WorldWideScience

Sample records for fibroblast biology role

  1. Fibroblasts in fibrosis: novel roles and mediators

    Directory of Open Access Journals (Sweden)

    Ryan Thomas Kendall

    2014-05-01

    Full Text Available Fibroblasts are the most common cell type of the connective tissues found throughout the body and the principal source of the extensive extracellular matrix (ECM characteristic of these tissues. They are also the central mediators of the pathological fibrotic accumulation of ECM and the cellular proliferation and differentiation that occurs in response to prolonged tissue injury and chronic inflammation. The transformation of the fibroblast cell lineage involves classical developmental signaling programs and includes a surprisingly diverse range of precursor cell types—most notably, myofibroblasts that are the apex of the fibrotic phenotype. Myofibroblasts display exaggerated ECM production; constitutively secrete and are hypersensitive to chemical signals such as cytokines, chemokines, and growth factors; and are endowed with a contractile apparatus allowing them to manipulate the ECM fibers physically to close open wounds. In addition to ECM production, fibroblasts have multiple concomitant biological roles, such as in wound healing, inflammation, and angiogenesis, which are each interwoven with the process of fibrosis. We now recognize many common fibroblast-related features across various physiological and pathological protracted processes. Indeed, a new appreciation has emerged for the role of noncancerous fibroblast interactions with tumors in cancer progression. Although the predominant current clinical treatments of fibrosis involve nonspecific immunosuppressive and anti-proliferative drugs, a variety of potential therapies under investigation specifically target fibroblast biology.

  2. Biological role, clinical significance, and therapeutic possibilities of the recently discovered metabolic hormone fibroblastic growth factor 21.

    Science.gov (United States)

    Iglesias, Pedro; Selgas, Rafael; Romero, Sara; Díez, Juan J

    2012-09-01

    Fibroblast growth factor 21 (FGF21), a 181 amino acid circulating protein, is a member of the FGF superfamily, with relevant metabolic actions. It acts through the interaction with specific FGF receptors and a cofactor called β-Klotho, whose expression is predominantly detected in metabolically active organs. FGF21 stimulates glucose uptake in adipocytes via the induction of glucose transporter-1. This action is additive and independent of insulin. β-Cell function and survival are preserved, and glucagon secretion is reduced by this protein, thus decreasing hepatic glucose production and improving insulin sensitivity. Lipid profile has been shown to be improved by FGF21 in several animal models. FGF21 increases energy expenditure in rodents and induces weight loss in diabetic nonhuman primates. It also exerts favorable effects on hepatic steatosis and reduces tissue lipid content in rodents. Adaptive metabolic responses to fasting, including stimulation of ketogenesis and fatty acid oxidation, seem to be partially mediated by FGF21. In humans, serum FGF21 concentrations have been found elevated in insulin-resistant states, such as impaired glucose tolerance and type 2 diabetes. FGF21 levels are correlated with hepatic insulin resistance index, fasting blood glucose, HbA1c, and blood glucose after an oral glucose tolerance test. A relationship between FGF21 levels and long-term diabetic complications, such as nephropathy and carotid atheromatosis, has been reported. FGF21 levels decreased in diabetic patients after starting therapy with insulin or oral agents. Increased FGF21 serum levels have also been found to be associated with obesity. In children, it is correlated with BMI and leptin levels, whereas in adults, FGF21 levels are mainly related to several components of the metabolic syndrome. Serum FGF21 levels have been found to be elevated in patients with ischemic heart disease. In patients with renal disease, FGF21 levels exhibited a progressive increase as

  3. Regulating Cancer-Associated Fibroblast Biology in Prostate Cancer

    Science.gov (United States)

    2017-10-01

    AWARD NUMBER: W81XWH-15-1-0512 TITLE: Regulating Cancer-Associated Fibroblast Biology in Prostate Cancer PRINCIPAL INVESTIGATOR: Andrew...SUBTITLE 5a. CONTRACT NUMBER Regulating Cancer-Associated Fibroblast Biology in Prostate Cancer 5b. GRANT NUMBER W81XWH-15-1-0512 5c. PROGRAM...blocked by the addition of Pim inhibitors. These results suggest that the Pim protein kinase can regulate stromal cell biology to modulate epithelial

  4. Fibroblast Growth Factors: Biology, Function, and Application for Tissue Regeneration

    Directory of Open Access Journals (Sweden)

    Ye-Rang Yun

    2010-01-01

    Full Text Available Fibroblast growth factors (FGFs that signal through FGF receptors (FGFRs regulate a broad spectrum of biological functions, including cellular proliferation, survival, migration, and differentiation. The FGF signal pathways are the RAS/MAP kinase pathway, PI3 kinase/AKT pathway, and PLCγ pathway, among which the RAS/MAP kinase pathway is known to be predominant. Several studies have recently implicated the in vitro biological functions of FGFs for tissue regeneration. However, to obtain optimal outcomes in vivo, it is important to enhance the half-life of FGFs and their biological stability. Future applications of FGFs are expected when the biological functions of FGFs are potentiated through the appropriate use of delivery systems and scaffolds. This review will introduce the biology and cellular functions of FGFs and deal with the biomaterials based delivery systems and their current applications for the regeneration of tissues, including skin, blood vessel, muscle, adipose, tendon/ligament, cartilage, bone, tooth, and nerve tissues.

  5. Biological role of nickel

    Energy Technology Data Exchange (ETDEWEB)

    Thauer, R K; Diekert, G; Schoenheit, P

    1980-01-01

    Several enzymes and one cofactor have recently been shown to contain nickel. For example, urease of jack beans has been found to be a nickel protein and factor F/sub 430/ from methanogenic bacteria to be a nickel tetrapyrrole. The biological role of nickel in several organisms is discussed.

  6. Complementing xeroderma pigmentosum fibroblasts restore biological activity to UV-damaged DNA

    International Nuclear Information System (INIS)

    Day, R.S. III; Kraemer, K.H.; Robbins, J.H.

    1975-01-01

    UV survival curves of adenovirus 2 using fused complementing xeroderma pigmentosum fibroblast strains as virus hosts showed a component with an inactivation slope identical to that given by normal cells. This component was not observed when the fibroblasts were not fused or when fusions involved strains in the same complementing group. Extrapolation to zero dose indicated that three percent of the viral plaque-forming units had infected cells capable of normal repair; this suggested that three percent of the cells were complementing heterokaryons. Thus, heterokaryons formed from xeroderma pigmentosum fibroblasts belonging to different complementation groups are as capable of restoring biological activity to UV-damaged adenovirus 2 as are normal cells

  7. Role of periodontal ligament fibroblasts in osteoclastogenesis: a review

    NARCIS (Netherlands)

    Sokos, D.; Everts, V.; de Vries, T.J.

    2015-01-01

    During the last decade it has become clear that periodontal ligament fibroblasts may contribute to the in vitro differentiation of osteoclasts. We surveyed the current findings regarding their osteoclastogenesis potential. Periodontal ligament fibroblasts have the capacity to select and attract

  8. Granulocyte macrophage colony stimulating factor (GM-CSF biological actions on human dermal fibroblasts

    Directory of Open Access Journals (Sweden)

    S Montagnani

    2009-12-01

    Full Text Available Fibroblasts are involved in all pathologies characterized by increased ExtraCellularMatrix synthesis, from wound healing to fibrosis. Granulocyte Macrophage-Colony Stimulating Factor (GM-CSF is a cytokine isolated as an hemopoietic growth factor but recently indicated as a differentiative agent on endothelial cells. In this work we demonstrated the expression of the receptor for GM-CSF (GMCSFR on human normal skin fibroblasts from healthy subjects (NFPC and on a human normal fibroblast cell line (NHDF and we try to investigate the biological effects of this cytokine. Human normal fibroblasts were cultured with different doses of GM-CSF to study the effects of this factor on GMCSFR expression, on cell proliferation and adhesion structures. In addition we studied the production of some Extra-Cellular Matrix (ECM components such as Fibronectin, Tenascin and Collagen I. The growth rate of fibroblasts from healthy donors (NFPC is not augmented by GM-CSF stimulation in spite of increased expression of the GM-CSFR. On the contrary, the proliferation of normal human dermal fibroblasts (NHDF cell line seems more influenced by high concentration of GM-CSF in the culture medium. The adhesion structures and the ECM components appear variously influenced by GM-CSF treatment as compared to fibroblasts cultured in basal condition, but newly only NHDF cells are really induced to increase their synthesis activity. We suggest that the in vitro treatment with GM-CSF can shift human normal fibroblasts towards a more differentiated state, due or accompanied by an increased expression of GM-CSFR and that such “differentiation” is an important event induced by such cytokine.

  9. The Biological Behaviors of Rat Dermal Fibroblasts Can Be Inhibited by High Levels of MMP9

    Directory of Open Access Journals (Sweden)

    Sheng-Neng Xue

    2012-01-01

    Full Text Available Aims. To explore the effects of the high expression of MMP9 on biological behaviors of fibroblasts. Methods. High glucose and hyperhomocysteine were used to induce MMP9 expression in skin fibroblasts. Cell proliferation was detected by flow cytometry and cell viability by CCK-8. ELISA assay was used to detect collagen (hydroxyproline secretion. Scratch test was employed to evaluate horizontal migration of cells and transwell method to evaluate vertical migration of cells. Results. The mRNA and protein expressions of MMP9 and its protease activity were significantly higher in cells treated with high glucose and hyperhomocysteine than those in control group. At the same time, the S-phase cell ratio, proliferation index, cell viability, collagen (hydroxyproline secretion, horizontal migration rate, and the number of vertical migration cells decreased in high-glucose and hyperhomocysteine-treated group. Tissue inhibitor of metalloproteinase 1 (TIMP1, which inhibits the activity of MMP9, recovered the above biological behaviors. Conclusions. High expression of MMP9 in skin fibroblasts could be induced by cultureing in high glucose and hyperhomocysteine medium, which inhibited cell biological behaviors. Inhibitions could be reversed by TIMP1. The findings suggested that MMP9 deters the healing of diabetic foot ulcers by inhibiting the biological behaviors of fibroblasts.

  10. Biological effects of plasma rich in growth factors (PRGF) on human endometrial fibroblasts.

    Science.gov (United States)

    Anitua, Eduardo; de la Fuente, María; Ferrando, Marcos; Quintana, Fernando; Larreategui, Zaloa; Matorras, Roberto; Orive, Gorka

    2016-11-01

    To evaluate the biological outcomes of plasma rich in growth factors (PRGF) on human endometrial fibroblasts in culture. PRGF was obtained from three healthy donors and human endometrial fibroblasts (HEF) were isolated from endometrial specimens from five healthy women. The effects of PRGF on cell proliferation and migration, secretion of vascular endothelial growth factor (VEGF), procollagen type I and hyaluronic acid (HA) and contractility of isolated and cultured human endometrial fibroblasts (HEF) were analyzed. Statistical analysis was performed in order to compare the effects of PRGF with respect to control situation (T-test or Mann-Whitney U-test). We report a significantly elevated human endometrial fibroblast proliferation and migration after treatment with PRGF. In addition, stimulation of HEF with PRGF induced an increased expression of the angiogenic factor VEGF and favored the endometrial matrix remodeling by the secretion of procollagen type I and HA and endometrial regeneration by elevating the contractility of HEF. These results were obtained for all PRGF donors and each endometrial cell line. The myriad of growth factors contained in PRGF promoted HEF proliferation, migration and synthesis of paracrine molecules apart from increasing their contractility potential. These preliminary results suggest that PRGF improves the biological activity of HEF in vitro, enhancing the regulation of several cellular processes implied in endometrial regeneration. This innovative treatment deserves further investigation for its potential in "in vivo" endometrial development and especially in human embryo implantation. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  11. A novel role of EMMPRIN/CD147 in transformation of quiescent fibroblasts to cancer-associated fibroblasts by breast cancer cells

    Science.gov (United States)

    Xu, Jing; Lu, Yang; Qiu, Songbo; Chen, Zhi-Nan; Fan, Zhen

    2013-01-01

    We tested the novel hypothesis that EMMPRIN/CD147, a transmembrane glycoprotein overexpressed in breast cancer cells, has a previously unknown role in transforming fibroblasts to cancer-associated fibroblasts, and that cancer-associated fibroblasts in turn induce epithelial-to-mesenchymal transition of breast cancer cells. Co-culture of fibroblasts with breast cancer cells or treatment of fibroblasts with breast cancer cell conditioned culture medium or recombinant EMMPRIN/CD147 induced expression of α-SMA in the fibroblasts in an EMMPRIN/CD147-dependent manner and promoted epithelial-to-mesenchymal transition of breast cancer cells and enhanced cell migration potential. These findings support a novel role of EMMPRIN/CD147 in regulating the interaction between cancer and stroma. PMID:23474495

  12. Fibroblast growth factor receptors in breast cancer.

    Science.gov (United States)

    Wang, Shuwei; Ding, Zhongyang

    2017-05-01

    Fibroblast growth factor receptors are growth factor receptor tyrosine kinases, exerting their roles in embryogenesis, tissue homeostasis, and development of breast cancer. Recent genetic studies have identified some subtypes of fibroblast growth factor receptors as strong genetic loci associated with breast cancer. In this article, we review the recent epidemiological findings and experiment results of fibroblast growth factor receptors in breast cancer. First, we summarized the structure and physiological function of fibroblast growth factor receptors in humans. Then, we discussed the common genetic variations in fibroblast growth factor receptors that affect breast cancer risk. In addition, we also introduced the potential roles of each fibroblast growth factor receptors isoform in breast cancer. Finally, we explored the potential therapeutics targeting fibroblast growth factor receptors for breast cancer. Based on the biological mechanisms of fibroblast growth factor receptors leading to the pathogenesis in breast cancer, targeting fibroblast growth factor receptors may provide new opportunities for breast cancer therapeutic strategies.

  13. Cultured fibroblasts from alveolar and gingival mucosae are biologically and biochemically different

    International Nuclear Information System (INIS)

    Lanz, J.; Banes, A.

    1986-01-01

    Tissues removed from the alveolar or gingival mucosa of 5 patients were separated into cell populations to assess the relative contributions each might make in wound healing intraorally. Growth curves and protein synthetic patterns of fibroblasts, free of epithelial cells, were obtained at pass 5. The morphologies of the two cell types were not grossly different. However, the AM cells (alveolar mucosa) had a generation time (gt) of 18.7 hrs. whereas the gt for KG cells (keratinized gingiva) was 49.6 hrs. Cells labeled in vitro with 35 S-methionine had distinct patterns of protein synthesis. The AM cells had more of the 275, 220, 92, 80, 50 and 46 kd bands on the autoradiogram of a 7.5% PAGE slab gel than did the KG cells. The KG cells contained more of the 165, 84, 68, 60, 54, 51, 43, 36, and 32a kd bands. In a wound healing situation, the AM cells may be the first fibroblasts to rapidly divide to fill a defect, whereas the KG cells may require a longer time period to divide. This is the first report of biochemical and biological differences in these two fibroblast populations from cultured, human tissues

  14. Role of fibroblast growth factor 19 in the control of glucose homeostasis

    NARCIS (Netherlands)

    Schaap, Frank G.

    2012-01-01

    Purpose of review Fibroblast growth factor 19 (FGF19) is a postprandial hormone released from the small intestine. FGF19 improves glucose tolerance when overexpressed in mice with impaired glucose tolerance or diabetes. This review summarizes the recent advances in our understanding of the biology

  15. Preparation and biological evaluation of a fibroblast growth factor-2-apatite composite layer on polymeric material

    Energy Technology Data Exchange (ETDEWEB)

    Sasaki, Kenkichi; Kamitakahara, Masanobu; Ioku, Koji [Graduate School of Environmental Studies, Tohoku University, Aoba 6-6-20, Aramaki, Aoba-ku, Sendai 980-8579 (Japan); Oyane, Ayako [Nanosystem Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Central 4, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8562 (Japan); Hyodo, Koji [Human Technology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-2-1 Namiki, Tsukuba, Ibaraki 305-8564 (Japan); Ito, Atsuo; Sogo, Yu, E-mail: a-oyane@aist.go.j [Human Technology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Central 6, 1-1-1, Higashi, Tsukuba, Ibaraki 305-8566 (Japan)

    2010-12-15

    A polymeric percutaneous device with good biocompatibility and resistance to bacterial infection is required clinically. In this study, a fibroblast growth factor-2 (FGF-2)-hydroxyapatite (HAp) composite layer (FHAp layer) was formed on the surfaces of ethylene-vinyl alcohol copolymer (EVOH) specimens using a coating process in a supersaturated calcium phosphate solution supplemented with FGF-2. FGF-2 in the FHAp layer retained its biological activity to promote proliferation of fibroblasts. The EVOH specimens coated with HAp and FHAp layers were percutaneously implanted in the scalp of rats. Not only the HAp layer but also the FHAp layer showed good biocompatibility, and FGF-2 showed no harmful effects on the skin tissue responses to the implanted specimen as long as 14 d. No significantly higher infection resistance was verified for the FHAp layer over the HAp layer, although an FHAp layer coated on a metallic percutaneous device for bone fixation demonstrated higher resistance to bacterial infection over an HAp layer in the previous study. The efficacy of FHAp layers coated on percutaneous implants in resistance to bacterial infection depends on physical factors including fixation condition, stiffness and movement of implants.

  16. Plasma rich in growth factors (PRGF-Endoret) stimulates tendon and synovial fibroblasts migration and improves the biological properties of hyaluronic acid.

    Science.gov (United States)

    Anitua, E; Sanchez, M; De la Fuente, M; Zalduendo, M M; Orive, G

    2012-09-01

    Cell migration plays an essential role in development, wound healing, and tissue regeneration. Plasma rich in growth factors (PRGF-Endoret) technology offers a potential source of growth factors involved in tissue regeneration. Here, we evaluate the potential of PRGF-Endoret over tendon cells and synovial fibroblasts migration and study whether the combination of this autologous technology with hyaluronic acid (HA) improves the effect and potential of the biomaterials over the motility of both types of fibroblasts. Migration of primary tendon cells and synovial fibroblasts after culturing with either PRGF or PPGF (plasma poor in growth factors) at different doses was evaluated. Furthermore, the migratory capacity induced by the combination of PPGF and PRGF with HA was tested. PPGF stimulated migration of both types of cells but this effect was significantly higher when PRGF was used. Tendon cells showed an increase of 212% in migratory ability when HA was combined with PPGF and of 335% in the case of HA + PRGF treatment compared with HA alone. PRGF-Endoret stimulates migration of tendon cells and synovial fibroblasts and improves the biological properties of HA.

  17. In vitro invasion and survival of Porphyromonas gingivalis in gingival fibroblasts: role of the capsule

    NARCIS (Netherlands)

    Irshad, M.; van der Reijden, W.A.; Crielaard, W.; Laine, M.L.

    2012-01-01

    Porphyromonas gingivalis is a Gram-negative, anaerobic bacterium involved in periodontitis and peri-implantitis that can invade and survive inside host cells in vitro. P. gingivalis can invade human gingival fibroblasts (GF), but no data are available about the role of P. gingivalis’ capsule in GF

  18. Biological Differences between Hanwoo longissimus dorsi and semimembranosus Muscles in Collagen Synthesis of Fibroblasts.

    Science.gov (United States)

    Subramaniyan, Sivakumar Allur; Hwang, Inho

    2017-01-01

    Variations in physical toughness between muscles and animals are a function of growth rate and extend of collagen type I and III. The current study was designed to investigate the ability of growth rate, collagen concentration, collagen synthesizing and degrading genes on two different fibroblast cells derived from Hanwoo m. longissimus dorsi (LD) and semimembranosus (SM) muscles. Fibroblast cell survival time was determined for understanding about the characteristics of proliferation rate between the two fibroblasts. We examined the collagen concentration and protein expression of collagen type I and III between the two fibroblasts. The mRNA expression of collagen synthesis and collagen degrading genes to elucidate the molecular mechanisms on toughness and tenderness through collagen production between the two fibroblast cells. From our results the growth rate, collagen content and protein expression of collagen type I and III were significantly higher in SM than LD muscle fibroblast. The mRNA expressions of collagen synthesized genes were increased whereas the collagen degrading genes were decreased in SM than LD muscle. Results from confocal microscopical investigation showed increased fluorescence of collagen type I and III appearing stronger in SM than LD muscle fibroblast. These results implied that the locomotion muscle had higher fibroblast growth rate, leads to produce more collagen, and cause tougher than positional muscle. This in vitro study mirrored that background toughness of various muscles in live animal is likely associated with fibroblast growth pattern, collagen synthesis and its gene expression.

  19. Biocompatibility effects of biologically synthesized graphene in primary mouse embryonic fibroblast cells

    Science.gov (United States)

    Gurunathan, Sangiliyandi; Han, Jae Woong; Eppakayala, Vasuki; Dayem, Ahmed Abdal; Kwon, Deug-Nam; Kim, Jin-Hoi

    2013-09-01

    Due to unique properties and unlimited possible applications, graphene has attracted abundant interest in the areas of nanobiotechnology. Recently, much work has focused on the synthesis and properties of graphene. Here we show that a successful reduction of graphene oxide (GO) using spinach leaf extract (SLE) as a simultaneous reducing and stabilizing agent. The as-prepared SLE-reduced graphene oxide (S-rGO) was characterized by ultraviolet-visible spectroscopy and Fourier transform infrared spectroscopy. Dynamic light scattering technique was used to determine the average size of GO and S-rGO. Scanning electron microscopy and atomic force microscopy images provide clear surface morphological evidence for the formation of graphene. The resulting S-rGO has a mostly single-layer structure, is stable, and has significant water solubility. In addition, the biocompatibility of graphene was investigated using cell viability, leakage of lactate dehydrogenase and alkaline phosphatase activity in primary mouse embryonic fibroblast (PMEFs) cells. The results suggest that the biologically synthesized graphene has significant biocompatibility with PMEF cells, even at a higher concentration of 100 μg/mL. This method uses a `green', natural reductant and is free of additional stabilizing reagents; therefore, it is an environmentally friendly, simple, and cost-effective method for the fabrication of soluble graphene. This study could open up a promising view for substitution of hydrazine by a safe, biocompatible, and powerful reduction for the efficient deoxygenation of GO, especially in large-scale production and potential biomedical applications.

  20. Central Role for Dermal Fibroblasts in Skin Model Protection against Candida albicans.

    Science.gov (United States)

    Kühbacher, Andreas; Henkel, Helena; Stevens, Philip; Grumaz, Christian; Finkelmeier, Doris; Burger-Kentischer, Anke; Sohn, Kai; Rupp, Steffen

    2017-06-01

    The fungal pathogen Candida albicans colonizes basically all human epithelial surfaces, including the skin. Under certain conditions, such as immunosuppression, invasion of the epithelia occurs. Not much is known about defense mechanisms against C. albicans in subepithelial layers such as the dermis. Using immune cell-supplemented 3D skin models we defined a new role for fibroblasts in the dermis and identified a minimal set of cell types for skin protection against C. albicans invasion. Dual RNA sequencing of individual host cell populations and C. albicans revealed that dermal invasion is directly impeded by dermal fibroblasts. They are able to integrate signals from the pathogen and CD4+ T cells and shift toward an antimicrobial phenotype with broad specificity that is dependent on Toll-like receptor 2 and interleukin 1β. These results highlight a central function of dermal fibroblasts for skin protection, opening new possibilities for treatment of infectious diseases. © The Author 2017. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail: journals.permissions@oup.com.

  1. Albumin has no role in the uptake of copper by human fibroblasts

    International Nuclear Information System (INIS)

    McArdle, H.J.; Guthrie, J.R.; Ackland, M.L.; Danks, D.M.

    1987-01-01

    The mechanism of copper uptake by cells has been the subject of controversy for some time. This paper examines the possibility of a role for albumin in the uptake of copper by fibroblasts. Although the cells could accumulate copper from a copper-albumin complex, there was no evidence for either copper-albumin or albumin receptors on the cell surface. The possibility of a surface exchange mechanism for copper was examined. While copper uptake showed saturation with increasing concentrations of labelled copper-albumin, adding unlabelled copper to the incubation medium did not inhibit uptake. Adding albumin or histidine to the copper-albumin complex resulted in an inhibition of copper uptake. The results can only be explained by the cell taking up free copper from the incubation medium, with the albumin then releasing its copper to maintain the equilibrium between free and bound metal. Since, in vivo there is essentially no free copper in serum, it is concluded that albumin is most unlikely to play a role in the uptake of copper by fibroblasts

  2. Improved Fibroblast Functionalities by Microporous Pattern Fabricated by Microelectromechanical Systems

    OpenAIRE

    Wei, Hongbo; Zhao, Lingzhou; Chen, Bangdao; Bai, Shizhu; Zhao, Yimin

    2014-01-01

    Fibroblasts, which play an important role in biological seal formation and maintenance, determine the long-term success of percutaneous implants. In this study, well-defined microporous structures with micropore diameters of 10–60 µm were fabricated by microelectromechanical systems and their influence on the fibroblast functionalities was observed. The results show that the microporous structures with micropore diameters of 10–60 µm did not influence the initial adherent fibroblast number; ...

  3. The role of γ-ray-induced fibroblast apoptosis in inhibiting biliary duct hypertrophic scar formation in dogs

    International Nuclear Information System (INIS)

    He Guijin; Zhang Hong; Gao Xinyi; Xu Shuhe; Gao Hong; Jiang Weiguo; Jiangtao; Dai Xianwei; Ma Kai

    2005-01-01

    Objective: To investigate the role of γ-ray-induced fibroblast apoptosis in the inhibition of biliary duct hypertrophic scar formation in dogs. Methods: γ-radiation-induced apoptotic fibroblast cells were analysed by using transmission electron microscopy and DNA from frozen biliary duct tissue was extracted with phenol chloroform. DNA ladder profile after extraction of RNA was observed, and apoptosis cells in paraffinem-bedded biliary duct tissue sections were examined used immuno-histochemical method. Dog biliary duct cross-sections were stained with hematoxylin-erosin, Masson's trichrome, and Verhoeff-van Giesen stains. Muscle formation area, lumen circumference, and stenosis degree were determined by a computer-assisted image analysis system. Results: 103 Pd radioactive stent significantly inhibited fibroblast proliferation. The features of fibroblast apoptosis (e.g, apoptic bodies, DNA ladder band) could be seen in the 103 Pd radioactive stent group. The fibroblast apoptotic rate was significantly increased in the 103 Pd radioactive stent group than in the control group (P 103 Pd radioactive stent significantly reduced biliary muscular formation. Conclusion: 103 Pd radioactive stent could have the effect of inhibiting the proliferation of scar-forming fibroblast, and thus could be used for treatment and (or) prevention of hypertrophic scar formation in biliary duct. (authors)

  4. Improved throughput traction microscopy reveals pivotal role for matrix stiffness in fibroblast contractility and TGF-β responsiveness

    Science.gov (United States)

    Marinković, Aleksandar; Mih, Justin D.; Park, Jin-Ah; Liu, Fei

    2012-01-01

    Lung fibroblast functions such as matrix remodeling and activation of latent transforming growth factor-β1 (TGF-β1) are associated with expression of the myofibroblast phenotype and are directly linked to fibroblast capacity to generate force and deform the extracellular matrix. However, the study of fibroblast force-generating capacities through methods such as traction force microscopy is hindered by low throughput and time-consuming procedures. In this study, we improved at the detail level methods for higher-throughput traction measurements on polyacrylamide hydrogels using gel-surface-bound fluorescent beads to permit autofocusing and automated displacement mapping, and transduction of fibroblasts with a fluorescent label to streamline cell boundary identification. Together these advances substantially improve the throughput of traction microscopy and allow us to efficiently compute the forces exerted by lung fibroblasts on substrates spanning the stiffness range present in normal and fibrotic lung tissue. Our results reveal that lung fibroblasts dramatically alter the forces they transmit to the extracellular matrix as its stiffness changes, with very low forces generated on matrices as compliant as normal lung tissue. Moreover, exogenous TGF-β1 selectively accentuates tractions on stiff matrices, mimicking fibrotic lung, but not on physiological stiffness matrices, despite equivalent changes in Smad2/3 activation. Taken together, these results demonstrate a pivotal role for matrix mechanical properties in regulating baseline and TGF-β1-stimulated contraction of lung fibroblasts and suggest that stiff fibrotic lung tissue may promote myofibroblast activation through contractility-driven events, whereas normal lung tissue compliance may protect against such feedback amplification of fibroblast activation. PMID:22659883

  5. Role of human pulmonary fibroblast-derived MCP-1 in cell activation and migration in experimental silicosis

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Xueting [Department of Physiology, Medical School of Southeast University, Nanjing, Jiangsu 210009 (China); Fang, Shencun [Nine Department of Respiratory Medicine, Nanjing Chest Hospital, Nanjing, Jiangsu 210029 (China); Liu, Haijun [Neurobiology Laboratory, New Drug Screening Centre, China Pharmaceutical University, Nanjing, Jiangsu 210009 (China); Wang, Xingang; Dai, Xiaoniu; Yin, Qing; Yun, Tianwei [Department of Physiology, Medical School of Southeast University, Nanjing, Jiangsu 210009 (China); Wang, Wei; Zhang, Yingming [Nine Department of Respiratory Medicine, Nanjing Chest Hospital, Nanjing, Jiangsu 210029 (China); Liao, Hong [Neurobiology Laboratory, New Drug Screening Centre, China Pharmaceutical University, Nanjing, Jiangsu 210009 (China); Zhang, Wei [Department of Physiology, Medical School of Southeast University, Nanjing, Jiangsu 210009 (China); Yao, Honghong [Department of Pharmacology, Medical School of Southeast University, Nanjing, Jiangsu 210009 (China); Chao, Jie, E-mail: chaojie@seu.edu.cn [Department of Physiology, Medical School of Southeast University, Nanjing, Jiangsu 210009 (China)

    2015-10-15

    Background: Silicosis is a systemic disease caused by inhaling silicon dioxide (SiO{sub 2}). Phagocytosis of SiO{sub 2} in the lung initiates an inflammatory cascade that results in fibroblast proliferation and migration and subsequent fibrosis. Clinical evidence indicates that the activation of alveolar macrophages by SiO{sub 2} produces rapid and sustained inflammation that is characterized by the generation of monocyte chemotactic protein 1 (MCP-1), which induces fibrosis. Pulmonary fibroblast-derived MCP-1 may play a critical role in fibroblast proliferation and migration. Methods and results: Experiments using primary cultured adult human pulmonary fibroblasts (HPF-a) demonstrated the following results: 1) SiO{sub 2} treatment resulted in the rapid and sustained induction of MCP-1 as well as the elevation of the CC chemokine receptor type 2 (CCR2) protein levels; 2) pretreatment of HPF-a with RS-102895, a specific CCR2 inhibitor, abolished the SiO{sub 2}-induced increase in cell activation and migration in both 2D and 3D culture systems; and 3) RNA interference targeting CCR2 prevented the SiO{sub 2}-induced increase in cell migration. Conclusion: These data demonstrated that the up-regulation of pulmonary fibroblast-derived MCP-1 is involved in pulmonary fibroblast migration induced by SiO{sub 2}. CCR2 was also up-regulated in response to SiO{sub 2}, and this up-regulation facilitated the effect of MCP-1 on fibroblasts. Our study deciphered the link between fibroblast-derived MCP-1 and SiO{sub 2}-induced cell migration. This finding provides novel insight into the potential of MCP-1 in the development of novel therapeutic strategies for silicosis. - Highlights: • Role of pulmonary fibroblast-derived MCP-1 in experimental silicosis was studied. • SiO{sub 2} induced MCP-1 release from cultured human pulmonary fibroblast (HPF-a). • SiO{sub 2} directly activated HPF-a via the MCP-1/CCR2 pathway. • SiO{sub 2} increased HPF-a migration in both 2D and 3D

  6. Role of human pulmonary fibroblast-derived MCP-1 in cell activation and migration in experimental silicosis

    International Nuclear Information System (INIS)

    Liu, Xueting; Fang, Shencun; Liu, Haijun; Wang, Xingang; Dai, Xiaoniu; Yin, Qing; Yun, Tianwei; Wang, Wei; Zhang, Yingming; Liao, Hong; Zhang, Wei; Yao, Honghong; Chao, Jie

    2015-01-01

    Background: Silicosis is a systemic disease caused by inhaling silicon dioxide (SiO 2 ). Phagocytosis of SiO 2 in the lung initiates an inflammatory cascade that results in fibroblast proliferation and migration and subsequent fibrosis. Clinical evidence indicates that the activation of alveolar macrophages by SiO 2 produces rapid and sustained inflammation that is characterized by the generation of monocyte chemotactic protein 1 (MCP-1), which induces fibrosis. Pulmonary fibroblast-derived MCP-1 may play a critical role in fibroblast proliferation and migration. Methods and results: Experiments using primary cultured adult human pulmonary fibroblasts (HPF-a) demonstrated the following results: 1) SiO 2 treatment resulted in the rapid and sustained induction of MCP-1 as well as the elevation of the CC chemokine receptor type 2 (CCR2) protein levels; 2) pretreatment of HPF-a with RS-102895, a specific CCR2 inhibitor, abolished the SiO 2 -induced increase in cell activation and migration in both 2D and 3D culture systems; and 3) RNA interference targeting CCR2 prevented the SiO 2 -induced increase in cell migration. Conclusion: These data demonstrated that the up-regulation of pulmonary fibroblast-derived MCP-1 is involved in pulmonary fibroblast migration induced by SiO 2 . CCR2 was also up-regulated in response to SiO 2 , and this up-regulation facilitated the effect of MCP-1 on fibroblasts. Our study deciphered the link between fibroblast-derived MCP-1 and SiO 2 -induced cell migration. This finding provides novel insight into the potential of MCP-1 in the development of novel therapeutic strategies for silicosis. - Highlights: • Role of pulmonary fibroblast-derived MCP-1 in experimental silicosis was studied. • SiO 2 induced MCP-1 release from cultured human pulmonary fibroblast (HPF-a). • SiO 2 directly activated HPF-a via the MCP-1/CCR2 pathway. • SiO 2 increased HPF-a migration in both 2D and 3D model via the MCP-1/CCR2 pathway. • RNA-i of MCP-1/CCR2

  7. Biological roles of fungal carotenoids.

    Science.gov (United States)

    Avalos, Javier; Carmen Limón, M

    2015-08-01

    Carotenoids are terpenoid pigments widespread in nature, produced by bacteria, fungi, algae and plants. They are also found in animals, which usually obtain them through the diet. Carotenoids in plants provide striking yellow, orange or red colors to fruits and flowers, and play important metabolic and physiological functions, especially relevant in photosynthesis. Their functions are less clear in non-photosynthetic microorganisms. Different fungi produce diverse carotenoids, but the mutants unable to produce them do not exhibit phenotypic alterations in the laboratory, apart of lack of pigmentation. This review summarizes the current knowledge on the functional basis for carotenoid production in fungi. Different lines of evidence support a protective role of carotenoids against oxidative stress and exposure to visible light or UV irradiation. In addition, the carotenoids are intermediary products in the biosynthesis of physiologically active apocarotenoids or derived compounds. This is the case of retinal, obtained from the symmetrical oxidative cleavage of β-carotene. Retinal is the light-absorbing prosthetic group of the rhodopsins, membrane-bound photoreceptors present also in many fungal species. In Mucorales, β-carotene is an intermediary in the synthesis of trisporoids, apocarotenoid derivatives that include the sexual hormones the trisporic acids, and they are also presumably used in the synthesis of sporopollenin polymers. In conclusion, fungi have adapted their ability to produce carotenoids for different non-essential functions, related with stress tolerance or with the synthesis of physiologically active by-products.

  8. Upregulation of NOXA by 10-Hydroxycamptothecin plays a key role in inducing fibroblasts apoptosis and reducing epidural fibrosis

    Directory of Open Access Journals (Sweden)

    Jihang Dai

    2017-01-01

    the first to demonstrate that upregulation of NOXA by HCPT plays a key role in inducing fibroblast apoptosis and in reducing epidural fibrosis. These findings might provide a potential therapeutic target for preventing epidural fibrosis following laminectomy.

  9. Role of epithelial-mesenchymal transition (EMT) and fibroblast function in cerium oxide nanoparticles-induced lung fibrosis

    International Nuclear Information System (INIS)

    Ma, Jane; Bishoff, Bridget; Mercer, R.R.; Barger, Mark; Schwegler-Berry, Diane; Castranova, Vincent

    2017-01-01

    The emission of cerium oxide nanoparticles (CeO 2 ) from diesel engines, using cerium compounds as a catalyst to lower the diesel exhaust particles, is a health concern. We have previously shown that CeO 2 induced pulmonary inflammation and lung fibrosis. The objective of the present study was to investigate the modification of fibroblast function and the role of epithelial-mesenchymal transition (EMT) in CeO 2 -induced fibrosis. Male Sprague-Dawley rats were exposed to CeO 2 (0.15 to 7 mg/kg) by a single intratracheal instillation and sacrificed at various times post-exposure. The results show that at 28 days after CeO 2 (3.5 mg/kg) exposure, lung fibrosis was evidenced by increased soluble collagen in bronchoalveolar lavage fluid, elevated hydroxyproline content in lung tissues, and enhanced sirius red staining for collagen in the lung tissue. Lung fibroblasts and alveolar type II (ATII) cells isolated from CeO 2 -exposed rats at 28 days post-exposure demonstrated decreasing proliferation rate when compare to the controls. CeO 2 exposure was cytotoxic and altered cell function as demonstrated by fibroblast apoptosis and aggregation, and ATII cell hypertrophy and hyperplasia with increased surfactant. The presence of stress fibers, expressed as α-smooth muscle actin (SMA), in CeO 2 -exposed fibroblasts and ATII cells was significantly increased compared to the control. Immunohistofluorescence analysis demonstrated co-localization of TGF-β or α-SMA with prosurfactant protein C (SPC)-stained ATII cells. These results demonstrate that CeO 2 exposure affects fibroblast function and induces EMT in ATII cells that play a role in lung fibrosis. These findings suggest potential adverse health effects in response to CeO 2 nanoparticle exposure. - Highlights: • CeO 2 exposure induced lung fibrosis. • CeO 2 were detected in lung tissue, alveolar type II (ATII) cells and fibroblasts. • CeO 2 caused ATII cell hypertrophy and hyperplasia and altered fibroblast function

  10. Role of epithelial-mesenchymal transition (EMT) and fibroblast function in cerium oxide nanoparticles-induced lung fibrosis

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Jane [Health Effects Laboratory Division, NIOSH, Morgantown, WV (United States); Bishoff, Bridget [Mylan Pharmaceuticals, Morganntown, WV (United States); Mercer, R.R.; Barger, Mark; Schwegler-Berry, Diane [Health Effects Laboratory Division, NIOSH, Morgantown, WV (United States); Castranova, Vincent, E-mail: vcastran@hsc.wvu.edu [School of Pharmacy, West Virginia University, Morgantown, WV (United States)

    2017-05-15

    The emission of cerium oxide nanoparticles (CeO{sub 2}) from diesel engines, using cerium compounds as a catalyst to lower the diesel exhaust particles, is a health concern. We have previously shown that CeO{sub 2} induced pulmonary inflammation and lung fibrosis. The objective of the present study was to investigate the modification of fibroblast function and the role of epithelial-mesenchymal transition (EMT) in CeO{sub 2}-induced fibrosis. Male Sprague-Dawley rats were exposed to CeO{sub 2} (0.15 to 7 mg/kg) by a single intratracheal instillation and sacrificed at various times post-exposure. The results show that at 28 days after CeO{sub 2} (3.5 mg/kg) exposure, lung fibrosis was evidenced by increased soluble collagen in bronchoalveolar lavage fluid, elevated hydroxyproline content in lung tissues, and enhanced sirius red staining for collagen in the lung tissue. Lung fibroblasts and alveolar type II (ATII) cells isolated from CeO{sub 2}-exposed rats at 28 days post-exposure demonstrated decreasing proliferation rate when compare to the controls. CeO{sub 2} exposure was cytotoxic and altered cell function as demonstrated by fibroblast apoptosis and aggregation, and ATII cell hypertrophy and hyperplasia with increased surfactant. The presence of stress fibers, expressed as α-smooth muscle actin (SMA), in CeO{sub 2}-exposed fibroblasts and ATII cells was significantly increased compared to the control. Immunohistofluorescence analysis demonstrated co-localization of TGF-β or α-SMA with prosurfactant protein C (SPC)-stained ATII cells. These results demonstrate that CeO{sub 2} exposure affects fibroblast function and induces EMT in ATII cells that play a role in lung fibrosis. These findings suggest potential adverse health effects in response to CeO{sub 2} nanoparticle exposure. - Highlights: • CeO{sub 2} exposure induced lung fibrosis. • CeO{sub 2} were detected in lung tissue, alveolar type II (ATII) cells and fibroblasts. • CeO{sub 2} caused ATII

  11. Evaluating the Role of p38 MAPK in the Accelerated Cell Senescence of Werner Syndrome Fibroblasts

    Directory of Open Access Journals (Sweden)

    Terence Davis

    2016-04-01

    Full Text Available Progeroid syndromes show features of accelerated ageing and are used as models for human ageing, of which Werner syndrome (WS is one of the most widely studied. WS fibroblasts show accelerated senescence that may result from p38 MAP kinase activation since it is prevented by the p38 inhibitor SB203580. Thus, small molecule inhibition of p38-signalling may be a therapeutic strategy for WS. To develop this approach issues such as the in vivo toxicity and kinase selectivity of existing p38 inhibitors need to be addressed, so as to strengthen the evidence that p38 itself plays a critical role in mediating the effect of SB203580, and to find an inhibitor suitable for in vivo use. In this work we used a panel of different p38 inhibitors selected for: (1 having been used successfully in vivo in either animal models or human clinical trials; (2 different modes of binding to p38; and (3 different off-target kinase specificity profiles, in order to critically address the role of p38 in the premature senescence seen in WS cells. Our findings confirmed the involvement of p38 in accelerated cell senescence and identified p38 inhibitors suitable for in vivo use in WS, with BIRB 796 the most effective.

  12. Protective role of microRNA-29a in denatured dermis and skin fibroblast cells after thermal injury

    Directory of Open Access Journals (Sweden)

    Jie Zhou

    2016-03-01

    Full Text Available Our previous study has suggested that downregulated microRNA (miR-29a in denatured dermis might be involved in burn wound healing. However, the exact role of miR-29a in healing of burn injury still remains unclear. Here, we found that expression of miR-29a was notably upregulated in denatured dermis tissues and skin fibroblast cells after thermal injury, and thereafter gradually downregulated compared with control group. By contrast, the expression of collagen, type I, alpha 2 (COL1A2 and vascular endothelial growth factor (VEGF-A were first reduced and subsequently upregulated in denatured dermis tissues and skin fibroblast cells after thermal injury. We further identified COL1A2 as a novel target of miR-29a, which is involved in type I collagen synthesis, and showed that miR-29a negatively regulated the expression level of COL1A2 in skin fibroblast cells. In addition, VEGF-A, another target gene of miR-29a, was also negatively mediated by miR-29a in skin fibroblast cells. Inhibition of miR-29a expression significantly promoted the proliferation and migration of skin fibroblast cells after thermal injury, and knockdown of COL1A2 and VEGF-A reversed the effects of miR-29a on the proliferation and migration of skin fibroblast cells. Furthermore, we found that Notch2/Jagged2 signaling was involved in miR-29a response to burn wound healing. Our findings suggest that downregulated miR-29a in denatured dermis may help burn wound healing in the later phase, probably via upregulation of COL1A2 and VEGF-A expression, which can further enhance type I collagen synthesis and angiogenesis.

  13. Nuclear targeting of IGF-1 receptor in orbital fibroblasts from Graves' disease: apparent role of ADAM17.

    Directory of Open Access Journals (Sweden)

    Neil Hoa

    Full Text Available Insulin-like growth factor-1 receptor (IGF-1R comprises two subunits, including a ligand binding domain on extra- cellular IGF-1Rα and a tyrosine phosphorylation site located on IGF-1Rβ. IGF-1R is over-expressed by orbital fibroblasts in the autoimmune syndrome, Graves' disease (GD. When activated by IGF-1 or GD-derived IgG (GD-IgG, these fibroblasts produce RANTES and IL-16, while those from healthy donors do not. We now report that IGF-1 and GD-IgG provoke IGF-1R accumulation in the cell nucleus of GD fibroblasts where it co-localizes with chromatin. Nuclear IGF-1R is detected with anti-IGF-1Rα-specific mAb and migrates to approximately 110 kDa, consistent with its identity as an IGF-1R fragment. Nuclear IGF-1R migrating as a 200 kDa protein and consistent with an intact receptor was undetectable when probed with either anti-IGF-1Rα or anti-IGF-1Rβ mAbs. Nuclear redistribution of IGF-1R is absent in control orbital fibroblasts. In GD fibroblasts, it can be abolished by an IGF-1R-blocking mAb, 1H7 and by physiological concentrations of glucocorticoids. When cell-surface IGF-1R is cross-linked with (125I IGF-1, (125I-IGF-1/IGF-1R complexes accumulate in the nuclei of GD fibroblasts. This requires active ADAM17, a membrane associated metalloproteinase, and the phosphorylation of IGF-1R. In contrast, virally encoded IGF-1Rα/GFP fusion protein localizes equivalently in nuclei in both control and GD fibroblasts. This result suggests that generation of IGF-1R fragments may limit the accumulation of nuclear IGF-1R. We thus identify a heretofore-unrecognized behavior of IGF-1R that appears limited to GD-derived fibroblasts. Nuclear IGF-1R may play a role in disease pathogenesis.

  14. Multifaced Roles of the αvβ3 Integrin in Ehlers–Danlos and Arterial Tortuosity Syndromes’ Dermal Fibroblasts

    Directory of Open Access Journals (Sweden)

    Nicoletta Zoppi

    2018-03-01

    Full Text Available The αvβ3 integrin, an endothelial cells’ receptor-binding fibronectin (FN in the extracellular matrix (ECM of blood vessels, regulates ECM remodeling during migration, invasion, angiogenesis, wound healing and inflammation, and is also involved in the epithelial mesenchymal transition. In vitro-grown human control fibroblasts organize a fibrillar network of FN, which is preferentially bound on the entire cell surface to its canonical α5β1 integrin receptor, whereas the αvβ3 integrin is present only in rare patches in focal contacts. We report on the preferential recruitment of the αvβ3 integrin, due to the lack of FN–ECM and its canonical integrin receptor, in dermal fibroblasts from Ehlers–Danlos syndromes (EDS and arterial tortuosity syndrome (ATS, which are rare multisystem connective tissue disorders. We review our previous findings that unraveled different biological mechanisms elicited by the αvβ3 integrin in fibroblasts derived from patients affected with classical (cEDS, vascular (vEDS, hypermobile EDS (hEDS, hypermobility spectrum disorders (HSD, and ATS. In cEDS and vEDS, respectively, due to defective type V and type III collagens, αvβ3 rescues patients’ fibroblasts from anoikis through a paxillin-p60Src-mediated cross-talk with the EGF receptor. In hEDS and HSD, without a defined molecular basis, the αvβ3 integrin transduces to the ILK-Snail1-axis inducing a fibroblast-to-myofibroblast-transition. In ATS cells, the deficiency of the dehydroascorbic acid transporter GLUT10 leads to redox imbalance, ECM disarray together with the activation of a non-canonical αvβ3 integrin-TGFBRII signaling, involving p125FAK/p60Src/p38MAPK. The characterization of these different biological functions triggered by αvβ3 provides insights into the multifaced nature of this integrin, at least in cultured dermal fibroblasts, offering future perspectives for research in this field.

  15. Role of postreplication repair in transformation of human fibroblasts to anchorage independence

    International Nuclear Information System (INIS)

    Boyer, J.C.; Kaufmann, W.K.; Cordeiro-Stone, M.

    1991-01-01

    Cellular capacity for postreplication repair (PRR) and sensitivity to transformation to anchorage independence (AI) were quantified in normal foreskin and xeroderma pigmentosum (XP) variant fibroblasts after treatment with UV or benzo(a)pyrene-diol-epoxide I (BPDE-I). PRR is defined here as a collection of pathways that facilitate the replication of DNA damaged by genotoxic agents. It is recognized biochemically as the process by which nascent DNA grows longer than the average distance between two lesions in the DNA template. PRR refers more directly to the elimination of gaps in the daughter-strand DNA by mechanisms which remain to be determined for human cells, but which may include translesion replication and recombination. PRR was measured in diploid human fibroblasts by analysis of the dose kinetics for inhibition of DNA strand growth in carcinogen-treated cells. Logarithmically growing foreskin fibroblasts (NHF1) displayed D0 values of 4.3 J/m 2 and 0.14 microM for the inhibition of DNA synthesis in active replicons by UV and BPDE-I, respectively. XP variant cells (CRL1162) exhibited corresponding D0 values of 1.5 J/m 2 and 0.16 microM. The increased sensitivity to inhibition of DNA replication by UV in these XP variant fibroblasts (2.9-fold greater than normal) was mirrored by an enhanced frequency of transformation to AI. XP variant fibroblasts (CRL1162) were 3.2 times more sensitive to transformation to AI by UV than were the normal foreskin fibroblasts. As predicted by the PRR studies, both cell types exhibited similar frequencies of AI colonies induced by BPDE-I. Apparent thresholds were observed for induction of AI by UV (normal fibroblasts, 2.7 J/m 2 ; XP variant fibroblasts, 0.3 J/m 2 ) and BPDE-I (both, 0.05 microM)

  16. Synthesis and biological activity of M6-P and M6-P analogs on fibroblast and keratinocyte proliferation.

    Science.gov (United States)

    Clavel, Caroline; Barragan-Montero, Véronique; Garric, Xavier; Molès, Jean-Pierre; Montero, Jean-Louis

    2005-09-01

    A new synthetic route to obtain the carboxylate analog of mannose 6-phosphate (M6-P) is presented. The effects of the M6-P, the carboxylate and two other analogs (the phosphonate and the alpha,beta ethylenic carboxylate) on the proliferation of human keratinocytes and dermal fibroblasts as well as on the proliferation of a murine fibroblast cell line, 3T3-J2 are tested. We observed that M6-P is a potent inhibitor of proliferation of both fibroblasts and keratinocytes. Among its analogs, the phosphonate showed a similar effect on human dermal fibroblasts but not on keratinocytes.

  17. Oncogenic role of fibroblast growth factor receptor 3 in tumorigenesis of urinary bladder cancer.

    Science.gov (United States)

    Pandith, Arshad A; Shah, Zafar A; Siddiqi, Mushtaq A

    2013-05-01

    Bladder cancer is the second most common genitourinary tumor and constitutes a very heterogeneous disease. Molecular and pathologic studies suggest that low-grade noninvasive and high-grade invasive urothelial cell carcinoma (UCC) arise via distinct pathways. Low-grade noninvasive UCC represent the majority of tumors at presentation. A high proportion of patients with low-grade UCC develop recurrences but usually with no progression to invasive disease. At presentation, a majority of the bladder tumors (70%-80%) are low-grade noninvasive (pTa). Several genetic changes may occur in bladder cancer, but activating mutations in the fibroblast growth factor receptor 3 (FGFR3) genes are the most common and most specific genetic abnormality in bladder cancer. Interestingly, these mutations are associated with bladder tumors of low stage and grade, which makes the FGFR3 mutation the first marker that can be used for diagnosis of noninvasive bladder tumors. Since the first report of FGFR3 involvement in bladder tumors, numerous studies have been conducted to understand its function and thereby confirm the oncogenic role of this receptor particularly in noninvasive groups. Efforts are on to exploit this receptor as a therapeutic target, which holds much promise in the treatment of bladder cancer, particularly low-grade noninvasive tumors. Further studies need to explore the potential use of FGFR3 mutations in bladder cancer diagnosis, prognosis, and in surveillance of patients with bladder cancer. This review focuses on the role of FGFR3 in bladder tumors in the backdrop of various studies published. Copyright © 2013 Elsevier Inc. All rights reserved.

  18. Podoplanin increases the migration of human fibroblasts and affects the endothelial cell network formation: A possible role for cancer-associated fibroblasts in breast cancer progression.

    Directory of Open Access Journals (Sweden)

    Jaroslaw Suchanski

    Full Text Available In our previous studies we showed that in breast cancer podoplanin-positive cancer-associated fibroblasts correlated positively with tumor size, grade of malignancy, lymph node metastasis, lymphovascular invasion and poor patients' outcome. Therefore, the present study was undertaken to assess if podoplanin expressed by fibroblasts can affect malignancy-associated properties of breast cancer cells. Human fibroblastic cell lines (MSU1.1 and Hs 578Bst overexpressing podoplanin and control fibroblasts were co-cultured with breast cancer MDA-MB-231 and MCF7 cells and the impact of podoplanin expressed by fibroblasts on migration and invasiveness of breast cancer cells were studied in vitro. Migratory and invasive properties of breast cancer cells were not affected by the presence of podoplanin on the surface of fibroblasts. However, ectopic expression of podoplanin highly increases the migration of MSU1.1 and Hs 578Bst fibroblasts. The present study also revealed for the first time, that podoplanin expression affects the formation of pseudo tubes by endothelial cells. When human HSkMEC cells were co-cultured with podoplanin-rich fibroblasts the endothelial cell capillary-like network was characterized by significantly lower numbers of nodes and meshes than in co-cultures of endothelial cells with podoplanin-negative fibroblasts. The question remains as to how our experimental data can be correlated with previous clinical data showing an association between the presence of podoplanin-positive cancer-associated fibroblasts and progression of breast cancer. Therefore, we propose that expression of podoplanin by fibroblasts facilitates their movement into the tumor stroma, which creates a favorable microenvironment for tumor progression by increasing the number of cancer-associated fibroblasts, which produce numerous factors affecting proliferation, survival and invasion of cancer cells. In accordance with this, the present study revealed for the first

  19. Podoplanin increases the migration of human fibroblasts and affects the endothelial cell network formation: A possible role for cancer-associated fibroblasts in breast cancer progression.

    Science.gov (United States)

    Suchanski, Jaroslaw; Tejchman, Anna; Zacharski, Maciej; Piotrowska, Aleksandra; Grzegrzolka, Jedrzej; Chodaczek, Grzegorz; Nowinska, Katarzyna; Rys, Janusz; Dziegiel, Piotr; Kieda, Claudine; Ugorski, Maciej

    2017-01-01

    In our previous studies we showed that in breast cancer podoplanin-positive cancer-associated fibroblasts correlated positively with tumor size, grade of malignancy, lymph node metastasis, lymphovascular invasion and poor patients' outcome. Therefore, the present study was undertaken to assess if podoplanin expressed by fibroblasts can affect malignancy-associated properties of breast cancer cells. Human fibroblastic cell lines (MSU1.1 and Hs 578Bst) overexpressing podoplanin and control fibroblasts were co-cultured with breast cancer MDA-MB-231 and MCF7 cells and the impact of podoplanin expressed by fibroblasts on migration and invasiveness of breast cancer cells were studied in vitro. Migratory and invasive properties of breast cancer cells were not affected by the presence of podoplanin on the surface of fibroblasts. However, ectopic expression of podoplanin highly increases the migration of MSU1.1 and Hs 578Bst fibroblasts. The present study also revealed for the first time, that podoplanin expression affects the formation of pseudo tubes by endothelial cells. When human HSkMEC cells were co-cultured with podoplanin-rich fibroblasts the endothelial cell capillary-like network was characterized by significantly lower numbers of nodes and meshes than in co-cultures of endothelial cells with podoplanin-negative fibroblasts. The question remains as to how our experimental data can be correlated with previous clinical data showing an association between the presence of podoplanin-positive cancer-associated fibroblasts and progression of breast cancer. Therefore, we propose that expression of podoplanin by fibroblasts facilitates their movement into the tumor stroma, which creates a favorable microenvironment for tumor progression by increasing the number of cancer-associated fibroblasts, which produce numerous factors affecting proliferation, survival and invasion of cancer cells. In accordance with this, the present study revealed for the first time, that such

  20. Relative biological efficiency of intermediate energy neutrons and 60Co rays for induction of chromosomal aberrations in Chinese hamster fibroblasts

    International Nuclear Information System (INIS)

    Sturelid, S.; Bergman, R.

    1976-01-01

    Intermediate energy neutrons are unique in that a considerable fraction of critical interactions and of dose absorbed is not associated with ionization but with atomic collision. It is still unknown to what extent the qualitative difference in primary damage after atomic collision compared to that of ionization and excitation becomes expressed at biological levels. Chromosomal aberrations were studied in Chinese hamster fibroblasts exposed for 5-8 hours at 22 degree C to intermediate energy neutrons, mean energy 8.5 keV, or to 60 Co-gamma rays. RBE at the 10 per cent aberration frequency level in S-phase were 2.2+-0.6 for total aberrations, 2.1+-0.6 for chromatid breaks and 1.8+-0.5 for exchanges. For each chromatid aberration observed after recovery, about 200 bondbreaking atomic collisions besides 3000 primary iniozations should have occured in DNA. However, the extent to which the aberration response is due to atomic collisions is not clear. (author)

  1. Roles of dental pulp fibroblasts in the recognition of bacterium-related factors and subsequent development of pulpitis

    Directory of Open Access Journals (Sweden)

    Tadashi Nakanishi

    2011-08-01

    Full Text Available As caries-related bacteria invade deeply into dentin and come into close proximity to the pulp, inflammatory cells (such as lymphocytes, macrophages and neutrophils infiltrate into the bacterium-invaded area and consequently pulpitis develops. Many types of cytokines and adhesion molecules are responsible for the initiation and progression of pulpitis. Dental pulp fibroblasts, a major cell type in the dental pulp, also have capacity to produce pro-inflammatory cytokines and express adhesion molecules in response to pathogen-associated molecular patterns (PAMPs, including lipopolysaccharide. The innate immune system senses microbial infection using pattern recognition receptors, such as Toll-like receptors (TLRs and nucleotide-binding oligomerization domain (NOD, for PAMPs. In this review, we summarize the roles of dental pulp fibroblasts in the recognition of invaded bacterium-related factors via TLR and NOD pathways, and the subsequent pulpal immune responses, leading to progressive pulpitis.

  2. Role of DNA lesions and DNA repair in mutagenesis by carcinogens in diploid human fibroblasts

    International Nuclear Information System (INIS)

    Maher, V.M.; McCormick, J.J.

    1986-01-01

    The authors investigated the cytotoxicity, mutagenicity, and transforming activity of carcinogens and radiation in diploid human fibroblasts, using cells which differ in their DNA repair capacity. The results indicate that cell killing and induction of mutations are correlated with the number of specific lesions remaining unrepaired in the cells at a particular time posttreatment. DNA excision repair acts to eliminate potentially cytotoxic and mutagenic (and transforming) damage from DNA before these can be converted into permanent cellular effects. Normal human fibroblasts were derived from skin biopsies or circumcision material. Skin fibroblasts from xeroderma pigmentosum (XP) patients provided cells deficient in nucleotide excision repair of pyrimidine dimers or DNA adducts formed by bulky ring structures. Cytotoxicity was determined from loss of ability to form a colony. The genetic marker used was resistance to 6-thioguanine (TG). Transformation was measured by determining the frequency of anchorage-independent cells

  3. Fibrosis in connective tissue disease: the role of the myofibroblast and fibroblast-epithelial cell interactions

    Science.gov (United States)

    Krieg, Thomas; Abraham, David; Lafyatis, Robert

    2007-01-01

    Fibrosis, characterized by excessive extracellular matrix accumulation, is a common feature of many connective tissue diseases, notably scleroderma (systemic sclerosis). Experimental studies suggest that a complex network of intercellular interactions involving endothelial cells, epithelial cells, fibroblasts and immune cells, using an array of molecular mediators, drives the pathogenic events that lead to fibrosis. Transforming growth factor-β and endothelin-1, which are part of a cytokine hierarchy with connective tissue growth factor, are key mediators of fibrogenesis and are primarily responsible for the differentiation of fibroblasts toward a myofibroblast phenotype. The tight skin mouse (Tsk-1) model of cutaneous fibrosis suggests that numerous other genes may also be important. PMID:17767742

  4. Stromal fibroblasts derived from mammary gland of bovine with mastitis display inflammation-specific changes

    OpenAIRE

    Chen, Qing; He, Guiliang; Zhang, Wenyao; Xu, Tong; Qi, Hongliang; Li, Jing; Zhang, Yong; Gao, Ming-Qing

    2016-01-01

    Fibroblasts are predominant components of mammary stromal cells and play crucial roles in the development and involution of bovine mammary gland; however, whether these cells contribute to mastitis has not been demonstrated. Thus, we have undertaken biological and molecular characterization of inflammation-associated fibroblasts (INFs) extracted from bovine mammary glands with clinical mastitis and normal fibroblasts (NFs) from slaughtered dairy cows because of fractured legs during lactation...

  5. Protective role of vitamin E preconditioning of human dermal fibroblasts against thermal stress in vitro.

    Science.gov (United States)

    Butt, Hira; Mehmood, Azra; Ali, Muhammad; Tasneem, Saba; Anjum, Muhammad Sohail; Tarar, Moazzam N; Khan, Shaheen N; Riazuddin, Sheikh

    2017-09-01

    Oxidative microenvironment of burnt skin restricts the outcome of cell based therapies of thermal skin injuries. The aim of this study was to precondition human dermal fibroblasts with an antioxidant such as vitamin E to improve their survival and therapeutic abilities in heat induced oxidative in vitro environment. Fibroblasts were treated with 100μM vitamin E for 24h at 37°C followed by heat shock for 10min at 51°C in fresh serum free medium. Preconditioning with vitamin E reduced cell injury as demonstrated by decreased expression of annexin-V, cytochrome p450 (CYP450) mediated oxidative reactions, senescence and release of lactate dehydrogenase (LDH) accomplished by down-regulated expression of pro-apoptotic BAX gene. Vitamin E preconditioned cells exhibited remarkable improvement in cell viability, release of paracrine factors such as epidermal growth factor (EGF), basic fibroblast growth factor (bFGF), vascular endothelial growth factor (VEGF), stromal derived factor-1alpha (SDF-1α) and also showed significantly up-regulated levels of PCNA, VEGF, BCL-XL, FGF7, FGF23, FLNβ and Col7α genes presumably through activation of phosphatidylinositol 3-kinase (PI3-K)/Akt pathway. The results suggest that pretreatment of fibroblasts with vitamin E prior to transplantation in burnt skin speeds up the wound healing process by improving the antioxidant scavenging responses in oxidative environment of transplanted burn wounds. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Possible role of ginsenoside Rb1 in skin wound healing via regulating senescent skin dermal fibroblast.

    Science.gov (United States)

    Hou, Jingang; Kim, Sunchang

    2018-05-05

    Cellular senescence suppresses cancer by inducing irreversible cell growth arrest. Nevertheless, senescent cells is proposed as causal link with aging and aging-related pathologies. The physiological beneficial functions of senescent cells are still of paucity. Here we show that senescent human dermal fibroblast accelerates keratinocytes scratch wound healing and stimulates differentiation of fibroblast. Using oxidative stress (100 μM H 2 O 2 exposure for 1 h) induction, we successfully triggered fibroblast senescence and developed senescence associated secretory phenotype (SASP). The induction of SASP was regulated by p38MAPK/MSK2/NF-κB pathway. Interestingly, inhibition of p38MAPK activation only partially suppressed SASP. However, SASP was significantly inhibited by SB747651A, a specific MSK inhibitor. Additionally, we demonstrate that SASP stimulates migration of keratinocytes and myofibroblast transition of fibroblast, through fold-increased secretion of growth factors, platelet-derived growth factor AA (PDGF-AA) and AB (PDGF-AB), transforming growth factor beta 1 (TGF-β1) and beta 2 (TGF-β2), vascular endothelial growth factor A (VEGF-A) and D (VEGF-D), vascular endothelial growth factor receptor 2 (VEGFR2) and 3 (VEGFR3). Importantly, we also confirmed ginsenoside Rb1 promoted SASP-mediated healing process via p38MAPK/MSK2/NF-κB pathway. The results pointed to senescent fibroblast as a potential mechanism of wound healing control in human skin. Further, it provided a candidate targeted for wound therapy. Copyright © 2018 Elsevier Inc. All rights reserved.

  7. Chlorhexidine-induced apoptosis or necrosis in L929 fibroblasts: A role for endoplasmic reticulum stress

    International Nuclear Information System (INIS)

    Faria, Gisele; Cardoso, Cristina R.B.; Larson, Roy E.; Silva, Joao S.; Rossi, Marcos A.

    2009-01-01

    Chlorhexidine (CHX), widely used as antiseptic and therapeutic agent in medicine and dentistry, has a toxic effect both in vivo and in vitro. The intrinsic mechanism underlying CHX-induced cytotoxicity in eukaryotic cells is, however, still unknown. A recent study from our laboratory has suggested that CHX may induce death in cultured L929 fibroblasts via endoplasmic reticulum (ER) stress. This hypothesis was further tested by means of light and electron microscopy, quantification of apoptosis and necrosis by flow cytometry, fluorescence visualization of the cytoskeleton and endoplasmic reticulum, and evaluation of the expression of 78-kDa glucose-regulated protein 78 (Grp78), a marker of activation of the unfolded protein response (UPR) in cultured L929 fibroblasts. Our finding showing increased Grp 78 expression in CHX-treated cells and the results of flow cytometry, cytoskeleton and endoplasmic reticulum fluorescence visualization, and scanning and transmission electron microscopy allowed us to suggest that CHX elicits accumulation of proteins in the endoplasmic reticulum, which causes ER overload, resulting in ER stress and cell death either by necrosis or apoptosis. It must be pointed out, however, that this does not necessarily mean that ER stress is the only way that CHX kills L929 fibroblasts, but rather that ER stress is an important target or indicator of cell death induced by this drug

  8. Matrix metalloproteinase 1: role in sarcoma biology.

    Directory of Open Access Journals (Sweden)

    Muhammad Umar Jawad

    2010-12-01

    Full Text Available In carcinomas stromal cells participate in cancer progression by producing proteases such as MMPs. The expression MMP1 is a prognostic factor in human chondrosarcoma, however the role in tumor progression is unknown. Laser capture microdissection and In Situ hybridization were used to determine cellular origin of MMP1 in human sarcomas. A xenogenic model of tumor progression was then used and mice were divided in two groups: each harboring either the control or a stably MMP1 silenced cell line. Animals were sacrificed; the neovascularization, primary tumor volumes, and metastatic burden were assessed. LCM and RNA-ISH analysis revealed MMP1 expression was predominantly localized to the tumor cells in all samples of sarcoma (p = 0.05. The percentage lung metastatic volume at 5 weeks (p = 0.08 and number of spontaneous deaths secondary to systemic tumor burden were lower in MMP1 silenced cell bearing mice. Interestingly, this group also demonstrated a larger primary tumor size (p<0.04 and increased angiogenesis (p<0.01. These findings were found to be consistent when experiment was repeated using a second independent MMP1 silencing sequence. Prior clinical trials employing MMP1 inhibitors failed because of a poor understanding of the role of MMPs in tumor progression. The current findings indicating tumor cell production of MMP1 by sarcoma cells is novel and highlights the fundamental differences in MMP biology between carcinomas and sarcomas. The results also emphasize the complex roles of MMP in tumor progression of sarcomas. Not only does metastasis seem to be affected by MMP1 silencing, but also local tumor growth and angiogenesis are affected inversely.

  9. The intriguing role of fibroblasts and c-Jun in the chemopreventive and therapeutic effect of finasteride on xenograft models of prostate cancer

    Directory of Open Access Journals (Sweden)

    Yi-Nong Niu

    2016-01-01

    Full Text Available In a large clinical trial, finasteride reduced the rate of low-grade prostate cancer (PCa while increasing the incidence of high-grade cancer. Whether finasteride promotes the development of high-grade tumors remains controversial. We demonstrated the role of fibroblasts and c-Jun in chemopreventive and therapeutic effect of finasteride on xenograft models of PCa. LNCaP (PC3 cells or recombinants of cancer cells and fibroblasts were implanted in male athymic nude mice treated with finasteride. Tumor growth, cell proliferation, apoptosis, p-Akt, and p-ERK1/2 were evaluated. In LNCaP (PC3 mono-grafted models, finasteride did not change the tumor growth. In recombinant-grafted models, fibroblasts and c-Jun promoted tumor growth; finasteride induced proliferation of LNCaP cells and repressed PC3 cell apoptosis. When c-Jun was knocked out, fibroblasts and/or finasteride did not promote the tumor growth. Finasteride inhibited p-Akt and p-ERK1/2 in mono-culture cancer cells while stimulating the same signaling molecules in the presence of fibroblasts. Reduced p-Akt and p-ERK1/2 were noted in the presence of c-Jun−/− fibroblasts. Fibroblasts and c-Jun promote PCa growth; finasteride further stimulates tumor growth with promoted proliferation, repressed apoptosis, and up-regulated pro-proliferative molecular pathway in the presence of fibroblasts and c-Jun. Stromal-epithelial interactions play critical roles in finasteride′s therapeutic effects on PCa. Our findings have preliminary implications in using finasteride as a chemopreventive or therapeutic agent for PCa patients.

  10. Expression and role of fibroblast activation protein-alpha in microinvasive breast carcinoma

    Directory of Open Access Journals (Sweden)

    Hua Xing

    2011-11-01

    Full Text Available Abstract Background Diagnosis of ductal carcinoma in situ (DCIS in breast cancer cases is challenging for pathologist due to a variety of in situ patterns and artefacts, which could be misinterpreted as stromal invasion. Microinvasion is detected by the presence of cytologically malignant cells outside the confines of the basement membrane and myoepithelium. When malignant cells invade the stroma, there is tissue remodeling induced by perturbed stromal-epithelial interactions. Carcinoma-associated fibroblasts (CAFs are main cells in the microenvironment of the remodeled tumor-host interface. They are characterized by the expression of the specific fibroblast activation protein-alpha (FAP-α, and differ from that of normal fibroblasts exhibiting an immunophenotype of CD34. We hypothesized that staining for FAP-α may be helpful in determining whether DCIS has microinvasion. Methods 349 excised breast specimens were immunostained for smooth muscle actin SMA, CD34, FAP-α, and Calponin. Study material was divided into 5 groups: group 1: normal mammary tissues of healthy women after plastic surgery; group 2: usual ductal hyperplasia (UDH; group 3: DCIS without microinvasion on H & E stain; group 4: DCIS with microinvasion on H & E stain (DCIS-MI, and group 5: invasive ductal carcinoma (IDC. A comparative evaluation of the four immunostains was conducted. Results Our results demonstrated that using FAP-α and Calponin adjunctively improved the sensitivity of pathological diagnosis of DCIS-MI by 11.29%, whereas the adjunctive use of FAP-α and Calponin improved the sensitivity of pathological diagnosis of DCIS by 13.6%. Conclusions This study provides the first evidence that immunostaining with FAP-α and Calponin can serve as a novel marker for pathologically diagnosing whether DCIS has microinvasion.

  11. Key role of the kidney in the regulation of fibroblast growth factor 23

    DEFF Research Database (Denmark)

    Mace, Maria L; Gravesen, Eva; Hofman-Bang, Jacob

    2015-01-01

    was significantly increased in BNX rats. The rapid rise in FGF23 after BNX was independent of parathyroid hormone or FGF receptor signaling. No evidence of early stimulation of FGF23 gene expression in the bone was found. Furthermore, acute severe hyperphosphatemia or hypercalcemia had no impact on intact FGF23......High circulating levels of fibroblast growth factor 23 (FGF23) have been demonstrated in kidney failure, but mechanisms of this are not well understood. Here we examined the impact of the kidney on the early regulation of intact FGF23 in acute uremia as induced by bilateral or unilateral...

  12. Protective role for miR-9-5p in the fibrogenic transformation of human dermal fibroblasts.

    Science.gov (United States)

    Miguel, Verónica; Busnadiego, Oscar; Fierro-Fernández, Marta; Lamas, Santiago

    2016-01-01

    Excessive accumulation of extracellular matrix (ECM) proteins is the hallmark of fibrotic diseases, including skin fibrosis. This response relies on the activation of dermal fibroblasts that evolve into a pro-fibrogenic phenotype. One of the major players in this process is the cytokine transforming growth factor-β (TGF-β). MicroRNAs (miRNAs) are small non-coding RNAs that post-transcriptionally regulate gene expression affecting a wide range of pathophysiological events including fibrogenesis. MicroRNA-9-5p (miR-9-5p) has been shown to exert a protective role in lung and peritoneal fibrosis. This study aimed to evaluate the role of miR-9-5p in skin fibrosis. miR-9-5p is up-regulated in TGF-β1-treated human dermal fibroblasts (HDFs). In silico identification of miR-9-5p targets spotted the type II TGF-β receptor (TGFBR2) as a potential TGF-β signaling-related effector for this miRNA. Consistently, over-expression of miR-9-5p in HDFs down-regulated TGFBR2 at both the mRNA and protein levels and reduced the phosphorylation of Smad2 and the translocation of Smad2/3 to the nucleus. In keeping, over-expression of miR-9-5p significantly delayed TGF-β1-dependent transformation of dermal fibroblasts, decreasing the expression of ECM protein collagen, type I, alpha 1 (Col1α1), and fibronectin (FN), the amount of secreted collagen proteins, and the expression of the archetypal myofibroblast marker alpha-smooth muscle actin (α-SMA). By contrast, specific inhibition of miR-9-5p resulted in enhanced presence of fibrosis markers. The expression of miR-9-5p was also detected in the skin and plasma in the mouse model of bleomycin-induced dermal fibrosis. Using lentiviral constructs, we demonstrated that miR-9-5p over-expression was also capable of deterring fibrogenesis in this same model. miR-9-5p significantly prevents fibrogenesis in skin fibrosis. This is mediated by an abrogation of TGF-β-mediated signaling through the down-regulation of TGFBR2 expression in HDFs

  13. Fibroblast growth factor 21 has no direct role in regulating fertility in female mice

    Directory of Open Access Journals (Sweden)

    Garima Singhal

    2016-08-01

    Full Text Available Objective: Reproduction is an energetically expensive process. Insufficient calorie reserves, signaled to the brain through peripheral signals such as leptin, suppress fertility. Recently, fibroblast growth factor 21 (FGF21 was implicated as a signal from the liver to the hypothalamus that directly inhibits the hypothalamic–gonadotropin axis during fasting and starvation. However, FGF21 itself increases metabolic rate and can induce weight loss, which suggests that the effects of FGF21 on fertility may not be direct and may reflect changes in energy balance. Methods: To address this important question, we evaluated fertility in several mouse models with elevated FGF21 levels including ketogenic diet fed mice, fasted mice, mice treated with exogenous FGF21 and transgenic mice over-expressing FGF21. Results: We find that ketogenic diet fed mice remain fertile despite significant elevation in serum FGF21 levels. Absence of FGF21 does not alter transient infertility induced by fasting. Centrally infused FGF21 does not suppress fertility despite its efficacy in inducing browning of inguinal white adipose tissue. Furthermore, a high fat diet (HFD can restore fertility of female FGF21-overexpressing mice, a model of growth restriction, even in the presence of supraphysiological serum FGF21 levels. Conclusions: We conclude that FGF21 is not a direct physiological regulator of fertility in mice. The infertility observed in FGF21 overexpressing mice is likely driven by the increased energy expenditure and consequent excess calorie requirements resulting from high FGF21 levels. Keywords: FGF21, Fertility, Leptin, Hypothalamic action

  14. Improved Fibroblast Functionalities by Microporous Pattern Fabricated by Microelectromechanical Systems

    Science.gov (United States)

    Wei, Hongbo; Zhao, Lingzhou; Chen, Bangdao; Bai, Shizhu; Zhao, Yimin

    2014-01-01

    Fibroblasts, which play an important role in biological seal formation and maintenance, determine the long-term success of percutaneous implants. In this study, well-defined microporous structures with micropore diameters of 10–60 µm were fabricated by microelectromechanical systems and their influence on the fibroblast functionalities was observed. The results show that the microporous structures with micropore diameters of 10–60 µm did not influence the initial adherent fibroblast number; however, those with diameters of 40 and 50 µm improved the spread, actin stress fiber organization, proliferation and fibronectin secretion of the fibroblasts. The microporous structures with micropore diameters of 40–50 µm may be promising for application in the percutaneous part of an implant. PMID:25054322

  15. Improved Fibroblast Functionalities by Microporous Pattern Fabricated by Microelectromechanical Systems

    Directory of Open Access Journals (Sweden)

    Hongbo Wei

    2014-07-01

    Full Text Available Fibroblasts, which play an important role in biological seal formation and maintenance, determine the long-term success of percutaneous implants. In this study, well-defined microporous structures with micropore diameters of 10–60 µm were fabricated by microelectromechanical systems and their influence on the fibroblast functionalities was observed. The results show that the microporous structures with micropore diameters of 10–60 µm did not influence the initial adherent fibroblast number; however, those with diameters of 40 and 50 µm improved the spread, actin stress fiber organization, proliferation and fibronectin secretion of the fibroblasts. The microporous structures with micropore diameters of 40–50 µm may be promising for application in the percutaneous part of an implant.

  16. DNA polymerases beta and lambda mediate overlapping and independent roles in base excision repair in mouse embryonic fibroblasts.

    Directory of Open Access Journals (Sweden)

    Elena K Braithwaite

    2010-08-01

    Full Text Available Base excision repair (BER is a DNA repair pathway designed to correct small base lesions in genomic DNA. While DNA polymerase beta (pol beta is known to be the main polymerase in the BER pathway, various studies have implicated other DNA polymerases in back-up roles. One such polymerase, DNA polymerase lambda (pol lambda, was shown to be important in BER of oxidative DNA damage. To further explore roles of the X-family DNA polymerases lambda and beta in BER, we prepared a mouse embryonic fibroblast cell line with deletions in the genes for both pol beta and pol lambda. Neutral red viability assays demonstrated that pol lambda and pol beta double null cells were hypersensitive to alkylating and oxidizing DNA damaging agents. In vitro BER assays revealed a modest contribution of pol lambda to single-nucleotide BER of base lesions. Additionally, using co-immunoprecipitation experiments with purified enzymes and whole cell extracts, we found that both pol lambda and pol beta interact with the upstream DNA glycosylases for repair of alkylated and oxidized DNA bases. Such interactions could be important in coordinating roles of these polymerases during BER.

  17. Role of biologics in intractable urticaria

    Directory of Open Access Journals (Sweden)

    Cooke A

    2015-04-01

    Full Text Available Andrew Cooke,1 Adeeb Bulkhi,1,2 Thomas B Casale1 1Department of Internal Medicine, Division of Allergy and Immunology, University of South Florida, Tampa, FL, USA; 2Department of Internal Medicine, College of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia Abstract: Chronic urticaria (CU is a common condition faced by many clinicians. CU has been estimated to affect approximately 0.5%–1% of the population, with nearly 20% of sufferers remaining symptomatic 20 years after onset. Antihistamines are the first-line therapy for CU. Unfortunately, nearly half of these patients will fail this first-line therapy and require other medication, including immune response modifiers or biologics. Recent advances in our understanding of urticarial disorders have led to more targeted therapeutic options for CU and other urticarial diseases. The specific biologic agents most investigated for antihistamine-refractory CU are omalizumab, rituximab, and intravenous immunoglobulin (IVIG. Of these, the anti-IgE monoclonal antibody omalizumab is the best studied, and has recently been approved for the management of CU. Other agents, such as interleukin-1 inhibitors, have proved beneficial for Schnitzler syndrome and cryopyrin-associated periodic syndromes (CAPS, diseases associated with urticaria. This review summarizes the relevant data regarding the efficacy of biologics in antihistamine-refractory CU. Keywords: chronic urticaria, omalizumab, intravenous immunoglobulin, anakinra, canakinumab

  18. Biological role of lectins: A review

    Directory of Open Access Journals (Sweden)

    K Kiran Kumar

    2012-01-01

    Full Text Available Lectins comprise a stracturally vary diverse class of proteins charecterized by their ability to selectively bind carbohydrate moieties of the glycoproteins of the cell surface. Lectins may be derived from plants, microbial or animal sources and may be soluble or membrane bound. Lectins is a tetramer made up of four nearly identical subunits. In human, lectins have been reported to cause food poisoning, hemolytic anemia, jaundice, digestive distress, protein and carbohydrate malabsorption and type I allergies. The present review focuses on the classification, structures, biological significance and application of lectins.

  19. Increased fibroblast functionality on CNN2-loaded titania nanotubes

    Directory of Open Access Journals (Sweden)

    Wei HB

    2012-02-01

    Full Text Available Hongbo Wei*, Shuyi Wu*, Zhihong Feng, Wei Zhou, Yan Dong, Guofeng Wu, Shizhu Bai, Yimin Zhao Department of Prosthodontics, School of Stomatology, Fourth Military Medical University, Xi'an, People's Republic of China *These authors contributed equally to this workAbstract: Infection and epithelial downgrowth are major problems associated with maxillofacial percutaneous implants. These complications are mainly due to the improper closure of the implant–skin interface. Therefore, designing a percutaneous implant that better promotes the formation of a stable soft tissue biologic seal around percutaneous sites is highly desirable. Additionally, the fibroblast has been proven to play an important role in the formation of biologic seals. In this study, titania nanotubes were filled with 11.2 kDa C-terminal CCN2 (connective tissue growth factor fragment, which could exert full CCN2 activity to increase the biological functionality of fibroblasts. This drug delivery system was fabricated on a titanium implant surface. CCN2 was loaded into anodized titania nanotubes using a simplified lyophilization method and the loading efficiency was approximately 80%. Then, the release kinetics of CCN2 from these nanotubes was investigated. Furthermore, the influence of CCN2-loaded titania nanotubes on fibroblast functionality was examined. The results revealed increased fibroblast adhesion at 0.25, 0.5, 1, 2, 4, and 24 hours, increased fibroblast viability over the course of 5 days, as well as enhanced actin cytoskeleton organization on CCN2-loaded titania nanotubes surfaces compared to uncoated, unmodified counterparts. Therefore, the results from this in vitro study demonstrate that CCN2-loaded titania nanotubes have the ability to increase fibroblast functionality and should be further studied as a method of promoting the formation of a stable soft tissue biologic seal around percutaneous sites.Keywords: anodization, titania nanotubes, adhesion, connective

  20. Expression of podoplanin in stromal fibroblasts plays a pivotal role in the prognosis of patients with pancreatic cancer.

    Science.gov (United States)

    Hirayama, Kazuyoshi; Kono, Hiroshi; Nakata, Yuuki; Akazawa, Yoshihiro; Wakana, Hiroyuki; Fukushima, Hisataka; Fujii, Hideki

    2018-01-01

    To investigate the role of podoplanin (PDPN) expression in invasive ductal carcinoma of the pancreas (IDCP) in humans. Tumor samples were obtained from 95 patients with IDCP. Immunohistochemical staining was done to evaluate the expression of PDPN in cancer tissues. PDPN was detected predominantly in stromal fibroblasts, stained with α-smooth muscle actin. The cutoff value of PDPN-positive areas was calculated according to a histogram. There was no significant difference in clinicopathologic factors between patients with high vs. those with low PDPN expression. The high PDPN group showed significantly poorer disease-free and disease-specific survival rates than the low PDPN group. Among patients from the high PDPN group, those with lymph node metastases and those with a tumor larger than 20 cm in diameter had significantly poorer prognoses than similar patients from the low PDPN group. Multivariate Cox proportional hazards analysis indicated that a high expression of PDPN was an independent risk factor for disease-specific survival. PDPN expression in cancer-related fibrotic tissues is associated with a poor prognosis, especially in patients with large tumors or lymph node metastases.

  1. Chemical Composition of Moringa oleifera Ethyl Acetate Fraction and Its Biological Activity in Diabetic Human Dermal Fibroblasts

    Science.gov (United States)

    Gothai, Sivapragasam; Muniandy, Katyakyini; Zarin, Mazni Abu; Sean, Tan Woan; Kumar, S. Suresh; Munusamy, Murugan A.; Fakurazi, Sharida; Arulselvan, Palanisamy

    2017-01-01

    Background: Moringa oleifera (MO), commonly known as the drumstick tree, is used in folklore medicine for the treatment of skin disease. Objective: The objective of this study is to evaluate the ethyl acetate (EtOAc) fraction of MO leaves for in vitro antibacterial, antioxidant, and wound healing activities and conduct gas chromatography-mass spectrometry (GC-MS) analysis. Materials and Methods: Antibacterial activity was evaluated against six Gram-positive bacteria and 10 Gram-negative bacteria by disc diffusion method. Free radical scavenging activity was assessed by 1, 1-diphenyl-2-picryl hydrazyl (DPPH) radical hydrogen peroxide scavenging and total phenolic content (TPC). Wound healing efficiency was studied using cell viability, proliferation, and scratch assays in diabetic human dermal fibroblast (HDF-D) cells. Results: The EtOAc fraction showed moderate activity against all bacterial strains tested, and the maximum inhibition zone was observed against Streptococcus pyogenes (30 mm in diameter). The fraction showed higher sensitivity to Gram-positive strains than Gram-negative strains. In the quantitative analysis of antioxidant content, the EtOAc fraction was found to have a TPC of 65.81 ± 0.01. The DPPH scavenging activity and the hydrogen peroxide assay were correlated with the TPC value, with IC50 values of 18.21 ± 0.06 and 59.22 ± 0.04, respectively. The wound healing experiment revealed a significant enhancement of cell proliferation and migration of HDF-D cells. GC-MS analysis confirmed the presence of 17 bioactive constituents that may be the principal factors in the significant antibacterial, antioxidant, and wound healing activity. Conclusion: The EtOAc fraction of MO leaves possesses remarkable wound healing properties, which can be attributed to the antibacterial and antioxidant activities of the fraction. SUMMARY Moringa oleifera (MO) leaf ethyl acetate (EtOAc) fraction possesses antibacterial activities toward Gram-positive bacteria such as

  2. Ankyrins: Roles in synaptic biology and pathology.

    Science.gov (United States)

    Smith, Katharine R; Penzes, Peter

    2018-05-03

    Ankyrins are broadly expressed adaptors that organize diverse membrane proteins into specialized domains and link them to the sub-membranous cytoskeleton. In neurons, ankyrins are known to have essential roles in organizing the axon initial segment and nodes of Ranvier. However, recent studies have revealed novel functions for ankyrins at synapses, where they organize and stabilize neurotransmitter receptors, modulate dendritic spine morphology and control adhesion to the presynaptic site. Ankyrin genes have also been highly associated with a range of neurodevelopmental and psychiatric diseases, including bipolar disorder, schizophrenia and autism, which all demonstrate overlap in their genetics, mechanisms and phenotypes. This review discusses the novel synaptic functions of ankyrin proteins in neurons, and places these exciting findings in the context of ANK genes as key neuropsychiatric disorder risk-factors. Copyright © 2018 Elsevier Inc. All rights reserved.

  3. The biological activities of (1,3)-(1,6)-{beta}-d-glucan and porous electrospun PLGA membranes containing {beta}-glucan in human dermal fibroblasts and adipose tissue-derived stem cells

    Energy Technology Data Exchange (ETDEWEB)

    Woo, Yeon I; Park, Bong Joo; Kim, Hye-Lee; Lee, Mi Hee; Kim, Jungsung; Park, Jong-Chul [Department of Medical Engineering, Yonsei University College of Medicine, 134 Shinchon-dong, Seodaemun-gu, Seoul 120-752 (Korea, Republic of); Yang, Young-Il [Department of Pathology, School of Medicine, Paik Institute for Clinical Research, Inje University, 633-165 Gae-dong, Busan-jin-gu, Busan 614-735 (Korea, Republic of); Kim, Jung Koo [Department of Biomedical Engineering, College of Biomedical Science and Engineering, Inje University, Kimhae 621-749 (Korea, Republic of); Tsubaki, Kazufumi [R and D division, Asahi Denka Co. Ltd, 7-2-35 Higashi-ogu, Arakawa-ku, Tokyo 116-8554 (Japan); Han, Dong-Wook, E-mail: parkjc@yuhs.a [Department of Nanomedical Engineering, College of Nanoscience and Nanotechnology, Pusan National University, geumjeong-gu, Busan 609-735 (Korea, Republic of)

    2010-08-01

    In this study, we investigated the possible roles of (1,3)-(1,6)-{beta}-d-glucan ({beta}-glucan) and porous electrospun poly-lactide-co-glycolide (PLGA) membranes containing {beta}-glucan for skin wound healing, especially their effect on adult human dermal fibroblast (aHDF) and adipose tissue-derived stem cell (ADSC) activation, proliferation, migration, collagen gel contraction and biological safety tests of the prepared membrane. This study demonstrated that {beta}-glucan and porous PLGA membranes containing {beta}-glucan have enhanced the cellular responses, proliferation and migration, of aHDFs and ADSCs and the result of a collagen gel contraction assay also revealed that collagen gels contract strongly after 4 h post-gelation incubation with {beta}-glucan. Furthermore, we confirmed that porous PLGA membranes containing {beta}-glucan are biologically safe for wound healing study. These results indicate that the porous PLGA membranes containing {beta}-glucan interacted favorably with the membrane and the topical administration of {beta}-glucan was useful in promoting wound healing. Therefore, our study suggests that {beta}-glucan and porous PLGA membranes containing {beta}-glucan may be useful as a material for enhancing wound healing.

  4. Adverse fibrosis in the aging heart depends on signaling between myeloid and mesenchymal cells; role of inflammatory fibroblasts.

    Science.gov (United States)

    Cieslik, Katarzyna A; Trial, JoAnn; Crawford, Jeffrey R; Taffet, George E; Entman, Mark L

    2014-05-01

    Aging has been associated with adverse fibrosis. Here we formulate a new hypothesis and present new evidence that unresponsiveness of mesenchymal stem cells (MSC) and fibroblasts to transforming growth factor beta (TGF-β), due to reduced expression of TGF-β receptor I (TβRI), provides a foundation for cardiac fibrosis in the aging heart via two mechanisms. 1) TGF-β promotes expression of Nanog, a transcription factor that retains MSC in a primitive state. In MSC derived from the aging heart, Nanog expression is reduced and therefore MSC gradually differentiate and the number of mesenchymal fibroblasts expressing collagen increases. 2) As TGF-β signaling pathway components negatively regulate transcription of monocyte chemoattractant protein-1 (MCP-1), a reduced expression of TβRI prevents aging mesenchymal cells from shutting down their own MCP-1 expression. Elevated MCP-1 levels that originated from MSC attract transendothelial migration of mononuclear leukocytes from blood to the tissue. MCP-1 expressed by mesenchymal fibroblasts promotes further migration of monocytes and T lymphocytes away from the endothelial barrier and supports the monocyte transition into macrophages and finally into myeloid fibroblasts. Both myeloid and mesenchymal fibroblasts contribute to fibrosis in the aging heart via collagen synthesis. This article is part of a Special Issue entitled "Myocyte-Fibroblast Signalling in Myocardium ". © 2013. Published by Elsevier Ltd. All rights reserved.

  5. Hormetic effects of noncoplanar PCB exposed to human lung fibroblast cells (HELF) and possible role of oxidative stress.

    Science.gov (United States)

    Hashmi, Muhammad Zaffar; Khan, Kiran Yasmin; Hu, Jinxing; Naveedullah; Su, Xiaomei; Abbas, Ghulam; Yu, Chunna; Shen, Chaofeng

    2015-12-01

    Hormesis, a biphasic dose-response phenomenon, which is characterized by stimulation of an end point at a low-dose and inhibition at a high-dose. In the present study we used human lungs fibroblast (HELF) cells as a test model to evaluate the role of oxidative stress (OS) in hormetic effects of non coplanar PCB 101. Results from 3-(4,5-dime-thylthiazol-2-yl)-2,5-diphenyltetrazo-lium bromide (MTT) assay indicated that PCB101 at lower concentrations (10(-5) to 10(-1) μg mL(-1) ) stimulated HELF cell proliferation and inhibited at high concentrations (1, 5, 10, and 20 μg mL(-1) ) in a dose- and time-dependent manner. Reactive oxygen species (ROS), malondialdehyde (MDA) and superoxide dismutase (SOD) (except 48 h) showed a significant increase at higher concentrations of PCB 101 than those at the lower concentrations with the passage of time. Antioxidant enzymes such as glutathione peroxidase (GSH-Px) exhibited decreasing trends in dose and time dependent manner. Lipid peroxidation assay resulted in a significant increase (P PCB 101-treated HELF cells compared with controls, suggesting that OS plays a key role in PCB 101-induced toxicity. Comet assay indicated a significant increase in genotoxicity at higher concentrations of PCB 101 exposure compared to lower concentrations. Overall, we found that HELF cell proliferation was higher at low ROS level and vice versa, which revealed activation of cell signaling-mediated hormetic mechanisms. The results suggested that PCB 101 has hormetic effects to HELF cells and these were associated with oxidative stress. © 2014 Wiley Periodicals, Inc.

  6. Role of cytogenetic techniques in biological dosimetry of absorbed radiation

    International Nuclear Information System (INIS)

    Rao, B.S.

    2016-01-01

    In most of the radiation accidents, physical dosimetric information is rarely available. Further, most of the accidental exposures are non-uniform involving either partial body or localized exposure to significant doses. In such situations, physical dosimetry does not provide reliable dose estimate. It has now been realized that biological dosimetric techniques can play an important role in the assessment of absorbed dose. In recent years, a number of biological indicators of radiation have been identified. These include the kinetics of onset and persistence of prodromal syndromes (radiation sickness), cytogenetic changes in peripheral blood lymphocytes, hematological changes, biochemical indicators, ESR spectroscopy of biological samples, induction of gene mutations in red blood cells, cytogenetic and physiological changes in skin and neurophysiological changes. In general, dosimetric information is derived by a combination of several different methods, as they have potential to serve as prognostic indicators. The role of cytogenetic techniques in peripheral blood lymphocytes (PBL) as biological indicators of absorbed radiation is reviewed here

  7. Bone mineralization is regulated by signaling cross talk between molecular factors of local and systemic origin: the role of fibroblast growth factor 23.

    Science.gov (United States)

    Sapir-Koren, Rony; Livshits, Gregory

    2014-01-01

    Body phosphate homeostasis is regulated by a hormonal counter-balanced intestine-bone-kidney axis. The major systemic hormones involved in this axis are parathyroid hormone (PTH), 1,25-dihydroxyvitamin-D, and fibroblast growth factor-23 (FGF23). FGF23, produced almost exclusively by the osteocytes, is a phosphaturic hormone that plays a major role in regulation of the bone remodeling process. Remodeling composite components, bone mineralization and resorption cycles create a continuous influx-efflux loop of the inorganic phosphate (Pi) through the skeleton. This "bone Pi loop," which is formed, is controlled by local and systemic factors according to phosphate homeostasis demands. Although FGF23 systemic actions in the kidney, and for the production of PTH and 1,25-dihydroxyvitamin-D are well established, its direct involvement in bone metabolism is currently poorly understood. This review presents the latest available evidence suggesting two aspects of FGF23 bone local activity: (a) Regulation of FGF23 production by both local and systemic factors. The suggested local factors include extracellular levels of Pi and pyrophosphate (PPi), (the Pi/PPi ratio), and another osteocyte-derived protein, sclerostin. In addition, 1,25-dihydroxyvitamin-D, synthesized locally by bone cells, may contribute to regulation of FGF23 production. The systemic control is achieved via PTH and 1,25-dihydroxyvitamin-D endocrine functions. (b) FGF23 acts as a local agent, directly affecting bone mineralization. We support the assumption that under balanced physiological conditions, sclerostin, by para- autocrine signaling, upregulates FGF23 production by the osteocyte. FGF23, in turn, acts as a mineralization inhibitor, by stimulating the generation of the major mineralization antagonist-PPi. © 2014 International Union of Biochemistry and Molecular Biology.

  8. Biological imaging in radiation therapy: role of positron emission tomography

    Energy Technology Data Exchange (ETDEWEB)

    Nestle, Ursula; Hentschel, Michael; Grosu, Anca-Ligia [Departments of Radiation Oncology, University of Freiburg, Robert Koch Str. 3, 79106 Freiburg (Germany); Weber, Wolfgang [Nuclear Medicine, University of Freiburg, Robert Koch Str. 3, 79106 Freiburg (Germany)], E-mail: ursula.nestle@uniklinik-freiburg.de

    2009-01-07

    In radiation therapy (RT), staging, treatment planning, monitoring and evaluation of response are traditionally based on computed tomography (CT) and magnetic resonance imaging (MRI). These radiological investigations have the significant advantage to show the anatomy with a high resolution, being also called anatomical imaging. In recent years, so called biological imaging methods which visualize metabolic pathways have been developed. These methods offer complementary imaging of various aspects of tumour biology. To date, the most prominent biological imaging system in use is positron emission tomography (PET), whose diagnostic properties have clinically been evaluated for years. The aim of this review is to discuss the valences and implications of PET in RT. We will focus our evaluation on the following topics: the role of biological imaging for tumour tissue detection/delineation of the gross tumour volume (GTV) and for the visualization of heterogeneous tumour biology. We will discuss the role of fluorodeoxyglucose-PET in lung and head and neck cancer and the impact of amino acids (AA)-PET in target volume delineation of brain gliomas. Furthermore, we summarize the data of the literature about tumour hypoxia and proliferation visualized by PET. We conclude that, regarding treatment planning in radiotherapy, PET offers advantages in terms of tumour delineation and the description of biological processes. However, to define the real impact of biological imaging on clinical outcome after radiotherapy, further experimental, clinical and cost/benefit analyses are required. (topical review)

  9. Biological imaging in radiation therapy: role of positron emission tomography.

    Science.gov (United States)

    Nestle, Ursula; Weber, Wolfgang; Hentschel, Michael; Grosu, Anca-Ligia

    2009-01-07

    In radiation therapy (RT), staging, treatment planning, monitoring and evaluation of response are traditionally based on computed tomography (CT) and magnetic resonance imaging (MRI). These radiological investigations have the significant advantage to show the anatomy with a high resolution, being also called anatomical imaging. In recent years, so called biological imaging methods which visualize metabolic pathways have been developed. These methods offer complementary imaging of various aspects of tumour biology. To date, the most prominent biological imaging system in use is positron emission tomography (PET), whose diagnostic properties have clinically been evaluated for years. The aim of this review is to discuss the valences and implications of PET in RT. We will focus our evaluation on the following topics: the role of biological imaging for tumour tissue detection/delineation of the gross tumour volume (GTV) and for the visualization of heterogeneous tumour biology. We will discuss the role of fluorodeoxyglucose-PET in lung and head and neck cancer and the impact of amino acids (AA)-PET in target volume delineation of brain gliomas. Furthermore, we summarize the data of the literature about tumour hypoxia and proliferation visualized by PET. We conclude that, regarding treatment planning in radiotherapy, PET offers advantages in terms of tumour delineation and the description of biological processes. However, to define the real impact of biological imaging on clinical outcome after radiotherapy, further experimental, clinical and cost/benefit analyses are required.

  10. Fibroblastic rheumatism

    Directory of Open Access Journals (Sweden)

    Jyoti Ranjan Parida

    2017-01-01

    Full Text Available Fibroblastic rheumatism (FR is a rare dermoarthopathy reported from different parts of the world since 1980. Although the exact cause is unknown, few reports implicate infection may be a triggering event. Patients usually present with multiple skin nodules and polyarthropathy with progressive skin contractures. Laboratory parameters including acute phase reactants are usually normal. The confirmatory diagnosis is based on histopathologic study of skin nodules, which demonstrate fibroblastic proliferation, thickened collagen fibers, dermal fibrosis, and decreased number of elastic fibers. Immunoreactivity for b-catenin, smooth muscle actin, and the monoclonal antibody HHF35 show myofibroblastic differentiation. Treatments with oral prednisolone and other disease-modifying drugs such as methotrexate, infliximab, and interferon have been tried with variable success. In general, skin lesions respond more aptly than joint symptoms indicating that skin fibroblast is more amenable to treatment than synovial fibroblasts. Awareness regarding this orphan disease among clinicians and pathologists will help in more reporting of such cases and finding out optimal treatment regimen.

  11. Mast cells: potential positive and negative roles in tumor biology.

    Science.gov (United States)

    Marichal, Thomas; Tsai, Mindy; Galli, Stephen J

    2013-11-01

    Mast cells are immune cells that reside in virtually all vascularized tissues. Upon activation by diverse mechanisms, mast cells can secrete a broad array of biologically active products that either are stored in the cytoplasmic granules of the cells (e.g., histamine, heparin, various proteases) or are produced de novo upon cell stimulation (e.g., prostaglandins, leukotrienes, cytokines, chemokines, and growth factors). Mast cells are best known for their effector functions during anaphylaxis and acute IgE-associated allergic reactions, but they also have been implicated in a wide variety of processes that maintain health or contribute to disease. There has been particular interest in the possible roles of mast cells in tumor biology. In vitro studies have shown that mast cells have the potential to influence many aspects of tumor biology, including tumor development, tumor-induced angiogenesis, and tissue remodeling, and the shaping of adaptive immune responses to tumors. Yet, the actual contributions of mast cells to tumor biology in vivo remain controversial. Here, we review some basic features of mast cell biology with a special emphasis on those relevant to their potential roles in tumors. We discuss how using in vivo tumor models in combination with models in which mast cell function can be modulated has implicated mast cells in the regulation of host responses to tumors. Finally, we summarize data from studies of human tumors that suggest either beneficial or detrimental roles for mast cells in tumors. ©2013 AACR.

  12. Circulating immune complexes – reviewing the biological roles in ...

    African Journals Online (AJOL)

    Circulating immune complexes – reviewing the biological roles in human immune function and exercise. ... studies that have investigated CIC's following exercise and proposes that a comprehensive understanding and interpretation of immune system responses to exercise should take these complexes into consideration.

  13. Brain disorders and the biological role of music.

    Science.gov (United States)

    Clark, Camilla N; Downey, Laura E; Warren, Jason D

    2015-03-01

    Despite its evident universality and high social value, the ultimate biological role of music and its connection to brain disorders remain poorly understood. Recent findings from basic neuroscience have shed fresh light on these old problems. New insights provided by clinical neuroscience concerning the effects of brain disorders promise to be particularly valuable in uncovering the underlying cognitive and neural architecture of music and for assessing candidate accounts of the biological role of music. Here we advance a new model of the biological role of music in human evolution and the link to brain disorders, drawing on diverse lines of evidence derived from comparative ethology, cognitive neuropsychology and neuroimaging studies in the normal and the disordered brain. We propose that music evolved from the call signals of our hominid ancestors as a means mentally to rehearse and predict potentially costly, affectively laden social routines in surrogate, coded, low-cost form: essentially, a mechanism for transforming emotional mental states efficiently and adaptively into social signals. This biological role of music has its legacy today in the disordered processing of music and mental states that characterizes certain developmental and acquired clinical syndromes of brain network disintegration. © The Author (2014). Published by Oxford University Press.

  14. The lichens: general considerations. Role as pollution biological indicators

    International Nuclear Information System (INIS)

    Rivaux, E.

    1998-01-01

    After having recalled the morphology and the different classification of lichens, the author presents the main lichenous substances, in particular the depsides and the depsidones. A detailed study on the role of lichens as pollution biological indicators is given. (O.M.)

  15. Role of Matrix Metalloproteinases-1 and -2 in Interleukin-13–Suppressed Elastin in Airway Fibroblasts in Asthma

    Science.gov (United States)

    Slade, David; Church, Tony D.; Francisco, Dave; Heck, Karissa; Sigmon, R. Wesley; Ghio, Michael; Murillo, Anays; Firszt, Rafael; Lugogo, Njira L.; Que, Loretta; Sunday, Mary E.; Kraft, Monica

    2016-01-01

    Elastin synthesis and degradation in the airway and lung parenchyma contribute to airway mechanics, including airway patency and elastic recoil. IL-13 mediates many features of asthma pathobiology, including airway remodeling, but the effects of IL-13 on elastin architecture in the airway wall are not known. We hypothesized that IL-13 modulates elastin expression in airway fibroblasts from subjects with allergic asthma. Twenty-five subjects with mild asthma (FEV1, 89 ± 3% predicted) and 30 normal control subjects (FEV1, 102 ± 2% predicted) underwent bronchoscopy with endobronchial biopsy. Elastic fibers were visualized in airway biopsy specimens using Weigert’s resorcin-fuchsin elastic stain. Airway fibroblasts were exposed to IL-13; a pan-matrix metalloproteinase (MMP) inhibitor (GM6001); specific inhibitors to MMP-1, -2, -3, and -8; and combinations of IL-13 with MMP inhibitors in separate conditions in serum-free media for 48 hours. Elastin (ELN) expression as well as MMP secretion and activity were quantified. Results of this study show that elastic fiber staining of airway biopsy tissue was significantly associated with methacholine PC20 (i.e., the provocative concentration of methacholine resulting in a 20% fall in FEV1 levels) in patients with asthma. IL-13 significantly suppressed ELN expression in asthmatic airway fibroblasts as compared with normal control fibroblasts. The effect of IL-13 on ELN expression was significantly correlated with postbronchodilator FEV1/FVC in patients with asthma. MMP inhibition significantly stimulated ELN expression in patients with asthma as compared with normal control subjects. Specific inhibition of MMP-1 and MMP-2, but not MMP-3 or MMP-8, reversed the IL-13–induced suppression of ELN expression. In asthma, MMP-1 and MMP-2 mediate IL-13–induced suppression of ELN expression in airway fibroblasts. PMID:26074138

  16. Role of Matrix Metalloproteinases-1 and -2 in Interleukin-13-Suppressed Elastin in Airway Fibroblasts in Asthma.

    Science.gov (United States)

    Ingram, Jennifer L; Slade, David; Church, Tony D; Francisco, Dave; Heck, Karissa; Sigmon, R Wesley; Ghio, Michael; Murillo, Anays; Firszt, Rafael; Lugogo, Njira L; Que, Loretta; Sunday, Mary E; Kraft, Monica

    2016-01-01

    Elastin synthesis and degradation in the airway and lung parenchyma contribute to airway mechanics, including airway patency and elastic recoil. IL-13 mediates many features of asthma pathobiology, including airway remodeling, but the effects of IL-13 on elastin architecture in the airway wall are not known. We hypothesized that IL-13 modulates elastin expression in airway fibroblasts from subjects with allergic asthma. Twenty-five subjects with mild asthma (FEV1, 89 ± 3% predicted) and 30 normal control subjects (FEV1, 102 ± 2% predicted) underwent bronchoscopy with endobronchial biopsy. Elastic fibers were visualized in airway biopsy specimens using Weigert's resorcin-fuchsin elastic stain. Airway fibroblasts were exposed to IL-13; a pan-matrix metalloproteinase (MMP) inhibitor (GM6001); specific inhibitors to MMP-1, -2, -3, and -8; and combinations of IL-13 with MMP inhibitors in separate conditions in serum-free media for 48 hours. Elastin (ELN) expression as well as MMP secretion and activity were quantified. Results of this study show that elastic fiber staining of airway biopsy tissue was significantly associated with methacholine PC20 (i.e., the provocative concentration of methacholine resulting in a 20% fall in FEV1 levels) in patients with asthma. IL-13 significantly suppressed ELN expression in asthmatic airway fibroblasts as compared with normal control fibroblasts. The effect of IL-13 on ELN expression was significantly correlated with postbronchodilator FEV1/FVC in patients with asthma. MMP inhibition significantly stimulated ELN expression in patients with asthma as compared with normal control subjects. Specific inhibition of MMP-1 and MMP-2, but not MMP-3 or MMP-8, reversed the IL-13-induced suppression of ELN expression. In asthma, MMP-1 and MMP-2 mediate IL-13-induced suppression of ELN expression in airway fibroblasts.

  17. The role of epigenetics in the biology of multiple myeloma

    DEFF Research Database (Denmark)

    Dimopoulos, K; Gimsing, P; Grønbæk, K

    2014-01-01

    Several recent studies have highlighted the biological complexity of multiple myeloma (MM) that arises as a result of several disrupted cancer pathways. Apart from the central role of genetic abnormalities, epigenetic aberrations have also been shown to be important players in the development of MM......, and a lot of research during the past decades has focused on the ways DNA methylation, histone modifications and noncoding RNAs contribute to the pathobiology of MM. This has led to, apart from better understanding of the disease biology, the development of epigenetic drugs, such as histone deacetylase...... inhibitors that are already used in clinical trials in MM with promising results. This review will present the role of epigenetic abnormalities in MM and how these can affect specific pathways, and focus on the potential of novel 'epidrugs' as future treatment modalities for MM....

  18. Resistance to protein adsorption and adhesion of fibroblasts on nanocrystalline diamond films: the role of topography and boron doping

    Czech Academy of Sciences Publication Activity Database

    Alcaide, M.; Papaioannou, S.; Taylor, Andrew; Fekete, Ladislav; Gurevich, L.; Zachar, V.; Pennisi, C.P.

    2016-01-01

    Roč. 27, č. 5 (2016), s. 90-1-12 ISSN 0957-4530 R&D Projects: GA MŠk LO1409 Grant - others:FUNBIO(XE) CZ.2.16/3.1.00/21568 Institutional support: RVO:68378271 Keywords : protein adsorption * fibroblasts adhesion * nanocrystalline diamond * boron doping * topography Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.325, year: 2016

  19. Suppression of cholesterol synthesis in cultured fibroblasts from a patient with homozygous familial hypercholesterolemia by her own low density lipoprotein density fraction. A possible role of apolipoprotein E

    NARCIS (Netherlands)

    Havekes, L.; Vermeer, B.J.; Wit, E. de

    1980-01-01

    The suppression of cellular cholesterol synthesis by low density lipoprotein (LDL) from a normal and from a homozygous familial hypercholesterolemic subject was measured on normal fibroblasts and on fibroblasts derived from the same homozygous familial hypercholesterolemic patient. On normal

  20. Fibroblast spheroids as a model to study sustained fibroblast quiescence and their crosstalk with tumor cells

    Energy Technology Data Exchange (ETDEWEB)

    Salmenperä, Pertteli, E-mail: pertteli.salmenpera@helsinki.fi [Department of Virology, Medicum, Faculty of Medicine, University of Helsinki, P.O. Box 21, FIN-00014 (Finland); Karhemo, Piia-Riitta [Research Programs Unit, Translational Cancer Biology, and Institute of Biomedicine, University of Helsinki, P.O. Box 63, FIN-00014 (Finland); Räsänen, Kati [Department of Virology, Medicum, Faculty of Medicine, University of Helsinki, P.O. Box 21, FIN-00014 (Finland); Laakkonen, Pirjo [Research Programs Unit, Translational Cancer Biology, and Institute of Biomedicine, University of Helsinki, P.O. Box 63, FIN-00014 (Finland); Vaheri, Antti [Department of Virology, Medicum, Faculty of Medicine, University of Helsinki, P.O. Box 21, FIN-00014 (Finland)

    2016-07-01

    Stromal fibroblasts have an important role in regulating tumor progression. Normal and quiescent fibroblasts have been shown to restrict and control cancer cell growth, while cancer-associated, i. e. activated fibroblasts have been shown to enhance proliferation and metastasis of cancer cells. In this study we describe generation of quiescent fibroblasts in multicellular spheroids and their effects on squamous cell carcinoma (SCC) growth in soft-agarose and xenograft models. Quiescent phenotype of fibroblasts was determined by global down-regulation of expression of genes related to cell cycle and increased expression of p27. Interestingly, microarray analysis showed that fibroblast quiescence was associated with similar secretory phenotype as seen in senescence and they expressed senescence-associated-β-galactosidase. Quiescent fibroblasts spheroids also restricted the growth of RT3 SCC cells both in soft-agarose and xenograft models unlike proliferating fibroblasts. Restricted tumor growth was associated with marginally increased tumor cell senescence and cellular differentiation, showed with senescence-associated-β-galactosidase and cytokeratin 7 staining. Our results show that the fibroblasts spheroids can be used as a model to study cellular quiescence and their effects on cancer cell progression. - Highlights: • Fibroblasts acquire a sustained quiescence when grown as multicellular spheroids. • This quiescence is associated with drastic change in gene expression. • Fibroblasts spheroids secrete various inflammation-linked cytokines and chemokines. • Fibroblasts spheroids reduced growth of RT3 SCC cells in xenograft model.

  1. A role for topographic cues in the organization of collagenous matrix by corneal fibroblasts and stem cells.

    Directory of Open Access Journals (Sweden)

    Dimitrios Karamichos

    Full Text Available Human corneal fibroblasts (HCF and corneal stromal stem cells (CSSC each secrete and organize a thick stroma-like extracellular matrix in response to different substrata, but neither cell type organizes matrix on tissue-culture polystyrene. This study compared cell differentiation and extracellular matrix secreted by these two cell types when they were cultured on identical substrata, polycarbonate Transwell filters. After 4 weeks in culture, both cell types upregulated expression of genes marking differentiated keratocytes (KERA, CHST6, AQP1, B3GNT7. Absolute expression levels of these genes and secretion of keratan sulfate proteoglycans were significantly greater in CSSC than HCF. Both cultures produced extensive extracellular matrix of aligned collagen fibrils types I and V, exhibiting cornea-like lamellar structure. Unlike HCF, CSSC produced little matrix in the presence of serum. Construct thickness and collagen organization was enhanced by TGF-ß3. Scanning electron microscopic examination of the polycarbonate membrane revealed shallow parallel grooves with spacing of 200-300 nm, similar to the topography of aligned nanofiber substratum which we previously showed to induce matrix organization by CSSC. These results demonstrate that both corneal fibroblasts and stromal stem cells respond to a specific pattern of topographical cues by secreting highly organized extracellular matrix typical of corneal stroma. The data also suggest that the potential for matrix secretion and organization may not be directly related to the expression of molecular markers used to identify differentiated keratocytes.

  2. STAT6: its role in interleukin 4-mediated biological functions.

    Science.gov (United States)

    Takeda, K; Kishimoto, T; Akira, S

    1997-05-01

    Interleukin (IL) 4 is known to be a cytokine which plays a central role in the regulation of immune response. Studies on cytokine signal transduction have clarified the mechanism by which IL4 exerts its functions. Two cytoplasmic proteins, signal transducer and activator of transcription (STAT) 6 and IL4-induced phosphotyrosine substrate/insulin receptor substrate 2 (4PS/IRS2), are activated in IL4 signal transduction. Recent studies from STAT6-deficient mice have revealed the essential role of STAT6 in IL4-mediated biological actions. In addition, STAT6 has also been demonstrated to be important for the functions mediated by IL13, which is related to IL4. IL4 and IL13 have been shown to induce the production of IgE, which is a major mediator in an allergic response. These findings indicate that STAT6 activation is involved in IL4- and IL13-mediated disorders such as allergy.

  3. Opposing roles of C/EBPbeta and AP-1 in the control of fibroblast proliferation and growth arrest-specific gene expression

    DEFF Research Database (Denmark)

    Gagliardi, Mark; Maynard, Scott; Miyake, Tetsuaki

    2003-01-01

    in the levels of AP-1 proteins. Therefore, C/EBPbeta is a negative regulator of AP-1 expression and activity in CEF. The expression of cyclin D1 and cell proliferation were stimulated by the dominant negative mutant of C/EBPbeta but not in the presence of TAM67, a dominant negative mutant of c-Jun and AP-1. CEF......Chicken embryo fibroblasts (CEF) express several growth arrest-specific (GAS) gene products in G0. In contact-inhibited cells, the expression of the most abundant of these proteins, the p20K lipocalin, is activated at the transcriptional level by C/EBPbeta. In this report, we describe the role of C....../EBPbeta in CEF proliferation. We show that the expression of a dominant negative mutant of C/EBPbeta (designated Delta184-C/EBPbeta) completely inhibited p20K expression at confluence and stimulated the proliferation of CEF without inducing transformation. Mouse embryo fibroblasts nullizygous for C/EBPbeta had...

  4. Role of insulin-like growth factor-I receptor (IGF-IR) in survival kinetics and radioresistance of mouse embryo fibroblasts in a hypoxic environment

    International Nuclear Information System (INIS)

    Okochi, Kiyoshi

    2002-01-01

    The role of insulin-like growth factor-I receptor (IGF-IR) in survival kinetics and radioresistance of fibroblasts in a severely hypoxic environment (partial oxygen pressure of less than 3 mmHg) was analyzed, in both low and high cell-density conditions. Mouse embryonic fibroblasts R(-), with a targeted disruption of the IGF-IR gene, and R(+) cells, derived from R(-) cells stably transfected with a plasmid containing a human IGF-IR cDNA, were used for this purpose. Survival time in hypoxia was longer in R(+) cells than R(-) cells, which correlated with highly elevated expression of caspase 3-like activity in R(-) cells, but not with HIF-Iα expression. Under euoxia, R(+) cells were more radioresistant, by a factor of 1.9, than R(-) cells. Under hypoxia, R(+) cells became more radioresistant, with an oxygen-enhancement ratio (OER) of 2.7, than R(-) cells, with an OER of 1.5, in a low cell density. However, unexpected hyper-radiosensitivity in hypoxia was observed for both R(+) and R(-) cells in a high cell density, which further increased with incubation time in hypoxia following X-irradiation. The hyper-radiosensitivity was more pronounced for R(-) cells. The result thus implies that IGF-IR may be an important target molecule for radioresistant tumors in radiotherapy. (author)

  5. Investigating the role of c-Jun N-terminal kinases in the proliferation of Werner syndrome fibroblasts using diaminopyridine inhibitors

    Directory of Open Access Journals (Sweden)

    Davis Terence

    2011-12-01

    Full Text Available Abstract Fibroblasts derived from the progeroid Werner syndrome show reduced replicative lifespan and a "stressed" morphology, both alleviated using the MAP kinase inhibitor SB203580. However, interpretation of these data is problematical because although SB203580 has the stress-activated kinases p38 and JNK1/2 as its preferred targets, it does show relatively low overall kinase selectivity. Several lines of data support a role for both p38 and JNK1/2 activation in the control of cellular proliferation and also the pathology of diseases of ageing, including type II diabetes, diseases to which Werner Syndrome individuals are prone, thus making the use of JNK inhibitors attractive as possible therapeutics. We have thus tested the effects of the widely used JNK inhibitor SP600125 on the proliferation and morphology of WS cells. In addition we synthesised and tested two recently described aminopyridine based inhibitors. SP600125 treatment resulted in the cessation of proliferation of WS cells and resulted in a senescent-like cellular phenotype that does not appear to be related to the inhibition of JNK1/2. In contrast, use of the more selective aminopyridine CMPD 6o at concentrations that fully inhibit JNK1/2 had a positive effect on cellular proliferation of immortalised WS cells, but no effect on the replicative lifespan of primary WS fibroblasts. In addition, CMPD 6o corrected the stressed WS cellular morphology. The aminopyridine CMPD 6r, however, had little effect on WS cells. CMDP 6o was also found to be a weak inhibitor of MK2, which may partially explain its effects on WS cells, since MK2 is known to be involved in regulating cellular morphology via HSP27 phosphorylation, and is thought to play a role in cell cycle arrest. These data suggest that total JNK1/2 activity does not play a substantial role in the proliferation control in WS cells.

  6. In vitro biological evaluation of beta-TCP/HDPE--A novel orthopedic composite: a survey using human osteoblast and fibroblast bone cells.

    Science.gov (United States)

    Homaeigohar, S Sh; Shokrgozar, M A; Khavandi, A; Sadi, A Yari

    2008-02-01

    Beta-tricalcium phosphate reinforced high density polyethylene (beta-TCP/HDPE) was prepared to simulate bone composition and to study its capacity to act as bone tissue. This material was produced by replacing the mineral component and collagen soft tissue of the bone with beta-TCP and HDPE, respectively. The biocompatibility of the composite samples with different volume fractions of TCP (20, 30 and 40 vol %) was examined in vitro using two osteoblast cell lines G-292 and Saos-2, and also a type of fibroblast cell isolated from bone tissue, namely human bone fibroblast (HBF) by proliferation, and cell adhesion assays. Cell-material interaction with the surface of the composite samples was examined by scanning electron microscopy (SEM). The effect of beta-TCP/HDPE on the behavior of osteoblast and fibroblast cells was compared with those of composite and negative control samples; polyethylene (PE) and tissue culture polystyrene (TPS), respectively. In general, the results showed that the composite samples containing beta-TCP as reinforcement supported a higher rate of proliferation by various bone cells after 3, 7, and 14 days of incubation compared to the composite control sample. Furthermore, more osteoblast cells were attached to the surface of the composite samples when compared to the composite control samples after the above incubation periods (p HDPE composites are biocompatible, nontoxic, and act to stimulate proliferation and adhesion of the cells, whether osteoblast or fibroblast. (c) 2007 Wiley Periodicals, Inc. J Biomed Mater Res, 2008.

  7. Roles of Nicotinamide Adenine Dinucleotide (NAD+ in Biological Systems

    Directory of Open Access Journals (Sweden)

    Palmiro Poltronieri

    2018-01-01

    Full Text Available NAD+ has emerged as a crucial element in both bioenergetic and signaling pathways since it acts as a key regulator of cellular and organism homeostasis. NAD+ is a coenzyme in redox reactions, a donor of adenosine diphosphate-ribose (ADPr moieties in ADP-ribosylation reactions, a substrate for sirtuins, a group of histone deacetylase enzymes that use NAD+ to remove acetyl groups from proteins; NAD+ is also a precursor of cyclic ADP-ribose, a second messenger in Ca++ release and signaling, and of diadenosine tetraphosphate (Ap4A and oligoadenylates (oligo2′-5′A, two immune response activating compounds. In the biological systems considered in this review, NAD+ is mostly consumed in ADP-ribose (ADPr transfer reactions. In this review the roles of these chemical products are discussed in biological systems, such as in animals, plants, fungi and bacteria. In the review, two types of ADP-ribosylating enzymes are introduced as well as the pathways to restore the NAD+ pools in these systems.

  8. Changes in the gene expression of co-cultured human fibroblast cells and osteosarcoma cells: the role of microenvironment.

    Science.gov (United States)

    Salvatore, Viviana; Focaroli, Stefano; Teti, Gabriella; Mazzotti, Antonio; Falconi, Mirella

    2015-10-06

    The progression of malignant tumors does not depend exclusively on the autonomous properties of cancer cells; it is also influenced by tumor stroma reactivity and is under strict microenvironmental control. By themselves, stromal cells are not malignant, and they maintain normal tissue structure and function. However, through intercellular interactions or by paracrine secretions from cancer cells, normal stromal cells acquire abnormal phenotypes that sustain cancer cell growth and tumor progression. In their dysfunctional state, fibroblast and immune cells produce chemokines and growth factors that stimulate cancer cell growth and invasion. In our previous work, we established an in vitro model based on a monolayer co-culture system of healthy human fibroblasts (HFs) and human osteosarcoma cells (the MG-63 cell line) that simulates the microenvironment of tumor cells and healthy cells. The coexistence between MG-63 cells and HFs allowed us to identify the YKL-40 protein as the main marker for verifying the influence of tumor cells grown in contact with healthy cells. In this study, we evaluated the interactions of HFs and MG-63 cells in a transwell co-culture system over 24 h, 48 h, 72 h, and 96 h. We analyzed the contributions of these populations to the tumor microenvironment during cancer progression, as measured by multiple markers. We examined the effect of siRNA knockdown of YKL-40 by tracking the subsequent changes in gene expression within the co-culture. We validated the expression of several genes, focusing on those involved in cancer cell invasion, inflammatory responses, and angiogenesis: TNF alpha, IL-6, MMP-1, MMP-9, and VEGF. We compared the results to those from a transwell co-culture without the YKL-40 knockdown. In a pro-inflammatory environment promoted by TNF alpha and IL-6, siRNA knockdown of YKL-40 caused a down-regulation of VEGF and MMP-1 expression in HFs. These findings demonstrated that the tumor microenvironment has an influence on the

  9. Temporal activation of anti- and pro-apoptotic factors in human gingival fibroblasts infected with the periodontal pathogen, Porphyromonas gingivalis: potential role of bacterial proteases in host signalling

    Directory of Open Access Journals (Sweden)

    Takehara Tadamichi

    2006-03-01

    Full Text Available Abstract Background Porphyromonas gingivalis is the foremost oral pathogen of adult periodontitis in humans. However, the mechanisms of bacterial invasion and the resultant destruction of the gingival tissue remain largely undefined. Results We report host-P. gingivalis interactions in primary human gingival fibroblast (HGF cells. Quantitative immunostaining revealed the need for a high multiplicity of infection for optimal infection. Early in infection (2–12 h, P. gingivalis activated the proinflammatory transcription factor NF-kappa B, partly via the PI3 kinase/AKT pathway. This was accompanied by the induction of cellular anti-apoptotic genes, including Bfl-1, Boo, Bcl-XL, Bcl2, Mcl-1, Bcl-w and Survivin. Late in infection (24–36 h the anti-apoptotic genes largely shut down and the pro-apoptotic genes, including Nip3, Hrk, Bak, Bik, Bok, Bax, Bad, Bim and Moap-1, were activated. Apoptosis was characterized by nuclear DNA degradation and activation of caspases-3, -6, -7 and -9 via the intrinsic mitochondrial pathway. Use of inhibitors revealed an anti-apoptotic function of NF-kappa B and PI3 kinase in P. gingivalis-infected HGF cells. Use of a triple protease mutant P. gingivalis lacking three major gingipains (rgpA rgpB kgp suggested a role of some or all these proteases in myriad aspects of bacteria-gingival interaction. Conclusion The pathology of the gingival fibroblast in P. gingivalis infection is affected by a temporal shift from cellular survival response to apoptosis, regulated by a number of anti- and pro-apoptotic molecules. The gingipain group of proteases affects bacteria-host interactions and may directly promote apoptosis by intracellular proteolytic activation of caspase-3.

  10. Lung fibroblasts may play an important role in clearing apoptotic bodies of bronchial epithelial cells generated by exposure to PHMG-P-containing solution.

    Science.gov (United States)

    Park, Eun-Jung; Park, Sung-Jin; Kim, Sanghwa; Lee, Kyuhong; Chang, Jaerak

    2018-04-01

    Polyhexamethylene guanidine (PHMG) has been widely used in the industry owing to its excellent biocidal, anti-corrosive, and anti-biofouling properties. In Korea, consumers exposed to PHMG-phosphate (PHMG-P)-containing humidifier disinfectant have begun to suffer from fibrotic lung injury-related symptoms for unknown reasons. However, no appropriate treatment has yet been found because the detail toxic mechanism has not been identified. Herein, we first studied the toxic mechanism of PHMG-P-containing solution using human normal bronchial epithelial cells (BEAS-2B cells). When exposed for 24 h, PHMG-P-containing solution rapidly decreased cell viability from around 6 h after exposure and significantly increased of the phosphatidylserine exposure and the LDH release. At 6 h of exposure, the material contained in the solution was found to be bound to the cell membrane and the inner wall of vacuoles, and damaged the cell membrane and organelles. In addition, a significant increase of IFN-γ was observed among cytokines, the expression of apoptosis-, autophagy-, and membrane and DNA damage-related proteins was also enhanced. Meanwhile, the level of intracellular ROS and the secretion of IL-8 and CXCL-1, which are chemokines for professional phagocytes, decreased. Thus, we treated dead BEAS-2B cells to lung fibroblasts (HFL-1), non-professional phagocytes, and then we observed that the dead cells rapidly attached to HFL-1 cells and were taken up. Additionally, increased secretion of IL-8 and CXCL-1 was observed in the cells. Based on these results, we suggest that pulmonary exposure to PHMG-P induces apoptosis of bronchial epithelial cells and lung fibroblasts might play an important role in the clearance of the apoptotic debris. Copyright © 2018 Elsevier B.V. All rights reserved.

  11. Stromal fibroblasts derived from mammary gland of bovine with mastitis display inflammation-specific changes.

    Science.gov (United States)

    Chen, Qing; He, Guiliang; Zhang, Wenyao; Xu, Tong; Qi, Hongliang; Li, Jing; Zhang, Yong; Gao, Ming-Qing

    2016-06-07

    Fibroblasts are predominant components of mammary stromal cells and play crucial roles in the development and involution of bovine mammary gland; however, whether these cells contribute to mastitis has not been demonstrated. Thus, we have undertaken biological and molecular characterization of inflammation-associated fibroblasts (INFs) extracted from bovine mammary glands with clinical mastitis and normal fibroblasts (NFs) from slaughtered dairy cows because of fractured legs during lactation. The functional contributions of INFs to normal epithelial cells were also investigated by using an in vitro co-culture model. We present evidence that the INFs were activated fibroblasts and showed inflammation-related features. Moreover, INFs significantly inhibited the proliferation and β-casein secretion of epithelial cells, as well as upregulated the expression of tumor necrosis factor-α and interleukin-8 in epithelial cells. These findings indicate that functional alterations can occur in stromal fibroblasts within the bovine mammary gland during mastitis, demonstrating the importance of stromal fibroblasts in bovine mastitis and its treatment.

  12. Spider angiomas in patients with liver cirrhosis: Role of vascular endothelial growth factor and basic fibroblast growth factor

    Science.gov (United States)

    Li, Chung-Pin; Lee, Fa-Yauh; Hwang, Shinn-Jang; Lu, Rei-Hwa; Lee, Wei-Ping; Chao, Yee; Wang, Sung-Sang; Chang, Full-Young; Whang-Peng, Jacqueline; Lee, Shou-Dong

    2003-01-01

    AIM: To investigate whether vascular endothelial growth factor (VEGF) and basic fibroblastic growth factor (bFGF) are associated with spider angiomas in patients with liver cirrhosis. METHODS: Eighty-six patients with liver cirrhosis were enrolled and the number and size of the spider angiomas were recorded. Fifty-three healthy subjects were selected as controls. Plasma levels of VEGF and bFGF were measured in both the cirrhotics and the controls. RESULTS: Plasma VEGF and bFGF were increased in cirrhotics compared with controls (122 ± 13 vs. 71 ± 11 pg/mL, P = 0.003 for VEGF; 5.1 ± 0.5 vs. 3.4 ± 0.5 pg/mL, P = 0.022 for bFGF). In cirrhotics, plasma VEGF and bFGF were also higher in patients with spider angiomas compared with patients without spider angiomas (185 ± 28 vs. 90 ± 10 pg/mL, P = 0.003 for VEGF; 6.8 ± 1.0 vs. 4.1 ± 0.5 pg/mL, P = 0.017 for bFGF). Multivariate logistic regression showed that young age and increased plasma levels of VEGF and bFGF were the most significant predictors for the presence of spider angiomas in cirrhotic patients (odds ratio [OR] = 6.64, 95% confidence interval [CI] = 2.02-21.79, P = 0.002; OR = 4.35, 95%CI = 1.35-14.01, P = 0.014; OR = 5.66, 95%CI = 1.72-18.63, P = 0.004, respectively). CONCLUSION: Plasma VEGF and bFGF are elevated in patients with liver cirrhosis. Age as well as plasma levels of VEGF and bFGF are significant predictors for spider angiomas in cirrhotic patients. PMID:14669345

  13. Role of surface modification in zinc oxide nanoparticles and its toxicity assessment toward human dermal fibroblast cells

    Directory of Open Access Journals (Sweden)

    Ramasamy M

    2014-08-01

    Full Text Available Mohankandhasamy Ramasamy,1 Minakshi Das,1 Seong Soo A An,1 Dong Kee Yi2 1Division of Bionanotechnology, Gachon University, Seongnam, 2Department of Chemistry, Myongji University, Yongin, South Korea Abstract: The wide-scale applications of zinc oxide (ZnO nanoparticles (NPs in ­photocatalysts, gas sensors, and cosmetics may cause toxicity to humans and environments. Therefore, the aim of the present study was to reduce the toxicity of ZnO NPs by coating them with a silica (SiO2 layer, which could be used in human applications, such as cosmetic preparations. The sol–gel method was used to synthesize core ZnO with SiO2-shelled NPs (SiO2/ZnO NPs with varying degrees of coating. Diverse studies were performed to analyze the toxicity of NPs against cells in a dose- and time-dependent manner. To ensure the decreased toxicity of the produced SiO2/ZnO NPs, cytotoxicity in membrane damage and/or intracellular reactive oxygen species (ROS were assessed by employing 3-(4,5-dimethylthiazol-2-yl-2,5-diphenyltetrazolium bromide, lactate dehydrogenase, 2',7'-dichlorofluorescin, and lipid peroxide estimations. The cores of ZnO NPs exhibited cytotoxicity over time, regardless of shell thickness. Nevertheless, the thicker SiO2/ZnO NPs revealed reduced enzyme leakage, decreased peroxide production, and less oxidative stress than their bare ZnO NPs or thinner SiO2/ZnO NPs. Therefore, thicker SiO2/ZnO NPs moderated the toxicity of ZnO NPs by restricting free radical formation and the release of zinc ions, and decreasing surface contact with cells. Keywords: zinc oxide, silica coating, photostability, human dermal fibroblast, membrane damage, oxidative stress

  14. Heart Development, Diseases, and Regeneration - New Approaches From Innervation, Fibroblasts, and Reprogramming.

    Science.gov (United States)

    Ieda, Masaki

    2016-09-23

    It is well known that cardiac function is tightly controlled by neural activity; however, the molecular mechanism of cardiac innervation during development and the relationship with heart disease remain undetermined. My work has revealed the molecular networks that govern cardiac innervation and its critical roles in heart diseases such as silent myocardial ischemia and arrhythmias. Cardiomyocytes proliferate during embryonic development, but lose their proliferative capacity after birth. Cardiac fibroblasts are a major source of cells during fibrosis and induce cardiac hypertrophy after myocardial injury in the adult heart. Despite the importance of fibroblasts in the adult heart, the role of fibroblasts in embryonic heart development was previously not determined. I demonstrated that cardiac fibroblasts play important roles in myocardial growth and cardiomyocyte proliferation during embryonic development, and I identified key paracrine factors and signaling pathways. In contrast to embryonic cardiomyocytes, adult cardiomyocytes have little regenerative capacity, leading to heart failure and high mortality rates after myocardial infarction. Leveraging the knowledge of developmental biology, I identified cardiac reprogramming factors that can directly convert resident cardiac fibroblasts into cardiomyocytes for heart regeneration. These findings greatly improved our understanding of heart development and diseases, and provide a new strategy for heart regenerative therapy. (Circ J 2016; 80: 2081-2088).

  15. Biology of Ageing and Role of Dietary Antioxidants

    Directory of Open Access Journals (Sweden)

    Cheng Peng

    2014-01-01

    Full Text Available Interest in relationship between diet and ageing is growing. Research has shown that dietary calorie restriction and some antioxidants extend lifespan in various ageing models. On the one hand, oxygen is essential to aerobic organisms because it is a final electron acceptor in mitochondria. On the other hand, oxygen is harmful because it can continuously generate reactive oxygen species (ROS, which are believed to be the factors causing ageing of an organism. To remove these ROS in cells, aerobic organisms possess an antioxidant defense system which consists of a series of enzymes, namely, superoxide dismutase (SOD, catalase (CAT, glutathione peroxidase (GPx, and glutathione reductase (GR. In addition, dietary antioxidants including ascorbic acid, vitamin A, vitamin C, α-tocopherol, and plant flavonoids are also able to scavenge ROS in cells and therefore theoretically can extend the lifespan of organisms. In this connection, various antioxidants including tea catechins, theaflavins, apple polyphenols, black rice anthocyanins, and blueberry polyphenols have been shown to be capable of extending the lifespan of fruit flies. The purpose of this review is to brief the literature on modern biological theories of ageing and role of dietary antioxidants in ageing as well as underlying mechanisms by which antioxidants can prolong the lifespan with focus on fruit flies as an model.

  16. EOSINOPHILS: MULTIFACETED BIOLOGIC PROPERTIES AND ROLES IN HEALTH AND DISEASE

    Science.gov (United States)

    Kita, Hirohito

    2011-01-01

    Summary Eosinophils are leukocytes resident in mucosal tissues. During Th2-type inflammation, eosinophils are recruited from bone marrow and blood to the sites of immune response. While eosinophils have been considered end-stage cells involved in host protection against parasite infection and immunopathology in hypersensitivity disease, recent studies changed this perspective. Eosinophils are now considered multifunctional leukocytes involved in tissue homeostasis, modulation of adaptive immune responses, and innate immunity to certain microbes. Eosinophils are capable of producing immunoregulatory cytokines and are actively involved in regulation of Th2-type immune responses. However, such new information does not preclude earlier observations showing that eosinophils, in particular human eosinophils, are also effector cells with pro-inflammatory and destructive capabilities. Eosinophils with activation phenotypes are observed in biological specimens from patients with disease, and deposition of eosinophil products is readily seen in the affected tissues from these patients. Therefore, it would be reasonable to consider the eosinophil a multifaceted leukocyte that contributes to various physiological and pathological processes depending on their location and activation status. This review summarizes the emerging concept of the multifaceted immunobiology of eosinophils and discusses the roles of eosinophils in health and disease and the challenges and perspectives in the field. PMID:21682744

  17. Expression and potential role of fibroblast growth factor 2 and its receptors in human embryonic stem cells

    Czech Academy of Sciences Publication Activity Database

    Dvořák, Petr; Dvořáková, D.; Košková, S.; Vidinská, M.; Najvirtová, M.; Krekáč, D.; Hampl, Aleš

    2005-01-01

    Roč. 23, č. 8 (2005), s. 1200-1211 ISSN 1066-5099 R&D Projects: GA ČR(CZ) GA301/03/1122; GA ČR(CZ) GA305/05/0434; GA MŠk(CZ) LN00A065 Institutional research plan: CEZ:AV0Z50390512 Keywords : growth factor * human embryonic stem cells Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 6.094, year: 2005

  18. Roles of radiation chemistry in development and research of radiation biology

    International Nuclear Information System (INIS)

    Min Rui

    2009-01-01

    Radiation chemistry acts as a bridge connecting radiation physics with radiation biology in spatial and temporal insight. The theory, model, and methodology coming from radiation chemistry play an important role in the research and development of radiation biology. The chemical changes induced by ionizing radiation are involved not only in early event of biological effects caused by ionizing radiation but in function radiation biology, such as DNA damage and repair, sensitive modification, metabolism and function of active oxygen and so on. Following the research development of radiation biology, systems radiation biology, accurate quality and quantity of radiation biology effects need more methods and perfect tools from radiation chemistry. (authors)

  19. Expression levels of novel cytokine IL-32 in periodontitis and its role in the suppression of IL-8 production by human gingival fibroblasts stimulated with Porphyromonas gingivalis

    Directory of Open Access Journals (Sweden)

    Kazuhisa Ouhara

    2012-03-01

    Full Text Available Background:IL-32 was recently found to be elevated in the tissue of rheumatoid arthritis and inflammatory bowel disease. Periodontitis is a chronic inflammatory disease caused by polymicrobial infections that result in soft tissue destruction and alveolar bone loss. Although IL-32 is also thought to be associated with periodontal disease, its expression and possible role in periodontal tissue remain unclear. Therefore, this study investigated the expression patterns of IL-32 in healthy and periodontally diseased gingival tissue. The expression of IL-32 in cultured human gingival fibroblasts (HGF as well as effects of autocrine IL-32 on IL-8 production from HGF were also examined.Methods:Periodontal tissue was collected from both healthy volunteers and periodontitis patients, and immunofluorescent staining was performed in order to determine the production of IL-32. Using real-time PCR and ELISA, mRNA expression and protein production of IL-32 in HGF, stimulated by Porphyromonas gingivalis (Pg, were also investigated.Results:Contrary to our expectation, the production of IL-32 in the periodontitis patients was significantly lower than in the healthy volunteers. According to immunofluorescent microscopy, positive staining for IL-32 was detected in prickle and basal cell layers in the epithelium as well as fibroblastic cells in connective tissue. Addition of fixed Pg in vitro was found to suppress the otherwise constitutive expression of IL-32 mRNA and protein in HGF. However, recombinant IL-32 in vitro inhibited the expression of IL-8 mRNA by HGF stimulated with Pg. Interestingly, anti-IL-32 neutralizing antibody upregulated the IL-8 mRNA expression in non-stimulated HGF, indicating that constitutive expression of IL-32 in HGF suppressed IL-8 mRNA expression in the absence of bacterial stimulation.Conclusion:These results indicate that IL-32 is constitutively produced by HGF which can be suppressed by Pg and may play a role in the downregulation

  20. Interactions between sub-10-nm iron and cerium oxide nanoparticles and 3T3 fibroblasts: the role of the coating and aggregation state

    Science.gov (United States)

    Safi, M.; Sarrouj, H.; Sandre, O.; Mignet, N.; Berret, J.-F.

    2010-04-01

    Recent nanotoxicity studies revealed that the physico-chemical characteristics of engineered nanomaterials play an important role in the interactions with living cells. Here, we report on the toxicity and uptake of cerium and iron oxide sub-10-nm nanoparticles by NIH/3T3 mouse fibroblasts. Coating strategies include low-molecular weight ligands (citric acid) and polymers (poly(acrylic acid), MW = 2000 g mol - 1). Electrostatically adsorbed on the surfaces, the organic moieties provide a negatively charged coating in physiological conditions. We find that most particles were biocompatible, as exposed cells remained 100% viable relative to controls. Only the bare and the citrate-coated nanoceria exhibit a slight decrease in mitochondrial activity at very high cerium concentrations (>1 g l - 1). We also observe that the citrate-coated particles are internalized/adsorbed by the cells in large amounts, typically 250 pg/cell after 24 h incubation for iron oxide. In contrast, the polymer-coated particles are taken up at much lower rates (<30 pg/cell). The strong uptake shown by the citrated particles is related to the destabilization of the dispersions in the cell culture medium and their sedimentation down to the cell membranes. In conclusion, we show that the uptake of nanomaterials by living cells depends on the coating of the particles and on its ability to preserve the colloidal nature of the dispersions.

  1. Interactions between sub-10-nm iron and cerium oxide nanoparticles and 3T3 fibroblasts: the role of the coating and aggregation state

    International Nuclear Information System (INIS)

    Safi, M; Sarrouj, H; Berret, J-F; Sandre, O; Mignet, N

    2010-01-01

    Recent nanotoxicity studies revealed that the physico-chemical characteristics of engineered nanomaterials play an important role in the interactions with living cells. Here, we report on the toxicity and uptake of cerium and iron oxide sub-10-nm nanoparticles by NIH/3T3 mouse fibroblasts. Coating strategies include low-molecular weight ligands (citric acid) and polymers (poly(acrylic acid), M W = 2000 g mol -1 ). Electrostatically adsorbed on the surfaces, the organic moieties provide a negatively charged coating in physiological conditions. We find that most particles were biocompatible, as exposed cells remained 100% viable relative to controls. Only the bare and the citrate-coated nanoceria exhibit a slight decrease in mitochondrial activity at very high cerium concentrations (>1 g l -1 ). We also observe that the citrate-coated particles are internalized/adsorbed by the cells in large amounts, typically 250 pg/cell after 24 h incubation for iron oxide. In contrast, the polymer-coated particles are taken up at much lower rates (<30 pg/cell). The strong uptake shown by the citrated particles is related to the destabilization of the dispersions in the cell culture medium and their sedimentation down to the cell membranes. In conclusion, we show that the uptake of nanomaterials by living cells depends on the coating of the particles and on its ability to preserve the colloidal nature of the dispersions.

  2. Interactions between sub-10-nm iron and cerium oxide nanoparticles and 3T3 fibroblasts: the role of the coating and aggregation state

    Energy Technology Data Exchange (ETDEWEB)

    Safi, M; Sarrouj, H; Berret, J-F [Matiere et Systemes Complexes, UMR 7057 CNRS, Universite Denis Diderot Paris VII, Batiment Condorcet, 10 rue Alice Domon et Leonie Duquet, F-75205 Paris (France); Sandre, O [UPMC Universite Paris VI-Laboratoire de Physico-chimie des Electrolytes, Colloides et Sciences Analytiques, UMR 7195 UPMC Universite Paris 6/CNRS/ESPCI Paristech, 4 place Jussieu, F-75252 Paris Cedex 05 (France); Mignet, N, E-mail: jean-francois.berret@univ-paris-diderot.fr [CNRS UMR 8151, Faculte de Pharmacie, 4 avenue de l' Observatoire, F-75270 Paris (France)

    2010-04-09

    Recent nanotoxicity studies revealed that the physico-chemical characteristics of engineered nanomaterials play an important role in the interactions with living cells. Here, we report on the toxicity and uptake of cerium and iron oxide sub-10-nm nanoparticles by NIH/3T3 mouse fibroblasts. Coating strategies include low-molecular weight ligands (citric acid) and polymers (poly(acrylic acid), M{sub W} = 2000 g mol{sup -1}). Electrostatically adsorbed on the surfaces, the organic moieties provide a negatively charged coating in physiological conditions. We find that most particles were biocompatible, as exposed cells remained 100% viable relative to controls. Only the bare and the citrate-coated nanoceria exhibit a slight decrease in mitochondrial activity at very high cerium concentrations (>1 g l{sup -1}). We also observe that the citrate-coated particles are internalized/adsorbed by the cells in large amounts, typically 250 pg/cell after 24 h incubation for iron oxide. In contrast, the polymer-coated particles are taken up at much lower rates (<30 pg/cell). The strong uptake shown by the citrated particles is related to the destabilization of the dispersions in the cell culture medium and their sedimentation down to the cell membranes. In conclusion, we show that the uptake of nanomaterials by living cells depends on the coating of the particles and on its ability to preserve the colloidal nature of the dispersions.

  3. Protective role of Nrf2 against mechanical-stretch-induced apoptosis in mouse fibroblasts: a potential therapeutic target of mechanical-trauma-induced stress urinary incontinence.

    Science.gov (United States)

    Li, Qiannan; Li, Bingshu; Liu, Cheng; Wang, Linlin; Tang, Jianming; Hong, Li

    2018-01-10

    We investigated the protective effect and underlying molecular mechanism of nuclear factor-E2-related factor 2 (Nrf2) against mechanical-stretch-induced apoptosis in mouse fibroblasts. Normal cells, Nrf2 silencing cells, and Nrf2 overexpressing cells were respectively divided into two groups-nonintervention and cyclic mechanical strain (CMS)-subjected to CMS of 5333 μ (1.0 Hz for 4 h), six groups in total (control, CMS, shNfe212, shNfe212 + CMS, LV-shNfe212, and LV-shNfe212 + CMS). After treatment, cell apoptosis; cell-cycle distribution; expressions of Nrf2, Bax, Bcl-2, Cyt-C, caspase-3, caspase-9, cleaved-caspase-3, and cleaved-caspase-9; mitochondrial membrane potential (ΔΨm); reactive oxygen species (ROS); and malondialdehyde (MDA) levels were measured. Thirty virgin female C57BL/6 mice were divided into two groups: control (without intervention) and vaginal distension (VD) groups, which underwent VD for 1 h with an 8-mm dilator (0.3 ml saline). Leak-point pressure (LPP) was tested on day 7 after VD; Nrf2 expression, apoptosis, and MDA levels were then measured in urethra and anterior vaginal wall. Mechanical stretch decreased Nrf2 messenger RNA (mRNA) and protein expressions. Overexpression of Nrf2 alleviated mechanical-stretch-induced cell apoptosis; S-phase arrest of cell cycle; up-regulation of Bax, cytochrome C (Cyt-C), ROS, MDA, ratio of cleaved-caspase-3/caspase-3 and cleaved-caspase-9/caspase-9; and exacerbated the decrease of Bcl2 and ΔΨm in L929 cells. On the contrary, silencing of Nrf2 showed opposite effects. Besides, VD reduced LPP levels and Nrf2 expression and increased cell apoptosis and MDA generation in the urethra and anterior vaginal wall. Nrf2 exhibits a protective role against mechanical-stretch -induced apoptosis on mouse fibroblasts, which might indicate a potential therapeutic target of mechanical-trauma-induced stress urinary incontinence (SUI).

  4. A systems biology-based approach to deciphering the etiology of steatosis employing patient-derived dermal fibroblasts and iPS cells

    Directory of Open Access Journals (Sweden)

    Justyna eJozefczuk

    2012-09-01

    Full Text Available Nonalcoholic fatty liver disease (NAFLD comprises a broad spectrum of disease states ranging from simple steatosis to nonalcoholic steatohepatitis (NASH. As a result of increases in the prevalences of obesity, insulin resistance, and hyperlipidemia, the number of people with hepatic steatosis continues to increase. Differences in susceptibility to steatohepatitis and its progression to cirrhosis have been attributed to a complex interplay of genetic and external factors all addressing the intracellular network. Increase in sugar or refined carbohydrate consumption results in an increase of insulin and insulin resistance that can lead to the accumulation of fat in the liver. Here we demonstrate how a multidisciplinary approach encompassing cellular reprogramming, transcriptomics, proteomics, metabolomics, modeling, network reconstruction and data management can be employed to unveil the mechanisms underlying the progression of steatosis. Proteomics revealed reduced AKT/mTOR signaling in fibroblasts derived from steatosis patients and further establishes that the insulin-resistant phenotype is present not only in insulin-metabolizing central organs, e.g. the liver, but is also manifested in skin fibroblasts. Transcriptome data enabled the generation of a regulatory network based on the transcription factor SREBF1, linked to a metabolic network of glycerolipid and fatty acid biosynthesis including the downstream transcriptional targets of SREBF1 which include LIPIN1 (LPIN and low density lipoprotein receptor (LDLR. Glutathione metabolism was among the pathways enriched in steatosis patients in comparison to healthy controls. By using a model of the glutathione pathway we predict a significant increase in the flux through glutathione synthesis as both gamma-glutamylcysteine synthetase and glutathione synthetase have an increased flux. We anticipate that a larger sample of patients and matching controls will confirm our preliminary findings presented

  5. Heat Shock Protein 90 Inhibitor (17-AAG) Induces Apoptosis and Decreases Cell Migration/Motility of Keloid Fibroblasts.

    Science.gov (United States)

    Yun, In Sik; Lee, Mi Hee; Rah, Dong Kyun; Lew, Dae Hyun; Park, Jong-Chul; Lee, Won Jai

    2015-07-01

    The regulation of apoptosis, proliferation, and migration of fibroblasts is altered in keloids. The 90-kDa heat shock protein (heat shock protein 90) is known to play a key role in such regulation. Therefore, the authors investigated whether the inhibition of heat shock protein 90 in keloid fibroblasts could induce apoptosis and attenuate keloid fibroblast proliferation and migration. The authors evaluated heat shock protein 90 expression in keloid tissues with immunohistochemistry. The authors used cell viability [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] assays and annexin V/propidium iodide staining for apoptosis, a wound healing model and cell tracking system to assess cell migration, and Akt Western blotting analysis in keloid fibroblasts after inhibition of heat shock protein 90 with 17-allylaminodemethoxygeldanamycin (17-AAG). The expression of heat shock protein 90 in keloid tissues was significantly increased compared with normal tissues. The 17-AAG-treated keloid fibroblasts showed significantly decreased proliferation, promotion of apoptosis, and decreased expression of Akt. Furthermore, a dose-dependent decrease in cell migration was noted after 17-AAG treatment of keloid fibroblasts. The 17-AAG-treated keloid fibroblasts had less directionality to the wound center and migrated a shorter distance. The authors confirmed that the inhibition of heat shock protein 90 in keloid fibroblasts could promote apoptosis and attenuate proliferation and migration of keloid fibroblasts. Therefore, the authors think that the inhibition of heat shock protein 90 is a key factor in the regulation of biological processes in keloids. With further preclinical study, the authors will be able to apply these results clinically for keloid treatment.

  6. Role of fibronectin in collagen deposition: Fab' to the gelatin-binding domain of fibronectin inhibits both fibronectin and collagen organization in fibroblast extracellular matrix

    OpenAIRE

    1982-01-01

    We report the effect of Fab' (anti-60k) to a 60,000 mol wt gelatin binding domain of fibronectin (1981, J. Biol. Chem. 256:5583) on diploid fibroblast (IMR-90) extracellular fibronectin and collagen organization. Anti-60k Fab' did not inhibit IMR-90 attachment or proliferation in fibronectin-depleted medium. Fibroblasts cultured with preimmune Fab' deposited a dense extracellular network of fibronectin and collagen detectable by immunofluorescence, while anti-60k Fab' prevented extracellular ...

  7. The Role of Synthetic Biology in NASA's Missions

    Science.gov (United States)

    Rothschild, Lynn J.

    2016-01-01

    The time has come to for NASA to exploit synthetic biology in pursuit of its missions, including aeronautics, earth science, astrobiology and most notably, human exploration. Conversely, NASA advances the fundamental technology of synthetic biology as no one else can because of its unique expertise in the origin of life and life in extreme environments, including the potential for alternate life forms. This enables unique, creative "game changing" advances. NASA's requirement for minimizing upmass in flight will also drive the field toward miniaturization and automation. These drivers will greatly increase the utility of synthetic biology solutions for military, health in remote areas and commercial purposes. To this end, we have begun a program at NASA to explore the use of synthetic biology in NASA's missions, particular space exploration. As part of this program, we began hosting an iGEM team of undergraduates drawn from Brown and Stanford Universities to conduct synthetic biology research at NASA Ames Research Center. The 2011 team (http://2011.igem.org/Team:Brown-Stanford) produced an award-winning project on using synthetic biology as a basis for a human Mars settlement.

  8. The key role of miR-21-regulated SOD2 in the medium-mediated bystander responses in human fibroblasts induced by α-irradiated keratinocytes

    International Nuclear Information System (INIS)

    Tian, Wenqian; Yin, Xiaoming; Wang, Longxiao; Wang, Jingdong; Zhu, Wei; Cao, Jianping; Yang, Hongying

    2015-01-01

    Highlights: • After co-culture with α-irradiated HaCaT cells, WS1 cells displayed oxidative stress and DNA damage. • Increased miR-21 expression in bystander cells was critical to the occurrence of RIBEs. • SOD2 of bystander cells played an important role in bystander responses. • miR-21 mediated bystander effects through its regulation on SOD2. - Abstract: Radiation-induced bystander effect (RIBE) is well accepted in the radiation research field by now, but the underlying molecular mechanisms for better understanding this phenomenon caused by intercellular communication and intracellular signal transduction are still incomplete. Although our previous study has demonstrated an important role of miR-21 of unirradiated bystander cells in RIBEs, the direct evidence for the hypothesis that RIBE is epigenetically regulated is still limited and how miR-21 mediates RIBEs is unknown. Reactive oxygen species (ROS) have been demonstrated to be involved in RIBEs, however, the roles of anti-oxidative stress system of cells in RIBEs are unclear. Using transwell insert co-culture system, we investigated medium-mediated bystander responses in WS1 human fibroblasts after co-culture with HaCaT keratinocytes traversed by α-particles. Results showed that the ROS levels in unirradiated bystander WS1 cells were significantly elevated after 30 min of co-culture, and 53BP1 foci, a surrogate marker of DNA damage, were obviously induced after 3 h of co-culture. This indicates the occurrence of oxidative stress and DNA damage in bystander WS1 cells after co-culture with irradiated keratinocytes. Furthermore, the expression of miR-21 was increased in bystander WS1 cells, downregulation of miR-21 eliminated the bystander responses, overexpression of miR-21 alone could induce bystander-like oxidative stress and DNA damage in WS1 cells. These data indicate an important mediating role of miR-21 in RIBEs. In addition, MnSOD or SOD2 in WS1 cells was involved in the bystander effects

  9. The key role of miR-21-regulated SOD2 in the medium-mediated bystander responses in human fibroblasts induced by α-irradiated keratinocytes

    Energy Technology Data Exchange (ETDEWEB)

    Tian, Wenqian; Yin, Xiaoming; Wang, Longxiao; Wang, Jingdong; Zhu, Wei; Cao, Jianping [School of Radiation Medicine and Protection, Medical College of Soochow University/Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, 199 Renai Road, Suzhou Industrial Park, Suzhou, Jiangsu Province 215123 (China); Yang, Hongying, E-mail: yanghongying@suda.edu.cn [School of Radiation Medicine and Protection, Medical College of Soochow University/Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, 199 Renai Road, Suzhou Industrial Park, Suzhou, Jiangsu Province 215123 (China); Institute of Radiotherapy & Oncology, Soochow University (China)

    2015-10-15

    Highlights: • After co-culture with α-irradiated HaCaT cells, WS1 cells displayed oxidative stress and DNA damage. • Increased miR-21 expression in bystander cells was critical to the occurrence of RIBEs. • SOD2 of bystander cells played an important role in bystander responses. • miR-21 mediated bystander effects through its regulation on SOD2. - Abstract: Radiation-induced bystander effect (RIBE) is well accepted in the radiation research field by now, but the underlying molecular mechanisms for better understanding this phenomenon caused by intercellular communication and intracellular signal transduction are still incomplete. Although our previous study has demonstrated an important role of miR-21 of unirradiated bystander cells in RIBEs, the direct evidence for the hypothesis that RIBE is epigenetically regulated is still limited and how miR-21 mediates RIBEs is unknown. Reactive oxygen species (ROS) have been demonstrated to be involved in RIBEs, however, the roles of anti-oxidative stress system of cells in RIBEs are unclear. Using transwell insert co-culture system, we investigated medium-mediated bystander responses in WS1 human fibroblasts after co-culture with HaCaT keratinocytes traversed by α-particles. Results showed that the ROS levels in unirradiated bystander WS1 cells were significantly elevated after 30 min of co-culture, and 53BP1 foci, a surrogate marker of DNA damage, were obviously induced after 3 h of co-culture. This indicates the occurrence of oxidative stress and DNA damage in bystander WS1 cells after co-culture with irradiated keratinocytes. Furthermore, the expression of miR-21 was increased in bystander WS1 cells, downregulation of miR-21 eliminated the bystander responses, overexpression of miR-21 alone could induce bystander-like oxidative stress and DNA damage in WS1 cells. These data indicate an important mediating role of miR-21 in RIBEs. In addition, MnSOD or SOD2 in WS1 cells was involved in the bystander effects

  10. Impact of matrix stiffness on fibroblast function

    Energy Technology Data Exchange (ETDEWEB)

    El-Mohri, Hichem; Wu, Yang; Mohanty, Swetaparna; Ghosh, Gargi, E-mail: gargi@umich.edu

    2017-05-01

    Chronic non-healing wounds, caused by impaired production of growth factors and reduced vascularization, represent a significant burden to patients, health care professionals, and health care system. While several wound dressing biomaterials have been developed, the impact of the mechanical properties of the dressings on the residing cells and consequently on the healing of the wounds is largely overlooked. The primary focus of this study is to explore whether manipulation of the substrate mechanics can regulate the function of fibroblasts, particularly in the context of their angiogenic activity. A photocrosslinkable hydrogel platform with orthogonal control over gel modulus and cell adhesive sites was developed to explore the quantitative relationship between ECM compliance and fibroblast function. Increase in matrix stiffness resulted in enhanced fibroblast proliferation and stress fiber formation. However, the angiogenic activity of fibroblasts was found to be optimum when the cells were seeded on compliant matrices. Thus, the observations suggest that the stiffness of the wound dressing material may play an important role in the progression of wound healing. - Highlights: • Proliferation and stress fiber formation of fibroblasts increase with increasing matrix mechanics. • Cell area correlates with the growth of fibroblasts. • Angiogenic activity of fibroblasts optimum when cells seeded on compliant gels.

  11. On the role of emotion in biological and robotic autonomy.

    Science.gov (United States)

    Ziemke, Tom

    2008-02-01

    This paper reviews some of the differences between notions of biological and robotic autonomy, and how these differences have been reflected in discussions of embodiment, grounding and other concepts in AI and autonomous robotics. Furthermore, the relations between homeostasis, emotion and embodied cognition are discussed as well as recent proposals to model their interplay in robots, which reflects a commitment to a multi-tiered affectively/emotionally embodied view of mind that takes organismic embodiment more serious than usually done in biologically inspired robotics.

  12. Biological monitoring of lotic ecosystems: the role of diatoms

    Directory of Open Access Journals (Sweden)

    T. Bere

    Full Text Available Increasing anthropogenic influence on lotic environments as a result of civilisation has captured public interest because of the consequent problems associated with deterioration of water quality. Various biological monitoring methods that provide a direct measure of ecological integrity by using the response of biota to environmental changes have been developed to monitor the ecological status of lotic environments. Diatoms have been used extensively in this regard and this review attempts to summarise the basic concepts associated with biological monitoring using benthic diatoms. Where possible, examples from work carried out in Brazil are used.

  13. Biological monitoring of lotic ecosystems: the role of diatoms.

    Science.gov (United States)

    Bere, T; Tundisi, J G

    2010-08-01

    Increasing anthropogenic influence on lotic environments as a result of civilisation has captured public interest because of the consequent problems associated with deterioration of water quality. Various biological monitoring methods that provide a direct measure of ecological integrity by using the response of biota to environmental changes have been developed to monitor the ecological status of lotic environments. Diatoms have been used extensively in this regard and this review attempts to summarise the basic concepts associated with biological monitoring using benthic diatoms. Where possible, examples from work carried out in Brazil are used.

  14. The key role of miR-21-regulated SOD2 in the medium-mediated bystander responses in human fibroblasts induced by α-irradiated keratinocytes.

    Science.gov (United States)

    Tian, Wenqian; Yin, Xiaoming; Wang, Longxiao; Wang, Jingdong; Zhu, Wei; Cao, Jianping; Yang, Hongying

    2015-10-01

    Radiation-induced bystander effect (RIBE) is well accepted in the radiation research field by now, but the underlying molecular mechanisms for better understanding this phenomenon caused by intercellular communication and intracellular signal transduction are still incomplete. Although our previous study has demonstrated an important role of miR-21 of unirradiated bystander cells in RIBEs, the direct evidence for the hypothesis that RIBE is epigenetically regulated is still limited and how miR-21 mediates RIBEs is unknown. Reactive oxygen species (ROS) have been demonstrated to be involved in RIBEs, however, the roles of anti-oxidative stress system of cells in RIBEs are unclear. Using transwell insert co-culture system, we investigated medium-mediated bystander responses in WS1 human fibroblasts after co-culture with HaCaT keratinocytes traversed by α-particles. Results showed that the ROS levels in unirradiated bystander WS1 cells were significantly elevated after 30min of co-culture, and 53BP1 foci, a surrogate marker of DNA damage, were obviously induced after 3h of co-culture. This indicates the occurrence of oxidative stress and DNA damage in bystander WS1 cells after co-culture with irradiated keratinocytes. Furthermore, the expression of miR-21 was increased in bystander WS1 cells, downregulation of miR-21 eliminated the bystander responses, overexpression of miR-21 alone could induce bystander-like oxidative stress and DNA damage in WS1 cells. These data indicate an important mediating role of miR-21 in RIBEs. In addition, MnSOD or SOD2 in WS1 cells was involved in the bystander effects, overexpression of SOD2 abolished the bystander oxidative stress and DNA damage, indicating that SOD2 was critical to the induction of RIBEs. Moreover, we found that miR-21 regulated SOD2, suggesting that miR-21 might mediate bystander responses through its regulation on SOD2. In conclusion, this study revealed a profound role of miR-21-regulated SOD2 of unirradiated WS1

  15. The role of analytical sciences in medical systems biology

    NARCIS (Netherlands)

    Greef, J. van der; Stroobant, P.; Heijden, R. van der

    2004-01-01

    Medical systems biology has generated widespread interest because of its bold conception and exciting potential, but the field is still in its infancy. Although there has been tremendous progress achieved recently in generating, integrating and analysing data in the medical and pharmaceutical field,

  16. Healthy aging and disease : role for telomere biology?

    NARCIS (Netherlands)

    Zhu, Haidong; Belcher, Matthew; van der Harst, Pim

    Aging is a biological process that affects most cells, organisms and species. Human aging is associated with increased susceptibility to a variety of chronic diseases, including cardiovascular disease, Type 2 diabetes, neurological diseases and cancer. Despite the remarkable progress made during the

  17. Polysaccharies of higher fungi: Biological role, structure and antioxidative activity

    NARCIS (Netherlands)

    Kozarski, M.S.; Klaus, A.; Niksic, M.; Griensven, van L.J.L.D.; Vrvic, M.M.; Jakovljevic, D.M.

    2014-01-01

    The fungal polysaccharides attract a lot of attention due to their multiple challenging bio-logical properties, such as: anti-tumor, anti-viral, anticomplementary, anticoagulant, hypo-lipidemic, immunomodulatory and immune-stimulatory activities, which all together make them suitable for application

  18. Redefining the role of syndecans in C. elegans biology

    DEFF Research Database (Denmark)

    Gopal, Sandeep; Couchman, John; Pocock, Roger

    2016-01-01

    in the activation of several downstream signaling pathways. We identified a previously unappreciated role of syndecans in cytosolic calcium regulation in mammals that is conserved in C. elegans. We concluded that calcium regulation is the basic, evolutionarily conserved role for syndecans, which enables them...

  19. The effect of tranilast on fibroblast activation protein α (FAP-α expression in normal and keloid fibroblasts in vitro

    Directory of Open Access Journals (Sweden)

    Paweł P. Antończak

    2017-07-01

    Full Text Available Introduction . Tranilast (N-(3’,4’-demethoxycinnamoyl-anthranilic acid is an anti-allergic drug. Its mechanism of action is based on the inhibition of antigen-induced release of chemical mediators from mast cells and basophils. It also reveals antifibroproliferative activities. These properties of tranilast are used in the treatment of hypertrophic scars and keloids. Keloids are characterized by incorrect extracellular matrix components turnover. Fibroblasts derived from keloids reveal overproduction of collagen type I and decreased degradation of extracellular matrix in comparison with normal fibroblasts. Fibroblast activation protein α (FAP-α may play an important role in remodeling of extracellular matrix and the invasive properties of keloids. Objective . In the present study, the effect of tranilast on expression of FAP-α gene and its protein was evaluated in normal human dermal fibroblasts and fibroblasts derived from keloids cultured in vitro . Materials and methods. In the first stage of the study, the influence of tranilast on cell viability was estimated. The second stage of the study included the quantitative evaluation of FAP-α mRNA expression in normal and keloid fibroblasts treated with tranilast. The third stage of the study comprised fibroblast activation protein α expression analysis in the examined cells treated with tranilast. Results and conclusions . The expression of FAP-α gene and fibroblast activation protein α is higher in keloid fibroblasts. Tranilast at concentrations of 3 μM and 30 μM up-regulated mRNA FAP-α expression in normal fibroblasts but did not influence keloid fibroblasts. The drug, at concentrations of 30 μM and 300 μM up-regulated fibroblast activation protein α expression in normal fibroblasts and did not influence keloid fibroblasts. Tranilast antiproliferative effect is not associated with FAP-α expression in keloid fibroblasts.

  20. Role of Circulating Fibroblast Growth Factor 21 Measurement in Primary Prevention of Coronary Heart Disease Among Chinese Patients With Type 2 Diabetes Mellitus.

    Science.gov (United States)

    Lee, Chi Ho; Woo, Yu Cho; Chow, Wing Sun; Cheung, Chloe Yu Yan; Fong, Carol Ho Yi; Yuen, Michele Mae Ann; Xu, Aimin; Tse, Hung Fat; Lam, Karen Siu Ling

    2017-06-06

    Fibroblast growth factor 21 (FGF21) has demonstrated beneficial effects on lipid and carbohydrate metabolism. In cross-sectional studies, an association of raised circulating FGF21 levels with coronary heart disease (CHD) was found in some but not all studies. Here we investigated prospectively whether baseline serum FGF21 levels could predict incident CHD in subjects with type 2 diabetes mellitus and no known cardiovascular diseases. Baseline serum FGF21 levels were measured in 3528 Chinese subjects with type 2 diabetes mellitus recruited from the Hong Kong West Diabetes Registry. The role of baseline serum FGF21 levels in predicting incident CHD over a median follow-up of 3.8 years was analyzed using Cox regression analysis. Among 3528 recruited subjects without known cardiovascular diseases, 147 (4.2%) developed CHD over a mean follow-up of 4 years. Baseline serum log-transformed FGF21 levels were significantly higher in those who had incident CHD than those who did not (222.7 pg/mL [92.8-438.4] versus 151.1 pg/mL [75.6-274.6]; P 1). On multivariable Cox regression analysis, baseline serum FGF21 levels, using an optimal cutoff of 206.22 pg/mL derived from our study, independently predicted incident CHD (hazard ratio, 1.55; 95% CI, 1.10-2.19; P =0.013) and significantly improved net reclassification index and integrated discrimination improvement after adjustment for conventional cardiovascular risk factors. We have demonstrated, for the first time, that serum FGF21 level is an independent predictor of incident CHD and might be usefully utilized as a biomarker for identifying type 2 diabetes mellitus subjects with raised CHD risk, for primary prevention. © 2017 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley.

  1. Dietary Manipulations That Induce Ketosis Activate the HPA Axis in Male Rats and Mice: A Potential Role for Fibroblast Growth Factor-21.

    Science.gov (United States)

    Ryan, Karen K; Packard, Amy E B; Larson, Karlton R; Stout, Jayna; Fourman, Sarah M; Thompson, Abigail M K; Ludwick, Kristen; Habegger, Kirk M; Stemmer, Kerstin; Itoh, Nobuyuki; Perez-Tilve, Diego; Tschöp, Matthias H; Seeley, Randy J; Ulrich-Lai, Yvonne M

    2018-01-01

    In response to an acute threat to homeostasis or well-being, the hypothalamic-pituitary-adrenocortical (HPA) axis is engaged. A major outcome of this HPA axis activation is the mobilization of stored energy, to fuel an appropriate behavioral and/or physiological response to the perceived threat. Importantly, the extent of HPA axis activity is thought to be modulated by an individual's nutritional environment. In this study, we report that nutritional manipulations signaling a relative depletion of dietary carbohydrates, thereby inducing nutritional ketosis, acutely and chronically activate the HPA axis. Male rats and mice maintained on a low-carbohydrate high-fat ketogenic diet (KD) exhibited canonical markers of chronic stress, including increased basal and stress-evoked plasma corticosterone, increased adrenal sensitivity to adrenocorticotropin hormone, increased stress-evoked c-Fos immunolabeling in the paraventricular nucleus of the hypothalamus, and thymic atrophy, an indicator of chronic glucocorticoid exposure. Moreover, acutely feeding medium-chain triglycerides (MCTs) to rapidly induce ketosis among chow-fed male rats and mice also acutely increased HPA axis activity. Lastly, and consistent with a growing literature that characterizes the hepatokine fibroblast growth factor-21 (FGF21) as both a marker of the ketotic state and as a key metabolic stress hormone, the HPA response to both KD and MCTs was significantly blunted among mice lacking FGF21. We conclude that dietary manipulations that induce ketosis lead to increased HPA axis tone, and that the hepatokine FGF21 may play an important role to facilitate this effect. Copyright © 2018 Endocrine Society.

  2. The role of biological fertility in predicting family size

    DEFF Research Database (Denmark)

    Joffe, M; Key, J; Best, N

    2009-01-01

    for the first child. CONCLUSIONS: Within the limits of the available data quality, family size appears to be predicted by biological fertility, even after adjustment for maternal age, if the woman was at least 20 years old when the couple's first attempt at conception started. The contribution of behavioural......BACKGROUND: It is plausible that a couple's ability to achieve the desired number of children is limited by biological fertility, especially if childbearing is postponed. Family size has declined and semen quality may have deteriorated in much of Europe, although studies have found an increase....... Potential confounders were maternal age when unprotected sex began prior to the first birth, and maternal smoking. Desired family size was available in only one of the datasets. RESULTS: Couples with a TTP of at least 12 months tended to have smaller families, with odds ratios for the risk of not having...

  3. Role of epigenetics in developmental biology and transgenerational inheritance.

    Science.gov (United States)

    Skinner, Michael K

    2011-03-01

    The molecular mechanisms involved in developmental biology and cellular differentiation have traditionally been considered to be primarily genetic. Environmental factors that influence early life critical windows of development generally do not have the capacity to modify genome sequence, nor promote permanent genetic modifications. Epigenetics provides a molecular mechanism for environment to influence development, program cellular differentiation, and alter the genetic regulation of development. The current review discusses how epigenetics can cooperate with genetics to regulate development and allow for greater plasticity in response to environmental influences. This impacts area such as cellular differentiation, tissue development, environmental induced disease etiology, epigenetic transgenerational inheritance, and the general systems biology of organisms and evolution. Copyright © 2011 Wiley-Liss, Inc.

  4. Direct biological effects of fractional ultrapulsed CO2 laser irradiation on keratinocytes and fibroblasts in human organotypic full-thickness 3D skin models.

    Science.gov (United States)

    Schmitt, L; Huth, S; Amann, P M; Marquardt, Y; Heise, R; Fietkau, K; Huth, L; Steiner, T; Hölzle, F; Baron, J M

    2018-05-01

    Molecular effects of various ablative and non-ablative laser treatments on human skin cells-especially primary effects on epidermal keratinocytes and dermal fibroblasts-are not yet fully understood. We present the first study addressing molecular effects of fractional non-sequential ultrapulsed CO 2 laser treatment using a 3D skin model that allows standardized investigations of time-dependent molecular changes ex vivo. While histological examination was performed to assess morphological changes, we utilized gene expression profiling using microarray and qRT-PCR analyses to identify molecular effects of laser treatment. Irradiated models exhibited dose-dependent morphological changes resulting in an almost complete recovery of the epidermis 5 days after irradiation. On day 5 after laser injury with a laser fluence of 100 mJ/cm 2 , gene array analysis identified an upregulation of genes associated with tissue remodeling and wound healing (e.g., COL12A1 and FGF7), genes that are involved in the immune response (e.g., CXCL12 and CCL8) as well as members of the heat shock protein family (e.g., HSPB3). On the other hand, we detected a downregulation of matrix metalloproteinases (e.g., MMP3), differentiation markers (e.g., LOR and S100A7), and the pro-inflammatory cytokine IL1α.Overall, our findings substantiate the understanding of time-dependent molecular changes after CO 2 laser treatment. The utilized 3D skin model system proved to be a reliable, accurate, and reproducible tool to explore the effects of various laser settings both on skin morphology and gene expression during wound healing.

  5. Cardiac fibroblast transcriptome analyses support a role for interferogenic, profibrotic, and inflammatory genes in anti-SSA/Ro-associated congenital heart block.

    Science.gov (United States)

    Clancy, Robert M; Markham, Androo J; Jackson, Tanisha; Rasmussen, Sara E; Blumenberg, Miroslav; Buyon, Jill P

    2017-09-01

    The signature lesion of SSA/Ro autoantibody-associated congenital heart block (CHB) is fibrosis and a macrophage infiltrate, supporting an experimental focus on cues influencing the fibroblast component. The transcriptomes of human fetal cardiac fibroblasts were analyzed using two complementary approaches. Cardiac injury conditions were simulated in vitro by incubating human fetal cardiac fibroblasts with supernatants from macrophages transfected with the SSA/Ro-associated noncoding Y ssRNA. The top 10 upregulated transcripts in the stimulated fibroblasts reflected a type I interferon (IFN) response [e.g., IFN-induced protein 44-like (IFI44L), of MX dynamin-like GTPase (MX)1, MX2, and radical S -adenosyl methionine domain containing 2 (Rsad2)]. Within the fibrotic pathway, transcript levels of endothelin-1 (EDN1), phosphodiesterase (PDE)4D, chemokine (C-X-C motif) ligand (CXCL)2, and CXCL3 were upregulated, while others, including adenomedullin, RAP guanine nucleotide exchange factor 3 (RAPGEF3), tissue inhibitor of metalloproteinase (TIMP)1, TIMP3, and dual specificity phosphatase 1, were downregulated. Agnostic Database for Annotation, Visualization and Integrated Discovery analysis revealed a significant increase in inflammatory genes, including complement C3A receptor 1 (C3AR1), F2R-like thrombin/trypsin receptor 3, and neutrophil cytosolic factor 2. In addition, stimulated fibroblasts expressed high levels of phospho-MADS box transcription enhancer factor 2 [a substrate of MAPK5 (ERK5)], which was inhibited by BIX-02189, a specific inhibitor of ERK5. Translation to human disease leveraged an unprecedented opportunity to interrogate the transcriptome of fibroblasts freshly isolated and cell sorted without stimulation from a fetal heart with CHB and a matched healthy heart. Consistent with the in vitro data, five IFN response genes were among the top 10 most highly expressed transcripts in CHB fibroblasts. In addition, the expression of matrix-related genes

  6. The Emerging Role of PEDF in Stem Cell Biology

    Science.gov (United States)

    Elahy, Mina; Baindur-Hudson, Swati; Dass, Crispin R.

    2012-01-01

    Encoded by a single gene, PEDF is a 50 kDa glycoprotein that is highly conserved and is widely expressed among many tissues. Most secreted PEDF deposits within the extracellular matrix, with cell-type-specific functions. While traditionally PEDF is known as a strong antiangiogenic factor, more recently, as this paper highlights, PEDF has been linked with stem cell biology, and there is now accumulating evidence demonstrating the effects of PEDF in a variety of stem cells, mainly in supporting stem cell survival and maintaining multipotency. PMID:22675247

  7. The role of mixotrophic protists in the biological carbon pump

    DEFF Research Database (Denmark)

    Mitra, Aditee; Flynn, K.J.; Burkholder, J.M.

    2014-01-01

    at the foundation of most models used to explore biogeochemical cycling, functioning of the biological pump, and the impact of climate change on these processes. We suggest an alternative new paradigm, which sees the bulk of the base of this food web supported by protist plankton communities that are mixotrophic...... – combining phototrophy and phagotrophy within a single cell. The photoautotrophic eukaryotic plankton and their heterotrophic microzooplankton grazers dominate only during the developmental phases of ecosystems (e.g. spring bloom in temperate systems). With their flexible nutrition, mixotrophic protists...

  8. Distinction between the roles of O2 and of O-2 in biological radiodamage

    International Nuclear Information System (INIS)

    Samuni, A.; Chevion, M.; Halpern, Y.S.; Ilan, Y.A.; Czapski, G.

    1978-01-01

    The paper attempts to elucidate the roles of oxygen and superoxide radical in biological damage due to ionizing radiation. Specifically, the effect of gamma radiation on the survival of T4 bacteriophage and of E. coli B has been investigated

  9. Biological Motion Preference in Humans at Birth: Role of Dynamic and Configural Properties

    Science.gov (United States)

    Bardi, Lara; Regolin, Lucia; Simion, Francesca

    2011-01-01

    The present study addresses the hypothesis that detection of biological motion is an intrinsic capacity of the visual system guided by a non-species-specific predisposition for the pattern of vertebrate movement and investigates the role of global vs. local information in biological motion detection. Two-day-old babies exposed to a biological…

  10. Lipid polymorphism and the functional roles of lipids in biological membranes

    NARCIS (Netherlands)

    Cullis, P.R.; Kruijff, B. de

    1979-01-01

    The reasons for the great variety of lipids found in biological membranes, and the relations between lipid composition and membrane function pose major unsolved problems in membrane biology. Perhaps the only major functional role of lipids which may be regarded as firmly established involves the

  11. The role of P2X receptors in bone biology

    DEFF Research Database (Denmark)

    Jørgensen, N R; Syberg, S; Ellegaard, M

    2015-01-01

    receptors regulate bone metabolism and especially for the P2X7 receptor an impressive amount of evidence has now documented its expression in osteoblasts, osteoclasts, and osteocytes as well as important functional roles in proliferation, differentiation, and function of the cells of bone. Key evidence has...... come from studies on murine knockout models and from pharmacologic studies on cells and animals. More recently, the role of P2X receptors in human bone diseases has been documented. Loss-of-functions polymorphisms in the P2X7 receptorare associated with bone loss and increased fracture risk. Very...

  12. The role of biological clock in glucose homeostasis 

    Directory of Open Access Journals (Sweden)

    Piotr Chrościcki

    2013-06-01

    Full Text Available The mechanism of the biological clock is based on a rhythmic expression of clock genes and clock-controlled genes. As a result of their transcripto-translational associations, endogenous rhythms in the synthesis of key proteins of various physiological and metabolic processes are created. The major timekeeping mechanism for these rhythms exists in the central nervous system. The master circadian clock, localized in suprachiasmatic nucleus (SCN, regulates multiple metabolic pathways, while feeding behavior and metabolite availability can in turn regulate the circadian clock. It is also suggested that in the brain there is a food entrainable oscillator (FEO or oscillators, resulting in activation of both food anticipatory activity and hormone secretion that control digestion processes. Moreover, most cells and tissues express autonomous clocks. Maintenance of the glucose homeostasis is particularly important for the proper function of the body, as this sugar is the main source of energy for the brain, retina, erythrocytes and skeletal muscles. Thus, glucose production and utilization are synchronized in time. The hypothalamic excited orexin neurons control energy balance of organism and modulate the glucose production and utilization. Deficiency of orexin action results in narcolepsy and weight gain, whereas glucose and amino acids can affect activity of the orexin cells. Large-scale genetic studies in rodents and humans provide evidence for the involvement of disrupted clock gene expression rhythms in the pathogenesis of obesity and type 2 diabetes. In general, the current lifestyle of the developed modern societies disturbs the action of biological clock. 

  13. Role of accelerator mass spectrometry in biological dosimetry

    International Nuclear Information System (INIS)

    Felton, J.S.; Turteltaub, K.W.; Frantz, C.; Vogel, J.S.; Gledhill, B.L.

    1992-01-01

    Understanding risks from exposures to carcinogens and other chemicals depends upon measurement of their dose to target tissues and their reactivity with critical macromolecules. The authors have used AMS detection of radio-isotopes to assess doses and reactivities at low, environmentally relevant doses. Several biomedical investigations show the effectiveness of quantification of biologically important events at extremely high sensitivity with AMS. Specifically, they have measured the addition of environmental carcinogens such as 2-amino-3,8-dimethylimidazo[4,5-f]-quinoaxaline (MelQx), a chemical found in cooked food, to DNA at concentrations relevant to human exposure. Other low level detection problems in biology, such as immunoassay assessment of small environmental chemicals, is being developed with attomole sensitivity. AMS also aids the assessment of genotoxic risks from chemicals by quantifying the binding of labeled chemicals to DNA. The very toxic and potent carcinogen, tetrachlorodibenzo-p-dioxin (TCDD) was assessed for DNA binding, but no detectable radiocarbon-labeled TCDD was found associated with mouse liver DNA at less than systematically toxic levels. The data indicate that a mutation mechanism does not mediate TCDD carcinogenesis

  14. The role of biological fertility in predicting family size.

    Science.gov (United States)

    Joffe, M; Key, J; Best, N; Jensen, T K; Keiding, N

    2009-08-01

    It is plausible that a couple's ability to achieve the desired number of children is limited by biological fertility, especially if childbearing is postponed. Family size has declined and semen quality may have deteriorated in much of Europe, although studies have found an increase rather than a decrease in couple fertility. Using four high-quality European datasets, we took the reported time to pregnancy (TTP) as the predictor variable; births reported as following contraceptive failure were an additional category. The outcome variable was final or near-final family size. Potential confounders were maternal age when unprotected sex began prior to the first birth, and maternal smoking. Desired family size was available in only one of the datasets. Couples with a TTP of at least 12 months tended to have smaller families, with odds ratios for the risk of not having a second child approximately 1.8, and for the risk of not having a third child approximately 1.6. Below 12 months no association was observed. Findings were generally consistent across datasets. There was also a more than 2-fold risk of not achieving the desired family size if TTP was 12 months or more for the first child. Within the limits of the available data quality, family size appears to be predicted by biological fertility, even after adjustment for maternal age, if the woman was at least 20 years old when the couple's first attempt at conception started. The contribution of behavioural factors to this result also needs to be investigated.

  15. The role of antioxidant-protein interactions in biological membrane

    International Nuclear Information System (INIS)

    McGillivray, Duncan J; Singh, Rachna; Melton, Laurence D.; Worcester, David L.; Gilbert, Elliot P.

    2009-01-01

    Full text: Oxidative damage of cellular membranes has been linked to a variety of disease pathologies, including cardiac disease, Alzheimer's and complications due to diabetes. The oxidation of unsaturated and polyunsaturated fatty acid chains found in cellular membranes leads to significant alteration in membrane physical properties, including lipid orientation and membrane permeability, which ultimately affect biological function. Polyphenols are naturally occurring phytochemicals present in a number of fruit and vegetables that are of interest for their anti-oxidative powers. These polyphenols inhibit lipid oxidation in cellular membrane surfaces, although the mechanism of this inhibition is not entirely clear. Moreover, the polyphenols have significant binding affinity for proteins, which can lead to the formation of soluble and insoluble protein-polyphenol complexes Significantly, in the presence of casein proteins the oxidation inhibition the polyphenols in the membrane is significantly enhanced (as assessed by Lipid Peroxidation Inhibition Capacity assays). Thus the antioxidant pathway appears to involve these protein/polyphenol complexes, as well as direct antioxidant action by the polyphenol. Here we discuss neutron and x-ray scattering results from phospholipid membranes, looking at the positioning of two examples of polyphenolic antioxidants in phospholipid membranes, quercetin and phloretin, the antioxidants' impact on the membrane organisation, and the interaction between antioxidant and extra-membranous protein. This information sheds light on the mechanism of antioxidant protection in these systems, which may be used to understand biological responses to oxidative stress.

  16. Biological Mechanisms Underlying the Ultraviolet Radiation-Induced Formation of Skin Wrinkling and Sagging II: Over-Expression of Neprilysin Plays an Essential Role

    Directory of Open Access Journals (Sweden)

    Genji Imokawa

    2015-04-01

    Full Text Available Our previous studies strongly indicated that the up-regulated activity of skin fibroblast-derived elastase plays a pivotal role in wrinkling and/or sagging of the skin via the impairment of elastic fiber configuration and the subsequent loss of skin elasticity. Fortunately, we succeeded in identifying human skin fibroblast-derived elastase as a previously known enzyme, neprilysin or neutral endopeptidase (NEP. We have also characterized epithelial-mesenchymal paracrine cytokine interactions between UVB-exposed-keratinocytes and dermal fibroblasts and found that interleukin-1α and granulocyte macrophage colony stimulatory factor (GM-CSF are intrinsic cytokines secreted by UVB-exposed keratinocytes that stimulate the expression of neprilysin by fibroblasts. On the other hand, direct UVA exposure of human fibroblasts significantly stimulates the secretion of IL-6 and also elicits a significant increase in the gene expression of matrix metallo-protease(MMP-1 as well as neprilysin (to a lesser extent, which is followed by distinct increases in their protein and enzymatic activity levels. Direct UVA exposure of human keratinocytes also stimulates the secretion of IL-6, IL-8 and GM-CSF but not of IL-1 and endothelin-1. These findings suggest that GM-CSF secreted by UVA-exposed keratinocytes as well as IL-6 secreted by UVA-exposed dermal fibroblasts play important and additional roles in UVA-induced sagging and wrinkling by up-regulation of neprilysin and MMP-1, respectively, in dermal fibroblasts.

  17. Different proliferative capacity of lung fibroblasts obtained from control subjects and patients with emphysema

    NARCIS (Netherlands)

    Noordhoek, JA; Postma, DS; Chong, LL; Vos, JTWM; Kauffman, HF; Timens, W; van Straaten, JFM

    2003-01-01

    To characterize the possible role of a dysregulated proliferative capacity of pulmonary fibroblasts in insufficient tissue repair in lungs from patients with pulmonary emphysema, the authors undertook in vitro proliferative studies with pulmonary fibroblasts obtained from lung tissue of patients

  18. Role of biological factors in etiopathogenesis of borderline personality disorder

    Directory of Open Access Journals (Sweden)

    Jolanta Rabe-Jabłońska

    2012-09-01

    Full Text Available Emotionally labile personality of borderline type (borderline personality occurs in 1-2% of individuals from general population; 75% of this group are women. Similarly to most of the other mental disorders, the borderline personality results from a combination of biological, social and psychological factors. The subject of this study is a survey of the current knowledge on biological factors of borderline personality. Most researchers are of the opinion that these personality disorders are determined genetically, with such inherited temperamental traits as: dysregulation, impulsivity, and hypersensitivity. Perhaps hereditary is also a defect within the serotonergic system, endogenous opioid system and/or dopaminergic system related to the reward system. Many researchers have recently perceived the dysfunction of endogenous opioid system as an integral component of borderline personality. There is now a lot of evidence showing that this dysfunction as well as that of the reward system may account for most of the borderline personality symptoms which constitute an involuntary attempt of stimulating the inefficient systems. This is how e.g. the presence of reckless sexual behaviours, unstable interpersonal relationships and inability to delay the reward in borderline personality is accounted for. Such observations may in the future constitute an important indication for seeking a more effective pharmacotherapy for patients with borderline personality. It is possible that in some patients the described dysfunctions may be alleviated with time. This is implied by the results of comprehensive prospective studies which show a significant regression of symptoms and improvement in functioning of most patients with borderline personality after at least several years.

  19. Expression of Wnt/β-Catenin Signaling Pathway and Its Regulatory Role in Type I Collagen with TGF-β1 in Scleral Fibroblasts from an Experimentally Induced Myopia Guinea Pig Model

    Directory of Open Access Journals (Sweden)

    Min Li

    2016-01-01

    Full Text Available Background. To investigate Wnt/β-catenin signaling pathway expression and its regulation of type I collagen by TGF-β1 in scleral fibroblasts from form-deprivation myopia (FDM guinea pig model. Methods. Wnt isoforms were examined using genome microarrays. Scleral fibroblasts from FDM group and self-control (SC group were cultured. Wnt isoforms, β-catenin, TGF-β1, and type I collagen expression levels were examined in the two groups with or without DKK-1 or TGF-β1 neutralizing antibody. Results. For genome microarrays, the expression of Wnt3 in FDM group was significantly greater as confirmed in retinal and scleral tissue. The expression of Wnt3 and β-catenin significantly increased in FDM group and decreased significantly with DKK-1. TGF-β1 expression level decreased significantly in FDM group and increased significantly with DKK-1. Along with morphological misalignment inside and outside cells, the amount of type I collagen decreased in FDM group. Furthermore, type I collagen increased and became regular in DKK-1 intervention group, whereas it decreased and rearranged more disorder in TGF-β1 neutralizing antibody intervention group. Conclusions. The activation of Wnt3/β-catenin signaling pathway was demonstrated in primary scleral fibroblasts in FDM. This pathway further reduced the expression of type I collagen by TGF-β1, which ultimately played a role in scleral remodeling during myopia development.

  20. The role of ionizing radiation in biological control of agricultural pests

    International Nuclear Information System (INIS)

    Mansour, M.

    2011-01-01

    Although the commercial biological control industry is growing, it still represents only a small portion of the international market of pest control sales (about 3%). This low ratio is due to several factors including high cost of production of biological control agents and technical and regulatory difficulties that complicate the shipping procedures and create trade barriers. This article summarizes the role of ionizing radiation in supporting the use of biological control agents in insect pest control and concentrates on its role in the production, transport, distribution, and release of parasites and predators and the advantages that ionizing radiation can offer, in comparison with traditional techniques. (author)

  1. Context dependence of students' views about the role of equations in understanding biology.

    Science.gov (United States)

    Watkins, Jessica; Elby, Andrew

    2013-06-01

    Students' epistemological views about biology--their ideas about what "counts" as learning and understanding biology--play a role in how they approach their courses and respond to reforms. As introductory biology courses incorporate more physics and quantitative reasoning, student attitudes about the role of equations in biology become especially relevant. However, as documented in research in physics education, students' epistemologies are not always stable and fixed entities; they can be dynamic and context-dependent. In this paper, we examine an interview with an introductory student in which she discusses the use of equations in her reformed biology course. In one part of the interview, she expresses what sounds like an entrenched negative stance toward the role equations can play in understanding biology. However, later in the interview, when discussing a different biology topic, she takes a more positive stance toward the value of equations. These results highlight how a given student can have diverse ways of thinking about the value of bringing physics and math into biology. By highlighting how attitudes can shift in response to different tasks, instructional environments, and contextual cues, we emphasize the need to attend to these factors, rather than treating students' beliefs as fixed and stable.

  2. The role of P2X receptors in bone biology.

    Science.gov (United States)

    Jørgensen, N R; Syberg, S; Ellegaard, M

    2015-01-01

    Bone is a highly dynamic organ, being constantly modeled and remodeled in order to adapt to the changing need throughout life. Bone turnover involves the coordinated actions of bone formation and bone degradation. Over the past decade great effort has been put into the examination of how P2X receptors regulate bone metabolism and especially for the P2X7 receptor an impressive amount of evidence has now documented its expression in osteoblasts, osteoclasts, and osteocytes as well as important functional roles in proliferation, differentiation, and function of the cells of bone. Key evidence has come from studies on murine knockout models and from pharmacologic studies on cells and animals. More recently, the role of P2X receptors in human bone diseases has been documented. Loss-of-functions polymorphisms in the P2X7 receptorare associated with bone loss and increased fracture risk. Very recently a report from a genetic study in multiple myeloma demonstrated that decreased P2X7 receptor function was associated with increased risk of developing multiple myeloma. In contrast, the risk of developing myeloma bone disease and subsequent vertebral fractures was increased in subjects carrying P2X7 receptor gain-of-function alleles as compared to subjects only carrying loss-of-function or normal functioning alleles. It is evident that P2X receptors are important in regulating bone turnover and maintaining bone mass, and thereby holding great potential as novel drug targets for treatment of bone diseases. However, further research is needed before we fully understand the roles and effects of P2X receptors in bone.

  3. The role of Protein Kinase Cη in T cell biology

    Directory of Open Access Journals (Sweden)

    Nicholas R.J. Gascoigne

    2012-06-01

    Full Text Available Protein kinase Cη (PKCη is a member of the novel PKC subfamily, which also includes δ, ε, and θ isoforms. Compared to the other novel PKCs, the function of PKCη in the immune system is largely unknown. Several studies have started to reveal the role of PKCη, particularly in T cells. PKCη is highly expressed in T cells, and is upregulated during thymocyte positive selection. Interestingly, like the θ isoform, PKCη is also recruited to the immunological synapse that is formed between a T cell and an antigen-presenting cell. However, unlike PKCθ, which becomes concentrated to the central region of the synapse, PKCη remains in a diffuse pattern over the whole area of the synapse, suggesting distinctive roles of these two isoforms in signal transduction. Although PKCη is dispensable for thymocyte development, further analysis of PKCη− or PKCθ−deficient and double knockout mice revealed the redundancy of these two isoforms in thymocyte development. In contrast, PKCη rather than PKCθ, plays an important role for T cell homeostatic proliferation, which requires recognition of self-antigen. Another piece of evidence demonstrating that PKCη and PKCθ have isoform specific as well as redundant roles come from the analysis of CD4 to CD8 T cell ratios in the periphery of these knockout mice. Deficiency in PKCη or PKCθ had opposing effects as PKCη knockout mice had a higher ratio of CD4 to CD8 T cells compared to that of wild-type mice, whereas PKCθ-deficient mice had a lower ratio. Biochemical studies showed that calcium flux and NFκB translocation is impaired in PKCη-deficient T cells upon TCR crosslinking stimulation, a character shared with PKCθ-deficient T cells. However, unlike the case with PKCθ, the mechanistic study of PKCη is at early stage and the signaling pathways involving PKCη, at least in T cells, are essentially unknown. In this review, we will cover the topics mentioned above as well as provide some

  4. Expression Patterns and Potential Biological Roles of Dip2a.

    Directory of Open Access Journals (Sweden)

    Luqing Zhang

    Full Text Available Disconnected (disco-interacting protein 2 homolog A is a member of the DIP2 protein family encoded by Dip2a gene. Dip2a expression pattern has never been systematically studied. Functions of Dip2a in embryonic development and adult are not known. To investigate Dip2a gene expression and function in embryo and adult, a Dip2a-LacZ mouse model was generated by insertion of β-Gal cDNA after Dip2a promoter using CRISPR/Cas9 technology. Dip2a-LacZ mouse was designed to be a lacZ reporter mouse as well as a Dip2a knockout mouse. Heterozygous mice were used to study endogenous Dip2a expression and homozygotes to study DIP2A-associated structure and function. LacZ staining indicated that Dip2a is broadly expressed in neuronal, reproductive and vascular tissues, as well as in heart, kidney, liver and lung. Results demonstrate that Dip2a is expressed in ectoderm-derived tissues in developing embryos. Adult tissues showed rich staining in neurons, mesenchymal, endothelial, smooth muscle cells and cardiomyocytes by cell types. The expression pattern highly overlaps with FSTL1 and supports previous report that DIP2A to be potential receptor of FSTL1 and its protective roles of cardiomyocytes. Broad and intense embryonic and adult expression of Dip2a has implied their multiple structural and physiological roles.

  5. The microRNA-132/212 family fine-tunes multiple targets in Angiotensin II signalling in cardiac fibroblasts

    DEFF Research Database (Denmark)

    Eskildsen, Tilde V; Schneider, Mikael; Sandberg, Maria B

    2015-01-01

    INTRODUCTION: MicroRNAs (miRNAs) are emerging as key regulators of cardiovascular development and disease; however, the cardiac miRNA target molecules are not well understood. We and others have described the Angiotensin II (AngII)-induced miR-132/212 family as novel regulators of cardiovascular...... in silico and in vitro experiments to identify miR-132/212 molecular targets in primary rat cardiac fibroblasts. RESULTS: MiR-132/212 overexpression increased fibroblast cell size and mRNA arrays detected several hundred genes that were differentially expressed, including a wide panel of receptors...... pathways that fine-tuned by miR-132/212, suggesting a role for this miRNA family as master signalling switches in cardiac fibroblasts. Our data underscore the potential for miRNA tools to manipulate a large array of molecules and thereby control biological function....

  6. Novel therapeutic strategies targeting fibroblasts and fibrosis in heart disease

    Science.gov (United States)

    Gourdie, Robert G.; Dimmeler, Stefanie; Kohl, Peter

    2016-01-01

    Our understanding of cardiac fibroblast functions has moved beyond their roles in heart structure and extracellular matrix generation, and now includes contributions to paracrine, mechanical and electrical signalling during ontogenesis and normal cardiac activity. Fibroblasts have central roles in pathogenic remodelling during myocardial ischaemia, hypertension and heart failure. As key contributors to scar formation, they are crucial for tissue repair after interventions including surgery and ablation. Novel experimental approaches targeting cardiac fibroblasts are promising potential therapies for heart disease. Indeed, several existing drugs act, at least partially, through effects on cardiac connective tissue. This Review outlines the origins and roles of fibroblasts in cardiac development, homeostasis and disease; illustrates the involvement of fibroblasts in current and emerging clinical interventions; and identifies future targets for research and development. PMID:27339799

  7. Helium generated cold plasma finely regulates activation of human fibroblast-like primary cells.

    Directory of Open Access Journals (Sweden)

    Paola Brun

    Full Text Available Non-thermal atmospheric pressure plasmas are being developed for a wide range of health care applications, including wound healing. However in order to exploit the potential of plasma for clinical applications, the understanding of the mechanisms involved in plasma-induced activation of fibroblasts, the cells active in the healing process, is mandatory. In this study, the role of helium generated plasma in the tissue repairing process was investigated in cultured human fibroblast-like primary cells, and specifically in hepatic stellate cells and intestinal subepithelial myofibroblasts. Five minutes after treatment, plasma induced formation of reactive oxygen species (ROS in cultured cells, as assessed by flow cytometric analysis of fluorescence-activated 2',7'-dichlorofluorescein diacetate probe. Plasma-induced intracellular ROS were characterized by lower concentrations and shorter half-lives with respect to hydrogen peroxide-induced ROS. Moreover ROS generated by plasma treatment increased the expression of peroxisome proliferator activated receptor (PPAR-γ, nuclear receptor that modulates the inflammatory responses. Plasma exposure promoted wound healing in an in vitro model and induced fibroblast migration and proliferation, as demonstrated, respectively, by trans-well assay and partitioning between daughter cells of carboxyfluorescein diacetate succinimidyl ester fluorescent dye. Plasma-induced fibroblast migration and proliferation were found to be ROS-dependent as cellular incubation with antioxidant agents (e.g. N-acetyl L-cysteine cancelled the biological effects. This study provides evidence that helium generated plasma promotes proliferation and migration in liver and intestinal fibroblast-like primary cells mainly by increasing intracellular ROS levels. Since plasma-evoked ROS are time-restricted and elicit the PPAR-γ anti-inflammatory molecular pathway, this strategy ensures precise regulation of human fibroblast activation and

  8. Revelation of fibroblast protein commonalities and differences and their possible roles in wound healing and tumourigenesis using co-culture models of cells

    Czech Academy of Sciences Publication Activity Database

    Jarkovská, Karla; Dvořánková, B.; Halada, Petr; Kodet, O.; Szabo, P.; Gadher, S. J.; Motlík, Jan; Kovářová, Hana; Smetana, K.

    2014-01-01

    Roč. 106, č. 7 (2014), s. 203-218 ISSN 0248-4900 R&D Projects: GA MŠk ED2.1.00/03.0124; GA MŠk(CZ) ED1.1.00/02.0109 Institutional support: RVO:67985904 ; RVO:61388971 Keywords : cancer-associated fibroblasts * contractile proteins * myofibroblasts * tissue injury * tumourigeneses Subject RIV: FD - Oncology ; Hematology Impact factor: 3.506, year: 2014

  9. Wound healing morbidity in STS patients treated with preoperative radiotherapy in relation to in vitro skin fibroblast radiosensitivity, proliferative capacity and TGF-β activity

    International Nuclear Information System (INIS)

    Akudugu, John M.; Bell, Robert S.; Catton, Charles; Davis, Aileen M.; Griffin, Anthony M.; O'Sullivan, Brian; Waldron, John N.; Ferguson, Peter C.; Wunder, Jay S.; Hill, Richard P.

    2006-01-01

    Background and purpose: In a recent study, we demonstrated that the ability of dermal fibroblasts, obtained from soft tissue sarcoma (STS) patients, to undergo initial division in vitro following radiation exposure correlated with the development of wound healing morbidity in the patients following their treatment with preoperative radiotherapy. Transforming growth factor beta (TGF-β) is thought to play an important role in fibroblast proliferation and radiosensitivity both of which may impact on wound healing. Thus, in this study we examined the interrelationship between TGF-β activity, radiosensitivity and proliferation of cultured fibroblasts and the wound healing response of STS patients after preoperative radiotherapy to provide a validation cohort for our previous study and to investigate mechanisms. Patients and methods: Skin fibroblasts were established from skin biopsies of 46 STS patients. The treatment group consisted of 28 patients who received preoperative radiotherapy. Eighteen patients constituted a control group who were either irradiated postoperatively or did not receive radiation treatment. Fibroblast cultures were subjected to the colony forming and cytokinesis-blocked binucleation assays (low dose rate: ∼0.02 Gy/min) and TGF-β assays (high dose-rate: ∼1.06 Gy/min) following γ-irradiation. Fibroblast radiosensitivity and initial proliferative ability were represented by the surviving fraction at 2.4 Gy (SF 2.4 ) and binucleation index (BNI), respectively. Active and total TGF-β levels in fibroblast cultures were determined using a biological assay. Wound healing complication (WHC), defined as the requirement for further surgery or prolonged deep wound packing, was the clinical endpoint examined. Results: Of the 28 patients treated with preoperative radiotherapy, 8 (29%) had wound healing difficulties. Fibroblasts from patients who developed WHC showed a trend to retain a significantly higher initial proliferative ability after

  10. Investigation on the role of IGF-1 signal transduction in the biological radiation responses

    Energy Technology Data Exchange (ETDEWEB)

    Jung, U Hee; Jo, Sung Kee; Park, Hae Ran; Oh, Soo Jin; Cho, Eun Hee; Eom, Hyun Soo; Ju, Eun Jin

    2009-05-15

    Effects of {gamma}-irradiation on the IGF-1 related gene expressions and activations in various cell lines - Various expression patterns of IGF-1 and IGF-1R following {gamma}-irradiation were observed according to the cell lines - The increased expressions of IGF-1 and IGF-1R were observed in Balb/3T3 and NIH/3T3 cells - Among the IGF-1 downstream signaling molecules, the phosphorylated ERK5 were not changed by {gamma}-irradiation in all three examined cell lines, whereas the phosphorylated p65 were increased by {gamma} -irradiation in all cell lines. The role of IGF-1 and p38 signaling in {gamma}-irradiated mouse embryonic fibroblast (MEF) cells - In MEF cells, IGF-1 signaling molecules were decreased and p21/phosphorylated p38 were increased by {gamma}-irradiation - The experiments with IGF-1R inhibitor (AG1024) and p38 inhibitor (SB203580) revealed that IGF-1 signaling is involved but not essential in radiation-induced cell growth arrest and senescence and that p38 MAP kinase play a important role in this cellular radiation response. The role of IGF-1 and p38 signaling in {gamma}-irradiated mouse fibroblast (NIH/3T3) cell - In NIH/3T3 cells, IGF-1 signaling molecules and p21/phosphorylated p38 were increased by {gamma} -irradiation. - However, the experiments with IGF-1R inhibitor (AG1024) and p38 inhibitor (SB203580) revealed that IGF-1 and p38 signaling do not play a crucial role in radiation-induced cell growth arrest and senescence in NIH/3T3 cells. Effects of {gamma}-irradiation on the expressions and activations on the genes related to the IGF-1 signaling in mouse tissues - In {gamma}-irradiated mice, the increased expressions of IGF-1 and IGF-1R were observed in the lung and kidney at 2 months after irradiation, and in all the tissues examined (lung, liver and kidney) at 6 months after irradiation. - In the lung of {gamma}-irradiated mice at 6 months after irradiation, the increases of IGF-1R, phosphorylated FOXO3a, p65, p38, p21 were observed. - The

  11. Investigation on the role of IGF-1 signal transduction in the biological radiation responses

    International Nuclear Information System (INIS)

    Jung, U Hee; Jo, Sung Kee; Park, Hae Ran; Oh, Soo Jin; Cho, Eun Hee; Eom, Hyun Soo; Ju, Eun Jin

    2009-05-01

    Effects of γ-irradiation on the IGF-1 related gene expressions and activations in various cell lines - Various expression patterns of IGF-1 and IGF-1R following γ-irradiation were observed according to the cell lines - The increased expressions of IGF-1 and IGF-1R were observed in Balb/3T3 and NIH/3T3 cells - Among the IGF-1 downstream signaling molecules, the phosphorylated ERK5 were not changed by γ-irradiation in all three examined cell lines, whereas the phosphorylated p65 were increased by γ -irradiation in all cell lines. The role of IGF-1 and p38 signaling in γ-irradiated mouse embryonic fibroblast (MEF) cells - In MEF cells, IGF-1 signaling molecules were decreased and p21/phosphorylated p38 were increased by γ-irradiation - The experiments with IGF-1R inhibitor (AG1024) and p38 inhibitor (SB203580) revealed that IGF-1 signaling is involved but not essential in radiation-induced cell growth arrest and senescence and that p38 MAP kinase play a important role in this cellular radiation response. The role of IGF-1 and p38 signaling in γ-irradiated mouse fibroblast (NIH/3T3) cell - In NIH/3T3 cells, IGF-1 signaling molecules and p21/phosphorylated p38 were increased by γ -irradiation. - However, the experiments with IGF-1R inhibitor (AG1024) and p38 inhibitor (SB203580) revealed that IGF-1 and p38 signaling do not play a crucial role in radiation-induced cell growth arrest and senescence in NIH/3T3 cells. Effects of γ-irradiation on the expressions and activations on the genes related to the IGF-1 signaling in mouse tissues - In γ-irradiated mice, the increased expressions of IGF-1 and IGF-1R were observed in the lung and kidney at 2 months after irradiation, and in all the tissues examined (lung, liver and kidney) at 6 months after irradiation. - In the lung of γ-irradiated mice at 6 months after irradiation, the increases of IGF-1R, phosphorylated FOXO3a, p65, p38, p21 were observed. - The patterns of altered expressions showed significant

  12. The chalcone butein from Rhus verniciflua Stokes inhibits clonogenic growth of human breast cancer cells co-cultured with fibroblasts

    Directory of Open Access Journals (Sweden)

    Tan Jenny

    2005-03-01

    Full Text Available Abstract Background Butein (3,4,2',4'-tetrahydroxychalone, a plant polyphenol, is a major biologically active component of the stems of Rhus verniciflua Stokes. It has long been used as a food additive in Korea and as an herbal medicine throughout Asia. Recently, butein has been shown to suppress the functions of fibroblasts. Because fibroblasts are believed to play an important role in promoting the growth of breast cancer cells, we investigated the ability of butein to inhibit the clonogenic growth of small numbers of breast cancer cells co-cultured with fibroblasts in vitro. Methods We first measured the clonogenic growth of small numbers of the UACC-812 human breast cancer cell line co-cultured on monolayers of serum-activated, human fibroblasts in the presence of butein (2 μg/mL or various other modulators of fibroblast function (troglitazone-1 μg/mL; GW9662-1 μM; meloxican-1 μM; and 3,4 dehydroproline-10 μg/mL. In a subsequent experiment, we measured the dose-response effect on the clonogenic growth of UACC-812 breast cancer cells by pre-incubating the fibroblasts with varying concentrations of butein (10 μg/ml-1.25 μg/mL. Finally, we measured the clonogenic growth of primary breast cancer cells obtained from 5 clinical specimens with normal fibroblasts and with fibroblasts that had been pre-treated with a fixed dose of butein (2.5 μg/mL. Results Of the five modulators of fibroblast function that we tested, butein was by far the most potent inhibitor of clonogenic growth of UACC-812 breast cancer cells co-cultured with fibroblasts. Pre-treatment of fibroblasts with concentrations of butein as low as 2.5 μg/mL nearly abolished subsequent clonogenic growth of UACC-812 breast cancer cells co-cultured with the fibroblasts. A similar dose of butein had no effect on the clonogenic growth of breast cancer cells cultured in the absence of fibroblasts. Significantly, clonogenic growth of the primary breast cancer cells was also

  13. Periodontal Dressing-containing Green Tea Epigallocathechin gallate Increases Fibroblasts Number in Gingival Artifical Wound Model

    Directory of Open Access Journals (Sweden)

    Ardisa U. Pradita

    2014-04-01

    Full Text Available Normal 0 false false false IN X-NONE X-NONE MicrosoftInternetExplorer4 Green tea leaf (Camellia sinensis is one of herbal plants that is used for traditional medicine. Epigallocatechin gallate (EGCG in green tea is the most potential polyphenol component and has the strongest biological activity. It is known that EGCG has potential effect on wound healing. Objective: This study aimed to determine the effect of adding green tea EGCG into periodontal dressing on the number of fibroblasts after gingival artificial wound in animal model. Methods: Gingival artifical wound model was performed using 2mm punch biopsy on 24 rabbits (Oryctolagus cuniculus. The animals were divided into two groups. Periodontal dressing with EGCG and without EGCG was applied to the experimental and control group, respectively. Decapitation period was scheduled at day 3, 5, and 7 after treatment. Histological analysis to count the number of fibroblasts was performed. Results: Number of fibroblasts was significantly increased in time over the experimental group treated with EGCG periodontal dressing compared to control (p<0.05. Conclusion: EGCG periodontal dressing could increase the number of fibroblast, therefore having role in wound healing after periodontal surgery in animal model.DOI: 10.14693/jdi.v20i3.197

  14. circHIPK2-mediated σ-1R promotes endoplasmic reticulum stress in human pulmonary fibroblasts exposed to silica.

    Science.gov (United States)

    Cao, Zhouli; Xiao, Qingling; Dai, Xiaoniu; Zhou, Zewei; Jiang, Rong; Cheng, Yusi; Yang, Xiyue; Guo, Huifang; Wang, Jing; Xi, Zhaoqing; Yao, Honghong; Chao, Jie

    2017-12-13

    Silicosis is characterized by fibroblast accumulation and excessive deposition of extracellular matrix. Although the roles of SiO 2 -induced chemokines and cytokines released from alveolar macrophages have received significant attention, the direct effects of SiO 2 on protein production and functional changes in pulmonary fibroblasts have been less extensively studied. Sigma-1 receptor, which has been associated with cell proliferation and migration in the central nervous system, is expressed in the lung, but its role in silicosis remains unknown. To elucidate the role of sigma-1 receptor in fibrosis induced by silica, both the upstream molecular mechanisms and the functional effects on cell proliferation and migration were investigated. Both molecular biological assays and pharmacological techniques, combined with functional experiments, such as migration and proliferation, were applied in human pulmonary fibroblasts from adults to analyze the molecular and functional changes induced by SiO 2 . SiO 2 induced endoplasmic reticulum stress in association with enhanced expression of sigma-1 receptor. Endoplasmic reticulum stress promoted migration and proliferation of human pulmonary fibroblasts-adult exposed to SiO 2 , inducing the development of silicosis. Inhibition of sigma-1 receptor ameliorated endoplasmic reticulum stress and fibroblast functional changes induced by SiO 2 . circHIPK2 is involved in the regulation of sigma-1 receptor in human pulmonary fibroblasts-adult exposed to SiO 2 . Our study elucidated a link between SiO 2 -induced fibrosis and sigma-1 receptor signaling, thereby providing novel insight into the potential use of sigma-1 receptor/endoplasmic reticulum stress in the development of novel therapeutic strategies for silicosis treatment.

  15. Establishment, characterization and immortalization of a fibroblast cell line from the Chinese red belly toad Bombina maxima skin.

    Science.gov (United States)

    Xiang, Yang; Gao, Qian; Su, Weiting; Zeng, Lin; Wang, Jinhuan; Hu, Yi; Nie, Wenhui; Ma, Xutong; Zhang, Yong; Lee, Wenhui; Zhang, Yun

    2012-01-01

    The skin of the amphibian Bombina maxima is rich in biologically active proteins and peptides, most of which have mammalian analogues. The physiological functions of most of the mammalian analogues are still unknown. Thus, Bombina maxima skin may be a promising model to reveal the physiological role of these proteins and peptides because of their large capacity for secretion. To investigate the physiological role of these proteins and peptides in vitro, a fibroblast cell line was successfully established from Bombina maxima tadpole skin. The cell line grew to form a monolayer with cells of a uniform shape and abundant rough endoplasmic reticulum, which are typical characteristics of fibroblasts. Further identification at a molecular level revealed that they strongly expressed the fibroblast marker protein vimentin. The chromosome number of these cells is 2n = 28, and most of them were diploid. Growth property analysis showed that they grew well for 14 passages. However, cells showed decreased proliferative ability after passage 15. Thus, we tried to immortalize the cells through the overexpression of SV40 T antigen. After selecting by G418, cells stably expressed SV40 large T antigen and showed enhanced proliferative ability and increased telomerase activity. Signal transduction analysis revealed functional p42 mitogen-activated protein (MAP) kinase in immortalized Bombina maxima dermal fibroblasts. Primary fibroblast cells and the immortalized fibroblast cells from Bombina maxima cultured in the present study can be used to investigate the physiological role of Bombina maxima skin-secreted proteins and peptides. In addition, the methods for primary cell culturing and cell immortalization will be useful for culturing and immortalizing cells from other types of amphibians.

  16. Inhibition of fibroblast growth by Notch1 signaling is mediated by induction of Wnt11-dependent WISP-1.

    Directory of Open Access Journals (Sweden)

    Zhao-Jun Liu

    Full Text Available Fibroblasts are an integral component of stroma and important source of growth factors and extracellular matrix (ECM. They play a prominent role in maintaining tissue homeostasis and in wound healing and tumor growth. Notch signaling regulates biological function in a variety of cells. To elucidate the physiological function of Notch signaling in fibroblasts, we ablated Notch1 in mouse (Notch1(Flox/Flox embryonic fibroblasts (MEFs. Notch1-deficient (Notch1(-/- MEFs displayed faster growth and motility rate compared to Notch1(Flox/Flox MEFs. Such phenotypic changes, however, were reversible by reconstitution of Notch1 activation via overexpression of the intracellular domain of Notch1 (NICD1 in Notch1-deficient MEFs. In contrast, constitutive activation of Notch1 signaling by introducing NICD1 into primary human dermal fibroblasts (FF2441, which caused pan-Notch activation, inhibited cell growth and motility, whereas cellular inhibition was relievable when the Notch activation was countered with dominant-negative mutant of Master-mind like 1 (DN-MAML-1. Functionally, "Notch-activated" stromal fibroblasts could inhibit tumor cell growth/invasion. Moreover, Notch activation induced expression of Wnt-induced secreted proteins-1 (WISP-1/CCN4 in FF2441 cells while deletion of Notch1 in MEFs resulted in an opposite effect. Notably, WISP-1 suppressed fibroblast proliferation, and was responsible for mediating Notch1's inhibitory effect since siRNA-mediated blockade of WISP-1 expression could relieve cell growth inhibition. Notch1-induced WISP-1 expression appeared to be Wnt11-dependent, but Wnt1-independent. Blockade of Wnt11 expression resulted in decreased WISP-1 expression and liberated Notch-induced cell growth inhibition. These findings indicated that inhibition of fibroblast proliferation by Notch pathway activation is mediated, at least in part, through regulating Wnt1-independent, but Wnt11-dependent WISP-1 expression.

  17. Biological Activity of Mesoporous Dendrimer-Coated Titanium Dioxide: Insight on the Role of the Surface-Interface Composition and the Framework Crystallinity.

    Science.gov (United States)

    Milowska, Katarzyna; Rybczyńska, Aneta; Mosiolek, Joanna; Durdyn, Joanna; Szewczyk, Eligia M; Katir, Nadia; Brahmi, Younes; Majoral, Jean-Pierre; Bousmina, Mosto; Bryszewska, Maria; El Kadib, Abdelkrim

    2015-09-16

    Hitherto, the field of nanomedicine has been overwhelmingly dominated by the use of mesoporous organosilicas compared to their metal oxide congeners. Despite their remarkable reactivity, titanium oxide-based materials have been seldom evaluated and little knowledge has been gained with respect to their "structure-biological activity" relationship. Herein, a fruitful association of phosphorus dendrimers (both "ammonium-terminated" and "phosphonate-terminated") and titanium dioxide has been performed by means of the sol-gel process, resulting in mesoporous dendrimer-coated nanosized crystalline titanium dioxide. A similar organo-coating has been reproduced using single branch-mimicking dendrimers that allow isolation of an amorphous titanium dioxide. The impact of these materials on red blood cells was evaluated by studying cell hemolysis. Next, their cytotoxicity toward B14 Chinese fibroblasts and their antimicrobial activity were also investigated. Based on their variants (cationic versus anionic terminal groups and amorphous versus crystalline titanium dioxide phase), better understanding of the role of the surface-interface composition and the nature of the framework has been gained. No noticeable discrimination was observed for amorphous and crystalline material. In contrast, hemolysis and cytotoxicity were found to be sensitive to the nature of the interface composition, with the ammonium-terminated dendrimer-coated titanium dioxide being the most hemolytic and cytotoxic material. This surface-functionalization opens the door for creating a new synergistic machineries mechanism at the cellular level and seems promising for tailoring the biological activity of nanosized organic-inorganic hybrid materials.

  18. Using Analogy Role-Play Activity in an Undergraduate Biology Classroom to Show Central Dogma Revision

    Science.gov (United States)

    Takemura, Masaharu; Kurabayashi, Mario

    2014-01-01

    For the study of biology in an undergraduate classroom, a classroom exercise was developed: an analogy role-play to learn mechanisms of gene transcription and protein translation (central dogma). To develop the central dogma role-play exercise, we made DNA and mRNA using paper sheets, tRNA using a wire dress hanger, and amino acids using Lego®…

  19. The Role of Reactive Oxygen Species (ROS in the Biological Activities of Metallic Nanoparticles

    Directory of Open Access Journals (Sweden)

    Ahmed Abdal Dayem

    2017-01-01

    Full Text Available Nanoparticles (NPs possess unique physical and chemical properties that make them appropriate for various applications. The structural alteration of metallic NPs leads to different biological functions, specifically resulting in different potentials for the generation of reactive oxygen species (ROS. The amount of ROS produced by metallic NPs correlates with particle size, shape, surface area, and chemistry. ROS possess multiple functions in cellular biology, with ROS generation a key factor in metallic NP-induced toxicity, as well as modulation of cellular signaling involved in cell death, proliferation, and differentiation. In this review, we briefly explained NP classes and their biomedical applications and describe the sources and roles of ROS in NP-related biological functions in vitro and in vivo. Furthermore, we also described the roles of metal NP-induced ROS generation in stem cell biology. Although the roles of ROS in metallic NP-related biological functions requires further investigation, modulation and characterization of metallic NP-induced ROS production are promising in the application of metallic NPs in the areas of regenerative medicine and medical devices.

  20. Fibroblast growth factor 23

    African Journals Online (AJOL)

    Dr Olaleye

    Systemic phosphate homeostasis is maintained through several hormonal mechanisms which involve fibroblast growth factor 23 (FGF-23), α-klotho, vitamin D and parathyroid hormone. FGF-23 is known to be the major regulator of phosphate balance (Mirams et al., 2004). FGF-23 is a phosphaturic hormone, which is.

  1. Investigating the role of retinal Müller cells with approaches in genetics and cell biology.

    Science.gov (United States)

    Fu, Suhua; Zhu, Meili; Ash, John D; Wang, Yunchang; Le, Yun-Zheng

    2014-01-01

    Müller cells are major macroglia and play many essential roles as a supporting cell in the retina. As Müller cells only constitute a small portion of retinal cells, investigating the role of Müller glia in retinal biology and diseases is particularly challenging. To overcome this problem, we first generated a Cre/lox-based conditional gene targeting system that permits the genetic manipulation and functional dissection of gene of interests in Müller cells. To investigate diabetes-induced alteration of Müller cells, we recently adopted methods to analyze Müller cells survival/death in vitro and in vivo. We also used normal and genetically altered primary cell cultures to reveal the mechanistic insights for Müller cells in biological and disease processes. In this article, we will discuss the applications and limitations of these methodologies, which may be useful for research in retinal Müller cell biology and pathophysiology.

  2. Identifying the role of conservation biology for solving the environmental crisis.

    Science.gov (United States)

    Dalerum, Fredrik

    2014-11-01

    Humans are altering their living environment to an extent that could cause environmental collapse. Promoting change into environmental sustainability is therefore urgent. Despite a rapid expansion in conservation biology, appreciation of underlying causes and identification of long-term solutions have largely been lacking. I summarized knowledge regarding the environmental crisis, and argue that the most important contributions toward solutions come from economy, political sciences, and psychology. Roles of conservation biology include providing environmental protection until sustainable solutions have been found, evaluating the effectiveness of implemented solutions, and providing societies with information necessary to align effectively with environmental values. Because of the potential disciplinary discrepancy between finding long-term solutions and short-term protection, we may face critical trade-offs between allocations of resources toward achieving sustainability. Since biological knowledge is required for such trade-offs, an additional role for conservation biologists may be to provide guidance toward finding optimal strategies in such trade-offs.

  3. Role of the Ubiquitin-Proteasome Systems in the Biology and Virulence of Protozoan Parasites

    Directory of Open Access Journals (Sweden)

    Christian Muñoz

    2015-01-01

    Full Text Available In eukaryotic cells, proteasomes perform crucial roles in many cellular pathways by degrading proteins to enforce quality control and regulate many cellular processes such as cell cycle progression, signal transduction, cell death, immune responses, metabolism, protein-quality control, and development. The catalytic heart of these complexes, the 20S proteasome, is highly conserved in bacteria, yeast, and humans. However, until a few years ago, the role of proteasomes in parasite biology was completely unknown. Here, we summarize findings about the role of proteasomes in protozoan parasites biology and virulence. Several reports have confirmed the role of proteasomes in parasite biological processes such as cell differentiation, cell cycle, proliferation, and encystation. Proliferation and cell differentiation are key steps in host colonization. Considering the importance of proteasomes in both processes in many different parasites such as Trypanosoma, Leishmania, Toxoplasma, and Entamoeba, parasite proteasomes might serve as virulence factors. Several pieces of evidence strongly suggest that the ubiquitin-proteasome pathway is also a viable parasitic therapeutic target. Research in recent years has shown that the proteasome is a valid drug target for sleeping sickness and malaria. Then, proteasomes are a key organelle in parasite biology and virulence and appear to be an attractive new chemotherapeutic target.

  4. The biological and physical role of mulch in the rehabilitation of custed soil in the Sahel

    NARCIS (Netherlands)

    Mando, A.; Stroosnijder, L.

    1999-01-01

    During three consecutive years (1993–1995) a split-plot design with three replications was used to study the biological and physical role of mulch in the improvement of crusted soil water balance and its productivity in the north of Burkina Faso. The main treatment was the use of an insecticide, to

  5. A co-culture system with three different primary human cell populations reveals that biomaterials and MSC modulate macrophage-driven fibroblast recruitment.

    Science.gov (United States)

    Caires, Hugo R; Barros da Silva, Patrícia; Barbosa, Mário A; Almeida, Catarina R

    2018-03-01

    The biological response to implanted biomaterials is a complex and highly coordinated phenomenon involving many different cell types that interact within 3D microenvironments. Here, we increased the complexity of a 3D platform to include at least 3 cell types that play a role in the host response upon scaffold implantation. With this system, it was possible to address how immune responses triggered by 3D biomaterials mediate recruitment of stromal cells that promote tissue regeneration, mesenchymal stromal/stem cells (MSC), or a foreign body response, fibroblasts. Primary human macrophages yielded the highest fibroblast recruitment when interacting with chitosan scaffolds but not polylactic acid. Interestingly, when there were MSC and fibroblasts in the same environment, macrophages in chitosan scaffolds again promoted a significant increase on fibroblast recruitment, but not of MSC. However, macrophages that were firstly allowed to interact with MSC within the scaffolds were no longer able to recruit fibroblasts. This study illustrates the potential to use different scaffolds to regulate the dynamics of recruitment of proregenerative or fibrotic cell types through immunomodulation. Overall, this work strengths the idea that ex vivo predictive systems need to consider the different players involved in the biological response to biomaterials and that timing of arrival of specific cell types will affect the outcome. Copyright © 2017 John Wiley & Sons, Ltd.

  6. Collagen expression in fibroblasts with a novel LMNA mutation

    International Nuclear Information System (INIS)

    Nguyen, Desiree; Leistritz, Dru F.; Turner, Lesley; MacGregor, David; Ohson, Kamal; Dancey, Paul; Martin, George M.; Oshima, Junko

    2007-01-01

    Laminopathies are a group of genetic disorders caused by LMNA mutations; they include muscular dystrophies, lipodystrophies, and progeroid syndromes. We identified a novel heterozygous LMNA mutation, L59R, in a patient with the general appearance of mandibuloacral dysplasia and progeroid features. Examination of the nuclei of dermal fibroblasts revealed the irregular morphology characteristic of LMNA mutant cells. The nuclear morphological abnormalities of LMNA mutant lymphoblastoid cell lines were less prominent compared to those of primary fibroblasts. Since it has been reported that progeroid features are associated with increased extracellular matrix in dermal tissues, we compared a subset of these components in fibroblast cultures from LMNA mutants with those of control fibroblasts. There was no evidence of intracellular accumulation or altered mobility of collagen chains, or altered conversion of procollagen to collagen, suggesting that skin fibroblast-mediated matrix production may not play a significant role in the pathogenesis of this particular laminopathy

  7. IL-13 promotes collagen accumulation in Crohn's disease fibrosis by down-regulation of fibroblast MMP synthesis: a role for innate lymphoid cells?

    Directory of Open Access Journals (Sweden)

    Jennifer R Bailey

    Full Text Available BACKGROUND: Fibrosis is a serious consequence of Crohn's disease (CD, often necessitating surgical resection. We examined the hypothesis that IL-13 may promote collagen accumulation within the CD muscle microenvironment. METHODS: Factors potentially modulating collagen deposition were examined in intestinal tissue samples from fibrotic (f CD and compared with cancer control (C, ulcerative colitis (UC and uninvolved (u CD. Mechanisms attributable to IL-13 were analysed using cell lines derived from uninvolved muscle tissue and tissue explants. RESULTS: In fCD muscle extracts, collagen synthesis was significantly increased compared to other groups, but MMP-2 was not co-ordinately increased. IL-13 transcripts were highest in fCD muscle compared to muscle from other groups. IL-13 receptor (R α1 was expressed by intestinal muscle smooth muscle, nerve and KIR(+ cells. Fibroblasts from intestinal muscle expressed Rα1, phosphorylated STAT6 in response to IL-13, and subsequently down-regulated MMP-2 and TNF-α-induced MMP-1 and MMP-9 synthesis. Cells with the phenotype KIR(+CD45(+CD56(+/-CD3(- were significantly increased in fCD muscle compared to all other groups, expressed Rα1 and membrane IL-13, and transcribed high levels of IL-13. In explanted CD muscle, these cells did not phosphorylate STAT6 in response to exogenous IL-13. CONCLUSIONS: The data indicate that in fibrotic intestinal muscle of Crohn's patients, the IL-13 pathway is stimulated, involving a novel population of infiltrating IL-13Rα1(+, KIR(+ innate lymphoid cells, producing IL-13 which inhibits fibroblast MMP synthesis. Consequently, matrix degradation is down-regulated and this leads to excessive collagen deposition.

  8. The diverse and expanding role of mass spectrometry in structural and molecular biology.

    Science.gov (United States)

    Lössl, Philip; van de Waterbeemd, Michiel; Heck, Albert Jr

    2016-12-15

    The emergence of proteomics has led to major technological advances in mass spectrometry (MS). These advancements not only benefitted MS-based high-throughput proteomics but also increased the impact of mass spectrometry on the field of structural and molecular biology. Here, we review how state-of-the-art MS methods, including native MS, top-down protein sequencing, cross-linking-MS, and hydrogen-deuterium exchange-MS, nowadays enable the characterization of biomolecular structures, functions, and interactions. In particular, we focus on the role of mass spectrometry in integrated structural and molecular biology investigations of biological macromolecular complexes and cellular machineries, highlighting work on CRISPR-Cas systems and eukaryotic transcription complexes. © 2016 The Authors. Published under the terms of the CC BY NC ND 4.0 license.

  9. The role of EMMPRIN in T cell biology and immunological diseases.

    Science.gov (United States)

    Hahn, Jennifer Nancy; Kaushik, Deepak Kumar; Yong, V Wee

    2015-07-01

    EMMPRIN (CD147), originally described as an inducer of the expression of MMPs, has gained attention in its involvement in various immunologic diseases, such that anti-EMMPRIN antibodies are considered as potential therapeutic medications. Given that MMPs are involved in the pathogenesis of various disease states, it is relevant that targeting an upstream inducer would make for an effective therapeutic strategy. Additionally, EMMPRIN is now appreciated to have multiple roles apart from MMP induction, including in cellular functions, such as migration, adhesion, invasion, energy metabolism, as well as T cell activation and proliferation. Here, we review what is known about EMMPRIN in numerous immunologic/inflammatory disease conditions with a particular focus on its complex roles in T cell biology. © Society for Leukocyte Biology.

  10. The Role of Biologically Active Ingredients from Natural Drug Treatments for Arrhythmias in Different Mechanisms

    OpenAIRE

    Li, Jie; Hu, Dan; Song, Xiaoli; Han, Tao; Gao, Yonghong; Xing, Yanwei

    2017-01-01

    Arrhythmia is a disease that is caused by abnormal electrical activity in the heart rate or rhythm. It is the major cause of cardiovascular morbidity and mortality. Although several antiarrhythmic drugs have been used in clinic for decades, their application is often limited by their adverse effects. As a result, natural drugs, which have fewer side effects, are now being used to treat arrhythmias. We searched for all articles on the role of biologically active ingredients from natural drug t...

  11. LXA4 actions direct fibroblast function and wound closure

    International Nuclear Information System (INIS)

    Herrera, Bruno S.; Kantarci, Alpdogan; Zarrough, Ahmed; Hasturk, Hatice; Leung, Kai P.; Van Dyke, Thomas E.

    2015-01-01

    Timely resolution of inflammation is crucial for normal wound healing. Resolution of inflammation is an active biological process regulated by specialized lipid mediators including the lipoxins and resolvins. Failure of resolution activity has a major negative impact on wound healing in chronic inflammatory diseases that is manifest as excess fibrosis and scarring. Lipoxins, including Lipoxin A 4 (LXA 4 ), have known anti-fibrotic and anti-scarring properties. The goal of this study was to elucidate the impact of LXA 4 on fibroblast function. Mouse fibroblasts (3T3 Mus musculus Swiss) were cultured for 72 h in the presence of TGF-β1, to induce fibroblast activation. The impact of exogenous TGF-β1 (1 ng/mL) on LXA 4 receptor expression (ALX/FPR2) was determined by flow cytometry. Fibroblast proliferation was measured by bromodeoxyuridine (BrdU) labeling and migration in a “scratch” assay wound model. Expression of α-smooth muscle actin (α-SMA), and collagen types I and III were measured by Western blot. We observed that TGF-β1 up-regulates LXA 4 receptor expression, enhances fibroblast proliferation, migration and scratch wound closure. α-SMA levels and Collagen type I and III deposition were also enhanced. LXA 4 slowed fibroblast migration and scratch wound closure at early time points (24 h), but wound closure was equal to TGF-β1 alone at 48 and 72 h. LXA 4 tended to slow fibroblast proliferation at both concentrations, but had no impact on α-SMA or collagen production by TGF-β1 stimulated fibroblasts. The generalizability of the actions of resolution molecules was examined in experiments repeated with resolvin D2 (RvD2) as the agonist. The activity of RvD2 mimicked the actions of LXA 4 in all assays, through an as yet unidentified receptor. The results suggest that mediators of resolution of inflammation enhance wound healing and limit fibrosis in part by modulating fibroblast function. - Highlights: • TGF-β1 up-regulates LXA 4 receptor (ALX

  12. Role of the crystalline form of titanium dioxide nanoparticles: Rutile, and not anatase, induces toxic effects in Balb/3T3 mouse fibroblasts.

    Science.gov (United States)

    Uboldi, Chiara; Urbán, Patricia; Gilliland, Douglas; Bajak, Edyta; Valsami-Jones, Eugenia; Ponti, Jessica; Rossi, François

    2016-03-01

    The wide use of titanium dioxide nanoparticles (TiO2 NPs) in industrial applications requires the investigation of their effects on human health. In this context, we investigated the effects of nanosized and bulk titania in two different crystalline forms (anatase and rutile) in vitro. By colony forming efficiency assay, a dose-dependent reduction of the clonogenic activity of Balb/3T3 mouse fibroblasts was detected in the presence of rutile, but not in the case of anatase NPs. Similarly, the cell transformation assay and the micronucleus test showed that rutile TiO2 NPs were able to induce type-III foci formation in Balb/3T3 cells and appeared to be slightly genotoxic, whereas anatase TiO2 NPs did not induce any significant neoplastic or genotoxic effect. Additionally, we investigated the interaction of TiO2 NPs with Balb/3T3 cells and quantified the in vitro uptake of titania using mass spectrometry. Results showed that the internalization was independent of the crystalline form of TiO2 NPs but size-dependent, as nano-titania were taken up more than their respective bulk materials. In conclusion, we demonstrated that the cytotoxic, neoplastic and genotoxic effects triggered in Balb/3T3 cells by TiO2 NPs depend on the crystalline form of the nanomaterial, whereas the internalization is regulated by the particle size. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  13. Roles of phospholipase A2 isoforms in swelling- and melittin-induced arachidonic acid release and taurine efflux in NIH3T3 fibroblasts

    DEFF Research Database (Denmark)

    Pedersen, Stine Helene Falsig; Poulsen, Kristian Arild; Lambert, Ian H.

    2006-01-01

    Osmotic swelling of NIH3T3 mouse fibroblasts activates a bromoenol lactone (BEL)-sensitive taurine efflux, pointing to the involvement of a Ca2+-independent phospholipase A2 (iPLA2) (Lambert IH. J Membr Biol 192: 19-32, 2003). We report that taurine efflux from NIH3T3 cells was not only increased...... by cell swelling but also decreased by cell shrinkage. Arachidonic acid release to the cell exterior was similarly decreased by shrinkage yet not detectably increased by swelling. NIH3T3 cells were found to express cytosolic calcium-dependent cPLA2-IVA, cPLA2-IVB, cPLA2-IVC, iPLA2-VIA, iPLA2-VIB......, and secretory sPLA2-V. Arachidonic acid release from swollen cells was partially inhibited by BEL and by the sPLA2-inhibitor manoalide. Cell swelling elicited BEL-sensitive arachidonic acid release from the nucleus, to which iPLA2-VIA localized. Exposure to the bee venom peptide melittin, to increase PLA2...

  14. CARFMAP: A Curated Pathway Map of Cardiac Fibroblasts.

    Directory of Open Access Journals (Sweden)

    Hieu T Nim

    Full Text Available The adult mammalian heart contains multiple cell types that work in unison under tightly regulated conditions to maintain homeostasis. Cardiac fibroblasts are a significant and unique population of non-muscle cells in the heart that have recently gained substantial interest in the cardiac biology community. To better understand this renaissance cell, it is essential to systematically survey what has been known in the literature about the cellular and molecular processes involved. We have built CARFMAP (http://visionet.erc.monash.edu.au/CARFMAP, an interactive cardiac fibroblast pathway map derived from the biomedical literature using a software-assisted manual data collection approach. CARFMAP is an information-rich interactive tool that enables cardiac biologists to explore the large body of literature in various creative ways. There is surprisingly little overlap between the cardiac fibroblast pathway map, a foreskin fibroblast pathway map, and a whole mouse organism signalling pathway map from the REACTOME database. Among the use cases of CARFMAP is a common task in our cardiac biology laboratory of identifying new genes that are (1 relevant to cardiac literature, and (2 differentially regulated in high-throughput assays. From the expression profiles of mouse cardiac and tail fibroblasts, we employed CARFMAP to characterise cardiac fibroblast pathways. Using CARFMAP in conjunction with transcriptomic data, we generated a stringent list of six genes that would not have been singled out using bioinformatics analyses alone. Experimental validation showed that five genes (Mmp3, Il6, Edn1, Pdgfc and Fgf10 are differentially regulated in the cardiac fibroblast. CARFMAP is a powerful tool for systems analyses of cardiac fibroblasts, facilitating systems-level cardiovascular research.

  15. CARFMAP: A Curated Pathway Map of Cardiac Fibroblasts.

    Science.gov (United States)

    Nim, Hieu T; Furtado, Milena B; Costa, Mauro W; Kitano, Hiroaki; Rosenthal, Nadia A; Boyd, Sarah E

    2015-01-01

    The adult mammalian heart contains multiple cell types that work in unison under tightly regulated conditions to maintain homeostasis. Cardiac fibroblasts are a significant and unique population of non-muscle cells in the heart that have recently gained substantial interest in the cardiac biology community. To better understand this renaissance cell, it is essential to systematically survey what has been known in the literature about the cellular and molecular processes involved. We have built CARFMAP (http://visionet.erc.monash.edu.au/CARFMAP), an interactive cardiac fibroblast pathway map derived from the biomedical literature using a software-assisted manual data collection approach. CARFMAP is an information-rich interactive tool that enables cardiac biologists to explore the large body of literature in various creative ways. There is surprisingly little overlap between the cardiac fibroblast pathway map, a foreskin fibroblast pathway map, and a whole mouse organism signalling pathway map from the REACTOME database. Among the use cases of CARFMAP is a common task in our cardiac biology laboratory of identifying new genes that are (1) relevant to cardiac literature, and (2) differentially regulated in high-throughput assays. From the expression profiles of mouse cardiac and tail fibroblasts, we employed CARFMAP to characterise cardiac fibroblast pathways. Using CARFMAP in conjunction with transcriptomic data, we generated a stringent list of six genes that would not have been singled out using bioinformatics analyses alone. Experimental validation showed that five genes (Mmp3, Il6, Edn1, Pdgfc and Fgf10) are differentially regulated in the cardiac fibroblast. CARFMAP is a powerful tool for systems analyses of cardiac fibroblasts, facilitating systems-level cardiovascular research.

  16. Teleology and its constitutive role for biology as the science of organized systems in nature.

    Science.gov (United States)

    Toepfer, Georg

    2012-03-01

    'Nothing in biology makes sense, except in the light of teleology'. This could be the first sentence in a textbook about the methodology of biology. The fundamental concepts in biology, e.g. 'organism' and 'ecosystem', are only intelligible given a teleological framework. Since early modern times, teleology has often been considered methodologically unscientific. With the acceptance of evolutionary theory, one popular strategy for accommodating teleological reasoning was to explain it by reference to selection in the past: functions were reconstructed as 'selected effects'. But the theory of evolution obviously presupposes the existence of organisms as organized and regulated, i.e. functional systems. Therefore, evolutionary theory cannot provide the foundation for teleology. The underlying reason for the central methodological role of teleology in biology is not its potential to offer particular forms of (evolutionary) explanations for the presence of parts, but rather an ontological one: organisms and other basic biological entities do not exist as physical bodies do, as amounts of matter with a definite form. Rather, they are dynamic systems in stable equilibrium; despite changes of their matter and form (in metabolism and metamorphosis) they maintain their identity. What remains constant in these kinds of systems is their 'organization', i.e. the causal pattern of interdependence of parts with certain effects of each part being relevant for the working of the system. Teleological analysis consists in the identification of these system-relevant effects and at the same time of the system as a whole. Therefore, the identity of biological systems cannot be specified without teleological reasoning. Copyright © 2011 Elsevier Ltd. All rights reserved.

  17. Role of Muramyl Dipeptide in Lipopolysaccharide-Mediated Biological Activity and Osteoclast Activity

    Directory of Open Access Journals (Sweden)

    Hideki Kitaura

    2018-01-01

    Full Text Available Lipopolysaccharide (LPS is an endotoxin and bacterial cell wall component that is capable of inducing inflammation and immunological activity. Muramyl dipeptide (MDP, the minimal essential structural unit responsible for the immunological activity of peptidoglycans, is another inflammation-inducing molecule that is ubiquitously expressed by bacteria. Several studies have shown that inflammation-related biological activities were synergistically induced by interactions between LPS and MDP. MDP synergistically enhances production of proinflammatory cytokines that are induced by LPS exposure. Injection of MDP induces lethal shock in mice challenged with LPS. LPS also induces osteoclast formation and pathological bone resorption; MDP enhances LPS induction of both processes. Furthermore, MDP enhances the LPS-induced receptor activator of NF-κB ligand (RANKL expression and toll-like receptor 4 (TLR4 expression both in vivo and in vitro. Additionally, MDP enhances LPS-induced mitogen-activated protein kinase (MAPK signaling in stromal cells. Taken together, these findings suggest that MDP plays an important role in LPS-induced biological activities. This review discusses the role of MDP in LPS-mediated biological activities, primarily in relation to osteoclastogenesis.

  18. Biology of teeth and implants: Host factors - pathology, regeneration, and the role of stem cells.

    Science.gov (United States)

    Eggert, F-Michael; Levin, Liran

    2018-01-01

    In chronic periodontitis and peri-implantitis, cells of the innate and adaptive immune systems are involved directly in the lesions within the tissues of the patient. Absence of a periodontal ligament around implants does not prevent a biologic process similar to that of periodontitis from affecting osseointegration. Our first focus is on factors in the biology of individuals that are responsible for the susceptibility of such individuals to chronic periodontitis and to peri-implantitis. Genetic factors are of significant importance in susceptibility to these diseases. Genetic factors of the host affect the composition of the oral microbiome in the same manner that they influence other microbiomes, such as those of the intestines and of the lungs. Our second focus is on the central role of stem cells in tissue regeneration, in the functioning of innate and adaptive immune systems, and in metabolism of bone. Epithelial cell rests of Malassez (ERM) are stem cells of epithelial origin that maintain the periodontal ligament as well as the cementum and alveolar bone associated with the ligament. The tissue niche within which ERM are found extends into the supracrestal areas of collagen fiber-containing tissues of the gingivae above the bony alveolar crest. Maintenance and regeneration of all periodontal tissues involves the activity of a variety of stem cells. The success of dental implants indicates that important groups of stem cells in the periodontium are active to enable that biologic success. Successful replantation of avulsed teeth and auto-transplantation of teeth is comparable to placing dental implants, and so must also involve periodontal stem cells. Biology of teeth and biology of implants represents the biology of the various stem cells that inhabit specialized niches within the periodontal tissues. Diverse biologic processes must function together successfully to maintain periodontal health. Osseointegration of dental implants does not involve formation of

  19. Role of nuclear analytical probe techniques in biological trace element research

    International Nuclear Information System (INIS)

    Jones, K.W.; Pounds, J.G.

    1985-01-01

    Many biomedical experiments require the qualitative and quantitative localization of trace elements with high sensitivity and good spatial resolution. The feasibility of measuring the chemical form of the elements, the time course of trace elements metabolism, and of conducting experiments in living biological systems are also important requirements for biological trace element research. Nuclear analytical techniques that employ ion or photon beams have grown in importance in the past decade and have led to several new experimental approaches. Some of the important features of these methods are reviewed here along with their role in trace element research, and examples of their use are given to illustrate potential for new research directions. It is emphasized that the effective application of these methods necessitates a closely integrated multidisciplinary scientific team. 21 refs., 4 figs., 1 tab

  20. Biological role of gravity: Hypotheses and results of experiments on ``Cosmos'' biosatellites

    Science.gov (United States)

    Alpatov, Alexey M.; Antipov, Vsevolod V.; Tairbekov, Murad G.

    In order to reveal the biological significance of gravity, microgravity effects have been studied at the cellular, organism and population levels. The following questions arise. Do any gravity - dependent processes exist in a cell? Is cell adaptation to weightlessness possible; if so, what role may cytoskeleton, the genetic apparatus play in it? What are the consequences of the lack of convection in weightlessness for the performance of morphogenesis? Do the integral characteristics of living beings change in weightlessness? Is there any change in ``biological capacity'' of space, its resistance to expansion of life? What are the direction and intensity of microgravity action as a factor of natural selection, the driving force of evolution? These problems are discussed from a theoretical point of view, and in the light of results obtained in experiments flown aboard biosatellites ``Cosmos''.

  1. The functional biology and trophic role of krill (Thysanoessa raschii) in a Greenlandic fjord

    DEFF Research Database (Denmark)

    Agersted, Mette Dalgaard; Nielsen, Torkel Gissel; Munk, Peter

    2011-01-01

    Despite being a key zooplankton group, knowledge on krill biology from the Arctic is inadequate. The present study examine the functional biology and evaluate the trophic role of krill in the GodthAyenbsfjord (64 degrees N, 51 degrees W) SW Greenland, through a combination of fieldwork...... and laboratory experiments. Krill biomass was highest in the middle fjord and inner fjord, whereas no krill was found offshore. The dominating species Thysanoessa raschii revealed a type III functional response when fed with the diatom Thalassiosira weissflogii. At food saturation, T. raschii exhibited a daily...... ration of 1% body C d(-1). Furthermore, T. raschii was capable of exploiting plankton cells from 5 to 400 mu m, covering several trophic levels of the pelagic food web. The calculated grazing impact by T. raschii on the fjord plankton community was negligible. However, the schooling and migratory...

  2. Oxidative Stress and Adipocyte Biology: Focus on the Role of AGEs

    Directory of Open Access Journals (Sweden)

    Florence Boyer

    2015-01-01

    Full Text Available Diabetes is a major health problem that is usually associated with obesity, together with hyperglycemia and increased advanced glycation endproducts (AGEs formation. Elevated AGEs elicit severe downstream consequences via their binding to receptors of AGEs (RAGE. This includes oxidative stress and oxidative modifications of biological compounds together with heightened inflammation. For example, albumin (major circulating protein undergoes increased glycoxidation with diabetes and may represent an important biomarker for monitoring diabetic pathophysiology. Despite the central role of adipose tissue in many physiologic/pathologic processes, recognition of the effects of greater AGEs formation in this tissue is quite recent within the obesity/diabetes context. This review provides a brief background of AGEs formation and adipose tissue biology and thereafter discusses the impact of AGEs-adipocyte interactions in pathology progression. Novel data are included showing how AGEs (especially glycated albumin may be involved in hyperglycemia-induced oxidative damage in adipocytes and its potential links to diabetes progression.

  3. Ecological Roles and Biological Activities of Specialized Metabolites from the Genus Nicotiana.

    Science.gov (United States)

    Jassbi, Amir Reza; Zare, Somayeh; Asadollahi, Mojtaba; Schuman, Meredith C

    2017-10-11

    Species of Nicotiana grow naturally in different parts of the world and have long been used both medicinally and recreationally by human societies. More recently in our history, Nicotiana tabacum has attracted interest as one of the most economically important industrial crops. Nicotiana species are frequently investigated for their bioactive natural products, and the ecological role of their specialized metabolites in responses to abiotic stress or biotic stress factors like pathogens and herbivores. The interest of tobacco companies in genetic information as well as the success of a few wild tobacco species as experimental model organisms have resulted in growing knowledge about the molecular biology and ecology of these plants and functional studies of the plant's natural products. Although a large number of reviews and books on biologically active natural products already exists, mostly from N. tabacum, we focus our attention on the ecological roles and biological activity of natural products, versus products from cured and processed material, in this Review. The studied compounds include alkaloids, aromatic compounds, flavonoids, volatiles, sesquiterpenoids, diterpenes alcohols, and sugar esters from trichomes of the plants, and recently characterized acyclic hydroxygeranyllinalool diterpene glycosides (HGL-DTGs). In this Review (1800s-2017), we describe the above-mentioned classes of natural products, emphasizing their biological activities and functions as they have been determined either in bioassay-guided purification approaches or in bioassays with plants in which the expression of specific biosynthetic genes has been genetically manipulated. Additionally, a review on the history, taxonomy, ecology, and medicinal application of different Nicotiana species growing around the globe presented in this Review may be of interest for pharmacognosists, natural products, and ecological chemists.

  4. Cellular metabolic rates from primary dermal fibroblast cells isolated from birds of different body masses.

    Science.gov (United States)

    Jimenez, Ana Gabriela; Williams, Joseph B

    2014-10-01

    The rate of metabolism is the speed at which organisms use energy, an integration of energy transformations within the body; it governs biological processes that influence rates of growth and reproduction. Progress at understanding functional linkages between whole organism metabolic rate and underlying mechanisms that influence its magnitude has been slow despite the central role this issue plays in evolutionary and physiological ecology. Previous studies that have attempted to relate how cellular processes translate into whole-organism physiology have done so over a range of body masses of subjects. However, the data still remains controversial when observing metabolic rates at the cellular level. To bridge the gap between these ideas, we examined cellular metabolic rate of primary dermal fibroblasts isolated from 49 species of birds representing a 32,000-fold range in body masses to test the hypothesis that metabolic rate of cultured cells scales with body size. We used a Seahorse XF-96 Extracellular flux analyzer to measure cellular respiration in fibroblasts. Additionally, we measured fibroblast size and mitochondrial content. We found no significant correlation between cellular metabolic rate, cell size, or mitochondrial content and body mass. Additionally, there was a significant relationship between cellular basal metabolic rate and proton leak in these cells. We conclude that metabolic rate of cells isolated in culture does not scale with body mass, but cellular metabolic rate is correlated to growth rate in birds. Copyright © 2014 Elsevier Inc. All rights reserved.

  5. Gene targeting in adult rhesus macaque fibroblasts

    Directory of Open Access Journals (Sweden)

    Wolf Don P

    2008-03-01

    Full Text Available Abstract Background Gene targeting in nonhuman primates has the potential to produce critical animal models for translational studies related to human diseases. Successful gene targeting in fibroblasts followed by somatic cell nuclear transfer (SCNT has been achieved in several species of large mammals but not yet in primates. Our goal was to establish the protocols necessary to achieve gene targeting in primary culture of adult rhesus macaque fibroblasts as a first step in creating nonhuman primate models of genetic disease using nuclear transfer technology. Results A primary culture of adult male fibroblasts was transfected with hTERT to overcome senescence and allow long term in vitro manipulations. Successful gene targeting of the HPRT locus in rhesus macaques was achieved by electroporating S-phase synchronized cells with a construct containing a SV40 enhancer. Conclusion The cell lines reported here could be used for the production of null mutant rhesus macaque models of human genetic disease using SCNT technology. In addition, given the close evolutionary relationship and biological similarity between rhesus macaques and humans, the protocols described here may prove useful in the genetic engineering of human somatic cells.

  6. Bacterial lipopolysaccharide promotes profibrotic activation of intestinal fibroblasts.

    LENUS (Irish Health Repository)

    Burke, J P

    2012-02-01

    BACKGROUND: Fibroblasts play a critical role in intestinal wound healing. Lipopolysaccharide (LPS) is a cell wall component of commensal gut bacteria. The effects of LPS on intestinal fibroblast activation were characterized. METHODS: Expression of the LPS receptor, toll-like receptor (TLR) 4, was assessed in cultured primary human intestinal fibroblasts using flow cytometry and confocal microscopy. Fibroblasts were treated with LPS and\\/or transforming growth factor (TGF) beta1. Nuclear factor kappaB (NFkappaB) pathway activation was assessed by inhibitory kappaBalpha (IkappaBalpha) degradation and NFkappaB promoter activity. Fibroblast contractility was measured using a fibroblast-populated collagen lattice. Smad-7, a negative regulator of TGF-beta1 signalling, and connective tissue growth factor (CTGF) expression were assessed using reverse transcriptase-polymerase chain reaction and western blot. The NFkappaB pathway was inhibited by IkappaBalpha transfection. RESULTS: TLR-4 was present on the surface of intestinal fibroblasts. LPS treatment of fibroblasts induced IkappaBalpha degradation, enhanced NFkappaB promoter activity and increased collagen contraction. Pretreatment with LPS (before TGF-beta1) significantly increased CTGF production relative to treatment with TGF-beta1 alone. LPS reduced whereas TGF-beta1 increased smad-7 expression. Transfection with an IkappaBalpha plasmid enhanced basal smad-7 expression. CONCLUSION: Intestinal fibroblasts express TLR-4 and respond to LPS by activating NFkappaB and inducing collagen contraction. LPS acts in concert with TGF-beta1 to induce CTGF. LPS reduces the expression of the TGF-beta1 inhibitor, smad-7.

  7. Matrix metalloproteinase inhibition reduces contraction by dupuytren fibroblasts.

    Science.gov (United States)

    Townley, William A; Cambrey, Alison D; Khaw, Peng T; Grobbelaar, Adriaan O

    2008-11-01

    Dupuytren's disease is a common fibroproliferative condition of the hand characterized by fibrotic lesions (nodules and cords), leading to disability through progressive digital contracture. Although the etiology of the disease is poorly understood, recent evidence suggests that abnormal matrix metalloproteinase (MMP) activity may play a role in cell-mediated collagen contraction and tissue scarring. The aim of this study was to investigate the efficacy of ilomastat, a broad-spectrum MMP inhibitor, in an in vitro model of Dupuytren fibroblast-mediated contraction. Nodule-derived and cord-derived fibroblasts were isolated from Dupuytren patients; carpal ligament-derived fibroblasts acted as control. Stress-release fibroblast-populated collagen lattices (FPCLs) were used as a model of contraction. FPCLs were allowed to develop mechanical stress (48 hours) during treatment with ilomastat (0-100 micromol/L), released, and allowed to contract over a 48-hour period. Contraction was estimated by measuring lattice area compared with untreated cells or treatment with a control peptide. MMP-1, MMP-2, and MT1-MMP levels were assessed by zymography, Western blotting, and enzyme-linked immunosorbent assay. Nodule-derived fibroblasts contracted lattices (69% +/- 2) to a greater extent than did cord-derived (55% +/- 3) or carpal ligament-derived (55% +/- 1) fibroblasts. Exposure to ilomastat led to significant inhibition of lattice contraction by all fibroblasts, although a reduction in lattice contraction by nodule-derived fibroblasts was most prominent (84% +/- 8). In addition, treatment with ilomastat led to a concomitant suppression of MMP-1 and MMP-2 activity, whereas MT1-MMP activity was found to be upregulated. Our results demonstrate that inhibition of MMP activity results in a reduction in extracellular matrix contraction by Dupuytren fibroblasts and suggest that MMP activity may be a critical target in preventing recurrent contracture caused by this disease.

  8. The role of biology in planetary evolution: cyanobacterial primary production in low?oxygen Proterozoic oceans

    OpenAIRE

    Hamilton, Trinity L.; Bryant, Donald A.; Macalady, Jennifer L.

    2015-01-01

    Summary Understanding the role of biology in planetary evolution remains an outstanding challenge to geobiologists. Progress towards unravelling this puzzle for Earth is hindered by the scarcity of well?preserved rocks from the Archean (4.0 to 2.5?Gyr ago) and Proterozoic (2.5 to 0.5?Gyr ago) Eons. In addition, the microscopic life that dominated Earth's biota for most of its history left a poor fossil record, consisting primarily of lithified microbial mats, rare microbial body fossils and m...

  9. Do field-free electromagnetic potentials play a role in biology?

    Science.gov (United States)

    Szasz, A; Vincze, G; Andocs, G; Szasz, O

    2009-01-01

    All bio-systems are imperfect dielectrics. Their general properties however cannot be described by conventional simple electrodynamics; the system is more complex. A central question in our present paper is centered on a controversial debate of the possible effect of the zero fields (only potentials exist). We show that the identical use of the "field-free," "curl-free," and "force-free" terminologies is incorrect, there have definitely different meanings. It is shown that the effective electro-dynamical parameters that describe and modify living systems are the potentials and not the fields. We discuss how the potentials have a role in biological processes even in field-free cases.

  10. Micro-masters of glioblastoma biology and therapy: increasingly recognized roles for microRNAs.

    Science.gov (United States)

    Floyd, Desiree; Purow, Benjamin

    2014-05-01

    MicroRNAs are small noncoding RNAs encoded in eukaryotic genomes that have been found to play critical roles in most biological processes, including cancer. This is true for glioblastoma, the most common and lethal primary brain tumor, for which microRNAs have been shown to strongly influence cell viability, stem cell characteristics, invasiveness, angiogenesis, metabolism, and immune evasion. Developing microRNAs as prognostic markers or as therapeutic agents is showing increasing promise and has potential to reach the clinic in the next several years. This succinct review summarizes current progress and future directions in this exciting and steadily expanding field.

  11. Defining the role of common variation in the genomic and biological architecture of adult human height

    DEFF Research Database (Denmark)

    Wood, Andrew R.; Esko, Tonu; Yang, Jian

    2014-01-01

    to be involved in growth and together implicated genes and pathways not highlighted in earlier efforts, such as signaling by fibroblast growth factors, WNT/beta-catenin and chondroitin sulfate-related genes. We identified several genes and pathways not previously connected with human skeletal growth, including mTOR...

  12. HGF is released from buccal fibroblasts after smokeless tobacco stimulation

    DEFF Research Database (Denmark)

    Dabelsteen, S; Christensen, S; Gron, B

    2005-01-01

    on exposure time and on concentration of the tobacco extract. High concentration increased production of HGF 4-fold. KGF production was doubled when high concentration of tobacco was used, low concentration did not stimulate cells. GM-CSF production was low in both stimulated and non-stimulated cells......To investigate the effect of smokeless tobacco (ST) on (1) HGF, KGF and GM-CSF expression by buccal fibroblasts and (2) on keratinocyte and fibroblast proliferation. Buccal fibroblasts were stimulated with different concentrations of ST extracts in a double dilution from 0.50% w/v to 0.03% w....... Keratinocytes and fibroblasts showed no increase in proliferation after stimulation with increased concentrations of ST. The results suggest that HGF and KGF may play an important role as a paracrine growth factor in epithelial hyperplasia in ST lesions....

  13. Fibroblast growth factor receptor mediates fibroblast-dependent growth in EMMPRIN-depleted head and neck cancer tumor cells.

    Science.gov (United States)

    Liu, Zhiyong; Hartman, Yolanda E; Warram, Jason M; Knowles, Joseph A; Sweeny, Larissa; Zhou, Tong; Rosenthal, Eben L

    2011-08-01

    Head and neck squamous cell carcinoma tumors (HNSCC) contain a dense fibrous stroma which is known to promote tumor growth, although the mechanism of stroma-mediated growth remains unclear. As dysplastic mucosal epithelium progresses to cancer, there is incremental overexpression of extracellular matrix metalloprotease inducer (EMMPRIN) which is associated with tumor growth and metastasis. Here, we present evidence that gain of EMMPRIN expression allows tumor growth to be less dependent on fibroblasts by modulating fibroblast growth factor receptor-2 (FGFR2) signaling. We show that silencing EMMPRIN in FaDu and SCC-5 HNSCC cell lines inhibits cell growth, but when EMMPRIN-silenced tumor cells were cocultured with fibroblasts or inoculated with fibroblasts into severe combined immunodeficient mice, the growth inhibition by silencing EMMPRIN was blunted by the presence of fibroblasts. Coculture experiments showed fibroblast-dependent tumor cell growth occurred via a paracrine signaling. Analysis of tumor gene expression revealed expression of FGFR2 was inversely related to EMMPRIN expression. To determine the role of FGFR2 signaling in EMMPRIN-silenced tumor cells, ligands and inhibitors of FGFR2 were assessed. Both FGF1 and FGF2 enhanced tumor growth in EMMPRIN-silenced cells compared with control vector-transfected cells, whereas inhibition of FGFR2 with blocking antibody or with a synthetic inhibitor (PD173074) inhibited tumor cell growth in fibroblast coculture, suggesting the importance of FGFR2 signaling in fibroblast-mediated tumor growth. Analysis of xenografted tumors revealed that EMMPRIN-silenced tumors had a larger stromal compartment compared with control. Taken together, these results suggest that EMMPRIN acquired during tumor progression promotes fibroblast-independent tumor growth.

  14. Fibroblast growth factor receptor mediates fibroblast-dependent growth in EMMPRIN depleted head and neck cancer tumor cells

    Science.gov (United States)

    Liu, Zhiyong; Hartman, Yolanda E.; Warram, Jason M.; Knowles, Joseph A.; Sweeny, Larrisa; Zhou, Tong; Rosenthal, Eben L.

    2011-01-01

    Head and neck squamous cell carcinoma tumors (HNSCC) contain a dense fibrous stroma which is known to promote tumor growth, although the mechanism of stroma mediated growth remains unclear. As dysplastic mucosal epithelium progresses to cancer there is incremental overexpression of extracellular matrix metalloprotease inducer (EMMPRIN) which is associated with tumor growth and metastasis. Here we present evidence that gain of EMMPRIN expression allows tumor growth to be less dependent on fibroblasts by modulating fibroblast growth factor receptor-2 (FGFR2) signaling. We show that silencing EMMPRIN in FaDu and SCC-5 HNSCC cell lines inhibits cell growth, but when EMMPRIN-silenced tumor cells were co-cultured with fibroblasts or inoculated with fibroblasts into SCID mice, the growth inhibition by silencing EMMPRIN was blunted by the presence of fibroblasts. Co-culture experiments demonstrated fibroblast-dependent tumor cell growth occurred via a paracrine signaling. Analysis of tumor gene expression revealed expression of FGFR2 was inversely related to EMMPRIN expression. To determine the role of FGFR2 signaling in EMMPRIN silenced tumor cells, ligands and inhibitors of FGFR2 were assessed. Both FGF1 and FGF2 enhanced tumor growth in EMMPRIN silenced cells compared to control vector transfected cells, while inhibition of FGFR2 with blocking antibody or with a synthetic inhibitor (PD173074) inhibited tumor cell growth in fibroblast co-culture, suggesting the importance of FGFR2 signaling in fibroblast mediated tumor growth. Analysis of xenografted tumors revealed EMMPRIN silenced tumors had a larger stromal compartment compared to control. Taken together, these results suggest that EMMPRIN acquired during tumor progression promotes fibroblast independent tumor growth. PMID:21665938

  15. Dendritic cells and skin sensitization: Biological roles and uses in hazard identification

    International Nuclear Information System (INIS)

    Ryan, Cindy A.; Kimber, Ian; Basketter, David A.; Pallardy, Marc; Gildea, Lucy A.; Gerberick, G. Frank

    2007-01-01

    Recent advances have been made in our understanding of the roles played by cutaneous dendritic cells (DCs) in the induction of contact allergy. A number of associated changes in epidermal Langerhans cell phenotype and function required for effective skin sensitization are providing the foundations for the development of cellular assays (using DC and DC-like cells) for skin sensitization hazard identification. These alternative approaches to the identification and characterization of skin sensitizing chemicals were the focus of a Workshop entitled 'Dendritic Cells and Skin Sensitization: Biological Roles and Uses in Hazard Identification' that was given at the annual Society of Toxicology meeting held March 6-9, 2006 in San Diego, California. This paper reports information that was presented during the Workshop

  16. Lysyl oxidase: properties, specificity, and biological roles inside and outside of the cell.

    Science.gov (United States)

    Kagan, Herbert M; Li, Wande

    2003-03-01

    Lysyl oxidase (LO) plays a critical role in the formation and repair of the extracellular matrix (ECM) by oxidizing lysine residues in elastin and collagen, thereby initiating the formation of covalent crosslinkages which stabilize these fibrous proteins. Its catalytic activity depends upon both its copper cofactor and a unique carbonyl cofactor and has been shown to extend to a variety of basic globular proteins, including histone H1. Although the three-dimensional structure of LO has yet to be determined, the present treatise offers hypotheses based upon its primary sequence, which may underlie the prominent electrostatic component of its unusual substrate specificity as well as the catalysis-suppressing function of the propeptide domain of prolysyl oxidase. Recent studies have demonstrated that LO appears to function within the cell in a manner, which strongly modifies cellular activity. Newly discovered LO-like proteins also likely play unique roles in biology. Copyright 2002 Wiley-Liss, Inc.

  17. Biological roles of cysteine proteinases in the pathogenesis of Trichomonas vaginalis

    Science.gov (United States)

    Hernández, Hilda M.; Marcet, Ricardo; Sarracent, Jorge

    2014-01-01

    Human trichomonosis, infection with Trichomonas vaginalis, is the most common non-viral sexually transmitted disease in the world. The host-parasite interaction and pathophysiological processes of trichomonosis remain incompletely understood. This review focuses on the advancements reached in the area of the pathogenesis of T. vaginalis, especially in the role of the cysteine proteinases. It highlights various approaches made in this field and lists a group of trichomonad cysteine proteinases involved in diverse processes such as invasion of the mucous layer, cytoadherence, cytotoxicity, cytoskeleton disruption of red blood cells, hemolysis, and evasion of the host immune response. A better understanding of the biological roles of cysteine proteinases in the pathogenesis of this parasite could be used in the identification of new chemotherapeutic targets. An additional advantage could be the development of a vaccine in order to reduce transmission of T. vaginalis. PMID:25348828

  18. The dual role of tumor necrosis factor (TNF) in cancer biology.

    Science.gov (United States)

    Bertazza, Loris; Mocellin, Simone

    2010-01-01

    Tumor necrosis factor (TNF) is a cytokine with well known anticancer properties and is being utilized as anticancer agent for the treatment of patients with locally advanced solid tumors. However, TNF role in cancer biology is debated. In fact, in spite of the wealth of evidence supporting its antitumor activity, the cascade of molecular events underlying TNF-mediated tumor regression observed in vivo is still incompletely elucidated. Furthermore, some preclinical findings suggest that TNF may even promote cancer development and progression. With this work we intend to summarize the molecular biology of TNF (with particular regard to its tumor-related activities) and review the experimental and clinical evidence currently available describing the complex and sometime apparently conflicting relationship between this cytokine, cancer biology and antitumor therapy. We also propose a model to explain the dual effect of TNF based on the exposure time and cytokine levels reached within the tumor microenvironment. Finally, we overview recent research findings that might lead to new ways for exploiting the anticancer potential of TNF in the clinical setting.

  19. The Role of Molecular Biology in the Biomonitoring of Human Exposure to Chemicals

    Directory of Open Access Journals (Sweden)

    Balam Muñoz

    2010-11-01

    Full Text Available Exposure to different substances in an occupational environment is of utmost concern to global agencies such as the World Health Organization and the International Labour Organization. Interest in improving work health conditions, particularly of those employees exposed to noxious chemicals, has increased considerably and has stimulated the search for new, more specific and selective tests. Recently, the field of molecular biology has been indicated as an alternative technique for monitoring personnel while evaluating work-related pathologies. Originally, occupational exposure to environmental toxicants was assessed using biochemical techniques to determine the presence of higher concentrations of toxic compounds in blood, urine, or other fluids or tissues; results were used to evaluate potential health risk. However, this approach only estimates the presence of a noxious chemical and its effects, but does not prevent or diminish the risk. Molecular biology methods have become very useful in occupational medicine to provide more accurate and opportune diagnostics. In this review, we discuss the role of the following common techniques: (1 Use of cell cultures; (2 evaluation of gene expression; (3 the “omic” sciences (genomics, transcriptomics, proteomics and metabolomics and (4 bioinformatics. We suggest that molecular biology has many applications in occupational health where the data can be applied to general environmental conditions.

  20. Instability restricts signaling of multiple fibroblast growth factors

    Czech Academy of Sciences Publication Activity Database

    Buchtová, Marcela; Chaloupková, R.; Zakrzewska, M.; Veselá, I.; Celá, Petra; Barathová, J.; Gudernová, I.; Zajíčková, R.; Trantírek, L.; Martin, J.; Kostas, M.; Otlewski, J.; Damborský, J.; Kozubík, Alois; Wiedlocha, A.; Krejčí, P.

    2015-01-01

    Roč. 72, č. 12 (2015), s. 2445-2459 ISSN 1420-682X R&D Projects: GA ČR(CZ) GA14-31540S; GA ČR GBP302/12/G157 Institutional support: RVO:67985904 ; RVO:68081707 Keywords : fibroblast growth factor * FGF * unstable Subject RIV: EA - Cell Biology Impact factor: 5.694, year: 2015

  1. The role of mathematical models in understanding pattern formation in developmental biology.

    Science.gov (United States)

    Umulis, David M; Othmer, Hans G

    2015-05-01

    In a Wall Street Journal article published on April 5, 2013, E. O. Wilson attempted to make the case that biologists do not really need to learn any mathematics-whenever they run into difficulty with numerical issues, they can find a technician (aka mathematician) to help them out of their difficulty. He formalizes this in Wilsons Principle No. 1: "It is far easier for scientists to acquire needed collaboration from mathematicians and statisticians than it is for mathematicians and statisticians to find scientists able to make use of their equations." This reflects a complete misunderstanding of the role of mathematics in all sciences throughout history. To Wilson, mathematics is mere number crunching, but as Galileo said long ago, "The laws of Nature are written in the language of mathematics[Formula: see text] the symbols are triangles, circles and other geometrical figures, without whose help it is impossible to comprehend a single word." Mathematics has moved beyond the geometry-based model of Galileo's time, and in a rebuttal to Wilson, E. Frenkel has pointed out the role of mathematics in synthesizing the general principles in science (Both point and counter-point are available in Wilson and Frenkel in Notices Am Math Soc 60(7):837-838, 2013). We will take this a step further and show how mathematics has been used to make new and experimentally verified discoveries in developmental biology and how mathematics is essential for understanding a problem that has puzzled experimentalists for decades-that of how organisms can scale in size. Mathematical analysis alone cannot "solve" these problems since the validation lies at the molecular level, but conversely, a growing number of questions in biology cannot be solved without mathematical analysis and modeling. Herein, we discuss a few examples of the productive intercourse between mathematics and biology.

  2. The hallmarks of fibroblast ageing.

    Science.gov (United States)

    Tigges, Julia; Krutmann, Jean; Fritsche, Ellen; Haendeler, Judith; Schaal, Heiner; Fischer, Jens W; Kalfalah, Faiza; Reinke, Hans; Reifenberger, Guido; Stühler, Kai; Ventura, Natascia; Gundermann, Sabrina; Boukamp, Petra; Boege, Fritz

    2014-06-01

    Ageing is influenced by the intrinsic disposition delineating what is maximally possible and extrinsic factors determining how that frame is individually exploited. Intrinsic and extrinsic ageing processes act on the dermis, a post-mitotic skin compartment mainly consisting of extracellular matrix and fibroblasts. Dermal fibroblasts are long-lived cells constantly undergoing damage accumulation and (mal-)adaptation, thus constituting a powerful indicator system for human ageing. Here, we use the systematic of ubiquitous hallmarks of ageing (Lopez-Otin et al., 2013, Cell 153) to categorise the available knowledge regarding dermal fibroblast ageing. We discriminate processes inducible in culture from phenomena apparent in skin biopsies or primary cells from old donors, coming to the following conclusions: (i) Fibroblasts aged in culture exhibit most of the established, ubiquitous hallmarks of ageing. (ii) Not all of these hallmarks have been detected or investigated in fibroblasts aged in situ (in the skin). (iii) Dermal fibroblasts aged in vitro and in vivo exhibit additional features currently not considered ubiquitous hallmarks of ageing. (iv) The ageing process of dermal fibroblasts in their physiological tissue environment has only been partially elucidated, although these cells have been a preferred model of cell ageing in vitro for decades. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  3. Cellular response to ionizing radiations: a study of the roles of physics and biology

    International Nuclear Information System (INIS)

    DeWyngaert, J.K.

    1982-01-01

    A study of the complementary roles of physics and biology in determining the response of cellular systems to ionizing radiations has been conducted. Upon exposure to radiation, a cell responds in a binary (yes/no) manner in terms of its proliferative ability (survival). The relationship between the survival probability and absorbed dose may then be examined in terms of relevant physical and biological parameters. The approach to these studies was to vary the physics and biology independently and observe separately their influences upon the measured effect. Unique to these studies was the use of heterogeneous tumor systems. These are solid tumors found to consist of genetically related but identifiably distinct populations of cells. The two heterogeneous systems studied, a murine system consisting of four subpopulations and a human tumor system with two subpopulations, were exposed to graded doses of 14 MeV neutrons or x-rays and their effectiveness in inducing cell lethality compared. A further examination of the radiation effect involved a study at the chemical level, measuring the ability of oxygen to potentiate the damage produced by photon irradiation. To summarize, the physics, biology and the environment have all been varied, and the systematics of the responses studied. The data were analyzed within the formalisms of the dual theory of radiation action, the repair-misrepair model, and the repair saturation model of cell killing. The change in survival curve shape and the increased effectiveness in cell killing for higher Linear Energy Transfer (LET) radiations (neutrons vs. x-rays) are discussed in relation to explanations in terms of either physical or biochemical processes

  4. Preparing Biology Graduate Teaching Assistants for Their Roles as Instructors: An Assessment of Institutional Approaches.

    Science.gov (United States)

    Schussler, Elisabeth E; Read, Quentin; Marbach-Ad, Gili; Miller, Kristen; Ferzli, Miriam

    2015-01-01

    The inconsistency of professional development (PD) in teaching for graduate teaching assistants (GTAs) is a widespread problem in higher education. Although GTAs serve an important role in retention of undergraduate science majors and in promotion of scientific literacy in nonmajors, they often lack preparation and ongoing support for teaching. Given the recent national focus on instructional quality in introductory courses, our goal was to use an online survey to identify current practices of teaching PD for biology GTAs and compare these results with the last national survey on this topic. In responses from 71 participant institutions, 96% reported some mandatory teaching preparation for biology GTAs; however, 52% of these programs required 10 or fewer hours per year. Respondents wanted to change their programs to include more pedagogical information and teaching observations with feedback to their GTAs. Programmatic self-ratings of satisfaction with GTA PD were positively correlated with the number of topics discussed during PD. Although more schools are requiring GTA PD for teaching compared with the last national survey, the lack of program breadth at many schools warrants a national conversation with regard to recent calls for improving undergraduate instruction. © 2015 E. E. Schussler et al. CBE—Life Sciences Education © 2015 The American Society for Cell Biology. This article is distributed by The American Society for Cell Biology under license from the author(s). It is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  5. Exosome-mediated delivery of miR-9 induces cancer-associated fibroblast-like properties in human breast fibroblasts

    Science.gov (United States)

    Baroni, S; Romero-Cordoba, S; Plantamura, I; Dugo, M; D'Ippolito, E; Cataldo, A; Cosentino, G; Angeloni, V; Rossini, A; Daidone, M G; Iorio, M V

    2016-01-01

    It is established that the interaction between microenvironment and cancer cells has a critical role in tumor development, given the dependence of neoplastic cells on stromal support. However, how this communication promotes the activation of normal (NFs) into cancer-associated fibroblasts (CAFs) is still not well understood. Most microRNA (miRNA) studies focused on tumor cell, but there is increasing evidence of their involvement in reprogramming NFs into CAFs. Here we show that miR-9, upregulated in various breast cancer cell lines and identified as pro-metastatic miRNA, affects the properties of human breast fibroblasts, enhancing the switch to CAF phenotype, thus contributing to tumor growth. Expressed at higher levels in primary triple-negative breast CAFs versus NFs isolated from patients, miR-9 improves indeed migration and invasion capabilities when transfected in immortalized NFs; viceversa, these properties are strongly impaired in CAFs upon miR-9 inhibition. We also demonstrate that tumor-secreted miR-9 can be transferred via exosomes to recipient NFs and this uptake results in enhanced cell motility. Moreover, we observed that this miRNA is also secreted by fibroblasts and in turn able to alter tumor cell behavior, by modulating its direct target E-cadherin, and NFs themselves. Consistently with the biological effects observed, gene expression profiles of NFs upon transient transfection with miR-9 show the modulation of genes mainly involved in cell motility and extracellular matrix remodeling pathways. Finally, we were able to confirm the capability of NFs transiently transfected with miR-9 to promote in vivo tumor growth. Taken together, these data provide new insights into the role of miR-9 as an important player in the cross-talk between cancer cells and stroma. PMID:27468688

  6. Biological Sex, Adherence to Traditional Gender Roles, and Attitudes toward Persons with Mental Illness: An Exploratory Investigation.

    Science.gov (United States)

    Hinkelman, Lisa; Granello, Darcy Haag

    2003-01-01

    Undergraduate students responded to the Community Attitudes toward the Mentally Ill (CAMI) questionnaire and the Hypergender Ideology Scale, which measures the degree to which they adhered to traditional gender roles. It was determined that strict gender-role adherence, rather than biological sex accounted for the variance in CAMI scores.…

  7. Roles of extracellular polymeric substances in enhanced biological phosphorus removal process.

    Science.gov (United States)

    Li, Wen-Wei; Zhang, Hai-Ling; Sheng, Guo-Ping; Yu, Han-Qing

    2015-12-01

    Enhanced biological phosphorus removal (EBPR) process is known to mainly rely on the ability of phosphorus-accumulating organisms to take up, transform and store excess amount of phosphorus (P) inside the cells. However, recent studies have revealed considerable accumulation of P also in the extracellular polymeric substances (EPS) of sludge, implying a non-negligible role of EPS in P removal by EBPR sludge. However, the contribution of EPS to P uptake and the forms of accumulated extracellular P vary substantially in different studies, and the underlying mechanism of P transformation and transportation in EPS remains poorly understood. This review provides a new recognition into the P removal process in EBPR system by incorporating the role of EPS. It overviews on the characteristics of P accumulation in EPS, explores the mechanism of P transformation and transportation in EBPR sludge and EPS, summarizes the main influential factors for the P-accumulation properties of EPS, and discusses the remaining knowledge gaps and needed future efforts that may lead to better understanding and use of such an EPS role for maximizing P recovery from wastewater. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. The role of cytokines in cervical ripening: correlations between the concentrations of cytokines and hyaluronic acid in cervical mucus and the induction of hyaluronic acid production by inflammatory cytokines by human cervical fibroblasts.

    Science.gov (United States)

    Ogawa, M; Hirano, H; Tsubaki, H; Kodama, H; Tanaka, T

    1998-07-01

    The purpose of our study was (1) to explain the relationship between levels of inflammatory cytokines and levels of hyaluronic acid in cervical mucus of pregnant women and (2) to investigate whether cytokines promote hyaluronic acid production by human cervical fibroblasts in vitro. The concentration of hyaluronic acid, interleukin-1beta, and interleukin-8 were measured in cervical mucus of pregnant women, and hyaluronic acid production by cytokine-treated (interleukin-1beta and interleukin-8) cultured fibroblasts was measured. Hyaluronic acid concentrations in the mucus of pregnant women with threatened premature labor were higher than in mucus of normal pregnant women (P hyaluronic acid concentrations and interleukin-1beta (P = .018) and interleukin-8 (P = .003) concentrations in cervical mucus. Cytokines (especially interleukin-8) stimulated hyaluronic acid production by cultured cervical fibroblasts. Cytokines induce hyaluronic acid production by human cervical fibroblasts, which may promote cervical ripening.

  9. Role of soil biology and soil functions in relation to land use intensity.

    Science.gov (United States)

    Bondi, Giulia; Wall, David; Bacher, Matthias; Emmet-Booth, Jeremy; Graça, Jessica; Marongiu, Irene; Creamer, Rachel

    2017-04-01

    The delivery of the ecosystem's functions is predominantly controlled by soil biology. The biology found in a gram of soil contains more than ten thousand individual species of bacteria and fungi (Torsvik et al., 1990). Understanding the role and the requirements of these organisms is essential for the protection and the sustainable use of soils. Soil biology represents the engine of all the processes occurring in the soil and it supports the ecosystem services such as: 1) nutrient mineralisation 2) plant production 3) water purification and regulation and 4) carbon cycling and storage. During the last years land management type and intensity have been identified as major drivers for microbial performance in soil. For this reason land management needs to be appropriately studied to understand the role of soil biology within this complex interplay of functions. We aimed to study whether and how land management drives soil biological processes and related functions. To reach this objective we built a land use intensity index (LUI) able to quantify the impact of the common farming practices carried out in Irish grassland soils. The LUI is derived from a detailed farmer questionnaire on grassland management practices at 38 farms distributed in the five major agro-climatic regions of Ireland defined by Holden and Brereton (2004). Soils were classified based on their drainage status according to the Irish Soil Information System by Creamer et al. (2014). This detailed questionnaire is then summarised into 3 management intensity components: (i) intensity of Fertilisation (Fi), (ii) frequency of Mowing (Mi) and (iii) intensity of Livestock Grazing (Gi). Sites were sampled to assess the impact of land management intensity on microbial community structure and enzyme behaviour in relation to nitrogen, phosphorus and carbon cycling. Preliminary results for enzymes linked to C and N cycles showed higher activity in relation to low grazing pressure (low Gi). Enzymes linked to P

  10. Functional biology and ecological role of krill in Northern marine ecosystems

    DEFF Research Database (Denmark)

    Agersted, Mette Dalgaard

    Krill is an understudied key group of zooplankton, which transfers energy through the food web by linking lower and higher trophic levels. Furthermore, krill play an important role in the biological pump by transporting carbon out of the euphotic zone to depth by diel vertical migration (DVM...... to be the key factor determining the trophic position of a species, where the largest species had the highest trophic position. The species were feeding on the same food items, which could lead to competition for food. However, there is a difference between the two functional groups, represented by M. norvegica...... for the two dominating species within the fjord, T. inermis and T. raschii. The krill grazed community at this time of year. Yet, the grazing impact was similar to the copepods’, which are normally...

  11. The role of micro-RNAs in hepatocellular carcinoma: from molecular biology to treatment.

    Science.gov (United States)

    D'Anzeo, Marco; Faloppi, Luca; Scartozzi, Mario; Giampieri, Riccardo; Bianconi, Maristella; Del Prete, Michela; Silvestris, Nicola; Cascinu, Stefano

    2014-05-19

    Hepatocellular carcinoma (HCC) is the fifth most common cancer worldwide and the third leading cause of cancer deaths. microRNAs (miRNAs) are evolutionary conserved small non-coding RNA that negatively regulate gene expression and protein translation. Recent evidences have shown that they are involved in many biological processes, from development and cell-cycle regulation to apoptosis. miRNAs can behave as tumor suppressor or promoter of oncogenesis depending on the cellular function of their targets. Moreover, they are frequently dysregulated in HCC. In this review we summarize the latest findings of miRNAs regulation in HCC and their role as potentially diagnostic and prognostic biomarkers for HCC. We highlight development of miRNAs as potential therapeutic targets for HCC.

  12. Sialoglycans in protozoal diseases: their detection, modes of acquisition and emerging biological roles.

    Science.gov (United States)

    Chava, Anil K; Bandyopadhyay, Sumi; Chatterjee, Mitali; Mandal, Chitra

    2004-01-01

    Protozoan parasites including Plasmodia, Leishmania, Trypanosoma, Entamoeba, Trichomonas and others cause diseases in humans and domestic livestock having far-reaching socio-economic implications. They show remarkable propensity to survive within hostile environments encountered during their life cycle, and the identification of molecules that enable them to survive in such milieu is a subject of intense research. Currently available knowledge of the parasite cell surface architecture and biochemistry indicates that sialic acid and its principle derivatives are major components of the glycocalyx and assist the parasite to interact with its external environment through functions ranging from parasite survival, infectivity and host-cell recognition. This review highlights the present state of knowledge with regard to parasite sialobiology with an emphasis on its mode(s) of acquisition and their emerging biological roles, notably as an anti-recognition molecule thereby aiding the pathogen to evade host defense mechanisms.

  13. New Insights into the Biological Role of Mammalian ADARs; the RNA Editing Proteins

    Directory of Open Access Journals (Sweden)

    Niamh Mannion

    2015-09-01

    Full Text Available The ADAR proteins deaminate adenosine to inosine in double-stranded RNA which is one of the most abundant modifications present in mammalian RNA. Inosine can have a profound effect on the RNAs that are edited, not only changing the base-pairing properties, but can also result in recoding, as inosine behaves as if it were guanosine. In mammals there are three ADAR proteins and two ADAR-related proteins (ADAD expressed. All have a very similar modular structure; however, both their expression and biological function differ significantly. Only two of the ADAR proteins have enzymatic activity. However, both ADAR and ADAD proteins possess the ability to bind double-strand RNA. Mutations in ADARs have been associated with many diseases ranging from cancer, innate immunity to neurological disorders. Here, we will discuss in detail the domain structure of mammalian ADARs, the effects of RNA editing, and the role of ADARs in human diseases.

  14. New Insights into the Biological Role of Mammalian ADARs; the RNA Editing Proteins

    Science.gov (United States)

    Mannion, Niamh; Arieti, Fabiana; Gallo, Angela; Keegan, Liam P.; O’Connell, Mary A.

    2015-01-01

    The ADAR proteins deaminate adenosine to inosine in double-stranded RNA which is one of the most abundant modifications present in mammalian RNA. Inosine can have a profound effect on the RNAs that are edited, not only changing the base-pairing properties, but can also result in recoding, as inosine behaves as if it were guanosine. In mammals there are three ADAR proteins and two ADAR-related proteins (ADAD) expressed. All have a very similar modular structure; however, both their expression and biological function differ significantly. Only two of the ADAR proteins have enzymatic activity. However, both ADAR and ADAD proteins possess the ability to bind double-strand RNA. Mutations in ADARs have been associated with many diseases ranging from cancer, innate immunity to neurological disorders. Here, we will discuss in detail the domain structure of mammalian ADARs, the effects of RNA editing, and the role of ADARs in human diseases. PMID:26437436

  15. Preparing Biology Graduate Teaching Assistants for Their Roles as Instructors: An Assessment of Institutional Approaches

    Science.gov (United States)

    Schussler, Elisabeth E.; Read, Quentin; Marbach-Ad, Gili; Miller, Kristen; Ferzli, Miriam

    2015-01-01

    The inconsistency of professional development (PD) in teaching for graduate teaching assistants (GTAs) is a widespread problem in higher education. Although GTAs serve an important role in retention of undergraduate science majors and in promotion of scientific literacy in nonmajors, they often lack preparation and ongoing support for teaching. Given the recent national focus on instructional quality in introductory courses, our goal was to use an online survey to identify current practices of teaching PD for biology GTAs and compare these results with the last national survey on this topic. In responses from 71 participant institutions, 96% reported some mandatory teaching preparation for biology GTAs; however, 52% of these programs required 10 or fewer hours per year. Respondents wanted to change their programs to include more pedagogical information and teaching observations with feedback to their GTAs. Programmatic self-ratings of satisfaction with GTA PD were positively correlated with the number of topics discussed during PD. Although more schools are requiring GTA PD for teaching compared with the last national survey, the lack of program breadth at many schools warrants a national conversation with regard to recent calls for improving undergraduate instruction. PMID:26231562

  16. The role of genomics in the identification, prediction, and prevention of biological threats.

    Directory of Open Access Journals (Sweden)

    W Florian Fricke

    2009-10-01

    Full Text Available In all likelihood, it is only a matter of time before our public health system will face a major biological threat, whether intentionally dispersed or originating from a known or newly emerging infectious disease. It is necessary not only to increase our reactive "biodefense," but also to be proactive and increase our preparedness. To achieve this goal, it is essential that the scientific and public health communities fully embrace the genomic revolution, and that novel bioinformatic and computing tools necessary to make great strides in our understanding of these novel and emerging threats be developed. Genomics has graduated from a specialized field of science to a research tool that soon will be routine in research laboratories and clinical settings. Because the technology is becoming more affordable, genomics can and should be used proactively to build our preparedness and responsiveness to biological threats. All pieces, including major continued funding, advances in next-generation sequencing technologies, bioinformatics infrastructures, and open access to data and metadata, are being set in place for genomics to play a central role in our public health system.

  17. Fibroblast growth factor 21 (FGF21 is robustly induced by ethanol and has a protective role in ethanol associated liver injury

    Directory of Open Access Journals (Sweden)

    Bhavna N. Desai

    2017-11-01

    Conclusions: Acute or binge ethanol consumption significantly increases circulating FGF21 levels in both humans and mice. However, FGF21 does not play a role in acute ethanol clearance. In contrast, chronic ethanol consumption in the absence of FGF21 is associated with significant liver pathology alone or in combination with excess mortality, depending on the type of diet consumed with ethanol. This suggests that FGF21 protects against long term ethanol induced hepatic damage and may attenuate progression of alcoholic liver disease. Further study is required to assess the therapeutic potential of FGF21 in the treatment of alcoholic liver disease.

  18. A systems biology perspective on the role of WRKY transcription factors in drought responses in plants.

    Science.gov (United States)

    Tripathi, Prateek; Rabara, Roel C; Rushton, Paul J

    2014-02-01

    Drought is one of the major challenges affecting crop productivity and yield. However, water stress responses are notoriously multigenic and quantitative with strong environmental effects on phenotypes. It is also clear that water stress often does not occur alone under field conditions but rather in conjunction with other abiotic stresses such as high temperature and high light intensities. A multidisciplinary approach with successful integration of a whole range of -omics technologies will not only define the system, but also provide new gene targets for both transgenic approaches and marker-assisted selection. Transcription factors are major players in water stress signaling and some constitute major hubs in the signaling webs. The main transcription factors in this network include MYB, bHLH, bZIP, ERF, NAC, and WRKY transcription factors. The role of WRKY transcription factors in abiotic stress signaling networks is just becoming apparent and systems biology approaches are starting to define their places in the signaling network. Using systems biology approaches, there are now many transcriptomic analyses and promoter analyses that concern WRKY transcription factors. In addition, reports on nuclear proteomics have identified WRKY proteins that are up-regulated at the protein level by water stress. Interactomics has started to identify different classes of WRKY-interacting proteins. What are often lacking are connections between metabolomics, WRKY transcription factors, promoters, biosynthetic pathways, fluxes and downstream responses. As more levels of the system are characterized, a more detailed understanding of the roles of WRKY transcription factors in drought responses in crops will be obtained.

  19. The Complex Biology of the Aryl Hydrocarbon Receptor and Its Role in the Pituitary Gland.

    Science.gov (United States)

    Formosa, Robert; Vassallo, Josanne

    2017-08-01

    The aryl hydrocarbon receptor (AHR) is a ligand-activated transcription factor best known for its ability to mediate the effects of environmental toxins such as 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD or dioxin), polycyclic aromatic hydrocarbons (PAHs), benzene, and polychlorinated biphenyls (PCBs) through the initiation of transcription of a number of metabolically active enzymes. Therefore, the AHR has been studied mostly in the context of xenobiotic signaling. However, several studies have shown that the AHR is constitutively active and plays an important role in general cell physiology, independently of its activity as a xenobiotic receptor and in the absence of exogenous ligands. Within the pituitary, activation of the AHR by environmental toxins has been implicated in disruption of gonadal development and fertility. Studies carried out predominantly in mouse models have revealed the detrimental influence of several environmental toxins on specific cell lineages of the pituitary tissue mediated by activation of AHR and its downstream effectors. Activation of AHR during fetal development adversely affected pituitary development while adult models exposed to AHR ligands demonstrated varying degrees of pituitary dysfunction. Such dysfunction may arise as a result of direct effects on pituitary cells or indirect effects on the hypothalamic-pituitary-gonadal axis. This review offers in-depth analysis of all aspects of AHR biology, with a particular focus on its role and activity within the adenohypophysis and specifically in pituitary tumorigenesis. A novel mechanism by which the AHR may play a direct role in pituitary cell proliferation and tumor formation is postulated. This review therefore attempts to cover all aspects of the AHR's role in the pituitary tissue, from fetal development to adult physiology and the pathophysiology underlying endocrine disruption and pituitary tumorigenesis.

  20. ESL students learning biology: The role of language and social interactions

    Science.gov (United States)

    Jaipal, Kamini

    This study explored three aspects related to ESL students in a mainstream grade 11 biology classroom: (1) the nature of students' participation in classroom activities, (2) the factors that enhanced or constrained ESL students' engagement in social interactions, and (3) the role of language in the learning of science. Ten ESL students were observed over an eight-month period in this biology classroom. Data were collected using qualitative research methods such as participant observation, audio-recordings of lessons, field notes, semi-structured interviews, short lesson recall interviews and students' written work. The study was framed within sociocultural perspectives, particularly the social constructivist perspectives of Vygotsky (1962, 1978) and Wertsch (1991). Data were analysed with respect to the three research aspects. Firstly, the findings showed that ESL students' preferred and exhibited a variety of participation practices that ranged from personal-individual to socio-interactive in nature. Both personal-individual and socio-interactive practices appeared to support science and language learning. Secondly, the findings indicated that ESL students' engagement in classroom social interactions was most likely influenced by the complex interactions between a number of competing factors at the individual, interpersonal and community/cultural levels (Rogoff, Radziszewska, & Masiello, 1995). In this study, six factors that appeared to enhance or constrain ESL students' engagement in classroom social interactions were identified. These factors were socio-cultural factors, prior classroom practice, teaching practices, affective factors, English language proficiency, and participation in the research project. Thirdly, the findings indicated that language played a significant mediational role in ESL students' learning of science. The data revealed that the learning of science terms and concepts can be explained by a functional model of language that includes: (1

  1. A two-dimensional model of the colonic crypt accounting for the role of the basement membrane and pericryptal fibroblast sheath.

    Directory of Open Access Journals (Sweden)

    Sara-Jane Dunn

    Full Text Available The role of the basement membrane is vital in maintaining the integrity and structure of an epithelial layer, acting as both a mechanical support and forming the physical interface between epithelial cells and the surrounding connective tissue. The function of this membrane is explored here in the context of the epithelial monolayer that lines the colonic crypt, test-tube shaped invaginations that punctuate the lining of the intestine and coordinate a regular turnover of cells to replenish the epithelial layer every few days. To investigate the consequence of genetic mutations that perturb the system dynamics and can lead to colorectal cancer, it must be possible to track the emerging tissue level changes that arise in the crypt. To that end, a theoretical crypt model with a realistic, deformable geometry is required. A new discrete crypt model is presented, which focuses on the interaction between cell- and tissue-level behaviour, while incorporating key subcellular components. The model contains a novel description of the role of the surrounding tissue and musculature, based upon experimental observations of the tissue structure of the crypt, which are also reported. A two-dimensional (2D cross-sectional geometry is considered, and the shape of the crypt is allowed to evolve and deform. Simulation results reveal how the shape of the crypt may contribute mechanically to the asymmetric division events typically associated with the stem cells at the base. The model predicts that epithelial cell migration may arise due to feedback between cell loss at the crypt collar and density-dependent cell division, an hypothesis which can be investigated in a wet lab. This work forms the basis for investigation of the deformation of the crypt structure that can occur due to proliferation of cells exhibiting mutant phenotypes, experiments that would not be possible in vivo or in vitro.

  2. Curcumin induces differential expression of cytoprotective enzymes but similar apoptotic responses in fibroblasts and myofibroblasts

    NARCIS (Netherlands)

    Lundvig, D.M.S.; Pennings, S.W.C.; Brouwer, K.M.; Mtaya-Mlangwa, M.; Mugonzibwa, E.A.; Kuijpers-Jagtman, A.M.; Hoff, J.W. Von den; Wagener, F.A.D.T.G.

    2015-01-01

    Excessive extracellular matrix (ECM) deposition and tissue contraction after injury can lead to esthetic and functional problems. Fibroblasts and myofibroblasts activated by transforming growth factor (TGF)-beta1 play a key role in these processes. The persistence of (myo)fibroblasts and their

  3. The role of DNA restriction-modification systems in the biology of Bacillus anthracis

    Directory of Open Access Journals (Sweden)

    Ramakrishnan eSitaraman

    2016-01-01

    Full Text Available Restriction-modification (R-M systems are widespread among prokaryotes and, depending on their type, may be viewed as selfish genetic elements that persist as toxin-antitoxin modules or as cellular defense systems against phage infection. Studies in the last decade have made it amply clear that these two options do not exhaust the list of possible biological roles for R-M systems. Their presence in a cell may also have a bearing on other processes such as horizontal gene transfer and gene regulation. From genome sequencing and experimental data, we know that Bacillus anthracis encodes at least three methylation-dependent (typeIV restriction endonucleases, and an orphan DNA methyltransferase. In this article, we first present an outline of our current knowledge of R-M systems in Bacillus anthracis. Based on available DNA sequence data, and on our current understanding of the functions of similar genes in other systems, we conclude with hypotheses on the possible roles of the three restriction endonucleases and the orphan DNA methyltransferase.

  4. The role of podoplanin in the biology of differentiated thyroid cancers.

    Directory of Open Access Journals (Sweden)

    Magdalena Rudzińska

    Full Text Available Podoplanin (PDPN, a mucin-type transmembrane glycoprotein specific to the lymphatic system is expressed in a variety of human cancers, and is regarded as a factor promoting tumor progression. The purpose of this study was to elucidate the molecular role of PDPN in the biology of thyroid cancer cells. PDPN expression was evaluated in primary thyroid carcinomas and thyroid carcinoma cell lines by RT-qPCR, Western blotting, IF and IHC. To examine the role of podoplanin in determining a cell's malignant potential (cellular migration, invasion, proliferation, adhesion, motility, apoptosis, a thyroid cancer cell line with silenced PDPN expression was used. We observed that PDPN was solely expressed in the cancer cells of 40% of papillary thyroid carcinoma (PTC tissues. Moreover, PDPN mRNA and protein were highly expressed in PTC-derived TPC1 and BcPAP cell lines but were not detected in follicular thyroid cancer derived cell lines. PDPN knock-down significantly decreased cellular invasion, and modestly reduced cell migration, while proliferation and adhesion were not affected. Our results demonstrate that PDPN mediates the invasive properties of cells derived from papillary thyroid carcinomas, suggesting that podoplanin might promote PTC progression.

  5. The role of the SIBLING, Bone Sialoprotein in skeletal biology - Contribution of mouse experimental genetics.

    Science.gov (United States)

    Bouleftour, Wafa; Juignet, Laura; Bouet, Guenaelle; Granito, Renata Neves; Vanden-Bossche, Arnaud; Laroche, Norbert; Aubin, Jane E; Lafage-Proust, Marie-Hélène; Vico, Laurence; Malaval, Luc

    2016-01-01

    Bone Sialoprotein (BSP) is a member of the "Small Integrin-Binding Ligand N-linked Glycoproteins" (SIBLING) extracellular matrix protein family of mineralized tissues. BSP has been less studied than other SIBLING proteins such as Osteopontin (OPN), which is coexpressed with it in several skeletal cell types. Here we review the contribution of genetically engineered mice (BSP gene knockout and overexpression) to the understanding of the role of BSP in the bone organ. The studies made so far highlight the role of BSP in skeletal mineralization, as well as its importance for proper osteoblast and osteoclast differentiation and activity, most prominently in primary/repair bone. The absence of BSP also affects the local environment of the bone tissue, in particular hematopoiesis and vascularization. Interestingly, lack of BSP induces an overexpression of OPN, and the cognate protein could be responsible for some aspects of the BSP gene knockout skeletal phenotype, while replacing BSP for some of its functions. Such interplay between the partly overlapping functions of SIBLING proteins, as well as the network of cross-regulations in which they are involved should now be the focus of further work. Copyright © 2016 International Society of Matrix Biology. Published by Elsevier B.V. All rights reserved.

  6. The Role of Biological Soil Crusts in Nitrogen Cycling and Soil Deflation in West Greenland

    Science.gov (United States)

    Heindel, R. C.; Governali, F. C.; Spickard, A. M.; Virginia, R. A.

    2017-12-01

    Although shrub expansion has been observed across the Arctic in moist tundra habitat, shrubs may be prevented from expanding in arid Arctic regions due to low soil moisture or soil erosion. This may be the case in Kangerlussuaq, West Greenland, where katabatic winds off the Greenland Ice Sheet have eroded distinct patches of mixed shrub tundra, resulting in nearly barren low productivity areas dominated by biological soil crusts (biocrusts) and graminoids. The future trajectory of these bare patches - persisting in a low biomass state or returning to a shrub-dominated state - depends on the role of the biocrust as either a long-term landscape cover limiting revegetation or as a successional facilitator. Prior to this study, little was known about the physical and ecological development of West Greenland biocrusts and how they may influence future vegetation dynamics. We found that biocrusts took 230 ± 48 years to fully develop, and that later stages of biocrust development were related to increased thickness and penetration resistance and decreased soil moisture, factors limiting shrub seedling establishment. The nitrogen (N) fixing lichen Stereocaulon sp. was found throughout the study region at all stages of biocrust development. Natural 15N abundance suggests that Stereocaulon sp. obtains about half of its N from biological fixation, and that some biologically-fixed N is incorporated into the underlying soils over time. Although soil N and C concentrations increased slightly with biocrust development, their levels under the most developed biocrusts remained low compared to the surrounding shrub and graminoid tundra. Our results suggest that deflation patches, triggered by long-term variations in climate, may remain in a low-productivity ecosystem state for hundreds to thousands of years, if precipitation and temperature regimes do not dramatically alter the vegetation potential of the region. However, if future climate change in the Arctic favors greater

  7. The growing role of biologics and biosimilars in the United States: Perspectives from the APhA Biologics and Biosimilars Stakeholder Conference.

    Science.gov (United States)

    Crespi-Lofton, Judy; Skelton, Jann B

    The American Pharmacists Association (APhA) convened the Biologics and Biosimilars Stakeholder Conference on November 30, 2016, in Washington DC. The objectives of the Conference were to determine the key issues and challenges within the marketplace for biologics, follow-on biologics (FOBs), and biosimilars, identify potential roles and responsibilities of pharmacists regarding biologic and biosimilar medications, and identify actions or activities that pharmacists may take to optimize the safe and cost-effective use of biologics and biosimilars. National thought leaders and stakeholder representatives, including individuals from the Food and Drug Administration, Centers for Medicare and Medicaid Services, a private third-party payer, manufacturers, and several national organizations of health care professionals, participated in the conference. Information shared by this group was supplemented with relevant legal and regulatory information and published literature. Biologics play a valuable role in the treatment of numerous health conditions, but their associated costs, which tend to be greater than those of small-molecule drugs, place a burden on the health care system. Biosimilars (both noninterchangeable and interchangeable) are highly similar copies of the originator biologic and offer the potential to reduce costs and improve patient access to biological products by increasing treatment options and creating a more competitive market. Despite the potential benefits of biosimilars, certain factors may limit their uptake. The conference participants explored issues that different stakeholders think influence the use of biologics, including biosimilars, in the United States. Barriers included technology, prescriber-pharmacist communication, legislation and regulations, limited patient and health care practitioner knowledge of biological products, patient and health care practitioner perceptions of biosimilars, and evolving science or lack of long-term data. After

  8. Government Expectations and the Role of Law Enforcement in a Biological Incident

    National Research Council Canada - National Science Library

    Demme, Nancy

    2007-01-01

    ...) that include responsibilities for law enforcement. Yet, police officers are unaccustomed to working with biological agents or responding to biological incidents, and have little if any experience in this area...

  9. Curcumin-induced fibroblast apoptosis and in vitro wound contraction are regulated by antioxidants and heme oxygenase: implications for scar formation.

    NARCIS (Netherlands)

    Scharstuhl, A.; Mutsaers, H.A.M.; Pennings, S.W.C.; Szarek, W.A.; Russel, F.G.M.; Wagener, F.A.D.T.G.

    2009-01-01

    Fibroblast apoptosis plays a crucial role in normal and pathological scar formation and therefore we studied whether the putative apoptosis-inducing factor curcumin affects fibroblast apoptosis and may function as a novel therapeutic. We show that 25-microM curcumin causes fibroblast apoptosis and

  10. Multiple functions of gingival and mucoperiosteal fibroblasts in oral wound healing and repair.

    Science.gov (United States)

    Chiquet, Matthias; Katsaros, Christos; Kletsas, Dimitris

    2015-06-01

    Fibroblasts are cells of mesenchymal origin. They are responsible for the production of most extracellular matrix in connective tissues and are essential for wound healing and repair. In recent years, it has become clear that fibroblasts from different tissues have various distinct traits. Moreover, wounds in the oral cavity heal under very special environmental conditions compared with skin wounds. Here, we reviewed the current literature on the various interconnected functions of gingival and mucoperiosteal fibroblasts during the repair of oral wounds. The MEDLINE database was searched with the following terms: (gingival OR mucoperiosteal) AND fibroblast AND (wound healing OR repair). The data gathered were used to compare oral fibroblasts with fibroblasts from other tissues in terms of their regulation and function during wound healing. Specifically, we sought answers to the following questions: (i) what is the role of oral fibroblasts in the inflammatory response in acute wounds; (ii) how do growth factors control the function of oral fibroblasts during wound healing; (iii) how do oral fibroblasts produce, remodel and interact with extracellular matrix in healing wounds; (iv) how do oral fibroblasts respond to mechanical stress; and (v) how does aging affect the fetal-like responses and functions of oral fibroblasts? The current state of research indicates that oral fibroblasts possess unique characteristics and tightly controlled specific functions in wound healing and repair. This information is essential for developing new strategies to control the intraoral wound-healing processes of the individual patient. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  11. The emerging role of reactive oxygen and nitrogen species in redox biology and some implications for plasma applications to medicine and biology

    International Nuclear Information System (INIS)

    Graves, David B

    2012-01-01

    Reactive oxygen species (ROS) and the closely related reactive nitrogen species (RNS) are often generated in applications of atmospheric pressure plasmas intended for biomedical purposes. These species are also central players in what is sometimes referred to as ‘redox’ or oxidation-reduction biology. Oxidation-reduction biochemistry is fundamental to all of aerobic biology. ROS and RNS are perhaps best known as disease-associated agents, implicated in diabetes, cancer, heart and lung disease, autoimmune disease and a host of other maladies including ageing and various infectious diseases. These species are also known to play active roles in the immune systems of both animals and plants and are key signalling molecules, among many other important roles. Indeed, the latest research has shown that ROS/RNS play a much more complex and nuanced role in health and ageing than previously thought. Some of the most potentially profound therapeutic roles played by ROS and RNS in various medical interventions have emerged only in the last several years. Recent research suggests that ROS/RNS are significant and perhaps even central actors in the actions of antimicrobial and anti-parasite drugs, cancer therapies, wound healing therapies and therapies involving the cardiovascular system. Understanding the ways ROS/RNS act in established therapies may help guide future efforts in exploiting novel plasma medical therapies. The importance of ROS and RNS to plant biology has been relatively little appreciated in the plasma biomedicine community, but these species are just as important in plants. It appears that there are opportunities for useful applications of plasmas in this area as well. (topical review)

  12. The emerging role of reactive oxygen and nitrogen species in redox biology and some implications for plasma applications to medicine and biology

    Science.gov (United States)

    Graves, David B.

    2012-07-01

    Reactive oxygen species (ROS) and the closely related reactive nitrogen species (RNS) are often generated in applications of atmospheric pressure plasmas intended for biomedical purposes. These species are also central players in what is sometimes referred to as ‘redox’ or oxidation-reduction biology. Oxidation-reduction biochemistry is fundamental to all of aerobic biology. ROS and RNS are perhaps best known as disease-associated agents, implicated in diabetes, cancer, heart and lung disease, autoimmune disease and a host of other maladies including ageing and various infectious diseases. These species are also known to play active roles in the immune systems of both animals and plants and are key signalling molecules, among many other important roles. Indeed, the latest research has shown that ROS/RNS play a much more complex and nuanced role in health and ageing than previously thought. Some of the most potentially profound therapeutic roles played by ROS and RNS in various medical interventions have emerged only in the last several years. Recent research suggests that ROS/RNS are significant and perhaps even central actors in the actions of antimicrobial and anti-parasite drugs, cancer therapies, wound healing therapies and therapies involving the cardiovascular system. Understanding the ways ROS/RNS act in established therapies may help guide future efforts in exploiting novel plasma medical therapies. The importance of ROS and RNS to plant biology has been relatively little appreciated in the plasma biomedicine community, but these species are just as important in plants. It appears that there are opportunities for useful applications of plasmas in this area as well.

  13. The large universal Pantoea plasmid LPP-1 plays a major role in biological and ecological diversification

    Directory of Open Access Journals (Sweden)

    De Maayer Pieter

    2012-11-01

    Full Text Available Abstract Background Pantoea spp. are frequently isolated from a wide range of ecological niches and have various biological roles, as plant epi- or endophytes, biocontrol agents, plant-growth promoters or as pathogens of both plant and animal hosts. This suggests that members of this genus have undergone extensive genotypic diversification. One means by which this occurs among bacteria is through the acquisition and maintenance of plasmids. Here, we have analyzed and compared the sequences of a large plasmid common to all sequenced Pantoea spp. Results and discussion The Large PantoeaPlasmids (LPP-1 of twenty strains encompassing seven different Pantoea species, including pathogens and endo-/epiphytes of a wide range of plant hosts as well as insect-associated strains, were compared. The LPP-1 plasmid sequences range in size from ~281 to 794 kb and carry between 238 and 750 protein coding sequences (CDS. A core set of 46 proteins, encompassing 2.2% of the total pan-plasmid (2,095 CDS, conserved among all LPP-1 plasmid sequences, includes those required for thiamine and pigment biosynthesis. Phylogenetic analysis reveals that these plasmids have arisen from an ancestral plasmid, which has undergone extensive diversification. Analysis of the proteins encoded on LPP-1 also showed that these plasmids contribute to a wide range of Pantoea phenotypes, including the transport and catabolism of various substrates, inorganic ion assimilation, resistance to antibiotics and heavy metals, colonization and persistence in the host and environment, pathogenesis and antibiosis. Conclusions LPP-1 is universal to all Pantoea spp. whose genomes have been sequenced to date and is derived from an ancestral plasmid. LPP-1 encodes a large array of proteins that have played a major role in the adaptation of the different Pantoea spp. to their various ecological niches and their specialization as pathogens, biocontrol agents or benign saprophytes found in many diverse

  14. The role of biology in planetary evolution: cyanobacterial primary production in low‐oxygen Proterozoic oceans

    Science.gov (United States)

    Bryant, Donald A.; Macalady, Jennifer L.

    2016-01-01

    Summary Understanding the role of biology in planetary evolution remains an outstanding challenge to geobiologists. Progress towards unravelling this puzzle for Earth is hindered by the scarcity of well‐preserved rocks from the Archean (4.0 to 2.5 Gyr ago) and Proterozoic (2.5 to 0.5 Gyr ago) Eons. In addition, the microscopic life that dominated Earth's biota for most of its history left a poor fossil record, consisting primarily of lithified microbial mats, rare microbial body fossils and membrane‐derived hydrocarbon molecules that are still challenging to interpret. However, it is clear from the sulfur isotope record and other geochemical proxies that the production of oxygen or oxidizing power radically changed Earth's surface and atmosphere during the Proterozoic Eon, pushing it away from the more reducing conditions prevalent during the Archean. In addition to ancient rocks, our reconstruction of Earth's redox evolution is informed by our knowledge of biogeochemical cycles catalysed by extant biota. The emergence of oxygenic photosynthesis in ancient cyanobacteria represents one of the most impressive microbial innovations in Earth's history, and oxygenic photosynthesis is the largest source of O 2 in the atmosphere today. Thus the study of microbial metabolisms and evolution provides an important link between extant biota and the clues from the geologic record. Here, we consider the physiology of cyanobacteria (the only microorganisms capable of oxygenic photosynthesis), their co‐occurrence with anoxygenic phototrophs in a variety of environments and their persistence in low‐oxygen environments, including in water columns as well as mats, throughout much of Earth's history. We examine insights gained from both the rock record and cyanobacteria presently living in early Earth analogue ecosystems and synthesize current knowledge of these ancient microbial mediators in planetary redox evolution. Our analysis supports the hypothesis that anoxygenic

  15. Matrix metalloproteinase content and activity in low-platelet, low-leukocyte and high-platelet, high-leukocyte platelet rich plasma (PRP) and the biologic response to PRP by human ligament fibroblasts.

    Science.gov (United States)

    Pifer, Matthew A; Maerz, Tristan; Baker, Kevin C; Anderson, Kyle

    2014-05-01

    Recent work has shown the presence of catabolic cytokines in platelet-rich plasma (PRP), but little is known about endogenous catabolic proteases such as matrix metalloproteinases (MMPs). Hypothesis/ To quantify MMP content in 2 commercially available PRP preparation systems: Arthrex Double Syringe System autologous conditioned plasma (ACP) and Biomet GPS (GPS). The hypothesis was that MMPs are actively secreted from PRP immediately after preparation. Controlled laboratory study. PRP was prepared using either ACP (low platelet, low leukocyte) or GPS (high platelet, high leukocyte). MMP-2, MMP-3, and MMP-9 concentrations were measured using multiplex enzyme-linked immunosorbent assays for up to 6 days in 2 donors, and MMP activity was measured in 3 donors using kinetic activity kits able to detect the enzymatic cleavage of a fluorogenic peptide. Human ligament fibroblasts were cultured and exposed to both ACP and GPS from 1 donor each. MMP-2, -3, and -9 concentrations were assayed in culture media at 24 and 48 hours after exposure. GPS exhibited higher total MMP-2, -3, and -9 concentrations for up to 144 hours of release, while ACP had higher platelet-normalized MMP-2 and MMP-3 concentrations. GPS had significantly higher total and endogenous MMP-2 activity (P = .004 and .014, respectively), MMP-3 activity (P = .020 and .015, respectively), and MMP-9 activity (P = .004 and .002, respectively) compared with ACP. Once normalized to platelet count, differences in MMP activity were not significant between ACP and GPS. Compared with controls, cells stimulated with interleukin-1 beta (IL-1β) and treated with ACP showed significantly higher fold changes of MMP-2 (P = .001) and MMP-3 (P = .003) concentrations at 24 hours than did cells treated with GPS. Total MMP-9 content was higher in the media of GPS-treated, IL-1β-stimulated cells compared with ACP-treated cells (P = .001). At 48 hours, IL-1β-stimulated cells treated with GPS exhibited higher fold changes of MMP-2

  16. Microprobe analysis of human fibroblasts

    International Nuclear Information System (INIS)

    Allan, G.L.; Zhu, J.; Legge, G.J.F.

    1985-01-01

    The Melbourne Proton Microprobe has been used to study the copper content in human skin fibroblast cells derived from patients with the genetic disease Menkes Syndrome. Both normal and diseased cells have been studied to investigate any elemental differences occurring between the two cell types. This paper details the preparatory techniques necessary for individual cell analysis and presents the elemental information with a new three dimensional contour mapping technique. These maps are used to highlight elemental differences between normal and mutant fibroblasts. The work also confirms the expected copper excess found in the Menkes cell and indicates that the microprobe can be used for rapid identification of a Menkes carrier

  17. The role of adaptive trans-generational plasticity in biological invasions of plants.

    Science.gov (United States)

    Dyer, Andrew R; Brown, Cynthia S; Espeland, Erin K; McKay, John K; Meimberg, Harald; Rice, Kevin J

    2010-03-01

    High-impact biological invasions often involve establishment and spread in disturbed, high-resource patches followed by establishment and spread in biotically or abiotically stressful areas. Evolutionary change may be required for the second phase of invasion (establishment and spread in stressful areas) to occur. When species have low genetic diversity and short selection history, within-generation phenotypic plasticity is often cited as the mechanism through which spread across multiple habitat types can occur. We show that trans-generational plasticity (TGP) can result in pre-adapted progeny that exhibit traits associated with increased fitness both in high-resource patches and in stressful conditions. In the invasive sedge, Cyperus esculentus, maternal plants growing in nutrient-poor patches can place disproportional number of propagules into nutrient-rich patches. Using the invasive annual grass, Aegilops triuncialis, we show that maternal response to soil conditions can confer greater stress tolerance in seedlings in the form of greater photosynthetic efficiency. We also show TGP for a phenological shift in a low resource environment that results in greater stress tolerance in progeny. These lines of evidence suggest that the maternal environment can have profound effects on offspring success and that TGP may play a significant role in some plant invasions.

  18. The Role of Biologically Active Ingredients from Natural Drug Treatments for Arrhythmias in Different Mechanisms.

    Science.gov (United States)

    Li, Jie; Hu, Dan; Song, Xiaoli; Han, Tao; Gao, Yonghong; Xing, Yanwei

    2017-01-01

    Arrhythmia is a disease that is caused by abnormal electrical activity in the heart rate or rhythm. It is the major cause of cardiovascular morbidity and mortality. Although several antiarrhythmic drugs have been used in clinic for decades, their application is often limited by their adverse effects. As a result, natural drugs, which have fewer side effects, are now being used to treat arrhythmias. We searched for all articles on the role of biologically active ingredients from natural drug treatments for arrhythmias in different mechanisms in PubMed. This study reviews 19 natural drug therapies, with 18 active ingredient therapies, such as alkaloids, flavonoids, saponins, quinones, and terpenes, and two kinds of traditional Chinese medicine compound (Wenxin-Keli and Shensongyangxin), all of which have been studied and reported as having antiarrhythmic effects. The primary focus is the proposed antiarrhythmic mechanism of each natural drug agent. Conclusion . We stress persistent vigilance on the part of the provider in discussing the use of natural drug agents to provide a solid theoretical foundation for further research on antiarrhythmia drugs.

  19. Cancer stem cells: a systems biology view of their role in prognosis and therapy.

    Science.gov (United States)

    Mertins, Susan D

    2014-04-01

    Evidence has accumulated that characterizes highly tumorigenic cancer cells residing in heterogeneous populations. The accepted term for such a subpopulation is cancer stem cells (CSCs). While many questions still remain about their precise role in the origin, progression, and drug resistance of tumors, it is clear they exist. In this review, a current understanding of the nature of CSC, their potential usefulness in prognosis, and the need to target them will be discussed. In particular, separate studies now suggest that the CSC is plastic in its phenotype, toggling between tumorigenic and nontumorigenic states depending on both intrinsic and extrinsic conditions. Because of this, a static view of gene and protein levels defined by correlations may not be sufficient to either predict disease progression or aid in the discovery and development of drugs to molecular targets leading to cures. Quantitative dynamic modeling, a bottom up systems biology approach whereby signal transduction pathways are described by differential equations, may offer a novel means to overcome the challenges of oncology today. In conclusion, the complexity of CSCs can be captured in mathematical models that may be useful for selecting molecular targets, defining drug action, and predicting sensitivity or resistance pathways for improved patient outcomes.

  20. The Protective Role of Lettuce oil (Lactuca sativa) against Radiation induced Biological Hazards in Male Rats

    International Nuclear Information System (INIS)

    Abdel-Magied, N.; Ahmed, A.G.

    2011-01-01

    This study was conducted to clarify the potential role of lettuce oil against damages induced in rats due to exposure to gamma radiation. Adult male albino rats (120-150 g) were divided into 4 groups each of 12 animals. The first group was considered control animals. The second group received, via gavages, lettuce oil (200 mg/Kg body weight) for 3 weeks. The third group was subjected to a single dose of 6.5Gy whole body gamma irradiation. The fourth group received lettuce oil for 3 weeks then was exposed to radiation. Blood samples were collected 1 and 7 days post irradiation. Exposure of rats to gamma irradiation caused a significant increase in the level of glucose, total cholesterol (TC), triglycerides (TG), malondialdehyde (MDA) and follicle stimulating hormone (FSH) while a significant decrease was recorded in glutathione content (GSH), superoxide dismutase (SOD) and catalase activities, white blood cells (WBCs), red blood cells (RBCs), haemoglobin content (Hb), haematocrit percentage (Hct%), mean corpuscular volume (MCV), platelets (PLT), leutinizing hormone (LH) and testosterone hormone . In rats treated with lettuce oil then exposed to radiation, the results showed an improvement in all previous parameters. It could be concluded that lettuce oil might reduce the biological hazards in rats induced by gamma irradiation

  1. Ecology and functional roles of biological soil crusts in semi-arid ecosystems of Spain

    Science.gov (United States)

    Maestre, Fernando T.; Bowker, Matthew A.; Cantón, Yolanda; Castillo-Monroy, Andrea P.; Cortina, Jordi; Escolar, Cristina; Escudero, Adrián; Lázaro, Roberto; Martínez, Isabel

    2015-01-01

    Biological soil crusts (BSCs), composed of lichens, cyanobacteria, mosses, liverworts and microorganisms, are key biotic components of arid and semi-arid ecosystems worldwide. Despite they are widespread in Spain, these organisms have been historically understudied in this country. This trend is beginning to change as a recent wave of research has been identifying BSCs as a model ecological system. Many studies and research projects carried out in Spain have explored the role of BSCs on water, carbon and nitrogen fluxes, the interactions between BSCs and vascular plants, their dynamics after disturbances, and their response to global change, among other topics. In this article we review the growing body of research on BSCs available from semi-arid areas of Spain, highlighting its importance for increasing our knowledge on this group of organisms. We also discuss how it is breaking new ground in emerging research areas on the ecology of BSCs, and how it can be use to guide management and restoration efforts. Finally, we provide directions for future research on the ecology of BSCs in Spain and abroad. PMID:25908884

  2. Biological Roles of Aberrantly Expressed Glycosphingolipids and Related Enzymes in Human Cancer Development and Progression

    Directory of Open Access Journals (Sweden)

    Dinghao Zhuo

    2018-05-01

    Full Text Available Glycosphingolipids (GSLs, which consist of a hydrophobic ceramide backbone and a hydrophilic carbohydrate residue, are an important type of glycolipid expressed in surface membranes of all animal cells. GSLs play essential roles in maintenance of plasma membrane stability, in regulation of numerous cellular processes (including adhesion, proliferation, apoptosis, and recognition, and in modulation of signal transduction pathways. GSLs have traditionally been classified as ganglio-series, lacto-series, or globo-series on the basis of their diverse types of oligosaccharide chains. Structures and functions of specific GSLs are also determined by their oligosaccharide chains. Different cells and tissues show differential expression of GSLs, and changes in structures of GSL glycan moieties occur during development of numerous types of human cancer. Association of GSLs and/or related enzymes with initiation and progression of cancer has been documented in 100s of studies, and many such GSLs are useful markers or targets for cancer diagnosis or therapy. In this review, we summarize (i recent studies on aberrant expression and distribution of GSLs in common human cancers (breast, lung, colorectal, melanoma, prostate, ovarian, leukemia, renal, bladder, gastric; (ii biological functions of specific GSLs in these cancers.

  3. Probing the roles of SUMOylation in cancer cell biology by using a selective SAE inhibitor.

    Science.gov (United States)

    He, Xingyue; Riceberg, Jessica; Soucy, Teresa; Koenig, Erik; Minissale, James; Gallery, Melissa; Bernard, Hugues; Yang, Xiaofeng; Liao, Hua; Rabino, Claudia; Shah, Pooja; Xega, Kristina; Yan, Zhong-Hua; Sintchak, Mike; Bradley, John; Xu, He; Duffey, Matt; England, Dylan; Mizutani, Hirotake; Hu, Zhigen; Guo, Jianping; Chau, Ryan; Dick, Lawrence R; Brownell, James E; Newcomb, John; Langston, Steve; Lightcap, Eric S; Bence, Neil; Pulukuri, Sai M

    2017-11-01

    Small ubiquitin-like modifier (SUMO) family proteins regulate target-protein functions by post-translational modification. However, a potent and selective inhibitor targeting the SUMO pathway has been lacking. Here we describe ML-792, a mechanism-based SUMO-activating enzyme (SAE) inhibitor with nanomolar potency in cellular assays. ML-792 selectively blocks SAE enzyme activity and total SUMOylation, thus decreasing cancer cell proliferation. Moreover, we found that induction of the MYC oncogene increased the ML-792-mediated viability effect in cancer cells, thus indicating a potential application of SAE inhibitors in treating MYC-amplified tumors. Using ML-792, we further explored the critical roles of SUMOylation in mitotic progression and chromosome segregation. Furthermore, expression of an SAE catalytic-subunit (UBA2) S95N M97T mutant rescued SUMOylation loss and the mitotic defect induced by ML-792, thus confirming the selectivity of ML-792. As a potent and selective SAE inhibitor, ML-792 provides rapid loss of endogenously SUMOylated proteins, thereby facilitating novel insights into SUMO biology.

  4. The role of fire in managing for biological diversity on native rangelands of the Northern Great Plains

    Science.gov (United States)

    Carolyn Hull Sieg

    1997-01-01

    A strategy for using fire to manage for biological diversity on native rangelands in the Northern Great Plains incorporates an understanding of its past frequency, timing and intensity. Historically, lightning and humans were the major fire setters, and the role of fire varied both in space and time. A burning regime that includes fires at various intervals, seasons...

  5. Case report 511: Fibroblastic rheumatism

    International Nuclear Information System (INIS)

    Hernandez, R.J.; Martel, W.; Headington, J.T.; Kaufman, R.A.; Cincinnati Univ., OH

    1989-01-01

    We report a ten-year-old child with the newly described entity of fibroblastic rheumatism. This child developed rapid, progressive, symmetrical polyarthritis, similar to the radiographic appearance of juvenile rheumatoid arthritis, except for the rapidity of progression. The polyarthritis was preceded by the development of skin nodules with characteristic histological changes. (orig./GDG)

  6. The potential roles of biological soil crusts in dryland hydrologic cycles

    Science.gov (United States)

    Belnap, J.

    2006-01-01

    Biological soil crusts (BSCs) are the dominant living cover in many drylands of the world. They possess many features that can influence different aspects of local hydrologic cycles, including soil porosity, absorptivity, roughness, aggregate stability, texture, pore formation, and water retention. The influence of biological soil crusts on these factors depends on their internal and external structure, which varies with climate, soil, and disturbance history. This paper presents the different types of biological soil crusts, discusses how crust type likely influences various aspects of the hydrologic cycle, and reviews what is known and not known about the influence of biological crusts on sediment production and water infiltration versus runoff in various drylands around the world. Most studies examining the effect of biological soil crusts on local hydrology are done by comparing undisturbed sites with those recently disturbed by the researchers. Unfortunately, this greatly complicates interpretation of the results. Applied disturbances alter many soil features such as soil texture, roughness, aggregate stability, physical crusting, porosity, and bulk density in ways that would not necessarily be the same if crusts were not naturally present. Combined, these studies show little agreement on how biological crusts affect water infiltration or runoff. However, when studies are separated by biological crust type and utilize naturally occurring differences among these types, results indicate that biological crusts in hyperarid regions reduce infiltration and increase runoff, have mixed effects in and regions, and increase infiltration and reduce runoff in semiarid cool and cold drylands. However, more studies are needed before broad generalizations can be made on how biological crusts affect infiltration and runoff. We especially need studies that control for sub-surface soil features such as bulk density, micro- and macropores, and biological crust structure. Unlike

  7. Ecohydrological role of biological soil crusts across a gradient in levels of development

    Science.gov (United States)

    Whitney, Kristen M.; Vivoni, Enrique R.; Duniway, Michael C.; Bradford, John B.; Reed, Sasha C.; Belnap, Jayne

    2017-01-01

    Though biological soil crusts (biocrusts) form abundant covers in arid and semiarid regions, their competing effects on soil hydrologic conditions are rarely accounted for in models. This study presents the modification of a soil water balance model to account for the presence of biocrusts at different levels of development (LOD) and their impact on one-dimensional hydrologic processes during warm and cold seasons. The model is developed, tested, and applied to study the hydrologic controls of biocrusts in context of a long-term manipulative experiment equipped with meteorological and soil moisture measurements in a Colorado Plateau ecosystem near Moab, Utah. The climate manipulation treatments resulted in distinct biocrust communities, and model performance with respect to soil moisture was assessed in experimental plots with varying LOD as quantified through a field-based roughness index (RI). Model calibration and testing yielded excellent comparisons to observations and smooth variations of biocrust parameters with RI approximated through simple regressions. The model was then used to quantify how LOD affects soil infiltration, evapotranspiration, and runoff under calibrated conditions and in simulation experiments with gradual modifications in biocrust porosity and hydraulic conductivity. Simulation results show that highly developed biocrusts modulate soil moisture nonlinearly with LOD by altering soil infiltration and buffering against evapotranspiration losses, with small impacts on runoff. The nonlinear and threshold variations of the soil water balance in the presence of biocrusts of varying LOD helps explain conflicting outcomes of various field studies and sheds light on the ecohydrological role of biocrusts in arid and semiarid ecosystems.

  8. The role of biology in planetary evolution: cyanobacterial primary production in low-oxygen Proterozoic oceans.

    Science.gov (United States)

    Hamilton, Trinity L; Bryant, Donald A; Macalady, Jennifer L

    2016-02-01

    Understanding the role of biology in planetary evolution remains an outstanding challenge to geobiologists. Progress towards unravelling this puzzle for Earth is hindered by the scarcity of well-preserved rocks from the Archean (4.0 to 2.5 Gyr ago) and Proterozoic (2.5 to 0.5 Gyr ago) Eons. In addition, the microscopic life that dominated Earth's biota for most of its history left a poor fossil record, consisting primarily of lithified microbial mats, rare microbial body fossils and membrane-derived hydrocarbon molecules that are still challenging to interpret. However, it is clear from the sulfur isotope record and other geochemical proxies that the production of oxygen or oxidizing power radically changed Earth's surface and atmosphere during the Proterozoic Eon, pushing it away from the more reducing conditions prevalent during the Archean. In addition to ancient rocks, our reconstruction of Earth's redox evolution is informed by our knowledge of biogeochemical cycles catalysed by extant biota. The emergence of oxygenic photosynthesis in ancient cyanobacteria represents one of the most impressive microbial innovations in Earth's history, and oxygenic photosynthesis is the largest source of O2 in the atmosphere today. Thus the study of microbial metabolisms and evolution provides an important link between extant biota and the clues from the geologic record. Here, we consider the physiology of cyanobacteria (the only microorganisms capable of oxygenic photosynthesis), their co-occurrence with anoxygenic phototrophs in a variety of environments and their persistence in low-oxygen environments, including in water columns as well as mats, throughout much of Earth's history. We examine insights gained from both the rock record and cyanobacteria presently living in early Earth analogue ecosystems and synthesize current knowledge of these ancient microbial mediators in planetary redox evolution. Our analysis supports the hypothesis that anoxygenic photosynthesis

  9. The role of Src kinase in the biology and pathogenesis of Acanthamoeba castellanii

    Directory of Open Access Journals (Sweden)

    Siddiqui Ruqaiyyah

    2012-06-01

    Full Text Available Abstract Background Acanthamoeba species are the causative agents of fatal granulomatous encephalitis in humans. Haematogenous spread is thought to be a primary step, followed by blood–brain barrier penetration, in the transmission of Acanthmaoeba into the central nervous system, but the associated molecular mechanisms remain unclear. Here, we evaluated the role of Src, a non-receptor protein tyrosine kinase in the biology and pathogenesis of Acanthamoeba. Methods Amoebistatic and amoebicidal assays were performed by incubating amoeba in the presence of Src kinase-selective inhibitor, PP2 (4-amino-5-(4-chlorophenyl-7-(t-butylpyrazolo[3,4-d]pyrimidine and its inactive analog, PP3 (4-amino-7-phenylpyrazolo[3,4-d]pyrimidine. Using this inhibitor, the role of Src kinase in A. castellanii interactions with Escherichia coli was determined. Zymographic assays were performed to study effects of Src kinase on extracellular proteolytic activities of A. castellanii. The human brain microvascular endothelial cells were used to determine the effects of Src kinase on A. castellanii adhesion to and cytotoxicity of host cells. Results Inhibition of Src kinase using a specific inhibitor, PP2 (4-amino-5-(4 chlorophenyl-7-(t-butylpyrazolo [3,4-d] pyrimidine but not its inactive analog, PP3 (4-amino-7-phenylpyrazolo[3,4-d] pyrimidine, had detrimental effects on the growth of A. castellanii (keratitis isolate, belonging to the T4 genotype. Interestingly, inhibition of Src kinase hampered the phagocytic ability of A. castellanii, as measured by the uptake of non-invasive bacteria, but, on the contrary, invasion by pathogenic bacteria was enhanced. Zymographic assays revealed that inhibition of Src kinases reduced extracellular protease activities of A. castellanii. Src kinase inhibition had no significant effect on A. castellanii binding to and cytotoxicity of primary human brain microvascular endothelial cells, which constitute the blood–brain barrier

  10. Parenting Practices of Resident Fathers: The Role of Marital and Biological Ties

    Science.gov (United States)

    Berger, Lawrence M.; Carlson, Marcia J.; Bzostek, Sharon H.; Osborne, Cynthia

    2008-01-01

    This paper uses data from the Fragile Families and Child Wellbeing Study (N = 2,098) to examine differences in the parenting practices of four types of resident fathers, defined by their biological relationship to a focal child and their marital status with regard to the focal child's mother. Regression results suggest that biological fathers and…

  11. Role of biology in the air–sea carbon flux in the Bay of Bengal

    Indian Academy of Sciences (India)

    Abstract. A physical-biological-chemical model (PBCM)is used for investigating the seasonal cycle of air –sea carbon flux and for assessing the effect of the biological processes on seasonal time scale in the Arabian Sea (AS)and Bay of Bengal (BoB),where the surface waters are subjected to contrasting physical conditions.

  12. Unconventional transport routes of soluble and membrane proteins and their role in developmental biology

    Czech Academy of Sciences Publication Activity Database

    Pompa, A.; De Marchis, F.; Pallotta, M. T.; Benitez-Alfonso, Y.; Jones, A.; Schipper, K.; Moreau, K.; Žárský, Viktor; Di Sansebastiano, G. P.; Bellucci, M.

    2017-01-01

    Roč. 18, č. 4 (2017), č. článku 703. E-ISSN 1422-0067 Institutional support: RVO:61389030 Keywords : Autophagy * Exosomes * Intercellular channels * Leaderless proteins * Protein secretion * Trafficking mechanisms * Unconventional secretion Subject RIV: EA - Cell Biology OBOR OECD: Developmental biology Impact factor: 3.226, year: 2016

  13. Serum platelet-derived growth factor and fibroblast growth factor in patients with benign and malignant ovarian tumors

    DEFF Research Database (Denmark)

    Madsen, Christine Vestergaard; Steffensen, Karina Dahl; Olsen, Dorte Aalund

    2012-01-01

    New biological markers with predictive or prognostic value are highly warranted in the treatment of ovarian cancer. The platelet-derived growth factor (PDGF) system and fibroblast growth factor (FGF) system are important components in tumor growth and angiogenesis....

  14. Excessive Cellular Proliferation Negatively Impacts Reprogramming Efficiency of Human Fibroblasts.

    Science.gov (United States)

    Gupta, Manoj K; Teo, Adrian Kee Keong; Rao, Tata Nageswara; Bhatt, Shweta; Kleinridders, Andre; Shirakawa, Jun; Takatani, Tomozumi; Hu, Jiang; De Jesus, Dario F; Windmueller, Rebecca; Wagers, Amy J; Kulkarni, Rohit N

    2015-10-01

    The impact of somatic cell proliferation rate on induction of pluripotent stem cells remains controversial. Herein, we report that rapid proliferation of human somatic fibroblasts is detrimental to reprogramming efficiency when reprogrammed using a lentiviral vector expressing OCT4, SOX2, KLF4, and cMYC in insulin-rich defined medium. Human fibroblasts grown in this medium showed higher proliferation, enhanced expression of insulin signaling and cell cycle genes, and a switch from glycolytic to oxidative phosphorylation metabolism, but they displayed poor reprogramming efficiency compared with cells grown in normal medium. Thus, in contrast to previous studies, our work reveals an inverse correlation between the proliferation rate of somatic cells and reprogramming efficiency, and also suggests that upregulation of proteins in the growth factor signaling pathway limits the ability to induce pluripotency in human somatic fibroblasts. The efficiency with which human cells can be reprogrammed is of interest to stem cell biology. In this study, human fibroblasts cultured in media containing different concentrations of growth factors such as insulin and insulin-like growth factor-1 exhibited variable abilities to proliferate, with consequences on pluripotency. This occurred in part because of changes in the expression of proteins involved in the growth factor signaling pathway, glycolysis, and oxidative phosphorylation. These findings have implications for efficient reprogramming of human cells. ©AlphaMed Press.

  15. Human Cementum Protein 1 induces expression of bone and cementum proteins by human gingival fibroblasts

    International Nuclear Information System (INIS)

    Carmona-Rodriguez, Bruno; Alvarez-Perez, Marco Antonio; Narayanan, A. Sampath; Zeichner-David, Margarita; Reyes-Gasga, Jose; Molina-Guarneros, Juan; Garcia-Hernandez, Ana Lilia; Suarez-Franco, Jose Luis; Chavarria, Ivet Gil; Villarreal-Ramirez, Eduardo; Arzate, Higinio

    2007-01-01

    We recently presented evidence showing that a human cementoblastoma-derived protein, named Cementum Protein 1 (CEMP1) may play a role as a local regulator of cementoblast differentiation and cementum-matrix mineralization. This protein was shown to be expressed by cementoblasts and progenitor cells localized in the periodontal ligament. In this study we demonstrate that transfection of CEMP1 into human gingival fibroblasts (HGF) induces mineralization and expression of bone and cementum-matrix proteins. The transfected HGF cells had higher alkaline phosphatase activity and proliferation rate and they expressed genes for alkaline phosphatase, bone sialoprotein, osteocalcin, osteopontin, the transcription factor Runx2/Cbfa1, and cementum attachment protein (CAP). They also produced biological-type hydroxyapatite. These findings indicate that the CEMP1 might participate in differentiation and mineralization of nonosteogenic cells, and that it might have a potential function in cementum and bone formation

  16. Functions and Mechanisms of Fibroblast Growth Factor (FGF Signalling in Drosophila melanogaster

    Directory of Open Access Journals (Sweden)

    Hans-Arno J. Müller

    2013-03-01

    Full Text Available Intercellular signalling via growth factors plays an important role in controlling cell differentiation and cell movements during the development of multicellular animals. Fibroblast Growth Factor (FGF signalling induces changes in cellular behaviour allowing cells in the embryo to move, to survive, to divide or to differentiate. Several examples argue that FGF signalling is used in multi-step morphogenetic processes to achieve and maintain a transitional state of the cells required for the control of cell fate. In the genetic model Drosophila melanogaster, FGF signalling via the receptor tyrosine kinases Heartless (Htl and Breathless (Btl is particularly well studied. These FGF receptors affect gene expression, cell shape and cell–cell interactions during mesoderm layer formation, caudal visceral muscle (CVM formation, tracheal morphogenesis and glia differentiation. Here, we will address the current knowledge of the biological functions of FGF signalling in the fly on the tissue, at a cellular and molecular level.

  17. Annexin A1 is elevated in patients with COPD and affects lung fibroblast function

    Directory of Open Access Journals (Sweden)

    Lai TW

    2018-02-01

    Full Text Available Tianwen Lai,1,* Yanyu Li,1,* Zongjiong Mai,2 Xiaoxia Wen,1 Yingying Lv,1 Zhanqing Xie,3 Quanchao Lv,1 Min Chen,1 Dong Wu,1 Bin Wu1 1Department of Respiratory and Critical Care Medicine, 2Department of Oncology, 3Department of Thoracic Surgery, The Affiliated Hospital of Guangdong Medical University, Zhanjiang, People’s Republic of China *These authors contributed equally to this work Purpose: Fibrosis in peripheral airways is responsible for airflow limitation in chronic obstructive pulmonary disease (COPD. Annexin A1 modulates several key biological events during inflammation. However, little is known about its role in airway fibrosis in COPD. We investigated whether levels of Annexin A1 were upregulated in patients with COPD, and whether it promoted airway fibrosis.Methods: We quantified serum Annexin A1 levels in never-smokers (n=12, smokers without COPD (n=11, and smokers with COPD (n=22. Correlations between Annexin A1 expression and clinical indicators (eg, lung function were assessed. In vitro, human bronchial epithelial (HBE cells were exposed to cigarette smoke extract (CSE and Annexin A1 expression was assessed. Primary human lung fibroblasts were isolated from patients with COPD and effects of Annexin A1 on fibrotic deposition of lung fibroblasts were evaluated.Results: Serum Annexin A1 was significantly higher in patients with Global Initiative for Chronic Obstructive Lung Disease (GOLD guidelines stage III or IV than in those with GOLD stages I or II (12.8±0.8 ng/mL versus 9.8±0.7 ng/mL; p=0.016. Annexin A1 expression was negatively associated with airflow obstruction (forced expiratory volume in one second % predicted; r=−0.72, p<0.001. In vitro, Annexin A1 was significantly increased in CSE-exposed HBE cells in a time- and concentration-dependent manner. Annexin A1 promoted lung fibroblasts proliferation, migration, differentiation, and collagen deposition via the ERK1/2 and p38 mitogen-activated protein kinase pathways

  18. Intracellular pH in increased after transformation of Chinese hamster embryo fibroblasts

    International Nuclear Information System (INIS)

    Ober, S.S.; Pardee, A.B.

    1987-01-01

    These studies reveal that a series of tumorigenic Chinese hamster embryo fibroblast (CHEF) cell lines maintain an internal pH (pH/sub i/) that is 0.12 +/- 0.04 pH unit above that of the nontumorigenic CHEF/18 parental line. pH measurements were made with [ 14 C]-benzoic acid. This increase of pH/sub i/ in the tumorigenic CHEF cells is not due to autocrine growth factor production or to the persistent activation of pathways previously shown to modulate Na + /H + -antiporter activity present in the CHEF/18 line. These findings suggest that the defect in pH/sub i/ regulation in the tumorigenic CHEF/18 derivatives lies in the Na + /H + antiporter itself. Further studies to determine the biological significance of an increased pH/sub i/ show that the external pH (pH 0 )-dependence curve for initiation of DNA synthesis in the tumorigenic CHEF lines is shifted by approximately 0.2 pH unit toward acidic values relative to that of the nontumorigenic CHEF/18 parent. These data show a critical role for pH/sub i/ in the regulation of DNA synthesis in Chinese hamster embryo fibroblasts and demonstrate that aberrations in pH/sub i/ can contribute to the acquisition of altered growth properties

  19. Human diploid fibroblasts have receptors for the globular domain of C1Q

    International Nuclear Information System (INIS)

    Bordin, S.; Page, R.C.

    1986-01-01

    The authors showed that mass cultures of fibroblasts grown from gingival explants in DB medium with 10% human serum are enriched in a phenotype that binds C1q with an affinity much higher than the rest of the population. Because of potential biologic importance of C1q receptors, the authors studied whether the interaction between C1q and this phenotype was mediated by the globular or collagenous domains of the molecule. Globular fragments were prepared by digesting C1q with collagenase, and collagenous fragments obtained after pepsin treatment. C1q binding on cells in suspension was determined by reaction with 125 I-C1q as reported. Competition experiments were performed under conditions in which intact 125 I-C1q binding saturated all available receptors. The results showed that collagenous fragments inhibited 20% of the 125 I-C1q binding to high affinity receptors, whereas inhibition by globular fragments was 70%. Unlabeled intact C1q and collagen type 1 were used as controls, and inhibited 92% and 17% of C1q binding, respectively. These studies show that C1q interacts with the fibroblast phenotype expressing high affinity receptors through its globular domain. The authors suggest that at sites of trauma, native C1 may bind to the surface of these cells via the globular domain of C1q, and that this unique phenotype may play an important role in tissue repair

  20. FRS2α is Essential for the Fibroblast Growth Factor to Regulate the mTOR Pathway and Autophagy in Mouse Embryonic Fibroblasts

    OpenAIRE

    Xiang Lin, Yongyou Zhang, Leyuan Liu, Wallace L. McKeehan, Yuemao Shen, Siyang Song, Fen Wang

    2011-01-01

    Although the fibroblast growth factor (FGF) signaling axis plays important roles in cell survival, proliferation, and differentiation, the molecular mechanism underlying how the FGF elicits these diverse regulatory signals is not well understood. By using the Frs2α null mouse embryonic fibroblast (MEF) in conjunction with inhibitors to multiple signaling pathways, here we report that the FGF signaling axis activates mTOR via the FGF receptor substrate 2α (FRS2α)-mediated PI3K/A...

  1. Epigenetic and phenotypic profile of fibroblasts derived from induced pluripotent stem cells.

    Directory of Open Access Journals (Sweden)

    Kyle J Hewitt

    2011-02-01

    Full Text Available Human induced pluripotent stem (hiPS cells offer a novel source of patient-specific cells for regenerative medicine. However, the biological potential of iPS-derived cells and their similarities to cells differentiated from human embryonic stem (hES cells remain unclear. We derived fibroblast-like cells from two hiPS cell lines and show that their phenotypic properties and patterns of DNA methylation were similar to that of mature fibroblasts and to fibroblasts derived from hES cells. iPS-derived fibroblasts (iPDK and their hES-derived counterparts (EDK showed similar cell morphology throughout differentiation, and patterns of gene expression and cell surface markers were characteristic of mature fibroblasts. Array-based methylation analysis was performed for EDK, iPDK and their parental hES and iPS cell lines, and hierarchical clustering revealed that EDK and iPDK had closely-related methylation profiles. DNA methylation analysis of promoter regions associated with extracellular matrix (ECM-production (COL1A1 by iPS- and hESC-derived fibroblasts and fibroblast lineage commitment (PDGFRβ, revealed promoter demethylation linked to their expression, and patterns of transcription and methylation of genes related to the functional properties of mature stromal cells were seen in both hiPS- and hES-derived fibroblasts. iPDK cells also showed functional properties analogous to those of hES-derived and mature fibroblasts, as seen by their capacity to direct the morphogenesis of engineered human skin equivalents. Characterization of the functional behavior of ES- and iPS-derived fibroblasts in engineered 3D tissues demonstrates the utility of this tissue platform to predict the capacity of iPS-derived cells before their therapeutic application.

  2. BIOLOGICAL SEX, SEX-ROLE ORIENTATION, MASCULINE SEX-ROLE STRESS, DISSIMULATION AND SELF-REPORTED FEARS

    NARCIS (Netherlands)

    ARRINDELL, WA; KOLK, AM; PICKERSGILL, MJ; HAGEMAN, WJJM

    1993-01-01

    Given meta-analytic findings showing females to be generally more fearful than males on multi-dimensional self-report measures of fear, an empirical attempt was made to examine whether this outcome could be explained by psychological factors such as sex role orientation and masculine sex role

  3. Factor Xa stimulates fibroblast procollagen production, proliferation, and calcium signaling via PAR1 activation

    International Nuclear Information System (INIS)

    Blanc-Brude, Olivier P.; Archer, Fabienne; Leoni, Patricia; Derian, Claudia; Bolsover, Steven; Laurent, Geoffrey J.; Chambers, Rachel C.

    2005-01-01

    Fibroblast proliferation and procollagen production are central features of tissue repair and fibrosis. In addition to its role in blood clotting, the coagulation cascade proteinase thrombin can contribute to tissue repair by stimulating fibroblasts via proteolytic activation of proteinase-activated receptor-1 (PAR 1 ). During hemostasis, the coagulation cascade proteinase factor X is converted into factor Xa. We have previously shown that factor Xa upregulates fibroblast proliferation via production of autocrine PDGF. In this study, we further examined the effects of factor Xa on fibroblast function and aimed to identify its signaling receptor. We showed that factor Xa stimulates procollagen promoter activity and protein production by human and mouse fibroblasts. This effect was independent of PDGF and thrombin production, but dependent on factor Xa proteolytic activity. We also showed that PAR 1 -deficient mouse fibroblasts did not upregulate procollagen production, mobilize cytosolic calcium, or proliferate in response to factor Xa. Desensitization techniques and PAR 1 -specific agonists and inhibitors were used to demonstrate that PAR 1 mediates factor Xa signaling in human fibroblasts. This is the first report that factor Xa stimulates extracellular matrix production. In contrast with endothelial cells and vascular smooth muscle cells, fibroblasts appear to be the only cell type in which the effects of factor Xa are mediated mainly via PAR 1 and not PAR 2 . These findings are critical for our understanding of tissue repair and fibrotic mechanisms, and for the design of novel approaches to inhibit the profibrotic effects of the coagulation cascade without compromising blood hemostasis

  4. The role of mechanics in biological and bio-inspired systems.

    Science.gov (United States)

    Egan, Paul; Sinko, Robert; LeDuc, Philip R; Keten, Sinan

    2015-07-06

    Natural systems frequently exploit intricate multiscale and multiphasic structures to achieve functionalities beyond those of man-made systems. Although understanding the chemical make-up of these systems is essential, the passive and active mechanics within biological systems are crucial when considering the many natural systems that achieve advanced properties, such as high strength-to-weight ratios and stimuli-responsive adaptability. Discovering how and why biological systems attain these desirable mechanical functionalities often reveals principles that inform new synthetic designs based on biological systems. Such approaches have traditionally found success in medical applications, and are now informing breakthroughs in diverse frontiers of science and engineering.

  5. The prognostic role of tumor size in early breast cancer in the era of molecular biology.

    Directory of Open Access Journals (Sweden)

    Anaid Anna Kasangian

    Full Text Available The prognosis of early breast cancer (EBC depends on patient and tumor characteristics. The association between tumor size, the largest diameter in TNM staging, and prognosis is well recognized. According to TNM, tumors classified as T2, could have very different volumes; e.g. a tumor of 2.1 cm has a volume of 4500 mm3, while a tumor of 4.9 cm has a volume of 60.000 mm3 even belonging to the same class. The aim of the study is to establish if the prognostic role of tumor size, expressed as diameter and volume, has been overshadowed by other factors.The primary objective is to evaluate the association between tumor dimensions and overall survival (OS / disease free survival (DFS, in our institution from January 1st 2005 to September 30th 2013 in a surgical T1-T2 population. Volume was evaluated with the measurement of three half-diameters of the tumor (a, b and c, and calculated using the following formula: 4/3π x a x b x c.341 patients with T1-T2 EBC were included. 86.5% were treated with conservative surgery. 85.1% had a Luminal subtype, 9.1% were Triple negative and 7.4% were HER2 positive. Median volume was 942 mm3 (range 0.52-31.651.2. 44 patients (12.9% relapsed and 23 patients died. With a median follow-up of 6.5 years, the univariate analysis for DFS showed an association between age, tumor size, volume, histological grading and molecular subtype. The multivariate analysis confirmed the statistically significant association only for molecular subtype (p 0.005, with a worse prognosis for Triple negative and HER2 positive subtypes compared with Luminal (HR: 2.65; 95%CI: 1.34-5.22. Likewise for OS, an association was shown by the multivariate analysis solely for molecular subtype (HER2 and Triple negative vs. Luminal. HR: 2.83; 95% CI:1.46-5.49; p 0.002.In our study, the only parameter that strongly influences survival is molecular subtype. These findings encourage clinicians to choose adjuvant treatment not based on dimensional criteria

  6. Biological Ice Nuclei: They are Everywhere, What are Their Roles? (Invited)

    Science.gov (United States)

    Schnell, R. C.

    2009-12-01

    Biological ice nuclei active at temperatures warmer than -2C were first observed in the late 1960s associated with decaying grass and tree leaves; discovered more by accident than in a planned experiment. The active component of the decaying leaves was subsequently found to be produced by a few living bacteria, the two most ubiquitous being strains of P. syringae and E. herbicola. The active bacterial ice nuclei are easily deactivated by anaerobic, chemical and heat stresses. The same grass and tree leaves, when well decayed, generally contain less active ice nuclei (threshold temperatures of -5C to - 6C) in the 0.1 micron diameter range compared to the larger (1 micron) bacteria associated ice nuclei. The well decayed leaf litter ice nuclei are stable over a wide range of stresses and time; some samples of leaf derived nuclei stored at room temperature have exhibited the same ice nucleus concentration for over 30 years. Fungi also have active ice nuclei that are stable over many decades. Active ice nuclei are found in marine waters associated with plankton, and are produced by at least one marine dinoflagellate (Heterocapsa niei) that expresses ice nucleus activity almost as warm as terrestrial bacteria ice nuclei. Living ice nucleus bacteria have been found in marine fogs far at sea, in precipitation in Antarctica as well as over many continental areas, in air in the high Arctic, on vegetation around the world, on remote ice bound islands, and growing on and inside water storing vegetation on isolated tropical mountain peaks. But why? What is the evolutionary advantage for the ice nucleus gene to be expressed in such a wide range of environments, by greatly different species? There is an energy cost for bacteria and fungi to support the ice gene, so it probably is not a genetic anomaly. Possibly the ice nuclei play many roles? These could include damaging plants to acquire a food source, an aid in survival and dispersal in clouds, initiation of precipitation to

  7. Functional profiles reveal unique ecological roles of various biological soil crust organisms

    Science.gov (United States)

    Bowker, M.A.; Mau, R.L.; Maestre, F.T.; Escolar, C.; Castillo-Monroy, A. P.

    2011-01-01

    1. At the heart of the body of research on biodiversity effects on ecosystem function is the debate over whether different species tend to be functionally singular or redundant. When we consider ecosystem multi-function, the provision of multiple ecosystem functions simultaneously, we may find that seemingly redundant species may in fact play unique roles in ecosystems. 2. Over the last few decades, the significance of biological soil crusts (BSCs) as ecological boundaries and ecosystem engineers, and their multi-functional nature, has become increasingly well documented. We compiled 'functional profiles' of the organisms in this understudied community, to determine whether functional singularity emerges when multiple ecosystem functions are considered. 3. In two data sets, one representing multiple sites around the semi-arid regions of Spain (regional scale), and another from a single site in central Spain (local scale), we examined correlations between the abundance or frequency of BSC species in a community, and multiple surrogates of ecosystem functioning. There was a wide array of apparent effects of species on specific functions. 4. Notably, in gypsiferous soils and at regional scale, we found that indicators of carbon (C) and phosphorus cycling were apparently suppressed and promoted by the lichens Diploschistes diacapsis and Squamarina lentigera, respectively. The moss Pleurochaete squarrosa appears to promote C cycling in calcareous soils at this spatial scale. At the local scale in gypsiferous soils, D. diacapsis positively correlated with carbon cycling, but negatively with nitrogen cycling, whereas numerous lichens exhibited the opposite profile. 5. We found a high degree of functional singularity, i.e. that species were highly individualistic in their effects on multiple functions. Many functional attributes were not easily predictable from existing functional grouping systems based primarily on morphology. 6. Our results suggest that maintaining

  8. The prognostic role of tumor size in early breast cancer in the era of molecular biology.

    Science.gov (United States)

    Kasangian, Anaid Anna; Gherardi, Giorgio; Biagioli, Elena; Torri, Valter; Moretti, Anna; Bernardin, Elena; Cordovana, Andrea; Farina, Gabriella; Bramati, Annalisa; Piva, Sheila; Dazzani, Maria Chiara; Paternò, Emanuela; La Verde, Nicla Maria

    2017-01-01

    The prognosis of early breast cancer (EBC) depends on patient and tumor characteristics. The association between tumor size, the largest diameter in TNM staging, and prognosis is well recognized. According to TNM, tumors classified as T2, could have very different volumes; e.g. a tumor of 2.1 cm has a volume of 4500 mm3, while a tumor of 4.9 cm has a volume of 60.000 mm3 even belonging to the same class. The aim of the study is to establish if the prognostic role of tumor size, expressed as diameter and volume, has been overshadowed by other factors. The primary objective is to evaluate the association between tumor dimensions and overall survival (OS) / disease free survival (DFS), in our institution from January 1st 2005 to September 30th 2013 in a surgical T1-T2 population. Volume was evaluated with the measurement of three half-diameters of the tumor (a, b and c), and calculated using the following formula: 4/3π x a x b x c. 341 patients with T1-T2 EBC were included. 86.5% were treated with conservative surgery. 85.1% had a Luminal subtype, 9.1% were Triple negative and 7.4% were HER2 positive. Median volume was 942 mm3 (range 0.52-31.651.2). 44 patients (12.9%) relapsed and 23 patients died. With a median follow-up of 6.5 years, the univariate analysis for DFS showed an association between age, tumor size, volume, histological grading and molecular subtype. The multivariate analysis confirmed the statistically significant association only for molecular subtype (p 0.005), with a worse prognosis for Triple negative and HER2 positive subtypes compared with Luminal (HR: 2.65; 95%CI: 1.34-5.22). Likewise for OS, an association was shown by the multivariate analysis solely for molecular subtype (HER2 and Triple negative vs. Luminal. HR: 2.83; 95% CI:1.46-5.49; p 0.002). In our study, the only parameter that strongly influences survival is molecular subtype. These findings encourage clinicians to choose adjuvant treatment not based on dimensional criteria but on

  9. Defining the role of common variation in the genomic and biological architecture of adult human height.

    Science.gov (United States)

    Wood, Andrew R; Esko, Tonu; Yang, Jian; Vedantam, Sailaja; Pers, Tune H; Gustafsson, Stefan; Chu, Audrey Y; Estrada, Karol; Luan, Jian'an; Kutalik, Zoltán; Amin, Najaf; Buchkovich, Martin L; Croteau-Chonka, Damien C; Day, Felix R; Duan, Yanan; Fall, Tove; Fehrmann, Rudolf; Ferreira, Teresa; Jackson, Anne U; Karjalainen, Juha; Lo, Ken Sin; Locke, Adam E; Mägi, Reedik; Mihailov, Evelin; Porcu, Eleonora; Randall, Joshua C; Scherag, André; Vinkhuyzen, Anna A E; Westra, Harm-Jan; Winkler, Thomas W; Workalemahu, Tsegaselassie; Zhao, Jing Hua; Absher, Devin; Albrecht, Eva; Anderson, Denise; Baron, Jeffrey; Beekman, Marian; Demirkan, Ayse; Ehret, Georg B; Feenstra, Bjarke; Feitosa, Mary F; Fischer, Krista; Fraser, Ross M; Goel, Anuj; Gong, Jian; Justice, Anne E; Kanoni, Stavroula; Kleber, Marcus E; Kristiansson, Kati; Lim, Unhee; Lotay, Vaneet; Lui, Julian C; Mangino, Massimo; Mateo Leach, Irene; Medina-Gomez, Carolina; Nalls, Michael A; Nyholt, Dale R; Palmer, Cameron D; Pasko, Dorota; Pechlivanis, Sonali; Prokopenko, Inga; Ried, Janina S; Ripke, Stephan; Shungin, Dmitry; Stancáková, Alena; Strawbridge, Rona J; Sung, Yun Ju; Tanaka, Toshiko; Teumer, Alexander; Trompet, Stella; van der Laan, Sander W; van Setten, Jessica; Van Vliet-Ostaptchouk, Jana V; Wang, Zhaoming; Yengo, Loïc; Zhang, Weihua; Afzal, Uzma; Arnlöv, Johan; Arscott, Gillian M; Bandinelli, Stefania; Barrett, Amy; Bellis, Claire; Bennett, Amanda J; Berne, Christian; Blüher, Matthias; Bolton, Jennifer L; Böttcher, Yvonne; Boyd, Heather A; Bruinenberg, Marcel; Buckley, Brendan M; Buyske, Steven; Caspersen, Ida H; Chines, Peter S; Clarke, Robert; Claudi-Boehm, Simone; Cooper, Matthew; Daw, E Warwick; De Jong, Pim A; Deelen, Joris; Delgado, Graciela; Denny, Josh C; Dhonukshe-Rutten, Rosalie; Dimitriou, Maria; Doney, Alex S F; Dörr, Marcus; Eklund, Niina; Eury, Elodie; Folkersen, Lasse; Garcia, Melissa E; Geller, Frank; Giedraitis, Vilmantas; Go, Alan S; Grallert, Harald; Grammer, Tanja B; Gräßler, Jürgen; Grönberg, Henrik; de Groot, Lisette C P G M; Groves, Christopher J; Haessler, Jeffrey; Hall, Per; Haller, Toomas; Hallmans, Goran; Hannemann, Anke; Hartman, Catharina A; Hassinen, Maija; Hayward, Caroline; Heard-Costa, Nancy L; Helmer, Quinta; Hemani, Gibran; Henders, Anjali K; Hillege, Hans L; Hlatky, Mark A; Hoffmann, Wolfgang; Hoffmann, Per; Holmen, Oddgeir; Houwing-Duistermaat, Jeanine J; Illig, Thomas; Isaacs, Aaron; James, Alan L; Jeff, Janina; Johansen, Berit; Johansson, Åsa; Jolley, Jennifer; Juliusdottir, Thorhildur; Junttila, Juhani; Kho, Abel N; Kinnunen, Leena; Klopp, Norman; Kocher, Thomas; Kratzer, Wolfgang; Lichtner, Peter; Lind, Lars; Lindström, Jaana; Lobbens, Stéphane; Lorentzon, Mattias; Lu, Yingchang; Lyssenko, Valeriya; Magnusson, Patrik K E; Mahajan, Anubha; Maillard, Marc; McArdle, Wendy L; McKenzie, Colin A; McLachlan, Stela; McLaren, Paul J; Menni, Cristina; Merger, Sigrun; Milani, Lili; Moayyeri, Alireza; Monda, Keri L; Morken, Mario A; Müller, Gabriele; Müller-Nurasyid, Martina; Musk, Arthur W; Narisu, Narisu; Nauck, Matthias; Nolte, Ilja M; Nöthen, Markus M; Oozageer, Laticia; Pilz, Stefan; Rayner, Nigel W; Renstrom, Frida; Robertson, Neil R; Rose, Lynda M; Roussel, Ronan; Sanna, Serena; Scharnagl, Hubert; Scholtens, Salome; Schumacher, Fredrick R; Schunkert, Heribert; Scott, Robert A; Sehmi, Joban; Seufferlein, Thomas; Shi, Jianxin; Silventoinen, Karri; Smit, Johannes H; Smith, Albert Vernon; Smolonska, Joanna; Stanton, Alice V; Stirrups, Kathleen; Stott, David J; Stringham, Heather M; Sundström, Johan; Swertz, Morris A; Syvänen, Ann-Christine; Tayo, Bamidele O; Thorleifsson, Gudmar; Tyrer, Jonathan P; van Dijk, Suzanne; van Schoor, Natasja M; van der Velde, Nathalie; van Heemst, Diana; van Oort, Floor V A; Vermeulen, Sita H; Verweij, Niek; Vonk, Judith M; Waite, Lindsay L; Waldenberger, Melanie; Wennauer, Roman; Wilkens, Lynne R; Willenborg, Christina; Wilsgaard, Tom; Wojczynski, Mary K; Wong, Andrew; Wright, Alan F; Zhang, Qunyuan; Arveiler, Dominique; Bakker, Stephan J L; Beilby, John; Bergman, Richard N; Bergmann, Sven; Biffar, Reiner; Blangero, John; Boomsma, Dorret I; Bornstein, Stefan R; Bovet, Pascal; Brambilla, Paolo; Brown, Morris J; Campbell, Harry; Caulfield, Mark J; Chakravarti, Aravinda; Collins, Rory; Collins, Francis S; Crawford, Dana C; Cupples, L Adrienne; Danesh, John; de Faire, Ulf; den Ruijter, Hester M; Erbel, Raimund; Erdmann, Jeanette; Eriksson, Johan G; Farrall, Martin; Ferrannini, Ele; Ferrières, Jean; Ford, Ian; Forouhi, Nita G; Forrester, Terrence; Gansevoort, Ron T; Gejman, Pablo V; Gieger, Christian; Golay, Alain; Gottesman, Omri; Gudnason, Vilmundur; Gyllensten, Ulf; Haas, David W; Hall, Alistair S; Harris, Tamara B; Hattersley, Andrew T; Heath, Andrew C; Hengstenberg, Christian; Hicks, Andrew A; Hindorff, Lucia A; Hingorani, Aroon D; Hofman, Albert; Hovingh, G Kees; Humphries, Steve E; Hunt, Steven C; Hypponen, Elina; Jacobs, Kevin B; Jarvelin, Marjo-Riitta; Jousilahti, Pekka; Jula, Antti M; Kaprio, Jaakko; Kastelein, John J P; Kayser, Manfred; Kee, Frank; Keinanen-Kiukaanniemi, Sirkka M; Kiemeney, Lambertus A; Kooner, Jaspal S; Kooperberg, Charles; Koskinen, Seppo; Kovacs, Peter; Kraja, Aldi T; Kumari, Meena; Kuusisto, Johanna; Lakka, Timo A; Langenberg, Claudia; Le Marchand, Loic; Lehtimäki, Terho; Lupoli, Sara; Madden, Pamela A F; Männistö, Satu; Manunta, Paolo; Marette, André; Matise, Tara C; McKnight, Barbara; Meitinger, Thomas; Moll, Frans L; Montgomery, Grant W; Morris, Andrew D; Morris, Andrew P; Murray, Jeffrey C; Nelis, Mari; Ohlsson, Claes; Oldehinkel, Albertine J; Ong, Ken K; Ouwehand, Willem H; Pasterkamp, Gerard; Peters, Annette; Pramstaller, Peter P; Price, Jackie F; Qi, Lu; Raitakari, Olli T; Rankinen, Tuomo; Rao, D C; Rice, Treva K; Ritchie, Marylyn; Rudan, Igor; Salomaa, Veikko; Samani, Nilesh J; Saramies, Jouko; Sarzynski, Mark A; Schwarz, Peter E H; Sebert, Sylvain; Sever, Peter; Shuldiner, Alan R; Sinisalo, Juha; Steinthorsdottir, Valgerdur; Stolk, Ronald P; Tardif, Jean-Claude; Tönjes, Anke; Tremblay, Angelo; Tremoli, Elena; Virtamo, Jarmo; Vohl, Marie-Claude; Amouyel, Philippe; Asselbergs, Folkert W; Assimes, Themistocles L; Bochud, Murielle; Boehm, Bernhard O; Boerwinkle, Eric; Bottinger, Erwin P; Bouchard, Claude; Cauchi, Stéphane; Chambers, John C; Chanock, Stephen J; Cooper, Richard S; de Bakker, Paul I W; Dedoussis, George; Ferrucci, Luigi; Franks, Paul W; Froguel, Philippe; Groop, Leif C; Haiman, Christopher A; Hamsten, Anders; Hayes, M Geoffrey; Hui, Jennie; Hunter, David J; Hveem, Kristian; Jukema, J Wouter; Kaplan, Robert C; Kivimaki, Mika; Kuh, Diana; Laakso, Markku; Liu, Yongmei; Martin, Nicholas G; März, Winfried; Melbye, Mads; Moebus, Susanne; Munroe, Patricia B; Njølstad, Inger; Oostra, Ben A; Palmer, Colin N A; Pedersen, Nancy L; Perola, Markus; Pérusse, Louis; Peters, Ulrike; Powell, Joseph E; Power, Chris; Quertermous, Thomas; Rauramaa, Rainer; Reinmaa, Eva; Ridker, Paul M; Rivadeneira, Fernando; Rotter, Jerome I; Saaristo, Timo E; Saleheen, Danish; Schlessinger, David; Slagboom, P Eline; Snieder, Harold; Spector, Tim D; Strauch, Konstantin; Stumvoll, Michael; Tuomilehto, Jaakko; Uusitupa, Matti; van der Harst, Pim; Völzke, Henry; Walker, Mark; Wareham, Nicholas J; Watkins, Hugh; Wichmann, H-Erich; Wilson, James F; Zanen, Pieter; Deloukas, Panos; Heid, Iris M; Lindgren, Cecilia M; Mohlke, Karen L; Speliotes, Elizabeth K; Thorsteinsdottir, Unnur; Barroso, Inês; Fox, Caroline S; North, Kari E; Strachan, David P; Beckmann, Jacques S; Berndt, Sonja I; Boehnke, Michael; Borecki, Ingrid B; McCarthy, Mark I; Metspalu, Andres; Stefansson, Kari; Uitterlinden, André G; van Duijn, Cornelia M; Franke, Lude; Willer, Cristen J; Price, Alkes L; Lettre, Guillaume; Loos, Ruth J F; Weedon, Michael N; Ingelsson, Erik; O'Connell, Jeffrey R; Abecasis, Goncalo R; Chasman, Daniel I; Goddard, Michael E; Visscher, Peter M; Hirschhorn, Joel N; Frayling, Timothy M

    2014-11-01

    Using genome-wide data from 253,288 individuals, we identified 697 variants at genome-wide significance that together explained one-fifth of the heritability for adult height. By testing different numbers of variants in independent studies, we show that the most strongly associated ∼2,000, ∼3,700 and ∼9,500 SNPs explained ∼21%, ∼24% and ∼29% of phenotypic variance. Furthermore, all common variants together captured 60% of heritability. The 697 variants clustered in 423 loci were enriched for genes, pathways and tissue types known to be involved in growth and together implicated genes and pathways not highlighted in earlier efforts, such as signaling by fibroblast growth factors, WNT/β-catenin and chondroitin sulfate-related genes. We identified several genes and pathways not previously connected with human skeletal growth, including mTOR, osteoglycin and binding of hyaluronic acid. Our results indicate a genetic architecture for human height that is characterized by a very large but finite number (thousands) of causal variants.

  10. Defining the role of common variation in the genomic and biological architecture of adult human height

    Science.gov (United States)

    Chu, Audrey Y; Estrada, Karol; Luan, Jian’an; Kutalik, Zoltán; Amin, Najaf; Buchkovich, Martin L; Croteau-Chonka, Damien C; Day, Felix R; Duan, Yanan; Fall, Tove; Fehrmann, Rudolf; Ferreira, Teresa; Jackson, Anne U; Karjalainen, Juha; Lo, Ken Sin; Locke, Adam E; Mägi, Reedik; Mihailov, Evelin; Porcu, Eleonora; Randall, Joshua C; Scherag, André; Vinkhuyzen, Anna AE; Westra, Harm-Jan; Winkler, Thomas W; Workalemahu, Tsegaselassie; Zhao, Jing Hua; Absher, Devin; Albrecht, Eva; Anderson, Denise; Baron, Jeffrey; Beekman, Marian; Demirkan, Ayse; Ehret, Georg B; Feenstra, Bjarke; Feitosa, Mary F; Fischer, Krista; Fraser, Ross M; Goel, Anuj; Gong, Jian; Justice, Anne E; Kanoni, Stavroula; Kleber, Marcus E; Kristiansson, Kati; Lim, Unhee; Lotay, Vaneet; Lui, Julian C; Mangino, Massimo; Leach, Irene Mateo; Medina-Gomez, Carolina; Nalls, Michael A; Nyholt, Dale R; Palmer, Cameron D; Pasko, Dorota; Pechlivanis, Sonali; Prokopenko, Inga; Ried, Janina S; Ripke, Stephan; Shungin, Dmitry; Stancáková, Alena; Strawbridge, Rona J; Sung, Yun Ju; Tanaka, Toshiko; Teumer, Alexander; Trompet, Stella; van der Laan, Sander W; van Setten, Jessica; Van Vliet-Ostaptchouk, Jana V; Wang, Zhaoming; Yengo, Loïc; Zhang, Weihua; Afzal, Uzma; Ärnlöv, Johan; Arscott, Gillian M; Bandinelli, Stefania; Barrett, Amy; Bellis, Claire; Bennett, Amanda J; Berne, Christian; Blüher, Matthias; Bolton, Jennifer L; Böttcher, Yvonne; Boyd, Heather A; Bruinenberg, Marcel; Buckley, Brendan M; Buyske, Steven; Caspersen, Ida H; Chines, Peter S; Clarke, Robert; Claudi-Boehm, Simone; Cooper, Matthew; Daw, E Warwick; De Jong, Pim A; Deelen, Joris; Delgado, Graciela; Denny, Josh C; Dhonukshe-Rutten, Rosalie; Dimitriou, Maria; Doney, Alex SF; Dörr, Marcus; Eklund, Niina; Eury, Elodie; Folkersen, Lasse; Garcia, Melissa E; Geller, Frank; Giedraitis, Vilmantas; Go, Alan S; Grallert, Harald; Grammer, Tanja B; Gräßler, Jürgen; Grönberg, Henrik; de Groot, Lisette C.P.G.M.; Groves, Christopher J; Haessler, Jeffrey; Hall, Per; Haller, Toomas; Hallmans, Goran; Hannemann, Anke; Hartman, Catharina A; Hassinen, Maija; Hayward, Caroline; Heard-Costa, Nancy L; Helmer, Quinta; Hemani, Gibran; Henders, Anjali K; Hillege, Hans L; Hlatky, Mark A; Hoffmann, Wolfgang; Hoffmann, Per; Holmen, Oddgeir; Houwing-Duistermaat, Jeanine J; Illig, Thomas; Isaacs, Aaron; James, Alan L; Jeff, Janina; Johansen, Berit; Johansson, Åsa; Jolley, Jennifer; Juliusdottir, Thorhildur; Junttila, Juhani; Kho, Abel N; Kinnunen, Leena; Klopp, Norman; Kocher, Thomas; Kratzer, Wolfgang; Lichtner, Peter; Lind, Lars; Lindström, Jaana; Lobbens, Stéphane; Lorentzon, Mattias; Lu, Yingchang; Lyssenko, Valeriya; Magnusson, Patrik KE; Mahajan, Anubha; Maillard, Marc; McArdle, Wendy L; McKenzie, Colin A; McLachlan, Stela; McLaren, Paul J; Menni, Cristina; Merger, Sigrun; Milani, Lili; Moayyeri, Alireza; Monda, Keri L; Morken, Mario A; Müller, Gabriele; Müller-Nurasyid, Martina; Musk, Arthur W; Narisu, Narisu; Nauck, Matthias; Nolte, Ilja M; Nöthen, Markus M; Oozageer, Laticia; Pilz, Stefan; Rayner, Nigel W; Renstrom, Frida; Robertson, Neil R; Rose, Lynda M; Roussel, Ronan; Sanna, Serena; Scharnagl, Hubert; Scholtens, Salome; Schumacher, Fredrick R; Schunkert, Heribert; Scott, Robert A; Sehmi, Joban; Seufferlein, Thomas; Shi, Jianxin; Silventoinen, Karri; Smit, Johannes H; Smith, Albert Vernon; Smolonska, Joanna; Stanton, Alice V; Stirrups, Kathleen; Stott, David J; Stringham, Heather M; Sundström, Johan; Swertz, Morris A; Syvänen, Ann-Christine; Tayo, Bamidele O; Thorleifsson, Gudmar; Tyrer, Jonathan P; van Dijk, Suzanne; van Schoor, Natasja M; van der Velde, Nathalie; van Heemst, Diana; van Oort, Floor VA; Vermeulen, Sita H; Verweij, Niek; Vonk, Judith M; Waite, Lindsay L; Waldenberger, Melanie; Wennauer, Roman; Wilkens, Lynne R; Willenborg, Christina; Wilsgaard, Tom; Wojczynski, Mary K; Wong, Andrew; Wright, Alan F; Zhang, Qunyuan; Arveiler, Dominique; Bakker, Stephan JL; Beilby, John; Bergman, Richard N; Bergmann, Sven; Biffar, Reiner; Blangero, John; Boomsma, Dorret I; Bornstein, Stefan R; Bovet, Pascal; Brambilla, Paolo; Brown, Morris J; Campbell, Harry; Caulfield, Mark J; Chakravarti, Aravinda; Collins, Rory; Collins, Francis S; Crawford, Dana C; Cupples, L Adrienne; Danesh, John; de Faire, Ulf; den Ruijter, Hester M; Erbel, Raimund; Erdmann, Jeanette; Eriksson, Johan G; Farrall, Martin; Ferrannini, Ele; Ferrières, Jean; Ford, Ian; Forouhi, Nita G; Forrester, Terrence; Gansevoort, Ron T; Gejman, Pablo V; Gieger, Christian; Golay, Alain; Gottesman, Omri; Gudnason, Vilmundur; Gyllensten, Ulf; Haas, David W; Hall, Alistair S; Harris, Tamara B; Hattersley, Andrew T; Heath, Andrew C; Hengstenberg, Christian; Hicks, Andrew A; Hindorff, Lucia A; Hingorani, Aroon D; Hofman, Albert; Hovingh, G Kees; Humphries, Steve E; Hunt, Steven C; Hypponen, Elina; Jacobs, Kevin B; Jarvelin, Marjo-Riitta; Jousilahti, Pekka; Jula, Antti M; Kaprio, Jaakko; Kastelein, John JP; Kayser, Manfred; Kee, Frank; Keinanen-Kiukaanniemi, Sirkka M; Kiemeney, Lambertus A; Kooner, Jaspal S; Kooperberg, Charles; Koskinen, Seppo; Kovacs, Peter; Kraja, Aldi T; Kumari, Meena; Kuusisto, Johanna; Lakka, Timo A; Langenberg, Claudia; Le Marchand, Loic; Lehtimäki, Terho; Lupoli, Sara; Madden, Pamela AF; Männistö, Satu; Manunta, Paolo; Marette, André; Matise, Tara C; McKnight, Barbara; Meitinger, Thomas; Moll, Frans L; Montgomery, Grant W; Morris, Andrew D; Morris, Andrew P; Murray, Jeffrey C; Nelis, Mari; Ohlsson, Claes; Oldehinkel, Albertine J; Ong, Ken K; Ouwehand, Willem H; Pasterkamp, Gerard; Peters, Annette; Pramstaller, Peter P; Price, Jackie F; Qi, Lu; Raitakari, Olli T; Rankinen, Tuomo; Rao, DC; Rice, Treva K; Ritchie, Marylyn; Rudan, Igor; Salomaa, Veikko; Samani, Nilesh J; Saramies, Jouko; Sarzynski, Mark A; Schwarz, Peter EH; Sebert, Sylvain; Sever, Peter; Shuldiner, Alan R; Sinisalo, Juha; Steinthorsdottir, Valgerdur; Stolk, Ronald P; Tardif, Jean-Claude; Tönjes, Anke; Tremblay, Angelo; Tremoli, Elena; Virtamo, Jarmo; Vohl, Marie-Claude; Amouyel, Philippe; Asselbergs, Folkert W; Assimes, Themistocles L; Bochud, Murielle; Boehm, Bernhard O; Boerwinkle, Eric; Bottinger, Erwin P; Bouchard, Claude; Cauchi, Stéphane; Chambers, John C; Chanock, Stephen J; Cooper, Richard S; de Bakker, Paul IW; Dedoussis, George; Ferrucci, Luigi; Franks, Paul W; Froguel, Philippe; Groop, Leif C; Haiman, Christopher A; Hamsten, Anders; Hayes, M Geoffrey; Hui, Jennie; Hunter, David J.; Hveem, Kristian; Jukema, J Wouter; Kaplan, Robert C; Kivimaki, Mika; Kuh, Diana; Laakso, Markku; Liu, Yongmei; Martin, Nicholas G; März, Winfried; Melbye, Mads; Moebus, Susanne; Munroe, Patricia B; Njølstad, Inger; Oostra, Ben A; Palmer, Colin NA; Pedersen, Nancy L; Perola, Markus; Pérusse, Louis; Peters, Ulrike; Powell, Joseph E; Power, Chris; Quertermous, Thomas; Rauramaa, Rainer; Reinmaa, Eva; Ridker, Paul M; Rivadeneira, Fernando; Rotter, Jerome I; Saaristo, Timo E; Saleheen, Danish; Schlessinger, David; Slagboom, P Eline; Snieder, Harold; Spector, Tim D; Strauch, Konstantin; Stumvoll, Michael; Tuomilehto, Jaakko; Uusitupa, Matti; van der Harst, Pim; Völzke, Henry; Walker, Mark; Wareham, Nicholas J; Watkins, Hugh; Wichmann, H-Erich; Wilson, James F; Zanen, Pieter; Deloukas, Panos; Heid, Iris M; Lindgren, Cecilia M; Mohlke, Karen L; Speliotes, Elizabeth K; Thorsteinsdottir, Unnur; Barroso, Inês; Fox, Caroline S; North, Kari E; Strachan, David P; Beckmann, Jacques S.; Berndt, Sonja I; Boehnke, Michael; Borecki, Ingrid B; McCarthy, Mark I; Metspalu, Andres; Stefansson, Kari; Uitterlinden, André G; van Duijn, Cornelia M; Franke, Lude; Willer, Cristen J; Price, Alkes L.; Lettre, Guillaume; Loos, Ruth JF; Weedon, Michael N; Ingelsson, Erik; O’Connell, Jeffrey R; Abecasis, Goncalo R; Chasman, Daniel I; Goddard, Michael E

    2014-01-01

    Using genome-wide data from 253,288 individuals, we identified 697 variants at genome-wide significance that together explain one-fifth of heritability for adult height. By testing different numbers of variants in independent studies, we show that the most strongly associated ~2,000, ~3,700 and ~9,500 SNPs explained ~21%, ~24% and ~29% of phenotypic variance. Furthermore, all common variants together captured the majority (60%) of heritability. The 697 variants clustered in 423 loci enriched for genes, pathways, and tissue-types known to be involved in growth and together implicated genes and pathways not highlighted in earlier efforts, such as signaling by fibroblast growth factors, WNT/beta-catenin, and chondroitin sulfate-related genes. We identified several genes and pathways not previously connected with human skeletal growth, including mTOR, osteoglycin and binding of hyaluronic acid. Our results indicate a genetic architecture for human height that is characterized by a very large but finite number (thousands) of causal variants. PMID:25282103

  11. Dentistry in the future--on the role and goal of basic research in oral biology.

    Science.gov (United States)

    Mäkinen, K K

    1993-01-01

    Examination of the state of affairs of oral biology cannot be endeavoured without considering the mutual interactions and interdependencies of sciences, and without considering the impact human acts will exert on these developments. Oral biology deals with the biochemical, chemical, molecular biologic, general biologic and physical aspects of all processes that take place in the oral cavity, in the masticatory organ, and in tissues and body fluids that are associated with the above processes. Oral biology also reaps the harvest sown by (other) basic sciences. From the methodological point of view, oral biology is indistinguishable from basic sciences; it is the anatomical object that makes it specific. Oral biology cannot be regarded as "big science" (i.e. compared with the human genome project, space research, AIDS research etc.). This fact may preserve the attractiveness of oral biology. Important science--this concerns oral biology as well--still emerges in smaller settings, although there are omens that large research cartels will swallow larger and larger portions of research appropriations. A key to staying competitive is to use new science sources and--in some cases--to join bigger groups. Once upon a time oral biologists--or scientists in general--assumed that a record of solid accomplishments was sufficient to maintain research support. Today, in several countries, politics and public visibility unfortunately determine the funding privileges. Provided that human operations on earth will render future development of sciences possible, the future of oral biology will depend 1) on concomitant development in the above basic fields, and 2) on innovations in the individual psyches. This combination will unravel the structure of genes involved in the development and metabolism of oral processes, clone important salivary and connective tissue proteins, and control most important oral diseases. To achieve these goals, oral biology must attract young talent and

  12. The Biological Role of Hyaluronan-Rich Oocyte-Cumulus Extracellular Matrix in Female Reproduction

    Czech Academy of Sciences Publication Activity Database

    Nagyová, Eva

    2018-01-01

    Roč. 19, č. 1 (2018), č. článku 283. E-ISSN 1422-0067 R&D Projects: GA MŠk EF15_003/0000460 Institutional support: RVO:67985904 Keywords : extracellular matrix * hyaluronan * inter-alpha-trypsin inhibitor Subject RIV: EB - Genetics ; Molecular Biology OBOR OECD: Biochemistry and molecular biology Impact factor: 3.226, year: 2016

  13. Autotaxin: Its Role in Biology of Melanoma Cells and as a Pharmacological Target

    Directory of Open Access Journals (Sweden)

    Maciej Jankowski

    2011-01-01

    Full Text Available Autotaxin (ATX is an extracellular lysophospholipase D (lysoPLD released from normal cells and cancer cells. Activity of ATX is detected in various biological fluids. The lysophosphatidic acid (LPA is the main product of ATX. LPA acting through specific G protein-coupled receptors (LPA1-LPA6 affects immunological response, normal development, and malignant tumors' formation and progression. In this review, the impact of autotoxin on biology of melanoma cells and potential treatment is discussed.

  14. On Beyond Star Trek, the Role of Synthetic Biology in Nasa's Missions

    Science.gov (United States)

    Rothschild, Lynn J.

    2016-01-01

    The time has come to for NASA to exploit the nascent field of synthetic biology in pursuit of its mission, including aeronautics, earth science, astrobiology and notably, human exploration. Conversely, NASA advances the fundamental technology of synthetic biology as no one else can because of its unique expertise in the origin of life and life in extreme environments, including the potential for alternate life forms. This enables unique, creative "game changing" advances. NASA's requirement for minimizing upmass in flight will also drive the field toward miniaturization and automation. These drivers will greatly increase the utility of synthetic biology solutions for military, health in remote areas and commercial purposes. To this end, we have begun a program at NASA to explore the use of synthetic biology in NASA's missions, particularly space exploration. As part of this program, we began hosting an iGEM team of undergraduates drawn from Brown and Stanford Universities to conduct synthetic biology research at NASA Ames Research Center. The 2011 team (http://2011.igem.org/Team:Brown-Stanford) produced an award-winning project on using synthetic biology as a basis for a human Mars settlement and the 2012 team has expanded the use of synthetic biology to estimate the potential for life in the clouds of other planets (http://2012.igem.org/Team:Stanford-Brown; http://www.calacademy.org/sciencetoday/igem-competition/). More recent projects from the Stanford-Brown team have expanded our ideas of how synthetic biology can aid NASA's missions from "Synthetic BioCommunication" (http://2013.igem.org/Team:Stanford-Brown) to a "Biodegradable UAS (drone)" in collaboration with Spelman College (http://2014.igem.org/Team:StanfordBrownSpelman#SBS%20iGEM) and most recently, "Self-Folding Origami" (http://2015.igem.org/Team:Stanford-Brown), the winner of the 2015 award for Manufacturing.

  15. Low dose/low fluence ionizing radiation-induced biological effects: The role of intercellular communication and oxidative metabolism

    Science.gov (United States)

    Azzam, Edouard

    Mechanistic investigations have been considered critical to understanding the health risks of exposure to ionizing radiation. To gain greater insight in the biological effects of exposure to low dose/low fluence space radiations with different linear energy transfer (LET) properties, we examined short and long-term biological responses to energetic protons and high charge (Z) and high energy (E) ions (HZE particles) in human cells maintained in culture and in targeted and non-targeted tissues of irradiated rodents. Particular focus of the studies has been on mod-ulation of gene expression, proliferative capacity, induction of DNA damage and perturbations in oxidative metabolism. Exposure to mean doses of 1000 MeV/nucleon iron ions, by which a small to moderate proportion of cells in an exposed population is targeted through the nucleus by an HZE particle, induced stressful effects in the irradiated and non-irradiated cells in the population. Direct intercellular communication via gap-junctions was a primary mediator of the propagation of stressful effects from irradiated to non-irradiated cells. Compromised prolif-erative capacity, elevated level of DNA damage and oxidative stress evaluated by measurements of protein carbonylation, lipid peroxidation and activity of metabolic enzymes persisted in the progeny of irradiated and non-irradiated cells. In contrast, progeny of cells exposed to high or low doses from 150-1000 MeV protons retained the ability to form colonies and harbored similar levels of micronuclei, a surrogate form of DNA damage, as control, which correlated with normal reactive oxygen species (ROS) levels. Importantly, a significant increase in the spontaneous neoplastic transformation frequency was observed in progeny of bystander mouse embryo fibroblasts (MEFs) co-cultured with MEFs irradiated with energetic iron ions but not protons. Of particular significance, stressful effects were detected in non-targeted tissues of rats that received partial

  16. New perspectives on Mars and Venus: unravelling the role of androgens in gender differences in cardiovascular biology and disease.

    Science.gov (United States)

    Ng, Martin K C

    2007-06-01

    There are substantial gender differences in the pattern, severity and clinical outcomes of coronary heart disease independent of environmental risk factor exposure. As a consequence, there has been considerable interest in the potential role of sex hormones in atherogenesis, particularly the potential protective effects of oestrogen. However, the failure of the recent clinical randomised trials to show a cardioprotective effect for oestrogen coupled with a growing interest in androgen replacement therapy in elderly men has refocused interest on the role of androgens in cardiovascular biology and disease. Over the last decade, compelling evidence has emerged that sex differences in vascular biology are not only determined by gender-related differences in sex steroid levels but also by gender-specific tissue and cellular characteristics which mediate sex-specific responses to a variety of stimuli. In the vasculature, androgens often act in a gender-specific manner, with differential effects in male and female cells. This gender-dependent regulation may have important implications for understanding the basis of the gender gap in atherosclerosis and may eventually lead to the development of sex-specific treatments for cardiovascular disease. This review will summarise the current data for the role of androgens in gender differences in coronary heart disease and cardiovascular biology.

  17. Fibroblasts are in a position to provide directional information to migrating neutrophils during pneumonia in rabbit lungs.

    Science.gov (United States)

    Behzad, A R; Chu, F; Walker, D C

    1996-05-01

    Previous findings have shown that pulmonary fibroblasts are associated with preexisting holes in the endothelial and epithelial basal laminae through which neutrophils appear to enter and leave the interstitium as they migrate from capillaries to alveoli. To determine their role in neutrophil migration, fibroblast organization within the interstitium was assessed by transmission electron microscope observations of serial-sectioned rabbit lung tissue. Interstitial fibroblasts were found to physically interconnect the endothelial basal lamina holes to epithelial basal lamina holes. Morphometric assessment of rabbit lung tissue instilled with Streptococcus pneumoniae revealed that approximately 70% of the surface area density of migrating neutrophils is in close contact (15 nm or less) with interstitial fibroblasts and extracellular matrix elements (30 and 40%, respectively). Although migrating neutrophils were close enough to adhere to both fibroblasts and extracellular elements, the interstitial fibroblasts are organized in a manner that would allow them to provide directional information to the neutrophils. A model illustrating this process is proposed.

  18. Identification of specific gene expression profiles in fibroblasts derived from middle ear cholesteatoma.

    Science.gov (United States)

    Yoshikawa, Mamoru; Kojima, Hiromi; Wada, Kota; Tsukidate, Toshiharu; Okada, Naoko; Saito, Hirohisa; Moriyama, Hiroshi

    2006-07-01

    To investigate the role of fibroblasts in the pathogenesis of cholesteatoma. Tissue specimens were obtained from our patients. Middle ear cholesteatoma-derived fibroblasts (MECFs) and postauricular skin-derived fibroblasts (SFs) as controls were then cultured for a few weeks. These fibroblasts were stimulated with interleukin (IL) 1alpha and/or IL-1beta before gene expression assays. We used the human genome U133A probe array (GeneChip) and real-time polymerase chain reaction to examine and compare the gene expression profiles of the MECFs and SFs. Six patients who had undergone tympanoplasty. The IL-1alpha-regulated genes were classified into 4 distinct clusters on the basis of profiles differentially regulated by SF and MECF using a hierarchical clustering analysis. The messenger RNA expressions of LARC (liver and activation-regulated chemokine), GMCSF (granulocyte-macrophage colony-stimulating factor), epiregulin, ICAM1 (intercellular adhesion molecule 1), and TGFA (transforming growth factor alpha) were more strongly up-regulated by IL-1alpha and/or IL-1beta in MECF than in SF, suggesting that these fibroblasts derived from different tissues retained their typical gene expression profiles. Fibroblasts may play a role in hyperkeratosis of middle ear cholesteatoma by releasing molecules involved in inflammation and epidermal growth. These fibroblasts may retain tissue-specific characteristics presumably controlled by epigenetic mechanisms.

  19. Effect of eosinophils activated with Alternaria on the production of extracellular matrix from nasal fibroblasts.

    Science.gov (United States)

    Shin, Seung-Heon; Ye, Mi-Kyung; Choi, Sung-Yong; Kim, Yee-Hyuk

    2016-06-01

    Eosinophils and fibroblasts are known to play major roles in the pathogenesis of nasal polyps. Fungi are commonly found in nasal secretion and are associated with airway inflammation. To investigate whether activated eosinophils by airborne fungi can influence the production of extracellular matrix (ECM) from nasal fibroblasts. Inferior turbinate and nasal polyp fibroblasts were stimulated with Alternaria or Aspergillus, respectively, for 24 hours and ECM messenger RNA (mRNA) and protein expressions were measured. Eosinophils isolated from healthy volunteers were stimulated with Alternaria or Aspergillus for 4 hours then superoxide, eosinophil peroxidase, and transforming growth factor β1 were measured. Then activated eosinophils were cocultured with nasal fibroblasts for 24 hours, and ECM mRNA expressions were measured. Alternaria strongly enhanced ECM mRNA expression and protein production from nasal fibroblasts. Alternaria also induced the production of superoxide, eosinophil peroxidase, and transforming growth factor β1 from eosinophils, and activated eosinophils enhanced ECM mRNA expression when they were cocultured without the Transwell insert system. Eosinophils activated with Alternaria enhanced ECM mRNA expression from nasal polyp fibroblasts. Alternaria plays an important role in tissue fibrosis in the pathogenesis of nasal polyps by directly or indirectly influencing the production of ECM from nasal fibroblasts. Copyright © 2016 American College of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.

  20. The role and future of in-vitro isotopic techniques in molecular biology

    International Nuclear Information System (INIS)

    Dar, L.; Khan, B.K.

    2004-01-01

    In this review we discuss isotopic in-vitro molecular biology techniques, and their advantages and applications. Isotopic methods have helped to shape molecular biology since its early days. Despite the availability of non-isotopic alternatives, isotopic methods continue to be used in molecular biology due to certain advantages, especially related to sensitivity and cost-effectiveness. Numerous techniques involving the use of isotopes help in the characterization of genes, including the detection of single nucleotide polymorphisms (SNPs) or mutations. Other isotopic molecular methods are utilized to study the phenotypic expression of gene sequences and their mutation. Emerging branches of molecular biology like functional genomics and proteomics are extremely important for exploiting the rapidly growing data derived from whole genomic sequencing of human and microbial genomes. Recent molecular biology applications like the high-throughput array techniques are relevant in the context of both structural and functional genomics. In proteomics, stable isotope based technology has found applications in the analysis of protein structure and interactions. (author)

  1. The role of evolutionary biology in research and control of liver flukes in Southeast Asia.

    Science.gov (United States)

    Echaubard, Pierre; Sripa, Banchob; Mallory, Frank F; Wilcox, Bruce A

    2016-09-01

    Stimulated largely by the availability of new technology, biomedical research at the molecular-level and chemical-based control approaches arguably dominate the field of infectious diseases. Along with this, the proximate view of disease etiology predominates to the exclusion of the ultimate, evolutionary biology-based, causation perspective. Yet, historically and up to today, research in evolutionary biology has provided much of the foundation for understanding the mechanisms underlying disease transmission dynamics, virulence, and the design of effective integrated control strategies. Here we review the state of knowledge regarding the biology of Asian liver Fluke-host relationship, parasitology, phylodynamics, drug-based interventions and liver Fluke-related cancer etiology from an evolutionary biology perspective. We consider how evolutionary principles, mechanisms and research methods could help refine our understanding of clinical disease associated with infection by Liver Flukes as well as their transmission dynamics. We identify a series of questions for an evolutionary biology research agenda for the liver Fluke that should contribute to an increased understanding of liver Fluke-associated diseases. Finally, we describe an integrative evolutionary medicine approach to liver Fluke prevention and control highlighting the need to better contextualize interventions within a broader human health and sustainable development framework. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Fibroblast-matrix interplay: Nintedanib and pirfenidone modulate the effect of IPF fibroblast-conditioned matrix on normal fibroblast phenotype.

    Science.gov (United States)

    Epstein Shochet, Gali; Wollin, Lutz; Shitrit, David

    2018-03-12

    Idiopathic pulmonary fibrosis (IPF) is a progressive lung disease with poor prognosis. Activated fibroblasts are the key effector cells in fibrosis, producing excessive amounts of collagen and extracellular matrix (ECM) proteins. Whether the ECM conditioned by IPF fibroblasts determines the phenotype of naïve fibroblasts is difficult to explore. IPF-derived primary fibroblasts were cultured on Matrigel and then cleared using ammonium hydroxide, creating an IPF-conditioned matrix (CM). Normal fibroblast CM served as control. Normal fibroblasts were cultured on both types of CM, and cell count, cell distribution and markers of myofibroblast differentiation; transforming growth factor beta (TGFβ) signalling; and ECM expression were assessed. The effects of the anti-fibrotic drugs nintedanib and pirfenidone at physiologically relevant concentrations were also explored. Normal fibroblasts cultured on IPF-CM arranged in large aggregates as a result of increased proliferation and migration. Moreover, increased levels of pSmad3, pSTAT3 (phospho signal transducer and activator of transcription 3), alpha smooth muscle actin (αSMA) and Collagen1a were found, suggesting a differentiation towards a myofibroblast-like phenotype. SB505124 (10 μmol/L) partially reversed these alterations, suggesting a TGFβ contribution. Furthermore, nintedanib at 100 nmol/L and, to a lesser extent, pirfenidone at 100 μmol/L prevented the IPF-CM-induced fibroblast phenotype alterations, suggesting an attenuation of the ECM-fibroblast interplay. IPF fibroblasts alter the ECM, thus creating a CM that further propagates an IPF-like phenotype in normal fibroblasts. This assay demonstrated differences in drug activities for approved IPF drugs at clinically relevant concentrations. Thus, the matrix-fibroblast phenotype interplay might be a relevant assay to explore drug candidates for IPF treatment. © 2018 Asian Pacific Society of Respirology.

  3. Effects of chlorhexidine, essential oils and herbal medicines (Salvia, Chamomile, Calendula) on human fibroblast in vitro.

    Science.gov (United States)

    Wyganowska-Swiatkowska, Marzena; Urbaniak, Paulina; Szkaradkiewicz, Anna; Jankun, Jerzy; Kotwicka, Malgorzata

    2016-01-01

    Antiseptic rinses have been successfully used in inflammatory states of the gums and oral cavity mucosa. Antibacterial effects of chlorhexidine, essential oils and some herbs are well documented. Reaction of host tissue to these substances has much poorer documentation. The aim of the study was to analyse the influence of chlorhexidine (CHX), essential oil (EO: thymol, 0.064%; eucalyptol, 0.092%; methyl salicylate, 0.060%; menthol, 0.042%) mouth rinses and salvia, chamomile and calendula brews on fibroblast biology in vitro. The human fibroblast CCD16 line cells were cultured in incubation media which contained the examined substances. After 24 and 48 hours, the cell morphology, relative growth and apoptosis were evaluated. Exposure of fibroblasts to CHX, EO or salvia caused various changes in cell morphology. Cells cultured for 48 hours with CHX revealed a noticeably elongated shape of while cells cultured in high EO concentration or with salvia were considerably smaller and contracted with fewer projections. Chlorhexidine, EO and salvia reduced the fibroblast proliferation rate and stimulated cell death. Both reactions to EO were dose dependent. Cells exposure to chamomile or calendula brews did not change morphology or proliferation of fibroblasts. The results of this in vitro study showed that in contrast to chamomile and calendula, the brews of EO, CHX or salvia had a negative influence on fibroblast biology.

  4. A role for biological optimization within the current treatment planning paradigm

    International Nuclear Information System (INIS)

    Das, Shiva

    2009-01-01

    Purpose: Biological optimization using complication probability models in intensity modulated radiotherapy (IMRT) planning has tremendous potential for reducing radiation-induced toxicity. Nevertheless, biological optimization is almost never clinically utilized, probably because of clinician confidence in, and familiarity with, physical dose-volume constraints. The method proposed here incorporates biological optimization after dose-volume constrained optimization so as to improve the dose distribution without detrimentally affecting the important reductions achieved by dose-volume optimization (DVO). Methods: Following DVO, the clinician/planner first identifies ''fixed points'' on the target and organ-at-risk (OAR) dose-volume histograms. These points represent important DVO plan qualities that are not to be violated within a specified tolerance. Biological optimization then maximally reduces a biological metric (illustrated with equivalent uniform dose (EUD) in this work) while keeping the fixed dose-volume points within tolerance limits, as follows. Incremental fluence adjustments are computed and applied to incrementally reduce the OAR EUDs while approximately maintaining the fixed points. This process of incremental fluence adjustment is iterated until the fixed points exceed tolerance. At this juncture, remedial fluence adjustments are computed and iteratively applied to bring the fixed points back within tolerance, without increasing OAR EUDs. This process of EUD reduction followed by fixed-point correction is repeated until no further EUD reduction is possible. The method is demonstrated in the context of a prostate cancer case and olfactory neuroblastoma case. The efficacy of EUD reduction after DVO is evaluated by comparison to an optimizer with purely biological (EUD) OAR objectives. Results: For both cases, EUD reduction after DVO additionally reduced doses, especially high doses, to normal organs. For the prostate case, bladder/rectum EUDs were

  5. LXA{sub 4} actions direct fibroblast function and wound closure

    Energy Technology Data Exchange (ETDEWEB)

    Herrera, Bruno S. [Department of Applied Oral Sciences, Center for Periodontology, The Forsyth Institute, Cambridge, MA (United States); Microbiology Branch, US Army Dental and Trauma Research Detachment, Institute of Surgical Research, JBSA Fort Sam Houston, TX (United States); Kantarci, Alpdogan; Zarrough, Ahmed; Hasturk, Hatice [Department of Applied Oral Sciences, Center for Periodontology, The Forsyth Institute, Cambridge, MA (United States); Leung, Kai P., E-mail: kai.p.leung.civ@mail.mil [Microbiology Branch, US Army Dental and Trauma Research Detachment, Institute of Surgical Research, JBSA Fort Sam Houston, TX (United States); Van Dyke, Thomas E., E-mail: tvandyke@forsyth.org [Department of Applied Oral Sciences, Center for Periodontology, The Forsyth Institute, Cambridge, MA (United States)

    2015-09-04

    Timely resolution of inflammation is crucial for normal wound healing. Resolution of inflammation is an active biological process regulated by specialized lipid mediators including the lipoxins and resolvins. Failure of resolution activity has a major negative impact on wound healing in chronic inflammatory diseases that is manifest as excess fibrosis and scarring. Lipoxins, including Lipoxin A{sub 4} (LXA{sub 4}), have known anti-fibrotic and anti-scarring properties. The goal of this study was to elucidate the impact of LXA{sub 4} on fibroblast function. Mouse fibroblasts (3T3 Mus musculus Swiss) were cultured for 72 h in the presence of TGF-β1, to induce fibroblast activation. The impact of exogenous TGF-β1 (1 ng/mL) on LXA{sub 4} receptor expression (ALX/FPR2) was determined by flow cytometry. Fibroblast proliferation was measured by bromodeoxyuridine (BrdU) labeling and migration in a “scratch” assay wound model. Expression of α-smooth muscle actin (α-SMA), and collagen types I and III were measured by Western blot. We observed that TGF-β1 up-regulates LXA{sub 4} receptor expression, enhances fibroblast proliferation, migration and scratch wound closure. α-SMA levels and Collagen type I and III deposition were also enhanced. LXA{sub 4} slowed fibroblast migration and scratch wound closure at early time points (24 h), but wound closure was equal to TGF-β1 alone at 48 and 72 h. LXA{sub 4} tended to slow fibroblast proliferation at both concentrations, but had no impact on α-SMA or collagen production by TGF-β1 stimulated fibroblasts. The generalizability of the actions of resolution molecules was examined in experiments repeated with resolvin D2 (RvD2) as the agonist. The activity of RvD2 mimicked the actions of LXA{sub 4} in all assays, through an as yet unidentified receptor. The results suggest that mediators of resolution of inflammation enhance wound healing and limit fibrosis in part by modulating fibroblast function. - Highlights: • TGF

  6. Fathering and adolescents' psychological adjustment: the role of fathers' involvement, residence and biology status.

    Science.gov (United States)

    Flouri, E

    2008-03-01

    Studies on fathering and child mental health are now increasingly looking for specificity in children's psychological adjustment, indicating whether the impact of fathering is diagnostically specific or non-specific. Data from 435 fathers of secondary school-aged children in Britain were used to explore the association between resident biological fathers', non-resident biological fathers' and stepfathers' involvement and children's total difficulties, prosocial behaviour, emotional symptoms, conduct problems, hyperactivity and peer problems (all measured with the Strengths and Difficulties Questionnaire) in adolescence. After controlling for child-, father- and family-related factors, fathers' involvement was negatively associated with children's total difficulties and hyperactivity, was positively associated with children's prosocial behaviour, and was unrelated with children's emotional symptoms, conduct problems and peer problems. There was no non-resident biological father effect. Compared with resident biological fathers, stepfathers reported more total difficulties, conduct problems and hyperactivity in their children even after adjusting for involvement. Whether this reflects stepfathers' low tolerance levels or biological fathers' complacency, as sociobiologists would argue, or whether this is due to pre-existing predispositions of children in families which separate and restructure, to the effects of these multiple family changes or to the high exposure of children in restructured families to parental risk factors, is, given the data available and the study design, unclear. However, this study showed that, compared with their peers in biological father families, adolescents in stepfather families are perceived to be at higher risk of behaviour problems, and that father involvement is related to specific aspects of child adjustment.

  7. System-wide analysis reveals a complex network of tumor-fibroblast interactions involved in tumorigenicity.

    Directory of Open Access Journals (Sweden)

    Megha Rajaram

    Full Text Available Many fibroblast-secreted proteins promote tumorigenicity, and several factors secreted by cancer cells have in turn been proposed to induce these proteins. It is not clear whether there are single dominant pathways underlying these interactions or whether they involve multiple pathways acting in parallel. Here, we identified 42 fibroblast-secreted factors induced by breast cancer cells using comparative genomic analysis. To determine what fraction was active in promoting tumorigenicity, we chose five representative fibroblast-secreted factors for in vivo analysis. We found that the majority (three out of five played equally major roles in promoting tumorigenicity, and intriguingly, each one had distinct effects on the tumor microenvironment. Specifically, fibroblast-secreted amphiregulin promoted breast cancer cell survival, whereas the chemokine CCL7 stimulated tumor cell proliferation while CCL2 promoted innate immune cell infiltration and angiogenesis. The other two factors tested had minor (CCL8 or minimally (STC1 significant effects on the ability of fibroblasts to promote tumor growth. The importance of parallel interactions between fibroblasts and cancer cells was tested by simultaneously targeting fibroblast-secreted amphiregulin and the CCL7 receptor on cancer cells, and this was significantly more efficacious than blocking either pathway alone. We further explored the concept of parallel interactions by testing the extent to which induction of critical fibroblast-secreted proteins could be achieved by single, previously identified, factors produced by breast cancer cells. We found that although single factors could induce a subset of genes, even combinations of factors failed to induce the full repertoire of functionally important fibroblast-secreted proteins. Together, these results delineate a complex network of tumor-fibroblast interactions that act in parallel to promote tumorigenicity and suggest that effective anti

  8. Human fibroblast strain with normal survival but abnormal postreplication repair after ultraviolet light irradiation

    International Nuclear Information System (INIS)

    Doniger, J.; Barrett, S.F.; Robbins, J.H.

    1980-01-01

    Postreplication repair has been studied in ultraviolet light (UV-irradiated) fibroblast strains derived from eight apparently normal control donors and seven xeroderma pigmentosum patients. One control donor strain had an intermediate defect in postreplication repair similar to that in excision-deficient xeroderma pigmentosum fibroblasts. However, unlike the xeroderma pigmentosum strains, this control donor strain had normal UV-induced unscheduled DNA synthesis and normal survival after irradiation with UV. This unique fibroblast strain should be useful in studies designed to elucidate the possible role of postreplication repair in UV-induced carcinogenesis and mutagenesis

  9. Biological knowledge management: the emerging role of the Semantic Web technologies.

    Science.gov (United States)

    Antezana, Erick; Kuiper, Martin; Mironov, Vladimir

    2009-07-01

    New knowledge is produced at a continuously increasing speed, and the list of papers, databases and other knowledge sources that a researcher in the life sciences needs to cope with is actually turning into a problem rather than an asset. The adequate management of knowledge is therefore becoming fundamentally important for life scientists, especially if they work with approaches that thoroughly depend on knowledge integration, such as systems biology. Several initiatives to organize biological knowledge sources into a readily exploitable resourceome are presently being carried out. Ontologies and Semantic Web technologies revolutionize these efforts. Here, we review the benefits, trends, current possibilities, and the potential this holds for the biosciences.

  10. Human skeletal muscle fibroblasts stimulate in vitro myogenesis and in vivo muscle regeneration.

    Science.gov (United States)

    Mackey, Abigail L; Magnan, Mélanie; Chazaud, Bénédicte; Kjaer, Michael

    2017-08-01

    Accumulation of skeletal muscle extracellular matrix is an unfavourable characteristic of many muscle diseases, muscle injury and sarcopenia. The extent of cross-talk between fibroblasts, as the source of matrix protein, and satellite cells in humans is unknown. We studied this in human muscle biopsies and cell-culture studies. We observed a strong stimulation of myogenesis by human fibroblasts in cell culture. In biopsies collected 30 days after a muscle injury protocol, fibroblast number increased to four times control levels, where fibroblasts were found to be preferentially located immediately surrounding regenerating muscle fibres. These novel findings indicate an important role for fibroblasts in supporting the regeneration of muscle fibres, potentially through direct stimulation of satellite cell differentiation and fusion, and contribute to understanding of cell-cell cross-talk during physiological and pathological muscle remodelling. Accumulation of skeletal muscle extracellular matrix is an unfavourable characteristic of many muscle diseases, muscle injury and sarcopenia. In addition to the indispensable role satellite cells play in muscle regeneration, there is emerging evidence in rodents for a regulatory influence on fibroblast activity. However, the influence of fibroblasts on satellite cells and muscle regeneration in humans is unknown. The purpose of this study was to investigate this in vitro and during in vivo regeneration in humans. Following a muscle injury protocol in young healthy men (n = 7), the number of fibroblasts (TCF7L2+), satellite cells (Pax7+), differentiating myogenic cells (myogenin+) and regenerating fibres (neonatal/embryonic myosin+) was determined from biopsy cross-sections. Fibroblasts and myogenic precursor cells (MPCs) were also isolated from human skeletal muscle (n = 4) and co-cultured using different cell ratios, with the two cell populations either in direct contact with each other or separated by a permeable

  11. The role of informatics in the coordinated management of biological resources collections.

    Science.gov (United States)

    Romano, Paolo; Kracht, Manfred; Manniello, Maria Assunta; Stegehuis, Gerrit; Fritze, Dagmar

    2005-01-01

    The term 'biological resources' is applied to the living biological material collected, held and catalogued in culture collections: bacterial and fungal cultures; animal, human and plant cells; viruses; and isolated genetic material. A wealth of information on these materials has been accumulated in culture collections, and most of this information is accessible. Digitalisation of data has reached a high level; however, information is still dispersed. Individual and coordinated approaches have been initiated to improve accessibility of biological resource centres, their holdings and related information through the Internet. These approaches cover subjects such as standardisation of data handling and data accessibility, and standardisation and quality control of laboratory procedures. This article reviews some of the most important initiatives implemented so far, as well as the most recent achievements. It also discusses the possible improvements that could be achieved by adopting new communication standards and technologies, such as web services, in view of a deeper and more fruitful integration of biological resources information in the bioinformatics network environment.

  12. Jan Lever: Challenging the Role of Typological Thinking in Reformational Views of Biology

    NARCIS (Netherlands)

    Cook, Harry; Flipse, A.C.

    2017-01-01

    This essay analyzes the view of evolution of Jan Lever (1922–2010), founder of the biology department at the Vrije Universiteit Amsterdam, and compares his view with those of J.H. Diemer and H. Dooyeweerd. Together with Dooyeweerd, Lever wrote a series of chapters on the species concept in

  13. Anxiety Symptoms in African American Youth: The Role of Puberty and Biological Sex

    Science.gov (United States)

    Carter, Rona

    2015-01-01

    This study examined the effects of pubertal status, pubertal timing (actual and perceived), and youth biological sex on symptom dimensions of anxiety (i.e., social, separation, harm avoidance, physical) in African Americans (n = 252; ages 8-12). For girls, results indicated that pubertal status and timing (actual) exerted similar effects for some…

  14. Role of biologics targeting type 2 airway inflammation in asthma : What have we learned so far?

    NARCIS (Netherlands)

    Parulekar, Amit D.; Diamant, Zuzana; Hanania, Nicola A.

    Purpose of reviewSevere asthma is a heterogeneous syndrome that can be classified into distinct phenotypes and endotypes. In the type 2 (T2)-high endotype, multiple cytokines are produced that lead to eosinophilic inflammation. These cytokines and their receptors are targets for biologic therapies

  15. Role of biological soil crusts in desert hydrology and geomorphology: Implications for military training operations

    Science.gov (United States)

    Steven D. Warren

    2014-01-01

    Biological soil crusts, composed of soil surfaces stabilized by a consortium of cyanobacteria, algae, fungi, lichens, and/or bryophytes, are common in most deserts and perform functions of primary productivity, nitrogen fixation, nutrient cycling, water redistribution, and soil stabilization. The crusts are highly susceptible to disturbance. The degree of perturbation...

  16. The dielectric constant and its role in the long range coherence in biological systems

    International Nuclear Information System (INIS)

    Paul, R.; Chatterjee, R.

    1984-01-01

    An expression for the dielectric constant has been derived, for the Froehlich model of long-range coherence in biological cells. These theoretical expressions are employed to interpret the observed rouleaux formation of red blood cells (erythrocytes). It is concluded that this unusual behaviour of the erythrocytes can be interpreted satisfactorilly by the extended Froehlich model developed by us. (Author) [pt

  17. Biological mechanisms underlying the role of physical fitness in health and resilience

    OpenAIRE

    Silverman, Marni N.; Deuster, Patricia A.

    2014-01-01

    Physical fitness, achieved through regular exercise and/or spontaneous physical activity, confers resilience by inducing positive psychological and physiological benefits, blunting stress reactivity, protecting against potentially adverse behavioural and metabolic consequences of stressful events and preventing many chronic diseases. In this review, we discuss the biological mechanisms underlying the beneficial effects of physical fitness on mental and physical health. Physical fitness appear...

  18. A Brief History of the Study of Fish Osmoregulation: The Central Role of the Mt. Desert Island Biological Laboratory

    Science.gov (United States)

    Evans, David H.

    2010-01-01

    The Mt. Desert Island Biological Laboratory (MDIBL) has played a central role in the study of fish osmoregulation for the past 80 years. In particular, scientists at the MDIBL have made significant discoveries in the basic pattern of fish osmoregulation, the function of aglomerular kidneys and proximal tubular secretion, the roles of NaCl cotransporters in intestinal uptake and gill and rectal gland secretion, the role of the shark rectal gland in osmoregulation, the mechanisms of salt secretion by the teleost fish gill epithelium, and the evolution of the ionic uptake mechanisms in fish gills. This short review presents the history of these discoveries and their relationships to the study of epithelial transport in general. PMID:21423356

  19. Nonlinear signaling on biological networks: The role of stochasticity and spectral clustering

    Science.gov (United States)

    Hernandez-Hernandez, Gonzalo; Myers, Jesse; Alvarez-Lacalle, Enrique; Shiferaw, Yohannes

    2017-03-01

    Signal transduction within biological cells is governed by networks of interacting proteins. Communication between these proteins is mediated by signaling molecules which bind to receptors and induce stochastic transitions between different conformational states. Signaling is typically a cooperative process which requires the occurrence of multiple binding events so that reaction rates have a nonlinear dependence on the amount of signaling molecule. It is this nonlinearity that endows biological signaling networks with robust switchlike properties which are critical to their biological function. In this study we investigate how the properties of these signaling systems depend on the network architecture. Our main result is that these nonlinear networks exhibit bistability where the network activity can switch between states that correspond to a low and high activity level. We show that this bistable regime emerges at a critical coupling strength that is determined by the spectral structure of the network. In particular, the set of nodes that correspond to large components of the leading eigenvector of the adjacency matrix determines the onset of bistability. Above this transition the eigenvectors of the adjacency matrix determine a hierarchy of clusters, defined by its spectral properties, which are activated sequentially with increasing network activity. We argue further that the onset of bistability occurs either continuously or discontinuously depending upon whether the leading eigenvector is localized or delocalized. Finally, we show that at low network coupling stochastic transitions to the active branch are also driven by the set of nodes that contribute more strongly to the leading eigenvector. However, at high coupling, transitions are insensitive to network structure since the network can be activated by stochastic transitions of a few nodes. Thus this work identifies important features of biological signaling networks that may underlie their biological

  20. Synthetic Biology between Self-Regulation and Public Discourse: Ethical Issues and the Many Roles of the Ethicist.

    Science.gov (United States)

    Arnason, Gardar

    2017-04-01

    This article discusses the roles of ethicists in the governance of synthetic biology. I am particularly concerned with the idea of self-regulation of bioscience and its relationship to public discourse about ethical issues in bioscience. I will look at the role of philosophical ethicists at different levels and loci, from the "embedded ethicist" in the laboratory or research project, to ethicists' impact on policy and public discourse. In a democratic society, the development of governance frameworks for emerging technologies, such as synthetic biology, needs to be guided by a well-informed public discourse. In the case of synthetic biology, the public discourse has to go further than merely considering technical issues of biosafety and biosecurity, or risk management, to consider more philosophical issues concerning the meaning and value of "life" between the natural and the synthetic. I argue that ethicists have moral expertise to bring to the public arena, which consists not only in guiding the debate but also in evaluating arguments and moral positions and making normative judgments. When ethicists make normative claims or moral judgments, they must be transparent about their theoretical positions and basic moral standpoints.

  1. [The Functional Role of Exosomes in Cancer Biology and Their Potential as Biomarkers and Therapeutic Targets of Cancer].

    Science.gov (United States)

    Naito, Yutaka; Yoshioka, Yusuke; Ochiya, Takahiro

    2015-06-01

    Intercellular communication plays an important role in the regulation of various cellular events. In particular, cancer cells and the surrounding cells communicate with each other, and this intercellular communication triggers cancer initiation and progression through the secretion of molecules, including growth factors and cytokines. Recent advances in cancer biology have indicated that small membrane vesicles, termed exosomes, also serve as regulatory agents in intercellular communications. Exosomes contain functional cellular components, including proteins and microRNAs (miRNAs), and they transfer these components to recipient cells. This exosome-mediated intercellular communication leads to increased growth, invasion, and metastasis of cancer. Thus, researchers regard exosomes as important cues to understanding the molecular mechanisms of cancer biology. Indeed, several lines of evidence have demonstrated that exosomes can explain multiple aspects of cancer biology. In addition, increasing evidence suggests that exosomes and their specific molecules are also attractive for use as biomarkers and therapeutic targets in cancer. Recent reports showed the efficacy of a novel diagnosis by detecting component molecules of cancer-derived exosomes, including miRNAs and membrane proteins. Furthermore, clinical trials that test the application of exosomes for cancer therapy have already been reported. From these points of view, we will summarize experimental data that support the role of exosomes in cancer progression and the potential of exosomes for use in novel diagnostic and therapeutic approaches for cancer.

  2. SIRT-1 regulates TGF-β-induced dermal fibroblast migration via modulation of Cyr61 expression.

    Science.gov (United States)

    Kwon, Eun-Jeong; Park, Eun-Jung; Yu, Hyeran; Huh, Jung-Sik; Kim, Jinseok; Cho, Moonjae

    2018-05-01

    SIRT1 is a NAD-dependent protein deacetylase that participates in cellular regulation. The increased migration of fibroblasts is an important phenotype in fibroblast activation. The role of SIRT1 in cell migration remains controversial as to whether SIRT1 acts as an activator or suppressor of cell migration. Therefore, we have established the role of SIRT1 in the migration of human dermal fibroblasts and explored targets of SIRT1 during dermal fibroblast migration. SIRT1 and Cyr61 were expressed in human dermal fibroblasts and the stimulation with TGF-β further induced their expression. Treatment with resveratrol (RSV), a SIRT1 agonist, or overexpression of SIRT1 also promoted the expression Cyr61 in human dermal fibroblasts, whereas the inhibition of SIRT1 activity by nicotinamide or knockdown of SIRT1 decreased the level of Cyr61, as well as TGF-β or RSV-induced Cyr61 expression. Blocking of ERK signaling by PD98509 reduced the expression of Cyr61 induced by TGF-β or RSV. TGF-β, RSV, or SIRT1 overexpression enhanced β-catenin as well as Cyr61 expression. This stimulation was reduced by the Wnt inhibitor XAV939. RSV increased migration and nicotinamide attenuated RSV-induced migration of human dermal fibroblasts. Furthermore, SIRT1 overexpression promoted cell migration, whereas blocking Cyr61 attenuated SIRT1-stimulated migration of human dermal fibroblasts. SIRT1 increased cell migration by stimulating Cyr61 expression and the ERK and Wnt/β-catenin signaling. SIRT1-induced Cyr61 activity is very important for human dermal fibroblasts migration.

  3. S100A4 and its role in metastasis – computational integration of data on biological networks.

    Science.gov (United States)

    Buetti-Dinh, Antoine; Pivkin, Igor V; Friedman, Ran

    2015-08-01

    Characterising signal transduction networks is fundamental to our understanding of biology. However, redundancy and different types of feedback mechanisms make it difficult to understand how variations of the network components contribute to a biological process. In silico modelling of signalling interactions therefore becomes increasingly useful for the development of successful therapeutic approaches. Unfortunately, quantitative information cannot be obtained for all of the proteins or complexes that comprise the network, which limits the usability of computational models. We developed a flexible computational framework for the analysis of biological signalling networks. We demonstrate our approach by studying the mechanism of metastasis promotion by the S100A4 protein, and suggest therapeutic strategies. The advantage of the proposed method is that only limited information (interaction type between species) is required to set up a steady-state network model. This permits a straightforward integration of experimental information where the lack of details are compensated by efficient sampling of the parameter space. We investigated regulatory properties of the S100A4 network and the role of different key components. The results show that S100A4 enhances the activity of matrix metalloproteinases (MMPs), causing higher cell dissociation. Moreover, it leads to an increased stability of the pathological state. Thus, avoiding metastasis in S100A4-expressing tumours requires multiple target inhibition. Moreover, the analysis could explain the previous failure of MMP inhibitors in clinical trials. Finally, our method is applicable to a wide range of biological questions that can be represented as directional networks.

  4. [Agressive fibromatosis: genetic and biological correlations].

    Science.gov (United States)

    Hlavatá, Z; Porsok, S

    2012-01-01

    Aggressive fibromatosis, also known as desmoid tumor, is specific and relatively rarely occuring disease. It belongs to heterogenous group of soft tissue tumors. Originally, it arises from fibroblasts with monoclonal proliferation derived from fibro-aponeurotic tissue with typical local invasive spreading without metastatic tendency. Increased amount of knowledge about the role of the APC gene and its protein product in FAP play an important role in revealing the molecular nature of desmoid tumors. In general, we can conclude that the β-catenin dysregulation is the key player of the FAP associated desmoid tumor onset. The Wingless/Wnt cascade plays a crucial role in the pathogenesis of aggressive fibromatosis. However, it has not been definitely proven that the mutations of APC or β-catenin genes are the trigger mechanisms. The research outcome can pave the way for using target biological therapy in routine practice in patients with aggressive fibromatosis in the future.

  5. EB1 is required for primary cilia assembly in fibroblasts

    DEFF Research Database (Denmark)

    Schrøder, Jacob M; Schneider, Linda; Christensen, Søren T

    2007-01-01

    EB1 is a small microtubule (MT)-binding protein that associates preferentially with MT plus ends and plays a role in regulating MT dynamics. EB1 also targets other MT-associated proteins to the plus end and thereby regulates interactions of MTs with the cell cortex, mitotic kinetochores, and diff...... that localization of EB1 at the centriole/basal body is required for primary cilia assembly in fibroblasts....

  6. The Emerging Role of Skeletal Muscle Metabolism as a Biological Target and Cellular Regulator of Cancer-Induced Muscle Wasting

    Science.gov (United States)

    Carson, James A.; Hardee, Justin P.; VanderVeen, Brandon N.

    2015-01-01

    While skeletal muscle mass is an established primary outcome related to understanding cancer cachexia mechanisms, considerable gaps exist in our understanding of muscle biochemical and functional properties that have recognized roles in systemic health. Skeletal muscle quality is a classification beyond mass, and is aligned with muscle’s metabolic capacity and substrate utilization flexibility. This supplies an additional role for the mitochondria in cancer-induced muscle wasting. While the historical assessment of mitochondria content and function during cancer-induced muscle loss was closely aligned with energy flux and wasting susceptibility, this understanding has expanded to link mitochondria dysfunction to cellular processes regulating myofiber wasting. The primary objective of this article is to highlight muscle mitochondria and oxidative metabolism as a biological target of cancer cachexia and also as a cellular regulator of cancer-induced muscle wasting. Initially, we examine the role of muscle metabolic phenotype and mitochondria content in cancer-induced wasting susceptibility. We then assess the evidence for cancer-induced regulation of skeletal muscle mitochondrial biogenesis, dynamics, mitophagy, and oxidative stress. In addition, we discuss environments associated with cancer cachexia that can impact the regulation of skeletal muscle oxidative metabolism. The article also examines the role of cytokine-mediated regulation of mitochondria function regulation, followed by the potential role of cancer-induced hypogonadism. Lastly, a role for decreased muscle use in cancer-induced mitochondrial dysfunction is reviewed. PMID:26593326

  7. Understanding the Biological Roles of Pectins in Plants through Physiological and Functional Characterizations of Plant and Fungal Mutants

    DEFF Research Database (Denmark)

    Stranne, Maria

    The plant cell wall is a dynamic structure and it is involved in regulating a number of physiological features of plants such as physical strength, growth, cell differentiation, intercellular communication, water movement and defense responses. Pectins constitute a major class of plant cell wall...... polysaccharides and consist of backbones rich in galacturonic acids, which are decorated with a range of functional groups including acetyl esters and arabinan sidechains. Although much effort has been made to uncover biological functions of pectins in plants and remarkable progresses have taken place, many...... aspects remain elusive. Studies described in this thesis aimed at gaining new insights into the biological roles of pectin acetylation and arabinosylation in the model plant Arabidopsis thaliana. The thesis consists of four chapters: physiological characterization of cell wall mutants affected in cell...

  8. The role of socioscientific issues in biology teaching – from the perspective of teachers

    DEFF Research Database (Denmark)

    Tidemand, Sofie; Nielsen, Jan Alexis

    2017-01-01

    Previous research has documented that students who engage with socioscientific issues can acquire some of the complex competences and skills typically related to scientific literacy. But an emerging field of research on science teachers’ understanding and use of socioscientific issues, has...... documented that a range of challenges hinders the uptake of socioscientific issues. In this study we investigated the interpretation and implementation of socioscientific issues among Danish biology teachers – who teach in a curriculum that, on paper, is permeated by socioscientific issues. We conducted five...... harbour a content-centred interpretation of socioscientific issues which manifests itself in at least three separate ways. First, the teachers generally use socioscientific issues as a means to an end of teaching factual biological content. Second, the teachers had a clear emphasis on mastery of factual...

  9. The "Century of Biology" and the Evolving Role of Medicinal Chemists in Neuroscience.

    Science.gov (United States)

    Doller, Dario

    2017-01-18

    Society expects that the wave of contemporary new discoveries in biological sciences will soon lead to novel treatments for human diseases, including many devastating brain disorders. Historically, medicinal chemists have contributed to drug discovery teams in ways that synergize with those from their partner sciences, and help transform new knowledge into the ultimate tangible asset: a new drug. The optimal balance of resources and the right strategy to minimize the risk of late clinical failure may differ for different therapeutic indications. Recent progress in the oncology and neuroscience therapeutic areas is compared and contrasted, in particular looking at the biological target space and functional attributes of recently FDA-approved drugs and those in the late clinical pipeline. Medicinal chemists are poised to have major influence in neuroscience drug research, and examples of areas of potential impact are presented, together with a discussion of the soft skills they bring to their project teams and why they have been so impactful.

  10. The role and control of sludge age in biological nutrient removal activated sludge systems.

    Science.gov (United States)

    Ekama, G A

    2010-01-01

    The sludge age is the most fundamental and important parameter in the design, operation and control of biological nutrient removal (BNR) activated sludge (AS) systems. Generally, the better the effluent and waste sludge quality required from the system, the longer the sludge age, the larger the biological reactor and the more wastewater characteristics need to be known. Controlling the reactor concentration does not control sludge age, only the mass of sludge in the system. When nitrification is a requirement, sludge age control becomes a requirement and the secondary settling tanks can no longer serve the dual purpose of clarifier and waste activated sludge thickeners. The easiest and most practical way to control sludge age is with hydraulic control by wasting a defined proportion of the reactor volume daily. In AS plants with reactor concentration control, nitrification fails first. With hydraulic control of sludge age, nitrification will not fail, rather the plant fails by shedding solids over the secondary settling tank effluent weirs.

  11. The role of adaptive trans-generational plasticity in biological invasions of plants

    OpenAIRE

    Dyer, Andrew R; Brown, Cynthia S; Espeland, Erin K; McKay, John K; Meimberg, Harald; Rice, Kevin J

    2010-01-01

    High-impact biological invasions often involve establishment and spread in disturbed, high-resource patches followed by establishment and spread in biotically or abiotically stressful areas. Evolutionary change may be required for the second phase of invasion (establishment and spread in stressful areas) to occur. When species have low genetic diversity and short selection history, within-generation phenotypic plasticity is often cited as the mechanism through which spread across multiple hab...

  12. The role of socioscientific issues in biology teaching – from the perspective of teachers

    OpenAIRE

    Tidemand, Sofie; Nielsen, Jan Alexis

    2017-01-01

    Previous research has documented that students who engage with socioscientific issues can acquire some of the complex competences and skills typically related to scientific literacy. But an emerging field of research on science teachers’ understanding and use of socioscientific issues, has documented that a range of challenges hinders the uptake of socioscientific issues. In this study we investigated the interpretation and implementation of socioscientific issues among Danish biology teacher...

  13. Role of biologics and biosimilars in inflammatory bowel disease: current trends and future perspectives

    Directory of Open Access Journals (Sweden)

    Rawla P

    2018-05-01

    Full Text Available Prashanth Rawla,1 Tagore Sunkara,2 Jeffrey Pradeep Raj3 1Department of Internal Medicine, Memorial Hospital of Martinsville and Henry County, Martinsville, VA, 2Division of Gastroenterology and Hepatology, The Brooklyn Hospital Center, Clinical Affiliate of The Mount Sinai Hospital, New York, NY, USA; 3Department of Pharmacology, St John’s Medical College, Bangalore, India Abstract: Inflammatory bowel disease (IBD is an idiopathic chronic inflammatory disease of the gastrointestinal system. The spectrum is of predominantly two types, namely, ulcerative colitis and Crohn’s disease. The incidence of IBD has been increasing steadily since 1990, and so the number of agents used in their treatment. Biologics that are derived partly or completely from living biological sources such as animals and humans have become widely available, which provide therapeutic benefits to the IBD patients. Currently, monoclonal antibodies against tumor necrosis factor-alpha (infliximab, adalimumab, certolizumab, and golimumab, integrins (vedolizumab and natalizumab, and interleukin (IL-12 and IL-23 antagonists (ustekinumab are approved for use in IBD. Biosimilars of infliximab and adalimumab are also available for the treatment of IBD. This review summarizes the clinical pharmacology, studies leading to their approval, overall indications and their use in IBD, usage in pregnancy and lactation, and the adverse effects of these agents. This review also summarizes the recent advances and future perspectives specific to biologics and biosimilars in IBD. Keywords: inflammatory bowel disease, Crohn’s disease, ulcerative colitis, biologics, biosimilars, tumor necrosis factor, integrin, interleukin, adalimumab, Humira®, certolizumab, Cimzia®, golimumab, Simponi®, infliximab, Remicade®, vedolizumab, Entyvio, natalizumab, Tysabri®, ustekinumab, Stelara® 

  14. Disentangling the role of environmental and human pressures on biological invasions across Europe

    Czech Academy of Sciences Publication Activity Database

    Pyšek, Petr; Jarošík, Vojtěch; Wild, Jan; Hejda, Martin; Pergl, Jan

    2010-01-01

    Roč. 107, č. 27 (2010), s. 12157-12162 ISSN 0027-8424 R&D Projects: GA MŠk 7E09053 Grant - others:ALARM(XE) GOCE-CT-2003-506675; European Comission(XE) SSPI-CT-2003-511202 Institutional research plan: CEZ:AV0Z60050516 Keywords : biological invasions * Europe * economy Subject RIV: EF - Botanics Impact factor: 9.771, year: 2010

  15. The role of cell hydration in realization of biological effects of non-ionizing radiation (NIR).

    Science.gov (United States)

    Ayrapetyan, Sinerik

    2015-09-01

    The weak knowledge on the nature of cellular and molecular mechanisms of biological effects of NIR such as static magnetic field, infrasound frequency of mechanical vibration, extremely low frequency of electromagnetic fields and microwave serves as a main barrier for adequate dosimetry from the point of Public Health. The difficulty lies in the fact that the biological effects of NIR depend not only on their thermodynamic characteristics but also on their frequency and intensity "windows", chemical and physical composition of the surrounding medium, as well as on the initial metabolic state of the organism. Therefore, only biomarker can be used for adequate estimation of biological effect of NIR on organisms. Because of the absence of such biomarker(s), organizations having the mission to monitor hazardous effects of NIR traditionally base their instruction on thermodynamic characteristics of NIR. Based on the high sensitivity to NIR of both aqua medium structure and cell hydration, it is suggested that cell bathing medium is one of the primary targets and cell hydration is a biomarker for NIR effects on cells and organisms. The purpose of this article is to present a short review of literature and our own experimental data on the effects of NIR on plants' seeds germination, microbe growth and development, snail neurons and heart muscle, rat's brain and heart tissues.

  16. Reproductive biology of Echinopsis terscheckii (Cactaceae): the role of nocturnal and diurnal pollinators.

    Science.gov (United States)

    Ortega-Baes, P; Saravia, M; Sühring, S; Godínez-Alvarez, H; Zamar, M

    2011-01-01

    The aim of this study was to analyse the reproductive biology of Echinopsis terscheckii, a species endemic to northwest Argentina that has nocturnal flowers. We expected that this species had a generalised pollination system, with moths and diurnal visitors as the primary pollinators. To test this, we studied the floral biology, breeding system and floral visitors of this species and the effectiveness of nocturnal and diurnal visitors. Floral biology was defined based on floral morphology, floral cycle and nectar production of the flowers. The breeding system and relative contributions of diurnal and nocturnal visitors to fruit and seed set were analysed through field experiments. E. terscheckii flowers opened at sunset and closed the following day. The peak of nectar production occurred at midnight. Flowers were determined to be self-incompatible. Moths, bees and birds were identified as floral visitors. Moths were the most frequent visitors at night, whereas bees were the most frequent visitors during the day. Fruit production by diurnal pollinators was less than that by nocturnal pollinators; among all floral visitors, moths were the most effective pollinators. We have demonstrated for the first time that moths are the primary pollinators of columnar cacti of the genus Echinopsis. Our results suggest that moths might be important pollinators of columnar cactus species with nocturnal flowers in the extra-tropical deserts of South America. © 2010 German Botanical Society and The Royal Botanical Society of the Netherlands.

  17. The Role of Field Classes in Education of Prospective Teachers in Biology

    Directory of Open Access Journals (Sweden)

    E. Fleszar

    2009-12-01

    Full Text Available Field classes are indispensable in education of biology and environment protection students, as they allow a future teacher to carry out teaching material bringing together theory and practice through activity. In the framework of Biology Didactics classes the biology students of the Faculty of Natural Sciences at the University of Szczecin participate actively in the works on didactic nature trail in the Arkoñski Woods prepared by Dr. Ewa Fleszar. During the work on didactic natural path the students make themselves acquainted with: field class objectives; field class tasks; field class programmes, e.g. concerning phenology; flora and fauna species. Writing synopsis of field classes for selected lesson units at different teaching levels they acquire sound knowledge based on the ecological contents. Contacts with nature as well as gaining the experience during field classes allow them to obtain competences for working in the field and to understand the objectives of carrying out such classes. Field classes have an effect on developing interests of participants in the subject, and affect the improvement of teaching performance. Visit to the field forms ecological awareness, which leads to obtaining an ecological culture.

  18. Fetal Programming of Body Composition, Obesity, and Metabolic Function: The Role of Intrauterine Stress and Stress Biology

    Directory of Open Access Journals (Sweden)

    Sonja Entringer

    2012-01-01

    Full Text Available Epidemiological, clinical, physiological, cellular, and molecular evidence suggests that the origins of obesity and metabolic dysfunction can be traced back to intrauterine life and supports an important role for maternal nutrition prior to and during gestation in fetal programming. The elucidation of underlying mechanisms is an area of interest and intense investigation. In this perspectives paper we propose that in addition to maternal nutrition-related processes it may be important to concurrently consider the potential role of intrauterine stress and stress biology. We frame our arguments in the larger context of an evolutionary-developmental perspective that supports roles for both nutrition and stress as key environmental conditions driving natural selection and developmental plasticity. We suggest that intrauterine stress exposure may interact with the nutritional milieu, and that stress biology may represent an underlying mechanism mediating the effects of diverse intrauterine perturbations, including but not limited to maternal nutritional insults (undernutrition and overnutrition, on brain and peripheral targets of programming of body composition, energy balance homeostasis, and metabolic function. We discuss putative maternal-placental-fetal endocrine and immune/inflammatory candidate mechanisms that may underlie the long-term effects of intrauterine stress. We conclude with a commentary of the implications for future research and clinical practice.

  19. Asymmetric migration of human keratinocytes under mechanical stretch and cocultured fibroblasts in a wound repair model.

    Directory of Open Access Journals (Sweden)

    Dongyuan Lü

    Full Text Available Keratinocyte migration during re-epithelization is crucial in wound healing under biochemical and biomechanical microenvironment. However, little is known about the underlying mechanisms whereby mechanical tension and cocultured fibroblasts or keratinocytes modulate the migration of keratinocytes or fibroblasts. Here we applied a tensile device together with a modified transwell assay to determine the lateral and transmembrane migration dynamics of human HaCaT keratinocytes or HF fibroblasts. A novel pattern of asymmetric migration was observed for keratinocytes when they were cocultured with non-contact fibroblasts, i.e., the accumulative distance of HaCaT cells was significantly higher when moving away from HF cells or migrating from down to up cross the membrane than that when moving close to HF cells or when migrating from up to down, whereas HF migration was symmetric. This asymmetric migration was mainly regulated by EGF derived from fibroblasts, but not transforming growth factor α or β1 production. Mechanical stretch subjected to fibroblasts fostered keratinocyte asymmetric migration by increasing EGF secretion, while no role of mechanical stretch was found for EGF secretion by keratinocytes. These results provided a new insight into understanding the regulating mechanisms of two- or three-dimensional migration of keratinocytes or fibroblasts along or across dermis and epidermis under biomechanical microenvironment.

  20. Biological role of copper and copper-containing proteins in human and animal organism

    OpenAIRE

    ANTONYAK H.L.; VAZHNENKO A.V.; PANAS N.E.

    2011-01-01

    Current scientific data related to copper metabolism and functional activity of Cu-containing proteins in human and animal cells are reviewed in the article. Important functional role of this essential element in human and animal organism is analyzed.

  1. Cellular dysfunction in the diabetic fibroblast: impairment in migration, vascular endothelial growth factor production, and response to hypoxia.

    Science.gov (United States)

    Lerman, Oren Z; Galiano, Robert D; Armour, Mary; Levine, Jamie P; Gurtner, Geoffrey C

    2003-01-01

    Although it is known that systemic diseases such as diabetes result in impaired wound healing, the mechanism for this impairment is not understood. Because fibroblasts are essential for wound repair, we compared the in vitro behavior of fibroblasts cultured from diabetic, leptin receptor-deficient (db/db) mice with wild-type fibroblasts from mice of the same genetic background in processes important during tissue repair. Adult diabetic mouse fibroblast migration exhibited a 75% reduction in migration compared to normal fibroblasts (P under basal or hypoxic conditions, confirming that the results from db/db fibroblasts in mature mice resulted from the diabetic state and were not because of alterations in the leptin-leptin receptor axis. Markers of cellular viability including proliferation and senescence were not significantly different between diabetic and wild-type fibroblasts. We conclude that, in vitro, diabetic fibroblasts show selective impairments in discrete cellular processes critical for tissue repair including cellular migration, VEGF production, and the response to hypoxia. The VEGF abnormalities developed concurrently with the onset of hyperglycemia and were not seen in normoglycemic, leptin receptor-deficient db/db mice. These observations support a role for fibroblast dysfunction in the impaired wound healing observed in human diabetics, and also suggest a mechanism for the poor clinical outcomes that occur after ischemic injury in diabetic patients.

  2. The effect of keratinocytes on the biomechanical characteristics and pore microstructure of tissue engineered skin using deep dermal fibroblasts.

    Science.gov (United States)

    Varkey, Mathew; Ding, Jie; Tredget, Edward E

    2014-12-01

    Fibrosis affects most organs, it results in replacement of normal parenchymal tissue with collagen-rich extracellular matrix, which compromises tissue architecture and ultimately causes loss of function of the affected organ. Biochemical pathways that contribute to fibrosis have been extensively studied, but the role of biomechanical signaling in fibrosis is not clearly understood. In this study, we assessed the effect keratinocytes have on the biomechanical characteristics and pore microstructure of tissue engineered skin made with superficial or deep dermal fibroblasts in order to determine any biomaterial-mediated anti-fibrotic influences on tissue engineered skin. Tissue engineered skin with deep dermal fibroblasts and keratinocytes were found to be less stiff and contracted and had reduced number of myofibroblasts and lower expression of matrix crosslinking factors compared to matrices with deep fibroblasts alone. However, there were no such differences between tissue engineered skin with superficial fibroblasts and keratinocytes and matrices with superficial fibroblasts alone. Also, tissue engineered skin with deep fibroblasts and keratinocytes had smaller pores compared to those with superficial fibroblasts and keratinocytes; pore size of tissue engineered skin with deep fibroblasts and keratinocytes were not different from those matrices with deep fibroblasts alone. A better understanding of biomechanical characteristics and pore microstructure of tissue engineered skin may prove beneficial in promoting normal wound healing over pathologic healing. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Coxsackievirus B3 induces the formation of autophagosomes in cardiac fibroblasts both in vitro and in vivo

    Energy Technology Data Exchange (ETDEWEB)

    Zhai, Xia, E-mail: zhai_xia_cool@126.com [Department of Microbiology and Wu Lien-Teh Institute, Harbin Medical University, 157 Baojian Road, Harbin 150081 (China); Qin, Ying, E-mail: qinyinggaofeng@163.com [Department of Microbiology and Wu Lien-Teh Institute, Harbin Medical University, 157 Baojian Road, Harbin 150081 (China); Chen, Yang, E-mail: cy_hmu@126.com [Department of Microbiology and Wu Lien-Teh Institute, Harbin Medical University, 157 Baojian Road, Harbin 150081 (China); Lin, Lexun, E-mail: linlexun@163.com [Department of Microbiology and Wu Lien-Teh Institute, Harbin Medical University, 157 Baojian Road, Harbin 150081 (China); Wang, Tianying, E-mail: wangty0929@163.com [Department of Microbiology and Wu Lien-Teh Institute, Harbin Medical University, 157 Baojian Road, Harbin 150081 (China); Zhong, Xiaoyan, E-mail: littlerock712@163.com [Department of Microbiology and Wu Lien-Teh Institute, Harbin Medical University, 157 Baojian Road, Harbin 150081 (China); Wu, Xiaoyu, E-mail: xiaoyu_wu2006@163.com [Department of Cardiology, The First Hospital of Harbin Medical University, 23 Youzheng Street, Harbin 150001 (China); Chen, Sijia, E-mail: chensj0802@163.com [Department of Microbiology and Wu Lien-Teh Institute, Harbin Medical University, 157 Baojian Road, Harbin 150081 (China); Li, Jing, E-mail: jing070822@163.com [Center of Electron Microscopy, Harbin Medical University, 157 Baojian Road, Harbin 150081 (China); Wang, Yan, E-mail: wangyan@hrbmu.edu.cn [Department of Microbiology and Wu Lien-Teh Institute, Harbin Medical University, 157 Baojian Road, Harbin 150081 (China); Zhang, Fengmin, E-mail: fengminzhang@ems.hrbmu.edu.cn [Department of Microbiology and Wu Lien-Teh Institute, Harbin Medical University, 157 Baojian Road, Harbin 150081 (China); Zhao, Wenran, E-mail: zhaowenran2002@aliyun.com [Department of Cell Biology, Harbin Medical University, 157 Baojian Road, Harbin 150081 (China); and others

    2016-12-10

    Coxsackievirus group B (CVB) is one of the common pathogens that cause myocarditis and cardiomyopathy. Evidence has shown that CVB replication in cardiomyocytes is responsible for the damage and loss of cardiac muscle and the dysfunction of the heart. However, it remains largely undefined how CVB would directly impact cardiac fibroblasts, the most abundant cells in human heart. In this study, cardiac fibroblasts were isolated from Balb/c mice and infected with CVB type 3 (CVB3). Increased double-membraned, autophagosome-like vesicles in the CVB3-infected cardiac fibroblasts were observed with electron microscope. Punctate distribution of LC3 and increased level of LC3-II were also detected in the infected cardiac fibroblasts. Furthermore, we observed that the expression of pro-inflammatory cytokines, IL-6 and TNF-α, was increased in the CVB3-infected cardiac fibroblasts, while suppressed autophagy by 3-MA and Atg7-siRNA inhibited cytokine expression. Consistent with the in vitro findings, increased formation of autophagosomes was observed in the cardiac fibroblasts of Balb/c mice infected with CVB3. In conclusion, our data demonstrated that cardiac fibroblasts respond to CVB3 infection with the formation of autophagosomes and the release of the pro-inflammatory cytokines. These results suggest that the autophagic response of cardiac fibroblasts may play a role in the pathogenesis of myocarditis caused by CVB3 infection. - Highlights: • CVB3 replication induced autophagosome assembly in primary cardiac fibroblasts. • Both IL-6 and TNF-α in cardiac fibroblasts infected by CVB3 were increased. • IL-6 and TNF-α were reduced in cardiac fibroblasts when autophagy was inhibited. • Autophagosome assembly in cardiac fibroblasts of CVB-infected mice was increased.

  4. Coxsackievirus B3 induces the formation of autophagosomes in cardiac fibroblasts both in vitro and in vivo

    International Nuclear Information System (INIS)

    Zhai, Xia; Qin, Ying; Chen, Yang; Lin, Lexun; Wang, Tianying; Zhong, Xiaoyan; Wu, Xiaoyu; Chen, Sijia; Li, Jing; Wang, Yan; Zhang, Fengmin; Zhao, Wenran

    2016-01-01

    Coxsackievirus group B (CVB) is one of the common pathogens that cause myocarditis and cardiomyopathy. Evidence has shown that CVB replication in cardiomyocytes is responsible for the damage and loss of cardiac muscle and the dysfunction of the heart. However, it remains largely undefined how CVB would directly impact cardiac fibroblasts, the most abundant cells in human heart. In this study, cardiac fibroblasts were isolated from Balb/c mice and infected with CVB type 3 (CVB3). Increased double-membraned, autophagosome-like vesicles in the CVB3-infected cardiac fibroblasts were observed with electron microscope. Punctate distribution of LC3 and increased level of LC3-II were also detected in the infected cardiac fibroblasts. Furthermore, we observed that the expression of pro-inflammatory cytokines, IL-6 and TNF-α, was increased in the CVB3-infected cardiac fibroblasts, while suppressed autophagy by 3-MA and Atg7-siRNA inhibited cytokine expression. Consistent with the in vitro findings, increased formation of autophagosomes was observed in the cardiac fibroblasts of Balb/c mice infected with CVB3. In conclusion, our data demonstrated that cardiac fibroblasts respond to CVB3 infection with the formation of autophagosomes and the release of the pro-inflammatory cytokines. These results suggest that the autophagic response of cardiac fibroblasts may play a role in the pathogenesis of myocarditis caused by CVB3 infection. - Highlights: • CVB3 replication induced autophagosome assembly in primary cardiac fibroblasts. • Both IL-6 and TNF-α in cardiac fibroblasts infected by CVB3 were increased. • IL-6 and TNF-α were reduced in cardiac fibroblasts when autophagy was inhibited. • Autophagosome assembly in cardiac fibroblasts of CVB-infected mice was increased.

  5. Radiosensitivity in cultured human fibroblasts

    International Nuclear Information System (INIS)

    Cox, R.; Masson, W.K.

    1980-01-01

    Caution is urged in the use of freshly isolated cultures of human diploid fibroblasts for quantitative studies of radiosensitivity. The distribution of x ray sensitivities of 'normal' human fibroblast cultures of foetal origin (10 subjects, skin or lung biopsy) and post-foetal origin (34 subjects, skin biopsy) are compared with the distribution in 12 patients with ataxia telangiectasia (probability of including any one of these in a normal post-foetal distribution is 0.01%). Cultures from nominally normal subjects showed a broad distribution of D 0 range of 98 +- 160 rad and assuming normal distribution, a mean +- one standard deviation of 122 +- 17 rad. Mean D 0 values for foetal origin cultures were 117 +- 12; values for post-foetal cultures D 0 were 124 +- 18. No systematic variation in D 0 was observed for age of donor, number of cell divisions in culture or for cloning efficiency. For ataxia telangiectasia D 0 values were 46 +- 7 rad. (U.K.)

  6. Insights into the key roles of proteoglycans in breast cancer biology and translational medicine

    DEFF Research Database (Denmark)

    Theocharis, Achilleas D.; Skandalis, Spyros S.; Neill, Thomas

    2015-01-01

    of proteoglycans on tumor and stromal cell membranes affects cancer cell signaling, growth and survival, cell adhesion, migration and angiogenesis. Despite the high complexity and heterogeneity of breast cancer, the rapid evolution in our knowledge that proteoglycans are among the key players in the breast tumor...... in the proteoglycans that will be presented herein provides the potential for multiple layers of regulation of breast tumor behavior. This review summarizes recent developments concerning the biology of selected proteoglycans in breast cancer, and presents potential targeted therapeutic approaches based on their novel...

  7. The role of the molecular biology laboratory in the management of chronic hepatitis B and C

    Directory of Open Access Journals (Sweden)

    Peter Karayiannis

    2013-03-01

    Full Text Available Molecular biology techniques are routinely used nowadays to diagnose and evaluate antiviral treatment of patients with chronic hepatitis B (HBV and hepatitis C virus (HCV infections. Current tools at our disposal include tests that quantify the amount of circulating virus in the blood, techniques that can analyse genomic sequences to determine viral genotypes or subtypes, or determine amino-acid substitutions that may confer resistance to existing antiviral drugs. What is more, continuously evolving serological tests for the detection of viral antigens or their corresponding antibodies, have made diagnosis of disease as sensitive as possible. The present review will concentrate primarily on molecular diagnostics.

  8. [The role of Marisa cornuarietis as a biological control agent and its economic and epidemiological implications].

    Science.gov (United States)

    Ferrer López, J R; Moné, H; Perera de Puga, G; Yong Cong, M

    1991-01-01

    It was determined that M. cornuarietis, a mollusk which has been used as agent for the biological control of the schistosomiasis hosts, may be a plague for rice fields. Each mollusk can consume 0.3 g of this plant in 24 hours, accounting for the destruction of 0.015 m2 of a rice field. On the other hand, it was observed that B. glabrata shows preference for the consumption of M. cornuarietis faeces. This fact favors the vector's growth and reproduction rate and at the same time decreases its mortality.

  9. Gender differences in stress response: Role of developmental and biological determinants

    Directory of Open Access Journals (Sweden)

    Rohit Verma

    2011-01-01

    Full Text Available Stress response is associated with manifestations of various psychosomatic and psychiatric disorders. Hence, it is important to understand the underlying mechanisms that influence this association. Moreover, men and women tend to react differently with stress-both psychologically and biologically. These differences also need to be studied in order to have a better understanding in the gender difference observed for many disorders, which are likely to be contributed by the gender difference in stress reactivity and responses. Such an understanding would have a significant impact on our understanding about how adult health is set during early life and how adult disease could be prevented in men and women.

  10. Merkel Cell Polyomavirus Infection of Animal Dermal Fibroblasts.

    Science.gov (United States)

    Liu, Wei; Krump, Nathan A; MacDonald, Margo; You, Jianxin

    2018-02-15

    Merkel cell polyomavirus (MCPyV) is the first polyomavirus to be associated with human cancer. Mechanistic studies attempting to fully elucidate MCPyV's oncogenic mechanisms have been hampered by the lack of animal models for MCPyV infection. In this study, we examined the ability of MCPyV-GFP pseudovirus (containing a green fluorescent protein [GFP] reporter construct), MCPyV recombinant virions, and several MCPyV chimeric viruses to infect dermal fibroblasts isolated from various model animals, including mouse ( Mus musculus ), rabbit ( Oryctolagus cuniculus ), rat ( Rattus norvegicus ), chimpanzee ( Pan troglodytes ), rhesus macaque ( Macaca mulatta ), patas monkey ( Erythrocebus patas ), common woolly monkey ( Lagothrix lagotricha ), red-chested mustached tamarin ( Saguinus labiatus ), and tree shrew ( Tupaia belangeri ). We found that MCPyV-GFP pseudovirus was able to enter the dermal fibroblasts of all species tested. Chimpanzee dermal fibroblasts were the only type that supported vigorous MCPyV gene expression and viral replication, and they did so to a level beyond that of human dermal fibroblasts. We further demonstrated that both human and chimpanzee dermal fibroblasts produce infectious MCPyV virions that can successfully infect new cells. In addition, rat dermal fibroblasts supported robust MCPyV large T antigen expression after infection with an MCPyV chimeric virus in which the entire enhancer region of the MCPyV early promoter has been replaced with the simian virus 40 (SV40) analog. Our results suggest that viral transcription and/or replication events represent the major hurdle for MCPyV cross-species transmission. The capacity of rat dermal fibroblasts to support MCPyV early gene expression suggests that the rat is a candidate model organism for studying viral oncogene function during Merkel cell carcinoma (MCC) oncogenic progression. IMPORTANCE MCPyV plays an important role in the development of a highly aggressive form of skin cancer, Merkel

  11. Effect of periodontal dressings on human gingiva fibroblasts in vitro

    International Nuclear Information System (INIS)

    Eber, R.M.; Shuler, C.F.; Buchanan, W.; Beck, F.M.; Horton, J.E.

    1989-01-01

    In vitro cytotoxicity studies of periodontal dressings have not generally produced a result consistent with in vivo observations. These prior in vitro studies have not used human intraoral cell lines. We tested the effects of two eugenol containing and two non-eugenol periodontal dressings on cultured human gingival fibroblasts (HGF) (ATCC No. 1292). Replicate HGF cultures grown in microtiter plates were exposed to stock, 1:4 and 1:16 dilutions of extracts made from each of the four periodontal dressings. The HGF cultures were pulse labelled with tritiated thymidine (3HTdR) after 24, 48, and 72 hours. Incorporations of the labelled thymidine were measured using liquid scintillation counting and expressed as counts per minute. The results showed that undiluted extracts from all four periodontal dressings totally inhibited 3HTdR uptake (P less than 0.05). The 1:4 dilution of eugenol dressings inhibited 3HTdR uptake significantly more than non-eugenol dressings (P less than 0.05). Interestingly, at 72 hours the 1:16 dilution of the non-eugenol dressings caused significantly increased 3HTdR uptake which was not observed with the eugenol dressings. The present results suggest that the use of a human fibroblastic cell line for testing the effects of periodontal dressings may provide information about the relative biological effects of these dressings. Using this cell line, we have found that eugenol dressings inhibit fibroblast proliferation to a greater extent than non-eugenol dressings

  12. The role of bacillus-based biological control agents in integrated pest management systems: plant diseases.

    Science.gov (United States)

    Jacobsen, B J; Zidack, N K; Larson, B J

    2004-11-01

    ABSTRACT Bacillus-based biological control agents (BCAs) have great potential in integrated pest management (IPM) systems; however, relatively little work has been published on integration with other IPM management tools. Unfortunately, most research has focused on BCAs as alternatives to synthetic chemical fungicides or bactericides and not as part of an integrated management system. IPM has had many definitions and this review will use the national coalition for IPM definition: "A sustainable approach to managing pests by combining biological, cultural, physical and chemical tools in a way that minimizes economic, health and environmental risks." This review will examine the integrated use of Bacillus-based BCAs with disease management tools, including resistant cultivars, fungicides or bactericides, or other BCAs. This integration is important because the consistency and degree of disease control by Bacillus-based BCAs is rarely equal to the control afforded by the best fungicides or bactericides. In theory, integration of several tools brings stability to disease management programs. Integration of BCAs with other disease management tools often provides broader crop adaptation and both more efficacious and consistent levels of disease control. This review will also discuss the use of Bacillus-based BCAs in fungicide resistance management. Work with Bacillus thuringiensis and insect pest management is the exception to the relative paucity of reports but will not be the focus of this review.

  13. Respiratory Tract Infections and the Role of Biologically Active Polysaccharides in Their Management and Prevention.

    Science.gov (United States)

    Jesenak, Milos; Urbancikova, Ingrid; Banovcin, Peter

    2017-07-20

    Respiratory tract infections (RTIs) are the most common form of infections in every age category. Recurrent respiratory tract infections (RRTIs), a specific form of RTIs, represent a typical and common problem associated with early childhood, causing high indirect and direct costs on the healthcare system. They are usually the consequence of immature immunity in children and high exposure to various respiratory pathogens. Their rational management should aim at excluding other severe chronic diseases associated with increased morbidity (e.g., primary immunodeficiency syndromes, cystic fibrosis, and ciliary dyskinesia) and at supporting maturity of the mucosal immune system. However, RRTIs can also be observed in adults (e.g., during exhausting and stressful periods, chronic inflammatory diseases, secondary immunodeficiencies, or in elite athletes) and require greater attention. Biologically active polysaccharides (e.g., β-glucans) are one of the most studied natural immunomodulators with a pluripotent mode of action and biological activity. According to many studies, they possess immunomodulatory, anti-inflammatory, and anti-infectious activities and therefore could be suggested as an effective part of treating and preventing RTIs. Based on published studies, the application of β-glucans was proven as a possible therapeutic and preventive approach in managing and preventing recurrent respiratory tract infections in children (especially β-glucans from Pleurotus ostreatus ), adults (mostly the studies with yeast-derived β-glucans), and in elite athletes (studies with β-glucans from Pleurotus ostreatus or yeast).

  14. Biological variation of the natriuretic peptides and their role in monitoring patients with heart failure.

    Science.gov (United States)

    Wu, Alan H B; Smith, Andrew

    2004-03-15

    B-type natriuretic peptide (BNP) and the inactive metabolite NT-proBNP are proven tests for diagnosis and staging of severity for patients with heart failure. However, the utility of these biomarkers for monitoring the success of drug therapy remains to be determined. Results of longitudinal studies on serial blood testing must be linked to overall patient morbidity and mortality outcomes. We previously determined the 8-week biological variability (BV) of BNP and NT-proBNP assays in healthy subjects and the 1-day BV for BNP alone in patients with compensated and stable heart failure. From these studies, the percent statistical change in serial samples of approximately 100% difference was estimated (95% confidence). We applied the biological variability concepts to the serial results of BNP and NT-proBNP collected from patients with heart failure and compared the performance of these two markers. While there are minor differences in the results between the assays from one time period to another, the overall interpretation of results are essentially identical. Moreover, the majority of individual serial time points are not significantly different from the previous value. Frequent testing (e.g. daily) for BNP and NT-proBNP to monitor therapy for patients with CHF is not indicated, as overall changes require several days to become evident.

  15. The role of ontologies in biological and biomedical research: a functional perspective

    KAUST Repository

    Hoehndorf, Robert

    2015-04-10

    Ontologies are widely used in biological and biomedical research. Their success lies in their combination of four main features present in almost all ontologies: provision of standard identifiers for classes and relations that represent the phenomena within a domain; provision of a vocabulary for a domain; provision of metadata that describes the intended meaning of the classes and relations in ontologies; and the provision of machine-readable axioms and definitions that enable computational access to some aspects of the meaning of classes and relations. While each of these features enables applications that facilitate data integration, data access and analysis, a great potential lies in the possibility of combining these four features to support integrative analysis and interpretation of multimodal data. Here, we provide a functional perspective on ontologies in biology and biomedicine, focusing on what ontologies can do and describing how they can be used in support of integrative research. We also outline perspectives for using ontologies in data-driven science, in particular their application in structured data mining and machine learning applications.

  16. Smectite clays in Mars soil - Evidence for their presence and role in Viking biology experimental results

    Science.gov (United States)

    Banin, A.; Rishpon, J.

    1979-01-01

    Evidence for the presence of smectite clays in Martian soils is reviewed and results of experiments with certain active clays simulating the Viking biology experiments are reported. Analyses of Martian soil composition by means of X-ray fluorescence spectrometry and dust storm spectroscopy and Martian geological history strongly suggest the presence of a mixture of weathered ferro-silicate minerals, mainly nontronite and montmorillonite, accompanied by soluble sulphate salts, as major constituents. Samples of montmorillonite and nontronite incubated with (C-14)-formate or the radioactive nutrient medium solution used in the Viking Labeled Release experiment, were found to produce patterns of release of radioactive gas very similar to those observed in the Viking experiments, indicating the iron-catalyzed decomposition of formate as the reaction responsible for the Viking results. The experimental results of Hubbard (1979) simulating the results of the Viking Pyrolytic Release experiment using iron montmorillonites are pointed out, and it is concluded that many of the results of the Viking biology experiments can be explained in terms of the surface activity of smectite clays in catalysis and adsorption.

  17. The role of environmental variables on Aedes albopictus biology and chikungunya epidemiology

    Science.gov (United States)

    Waldock, Joanna; Chandra, Nastassya L; Lelieveld, Jos; Proestos, Yiannis; Michael, Edwin; Christophides, George; Parham, Paul E

    2013-01-01

    Aedes albopictus is a vector of dengue and chikungunya viruses in the field, along with around 24 additional arboviruses under laboratory conditions. As an invasive mosquito species, Ae. albopictus has been expanding in geographical range over the past 20 years, although the poleward extent of mosquito populations is limited by winter temperatures. Nonetheless, population densities depend on environmental conditions and since global climate change projections indicate increasing temperatures and altered patterns of rainfall, geographic distributions of previously tropical mosquito species may change. Although mathematical models can provide explanatory insight into observed patterns of disease prevalence in terms of epidemiological and entomological processes, understanding how environmental variables affect transmission is possible only with reliable model parameterisation, which, in turn, is obtained only through a thorough understanding of the relationship between mosquito biology and environmental variables. Thus, in order to assess the impact of climate change on mosquito population distribution and regions threatened by vector-borne disease, a detailed understanding (through a synthesis of current knowledge) of the relationship between climate, mosquito biology, and disease transmission is required, but this process has not yet been undertaken for Ae. albopictus. In this review, the impact of temperature, rainfall, and relative humidity on Ae. albopictus development and survival are considered. Existing Ae. albopictus populations across Europe are mapped with current climatic conditions, considering whether estimates of climatic cutoffs for Ae. albopictus are accurate, and suggesting that environmental thresholds must be calibrated according to the scale and resolution of climate model outputs and mosquito presence data. PMID:23916332

  18. Anthropogenic climate change and allergen exposure: The role of plant biology.

    Science.gov (United States)

    Ziska, Lewis H; Beggs, Paul J

    2012-01-01

    Accumulation of anthropogenic gases, particularly CO(2), is likely to have 2 fundamental effects on plant biology. The first is an indirect effect through Earth's increasing average surface temperatures, with subsequent effects on other aspects of climate, such as rainfall and extreme weather events. The second is a direct effect caused by CO(2)-induced stimulation of photosynthesis and plant growth. Both effects are likely to alter a number of fundamental aspects of plant biology and human health, including aerobiology and allergic diseases, respectively. This review highlights the current and projected effect of increasing CO(2) and climate change in the context of plants and allergen exposure, emphasizing direct effects on plant physiologic parameters (eg, pollen production) and indirect effects (eg, fungal sporulation) related to diverse biotic and abiotic interactions. Overall, the review assumes that future global mitigation efforts will be limited and suggests a number of key research areas that will assist in adapting to the ongoing challenges to public health associated with increased allergen exposure. Published by Mosby, Inc.

  19. The Role of Stochastic Models in Interpreting the Origins of Biological Chirality

    Directory of Open Access Journals (Sweden)

    Gábor Lente

    2010-04-01

    Full Text Available This review summarizes recent stochastic modeling efforts in the theoretical research aimed at interpreting the origins of biological chirality. Stochastic kinetic models, especially those based on the continuous time discrete state approach, have great potential in modeling absolute asymmetric reactions, experimental examples of which have been reported in the past decade. An overview of the relevant mathematical background is given and several examples are presented to show how the significant numerical problems characteristic of the use of stochastic models can be overcome by non-trivial, but elementary algebra. In these stochastic models, a particulate view of matter is used rather than the concentration-based view of traditional chemical kinetics using continuous functions to describe the properties system. This has the advantage of giving adequate description of single-molecule events, which were probably important in the origin of biological chirality. The presented models can interpret and predict the random distribution of enantiomeric excess among repetitive experiments, which is the most striking feature of absolute asymmetric reactions. It is argued that the use of the stochastic kinetic approach should be much more widespread in the relevant literature.

  20. The role of ontologies in biological and biomedical research: a functional perspective

    KAUST Repository

    Hoehndorf, Robert; Schofield, P. N.; Gkoutos, G. V.

    2015-01-01

    Ontologies are widely used in biological and biomedical research. Their success lies in their combination of four main features present in almost all ontologies: provision of standard identifiers for classes and relations that represent the phenomena within a domain; provision of a vocabulary for a domain; provision of metadata that describes the intended meaning of the classes and relations in ontologies; and the provision of machine-readable axioms and definitions that enable computational access to some aspects of the meaning of classes and relations. While each of these features enables applications that facilitate data integration, data access and analysis, a great potential lies in the possibility of combining these four features to support integrative analysis and interpretation of multimodal data. Here, we provide a functional perspective on ontologies in biology and biomedicine, focusing on what ontologies can do and describing how they can be used in support of integrative research. We also outline perspectives for using ontologies in data-driven science, in particular their application in structured data mining and machine learning applications.

  1. Low-Molecular-Weight Metabolites from Diatoms: Structures, Biological Roles and Biosynthesis

    Directory of Open Access Journals (Sweden)

    Valentin Stonik

    2015-06-01

    Full Text Available Diatoms are abundant and important biological components of the marine environment that biosynthesize diverse natural products. These microalgae are rich in various lipids, carotenoids, sterols and isoprenoids, some of them containing toxins and other metabolites. Several groups of diatom natural products have attracted great interest due to their potential practical application as energy sources (biofuel, valuable food constituents, and prospective materials for nanotechnology. In addition, hydrocarbons, which are used in climate reconstruction, polyamines which participate in biomineralization, new apoptotic agents against tumor cells, attractants and deterrents that regulate the biochemical communications between marine species in seawaters have also been isolated from diatoms. However, chemical studies on these microalgae are complicated by difficulties, connected with obtaining their biomass, and the influence of nutrients and contaminators in their environment as well as by seasonal and climatic factors on the biosynthesis of the corresponding natural products. Overall, the number of chemically studied diatoms is lower than that of other algae, but further studies, particularly those connected with improvements in the isolation and structure elucidation technique as well as the genomics of diatoms, promise both to increase the number of studied species with isolated biologically active natural products and to provide a clearer perception of their biosynthesis.

  2. Biofuel production in Escherichia coli. The role of metabolic engineering and synthetic biology

    Energy Technology Data Exchange (ETDEWEB)

    Clomburg, James M. [Rice Univ., Houston, TX (United States). Dept. of Chemical and Biomolecular Engineering; Gonzalez, Ramon [Rice Univ., Houston, TX (United States). Dept. of Chemical and Biomolecular Engineering; Rice Univ., Houston, TX (United States). Dept. of Bioengineering

    2010-03-15

    The microbial production of biofuels is a promising avenue for the development of viable processes for the generation of fuels from sustainable resources. In order to become cost and energy effective, these processes must utilize organisms that can be optimized to efficiently produce candidate fuels from a variety of feedstocks. Escherichia coli has become a promising host organism for the microbial production of biofuels in part due to the ease at which this organism can be manipulated. Advancements in metabolic engineering and synthetic biology have led to the ability to efficiently engineer E. coli as a biocatalyst for the production of a wide variety of potential biofuels from several biomass constituents. This review focuses on recent efforts devoted to engineering E. coli for the production of biofuels, with emphasis on the key aspects of both the utilization of a variety of substrates as well as the synthesis of several promising biofuels. Strategies for the efficient utilization of carbohydrates, carbohydrate mixtures, and noncarbohydrate carbon sources will be discussed along with engineering efforts for the exploitation of both fermentative and nonfermentative pathways for the production of candidate biofuels such as alcohols and higher carbon biofuels derived from fatty acid and isoprenoid pathways. Continued advancements in metabolic engineering and synthetic biology will help improve not only the titers, yields, and productivities of biofuels discussed herein, but also increase the potential range of compounds that can be produced. (orig.)

  3. The roles of loosely-bound and tightly-bound extracellular polymer substances in enhanced biological phosphorus removal.

    Science.gov (United States)

    Long, Xiangyu; Tang, Ran; Fang, Zhendong; Xie, Chaoxin; Li, Yongqin; Xian, Guang

    2017-12-01

    Extracellular polymeric substances (EPS) have be founded to participate in the process of enhanced biological phosphorus removal (EBPR), but the exact role of EPS in EBPR process is unclear. In this work, the roles of loosely-bound EPS (LB-EPS), tightly-bound EPS (TB-EPS) and microbial cell in EBPR were explored, taking the activated sludge from 4 lab-scale A/O-SBR reactors with different temperatures and organic substrates as objects. It was founded that the P of EBPR activated sludge was mainly stored in TB-EPS, but the P of non-EBPR activated sludge was primarily located in microbial cell. The P release and uptake of EBPR activated sludge was attributed to the combined action of TB-EPS and microbial cell. Furthermore, TB-EPS played an more important role than microbial cell in EBPR process. With the analysis of 31 P NMR spectroscopy, both polyP and orthoP were the main phosphorus species of TB-EPS in EBPR sludge, but only orthoP was the main phosphorus species of LB-EPS and microbial cell. During the anaerobic-aerobic cycle, the roles of LB-EPS, TB-EPS and microbial cell in transfer and transformation of P in EBPR sludge were obviously different. LB-EPS transported and retained orthoP, and microbial cell directly anaerobically released or aerobically absorbed orthoP. Importantly, TB-EPS not only transported and retained orthoP, but also participated in biological phosphorus accumulation. The EBPR performance of sludge was closely related with the polyp in TB-EPS, which might be synthesized and decomposed by extracellular enzyme. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Fibroblast Growth Factor Signaling in Metabolic Regulation.

    Science.gov (United States)

    Nies, Vera J M; Sancar, Gencer; Liu, Weilin; van Zutphen, Tim; Struik, Dicky; Yu, Ruth T; Atkins, Annette R; Evans, Ronald M; Jonker, Johan W; Downes, Michael Robert

    2015-01-01

    The prevalence of obesity is a growing health problem. Obesity is strongly associated with several comorbidities, such as non-alcoholic fatty liver disease, certain cancers, insulin resistance, and type 2 diabetes, which all reduce life expectancy and life quality. Several drugs have been put forward in order to treat these diseases, but many of them have detrimental side effects. The unexpected role of the family of fibroblast growth factors in the regulation of energy metabolism provides new approaches to the treatment of metabolic diseases and offers a valuable tool to gain more insight into metabolic regulation. The known beneficial effects of FGF19 and FGF21 on metabolism, together with recently discovered similar effects of FGF1 suggest that FGFs and their derivatives carry great potential as novel therapeutics to treat metabolic conditions. To facilitate the development of new therapies with improved targeting and minimal side effects, a better understanding of the molecular mechanism of action of FGFs is needed. In this review, we will discuss what is currently known about the physiological roles of FGF signaling in tissues important for metabolic homeostasis. In addition, we will discuss current concepts regarding their pharmacological properties and effector tissues in the context of metabolic disease. Also, the recent progress in the development of FGF variants will be reviewed. Our goal is to provide a comprehensive overview of the current concepts and consensuses regarding FGF signaling in metabolic health and disease and to provide starting points for the development of FGF-based therapies against metabolic conditions.

  5. Human fibroblasts display a differential focal adhesion phenotype relative to chimpanzee.

    Science.gov (United States)

    Advani, Alexander S; Chen, Annie Y; Babbitt, Courtney C

    2016-01-01

    There are a number of documented differences between humans and our closest relatives in responses to wound healing and in disease susceptibilities, suggesting a differential cellular response to certain environmental factors. In this study, we sought to look at a specific cell type, fibroblasts, to examine differences in cellular adhesion between humans and chimpanzees in visualized cells and in gene expression. We have found significant differences in the number of focal adhesions between primary human and chimpanzee fibroblasts. Additionally, we see that adhesion related gene ontology categories are some of the most differentially expressed between human and chimpanzee in normal fibroblast cells. These results suggest that human and chimpanzee fibroblasts may have somewhat different adhesive properties, which could play a role in differential disease phenotypes and responses to external factors. © The Author(s) 2016. Published by Oxford University Press on behalf of the Foundation for Evolution, Medicine, and Public Health.

  6. Fibroblast growth factor-1 improves cardiac functional recovery and enhances cell survival after ischemia and reperfusion: a fibroblast growth factor receptor, protein kinase C, and tyrosine kinase-dependent mechanism

    NARCIS (Netherlands)

    Palmen, Meindert; Daemen, Mat J. A. P.; de Windt, Leon J.; Willems, Jodil; Dassen, Willem R. M.; Heeneman, Sylvia; Zimmermann, Rene; van Bilsen, Marc; Doevendans, Pieter A.

    2004-01-01

    We sought to investigate the role of fibroblast growth factor (FGF)-1 during acute myocardial ischemia and reperfusion. The FGFs display cardioprotective effects during ischemia and reperfusion. We investigated FGF-1-induced cardioprotection during ischemia and reperfusion and the intracellular

  7. Circumscribed Interests and Attention in Autism: The Role of Biological Sex.

    Science.gov (United States)

    Harrop, Clare; Jones, Desiree; Zheng, Shuting; Nowell, Sallie; Boyd, Brian A; Sasson, Noah

    2018-05-18

    Recent studies suggest that circumscribed interests (CI) in females with Autism Spectrum Disorder (ASD) may align more closely with interests reported in typical female development than those typically reported for ASD males. We used eye-tracking to quantify attention to arrays containing combinations of male, female and neutral images in elementary-aged males and females with and without ASD. A number of condition × sex effects emerged, with both groups attending to images that corresponded with interests typically associated with their biological sex. Diagnostic effects reported in similar studies were not replicated in our modified design. Our findings of more typical attention patterns to gender-typical images in ASD females is consistent with evidence of sex differences in CI and inconsistent with the "Extreme Male Brain" theory of ASD.

  8. Role of Pullulan in preparation of ceria nanoparticles and investigation of their biological activities

    Science.gov (United States)

    Khorrami, Mohammad Bagher; Sadeghnia, Hamid Reza; Pasdar, Alireza; Ghayour-Mobarhan, Majid; Riahi-Zanjani, Bamdad; Darroudi, Majid

    2018-04-01

    Throughout this work, a facile, environmental-friendly, and "green" method is delineated for preparing ceria nanoparticles (CNPs), which utilizes nontoxic and renewable degraded polysaccharide polymer including pullulan as a natural matrix. Pullulan behaves as a suitable stabilizing (capping) agent for CNPs that are effectively formed at various high temperatures, while they are structurally analyzed through different techniques such as TGA/DTG, XRD, FESEM, and FTIR instruments. This procedure was found to be comparable to the ones that were acquired from conventional preparation methods that employ hazardous materials, which confirms this approach to be an exquisite alternative in preparing CNPs through the benefit of bioorganic materials. The in vitro cytotoxicity studies on Neuro2A cells have mentioned nontoxic particles in a range of concentrations (0.97-125 μg/ml) and thus, we reckon that the prepared particular CNPs will have persistent utilization in various fields of biology and medicine.

  9. Angiotensin-I converting enzyme (ACE): structure, biological roles, and molecular basis for chloride ion dependence.

    Science.gov (United States)

    Masuyer, Geoffrey; Yates, Christopher J; Sturrock, Edward D; Acharya, K Ravi

    2014-10-01

    Somatic angiotensin-I converting enzyme (sACE) has an essential role in the regulation of blood pressure and electrolyte fluid homeostasis. It is a zinc protease that cleaves angiotensin-I (AngI), bradykinin, and a broad range of other signalling peptides. The enzyme activity is provided by two homologous domains (N- and C-), which display clear differences in substrate specificities and chloride activation. The presence of chloride ions in sACE and its unusual role in activity was identified early on in the characterisation of the enzyme. The molecular mechanisms of chloride activation have been investigated thoroughly through mutagenesis studies and shown to be substrate-dependent. Recent results from X-ray crystallography structural analysis have provided the basis for the intricate interactions between ACE, its substrate and chloride ions. Here we describe the role of chloride ions in human ACE and its physiological consequences. Insights into the chloride activation of the N- and C-domains could impact the design of improved domain-specific ACE inhibitors.

  10. Physiological Actions of Fibroblast Growth Factor-23

    Directory of Open Access Journals (Sweden)

    Reinhold G. Erben

    2018-05-01

    Full Text Available Fibroblast growth factor-23 (FGF23 is a bone-derived hormone suppressing phosphate reabsorption and vitamin D hormone synthesis in the kidney. At physiological concentrations of the hormone, the endocrine actions of FGF23 in the kidney are αKlotho-dependent, because high-affinity binding of FGF23 to FGF receptors requires the presence of the co-receptor αKlotho on target cells. It is well established that excessive concentrations of intact FGF23 in the blood lead to phosphate wasting in patients with normal kidney function. Based on the importance of diseases associated with gain of FGF23 function such as phosphate-wasting diseases and chronic kidney disease, a large body of literature has focused on the pathophysiological consequences of FGF23 excess. Less emphasis has been put on the role of FGF23 in normal physiology. Nevertheless, during recent years, lessons we have learned from loss-of-function models have shown that besides the paramount physiological roles of FGF23 in the control of 1α-hydroxylase expression and of apical membrane expression of sodium-phosphate co-transporters in proximal renal tubules, FGF23 also is an important stimulator of calcium and sodium reabsorption in distal renal tubules. In addition, there is an emerging role of FGF23 as an auto-/paracrine regulator of alkaline phosphatase expression and mineralization in bone. In contrast to the renal actions of FGF23, the FGF23-mediated suppression of alkaline phosphatase in bone is αKlotho-independent. Moreover, FGF23 may be a physiological suppressor of differentiation of hematopoietic stem cells into the erythroid lineage in the bone microenvironment. At present, there is little evidence for a physiological role of FGF23 in organs other than kidney and bone. The purpose of this mini-review is to highlight the current knowledge about the complex physiological functions of FGF23.

  11. The role of microbial-produced extracellular polymeric matrix in the formation and survival of biological soil crusts

    Science.gov (United States)

    Rossi, Federico; Adessi, Alessandra; De Philippis, Roberto

    2016-04-01

    Biological soil crusts (BSCs) are complex communities commonly constituting organo-mineral layers in arid and semiarid environment having a major influence on these ecosystems (Belnap and Lange, 2001). They have high tolerance towards a-biotic stresses and fluctuations in moisture, illumination, salinity and nutrients. The plasticity exhibited by BSCs is hugely contributed by the presence of the extracellular polymeric matrix (EPM) that is synthesized by crustal organisms, notably cyanobacteria and microalgae. This polysaccharidic net plays key roles in biofilm relations with the surrounding constrained environment. Notably, EPM concurs in coping with water scarcity, freezing and salt stress; increases biolayers stability against erosion, and is involved in nutrient provision (Rossi and De Philippis, 2015). We conducted several investigations in a research area located in the Inner Mongolian desert (Inner Mongolia, China) where BSCs were induced over different sites through inoculation-based techniques performed in different years. Our studies were aimed at determining the role of EPM in BSC development and survival in such a hyper-arid system. This presentation will report the results concerning the role of EPM in water capture from non-rainfall sources, water maintenance at the topsoil, and in water infiltrability, the latter being a factor with important ecological implications. In additions we investigated the role of the matrix as a source of carbon for the crustal heterotrophs. Furthermore, EPM was extracted with methods optimized in our lab, aiming at removing tightly bound fractions and loosely bound fractions from BSCs having different ages. The fractions were analyzed in terms of monosaccharidic composition, and molecular weight (MW) distribution. We show how the relative amounts of uronic acids increase in the EPM with the age of the crusts, implying advantages for the community-water relations. In addition, we observed significant differences in MW

  12. Effects of titanium surface topography on morphology and in vitro activity of human gingival fibroblasts.

    Science.gov (United States)

    Ramaglia, L; Capece, G; Di Spigna, G; Bruno, M P; Buonocore, N; Postiglione, L

    2013-01-01

    The aim of the present study was to evaluate in vitro the biological behavior of human gingival fibroblasts cultured on two different titanium surfaces. Titanium test disks were prepared with a machined, relatively smooth (S) surface or a rough surface (O) obtained by a double acid etching procedure. Primary cultures of human gingival fibroblasts were plated on the experimental titanium disks and cultured up to 14 days. Titanium disk surfaces were analysed by scanning electron microscopy (SEM). Cell proliferation and a quantitative analysis by ELISA in situ of ECM components as CoI, FN and TN were performed. Results have shown different effects of titanium surface microtopography on cell expression and differentiation. At 96 hours of culture on experimental surfaces human gingival fibroblasts displayed a favourable cell attachment and proliferation on both surfaces although showing some differences. Both the relatively smooth and the etched surfaces interacted actively with in vitro cultures of human gingival fibroblasts, promoting cell proliferation and differentiation. Results suggested that the microtopography of a double acid-etched rough surface may induce a greater Co I and FN production, thus conditioning in vivo the biological behaviour of human gingival fibroblasts during the process of peri-implant soft tissue healing.

  13. L-Lactate Protects Skin Fibroblasts against Aging-Associated Mitochondrial Dysfunction via Mitohormesis

    Czech Academy of Sciences Publication Activity Database

    Zelenka, Jaroslav; Dvořák, Aleš; Alán, Lukáš

    2015-01-01

    Roč. 2015, č. 2015 (2015), ID351698 ISSN 1942-0900 R&D Projects: GA ČR(CZ) GPP305/12/P388 Institutional support: RVO:67985823 Keywords : mitochondria * reactive oxygen species * lactate * fibroblasts Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 4.492, year: 2015

  14. Alpha-tocopheryl succinate inhibits malignant mesothelioma by disrupting the fibroblast growth factor autocrine loop

    Czech Academy of Sciences Publication Activity Database

    Stapelberg, M.; Gellert, N.; Swettenham, E.; Tomasetti, M.; Witting, P. K.; Procopio, A.; Neužil, Jiří

    2005-01-01

    Roč. 280, č. 27 (2005), s. 25369-25376 ISSN 0021-9258 Institutional research plan: CEZ:AV0Z50520514 Keywords : alpha-tocopheryl succinate * malignant mesothelioma * fibroblast growth factor Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 5.854, year: 2005

  15. Extracellular Matrix Metalloproteinase Inducer (EMMPRIN) promotes lung fibroblast proliferation, survival and differentiation to myofibroblasts.

    Science.gov (United States)

    Hasaneen, Nadia A; Cao, Jian; Pulkoski-Gross, Ashleigh; Zucker, Stanley; Foda, Hussein D

    2016-02-17

    Idiopathic pulmonary fibrosis (IPF) is a chronic progressively fatal disease. Extracellular Matrix Metalloproteinase Inducer (EMMPRIN) is a glycosylated transmembrane protein that induces the expression of some matrix metalloproteinase (MMP) in neighboring stromal cells through direct epithelial-stromal interactions. EMMPRIN is highly expressed in type II alveolar epithelial cells at the edges of the fibrotic areas in IPF lung sections. However, the exact role of EMMPRIN in IPF is unknown. To determine if EMMPRIN contributes to lung fibroblast proliferation, resistance to apoptosis, and differentiation to myofibroblasts, normal Human lung fibroblasts (NHLF) transiently transfected with either EMMPRIN/GFP or GFP were treated with TGF- β1 from 0 to 10 ng/ml for 48 h and examined for cell proliferation (thymidine incorporation), apoptosis (FACS analysis and Cell Death Detection ELISA assay), cell migration (Modified Boyden chamber) and differentiation to myofibroblasts using Western blot for α-smooth actin of cell lysates. The effect of EMMPRIN inhibition on NHLF proliferation, apoptosis, migration and differentiation to myofibroblasts after TGF- β1 treatment was examined using EMMPRIN blocking antibody. We examined the mechanism by which EMMPRIN induces its effects on fibroblasts by studying the β-catenin/canonical Wnt signaling pathway using Wnt luciferase reporter assays and Western blot for total and phosphorylated β-catenin. Human lung fibroblasts overexpressing EMMPRIN had a significant increase in cell proliferation and migration compared to control fibroblasts. Furthermore, EMMPRIN promoted lung fibroblasts resistance to apoptosis. Lung fibroblasts overexpressing EMMPRIN showed a significantly increased expression of α- smooth muscle actin, a marker of differentiation to myofibroblasts compared to control cells. TGF-β1 increased the expression of EMMPRIN in lung fibroblasts in a dose-dependent manner. Attenuation of EMMPRIN expression with the use of an

  16. Research Progress in Oncology. Highlighting and Exploiting the Roles of Several Strategic Proteins in Understanding Cancer Biology

    Directory of Open Access Journals (Sweden)

    Odiba Arome S.

    2016-01-01

    Full Text Available Although almost all biological processes are mediated by a variety of proteins, it is important to bring to spotlight recent experimental and clinical research advances that had their focus on highlighting and taking advantage of the roles of several strategic proteins in order to gain more understanding of cancer biology. Proteins have a major stake in the initiation, progression, sustenance and completion of cellular processes, and have also demonstrated their vital roles in cancer processes. The characteristic functions of proteins and modified proteins have been utilized in the understanding and treatment of cancer. Recent insights in such roles and applications include linker histone H1.2 in the compaction of chromatin and gene silencing via the recognition of H3K27me3; c-Jun with Fra-2/c-Fos in the promotion of aggressive tumour phenotypes in tongue cancer; the use of sodium channelinhibiting agents targeting the transmembrane protein in breast, colon and prostate cancer; SET-mediated activities; protein interaction networks in glioma; Gpnmb significance as a biomarker; β-carbolines inhibition on Wnt/β-catenin signaling; p53 mutants co-opt chromatin pathways; Bone morphogenetic protein 4 as regulator of the behaviors of cancer cell; Brain-Expressed X-linked (BEX proteins in human cancers; targeting CDK4/6 including protein kinases to make a reversal of multidrug resistance in sarcoma. In-depth knowledge of Proteomics will go a long way in helping us uncover a lot more strategies that will help us in the long fight against cancer.

  17. Understanding Biological Roles of Venoms Among the Caenophidia: The Importance of Rear-Fanged Snakes.

    Science.gov (United States)

    Mackessy, Stephen P; Saviola, Anthony J

    2016-11-01

    Snake venoms represent an adaptive trophic response to the challenges confronting a limbless predator for overcoming combative prey, and this chemical means of subduing prey shows several dominant phenotypes. Many front-fanged snakes, particularly vipers, feed on various vertebrate and invertebrate prey species, and some of their venom components (e.g., metalloproteinases, cobratoxin) appear to have been selected for "broad-brush" incapacitation of different prey taxa. Using proteomic and genomic techniques, the compositional diversity of front-fanged snakes is becoming well characterized; however, this is not the case for most rear-fanged colubroid snakes. Because these species consume a high diversity of prey, and because venoms are primarily a trophic adaptation, important clues for understanding specific selective pressures favoring venom component composition will be found among rear-fanged snake venoms. Rear-fanged snakes typically (but not always) produce venoms with lower complexity than front-fanged snakes, and there are even fewer dominant (and, arguably, biologically most relevant) venom protein families. We have demonstrated taxon-specific toxic effects, where lizards and birds show high susceptibility while mammals are largely unaffected, for both Old World and New World rear-fanged snakes, strongly indicating a causal link between toxin evolution and prey preference. New data are presented on myotoxin a, showing that the extremely rapid paralysis induced by this rattlesnake toxin is specific for rodents, and that myotoxin a is ineffectual against lizards. Relatively few rear-fanged snake venoms have been characterized, and basic natural history data are largely lacking, but directed sampling of specialized species indicates that novel compounds are likely among these specialists, particularly among those species feeding on invertebrate prey such as scorpions and centipedes. Because many of the more than 2200 species of colubroid snakes are rear

  18. Electromagnetic Resonance in Biological Form: A Role for Fields in Morphogenesis

    International Nuclear Information System (INIS)

    Pietak, Alexis M

    2011-01-01

    In morphogenesis, the mechanisms through which homogeneous, symmetric collectives of self-same cells are able to consistently and precisely establish long-range pattern remain an open question of scientific research. This work explores the hypothesis of developing biological structures as dielectric microwave resonators, using plant leaves as a working example. A finite element analysis (FEA) model was designed to determine if suitable resonant modes were physically possible for geometric and electrical parameters similar to those of developing leaf tissue. Using the FEA model, resonant EM modes with patterns of relevance to developing leaf vein modalities were detected. Here I show how the single physical mechanism of EM resonance can self-consistently account for different kinds of key symmetry-breaking operations characteristic of a variety of leaf vascular patterns. On account of the existence of shared geometric signatures in a leaf's vascular pattern and the electric field component of EM resonant modes supported by a leaf-like structure, further theoretical and experimental investigations are warranted. Significantly, this hypothesis is not limited to leaf vascular patterning, but may be applicable to a variety of morphogenetic phenomena in a number of living systems.

  19. Role of excision repair in postradiation recovery of biological activity of cellular DNA Bacillus subtilis

    International Nuclear Information System (INIS)

    Filippov, V.D.

    1976-01-01

    DNA extracted from UV-irradiated prototroph cells of Bacillus subtilis uvr + (45 sec. of UV light, 20% survivals) has a lowered transforming activity (TA) of markers purB and metB, and a lowered ratio TA pur/TA met. During the subsequent incubation of uvr + cells in glucose-salt medium free of nitrogen sources the TA of markers and the ratio between them increase. No increase is observed during the postradiation incubation under the same conditions or in a nutrition medium of uvr cells, deficient in escision of pyrimidine dimers. The increment of DNA begins approsimately in 30 min. after the beginning of incubation of irradiated uvr cells in nutrition medium. On the basis of these facts it is concluded that neither the replication of damaged DNA nor the postreplication repair, but only excision repair, can provide the recovery of biological (transforming) activity of cellular DNA in Bac. subtilis. The system given might be a suitable model for testing compounds which affect the activity of this process. The well-known inhibitors of dark repair, caffeine, proflavine to inhibit reversibly the initial steps of the process/ and especially acriflavine, delay the recovery of markers of cellular DNA in irradiated uvr + cells. Caffeine is proved to inhibit reversibly the initial steps of the process

  20. Role of Some Isolated Fungi in The Biological Leaching of Uranium From Low Grade Cretaceous Sandstone

    International Nuclear Information System (INIS)

    Ibrahim, H.A.; Morsy, A.; El-Sheikh, E.M.

    2012-01-01

    Microbiological leaching has been used as an alternative approach to conventional hydrometallurgical methods of uranium extraction. In this investigation, the biological leaching of uranium by isolated fungi from low grade sandstone was studied. Five isolates of fungi were obtained from sandstone sample. Cladosporium oxysporum and Penicilluim stoloniferum exhibited high potential in generating a variety of organic acids effective for uranium extraction. The percentages of organic acid produced by fungi were determined. By-product such as molasses was tested. The maximum dissolution of uranium was achieved at the following conditions; incubation period 6 days, pulp density 1:3 g/L, ph 3.5 and at 30 degree C. Maximum solubilization of uranium with values of 54% and 67% were achieved by Cladosporium oxysporum and Penicilluim stoloniferum, respectively. From properly prepared pregnant bio-leach liquor, the leached uranium was recovered in the form of marketable products (3UO 3 NH 3 .5H 2 O) using classical chemical technique and the product was confirmed using XRD techniques

  1. Disentangling the role of environmental and human pressures on biological invasions across Europe.

    Science.gov (United States)

    Pysek, Petr; Jarosík, Vojtech; Hulme, Philip E; Kühn, Ingolf; Wild, Jan; Arianoutsou, Margarita; Bacher, Sven; Chiron, Francois; Didziulis, Viktoras; Essl, Franz; Genovesi, Piero; Gherardi, Francesca; Hejda, Martin; Kark, Salit; Lambdon, Philip W; Desprez-Loustau, Marie-Laure; Nentwig, Wolfgang; Pergl, Jan; Poboljsaj, Katja; Rabitsch, Wolfgang; Roques, Alain; Roy, David B; Shirley, Susan; Solarz, Wojciech; Vilà, Montserrat; Winter, Marten

    2010-07-06

    The accelerating rates of international trade, travel, and transport in the latter half of the twentieth century have led to the progressive mixing of biota from across the world and the number of species introduced to new regions continues to increase. The importance of biogeographic, climatic, economic, and demographic factors as drivers of this trend is increasingly being realized but as yet there is no consensus regarding their relative importance. Whereas little may be done to mitigate the effects of geography and climate on invasions, a wider range of options may exist to moderate the impacts of economic and demographic drivers. Here we use the most recent data available from Europe to partition between macroecological, economic, and demographic variables the variation in alien species richness of bryophytes, fungi, vascular plants, terrestrial insects, aquatic invertebrates, fish, amphibians, reptiles, birds, and mammals. Only national wealth and human population density were statistically significant predictors in the majority of models when analyzed jointly with climate, geography, and land cover. The economic and demographic variables reflect the intensity of human activities and integrate the effect of factors that directly determine the outcome of invasion such as propagule pressure, pathways of introduction, eutrophication, and the intensity of anthropogenic disturbance. The strong influence of economic and demographic variables on the levels of invasion by alien species demonstrates that future solutions to the problem of biological invasions at a national scale lie in mitigating the negative environmental consequences of human activities that generate wealth and by promoting more sustainable population growth.

  2. Cumulus Cell Expansion, Its Role in Oocyte Biology and Perspectives of Measurement: A Review

    Directory of Open Access Journals (Sweden)

    Nevoral J.

    2015-01-01

    Full Text Available Cumulus expansion of the cumulus-oocyte complex is necessary for meiotic maturation and acquiring developmental competence. Cumulus expansion is based on extracellular matrix synthesis by cumulus cells. Hyaluronic acid is the most abundant component of this extracellular matrix. Cumulus expansion takes place during meiotic oocyte maturation under in vivo and in vitro conditions. Quantification and measurement of cumulus expansion intensity is one possible method of determining oocyte quality and optimizing conditions for in vitro cultivation. Currently, subjective methods of expanded area and more exact cumulus expansion measurement by hyaluronic acid assessment are available. Among the methods of hyaluronic acid measurement is the use of radioactively labelled synthesis precursors. Alternatively, immunological and analytical methods, including enzyme-linked immunosorbent assay (ELISA, spectrophotometry, and high-performance liquid chromatography (HPLC in UV light, could be utilized. The high sensitivity of these methods could provide a precise analysis of cumulus expansion without the use of radioisotopes. Therefore, the aim of this review is to summarize and compare available approaches of cumulus expansion measurement, respecting special biological features of expanded cumuli, and to suggest possible solutions for exact cumulus expansion analysis.

  3. The role of population inertia in predicting the outcome of stage-structured biological invasions.

    Science.gov (United States)

    Guiver, Chris; Dreiwi, Hanan; Filannino, Donna-Maria; Hodgson, Dave; Lloyd, Stephanie; Townley, Stuart

    2015-07-01

    Deterministic dynamic models for coupled resident and invader populations are considered with the purpose of finding quantities that are effective at predicting when the invasive population will become established asymptotically. A key feature of the models considered is the stage-structure, meaning that the populations are described by vectors of discrete developmental stage- or age-classes. The vector structure permits exotic transient behaviour-phenomena not encountered in scalar models. Analysis using a linear Lyapunov function demonstrates that for the class of population models considered, a large so-called population inertia is indicative of successful invasion. Population inertia is an indicator of transient growth or decline. Furthermore, for the class of models considered, we find that the so-called invasion exponent, an existing index used in models for invasion, is not always a reliable comparative indicator of successful invasion. We highlight these findings through numerical examples and a biological interpretation of why this might be the case is discussed. Copyright © 2015. Published by Elsevier Inc.

  4. The biological basis of human sexual orientation: is there a role for epigenetics?

    Science.gov (United States)

    Ngun, Tuck C; Vilain, Eric

    2014-01-01

    Sexual orientation is one of the largest sex differences in humans. The vast majority of the population is heterosexual, that is, they are attracted to members of the opposite sex. However, a small but significant proportion of people are bisexual or homosexual and experience attraction to members of the same sex. The origins of the phenomenon have long been the subject of scientific study. In this chapter, we will review the evidence that sexual orientation has biological underpinnings and consider the involvement of epigenetic mechanisms. We will first discuss studies that show that sexual orientation has a genetic component. These studies show that sexual orientation is more concordant in monozygotic twins than in dizygotic ones and that male sexual orientation is linked to several regions of the genome. We will then highlight findings that suggest a link between sexual orientation and epigenetic mechanisms. In particular, we will consider the case of women with congenital adrenal hyperplasia (CAH). These women were exposed to high levels of testosterone in utero and have much higher rates of nonheterosexual orientation compared to non-CAH women. Studies in animal models strongly suggest that the long-term effects of hormonal exposure (such as those experienced by CAH women) are mediated by epigenetic mechanisms. We conclude by describing a hypothetical framework that unifies genetic and epigenetic explanations of sexual orientation and the continued challenges facing sexual orientation research. Copyright © 2014 Elsevier Inc. All rights reserved.

  5. Role of cell deformability in the two-dimensional melting of biological tissues

    Science.gov (United States)

    Li, Yan-Wei; Ciamarra, Massimo Pica

    2018-04-01

    The size and shape of a large variety of polymeric particles, including biological cells, star polymers, dendrimes, and microgels, depend on the applied stresses as the particles are extremely soft. In high-density suspensions these particles deform as stressed by their neighbors, which implies that the interparticle interaction becomes of many-body type. Investigating a two-dimensional model of cell tissue, where the single particle shear modulus is related to the cell adhesion strength, here we show that the particle deformability affects the melting scenario. On increasing the temperature, stiff particles undergo a first-order solid/liquid transition, while soft ones undergo a continuous solid/hexatic transition followed by a discontinuous hexatic/liquid transition. At zero temperature the melting transition driven by the decrease of the adhesion strength occurs through two continuous transitions as in the Kosterlitz, Thouless, Halperin, Nelson, and Young scenario. Thus, there is a range of adhesion strength values where the hexatic phase is stable at zero temperature, which suggests that the intermediate phase of the epithelial-to-mesenchymal transition could be hexatic type.

  6. Distinct signaling roles of ceramide species in yeast revealed through systematic perturbation and systems biology analyses.

    Science.gov (United States)

    Montefusco, David J; Chen, Lujia; Matmati, Nabil; Lu, Songjian; Newcomb, Benjamin; Cooper, Gregory F; Hannun, Yusuf A; Lu, Xinghua

    2013-10-29

    Ceramide, the central molecule of sphingolipid metabolism, is an important bioactive molecule that participates in various cellular regulatory events and that has been implicated in disease. Deciphering ceramide signaling is challenging because multiple ceramide species exist, and many of them may have distinct functions. We applied systems biology and molecular approaches to perturb ceramide metabolism in the yeast Saccharomyces cerevisiae and inferred causal relationships between ceramide species and their potential targets by combining lipidomic, genomic, and transcriptomic analyses. We found that during heat stress, distinct metabolic mechanisms controlled the abundance of different groups of ceramide species and provided experimental support for the importance of the dihydroceramidase Ydc1 in mediating the decrease in dihydroceramides during heat stress. Additionally, distinct groups of ceramide species, with different N-acyl chains and hydroxylations, regulated different sets of functionally related genes, indicating that the structural complexity of these lipids produces functional diversity. The transcriptional modules that we identified provide a resource to begin to dissect the specific functions of ceramides.

  7. Systems biology from micro-organisms to human metabolic diseases: the role of detailed kinetic models.

    Science.gov (United States)

    Bakker, Barbara M; van Eunen, Karen; Jeneson, Jeroen A L; van Riel, Natal A W; Bruggeman, Frank J; Teusink, Bas

    2010-10-01

    Human metabolic diseases are typically network diseases. This holds not only for multifactorial diseases, such as metabolic syndrome or Type 2 diabetes, but even when a single gene defect is the primary cause, where the adaptive response of the entire network determines the severity of disease. The latter may differ between individuals carrying the same mutation. Understanding the adaptive responses of human metabolism naturally requires a systems biology approach. Modelling of metabolic pathways in micro-organisms and some mammalian tissues has yielded many insights, qualitative as well as quantitative, into their control and regulation. Yet, even for a well-known pathway such as glycolysis, precise predictions of metabolite dynamics from experimentally determined enzyme kinetics have been only moderately successful. In the present review, we compare kinetic models of glycolysis in three cell types (African trypanosomes, yeast and skeletal muscle), evaluate their predictive power and identify limitations in our understanding. Although each of these models has its own merits and shortcomings, they also share common features. For example, in each case independently measured enzyme kinetic parameters were used as input. Based on these 'lessons from glycolysis', we will discuss how to make best use of kinetic computer models to advance our understanding of human metabolic diseases.

  8. Role of biologically active substances in the pathogenesis and immunology of trypanosomiasis

    International Nuclear Information System (INIS)

    Tizard, I.R.; Mellors, A.; Nielsen, K.

    1980-01-01

    Pathogenic trypanosomes are toxigenic organisms. Living trypanosomes release surface components such as exoantigen or filopodia. These factors are capable of activating complement and can participate in immune-complex derived lesions. Actively metabolizing trypanosomes generate biologically active tryptophan metabolites of which indole-3-ethanol (tryptophol) and indole-3-acetic acid are probably most important. These compounds are capable of inducing nervous system depression and are immunosuppressive. Factors released from dead, dying and fragmented trypanosomes include lysosomal proteases and membrane-associated phospholipases. These latter enzymes which appear to be largely restricted to pathogenic trypanosomes increase significantly in activity following trypanosome disruption. They act on endogenous trypanosome phospholipids to generate lysophospholipids and free fatty acids. There is also evidence to suggest that trypanosome free fatty acids may function as B-cell mitogens and thus provoke a polyclonal response which may result in hypergammaglobulinaemia. Autolysing trypanosomes also generate factors which, depending on the species of trypanosome involved, activate complement by either the classical and/or alternate pathways. The nature of these factors is unclear. There are reports of factors which inhibit erythropoiesis, which inhibit macrophage migration, which lyse erythrocytes, and factors which are hepatotoxic or which cause inflammation. Most of these are uncharacterized, and their significance undertermined. (author)

  9. Evaluation of the protective and curative role of curcumin and venoruton against biological effects of radiation

    International Nuclear Information System (INIS)

    El-Sayed, N.M.

    2006-01-01

    Curcumin (diferuloyl methane) and venoruton [O-(beta-hydroxyethyl)-rutosides] are powerful antioxidants and are important in protecting the cells from damage. The present study aims to evaluate the role of curcumin alone and curcumin with venoruton on radiation-induced changes in male rats exposed to a dose of 5 Gy gamma irradiation. Experimental analyses were performed 1, 7 and 14 days post-irradiation in all animal groups. Exposure to ionizing radiation resulted in decrease in glutathione content and SOD, G6PD and CPK activities and increase in lactate dehydrogenase and GOT activities and creatinine level. The results obtained showed that treatment of rats with olive oil pre and post-irradiation has significantly minimized radiation-induced changes. Curcumin dissolved in olive oil pre and post-irradiation significantly improved the radiation-induced changes while administration of venoruton with curcumin in olive oil provided a better amelioration. It could be concluded that, curcumin in olive oil plus venoruton showed an obvious protective and curative role against the hazards of gamma radiation in male rats

  10. Oxidoreductases and cellulases in lichens: possible roles in lichen biology and soil organic matter turnover.

    Science.gov (United States)

    Beckett, Richard P; Zavarzina, Anna G; Liers, Christiane

    2013-06-01

    Lichens are symbiotic associations of a fungus (usually an Ascomycete) with green algae and/or a cyanobacterium. They dominate on 8 % of the world's land surface, mainly in Arctic and Antarctic regions, tundra, high mountain elevations and as components of dryland crusts. In many ecosystems, lichens are the pioneers on the bare rock or soil following disturbance, presumably because of their tolerance to desiccation and high temperature. Lichens have long been recognized as agents of mineral weathering and fine-earth stabilization. Being dominant biomass producers in extreme environments they contribute to primary accumulation of soil organic matter. However, biochemical role of lichens in soil processes is unknown. Our recent research has demonstrated that Peltigeralean lichens contain redox enzymes which in free-living fungi participate in lignocellulose degradation and humification. Thus lichen enzymes may catalyse formation and degradation of soil organic matter, particularly in high-stress communities dominated by lower plants. In the present review we synthesize recently published data on lichen phenol oxidases, peroxidases, and cellulases and discuss their possible roles in lichen physiology and soil organic matter transformations. Copyright © 2013 The British Mycological Society. Published by Elsevier Ltd. All rights reserved.

  11. Brittlestars contain highly sulfated chondroitin sulfates/dermatan sulfates that promote fibroblast growth factor 2-induced cell signaling.

    Science.gov (United States)

    Ramachandra, Rashmi; Namburi, Ramesh B; Ortega-Martinez, Olga; Shi, Xiaofeng; Zaia, Joseph; Dupont, Sam T; Thorndyke, Michael C; Lindahl, Ulf; Spillmann, Dorothe

    2014-02-01

    Glycosaminoglycans (GAGs) isolated from brittlestars, Echinodermata class Ophiuroidea, were characterized, as part of attempts to understand the evolutionary development of these polysaccharides. A population of chondroitin sulfate/dermatan sulfate (CS/DS) chains with a high overall degree of sulfation and hexuronate epimerization was the major GAG found, whereas heparan sulfate (HS) was below detection level. Enzymatic digestion with different chondroitin lyases revealed exceptionally high proportions of di- and trisulfated CS/DS disaccharides. The latter unit appears much more abundant in one of four individual species of brittlestars, Amphiura filiformis, than reported earlier in other marine invertebrates. The brittlestar CS/DS was further shown to bind to growth factors such as fibroblast growth factor 2 and to promote FGF-stimulated cell signaling in GAG-deficient cell lines in a manner similar to that of heparin. These findings point to a potential biological role for the highly sulfated invertebrate GAGs, similar to those ascribed to HS in vertebrates.

  12. Enhancing the role of veterinary vaccines reducing zoonotic diseases of humans: Linking systems biology with vaccine development

    Energy Technology Data Exchange (ETDEWEB)

    Adams, Leslie G.; Khare, Sangeeta; Lawhon, Sara D.; Rossetti, Carlos A.; Lewin, Harris A.; Lipton, Mary S.; Turse, Joshua E.; Wylie, Dennis C.; Bai, Yu; Drake, Kenneth L.

    2011-09-22

    The aim of research on infectious diseases is their prevention, and brucellosis and salmonellosis as such are classic examples of worldwide zoonoses for application of a systems biology approach for enhanced rational vaccine development. When used optimally, vaccines prevent disease manifestations, reduce transmission of disease, decrease the need for pharmaceutical intervention, and improve the health and welfare of animals, as well as indirectly protecting against zoonotic diseases of people. Advances in the last decade or so using comprehensive systems biology approaches linking genomics, proteomics, bioinformatics, and biotechnology with immunology, pathogenesis and vaccine formulation and delivery are expected to enable enhanced approaches to vaccine development. The goal of this paper is to evaluate the role of computational systems biology analysis of host:pathogen interactions (the interactome) as a tool for enhanced rational design of vaccines. Systems biology is bringing a new, more robust approach to veterinary vaccine design based upon a deeper understanding of the host pathogen interactions and its impact on the host's molecular network of the immune system. A computational systems biology method was utilized to create interactome models of the host responses to Brucella melitensis (BMEL), Mycobacterium avium paratuberculosis (MAP), Salmonella enterica Typhimurium (STM), and a Salmonella mutant (isogenic *sipA, sopABDE2) and linked to the basis for rational development of vaccines for brucellosis and salmonellosis as reviewed by Adams et al. and Ficht et al. [1,2]. A bovine ligated ileal loop biological model was established to capture the host gene expression response at multiple time points post infection. New methods based on Dynamic Bayesian Network (DBN) machine learning were employed to conduct a comparative pathogenicity analysis of 219 signaling and metabolic pathways and 1620 gene ontology (GO) categories that defined the host

  13. The hypothalamic-pituitary-thyroid axis and biological rhythms: The discovery of TSH's unexpected role using animal models.

    Science.gov (United States)

    Ikegami, Keisuke; Yoshimura, Takashi

    2017-10-01

    Thyroid hormones (TH) are important for development, growth, and metabolism. It is also clear that the synthesis and secretion of TH are regulated by the hypothalamic-pituitary-thyroid (HPT) axis. Animal models have helped advance our understanding of the roles and regulatory mechanisms of TH. The animals' bodies develop through coordinated timing of cell division and differentiation. Studies of frog metamorphosis led to the discovery of TH and their role in development. However, to adapt to rhythmic environmental changes, animals also developed various endocrine rhythms. Studies of rodents clarified the neural and molecular mechanisms underlying the circadian regulation of the HPT axis. Moreover, birds have a sophisticated seasonal adaptation mechanism, and recent studies of quail revealed unexpected roles for thyroid-stimulating hormone (TSH) and TH in the seasonal regulation of reproduction. Interestingly, this mechanism is conserved in mammals. Thus, we review how animal studies have shaped our general understanding of the HPT axis in relation to biological rhythms. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. The effects of collagen-rich extracellular matrix on the intracellular delivery of glycol chitosan nanoparticles in human lung fibroblasts.

    Science.gov (United States)

    Yhee, Ji Young; Yoon, Hong Yeol; Kim, Hyunjoon; Jeon, Sangmin; Hergert, Polla; Im, Jintaek; Panyam, Jayanth; Kim, Kwangmeyung; Nho, Richard Seonghun

    2017-01-01

    Recent progress in nanomedicine has shown a strong possibility of targeted therapy for obstinate chronic lung diseases including idiopathic pulmonary fibrosis (IPF). IPF is a fatal lung disease characterized by persistent fibrotic fibroblasts in response to type I collagen-rich extracellular matrix. As a pathological microenvironment is important in understanding the biological behavior of nanoparticles, in vitro cellular uptake of glycol chitosan nanoparticles (CNPs) in human lung fibroblasts was comparatively studied in the presence or absence of type I collagen matrix. Primary human lung fibroblasts from non-IPF and IPF patients (n=6/group) showed significantly increased cellular uptake of CNPs (>33.6-78.1 times) when they were cultured on collagen matrix. To elucidate the underlying mechanism of enhanced cellular delivery of CNPs in lung fibroblasts on collagen, cells were pretreated with chlorpromazine, genistein, and amiloride to inhibit clathrin-mediated endocytosis, caveolae-mediated endocytosis, and macropinocytosis, respectively. Amiloride pretreatment remarkably reduced the cellular uptake of CNPs, suggesting that lung fibroblasts mainly utilize the macropinocytosis-dependent mechanism when interacted with collagen. In addition, the internalization of CNPs was predominantly suppressed by a phosphoinositide 3-kinase (PI3K) inhibitor in IPF fibroblasts, indicating that enhanced PI3K activity associated with late-stage macropinocytosis can be particularly important for the enhanced cellular delivery of CNPs in IPF fibroblasts. Our study strongly supports the concept that a pathological microenvironment which surrounds lung fibroblasts has a significant impact on the intracellular delivery of nanoparticles. Based on the property of enhanced intracellular delivery of CNPs when fibroblasts are made to interact with a collagen-rich matrix, we suggest that CNPs may have great potential as a drug-carrier system for targeting fibrotic lung fibroblasts.

  15. The role of non-rainfall water on physiological activation in desert biological soil crusts

    Science.gov (United States)

    Zheng, Jiaoli; Peng, Chengrong; Li, Hua; Li, Shuangshuang; Huang, Shun; Hu, Yao; Zhang, Jinli; Li, Dunhai

    2018-01-01

    Non-rainfall water (NRW, e.g. fog and dew), in addition to rainfall and snowfall, are considered important water inputs to drylands. At the same time, biological soil crusts (BSCs) are important components of drylands. However, little information is available regarding the effect of NRW inputs on BSC activation. In this study, the effects of NRW on physiological activation in three BSC successional stages, including the cyanobacteria crust stage (Crust-C), moss colonization stage (Crust-CM), and moss crust stage (Crust-M), were studied in situ. Results suggest NRW inputs hydrated and activated physiological activity (Fv/Fm, carbon exchange, and nitrogen fixation) in BSCs but led to a negative carbon balance and low rates of nitrogen fixation in BSCs. One effective NRW event could hydrate BSCs for 7 h. Following simulated rainfall, the physiological activities recovered within 3 h, and net carbon gain occurred until 3 h after hydration, whereas NRW-induced physiological recovery processes were slower and exhibited lower activities, leading to a negative carbon balance. There were significant positive correlations between NRW amounts and the recovered values of Fv/Fm in all the three BSC stages (p < .001). The thresholds for Fv/Fm activation decreased with BSC succession, and the annual effective NRW events increased with BSC succession, with values of 29.8, 89.2, and 110.7 in Crust-C, Crust-CM and Crust-M, respectively. The results suggest that moss crust and moss-cyanobacteria crust use NRW to prolong metabolic activity and reduce drought stress more efficiently than cyanobacteria crusts. Therefore, these results suggest that BSCs utilize NRW to sustain life while growth and biomass accumulation require precipitation (rainfall) events over a certain threshold.

  16. A paradigm shift towards low-nitrifying production systems: the role of biological nitrification inhibition (BNI)

    Science.gov (United States)

    Subbarao, G. V.; Sahrawat, K. L.; Nakahara, K.; Rao, I. M.; Ishitani, M.; Hash, C. T.; Kishii, M.; Bonnett, D. G.; Berry, W. L.; Lata, J. C.

    2013-01-01

    Background Agriculture is the single largest geo-engineering initiative that humans have initiated on planet Earth, largely through the introduction of unprecedented amounts of reactive nitrogen (N) into ecosystems. A major portion of this reactive N applied as fertilizer leaks into the environment in massive amounts, with cascading negative effects on ecosystem health and function. Natural ecosystems utilize many of the multiple pathways in the N cycle to regulate N flow. In contrast, the massive amounts of N currently applied to agricultural systems cycle primarily through the nitrification pathway, a single inefficient route that channels much of this reactive N into the environment. This is largely due to the rapid nitrifying soil environment of present-day agricultural systems. Scope In this Viewpoint paper, the importance of regulating nitrification as a strategy to minimize N leakage and to improve N-use efficiency (NUE) in agricultural systems is highlighted. The ability to suppress soil nitrification by the release of nitrification inhibitors from plant roots is termed ‘biological nitrification inhibition’ (BNI), an active plant-mediated natural function that can limit the amount of N cycling via the nitrification pathway. The development of a bioassay using luminescent Nitrosomonas to quantify nitrification inhibitory activity from roots has facilitated the characterization of BNI function. Release of BNIs from roots is a tightly regulated physiological process, with extensive genetic variability found in selected crops and pasture grasses. Here, the current status of understanding of the BNI function is reviewed using Brachiaria forage grasses, wheat and sorghum to illustrate how BNI function can be utilized for achieving low-nitrifying agricultural systems. A fundamental shift towards ammonium (NH4+)-dominated agricultural systems could be achieved by using crops and pastures with high BNI capacities. When viewed from an agricultural and

  17. A paradigm shift towards low-nitrifying production systems: the role of biological nitrification inhibition (BNI).

    Science.gov (United States)

    Subbarao, G V; Sahrawat, K L; Nakahara, K; Rao, I M; Ishitani, M; Hash, C T; Kishii, M; Bonnett, D G; Berry, W L; Lata, J C

    2013-07-01

    Agriculture is the single largest geo-engineering initiative that humans have initiated on planet Earth, largely through the introduction of unprecedented amounts of reactive nitrogen (N) into ecosystems. A major portion of this reactive N applied as fertilizer leaks into the environment in massive amounts, with cascading negative effects on ecosystem health and function. Natural ecosystems utilize many of the multiple pathways in the N cycle to regulate N flow. In contrast, the massive amounts of N currently applied to agricultural systems cycle primarily through the nitrification pathway, a single inefficient route that channels much of this reactive N into the environment. This is largely due to the rapid nitrifying soil environment of present-day agricultural systems. In this Viewpoint paper, the importance of regulating nitrification as a strategy to minimize N leakage and to improve N-use efficiency (NUE) in agricultural systems is highlighted. The ability to suppress soil nitrification by the release of nitrification inhibitors from plant roots is termed 'biological nitrification inhibition' (BNI), an active plant-mediated natural function that can limit the amount of N cycling via the nitrification pathway. The development of a bioassay using luminescent Nitrosomonas to quantify nitrification inhibitory activity from roots has facilitated the characterization of BNI function. Release of BNIs from roots is a tightly regulated physiological process, with extensive genetic variability found in selected crops and pasture grasses. Here, the current status of understanding of the BNI function is reviewed using Brachiaria forage grasses, wheat and sorghum to illustrate how BNI function can be utilized for achieving low-nitrifying agricultural systems. A fundamental shift towards ammonium (NH4(+))-dominated agricultural systems could be achieved by using crops and pastures with high BNI capacities. When viewed from an agricultural and environmental perspective, the

  18. Role of Molecular Biology in Diagnosis and Characterization of Vulvo-Vaginitis in Clinical Practice.

    Science.gov (United States)

    Donders, Gilbert G G; Ravel, Jacques; Vitali, Beatrice; Netea, Mihai G; Salumets, Andres; Unemo, Magnus

    2017-01-01

    The diagnosis of vulvo-vaginal complaints has always been enigmatic in obstetrics and gynecology. Patients with clear, pathognomonic symptoms end up with a proper diagnosis and treatment most of the time, but unfortunately we are now living in a world where women reach out to the Internet and readily get all information as to which disease their symptoms correspond to and also find the appropriate treatment "over-the-counter." Because of this trend, we as specialists are increasingly confronted with patients with complex and combined conditions. At the same time, extremely sensitive and accurate diagnostic tools are now being developed at a rapid pace, allowing the physicians to diagnose vulvo-vaginal disease with a substantially increased precision. Moreover, many of these molecular biology (MB)-based tests have become so common and affordable that self-sampling and self-testing are no longer utopia. On the other hand, too much information that is too readily available and that is too affordable also encompasses pitfalls, leading to gross overtreatment and psychological burden. As experienced caregivers, we should supervise these evolutions, define their place and proper use as diagnostic tools, utilize their potential as ad hoc tools to follow-up treatment efficacy and guide how such tools can be used for responsible self-testing. In the present paper, responding to the need for appropriate, quality assured and accessible tests for vulvo-vaginitis and the huge potential delivered by the rapidly developing MB methods, we recommend the need for a broad and regular discussion forum, composed of both clinical and technical experts and opinion makers, in order to match the needs with the huge opportunities and ideally combine the initiatives and forces into the same direction. This forum should then translate conceived strategies into regularly updated, evidence-based national and international guidelines. © 2017 S. Karger AG, Basel.

  19. Multiple roles of the Y chromosome in the biology of Drosophila melanogaster.

    Science.gov (United States)

    Piergentili, Roberto

    2010-09-01

    The X and Y chromosomes of Drosophila melanogaster were the first examples of chromosomes associated with genetic information. Thanks to the serendipitous discovery of a male with white eyes in 1910, T.H. Morgan was able to associate the X chromosome of the fruit fly with a phenotypic character (the eye color) for the first time. A few years later, his student, C.B. Bridges, demonstrated that X0 males, although phenotypically normal, are completely sterile. This means that the X chromosome, like the autosomes, harbors genes that control several phenotypic traits, while the Y chromosome is important for male fertility only. Notwithstanding its long history--almost 100 years in terms of genetic studies--most of the features of the Y chromosome are still a mystery. This is due to the intrinsic nature of this genetic element, namely, (1) its molecular composition (mainly transposable elements and satellite DNA), (2) its genetic inertia (lack of recombination due to its heterochromatic nature), (3) the absence of homology with the X (with the only exception of the nucleolar organizer), (4) the lack of visible phenotypes when it is missing (indeed, except for their sterility, X0 flies are normal males), and (5) its low density as for protein-coding sequences (to date, only 13 genes out of approximately 14,000 have been mapped on this chromosome in D. melanogaster, i.e., ~0.1% of the total). Nonetheless, a more accurate analysis reveals that this chromosome can influence several complex phenotypes: (1) it has a role in the fertility of both sexes and viability of males when over-represented; (2) it can unbalance the intracellular nucleotide pool; (3) it can interfere with the gene expression either by recruiting proteins involved in chromatin remodeling (PEV) or, to a higher extent, by influencing the expression of up to 1,000 different genes, probably by changing the availability of transcription factors; (4) it plays a major role (up to 50%) in the resistance to heat

  20. The role of a certain biological treatment on certain sexual parameters in irradiated male albino rats

    International Nuclear Information System (INIS)

    Gabr, S.A.M.A.

    1995-01-01

    The present work aims at the investigation of the following : - Assessment of radiation induced damage on thyroid gland includes: - Serum triiodothyronine (T-3) hormone. - Serum tetraiodothyronine (T-4) hormone. - Assessment of radiation induced change on testis including: - Serum testosterone. - Histopathological study on testis. - Investigation of the radioprotective role of ''estradiol benzate''estrogen as a female sex hormone on the radiation induced changes in the above mentioned parameters at single and fractionated doses tested either before and after radiation exposure. Also its selected the beneficial dose of estrogen as a protective agent on the parameters selected for the present study in irradiated rate. The result obtained from such a study would anticipate certain incidences which would happen in case of humans.6 tabs.,22 figs.,180 refs

  1. Distribution and biological role of the oligopeptide-binding protein (OppA) in Xanthomonas species.

    Science.gov (United States)

    Oshiro, Elisa E; Tavares, Milene B; Suzuki, Celso F; Pimenta, Daniel C; Angeli, Claudia B; de Oliveira, Julio C F; Ferro, Maria I T; Ferreira, Luis C S; Ferreira, Rita C C

    2010-04-01

    In this study we investigated the prevalence of the oppA gene, encoding the oligopeptide binding protein (OppA) of the major bacterial oligopeptide uptake system (Opp), in different species of the genus Xanthomonas. The oppA gene was detected in two Xanthomonas axonopodis strains among eight tested Xanthomonas species. The generation of an isogenic oppA-knockout derivative of the Xac 306 strain, showed that the OppA protein neither plays a relevant role in oligopeptide uptake nor contributes to the infectivity and multiplication of the bacterial strain in leaves of sweet orange (Citrus sinensis) and Rangpur lime (Citrus limonia). Taken together these results suggest that the oppA gene has a recent evolutionary history in the genus and does not contribute in the physiology or pathogenesis of X. axonopodis.

  2. Distribution and biological role of the oligopeptide-binding protein (OppA in Xanthomonas species

    Directory of Open Access Journals (Sweden)

    Elisa E. Oshiro

    2010-01-01

    Full Text Available In this study we investigated the prevalence of the oppA gene, encoding the oligopeptide binding protein (OppA of the major bacterial oligopeptide uptake system (Opp, in different species of the genus Xanthomonas. The oppA gene was detected in two Xanthomonas axonopodis strains among eight tested Xanthomonas species. The generation of an isogenic oppA-knockout derivative of the Xac 306 strain, showed that the OppA protein neither plays a relevant role in oligopeptide uptake nor contributes to the infectivity and multiplication of the bacterial strain in leaves of sweet orange (Citrus sinensis and Rangpur lime (Citrus limonia. Taken together these results suggest that the oppA gene has a recent evolutionary history in the genus and does not contribute in the physiology or pathogenesis of X. axonopodis.

  3. Seeing the World Topsy-Turvy: The Primary Role of Kinematics in Biological Motion Inversion Effects

    Directory of Open Access Journals (Sweden)

    Sue-Anne Fitzgerald

    2014-04-01

    Full Text Available Physical inversion of whole or partial human body representations typically has catastrophic consequences on the observer's ability to perform visual processing tasks. Explanations usually focus on the effects of inversion on the visual system's ability to exploit configural or structural relationships, but more recently have also implicated motion or kinematic cue processing. Here, we systematically tested the role of both on perceptions of sex from upright and inverted point-light walkers. Our data suggest that inversion results in systematic degradations of the processing of kinematic cues. Specifically and intriguingly, they reveal sex-based kinematic differences: Kinematics characteristic of females generally are resistant to inversion effects, while those of males drive systematic sex misperceptions. Implications of the findings are discussed.

  4. Does Toll-like receptor 3 play a biological role in virus infections?

    International Nuclear Information System (INIS)

    Edelmann, Kurt H.; Richardson-Burns, Sarah; Alexopoulou, Lena; Tyler, Kenneth L.; Flavell, Richard A.; Oldstone, Michael B.A.

    2004-01-01

    The Toll-like receptor (TLR) family functions to recognize conserved microbial and viral structures with the purpose of activating signal pathways to instigate immune responses against infections by these organisms. For example, in vitro studies reveal that the TLR3 ligand is a double-stranded RNA (dsRNA), a product of viral infections. From this observation, it has been proposed that TLR3 is likely an important first signal for virus infections. We approached this issue by investigating the role of TLR3 in four different infectious viral models (lymphocytic choriomeningitis virus (LCMV), vesicular stomatitis virus (VSV), murine cytomegalovirus (MCMV), and reovirus) and in TLR3 genetically deficient ( -/- ) mice. Our results indicate that TLR3 is not universally required for the generation of effective antiviral responses because the absence of TLR3 does not alter either viral pathogenesis or impair host's generation of adaptive antiviral responses to these viruses

  5. Matrix stiffness and oxigen tension modulate epigenetic conversion of mouse dermal fibroblasts into insulin producing cells.

    Directory of Open Access Journals (Sweden)

    Alessandro Zenobi

    2017-05-01

    Full Text Available In vivo, cells are surrounded by a three-dimensional (3-D organization of supporting matrix, neighboring cells and a gradient of chemical and mechanical signals (Antoni, et al., 2015. However, the present understanding of many biological processes is mainly based on two-dimensional (2-D systems that typically provides a static environment. In the present study, we tested two different 3-D culture systems and apply them to the epigenetic conversion of mouse dermal fibroblasts into insulin producing-cells (Pennarossa, et al., 2013; Brevini, et al., 2015, combining also the use of two oxygen tensions. In particular, cells were differentiated using the Polytetrafluoroethylene micro-bioreactor (PTFE and the Polyacrylamide (PAA gels with different stiffness (1 kPa; 4 kPa, maintained either in the standard 20% or in the more physiological 5% oxygen tensions. Standard differentiation performed on plastic substrates was assessed as a control. Cell morphology (Fig.1A, insulin expression and release were analyzed to evaluate the role of both stiffness and oxygen tension in the process. The results obtained showed that 1 kPa PAA gel and PTFE system induced a significantly higher insulin expression and release than plastic and 4 kPa PAA gel, especially in low oxygen condition (Fig.1B. Furthermore, comparing the efficiency of the two systems tested, 1 kPa PAA gel ensured a higher insulin transcription than PTFE (Fig.1C. Recent studies show the direct influence of substrates on lineage commitment and cell differentiation (Engler, et al., 2006; Evans, et al., 2009. The evidence here presented confirm that the use of an appropriate stiffness (similar to the pancreatic tissue, combined with a physiological oxygen tension, promote β-cell differentiation, with beneficial effects on cell functional activity and insulin release. The present results highlight the importance of 3-D cell rearrangement and oxigen tension to promote in vitro epigenetic conversion of

  6. A novel theory: biological processes mostly involve two types of mediators, namely general and specific mediators Endogenous small radicals such as superoxide and nitric oxide may play a role of general mediator in biological processes.

    Science.gov (United States)

    Mo, Jian

    2005-01-01

    A great number of papers have shown that free radicals as well as bioactive molecules can play a role of mediator in a wide spectrum of biological processes, but the biological actions and chemical reactivity of the free radicals are quite different from that of the bioactive molecules, and that a wide variety of bioactive molecules can be easily modified by free radicals due to having functional groups sensitive to redox, and the significance of the interaction between the free radicals and the bioactive molecules in biological processes has been confirmed by the results of some in vitro and in vivo studies. Based on these evidence, this article presented a novel theory about the mediators of biological processes. The essentials of the theory are: (a) mediators of biological processes can be classified into general and specific mediators; the general mediators include two types of free radicals, namely superoxide and nitric oxide; the specific mediators include a wide variety of bioactive molecules, such as specific enzymes, transcription factors, cytokines and eicosanoids; (b) a general mediator can modify almost any class of the biomolecules, and thus play a role of mediator in nearly every biological process via diverse mechanisms; a specific mediator always acts selectively on certain classes of the biomolecules, and may play a role of mediator in different biological processes via a same mechanism; (c) biological processes are mostly controlled by networks of their mediators, so the free radicals can regulate the last consequence of a biological process by modifying some types of the bioactive molecules, or in cooperation with these bioactive molecules; the biological actions of superoxide and nitric oxide may be synergistic or antagonistic. According to this theory, keeping the integrity of these networks and the balance between the free radicals and the bioactive molecules as well as the balance between the free radicals and the free radical scavengers

  7. Degradation of type IV collagen by neoplastic human skin fibroblasts

    International Nuclear Information System (INIS)

    Sheela, S.; Barrett, J.C.

    1985-01-01

    An assay for the degradation of type IV (basement membrane) collagen was developed as a biochemical marker for neoplastic cells from chemically transformed human skin fibroblasts. Type IV collagen was isolated from basement membrane of Syrian hamster lung and type I collagen was isolated from rat tails; the collagens were radioactively labelled by reductive alkylation. The abilities of normal (KD) and chemically transformed (Hut-11A) human skin fibroblasts to degrade the collagens were studied. A cell-associated assay was performed by growing either normal or transformed cells in the presence of radioactively labelled type IV collagen and measuring the released soluble peptides in the medium. This assay also demonstrated that KD cells failed to synthesize an activity capable of degrading type IV collagen whereas Hut-11A cells degraded type IV collagen in a linear manner for up to 4 h. Human serum at very low concentrations, EDTA and L-cysteine inhibited the enzyme activity, whereas protease inhibitors like phenylmethyl sulfonyl fluoride, N-ethyl maleimide or soybean trypsin inhibitor did not inhibit the enzyme from Hut-11A cells. These results suggest that the ability to degrade specifically type IV collagen may be an important marker for neoplastic human fibroblasts and supports a role for this collagenase in tumor cell invasion

  8. Potensi Terapeutik Fibroblast Growth Factor 21 terhadap Resistensi Insulin

    Directory of Open Access Journals (Sweden)

    Kurniasari Kurniasari

    2015-12-01

    Full Text Available Fibroblast growth factor 21 (FGF21 merupakan salah satu dari anggota FGF yang berperansebagai faktor endokrin. Hepar dan jaringan adiposa merupakan tempat kerja utama FGF21.Ekspresi FGF21 di hepar diatur oleh peroxisome proliferator activated receptor alpha (PPARαsedangkan di jaringan adiposa diatur oleh peroxisome proliferator activated receptor gamma(PPARγ. Kedua faktor transkripsi tersebut terlibat dalam metabolisme karbohidrat dan lipid. Padaresistensi insulin terdapat hiperglikemia, hiperinsulinemia, dan dislipidemia. Pemberian FGF21pada berbagai studi in vivo dan in vitro telah menunjukan potensi FGF21 dalam mengatasi kelainanakibat resistensi insulin sekaligus meningkatkan sensitivitas jaringan terhadap insulin. Kata kunci: FGF21, PPARγ, PPARα, resistensi insulin Fibroblast Growth Factor 21 (FGF21 Potension in InsulinResistance Treatment Abstract Fibroblast growth factor 21 (FGF21 is a member of FGF family that plays a role as endocrinefactor. Liver and adipose tissue are major target of FGF21. The expression of FGF21 in liveris regulated by peroxisome proliferator activated receptor alpha (PPARα, while peroxisomeproliferator activated receptor gamma (PPARγ regulate FGF21 expression in adipose tissue.Both transcription factors are involved in carbohydrate and lipid metabolism. Hyperglycemia,hyperinsulinemia, and dyslipidemia are observed in insulin resistance. Treatment with FGF21 inin vitro and in vivo study showed that FGF21 have the potential to overcome insulin resistance aswell as increasing tissue’s sensitivity towards insulin. Keywords: FGF21, PPARγ, PPARα, insulin resistance Normal 0 false false false IN X-NONE X-NONE

  9. The Glutamate Dehydrogenase Pathway and Its Roles in Cell and Tissue Biology in Health and Disease

    Directory of Open Access Journals (Sweden)

    Andreas Plaitakis

    2017-02-01

    Full Text Available Glutamate dehydrogenase (GDH is a hexameric enzyme that catalyzes the reversible conversion of glutamate to α-ketoglutarate and ammonia while reducing NAD(P+ to NAD(PH. It is found in all living organisms serving both catabolic and anabolic reactions. In mammalian tissues, oxidative deamination of glutamate via GDH generates α-ketoglutarate, which is metabolized by the Krebs cycle, leading to the synthesis of ATP. In addition, the GDH pathway is linked to diverse cellular processes, including ammonia metabolism, acid-base equilibrium, redox homeostasis (via formation of fumarate, lipid biosynthesis (via oxidative generation of citrate, and lactate production. While most mammals possess a single GDH1 protein (hGDH1 in the human that is highly expressed in the liver, humans and other primates have acquired, via duplication, an hGDH2 isoenzyme with distinct functional properties and tissue expression profile. The novel hGDH2 underwent rapid evolutionary adaptation, acquiring unique properties that enable enhanced enzyme function under conditions inhibitory to its ancestor hGDH1. These are thought to provide a biological advantage to humans with hGDH2 evolution occurring concomitantly with human brain development. hGDH2 is co-expressed with hGDH1 in human brain, kidney, testis and steroidogenic organs, but not in the liver. In human cerebral cortex, hGDH1 and hGDH2 are expressed in astrocytes, the cells responsible for removing and metabolizing transmitter glutamate, and for supplying neurons with glutamine and lactate. In human testis, hGDH2 (but not hGDH1 is densely expressed in the Sertoli cells, known to provide the spermatids with lactate and other nutrients. In steroid producing cells, hGDH1/2 is thought to generate reducing equivalents (NADPH in the mitochondria for the biosynthesis of steroidal hormones. Lastly, up-regulation of hGDH1/2 expression occurs in cancer, permitting neoplastic cells to utilize glutamine/glutamate for their growth

  10. Role of casein kinase 1A1 in the biology and targeted therapy of del(5q) MDS

    Science.gov (United States)

    Schneider, Rebekka K.; Ademà, Vera; Heckl, Dirk; Järås, Marcus; Mallo, Mar; Lord, Allegra M.; Chu, Lisa P.; McConkey, Marie E.; Kramann, Rafael; Mullally, Ann; Bejar, Rafael; Solé, Francesc; Ebert, Benjamin L.

    2014-01-01

    Summary The Casein kinase 1A1 gene (CSNK1A1) is a putative tumor suppressor gene located in the common deleted region for del(5q) myelodysplastic syndrome (MDS). We generated a murine model with conditional inactivation of Csnk1a1 and found that Csnk1a1 haploinsufficiency induces hematopoietic stem cell expansion and a competitive repopulation advantage whereas homozygous deletion induces hematopoietic stem cell failure. Based on this finding, we found that heterozygous inactivation of Csnk1a1 sensitizes cells to a CSNK1 inhibitor relative to cells with two intact alleles. In addition, we identified recurrent somatic mutations in CSNK1A1 on the non-deleted allele of patients with del(5q) MDS. These studies demonstrate that CSNK1A1 plays a central role in the biology of del(5q) MDS and is a promising therapeutic target. PMID:25242043

  11. New Insights Into the Mechanisms and Biological Roles of D-Amino Acids in Complex Eco-Systems

    Science.gov (United States)

    Aliashkevich, Alena; Alvarez, Laura; Cava, Felipe

    2018-01-01

    In the environment bacteria share their habitat with a great diversity of organisms, from microbes to humans, animals and plants. In these complex communities, the production of extracellular effectors is a common strategy to control the biodiversity by interfering with the growth and/or viability of nearby microbes. One of such effectors relies on the production and release of extracellular D-amino acids which regulate diverse cellular processes such as cell wall biogenesis, biofilm integrity, and spore germination. Non-canonical D-amino acids are mainly produced by broad spectrum racemases (Bsr). Bsr’s promiscuity allows it to generate high concentrations of D-amino acids in environments with variable compositions of L-amino acids. However, it was not clear until recent whether these molecules exhibit divergent functions. Here we review the distinctive biological roles of D-amino acids, their mechanisms of action and their modulatory properties of the biodiversity of complex eco-systems. PMID:29681896

  12. DNA damage markers in dermal fibroblasts in vitro reflect chronological donor age

    DEFF Research Database (Denmark)

    Waaijer, Mariëtte E C; Croco, Eleonora; Westendorp, Rudi G J

    2016-01-01

    The aging process is accompanied by an accumulation of cellular damage, which compromises the viability and function of cells and tissues. We aim to further explore the association between in vitro DNA damage markers and the chronological age of the donor, as well as long-lived family membership...... markers and long-lived family membership or cardiovascular disease. Results were comparable when fibroblasts were stressed in vitro with rotenone. In conclusion, we found that DNA damage foci of cultured fibroblasts are significantly associated with the chronological age, but not biological age...

  13. Identification of colonic fibroblast secretomes reveals secretory factors regulating colon cancer cell proliferation.

    Science.gov (United States)

    Chen, Sun-Xia; Xu, Xiao-En; Wang, Xiao-Qing; Cui, Shu-Jian; Xu, Lei-Lei; Jiang, Ying-Hua; Zhang, Yang; Yan, Hai-Bo; Zhang, Qian; Qiao, Jie; Yang, Peng-Yuan; Liu, Feng

    2014-10-14

    Stromal microenvironment influences tumor cell proliferation and migration. Fibroblasts represent the most abundant stromal constituents. Here, we established two pairs of normal fibroblast (NF) and cancer-associated fibroblast (CAF) cultures from colorectal adenocarcinoma tissues and the normal counterparts. The NFs and CAFs were stained positive for typical fibroblast markers and inhibited colon cancer (CC) cell proliferation in in vitro cocultures and in xenograft mouse models. The fibroblast conditioned media were analyzed using LC-MS and 227 proteins were identified at a false discovery rate of 1.3%, including 131 putative secretory and 20 plasma membrane proteins. These proteins were enriched for functional categories of extracellular matrix, adhesion, cell motion, inflammatory response, redox homeostasis and peptidase inhibitor. Secreted protein acidic and rich in cysteine, transgelin, follistatin-related protein 1 (FSTL1) and decorin was abundant in the fibroblast secretome as confirmed by Western blot. Silencing of FSTL1 and transgelin in colonic fibroblast cell line CCD-18Co induced an accelerated proliferation of CC cells in cocultures. Exogenous FSTL1 attenuates CC cell proliferation in a negative fashion. FSTL1 was upregulated in CC patient plasma and cancerous tissues but had no implication in prognosis. Our results provided novel insights into the molecular signatures and modulatory role of CC associated fibroblasts. In this study, a label-free LC-MS was performed to analyze the secretomes of two paired primary fibroblasts, which were isolated from fresh surgical specimen of colorectal adenocarcinoma and adjacent normal colonic tissues and exhibited negative modulatory activity for colon cancer cell growth in in vitro cocultures and in vivo xenograph mouse models. Follistatin-related protein 1 was further revealed to be one of the stroma-derived factors of potential suppression role for colon cancer cell proliferation. Our results provide novel

  14. Expression of TGF-β3 in Isolated Fibroblasts from Foreskin

    Directory of Open Access Journals (Sweden)

    Mahnaz Mahmoudi Rad

    2015-05-01

    Full Text Available Background: The multifunctional transforming growth factor beta (TGF-β is a glycoprotein that exists in three isoforms. TGF-β3 expression increases in fetal wound healing and reduces fibronectin and collagen I and III deposition, and also improves the architecture of the neodermis which is a combination of blood vessels and connective tissue during wound healing. Fibroblasts are key cells in the wound healing process. TGF-β3 plays a critical role in scar-free wound healing and fibroblast actions in the wound healing process. The aim of this study was to express the TGF-β3 gene (tgf-b3 in human foreskin fibroblasts (HFF’s. Methods: We obtained HFF’s from a newborn and a primary fibroblast culture was prepared. The cells were transfected with TGF-β3-pCMV6-XL5 plasmid DNA by both lipofection and electroporation. Expression of TGF-β3 was measured by enzyme-linked immunosorbent assay (ELISA. Results: The highest TGF-β3 expression (8.3-fold greater than control was obtained by lipofection after 72 hours using 3 μl of transfection reagent. Expression was 1.4-fold greater than control by electroporation. Conclusions: In this study, we successfully increased TGF-β3 expression in primary fibroblast cells. In the future, grafting these transfected fibroblasts onto wounds can help the healing process without scarring.

  15. Cellular Mechanics of Primary Human Cervical Fibroblasts: Influence of Progesterone and a Pro-inflammatory Cytokine.

    Science.gov (United States)

    Shukla, Vasudha; Barnhouse, Victoria; Ackerman, William E; Summerfield, Taryn L; Powell, Heather M; Leight, Jennifer L; Kniss, Douglas A; Ghadiali, Samir N

    2018-01-01

    The leading cause of neonatal mortality, pre-term birth, is often caused by pre-mature ripening/opening of the uterine cervix. Although cervical fibroblasts play an important role in modulating the cervix's extracellular matrix (ECM) and mechanical properties, it is not known how hormones, i.e., progesterone, and pro-inflammatory insults alter fibroblast mechanics, fibroblast-ECM interactions and the resulting changes in tissue mechanics. Here we investigate how progesterone and a pro-inflammatory cytokine, IL-1β, alter the biomechanical properties of human cervical fibroblasts and the fibroblast-ECM interactions that govern tissue-scale mechanics. Primary human fibroblasts were isolated from non-pregnant cervix and treated with estrogen/progesterone, IL-1β or both. The resulting changes in ECM gene expression, matrix remodeling, traction force generation, cell-ECM adhesion and tissue contractility were monitored. Results indicate that IL-1β induces a significant reduction in traction force and ECM adhesion independent of pre-treatment with progesterone. These cell level effects altered tissue-scale mechanics where IL-1β inhibited the contraction of a collagen gel over 6 days. Interestingly, progesterone treatment alone did not modulate traction forces or gel contraction but did result in a dramatic increase in cell-ECM adhesion. Therefore, the protective effect of progesterone may be due to altered adhesion dynamics as opposed to altered ECM remodeling.

  16. Emmprin, released as a microvesicle in epithelioid sarcoma, interacts with fibroblasts.

    Science.gov (United States)

    Aoki, Mikiko; Koga, Kaori; Hamasaki, Makoto; Egawa, Nagayasu; Nabeshima, Kazuki

    2017-06-01

    Emmprin (extracellular matrix metalloproteinase inducer, CD147) is a glycosylated transmembrane protein, consisting of two immunoglobulin domains, that stimulates the production of matrix metalloproteinases (MMPs) by tumor-associated fibroblasts. These effects play important roles in tumor invasion and metastasis. However, the precise mechanisms by which emmprin acts on fibroblasts have not been fully elucidated, especially in sarcoma cells. Previously, we demonstrated that emmprin, expressed in conditioned medium collected from the epithelioid sarcoma cell line (FU-EPS-1), stimulates MMP-2 production via interactions with fibroblasts. In this study, we used microvesicles derived from sarcoma cells, and determined whether emmprin exists in the microvesicles, which enhance the production of MMP-2 via fibroblasts. Microvesicles released from FU-EPS-1 cells were shown to contain full-length emmprin, identified as a 45-kDa protein characterized by polylactosamine glycosylation. Microvesicles collected from FU-EPS-1 cells transfected with emmprin-specific siRNA or transduced with shRNA displayed significantly reduced MMP-2 production by fibroblasts compared with those from control-transfected cells. Our findings show that emmprin is released through microvesicle shedding in sarcoma cells, and emmprin in microvesicles regulates MMP-2 production by influencing the activity of fibroblasts located at sites distant from the tumor cells.

  17. Blue light-irradiated human keloid fibroblasts: an in vitro study

    Science.gov (United States)

    Magni, Giada; Rossi, Francesca; Tatini, Francesca; Pini, Roberto; Coppi, Elisabetta; Cherchi, Federica; Fusco, Irene; Pugliese, Anna Maria; Pedata, Felicita; Fraccalvieri, Marco; Gasperini, Stefano; Pavone, Francesco S.; Tripodi, Cristina; Alfieri, Domenico; Targetti, Lorenzo

    2018-02-01

    Blue LED light irradiation is currently under investigation because of its effect in wound healing improvement. In this context, several mechanisms of action are likely to occur at the same time, consistently with the presence of different light absorbers within the skin. In our previous studies we observed the wound healing in superficial abrasions in an in vivo murine model. The results evidenced that both inflammatory infiltrate and myofibroblasts activity increase after irradiation. In this study we focused on evaluating the consequences of light absorption in fibroblasts from human cells culture: they play a key role in wound healing, both in physiological conditions and in pathological ones, such as keloid scarring. In particular we used keloids fibroblasts as a new target in order to investigate a possible metabolic or cellular mechanism correlation. Human keloid tissues were excised during standard surgery and immediately underwent primary cell culture extraction. Fibroblasts were allowed to grow in the appropriate conditions and then exposed to blue light. A metabolic colorimetric test (WST-8) was then performed. The tests evidenced an effect in mitochondrial activity, which could be modulated by the duration of the treatment. Electrophysiology pointed out a different behavior of irradiated fibroblasts. In conclusion, the Blue LED light affects the metabolic activity of fibroblasts and thus the cellular proliferation rate. No specific effect was found on keloid fibroblasts, thus indicating a very basic intracellular component, such as cytochromes, being the target of the treatment.

  18. Fibroblast proliferation alters cardiac excitation conduction and contraction: a computational study*

    Science.gov (United States)

    Zhan, He-qing; Xia, Ling; Shou, Guo-fa; Zang, Yun-liang; Liu, Feng; Crozier, Stuart

    2014-01-01

    In this study, the effects of cardiac fibroblast proliferation on cardiac electric excitation conduction and mechanical contraction were investigated using a proposed integrated myocardial-fibroblastic electromechanical model. At the cellular level, models of the human ventricular myocyte and fibroblast were modified to incorporate a model of cardiac mechanical contraction and cooperativity mechanisms. Cellular electromechanical coupling was realized with a calcium buffer. At the tissue level, electrical excitation conduction was coupled to an elastic mechanics model in which the finite difference method (FDM) was used to solve electrical excitation equations, and the finite element method (FEM) was used to solve mechanics equations. The electromechanical properties of the proposed integrated model were investigated in one or two dimensions under normal and ischemic pathological conditions. Fibroblast proliferation slowed wave propagation, induced a conduction block, decreased strains in the fibroblast proliferous tissue, and increased dispersions in depolarization, repolarization, and action potential duration (APD). It also distorted the wave-front, leading to the initiation and maintenance of re-entry, and resulted in a sustained contraction in the proliferous areas. This study demonstrated the important role that fibroblast proliferation plays in modulating cardiac electromechanical behaviour and which should be considered in planning future heart-modeling studies. PMID:24599687

  19. Biologic role of activated leukocyte cell adhesion molecule overexpression in breast cancer cell lines and clinical tumor tissue.

    Science.gov (United States)

    Hein, Sibyll; Müller, Volkmar; Köhler, Nadine; Wikman, Harriet; Krenkel, Sylke; Streichert, Thomas; Schweizer, Michaela; Riethdorf, Sabine; Assmann, Volker; Ihnen, Maike; Beck, Katrin; Issa, Rana; Jänicke, Fritz; Pantel, Klaus; Milde-Langosch, Karin

    2011-09-01

    The activated leukocyte cell adhesion molecule (ALCAM) is overexpressed in many mammary tumors, but controversial results about its role and prognostic impact in breast cancer have been reported. Therefore, we evaluated the biologic effects of ALCAM expression in two breast cancer cell lines and a larger cohort of mammary carcinomas. By stable transfections, MCF7 cells with ALCAM overexpression and MDA-MB231 cells with reduced ALCAM levels were generated and analyzed in functional assays and cDNA microarrays. In addition, an immunohistochemical study on 347 patients with breast cancer with long-term follow-up and analysis of disseminated tumor cells (DTCs) was performed. In both cell lines, high ALCAM expression was associated with reduced cell motility. In addition, ALCAM silencing in MDA-MB231 cells resulted in lower invasive potential, whereas high ALCAM expression was associated with increased apoptosis in both cell lines. Among genes which were differentially expressed in clones with altered ALCAM expression, there was an overlap of 15 genes between both cell lines, among them cathepsin D, keratin 7, gelsolin, and ets2 whose deregulation was validated by western blot analysis. In MDA-MB231 cells, we observed a correlation with VEGF expression which was validated by enzyme-linked immuno sorbent assay (ELISA). Our IHC results on primary breast carcinomas showed that ALCAM expression was associated with an estrogen receptor-positive phenotype. In addition, strong ALCAM immunostaining correlated with nodal involvement and the presence of tumor cells in bone marrow. By Kaplan-Meier analysis, strong ALCAM expression in ductal carcinomas correlated with shorter recurrence-free intervals (P=0.048) and overall survival (OAS, P=0.003). Our results indicate that the biologic role of ALCAM in breast cancer is complex, but overexpression might be relevant for outcome in ductal carcinomas.

  20. Fibroblast cultures in duchenne muscular dystrophy

    International Nuclear Information System (INIS)

    Ionasescu, V.; Lara-Braud, C.; Zellweger, H.; Ionasescu, R.; Burmeister, L.

    1977-01-01

    Primary skin fibroblast cultures were grown from forearm pinch skin biopsies obtained from 24 patients with Duchenne muscular dystrophy (DMD) and ten normal controls matched for sex and age. The first subcultures were grown for 7 days and incubated with L-( 3 H)-proline for 24 hours. Intracellular collagen incoption was significantly decreased (2.2 X) and extracellular collagen incorporation significantly increased (1.8 X) in fibroblast cultures from patients with DMD by both collagenase assay and polyacrylamide gel electrophoresis. The synthesis of noncollagen proteins showed low values from the DMD fibroblast cultures. The alterations in synthesis and secretion of collagen and noncollagen proteins were characteristic only for the log phase of DMD fibroblasts. (author)

  1. Biological role in the transformation of platinum-group mineral grains

    Science.gov (United States)

    Reith, Frank; Zammit, Carla M.; Shar, Sahar S.; Etschmann, Barbara; Bottrill, Ralph; Southam, Gordon; Ta, Christine; Kilburn, Matthew; Oberthür, Thomas; Ball, Andrew S.; Brugger, Joël

    2016-04-01

    Platinum-group elements are strategically important metals. Finding new deposits is becoming increasingly difficult owing to our limited understanding of the processes that affect their mobility in surface environments. Microorganisms have been shown to promote the mobility of metals around ore deposits. Here we show that microorganisms influence the mobility of platinum-group elements in mineral grains collected from Brazil, Australia and Colombia. Scanning electron microscopy showed biofilms covering the platinum-group mineral grains. The biofilms contained abundant platinum-group element nanoparticles and microcrystalline aggregates, and were dominated by Proteobacteria, many of which were closely related to known metal-resistant species. Some platinum-group mineral grains contained carbon, nitrogen, sulfur, selenium and iodine, suggesting the grains may be biogenic in origin. Molecular analyses show that Brazilian platinum-palladium grains hosted specific bacterial communities, which were different in composition from communities associated with gold grains, or communities in surrounding soils and sediments. Nano-phase metallic platinum accumulated when a metallophillic bacterium was incubated with a percolating platinum-containing medium, suggesting that biofilms can cause the precipitation of mobile platinum complexes. We conclude that biofilms are capable of forming or transforming platinum-group mineral grains, and may play an important role for platinum-group element dispersion and re-concentration in surface environments.

  2. Sphingomyelin in High-Density Lipoproteins: Structural Role and Biological Function

    Directory of Open Access Journals (Sweden)

    Jesús Osada

    2013-04-01

    Full Text Available High-density lipoprotein (HDL levels are an inverse risk factor for cardiovascular diseases, and sphingomyelin (SM is the second most abundant phospholipid component and the major sphingolipid in HDL. Considering the marked presence of SM, the present review has focused on the current knowledge about this phospholipid by addressing its variable distribution among HDL lipoparticles, how they acquire this phospholipid, and the important role that SM plays in regulating their fluidity and cholesterol efflux from different cells. In addition, plasma enzymes involved in HDL metabolism such as lecithin–cholesterol acyltransferase or phospholipid transfer protein are inhibited by HDL SM content. Likewise, HDL SM levels are influenced by dietary maneuvers (source of protein or fat, drugs (statins or diuretics and modified in diseases such as diabetes, renal failure or Niemann–Pick disease. Furthermore, increased levels of HDL SM have been shown to be an inverse risk factor for coronary heart disease. The complexity of SM species, described using new lipidomic methodologies, and their distribution in different HDL particles under many experimental conditions are promising avenues for further research in the future.

  3. The Signaling Role of CD40 Ligand in Platelet Biology and in Platelet Component Transfusion

    Science.gov (United States)

    Aoui, Chaker; Prigent, Antoine; Sut, Caroline; Tariket, Sofiane; Hamzeh-Cognasse, Hind; Pozzetto, Bruno; Richard, Yolande; Cognasse, Fabrice; Laradi, Sandrine; Garraud, Olivier

    2014-01-01

    The CD40 ligand (CD40L) is a transmembrane molecule of crucial interest in cell signaling in innate and adaptive immunity. It is expressed by a variety of cells, but mainly by activated T-lymphocytes and platelets. CD40L may be cleaved into a soluble form (sCD40L) that has a cytokine-like activity. Both forms bind to several receptors, including CD40. This interaction is necessary for the antigen specific immune response. Furthermore, CD40L and sCD40L are involved in inflammation and a panoply of immune related and vascular pathologies. Soluble CD40L is primarily produced by platelets after activation, degranulation and cleavage, which may present a problem for transfusion. Soluble CD40L is involved in adverse transfusion events including transfusion related acute lung injury (TRALI). Although platelet storage designed for transfusion occurs in sterile conditions, platelets are activated and release sCD40L without known agonists. Recently, proteomic studies identified signaling pathways activated in platelet concentrates. Soluble CD40L is a good candidate for platelet activation in an auto-amplification loop. In this review, we describe the immunomodulatory role of CD40L in physiological and pathological conditions. We will focus on the main signaling pathways activated by CD40L after binding to its different receptors. PMID:25479079

  4. The role of neutrophil gelatinase associated lipocalin (NGAL) as biological constituent linking depression and cardiovascular disease.

    Science.gov (United States)

    Gouweleeuw, L; Naudé, P J W; Rots, M; DeJongste, M J L; Eisel, U L M; Schoemaker, R G

    2015-05-01

    Depression is more common in patients with cardiovascular disease than in the general population. Conversely, depression is a risk factor for developing cardiovascular disease. Comorbidity of these two pathologies worsens prognosis. Several mechanisms have been indicated in the link between cardiovascular disease and depression, including inflammation. Systemic inflammation can have long-lasting effects on the central nervous system, which could be associated with depression. NGAL is an inflammatory marker and elevated plasma levels are associated with both cardiovascular disease and depression. While patients with depression show elevated NGAL levels, in patients with comorbid heart failure, NGAL levels are significantly higher and associated with depression scores. Systemic inflammation evokes NGAL expression in the brain. This is considered a proinflammatory effect as it is involved in microglia activation and reactive astrocytosis. Animal studies support a direct link between NGAL and depression/anxiety associated behavior. In this review we focus on the role of NGAL in linking depression and cardiovascular disease. Copyright © 2015 Elsevier Inc. All rights reserved.

  5. Biology and Role of Aedes albopictus (Skuse 1894 as Vector of Diseases

    Directory of Open Access Journals (Sweden)

    Hasan Boesri

    2011-12-01

    Full Text Available Behavior of the mosquito Aedes albopictus is generally res ting outside the home with the brood in a natural or artificial containers protected from sunlight. Human biting activity between the hours of9:00 to 11:00 and between the hours of 17:00 to 18:00 inside and outside the home. The period of rest after sucking the blood 4-5 days and is ready to lie. Habitat or the environment that most coveted of th is mosquito is a forest or gar­den with temperatures of 24-30 0 C. eggs hatch after 4-5 days with a temperature of 24-30 0 C, the eggs usually form elus ters of 49-60 eggs Larvae and pupae usually found in contain­ers, pieces of bambo containing water. The period of the larvae to adults between 20-25 days. The spread of Ae albopictus mosquitoes from Africa, India, Pakistan, Sri Lanka, Thai­land, Malaysia, Vietnam, Papua New Guinea, northern Australia, and Indonesia. Role in disease transmission is a secondary vector or as the primary vector of dengue hemorrhagic fever. On viral diseases that attack the nerves like encephalistis Japanese, Western or East­ern encephalistis, and Chikuguya has been demonstrated by laboratories, as well as on ani­mal diseases caused by Dirofilaria immitis agent, Plasmodium lophurae, P. gallinaceum, and P. fallax.

  6. Overview on the Role of Advance Genomics in Conservation Biology of Endangered Species

    Directory of Open Access Journals (Sweden)

    Suliman Khan

    2016-01-01

    Full Text Available In the recent era, due to tremendous advancement in industrialization, pollution and other anthropogenic activities have created a serious scenario for biota survival. It has been reported that present biota is entering a “sixth” mass extinction, because of chronic exposure to anthropogenic activities. Various ex situ and in situ measures have been adopted for conservation of threatened and endangered plants and animal species; however, these have been limited due to various discrepancies associated with them. Current advancement in molecular technologies, especially, genomics, is playing a very crucial role in biodiversity conservation. Advance genomics helps in identifying the segments of genome responsible for adaptation. It can also improve our understanding about microevolution through a better understanding of selection, mutation, assertive matting, and recombination. Advance genomics helps in identifying genes that are essential for fitness and ultimately for developing modern and fast monitoring tools for endangered biodiversity. This review article focuses on the applications of advanced genomics mainly demographic, adaptive genetic variations, inbreeding, hybridization and introgression, and disease susceptibilities, in the conservation of threatened biota. In short, it provides the fundamentals for novice readers and advancement in genomics for the experts working for the conservation of endangered plant and animal species.

  7. Good, Bad, or Ugly: the Biological Roles of Bone Marrow Fat.

    Science.gov (United States)

    Singh, Lakshman; Tyagi, Sonia; Myers, Damian; Duque, Gustavo

    2018-04-01

    Bone marrow fat expresses mixed characteristics, which could correspond to white, brown, and beige types of fat. Marrow fat could act as either energy storing and adipokine secreting white fat or as a source of energy for hematopoiesis and bone metabolism, thus acting as brown fat. However, there is also a negative interaction between marrow fat and other elements of the bone marrow milieu, which is known as lipotoxicity. In this review, we will describe the good and bad roles of marrow fat in the bone, while focusing on the specific components of the negative effect of marrow fat on bone metabolism. Lipotoxicity in the bone is exerted by bone marrow fat through the secretion of adipokines and free fatty acids (FFA) (predominantly palmitate). High levels of FFA found in the bone marrow of aged and osteoporotic bone are associated with decreased osteoblastogenesis and bone formation, decreased hematopoiesis, and increased osteoclastogenesis. In addition, FFA such as palmitate and stearate induce apoptosis and dysfunctional autophagy in the osteoblasts, thus affecting their differentiation and function. Regulation of marrow fat could become a therapeutic target for osteoporosis. Inhibition of the synthesis of FFA by marrow fat could facilitate osteoblastogenesis and bone formation while affecting osteoclastogenesis. However, further studies testing this hypothesis are still required.

  8. The Role of microRNAs in the Biology of Rare Diseases

    Directory of Open Access Journals (Sweden)

    Domenica Taruscio

    2011-10-01

    Full Text Available Rare diseases (RD are characterized by low prevalence and affect not more than five individuals per 10,000 in the European population; they are a large and heterogeneous group of disorders including more than 7,000 conditions and often involve all organs and tissues, with several clinical subtypes within the same disease. Very often information concerning either diagnosis and/or prognosis on many RD is insufficient. microRNAs are a class of small non-coding RNAs that regulate gene expression at the posttranscriptional level by either degrading or blocking translation of messenger RNA targets. Recently, microRNA expression patterns of body fluids underscored their potential as noninvasive biomarkers for various diseases. The role of microRNAs as potential biomarkers has become particularly attractive. The identification of disease-related microRNAs is essential for understanding the pathogenesis of diseases at the molecular level, and is critical for designing specific molecular tools for diagnosis, treatment and prevention. Computational analysis of microRNA-disease associations is an important complementary means for prioritizing microRNAs for further experimental examination. In this article, we explored the added value of miRs as biomarkers in a selected panel of RD hitting different tissues/systems at different life stages, but sharing the need of better biomarkers for diagnostic and prognostic purposes.

  9. Overview on the Role of Advance Genomics in Conservation Biology of Endangered Species.

    Science.gov (United States)

    Khan, Suliman; Nabi, Ghulam; Ullah, Muhammad Wajid; Yousaf, Muhammad; Manan, Sehrish; Siddique, Rabeea; Hou, Hongwei

    2016-01-01

    In the recent era, due to tremendous advancement in industrialization, pollution and other anthropogenic activities have created a serious scenario for biota survival. It has been reported that present biota is entering a "sixth" mass extinction, because of chronic exposure to anthropogenic activities. Various ex situ and in situ measures have been adopted for conservation of threatened and endangered plants and animal species; however, these have been limited due to various discrepancies associated with them. Current advancement in molecular technologies, especially, genomics, is playing a very crucial role in biodiversity conservation. Advance genomics helps in identifying the segments of genome responsible for adaptation. It can also improve our understanding about microevolution through a better understanding of selection, mutation, assertive matting, and recombination. Advance genomics helps in identifying genes that are essential for fitness and ultimately for developing modern and fast monitoring tools for endangered biodiversity. This review article focuses on the applications of advanced genomics mainly demographic, adaptive genetic variations, inbreeding, hybridization and introgression, and disease susceptibilities, in the conservation of threatened biota. In short, it provides the fundamentals for novice readers and advancement in genomics for the experts working for the conservation of endangered plant and animal species.

  10. Macrophage biology plays a central role during ionizing radiation-elicited tumor response

    Directory of Open Access Journals (Sweden)

    Qiuji Wu

    2017-08-01

    Full Text Available Radiation therapy is one of the major therapeutic modalities for most solid tumors. The anti-tumor effect of radiation therapy consists of the direct tumor cell killing, as well as the modulation of tumor microenvironment and the activation of immune response against tumors. Radiation therapy has been shown to promote immunogenic cells death, activate dendritic cells and enhance tumor antigen presentation and anti-tumor T cell activation. Radiation therapy also programs innate immune cells such as macrophages that leads to either radiosensitization or radioresistance, according to different tumors and different radiation regimen studied. The mechanisms underlying radiation-induced macrophage activation remain largely elusive. Various molecular players such as NF-κB, MAPKs, p53, reactive oxygen species, inflammasomes have been involved in these processes. The skewing to a pro-inflammatory phenotype thus results in the activation of anti-tumor immune response and enhanced radiotherapy effect. Therefore, a comprehensive understanding of the mechanism of radiation-induced macrophage activation and its role in tumor response to radiation therapy is crucial for the development of new therapeutic strategies to enhance radiation therapy efficacy.

  11. Sphingosine 1-phosphate (S1P) signalling: Role in bone biology and potential therapeutic target for bone repair.

    Science.gov (United States)

    Sartawi, Ziad; Schipani, Ernestina; Ryan, Katie B; Waeber, Christian

    2017-11-01

    The lipid mediator sphingosine 1-phosphate (S1P) affects cellular functions in most systems. Interest in its therapeutic potential has increased following the discovery of its G protein-coupled receptors and the recent availability of agents that can be safely administered in humans. Although the role of S1P in bone biology has been the focus of much less research than its role in the nervous, cardiovascular and immune systems, it is becoming clear that this lipid influences many of the functions, pathways and cell types that play a key role in bone maintenance and repair. Indeed, S1P is implicated in many osteogenesis-related processes including stem cell recruitment and subsequent differentiation, differentiation and survival of osteoblasts, and coupling of the latter cell type with osteoclasts. In addition, S1P's role in promoting angiogenesis is well-established. The pleiotropic effects of S1P on bone and blood vessels have significant potential therapeutic implications, as current therapeutic approaches for critical bone defects show significant limitations. Because of the complex effects of S1P on bone, the pharmacology of S1P-like agents and their physico-chemical properties, it is likely that therapeutic delivery of S1P agents will offer significant advantages compared to larger molecular weight factors. Hence, it is important to explore novel methods of utilizing S1P agents therapeutically, and improve our understanding of how S1P and its receptors modulate bone physiology and repair. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. The role of thermogenesis in the pollination biology of the Amazon waterlily Victoria amazonica.

    Science.gov (United States)

    Seymour, Roger S; Matthews, Philip G D

    2006-12-01

    Several families of tropical plants have thermogenic flowers that show a 2-d protogynous sequence. Most are pollinated by large beetles that remain for the entire period in the flowers, where they compete for mates and feed. Active beetles require high body temperatures that they can achieve endogenously at great energy expense or attain passively and cheaply in a warm environment. Floral heating is therefore hypothesized to be a direct energy reward to endothermic beetles, in addition to its accepted role in enhancing scent production. This study measures the pattern of floral heat production (as temperature in 20 flowers and respiration rates in five flowers) in Victoria amazonica at field sites in Guyana and correlates floral temperatures with body temperatures necessary for activity in visiting Cyclocephala hardyi beetles. Thermogenesis occurred in a bimodal pattern, with peaks associated with the arrival and departure of beetles near sunset. Peak CO(2) production rates averaged 2.9 micromol s(-1), equivalent to a heat production of 1.4 W. Heat was generated mainly in the floral chamber on the first evening and by the stamen complex on the second. Mean chamber temperature remained between 29.3 and 34.7 degrees C during the first night, when ambient temperature was 23.5-25.2 degrees C. Beetles actively competed for mates and consumed stylar processes in the floral chamber, where their mean thoracic temperature was 33.2 degrees C. At the lower ambient temperatures outside of the flower, beetles capable of sustained flight had a similar mean temperature of 32.0 degrees C. Floral heating is not only associated with attraction, but continues throughout the night when beetles are active inside the flower and increases again when they leave. Floral chamber temperatures similar to activity temperatures of actively endothermic beetles imply that thermogenesis is an energy reward.

  13. BIOLOGICAL ROLE OF ALDO-KETO REDUCTASES IN RETINOIC ACID BIOSYNTHESIS AND SIGNALING

    Directory of Open Access Journals (Sweden)

    F. Xavier eRuiz

    2012-04-01

    Full Text Available Several aldo-keto reductase (AKR enzymes from subfamilies 1B and 1C show retinaldehyde reductase activity, having low Km and kcat values. Only AKR1B10 and 1B12, with all-trans-retinaldehyde, and AKR1C3, with 9-cis-retinaldehyde, display high catalytic efficiency. Major structural determinants for retinaldehyde isomer specificity are located in the external loops (A and C for AKR1B10, and B for AKR1C3, as assessed by site-directed mutagenesis and molecular dynamics. Cellular models have shown that AKR1B and 1C enzymes are well suited to work in vivo as retinaldehyde reductases and to regulate retinoic acid (RA biosynthesis at hormone pre-receptor level. An additional physiological role for the retinaldehyde reductase activity of these enzymes, consistent with their tissue localization, is their participation in β-carotene absorption. Retinaldehyde metabolism may be subjected to subcellular compartmentalization, based on enzyme localization. While retinaldehyde oxidation to RA takes place in the cytosol, reduction to retinol could take place in the cytosol by AKRs or in the membranes of endoplasmic reticulum by microsomal retinaldehyde reductases. Upregulation of some AKR1 enzymes in different cancer types may be linked to their induction by oxidative stress and to their participation in different signaling pathways related to cell proliferation. AKR1B10 and AKR1C3, through their retinaldehyde reductase activity, trigger a decrease in the RA biosynthesis flow, resulting in RA deprivation and consequently lower differentiation, with an increased cancer risk in target tissues. Rational design of selective AKR inhibitors could lead to development of novel drugs for cancer treatment as well as reduction of chemotherapeutic drug resistance.

  14. Biological roles and therapeutic potential of hydroxy-carboxylic acid receptors

    Directory of Open Access Journals (Sweden)

    Kashan eAhmed

    2011-10-01

    Full Text Available In the recent past, deorphanization studies have described intermediates of energy metabolism to activate G protein-coupled receptors (GPCRs and to thereby regulate metabolic functions. GPR81, GPR109A and GPR109B, formerly known as the nicotinic acid receptor family, are encoded by clustered genes and share a high degree of sequence homology. Recently, hydroxy-carboxylic acids were identified as endogenous ligands of GPR81, GPR109A and GPR109B, and therefore these receptors have been placed into a novel receptor family of hydroxy-carboxylic acid (HCA receptors. The HCA1 receptor (GPR81 is activated by the glycolytic metabolite 2-hydroxy-propionic acid (lactate, the HCA2 receptor is activated by the ketone body 3-hydroxy-butyric acid and the HCA3 receptor (GPR109B is a receptor for the β-oxidation intermediate 3-hydroxy-octanoic acid. While HCA1 and HCA2 receptors are present in most mammalian species, the HCA3 receptor is exclusively found in humans and higher primates. HCA receptors are expressed in adipose tissue and mediate anti-lipolytic effects in adipocytes through Gi-type G-protein-dependent inhibition of adenylyl cyclase. HCA2 and HCA3 inhibit lipolysis during conditions of increased β-oxidation such as prolonged fasting, whereas HCA1 mediates the anti-lipolytic effects of insulin in the fed state. As HCA2 is a receptor for the established anti-dyslipidemic drug nicotinic acid, HCA1 and HCA3 also represent promising drug targets and several synthetic ligands for HCA receptors have been developed. In this article, we will summarize the deorphanization and pharmacological characterization of HCA receptors. Moreover, we will discuss recent progress in elucidating the physiological and pathophysiological role to further evaluate the therapeutic potential of the HCA receptor family for the treatment of metabolic disease.

  15. Cathelicidin suppresses colon cancer development by inhibition of cancer associated fibroblasts

    Directory of Open Access Journals (Sweden)

    Cheng M

    2014-12-01

    Full Text Available Michelle Cheng,1,* Samantha Ho,1,* Jun Hwan Yoo,1,2,* Deanna Hoang-Yen Tran,1,* Kyriaki Bakirtzi,1 Bowei Su,1 Diana Hoang-Ngoc Tran,1 Yuzu Kubota,1 Ryan Ichikawa,1 Hon Wai Koon1 1Center for Inflammatory Bowel Diseases, Division of Digestive Diseases, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA; 2Digestive Disease Center, CHA University Bundang Medical Center, Seongnam, Republic of Korea *These authors share co-first authorship Background: Cathelicidin (LL-37 in humans and mCRAMP in mice represents a family of endogenous antimicrobial and anti-inflammatory peptides. Cancer-associated fibroblasts can promote the proliferation of colon cancer cells and growth of colon cancer tumors. Methods: We examined the role of cathelicidin in the development of colon cancer, using subcutaneous human HT-29 colon-cancer-cell-derived tumor model in nude mice and azoxymethane- and dextran sulfate-mediated colon cancer model in C57BL/6 mice. We also determined the indirect antitumoral mechanism of cathelicidin via the inhibition of epithelial–mesenchymal transition (EMT of colon cancer cells and fibroblast-supported colon cancer cell proliferation. Results: Intravenous administration of cathelicidin expressing adeno-associated virus significantly reduced the size of tumors, tumor-derived collagen expression, and tumor-derived fibroblast expression in HT-29-derived subcutaneous tumors in nude mice. Enema administration of the mouse cathelicidin peptide significantly reduced the size and number of colonic tumors in azoxymethane- and dextran sulfate-treated mice without inducing apoptosis in tumors and the adjacent normal colonic tissues. Cathelicidin inhibited the collagen expression and vimentin-positive fibroblast expression in colonic tumors. Cathelicidin did not directly affect HT-29 cell viability, but did significantly reduce tumor growth factor-ß1-induced EMT of colon cancer cells. Media conditioned by the

  16. [Role of different scale structures of titanium implant in the biological behaviors of human umbilical vein endothelial cells].

    Science.gov (United States)

    Liang, N W; Shi, L; Huang, Y; Deng, X L

    2017-02-18

    To study the role of different scale structure of Ti implants on the biological behaviors of human umbilical vein endothelial cell (HUVECs) and to reveal the role of material surface topographical features on peri-implant angiogenesis. Titanium (Ti) discs with different surface structures (Ti discs with smooth surface, Ti discs with nano scale structure, Ti discs with micro scale structure and Ti discs with micro/nano scale structure, named as SM-Ti, Nano-Ti, Micro-Ti and Micro/Nano-Ti, respectively) were prepared and their surface topographical features were confirmed via scanning electron microscopy (SEM) observation. HUVECs were cultured on these Ti discs. Biological outcomes of HUVECs on different surfaces were carried out, including cell adhesive capacity, proliferation, vascular endothelial growth factor (VEGF) production and intracellular expression of Ca(2+). The results of SEM images and immunofluorescence double staining of rhodamine-phalloidin and DAPI showed that compared with the SM-Ti and Nano-Ti group, the adhesive capacity and proliferation behavior of HUVECs on the surfaces of Micro-Ti and Micro/Nano-Ti was decreased. The results of culturing HUVECs on different groups of Ti discs after 24 hours showed that the cells number grew from (18±4) to (42±6)/ vision on SM-Ti, (28±6) to (52±10)/vision on Nano-Ti, (20±4) to (21±6)/vision on Micro-Ti and (16±4) to (18±6)/vision on Micro/Nano-Ti. Moreover, compared with the adhesion and proliferation of HUVECs on SM-Ti group and Nano-Ti, the adhesion and proliferation of HUVECs on Micro-Ti group and Micro/Nano-Ti group was significantly reduced (PMicro-Ti and Micro/Nano-Ti were (690±35) ng/L, (560±20) ng/L, (474±43) ng/L and (517±29) ng/L, respectively. Moreover, compared with the VEGF production of HUVECs on SM-Ti group, the VEGF production of HUVECs on Micro-Ti group and Micro/Nano-Ti group was significantly reduced (PMicro-Ti and Micro/Nano-Ti was significantly higher than that on the surface of

  17. The role of CD40 expression in dendritic cells in cancer biology; a systematic review.

    Science.gov (United States)

    Lee, Gui Han; Askari, Alan; Malietzis, George; Bernardo, David; Clark, Susan K; Knight, Stella C; Al-Hassi, Hafid Omar

    2014-01-01

    for further studies on the role of CD40-CD40 ligand pathway to inform cancer treatment.

  18. Fibroblast growth factor signaling in metabolic regulation

    Directory of Open Access Journals (Sweden)

    Vera eNies

    2016-01-01

    Full Text Available The prevalence of obesity is a growing health problem. Obesity is strongly associated with several comorbidities, such as non-alcoholic fatty liver disease, certain cancers, insulin resistance and type 2 diabetes, which all reduce life expectancy and life quality. Several drugs have been put forward in order to treat these diseases, but many of them have detrimental side effects. The unexpected role of the family of fibroblast growth factors in the regulation of energy metabolism provides new approaches to the treatment of metabolic diseases, and offers a valuable tool to gain more insight into metabolic regulation. The known beneficial effects of FGF19 and FGF21 on metabolism, together with recently discovered similar effects of FGF1 suggest that FGFs and their derivatives carry great potential as novel therapeutics to treat metabolic conditions. To facilitate the development of new therapies with improved targeting and minimal side effects, a better understanding of the molecular mechanism of action of FGFs is needed.In this review we will discuss what is currently known about the physiological roles of FGF signaling in tissues important for metabolic homeostasis. In addition, we will discuss current concepts regarding their pharmacological properties and effector tissues in the context of metabolic disease. Also the recent progress in the development of FGF variants will be reviewed. Our goal is to provide a comprehensive overview of the current concepts and consensuses regarding FGF signaling in metabolic health and disease, and to provide starting points for the development of FGF-based therapies against metabolic conditions.

  19. Roles of a solo LuxR in the biological control agent Lysobacter enzymogenes strain OH11.

    Science.gov (United States)

    Qian, Guoliang; Xu, Feifei; Venturi, Vittorio; Du, Liangcheng; Liu, Fengquan

    2014-03-01

    Lysobacter enzymogenes is a ubiquitous plant-associated and environmentally friendly bacterium emerging as a novel biological control agent of plant disease. This bacterium produces diverse antifungal factors, such as lytic enzymes and a secondary metabolite (heat-stable antifungal factor [HSAF]) having antifungal activity with a novel structure and mode of action. The regulatory mechanisms for biosynthesis of antifungal factors is largely unknown in L. enzymogenes. The solo LuxR proteins have been shown to be widespread, playing important roles in plant-associated bacteria. Here, we cloned and studied a solo LuxR protein, LesR, from L. enzymogenes strain OH11. Overexpression but not deletion of lesR significantly impaired HSAF biosynthesis levels and antimicrobial activities but did not show visible effect on production of major lytic enzymes. Overexpression of lesR also led to remarkably accelerated cell aggregation and induced production of a melanin-like pigment in L. enzymogenes; these two phenotypes are mediated by the diffusible factor cell-to-cell signaling system of L. enzymogenes. The C-terminus helix-turn-helix domain was shown to be critical for several lesR-controlled functions. Overall, our study provides the first example of the roles and mechanisms of a solo LuxR protein in a plant-associated L. enzymogenes.

  20. Regulation of HGF and SDF-1 expression by oral fibroblasts--implications for invasion of oral cancer.

    Science.gov (United States)

    Daly, Aisling J; McIlreavey, Leanne; Irwin, Chris R

    2008-07-01

    Invasion and metastasis of oral squamous cell carcinoma (OSCC) is dependent on signals received from stromal fibroblasts present in the surrounding connective tissue. The aim of this study was to investigate the regulation of expression of two important signaling molecules--HGF and SDF-1--by both stromal fibroblasts and their 'activated' form, myofibroblasts, and to determine the role of these two factors in stimulating OSCC cell invasion in vitro. Fibroblasts and myofibroblasts produced similar levels of HGF and SDF-1. IL-1alpha and OSCC cell conditioned medium both stimulated HGF and SDF-1 expression, while TGF-beta(1) inhibited production of each factor. Myofibroblast-derived conditioned medium stimulated OSCC cell invasion through matrigel. Blocking antibodies to both HGF and SDF-1 reduced the level of invasion. In fibroblast-free organotypic raft cultures, addition of HGF and SDF-1 stimulated OSCC cell invasion into the underlying collagen gel, although the pattern of invasion differed from that induced by fibroblasts. Fibroblast-derived HGF and SDF-1 appear to play central roles in the reciprocal interactions between OSCC cells and underlying stromal fibroblasts leading to the local invasion of oral cancer.

  1. Pengaruh Cairan Cultur Filtrate Fibroblast (CFF Terhadap Penyembuhan Luka; Penelitian eksperimental pada Rattus Norvegicus Galur Wistar

    Directory of Open Access Journals (Sweden)

    Oky Masir

    2012-11-01

    Full Text Available AbstrakLatar belakang:Metode penyembuhan luka telah mengalami perkembangan, baik berupa suatu produk atau stimulan terhadap proses biologis tubuh dalam menkompensasi luka. Fibroblas merupakan salah satu komponen penyembuhan yang berperan penting dalam proses fibroplasia. Culture Filtrate Fibroblast (CFF merupakan hasil kultur fibroblas yang akan dibuktikan efeknya terhadap proses percepatan penyembuhan luka pada penelitian ini. Metode. Penelitian ini menggunakan desain eksperimental dengan metode post test only control group design dan rancangan acak kelompok (RAK dengan menggunakan tikus putih wistar. Hewan coba dibagi menjadi 4 kelompok, yaitu 2 kelompok perlakuan yang diberikan CFF ke area eksisi luka dan kelompok kontrol yang diberikan larutan NaCl 0,9% ke area eksisi luka. Data diolah dengan SPSS 16.0. Data Kategori dianalisa dengan Chi-squared dan data numerik dengan Independent T-test. Hasil. Dari tingkat penyembuhan tidak ditemukan perbedaan pada kedua kelompok, namun perubahan restriksi jaringan lebih besar pada kelompok perlakuan. Pada skor pembentukan kolagen, derajat epitelisasi serta jumlah pembentukan pembuluh darah baru pada hari ke-3 tidak ditemukan perbedaan antara kedua kelompok. Namun pada pengamatan hari ke-7 memperlihatkan pembentukan kolagen, derajat epitelisasi serta jumlah pembentukan pembuluh darah baru lebih banyak pada kelompok perlakuan. Pada fibrosis hari ke-3 dan hari ke-7 memperlihatkan terjadinya fibrosis lebih banyak pada kelompok perlakuan dibanding kontrol. Pada pengamatan terjadinya infeksi hari ke-3 memperlihatkan infeksi lebih sedikit pada kelompok perlakuan dan terjadinya infeksi sama pada hari ke-7. Kesimpulan. CFF memberikan tingkat penyembuhan luka yang lebih baik dibanding NaCl.Kata kunci: CFF, NaCl 0,9 %, tingkat penyembuhan luka.Abstract Background: Wound healing methods have been developed, either a product or a stimulant to the body's biological processes in wound compensation. Fibroblasts is one

  2. TAXONOMIC DIVERSITY AND THE ROLE OF ALGAEFLORA FOR BIOLOGICAL DEPURATION OF WATERS FROM RIVER COGÂLNIC (R. MOLDOVA

    Directory of Open Access Journals (Sweden)

    SALARU VICTOR

    2008-11-01

    Full Text Available During 2004-2005 there were performed studies regarding the taxonomic structure of the algaeflora in river Cogâlnic in order to point out the role of the algae during the process of water quality improvement and the role of the indicator of the most representative species. River Cogâlnic, or Cunduc, starts from nearby village Iurceni, district Nisporeni and flows into lake Sasac, and runs for a distance of 243 km. Decrease of the analyzed water quality from the river is caused by the sewerage waters from different sectors from town Hinceshti and Cimishlia that are directed into the river without any depuration. We've studied about 118 samples in which we've discovered about 382 species and intraspecific taxonomic units of algae of the following types: Cyanophyta -73, Euglenophyta-75, Chlorophyta-111, Xantophyta-3, Bacillariophyta-118 and Chrysophyta-2. Mass development of the euglena within Colgalnic river, among which are the following types of species Euglena-26, Trachelomonas-14 and Phacus-13, demonstrate a high level of trophicity in water. Among the chloride algae predominate the following species Scenedesmus-21, and from cyanophyta species predominates Oscillatoria-23. The high taxonomic level of the bacillariophyta algae is determined by species as Navicula-27, Nitzschia-24 and Surirella-16. Most of species refer to categories β and β-α , demonstrating a high level of water pollution. This fact speaks about the high concentration of nitrogen and phosphor compounds in water. It was demonstrated that as far as we go from the places were the sewerage waters flow into the river, the excessive quantities of biological elements decrease clearly. Also, go down the quantity of bicarbonates and oxidizers. Numeric growth of the algae is nothing else but a positive role for water depuration.

  3. Simultaneous Expression of Cancer Stem Cell-Like Properties and Cancer-Associated Fibroblast-Like Properties in a Primary Culture of Breast Cancer Cells

    Energy Technology Data Exchange (ETDEWEB)

    Ishikawa, Mami; Inoue, Takahiro; Shirai, Takuma; Takamatsu, Kazuhiko; Kunihiro, Shiori; Ishii, Hirokazu [Frontiers of Innovative Research in Science and Technology (FIRST), Konan University, Kobe 650-0047 (Japan); Nishikata, Takahito, E-mail: nisikata@konan-u.ac.jp [Frontiers of Innovative Research in Science and Technology (FIRST), Konan University, Kobe 650-0047 (Japan); Frontier Institute for Biomolecular Engineering Research (FIBER), Konan University, Kobe 650-0047 (Japan)

    2014-07-31

    The importance of cancer-associated fibroblasts (CAFs) in cancer biology has been recently highlighted owing to their critical roles in cancer growth, progression, metastasis, and therapeutic resistance. We have previously established a primary culture of breast cancer cells, which showed epithelial-mesenchymal transition and cancer stem cell-like properties. In this study, we found that the primary culture also showed CAF-like properties. For example, hypoxia inducible factor 1α (HIF1A) and its downstream genes, nuclear factor-kappa B2 (NF-κB2) and BCL2/adenovirus E1B 19 kd-interacting protein 3 (BNIP3), and many enzymes involved in glycolysis, such as GAPDH, LDH, PGAM1, and PKM2, were highly overexpressed in the primary culture. Moreover, media conditioned with the primary culture cells enhanced the growth of breast cancer cells. Similar to previous CAF studies, this enhancement suggested to be occurred through fibroblast growth factor signaling. This MCKH primary culture cell, which showed simultaneous expression of tumorigenic and CAF properties, offers a unique experimental system for studying the biology of CAFs.

  4. One in vitro model for visceral adipose-derived fibroblasts in chronic inflammation

    International Nuclear Information System (INIS)

    Yue Guiping; Du Lirui; Xia Tao; He Xianhui; Qiu Huan; Xu Lihui; Chen Xiaodong; Feng Shengqiu; Yang Zaiqing

    2005-01-01

    One pathogenesis of the obesity-associated complications is that consistent with increased body fat mass, the elevation of adipose tissue-derived cytokines inflicts a low-grade chronic inflammation, which ultimately leads to metabolic disorders. Adipocytes and macrophages in visceral adipose (VA) have been confirmed to contribute to the chronic inflammation; however, the role of the resident fibroblasts is still unknown. We established one VA fibroblast cell line, termed VAFC. Morphological analysis indicated that there were large numbers of pits at the cell plasma membrane. In vitro VAFC cells promoted bone marrow cells to differentiate into macrophages and protected them from apoptosis in the serum-free conditions. Additionally, they also interfered in lymphocytes proliferation. On the basis of these results, this cell line might be an in vitro model for understanding the role of adipose-derived fibroblasts in obesity-associated chronic inflammation

  5. Human skeletal muscle fibroblasts stimulate in vitro myogenesis and in vivo muscle regeneration

    DEFF Research Database (Denmark)

    Mackey, Abigail L; Magnan, Mélanie; Chazaud, Bénédicte

    2017-01-01

    immediately surrounding regenerating muscle fibres. These novel findings indicate an important role for fibroblasts in supporting the regeneration of muscle fibres, potentially through direct stimulation of satellite cell differentiation and fusion, and contribute to understanding of cell-cell cross......-talk during physiological and pathological muscle remodelling. ABSTRACT: Accumulation of skeletal muscle extracellular matrix is an unfavourable characteristic of many muscle diseases, muscle injury and sarcopenia. In addition to the indispensable role satellite cells play in muscle regeneration......, there is emerging evidence in rodents for a regulatory influence on fibroblast activity. However, the influence of fibroblasts on satellite cells and muscle regeneration in humans is unknown. The purpose of this study was to investigate this in vitro and during in vivo regeneration in humans. Following a muscle...

  6. Quantification of epithelial cells in coculture with fibroblasts by fluorescence image analysis.

    Science.gov (United States)

    Krtolica, Ana; Ortiz de Solorzano, Carlos; Lockett, Stephen; Campisi, Judith

    2002-10-01

    To demonstrate that senescent fibroblasts stimulate the proliferation and neoplastic transformation of premalignant epithelial cells (Krtolica et al.: Proc Natl Acad Sci USA 98:12072-12077, 2001), we developed methods to quantify the proliferation of epithelial cells cocultured with fibroblasts. We stained epithelial-fibroblast cocultures with the fluorescent DNA-intercalating dye 4,6-diamidino-2-phenylindole (DAPI), or expressed green fluorescent protein (GFP) in the epithelial cells, and then cultured them with fibroblasts. The cocultures were photographed under an inverted microscope with appropriate filters, and the fluorescent images were captured with a digital camera. We modified an image analysis program to selectively recognize the smaller, more intensely fluorescent epithelial cell nuclei in DAPI-stained cultures and used the program to quantify areas with DAPI fluorescence generated by epithelial nuclei or GFP fluorescence generated by epithelial cells in each field. Analysis of the image areas with DAPI and GFP fluorescences produced nearly identical quantification of epithelial cells in coculture with fibroblasts. We confirmed these results by manual counting. In addition, GFP labeling permitted kinetic studies of the same coculture over multiple time points. The image analysis-based quantification method we describe here is an easy and reliable way to monitor cells in coculture and should be useful for a variety of cell biological studies. Copyright 2002 Wiley-Liss, Inc.

  7. Cancer Associated Fibroblasts and Tumor Growth: Focus on Multiple Myeloma

    International Nuclear Information System (INIS)

    De Veirman, Kim; Rao, Luigia; De Bruyne, Elke; Menu, Eline; Van Valckenborgh, Els; Van Riet, Ivan; Frassanito, Maria Antonia; Di Marzo, Lucia; Vacca, Angelo; Vanderkerken, Karin

    2014-01-01

    Cancer associated fibroblasts (CAFs) comprise a heterogeneous population that resides within the tumor microenvironment. They actively participate in tumor growth and metastasis by production of cytokines and chemokines, and the release of pro-inflammatory and pro-angiogenic factors, creating a more supportive microenvironment. The aim of the current review is to summarize the origin and characteristics of CAFs, and to describe the role of CAFs in tumor progression and metastasis. Furthermore, we focus on the presence of CAFs in hypoxic conditions in relation to multiple myeloma disease

  8. Cancer Associated Fibroblasts and Tumor Growth: Focus on Multiple Myeloma

    Energy Technology Data Exchange (ETDEWEB)

    De Veirman, Kim, E-mail: kdeveirm@vub.ac.be [Department of Hematology and Immunology, Myeloma Center Brussels, Vrije Universiteit Brussel (VUB), Brussels 1090 (Belgium); Rao, Luigia [Department of Hematology and Immunology, Myeloma Center Brussels, Vrije Universiteit Brussel (VUB), Brussels 1090 (Belgium); Department of Biomedical Sciences and Human Oncology, Section of Internal Medicine, University of Bari Medical School, Bari I-70124 (Italy); De Bruyne, Elke; Menu, Eline; Van Valckenborgh, Els [Department of Hematology and Immunology, Myeloma Center Brussels, Vrije Universiteit Brussel (VUB), Brussels 1090 (Belgium); Van Riet, Ivan [Department of Hematology and Immunology, Myeloma Center Brussels, Vrije Universiteit Brussel (VUB), Brussels 1090 (Belgium); Stem Cell Laboratory, Division of Clinical Hematology, Universitair Ziekenhuis Brussel (UZ Brussel), Brussels 1090 (Belgium); Frassanito, Maria Antonia [Department of Biomedical Sciences and Human Oncology, Section of General Pathology, University of Bari Medical School, Bari I-70124 (Italy); Di Marzo, Lucia; Vacca, Angelo [Department of Biomedical Sciences and Human Oncology, Section of Internal Medicine, University of Bari Medical School, Bari I-70124 (Italy); Vanderkerken, Karin, E-mail: kdeveirm@vub.ac.be [Department of Hematology and Immunology, Myeloma Center Brussels, Vrije Universiteit Brussel (VUB), Brussels 1090 (Belgium)

    2014-06-27

    Cancer associated fibroblasts (CAFs) comprise a heterogeneous population that resides within the tumor microenvironment. They actively participate in tumor growth and metastasis by production of cytokines and chemokines, and the release of pro-inflammatory and pro-angiogenic factors, creating a more supportive microenvironment. The aim of the current review is to summarize the origin and characteristics of CAFs, and to describe the role of CAFs in tumor progression and metastasis. Furthermore, we focus on the presence of CAFs in hypoxic conditions in relation to multiple myeloma disease.

  9. TGF-beta-induced early gene-1 overexpression promotes oxidative stress protection and actin cytoskeleton rearrangement in human skin fibroblasts.

    Science.gov (United States)

    Leduc, Chloe; Sobilo, Lauren; Toumi, Hechmi; Mondon, Philippe; Lespessailles, Eric; Ossant, Fédéric; Kurfurst, Robin; Pichon, Chantal

    2016-06-01

    Transforming growth factor beta inducible early gene-1 (TIEG-1), a member of the Krüppel-like factor, was identified as a primary response gene for TGF-β. The role of TIEG-1 in skin repair has been mainly addressed in vivo on TIEG-1 null mice model and the mechanism remains unexplored. We investigated the modulation of TIEG-1 expression in normal human skin fibroblasts by either down-expressing or overexpressing the gene. We evaluated reactive oxygen species production and the cell viability of treated cells. The effect of TIEG-1 overexpression was monitored by wound healing assay and immunofluorescence staining of actin fibers organization and alpha-smooth muscle actin (α-SMA). Western blots were carried out to identify the level of expression or phosphorylation of key proteins such as cofilin, Rho GTPases, and p38 mitogen-activated protein kinase (p38 MAPK). TIEG-1 down-regulation had a deleterious effect on the cell viability. It was significantly reduced (65±5%) and exposure to ultraviolet further increased this effect (47±3%). By contrast, cells overexpressing TIEG-1 had a reduced reactive oxygen species production (75%) compared to control and mock-transfected cells. This overexpression also resulted in formation of actin stress fibers and increased α-SMA expression and an enhanced wound healing feature. RhoB GTPase was upregulated and phosphorylation of cofilin and p38 MAPK was observed. TIEG-1 overexpression in normal human skin fibroblasts results in improved resistance to oxidative stress, myofibroblast-like conversion that involved RhoB signaling pathway with cofilin and p38 MAPK proteins activation. This study enlightens the role of TIEG-1 role in skin biology. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Aminoglycoside antibiotics as a tool for the study of the biological role of calcium ions. Historical overview.

    Science.gov (United States)

    Corrado, A P; de Morais, I P; Prado, W A

    1989-01-01

    Beginning with the pioneering work of Vital-Brazil and Corrado (1957), which suggested a possible interaction between aminoglycoside antibiotics (AGA) and calcium ions at the neuromuscular junction, the authors review the studies that demonstrated the existence of a competitive antagonism between AGA and calcium ions. In view of the low liposolubility of AGA and their inability to cross biological membranes, this antagonism seems to occur exclusively at calcium-binding sites at the level of the outer opening of calcium channels of the N-subtype, which are also the sites of interaction of omega-conotoxin. Being highly water soluble, AGA are easily removed from their binding sites with a consequent rapid reversal of their effects, a factor of primary importance to explain their wide use as tools in the pharmacological analysis of the study of the biological role of calcium ion on the membrane's outer surface. This use has advantages over the use of inorganic di- and trivalent cations such as Mg2+, Mn2+, Cd2+, Ni2+, La3+, etc., since the latter, though they are considered to be the most specific competitive antagonists of calcium ions, may induce biphasic effects due to their ability to cross the membranes and replace calcium and/or increase intracellular calcium concentration. The performance of AGA is also superior when compared with the so-called "specific" organic calcium antagonists--verapamil and nifedipine derivatives--since the latter, in addition to inducing possible biphasic effects, antagonize calcium in a non-competitive manner. Finally, the authors remark that AGA-Ca2+ antagonism relevance is not limited only to basic aspects and that it may have therapeutic implications since it provides alternatives for reducing the toxic adverse effects of this important group of antibiotics.

  11. Role of serum eosinophil cationic protein as a biological marker to assess the severity of bronchial asthma

    International Nuclear Information System (INIS)

    Begum, A.; Sattar, H.; Miah, R.A.; Saleh, A.A.; Hassan, R.; Salam, A

    2012-01-01

    Objective: The study was carried out to evaluate the role of serum eosinophil cationic protein (ECP) as a biological marker for the diagnosis and to assess the severity of bronchial asthma. Methodology: This observational cross-sectional study was conducted among 70 bronchial asthma patients and 45 disease controls (tuberculosis-15, chronic obstructive pulmonary disease-15, interstitial lung disease-15) enrolled from patients attending the outpatient department of the National Institute of Disease of the Chest and Hospital (NIDCH), Dhaka, Bangladesh during July 2010 to June 2011. Global Initiative of Asthma Management and Prevention (GINA) criteria were followed for selection of both atopic and non-atopic patients with intermittent or persistent (mild, moderate and severe) asthma. Serum level of eosinophil cationic protein (ECP), IgE, forced expiratory volume in 1 second (FEV 1% predicted) and circulatory eosinophil (CE) count were estimated. Results: Mean serum ECP level (28.8 +- 42.9 vs. 6.82 +- 3.5 ng/mL; P<0.001), IgE level (383.59 - 225.3 vs. 135 +- 131.8 IU/mL; P<0.001) and percent circulatory eosinophil count (9.95 +- 3.7 vs. 5.95 +- 1.4; P<0.024) were all found significantly raised among asthma patients than disease controls but % FEV1 was equivocal. All grades of persistent asthma patients had significantly (P<0.025 and P<0.002) higher mean ECP level than intermittent cases but serum IgE level and CE count did not differ significantly. FEV1 % predicted correlated well among moderate and severe persistent asthma but was equivocal for intermittent and mild persistent cases. Conclusion: This study has reinforced that serum eosinophil cationic protein is a dependable biological marker with more discriminatory power over other indicators for bronchial asthma and to assess its severity. (author)

  12. Effects of photodynamic therapy on dermal fibroblasts from xeroderma pigmentosum and Gorlin-Goltz syndrome patients.

    Science.gov (United States)

    Zamarrón, Alicia; García, Marta; Río, Marcela Del; Larcher, Fernando; Juarranz, Ángeles

    2017-09-29

    PDT is widely applied for the treatment of non-melanoma skin cancer pre-malignant and malignant lesions (actinic keratosis, basal cell carcinoma and in situ squamous cell carcinoma). In photodynamic therapy (PDT) the interaction of a photosensitizer (PS), light and oxygen leads to the formation of reactive oxygen species (ROS) and thus the selective tumor cells eradication. Xeroderma pigmentosum (XP) and Gorlin-Goltz Syndrome (GS) patients are at high risk of developing skin cancer in sun-exposed areas. Therefore, the use of PDT as a preventive treatment may constitute a very promising therapeutic modality for these syndromes. Given the demonstrated role of cancer associated fibroblasts (CAFs) in tumor progression and the putative CAFs features of some cancer-prone genodermatoses fibroblasts, in this study, we have further characterized the phenotype of XP and GS dermal fibroblasts and evaluated their response to methyl-δ-aminolevulinic acid (MAL)-PDT compared to that of dermal fibroblasts obtained from healthy donors. We show here that XP/GS fibroblasts display clear features of CAFs and present a significantly higher response to PDT, even after being stimulated with UV light, underscoring the value of this therapeutic approach for these rare skin conditions and likely to other forms of skin cancer were CAFs play a major role.

  13. PAI1 mediates fibroblast-mast cell interactions in skin fibrosis.

    Science.gov (United States)

    Pincha, Neha; Hajam, Edries Yousaf; Badarinath, Krithika; Batta, Surya Prakash Rao; Masudi, Tafheem; Dey, Rakesh; Andreasen, Peter; Kawakami, Toshiaki; Samuel, Rekha; George, Renu; Danda, Debashish; Jacob, Paul Mazhuvanchary; Jamora, Colin

    2018-05-01

    Fibrosis is a prevalent pathological condition arising from the chronic activation of fibroblasts. This activation results from the extensive intercellular crosstalk mediated by both soluble factors and direct cell-cell connections. Prominent among these are the interactions of fibroblasts with immune cells, in which the fibroblast-mast cell connection, although acknowledged, is relatively unexplored. We have used a Tg mouse model of skin fibrosis, based on expression of the transcription factor Snail in the epidermis, to probe the mechanisms regulating mast cell activity and the contribution of these cells to this pathology. We have discovered that Snail-expressing keratinocytes secrete plasminogen activator inhibitor type 1 (PAI1), which functions as a chemotactic factor to increase mast cell infiltration into the skin. Moreover, we have determined that PAI1 upregulates intercellular adhesion molecule type 1 (ICAM1) expression on dermal fibroblasts, rendering them competent to bind to mast cells. This heterotypic cell-cell adhesion, also observed in the skin fibrotic disorder scleroderma, culminates in the reciprocal activation of both mast cells and fibroblasts, leading to the cascade of events that promote fibrogenesis. Thus, we have identified roles for PAI1 in the multifactorial program of fibrogenesis that expand its functional repertoire beyond its canonical role in plasmin-dependent processes.

  14. Studies of the in vivo radiosensitivity of human skin fibroblasts

    International Nuclear Information System (INIS)

    Hill, Richard P.; Kaspler, Pavel; Griffin, Anthony M.; O'Sullivan, Brian; Catton, Charles; Alasti, Hamideh; Abbas, Ahmar; Heydarian, Moustafa; Ferguson, Peter; Wunder, Jay S.; Bell, Robert S.

    2007-01-01

    surgery post-irradiation. These results suggest that factors other than the radiosensitivity of the skin fibroblasts likely also play a role in wound healing in deep wound sites associated with surgery for STS following radiation therapy

  15. Biochemical mechanisms of skin radiation burns inhibition and healing by the volumetric autotransplantation of fibroblasts and of keratinocytes with fibroblasts composition

    Directory of Open Access Journals (Sweden)

    L. V. Altukhova

    2015-09-01

    the burn area, and mutual stimulation of auto-fibroblasts and auto-keratinocytes to proliferate and to synthesize biologically active substances, i.e. cytokines and growth factors.

  16. On the role of atmospheric forcing on upper ocean physics in the Southern Ocean and biological impacts

    Science.gov (United States)

    Carranza, Magdalena M.

    The Southern Ocean (SO) plays a key role in regulating climate by absorbing nearly half of anthropogenic carbon dioxide (CO2). Both physical and biogeochemical processes contribute to the net CO2 sink. As a result of global warming and ozone depletion, westerly winds have increased, with consequences for upper ocean physics but little is known on how primary producers are expected to respond to changes in atmospheric forcing. This thesis addresses the impact of atmospheric forcing on upper ocean dynamics and phytoplankton bloom development in the SO on synoptic storm scales, combining a broad range of observations derived from satellites, reanalysis, profiling floats and Southern elephant seals. On atmospheric synoptic timescales (2-10 days), relevant for phytoplankton growth and accumulation, wind speed has a larger impact on satellite Chl-a variability than surface heat fluxes or wind stress curl. In summer, strong winds are linked to deep mixed layers, cold sea surface temperatures and enhanced satellite chlorophyll-a (Chl-a), which suggest wind-driven entrainment plays a role in sustaining phytoplankton blooms at the surface. Subsurface bio-optical data from floats and seals reveal deep Chl-a fluorescence maxima (DFM) are ubiquitous in summer and tend to sit at the base of the mixed layer, but can occur in all seasons. The fact that wind speed and Chl-a correlations are maximal at zero lag time (from daily data) and incubation experiments indicate phytoplankton growth occurs 3-4 days after iron addition, suggests high winds in summer entrain Chl-a from a subsurface maximum. Vertical profiles also reveal Chl-a fluorescence unevenness within hydrographically defined mixed layers, suggesting the biological timescales of adaptation through the light gradient (i.e. growth and/or photoacclimation) are often faster than mixing timescales, and periods of quiescence between storms are long enough for biological gradients to form within the homogeneous layer in density

  17. Fibroblast adhesion and activation onto micro-machined titanium surfaces.

    Science.gov (United States)

    Guillem-Marti, J; Delgado, L; Godoy-Gallardo, M; Pegueroles, M; Herrero, M; Gil, F J

    2013-07-01

    Surface modifications performed at the neck of dental implants, in the manner of micro-grooved surfaces, can reduce fibrous tissue encapsulation and prevent bacterial colonization, thereby improving fibrointegration and the formation of a biological seal. However, the applied procedures are technically complex and/or time consuming methods. The aim of this study was to analyse the fibroblast behaviour on modified titanium surfaces obtained, applying a simple and low-cost method. An array of titanium surfaces was obtained using a commercial computerized numerical control lathe, modifying the feed rate and the cutting depth. To elucidate the potential ability of the generated surfaces to activate connective tissue cells, a thorough gene (by real time - qPCR) and protein (by western blot or zymography) expression and cellular response characterization (cell morphology, cell adhesion and cell activation by secreting extracellular matrix (ECM) components and their enzyme regulators) was performed. Micro-grooved surfaces have statistically significant differences in the groove's width (approximately 10, 50 and 100 μm) depending on the applied advancing fixed speed. Field emission scanning electron microscopy images showed that fibroblasts oriented along the generated grooves, but they were only entirely accommodated on the wider grooves (≥50 μm). Micro-grooved surfaces exhibited an earlier cell attachment and activation, as seen by collagen Iα1 and fibronectin deposition and activation of ECM remodelling enzymes, compared with the other surfaces. However, fibroblasts could remain in an activated state on narrower surfaces (fibrotic response. © 2012 John Wiley & Sons A/S.

  18. N-cadherin is overexpressed in Crohn's stricture fibroblasts and promotes intestinal fibroblast migration.

    LENUS (Irish Health Repository)

    Burke, John P

    2012-02-01

    BACKGROUND: Intestinal fibroblasts mediate stricture formation in Crohn\\'s disease (CD). Transforming growth factor-beta (TGF-beta) is important in fibroblast activation, while cell attachment and migration is regulated by the adhesion molecule N-cadherin. The aim of this study was to investigate the expression and function of N-cadherin in intestinal fibroblasts in patients with fibrostenosing CD. METHODS: Intestinal fibroblasts were cultured from seromuscular biopsies from patients undergoing resection for terminal ileal fibrostenosing CD (n = 14) or controls patients (n = 8). N-cadherin expression was assessed using Western blot and quantitative reverse-transcription polymerase chain reaction (qRT-PCR). Fibroblasts were stimulated with TGF-beta and selective pathway inhibitors Y27632, PD98050, and LY294002 were used to examine the Rho\\/ROCK, ERK-1\\/2, and Akt signaling pathways, respectively. Cell migration was assessed using a scratch wound assay. N-cadherin was selectively overexpressed using a plasmid. RESULTS: Fibroblasts from fibrostenosing CD express increased constitutive N-cadherin mRNA and protein and exhibit enhanced basal cell migration relative to those from directly adjacent normal bowel. Control fibroblasts treated with TGF-beta induced N-cadherin in a dose-dependent manner which was inhibited by Rho\\/ROCK and Akt pathway modulation. Control fibroblasts exhibited enhanced cell migration in response to treatment with TGF-beta or transfection with an N-cadherin plasmid. CONCLUSIONS: Fibroblasts from strictures in CD express increased constitutive N-cadherin and exhibit enhanced basal cell migration. TGF-beta is a potent inducer of N-cadherin in intestinal fibroblasts resulting in enhanced cell migration. The TGF-beta-mediated induction of N-cadherin may potentiate Crohn\\'s stricture formation.

  19. The Examination of the Effects of Biological Gender and Gender Identity Roles on Attitude of the Consumers to Advertisements Applied by Accomodation Operations

    Directory of Open Access Journals (Sweden)

    Evren Güçer

    2013-12-01

    Full Text Available In this study, especially focused on the concept of psychological-based gender identity and researched if there is a differentiation characteristic of consumers’ sex and gender identity roles (masculinity, femininity, androgynous and neutral on consumers’ attitude toward advertisements of accomodation establishments.According to the results,there is a general accordance between biological sex and gender identity roles of individuals and alsothe results of the previous studies were made in different areas in the same subject was supported with determination ofit is possible to participants have gender identity roles different from their biological sex to some extent.Otherwise; determination of theadvertisements ofaccomodationestablishments, contain feminine messages, are more preferred by people who have feminine and androgynous identity than the others; and advertisements ofaccomodationestablishments, contain masculinemessages, are preferred by all gender identity roles are ones of the results

  20. Platelets stimulate fibroblast-mediated contraction of collagen gels

    Directory of Open Access Journals (Sweden)

    Lundahl Joachim

    2003-10-01

    Full Text Available Abstract Background Platelets are thought to play a role in a variety of inflammatory conditions in the lung, some of which may lead to fibrosis. In the current study we tested the hypothesis that whole platelets and platelet lysate can mediate remodelling of extracellular matrix in vitro by affecting fibroblast-mediated contraction of a collagen gel. We also sought to determine to what extent platelet-derived growth factor (PDGF and transforming growth factor-β (TGF-β contribute to this effect. Methods Washed platelets, isolated from healthy blood donors, and platelet lysate (freezing and thawing, were cast together with human lung fibroblasts in three-dimensional collagen gels. The gels were then released and cultured for four days. PDGF and TGF-β1 concentrations were measured in culture supernatants by ELISA. Results Both platelets and platelet lysate augmented fibroblast-mediated gel contraction in a time and concentration dependent manner (19.9% ± 0.1 (mean ± SEM of initial area vs. 48.0% ± 0.4 at 48 hours; P 1 and PDGF-AA/AB were released in co-culture. PDGF-AA/AB had a maximum release at 24 hours whereas TGF-β1 release increased with longer culture periods. Neutralising antibodies to these mediators partially inhibited platelet-induced gel contraction. Conclusion We conclude that platelets may promote remodelling of extracellular matrix in vitro and that PDGF and TGF-β partially mediate this effect, also indicating a role for other mediators. The findings may be an important mechanism in regulating repair processes after injury.

  1. and their biological role

    Directory of Open Access Journals (Sweden)

    Agnieszka Zabłotni

    2014-08-01

    Full Text Available Nowadays antibiotics are broadly used not only for treatment of bacterial infections but also in nonmedical applications. For many years they have been added as livestock and poultry growth supplements, and they are applied similarly in fish farming. In basically unchanged form they may get into the natural environment and remain there for a long time. Excessive use of antibiotics leads to widespread of antibiotic resistance among clinical and environmental bacterial strains. Subinhibitory concentrations of antibiotics, which do not inhibit growth of bacteria, are often found in soil, water or even in the tissue of different organisms. Such low concentrations affect many bacterial genes through changes in their transcription level and increase of the mutation rate, and as a consequence lead to many bacterial adaptations to environmental stresses. There is also evidence that subinhibitory concentrations of antibiotics induce transfer of mobile genetic elements through horizontal gene transfer pathways, and therefore enhance antibiotic resistance, also among environmental strains. The analyzed data suggest the necessity of restriction and regular monitoring of antibiotics, which may be considered as environmental pollutants.

  2. Aspirin suppresses cardiac fibroblast proliferation and collagen formation through downregulation of angiotensin type 1 receptor transcription

    International Nuclear Information System (INIS)

    Wang, Xianwei; Lu, Jingjun; Khaidakov, Magomed; Mitra, Sona; Ding, Zufeng; Raina, Sameer; Goyal, Tanu; Mehta, Jawahar L.

    2012-01-01

    Aspirin (acetyl salicylic acid, ASA) is a common drug used for its analgesic and antipyretic effects. Recent studies show that ASA not only blocks cyclooxygenase, but also inhibits NADPH oxidase and resultant reactive oxygen species (ROS) generation, a pathway that underlies pathogenesis of several ailments, including hypertension and tissue remodeling after injury. In these disease states, angiotensin II (Ang II) activates NADPH oxidase via its type 1 receptor (AT1R) and leads to fibroblast growth and collagen synthesis. In this study, we examined if ASA would inhibit NADPH oxidase activation, upregulation of AT1R transcription, and subsequent collagen generation in mouse cardiac fibroblasts challenged with Ang II. Mouse heart fibroblasts were isolated and treated with Ang II with or without ASA. As expected, Ang II induced AT1R expression, and stimulated cardiac fibroblast growth and collagen synthesis. The AT1R blocker losartan attenuated these effects of Ang II. Similarly to losartan, ASA, and its SA moiety suppressed Ang II-mediated AT1R transcription and fibroblast proliferation as well as expression of collagens and MMPs. ASA also suppressed the expression of NADPH oxidase subunits (p22 phox , p47 phox , p67 phox , NOX2 and NOX4) and ROS generation. ASA did not affect total NF-κB p65, but inhibited its phosphorylation and activation. These observations suggest that ASA inhibits Ang II-induced NADPH oxidase expression, NF-κB activation and AT1R transcription in cardiac fibroblasts, and fibroblast proliferation and collagen expression. The critical role of NADPH oxidase activity in stimulation of AT1R transcription became apparent in experiments where ASA also inhibited AT1R transcription in cardiac fibroblasts challenged with H 2 O 2 . Since SA had similar effect as ASA on AT1R expression, we suggest that ASA's effect is mediated by its SA moiety. -- Highlights: ► Aspirin in therapeutic concentrations decreases mouse cardiac fibroblast growth and collagen

  3. Aspirin suppresses cardiac fibroblast proliferation and collagen formation through downregulation of angiotensin type 1 receptor transcription

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xianwei, E-mail: XWang2@UAMS.edu; Lu, Jingjun; Khaidakov, Magomed; Mitra, Sona; Ding, Zufeng; Raina, Sameer; Goyal, Tanu; Mehta, Jawahar L., E-mail: MehtaJL@UAMS.edu

    2012-03-15

    Aspirin (acetyl salicylic acid, ASA) is a common drug used for its analgesic and antipyretic effects. Recent studies show that ASA not only blocks cyclooxygenase, but also inhibits NADPH oxidase and resultant reactive oxygen species (ROS) generation, a pathway that underlies pathogenesis of several ailments, including hypertension and tissue remodeling after injury. In these disease states, angiotensin II (Ang II) activates NADPH oxidase via its type 1 receptor (AT1R) and leads to fibroblast growth and collagen synthesis. In this study, we examined if ASA would inhibit NADPH oxidase activation, upregulation of AT1R transcription, and subsequent collagen generation in mouse cardiac fibroblasts challenged with Ang II. Mouse heart fibroblasts were isolated and treated with Ang II with or without ASA. As expected, Ang II induced AT1R expression, and stimulated cardiac fibroblast growth and collagen synthesis. The AT1R blocker losartan attenuated these effects of Ang II. Similarly to losartan, ASA, and its SA moiety suppressed Ang II-mediated AT1R transcription and fibroblast proliferation as well as expression of collagens and MMPs. ASA also suppressed the expression of NADPH oxidase subunits (p22{sup phox}, p47{sup phox}, p67{sup phox}, NOX2 and NOX4) and ROS generation. ASA did not affect total NF-κB p65, but inhibited its phosphorylation and activation. These observations suggest that ASA inhibits Ang II-induced NADPH oxidase expression, NF-κB activation and AT1R transcription in cardiac fibroblasts, and fibroblast proliferation and collagen expression. The critical role of NADPH oxidase activity in stimulation of AT1R transcription became apparent in experiments where ASA also inhibited AT1R transcription in cardiac fibroblasts challenged with H{sub 2}O{sub 2}. Since SA had similar effect as ASA on AT1R expression, we suggest that ASA's effect is mediated by its SA moiety. -- Highlights: ► Aspirin in therapeutic concentrations decreases mouse cardiac

  4. Fibroblast Growth Factor 23 and Kidney Disease Progression in Autosomal Dominant Polycystic Kidney Disease.

    Science.gov (United States)

    Chonchol, Michel; Gitomer, Berenice; Isakova, Tamara; Cai, Xuan; Salusky, Isidro; Pereira, Renata; Abebe, Kaleab; Torres, Vicente; Steinman, Theodor I; Grantham, Jared J; Chapman, Arlene B; Schrier, Robert W; Wolf, Myles

    2017-09-07

    Increases in fibroblast growth factor 23 precede kidney function decline in autosomal dominant polycystic kidney disease; however, the role of fibroblast growth factor 23 in autosomal dominant polycystic kidney disease has not been well characterized. We measured intact fibroblast growth factor 23 levels in baseline serum samples from 1002 participants in the HALT-PKD Study A ( n =540; mean eGFR =91±17 ml/min per 1.73 m 2 ) and B ( n =462; mean eGFR =48±12 ml/min per 1.73 m 2 ). We used linear mixed and Cox proportional hazards models to test associations between fibroblast growth factor 23 and eGFR decline, percentage change in height-adjusted total kidney volume, and composite of time to 50% reduction in eGFR, onset of ESRD, or death. Median (interquartile range) intact fibroblast growth factor 23 was 44 (33-56) pg/ml in HALT-PKD Study A and 69 (50-93) pg/ml in Study B. In adjusted models, annualized eGFR decline was significantly faster in the upper fibroblast growth factor 23 quartile (Study A: quartile 4, -3.62; 95% confidence interval, -4.12 to -3.12 versus quartile 1, -2.51; 95% confidence interval, -2.71 to -2.30 ml/min per 1.73 m 2 ; P for trend kidney volume in adjusted models (quartile 4, 6.76; 95% confidence interval, 5.57 to 7.96 versus quartile 1, 6.04; 95% confidence interval, 5.55 to 6.54; P for trend =0.03). In Study B, compared with the lowest quartile, the highest fibroblast growth factor 23 quartile was associated with elevated risk for the composite outcome (hazard ratio, 3.11; 95% confidence interval, 1.84 to 5.25). Addition of fibroblast growth factor 23 to a model of annualized decline in eGFR≥3.0 ml/min per 1.73 m 2 did not improve risk prediction. Higher serum fibroblast growth factor 23 concentration was associated with kidney function decline, height-adjusted total kidney volume percentage increase, and death in patients with autosomal dominant polycystic kidney disease. However, fibroblast growth factor 23 did not substantially

  5. On the role of proteasomes in cell biology and proteasome inhibition as a novel frontier in the development of immunosuppressants.

    Science.gov (United States)

    Wu, Jiangping

    2002-11-01

    The proteasome, a large protease complex in cells, is the major machinery for protein degradation. It was previously considered a humble garbage collector, performing housekeeping duties to remove misfolded or spent proteins. Until recently, the interests of immunologists in proteasomes were focused largely on its role in antigen processing. Its real importance in cell biology has only been revealed contemporarily due to the availability of relatively specific inhibitors. It has now become increasingly clear that many aspects of immune responses highly depend on proper proteasome activity. Recently, a proteasome inhibitor has been successfully used to prevent acute as well as ongoing heart allograft rejection in mice. Such inhibitors are also efficacious in treating several autoimmune diseases, such as arthritis, psoriasis, and probably type I diabetes, in animal models. Phase II and III clinical trials of proteasome inhibitors in treating various tumors have shown promising results, and the side-effects of these drugs are tolerable. Therefore, proteasome inhibition represents a new and promising frontier in immunosuppressant development.

  6. Site-specific distribution of claudin-based paracellular channels with roles in biological fluid flow and metabolism.

    Science.gov (United States)

    Tanaka, Hiroo; Tamura, Atsushi; Suzuki, Koya; Tsukita, Sachiko

    2017-10-01

    The claudins are a family of membrane proteins with at least 27 members in humans and mice. The extracellular regions of claudin proteins play essential roles in cell-cell adhesion and the paracellular barrier functions of tight junctions (TJs) in epithelial cell sheets. Furthermore, the extracellular regions of some claudins function as paracellular channels in the paracellular barrier that allow the selective passage of water, ions, and/or small organic solutes across the TJ in the extracellular space. Structural analyses have revealed a common framework of transmembrane, cytoplasmic, and extracellular regions among the claudin-based paracellular barriers and paracellular channels; however, differences in the claudins' extracellular regions, such as their charges and conformations, determine their properties. Among the biological systems that involve fluid flow and metabolism, it is noted that hepatic bile flow, renal Na + reabsorption, and intestinal nutrient absorption are dynamically regulated via site-specific distributions of paracellular channel-forming claudins in tissue. Here, we focus on how site-specific distributions of claudin-2- and claudin-15-based paracellular channels drive their organ-specific functions in the liver, kidney, and intestine. © 2017 New York Academy of Sciences.

  7. Biological Role of Paenilarvins, Iturin-Like Lipopeptide Secondary Metabolites Produced by the Honey Bee Pathogen Paenibacillus larvae.

    Science.gov (United States)

    Hertlein, Gillian; Seiffert, Marlene; Gensel, Sebastian; Garcia-Gonzalez, Eva; Ebeling, Julia; Skobalj, Ranko; Kuthning, Anja; Süssmuth, Roderich D; Genersch, Elke

    2016-01-01

    The Gram-positive bacterium Paenibacillus larvae (P. larvae) is the causative agent of a deadly honey bee brood disease called American Foulbrood (AFB). AFB is a notifiable epizootic in most countries and, hence, P. larvae is of considerable relevance for veterinarians and apiculturists alike. Over the last decade, much progress has been made in the understanding of the (patho)biology of P. larvae. Recently, several non-ribosomally produced peptides (NRP) and peptide/polyketide (NRP/PK) hybrids produced by P. larvae were identified. Among these NRPs were iturin-like lipopeptides, the paenilarvins A-C. Iturins are known to exhibit strong anti-fungal activity; for some iturins, cytotoxic activity towards mammalian erythrocytes and human cancer cell lines are described. We here present our results on the analysis of the natural function of the paenilarvins during pathogenesis of P. larvae infections. We demonstrated production of paenilarvins in infected larvae. However, we could neither demonstrate cytotoxicity of paenilarvins towards cultured insect cells nor towards larvae in feeding assays. Accordingly, exposure bioassays performed with larvae infected by wild-type P. larvae and a knockout mutant of P. larvae lacking production of paenilarvins did not substantiate a role for the paenilarvins as virulence factor. Further experiments are necessary to analyze the relevance of the paenilarvins' anti-fungal activity for P. larvae infections in the presence of fungal competitors in the larval midgut or cadaver.

  8. Cytogenetic responses to ionizing radiation exposure of human fibroblasts with knocked-down expressions of various DNA damage signaling genes

    Science.gov (United States)

    Zhang, Ye; Rohde, Larry; Wu, Honglu

    Changes of gene expression profile are one of the most important biological responses in living cells after ionizing radiation (IR) exposure. Although some studies have demonstrated that genes with up-regulated expression induced by IR may play important roles in DNA damage sensing, cell cycle checkpoint and chromosomal repair, the relationship between the regulation of gene expression by IR and its impact on cytogenetic responses to ionizing radiation has not been systematically studied. Here, the expression of 25 genes selected based on their transcriptional changes in response to IR or from their known DNA repair roles were individually knocked down by siRNA transfection in human fibroblast cells. Chromosome aberrations (CA) and micronuclei (MN) formation were measured as the cytogenetic endpoints. Our results showed that the yields of MN and/or CA formation were significantly increased by suppressed expression of some of the selected genes in DSB and other DNA repair pathways. Knocked-down expression of other genes showed significant impact on cell cycle progression, possibly because of severe impairment of DNA damage repair. Of these 11 genes that affected the cytogenetic response, 9 were up-regulated in the cells exposed to gamma radiation, suggesting that genes transcriptionally modulated by IR were critical to regulating the biological consequences after IR. Failure to express these IR-responsive genes, such as by gene mutation, could seriously change the outcome of the post IR scenario and lead to carcinogenesis.

  9. Inflammatory responses of stromal fibroblasts to inflammatory epithelial cells are involved in the pathogenesis of bovine mastitis

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Wenyao; Li, Xuezhong; Xu, Tong; Ma, Mengru [College of Veterinary Medicine, Northwest A& F University, Yangling 712100, Shaanxi (China); Zhang, Yong, E-mail: zhangyong1956@nwsuaf.edu.cn [College of Veterinary Medicine, Northwest A& F University, Yangling 712100, Shaanxi (China); Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Northwest A& F University, Yangling 712100, Shaanxi (China); Gao, Ming-Qing, E-mail: gaomingqing@nwsuaf.edu.cn [College of Veterinary Medicine, Northwest A& F University, Yangling 712100, Shaanxi (China); Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Northwest A& F University, Yangling 712100, Shaanxi (China)

    2016-11-15

    Hypernomic secretion of epithelial cytokines has several effects on stromal cells. The contributions of inflammatory epithelial cells to stromal fibroblasts in bovine mammary glands with mastitis remain poorly understood. Here, we established an inflammatory epithelial cell model of bovine mastitis with gram-negative lipopolysaccharide (LPS) and gram-positive lipoteichoic acid (LTA) bacterial cell wall components. We characterized immune responses of mammary stromal fibroblasts induced by inflammatory epithelial cells. Our results showed that inflammatory epithelial cells affected stromal fibroblast characteristics by increasing inflammatory mediator expression, elevating extracellular matrix protein deposition, decreasing proliferation capacity, and enhancing migration ability. The changes in stromal fibroblast proliferation and migration abilities were mediated by signal molecules, such as WNT signal pathway components. LPS- and LTA-induced inflammatory epithelial cells triggered different immune responses in stromal fibroblasts. Thus, in mastitis, bovine mammary gland stromal fibroblasts were affected by inflammatory epithelial cells and displayed inflammation-specific changes, suggesting that fibroblasts play crucial roles in bovine mastitis. - Highlights: • Inflammatory BMEs affect the properties of BMFs during mastitis. • BMEs inhibited the proliferation and promoted the migration of BMFs. • BMEs enhanced secretion of inflammatory mediators and deposition of ECM in BMFs. • Changes of the properties of BMFs were mediated by specific signal molecules.

  10. Inflammatory responses of stromal fibroblasts to inflammatory epithelial cells are involved in the pathogenesis of bovine mastitis.

    Science.gov (United States)

    Zhang, Wenyao; Li, Xuezhong; Xu, Tong; Ma, Mengru; Zhang, Yong; Gao, Ming-Qing

    2016-11-15

    Hypernomic secretion of epithelial cytokines has several effects on stromal cells. The contributions of inflammatory epithelial cells to stromal fibroblasts in bovine mammary glands with mastitis remain poorly understood. Here, we established an inflammatory epithelial cell model of bovine mastitis with gram-negative lipopolysaccharide (LPS) and gram-positive lipoteichoic acid (LTA) bacterial cell wall components. We characterized immune responses of mammary stromal fibroblasts induced by inflammatory epithelial cells. Our results showed that inflammatory epithelial cells affected stromal fibroblast characteristics by increasing inflammatory mediator expression, elevating extracellular matrix protein deposition, decreasing proliferation capacity, and enhancing migration ability. The changes in stromal fibroblast proliferation and migration abilities were mediated by signal molecules, such as WNT signal pathway components. LPS- and LTA-induced inflammatory epithelial cells triggered different immune responses in stromal fibroblasts. Thus, in mastitis, bovine mammary gland stromal fibroblasts were affected by inflammatory epithelial cells and displayed inflammation-specific changes, suggesting that fibroblasts play crucial roles in bovine mastitis. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. Inflammatory responses of stromal fibroblasts to inflammatory epithelial cells are involved in the pathogenesis of bovine mastitis

    International Nuclear Information System (INIS)

    Zhang, Wenyao; Li, Xuezhong; Xu, Tong; Ma, Mengru; Zhang, Yong; Gao, Ming-Qing

    2016-01-01

    Hypernomic secretion of epithelial cytokines has several effects on stromal cells. The contributions of inflammatory epithelial cells to stromal fibroblasts in bovine mammary glands with mastitis remain poorly understood. Here, we established an inflammatory epithelial cell model of bovine mastitis with gram-negative lipopolysaccharide (LPS) and gram-positive lipoteichoic acid (LTA) bacterial cell wall components. We characterized immune responses of mammary stromal fibroblasts induced by inflammatory epithelial cells. Our results showed that inflammatory epithelial cells affected stromal fibroblast characteristics by increasing inflammatory mediator expression, elevating extracellular matrix protein deposition, decreasing proliferation capacity, and enhancing migration ability. The changes in stromal fibroblast proliferation and migration abilities were mediated by signal molecules, such as WNT signal pathway components. LPS- and LTA-induced inflammatory epithelial cells triggered different immune responses in stromal fibroblasts. Thus, in mastitis, bovine mammary gland stromal fibroblasts were affected by inflammatory epithelial cells and displayed inflammation-specific changes, suggesting that fibroblasts play crucial roles in bovine mastitis. - Highlights: • Inflammatory BMEs affect the properties of BMFs during mastitis. • BMEs inhibited the proliferation and promoted the migration of BMFs. • BMEs enhanced secretion of inflammatory mediators and deposition of ECM in BMFs. • Changes of the properties of BMFs were mediated by specific signal molecules.

  12. Response of human corneal fibroblasts on silk film surface patterns.

    Science.gov (United States)

    Gil, Eun Seok; Park, Sang-Hyug; Marchant, Jeff; Omenetto, Fiorenzo; Kaplan, David L

    2010-06-11

    Transparent, biodegradable, mechanically robust, and surface-patterned silk films were evaluated for the effect of surface morphology on human corneal fibroblast (hCF) cell proliferation, orientation, and ECM deposition and alignment. A series of dimensionally different surface groove patterns were prepared from optically graded glass substrates followed by casting poly(dimethylsiloxane) (PDMS) replica molds. The features on the patterned silk films showed an array of asymmetric triangles and displayed 37-342 nm depths and 445-3 582 nm widths. hCF DNA content on all patterned films were not significantly different from that on flat silk films after 4 d in culture. However, the depth and width of the grooves influenced cell alignment, while the depth differences affected cell orientation; overall, deeper and narrower grooves induced more hCF orientation. Over 14 d in culture, cell layers and actin filament organization demonstrated that confluent hCFs and their cytoskeletal filaments were oriented along the direction of the silk film patterned groove axis. Collagen type V and proteoglycans (decorin and biglycan), important markers of corneal stromal tissue, were highly expressed with alignment. Understanding corneal stromal fibroblast responses to surface features on a protein-based biomaterial applicable in vivo for corneal repair potential suggests options to improve corneal tissue mimics. Further, the approaches provide fundamental biomaterial designs useful for bioengineering oriented tissue layers, an endemic feature in most biological tissue structures that lead to critical tissue functions.

  13. Effect of Arctium lappa (burdock) extract on canine dermal fibroblasts.

    Science.gov (United States)

    Pomari, Elena; Stefanon, Bruno; Colitti, Monica

    2013-12-15

    Although the biological activities of Arctium lappa (burdock) have been already investigated in human and other species, data evaluating the molecular mechanisms have not been reported in the dog. In this study we analyzed for the first time the effect of a root extract of burdock on molecular responses in canine dermal fibroblasts with H2O2 stimulation (H group), with burdock treatment (B group) and with H2O2 stimulation and burdock treatment (BH group), using RNAseq technology. Differentially expressed genes (P<0.05) of H, B and BH groups in comparison to the untreated sample (negative control, C group) were identified with MeV software and were functional annotated and monitored for signaling pathways and candidate biomarkers using the Ingenuity Pathways Analysis (IPA). The expression profile of canine dermal fibroblasts treated with burdock extract with or without H2O2 stimulation, showed an up-regulation of mitochondrial superoxide dismutase (SOD2), disheveled 3 (DVL3) and chondroitin sulfate N-acetylgalactosaminyltransferase 2 (CSGALNACT2). The data suggested that burdock has implications in cell adhesion and gene expression with the modulation of Wnt/β catenin signaling and Chondroitin Sulphate Biosynthesis that are particularly important for the wound healing process. © 2013 Elsevier B.V. All rights reserved.

  14. Biochemical changes to fibroblast cells subjected to ionizing radiation.

    Science.gov (United States)

    Jones, Pamala; Benghuzzi, Hamed; Tucci, Michelle; Richards, Latoya; Harrison, George; Patel, Ramesh

    2008-01-01

    High energy X-rays are capable of interacting with biological membranes to cause both functional and structural modifications. The goal of the present study was to investigate the effects human fibroblast cells exposed multiple times to 10 Gy over time. Following exposures of 2, 3, or 4 times to 10 Gy/10min the cells were evaluated for cell number changes, membrane damage, and intracellular glutathione content after 24, 48 and 72 hours. Twenty-four hours following exposure the cell numbers were reduced and increased levels of cellular membrane damage was evident. This trend was observed for the duration of the study. Interestingly, there was not an exposure dependent increase in cell damage or cell loss with time. Intracellular antioxidant systems were activated as indicated by anincrease in total cellular glutathione content. Additional studies are needed to determine if the cellular reduction is caused by a direct effect of the X-rays targeting the DNA or an indirect effect of the X-ray targeting the cellular membrane, which then generates radicals that target cell cycle checkpoints or DNA damage. In conclusion, fibroblast cells can be used to determine early and late events of cellular function following exposure to harmful levels of radiation exposure and results of exposure can be seen within twenty four hours.

  15. Correlates of Parents' Involvement with Their Adolescent Children in Restructured and Biological Two-Parent Families: The Role of Child Characteristics

    Science.gov (United States)

    Flouri, Eirini

    2004-01-01

    This study used data from both 225 fathers and mothers as well as their secondary school age children to explore the role of child characteristics (sex, age, self-esteem, and emotional and behavioural well-being) in mother's and father's involvement in biological and restructured (stepfather) two-parent families after controlling for known…

  16. In vitro generation of long-term repopulating hematopoietic stem cells by fibroblast growth factor-1

    NARCIS (Netherlands)

    de Haan, G; Weersing, E; Dontje, B; van Os, R; Bystrykh, LV; Vellenga, E; Miller, G

    The role of fibroblast growth factors and their receptors (FGFRs) in the regulation of normal hematopoietic stem cells is unknown. Here we show that, in mouse bone marrow, long-term repopulating stem cells are found exclusively in the FGFR(+) cell fraction. During differentiation toward committed

  17. Insulin-like growth factor binding protein-6 delays replicative senescence of human fibroblasts

    DEFF Research Database (Denmark)

    Micutkova, Lucia; Diener, Thomas; Li, Chen

    2011-01-01

    Cellular senescence can be induced by a variety of mechanisms, and recent data suggest a key role for cytokine networks to maintain the senescent state. Here, we have used a proteomic LC-MS/MS approach to identify new extracellular regulators of senescence in human fibroblasts. We identified 26 e...

  18. Testosterone metabolism of fibroblasts grown from prostatic carcinoma, benign prostatic hyperplasia and skin fibroblasts

    International Nuclear Information System (INIS)

    Schweikert, H.U.; Hein, H.J.; Romijn, J.C.; Schroeder, F.H.

    1982-01-01

    The metabolism of [1,2,6,7-3H]testosterone was assessed in fibroblast monolayers derived from tissue of 5 prostates with benign hyperplasia (BPH), 4 prostates with carcinoma (PC), and 3 biopsy samples of skin, 2 nongenital skin (NG) and 1 genital skin. The following metabolites could be identified: androstanedione androstenedione, dihydrotestosterone, androsterone, epiandrosterone, androstane-3 alpha, 17 beta-diol and androstane-3 beta, 17 beta-diol. Testosterone was metabolized much more rapidly in fibroblasts originating from prostatic tissue than in fibroblasts derived from NG. A significantly higher formation of 5 alpha-androstanes and 3 alpha-hydroxysteroids could be observed in fibroblasts from BPH as compared to PC. 17-ketosteroid formation exceeded 5 alpha-androstane formation in BPH, whereas 5 alpha-reduction was the predominant pathway in fibroblasts grown from PC and NG. Since testosterone metabolism in fibroblasts of prostatic origin therefore resembles in many aspects that in whole prostatic tissue, fibroblasts grown from prostatic tissues might be a valuable tool for further investigation of the pathogenesis of human BPH and PC

  19. Hedgehog signaling contributes to basic fibroblast growth factor-regulated fibroblast migration

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Zhong Xin [School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang (China); Sun, Cong Cong [School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang (China); Wenzhou People' s Hospital, Wenzhou, Zhejiang (China); Ting Zhu, Yu; Wang, Ying; Wang, Tao; Chi, Li Sha; Cai, Wan Hui [School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang (China); Zheng, Jia Yong [Wenzhou People' s Hospital, Wenzhou, Zhejiang (China); Zhou, Xuan [Ningbo First Hospital, Ningbo, Zhejiang (China); Cong, Wei Tao [School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang (China); Li, Xiao Kun, E-mail: proflxk@163.com [School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang (China); Jin, Li Tai, E-mail: jin_litai@126.com [School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang (China)

    2017-06-15

    Fibroblast migration is a central process in skin wound healing, which requires the coordination of several types of growth factors. bFGF, a well-known fibroblast growth factor (FGF), is able to accelerate fibroblast migration; however, the underlying mechanism of bFGF regulation fibroblast migration remains unclear. Through the RNA-seq analysis, we had identified that the hedgehog (Hh) canonical pathway genes including Smoothened (Smo) and Gli1, were regulated by bFGF. Further analysis revealed that activation of the Hh pathway via up-regulation of Smo promoted fibroblast migration, invasion, and skin wound healing, but which significantly reduced by GANT61, a selective antagonist of Gli1/Gli2. Western blot analyses and siRNA transfection assays demonstrated that Smo acted upstream of phosphoinositide 3-kinase (PI3K)-c-Jun N-terminal kinase (JNK)-β-catenin to promote cell migration. Moreover, RNA-seq and qRT-PCR analyses revealed that Hh pathway genes including Smo and Gli1 were under control of β-catenin, suggesting that β-catenin turn feedback activates Hh signaling. Taken together, our analyses identified a new bFGF-regulating mechanism by which Hh signaling regulates human fibroblast migration, and the data presented here opens a new avenue for the wound healing therapy. - Highlights: • bFGF regulates Hedgehog (Hh) signaling in fibroblasts. • The Smo and Gli two master regulators of Hh signaling positively regulate fibroblast migration. • Smo facilitates β-catenin nuclear translocation via activation PI3K/JNK/GSK3β. • β-catenin positively regulates fibroblast cell migration and the expression of Hh signaling genes including Smo and Gli.

  20. Hedgehog signaling contributes to basic fibroblast growth factor-regulated fibroblast migration

    International Nuclear Information System (INIS)

    Zhu, Zhong Xin; Sun, Cong Cong; Ting Zhu, Yu; Wang, Ying; Wang, Tao; Chi, Li Sha; Cai, Wan Hui; Zheng, Jia Yong; Zhou, Xuan; Cong, Wei Tao; Li, Xiao Kun; Jin, Li Tai

    2017-01-01

    Fibroblast migration is a central process in skin wound healing, which requires the coordination of several types of growth factors. bFGF, a well-known fibroblast growth factor (FGF), is able to accelerate fibroblast migration; however, the underlying mechanism of bFGF regulation fibroblast migration remains unclear. Through the RNA-seq analysis, we had identified that the hedgehog (Hh) canonical pathway genes including Smoothened (Smo) and Gli1, were regulated by bFGF. Further analysis revealed that activation of the Hh pathway via up-regulation of Smo promoted fibroblast migration, invasion, and skin wound healing, but which significantly reduced by GANT61, a selective antagonist of Gli1/Gli2. Western blot analyses and siRNA transfection ass