FLS were evaluated using a transwell chamber assay. The expression of several potential SOX5-targeted genes, including matrix metalloproteinases (MMP-1, 2, 3 and 9), chemokines (CCL4, CCL2, CCR5 and CCR2), and pro-inflammatory cytokines (TNF-α and IL-6), were examined in RA-FLS using SOX5 gain- and loss-of-function study. The molecular mechanisms of SOX5-mediated MMP-9 expressions were assayed by luciferase reporter gene and chromatin immunoprecipitation (ChIP) studies. The in vivo effect of SOX5 on FLS migration and invasion was examined using collagen-induced arthritis (CIA) in DBA/1J mice. Knockdown SOX5 decreased lamellipodium formation, migration, and invasion of RA-FLS. The expression of MMP-9 was the only gene tested to be concomitantly affected by silencing or overexpressing SOX5. ChIP assay revealed that SOX5 was bound to the MMP-9 promoter in RA-FLS. The overexpression of SOX5 markedly enhanced the MMP-9 promoter activity, and specific deletion of a putative SOX5-binding site in MMP-9 promoter diminished this promoter-driven transcription in FLS. Locally knocked down SOX5 inhibited MMP-9 expression in the joint tissue and reduced pannus migration and invasion into the cartilage in CIA mice. SOX5 plays a novel role in mediating migration and invasion of FLS in part by regulating MMP-9 expression in RA.

  16. Circular RNA profiling reveals that circCOL3A1-859267 regulate type I collagen expression in photoaged human dermal fibroblasts

    International Nuclear Information System (INIS)

    Peng, Yating; Song, Xiaojing; Zheng, Yue; Wang, Xinyi; Lai, Wei

    2017-01-01

    Production of type I collagen declines is a main characteristic during photoaging, but the mechanism is still not fully understood. Circular RNAs (circRNAs) are a class of newly identified non-coding RNAs with regulatory potency by sequestering miRNAs like a sponge. It's more stable than linear RNAs, and would be a useful tool for regulation of gene expression. However, the role of circRNAs in collagen expression during photoaging is still unclear. Here we performed deep sequencing of RNA generated from UVA irradiated and no irradiated human dermal fibroblasts (HDFs) and identified 29 significantly differentially expressed circRNAs (fold change ≥ 1.5, P < 0.05), 12 circRNAs were up-regulated and 17 circRNAs were down-regulated.3 most differentially expressed circRNAs were verified by qRT-PCR and the down-regulated circCOL3A1-859267 exhibited the most significantly altered in photoaged HDFs. Overexpression of circCOL3A1-859267 inhibited UVA-induced decrease of type I collagen expression and silencing of it reduced type I collagen intensity. Via a bioinformatic method, 44 miRNAs were predicted to binding with circCOL3A1-859267, 5 of them have been confirmed or predicted to interact with type I collagen. This study show that circCOL3A1-859267 regulate type I collagen expression in photoaged HDFs, suggesting it may be a novel target for interfering photoaging.

  17. Myostatin Promotes Interleukin-1β Expression in Rheumatoid Arthritis Synovial Fibroblasts through Inhibition of miR-21-5p

    Directory of Open Access Journals (Sweden)

    Sung-Lin Hu

    2017-12-01

    Full Text Available Rheumatoid arthritis (RA is characterized by the infiltration of a number of pro-inflammatory cytokines into synovial fluid and patients with RA often develop joint destruction and deficits in muscle mass. The growth factor myostatin is a key regulator linking muscle mass and bone structure. We sought to determine whether myostatin regulates rheumatoid synovial fibroblast activity and inflammation in RA. We found that levels of myostatin and interleukin (IL-1β (a key pro-inflammatory cytokine in RA in synovial fluid from RA patients were overexpressed and positively correlated. In in vitro investigations, we found that myostatin dose-dependently regulated IL-1β expression through the ERK, JNK, and AP-1 signal-transduction pathways. Computational analysis confirmed that miR-21-5p directly targets the expression of the 3′ untranslated region (3′ UTR of IL-1β. Treatment of cells with myostatin inhibited miR-21-5p expression and miR-21-5p mimic prevented myostatin-induced enhancement of IL-1β expression, showing an inverse correlation between miR-21-5p and IL-1β expression during myostatin treatment. We also found significantly increased paw swelling in an animal model of collagen-induced arthritis (CIA, compared with controls; immunohistochemistry staining revealed substantially higher levels of myostatin and IL-1β expression in CIA tissue. Our evidence indicates that myostatin regulates IL-1β production. Thus, targeting myostatin may represent a potential therapeutic target for RA.

  18. Ablation of the Galnt3 gene leads to low-circulating intact fibroblast growth factor 23 (Fgf23) concentrations and hyperphosphatemia despite increased Fgf23 expression.

    Science.gov (United States)

    Ichikawa, Shoji; Sorenson, Andrea H; Austin, Anthony M; Mackenzie, Donald S; Fritz, Timothy A; Moh, Akira; Hui, Siu L; Econs, Michael J

    2009-06-01

    Familial tumoral calcinosis is characterized by ectopic calcifications and hyperphosphatemia. The disease is caused by inactivating mutations in fibroblast growth factor 23 (FGF23), Klotho (KL), and uridine diphosphate-N-acetyl-alpha-D-galactosamine:polypeptide N-acetylgalactosaminyltransferase 3 (GALNT3). In vitro studies indicate that GALNT3 O-glycosylates a phosphaturic hormone, FGF23, and prevents its proteolytic processing, thereby allowing secretion of intact FGF23. In this study we generated mice lacking the Galnt3 gene, which developed hyperphosphatemia without apparent calcifications. In response to hyperphosphatemia, Galnt3-deficient mice had markedly increased Fgf23 expression in bone. However, compared with wild-type and heterozygous littermates, homozygous mice had only about half of circulating intact Fgf23 levels and higher levels of C-terminal Fgf23 fragments in bone. Galnt3-deficient mice also exhibited an inappropriately normal 1,25-dihydroxyvitamin D level and decreased alkaline phosphatase activity. Furthermore, renal expression of sodium-phosphate cotransporters and Kl were elevated in Galnt3-deficient mice. Interestingly, there were sex-specific phenotypes; only Galnt3-deficient males showed growth retardation, infertility, and significantly increased bone mineral density. In summary, ablation of Galnt3 impaired secretion of intact Fgf23, leading to decreased circulating Fgf23 and hyperphosphatemia, despite increased Fgf23 expression. Our findings indicate that Galnt3-deficient mice have a biochemical phenotype of tumoral calcinosis and provide in vivo evidence that Galnt3 plays an essential role in proper secretion of Fgf23 in mice.

  19. Degenerative Suspensory Ligament Desmitis (DSLD in Peruvian Paso Horses Is Characterized by Altered Expression of TGFβ Signaling Components in Adipose-Derived Stromal Fibroblasts.

    Directory of Open Access Journals (Sweden)

    Wei Luo

    Full Text Available Equine degenerative suspensory ligament desmitis (DSLD in Peruvian Paso horses typically presents at 7-15 years and is characterized by lameness, focal disorganization of collagen fibrils, and chondroid deposition in the body of the ligament. With the aim of developing a test for disease risk (that can be used to screen horses before breeding we have quantified the expression of 76 TGFβ-signaling target genes in adipose-derived stromal fibroblasts (ADSCs from six DSLD-affected and five unaffected Paso horses. Remarkably, 35 of the genes showed lower expression (p<0.05 in cells from DSLD-affected animals and this differential was largely eliminated by addition of exogenous TGFβ1. Moreover, TGFβ1-mediated effects on expression were prevented by the TGFβR1/2 inhibitor LY2109761, showing that the signaling was via a TGFβR1/2 complex. The genes affected by the pathology indicate that it is associated with a generalized metabolic disturbance, since some of those most markedly altered in DSLD cells (ATF3, MAPK14, ACVRL1 (ALK1, SMAD6, FOS, CREBBP, NFKBIA, and TGFBR2 represent master-regulators in a wide range of cellular metabolic responses.

  20. Human 45,X fibroblast transcriptome reveals distinct differentially expressed genes including long noncoding RNAs potentially associated with the pathophysiology of Turner syndrome.

    Directory of Open Access Journals (Sweden)

    Shriram N Rajpathak

    Full Text Available Turner syndrome is a chromosomal abnormality characterized by the absence of whole or part of the X chromosome in females. This X aneuploidy condition is associated with a diverse set of clinical phenotypes such as gonadal dysfunction, short stature, osteoporosis and Type II diabetes mellitus, among others. These phenotypes differ in their severity and penetrance among the affected individuals. Haploinsufficiency for a few X linked genes has been associated with some of these disease phenotypes. RNA sequencing can provide valuable insights to understand molecular mechanism of disease process. In the current study, we have analysed the transcriptome profiles of human untransformed 45,X and 46,XX fibroblast cells and identified differential expression of genes in these two karyotypes. Functional analysis revealed that these differentially expressing genes are associated with bone differentiation, glucose metabolism and gonadal development pathways. We also report differential expression of lincRNAs in X monosomic cells. Our observations provide a basis for evaluation of cellular and molecular mechanism(s in the establishment of Turner syndrome phenotypes.

  1. Differential expression of Toll-like receptor pathway genes in chicken embryo fibroblasts from chickens resistant and susceptible to Marek's disease.

    Science.gov (United States)

    Haunshi, Santosh; Cheng, Hans H

    2014-03-01

    The Toll-like receptor (TLR) signaling pathway is one of the innate immune defense mechanisms against pathogens in vertebrates and invertebrates. However, the role of TLR in non-MHC genetic resistance or susceptibility to Marek's disease (MD) in the chicken is yet to be elucidated. Chicken embryo fibroblast (CEF) cells from MD susceptible and resistant lines were infected either with Marek's disease virus (MDV) or treated with polyionosinic-polycytidylic acid, a synthetic analog of dsRNA, and the expression of TLR and pro-inflammatory cytokines was studied at 8 and 36 h posttreatment by quantitative reverse transcriptase PCR. Findings of the present study reveal that MDV infection and polyionosinic-polycytidylic acid treatment significantly elevated the mRNA expression of TLR3, IL6, and IL8 in both susceptible and resistant lines. Furthermore, basal expression levels in uninfected CEF for TLR3, TLR7, and IL8 genes were significantly higher in resistant chickens compared with those of susceptible chickens. Our results suggest that TLR3 together with pro-inflammatory cytokines may play a significant role in genetic resistance to MD.

  2. Tacrolimus increases Nox4 expression in human renal fibroblasts and induces fibrosis-related genes by aberrant TGF-beta receptor signalling.

    Directory of Open Access Journals (Sweden)

    Georg Kern

    Full Text Available Chronic nephrotoxicity of immunosuppressives is one of the main limiting factors in the long-term outcome of kidney transplants, leading to tissue fibrosis and ultimate organ failure. The cytokine TGF-β is considered a key factor in this process. In the human renal fibroblast cell line TK-173, the macrolide calcineurin inhibitor tacrolimus (FK-506 induced TGF-β-like effects, manifested by increased expression of NAD(PH-oxidase 4 (Nox4, transgelin, tropomyosin 1, and procollagen α1(V mRNA after three days. The macrolide mTOR inhibitor rapamycin had similar effects, while cyclosporine A did not induce fibrose-related genes. Concentration dependence curves were sigmoid, where mRNA expression was induced already at low nanomolar levels of tacrolimus, and reached saturation at 100-300 nM. The effects were independent of extracellular TGF-β as confirmed by the use of neutralizing antibodies, and thus most likely caused by aberrant TGF-β receptor signaling, where binding of tacrolimus to the regulatory FKBP12 protein results in a "leaky" TGF-β receptor. The myofibroblast marker α-smooth muscle actin was neither induced by tacrolimus nor by TGF-β1, indicating an incomplete activation of TK-173 fibroblasts under culture conditions. Tacrolimus- and TGF-β1-induced Nox4 protein upregulation was confirmed by Western blotting, and was accompanied by a rise in intracellular H2O2 concentration. Si-RNA mediated knock-down of Nox4 expression prevented up-regulation of procollagen α1(V mRNA in tacrolimus-treated cells, but induced procollagen α1(V expression in control cells. Nox4 knock-down had no significant effect on the other genes tested. TGF-β is a key molecule in fibrosis, and the constant activation of aberrant receptor signaling by tacrolimus might contribute to the long-term development of interstitial kidney fibrosis in immunosuppressed patients. Nox4 levels possibly play a regulatory role in these processes.

  3. ­Glial and stem cell expression of murine Fibroblast Growth Factor Receptor 1 in the embryonic and perinatal nervous system

    Directory of Open Access Journals (Sweden)

    Jantzen C. Collette

    2017-06-01

    Full Text Available Background Fibroblast growth factors (FGFs and their receptors (FGFRs are involved in the development and function of multiple organs and organ systems, including the central nervous system (CNS. FGF signaling via FGFR1, one of the three FGFRs expressed in the CNS, stimulates proliferation of stem cells during prenatal and postnatal neurogenesis and participates in regulating cell-type ratios in many developing regions of the brain. Anomalies in FGFR1 signaling have been implicated in certain neuropsychiatric disorders. Fgfr1 expression has been shown, via in situ hybridization, to vary spatially and temporally throughout embryonic and postnatal development of the brain. However, in situ hybridization lacks sufficient resolution to identify which cell-types directly participate in FGF signaling. Furthermore, because antibodies raised against FGFR1 commonly cross-react with other members of the FGFR family, immunocytochemistry is not alone sufficient to accurately document Fgfr1 expression. Here, we elucidate the identity of Fgfr1 expressing cells in both the embryonic and perinatal mouse brain. Methods To do this, we utilized a tgFGFR1-EGFPGP338Gsat BAC line (tgFgfr1-EGFP+ obtained from the GENSAT project. The tgFgfr1-EGFP+ line expresses EGFP under the control of a Fgfr1 promoter, thereby causing cells endogenously expressing Fgfr1 to also present a positive GFP signal. Through simple immunostaining using GFP antibodies and cell-type specific antibodies, we were able to accurately determine the cell-type of Fgfr1 expressing cells. Results This technique revealed Fgfr1 expression in proliferative zones containing BLBP+ radial glial stem cells, such as the cortical and hippocampal ventricular zones, and cerebellar anlage of E14.5 mice, in addition to DCX+ neuroblasts. Furthermore, our data reveal Fgfr1 expression in proliferative zones containing BLBP+ cells of the anterior midline, hippocampus, cortex, hypothalamus, and cerebellum of P0.5 mice

  4. Expression of chicken parvovirus VP2 in chicken embryo fibroblasts requires codon optimization for production of naked DNA and vectored meleagrid herpesvirus type 1 vaccines.

    Science.gov (United States)

    Spatz, Stephen J; Volkening, Jeremy D; Mullis, Robert; Li, Fenglan; Mercado, John; Zsak, Laszlo

    2013-10-01

    Meleagrid herpesvirus type 1 (MeHV-1) is an ideal vector for the expression of antigens from pathogenic avian organisms in order to generate vaccines. Chicken parvovirus (ChPV) is a widespread infectious virus that causes serious disease in chickens. It is one of the etiological agents largely suspected in causing Runting Stunting Syndrome (RSS) in chickens. Initial attempts to express the wild-type gene encoding the capsid protein VP2 of ChPV by insertion into the thymidine kinase gene of MeHV-1 were unsuccessful. However, transient expression of a codon-optimized synthetic VP2 gene cloned into the bicistronic vector pIRES2-Ds-Red2, could be demonstrated by immunocytochemical staining of transfected chicken embryo fibroblasts (CEFs). Red fluorescence could also be detected in these transfected cells since the red fluorescent protein gene is downstream from the internal ribosome entry site (IRES). Strikingly, fluorescence could not be demonstrated in cells transiently transfected with the bicistronic vector containing the wild-type or non-codon-optimized VP2 gene. Immunocytochemical staining of these cells also failed to demonstrate expression of wild-type VP2, indicating that the lack of expression was at the RNA level and the VP2 protein was not toxic to CEFs. Chickens vaccinated with a DNA vaccine consisting of the bicistronic vector containing the codon-optimized VP2 elicited a humoral immune response as measured by a VP2-specific ELISA. This VP2 codon-optimized bicistronic cassette was rescued into the MeHV-1 genome generating a vectored vaccine against ChPV disease.

  5. Microarray analysis of altered gene expression in murine fibroblasts transformed by nickel(II) to nickel(II)-resistant malignant phenotype

    International Nuclear Information System (INIS)

    Kowara, Renata; Karaczyn, Aldona; Cheng, Robert Y.S.; Salnikow, Konstantin; Kasprzak, Kazimierz S.

    2005-01-01

    B200 cells are Ni(II)-transformed mouse BALB/c-3T3 fibroblasts displaying a malignant phenotype and increased resistance to Ni(II) toxicity. In an attempt to find genes whose expression has been altered by the transformation, the Atlas Mouse Stress/Toxicology cDNA Expression Array (Clontech Laboratories, Inc., Palo Alto, CA) was used to analyze the levels of gene expression in both parental and Ni(II)-transformed cells. Comparison of the results revealed a significant up- or downregulation of the expression of 62 of the 588 genes present in the array (approximately 10.5%) in B200 cells. These genes were assigned to different functional groups, including transcription factors and oncogenes (9/14; fractions in parentheses denote the number of up-regulated versus the total number of genes assigned to this group), stress and DNA damage response genes (11/12), growth factors and hormone receptors (6/9), metabolism (7/7), cell adhesion (2/7), cell cycle (3/6), apoptosis (3/4), and cell proliferation (2/3). Among those genes, overexpression of beta-catenin and its downstream targets c-myc and cyclin D1, together with upregulated cyclin G, points at the malignant character of B200 cells. While the increased expression of glutathione (GSH) synthetase, glutathione-S-transferase A4 (GSTA4), and glutathione-S-transferase theta (GSTT), together with high level of several genes responding to oxidative stress, suggests the enforcement of antioxidant defenses in Ni-transformed cells

  6. Identification of pulmonary PDGFRalpha-positive fibroblast specific miRNA and mRNA expression profiles during postnatal lung development

    OpenAIRE

    Dontireddy, Daria Agnieszka

    2015-01-01

    BACKGROUND AND AIM The process of alveolarization is tightly regulated and requires the contribution of different subpopulations of fibroblasts such as myofibroblasts, lipofibroblasts and platelet-derived growth factor receptor alpha (PDGFRalpha)-positive fibroblasts. Each of this fibroblasts subset fulfills certain functions during lung development in a time-dependent manner. In particular PDGFRalpha-positive cells are crucial for alveolar septation and myofibroblasts differentiation. PDG...

  7. Expression of Wnt/β-Catenin Signaling Pathway and Its Regulatory Role in Type I Collagen with TGF-β1 in Scleral Fibroblasts from an Experimentally Induced Myopia Guinea Pig Model

    Directory of Open Access Journals (Sweden)

    Min Li

    2016-01-01

    Full Text Available Background. To investigate Wnt/β-catenin signaling pathway expression and its regulation of type I collagen by TGF-β1 in scleral fibroblasts from form-deprivation myopia (FDM guinea pig model. Methods. Wnt isoforms were examined using genome microarrays. Scleral fibroblasts from FDM group and self-control (SC group were cultured. Wnt isoforms, β-catenin, TGF-β1, and type I collagen expression levels were examined in the two groups with or without DKK-1 or TGF-β1 neutralizing antibody. Results. For genome microarrays, the expression of Wnt3 in FDM group was significantly greater as confirmed in retinal and scleral tissue. The expression of Wnt3 and β-catenin significantly increased in FDM group and decreased significantly with DKK-1. TGF-β1 expression level decreased significantly in FDM group and increased significantly with DKK-1. Along with morphological misalignment inside and outside cells, the amount of type I collagen decreased in FDM group. Furthermore, type I collagen increased and became regular in DKK-1 intervention group, whereas it decreased and rearranged more disorder in TGF-β1 neutralizing antibody intervention group. Conclusions. The activation of Wnt3/β-catenin signaling pathway was demonstrated in primary scleral fibroblasts in FDM. This pathway further reduced the expression of type I collagen by TGF-β1, which ultimately played a role in scleral remodeling during myopia development.

  8. cAMP/PKA-CREB-BDNF signaling pathway in hippocampus mediates cyclooxygenase 2-induced learning/memory deficits of rats subjected to chronic unpredictable mild stress.

    Science.gov (United States)

    Luo, Ying; Kuang, Shengnan; Li, Huan; Ran, Dongzhi; Yang, Junqing

    2017-05-30

    To investigate the mechanism of cyclooxygenase 2 (COX2) in learning and memory impairments in rats subjected to chronic unpredictable mild stress (CUMS), meloxicam was used intragastrically to inhibit the activity of cyclooxygenase 2. Moreover, cyclooxygenase 2 over-expressing or RNA interfere lentivirus was injected intraventricularly to increase or decrease the enzyme's expression, respectively. The body weights and sucrose consumption were used to analyze depressive behaviors, while the Morris water maze and step-down-type passive avoidance tests were carried out to evaluate the learning-memory functions. The levels of inflammatory cytokines were measured to estimate inflammation and the contents of cyclic adenosine monophosphate (cAMP) were used to measure the levels of the second messenger. Changes in cyclooxygenase 2 mRNA levels were analyzed using reverse transcription polymerase chain reaction. Moreover, the expression of cyclooxygenase 2, brain-derived neurotrophic factor (BDNF), prostaglandins receptor 3 (EP3), protein kinase A (PKA), cAMP response element binding protein (CREB), and phosphorylated CREB were estimated using immunohistochemical staining or western blotting. The results showed that CUMS led to significant depressive-like behaviors and learning and memory dysfunctions. Also, the cAMP levels decreased significantly, while levels of inflammatory cytokines and prostaglandins E2 increased significantly. The expressions of PKA, BDNF, phosphorylated CREB/CREB declined and cyclooxygenase 2 was increased. Meloxicam and cyclooxygenase 2 RNA interfere lentivirus reversed the changes caused by CUMS while cyclooxygenase 2-overexpressing lentivirus worsened these abnormalities. The findings also showed that CUMS increased cyclooxygenase 2 expression, which can cause learning and memory impairments, mainly through activating the hippocampal neuronal cAMP/PKA-CREB-BDNF signaling pathways.

  9. UCP1 induction during recruitment of brown adipocytes in white adipose tissue is dependent on cyclooxygenase activity

    DEFF Research Database (Denmark)

    Madsen, Lise; Pedersen, Lone M; Lillefosse, Haldis Haukaas

    2010-01-01

    attenuated diet-induced UCP1 expression and increased energy efficiency and adipose tissue mass in obesity-resistant mice kept at thermoneutrality. CONCLUSIONS/SIGNIFICANCE: Our findings provide evidence that induction of UCP1 expression in white adipose tissue, but not in classic interscapular brown adipose...... tissue is dependent on cyclooxygenase activity. Our results indicate that cyclooxygenase-dependent induction of UCP1 expression in white adipose tissues is important for diet-induced thermogenesis providing support for a surprising role of COX activity in the control of energy balance and obesity...

  10. High expression of the taurine transporter TauT in primary cilia of NIH3T3 fibroblasts

    DEFF Research Database (Denmark)

    Christensen, Søren Tvorup; Voss, Jesper W.; Teilmann, Stefan C.

    2005-01-01

    Taurine, present in high concentrations in various mammalian cells, is essential for regulation of cell volume, cellular oxidative status as well as the cellular Ca2+ homeostasis. Cellular taurine content is a balance between active uptake through the saturable, Na+-dependent taurine transporter...... TauT expression and (iii) long-term exposure to hypertonic taurine medium, i.e., growth medium supplemented with 100 mM taurine, reduces ciliary TauT expression. These results point to an important role of taurine in the regulation of physiological processes located to the primary cilium....

  11. Cyclooxygenase-2 inhibitors and knee prosthesis surgery

    OpenAIRE

    Meunier, Andreas

    2008-01-01

    Adverse effects of cyclooxygenase (COX) inhibitors on bone healing have previously been demonstrated in diaphyseal fracture models in animals. In spite of that, they are widely used as postoperative analgesics in orthopaedic surgery. After joint replacement, a bone repair process starts at the interface between bone and cement. If this process is disturbed, the prosthesis may never become rigidly fixed to the bone, leading to migration and with time loosening. This thesis investigates the eff...

  12. Fibroblast Growth Factor signaling regulates the expansion of A6-expressing hepatocytes in association with AKT-dependent β-catenin activation

    Science.gov (United States)

    Utley, Sarah; James, David; Mavila, Nirmala; Nguyen, Marie V.; Vendryes, Christopher; Salisbury, S. Michael; Phan, Jennifer; Wang, Kasper S.

    2014-01-01

    Background & Aims Fibroblast Growth Factors (FGFs) promote the proliferation and survival of hepatic progenitor cells (HPCs) via AKT-dependent β-catenin activation. Moreover, the emergence of hepatocytes expressing the HPC marker A6 during 3,5-diethoxycarbonyl-1,4-dihydrocollidine (DDC)-induced liver injury is mediated partly by FGF and β-catenin signaling. Herein, we investigate the role of FGF signaling and AKT-mediated β-catenin activation in acute DDC liver injury. Methods Transgenic mice were fed DDC chow for 14 days concurrent with either Fgf10 over-expression or inhibition of FGF signaling via expression of soluble dominant-negative FGF Receptor (R)-2IIIb. Results After 14 days of DDC treatment, there was an increase in periportal cells expressing FGFR1, FGFR2, and AKT-activated phospho-Serine 552 (pSer552) β-CATENIN in association with up-regulation of genes encoding FGFR2IIIb ligands, Fgf7, Fgf10, and Fgf22. In response to Fgf10 over-expression, there was an increase in the number of pSer552-β-CATENIN(positive)+ive periportal cells as well as cells co-positive for A6 and hepatocyte marker, Hepatocyte Nuclear Factor-4α (HNF4α). A similar expansion of A6+ive cells was observed after Fgf10 over-expression with regular chow and after partial hepatectomy during ethanol toxicity. Inhibition of FGF signaling increased the periportal A6+iveHNF4α+ive cell population while reducing centrolobular A6+ive HNF4α+ive cells. AKT inhibition with Wortmannin attenuated FGF10-mediated A6+iveHNF4α+ive cell expansion. In vitro analyses using FGF10 treated HepG2 cells demonstrated AKT-mediated β-CATENIN activation but not enhanced cell migration. Conclusion During acute DDC treatment, FGF signaling promotes the expansion of A6-expressing liver cells partly via AKT-dependent activation of β-CATENIN expansion of A6+ive periportal cells and possibly by reprogramming of centrolobular hepatocytes. PMID:24365171

  13. Injury induces in vivo expression of platelet-derived growth factor (PDGF) and PDGF receptor mRNAs in skin epithelial cells and PDGF mRNA in connective tissue fibroblasts

    International Nuclear Information System (INIS)

    Antoniades, H.N.; Galanopoulos, T.; Neville-Golden, J.; Kiritsy, C.P.; Lynch, S.E.

    1991-01-01

    Platelet-derived growth factor (PDGF) stimulates many of the processes important in tissue repair, including proliferation of fibroblasts and synthesis of extracellular matrices. In this study, the authors have demonstrated with in situ hydridization and immunocytochemistry the reversible expression of 3-sis/PDGF-2 and PDGF receptor (PDGF-R) b mRNAs and their respective protein products in epithelial cells and fibroblasts following cutaneous injury in pigs. Epithelial cells in control, unwounded skin did not express c-sis and PDGF-R mRNAs, and fibroblasts expressed only PDGF-R mRNA. The expression levels in the injured site were correlated with the stage of tissue repair, being highest during the initial stages of the repair process and declining at the time of complete re-epithelialization and tissue remodeling. These studies provide a mulecular basis for understanding the mechanisms contributing to normal tissue repair. They suggest the possibility that a defect in these mechanisms may be associated with defective wound healing. It is also conceivable that chronic injury may induce irreversible gene expression leading to pathologic, unregulated cell growth

  14. Andrographolide inhibits the migration, invasion and matrix metalloproteinase expression of rheumatoid arthritis fibroblast-like synoviocytes via inhibition of HIF-1α signaling.

    Science.gov (United States)

    Li, Guo-feng; Qin, Yu-hua; Du, Peng-qiang

    2015-09-01

    Hypoxia is implicated in the pathogenesis of rheumatoid arthritis (RA), contributing to the tumor-like phenotypes of RA fibroblast-like synoviocytes (RA-FLSs). Andrographolide is the main bioactive component of Andrographis paniculata, an herbal medicine that shows therapeutic benefits in RA patients. Here, we explored the effects of andrographolide on hypoxia-induced migration and invasion of RA-FLSs. RA-FLSs were exposed to hypoxia in the presence or absence of andrographolide and cell migration and invasion were tested by Transwell assays. The expression of hypoxia-inducible factor-1 alpha (HIF-1α), matrix metalloproteinase (MMP)-1, MMP-3 and MMP-9 was measured by semi-quantitative reverse transcription polymerase chain reaction and Western blot analysis. HIF-1α DNA binding activity was assessed by electrophoretic mobility shift assay. The effects of overexpression of exogenous HIF-1α on the action of andrographolide in RA-FLSs were investigated. Andrographolide inhibited FLS migration and invasion under hypoxic conditions in a dose-dependent manner. The upregulation of MMP-1, MMP-3 and MMP-9 in response to hypoxia was significantly (Pandrographolide. Moreover, the expression and DNA binding activity of HIF-1α were dose-dependently decreased in andrographolide-treated cells under hypoxic conditions. Overexpression of HIF-1α almost completely reversed the suppressive effects of andrographolide on the migration, invasion and MMP expression of hypoxic RA-FLSs. These results indicate the ability of andrographolide to attenuate hypoxia-induced invasiveness of RA-FLSs via inhibition of HIF-1α signaling, and warrant further exploration of andrographolide for the treatment of RA. Copyright © 2015. Published by Elsevier Inc.

  15. Peroxisome proliferator-activated receptor δ modulates MMP-2 secretion and elastin expression in human dermal fibroblasts exposed to ultraviolet B radiation.

    Science.gov (United States)

    Ham, Sun Ah; Yoo, Taesik; Hwang, Jung Seok; Kang, Eun Sil; Paek, Kyung Shin; Park, Chankyu; Kim, Jin-Hoi; Do, Jeong Tae; Seo, Han Geuk

    2014-10-01

    Changes in skin connective tissues mediated by ultraviolet (UV) radiation have been suggested to cause the skin wrinkling normally associated with premature aging of the skin. Recent investigations have shown that peroxisome proliferator-activated receptor (PPAR) δ plays multiple biological roles in skin homeostasis. We attempted to investigate whether PPARδ modulates elastin protein levels and secretion of matrix metalloproteinase (MMP)-2 in UVB-irradiated human dermal fibroblasts (HDFs) and mouse skin. These studies were undertaken in primary HDFs or HR-1 hairless mice using Western blot analyses, small interfering (si)RNA-mediated gene silencing, and Fluorescence microscopy. In HDFs, UVB irradiation induced increased secretion of MMP-2 and reduced levels of elastin. Activation of PPARδ by GW501516, a ligand specific for PPARδ, markedly attenuated UVB-induced MMP-2 secretion with a concomitant increase in the level of elastin. These effects were reduced by the presence of siRNAs against PPARδ or treatment with GSK0660, a specific inhibitor of PPARδ. Furthermore, GW501516 elicited a dose- and time-dependent increase in the expression of elastin. Modulation of MMP-2 secretion and elastin levels by GW501516 was associated with a reduction in reactive oxygen species (ROS) production in HDFs exposed to UVB. Finally, in HR-1 hairless mice, administration of GW501516 significantly reduced UVB-induced MMP-2 expression with a concomitant increase in elastin levels, and these effects were significantly reduced by the presence of GSK0660. Our results suggest that PPARδ-mediated modulation of MMP-2 secretion and elastin expression may contribute to the maintenance of skin integrity by inhibiting ROS generation. Copyright © 2014 Japanese Society for Investigative Dermatology. Published by Elsevier Ireland Ltd. All rights reserved.

  16. Impaired Integrin-mediated Adhesion and Signaling in Fibroblasts Expressing a Dominant-negative Mutant PTP1B

    Science.gov (United States)

    Arregui, Carlos O.; Balsamo, Janne; Lilien, Jack

    1998-01-01

    To investigate the role of nonreceptor protein tyrosine phosphatase 1B (PTP1B) in β1-integrin– mediated adhesion and signaling, we transfected mouse L cells with normal and catalytically inactive forms of the phosphatase. Parental cells and cells expressing the wild-type or mutant PTP1B were assayed for (a) adhesion, (b) spreading, (c) presence of focal adhesions and stress fibers, and (d) tyrosine phosphorylation. Parental cells and cells expressing wild-type PTP1B show similar morphology, are able to attach and spread on fibronectin, and form focal adhesions and stress fibers. In contrast, cells expressing the inactive PTP1B have a spindle-shaped morphology, reduced adhesion and spreading on fibronectin, and almost a complete absence of focal adhesions and stress fibers. Attachment to fibronectin induces tyrosine phosphorylation of focal adhesion kinase (FAK) and paxillin in parental cells and cells transfected with the wild-type PTP1B, while in cells transfected with the mutant PTP1B, such induction is not observed. Additionally, in cells expressing the mutant PTP1B, tyrosine phosphorylation of Src is enhanced and activity is reduced. Lysophosphatidic acid temporarily reverses the effects of the mutant PTP1B, suggesting the existence of a signaling pathway triggering focal adhesion assembly that bypasses the need for active PTP1B. PTP1B coimmunoprecipitates with β1-integrin from nonionic detergent extracts and colocalizes with vinculin and the ends of actin stress fibers in focal adhesions. Our data suggest that PTP1B is a critical regulatory component of integrin signaling pathways, which is essential for adhesion, spreading, and formation of focal adhesions. PMID:9813103

  17. Time-series clustering of gene expression in irradiated and bystander fibroblasts: an application of FBPA clustering

    Directory of Open Access Journals (Sweden)

    Markatou Marianthi

    2011-01-01

    Full Text Available Abstract Background The radiation bystander effect is an important component of the overall biological response of tissues and organisms to ionizing radiation, but the signaling mechanisms between irradiated and non-irradiated bystander cells are not fully understood. In this study, we measured a time-series of gene expression after α-particle irradiation and applied the Feature Based Partitioning around medoids Algorithm (FBPA, a new clustering method suitable for sparse time series, to identify signaling modules that act in concert in the response to direct irradiation and bystander signaling. We compared our results with those of an alternate clustering method, Short Time series Expression Miner (STEM. Results While computational evaluations of both clustering results were similar, FBPA provided more biological insight. After irradiation, gene clusters were enriched for signal transduction, cell cycle/cell death and inflammation/immunity processes; but only FBPA separated clusters by function. In bystanders, gene clusters were enriched for cell communication/motility, signal transduction and inflammation processes; but biological functions did not separate as clearly with either clustering method as they did in irradiated samples. Network analysis confirmed p53 and NF-κB transcription factor-regulated gene clusters in irradiated and bystander cells and suggested novel regulators, such as KDM5B/JARID1B (lysine (K-specific demethylase 5B and HDACs (histone deacetylases, which could epigenetically coordinate gene expression after irradiation. Conclusions In this study, we have shown that a new time series clustering method, FBPA, can provide new leads to the mechanisms regulating the dynamic cellular response to radiation. The findings implicate epigenetic control of gene expression in addition to transcription factor networks.

  18. Knockdown of AMPKα decreases ATM expression and increases radiosensitivity under hypoxia and nutrient starvation in an SV40-transformed human fibroblast cell line, LM217.

    Science.gov (United States)

    Murata, Yasuhiko; Hashimoto, Takuma; Urushihara, Yusuke; Shiga, Soichiro; Takeda, Kazuya; Jingu, Keiichi; Hosoi, Yoshio

    2018-01-22

    Presence of unperfused regions containing cells under hypoxia and nutrient starvation contributes to radioresistance in solid human tumors. It is well known that hypoxia causes cellular radioresistance, but little is known about the effects of nutrient starvation on radiosensitivity. We have reported that nutrient starvation induced decrease of mTORC1 activity and decrease of radiosensitivity in an SV40-transformed human fibroblast cell line, LM217, and that nutrient starvation induced increase of mTORC1 activity and increase of radiosensitivity in human liver cancer cell lines, HepG2 and HuH6 (Murata et al., BBRC 2015). Knockdown of mTOR using small interfering RNA (siRNA) for mTOR suppressed radiosensitivity under nutrient starvation alone in HepG2 cells, which suggests that mTORC1 pathway regulates radiosensitivity under nutrient starvation alone. In the present study, effects of hypoxia and nutrient starvation on radiosensitivity were investigated using the same cell lines. LM217 and HepG2 cells were used to examine the effects of hypoxia and nutrient starvation on cellular radiosensitivity, mTORC1 pathway including AMPK, ATM, and HIF-1α, which are known as regulators of mTORC1 activity, and glycogen storage, which is induced by HIF-1 and HIF-2 under hypoxia and promotes cell survival. Under hypoxia and nutrient starvation, AMPK activity and ATM expression were increased in LM217 cells and decreased in HepG2 cells compared with AMPK activity under nutrient starvation alone or ATM expression under hypoxia alone. Under hypoxia and nutrient starvation, radiosensitivity was decreased in LM217 cells and increased in HepG2 cells compared with radiosensitivity under hypoxia alone. Under hypoxia and nutrient starvation, knockdown of AMPK decreased ATM activity and increased radiation sensitivity in LM217 cells. In both cell lines, mTORC1 activity was decreased under hypoxia and nutrient starvation. Under hypoxia alone, knockdown of mTOR slightly increased ATM

  19. Expression of human choline kinase in NIH 3T3 fibroblasts increases the mitogenic potential of insulin and insulin-like growth factor I.

    Science.gov (United States)

    Chung, T; Huang, J S; Mukherjee, J J; Crilly, K S; Kiss, Z

    2000-05-01

    In mammalian cells, growth factors, oncogenes, and carcinogens stimulate phosphocholine (PCho) synthesis by choline kinase (CK), suggesting that PCho may regulate cell growth. To validate the role of PCho in mitogenesis, we determined the effects of insulin, insulin-like growth factor I (IGF-I), and other growth factors on DNA synthesis in NIH 3T3 fibroblast sublines highly expressing human choline kinase (CK) without increasing phosphatidylcholine synthesis. In serum-starved CK expressor cells, insulin and IGF-I stimulated DNA synthesis, p70 S6 kinase (p70 S6K) activity, phosphatidylinositol 3-kinase (PI3K) activity, and activating phosphorylation of p42/p44 mitogen-activated protein kinases (MAPK) to greater extents than in the corresponding vector control cells. Furthermore, the CK inhibitor hemicholinium-3 (HC-3) inhibited insulin- and IGF-I-induced DNA synthesis in the CK overexpressors, but not in the vector control cells. The results indicate that high cellular levels of PCho potentiate insulin- and IGF-I-induced DNA synthesis by MAPK- and p70 S6K-regulated mechanisms.

  20. A low-protein diet induces body weight loss and browning of subcutaneous white adipose tissue through enhanced expression of hepatic fibroblast growth factor 21 (FGF21).

    Science.gov (United States)

    Pérez-Martí, Albert; Garcia-Guasch, Maite; Tresserra-Rimbau, Anna; Carrilho-Do-Rosário, Alexandra; Estruch, Ramon; Salas-Salvadó, Jordi; Martínez-González, Miguel Ángel; Lamuela-Raventós, Rosa; Marrero, Pedro F; Haro, Diego; Relat, Joana

    2017-08-01

    Fibroblast growth factor 21 (FGF21) is considered a promising therapeutic candidate for the treatment of obesity. Since FGF21 production is regulated by various nutritional factors, we analyze the impact of low protein intake on circulating levels of this growth hormone in mice and in a sub cohort of the PREDIMED (Prevención con Dieta Mediterránea) trial. We also describe the role of hepatic FGF21 in metabolic adaptation to a low-protein diet (LPD). We fed control and liver-specific Fgf21 knockout (LFgf21KO) mice a LPD. This diet increased FGF21 production by inducing its overexpression in liver, and this correlated with a body weight decrease without changes in food intake. The LPD also caused FGF21-dependent browning in subcutaneous white adipose tissue (scWAT), as indicated by an increase in the expression of uncoupling protein 1 (UCP1). In a subgroup of 78 individuals from the PREDIMED trial, we observed an inverse correlation between protein intake and circulating FGF21 levels. Our results reinforce the involvement of FGF21 in coordinating energy homeostasis under a range of nutritional conditions. Moreover, here we describe an approach to increase the endogenous production of FGF21, which if demonstrated functional in humans, could generate a treatment for obesity. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Study of the oncogenic expression in human fibroblast cells after exposure to very short pulsed laser radiations

    International Nuclear Information System (INIS)

    Dormont, D.; Freville, Th.; Raoul, H.; Courant, D.; Court, L.

    1992-01-01

    The aim of this study is to evaluate the capacity of a laser, delivering very short pulses in the near infrared spectrum with a high pulse ratio frequency, to induce genetic modification on biological tissues. The absence of dicentric among chromosomal aberrations on human lymphocytes suggests that a repetitive very short pulses irradiation has a relatively low capacity to induce genetic abnormalities. The studies of the radiation effects on the cellular growth and the oncogenic expression show that the modifications, induced at the cellular level, do not seem the origin of a cellular transformation and a possible mechanism of carcinogenesis. (author)

  2. Cobalt chloride decreases fibroblast growth factor-21 expression dependent on oxidative stress but not hypoxia-inducible factor in Caco-2 cells

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Yanlong [School of Pharmacy, Wenzhou Medical College, Wenzhou (China); Department of Medicine, University of Louisville, Louisville, KY (United States); Wang, Chunhong [Second Hospital, Jilin University, Changchun (China); Department of Medicine, University of Louisville, Louisville, KY (United States); Wang, Yuhua [College of Food Science and Engineering, Jilin Agricultural University, Changchun (China); Department of Medicine, University of Louisville, Louisville, KY (United States); Ma, Zhenhua [First Hospital, Xi' an Jiaotong University, Xi' an (China); Department of Medicine, University of Louisville, Louisville, KY (United States); Xiao, Jian [School of Pharmacy, Wenzhou Medical College, Wenzhou (China); McClain, Craig [Department of Medicine, University of Louisville, Louisville, KY (United States); Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY (United States); Alcohol Research Center, University of Louisville, Louisville, KY (United States); Robley Rex Veterans Affairs Medical Center, Louisville, KY (United States); Li, Xiaokun [School of Pharmacy, Wenzhou Medical College, Wenzhou (China); Feng, Wenke, E-mail: wenke.feng@louisville.edu [School of Pharmacy, Wenzhou Medical College, Wenzhou (China); Department of Medicine, University of Louisville, Louisville, KY (United States); Alcohol Research Center, University of Louisville, Louisville, KY (United States)

    2012-10-15

    Fibroblast growth factor-21 (FGF21) is a potential metabolic regulator with multiple beneficial effects on metabolic diseases. FGF21 is mainly expressed in the liver, but is also found in other tissues including the intestine, which expresses β-klotho abundantly. The intestine is a unique organ that operates in a physiologically hypoxic environment, and is responsible for the fat absorption processes including triglyceride breakdown, re-synthesis and absorption into the portal circulation. In the present study, we investigated the effects of hypoxia and the chemical hypoxia inducer, cobalt chloride (CoCl{sub 2}), on FGF21 expression in Caco-2 cells and the consequence of fat accumulation. Physical hypoxia (1% oxygen) and CoCl{sub 2} treatment decreased both FGF21 mRNA and secreted protein levels. Gene silence and inhibition of hypoxia-inducible factor-α (HIFα) did not affect the reduction of FGF21 mRNA and protein levels by hypoxia. However, CoCl{sub 2} administration caused a significant increase in oxidative stress. The addition of n-acetylcysteine (NAC) suppressed CoCl{sub 2}-induced reactive oxygen species (ROS) formation and completely negated CoCl{sub 2}-induced FGF21 loss. mRNA stability analysis demonstrated that the CoCl{sub 2} administration caused a remarkable reduction in FGF21 mRNA stability. Furthermore, CoCl{sub 2} increased intracellular triglyceride (TG) accumulation, along with a reduction in mRNA levels of lipid lipase, hormone sensitive lipase (HSL) and adipose triglyceride lipase (ATGL), and an increase of sterol regulatory element-binding protein-1c (SREBP1c) and stearoyl-coenzyme A (SCD1). Addition of both NAC and recombinant FGF21 significantly attenuated the CoCl{sub 2}-induced TG accumulation. In conclusion, the decrease of FGF21 in Caco-2 cells by chemical hypoxia is independent of HIFα, but dependent on an oxidative stress-mediated mechanism. The regulation of FGF21 by hypoxia may contribute to intestinal lipid metabolism and

  3. Cobalt chloride decreases fibroblast growth factor-21 expression dependent on oxidative stress but not hypoxia-inducible factor in Caco-2 cells

    International Nuclear Information System (INIS)

    Liu, Yanlong; Wang, Chunhong; Wang, Yuhua; Ma, Zhenhua; Xiao, Jian; McClain, Craig; Li, Xiaokun; Feng, Wenke

    2012-01-01

    Fibroblast growth factor-21 (FGF21) is a potential metabolic regulator with multiple beneficial effects on metabolic diseases. FGF21 is mainly expressed in the liver, but is also found in other tissues including the intestine, which expresses β-klotho abundantly. The intestine is a unique organ that operates in a physiologically hypoxic environment, and is responsible for the fat absorption processes including triglyceride breakdown, re-synthesis and absorption into the portal circulation. In the present study, we investigated the effects of hypoxia and the chemical hypoxia inducer, cobalt chloride (CoCl 2 ), on FGF21 expression in Caco-2 cells and the consequence of fat accumulation. Physical hypoxia (1% oxygen) and CoCl 2 treatment decreased both FGF21 mRNA and secreted protein levels. Gene silence and inhibition of hypoxia-inducible factor-α (HIFα) did not affect the reduction of FGF21 mRNA and protein levels by hypoxia. However, CoCl 2 administration caused a significant increase in oxidative stress. The addition of n-acetylcysteine (NAC) suppressed CoCl 2 -induced reactive oxygen species (ROS) formation and completely negated CoCl 2 -induced FGF21 loss. mRNA stability analysis demonstrated that the CoCl 2 administration caused a remarkable reduction in FGF21 mRNA stability. Furthermore, CoCl 2 increased intracellular triglyceride (TG) accumulation, along with a reduction in mRNA levels of lipid lipase, hormone sensitive lipase (HSL) and adipose triglyceride lipase (ATGL), and an increase of sterol regulatory element-binding protein-1c (SREBP1c) and stearoyl-coenzyme A (SCD1). Addition of both NAC and recombinant FGF21 significantly attenuated the CoCl 2 -induced TG accumulation. In conclusion, the decrease of FGF21 in Caco-2 cells by chemical hypoxia is independent of HIFα, but dependent on an oxidative stress-mediated mechanism. The regulation of FGF21 by hypoxia may contribute to intestinal lipid metabolism and absorption. -- Graphical abstract: Physical

  4. Individual variation in p53 and Cip1 expression profiles in normal human fibroblast strains following exposure to high-let radiation

    International Nuclear Information System (INIS)

    Carpenter, T.R.; Johnson, N.F.; Gilliland, F.D.

    1995-01-01

    Exposure to α-particles emitted by radon progeny appears to be the second-leading cause of lung cancer mortality. However, individual susceptibility to the carcinogenic effects of α-particles remains poorly characterized. Variation in susceptibility to cancer produced by certian classes of DNA-damaging chemicals is suspected to involve differences in metabolic activation and detoxication. Susceptibility to α-particle-induced cancer may involve variations in capacity or opportunity to repair DNA damage. Subtle variations in DNA repair capacity would more likely explain radon-related lung cancer susceptibility. The p53 tumor suppressor protein accumulates as a cellular response to DNA damage from ionizing radiation and regulates arrest in the G 1 portion of the cell cycle. Arrest in G 1 portion of the cell cycle. While upstream regulation of p53 protein stability is poorly understood, variations in the ability to accumulate p53 following DNA damage represent potential variations in lung cancer susceptibility related to radon progeny. Further, transcription of the cell-cycle regulatory gene Cip1 is regulated by p53 and increases following ionizing radiation. Therefore, variations in the expression of Cip1 following α-particle exposure may also be a susceptibility factor in radon-related lung cancers. The purpose of the present investigation was to measure p53 and Cip1 protein induction following α-particle exposure of fibroblast lines from nine individuals to determine if there were significant variations. The expression of Cip1 protein indicates the differences in response are biologically relevant

  5. Individual variation in p53 and Cip1 expression profiles in normal human fibroblast strains following exposure to high-let radiation

    Energy Technology Data Exchange (ETDEWEB)

    Carpenter, T.R.; Johnson, N.F.; Gilliland, F.D. [Univ. of New Mexico, Albuquerque, NM (United States)] [and others

    1995-12-01

    Exposure to {alpha}-particles emitted by radon progeny appears to be the second-leading cause of lung cancer mortality. However, individual susceptibility to the carcinogenic effects of {alpha}-particles remains poorly characterized. Variation in susceptibility to cancer produced by certian classes of DNA-damaging chemicals is suspected to involve differences in metabolic activation and detoxication. Susceptibility to {alpha}-particle-induced cancer may involve variations in capacity or opportunity to repair DNA damage. Subtle variations in DNA repair capacity would more likely explain radon-related lung cancer susceptibility. The p53 tumor suppressor protein accumulates as a cellular response to DNA damage from ionizing radiation and regulates arrest in the G{sub 1} portion of the cell cycle. Arrest in G{sub 1} portion of the cell cycle. While upstream regulation of p53 protein stability is poorly understood, variations in the ability to accumulate p53 following DNA damage represent potential variations in lung cancer susceptibility related to radon progeny. Further, transcription of the cell-cycle regulatory gene Cip1 is regulated by p53 and increases following ionizing radiation. Therefore, variations in the expression of Cip1 following {alpha}-particle exposure may also be a susceptibility factor in radon-related lung cancers. The purpose of the present investigation was to measure p53 and Cip1 protein induction following {alpha}-particle exposure of fibroblast lines from nine individuals to determine if there were significant variations. The expression of Cip1 protein indicates the differences in response are biologically relevant.

  6. Fast growth associated with aberrant vasculature and hypoxia in fibroblast growth factor 8b (FGF8b) over-expressing PC-3 prostate tumour xenografts

    International Nuclear Information System (INIS)

    Tuomela, Johanna; Solin, Olof; Minn, Heikki; Härkönen, Pirkko L; Grönroos, Tove J; Valta, Maija P; Sandholm, Jouko; Schrey, Aleksi; Seppänen, Jani; Marjamäki, Päivi; Forsback, Sarita; Kinnunen, Ilpo

    2010-01-01

    Prostate tumours are commonly poorly oxygenated which is associated with tumour progression and development of resistance to chemotherapeutic drugs and radiotherapy. Fibroblast growth factor 8b (FGF8b) is a mitogenic and angiogenic factor, which is expressed at an increased level in human prostate tumours and is associated with a poor prognosis. We studied the effect of FGF8b on tumour oxygenation and growth parameters in xenografts in comparison with vascular endothelial growth factor (VEGF)-expressing xenografts, representing another fast growing and angiogenic tumour model. Subcutaneous tumours of PC-3 cells transfected with FGF8b, VEGF or empty (mock) vectors were produced and studied for vascularity, cell proliferation, glucose metabolism and oxygenation. Tumours were evaluated by immunohistochemistry (IHC), flow cytometry, use of radiolabelled markers of energy metabolism ([ 18 F]FDG) and hypoxia ([ 18 F]EF5), and intratumoral polarographic measurements of pO 2 . Both FGF8b and VEGF tumours grew rapidly in nude mice and showed highly vascularised morphology. Perfusion studies, pO 2 measurements, [ 18 F]EF5 and [ 18 F]FDG uptake as well as IHC staining for glucose transport protein (GLUT1) and hypoxia inducible factor (HIF) 1 showed that VEGF xenografts were well-perfused and oxygenised, as expected, whereas FGF8b tumours were as hypoxic as mock tumours. These results suggest that FGF8b-induced tumour capillaries are defective. Nevertheless, the growth rate of hypoxic FGF8b tumours was highly increased, as that of well-oxygenised VEGF tumours, when compared with hypoxic mock tumour controls. FGF8b is able to induce fast growth in strongly hypoxic tumour microenvironment whereas VEGF-stimulated growth advantage is associated with improved perfusion and oxygenation of prostate tumour xenografts

  7. Fibroblast-matrix interplay: Nintedanib and pirfenidone modulate the effect of IPF fibroblast-conditioned matrix on normal fibroblast phenotype.

    Science.gov (United States)

    Epstein Shochet, Gali; Wollin, Lutz; Shitrit, David

    2018-03-12

    Idiopathic pulmonary fibrosis (IPF) is a progressive lung disease with poor prognosis. Activated fibroblasts are the key effector cells in fibrosis, producing excessive amounts of collagen and extracellular matrix (ECM) proteins. Whether the ECM conditioned by IPF fibroblasts determines the phenotype of naïve fibroblasts is difficult to explore. IPF-derived primary fibroblasts were cultured on Matrigel and then cleared using ammonium hydroxide, creating an IPF-conditioned matrix (CM). Normal fibroblast CM served as control. Normal fibroblasts were cultured on both types of CM, and cell count, cell distribution and markers of myofibroblast differentiation; transforming growth factor beta (TGFβ) signalling; and ECM expression were assessed. The effects of the anti-fibrotic drugs nintedanib and pirfenidone at physiologically relevant concentrations were also explored. Normal fibroblasts cultured on IPF-CM arranged in large aggregates as a result of increased proliferation and migration. Moreover, increased levels of pSmad3, pSTAT3 (phospho signal transducer and activator of transcription 3), alpha smooth muscle actin (αSMA) and Collagen1a were found, suggesting a differentiation towards a myofibroblast-like phenotype. SB505124 (10 μmol/L) partially reversed these alterations, suggesting a TGFβ contribution. Furthermore, nintedanib at 100 nmol/L and, to a lesser extent, pirfenidone at 100 μmol/L prevented the IPF-CM-induced fibroblast phenotype alterations, suggesting an attenuation of the ECM-fibroblast interplay. IPF fibroblasts alter the ECM, thus creating a CM that further propagates an IPF-like phenotype in normal fibroblasts. This assay demonstrated differences in drug activities for approved IPF drugs at clinically relevant concentrations. Thus, the matrix-fibroblast phenotype interplay might be a relevant assay to explore drug candidates for IPF treatment. © 2018 Asian Pacific Society of Respirology.

  8. Prolongation of the survival of breast cancer-bearing mice immunized with GM-CSF-secreting syngeneic/allogeneic fibroblasts transfected with a cDNA expression library from breast cancer cells.

    Science.gov (United States)

    Kim, Tae S; Jung, Mi Y; Cho, Daeho; Cohen, Edward P

    2006-10-30

    Breast cancer cells, like other types of neoplastic cells, form weakly immunogenic tumor-associated antigens. The antigenic properties of the tumor-associated antigens can be enhanced if they are expressed by highly immunogenic cells. In this study, a cancer vaccine was prepared by transfer of a cDNA expression library from SB5b breast carcinoma into mouse fibroblast cells of C3H/He mouse origin (H-2(k)), that had been previously modified to secrete GM-CSF and to express allogeneic class I-determinants (H-2(b)). The transfected syngeneic/allogeneic fibroblasts secreting GM-CSF were used as a vaccine in C3H/He mice. Robust cell-mediated immunity toward the breast cancer cells was generated in mice immunized with the cDNA-based vaccine. The immunity, mediated predominantly by CD8(+) T lymphocytes, was directed toward the breast cancer cells, but not against either of two other non-cross-reactive neoplasms of C3H/He mice. The immunity was sufficient to prolong the survival of mice with established breast cancer. Among other advantages, preparation of the vaccine by cDNA-transfer into a fibroblast cell line enabled the recipient cells to be modified in advance of DNA-transfer to augment their immunogenic properties. As the transferred DNA is replicated as the transfected cells divide, the vaccine could be prepared from microgram quantities of tumor tissue.

  9. C/EBPα Expression is Partially Regulated by C/EBPβ in Response to DNA Damage and C/EBPα Deficient Fibroblasts Display an Impaired G1 Checkpoint

    Science.gov (United States)

    Ranjan, Rakesh; Thompson, Elizabeth A.; Yoon, Kyungsil; Smart, Robert C.

    2009-01-01

    We observed that C/EBPα is highly inducible in primary fibroblasts by DNA damaging agents that induce strand breaks, alkylate and crosslink DNA as well as those that produce bulky DNA lesions. Fibroblasts deficient in C/EBPα (C/EBPα-/-) display an impaired G1 checkpoint as evidenced by inappropriate entry into S-phase in response to DNA damage and these cells also display an enhanced G1 to S transition in response to mitogens. The induction of C/EBPα by DNA damage in fibroblasts does not require p53. EMSA analysis of nuclear extracts prepared from UVB- and MNNG-treated fibroblasts revealed increased binding of C/EBPβ to a C/EBP consensus sequence and ChIP analysis revealed increased C/EBPβ binding to the C/EBPα promoter. To determine whether C/EBPβ has a role in the regulation of C/EBPα we treated C/EBPβ-/- fibroblasts with UVB or MNNG. We observed C/EBPα induction was impaired in both UVB- and MNNG- treated C/EBPβ-/- fibroblasts. Our study reveals a novel role for C/EBPβ in the regulation of C/EBPα in response to DNA damage and provides definitive genetic evidence that C/EBPα has a critical role in the DNA damage G1 checkpoint. PMID:19581927

  10. Fibroblast growth factor-21 and omentin-1 hepatic mRNA expression and serum levels in morbidly obese women with non-alcoholic fatty liver disease.

    Science.gov (United States)

    Waluga, M; Kukla, M; Zorniak, M; Kajor, M; Liszka, L; Dyaczynski, M; Kowalski, G; Zadlo, D; Waluga, E; Olczyk, P; Buldak, R J; Berdowska, A; Hartleb, M

    2017-06-01

    Fibroblast growth factor-21 (FGF21) and omentin-1 have been recognized as potent antidiabetic agents with potential hepatoprotective activity. The aim of this study was to evaluate hepatic FGF21 and omentin-1 mRNA expression as well as their serum levels as predictive markers of liver injury and insulin resistance in morbidly obese women with non-alcoholic fatty liver disease (NAFLD). This study included 56 severely obese women who underwent intraoperative wedge liver biopsy during the bariatric surgery. Hepatic FGF21 and omentin-1 mRNA were assessed by quantitative real-time PCR, while their serum concentrations were measured with commercially available enzyme-linked immunosorbent assays. The FGF21 serum level was significantly higher in patients with a greater extent of steatosis (grade 2 and 3) compared to those without or with mild steatosis (grade 0 and 1) (P = 0.049). Receiver Operating Characteristic analysis, however, showed poor discriminant power for the FGF21 serum levels in differentiating between more and less extensive steatosis with an AUC = 0.666. There was a tendency towards higher levels of hepatic FGF21 mRNA in patients with lobular inflammation and fibrosis and towards lower levels in the case of hepatocyte ballooning and steatosis. There was a positive mutual correlation between hepatic FGF21 and omentin-1 mRNA levels (r = 0.78; P hepatic omentin-1 mRNA levels showed a tendency to be lower in patients with advanced steatosis and hepatocyte ballooning. In conclusion, our study, which focused on hepatic FGF21 and omentin-1 mRNA expression, confirmed marked expression of both molecules in the liver of morbidly obese patients with NAFLD. More extensive steatosis was associated with evident changes in the serum FGF21 concentration in morbidly obese women with NAFLD, but the difference did not reach statistical significance. The vast amount of fat, both visceral and subcutaneous, in severely obese patients may be the additional source and influence

  11. Cyclooxygenase-2-dependent bronchoconstriction in perfused rat lungs exposed to endotoxin.

    OpenAIRE

    Uhlig, S.; Nüsing, R.; von Bethmann, A.; Featherstone, R. L.; Klein, T.; Brasch, F.; Müller, K. M.; Ullrich, V.; Wendel, A.

    1996-01-01

    BACKGROUND: Lipopolysaccharides (LPS), widely used to study the mechanisms of gram-negative sepsis, increase airway resistance by constriction of terminal bronchioles. The role of the cyclooxygenase (COX) isoenzymes and their prostanoid metabolites in this process was studied. MATERIALS AND METHODS: Pulmonary resistance, the release of thromboxane (TX) and the expression of COX-2 mRNA were measured in isolated blood-free perfused rat lungs exposed to LPS. RESULTS: LPS induced the release of T...

  12. Inibição da expressão de ciclooxigenase 2 em feridas cutâneas de camundongos NOD submetidos à terapia a laser de baixa intensidade Inhibition of cyclooxygenase 2 expression in NOD mice cutaneous wound by low-level laser therapy

    Directory of Open Access Journals (Sweden)

    Carolina de Lourdes Julião Vieira Rocha

    2012-09-01

    Full Text Available CONTEXTO: A terapia a laser de baixa intensidade (LLLT tem sido relatada como importante moduladora da cicatrização de feridas cutâneas aumentando a proliferação fibroblástica associada ao aumento da expressão da citocina fator transformador de crescimento- β2 (TGF-βB2. OBJETIVO: No presente estudo foram avaliados os efeitos da LLLT sobre a expressão da enzima ciclooxigenase 2 (COX2 no sítio do reparo tecidual utilizando o modelo experimental com camundongos diabéticos não obesos (NOD para estudar a cicatrização de feridas cutâneas. MÉTODOS: Foram utilizados 30 camundongos NOD, destes 14 ficaram diabéticos e foram divididos em dois grupos: o grupo I (n=7 foi submetido a um procedimento cirúrgico de feridas cutâneas e o grupo II (n=7 foi submetido a um procedimento cirúrgico de feridas cutâneas e tratados com LLLT. O grupo II foi submetido à LLLT nos seguintes parâmetros: 15 mW de potência, dose de 3,8 J/cm² e tempo de aplicação de 20 segundos. Após sete dias do ato cirúrgico e após aplicação do laser, os animais foram eutanasiados com sobredose de anestesia e amostras das feridas foram colhidas para posterior análise histopatológica, histomorfométrica e imuno-histoquímica. RESULTADOS: A LLLT promoveu a inibição da expressão da COX2 em feridas cutâneas de camundongos diabéticos. CONCLUSÃO: Em conjunto, os resultados sugeriram que a LLLT é capaz de modular negativamente a expressão da enzima COX2 contribuindo para o controle da resposta inflamatória em feridas cutâneas de camundongos NOD.BACKGROUND: Low-level laser therapy (LLLT has been reported to modulate the healing of wounds by inducing an increase in fibroblast number associated with increased expression of the cytokine transforming growth factor-β2 (TGF-β2. OBJECTIVE: In the present study, the effect of LLLT on expression of COX2 at the site of tissue repair was evaluated, using an experimental model with non obese diabetic mice (NOD to study

  13. Expression of fibroblast growth factor-21 in muscle is associated with lipodystrophy, insulin resistance and lipid disturbances in patients with HIV.

    Directory of Open Access Journals (Sweden)

    Birgitte Lindegaard

    Full Text Available BACKGROUND: Fibroblast growth factor (FGF-21 is a novel regulator of glucose and lipid metabolism. Recently, increased FGF-21 mRNA expression in muscle was found in patients with type 2 diabetes, but the role for FGF-21 in muscle is not well understood. Patients with HIV-infection and lipodystrophy are characterised by various degree of lipid-driven insulin resistance. We hypothesized that muscle FGF-21 mRNA would be altered in HIV patients with lipodystrophy. DESIGN: Twenty-five HIV-infected men with lipodystrophy (LD and 15 age-matched healthy controls, received an oral glucose tolerance test and a euglycemic-hyperinsulinemic clamp (50 mU/m2/min combined with 6,6-H2 glucose infusion. Muscle biopsies were obtained and FGF-21 mRNA and glycogen synthase (GS activity were measured. RESULTS: Subjects with HIV were insulin resistant compared with non-HIV subjects. Compared to controls, HIV subjects demonstrated a twofold increase of plasma FGF-21 from 70.4±56.8 pg/ml vs 109.1±71.8 pg/ml, respectively (p = 0.04 and an eight-fold increase in muscular FGF-21 mRNA expression (p = 0.001. Muscle FGF-21 mRNA correlated inversely with the rate of disappearance of glucose during insulin clamp (r = -0.54, p = 0.0009, and the GS fractional velocity in muscle (r = -0.39, p = 0.03, and directly with fasting insulin (r = 0.50, p = 0.0022, HOMA-IR (r = 0.47, p = 0.004, triglycerides (r = 0.60. P = 0.0001, waist-to-hip ratio (r = 0.51, p = 0.0001 and limb fat mass (-0.46, p = 0.004, but not to plasma FGF-21. CONCLUSION: FGF-21 mRNA is increased in skeletal muscle in HIV patients and correlates to whole-body (primarily reflecting muscle insulin resistance, but not to plasma FGF-21. Those findings add to the evidence that FGF-21 is a myokine and may suggest that muscle FGF-21 is working in a local manner.

  14. Anti-inflammatory activity of fisetin in human gingival fibroblasts treated with lipopolysaccharide.

    Science.gov (United States)

    Gutiérrez-Venegas, Gloria; Contreras-Sánchez, Anabel; Ventura-Arroyo, Jairo Agustín

    2014-10-01

    Fisetin is an anti-inflammatory flavonoid; however, its anti-inflammatory mechanism is not yet understood. In this study, we evaluated the anti-inflammatory effect of fisetin and its association with mitogen-activated protein kinase (MAPK) and nuclear factor kappa-beta pathways in human gingival fibroblasts (HGFs) treated with lipopolysaccharide (LPS) obtained from Porphyromonas gingivalis. The cell signaling, cell viability, and cyclooxygenase-2 (COX-2) expression of HGFs treated with various concentrations (0, 1, 5, 10, and 15 μM) of fisetin were measured by cell viability assay (MTT), Western blotting, and reverse transcriptase polymerase chain reaction analysis on COX-2. We found that fisetin significantly reduced the synthesis and expression of prostaglandin E2 in HGFs treated with LPS. Activation of extracellular signal-regulated kinase, c-Jun N-terminal kinase, and p38 MAPK was suppressed consistently by fisetin in HGFs treated with LPS. The data indicate that fisetin inhibits MAPK activation and COX-2 expression without affecting cell viability. These findings may be valuable for understanding the mechanism of the effect of fisetin on periodontal disease.

  15. Impact of Wines and Wine Constituents on Cyclooxygenase-1, Cyclooxygenase-2, and 5-Lipoxygenase Catalytic Activity

    Directory of Open Access Journals (Sweden)

    Zsofia Kutil

    2014-01-01

    Full Text Available Cyclooxygenases and lipoxygenases are proinflammatory enzymes; the former affects platelet aggregation, vasoconstriction, vasodilatation and later the development of atherosclerosis. Red wines from Georgia and central and western Europe inhibited cyclooxygenase-1 (COX-1 activity in the range of 63–94%, cyclooxygenase-2 (COX-2 activity in the range of 20–44% (tested at a concentration of 5 mL/L, and 5-lipoxygenase (5-LOX activity in the range of 72–84% (at a concentration of 18.87 mL/L. White wines inhibited 5-LOX in the range of 41–68% at a concentration of 18.87 mL/L and did not inhibit COX-1 and COX-2. Piceatannol (IC50 = 0.76 μM was identified as a strong inhibitor of 5-LOX followed by luteolin (IC50 = 2.25 μM, quercetin (IC50 = 3.29 μM, and myricetin (IC50 = 4.02 μM. trans-Resveratrol was identified as an inhibitor of COX-1 (IC50 = 2.27 μM and COX-2 (IC50 = 3.40 μM. Red wine as a complex mixture is a powerful inhibitor of COX-1, COX-2, and 5-LOX, the enzymes involved in eicosanoid biosynthetic pathway.

  16. Gene expression profiling following NRF2 and KEAP1 siRNA knockdown in human lung fibroblasts identifies CCL11/Eotaxin-1 as a novel NRF2 regulated gene

    Science.gov (United States)

    2012-01-01

    Background Oxidative Stress contributes to the pathogenesis of many diseases. The NRF2/KEAP1 axis is a key transcriptional regulator of the anti-oxidant response in cells. Nrf2 knockout mice have implicated this pathway in regulating inflammatory airway diseases such as asthma and COPD. To better understand the role the NRF2 pathway has on respiratory disease we have taken a novel approach to define NRF2 dependent gene expression in a relevant lung system. Methods Normal human lung fibroblasts were transfected with siRNA specific for NRF2 or KEAP1. Gene expression changes were measured at 30 and 48 hours using a custom Affymetrix Gene array. Changes in Eotaxin-1 gene expression and protein secretion were further measured under various inflammatory conditions with siRNAs and pharmacological tools. Results An anti-correlated gene set (inversely regulated by NRF2 and KEAP1 RNAi) that reflects specific NRF2 regulated genes was identified. Gene annotations show that NRF2-mediated oxidative stress response is the most significantly regulated pathway, followed by heme metabolism, metabolism of xenobiotics by Cytochrome P450 and O-glycan biosynthesis. Unexpectedly the key eosinophil chemokine Eotaxin-1/CCL11 was found to be up-regulated when NRF2 was inhibited and down-regulated when KEAP1 was inhibited. This transcriptional regulation leads to modulation of Eotaxin-1 secretion from human lung fibroblasts under basal and inflammatory conditions, and is specific to Eotaxin-1 as NRF2 or KEAP1 knockdown had no effect on the secretion of a set of other chemokines and cytokines. Furthermore, the known NRF2 small molecule activators CDDO and Sulphoraphane can also dose dependently inhibit Eotaxin-1 release from human lung fibroblasts. Conclusions These data uncover a previously unknown role for NRF2 in regulating Eotaxin-1 expression and further the mechanistic understanding of this pathway in modulating inflammatory lung disease. PMID:23061798

  17. N-cadherin is overexpressed in Crohn's stricture fibroblasts and promotes intestinal fibroblast migration.

    LENUS (Irish Health Repository)

    Burke, John P

    2012-02-01

    BACKGROUND: Intestinal fibroblasts mediate stricture formation in Crohn\\'s disease (CD). Transforming growth factor-beta (TGF-beta) is important in fibroblast activation, while cell attachment and migration is regulated by the adhesion molecule N-cadherin. The aim of this study was to investigate the expression and function of N-cadherin in intestinal fibroblasts in patients with fibrostenosing CD. METHODS: Intestinal fibroblasts were cultured from seromuscular biopsies from patients undergoing resection for terminal ileal fibrostenosing CD (n = 14) or controls patients (n = 8). N-cadherin expression was assessed using Western blot and quantitative reverse-transcription polymerase chain reaction (qRT-PCR). Fibroblasts were stimulated with TGF-beta and selective pathway inhibitors Y27632, PD98050, and LY294002 were used to examine the Rho\\/ROCK, ERK-1\\/2, and Akt signaling pathways, respectively. Cell migration was assessed using a scratch wound assay. N-cadherin was selectively overexpressed using a plasmid. RESULTS: Fibroblasts from fibrostenosing CD express increased constitutive N-cadherin mRNA and protein and exhibit enhanced basal cell migration relative to those from directly adjacent normal bowel. Control fibroblasts treated with TGF-beta induced N-cadherin in a dose-dependent manner which was inhibited by Rho\\/ROCK and Akt pathway modulation. Control fibroblasts exhibited enhanced cell migration in response to treatment with TGF-beta or transfection with an N-cadherin plasmid. CONCLUSIONS: Fibroblasts from strictures in CD express increased constitutive N-cadherin and exhibit enhanced basal cell migration. TGF-beta is a potent inducer of N-cadherin in intestinal fibroblasts resulting in enhanced cell migration. The TGF-beta-mediated induction of N-cadherin may potentiate Crohn\\'s stricture formation.

  18. Decreased expression of lysyl hydroxylase 2 (LH2) in skin fibroblasts from three Ehlers-Danlos patients does not result from mutations in either the coding or proximal promoter region of the LH2 gene.

    Science.gov (United States)

    Walker, L C; Teebi, A S; Marini, J C; De Paepe, A; Malfait, F; Atsawasuwan, P; Yamauchi, M; Yeowell, H N

    2004-12-01

    The Ehlers-Danlos syndromes (EDS) are a heterogeneous group of inherited connective tissue disorders characterized by tissue fragility, hyperelasticity of the skin and joint hypermobility. This phenotype, accompanied by kyphoscoliosis and/or ocular fragility, is present in patients with the autosomal recessive type VI form of EDS. These patients have significantly decreased levels of lysyl hydroxylase (LH) activity, due to mutations in the LH1 gene. LH hydroxylates specific lysine residues in the collagen molecule that are precursors for the formation of cross-links which provide collagen with its tensile strength. No disorder has been directly linked to decreased expression of LH2 and LH3, two other isoforms of LH. This study describes 3 patients with mixed phenotypes of EDS, who have significantly decreased mRNAs for LH2, but normal levels of LH1 and LH3 mRNAs, in their skin fibroblasts. In contrast to the effect of LH1 deficiency in EDS VI patients, the decreased expression of LH2 does not affect LH activity, bifunctional collagen cross-links (measured after reduction as dihydroxylysinonorleucine (DHLNL) and hydroxylysinonorleucine (HLNL)), or helical lysine hydroxylation in these cell lines. Sequence analysis of full length LH2 cDNAs and 1kb of the promoter region of LH2 does not show mutations that could explain the decreased expression of LH2. These results suggest that the deficiency of LH2 in these fibroblasts may be caused by changes in other factors required for the expression of LH2.

  19. Tacrolimus increases Nox4 expression in human renal fibroblasts and induces fibrosis-related genes by aberrant TGF-beta receptor signalling

    NARCIS (Netherlands)

    Kern, Georg; Mair, Sabine M; Noppert, Susie-Jane; Jennings, Paul; Schramek, Herbert; Rudnicki, Michael; Mueller, Gerhard A; Mayer, Gert; Koppelstaetter, Christian

    2014-01-01

    Chronic nephrotoxicity of immunosuppressives is one of the main limiting factors in the long-term outcome of kidney transplants, leading to tissue fibrosis and ultimate organ failure. The cytokine TGF-β is considered a key factor in this process. In the human renal fibroblast cell line TK-173, the

  20. Prostaglandin E synthase interacts with inducible heat shock protein 70 after heat stress in bovine primary dermal fibroblast cells.

    Science.gov (United States)

    Richter, Constanze; Viergutz, Torsten; Schwerin, Manfred; Weitzel, Joachim M

    2015-01-01

    Exposure to heat stress in dairy cows leads to undesired side effects that are reflected by complex alterations in endocrine parameters, such as reduced progesterone, estradiol, and thyroid hormone concentrations. These endocrine maladaptation leads to failure to resume cyclicity, a poor uterine environment and inappropriate immune responses in postpartum dairy cows. Prostaglandins (PG's) are lipid mediators, which serve as signal molecules in response to various external stimuli as well as to cell-specific internal signal molecules. A central role in PG synthesis plays prostaglandin E synthase (PGES) that catalyzes the isomerization of PGH2 to PGE2 .The present study was conducted to investigate heat stress associated PGES expression. Expression of PGES and inducible heat shock protein 70 (HSP70), as a putative chaperonic protein, was studied in bovine primary fibroblasts under different heat shock conditions. Bovine primary fibroblasts produce PGE2 at homoiothermical norm temperature (38.5°C in bovine), but reduce PGE2 production rates under extreme heat stress (at 45°C for 6 h). By contrast, PGE2 production rates are maintained after a milder heat stress (at 41.5°C for 6 h). PGE2 synthesis is abolished by application of cyclooxygenase inhibitor indomethacin, indicating de novo synthesis. Heat stress increases HSP70 but not PGES protein concentrations. HSP70 physically interacts with PGES and the PGES-HSP70 complex did not dissociate upon heat stress at 45°C even after returning the cells to 37°C. The PGE2 production negatively correlates with the portion of PGES-HSP70 complex. These results suggest a protein interaction between HSP70 and PGES in dermal fibroblast cells. Blockage of PGES protein by HSP70 seems to interfere with the regulatory processes essential for cellular adaptive protection. © 2014 International Society for Advancement of Cytometry. © 2014 International Society for Advancement of Cytometry.

  1. Preparation of Proper Immunogen by Cloning and Stable Expression of cDNA coding for Human Hematopoietic Stem Cell Marker CD34 in NIH-3T3 Mouse Fibroblast Cell Line

    Science.gov (United States)

    Shafaghat, Farzaneh; Abbasi-Kenarsari, Hajar; Majidi, Jafar; Movassaghpour, Ali Akbar; Shanehbandi, Dariush; Kazemi, Tohid

    2015-01-01

    Purpose: Transmembrane CD34 glycoprotein is the most important marker for identification, isolation and enumeration of hematopoietic stem cells (HSCs). We aimed in this study to clone the cDNA coding for human CD34 from KG1a cell line and stably express in mouse fibroblast cell line NIH-3T3. Such artificial cell line could be useful as proper immunogen for production of mouse monoclonal antibodies. Methods: CD34 cDNA was cloned from KG1a cell line after total RNA extraction and cDNA synthesis. Pfu DNA polymerase-amplified specific band was ligated to pGEMT-easy TA-cloning vector and sub-cloned in pCMV6-Neo expression vector. After transfection of NIH-3T3 cells using 3 μg of recombinant construct and 6 μl of JetPEI transfection reagent, stable expression was obtained by selection of cells by G418 antibiotic and confirmed by surface flow cytometry. Results: 1158 bp specific band was aligned completely to reference sequence in NCBI database corresponding to long isoform of human CD34. Transient and stable expression of human CD34 on transfected NIH-3T3 mouse fibroblast cells was achieved (25% and 95%, respectively) as shown by flow cytometry. Conclusion: Cloning and stable expression of human CD34 cDNA was successfully performed and validated by standard flow cytometric analysis. Due to murine origin of NIH-3T3 cell line, CD34-expressing NIH-3T3 cells could be useful as immunogen in production of diagnostic monoclonal antibodies against human CD34. This approach could bypass the need for purification of recombinant proteins produced in eukaryotic expression systems. PMID:25789221

  2. ETORICOXIB IS A NEW SELECTIVE CYCLOOXYGENASE-2 INHIBITOR

    Directory of Open Access Journals (Sweden)

    A E Karateev

    2009-01-01

    Full Text Available The paper provides the clinical characteristics of etoricoxib (Arcoxia, a new selective cyclooxygenase-2 inhibitor having unique properties, which permits it to be distinguished among other nonsteroidal anti-inflammatory agents.

  3. ETORICOXIB IS A NEW SELECTIVE CYCLOOXYGENASE-2 INHIBITOR

    Directory of Open Access Journals (Sweden)

    A E Karateev

    2009-06-01

    Full Text Available The paper provides the clinical characteristics of etoricoxib (Arcoxia, a new selective cyclooxygenase-2 inhibitor having unique properties, which permits it to be distinguished among other nonsteroidal anti-inflammatory agents.

  4. Tumor-secreted LOXL2 activates fibroblasts through FAK signaling

    DEFF Research Database (Denmark)

    Barker, Holly E; Bird, Demelza; Lang, Georgina

    2013-01-01

    models. Here, we discovered that tumor-derived LOXL2 directly activated stromal fibroblasts in the tumor microenvironment. Genetic manipulation or antibody inhibition of LOXL2 in orthotopically grown mammary tumors reduced the expression of α-smooth muscle actin (α-SMA). Using a marker for reticular....... Importantly, in vitro assays revealed that tumor-derived LOXL2 and a recombinant LOXL2 protein induced fibroblast branching on collagen matrices, as well as increased fibroblast-mediated collagen contraction and invasion of fibroblasts through extracellular matrix. Moreover, LOXL2 induced the expression of α...

  5. Ablation of the Galnt3 Gene Leads to Low-Circulating Intact Fibroblast Growth Factor 23 (Fgf23) Concentrations and Hyperphosphatemia Despite Increased Fgf23 Expression

    OpenAIRE

    Ichikawa, Shoji; Sorenson, Andrea H.; Austin, Anthony M.; Mackenzie, Donald S.; Fritz, Timothy A.; Moh, Akira; Hui, Siu L.; Econs, Michael J.

    2009-01-01

    Familial tumoral calcinosis is characterized by ectopic calcifications and hyperphosphatemia. The disease is caused by inactivating mutations in fibroblast growth factor 23 (FGF23), Klotho (KL), and uridine diphosphate-N-acetyl-α-D-galactosamine:polypeptide N-acetylgalactosaminyltransferase 3 (GALNT3). In vitro studies indicate that GALNT3 O-glycosylates a phosphaturic hormone, FGF23, and prevents its proteolytic processing, thereby allowing secretion of intact FGF23. In this study we generat...

  6. Cyclooxygenase-2 polymorphisms in Parkinson's disease.

    Science.gov (United States)

    Håkansson, Anna; Bergman, Olle; Chrapkowska, Cecilia; Westberg, Lars; Belin, Andrea Carmine; Sydow, Olof; Johnels, Bo; Olson, Lars; Holmberg, Björn; Nissbrandt, Hans

    2007-04-05

    Accumulating evidence indicate that cyclooxygenase-2 (COX-2) is of pathophysiological importance for the neurodegeneration in Parkinson's disease (PD). For example, in a large epidemiological study, use of NSAIDs was associated with a lower risk of PD. Genetic variants of the COX-2 gene might therefore influence the risk of developing the disease. The genotype distribution of four common single nucleotide polymorphisms (SNPs) in the COX-2 gene (rs689466:A496G, rs20417:G926C, rs5277:G3050C, rs5275:C8473T) was analyzed in PD patients and control subjects in a Swedish population. No differences could be seen between the PD-patient and controls regarding the A496G, G926C, and G3050C SNPs, but the allele frequency of the C8473T SNP was found to differ when male patients were compared to controls (P = 0.007). In females no difference could be seen between PD-patients and controls. In conclusion, the results suggest a possible influence of the COX-2 C8473T SNP in PD, although it only seems to be of importance in men. (c) 2006 Wiley-Liss, Inc.

  7. Cyclooxygenase-2 inhibitors in colorectal cancer prevention: point.

    Science.gov (United States)

    Arber, Nadir

    2008-08-01

    The limited success of current treatments for most advanced common malignancies highlights the importance of cancer prevention. Clinical trials on cyclooxygenase (COX) inhibitor drugs showed the potential of chemoprevention as a strategy for reducing cancer incidence, although not without associated side effects. The attractiveness of these drugs partly stems from an ability to engage multiple mechanisms of action by their potential to influence multiple components of the carcinogenesis pathway, from initiation to progression. There are two isoforms of the COX enzymes. COX-1 is constitutively expressed in normal tissues and serves as a "housekeeper" of mucosal integrity, whereas COX-2 is an immediate early response gene that is highly inducible by neoplastic and inflammatory stimuli. COX-2 is significantly overexpressed in colorectal neoplasms, making it an attractive therapeutic target. The drug market has been revolutionized by the development of preparations targeted selectively against COX-2, and a proof of concept has been achieved. Chemoprevention of colorectal cancer is already possible with celecoxib, but it is still not the ultimate drug of choice especially because of the cardiovascular risk associated with COX-2 inhibitors. Better patient selection and more effective and safer drugs are needed. Celecoxib is probably best used in a subset of individuals at moderate to high colorectal cancer risk and low risk of cardiovascular disease.

  8. Consistent inhibition of cyclooxygenase drives macrophages towards the inflammatory phenotype.

    Directory of Open Access Journals (Sweden)

    Yi Rang Na

    Full Text Available Macrophages play important roles in defense against infection, as well as in homeostasis maintenance. Thus alterations of macrophage function can have unexpected pathological results. Cyclooxygenase (COX inhibitors are widely used to relieve pain, but the effects of long-term usage on macrophage function remain to be elucidated. Using bone marrow-derived macrophage culture and long-term COX inhibitor treatments in BALB/c mice and zebrafish, we showed that chronic COX inhibition drives macrophages into an inflammatory state. Macrophages differentiated in the presence of SC-560 (COX-1 inhibitor, NS-398 (COX-2 inhibitor or indomethacin (COX-1/2 inhibitor for 7 days produced more TNFα or IL-12p70 with enhanced p65/IκB phosphoylation. YmI and IRF4 expression was reduced significantly, indicative of a more inflammatory phenotype. We further observed that indomethacin or NS-398 delivery accelerated zebrafish death rates during LPS induced sepsis. When COX inhibitors were released over 30 days from an osmotic pump implant in mice, macrophages from peritoneal cavities and adipose tissue produced more TNFα in both the basal state and under LPS stimulation. Consequently, indomethacin-exposed mice showed accelerated systemic inflammation after LPS injection. Our findings suggest that macrophages exhibit a more inflammatory phenotype when COX activities are chronically inhibited.

  9. Posttranscriptional Regulation of Cyclooxygenase-2 in Rat Intestinal Epithelial Cells

    Directory of Open Access Journals (Sweden)

    Zhonghua Zhang

    2000-01-01

    Full Text Available Modulation of cyclooxygenase-2 (COX-2 mRNA stability plays an important role in the regulation of its expression by oncogenic Ras. Here, we evaluate COX-2 mRNA stability in response to treatment with two known endogenous promoters of gastrointestinal cancer, the bile acid (chenodeoxycholate; CD and ceramide. Treatment with CD and ceramide resulted in a 10-fold increase in the level of COX-2 protein and a four-fold lengthening of the half-life of COX-2 mRNA. COX-2 mRNA stability was assessed by Northern blot analysis and by evaluating the AU-rich element located in the COX-2 3′-UTR. A known inhibitor of mitogen-activated protein (MAP/extracellular signal-regulated kinase (ERK kinase (MEK, PD98059, reversed the effects of CD or ceramide to stabilize COX-2 mRNA. Overexpression of a dominant-negative ERK-1 or ERK-2 protein also led to destabilization of COX-2 mRNA. Treatment with a p38 MAPK inhibitor, PD169316, or transfection with a dominant-negative p38 MAPK construct reversed the effect of CD or ceramide to stabilize COX-2 mRNA. Expression of a dominant-negative c-Jun N-terminal kinase (JNK had no effect on COX-2 mRNA stability in cells treated with CD or ceramide. We conclude that posttranscriptional mechanisms play an important role in the regulation of COX-2 expression during carcinogenesis.

  10. Upregulation of proteolytic enzymes and cyclooxygenase-2 in human gingival fibroblasts stimulated with safrole

    Directory of Open Access Journals (Sweden)

    Yung-Chuan Ho

    2014-03-01

    Conclusion: Overall, the results of our study show that safrole is a cytotoxic agent to HGFs. Therefore, increase in the activity of MMP-2, t-PA, and COX-2 may be involvement in the pathogenesis of areca quid-associated periodontal diseases.

  11. Mesenchymal stem cells induce dermal fibroblast responses to injury

    International Nuclear Information System (INIS)

    Smith, Andria N.; Willis, Elise; Chan, Vincent T.; Muffley, Lara A.; Isik, F. Frank; Gibran, Nicole S.; Hocking, Anne M.

    2010-01-01

    Although bone marrow-derived mesenchymal stem cells have been shown to promote repair when applied to cutaneous wounds, the mechanism for this response remains to be determined. The aim of this study was to determine the effects of paracrine signaling from mesenchymal stem cells on dermal fibroblast responses to injury including proliferation, migration and expression of genes important in wound repair. Dermal fibroblasts were co-cultured with bone marrow-derived mesenchymal stem cells grown in inserts, which allowed for paracrine interactions without direct cell contact. In this co-culture model, bone marrow-derived mesenchymal stem cells regulate dermal fibroblast proliferation, migration and gene expression. When co-cultured with mesenchymal stem cells, dermal fibroblasts show increased proliferation and accelerated migration in a scratch assay. A chemotaxis assay also demonstrated that dermal fibroblasts migrate towards bone marrow-derived mesenchymal stem cells. A PCR array was used to analyze the effect of mesenchymal stem cells on dermal fibroblast gene expression. In response to mesenchymal stem cells, dermal fibroblasts up-regulate integrin alpha 7 expression and down-regulate expression of ICAM1, VCAM1 and MMP11. These observations suggest that mesenchymal stem cells may provide an important early signal for dermal fibroblast responses to cutaneous injury.

  12. Fibroblast Growth Factor Receptor 3 (FGFR3–Analyses of the S249C Mutation and Protein Expression in Primary Cervical Carcinomas

    Directory of Open Access Journals (Sweden)

    Haiyan Dai

    2001-01-01

    Full Text Available Fibroblast growth factor receptor 3 (FGFR3 seems to play an inhibitory role in bone development, as activating mutations in the gene underlie disorders such as achondroplasia and thanatophoric dysplasia. Findings from multiple myeloma (MM indicate that FGFR3 also can act as an oncogene, and mutation of codon 249 in the fibroblast growth factor receptor 3 (FGFR3 gene was recently detected in 3/12 primary cervical carcinomas. We have analysed 91 cervical carcinomas for this specific S249C mutation using amplification created restriction site methodology (ACRS, and detected no mutations. Immunohistochemistry was performed on 73 of the tumours. Reduced protein staining was seen in 43 (58.8% samples. Six of the tumours (8.2% revealed increased protein staining compared with normal cervical tissue. These patients had a better prognosis than those with reduced or normal levels, although not statistically significant. This report weakens the hypothesis of FGFR3 as an oncogene of importance in cervical carcinomas.

  13. The role of cyclooxygenase-2 in the malignant tissue and possible applicability of cyclooxygenase-2 inhibitors in the therapy of cancer

    International Nuclear Information System (INIS)

    Legan, M.

    2003-01-01

    Cyclooxygenase-2 (COX-2), an inducible prostaglandin (PG) synthase, is elevated in many types of malignant and pre-malignant tissues. This enzyme is localized in neoplastic (epithelial) cells, microvascular endothelial cells, and stromal fibroblasts. Through the released PG it enhances carcinogenesis with increasing angiogenesis, inhibiting apoptosis, activating matrix metalloproteinases, suppressing of cell mediated antitumor immune response and protection against damage by cytotoxic agents. Evidences from in vitro studies, studies on animal models as well as first clinical outcomes suggest that the inhibition of COX-2 may suppress carcinogenesis by affecting a number of pathways: inhibiting angiogenesis, invasiveness of tumors and promoting apoptosis. References forecast that COX-2 inhibitors, mostly COX-2 selective inhibitors, may get a role in the therapy of cancer as an adjuvant therapy or as an co-chemotherapeutic agent. The purpose of the present article is to summarize the most important facts about the role of COX-2 in the malignant tissue and discuss possible ways for potential therapeutic place of COX-2 inhibitors in clinical practice. (author)

  14. Myogenic conversion of bladder fibroblasts by construction and ...

    African Journals Online (AJOL)

    The cultured primary bladder fibroblasts were transfected by pEGFP-Myod1 with Lipofection 2000 reagent. The results showed that expression of Myod1 could cause myogenic differentiation of bladder fibroblasts. These findings support the possibility of an alternative approach to exploit the capacity of Myod1 to activate ...

  15. Age-dependent oxidation of extracellular cysteine/cystine redox state (Eh(Cys/CySS)) in mouse lung fibroblasts is mediated by a decline in Slc7a11 expression.

    Science.gov (United States)

    Zheng, Yuxuan; Ritzenthaler, Jeffrey D; Burke, Tom J; Otero, Javier; Roman, Jesse; Watson, Walter H

    2018-04-01

    Aging is associated with progressive oxidation of the extracellular environment. The redox state of human plasma, defined by the concentrations of cysteine (Cys) and cystine (CySS), becomes more oxidized as we age. Recently, we showed that fibroblasts isolated from the lungs of young and old mice retain this differential phenotype; old cells produce and maintain a more oxidizing extracellular redox potential (E h (Cys/CySS)) than young cells. Microarray analysis identified down-regulation of Slc7a11, the light subunit of the CySS/glutamate transporter, as a potential mediator of age-related oxidation in these cells. The purpose of the present study was to investigate the mechanistic link between Slc7a11 expression and extracellular E h (Cys/CySS). Sulforaphane treatment or overexpression of Slc7a11 was used to increase Slc7a11 in lung fibroblasts from old mice, and sulfasalazine treatment or siRNA-mediated knock down was used to decrease Slc7a11 in young fibroblasts. Slc7a11 mRNA levels were measured by real-time PCR, Slc7a11 activity was determined by measuring the rate of glutamate release, Cys, CySS, glutathione (GSH) and its disulfide (GSSG) were measured by HPLC, and E h (Cys/CySS) was calculated from the Nernst equation. The results showed that both E h (Cys/CySS) and E h (GSH/GSSG) were more oxidized in the conditioned media of old cells than in young cells. Up-regulation of Slc7a11 via overexpression or sulforaphane treatment restored extracellular E h (Cys/CySS) in cultures of old cells, whereas down-regulation reproduced the oxidizing E h (Cys/CySS) in young cells. Only sulforaphane treatment was able to increase total GSH and restore E h (GSH/GSSG), whereas overexpression, knock down and sulfasalazine had no effect on these parameters. In addition, inhibition of GSH synthesis with buthionine sulfoximine had no effect on the ability of cells to restore their extracellular redox potential in response to an oxidative challenge. In conclusion, our study

  16. The expression of β-galactosidase during long-term cultured goat skin fibroblasts and the effect of donor cell passage on in vitro development of nuclear transfer embryos.

    Science.gov (United States)

    Liu, Haijun; Peng, Hui; Liu, Fang; Ma, Qun; Zhang, Wenchang

    2016-05-01

    The present study aimed to detect the expression of β-galactosidase during long-term cultured goat skin fibroblasts and investigate the effects of donor goat age, sex, and cell passage on senescence and the effects of donor cell passage on in vitro development of nuclear transfer embryos. The results showed that, in the same cell passage, more β-galactosidase-positive cells were detected in cells from older donors than younger donors. Irrespective of the donor age, the number of positive cells was higher in later passages from passages 20 to 50. In the same passage from 20 to 50, the β-galactosidase-positive rate was higher in cells from 5-yr female goat than 5-yr male goat. Using fibroblasts from male goats at various passages as donor cells, reconstructed embryos had similar fusion and cleavage rates, but the blastocyst rate was higher for cells at passages 10 and 20 than passage 30. In conclusion, donor goat age and cell passage had significant effects on the β-galactosidase-positive rate; also, cells from 5-yr female goat had a higher β-galactosidase-positive rate than those from 5-yr male goat, and the donor cell passage affected the developmental potential of nuclear transfer embryos.

  17. Adaptive response to ionizing radiation in normal human skin fibroblasts. Enhancement of DNA repair rate and modulation of gene expression. Reponse adaptative au rayonnement ionisant des fibroblastes de peau humaine. Augmentation de la vitesse de reparation de l'ADN et variation de l'expression des genes

    Energy Technology Data Exchange (ETDEWEB)

    Toledo, S.M. de; Mitchel, R.E.J. (Atomic Energy of Canada Ltd., Chalk River, ON (Canada). Chalk River Nuclear Labs.); Azzam, E. (Atomic Energy of Canada Ltd., Chalk River, ON (Canada). Chalk River Nuclear Labs. Ottawa Univ., ON (Canada). Dept. of Biology); Raaphorst, G.P. (Ottawa Univ., ON (Canada). Dept. of Biology)

    Low doses and dose rates of ionizing radiation enhance the rate of DNA repair in human fibroblasts and protect the cells against radiation-induced micronucleus formation. Chronic exposures reduce the mRNA levels of the genes topoisomerase II and FACC-1 (Fanconi's anemia, group C). (authors). 11 refs., 1 tab., 2 figs.

  18. Protective Effects of Chlorella-Derived Peptide Against UVC-Induced Cytotoxicity through Inhibition of Caspase-3 Activity and Reduction of the Expression of Phosphorylated FADD and Cleaved PARP-1 in Skin Fibroblasts

    Directory of Open Access Journals (Sweden)

    Jong Yuh Cherng

    2012-08-01

    Full Text Available UVC irradiation induces oxidative stress and leads to cell death through an apoptotic pathway. This apoptosis is caused by activation of caspase-3 and formation of poly(ADP-ribose polymerase-1 (PARP-1. In this study, the underlying mechanisms of Chlorella derived peptide (CDP activity against UVC-induced cytotoxicity were investigated. Human skin fibroblasts were treated with CDP, vitamin C, or vitamin E after UVC irradiation for a total energy of 15 J/cm2. After the UVC exposure, cell proliferation and caspase-3 activity were measured at 12, 24, 48, and 72 h later. Expression of phosphorylated FADD and cleaved PARP-1 were measured 16 h later. DNA damage (expressed as pyrimidine (6-4 pyrimidone photoproducts DNA concentration and fragmentation assay were performed 24 h after the UVC exposure. Results showed that UVC irradiation induced cytotoxicity in all groups except those treated with CDP. The caspase-3 activity in CDP-treated cells was inhibited from 12 h onward. Expression of phosphorylated FADD and cleaved PARP-1 were also reduced in CDP-treated cells. Moreover, UVC-induced DNA damage and fragmentation were also prevented by the CDP treatment. This study shows that treatment of CDP provides protective effects against UVC-induced cytotoxicity through the inhibition of caspase-3 activity and the reduction of phosphorylated FADD and cleaved PARP-1 expression.

  19. Hedgehog signaling contributes to basic fibroblast growth factor-regulated fibroblast migration

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Zhong Xin [School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang (China); Sun, Cong Cong [School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang (China); Wenzhou People' s Hospital, Wenzhou, Zhejiang (China); Ting Zhu, Yu; Wang, Ying; Wang, Tao; Chi, Li Sha; Cai, Wan Hui [School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang (China); Zheng, Jia Yong [Wenzhou People' s Hospital, Wenzhou, Zhejiang (China); Zhou, Xuan [Ningbo First Hospital, Ningbo, Zhejiang (China); Cong, Wei Tao [School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang (China); Li, Xiao Kun, E-mail: proflxk@163.com [School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang (China); Jin, Li Tai, E-mail: jin_litai@126.com [School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang (China)

    2017-06-15

    Fibroblast migration is a central process in skin wound healing, which requires the coordination of several types of growth factors. bFGF, a well-known fibroblast growth factor (FGF), is able to accelerate fibroblast migration; however, the underlying mechanism of bFGF regulation fibroblast migration remains unclear. Through the RNA-seq analysis, we had identified that the hedgehog (Hh) canonical pathway genes including Smoothened (Smo) and Gli1, were regulated by bFGF. Further analysis revealed that activation of the Hh pathway via up-regulation of Smo promoted fibroblast migration, invasion, and skin wound healing, but which significantly reduced by GANT61, a selective antagonist of Gli1/Gli2. Western blot analyses and siRNA transfection assays demonstrated that Smo acted upstream of phosphoinositide 3-kinase (PI3K)-c-Jun N-terminal kinase (JNK)-β-catenin to promote cell migration. Moreover, RNA-seq and qRT-PCR analyses revealed that Hh pathway genes including Smo and Gli1 were under control of β-catenin, suggesting that β-catenin turn feedback activates Hh signaling. Taken together, our analyses identified a new bFGF-regulating mechanism by which Hh signaling regulates human fibroblast migration, and the data presented here opens a new avenue for the wound healing therapy. - Highlights: • bFGF regulates Hedgehog (Hh) signaling in fibroblasts. • The Smo and Gli two master regulators of Hh signaling positively regulate fibroblast migration. • Smo facilitates β-catenin nuclear translocation via activation PI3K/JNK/GSK3β. • β-catenin positively regulates fibroblast cell migration and the expression of Hh signaling genes including Smo and Gli.

  20. Hedgehog signaling contributes to basic fibroblast growth factor-regulated fibroblast migration

    International Nuclear Information System (INIS)

    Zhu, Zhong Xin; Sun, Cong Cong; Ting Zhu, Yu; Wang, Ying; Wang, Tao; Chi, Li Sha; Cai, Wan Hui; Zheng, Jia Yong; Zhou, Xuan; Cong, Wei Tao; Li, Xiao Kun; Jin, Li Tai

    2017-01-01

    Fibroblast migration is a central process in skin wound healing, which requires the coordination of several types of growth factors. bFGF, a well-known fibroblast growth factor (FGF), is able to accelerate fibroblast migration; however, the underlying mechanism of bFGF regulation fibroblast migration remains unclear. Through the RNA-seq analysis, we had identified that the hedgehog (Hh) canonical pathway genes including Smoothened (Smo) and Gli1, were regulated by bFGF. Further analysis revealed that activation of the Hh pathway via up-regulation of Smo promoted fibroblast migration, invasion, and skin wound healing, but which significantly reduced by GANT61, a selective antagonist of Gli1/Gli2. Western blot analyses and siRNA transfection assays demonstrated that Smo acted upstream of phosphoinositide 3-kinase (PI3K)-c-Jun N-terminal kinase (JNK)-β-catenin to promote cell migration. Moreover, RNA-seq and qRT-PCR analyses revealed that Hh pathway genes including Smo and Gli1 were under control of β-catenin, suggesting that β-catenin turn feedback activates Hh signaling. Taken together, our analyses identified a new bFGF-regulating mechanism by which Hh signaling regulates human fibroblast migration, and the data presented here opens a new avenue for the wound healing therapy. - Highlights: • bFGF regulates Hedgehog (Hh) signaling in fibroblasts. • The Smo and Gli two master regulators of Hh signaling positively regulate fibroblast migration. • Smo facilitates β-catenin nuclear translocation via activation PI3K/JNK/GSK3β. • β-catenin positively regulates fibroblast cell migration and the expression of Hh signaling genes including Smo and Gli.

  1. Bacterial lipopolysaccharide promotes profibrotic activation of intestinal fibroblasts.

    LENUS (Irish Health Repository)

    Burke, J P

    2012-02-01

    BACKGROUND: Fibroblasts play a critical role in intestinal wound healing. Lipopolysaccharide (LPS) is a cell wall component of commensal gut bacteria. The effects of LPS on intestinal fibroblast activation were characterized. METHODS: Expression of the LPS receptor, toll-like receptor (TLR) 4, was assessed in cultured primary human intestinal fibroblasts using flow cytometry and confocal microscopy. Fibroblasts were treated with LPS and\\/or transforming growth factor (TGF) beta1. Nuclear factor kappaB (NFkappaB) pathway activation was assessed by inhibitory kappaBalpha (IkappaBalpha) degradation and NFkappaB promoter activity. Fibroblast contractility was measured using a fibroblast-populated collagen lattice. Smad-7, a negative regulator of TGF-beta1 signalling, and connective tissue growth factor (CTGF) expression were assessed using reverse transcriptase-polymerase chain reaction and western blot. The NFkappaB pathway was inhibited by IkappaBalpha transfection. RESULTS: TLR-4 was present on the surface of intestinal fibroblasts. LPS treatment of fibroblasts induced IkappaBalpha degradation, enhanced NFkappaB promoter activity and increased collagen contraction. Pretreatment with LPS (before TGF-beta1) significantly increased CTGF production relative to treatment with TGF-beta1 alone. LPS reduced whereas TGF-beta1 increased smad-7 expression. Transfection with an IkappaBalpha plasmid enhanced basal smad-7 expression. CONCLUSION: Intestinal fibroblasts express TLR-4 and respond to LPS by activating NFkappaB and inducing collagen contraction. LPS acts in concert with TGF-beta1 to induce CTGF. LPS reduces the expression of the TGF-beta1 inhibitor, smad-7.

  2. Comparative Study Of Two Non-Selective Cyclooxygenase ...

    African Journals Online (AJOL)

    The comparative study of the effects of two non-selective cyclooxygenase inhibitors ibuprofen and paracetamol on maternal and neonatal growth was conducted using 15 Sprague dawley rats, with mean body weight ranging between 165 and 179g. The rats were separated at random into three groups (A, B and C).

  3. Disruption of cyclooxygenase-2 prevents downregulation of cortical AQP2 and AQP3 in response to bilateral ureteral obstruction in the mouse

    DEFF Research Database (Denmark)

    Nilsson, Line; Madsen, Kirsten Morill; Topcu, Sukru Oguzkan

    2012-01-01

    Bilateral ureteral obstruction (BUO) in rats is associated with increased cyclooxygenase type 2 (COX-2) expression, and selective COX-2 inhibition prevents downregulation of aquaporins (AQPs) in response to BUO. It was hypothesized that a murine model would display similar changes in renal COX-2 ...

  4. Cloning and expression analysis of myostatin, fibroblast growth factor 6, insulin-like growth factor I and II in liver and muscle of sea bass (Dicentrarchus labrax, L. during long-term fasting and refeeding

    Directory of Open Access Journals (Sweden)

    M. Saroglia

    2010-04-01

    Full Text Available The exceptionally fast growth that fish experience after periods of fasting has been called “compensatory growth”. This phenomenon has been studied in intensive aquaculture as a means of enhancing growth rates, but the mechanisms by which food intake activates an increase in somatic growth, and especially in muscle growth, are complex and not yet fully understood. In the present paper, we describe the molecular cloning and sequencing of sea bass (Dicentrarchus labrax myostatin (MSTN and fibroblast growth factor 6 (FGF6, which have been shown to be major genetic determinants of skeletal muscle growth, together with insulin-like growth factor I (IGFI and IGF-II, which are potent mitogens known to play important roles in growth and development. We then report the pattern of expression of the four aforementioned genes, in liver and myotomal muscle in response to prolonged fasting and refeeding. Nutritional status significantly influenced the expression of IGF-I, IGF-II and MSTN, whereas the muscular FGF6 expression levels were not affected by the feeding status of the animals. Taken together these data indicate that IGF-I, IGF-II and MSTN are involved in the sea bass muscle compensatory growth induced by refeeding, whereas FGF6 probably has not a role in this phenomenon.

  5. Rac inhibition reverses the phenotype of fibrotic fibroblasts.

    Directory of Open Access Journals (Sweden)

    Shi-wen Xu

    Full Text Available BACKGROUND: Fibrosis, the excessive deposition of scar tissue by fibroblasts, is one of the largest groups of diseases for which there is no therapy. Fibroblasts from lesional areas of scleroderma patients possess elevated abilities to contract matrix and produce alpha-smooth muscle actin (alpha-SMA, type I collagen and CCN2 (connective tissue growth factor, CTGF. The basis for this phenomenon is poorly understood, and is a necessary prerequisite for developing novel, rational anti-fibrotic strategies. METHODS AND FINDINGS: Compared to healthy skin fibroblasts, dermal fibroblasts cultured from lesional areas of scleroderma (SSc patients possess elevated Rac activity. NSC23766, a Rac inhibitor, suppressed the persistent fibrotic phenotype of lesional SSc fibroblasts. NSC23766 caused a decrease in migration on and contraction of matrix, and alpha-SMA, type I collagen and CCN2 mRNA and protein expression. SSc fibroblasts possessed elevated Akt phosphorylation, which was also blocked by NSC23766. Overexpression of rac1 in normal fibroblasts induced matrix contraction and alpha-SMA, type I collagen and CCN2 mRNA and protein expression. Rac1 activity was blocked by PI3kinase/Akt inhibition. Basal fibroblast activity was not affected by NSC23766. CONCLUSION: Rac inhibition may be considered as a novel treatment for the fibrosis observed in SSc.

  6. LXA4 actions direct fibroblast function and wound closure

    International Nuclear Information System (INIS)

    Herrera, Bruno S.; Kantarci, Alpdogan; Zarrough, Ahmed; Hasturk, Hatice; Leung, Kai P.; Van Dyke, Thomas E.

    2015-01-01

    Timely resolution of inflammation is crucial for normal wound healing. Resolution of inflammation is an active biological process regulated by specialized lipid mediators including the lipoxins and resolvins. Failure of resolution activity has a major negative impact on wound healing in chronic inflammatory diseases that is manifest as excess fibrosis and scarring. Lipoxins, including Lipoxin A 4 (LXA 4 ), have known anti-fibrotic and anti-scarring properties. The goal of this study was to elucidate the impact of LXA 4 on fibroblast function. Mouse fibroblasts (3T3 Mus musculus Swiss) were cultured for 72 h in the presence of TGF-β1, to induce fibroblast activation. The impact of exogenous TGF-β1 (1 ng/mL) on LXA 4 receptor expression (ALX/FPR2) was determined by flow cytometry. Fibroblast proliferation was measured by bromodeoxyuridine (BrdU) labeling and migration in a “scratch” assay wound model. Expression of α-smooth muscle actin (α-SMA), and collagen types I and III were measured by Western blot. We observed that TGF-β1 up-regulates LXA 4 receptor expression, enhances fibroblast proliferation, migration and scratch wound closure. α-SMA levels and Collagen type I and III deposition were also enhanced. LXA 4 slowed fibroblast migration and scratch wound closure at early time points (24 h), but wound closure was equal to TGF-β1 alone at 48 and 72 h. LXA 4 tended to slow fibroblast proliferation at both concentrations, but had no impact on α-SMA or collagen production by TGF-β1 stimulated fibroblasts. The generalizability of the actions of resolution molecules was examined in experiments repeated with resolvin D2 (RvD2) as the agonist. The activity of RvD2 mimicked the actions of LXA 4 in all assays, through an as yet unidentified receptor. The results suggest that mediators of resolution of inflammation enhance wound healing and limit fibrosis in part by modulating fibroblast function. - Highlights: • TGF-β1 up-regulates LXA 4 receptor (ALX

  7. Toll-like receptor 9 mediated responses in cardiac fibroblasts.

    Directory of Open Access Journals (Sweden)

    Ingrid Kristine Ohm

    Full Text Available Altered cardiac Toll-like receptor 9 (TLR9 signaling is important in several experimental cardiovascular disorders. These studies have predominantly focused on cardiac myocytes or the heart as a whole. Cardiac fibroblasts have recently been attributed increasing significance in mediating inflammatory signaling. However, putative TLR9-signaling through cardiac fibroblasts remains non-investigated. Thus, our aim was to explore TLR9-signaling in cardiac fibroblasts and investigate the consequence of such receptor activity on classical cardiac fibroblast cellular functions. Cultivated murine cardiac fibroblasts were stimulated with different TLR9 agonists (CpG A, B and C and assayed for the secretion of inflammatory cytokines (tumor necrosis factor α [TNFα], CXCL2 and interferon α/β. Expression of functional cardiac fibroblast TLR9 was proven as stimulation with CpG B and -C caused significant CXCL2 and TNFα-release. These responses were TLR9-specific as complete inhibition of receptor-stimulated responses was achieved by co-treatment with a TLR9-antagonist (ODN 2088 or chloroquine diphosphate. TLR9-stimulated responses were also found more potent in cardiac fibroblasts when compared with classical innate immune cells. Stimulation of cardiac fibroblasts TLR9 was also found to attenuate migration and proliferation, but did not influence myofibroblast differentiation in vitro. Finally, results from in vivo TLR9-stimulation with subsequent fractionation of specific cardiac cell-types (cardiac myocytes, CD45+ cells, CD31+ cells and cardiac fibroblast-enriched cell-fractions corroborated our in vitro data and provided evidence of differentiated cell-specific cardiac responses. Thus, we conclude that cardiac fibroblast may constitute a significant TLR9 responder cell within the myocardium and, further, that such receptor activity may impact important cardiac fibroblast cellular functions.

  8. Fibroblast growth factor 23

    African Journals Online (AJOL)

    Dr Olaleye

    Systemic phosphate homeostasis is maintained through several hormonal mechanisms which involve fibroblast growth factor 23 (FGF-23), α-klotho, vitamin D and parathyroid hormone. FGF-23 is known to be the major regulator of phosphate balance (Mirams et al., 2004). FGF-23 is a phosphaturic hormone, which is.

  9. Mucosal expression of basic fibroblastic growth factor, Syndecan 1 and tumor necrosis factor-alpha in diverticular disease of the colon: a case-control study.

    Science.gov (United States)

    Tursi, A; Elisei, W; Brandimarte, G; Giorgetti, G M; Inchingolo, C D; Nenna, R; Picchio, M; Giorgio, F; Ierardi, E

    2012-09-01

    Inflammation may be detected in diverticular disease (DD), and fibrosis may also develop. We assessed the mucosal expression of bFGF, SD1, and TNF-α in DD according to the severity of the disease. Moreover, we assessed the response to therapy of these cytokines in acute uncomplicated diverticulitis (AUD). Fifteen patients affected by AUD and seven patients affected by symptomatic uncomplicated diverticular disease (SUDD) were enrolled. Patients with asymptomatic diverticulosis (AD), segmental colitis associated with diverticulosis (SCAD), ulcerative colitis (UC), and healthy subjects (HC) served as control groups. The expression of bFGF, SD1, and TNF-α was significantly higher in diverticulitis than in healthy controls, in diverticulosis, and in uncomplicated diverticular disease. Cytokines were significantly higher in uncomplicated diverticular disease than in healthy controls. Cytokine expression in diverticulitis did not differ significantly from that of ulcerative colitis. After treatment, TNF-α expression dropped significantly. Mucosal TNF-α is overexpressed only in symptomatic DD, while SD1 and bFGF are already overexpressed in AD. Finally, TNF-α but not SD1 or bFGF expression seems to be influenced by the treatment in AUD. © 2012 Blackwell Publishing Ltd.

  10. Desferrioxamine, an iron chelator, enhances HIF-1α accumulation via cyclooxygenase-2 signaling pathway

    International Nuclear Information System (INIS)

    Woo, Kyung Jin; Lee, Tae-Jin; Park, Jong-Wook; Kwon, Taeg Kyu

    2006-01-01

    Cyclooxygenase-2 (COX-2) is an important inducible enzyme in inflammation and is overexpressed in a variety of cancers. Evidence is rapidly accumulating that chronic inflammation may contribute to carcinogenesis through increase of cell proliferation, angiogenesis, and metastasis in a number of neoplasms, including colorectal carcinoma. In the present study, we investigated some mechanistic aspects of DFX-induced hypoxia-driven COX-2 expression. Desferrioxamine (DFX), an iron chelator, is known to upregulate inflammatory mediators. DFX induced the expression of COX-2 and accumulation of HIF-1α protein in dose-dependent manners, but hypoxia mimetic agent cobalt chloride (CoCl 2 ) induced accumulation of HIF-1α protein but not increase of COX-2 expression. DFX-induced increase of COX-2 expression and HIF-1α protein level was attenuated by addition of ferric citrate. This result suggested that the iron chelating function of DFX was important to induce the increase of COX-2 and HIF-1α protein. PD98059 significantly inhibited the induction of COX-2 protein and accumulation of HIF-1α, suggesting that DFX-induced increase of HIF-1α and COX-2 protein was mediated, at least in part, through the ERK signaling pathway. In addition, pretreatment with NS-398 to inhibit COX-2 activity also effectively suppressed DFX-induced HIF-1α accumulation in human colon cancer cells, providing the evidence that COX-2 plays as a regulator of HIF-1α accumulation in DFX-treated colon cancer cells. Together, our findings suggest that iron metabolism may regulate stabilization of HIF-1α protein by modulating cyclooxygenase-2 signaling pathway

  11. Fibroblast growth factor receptor mediates fibroblast-dependent growth in EMMPRIN-depleted head and neck cancer tumor cells.

    Science.gov (United States)

    Liu, Zhiyong; Hartman, Yolanda E; Warram, Jason M; Knowles, Joseph A; Sweeny, Larissa; Zhou, Tong; Rosenthal, Eben L

    2011-08-01

    Head and neck squamous cell carcinoma tumors (HNSCC) contain a dense fibrous stroma which is known to promote tumor growth, although the mechanism of stroma-mediated growth remains unclear. As dysplastic mucosal epithelium progresses to cancer, there is incremental overexpression of extracellular matrix metalloprotease inducer (EMMPRIN) which is associated with tumor growth and metastasis. Here, we present evidence that gain of EMMPRIN expression allows tumor growth to be less dependent on fibroblasts by modulating fibroblast growth factor receptor-2 (FGFR2) signaling. We show that silencing EMMPRIN in FaDu and SCC-5 HNSCC cell lines inhibits cell growth, but when EMMPRIN-silenced tumor cells were cocultured with fibroblasts or inoculated with fibroblasts into severe combined immunodeficient mice, the growth inhibition by silencing EMMPRIN was blunted by the presence of fibroblasts. Coculture experiments showed fibroblast-dependent tumor cell growth occurred via a paracrine signaling. Analysis of tumor gene expression revealed expression of FGFR2 was inversely related to EMMPRIN expression. To determine the role of FGFR2 signaling in EMMPRIN-silenced tumor cells, ligands and inhibitors of FGFR2 were assessed. Both FGF1 and FGF2 enhanced tumor growth in EMMPRIN-silenced cells compared with control vector-transfected cells, whereas inhibition of FGFR2 with blocking antibody or with a synthetic inhibitor (PD173074) inhibited tumor cell growth in fibroblast coculture, suggesting the importance of FGFR2 signaling in fibroblast-mediated tumor growth. Analysis of xenografted tumors revealed that EMMPRIN-silenced tumors had a larger stromal compartment compared with control. Taken together, these results suggest that EMMPRIN acquired during tumor progression promotes fibroblast-independent tumor growth.

  12. Fibroblast growth factor receptor mediates fibroblast-dependent growth in EMMPRIN depleted head and neck cancer tumor cells

    Science.gov (United States)

    Liu, Zhiyong; Hartman, Yolanda E.; Warram, Jason M.; Knowles, Joseph A.; Sweeny, Larrisa; Zhou, Tong; Rosenthal, Eben L.

    2011-01-01

    Head and neck squamous cell carcinoma tumors (HNSCC) contain a dense fibrous stroma which is known to promote tumor growth, although the mechanism of stroma mediated growth remains unclear. As dysplastic mucosal epithelium progresses to cancer there is incremental overexpression of extracellular matrix metalloprotease inducer (EMMPRIN) which is associated with tumor growth and metastasis. Here we present evidence that gain of EMMPRIN expression allows tumor growth to be less dependent on fibroblasts by modulating fibroblast growth factor receptor-2 (FGFR2) signaling. We show that silencing EMMPRIN in FaDu and SCC-5 HNSCC cell lines inhibits cell growth, but when EMMPRIN-silenced tumor cells were co-cultured with fibroblasts or inoculated with fibroblasts into SCID mice, the growth inhibition by silencing EMMPRIN was blunted by the presence of fibroblasts. Co-culture experiments demonstrated fibroblast-dependent tumor cell growth occurred via a paracrine signaling. Analysis of tumor gene expression revealed expression of FGFR2 was inversely related to EMMPRIN expression. To determine the role of FGFR2 signaling in EMMPRIN silenced tumor cells, ligands and inhibitors of FGFR2 were assessed. Both FGF1 and FGF2 enhanced tumor growth in EMMPRIN silenced cells compared to control vector transfected cells, while inhibition of FGFR2 with blocking antibody or with a synthetic inhibitor (PD173074) inhibited tumor cell growth in fibroblast co-culture, suggesting the importance of FGFR2 signaling in fibroblast mediated tumor growth. Analysis of xenografted tumors revealed EMMPRIN silenced tumors had a larger stromal compartment compared to control. Taken together, these results suggest that EMMPRIN acquired during tumor progression promotes fibroblast independent tumor growth. PMID:21665938

  13. Neuropeptide substance P stimulates the formation of osteoclasts via synovial fibroblastic cells

    International Nuclear Information System (INIS)

    Matayoshi, Takaaki; Goto, Tetsuya; Fukuhara, Eiji; Takano, Hiroshi; Kobayashi, Shigeru; Takahashi, Tetsu

    2005-01-01

    The present study was designed to evaluate the effects of neuropeptide substance P (Sp) on the formation of osteoclasts via synovial fibroblastic cells. Synovial fibroblastic cells derived from rat knee joint expressed the Sp receptor, neurokinin-1 receptor (NK 1 -R). The addition of Sp stimulated the proliferation of synovial fibroblastic cells and this effect was inhibited by Sp or NK 1 -R antagonists. Increased expression of the receptor activator of nuclear factor κB ligand (Rankle) in synovial fibroblastic cells after the addition of Sp was demonstrated by reverse transcriptase-polymerase chain reaction and immunofluorescence staining. Osteoprotegerin expression in synovial fibroblastic cells was decreased after incubation with SP. In co-cultures of synovial fibroblastic cells and rat peripheral blood monocytes, SP stimulated osteoclastogenesis. These results suggest that SP in the joint cavity may cause both hypertrophy of the synovium and induction of increased osteoclast formation through the increased expression of RANKL in the synovium

  14. Congestive heart failure effects on atrial fibroblast phenotype: differences between freshly-isolated and cultured cells.

    Directory of Open Access Journals (Sweden)

    Kristin Dawson

    Full Text Available Fibroblasts are important in the atrial fibrillation (AF substrate resulting from congestive heart failure (CHF. We previously noted changes in in vivo indices of fibroblast function in a CHF dog model, but could not detect changes in isolated cells. This study assessed CHF-induced changes in the phenotype of fibroblasts freshly isolated from control versus CHF dogs, and examined effects of cell culture on these differences.Left-atrial fibroblasts were isolated from control and CHF dogs (ventricular tachypacing 240 bpm × 2 weeks. Freshly-isolated fibroblasts were compared to fibroblasts in primary culture. Extracellular-matrix (ECM gene-expression was assessed by qPCR, protein by Western blot, fibroblast morphology with immunocytochemistry, and K(+-current with patch-clamp. Freshly-isolated CHF fibroblasts had increased expression-levels of collagen-1 (10-fold, collagen-3 (5-fold, and fibronectin-1 (3-fold vs. control, along with increased cell diameter (13.4 ± 0.4 µm vs control 8.4 ± 0.3 µm and cell spreading (shape factor 0.81 ± 0.02 vs. control 0.87 ± 0.02, consistent with an activated phenotype. Freshly-isolated control fibroblasts displayed robust tetraethylammonium (TEA-sensitive K(+-currents that were strongly downregulated in CHF. The TEA-sensitive K(+-current differences between control and CHF fibroblasts were attenuated after 2-day culture and eliminated after 7 days. Similarly, cell-culture eliminated the ECM protein-expression and shape differences between control and CHF fibroblasts.Freshly-isolated CHF and control atrial fibroblasts display distinct ECM-gene and morphological differences consistent with in vivo pathology. Culture for as little as 48 hours activates fibroblasts and obscures the effects of CHF. These results demonstrate potentially-important atrial-fibroblast phenotype changes in CHF and emphasize the need for caution in relating properties of cultured fibroblasts to in vivo systems.

  15. Expression of chicken parvovirus VP2 in chicken embryo fibroblasts requires codon optimization for production of naked DNA and vectored Meleagrid herpesvirus type 1 vaccines

    Science.gov (United States)

    Meleagrid herpesvirus type 1 (MeHV-1) is an ideal vector for the expression of antigens from pathogenic avian organisms in order to generate vaccines. Chicken parvovirus (ChPV) is a widespread infectious virus that causes serious disease in chickens. It is one of the etiological agents largely suspe...

  16. 3,4-Oxo-isopropylidene-shikimic acid promotes adiopkine expression during murine 3T3-L1 fibroblast differentiation into adipocytes

    Directory of Open Access Journals (Sweden)

    Shifen Dong

    2014-10-01

    Conclusions: These findings demonstrated that ISA promoted adipogenesis by up-regulating expressions of C/EBP β, PPAR γ, C/EBP α, aP2 and FAS, and also stimulated adipokines during adipocyte differentiation. Further study should clarify the relationship between stimulation of adipokines and cognitive enhancing effect of ISA.

  17. Versican V1 Overexpression Induces a Myofibroblast-Like Phenotype in Cultured Fibroblasts.

    Directory of Open Access Journals (Sweden)

    Jon M Carthy

    Full Text Available Versican, a chondroitin sulphate proteoglycan, is one of the key components of the provisional extracellular matrix expressed after injury. The current study evaluated the hypothesis that a versican-rich matrix alters the phenotype of cultured fibroblasts.The full-length cDNA for the V1 isoform of human versican was cloned and the recombinant proteoglycan was expressed in murine fibroblasts. Versican expression induced a marked change in fibroblast phenotype. Functionally, the versican-expressing fibroblasts proliferated faster and displayed enhanced cell adhesion, but migrated slower than control cells. These changes in cell function were associated with greater N-cadherin and integrin β1 expression, along with increased FAK phosphorylation. The versican-expressing fibroblasts also displayed expression of smooth muscle α-actin, a marker of myofibroblast differentiation. Consistent with this observation, the versican fibroblasts displayed increased synthetic activity, as measured by collagen III mRNA expression, as well as a greater capacity to contract a collagen lattice. These changes appear to be mediated, at least in part, by an increase in active TGF-β signaling in the versican expressing fibroblasts, and this was measured by phosphorylation and nuclear accumulation of SMAD2.Collectively, these data indicate versican expression induces a myofibroblast-like phenotype in cultured fibroblasts.

  18. Interleukin-1 inhibits the synthesis of collagen by fibroblasts.

    Science.gov (United States)

    Bhatnagar, R; Penfornis, H; Mauviel, A; Loyau, G; Saklatvala, J; Pujol, J P

    1986-10-01

    Human dermal fibroblasts, exposed to human or porcine Interleukin-1, responded by an inhibition of collagen synthesis in a dose dependent manner. Incubation with Il-1 for more than 8 h was required to see an appreciable effect. The phenomenon was not dependent on the presence of serum in the culture medium. Since a stimulation of prostaglandin E2 secretion was also observed in presence of Il-1, we investigated the eventual role of arachidonic acid metabolites in the phenomenon. Inhibitors interfering with arachidonate metabolism, namely indomethacin, acetyl salicylic acid, BW 755 C and NDGA had no influence on the inhibition of collagen synthesis caused by Il-1. These data suggest that both cyclooxygenase and lipoxygenase derived metabolites of arachidonic acid are unlikely to play a role in the mechanism.

  19. Transforming growth factor β1 enhances heme oxygenase 1 expression in human synovial fibroblasts by inhibiting microRNA 519b synthesis.

    Directory of Open Access Journals (Sweden)

    Shu-Jui Kuo

    Full Text Available Osteoarthritis (OA is manifested by synovial inflammation and cartilage destruction that is directly linked to synovitis, joint swelling and pain. In the light of the role of synovium in the pathogenesis and the symptoms of OA, synovium-targeted therapy is a promising strategy to mitigate the symptoms and progression of OA. Transforming growth factor beta 1 (TGF-β1, a secreted homodimeric protein, possesses unique and potent anti-inflammatory and immune-regulatory properties in many cell types. Heme oxygenase 1 (HO-1 is an inducible anti-inflammatory and stress responsive enzyme that has been proven to prevent injuries caused by many diseases. Despite the similar anti-inflammatory profile and their involvement in the pathogenesis of arthritic diseases, no studies have as yet explored the possibility of any association between the expression of TGF-β1 and HO-1.TGF-β1-induced HO-1 expression was examined by HO-1 promoter assay, qPCR, and Western blotting. The siRNAs and enzyme inhibitors were utilized to determine the intermediate involved in the signal transduction pathway. We showed that TGF-β1 stimulated the synthesis of HO-1 in a concentration- and time-dependent manner, which can be mitigated by blockade of the phospholipase (PLCγ/protein kinase C alpha (PKCα pathway. We also showed that the expression of miRNA-519b, which blocks HO-1 transcription, is inhibited by TGF-β1, and the suppression of miRNA 519b could be reversed via blockade of the PLCγ/PKCα pathway.TGF-β1 stimulated the expression of HO-1 via activating the PLCγ/PKCα pathway and suppressing the downstream expression of miRNA-519b. These results may shed light on the pathogenesis and treatment of OA.

  20. Mimosine Dipeptide Enantiomsers: Improved Inhibitors against Melanogenesis and Cyclooxygenase

    Directory of Open Access Journals (Sweden)

    Binh Cao Quan Nguyen

    2015-08-01

    Full Text Available Melanogenesis plays an important role in the protection of skin against UV through production of melanin pigments, but abnormal accumulation of this pigment causes unaesthetic hyperpigmentation. Much effort is being made to develop effective depigmenting agents. Here, we show for the first time that a small library of mimosine dipeptide enantiomers (Mi-L/D-amino acid inhibit the melanogenesis in B16F10 melanoma cells by down-regulating the cellular tyrosinase with little effect on their growth or viability. Two of them, Mi-D-Trp and Mi-D-Val, turned out to be the most potent inhibitors on melanin content and cellular tyrosinase in B16F10 melanoma cells. In addition, most of the mimosine dipeptides were more potent than mimosine for inhibiting cyclooxygenase 1 (COX-1 with IC50 of 18–26 μM. Among them, Mi-L-Val and Mi-L-Trp inhibited cyclooxygenase 2 (COX-2 more potently than indomethacin, with IC50 values of 22 and 19 μM, respectively. Taken together, our results suggest the possibility that mimosine dipeptides could be better candidates (than mimosine for anti-melanogenic (skin hyperpigmentation treatment and cyclooxygenase (COX inhibition.

  1. Antioxidant and cyclooxygenase activities of fatty acids found in food.

    Science.gov (United States)

    Henry, Geneive E; Momin, Rafikali A; Nair, Muraleedharan G; Dewitt, David L

    2002-04-10

    Several commercially available C-8 to C-24 saturated and unsaturated fatty acids (1-29) were assayed for cyclooxygenase-I (COX-I) and cyclooxygenase-II (COX-II) inhibitory and antioxidant activities. Among the saturated fatty acids tested at 60 microg mL(-1), there was an increase in antioxidant activity with increasing chain length from octanoic acid to myristic acid (C-8-C-14) and a decrease thereafter. All unsaturated fatty acids tested at 60 microg mL(-1) showed good antioxidant activity except for undecylenic acid (12), cis-5-dodecenoic acid (13), and nervonic acid (29). The highest inhibitory activities among the saturated fatty acids tested on cyclooxygenase enzymes COX-I and COX-II were observed for decanoic acid to lauric acid (3-5) at 100 microg mL(-1). Similarly, among the unsaturated fatty acids tested, the highest activities were observed for cis-8,11,14-eicosatrienoic acid (25) and cis-13,16-docosadienoic acid (27) at 100 microg mL(-1).

  2. Ets2 in tumor fibroblasts promotes angiogenesis in breast cancer.

    Directory of Open Access Journals (Sweden)

    Julie A Wallace

    Full Text Available Tumor fibroblasts are active partners in tumor progression, but the genes and pathways that mediate this collaboration are ill-defined. Previous work demonstrates that Ets2 function in stromal cells significantly contributes to breast tumor progression. Conditional mouse models were used to study the function of Ets2 in both mammary stromal fibroblasts and epithelial cells. Conditional inactivation of Ets2 in stromal fibroblasts in PyMT and ErbB2 driven tumors significantly reduced tumor growth, however deletion of Ets2 in epithelial cells in the PyMT model had no significant effect. Analysis of gene expression in fibroblasts revealed a tumor- and Ets2-dependent gene signature that was enriched in genes important for ECM remodeling, cell migration, and angiogenesis in both PyMT and ErbB2 driven-tumors. Consistent with these results, PyMT and ErbB2 tumors lacking Ets2 in fibroblasts had fewer functional blood vessels, and Ets2 in fibroblasts elicited changes in gene expression in tumor endothelial cells consistent with this phenotype. An in vivo angiogenesis assay revealed the ability of Ets2 in fibroblasts to promote blood vessel formation in the absence of tumor cells. Importantly, the Ets2-dependent gene expression signatures from both mouse models were able to distinguish human breast tumor stroma from normal stroma, and correlated with patient outcomes in two whole tumor breast cancer data sets. The data reveals a key function for Ets2 in tumor fibroblasts in signaling to endothelial cells to promote tumor angiogenesis. The results highlight the collaborative networks that orchestrate communication between stromal cells and tumor cells, and suggest that targeting tumor fibroblasts may be an effective strategy for developing novel anti-angiogenic therapies.

  3. Cyclooxygenase inhibitors potentiate receptor tyrosine kinase therapies in bladder cancer cells in vitro

    Directory of Open Access Journals (Sweden)

    Bourn J

    2018-06-01

    Full Text Available Jennifer Bourn,1,2 Maria Cekanova1,2 1Department of Small Animal Clinical Sciences, College of Veterinary Medicine, The University of Tennessee, Knoxville, TN, USA; 2UT-ORNL Graduate School of Genome Science and Technology, The University of Tennessee, Knoxville, TN, USA Purpose: Receptor tyrosine kinase inhibitors (RTKIs are used as targeted therapies for patients diagnosed with cancer with highly expressed receptor tyrosine kinases (RTKs, including the platelet-derived growth factor receptor (PDGFR and c-Kit receptor. Resistance to targeted therapies is partially due to the activation of alternative pro-survival signaling pathways, including cyclooxygenase (COX-2. In this study, we validated the effects of two RTKIs, axitinib and AB1010, in combination with COX inhibitors on the V-akt murine thymoma oncogene homolog 1 (Akt and COX-2 signaling pathways in bladder cancer cells.Methods: The expression of several RTKs and their downstream signaling targets was analyzed by Western blot (WB analysis in human and canine bladder transitional cell carcinoma (TCC cell lines. The effects of RTKIs and COX inhibitors in bladder TCC cells were assessed by MTS for cell viability, by Caspase-3/7 and Annexin V assay for apoptosis, by WB analysis for detection of COX-2 and Akt signaling pathways, and by enzyme-linked immunosorbent assay for detection of prostaglandin E2 (PGE2 levels.Results: All tested TCC cells expressed the c-Kit and PDGFRα receptors, except human 5637 cells that had low RTKs expression. In addition, all tested cells expressed COX-1, COX-2, Akt, extracellular signal regulated kinases 1/2, and nuclear factor kappa-light-chain-enhance of activated B cells proteins, except human UM-UC-3 cells, where no COX-2 expression was detected by WB analysis. Both RTKIs inhibited cell viability and increased apoptosis in a dose-dependent manner in tested bladder TCC cells, which positively correlated with their expression levels of the PDGFRα and c

  4. Leptin and Pro-Inflammatory Stimuli Synergistically Upregulate MMP-1 and MMP-3 Secretion in Human Gingival Fibroblasts.

    Directory of Open Access Journals (Sweden)

    Rachel C Williams

    Full Text Available Gingival fibroblast-mediated extracellular matrix remodelling is implicated in the pathogenesis of periodontitis, yet the stimuli that regulate this response are not fully understood. The immunoregulatory adipokine leptin is detectable in the gingiva, human gingival fibroblasts express functional leptin receptor mRNA and leptin is known to regulate extracellular matrix remodelling responses in cardiac fibroblasts. We therefore hypothesised that leptin would enhance matrix metalloproteinase secretion in human gingival fibroblasts.We used in vitro cell culture to investigate leptin signalling and the effect of leptin on mRNA and protein expression in human gingival fibroblasts. We confirmed human gingival fibroblasts expressed cell surface leptin receptor, found leptin increased matrix metalloproteinase-1, -3, -8 and -14 expression in human gingival fibroblasts compared to unstimulated cells, and observed that leptin stimulation activated MAPK, STAT1/3 and Akt signalling in human gingival fibroblasts. Furthermore, leptin synergised with IL-1 or the TLR2 agonist pam2CSK4 to markedly enhance matrix metalloproteinase-1 and -3 production by human gingival fibroblasts. Signalling pathway inhibition demonstrated ERK was required for leptin-stimulated matrix metalloproteinase-1 expression in human gingival fibroblasts; whilst ERK, JNK, p38 and STAT3 were required for leptin+IL-1- and leptin+pam2CSK4-induced matrix metalloproteinase-1 expression. A genome-wide expression array and gene ontology analysis confirmed genes differentially expressed in leptin+IL-1-stimulated human gingival fibroblasts (compared to unstimulated cells were enriched for extracellular matrix organisation and disassembly, and revealed that matrix metalloproteinase-8 and -12 were also synergistically upregulated by leptin+IL-1 in human gingival fibroblasts.We conclude that leptin selectively enhances the expression and secretion of certain matrix metalloproteinases in human gingival

  5. Low endogenous glucocorticoid allows induction of kidney cortical cyclooxygenase-2 during postnatal rat development

    DEFF Research Database (Denmark)

    Madsen, Kirsten; Stubbe, Jane; Skøtt, Ole

    2004-01-01

    COX-2 in these cells. Thus low plasma concentrations of corticosterone allowed for cortical and medullary COX-2 induction during postnatal kidney development. Increased circulating glucocorticoid in the postnatal period may damage late renal development through inhibition of COX-2.......In postnatal weeks 2-4, cyclooxygenase-2 (COX-2) is induced in the rat kidney cortex where it is critically involved in final stages of kidney development. We examined whether changes in circulating gluco- or mineralocorticosteroids or in their renal receptors regulate postnatal COX-2 induction....... Plasma corticosterone concentration peaked at birth, decreased to low levels at days 3-13, and increased to adult levels from day 22. Aldosterone peaked at birth and then stabilized at adult levels. Gluco- and mineralocorticoid receptor (GR and MR) mRNAs were expressed stably in kidney before, during...

  6. Cyclooxygenase-2 inhibitor enhances the efficacy of a breast cancer vaccine: role of IDO.

    Science.gov (United States)

    Basu, Gargi D; Tinder, Teresa L; Bradley, Judy M; Tu, Tony; Hattrup, Christine L; Pockaj, Barbara A; Mukherjee, Pinku

    2006-08-15

    We report that administration of celecoxib, a specific cyclooxygenase-2 (COX-2) inhibitor, in combination with a dendritic cell-based cancer vaccine significantly augments vaccine efficacy in reducing primary tumor burden, preventing metastasis, and increasing survival. This combination treatment was tested in MMTV-PyV MT mice that develop spontaneous mammary gland tumors with metastasis to the lungs and bone marrow. Improved vaccine potency was associated with an increase in tumor-specific CTLs. Enhanced CTL activity was attributed to a significant decrease in levels of tumor-associated IDO, a negative regulator of T cell activity. We present data suggesting that inhibiting COX-2 activity in vivo regulates IDO expression within the tumor microenvironment; this is further corroborated in the MDA-MB-231 human breast cancer cell line. Thus, a novel mechanism of COX-2-induced immunosuppression via regulation of IDO has emerged that may have implications in designing future cancer vaccines.

  7. Cardiovascular risk and inhibition of cyclooxygenase: traditional nonsteroidal anti-inflammatory drugs and cyclooxygenase-2 inhibitors

    Directory of Open Access Journals (Sweden)

    M. Campanini

    2013-05-01

    Full Text Available BACKGROUND The development of non-selective nonsteroidal anti-inflammatory drugs (tNSAIDs and, more recently, of selective inhibitors of the cycloooxygenase-2 isoform (COXIBs, has contributed greatly towards the effective management of patients with arthritis and pain complaints. Although COXIBs have demonstrated an improved gastrointestinal tolerability compared with tNSAIDs, the cardiovascular effects of the two drugs types are much controversial. By blocking prostacyclin formation but leaving platelet-derived thromboxane A2 generation unopposed, the potential gastrointestinal benefit of COXIBs may come at cost of increased thrombotic risk. AIM OF THE STUDY This review aims at analysing the cardiovascular effects of the tNSAIDs and COXIBs. METHOD This review addresses the controversy of effects of COXIBs and tNSAIDs in 4 segments. It begins with a discussion about pathophysiological effects of cyclooxygenase inhibition on cardiovascular system. This is followed by a systematic review and meta-analysis of a control, randomized, double blind study and population-based matched case-control study to compare the risk of serious cardiovascular events with tNSAIDs and COXIBs. Then it answers to key questions with the aim to assist the clinicians for a systematic approach to evaluate the risk-benefit-ratio of NSAIDs in the clinical practice. Finally we analyse the open questions associated with the use of NSAIDs and the cardiovascular events. RESULTS The use of rofecoxib demonstrated an increase in adverse cardiovascular events. This toxic effect is not dose-related. The relationship between celecoxib and cardiovascular risk is less clear. The results of different clinical trials are conflicting: some didn’t demonstrate increase in cardiovascular toxicity but the APC study and recently a metanalysis reported a significant incidence of adverse cardiovascular events. Also valdecoxib and parecoxib appear to have increased risk for cardiovascular

  8. PKCδ inhibition normalizes the wound-healing capacity of diabetic human fibroblasts.

    Science.gov (United States)

    Khamaisi, Mogher; Katagiri, Sayaka; Keenan, Hillary; Park, Kyoungmin; Maeda, Yasutaka; Li, Qian; Qi, Weier; Thomou, Thomas; Eschuk, Danielle; Tellechea, Ana; Veves, Aris; Huang, Chenyu; Orgill, Dennis Paul; Wagers, Amy; King, George L

    2016-03-01

    Abnormal fibroblast function underlies poor wound healing in patients with diabetes; however, the mechanisms that impair wound healing are poorly defined. Here, we evaluated fibroblasts from individuals who had type 1 diabetes (T1D) for 50 years or more (Medalists, n = 26) and from age-matched controls (n = 7). Compared with those from controls, Medalist fibroblasts demonstrated a reduced migration response to insulin, lower VEGF expression, and less phosphorylated AKT (p-AKT), but not p-ERK, activation. Medalist fibroblasts were also functionally less effective at wound closure in nude mice. Activation of the δ isoform of protein kinase C (PKCδ) was increased in postmortem fibroblasts from Medalists, fibroblasts from living T1D subjects, biopsies of active wounds of living T1D subjects, and granulation tissues from mice with streptozotocin-induced diabetes. Diabetes-induced PKCD mRNA expression was related to a 2-fold increase in the mRNA half-life. Pharmacologic inhibition and siRNA-mediated knockdown of PKCδ or expression of a dominant-negative isoform restored insulin signaling of p-AKT and VEGF expression in vitro and improved wound healing in vivo. Additionally, increasing PKCδ expression in control fibroblasts produced the same abnormalities as those seen in Medalist fibroblasts. Our results indicate that persistent PKCδ elevation in fibroblasts from diabetic patients inhibits insulin signaling and function to impair wound healing and suggest PKCδ inhibition as a potential therapy to improve wound healing in diabetic patients.

  9. Biological Differences between Hanwoo longissimus dorsi and semimembranosus Muscles in Collagen Synthesis of Fibroblasts.

    Science.gov (United States)

    Subramaniyan, Sivakumar Allur; Hwang, Inho

    2017-01-01

    Variations in physical toughness between muscles and animals are a function of growth rate and extend of collagen type I and III. The current study was designed to investigate the ability of growth rate, collagen concentration, collagen synthesizing and degrading genes on two different fibroblast cells derived from Hanwoo m. longissimus dorsi (LD) and semimembranosus (SM) muscles. Fibroblast cell survival time was determined for understanding about the characteristics of proliferation rate between the two fibroblasts. We examined the collagen concentration and protein expression of collagen type I and III between the two fibroblasts. The mRNA expression of collagen synthesis and collagen degrading genes to elucidate the molecular mechanisms on toughness and tenderness through collagen production between the two fibroblast cells. From our results the growth rate, collagen content and protein expression of collagen type I and III were significantly higher in SM than LD muscle fibroblast. The mRNA expressions of collagen synthesized genes were increased whereas the collagen degrading genes were decreased in SM than LD muscle. Results from confocal microscopical investigation showed increased fluorescence of collagen type I and III appearing stronger in SM than LD muscle fibroblast. These results implied that the locomotion muscle had higher fibroblast growth rate, leads to produce more collagen, and cause tougher than positional muscle. This in vitro study mirrored that background toughness of various muscles in live animal is likely associated with fibroblast growth pattern, collagen synthesis and its gene expression.

  10. MicroRNA-124 controls the proliferative, migratory, and inflammatory phenotype of pulmonary vascular fibroblasts.

    Science.gov (United States)

    Wang, Daren; Zhang, Hui; Li, Min; Frid, Maria G; Flockton, Amanda R; McKeon, B Alexandre; Yeager, Michael E; Fini, Mehdi A; Morrell, Nicholas W; Pullamsetti, Soni S; Velegala, Sivareddy; Seeger, Werner; McKinsey, Timothy A; Sucharov, Carmen C; Stenmark, Kurt R

    2014-01-03

    Pulmonary hypertensive remodeling is characterized by excessive proliferation, migration, and proinflammatory activation of adventitial fibroblasts. In culture, fibroblasts maintain a similar activated phenotype. The mechanisms responsible for generation/maintenance of this phenotype remain unknown. We hypothesized that aberrant expression of microRNA-124 (miR-124) regulates this activated fibroblast phenotype and sought to determine the signaling pathways through which miR-124 exerts effects. We detected significant decreases in miR-124 expression in fibroblasts isolated from calves and humans with severe pulmonary hypertension. Overexpression of miR-124 by mimic transfection significantly attenuated proliferation, migration, and monocyte chemotactic protein-1 expression of hypertensive fibroblasts, whereas anti-miR-124 treatment of control fibroblasts resulted in their increased proliferation, migration, and monocyte chemotactic protein-1 expression. Furthermore, the alternative splicing factor, polypyrimidine tract-binding protein 1, was shown to be a direct target of miR-124 and to be upregulated both in vivo and in vitro in bovine and human pulmonary hypertensive fibroblasts. The effects of miR-124 on fibroblast proliferation were mediated via direct binding to the 3' untranslated region of polypyrimidine tract-binding protein 1 and subsequent regulation of Notch1/phosphatase and tensin homolog/FOXO3/p21Cip1 and p27Kip1 signaling. We showed that miR-124 directly regulates monocyte chemotactic protein-1 expression in pulmonary hypertension/idiopathic pulmonary arterial hypertension fibroblasts. Furthermore, we demonstrated that miR-124 expression is suppressed by histone deacetylases and that treatment of hypertensive fibroblasts with histone deacetylase inhibitors increased miR-124 expression and decreased proliferation and monocyte chemotactic protein-1 production. Stable decreases in miR-124 expression contribute to an epigenetically reprogrammed, highly

  11. Cyclooxygenase-2 inhibition blocks M2 macrophage differentiation and suppresses metastasis in murine breast cancer model.

    Directory of Open Access Journals (Sweden)

    Yi-Rang Na

    Full Text Available Tumor cells are often associated with abundant macrophages that resemble the alternatively activated M2 subset. Tumor-associated macrophages (TAMs inhibit anti-tumor immune responses and promote metastasis. Cyclooxygenase-2 (COX-2 inhibition is known to prevent breast cancer metastasis. This study hypothesized that COX-2 inhibition affects TAM characteristics potentially relevant to tumor cell metastasis. We found that the specific COX-2 inhibitor, etodolac, inhibited human M2 macrophage differentiation, as determined by decreased CD14 and CD163 expressions and increased TNFα production. Several key metastasis-related mediators, such as vascular endothelial growth factor-A, vascular endothelial growth factor-C, and matrix metalloproteinase-9, were inhibited in the presence of etodolac as compared to untreated M2 macrophages. Murine bone marrow derived M2 macrophages also showed enhanced surface MHCII IA/IE and CD80, CD86 expressions together with enhanced TNFα expressions with etodolac treatment during differentiation. Using a BALB/c breast cancer model, we found that etodolac significantly reduced lung metastasis, possibly due to macrophages expressing increased IA/IE and TNFα, but decreased M2 macrophage-related genes expressions (Ym1, TGFβ. In conclusion, COX-2 inhibition caused loss of the M2 macrophage characteristics of TAMs and may assist prevention of breast cancer metastasis.

  12. LIF Mediates Proinvasive Activation of Stromal Fibroblasts in Cancer

    Directory of Open Access Journals (Sweden)

    Jean Albrengues

    2014-06-01

    Full Text Available Signaling crosstalk between tumor cells and fibroblasts confers proinvasive properties to the tumor microenvironment. Here, we identify leukemia inhibitory factor (LIF as a tumor promoter that mediates proinvasive activation of stromal fibroblasts independent of alpha-smooth muscle actin (α-SMA expression. We demonstrate that a pulse of transforming growth factor β (TGF-β establishes stable proinvasive fibroblast activation by inducing LIF production in both fibroblasts and tumor cells. In fibroblasts, LIF mediates TGF-β-dependent actomyosin contractility and extracellular matrix remodeling, which results in collective carcinoma cell invasion in vitro and in vivo. Accordingly, carcinomas from multiple origins and melanomas display strong LIF upregulation, which correlates with dense collagen fiber organization, cancer cell collective invasion, and poor clinical outcome. Blockade of JAK activity by Ruxolitinib (JAK inhibitor counteracts fibroblast-dependent carcinoma cell invasion in vitro and in vivo. These findings establish LIF as a proinvasive fibroblast producer independent of α-SMA and may open novel therapeutic perspectives for patients with aggressive primary tumors.

  13. Effects of lonizing radiation and cisplatin on peroxiredoxin I and II expression and survival rate in human neuroblastoma and rat fibroblast cells

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sung Hwan; Yoon, Sei Chul [The Catholic University of Korea, Seoul (Korea, Republic of)

    2006-12-15

    This study investigated the influence of irradiation and cisplatin on Prxl and Prxll expression and on their survival rates (SR) in SK-N-BE2C and Rat2 cell lines. The amount of Prxl and Prxll production with or without N-acetyl-L-cysteine (NAC) pretreatment was studied using a western blot after 20 Gy irradiation to determine the degree of inhibition of ROS accumulation. In addition, the amount of Prxl and Prxll production after cisplatin and after combination with cisplatin and 20 Gy irradiation was studied. The SRs of the cell lines in SK-N-BE2C and Rat 2 cells, applied with 20 Gy irradiation only, with various concentrations of cisplatin and with the combination of both, were studied. The 20 Gy irradiation-only group and the combination group were each subdivided according to NAC pretreatment, and corresponding SRs were observed at 2, 6, 12 and 48 hours after treatment. Compared with the control group, the amount of Prxl in SK-N-BE2C increased up to 60 minutes after irradiation and slightly increased after irradiation with NAC pretreatment 60 minutes. It did not increase in Rat2 after irradiation regardless of NAC pretreatment. Prxll in SK-N-BE2C and Rat2 was not increased after irradiation regardless of NAC pretreatment. The amounts of Prxl and Prxll in SK-N-BE2C and Rat2 were not increased either with the cisplatin-only treatment or the combination treatment with cisplatin and irradiation. SRs of irradiation group with or without NAC pretreatment and the combination group with or without NAC pretreatment were compared with each other in SK-N-BE2C and Rat2. SR was significantly high for the group with increased amount of Prxl, NAC pretreatment and lower the cisplatin concentration. SR of the group in SK-N-BE2C which had irradiation with NAC pretreatment tended to be slightly higher than the group who had irradiation without NAC pretreatment. SR of the group in Rat2 which had irradiation with NAC pretreatment was significantly higher than that the group which

  14. Effects of lonizing radiation and cisplatin on peroxiredoxin I and II expression and survival rate in human neuroblastoma and rat fibroblast cells

    International Nuclear Information System (INIS)

    Kim, Sung Hwan; Yoon, Sei Chul

    2006-01-01

    This study investigated the influence of irradiation and cisplatin on Prxl and Prxll expression and on their survival rates (SR) in SK-N-BE2C and Rat2 cell lines. The amount of Prxl and Prxll production with or without N-acetyl-L-cysteine (NAC) pretreatment was studied using a western blot after 20 Gy irradiation to determine the degree of inhibition of ROS accumulation. In addition, the amount of Prxl and Prxll production after cisplatin and after combination with cisplatin and 20 Gy irradiation was studied. The SRs of the cell lines in SK-N-BE2C and Rat 2 cells, applied with 20 Gy irradiation only, with various concentrations of cisplatin and with the combination of both, were studied. The 20 Gy irradiation-only group and the combination group were each subdivided according to NAC pretreatment, and corresponding SRs were observed at 2, 6, 12 and 48 hours after treatment. Compared with the control group, the amount of Prxl in SK-N-BE2C increased up to 60 minutes after irradiation and slightly increased after irradiation with NAC pretreatment 60 minutes. It did not increase in Rat2 after irradiation regardless of NAC pretreatment. Prxll in SK-N-BE2C and Rat2 was not increased after irradiation regardless of NAC pretreatment. The amounts of Prxl and Prxll in SK-N-BE2C and Rat2 were not increased either with the cisplatin-only treatment or the combination treatment with cisplatin and irradiation. SRs of irradiation group with or without NAC pretreatment and the combination group with or without NAC pretreatment were compared with each other in SK-N-BE2C and Rat2. SR was significantly high for the group with increased amount of Prxl, NAC pretreatment and lower the cisplatin concentration. SR of the group in SK-N-BE2C which had irradiation with NAC pretreatment tended to be slightly higher than the group who had irradiation without NAC pretreatment. SR of the group in Rat2 which had irradiation with NAC pretreatment was significantly higher than that the group which

  15. Cell-cycle-dependent localization of human cytomegalovirus UL83 phosphoprotein in the nucleolus and modulation of viral gene expression in human embryo fibroblasts in vitro.

    Science.gov (United States)

    Arcangeletti, Maria-Cristina; Rodighiero, Isabella; Mirandola, Prisco; De Conto, Flora; Covan, Silvia; Germini, Diego; Razin, Sergey; Dettori, Giuseppe; Chezzi, Carlo

    2011-01-01

    The nucleolus is a multifunctional nuclear compartment widely known to be involved in several cellular processes, including mRNA maturation and shuttling to cytoplasmic sites, control of the cell cycle, cell proliferation, and apoptosis; thus, it is logical that many viruses, including herpesvirus, target the nucleolus in order to exploit at least one of the above-mentioned functions. Recent studies from our group demonstrated the early accumulation of the incoming ppUL83 (pp65), the major tegument protein of human cytomegalovirus (HCMV), in the nucleolus. The obtained results also suggested that a functional relationship might exist between the nucleolar localization of pp65, rRNA synthesis, and the development of the lytic program of viral gene expression. Here we present new data which support the hypothesis of a potentially relevant role of HCMV pp65 and its nucleolar localization for the control of the cell cycle by HCMV (arrest of cell proliferation in G1-G1/S), and for the promotion of viral infection. We demonstrated that, although the incoming pp65 amount in the infected cells appears to be constant irrespective of the cell-cycle phase, its nucleolar accumulation is prominent in G1 and G1/S, but very poor in S or G2/M. This correlates with the observation that only cells in G1 and G1/S support an efficient development of the HCMV lytic cycle. We propose that HCMV pp65 might be involved in regulatory/signaling pathways related to nucleolar functions, such as the cell-cycle control. Co-immunoprecipitation experiments have permitted to identify nucleolin as one of the nucleolar partners of pp65.

  16. Cultured human foreskin fibroblasts produce a factor that stimulates their growth with properties similar to basic fibroblast growth factor

    International Nuclear Information System (INIS)

    Story, M.T.

    1989-01-01

    To determine if fibroblasts could be a source of fibroblast growth factor (FGF) in tissue, cells were initiated in culture from newborn human foreskin. Fibroblast cell lysates promoted radiolabeled thymidine uptake by cultured quiescent fibroblasts. Seventy-nine percent of the growth-promoting activity of lysates was recovered from heparin-Sepharose. The heparin-binding growth factor reacted on immunoblots with antiserum to human placenta-derived basic FGF and competed with iodinated basic FGF for binding to antiserum to (1-24)bFGF synthetic peptide. To confirm that fibroblasts were the source of the growth factor, cell lysates were prepared from cells incubated with radiolabeled methionine. Heparin affinity purified material was immunoprecipitated with basic FGF antiserum and electrophoresed. Radiolabeled material was detected on gel autoradiographs in the same molecular weight region as authentic iodinated basic FGF. The findings are consistant with the notion that cultured fibroblasts express basic FGF. As these cells also respond to the mitogen, it is possible that the regulation of their growth is under autocrine control. Fibroblasts may be an important source of the growth factor in tissue

  17. A novel role of EMMPRIN/CD147 in transformation of quiescent fibroblasts to cancer-associated fibroblasts by breast cancer cells

    Science.gov (United States)

    Xu, Jing; Lu, Yang; Qiu, Songbo; Chen, Zhi-Nan; Fan, Zhen

    2013-01-01

    We tested the novel hypothesis that EMMPRIN/CD147, a transmembrane glycoprotein overexpressed in breast cancer cells, has a previously unknown role in transforming fibroblasts to cancer-associated fibroblasts, and that cancer-associated fibroblasts in turn induce epithelial-to-mesenchymal transition of breast cancer cells. Co-culture of fibroblasts with breast cancer cells or treatment of fibroblasts with breast cancer cell conditioned culture medium or recombinant EMMPRIN/CD147 induced expression of α-SMA in the fibroblasts in an EMMPRIN/CD147-dependent manner and promoted epithelial-to-mesenchymal transition of breast cancer cells and enhanced cell migration potential. These findings support a novel role of EMMPRIN/CD147 in regulating the interaction between cancer and stroma. PMID:23474495

  18. HGF is released from buccal fibroblasts after smokeless tobacco stimulation

    DEFF Research Database (Denmark)

    Dabelsteen, S; Christensen, S; Gron, B

    2005-01-01

    on exposure time and on concentration of the tobacco extract. High concentration increased production of HGF 4-fold. KGF production was doubled when high concentration of tobacco was used, low concentration did not stimulate cells. GM-CSF production was low in both stimulated and non-stimulated cells......To investigate the effect of smokeless tobacco (ST) on (1) HGF, KGF and GM-CSF expression by buccal fibroblasts and (2) on keratinocyte and fibroblast proliferation. Buccal fibroblasts were stimulated with different concentrations of ST extracts in a double dilution from 0.50% w/v to 0.03% w....... Keratinocytes and fibroblasts showed no increase in proliferation after stimulation with increased concentrations of ST. The results suggest that HGF and KGF may play an important role as a paracrine growth factor in epithelial hyperplasia in ST lesions....

  19. A single exposure to cocaine during development elicits regionally-selective changes in basal basic Fibroblast Growth Factor (FGF-2) gene expression and alters the trophic response to a second injection.

    Science.gov (United States)

    Giannotti, Giuseppe; Caffino, Lucia; Malpighi, Chiara; Melfi, Simona; Racagni, Giorgio; Fumagalli, Fabio

    2015-02-01

    During adolescence, the brain is maturing and more sensitive to drugs of abuse that can influence its developmental trajectory. Recently, attention has been focused on basic fibroblast growth factor (FGF-2) given that its administration early in life enhances the acquisition of cocaine self-administration and sensitization at adulthood (Turner et al. (Pharmacol Biochem Behav 92:100-4, 2009), Clinton et al. (Pharmacol Biochem Behav103:6-17, 2012)). Additionally, we found that abstinence from adolescent cocaine exposure long lastingly dysregulates FGF-2 transcription (Giannotti et al. (Psychopharmacology (Berl) 225:553-60, 2013 ). The objectives of the study are to evaluate if (1) a single injection of cocaine (20 mg/kg) at postnatal day 35 alters FGF-2 messenger RNA (mRNA) levels and (2) the first injection influences the trophic response to a second injection (10 mg/kg) provided 24 h or 7 days later. We found regional differences in the FGF-2 expression pattern as either the first or the second injection of cocaine by themselves upregulated FGF-2 mRNA in the medial prefrontal cortex and nucleus accumbens while downregulating it in the hippocampus. The first injection influences the trophic response of the second. Of note, 24 h after the first injection, accumbal and hippocampal FGF-2 changes produced by cocaine in saline-pretreated rats were prevented in cocaine-pretreated rats. Conversely, in the medial prefrontal cortex and hippocampus 7 days after the first injection, the cocaine-induced FGF-2 changes were modified by the subsequent exposure to the psychostimulant. These findings show that a single cocaine injection is sufficient to produce enduring changes in the adolescent brain and indicate that early cocaine priming alters the mechanisms regulating the trophic response in a brain region-specific fashion.

  20. [Effect of nonsteroidal antiinflammatory drugs on colonic lipoxygenase and cyclooxygenase activities from patients with colonic neoplasia].

    Science.gov (United States)

    Di Girolamo, G; Franchi, A; De Los Santos, A R; Martí, M L; Farina, M; Fernández de Gimeno, M A

    2001-01-01

    Lysine clonixinate (LC) is a nonsteroidal anti-inflammatory drug (NSAID) with good gastrointestinal tolerance. Treatment with LC at levels equivalent to those found in plasma following therapeutic doses resulted in significant inhibition of both cyclooxygenase 2 (COX-2) and production of 5 hydroxy-eicosatetraeonic acid (5-HETE) and slightly affected levels of cyclooxygenase 1 (COX-1) in in vitro studies carried out on human tissues. This study deals with the in vivo effect of the drug on human colon segments. Experiment 1: Five patients about to undergo hemicholectomy due to colon neoplasia were treated preoperatively with a continuous infusion of LC, to achieve a steady-state concentration between 4 and 6 mg/ml. Human colon segments from the five patients and from another five control patients receiving no treatment with [14C]-arachidonic acid were incubated. Human colon segments treated with LC showed significant inhibition of PGE2, the only prostaglandin (PG) synthesised by the tissue, as well as of 5-HETE. Experiment 2: Fifteen patients received an i.v. bolus of LC 100 mg (n1 = 5); LC 200 mg (n2 = 5) or indomethacin (INDO) 50 mg (n3 = 5). Both doses of LC showed greater inhibition of PGE2 synthesis than the INDO bolus. Both NSAIDs studied proved to have different effects on the production of 5-HETE; while treatment with LC elicited significant inhibition, levels with INDO remained unchanged. Western blotting analysis showed expression of both COX isoforms in colon segments, COX-2 levels being 20% higher. Both types of in vivo studies conducted continuous infusion and i.v. bolus, revealed that LC exerted significant inhibition of basal synthesis of PGE2 and 5-HETE.

  1. Nitric Oxide Synthase and Cyclooxygenase Pathways: A Complex Interplay in Cellular Signaling.

    Science.gov (United States)

    Sorokin, Andrey

    2016-01-01

    The cellular reaction to external challenges is a tightly regulated process consisting of integrated processes mediated by a variety of signaling molecules, generated as a result of modulation of corresponding biosynthetic systems. Both, nitric oxide synthase (NOS) and cyclooxygenase (COX) systems, consist of constitutive forms (NOS1, NOS3 and COX-1), which are mostly involved in housekeeping tasks, and inducible forms (NOS2 and COX-2), which shape the cellular response to stress and variety of bioactive agents. The complex interplay between NOS and COX pathways can be observed at least at three levels. Firstly, products of NOS and Cox systems can mediate the regulation and the expression of inducible forms (NOS2 and COX-2) in response of similar and dissimilar stimulus. Secondly, the reciprocal modulation of cyclooxygenase activity by nitric oxide and NOS activity by prostaglandins at the posttranslational level has been shown to occur. Mechanisms by which nitric oxide can modulate prostaglandin synthesis include direct S-nitrosylation of COX and inactivation of prostaglandin I synthase by peroxynitrite, product of superoxide reaction with nitric oxide. Prostaglandins, conversely, can promote an increased association of dynein light chain (DLC) (also known as protein inhibitor of neuronal nitric oxide synthase) with NOS1, thereby reducing its activity. The third level of interplay is provided by intracellular crosstalk of signaling pathways stimulated by products of NOS and COX which contributes significantly to the complexity of cellular signaling. Since modulation of COX and NOS pathways was shown to be principally involved in a variety of pathological conditions, the dissection of their complex relationship is needed for better understanding of possible therapeutic strategies. This review focuses on implications of interplay between NOS and COX for cellular function and signal integration.

  2. Cyclooxygenase-2-dependent prostacyclin formation and blood pressure homeostasis: targeted exchange of cyclooxygenase isoforms in mice

    DEFF Research Database (Denmark)

    Yu, Ying; Stubbe, Jane; Ibrahim, Salam

    2010-01-01

    pressure. OBJECTIVE: To elucidate the role of COX-2 in blood pressure homeostasis using COX-1>COX-2 mice, in which the COX-1 expression is controlled by COX-2 regulatory elements. METHODS AND RESULTS: COX-1>COX-2 mice developed systolic hypertension relative to wild types (WTs) on a high-salt diet (HSD...... and again the increase in formation of PGI(2) observed in WTs was suppressed in cells derived from both mutants. Intramedullary infusion of the PGI(2) receptor agonist increased urine volume and sodium excretion in mice. CONCLUSIONS: These studies suggest that dysregulated expression of the COX-2 dependent...

  3. Age-related disruption of autophagy in dermal fibroblasts modulates extracellular matrix components

    Energy Technology Data Exchange (ETDEWEB)

    Tashiro, Kanae [Skin Research Department, POLA Chemical Industries, Inc., Yokohama (Japan); Division of Pharmaceutical Cell Biology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka (Japan); Shishido, Mayumi [Skin Research Department, POLA Chemical Industries, Inc., Yokohama (Japan); Fujimoto, Keiko [Division of Pharmaceutical Cell Biology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka (Japan); Organelle Homeostasis Research Center, Kyushu University, Fukuoka (Japan); Hirota, Yuko [Division of Pharmaceutical Cell Biology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka (Japan); Yo, Kazuyuki; Gomi, Takamasa [Skin Research Department, POLA Chemical Industries, Inc., Yokohama (Japan); Tanaka, Yoshitaka, E-mail: tanakay@bioc.phar.kyushu-u.ac.jp [Division of Pharmaceutical Cell Biology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka (Japan); Organelle Homeostasis Research Center, Kyushu University, Fukuoka (Japan)

    2014-01-03

    Highlights: •Autophagosomes accumulate in aged dermal fibroblasts. •Autophagic degradation is impaired in aged dermal fibroblasts. •Autophagy disruption affects extracellular matrix components in dermal fibroblasts. -- Abstract: Autophagy is an intracellular degradative system that is believed to be involved in the aging process. The contribution of autophagy to age-related changes in the human skin is unclear. In this study, we examined the relationship between autophagy and skin aging. Transmission electron microscopy and immunofluorescence microscopy analyses of skin tissue and cultured dermal fibroblasts derived from women of different ages revealed an increase in the number of nascent double-membrane autophagosomes with age. Western blot analysis showed that the amount of LC3-II, a form associated with autophagic vacuolar membranes, was significantly increased in aged dermal fibroblasts compared with that in young dermal fibroblasts. Aged dermal fibroblasts were minimally affected by inhibition of autophagic activity. Although lipofuscin autofluorescence was elevated in aged dermal fibroblasts, the expression of Beclin-1 and Atg5—genes essential for autophagosome formation—was similar between young and aged dermal fibroblasts, suggesting that the increase of autophagosomes in aged dermal fibroblasts was due to impaired autophagic flux rather than an increase in autophagosome formation. Treatment of young dermal fibroblasts with lysosomal protease inhibitors, which mimic the condition of aged dermal fibroblasts with reduced autophagic activity, altered the fibroblast content of type I procollagen, hyaluronan and elastin, and caused a breakdown of collagen fibrils. Collectively, these findings suggest that the autophagy pathway is impaired in aged dermal fibroblasts, which leads to deterioration of dermal integrity and skin fragility.

  4. Age-related disruption of autophagy in dermal fibroblasts modulates extracellular matrix components

    International Nuclear Information System (INIS)

    Tashiro, Kanae; Shishido, Mayumi; Fujimoto, Keiko; Hirota, Yuko; Yo, Kazuyuki; Gomi, Takamasa; Tanaka, Yoshitaka

    2014-01-01

    Highlights: •Autophagosomes accumulate in aged dermal fibroblasts. •Autophagic degradation is impaired in aged dermal fibroblasts. •Autophagy disruption affects extracellular matrix components in dermal fibroblasts. -- Abstract: Autophagy is an intracellular degradative system that is believed to be involved in the aging process. The contribution of autophagy to age-related changes in the human skin is unclear. In this study, we examined the relationship between autophagy and skin aging. Transmission electron microscopy and immunofluorescence microscopy analyses of skin tissue and cultured dermal fibroblasts derived from women of different ages revealed an increase in the number of nascent double-membrane autophagosomes with age. Western blot analysis showed that the amount of LC3-II, a form associated with autophagic vacuolar membranes, was significantly increased in aged dermal fibroblasts compared with that in young dermal fibroblasts. Aged dermal fibroblasts were minimally affected by inhibition of autophagic activity. Although lipofuscin autofluorescence was elevated in aged dermal fibroblasts, the expression of Beclin-1 and Atg5—genes essential for autophagosome formation—was similar between young and aged dermal fibroblasts, suggesting that the increase of autophagosomes in aged dermal fibroblasts was due to impaired autophagic flux rather than an increase in autophagosome formation. Treatment of young dermal fibroblasts with lysosomal protease inhibitors, which mimic the condition of aged dermal