WorldWideScience

Sample records for fibrinogen degradation products

  1. 21 CFR 864.7320 - Fibrinogen/fibrin degradation products assay.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Fibrinogen/fibrin degradation products assay. 864.7320 Section 864.7320 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN....7320 Fibrinogen/fibrin degradation products assay. (a) Identification. A fibrinogen/fibrin degradation...

  2. Competitions between fibrinogen with its degradation products for interactions with the platelet-fibrinogen receptor

    International Nuclear Information System (INIS)

    Thorsen, L.I.; Brosstad, F.; Gogstad, G.; Sletten, K.; Solum, N.O.

    1986-01-01

    Direct binding of 125 -I-labelled plasmic and CNBr-derived fibrin (ogen) fragments (pre-X, X, Y, D, Degta, Efg, E1, N-DSK, N-dsk) to gel-filtered platelets was compared to their ability to support or inhibit ADP-induced aggregation, and to compete with fibrinogen for binding to ADP-stimulated platelets. Pre-X was the only fragment that supported aggregation. All fragments tested except for E derived from fibrinogen (Efg) and Degta bound specifically to the platelets and inhibited ADP-induced aggregation in the presence of fibrinogen. Competitive binding studies with fibrinogen and fragments labelled with different isotopes of iodine, or inhibition of binding of labelled fibrinogen with unlabelled fragments showed that all of the fragments except Efg and Degta were able to compete with fibrinogen for binding. When simultaneous binding of N-dsk and fibrinogen was studied, an increased binding of both ligands was observed probably due to complex formation. The results fully agree with previous findings of binding to immunoprecipitated glycoprotein IIb-IIIa after crossed immunoelectrophoresis. We conclude that the fibrinogen molecule contains at least six sequences responsible for platelet interaction, two in the E domain and two in each of the C-terminal parts of the fibrinogen molecule

  3. Reaction of plasmic degradation products of fibrinogen in the radioimmunoassay of human fibrinopeptide A

    International Nuclear Information System (INIS)

    Budzynski, A.Z.; Marder, V.J.; Sherry, S.

    1975-01-01

    A radioimmunoassay (RIA) technique has been devised for the measurement of human fibrinopeptide A (FPA). The system utilizes rabbit antiserum to native human FPA and a synthetic fibrinopeptide, with tyrosine substituted for phenylanine in amino acid position 8. The test detects native human FPA at a concentration of 0.1 ng/ml, but does not cross react with human fibrinopeptide B or with fibrinopeptides A from canine, porcine, or bovine fibrinogen. Fibrinogen and chemical or plasmic degradation products with 2 moles of FPA per mole react fully in this test system. This includes the large-molecular-weight intermediate fragments X and Y and the NH 2 -terminal disulfide knot, and indicates that this antibody recognizes and reacts with FPA in the presence of the contiguous peptide structures presents in fibrinogen. Fragment E, which is derived from the NH 2 -terminal portion of fibrinogen, loses most of its FPA content after its liberation from its precursor derivative and reacts to a lesser extent in the RIA than do fragments X and Y. This correlates with the recovery of FPA-positive material from ultrafiltrates of extensive but not partial plasmic digests of fibrinogen. Although FPA immunoreactivity liberated from fibrinogen does not necessarily reflect thrombin activity and/or fibrin formation, only extensive plasmic degradation yields peptide material which reacts in this RIA system. This should not be a serious limitation to the application of the RIA in the detection of venous thrombosis. (U.S.)

  4. Source of fibrin/fibrinogen degradation products in the CSF after subarachnoid hemorrhage

    NARCIS (Netherlands)

    Vermeulen, M.; van Vliet, H. H.; Lindsay, K. W.; Hijdra, A.; van Gijn, J.

    1985-01-01

    In 48 patients with a subarachnoid hemorrhage, levels of fibrin/fibrinogen degradation products (FDP's), total protein, and plasminogen were measured in the cerebrospinal fluid (CSF) between Days 9 and 15 after the bleed. Of these 48 patients, 22 received tranexamic acid. Despite a significant

  5. Radioimmunoassay of an early plasmin degradation product of human fibrinogen, 'fragment A', and its clinical application

    Energy Technology Data Exchange (ETDEWEB)

    Takagi, K; Kawai, T [Jichi Medical School, Kawachi, Tochigi (Japan)

    1978-02-01

    Upon the plasmin digestion of human fibrinogen, an early cleavage product, which has been designated as fragment A, was isolated, and to study the action of plasmin in the circulation, radioimmunoassay for fragment A was carried out. This assay used rabbit immune serum obtained by injection of fragment A mixed with complete Freund's adjuvant, and fragment A was labelled with /sup 125/I using the Chloramin-T method. In 20 normal healthy donors its serum level was 3.57 +- 1.62..mu..g/ml (mean+-SD), and it was increased significantly in certain diseases, such as acute leukemias, candiovascular disorders, malignancies, renal failure, systemic lupus erythematosus and sepsis.

  6. Early fibrinogen degradation coagulopathy: a predictive factor of parenchymal hematomas in cerebral rt-PA thrombolysis.

    Science.gov (United States)

    Sun, Xuhong; Berthiller, Julien; Trouillas, Paul; Derex, Laurent; Diallo, Laho; Hanss, Michel

    2015-04-15

    The purpose of this study was to systematically determine the correlations between the post-thrombolytic changes of hemostasis parameters and the occurrence of early intracerebral hemorrhage (ICH). In 72 consecutive patients with cerebral infarcts treated with rt-PA, plasma levels of fibrinogen, plasminogen, alpha2-antiplasmin, factor XIII, fibrin(ogen) degradation products (FDPs) and d-Dimers were measured at baseline, 2 and 24h after thrombolysis. Correlations were studied between the hemostasis events and early (less than 24h) hemorrhagic infarcts (HIs) or parenchymatous hematomas (PH). Of 72 patients, 6 patients (8.3%) had early PHs, 11 (15.3%) had early HIs, and 55 (76.4%) had no bleeding. Early HIs were not linked to any hemostasis parameter at any time. Univariate comparison of patients having early PHs with non-bleeding patients showed hemostasis abnormalities at 2h: high FDP (p=0.01), high Log FDP (p=0.01), low fibrinogen (p=0.01), and low Log fibrinogen (p=0.01). Logistic regression adjusted for age, NIHSS and diabetes confirmed these 2hour predictors: Log FDP (OR: 7.50; CI: 1.26 to 44.61, p=0.03), and Log fibrinogen (OR: 19.32; CI: 1.81 to 205.98, p=0.01). The decrease in fibrinogen less than 2g/L multiplies the odds of early PH by a factor 12.82. An early fibrinogen degradation coagulopathy involving an increase of FDP and a massive consumption of circulating fibrinogen is predictive of early parenchymal hematomas, indicating the occurrence of a particularly intense lysis of circulating fibrinogen. These results, if confirmed by future studies, suggest that early assays of fibrinogen and FDP may be useful in predicting the risk of post-thrombolytic intracerebral hematoma. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Specific cell components of Bacteroides gingivalis mediate binding and degradation of human fibrinogen

    International Nuclear Information System (INIS)

    Lantz, M.S.; Allen, R.D.; Vail, T.A.; Switalski, L.M.; Hook, M.

    1991-01-01

    Bacteroides (Porphyromonas) gingivalis, which has been implicated as an etiologic agent in human periodontal diseases, has been shown to bind and degrade human fibrinogen. B. gingivalis strains bind fibrinogen reversibly and with high affinity and bind to a specific region of the fibrinogen molecule that appears to be located between the D and E domains. The authors now report that human fibrinogen is bound and then degraded by specific B. gingivalis components that appear to be localized at the cell surface. Fibrinogen binding to bacterial cells occurred at 4, 22, and 37 degree C. A functional fibrinogen-binding component (M r , 150 000) was identified when sodium dodecyl sulfate-solubilized bacteria were fractionated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, transferred to nitrocellulose membranes, and probed with 125 I-fibrinogen. Fibrinogen degradation did not occur at 4 degree C but did occur at 22 and 37 degree C. When bacteria and iodinated fibrinogen were incubated at 37 degree C, two major fibrinogen fragments (M r , 97 000 and 50 000) accumulated in incubation mixture supernatant fractions. Two major fibrinogen-degrading components (M r , 120 000 and 150 000) have been identified by sodium dodecyl sulfate-polyacrylamide gel electrophoresis in substrate-containing gels. Fibrinogen degradation by the M r -120 000 and -150 000 proteases was enhanced by reducing agents, completely inhibited by N-α-p-tosyl-L-lysyl chloromethyl ketone, and partially inhibited by n-ethyl maleimide, suggesting that these enzymes are thiol-dependent proteases with trypsinlike substrate specificity. The fibrinogen-binding component could be separated from the fibrinogen-degrading components by selective solubilization of bacteria in sodium deoxycholate

  8. Specific cell components of Bacteroides gingivalis mediate binding and degradation of human fibrinogen

    Energy Technology Data Exchange (ETDEWEB)

    Lantz, M.S.; Allen, R.D.; Vail, T.A.; Switalski, L.M.; Hook, M. (Univ. of Alabama at Birmingham (USA))

    1991-01-01

    Bacteroides (Porphyromonas) gingivalis, which has been implicated as an etiologic agent in human periodontal diseases, has been shown to bind and degrade human fibrinogen. B. gingivalis strains bind fibrinogen reversibly and with high affinity and bind to a specific region of the fibrinogen molecule that appears to be located between the D and E domains. The authors now report that human fibrinogen is bound and then degraded by specific B. gingivalis components that appear to be localized at the cell surface. Fibrinogen binding to bacterial cells occurred at 4, 22, and 37{degree}C. A functional fibrinogen-binding component (M{sub r}, 150 000) was identified when sodium dodecyl sulfate-solubilized bacteria were fractionated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, transferred to nitrocellulose membranes, and probed with {sup 125}I-fibrinogen. Fibrinogen degradation did not occur at 4{degree}C but did occur at 22 and 37{degree}C. When bacteria and iodinated fibrinogen were incubated at 37{degree}C, two major fibrinogen fragments (M{sub r}, 97 000 and 50 000) accumulated in incubation mixture supernatant fractions. Two major fibrinogen-degrading components (M{sub r}, 120 000 and 150 000) have been identified by sodium dodecyl sulfate-polyacrylamide gel electrophoresis in substrate-containing gels. Fibrinogen degradation by the M{sub r}-120 000 and -150 000 proteases was enhanced by reducing agents, completely inhibited by N-{alpha}-p-tosyl-L-lysyl chloromethyl ketone, and partially inhibited by n-ethyl maleimide, suggesting that these enzymes are thiol-dependent proteases with trypsinlike substrate specificity. The fibrinogen-binding component could be separated from the fibrinogen-degrading components by selective solubilization of bacteria in sodium deoxycholate.

  9. Anticoagulant and calcium-binding properties of high molecular weight derivatives of human fibrinogen (plasmin fragments Y)

    NARCIS (Netherlands)

    Nieuwenhuizen, W.; Voskuilen, M.; Hermans, J.

    1982-01-01

    The present study was undertaken as a step to delineate further the localization of the calcium-binding sites in fibrinogen and to assess the anticlotting properties of fibrinogen degradation products. To this purpose, fragments Y were prepared by plasmin digestion of human fibrinogen in the

  10. Fibrinogen monitor

    International Nuclear Information System (INIS)

    1980-01-01

    Apparatus is described for use in detecting the formation of blood clots in a patient who has previously been injected with a tracer quantity of radioactive fibrinogen. It consists of a scintillation detector, associated electronics for pulse processing and a digital display for the operator as well as a punched paper-tape for permanent record. The detector measures the radioactive count rate along the patient's leg over a given interval and compares this with a reference value. Higher count rate events which are deemed to be statistically significant, indicate thrombosis. Lower than average count rates usually indicate mis-alignment of the detector and patient's leg and warning of such is given to the operator. Compared to previous instruments, the present apparatus is easier to use and is also more comfortable for the patient. (UK)

  11. Fibrin(ogen) is internalized and degraded by activated human monocytoid cells via Mac-1 (CD11b/CD18): a nonplasmin fibrinolytic pathway.

    Science.gov (United States)

    Simon, D I; Ezratty, A M; Francis, S A; Rennke, H; Loscalzo, J

    1993-10-15

    Fibrin(ogen) (FGN) is important for hemostasis and wound healing and is cleared from sites of injury primarily by the plasminogen activator system. However, there is emerging evidence in plasminogen activator-deficient transgenic mice that nonplasmin pathways may be important in fibrin(ogen)olysis, as well. Given the proximity of FGN and monocytes within the occlusive thrombus at sites of vascular injury, we considered the possibility that monocytes may play an ancillary role in the degradation and clearance of fibrin. We found that monocytes possess an alternative fibrinolytic pathway that uses the integrin Mac-1, which directly binds and internalizes FGN, resulting in its lysosomal degradation. At 4 degrees C, FGN binds to U937 monocytoid cells in a specific and saturable manner with a kd of 1.8 mumol/L. Binding requires adenosine diphosphate stimulation and is calcium-dependent. At 37 degrees C, FGN and fibrin monomer (FM) are internalized and degraded at rates of 0.37 +/- 0.13 and 0.55 +/- 0.03 microgram/10(6) cells/h by U937 cells, 1.38 +/- 0.02 and 1.20 +/- 0.30 microgram/10(6) cells/h by THP-1 cells, and 2.10 +/- 0.20 and 2.52 +/- 0.18 micrograms/10(6) cells/h by human peripheral blood mononuclear cells, respectively. The serine protease inhibitors, PPACK and aprotinin, and the specific elastase inhibitor, AAPVCK, do not significantly inhibit degradation. However, degradation is inhibited by chloroquine, suggesting that a lysosomal pathway is involved. Factor X, a competitive ligand with FGN for the Mac-1 receptor, also blocks degradation, as does a monoclonal antibody to the alpha-subunit of Mac-1. Autoradiography of radioiodinated, internalized FGN shows that FGN proteolysis by the pathway produces a unique degradation pattern distinct from that observed with plasmin. In a fibrin clot lysis assay, Mac-1-mediated fibrinolysis contributed significantly to total fibrinolysis. In summary, FGN is internalized and degraded by activated human monocytoid cells via

  12. Charcoal production and environmental degradation

    International Nuclear Information System (INIS)

    Hosier, R.H.

    1993-01-01

    This paper examines the environmental impacts of continued tree harvesting for charcoal production to supply the urban areas in Tanzania. Woodlands appear to recover relatively well following harvesting for charcoal production. Selective harvesting, where the high quality, low cost fuel production species and specimens are culled first from a piece of land, serves to maintain the viability of the woodlands resource while providing charcoal. This recovery period can be prolonged through any number of human induced activities, such as heavy grazing, multiple burns and extended cultivation periods. At the same time, post-harvest management techniques, such as coppice management, sprout protection and fertilization, can also improve the ability of woodlands to recover following harvesting. The environmental history of a given area determines why certain areas continue to be strong suppliers of woodfuel while others are not. For example, Shinyanga started from a low productivity base and has been degraded by successive waves of tree harvesting compounded by heavy grazing pressure. It is this multiple complex of pressures over a long period of time on land which is intrinsically of low productivity, and not the harvesting of woodlands for fuels, which has led to the environmental degradation in these areas. (author)

  13. Anticoagulant and calcium-binding properties of high molecular weight derivatives of human fibrinogen, produced by plasmin (fragments X)

    NARCIS (Netherlands)

    Nieuwenhuizen, W.; Gravesen, M.

    1981-01-01

    Early plasmin degradation products (X fragments) of human fibrinogen were prepared in the presence of calcium-ions or EGTA, and purified on Sepharose 6B-CL. X fragments were characterized with respect to amino-terminal amino acids, polypeptide-chain composition, anticlotting properties and

  14. Fibrin degradation products blood test

    Science.gov (United States)

    ... behind when clots dissolve in the blood. A blood test can be done to measure these products. ... Certain medicines can change blood test results. Tell your health care provider about all the medicines you take. Your provider will tell you if you need ...

  15. Modelling the behaviour of organic degradation products

    International Nuclear Information System (INIS)

    Cross, J.E.; Ewart, F.T.; Greenfield, B.F.

    1989-03-01

    Results are presented from recent studies at Harwell which show that the degradation products which are formed when certain organic waste materials are exposed to the alkaline conditions typical of a cementitious environment, can enhance the solubility of plutonium, even at pH values as high as 12, by significant factors. Characterisation of the degradation products has been undertaken but the solubility enhancement does not appear to be related to the concentration of any of the major organic species that have been identified in the solutions. While it has not been possible to identify by analysis the organic ligand responsible for the increased solubility of plutonium, the behaviour of D-Saccharic acid does approach the behaviour of the degradation products. The PHREEQE code has been used to simulate the solubility of plutonium in the presence of D-Saccharic acid and other model degradation products, in order to explain the solubility enhancement. The extrapolation of the experimental conditions to the repository is the major objective, but in this work the ability of a model to predict the behaviour of plutonium over a range of experimental conditions has been tested. (author)

  16. Fibrinogen and fibrin.

    Science.gov (United States)

    Weisel, John W

    2005-01-01

    Fibrinogen is a large, complex, fibrous glycoprotein with three pairs of polypeptide chains linked together by 29 disulfide bonds. It is 45 nm in length, with globular domains at each end and in the middle connected by alpha-helical coiled-coil rods. Both strongly and weakly bound calcium ions are important for maintenance of fibrinogen's structure and functions. The fibrinopeptides, which are in the central region, are cleaved by thrombin to convert soluble fibrinogen to insoluble fibrin polymer, via intermolecular interactions of the "knobs" exposed by fibrinopeptide removal with "holes" always exposed at the ends of the molecules. Fibrin monomers polymerize via these specific and tightly controlled binding interactions to make half-staggered oligomers that lengthen into protofibrils. The protofibrils aggregate laterally to make fibers, which then branch to yield a three-dimensional network-the fibrin clot-essential for hemostasis. X-ray crystallographic structures of portions of fibrinogen have provided some details on how these interactions occur. Finally, the transglutaminase, Factor XIIIa, covalently binds specific glutamine residues in one fibrin molecule to lysine residues in another via isopeptide bonds, stabilizing the clot against mechanical, chemical, and proteolytic insults. The gene regulation of fibrinogen synthesis and its assembly into multichain complexes proceed via a series of well-defined steps. Alternate splicing of two of the chains yields common variant molecular isoforms. The mechanical properties of clots, which can be quite variable, are essential to fibrin's functions in hemostasis and wound healing. The fibrinolytic system, with the zymogen plasminogen binding to fibrin together with tissue-type plasminogen activator to promote activation to the active enzyme plasmin, results in digestion of fibrin at specific lysine residues. Fibrin(ogen) also specifically binds a variety of other proteins, including fibronectin, albumin

  17. Insulin degradation products from perfused rat kidney

    International Nuclear Information System (INIS)

    Duckworth, W.C.; Hamel, F.G.; Liepnieks, J.; Peavy, D.; Frank, B.; Rabkin, R.

    1989-01-01

    The kidney is a major site for insulin metabolism, but the enzymes involved and the products generated have not been established. To examine the products, we have perfused rat kidneys with insulin specifically iodinated on either the A14 or the B26 tyrosine. Labeled material from both the perfusate and kidney extract was examined by Sephadex G50 and high-performance liquid chromatography (HPLC). In perfusate from a filtering kidney, 22% of the insulin-sized material was not intact insulin on HPLC. With the nonfiltering kidney, 10.6% was not intact insulin. Labeled material from HPLC was sulfitolyzed and reinjected on HPLC. By use of 125 I-iodo(A14)-insulin, almost all the degradation products contained an intact A-chain. By use of 125 I-iodo(B26)-insulin, several different B-chain-cleaved products were obtained. The material extracted from the perfused kidney was different from perfusate products but similar to intracellular products from hepatocytes, suggesting that cellular metabolism by kidney and liver are similar. The major intracellular product had characteristics consistent with a cleavage between the B16 and B17 amino acids. This product and several of the perfusate products are also produced by insulin protease suggesting that this enzyme is involved in the degradation of insulin by kidney

  18. Core degradation and fission product release

    International Nuclear Information System (INIS)

    Wright, R.W.; Hagen, S.J.L.

    1992-01-01

    Experiments on core degradation and melt progression in severe LWR accidents have provided reasonable understanding of the principal processes involved in the early phase of melt progression that extends through core degradation and metallic material melting and relocation. A general but not a quantitative understanding of late phase melt progression that involves ceramic material melting and relocation has also been obtained, primarily from the TMI-2 core examination. A summary is given of the current state of knowledge on core degradation and melt progression obtained from these integral experiments and of the principal remaining significant uncertainties. A summary is also given of the principal results on in-vessel fission product release obtained from these experiments. (author). 8 refs, 5 figs, 3 tabs

  19. Fibrinogen concentrate in bleeding patients

    DEFF Research Database (Denmark)

    Wikkelsø, Anne; Lunde, Jens; Johansen, Mathias

    2013-01-01

    Hypofibrinogenaemia is associated with increased morbidity and mortality, but the optimal treatment level, the use of preemptive treatment and the preferred source of fibrinogen remain disputed. Fibrinogen concentrate is increasingly used and recommended for bleeding with acquired haemostatic...

  20. Analysis of deltamethrin's degradation products by irradiation

    International Nuclear Information System (INIS)

    Wu Ling; Huang Min; Chen Chun; Lei Qing; Du Xiaoying; Xie Yan; Wang Yan; Gao Peng; He Jiang

    2012-01-01

    Deltamethrin were dissolved in ethanol and water; acetone and water; dimethylsulfoxide and water, irradiating these liquors by 60 Co-γ under the dose of 5∼50 kGy. The irradiation system were analyzed by GC/MS, result shows: there were some differences under different irradiation doses; the main degradation products are: α-cyano-3-phenoxy benzyl alcohol, 3-Phenoxybenzaldehyde, 3-Phenoxybenzacetonitrile and bromomethane. (authors)

  1. Bacteroides gingivalis and Bacteroides intermedius recognize different sites on human fibrinogen

    International Nuclear Information System (INIS)

    Lantz, M.S.; Allen, R.D.; Bounelis, P.; Switalski, L.M.; Hook, M.

    1990-01-01

    Bacteroides (Porphyromonas) gingivalis and Bacteroides (Porphyromonas) intermedius have been implicated in the etiology of human periodontal diseases. These organisms are able to bind and degrade human fibrinogen, and these interactions may play a role in the pathogenesis of periodontal disease. In attempts to map the bacterial binding sites along the fibrinogen molecule, we have found that strains of B. gingivalis and B. intermedius, respectively, recognize spatially distant and distinct sites on the fibrinogen molecule. Isolated reduced and alkylated alpha-, beta-, and gamma-fibrinogen chains inhibited binding of 125I-fibrinogen to both Bacteroides species in a concentration-dependent manner. Plasmin fragments D and to some extent fragment E, however, produced a concentration-dependent inhibition of 125I-fibrinogen binding to B. intermedius strains but did not affect binding of 125I-fibrinogen to B. gingivalis strains. Radiolabeled fibrinogen chains and fragments were compared with 125I-fibrinogen with respect to specificity and reversibility of binding to bacteria. According to these criteria, gamma chain most closely resembled the native fibrinogen molecule in behavior toward B. gingivalis strains and fragments D most closely resembled fibrinogen in behavior toward B. intermedius strains. The ability of anti-human fibrinogen immunoglobulin G (IgG) to inhibit binding of 125I-fibrinogen to B. intermedius strains was greatly reduced by absorbing the IgG with fragments D. Absorbing the IgG with fragments D had no effect on the ability of the antibody to inhibit binding of 125I-fibrinogen to B. gingivalis strains. A purified staphylococcal fibrinogen-binding protein blocked binding of 125I-fibrinogen to B. intermedius strains but not to B. gingivalis strains

  2. Bacteroides gingivalis and Bacteroides intermedius recognize different sites on human fibrinogen

    Energy Technology Data Exchange (ETDEWEB)

    Lantz, M.S.; Allen, R.D.; Bounelis, P.; Switalski, L.M.; Hook, M. (Univ. of Alabama, Birmingham (USA))

    1990-02-01

    Bacteroides (Porphyromonas) gingivalis and Bacteroides (Porphyromonas) intermedius have been implicated in the etiology of human periodontal diseases. These organisms are able to bind and degrade human fibrinogen, and these interactions may play a role in the pathogenesis of periodontal disease. In attempts to map the bacterial binding sites along the fibrinogen molecule, we have found that strains of B. gingivalis and B. intermedius, respectively, recognize spatially distant and distinct sites on the fibrinogen molecule. Isolated reduced and alkylated alpha-, beta-, and gamma-fibrinogen chains inhibited binding of 125I-fibrinogen to both Bacteroides species in a concentration-dependent manner. Plasmin fragments D and to some extent fragment E, however, produced a concentration-dependent inhibition of 125I-fibrinogen binding to B. intermedius strains but did not affect binding of 125I-fibrinogen to B. gingivalis strains. Radiolabeled fibrinogen chains and fragments were compared with 125I-fibrinogen with respect to specificity and reversibility of binding to bacteria. According to these criteria, gamma chain most closely resembled the native fibrinogen molecule in behavior toward B. gingivalis strains and fragments D most closely resembled fibrinogen in behavior toward B. intermedius strains. The ability of anti-human fibrinogen immunoglobulin G (IgG) to inhibit binding of 125I-fibrinogen to B. intermedius strains was greatly reduced by absorbing the IgG with fragments D. Absorbing the IgG with fragments D had no effect on the ability of the antibody to inhibit binding of 125I-fibrinogen to B. gingivalis strains. A purified staphylococcal fibrinogen-binding protein blocked binding of 125I-fibrinogen to B. intermedius strains but not to B. gingivalis strains.

  3. Vitamin C Degradation Products and Pathways in the Human Lens*

    OpenAIRE

    Nemet, Ina; Monnier, Vincent M.

    2011-01-01

    Vitamin C and its degradation products participate in chemical modifications of proteins in vivo through non-enzymatic glycation (Maillard reaction) and formation of different products called advanced glycation end products. Vitamin C levels are particularly high in selected tissues, such as lens, brain and adrenal gland, and its degradation products can inflict substantial protein damage via formation of advanced glycation end products. However, the pathways of in vivo vitamin C degradation ...

  4. Report: More Information Is Needed On Toxaphene Degradation Products

    Science.gov (United States)

    Report #2006-P-00007, Dec 16, 2005. Toxaphene in the environment changes, or degrades. The degradation products are different from the original toxaphene in chemical composition and how they appear to testing instruments, so they could go unreported.

  5. Behaviour of homologous 125I fibrinogen after thrombin and ancrod infusion in rabbits

    International Nuclear Information System (INIS)

    Setter, R.

    1977-01-01

    The behaviour of radioactively labelled fibrinogen after infusion of thrombin or ancrod is investigated. Common factors and differences in the behaviour of fibrinogen after infusion of these two enzymes, which act proteolytically on the fibrinogen, are dealt with. Rabbits received an i.v. injection of homologous 125 I-fibrinogen 3 days before ancrod or thrombin infusion. On the day of the experiments, one group of animals received an ancrod infusion (1.5 U/kg body weight for 30 minutes), the other a thrombin infusion (600 U/kg body weight for 60 minutes). Intravenous ancrod and thrombin infusions lowered the fibrinogen level to 30% or 50% of the initial value due to intravascular coagulation. About 50% of the 125 I fibrinogen was transformed after ancrod exposure into a non-coagulating fraction of fibrinogen derivatives which produces no fibrinolytic decomposition products. (orig./AJ) [de

  6. Vitamin C degradation products and pathways in the human lens.

    Science.gov (United States)

    Nemet, Ina; Monnier, Vincent M

    2011-10-28

    Vitamin C and its degradation products participate in chemical modifications of proteins in vivo through non-enzymatic glycation (Maillard reaction) and formation of different products called advanced glycation end products. Vitamin C levels are particularly high in selected tissues, such as lens, brain and adrenal gland, and its degradation products can inflict substantial protein damage via formation of advanced glycation end products. However, the pathways of in vivo vitamin C degradation are poorly understood. Here we have determined the levels of vitamin C oxidation and degradation products dehydroascorbic acid, 2,3-diketogulonic acid, 3-deoxythreosone, xylosone, and threosone in the human lens using o-phenylenediamine to trap both free and protein-bound adducts. In the protein-free fraction and water-soluble proteins (WSP), all five listed degradation products were identified. Dehydroascorbic acid, 2,3-diketogulonic acid, and 3-deoxythreosone were the major products in the protein-free fraction, whereas in the WSP, 3-deoxythreosone was the most abundant measured dicarbonyl. In addition, 3-deoxythreosone in WSP showed positive linear correlation with age (p degradation product bound to human lens proteins provides in vivo evidence for the non-oxidative pathway of dehydroascorbate degradation into erythrulose as a major pathway for vitamin C degradation in vivo.

  7. Influence of radiolytic degradation products from organic phase

    International Nuclear Information System (INIS)

    Azevedo, H.L.P. de.

    1980-01-01

    The influence of primary and secondary degradation products from TBP - dodecane on zirconium extraction is studied. The presence of radiolytical degradation at organic phase, in systems of initial concentration of HNO 3 1 and 4M, and absorbed γ radiation doses from 0,5 to 4,5 Wh/l, lead to an increase of zirconium extraction, being the HDBP the main product of degradation responsable by this effect. The influence of secondary degradation products is significative in systems of HNO 3 1M initial concentration. The formation of precipitator in extractions of Zr in HNO 3 1M with irradiated TBP-dodecane was observed. (M.C.K.) [pt

  8. Tritiated bovine fibrinogen labelled in fibrinopeptide A region

    International Nuclear Information System (INIS)

    Wegrzynowicz, Z.; Kloczewiak, M.; Kopec, M.

    1974-01-01

    The method is described for labelling of bovine fibrinogen with 3 H-AcOAc. Preparations labelled at pH 7.8 with 10 to 40 molar excess of 3 H-AcOAc were found to contain 8 to 13 moles of acetyl residues per mole of fibrinogen. The content of clottable protein and UV spectra were unchanged as compared with control unlabelled preprations. The rate of clotting with thrombin was only slightly affected. The investigations on distribution of 3 H in products of proteolysis of 3 H-fibrinogen by thrombin and plasmin demonstrated a preferential labelling of fibrinopeptide A, absence of radioactive tracer in fibrinopeptide B, significantly higher specific radioactivity of fragment E than that of fragment D. Incorporation of the label into fibrinopeptide A opens the possibility for application of 3 H-fibrinogen as a convenient substrate for selective investigations on the enzymatic phase of clotting. (author)

  9. Research of the degradation products of chitosan's angiogenic function

    International Nuclear Information System (INIS)

    Wang Jianyun; Chen Yuanwei; Ding Yulong; Shi Guoqi; Wan Changxiu

    2008-01-01

    Angiogenesis is of great importance in tissue engineering and has gained large attention in the past decade. But how it will be influenced by the biodegradable materials, especially their degradation products, remains unknown. Chitosan (CS) is a kind of naturally occurred polysaccharide which can be degraded in physiological environment. In order to gain some knowledge of the influences of CS degradation products on angiogenesis, the interaction of vascular endothelial cells with the degradation products was investigated in the present study. The CS degradation products were prepared by keeping CS sample in physiological saline aseptically at 37 deg. C for 120 days. Endothelial cells were co-cultured with the degradation products and the angiogenic cell behaviors, including cell proliferation, migration and tube-like structure (TLS) formation, were tested by MTT assay, cell migration quantification method (CMQM), and tube-like structure quantification method (TLSQM) respectively. Furthermore, mRNA expressions of vascular endothelial growth factor (VEGF) and matrix metallo proteinase (MMP-2) were determined by real-time reverse transcriptional polymerase chain reaction (RT-PCR). Physiological saline served as a negative control. As the results showed, the degradation products obtained from 20th to 60th day significantly inhibited the proliferation, migration, and TLS formation of endothelial cells. However, degradation products of the first 14 days and the last 30 days were found to be proangiogenic. At the molecular level, the initial results indicated that the mRNA expressions of VEGF and MMP-2 were increased by the degradation products of 7th day, but were decreased by the ones of 60th day. According to all the results, it could be concluded that the angiogenic behaviors of endothelial cells at both cellular and molecular level could be significantly stimulated or suppressed by the degradation products of CS and the influences are quite time-dependent

  10. Sinalbin degradation products in mild yellow mustard paste

    Directory of Open Access Journals (Sweden)

    Paunović Dragana

    2012-01-01

    Full Text Available Sinalbin degradation products in mild yellow mustard paste were investigated. The analyzed material consisted of a mild yellow mustard paste condiment and ground white mustard seeds which were originally used in the mustard paste production process. The samples were extracted in a Soxhlet extraction system and analyzed by gas chromatography - mass spectrometry (GC-MS technique. The only sinalbin degradation product in ground mustard seeds was 2-(4-hydroxyphenylacetonitrile. The most abundant sinalbin degradation product in yellow mustard paste was 4-(hydroxymethylphenol. Other compounds identified in this sample were: 4-methyl phenol, 4-ethyl phenol, 4-(2-hydroxyethylphenol and 2-(4-hydroxyphenyl ethanoic acid.

  11. [Perioperative fibrinogen concentrations in cardiac surgery with cardiopulmonary bypass].

    Science.gov (United States)

    Uji, Makiko; Terada, Yuki; Noguchi, Teruo; Nishida, Takaya; Hasuwa, Kyoko; Shinohara, Kozue; Kumano, Hotaka; Ishimura, Naoko; Nishiwada, Makoto

    2012-08-01

    Patients undergoing cardiac surgery with cardiopulmonary bypass (CPB) need many blood products due to deficiency of coagulation factors. Blood transfusion therapy in patients with excessive bleeding after CPB is generally empiric. We checked and studied the fibrinogen concentration and transfusion, as well as bleeding amount in the perioperative period. The study was approved by our institutional ethics committee. Thirty patients were studied. Blood samples were obtained at the induction of anesthesia (before CPB), at the end of CPB, at the end of operation, and on the next morning, or before the patient was given fresh frozen plasma in the intensive care unit. For all cases, fibrinogen concentration and platelet concentration were lowest at the end of CPB. Fibrinogen concentration rose up to before CPB level on the next morning. The group in which fibrinogen concentration was less than 150 mg x dl(-1) at the end of CPB consumed more blood products than the group with fibrinogen concentration of over 150 mg x dl(-1). Blood transfusion therapy based on fibrinogen concentration is needed to maintain adequacy of the perioperative blood transfusion and blood conservation in cardiac surgery.

  12. Fibrinogen cleavage products and Toll-like receptor 4 promote the generation of programmed cell death 1 ligand 2-positive dendritic cells in allergic asthma.

    Science.gov (United States)

    Cho, Minkyoung; Lee, Jeong-Eun; Lim, Hoyong; Shin, Hyun-Woo; Khalmuratova, Roza; Choi, Garam; Kim, Hyuk Soon; Choi, Wahn Soo; Park, Young-Jun; Shim, Inbo; Kim, Byung-Seok; Kang, Chang-Yuil; Kim, Jae-Ouk; Tanaka, Shinya; Kubo, Masato; Chung, Yeonseok

    2017-10-14

    Inhaled protease allergens preferentially trigger T H 2-mediated inflammation in allergic asthma. The role of dendritic cells (DCs) on induction of T H 2 cell responses in allergic asthma has been well documented; however, the mechanism by which protease allergens induce T H 2-favorable DCs in the airway remains unclear. We sought to determine a subset of DCs responsible for T H 2 cell responses in allergic asthma and the mechanism by which protease allergens induce the DC subset in the airway. Mice were challenged intranasally with protease allergens or fibrinogen cleavage products (FCPs) to induce allergic airway inflammation. DCs isolated from mediastinal lymph nodes were analyzed for surface phenotype and T-cell stimulatory function. Anti-Thy1.2 and Mas-TRECK mice were used to deplete innate lymphoid cells and mast cells, respectively. Adoptive cell transfer, bone marrow DC culture, anti-IL-13, and Toll-like receptor (TLR) 4-deficient mice were used for further mechanistic studies. Protease allergens induced a remarkable accumulation of T H 2-favorable programmed cell death 1 ligand 2 (PD-L2) + DCs in mediastinal lymph nodes, which was significantly abolished in mice depleted of mast cells and, to a lesser extent, innate lymphoid cells. Mechanistically, FCPs generated by protease allergens triggered IL-13 production from wild-type mast cells but not from TLR4-deficient mast cells, which resulted in an increase in the number of PD-L2 + DCs. Intranasal administration of FCPs induced an increase in numbers of PD-L2 + DCs in the airway, which was significantly abolished in TLR4- and mast cell-deficient mice. Injection of IL-13 restored the PD-L2 + DC population in mice lacking mast cells. Our findings unveil the "protease-FCP-TLR4-mast cell-IL-13" axis as a molecular mechanism for generation of T H 2-favorable PD-L2 + DCs in allergic asthma and suggest that targeting the PD-L2 + DC pathway might be effective in suppressing allergic T-cell responses in the airway

  13. Fibrinogen in trauma, an evaluation of thrombelastography and rotational thromboelastometry fibrinogen assays

    DEFF Research Database (Denmark)

    Meyer, Martin A S; Ostrowski, Sisse R; Sørensen, Anne Marie

    2015-01-01

    BACKGROUND: Identifying hypofibrinogenemia in trauma is important. The optimal method of fibrinogen determination is unknown. We therefore evaluated fibrinogen levels determined by two whole blood viscoelastic hemostatic assays, thrombelastography functional fibrinogen (FF) and rotational thrombo...

  14. Sinalbin degradation products in mild yellow mustard paste

    OpenAIRE

    Paunović, Dragana; Šolević-Knudsen, Tatjana; Krivokapić, Mirjana; Zlatković, Branislav; Antić, Mališa

    2012-01-01

    Sinalbin degradation products in mild yellow mustard paste were investigated. The analyzed material consisted of a mild yellow mustard paste condiment and ground white mustard seeds which were originally used in the mustard paste production process. The samples were extracted in a Soxhlet extraction system and analyzed by gas chromatography - mass spectrometry (GC-MS) technique. The only sinalbin degradation product in ground mustard seeds was 2-(4-hydroxyphenyl)acetonitrile. The most a...

  15. Granulocyte-platelet interactions and platelet fibrinogen receptor exposure

    International Nuclear Information System (INIS)

    Kornecki, E.; Ehrlich, Y.H.; Egbring, R.; Gramse, M.; Seitz, R.; Eckardt, A.; Lukasiewicz, H.; Niewiarowski, S.

    1988-01-01

    The authors have examined the interaction of human granulocyte elastase with human platelets. Incubation of human platelets with human granulocyte elastase exposed active fibrinogen-binding sites as evidenced by 125 I-labeled fibrinogen binding and spontaneous fibrinogen-induced platelet aggregation. The aggregation of platelets by fibrinogen occurred at low concentrations of human granulocyte elastase. Platelets pretreated with human granulocyte elastase exposed an average of 10,500 fibrinogen-binding sites per platelet, i.e., about one-third the number of binding sites exposed by optimal concentrations of ADP. With the use of a polyclonal antiplatelet membrane antibody, the glycoproteins IIb (GPIIb), IIIa (GPIIIa), and a 60,000-Da (60 kDa) protein (66 kDa in a reduced system) derived from GPIIIa were immunoprecipitated from the surface of detergent extracts of human 125 I-radiolabeled platelets pretreated with increasing concentrations of human granulocyte elastase. They conclude that (1) the proteolytic action of human granulocyte elastase on platelet GPIIIa results in the formation of two major hydrolytic products, and (2) human granulocyte elastase exposes active fibrongen-binding sites associated with the GPIIb/GPIIIa complex, resulting in direct platelet aggregation by fibrinogen

  16. Degradation of Histamine by Lactobacillus plantarum Isolated from Miso Products.

    Science.gov (United States)

    Kung, Hsien-Feng; Lee, Yi-Chen; Huang, Ya-Ling; Huang, Yu-Ru; Su, Yi-Cheng; Tsai, Yung-Hsiang

    2017-10-01

    Histamine is a toxic chemical and is the causative agent of food poisoning. This foodborne toxin may be degraded by the oxidative deamination activity of certain microorganisms. In this study, we isolated four histamine-degrading Lactobacillus plantarum bacteria from miso products. Among them, L. plantarum D-103 exhibited 100% degradation of histamine in de Man Rogosa Sharpe (MRS) broth containing 50 ppm of histamine after 24 h of incubation at 30°C. The optimal growth, histamine oxidase, and histamine-degrading activity of L. plantarum D-103 were observed in histamine MRS broth at pH 7.0, 3% NaCl, and 30°C. It also exhibited tolerance to broad ranges of pH (4 to 10) and salt concentrations (0 to 12%) in histamine MRS broth. Therefore, the histamine-degrading L. plantarum D-103 might be used as an additive culture to prevent histamine accumulation in miso products during fermentation.

  17. Determination of impurities and degradation products from veterinary medicinal products by HPLC method

    Directory of Open Access Journals (Sweden)

    Elena Gabriela Oltean

    2014-06-01

    Full Text Available The organic or inorganic impurities in the veterinary medicinal product can derive from starting materials, manufacturing process, incomplete purification, inappropriate storage. The acceptable levels of impurities in pharmaceuticals are estimated by comparison with standard solutions, according to the appropriate monographs. Forced degradation studies determine the stability of the method of dosage for the active compounds and for the entire finished product under excessive accelerated degradation conditions. They also provide information on degradation pathways and selectivity of analytical methods applied. The information provided by the degradation studies on the active compound and finished pharmaceutical product should demonstrate the specificity of the analytical method regarding impurities. Forced degradation studies should demonstrate that the impurities and degradation products generated do not interfere with the active compound. The current forced degradation methods consist of acid hydrolysis, basic hydrolysis, oxidation, exposure of the medicinal product to temperature and light. HPLC methods are an integral analytical instrument for the analysis of the medicinal product. The HPLC method should be able to separate, detect and quantify various specific degradation products that can appear after manufacture or storage of the medicinal product, as well as new elements appearing after synthesis. FDA and ICH guidelines recommend the enclosure of the results, including the chromatograms specific to the forced degradation-subjected medicinal product, in the documentation for marketing authorization. Using HPLC methods in forced degradation studies on medicinal products provides relevant information on the method of determination for the formulation of the medicinal product, synthesis product, packaging methods and storage.

  18. Anthocyanins degradation during storage of Hibiscus sabdariffa extract and evolution of its degradation products.

    Science.gov (United States)

    Sinela, André; Rawat, Nadirah; Mertz, Christian; Achir, Nawel; Fulcrand, Hélène; Dornier, Manuel

    2017-01-01

    Degradation parameters of two main anthocyanins from roselle extract (Hibiscus sabdariffa L.) stored at different temperatures (4-37°C) over 60days were determined. Anthocyanins and some of their degradation products were monitored and quantified using HPLC-MS and DAD. Degradation of anthocyanins followed first-order kinetics and reaction rate constants (k values), which were obtained by non-linear regression, showed that the degradation rate of delphinidin 3-O-sambubioside was higher than that of cyanidin 3-O-sambubioside with k values of 9.2·10(-7)s(-1) and 8.4·10(-7)s(-1) at 37°C respectively. The temperature dependence of the rate of anthocyanin degradation was modeled by the Arrhenius equation. Degradation of delphinidin 3-O-sambubioside (Ea=90kJmol(-1)) tended to be significantly more sensitive to an increase in temperature than cyanidin 3-O-sambubioside (Ea=80kJmol(-1)). Degradation of these anthocyanins formed scission products (gallic and protocatechuic acids respectively) and was accompanied by an increase in polymeric color index. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. The consumption of fibrinogen during pregnancy

    International Nuclear Information System (INIS)

    Kuijpers, J.C.

    1982-01-01

    The aim of this thesis is to investigate the consumption of fibrinogen during pregnancy, under the influence of intravascular coagulopathy. The question is, in which manner and to what degree does intravascular coagulopathy occur during the normal pregnancy and in pregnancy induced hypertension. The measurement of the biological half life of fibrinogen is performed using I 125 labelled fibrinogen. A calculation is given for the fetal radiation dose during this measurement, which is shown to be no greater than that which occurs from various natural sources of radiation. The stability of the coupling of I 125 to the fibrinogen preparation used was investigated. Nearly 93% was bound to the intact fibrinogen fraction, 5% to the non-clotting fibrinogen, 1% to the albumin and 1% appeared as free I 125 . After intravenous injection of the I 125 -fibrinogen preparation, these proportions changed a little in favour of the clottable fibrinogen fraction. (Auth.)

  20. Lignocellulose degradation, enzyme production and protein ...

    African Journals Online (AJOL)

    Microbial conversion of corn stover by white rot fungi has the potential to increase its ligninolysis and nutritional value, thereby transforming it into protein-enriched animal feed. Response surface methodology was applied to optimize conditions for the production of lignocellulolytic enzymes by Trametes versicolor during ...

  1. Relationship between gas production and starch degradation in feed samples

    NARCIS (Netherlands)

    Chai, W.Z.; Gelder, van A.H.; Cone, J.W.

    2004-01-01

    An investigation was completed of the possibilities to estimate starch fermentation in rumen fluid using the gas production technique by incubating the total sample. Gas production from six starchy feed ingredients and eight maize silage samples were recorded and related to starch degradation

  2. Effects of organic degradation products on the sorption of actinides

    International Nuclear Information System (INIS)

    Baston, G.M.N.; Berry, J.A.; Bond, K.A.; Brownsword, M.; Linklater, C.M.

    1992-01-01

    Previous work has shown that products from the chemical degradation of cellulosic matter can significantly reduce sorption of uranium(VI) and plutonium(IV) on geological materials. Uranium(IV) batch sorption experiments have now been performed to study the effect of organic degradation products in a reducing environment. Thorium(IV) sorption has also been studied since thorium is an important radioelement in its own right and has potential use as a simulant for other tetravalent actinides. Sorption onto London clay, Caithness flagstones and St. Bees sandstone was investigated. Experimental conditions were chosen to simulate both those expected close to cementitious repository (pH ∝ 11) and at the edge of the zone of migration of the alkaline plume (pH ∝ 8). Work was carried out with both authentic degradation products and with gluconate, acting as a well-characterized simulant for cellulosic degradation products. The results show that the presence of organic species can cause a reduction in sorption. This is especially so in the presence of a high concentration of gluconate ions, but the reduction is significantly less with authentic degradation products. (orig.)

  3. Effects of organic degradation products on the sorption of actinides

    Energy Technology Data Exchange (ETDEWEB)

    Baston, G.M.N.; Berry, J.A.; Bond, K.A.; Brownsword, M.; Linklater, C.M. (AEA Decommissioning and Radwaste, Harwell Lab. (United Kingdom))

    1992-01-01

    Previous work has shown that products from the chemical degradation of cellulosic matter can significantly reduce sorption of uranium(VI) and plutonium(IV) on geological materials. Uranium(IV) batch sorption experiments have now been performed to study the effect of organic degradation products in a reducing environment. Thorium(IV) sorption has also been studied since thorium is an important radioelement in its own right and has potential use as a simulant for other tetravalent actinides. Sorption onto London clay, Caithness flagstones and St. Bees sandstone was investigated. Experimental conditions were chosen to simulate both those expected close to cementitious repository (pH [proportional to] 11) and at the edge of the zone of migration of the alkaline plume (pH [proportional to] 8). Work was carried out with both authentic degradation products and with gluconate, acting as a well-characterized simulant for cellulosic degradation products. The results show that the presence of organic species can cause a reduction in sorption. This is especially so in the presence of a high concentration of gluconate ions, but the reduction is significantly less with authentic degradation products. (orig.).

  4. Electrospun nanofibre fibrinogen for urinary tract tissue reconstruction

    International Nuclear Information System (INIS)

    McManus, Michael; Boland, Eugene; Sell, Scott; Bowen, Whitney; Koo, Harry; Simpson, David; Bowlin, Gary

    2007-01-01

    The purpose of this study was to demonstrate that human bladder smooth muscle cells (HBSM) remodel electrospun fibrinogen mats. Fibrinogen scaffolds were electrospun and disinfected using standard methods. Scaffolds were seeded with 5 x 10 4 HBSM per scaffold. Cultures were supplemented with aprotinin concentrations of 0 KIU ml -1 (no aprotinin), 100 KIU ml -1 or 1000 KIU ml -1 and incubated with twice weekly media changes. Samples were removed for evaluation at 1, 3, 7 and 14 days. Cultured scaffolds were evaluated with a WST-1 cell proliferation assay, scanning electron microscopy and histology. Cell culture demonstrated that HBSM readily migrated into and initiated remodelling of the electrospun fibrinogen scaffolds by deposition of collagen. Proliferation was suppressed during this initial phase with respect to a 2D control due to cell migration. Histology confirmed that proliferation increased during the later stages of remodelling. Remodelling was slower at higher aprotinin concentrations. These results demonstrate that HBSM rapidly remodel an electrospun fibrinogen scaffold and deposit native collagen. The process can be modulated using aprotinin, a protease inhibitor. These initial findings indicate that there is tremendous potential for electrospun fibrinogen as a urologic tissue engineering scaffold with the ultimate goal of producing an implantable acellular product that would promote cellular in-growth and in situ tissue regeneration

  5. Gamma radiolytic degradation of 4-chlorophenol determination of degraded products with HPLC and GC-MS

    International Nuclear Information System (INIS)

    Butt, S.B.; Masood, M.N.

    2007-01-01

    Contamination by chlorophenols of surface water and groundwater is an emerging issue in environmental science and engineering. After their usage as pesticide, herbicide and disinfectant, these organic compounds subsequently enter the aquatic environment through a number of routes. Some of the chlorophenols are slightly biodegradable, while others are more persistent and mobile in the aquatic environment especially chlorophenols. Gamma radiolytic degradation is one of advance oxidation process that has been thought to be one of the promising treatments to deal with this problem. This radiolytic study was carried out in methanolic 4-CP (4-chlorophenol) samples. Among several factors effecting radiolytic degradation of 4-CP, dose and concentration are important that were evaluated under atmospheric conditions. A degradation yield (G -value) for 4- CP of 0.38 and 1.35 was achieved in 20 and 100 mg/dm/sup 3/ solution. It was observed that degradation yield decreases with increasing 4-CP concentration. Gamma radiolysis produce free radicals in solvent which further react with 4-CP molecules to generate different products. The identification of degradation products was proposed using HPLC and GC-MS. (author)

  6. Four new degradation products of doxorubicin: An application of forced degradation study and hyphenated chromatographic techniques

    Directory of Open Access Journals (Sweden)

    Dheeraj Kaushik

    2015-10-01

    Full Text Available Forced degradation study on doxorubicin (DOX was carried out under hydrolytic condition in acidic, alkaline and neutral media at varied temperatures, as well as under peroxide, thermal and photolytic conditions in accordance with International Conference on Harmonization (ICH guidelines Q1(R2. It was found extremely unstable to alkaline hydrolysis even at room temperature, unstable to acid hydrolysis at 80 °C, and to oxidation at room temperature. It degraded to four products (O-I–O-IV in oxidative condition, and to single product (A-I in acid hydrolytic condition. These products were resolved on a C8 (150 mm×4.6 mm, 5 µm column with isocratic elution using mobile phase consisting of HCOONH4 (10 mM, pH 2.5, acetonitrile and methanol (65:15:20, v/v/v. Liquid chromatography–photodiode array (LC–PDA technique was used to ascertain the purity of the products noted in LC–UV chromatogram. For their characterization, a six stage mass fragmentation (MS6 pattern of DOX was outlined through mass spectral studies in positive mode of electrospray ionization (+ESI as well as through accurate mass spectral data of DOX and the products generated through liquid chromatography–time of flight mass spectrometry (LC–MS–TOF on degraded drug solutions. Based on it, O-I–O-IV were characterized as 3-hydroxy-9-desacetyldoxorubicin-9-hydroperoxide, 1-hydroxy-9-desacetyldoxorubicin-9-hydroperoxide, 9-desacetyldoxorubicin-9-hydroperoxide and 9-desacetyldoxorubicin, respectively, whereas A-I was characterized as deglucosaminyl doxorubicin. While A-I was found to be a pharmacopoeial impurity, all oxidative products were found to be new degradation impurities. The mechanisms and pathways of degradation of doxorubicin were outlined and discussed. Keywords: Doxorubicin, TOF, Forced degradation, Liquid chromatography, Degradation product, Mass fragmentation pattern

  7. TBP degradation products. Separation and gas-chromatographic determination

    International Nuclear Information System (INIS)

    Kuada, T.A.; Alem, C.M.; Matsuda, H.T.; Araujo, B.F. de; Araujo, J.A de.

    1991-11-01

    A separation method for di butylphosphate, mono butylphosphate and phosphoric acid as degradation products in organic and aqueous streams of the process containing variable amounts of actinides and fission products is described. The products were separated by extraction and after methylation the final determination was carried out by gas chromatography. TPP was used as internal standard and 5 to 500 mg/L concentration range was determined with 1 to 10% deviation depending on the concentration of organo phosphates. (author)

  8. Microbial degradation of coconut coir dust for biomass production

    Energy Technology Data Exchange (ETDEWEB)

    Uyenco, F.R.; Ochoa, J.A.K.

    Several species of white-rot fungi were studied for its ability to degrade the lignocellulose components of coir dust at optimum conditions. The most effective fungi was Phanerochaeta chrysosporium UPCC 4003. This organism degraded the lignocellulose complex of coir dust at a rate of about 25 percent in 4 weeks. The degradation process was carried on with minimal nitrogen concentration, coconut water supplementation and moisture levels between 85-90 percent. Shake flask cultures of the degraded coir dust using cellulolytic fungi were not effective. In fermentor cultures with Chaetomium cellulolyticum UPCC 3934, supplemented coir dust was converted into a microbial biomass product (MBP) with 15.58 percent lignin, 19.20 percent cellulose and 18.87 percent protein. More work is being done on the utilization of coir dust on a low technology.

  9. Extraction, radioiodination, and in vivo catabolism of equine fibrinogen

    International Nuclear Information System (INIS)

    Coyne, C.P.; Hornof, W.J.; Kelly, A.B.; O'Brien, T.R.; DeNardo, S.J.

    1985-01-01

    Equine fibrinogen was isolated and aliquots were stored frozen at -70 C before radiolabeling with 125I (half-life = 60.2 days; gamma = 35 keV, using monochloroiodine reagent. Radioiodination efficiencies were 49% to 53%, resulting in a labeled product with 98% protein-bound activity and 91% clottable radioactivity. In 6 equine in vivo investigations, plasma half-lives of 125I-labeled fibrinogen were from 4.1 to 5.2 days, corresponding to a mean daily plasma elimination rate of approximately 15%

  10. Organochlorine Pesticides and Degradation Products in Soil around ...

    African Journals Online (AJOL)

    The levels and compositions of organochlorine pesticides and degradation products in soil samples collected from a former formulation plant in Morogoro municipality, Tanzania, were determined. Extraction was performed by pressurized fluid extraction using n-hexane:acetone (75:25) mixture. Clean-up of extracts was ...

  11. Diesel degradation and biosurfactant production by Gram-positive ...

    African Journals Online (AJOL)

    The ability of Gram-positive bacteria to degrade diesel increased in a comparable trend as its biosurfactant production increased. The E24 index was highest at 87.6% for isolate D9. Isolates D2, D9 and D10, were identified as Paenibacillus sp. whilst isolate DJLB was found to belong to Stenotrophomonas sp. This study ...

  12. Possible Appearance of Degradation Products of Paraquat in Crops

    Energy Technology Data Exchange (ETDEWEB)

    Slade, P. [Imperial Chemical Industries LTD., Jealott' s Hill Research Station, Bracknell, Berks. (United Kingdom)

    1966-05-15

    Chemical analysis has established that residue levels of paraquat in crops harvested after use of the chemical are at such a low level as to constitute no hazard to the consuming public. (Paraquat dichloride is 1,1'-dimethyl-4,4'-bipyridylium dichloride). There remained the possibility that toxic metabolites or other conversion products of paraquat might appear in crops. This paper is concerned with attempts to evaluate this possibility, and demonstrates that no hazard arises from the formation of degradation products. It has been shown, using paraquat labelled with {sup 14}C in the methyl groups and in the pyridine nuclei, that the chemical is not metabolically degraded in plants. However, photochemical degradation of paraquat can occur on the surface of leaves in sunlight. In vitro experiments involving ultra-violet irradiation of aqueous solutions of {sup 14}C-paraquat have shown that 4-carboxy-1-methylpyridinium chloride and methylamine hydrochloride are the only products formed in significant amount in the photochemical degradation. Paper chromatography and isotope dilution have shown that these products are formed on leaves of plants treated with {sup 14}C-paraquat (mostly after the plants are dead). Whole plant radioautography has established that 4-carboxy-1-{sup 14}C methylpyridinium chloride is not translocated at all from the dead leaves on which it is formed and certainly this compound will not appear in harvested crops. This has been confirmed in an experiment in which {sup 14}C-paraquat was used to desiccate the tops of potato plants before harvesting the tubers. All the radioactivity subsequently found in the tubers could be accounted for as paraquat (level 0.08 ppm). There was no evidence for the presence of significant amounts of other radioactive compounds in the tubers, even though chromatography of extracts of the desiccated plants showed that photochemical degradation products were formed on the leaves: these were not translocated into the

  13. Fibrinogen adsorption on blocked surface of albumin

    DEFF Research Database (Denmark)

    Holmberg, Maria; Hou, Xiaolin

    2011-01-01

    We have investigated the adsorption of albumin and fibrinogen onto PET (polyethylene terephthalate) and glass surfaces and how pre-adsorption of albumin onto these surfaces can affect the adsorption of later added fibrinogen. For materials and devices being exposed to blood, adsorption...... of fibrinogen is often a non-wanted event, since fibrinogen is part of the clotting cascade and unspecific adsorption of fibrinogen can have an influence on the activation of platelets. Albumin is often used as blocking agent for avoiding unspecific protein adsorption onto surfaces in devices designed to handle...... energies, the adsorption of both albumin and fibrinogen has been monitored simultaneously on the same sample. Information about topography and coverage of adsorbed protein layers has been obtained using AFM (Atomic Force Microscopy) analysis in liquid. Our studies show that albumin adsorbs in a multilayer...

  14. Analysis of deltamethrin's degradation products by irradiation

    International Nuclear Information System (INIS)

    Wu Ling; Huang Min; Chen Chun; Lei Qing; Du Xiaoying; Xie Yan; Wang Yan; Gao Peng; He Jiang

    2011-01-01

    Deltamethrin were dissolved in ethanol and water; acetone and water; dimethylsulfoxide and water, irradiating these liquors by 60 Co-γ under the dose of 5∼50 kGy. The irradiation system were analyzed by GC/MS, result shows: there were some differences under different irradiation doses; the main degradation products are: α-cyano-3-phenoxy benzyl alcohol, 3-Phenoxybenzaldehyde, 3-Phenoxybenzacetonitrile and bromomethane. (authors)

  15. Conversion of waste polystyrene through catalytic degradation into valuable products

    Energy Technology Data Exchange (ETDEWEB)

    Shah, Jasmin; Jan, Muhammad Rasul; Adnan [University of Peshawar, Peshawar (Pakistan)

    2014-08-15

    Waste expanded polystyrene (EPS) represents a source of valuable chemical products like styrene and other aromatics. The catalytic degradation was carried out in a batch reactor with a mixture of polystyrene (PS) and catalyst at 450 .deg. C for 30 min in case of Mg and at 400 .deg. C for 2 h both for MgO and MgCO{sub 3} catalysts. At optimum degradation conditions, EPS was degraded into 82.20±3.80 wt%, 91.60±0.20 wt% and 81.80±0.53 wt% liquid with Mg, MgO and MgCO{sub 3} catalysts, respectively. The liquid products obtained were separated into different fractions by fractional distillation. The liquid fractions obtained with three catalysts were compared, and characterized using GC-MS. Maximum conversion of EPS into styrene monomer (66.6 wt%) was achieved with Mg catalyst, and an increase in selectivity of compounds was also observed. The major fraction at 145 .deg. C showed the properties of styrene monomer. The results showed that among the catalysts used, Mg was found to be the most effective catalyst for selective conversion into styrene monomer as value added product.

  16. Fate of products of degradation processes: consequences for climatic change

    International Nuclear Information System (INIS)

    Slanina, J.; Brink, H.M. ten; Khlystov, A.

    1999-01-01

    The end products of atmospheric degradation are not only CO 2 and H 2 O but also sulfate and nitrate depending on the chemical composition of the substances which are subject to degradation processes. Atmospheric degradation has thus a direct influence on the radiative balance of the earth not only due to formation of greenhouse gases but also of aerosols. Aerosols of a diameter of 0.1 to 2 micrometer, reflect short wave sunlight very efficiently leading to a radiative forcing which is estimated to be about -0.8 watt per m 2 by IPCC. Aerosols also influence the radiative balance by way of cloud formation. If more aerosols are present, clouds are formed with more and smaller droplets and these clouds have a higher albedo and are more stable compared to clouds with larger droplets. Not only sulfate, but also nitrate and polar organic compounds, formed as intermediates in degradation processes, contribute to this direct and indirect aerosol effect. Estimates for the Netherlands indicate a direct effect of -4 watt m -2 and an indirect effect of as large as -5 watt m -2 . About one third is caused by sulfates, one third by nitrates and last third by polar organic compounds. This large radiative forcing is obviously non-uniform and depends on local conditions. (author)

  17. Radiolytic gas production in the alpha particle degradation of plastics

    International Nuclear Information System (INIS)

    Reed, D.T.; Hoh, J.; Emery, J.; Hobbs, D.

    1992-01-01

    Net gas generation due to alpha particle irradiation of polyethylene and polyvinyl chloride was investigated. Experiments were performed in an air environment at 30, 60, and 100 degree C. The predominant radiolytic degradation products of polyethylene were hydrogen and carbon dioxide with a wide variety of trace organic species noted. Irradiation of polyvinyl chloride resulted in the formation of HCl in addition to the products observed for polyethylene. For both plastic materials, a strong enhancement of net yields was noted at 100 degree C

  18. Availability of the B beta(15-21) epitope on cross-linked human fibrin and its plasmic degradation products

    Science.gov (United States)

    Chen, F.; Haber, E.; Matsueda, G. R.

    1992-01-01

    The binding of radiolabeled monoclonal antifibrin antibody 59D8 (specific for fibrin but not fibrinogen) to a series of degraded fibrin clots showed that the availability of the B beta(15-21) epitope (against which 59D8 had been raised) was inversely proportional to the extent of clot lysis. Examination of digest supernatants revealed that the B beta(15-21) epitope was released from clots as a high molecular weight degradation product in the presence of calcium ions but that the generation of low molecular weight peptides occurred in the absence of calcium ions. To address the question of epitope accessibility, we compared levels of fibrin clot binding among four radioactively labeled antibodies: antifibrin monoclonal antibody 59D8, two antifibrinogen monoclonal antibodies that cross-reacted with fibrin, and an affinity-purified polyclonal antifibrinogen antibody. We expected that the antifibrinogen antibodies would show enhanced binding to clots in comparison with the antifibrin antibody. However, the epitope accessibility experiments showed that all four antibody preparations bound fibrin clots at comparable levels. Taken together, these studies demonstrated that one fibrin-specific epitope, B beta(15-21), remains available on clots as they undergo degradation by plasmin and, importantly, that the epitope is not solubilized at a rate faster than the rate at which the clot is itself solubilized. The availability of the B beta(15-21) epitope during the course of plasminolysis assures the potential utility of antifibrin antibodies such as 59D8 for detecting thrombi and targeting plasminogen activators.

  19. Fibrinogen adsorption on blocked surface of albumin.

    Science.gov (United States)

    Holmberg, Maria; Hou, Xiaolin

    2011-05-01

    We have investigated the adsorption of albumin and fibrinogen onto PET (polyethylene terephthalate) and glass surfaces and how pre-adsorption of albumin onto these surfaces can affect the adsorption of later added fibrinogen. For materials and devices being exposed to blood, adsorption of fibrinogen is often a non-wanted event, since fibrinogen is part of the clotting cascade and unspecific adsorption of fibrinogen can have an influence on the activation of platelets. Albumin is often used as blocking agent for avoiding unspecific protein adsorption onto surfaces in devices designed to handle biological samples, including protein solutions. It is based on the assumption that proteins adsorbs as a monolayer on surfaces and that proteins do not adsorb on top of each other. By labelling albumin and fibrinogen with two different radioactive iodine isotopes that emit gamma radiation with different energies, the adsorption of both albumin and fibrinogen has been monitored simultaneously on the same sample. Information about topography and coverage of adsorbed protein layers has been obtained using AFM (Atomic Force Microscopy) analysis in liquid. Our studies show that albumin adsorbs in a multilayer fashion on PET and that fibrinogen adsorbs on top of albumin when albumin is pre-adsorbed on the surfaces. Copyright © 2010 Elsevier B.V. All rights reserved.

  20. Halotolerance, ligninase production and herbicide degradation ability of basidiomycetes strains.

    Science.gov (United States)

    Arakaki, R L; Monteiro, D A; Boscolo, M; Dasilva, R; Gomes, E

    2013-12-01

    Fungi have been recently recognized as organisms able to grow in presence of high salt concentration with halophilic and halotolerance properties and their ligninolytic enzyme complex have an unspecific action enabling their use to degradation of a number of xenobiotic compounds. In this work, both the effect of salt and polyols on growth of the basidiomycetes strains, on their ability to produce ligninolytic enzyme and diuron degradation were evaluated. Results showed that the presence of NaCl in the culture medium affected fungal specimens in different ways. Seven out of ten tested strains had growth inhibited by salt while Dacryopinax elegans SXS323, Polyporus sp MCA128 and Datronia stereoides MCA167 fungi exhibited higher biomass production in medium containing 0.5 and 0.6 mol.L(-1) of NaCl, suggesting to be halotolerant. Polyols such as glycerol and mannitol added into the culture media improved the biomass and ligninases production by D. elegans but the fungus did not reveal consumption of these polyols from media. This fungus degraded diuron in medium control, in presence of NaCl as well as polyols, produced MnP, LiP and laccase.

  1. Halotolerance, ligninase production and herbicide degradation ability of basidiomycetes strains

    Directory of Open Access Journals (Sweden)

    R.L. Arakaki

    2013-12-01

    Full Text Available Fungi have been recently recognized as organisms able to grow in presence of high salt concentration with halophilic and halotolerance properties and their ligninolytic enzyme complex have an unspecific action enabling their use to degradation of a number of xenobiotic compounds. In this work, both the effect of salt and polyols on growth of the basidiomycetes strains, on their ability to produce ligninolytic enzyme and diuron degradation were evaluated. Results showed that the presence of NaCl in the culture medium affected fungal specimens in different ways. Seven out of ten tested strains had growth inhibited by salt while Dacryopinax elegans SXS323, Polyporus sp MCA128 and Datronia stereoides MCA167 fungi exhibited higher biomass production in medium containing 0.5 and 0.6 mol.L-1 of NaCl, suggesting to be halotolerant. Polyols such as glycerol and mannitol added into the culture media improved the biomass and ligninases production by D. elegans but the fungus did not reveal consumption of these polyols from media. This fungus degraded diuron in medium control, in presence of NaCl as well as polyols, produced MnP, LiP and laccase.

  2. Radio-iodination of a rabbit fibrinogen by the chloramine-T method

    Energy Technology Data Exchange (ETDEWEB)

    Moza, A K; Kumar, M; Belavalgidad, M I; Sapru, R P [Post-Graduate Inst. of Medical Education and Research, Chandigarh (India). Dept. of Experimental Medicine

    1974-01-01

    A method for radio-iodination of fibrinogen using chloramine-T has been described. Samples of greater than 90% clottable counts were obtained. Electrophoretic mobility and immunodiffusion showed that the entire radioactivity was present in the fibrinogen band. In vivo studies on the turnover of this labelled product in rabbits showed a half-life of 52.8 to 61.7 hrs in two batches of animals. The results compare very well with the reported results obtained from fibrinogen labelled with radioactive iodine by the iodine-monochloride method. The advantages of the new method have been pointed out.

  3. ANALYTICAL METHOD DEVELOPMENT FOR ALACHLOR ESA AND OTHER ACETANILIDE HERBICIDE DEGRADATION PRODUCTS

    Science.gov (United States)

    In 1998, USEPA published a Drinking Water Contaminant Candidate List (CCL) of 50 chemicals and 10 microorganisms. "Alachlor ESA and other acetanilide herbicide degradation products" is listed on the the 1998 CCL. Acetanilide degradation products are generally more water soluble...

  4. Liquid chromatography and liquid chromatography-mass spectrometry analysis of donepezil degradation products

    Directory of Open Access Journals (Sweden)

    Mladenović Aleksandar R.

    2015-01-01

    Full Text Available This study describes the investigation of degradation products of donepezil (DP using stability indicating RP-HPLC method for determination of donepezil, which is a centrally acting reversible acetylcholinesterase inhibitor. In order to investigate the stability of drug and formed degradation products, a forced degradation study of drug sample and finished product under different forced degradation conditions has been conducted. Donepezil hydrochloride and donepezil tablets were subjected to stress degradation conditions recommended by International Conference on Harmonization (ICH. Donepezil hydrochloride solutions were subjected to acid and alkali hydrolysis, chemical oxidation and thermal degradation. Significant degradation was observed under alkali hydrolysis and oxidative degradation conditions. Additional degradation products were observed under the conditions of oxidative degradation. The degradation products observed during forced degradation studies were monitored using the high performance liquid chromatography (HPLC method developed. The parent method was modified in order to obtain LC-MS compatible method which was used to identify the degradation products from forced degradation samples using high resolution mass spectrometry. The mass spectrum provided the precise mass from which derived molecular formula of drug substance and degradation products formed and proved the specificity of the method unambiguously. [Projekat Ministarstva nauke Republike Srbije, br. 172013

  5. A randomized, double blind trial of prophylactic fibrinogen to reduce bleeding in cardiac surgery

    Directory of Open Access Journals (Sweden)

    Mostafa Sadeghi

    2014-07-01

    Full Text Available BACKGROUND AND OBJECTIVES: Postoperative bleeding has a great clinical importance and can contribute to increased mortality and morbidity in patients undergoing coronary artery bypass graft surgery. In this prospective, randomized, double-blind study, we evaluated the effect of prophylactic administration of fibrinogen concentrate on post-coronary artery bypass graft surgery bleeding. METHODS: A total of 60 patients undergoing coronary artery bypass surgery were randomly divided into two groups. Patients in the fibrinogen group received 1 g of fibrinogen concentrate 30 min prior to the operation, while patients in the control group received placebo. Post-operative bleeding volumes, prothrombin time, partial thromboplastin time, INR, hemoglobin and transfused blood products in both groups were recorded. A strict red blood cell transfusion protocol was used in all patients. RESULTS: There were no significant differences between intra-operative packed red blood cells infusion in the studied groups (1.0 ± 1.4 in fibrinogen group, and 1.3 ± 1.1 in control group. Less postoperative bleeding was observed in the fibrinogen group (477 ± 143 versus 703 ± 179, p = 0.0001. Fifteen patients in the fibrinogen group and 21 in the control group required post-op packed red blood cells infusion (p = 0.094. No thrombotic event was observed through 72 h after surgery. CONCLUSION: Prophylactic fibrinogen reduces post-operative bleeding in patients undergoing coronary artery bypass graft.

  6. Product analysis for polyethylene degradation by radiation and thermal ageing

    International Nuclear Information System (INIS)

    Sugimoto, Masaki; Shimada, Akihiko; Kudoh, Hisaaki; Tamura, Kiyotoshi; Seguchi, Tadao

    2013-01-01

    The oxidation products in crosslinked polyethylene for cable insulation formed during thermal and radiation ageing were analyzed by FTIR-ATR. The products were composed of carboxylic acid, carboxylic ester, and carboxylic anhydride for all ageing conditions. The relative yields of carboxylic ester and carboxylic anhydride increased with an increase of temperature for radiation and thermal ageing. The carboxylic acid was the primary oxidation product and the ester and anhydride were secondary products formed by the thermally induced reactions of the carboxylic acids. The carboxylic acid could be produced by chain scission at any temperature followed by the oxidation of the free radicals formed in the polyethylene. The results of the analysis led to formulation of a new oxidation mechanism which was different from the chain reactions via peroxy radicals and peroxides. - Highlights: ► Products analysis of polyethylene degradation by radiation and thermal ageing. ► Components of carbonyl compounds produced in polyethylene by thermal and radiation oxidation were determined by FTIR. ► Carbonyl compounds comprised carboxylic acid, carboxylic ester, and carboxylic anhydride. ► Carboxylic acid was the primary oxidation product of chain scission at any oxidation temperature. ► Carboxylic ester and carboxylic anhydride are secondary products formed from carboxylic acid at higher temperature.

  7. Degradation of chitosan hydrogel dispersed in dilute carboxylic acids by solution plasma and evaluation of anticancer activity of degraded products

    Science.gov (United States)

    Chokradjaroen, Chayanaphat; Rujiravanit, Ratana; Theeramunkong, Sewan; Saito, Nagahiro

    2018-01-01

    Chitosan is a polysaccharide that has been extensively studied in the field of biomedicine, especially its water-soluble degraded products called chitooligosaccharides (COS). In this study, COS were produced by the degradation of chitosan hydrogel dispersed in a dilute solution (i.e., 1.55 mM) of various kinds of carboxylic acids using a non-thermal plasma technology called solution plasma (SP). The degradation rates of chitosan were influenced by the type of carboxylic acids, depending on the interaction between chitosan and each carboxylic acid. After SP treatment, the water-soluble degraded products containing COS could be easily separated from the water-insoluble residue of chitosan hydrogel by centrifugation. The production yields of the COS were mostly higher than 55%. Furthermore, the obtained COS products were evaluated for their inhibitory effect as well as their selectivity against human lung cancer cells (H460) and human lung normal cells (MRC-5).

  8. Enhanced enzymatic cellulose degradation by cellobiohydrolases via product removal

    DEFF Research Database (Denmark)

    Ahmadi Gavlighi, Hassan; Meyer, Anne S.; Mikkelsen, Jørn Dalgaard

    2013-01-01

    Product inhibition by cellobiose decreases the rate of enzymatic cellulose degradation. The optimal reaction conditions for two Emericella (Aspergillus) nidulans-derived cellobiohydrolases I and II produced in Pichia pastoris were identified as CBHI: 52 °C, pH 4.5–6.5, and CBHII: 46 °C, pH 4.......8. The optimum in a mixture of the two was 50 °C, pH 4.9. An almost fourfold increase in enzymatic hydrolysis yield was achieved with intermittent product removal of cellobiose with membrane filtration (2 kDa cut-off): The conversion of cotton cellulose after 72 h was ~19 % by weight, whereas the conversion...

  9. Technetium-99m-human fibrinogen

    International Nuclear Information System (INIS)

    Wong, D.W.; Mishkin, F.S.

    1975-01-01

    Exogenous fibrinogen has been successfully labeled with /sup 99m/Tc using a modified electrolytic method. The exact labeling mechanism has not been determined. Experimental data suggest that the labeling process of /99m/Tc-fibrinogen is quite similar to that of /sup 99m/Tc-human serum albumin as reported earlier by Benjamin. Technetium-99m-fibrinogen is stable in human plasma or in 1 percent buffered human serum albumin. A binding efficiency of 76 percent has been achieved with approximately 25 percent clottable protein. The entire labeling procedure requires less than 1 hr of preparation time. This short labeling time in a closed system may allow development of a practical method for labeling autologous fibrinogen, thus eliminating the risk of hepatitis transmission. (U.S.)

  10. A Bayesian approach to degradation-based burn-in optimization for display products exhibiting two-phase degradation patterns

    International Nuclear Information System (INIS)

    Yuan, Tao; Bae, Suk Joo; Zhu, Xiaoyan

    2016-01-01

    Motivated by the two-phase degradation phenomena observed in light displays (e.g., plasma display panels (PDPs), organic light emitting diodes (OLEDs)), this study proposes a new degradation-based burn-in testing plan for display products exhibiting two-phase degradation patterns. The primary focus of the burn-in test in this study is to eliminate the initial rapid degradation phase, while the major purpose of traditional burn-in tests is to detect and eliminate early failures from weak units. A hierarchical Bayesian bi-exponential model is used to capture two-phase degradation patterns of the burn-in population. Mission reliability and total cost are introduced as planning criteria. The proposed burn-in approach accounts for unit-to-unit variability within the burn-in population, and uncertainty concerning the model parameters, mainly in the hierarchical Bayesian framework. Available pre-burn-in data is conveniently incorporated into the burn-in decision-making procedure. A practical example of PDP degradation data is used to illustrate the proposed methodology. The proposed method is compared to other approaches such as the maximum likelihood method or the change-point regression. - Highlights: • We propose a degradation-based burn-in test for products with two-phase degradation. • Mission reliability and total cost are used as planning criteria. • The proposed burn-in approach is built within the hierarchical Bayesian framework. • A practical example was used to illustrate the proposed methodology.

  11. Indigenous production of biosurfactant and degradation of crude oil

    Directory of Open Access Journals (Sweden)

    Hamid Rashedi

    2015-04-01

    Full Text Available The present study investigated the isolation and identification of biosurfactant producing bacteria from Iranian oil wells. The biosurfactant production of bacteria isolates was evaluated and confirmed using hemolysis and emulsification tests. The biodegradation of crude oil was studied using GC and HPLC analysis. A total of 45 strains have been isolated. These strains showed less than a 40 mN m-1 reduction in surface tension. The effects of different pH (4.2-9.2, salinity concentrations (1%-15%, and temperatures (25-50 in biosurfactant production of isolated strains were evaluated. One of the strains (Bacillus sp. NO.4 showed a high salt tolerance and a successful production of biosurfactant in a vast pH range. Its maximum biomass production (about 3.1 g L-1 dry weight was achieved after 60 hours of growth. The surface tension of the culture broth dropped rapidly after inoculation and reached its lowest value (36 mN m-1 during the exponential phase after about 36-48 hours of growth. The study of the GC graphs showed that higher aliphatic reduction occurred in fractions with C14 to C24 hydrocarbons. The depicted results of the HPLC graphs indicated a 100% degradation of chrysene and fluorine. In this study, we demonstrated the useful capacities of the isolates in removing oil pollutants and their application in MEOR in vitro.

  12. Modeling Degradation Product Partitioning in Chlorinated-DNAPL Source Zones

    Science.gov (United States)

    Boroumand, A.; Ramsburg, A.; Christ, J.; Abriola, L.

    2009-12-01

    Metabolic reductive dechlorination degrades aqueous phase contaminant concentrations, increasing the driving force for DNAPL dissolution. Results from laboratory and field investigations suggest that accumulation of cis-dichloroethene (cis-DCE) and vinyl chloride (VC) may occur within DNAPL source zones. The lack of (or slow) degradation of cis-DCE and VC within bioactive DNAPL source zones may result in these dechlorination products becoming distributed among the solid, aqueous, and organic phases. Partitioning of cis-DCE and VC into the organic phase may reduce aqueous phase concentrations of these contaminants and result in the enrichment of these dechlorination products within the non-aqueous phase. Enrichment of degradation products within DNAPL may reduce some of the advantages associated with the application of bioremediation in DNAPL source zones. Thus, it is important to quantify how partitioning (between the aqueous and organic phases) influences the transport of cis-DCE and VC within bioactive DNAPL source zones. In this work, abiotic two-phase (PCE-water) one-dimensional column experiments are modeled using analytical and numerical methods to examine the rate of partitioning and the capacity of PCE-DNAPL to reversibly sequester cis-DCE. These models consider aqueous-phase, nonaqueous phase, and aqueous plus nonaqueous phase mass transfer resistance using linear driving force and spherical diffusion expressions. Model parameters are examined and compared for different experimental conditions to evaluate the mechanisms controlling partitioning. Biot number, a dimensionless number which is an index of the ratio of the aqueous phase mass transfer rate in boundary layer to the mass transfer rate within the NAPL, is used to characterize conditions in which either or both processes are controlling. Results show that application of a single aqueous resistance is capable to capture breakthrough curves when DNAPL is distributed in porous media as low

  13. High Glucose Promotes Aβ Production by Inhibiting APP Degradation

    Science.gov (United States)

    Zhang, Shuting; Song, Weihong

    2013-01-01

    Abnormal deposition of neuriticplaques is the uniqueneuropathological hallmark of Alzheimer’s disease (AD).Amyloid β protein (Aβ), the major component of plaques, is generated from sequential cleavage of amyloidβ precursor protein (APP) by β-secretase and γ-secretase complex. Patients with diabetes mellitus (DM), characterized by chronic hyperglycemia,have increased risk of AD development.However, the role of high blood glucose in APP processing and Aβ generation remains elusive. In this study, we investigated the effect of high glucose on APP metabolism and Aβ generation in cultured human cells. We found that high glucose treatment significantly increased APP protein level in both neuronal-like and non-neuronal cells, and promoted Aβ generation. Furthermore, we found that high glucose-induced increase of APP level was not due to enhancement of APP gene transcription but resulted from inhibition of APP protein degradation. Taken together, our data indicated that hyperglycemia could promote AD pathogenesis by inhibiting APP degradation and enhancing Aβ production. More importantly, the elevation of APP level and Aβ generation by high glucose was caused by reduction of APP turnover rate.Thus,our study provides a molecular mechanism of increased risk of developing AD in patients withDMand suggests thatglycemic control might be potentially beneficial for reducing the incidence of AD in diabetic patients and delaying the AD progression. PMID:23894546

  14. Plasma Fibrinogen in Patients With Bell Palsy.

    Science.gov (United States)

    Zhao, Hua; Zhang, Xin; Tang, Yinda; Li, Shiting

    2016-10-01

    To determine the plasma fibrinogen level in patients with Bell palsy and explore the significances of it in Bell palsy. One hundred five consecutive patients with facial paralysis were divided into 3 groups: group I (Bell palsy), group II (temporal bone fractures), and group III (facial nerve schwannoma). In addition, 22 volunteers were defined as control group. Two milliliters fasting venous blood from elbow was collected, and was evaluated by CA-7000 Full-Automatic Coagulation Analyzer. The plasma fibrinogen concentration was significantly higher in the group of patients with Bell palsy (HB IV-VI) than that in the control group (P 0.05); similarly, there was also no marked difference between group III and control group (P >0.05). In group I, the plasma fibrinogen levels became higher with the HB grading increase. The plasma fibrinogen level of HB-VI was highest. Plasma fibrinogen has an important clinical meaning in Bell palsy, which should be used as routine examination items. Defibrinogen in treatment for patients with high plasma fibrinogen content also should be suggested.

  15. Enzymatic degradation of plutonium-contaminated cellulose products

    International Nuclear Information System (INIS)

    Heintz, C.E.; Rainwater, K.A.; Swift, L.M.; Barnes, D.L.; Worl, L.; Avens, L.

    1999-01-01

    Enzyme solutions produced for commercial purposes unrelated to waste management have the potential for reducing the volume of wastes in streams containing cellulose, lipid and protein materials. For example, the authors have shown that cellulases used in denim production and in detergent formulations are able to digest cellulose-containing sorbents and other cellulose-based wastes contaminated either with crude oil or with radionuclides. This presentation describes the use of one such enzyme preparation (Rapidase trademark) for the degradation of cotton sorbents intentionally contaminated with low levels of plutonium. This is part of a feasibility study to determine if such treatments have a role in reducing the volume of low level and transuranic wastes to minimize the amount of radionuclide-contaminated waste that must be disposed of in secured storage areas

  16. Enzymatic degradation of plutonium-contaminated cellulose products

    International Nuclear Information System (INIS)

    Heintz, C.E.; Rainwater, K.A.; Swift, L.M.; Barnes, D.L.; Worl, L.A.

    1999-01-01

    Enzyme solutions produced for commercial purposes unrelated to waste management have the potential for reducing the volume of wastes in streams containing cellulose, lipid and protein materials. For example, the authors have shown previously that cellulases used in denim production and in detergent formulations are able to digest cellulose-containing sorbents and other cellulose-based wastes contaminated either with crude oil or with uranium. This presentation describes the use of one such enzyme preparation (Rapidase trademark, manufactured by Genencor, Rochester, NY) for the degradation of cotton sorbents intentionally contaminated with low levels of plutonium. This is part of a feasibility study to determine if such treatments have a role in reducing the volume of low level and transuranic wastes to minimize the amount of radionuclide-contaminated waste destined for costly disposal options

  17. Effect of protein degradability on milk production of dairy ewes.

    Science.gov (United States)

    Mikolayunas-Sandrock, C; Armentano, L E; Thomas, D L; Berger, Y M

    2009-09-01

    The objective of this experiment was to determine the effect of protein degradability of dairy sheep diets on milk yield and protein utilization across 2 levels of milk production. Three diets were formulated to provide similar energy concentrations and varying concentrations of rumen-degradable protein (RDP) and rumen-undegradable protein (RUP): 12% RDP and 4% RUP (12-4) included basal levels of RDP and RUP, 12% RDP and 6% RUP (12-6) included additional RUP, and 14% RDP and 4% RUP (14-4) included additional RDP. Diets were composed of alfalfa-timothy cubes, whole and ground corn, whole oats, dehulled soybean meal, and expeller soybean meal (SoyPlus, West Central, Ralston, IA). Estimates of RDP and RUP were based on the Small Ruminant Nutrition System model (2008) and feed and orts were analyzed for Cornell N fractions. Eighteen multiparous dairy ewes in midlactation were divided by milk yield (low and high) into 2 blocks of 9 ewes each and were randomly assigned within block (low and high) to 3 pens of 3 ewes each. Dietary treatments were arranged in a 3 x 3 Latin square within each block and applied to pens for 14-d periods. We hypothesized that pens consuming high-RUP diets (12-6) would produce more milk and milk protein than the basal diet (12-4) and pens consuming high-RDP diets (14-4) would not produce more milk than the basal diet (12-4). Ewes in the high-milk-yield square consumed more dry matter and produced more milk, milk fat, and milk protein than ewes in the low-milk-yield square. There was no effect of dietary treatment on dry matter intake. Across both levels of milk production, the 12-6 diet increased milk yield by 14%, increased milk fat yield by 14%, and increased milk protein yield by 13% compared with the 14-4 and 12-4 diets. Gross N efficiency (milk protein N/intake protein N) was 11 and 15% greater in the 12-6 and 12-4 diets, respectively, compared with the 14-4 diet. Milk urea N concentration was greater in the 12-6 diet and tended to be

  18. Degradation products of irradiated haloperidol: implications for the development of an implantible delivery system

    Energy Technology Data Exchange (ETDEWEB)

    Booker, J

    1988-01-01

    Haloperidol was chosen as a model compound to determine whether the degradation products created by sterilizing dose of gamma radiation would contaminate an implantible delivery device and be hazardous to the health of the person using it. Acrolein, chlorobenzene, and several other products were identified among the degradation products. They were quantitated and evaluated as being potentially dangerous. It is recommended that the development protocol for a radiation-sterilized, implantible drug include the identification and evaluation of the degradation products.

  19. Degradation products of irradiated haloperidol: implications for the development of an implantible delivery system

    International Nuclear Information System (INIS)

    Booker, J.

    1988-01-01

    Haloperidol was chosen as a model compound to determine whether the degradation products created by sterilizing dose of gamma radiation would contaminate an implantible delivery device and be hazardous to the health of the person using it. Acrolein, chlorobenzene, and several other products were identified among the degradation products. They were quantitated and evaluated as being potentially dangerous. It is recommended that the development protocol for a radiation-sterilized, implantible drug include the identification and evaluation of the degradation products. (author)

  20. Oxidative degradation of triclosan by potassium permanganate: Kinetics, degradation products, reaction mechanism, and toxicity evaluation.

    Science.gov (United States)

    Chen, Jing; Qu, Ruijuan; Pan, Xiaoxue; Wang, Zunyao

    2016-10-15

    In this study, we systematically investigated the potential applicability of potassium permanganate for removal of triclosan (TCS) in water treatment. A series of kinetic experiments were carried out to study the influence of various factors, including the pH, oxidant doses, temperature, and presence of typical anions (Cl(-), SO4(2-), NO3(-)), humic acid (HA), and fulvic acid (FA) on triclosan removal. The optimal reaction conditions were: pH = 8.0, [TCS]0:[KMnO4]0 = 1:2.5, and T = 25 °C, where 20 mg/L of TCS could be completely degraded in 120 s. However, the rate of TCS (20 μg/L) oxidation by KMnO4 ([TCS]0:[KMnO4]0 = 1:2.5) was 1.64 × 10(-3) mg L(-1)·h(-1), lower than that at an initial concentration of 20 mg/L (2.24 × 10(3) mg L(-1)·h(-1)). A total of eleven products were detected by liquid chromatography-quadrupole-time-of-flight-mass spectrometry (LC-Q-TOF-MS) analysis, including phenol and its derivatives, benzoquinone, an organic acid, and aldehyde. Two main reaction pathways involving CO bond cleavage (-C(8)O(7)-) and benzene ring opening (in the less chlorinated benzene ring) were proposed, and were further confirmed based on frontier electron density calculations and point charges. Furthermore, the changes in the toxicity of the reaction solution during TCS oxidation by KMnO4 were evaluated by using both the luminescent bacteria Photobacterium phosphoreum and the water flea Daphnia magna. The toxicity of 20 mg/L triclosan to D. magna and P. phosphoreum after 60 min was reduced by 95.2% and 43.0%, respectively. Phenol and 1,4-benzoquinone, the two representative degradation products formed during permanganate oxidation, would yield low concentrations of DBPs (STHMFP, 20.99-278.97 μg/mg; SHAAFP, 7.86 × 10(-4)-45.77 μg/mg) after chlorination and chloramination. Overall, KMnO4 can be used as an effective oxidizing agent for TCS removal in water and wastewater treatment. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Restoration of Degraded Salt Affected Lands to Productive Forest Ecosystem

    Science.gov (United States)

    Singh, Yash; Singh, Gurbachan; Singh, Bajrang; Cerdà, Artemi

    2017-04-01

    Soil system determines the fluxes of energy and matter in the Earth and is the source of goods, services and resources to the humankind (Keesstra et al., 2012; Brevik et al., 2015; Keesstra et al., 2016). To restore and rehabilitate the soil system is a key strategy to recover the services the soils offers (Celentano et al., 2016; Galati et al., 2016; Parras-Alcantara et al., 2016). Transformation of degraded sodic lands in biodiversity rich productive forest ecosystem is a challenging task before the researchers all over the world. The soils of the degraded sites remain almost unfavorable for the normal growth, development and multiplication of organisms; all our attempts tend to alleviate the soil constraints. Land degradation due to presence of salts in the soil is an alarming threat to agricultural productivity and sustainability, particularly in arid and semiarid regions of the world (Tanji, 1990; Qadir et al., 2006). According to the FAO Land and Nutrition Management Service (2008), over 6% of the world's lands are affected by salinity, which accounts for more than 800 million ha in 100 countries. This is due to natural causes, extensive utilization of land (Egamberdieva et al., 2008), poor drainage systems and limited availability of irrigation water which causes salinization in many irrigated soils (Town et al., 2008).In India, about 6.73 million ha are salt affected which spread in 194 districts out of 584 districts in India and represents 2.1% of the geographical area of the country (Mandal et al., 2009).Out of these, 2.8 million ha are sodic in nature and primarily occurring in the Indo-Gangetic alluvial plains. These lands are degraded in structural, chemical, nutritional, hydrological and microbiological characteristics. The reclamation of salt affected soils with chemical amendments like gypsum and phospho-gypsum are in practice for the cultivation field crops under agricultural production. Forest development on such lands although takes considerable

  2. Identification of major degradation products of 5-aminosalicylic acid formed in aqueous solutions and in pharmaceuticals

    DEFF Research Database (Denmark)

    Jensen, J.; Cornett, Claus; Olsen, C. E.

    1992-01-01

    of polymeric species by oxidative self-coupling of 5-ASA moieties. These results indicate that the degradation of 5-ASA follows the same mechanism as observed for the autooxidation of 4-aminophenol and 1,4-phenylenediamine. Some of the identified degradation products were found in 5-ASA......The formation of four major degradation products of 5-aminosalicylic acid (5-ASA) in buffered solutions at pH 7.0 was demonstrated by gradient HPLC analysis. The isolation and structural elucidation of the resulting degradation products showed that the degradation of 5-ASA led to the formation...

  3. Identification and ecotoxicity of degradation products of chloroacetamide herbicides from UV-treatment of water

    DEFF Research Database (Denmark)

    Souissi, Yasmine; Bouchonnet, Stéphane; Bourcier, Sophie

    2013-01-01

    The widespread occurrence of chlorinated herbicides and their degradation products in the aquatic environment raises health and environmental concerns. As a consequence pesticides, and to a lesser degree their degradation products, are monitored by authorities both in surface waters and drinking...... waters. In this study the formation of degradation products from ultraviolet (UV) treatment of the three chloroacetamide herbicides acetochlor, alachlor and metolachlor and their biological effects were investigated. UV treatment is mainly used for disinfection in water and wastewater treatments. First...

  4. Mapping intermediate degradation products of poly(lactic-co-glycolic acid) in vitro.

    Science.gov (United States)

    Li, Jian; Nemes, Peter; Guo, Ji

    2018-04-01

    There is widespread interest in using absorbable polymers, such as poly(lactic-co-glycolic acid) (PLGA), as components in the design and manufacture of new-generation drug eluting stents (DES). PLGA undergoes hydrolysis to progressively degrade through intermediate chemical entities to simple organic acids that are ultimately absorbed by the human body. Understanding the composition and structure of these intermediate degradation products is critical not only to elucidate polymer degradation pathways accurately, but also to assess the safety and performance of absorbable cardiovascular implants. However, analytical approaches to determining the intermediate degradation products have yet to be established and evaluated in a standard or regulatory setting. Hence, we developed a methodology using electrospray ionization mass spectrometry to qualitatively and quantitatively describe intermediate degradation products generated in vitro from two PLGA formulations commonly used in DES. Furthermore, we assessed the temporal evolution of these degradation products using time-lapse experiments. Our data demonstrated that PLGA degradation products via heterogeneous cleavage of ester bonds are modulated by multiple intrinsic and environmental factors, including polymer chemical composition, degradants solubility in water, and polymer synthesis process. We anticipate the methodologies and outcomes presented in this work will elevate the mechanistic understanding of comprehensive degradation profiles of absorbable polymeric devices, and facilitate the design and regulation of cardiovascular implants by supporting the assessments of the associated biological response to degradation products. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 106B: 1129-1137, 2018. © 2017 Wiley Periodicals, Inc.

  5. Fibrinogen concentrate for bleeding - a systematic review

    DEFF Research Database (Denmark)

    Lunde, J; Stensballe, J; Wikkelsø, A

    2014-01-01

    Fibrinogen concentrate as part of treatment protocols increasingly draws attention. Fibrinogen substitution in cases of hypofibrinogenaemia has the potential to reduce bleeding, transfusion requirement and subsequently reduce morbidity and mortality. A systematic search for randomised controlled...... trials (RCTs) and non-randomised studies investigating fibrinogen concentrate in bleeding patients was conducted up to November 2013. We included 30 studies of 3480 identified (7 RCTs and 23 non-randomised). Seven RCTs included a total of 268 patients (165 adults and 103 paediatric), and all were...... determined to be of high risk of bias and none reported a significant effect on mortality. Two RCTs found a significant reduction in bleeding and five RCTs found a significant reduction in transfusion requirements. The 23 non-randomised studies included a total of 2825 patients, but only 11 of 23 studies...

  6. Degradation kinetics and transformation products of chlorophene by aqueous permanganate.

    Science.gov (United States)

    Xu, Xinxin; Chen, Jing; Wang, Siyuan; Ge, Jiali; Qu, Ruijuan; Feng, Mingbao; Sharma, Virender K; Wang, Zunyao

    2018-07-01

    This paper evaluates the oxidation of an antibacterial agent, chlorophene (4-chloro-2-(phenylmethyl)phenol, CP), by permanganate (Mn(VII)) in water. Second-order rate constant (k) for the reaction between Mn(VII) and CP was measured as (2.05 ± 0.05) × 10 1  M -1  s -1 at pH 7.0 for an initial CP concentration of 20.0 μM and Mn(VII) concentration of 60.0 μM. The value of k decreased with increasing pH in the pH range of 5.0-7.0, and then increased with an increase in solution pH from 7.0 to 10.0. The presence of MnO 2 and Fe 3+ in water generally enhanced the removal of CP, while the effect of humic acid was not obvious. Fourteen oxidation products of CP were identified by an electrospray time-of-flight mass spectrometer, and direct oxidation, ring-opening, and decarboxylation were mainly observed in the reaction process. The initial reaction sites of CP by Mn(VII) oxidation were rationalized by density functional theory calculations. Toxicity changes of the reaction solutions were assessed by the luminescent bacteria P. phosphoreum, and the intermediate products posed a relatively low ecological risk during the degradation process. The efficient removal of CP in secondary clarifier effluent and river water demonstrated the potential application of this Mn(VII) oxidation method in water treatment. Copyright © 2018 Elsevier Ltd. All rights reserved.

  7. Radioletic degradation of monocrotophos and toxicity of breakdown products

    International Nuclear Information System (INIS)

    Ghanem, I.; Shamma, M.; Al-Arfi, M.; Abu-Alnaser, A.

    2015-03-01

    Among sources of environmental pollution, pesticides contamination is wide spread and has become a source of concern. The organophosphorus pesticide, monocrotophos, is highly toxic compound and inhibits cholinesterase. It is very dangerous by all ways of exposure. Monocrotophos is used widely in Syria to control a variety of boring, chewing and sucking insects on various fruit and veditable crops. It is even, ellegally used to protect grapes in grape orchards from birds which is potentially hazaradous to both birds and the consumers of rthis crop. Monocrotophos is imported to Syria, and this is done according to a yearly plan to assess the amount needed of each pesticide. Such planning combined with variation in the incidence of pest infestation may lead to accummulation of pesticides from year to another, they become obsolete . Getting rid of such pesticides in the developing world is a problem, and Syria is no exception. There are various method of getting rid of obsolete pesticides ranging from containment to chemical methods of breaking down the pesticide. The present study aimed at assesing the feasiblity of using gamma radiation as a means to break down high concentrations of technical grade monocrotophos Several concentrations, 50, 200, and 400 mg/ml of technical grade monocrotophos were exposed to several doses of gamma radiation, namely, 0, 15, 45, 75, and 105 kGy. For each concentration tested percentages of monocrotophos breakdown increased with the increase of applied gamma radiation dose. However, the effect of gamma radiation dose was inversely related to monocrotophos concentration. The highest percentage of moncrotophos degradation was 60% and it was achieved by exposing 50 mg/ml of monocrotophos to 105 kGy of gamma radiation Breakdown products were identified using gas chromatography coupled with mass spectrometry GC-MS. Some identified products were dimethyl methyl phosphonate, phosphoric acid trimethyl and phosphoric acid dimethyl 1-methyl ethyl

  8. Photocatalytic degradation of tetracycline by Ti-MCM-41 prepared at room temperature and biotoxicity of degradation products

    Science.gov (United States)

    Zhou, Kefu; Xie, Xiao-Dan; Chang, Chang-Tang

    2017-09-01

    Ti-doped MCM-41 with different Si/Ti molar ratios was prepared at room temperature to degrade tetracycline antibiotics in aqueous solution. The Ti was doped into the skeleton structure of MCM-41. The photocatalytic activity of Ti-doped MCM-41 was investigated. The optimal catalyst had Si/Ti molar ratio of 25 and over 99% removal of oxytetracycline in 150 min, and the removal could maintain 98% after 5 reuses. Ions and soluble organic matters in natural water affected the degradation reaction when Ti-doped MCM-41 was used to treat simulated wastewater of chicken farms. The degradation products of oxytetracycline, tetracycline and chlortetracycline were detected by Escherichia coli DH5α and HPLC-MS/MS. No intermediate product with higher toxicity was detected.

  9. Two novel fibrinogen variants in the C-terminus of the B.beta.-chain: fibrinogen Rokycany and fibrinogen Znojmo

    Czech Academy of Sciences Publication Activity Database

    Kotlín, R.; Reicheltová, Z.; Suttnar, J.; Salaj, P.; Hrachovinová, I.; Riedel, Tomáš; Malý, M.; Oravec, M.; Kvasnička, J.; Dyr, J. E.

    2010-01-01

    Roč. 30, č. 3 (2010), s. 311-318 ISSN 0929-5305 R&D Projects: GA AV ČR KAN200670701 Institutional research plan: CEZ:AV0Z40500505 Keywords : fibrinogen * missense mutation * hypofibrinogenemia Subject RIV: CD - Macromolecular Chemistry Impact factor: 1.539, year: 2010

  10. On-Site Enzyme Production by Trichoderma asperellum for the Degradation of Duckweed

    DEFF Research Database (Denmark)

    Bech, Lasse; Herbst, Florian-Alexander; Grell, Morten Nedergaard

    2015-01-01

    The on-site production of cell wall degrading enzymes is an important strategy for the development of sustainable bio-refinery processes. This study concerns the optimization of production of plant cell wall-degrading enzymes produced by Trichoderma asperellum. A comparative secretome analysis...

  11. Diesel degradation and biosurfactant production by Gram-positive ...

    African Journals Online (AJOL)

    PRECIOUS

    2009-11-02

    Nov 2, 2009 ... Full Length Research Paper ... Diesel degradation rates and microbial cell number, increased with an increase in glucose ... that are less or non-toxic and represents one of the ... organic compounds (Larkin et al., 2005).

  12. Composition comprising radioactive labeled-fibrinogen and albumin

    International Nuclear Information System (INIS)

    Charlton, J.C.; Gravett, D.L.

    1976-01-01

    The stability of fibrinogen is improved by mixing it with albumin, preferably at least 5 parts by weight of albumin per part by weight of fibrinogen. By this invention, iodinated ( 125 I) human fibrinogen can be stabilized with human serum albumin for use in the diagnosis of thrombi

  13. Hydroxyl radical-modified fibrinogen as a marker of thrombosis: the role of iron.

    Science.gov (United States)

    Lipinski, B; Pretorius, E

    2012-07-01

    Excessive free iron in blood and in organ tissues (so called iron overload) has been observed in degenerative diseases such as atherosclerosis, cancer, neurological, and certain autoimmune diseases, in which fibrin-like deposits are also found. Although most of the body iron is bound to hemoglobin and myoglobin in a divalent ferrous form, a certain amount of iron exists in blood as a trivalent (ferric) ion. This particular chemical state of iron has been shown to be toxic to the human body when not controlled by endogenous and/or dietary chelating agents. Experiments described in this paper show for the first time that ferric ions (Fe(3+)) can generate hydroxyl radicals without participation of any redox agent, thus making it a special case of the Fenton reaction. Ferric chloride was also demonstrated to induce aggregation of purified fibrinogen at the same molar concentrations that were used for the generation of hydroxyl radicals. Iron-aggregated fibrinogen, by contrast to native molecule, could not be dissociated into polypeptide subunit chains as shown in a polyacrylamide gel electrophoresis. The mechanism of this phenomenon is very likely based on hydroxyl radical-induced modification of fibrinogen tertiary structure with the formation of insoluble aggregates resistant to enzymatic and chemical degradations. Soluble modified fibrinogen species can be determined in blood of thrombotic patients by the reaction with protamine sulfate and/or by scanning electron microscopy. In view of these findings, it is postulated that iron-induced alterations in fibrinogen structure is involved in pathogenesis of certain degenerative diseases associated with iron overload and persistent thrombosis. It is concluded that the detection of hydroxyl radical-modified fibrinogen may be utilized as a marker of a thrombotic condition in human subjects.

  14. Linear equations on thermal degradation products of wood chips in alkaline glycerol

    International Nuclear Information System (INIS)

    Demirbas, Ayhan

    2004-01-01

    Wood chips of 0.3 and 2 mm depth from poplar and spruce wood samples, respectively, were degraded by using glycerol as a solvent and alkaline glycerol with and without Na 2 CO 3 and NaOH catalysts at different degradation temperatures: 440, 450, 460, 470, 480, 490 and 500 K. By products from the degradation processes of the ligno celluloses include lignin degradation products. Lignin and its degradation products have fuel values. The total degradation degree and cellulose degradation of the wood chips were determined to find the relationship, if any, between the yields of total degradation degree (YTD) and degradation temperature (T). There is a good linear relationship between YTD or the yields of cellulose degradation (YCD) and T (K). For the wood samples, the regression equations from NaOH (10%) catalytic runs for 0.3 mm x 15 mm x 15 mm chip size are: For poplar wood: (YTD=0.7250T-267.507) (YCD=0.1736T-71.707) For spruce wood: (YTD=0.2650T-105.979) (YCD=0.0707T-27.507) For Eqs., the square of the correlation coefficient (r 2 ) were 0.9841, 0.9496, 0.9839 and 0.9447, respectively

  15. Study of radioactive fibrinogen metabolism in renal allotransplantation

    International Nuclear Information System (INIS)

    Akiyama, Takahiro; Nagai, Nobuo; Kaneko, Shigeo; Matsuura, Takeshi; Iguchi, Masanori

    1979-01-01

    Turn over administrated radioactive fibrinogen and uptake to renal allograft were studied in 9 cases of renal allotransplanted patients. In patients with acute rejection crisis biological half-time (T 1/2) of 131 I-fibrinogen were shortened and allograft/heart counts ratio of 125 I-fibrinogen were elevated up to 125 - 140 percent at 24 - 48 hours after administration; these parameters seemed to be useful in aid of diagnosis of acute rejection. It is suggested that deposition of fibrinogen into allograft and increased turn over of plasma fibrinogen occurred in acute rejection. (author)

  16. Mapping of residues of fibrinogen cleaved by protease II of Bacillus thuringiensis var. israelensis IMV B-7465

    Directory of Open Access Journals (Sweden)

    E. M. Stohniy

    2016-04-01

    Full Text Available The limited proteolysis of macromolecules allows obtaining the fragments that preserve the structure and functional properties of the whole molecule and could be used in the study of proteins structure and function. Proteases targeted to fibrinogen and fibrin are of interest as the tool for obtaining of functionally active fragments of fibrin(ogen and for the direct defibrination in vivo. That is why the aim of the present work was to study the proteolytic action of Protease II (PII purified from Bacillus thuringiensis var. israelensis IMV B-7465 on fibrinogen. Hydrolysis products of fibrinogen by PII were analysed by SDS-PAGE under reducing conditions with further immunoprobing using the mouse monoclonal 1-5A (anti-Aα509-610 and ІІ-5С (anti-Aα20-78 antibodies. It was shown that PII cleaved preferentially the Aα-chain of fibrinogen splitting off the peptide with apparent molecular weight of 10 kDa that corresponded the C-terminal part of Aα-chain of fibrinogen molecule. MALDI-TOF analysis of hydrolysis of fibrinogen was performed using a Voyager-DE. Results analyzed by Data Explorer 4.0.0.0 allowed to detect the main peak occurring at mass/charge (M/Z ratio of 11 441 Da. According to “Peptide Mass Calculator” this peptide corresponded to fragment Аα505-610 of fibrinogen molecule. The result showed that PII cleaves the peptide bond AαAsp-Thr-Ala504-Ser505. Thus, PII can be used for the obtaining of unique fragments of fibrinogen molecule. As far as αC-domain contains numerous sites of fibrin intermolecular interactions we can consider PII as a prospective agent for their study and for the defibrination.

  17. Human plasma fibrinogen adsorption and platelet adhesion to polystyrene.

    Science.gov (United States)

    Tsai, W B; Grunkemeier, J M; Horbett, T A

    1999-02-01

    The purpose of this study was to further investigate the role of fibrinogen adsorbed from plasma in mediating platelet adhesion to polymeric biomaterials. Polystyrene was used as a model hydrophobic polymer; i.e., we expected that the role of fibrinogen in platelet adhesion to polystyrene would be representative of other hydrophobic polymers. Platelet adhesion was compared to both the amount and conformation of adsorbed fibrinogen. The strategy was to compare platelet adhesion to surfaces preadsorbed with normal, afibrinogenemic, and fibrinogen-replenished afibrinogenemic plasmas. Platelet adhesion was determined by the lactate dehydrogenase (LDH) method, which was found to be closely correlated with adhesion of 111In-labeled platelets. Fibrinogen adsorption from afibrinogenemic plasma to polystyrene (Immulon I(R)) was low and polystyrene preadsorbed with fibrinogen-replenished afibrinogenemic plasma. Addition of even small, subnormal concentrations of fibrinogen to afibrinogenemic plasma greatly increased platelet adhesion. In addition, surface-bound fibrinogen's ability to mediate platelet adhesion was different, depending on the plasma concentration from which fibrinogen was adsorbed. These differences correlated with changes in the binding of a monoclonal antibody that binds to the Aalpha chain RGDS (572-575), suggesting alteration in the conformation or orientation of the adsorbed fibrinogen. Platelet adhesion to polystyrene preadsorbed with blood plasma thus appears to be a strongly bivariate function of adsorbed fibrinogen, responsive to both low amounts and altered states of the adsorbed molecule. Copyright 1999 John Wiley & Sons, Inc.

  18. In-Vitro gas production technique as for feed evaluation: volume of gas production and feed degradability

    International Nuclear Information System (INIS)

    Asih Kurniawati

    2007-01-01

    In-vitro gas production technique can be used to predict feed quality. The effect of molasses supplementation as a source of degradable carbohydrate to protein source red clover silage has been done using this technique. Data showed there were positive correlation between total volume gas produced and feed degradability (r = 0.96), between total volume gas produced and microbial biomass (r = 0,96). Dry matter degradability, dry matter degraded, microbial biomass production and efficiency of nitrogen utilization, highly significant (P<0,01) increased due to increasing of degradable carbohydrate. The addition of 0.3 g molasses gave the best result whereas the addition of 0.15 g and 0.225 g have better effect than 0.0625 g molasses addition and red clover only. This result suggested that In-vitro production technique can be used as tool for feed evaluation. (author)

  19. Biological activity of anthocyanins and their phenolic degradation products and metabolites in human vascular endothelial cells

    OpenAIRE

    Edwards, Michael

    2013-01-01

    Human, animal, and in vitro data indicate significant vasoprotective activity of anthocyanins. However, few studies have investigated the activity of anthocyanin degradation products and metabolites which are likely to mediate bioactivity in vivo. The present thesis therefore examined the vascular bioactivity in vitro of anthocyanins, their phenolic degradants, and the potential for interactions between dietary bioactive compounds. Seven treatment compounds (cyanidin-, peonidin-, petunidin- &...

  20. Identification of thermal degradation products of polymers by capillary gas chromatography

    NARCIS (Netherlands)

    Pacakova, V.; Borecka, M.; Leclercq, P.A.; Kaiser, R.E.

    1981-01-01

    Samples of polyethylene, polypropylene, polystyrene and five styrene copolymers were thermally degraded in a quartz tubular reactor at 5100e in an inert atmosphere. The degradation products were separated on-line on capillary coltmlS coated with squalane, OV-17 and SE-30 as stationary phases. The

  1. High performance liquid chromatographic analysis of insulin degradation products from a cultured kidney cell line

    International Nuclear Information System (INIS)

    Duckworth, W.C.; Hamel, F.G.; Liepnieks, J.; Frank, B.H.; Yagil, C.; Rabkin, R.

    1988-01-01

    The kidney is a major site for insulin removal and degradation, but the subcellular processes and enzymes involved have not been established. We have examined this process by analyzing insulin degradation products by HPLC. Monoiodoinsulin specifically labeled on either the A14 or B26 tyrosine residue was incubated with a cultured kidney epithelial cell line, and both intracellular and extracellular products were examined on HPLC. The products were then compared with products of known structure generated by hepatocytes and the enzyme insulin protease. Intracellular and extracellular products were different, suggesting two different degradative pathways, as previously shown in liver. The extracellular degradation products eluted from HPLC both before and after sulfitolysis similarly with hepatocyte products and products generated by insulin protease. The intracellular products also eluted identically with hepatocyte products. Based on comparisons with identified products, the kidney cell generates two fragments from the A chain of intact insulin, one with a cleavage at A13-A14 and the other at A14-A15. The B chain of intact insulin is cleaved in a number of different sites, resulting in peptides that elute identically with B chain peptides cleaved at B9-B10, B13-B14, B16-B17, B24-B25, and B25-B26. These similarities with hepatocytes and insulin protease suggest that liver and kidney have similar mechanisms for insulin degradation and that insulin protease or a very similar enzyme is involved in both tissues

  2. Fungal degradation of coal as a pretreatment for methane production

    Science.gov (United States)

    Haider, Rizwan; Ghauri, Muhammad A.; SanFilipo, John R.; Jones, Elizabeth J.; Orem, William H.; Tatu, Calin A.; Akhtar, Kalsoom; Akhtar, Nasrin

    2013-01-01

    Coal conversion technologies can help in taking advantage of huge low rank coal reserves by converting those into alternative fuels like methane. In this regard, fungal degradation of coal can serve as a pretreatment step in order to make coal a suitable substrate for biological beneficiation. A fungal isolate MW1, identified as Penicillium chrysogenum on the basis of fungal ITS sequences, was isolated from a core sample of coal, taken from a well drilled by the US. Geological Survey in Montana, USA. The low rank coal samples, from major coal fields of Pakistan, were treated with MW1 for 7 days in the presence of 0.1% ammonium sulfate as nitrogen source and 0.1% glucose as a supplemental carbon source. Liquid extracts were analyzed through Excitation–Emission Matrix Spectroscopy (EEMS) to obtain qualitative estimates of solubilized coal; these analyses indicated the release of complex organic functionalities. In addition, GC–MS analysis of these extracts confirmed the presence of single ring aromatics, polyaromatic hydrocarbons (PAHs), aromatic nitrogen compounds and aliphatics. Subsequently, the released organics were subjected to a bioassay for the generation of methane which conferred the potential application of fungal degradation as pretreatment. Additionally, fungal-mediated degradation was also prospected for extracting some other chemical entities like humic acids from brown coals with high huminite content especially from Thar, the largest lignite reserve of Pakistan.

  3. Identification of Degradation Products of Lincomycin and Iopromide by Electron Beam Irradiation

    International Nuclear Information System (INIS)

    Cha, Yongbyoung; Ham, Hyunsun; Myung, Seungwoon

    2013-01-01

    Lincomycin and Iopromide are major species among the Pharmaceuticals and Personal Care Products (PPCPs) from four major rivers in Korea. The structure characterization of six lincomycin's and two iopromide's degradation products formed under the irradiation of electron beam was performed, and the degradation efficiency as a function of the various irradiation dose and sample concentration was investigated. Electron beam (10 MeV, 0.5 mA and 5 kW) experiments for the structural characterization of the degradation products, which is fortified with lincomycin, were performed at the dose of 10 kGy. The separation of its degradation products and lincomycin was carried by C18 column (2.1 Χ 100 mm, 3.5 μm), using gradient elution with 20 mM ammonium acetate and acetonitrile. The structures of degradation products of lincomycin and iopromide were proposed by interpretation of mass spectra and chromatograms by LC/MS/MS, and also the mass fragmentation pathways of mass spectra in tandem mass spectrometry were proposed. The experiments of the degradation efficiency as a function of the irradiation dose intensity and the initial concentration of lincomycin in aqueous environment were performed, and higher dose of electron beam and lower concentration was observed the increased degradation efficiency

  4. Platelet fibrinogen binding in Basset Hound Hereditary Thrombopathy

    International Nuclear Information System (INIS)

    Patterson, W.; Estry, D.; Schwartz, K.; Bell, T.

    1986-01-01

    Platelets from dogs with Basset Hound Hereditary Thrombopathy (BHT) display a thrombasthenia-like aggregation defect but have been shown to have normal amounts of platelet membrane glycoproteins IIb and IIIa (GP IIb-IIIa). In order to investigate the possibility of a functionally abnormal GPIIb-IIIa complex, which might be unable to bind fibrinogen after stimulation, fibrinogen binding in BHT was evaluated. Two canine fibrinogen preparations were used, one from BHT dogs and one from normal control dogs, as well as a human fibrinogen preparation. Platelets from BHT and normal dogs were activated with 1 x 10 -5 M ADP in the presence of 125 I-labeled fibrinogen and the surface bound radioactivity quantitated. For all fibrinogen preparations, the amount of fibrinogen bound by BHT platelets was not significantly different than that bound by normal dog platelets. BHT platelets bound 23,972 +/- 3612 and normal dog platelets bound 23,033 +/- 3971 molecules of fibrinogen per platelet. The BHT platelet aggregation defect does not seem to be caused by a functionally abnormal GP IIb-IIIa complex, since BHT platelets bind normal amounts of fibrinogen. The results suggest that fibrinogen binding is not sufficient for platelet aggregation, and other factors, perhaps receptor mobility and membrane phospholipid content should be investigated in BHT

  5. Determination of trace amounts of chemical warfare agent degradation products in decontamination solutions with NMR spectroscopy.

    Science.gov (United States)

    Koskela, Harri; Rapinoja, Marja-Leena; Kuitunen, Marja-Leena; Vanninen, Paula

    2007-12-01

    Decontamination solutions are used for an efficient detoxification of chemical warfare agents (CWAs). As these solutions can be composed of strong alkaline chemicals with hydrolyzing and oxidizing properties, the analysis of CWA degradation products in trace levels from these solutions imposes a challenge for any analytical technique. Here, we present results of application of nuclear magnetic resonance spectroscopy for analysis of trace amounts of CWA degradation products in several untreated decontamination solutions. Degradation products of the nerve agents sarin, soman, and VX were selectively monitored with substantially reduced interference of background signals by 1D 1H-31P heteronuclear single quantum coherence (HSQC) spectrometry. The detection limit of the chemicals was at the low part-per-million level (2-10 microg/mL) in all studied solutions. In addition, the concentration of the degradation products was obtained with sufficient confidence with external standards.

  6. Toxicity and physical properties of atrazine and its degradation products: A literature survey

    Energy Technology Data Exchange (ETDEWEB)

    Pugh, K.C.

    1994-10-01

    The Tennessee Valley Authority`s Environmental Research Center has been developing a means of detoxifying atrazine waste waters using TiO{sub 2} photocatalysis. The toxicity and physical properties of atrazine and its degradation products will probably be required information in obtaining permits from the United States Environmental Protection Agency for the demonstration of any photocatalytic treatment of atrazine waste waters. The following report is a literature survey of the toxicological and physical properties of atrazine and its degradation products.

  7. Clinical and prognostic significance of plasma fibrinogen in lung cancer

    Directory of Open Access Journals (Sweden)

    Chen YS

    2014-01-01

    Full Text Available Objectives: Hyperfibrinogenemia is a common problem associated with various carcinomas. The recent studies have shown that high plasma fibrinogen concentration is associated with invasion, growth and metastases of cancer. Furthermore, the recent studies focus on the prognostic significance of fibrinogen in the patients with advanced NSCLC (stage IIIB -IV. However, the prognostic significance of the plasma fibrinogen levels in early stage NSCLC patients (stage I -IIIA still remains unclear. In addition, it remains unclear whether or not chemotherapy-induced changes in fibrinogen level relate to the prognosis. The aims of this study were to 1 further explore the relationship between the plasma fibrinogen concentration and the stage and metastases of lung cancer 2 evaluate the prognostic significance of the basal plasma fibrinogen level in patients with lung cancer 3 explore the prognostic value of the change in fibrinogen levels between pre and post-chemotherapy. Methods: In this retrospective study, the data from 370 patients with lung cancer were enrolled into this study. The plasma fibrinogen levels were compared with the clinical and prognostic significance of lung cancer. The association between the plasma fibrinogen level and clinical-prognostic characteristics were analyzed using SPSS 17.0 software. Results: 1 The median pre-treatment plasma fibrinogen levels were 4.20g/L. Pre-treatment plasma fibrinogen levels correlated significantly with gender (p = 0.013. A higher plasma fibrinogen concentration was associated with squamous cell carcinoma versus adenocarcinoma (4.83±1.50 g/L versus 4.15±1.30 g/L; P<0.001, there was a significant association between plasma fibrinogen level and metastases of lung cancer, pointing a higher plasma fibrinogen level in lymph nodes or distant organ metastases (p < 0.001. 2 Patients with low plasma fibrinogen concentration demonstrates higher overall survival compared with those with high plasma fibrinogen

  8. Radiation degradation of molasses pigment. The fading color and product

    International Nuclear Information System (INIS)

    Sawai, Teruko; Sekiguchi, Masayuki; Tanabe, Hiroko; Sawai, Takeshi

    1993-01-01

    Water demand in Tokyo has increased rapidly. Because of the scarcity of water supply sources within the city, Tokyo is dependent on the water from other prefectures. Recycling of municipal effluent is an effective means of coping with water shortage in Tokyo. We have studied the radiation treatment of waste water for recycling. In this paper, the radiation decomposition methods for fading color of molasses pigment in the effluent from the sewage treatment plant and in the food industry wastwater were reported. The refractory organic substances (molasses pigment) in samples were degraded by gamma irradiation. The COD values decreased and the dark brown color faded with increasing dosage. The high molecular weight components of molasses pigment were degraded to lower molecular weight substances and were decomposed finally to carbon dioxide. The organic acids, such as formic acid, acetic acid, oxalic acid, citric acid and succinic acid were measured as intermediates of radiolytic decomposition. When we added hydrogen peroxide in samples to the gamma irradiation process, the dark brown color of molasses pigment faded with greater efficiency. (author)

  9. Degradation of the pharmaceuticals diclofenac and sulfamethoxazole and their transformation products under controlled environmental conditions

    International Nuclear Information System (INIS)

    Poirier-Larabie, S.; Segura, P.A.; Gagnon, C.

    2016-01-01

    Contamination of the aquatic environment by pharmaceuticals via urban effluents is well known. Several classes of drugs have been identified in waterways surrounding these effluents in the last 15 years. To better understand the fate of pharmaceuticals in ecosystems, degradation processes need to be investigated and transformation products must be identified. Thus, this study presents the first comparative study between three different natural environmental conditions: photolysis and biodegradation in aerobic and anaerobic conditions both in the dark of diclofenac and sulfamethoxazole, two common drugs present in significant amounts in impacted surface waters. Results indicated that degradation kinetics differed depending on the process and the type of drug and the observed transformation products also differed among these exposure conditions. Diclofenac was nearly degraded by photolysis after 4 days, while its concentration only decreased by 42% after 57 days of exposure to bacteria in aerobic media and barely 1% in anaerobic media. For sulfamethoxazole, 84% of the initial concentration was still present after 11 days of exposure to light, while biodegradation decreased its concentration by 33% after 58 days of exposure under aerobic conditions and 5% after 70 days of anaerobic exposure. In addition, several transformation products were observed and persisted over time while others degraded in turn. For diclofenac, chlorine atoms were lost primarily in the photolysis, while a redox reaction was promoted by biodegradation under aerobic conditions. For sulfamethoxazole, isomerization was favored by photolysis while a redox reaction was also favored by the biodegradation under aerobic conditions. To summarize this study points out the occurrence of different transformation products under variable degradation conditions and demonstrates that specific functional groups are involved in the tested natural attenuation processes. Given the complexity of environmental

  10. Degradation of the pharmaceuticals diclofenac and sulfamethoxazole and their transformation products under controlled environmental conditions

    Energy Technology Data Exchange (ETDEWEB)

    Poirier-Larabie, S. [Aquatic Contaminants Research Division, Science and Water Technology Directorate, Environment Canada, Montréal, Québec H2Y 2E7 (Canada); Segura, P.A. [Department of Chemistry, Université de Sherbrooke, Sherbrooke, Québec J1K 2R1 (Canada); Gagnon, C., E-mail: christian.gagnon@canada.ca [Aquatic Contaminants Research Division, Science and Water Technology Directorate, Environment Canada, Montréal, Québec H2Y 2E7 (Canada)

    2016-07-01

    Contamination of the aquatic environment by pharmaceuticals via urban effluents is well known. Several classes of drugs have been identified in waterways surrounding these effluents in the last 15 years. To better understand the fate of pharmaceuticals in ecosystems, degradation processes need to be investigated and transformation products must be identified. Thus, this study presents the first comparative study between three different natural environmental conditions: photolysis and biodegradation in aerobic and anaerobic conditions both in the dark of diclofenac and sulfamethoxazole, two common drugs present in significant amounts in impacted surface waters. Results indicated that degradation kinetics differed depending on the process and the type of drug and the observed transformation products also differed among these exposure conditions. Diclofenac was nearly degraded by photolysis after 4 days, while its concentration only decreased by 42% after 57 days of exposure to bacteria in aerobic media and barely 1% in anaerobic media. For sulfamethoxazole, 84% of the initial concentration was still present after 11 days of exposure to light, while biodegradation decreased its concentration by 33% after 58 days of exposure under aerobic conditions and 5% after 70 days of anaerobic exposure. In addition, several transformation products were observed and persisted over time while others degraded in turn. For diclofenac, chlorine atoms were lost primarily in the photolysis, while a redox reaction was promoted by biodegradation under aerobic conditions. For sulfamethoxazole, isomerization was favored by photolysis while a redox reaction was also favored by the biodegradation under aerobic conditions. To summarize this study points out the occurrence of different transformation products under variable degradation conditions and demonstrates that specific functional groups are involved in the tested natural attenuation processes. Given the complexity of environmental

  11. Dependence of transformation product formation on pH during photolytic and photocatalytic degradation of ciprofloxacin

    International Nuclear Information System (INIS)

    Salma, Alaa; Thoröe-Boveleth, Sven; Schmidt, Torsten C.; Tuerk, Jochen

    2016-01-01

    Highlights: • Identification of transformation products using an isotopically labeled surrogate. • 4 of 18 detected transformation products have been identified for the first time. • Revision of 2 molecular structures of previously reported transformation products. • PH dependence of photolytic and photocatalytic degradation of ciprofloxacin. - Abstract: Ciprofloxacin (CIP) is a broad-spectrum antibiotic with five pH dependent species in aqueous medium, which makes its degradation behavior difficult to predict. For the identification of transformation products and prediction of degradation mechanisms, a new experimental concept making use of isotopically labeled compounds together with high resolution mass spectrometry was successfully established. The utilization of deuterated ciprofloxacin (CIP-d8) facilitated the prediction of three different degradation pathways and the corresponding degradation products, four of which were identified for the first time. Moreover, two molecular structures of previously reported transformation products were revised according to the mass spectra and product ion spectra of the deuterated transformation products. Altogether, 18 transformation products have been identified during the photolytic and photocatalytic reactions at different pH values (3, 5, 7 and 9). In this work the influence of pH on both reaction kinetics and degradation mechanism was investigated for direct ultraviolet photolysis (UV-C irradiation) and photocatalysis (TiO_2/UV-C). It could be shown that the removal rates strongly depended on pH with highest removal rates at pH 9. A comparison with those at pH 3 clearly indicated that under acidic conditions ciprofloxacin cannot be easily excited by UV irradiation. We could confirm that the first reaction step for both oxidative treatment processes is mainly defluorination, followed by degradation at the piperazine ring of CIP.

  12. Dependence of transformation product formation on pH during photolytic and photocatalytic degradation of ciprofloxacin

    Energy Technology Data Exchange (ETDEWEB)

    Salma, Alaa [Institut für Energie- und Umwelttechnik e. V. (IUTA, Institute of Energy and Environmental Technology), Bliersheimer Straße 58-60, 47229 Duisburg (Germany); Thoröe-Boveleth, Sven [University Hospital Aachen, Institute for Hygiene and Environmental Medicine, Pauwelsstraße 30, 52074 Aachen (Germany); Schmidt, Torsten C. [University Duisburg-Essen, Faculty of Chemistry, Instrumental Analytical Chemistry, Universitätsstraße 5, 45141 Essen (Germany); Centre for Water and Environmental Research (ZWU), University Duisburg-Essen, Universitätsstraße 2, 45141 Essen (Germany); Tuerk, Jochen, E-mail: tuerk@iuta.de [Institut für Energie- und Umwelttechnik e. V. (IUTA, Institute of Energy and Environmental Technology), Bliersheimer Straße 58-60, 47229 Duisburg (Germany); Centre for Water and Environmental Research (ZWU), University Duisburg-Essen, Universitätsstraße 2, 45141 Essen (Germany)

    2016-08-05

    Highlights: • Identification of transformation products using an isotopically labeled surrogate. • 4 of 18 detected transformation products have been identified for the first time. • Revision of 2 molecular structures of previously reported transformation products. • PH dependence of photolytic and photocatalytic degradation of ciprofloxacin. - Abstract: Ciprofloxacin (CIP) is a broad-spectrum antibiotic with five pH dependent species in aqueous medium, which makes its degradation behavior difficult to predict. For the identification of transformation products and prediction of degradation mechanisms, a new experimental concept making use of isotopically labeled compounds together with high resolution mass spectrometry was successfully established. The utilization of deuterated ciprofloxacin (CIP-d8) facilitated the prediction of three different degradation pathways and the corresponding degradation products, four of which were identified for the first time. Moreover, two molecular structures of previously reported transformation products were revised according to the mass spectra and product ion spectra of the deuterated transformation products. Altogether, 18 transformation products have been identified during the photolytic and photocatalytic reactions at different pH values (3, 5, 7 and 9). In this work the influence of pH on both reaction kinetics and degradation mechanism was investigated for direct ultraviolet photolysis (UV-C irradiation) and photocatalysis (TiO{sub 2}/UV-C). It could be shown that the removal rates strongly depended on pH with highest removal rates at pH 9. A comparison with those at pH 3 clearly indicated that under acidic conditions ciprofloxacin cannot be easily excited by UV irradiation. We could confirm that the first reaction step for both oxidative treatment processes is mainly defluorination, followed by degradation at the piperazine ring of CIP.

  13. Investigation of degradation products of cocaine and benzoylecgonine in the aquatic environment

    Energy Technology Data Exchange (ETDEWEB)

    Bijlsma, Lubertus; Boix, Clara [Research Institute for Pesticides and Water, University Jaume I, Avda. Sos Baynat, E-12071 Castellón (Spain); Niessen, Wilfried M.A. [hyphen MassSpec, Leiden (Netherlands); Ibáñez, María; Sancho, Juan V. [Research Institute for Pesticides and Water, University Jaume I, Avda. Sos Baynat, E-12071 Castellón (Spain); Hernández, Félix, E-mail: felix.hernandez@uji.es [Research Institute for Pesticides and Water, University Jaume I, Avda. Sos Baynat, E-12071 Castellón (Spain)

    2013-01-15

    In this work, ultra-high-performance liquid chromatography (UHPLC) coupled to a hybrid quadrupole time-of-flight mass spectrometer (QTOF MS) has allowed the discovery and elucidation of degradation products of cocaine and its main metabolite benzoylecgonine (BE) in water. Spiked surface water was subjected to hydrolysis, chlorination and photo-degradation (both ultraviolet irradiation and simulated sunlight). After degradation of cocaine, up to sixteen compounds were detected and tentatively identified (1 resulting from hydrolysis; 8 from chlorination; 7 from photo-degradation), three of which are well known cocaine metabolites (BE, norbenzoylecgonine and norcocaine). Regarding BE degradation, up to ten compounds were found (3 from chlorination; 7 from photo-degradation), including one known metabolite (norbenzoylecgonine). Since reference standards were available for the major metabolites, they could be confirmed using information on retention time and fragment ions. The other degradates resulted from chlorination, dealkylation, hydroxylation and nitration, or from a combination of these processes. Several influent and effluent sewage water, and surface water samples were then screened for the identified compounds (known and unknown) using UHPLC–tandem MS with triple quadrupole. BE, norcocaine and norbenzoylecgonine were identified in these samples as major metabolites. Four previously unreported degradates were also found in some of the samples under study, illustrating the usefulness and applicability of the degradation experiments performed in this work. Highlights: ► Cocaine and benzoylecgonine degradation/transformation products investigated in water ► Hydrolysis, chlorination and photo degradation studied under laboratory conditions ► Several TPs discovered and tentatively elucidated by high resolution MS ► Structures of non-previously reported TPs have been suggested. ► Several reported/known TPs but also new TPs were found in sewage and surface

  14. Investigation of degradation products of cocaine and benzoylecgonine in the aquatic environment

    International Nuclear Information System (INIS)

    Bijlsma, Lubertus; Boix, Clara; Niessen, Wilfried M.A.; Ibáñez, María; Sancho, Juan V.; Hernández, Félix

    2013-01-01

    In this work, ultra-high-performance liquid chromatography (UHPLC) coupled to a hybrid quadrupole time-of-flight mass spectrometer (QTOF MS) has allowed the discovery and elucidation of degradation products of cocaine and its main metabolite benzoylecgonine (BE) in water. Spiked surface water was subjected to hydrolysis, chlorination and photo-degradation (both ultraviolet irradiation and simulated sunlight). After degradation of cocaine, up to sixteen compounds were detected and tentatively identified (1 resulting from hydrolysis; 8 from chlorination; 7 from photo-degradation), three of which are well known cocaine metabolites (BE, norbenzoylecgonine and norcocaine). Regarding BE degradation, up to ten compounds were found (3 from chlorination; 7 from photo-degradation), including one known metabolite (norbenzoylecgonine). Since reference standards were available for the major metabolites, they could be confirmed using information on retention time and fragment ions. The other degradates resulted from chlorination, dealkylation, hydroxylation and nitration, or from a combination of these processes. Several influent and effluent sewage water, and surface water samples were then screened for the identified compounds (known and unknown) using UHPLC–tandem MS with triple quadrupole. BE, norcocaine and norbenzoylecgonine were identified in these samples as major metabolites. Four previously unreported degradates were also found in some of the samples under study, illustrating the usefulness and applicability of the degradation experiments performed in this work. Highlights: ► Cocaine and benzoylecgonine degradation/transformation products investigated in water ► Hydrolysis, chlorination and photo degradation studied under laboratory conditions ► Several TPs discovered and tentatively elucidated by high resolution MS ► Structures of non-previously reported TPs have been suggested. ► Several reported/known TPs but also new TPs were found in sewage and surface

  15. Reticulophagy and Ribophagy: Regulated Degradation of Protein Production Factories

    Directory of Open Access Journals (Sweden)

    Eduardo Cebollero

    2012-01-01

    Full Text Available During autophagy, cytosol, protein aggregates, and organelles are sequestered into double-membrane vesicles called autophagosomes and delivered to the lysosome/vacuole for breakdown and recycling of their basic components. In all eukaryotes this pathway is important for adaptation to stress conditions such as nutrient deprivation, as well as to regulate intracellular homeostasis by adjusting organelle number and clearing damaged structures. For a long time, starvation-induced autophagy has been viewed as a nonselective transport pathway; however, recent studies have revealed that autophagy is able to selectively engulf specific structures, ranging from proteins to entire organelles. In this paper, we discuss recent findings on the mechanisms and physiological implications of two selective types of autophagy: ribophagy, the specific degradation of ribosomes, and reticulophagy, the selective elimination of portions of the ER.

  16. Identification and in vitro cytotoxicity of ochratoxin A degradation products formed during coffee roasting.

    Science.gov (United States)

    Cramer, Benedikt; Königs, Maika; Humpf, Hans-Ulrich

    2008-07-23

    The mycotoxin ochratoxin A is degraded by up to 90% during coffee roasting. In order to investigate this degradation, model heating experiments with ochratoxin A were carried out, and the reaction products were analyzed by HPLC-DAD and HPLC-MS/MS. Two ochratoxin A degradation products were identified, and their structure and absolute configuration were determined. As degradation reactions, the isomerization to 14-(R)-ochratoxin A and the decarboxylation to 14-decarboxy-ochratoxin A were identified. Subsequently, an analytical method for the determination of these compounds in roasted coffee was developed. Quantification was carried out by HPLC-MS/MS and the use of stable isotope dilution analysis. By using this method for the analysis of 15 coffee samples from the German market, it could be shown that, during coffee roasting, the ochratoxin A diastereomer 14-(R)-ochratoxin A was formed in amounts of up to 25.6% relative to ochratoxin A. The decarboxylation product was formed only in traces. For toxicity evaluations, first preliminary cell culture assays were performed with the two new substances. Both degradation products exhibited higher IC50 values and caused apoptotic effects with higher concentrations than ochratoxin A in cultured human kidney epithelial cells. Thus, these cell culture data suggest that the degradation products are less cytotoxic than ochratoxin A.

  17. Reliability demonstration methodology for products with Gamma Process by optimal accelerated degradation testing

    International Nuclear Information System (INIS)

    Zhang, Chunhua; Lu, Xiang; Tan, Yuanyuan; Wang, Yashun

    2015-01-01

    For products with high reliability and long lifetime, accelerated degradation testing (ADT) may be adopted during product development phase to verify whether its reliability satisfies the predetermined level within feasible test duration. The actual degradation from engineering is usually a strictly monotonic process, such as fatigue crack growth, wear, and erosion. However, the method for reliability demonstration by ADT with monotonic degradation process has not been investigated so far. This paper proposes a reliability demonstration methodology by ADT for this kind of product. We first apply Gamma process to describe the monotonic degradation. Next, we present a reliability demonstration method by converting the required reliability level into allowable cumulative degradation in ADT and comparing the actual accumulative degradation with the allowable level. Further, we suggest an analytical optimal ADT design method for more efficient reliability demonstration by minimizing the asymptotic variance of decision variable in reliability demonstration under the constraints of sample size, test duration, test cost, and predetermined decision risks. The method is validated and illustrated with example on reliability demonstration of alloy product, and is applied to demonstrate the wear reliability within long service duration of spherical plain bearing in the end. - Highlights: • We present a reliability demonstration method by ADT for products with monotonic degradation process, which may be applied to verify reliability with long service life for products with monotonic degradation process within feasible test duration. • We suggest an analytical optimal ADT design method for more efficient reliability demonstration, which differs from the existed optimal ADT design for more accurate reliability estimation by different objective function and different constraints. • The methods are applied to demonstrate the wear reliability within long service duration of

  18. Time extrapolation of radiolytic degradation product kinetics: the case of polyurethane; Extrapolation dans le temps des cinetiques de production des produits de degradation radiolytique: application a un polyurethane

    Energy Technology Data Exchange (ETDEWEB)

    Dannoux, A

    2007-02-15

    The prediction of the environmental impact of organic materials in nuclear waste geological storage needs knowledge of radiolytic degradation mechanisms and kinetics in aerobic and anaerobic conditions. In this framework, the effect of high doses (> MGy) and the variation of dose rate have to be considered. The material studied is a polyurethane composed of polyether soft segment and aromatic hard segments. Mechanisms were built on the analysis of material submitted to irradiations of simulation (high energy electrons and gamma radiation) by FTIR spectroscopy and gaseous and liquid degradation products by gas mass spectrometry and size exclusion chromatography. The electron paramagnetic resonance study of radical process and the determination of oxygen consumption and gas formation radiolytic yields allowed us to acquire kinetic data and to estimate dose rate and high doses effects. The polyurethane radio-oxidation mainly concerns soft segments and induced cross-linkings and production by scissions of oxidised compounds (esters, alcohols, carboxylic acids). The kinetic of radical termination is rapid and the dose rate effect is limited. After 10 MGy, branching and scission reactions are in equilibrium and low molecular weight products accumulate. At last, the degradation products release in water is influenced by the oxidation rate and the temperature. After 10 MGy, the soluble fraction is stabilised at 25%. The water soluble products identified by electro-spray ionisation mass spectrometry (alcohols, aldehydes, carboxylic acids) potentially formed complexes with radionuclides. (author)

  19. Fibrinogen Reduction During Selective Plasma Exchange due to Membrane Fouling.

    Science.gov (United States)

    Ohkubo, Atsushi; Okado, Tomokazu; Miyamoto, Satoko; Hashimoto, Yurie; Komori, Shigeto; Yamamoto, Motoki; Maeda, Takuma; Itagaki, Ayako; Yamamoto, Hiroko; Seshima, Hiroshi; Kurashima, Naoki; Iimori, Soichiro; Naito, Shotaro; Sohara, Eisei; Uchida, Shinichi; Rai, Tatemitsu

    2017-06-01

    Fibrinogen is substantially reduced by most plasmapheresis modalities but retained in selective plasma exchange using Evacure EC-4A10 (EC-4A). Although EC-4A's fibrinogen sieving coefficient is 0, a session of selective plasma exchange reduced fibrinogen by approximately 19%. Here, we investigated sieving coefficient in five patients. When the mean processed plasma volume was 1.15 × plasma volume, the mean reduction of fibrinogen during selective plasma exchange was approximately 15%. Fibrinogen sieving coefficient was 0 when the processed plasma volume was 1.0 L, increasing to 0.07 when the processed plasma volume was 3.0 L, with a mean of 0.03 during selective plasma exchange. When fibrinogen sieving coefficient was 0, selective plasma exchange reduced fibrinogen by approximately 10%. Scanning electron microscopy images revealed internal fouling of EC-4A's hollow fiber membrane by substances such as fibrinogen fibrils. Thus, fibrinogen reduction by selective plasma exchange may be predominantly caused by membrane fouling rather than filtration. © 2017 International Society for Apheresis, Japanese Society for Apheresis, and Japanese Society for Dialysis Therapy.

  20. Generation of toxic degradation products by sonication of Pluronic® dispersants: implications for nanotoxicity testing.

    Science.gov (United States)

    Wang, Ruhung; Hughes, Tyler; Beck, Simon; Vakil, Samee; Li, Synyoung; Pantano, Paul; Draper, Rockford K

    2013-11-01

    Poloxamers (known by the trade name Pluronic®) are triblock copolymer surfactants that contain two polyethylene glycol blocks and one polypropylene glycol block of various sizes. Poloxamers are widely used as nanoparticle dispersants for nanotoxicity studies wherein nanoparticles are sonicated with a dispersant to prepare suspensions. It is known that poloxamers can be degraded during sonication and that reactive oxygen species contribute to the degradation process. However, the possibility that poloxamer degradation products are toxic to mammalian cells has not been well studied. We report here that aqueous solutions of poloxamer 188 (Pluronic® F-68) and poloxamer 407 (Pluronic® F-127) sonicated in the presence or absence of multi-walled carbon nanotubes (MWNTs) can became highly toxic to cultured cells. Moreover, toxicity correlated with the sonolytic degradation of the polymers. These findings suggest that caution should be used in interpreting the results of nanotoxicity studies where the potential sonolytic degradation of dispersants was not controlled.

  1. Degradation study of pesticides by direct photolysis - Structural characterization and potential toxicity of photo products

    International Nuclear Information System (INIS)

    Rifai, A.

    2013-01-01

    Pesticides belong to the large family of organic pollutants. In general, they are intended to fight against crop pests. Distribution of pesticides in nature creates pollution in DIFFERENT compartments of the biosphere (water, soil and air) and can induce acute toxic effects on human beings of the terrestrial and aquatic living biomass. It is now shown that some pesticides are endocrine disruptors and are particularly carcinogenic and mutagenic effects in humans. Pesticides can undergo various processes of transformation in the natural life cycle (biodegradation, volatilization, solar radiation ...) or following applied in the sectors of natural water purification and treatment stations sewage treatment. The presence of degradation products of pesticides in our environment is even more alarming that their structures and potential toxicities generally unknown. Molecules belonging to two families of pesticides were selected for this study: herbicides, represented by metolachlor, and fungicides represented by procymidone, pyrimethanil and boscalid. The first part of the thesis focused on the development of an analytical strategy to characterize the structures of compounds from degradation by photolysis of pesticides. The second part focused on estimating the toxicity of degradation products using a test database in silico. Identification of degradation products was achieved through two complementary analysis techniques: the gas chromatography coupled to a mass spectrometer ''multi-stage'' (GC-MSn) and liquid chromatography coupled to a tandem mass spectrometer (LC-MS/MS). The estimation of the toxicity of the degradation products was performed using the TEST program QSAR recently developed to try to predict the toxicity of molecules. The strategy of the structural elucidation of degradation products of pesticides studied is based on studying of the mechanisms of fragmentation of parent molecules of the degradation products. The molar mass of parent

  2. Treatment of low level radioactive liquid waste containing appreciable concentration of TBP degraded products.

    Science.gov (United States)

    Valsala, T P; Sonavane, M S; Kore, S G; Sonar, N L; De, Vaishali; Raghavendra, Y; Chattopadyaya, S; Dani, U; Kulkarni, Y; Changrani, R D

    2011-11-30

    The acidic and alkaline low level radioactive liquid waste (LLW) generated during the concentration of high level radioactive liquid waste (HLW) prior to vitrification and ion exchange treatment of intermediate level radioactive liquid waste (ILW), respectively are decontaminated by chemical co-precipitation before discharge to the environment. LLW stream generated from the ion exchange treatment of ILW contained high concentrations of carbonates, tributyl phosphate (TBP) degraded products and problematic radio nuclides like (106)Ru and (99)Tc. Presence of TBP degraded products was interfering with the co-precipitation process. In view of this a modified chemical treatment scheme was formulated for the treatment of this waste stream. By mixing the acidic LLW and alkaline LLW, the carbonates in the alkaline LLW were destroyed and the TBP degraded products got separated as a layer at the top of the vessel. By making use of the modified co-precipitation process the effluent stream (1-2 μCi/L) became dischargeable to the environment after appropriate dilution. Based on the lab scale studies about 250 m(3) of LLW was treated in the plant. The higher activity of the TBP degraded products separated was due to short lived (90)Y isotope. The cement waste product prepared using the TBP degraded product was having good chemical durability and compressive strength. Copyright © 2011 Elsevier B.V. All rights reserved.

  3. Two cases of congenital dysfibrinogenemia associated with thrombosis - Fibrinogen Praha III and Fibrinogen Plzen

    Czech Academy of Sciences Publication Activity Database

    Kotlín, R.; Reicheltová, Z.; Malý, M.; Suttnar, J.; Sobotková, A.; Salaj, P.; Hirmerová, J.; Riedel, Tomáš; Dyr, J. E.

    2009-01-01

    Roč. 102, č. 3 (2009), s. 479-486 ISSN 0340-6245 R&D Projects: GA AV ČR KAN200670701 Institutional research plan: CEZ:AV0Z40500505 Keywords : dysfibrinogenemia * fibrinogen * missense mutation Subject RIV: CD - Macromolecular Chemistry Impact factor: 4.451, year: 2009

  4. Reliability modeling of degradation of products with multiple performance characteristics based on gamma processes

    International Nuclear Information System (INIS)

    Pan Zhengqiang; Balakrishnan, Narayanaswamy

    2011-01-01

    Many highly reliable products usually have complex structure, with their reliability being evaluated by two or more performance characteristics. In certain physical situations, the degradation of these performance characteristics would be always positive and strictly increasing. In such a case, the gamma process is usually considered as a degradation process due to its independent and non-negative increments properties. In this paper, we suppose that a product has two dependent performance characteristics and that their degradation can be modeled by gamma processes. For such a bivariate degradation involving two performance characteristics, we propose to use a bivariate Birnbaum-Saunders distribution and its marginal distributions to approximate the reliability function. Inferential method for the corresponding model parameters is then developed. Finally, for an illustration of the proposed model and method, a numerical example about fatigue cracks is discussed and some computational results are presented.

  5. Identification of Forced Degradation Products of Itopride by LC-PDA and LC-MS.

    Science.gov (United States)

    Joshi, Payal; Bhoir, Suvarna; Bhagwat, A M; Vishwanath, K; Jadhav, R K

    2011-05-01

    Degradation products of itopride formed under different forced conditions have been identified using LC-PDA and LC-MS techniques. Itopride was subjected to forced degradation under the conditions of hydrolysis, photolysis, oxidation, dry and wet heat, in accordance with the International Conference on Harmonization. The stress solutions were chromatographed on reversed phase C18 (250×4.6 mm, 5 μm) column with a mobile phase methanol:water (55:45, v/v) at a detection wavelength of 215 nm. Itopride degraded in acid, alkali and oxidative stress conditions. The stability indicating method was developed and validated. The degradation pathway of the drug to products II-VIII is proposed.

  6. LC-MS characterization of valsartan degradation products and comparison with LC-PDA

    Directory of Open Access Journals (Sweden)

    Sumaia Araújo Pires

    2015-12-01

    Full Text Available abstract Valsartan was submitted to forced degradation under acid hydrolysis condition as prescribed by the ICH. Degraded sample aliquots were separated via HPLC using a Hypersil ODS (C18 column (250 x 4.6 mm i.d., 5 µm. Either photodiode array (PDA detection or mass spectrometry (MS full scan monitoring of HPLC runs were used. HPLC-PDA failed to indicate Valsartan degradation under forced acid degradation, showing an insignificant peak area variation and that Valsartan apparently remained pure. HPLC-MS using electrospray ionization (ESI and total ionic current (TIC monitoring did not reveal any peak variation either, but inspection of the ESI mass spectra showed the appearance of m/z 306 and m/z 352 ions for the same retention time as that of Valsartan (m/z 436. These ions were identified as being protonated molecules of two co-eluting degradation products formed by hydrolysis. These assignments were confirmed by ESI-MS/MS with direct infusion of the degraded samples. The results showed that the use of selective HPLC-MS is essential for monitoring Valsartan degradation. Efficient HPLC separation coupled to selective and structural diagnostic MS monitoring seems therefore mandatory for comprehensive drug degradation studies, particularly for new drugs and formulations, and for method development.

  7. Anaerobic testosterone degradation in Steroidobacter denitrificans - Identification of transformation products

    International Nuclear Information System (INIS)

    Fahrbach, Michael; Krauss, Martin; Preiss, Alfred; Kohler, Hans-Peter E.; Hollender, Juliane

    2010-01-01

    The transformation of the androgenic steroid testosterone by gammaproteobacterium Steroidobacter denitrificans was studied under denitrifying conditions. For the first time, growth experiments showed that testosterone was mineralized under consumption of nitrate and concurrent biomass production. Experiments with cell suspensions using [4- 14 C]-testosterone revealed the intermediate production of several transformation products (TPs). Characterisation of ten TPs was carried out by means of HPLC coupled to high resolution mass spectrometry with atmospheric pressure chemical ionization as well as 1 H and 13 C NMR spectroscopy. 3β-hydroxy-5α-androstan-17-one (trans-androsterone) was formed in the highest amount followed by 5α-androstan-3,17-dione. The data suggests that several dehydrogenation and hydrogenation processes take place concurrently in ring A and D because no consistent time-resolved pattern of TP peaks was observed and assays using 2 TPs as substrates resulted in essentially the same TPs. The further transformation of testosterone in S. denitrificans seems to be very efficient and fast without formation of detectable intermediates. - Testosterone is completely mineralized by Steroidobacter denitrificans under denitrifying conditions with initial formation of several reduced and oxidized transformation products.

  8. Improved keratinase production for feather degradation by Bacillus ...

    African Journals Online (AJOL)

    Optimal medium was used to improve the production of keratinase by Bacillus licheniformis ZJUEL31410, which has a promising application in the transformation of feather into soluble protein. The results of single factor design revealed that the concentration of feather at 20 g/l and the initial pH at value 8 was the best for ...

  9. Anaerobic testosterone degradation in Steroidobacter denitrificans - Identification of transformation products

    Energy Technology Data Exchange (ETDEWEB)

    Fahrbach, Michael, E-mail: michael.fahrbach@web.d [Eawag, Swiss Federal Institute of Aquatic Science and Technology, Uberlandstrasse 133, P.O. Box 611, CH-8600 Duebendorf (Switzerland); Krauss, Martin, E-mail: martin.krauss@eawag.c [Eawag, Swiss Federal Institute of Aquatic Science and Technology, Uberlandstrasse 133, P.O. Box 611, CH-8600 Duebendorf (Switzerland); Preiss, Alfred, E-mail: alfred.preiss@item.fraunhofer.d [Fraunhofer Institute of Toxicology and Experimental Medicine (ITEM), Nikolai-Fuchs-Strasse 1, D-30625 Hannover (Germany); Kohler, Hans-Peter E., E-mail: hkohler@eawag.c [Eawag, Swiss Federal Institute of Aquatic Science and Technology, Uberlandstrasse 133, P.O. Box 611, CH-8600 Duebendorf (Switzerland); Hollender, Juliane, E-mail: juliane.hollender@eawag.c [Eawag, Swiss Federal Institute of Aquatic Science and Technology, Uberlandstrasse 133, P.O. Box 611, CH-8600 Duebendorf (Switzerland)

    2010-08-15

    The transformation of the androgenic steroid testosterone by gammaproteobacterium Steroidobacter denitrificans was studied under denitrifying conditions. For the first time, growth experiments showed that testosterone was mineralized under consumption of nitrate and concurrent biomass production. Experiments with cell suspensions using [4-{sup 14}C]-testosterone revealed the intermediate production of several transformation products (TPs). Characterisation of ten TPs was carried out by means of HPLC coupled to high resolution mass spectrometry with atmospheric pressure chemical ionization as well as {sup 1}H and {sup 13}C NMR spectroscopy. 3{beta}-hydroxy-5{alpha}-androstan-17-one (trans-androsterone) was formed in the highest amount followed by 5{alpha}-androstan-3,17-dione. The data suggests that several dehydrogenation and hydrogenation processes take place concurrently in ring A and D because no consistent time-resolved pattern of TP peaks was observed and assays using 2 TPs as substrates resulted in essentially the same TPs. The further transformation of testosterone in S. denitrificans seems to be very efficient and fast without formation of detectable intermediates. - Testosterone is completely mineralized by Steroidobacter denitrificans under denitrifying conditions with initial formation of several reduced and oxidized transformation products.

  10. In situ ruminal crude protein degradability of by-products from cereals, oilseeds and animal origin

    NARCIS (Netherlands)

    Habib, G.; Khan, N.A.; Ali, M.; Bezabih, M.

    2013-01-01

    The aim of this study was to establish a database on in situ ruminal crude protein (CP) degradability characteristics of by-products from cereal grains, oilseeds and animal origin commonly fed to ruminants in Pakistan and South Asian Countries. The oilseed by-products were soybean meal, sunflower

  11. Relationship between in situ degradation kinetics and in vitro gas production fermentation using different mathematical models

    NARCIS (Netherlands)

    Rodrigues, M.A.M.; Cone, J.W.; Ferreira, L.M.M.; Blok, M.C.; Guedes, C.

    2009-01-01

    In vitro and in situ studies were conducted to evaluate the influence of different mathematical models, used to fit gas production profiles of 15 feedstuffs, on estimates of nylon bag organic matter (OM) degradation kinetics. The gas production data were fitted to Exponential, Logistic, Gompertz and

  12. Full Product Pattern Recognition in β-Carotene Thermal Degradation through Ionization Enhancement

    Energy Technology Data Exchange (ETDEWEB)

    Xiao, Xiaoyin [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Miller, Lance Lee [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Bernstein, Robert [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Hochrein, James M. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-07-01

    The full product pattern including both volatile and nonvolatile compounds was presented for the first time for β-Carotene thermal degradation at variable temperatures up to 600°C. Solvent-enhanced ionization was used to confirm and distinguish between the dissociation mechanisms that lead to even and odd number mass products.

  13. The Impact of Charcoal Production on Forest Degradation: a Case Study in Tete, Mozambique

    Science.gov (United States)

    Sedano, F.; Silva. J. A.; Machoco, R.; Meque, C. H.; Sitoe, A.; Ribeiro, N.; Anderson, K.; Ombe, Z. A.; Baule, S. H.; Tucker, C. J.

    2016-01-01

    Charcoal production for urban energy consumption is a main driver of forest degradation in sub-Saharan Africa. Urban growth projections for the continent suggest that the relevance of this process will increase in the coming decades. Forest degradation associated to charcoal production is difficult to monitor and commonly overlooked and underrepresented in forest cover change and carbon emission estimates. We use a multi-temporal dataset of very high-resolution remote sensing images to map kiln locations in a representative study area of tropical woodlands in central Mozambique. The resulting maps provided a characterization of the spatial extent and temporal dynamics of charcoal production. Using an indirect approach we combine kiln maps and field information on charcoal making to describe the magnitude and intensity of forest degradation linked to charcoal production, including aboveground biomass and carbon emissions. Our findings reveal that forest degradation associated to charcoal production in the study area is largely independent from deforestation driven by agricultural expansion and that its impact on forest cover change is in the same order of magnitude as deforestation. Our work illustrates the feasibility of using estimates of urban charcoal consumption to establish a link between urban energy demands and forest degradation. This kind of approach has potential to reduce uncertainties in forest cover change and carbon emission assessments in sub-Saharan Africa.

  14. Skeletal changes in congenital fibrinogen abnormalities

    Energy Technology Data Exchange (ETDEWEB)

    Lagier, R.; Bouvier, C.A.; van Strijthem, N.

    1980-01-01

    We report anatomico-radiologic study of humerus, femur, and tibia from a case of total congenital afibrinogenemia. Juxtatrabecular hemorrhages occur mainly in metaphyses and seem to be related to normal lines of stress. They may lead to the formation of intraosseous cysts and to a remodelling of bone trabeculae. The radiologic lesions in a second case, diagnosed as congenital dysfibrinogenemia, are similar to those found in Case 1 (femoral trabeculae remodelling) but also resemble some alterations described in hemophilia (pseudotumor of the right iliac bone). Anatomic study of the lesions in Case 2 was not possible. The significance of these observations could be better defined by a more extended skeletal study (radiologic and when feasible anatomic) of patients with congenital clotting defects and especially with inherited disorders of the fibrinogen molecule. It would also be worthwhile investigating manifest or latent hemostatic disorders (particularly at the fibrinogen level) in patients with solitary or aneurysmal bone cysts, and even with bone infarct or unexplained trabecular remodelling.

  15. Atmospheric degradation of 3-methylfuran: kinetic and products study

    Directory of Open Access Journals (Sweden)

    A. Tapia

    2011-04-01

    Full Text Available A study of the kinetics and products obtained from the reactions of 3-methylfuran with the main atmospheric oxidants has been performed. The rate coefficients for the gas-phase reaction of 3-methylfuran with OH and NO3 radicals have been determined at room temperature and atmospheric pressure (air and N2 as bath gases, using a relative method with different experimental techniques. The rate coefficients obtained for these reactions were (in units cm3 molecule−1 s−1 kOH = (1.13 ± 0.22 × 10−10 and kNO3 = (1.26 ± 0.18 × 10−11. Products from the reaction of 3-methylfuran with OH, NO3 and Cl atoms in the absence and in the presence of NO have also been determined. The main reaction products obtained were chlorinated methylfuranones and hydroxy-methylfuranones in the reaction of 3-methylfuran with Cl atoms, 2-methylbutenedial, 3-methyl-2,5-furanodione and hydroxy-methylfuranones in the reaction of 3-methylfuran with OH and NO3 radicals and also nitrated compounds in the reaction with NO3 radicals. The results indicate that, in all cases, the main reaction path is the addition to the double bond of the aromatic ring followed by ring opening in the case of OH and NO3 radicals. The formation of 3-furaldehyde and hydroxy-methylfuranones (in the reactions of 3-methylfuran with Cl atoms and NO3 radicals confirmed the H-atom abstraction from the methyl group and from the aromatic ring, respectively. This study represents the first product determination for Cl atoms and NO3 radicals in reactions with 3-methylfuran. The reaction mechanisms and atmospheric implications of the reactions under consideration are also discussed.

  16. Quality asurance of iodinated (125 I) human fibrinogen

    International Nuclear Information System (INIS)

    Vines, E.J.

    1980-05-01

    The radiopharmaceutical iodinated ( 125 I) human fibrinogen is currently used for the detection of deep vein thrombosis in the legs, a fairly common post-surgical complication. A comprehensive quality assurance programme for ( 125 I) - human fibrinogen has been determined for routine use at the Australian Radiation Laboratory, with adaptions necessary for hospital quality control testing

  17. Two novel mutations in the fibrinogen .gamma. nodule

    Czech Academy of Sciences Publication Activity Database

    Kotlín, R.; Pastva, O.; Štikarová, J.; Hlaváčková, A.; Suttnar, J.; Chrastinová, L.; Riedel, Tomáš; Salaj, P.; Dyr, J. E.

    2014-01-01

    Roč. 134, č. 4 (2014), s. 901-908 ISSN 0049-3848 R&D Projects: GA ČR GBP205/12/G118 Institutional support: RVO:61389013 Keywords : abnormal fibrinogens * hereditary coagulation disorders * fibrinogen Subject RIV: BO - Biophysics Impact factor: 2.447, year: 2014

  18. Evaluation of anaerobic degradation, biogas and digestate production of cereal silages using nylon-bags.

    Science.gov (United States)

    Negri, Marco; Bacenetti, Jacopo; Fiala, Marco; Bocchi, Stefano

    2016-06-01

    In this study, the degradation efficiency and the biogas and digestate production during anaerobic digestion were evaluated for the cereal silages most used to feed biogas plants. To this purpose, silages of: maize from the whole plant, maize from the ear, triticale and wheat were digested, inside of nylon bags, in laboratory scale digesters, for 75days. Overall, the test involved 288 nylon bags. After 75days of digestion, the maize ear silage shows the highest degradation efficiency (about 98%) while wheat silage the lowest (about 83%). The biogas production ranges from 438 to 852Nm(3)/t of dry matter for wheat and ear maize silage, respectively. For all the cereal silages, the degradation as well as the biogas production are faster at the beginning of the digestion time. Digestate mass, expressed as percentage of the fresh matter, ranges from 38% to 84% for wheat and maize ear silage, respectively. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Environmental, biochemical and genetic drivers of DMSP degradation and DMS production in the Sargasso Sea.

    Science.gov (United States)

    Levine, Naomi Marcil; Varaljay, Vanessa A; Toole, Dierdre A; Dacey, John W H; Doney, Scott C; Moran, Mary Ann

    2012-05-01

    Dimethylsulfide (DMS) is a climatically relevant trace gas produced and cycled by the surface ocean food web. Mechanisms driving intraannual variability in DMS production and dimethylsulfoniopropionate (DMSP) degradation in open-ocean, oligotrophic regions were investigated during a 10-month time-series at the Bermuda Atlantic Time-series Study site in the Sargasso Sea. Abundance and transcription of bacterial DMSP degradation genes, DMSP lyase enzyme activity, and DMS and DMSP concentrations, consumption rates and production rates were quantified over time and depth. This interdisciplinary data set was used to test current hypotheses of the role of light and carbon supply in regulating upper-ocean sulfur cycling. Findings supported UV-A-dependent phytoplankton DMS production. Bacterial DMSP degraders may also contribute significantly to DMS production when temperatures are elevated and UV-A dose is moderate, but may favour DMSP demethylation under low UV-A doses. Three groups of bacterial DMSP degraders with distinct intraannual variability were identified and niche differentiation was indicated. The combination of genetic and biochemical data suggest a modified 'bacterial switch' hypothesis where the prevalence of different bacterial DMSP degradation pathways is regulated by a complex set of factors including carbon supply, temperature and UV-A dose. © 2012 Society for Applied Microbiology and Blackwell Publishing Ltd.

  20. LC/MS/MS identification of some folic acid degradation products after E-beam irradiation

    International Nuclear Information System (INIS)

    Araújo, M.M.; Marchioni, E.; Zhao, M.; Kuntz, F.; Di Pascoli, T.; Villavicencio, A.L.C.H.; Bergaentzle, M.

    2012-01-01

    Folates belong to the B vitamin group based on the parental compound folic acid (FA). They are involved in important biochemical processes like DNA synthesis and repair. FA is composed of a pteridine ring, p-aminobenzoic acid and glutamate moieties. The human metabolism is not able to synthesize folates and therefore obtain them from diet. FA, a synthetic vitamin, is used as a food fortificant because of its low price, relative stability and increased bioavailability compared to natural folate forms. FA is known to be a sensitive compound easily degradable in aqueous solution by ultraviolet and visible light towards various by-products. Irradiation is a process for preservation of foods that uses accelerated electrons, gamma rays or X-rays. Irradiation is proposed for the treatment of various food products, eliminating or reducing pathogens and insects, increasing the storage time and replacing chemical fumigants. This study concerns the identification of degradation products of FA after E-beam irradiation. FA aqueous solutions were irradiated with a Van de Graaff electrons beam accelerator (2 MeV, 100 μA current, 20 cm scan width, dose rate about 2 kGy/s). Applied doses were between 0 (control) and 10.0 kGy. Absorbed doses were monitored with FWT 60.00 radiochromic dosimeters. - Highlights: ► We investigated the degradation of folic acid aqueous solution after electron beam treatment. ► Radiation doses over 5 kGy promote huge folic acid degradation and appearance of several degradation products. ► PCA, PABA and pABGA, already known folic acid degradation products, are formed due to E-beam treatment. ► Xanthopterin, a new radio-induced breakdown product, is formed after irradiation treatment.

  1. The sources, fate, and toxicity of chemical warfare agent degradation products.

    Science.gov (United States)

    Munro, N B; Talmage, S S; Griffin, G D; Waters, L C; Watson, A P; King, J F; Hauschild, V

    1999-01-01

    We include in this review an assessment of the formation, environmental fate, and mammalian and ecotoxicity of CW agent degradation products relevant to environmental and occupational health. These parent CW agents include several vesicants: sulfur mustards [undistilled sulfur mustard (H), sulfur mustard (HD), and an HD/agent T mixture (HT)]; nitrogen mustards [ethylbis(2-chloroethyl)amine (HN1), methylbis(2-chloroethyl)amine (HN2), tris(2-chloroethyl)amine (HN3)], and Lewisite; four nerve agents (O-ethyl S-[2-(diisopropylamino)ethyl] methylphosphonothioate (VX), tabun (GA), sarin (GB), and soman (GD)); and the blood agent cyanogen chloride. The degradation processes considered here include hydrolysis, microbial degradation, oxidation, and photolysis. We also briefly address decontamination but not combustion processes. Because CW agents are generally not considered very persistent, certain degradation products of significant persistence, even those that are not particularly toxic, may indicate previous CW agent presence or that degradation has occurred. Of those products for which there are data on both environmental fate and toxicity, only a few are both environmentally persistent and highly toxic. Major degradation products estimated to be of significant persistence (weeks to years) include thiodiglycol for HD; Lewisite oxide for Lewisite; and ethyl methyl phosphonic acid, methyl phosphonic acid, and possibly S-(2-diisopropylaminoethyl) methylphosphonothioic acid (EA 2192) for VX. Methyl phosphonic acid is also the ultimate hydrolysis product of both GB and GD. The GB product, isopropyl methylphosphonic acid, and a closely related contaminant of GB, diisopropyl methylphosphonate, are also persistent. Of all of these compounds, only Lewisite oxide and EA 2192 possess high mammalian toxicity. Unlike other CW agents, sulfur mustard agents (e.g., HD) are somewhat persistent; therefore, sites or conditions involving potential HD contamination should include an

  2. Pre-emptive treatment with fibrinogen concentrate for postpartum haemorrhage

    DEFF Research Database (Denmark)

    Wikkelsø, A J; Edwards, H M; Afshari, A

    2015-01-01

    BACKGROUND: In early postpartum haemorrhage (PPH), a low concentration of fibrinogen is associated with excessive subsequent bleeding and blood transfusion. We hypothesized that pre-emptive treatment with fibrinogen concentrate reduces the need for red blood cell (RBC) transfusion in patients...... and the fibrinogen concentration at inclusion. The primary outcome was RBC transfusion up to 6 weeks postpartum. Secondary outcomes were total blood loss, total amount of blood transfused, occurrence of rebleeding, haemoglobin ... concentrate, thereby significantly increasing fibrinogen concentration compared with placebo by 0.40 g litre(-1) (95% confidence interval, 0.15-0.65; P=0.002). Postpartum blood transfusion occurred in 25 (20%) of the fibrinogen group and 26 (22%) of the placebo group (relative risk, 0.95; 95% confidence...

  3. Exploration by radioactive fibrinogen of intrarenal coagulation phenomena. Preliminary results

    International Nuclear Information System (INIS)

    Simon, Jacques.

    1974-01-01

    The participation of fibrin deposits in kidney pathology was studied by the use of a radioactive tracer involved in the coagulation phenomenon: iodine 131-labelled fibrinogen. The isotopic exploration consists of a fibrinogen kinetics study combined with external counting over the kidney regions. The different stages of the procedure are described: separation, purification and labelling of fibrinogen; characteristics of the radioactive fibrinogen used; practical details of the examination itself; data analysis method. A chapter devoted to verifications and discussions of the procedure is followed by a report on the exploration of intrarenal coagulation phenomena in 30 kidney disease patients. In conclusion, the study of fibrinogen kinetics is considered as the most suitable method to detect local or slight intravascular coagulation phenomena. The sensitivity of the isotopic exploration is very satisfactory. The main criticism directed against this method is that the exploration is general and therefore blind [fr

  4. Estimating grass and grass silage degradation characteristics by in situ and in vitro gas production methods

    Directory of Open Access Journals (Sweden)

    Danijel Karolyi

    2010-01-01

    Full Text Available Fermentation characteristics of grass and grass silage at different maturities were studied using in situ and in vitro gas production methods. In situ data determined difference between grass and silage. Degradable fraction decreased as grass matured while the undegradable fraction increased. Rate of degradation (kd was slower for silage than fresh grass. Gas production method (GP data showed that fermentation of degradable fraction was different between stage of maturity in both grass and silage. Other data did not show any difference with the exception for the rate of GP of soluble and undegradable fraction. The in situ degradation characteristics were estimated from GP characteristics. The degradable and undegradable fractions could be estimated by multiple relationships. Using the three-phases model for gas production kd and fermentable organic matter could be estimated from the same parameters. The only in situ parameter that could not be estimated with GP parameters was the soluble fraction. The GP method and the three phases model provided to be an alternative to the in situ method for animal feed evaluations.

  5. Quantitative analysis of Loperamide hydrochloride in the presence its acid degradation products

    Directory of Open Access Journals (Sweden)

    Savić Ivana M.

    2009-01-01

    Full Text Available The aim of this work was to develop a new RP-HPLC method for the determination of loperamide hydrochloride in the presence of its acid degradation products. Separation of loperamide from degradation products was performed using ZORBAX Eclipse XDB C-18, column with a mobile phase consisting of 0.1% sodium-octansulphonate, 0.05% triethylamine, 0.1% ammonium hydroxide in water:acetonitrile (45:55 v/v. The mobile phase was adjusted to pH 3.2 with phosphoric acid. The method showed high sensitivity with good linearity over the concentration range of 10 to 100 μg cm-3. The method was successfully applied to the analysis of a pharmaceutical formulation (Loperamide, Zdravlje-Actavis, Serbia containing loperamide hydrochloride with excellent recovery. The loperamide hydrochloride degradation during acid hydrolysis and kinetics investigation was carried out in hydrochloric acid solutions of 0.1, 1.0 and 1.5 mol dm-3, at different temperatures (25 and 40°C, by monitoring the parent compound itself. The first order reaction of loperamide degradation in acid solution was determined. The activation energy was estimated from the Arrhenius plot and it was found to be 38.81 kJ mol-1 at 40°C. The developed procedure was successfully applied for the rapid determination of loperamide hydrochloride in pharmaceutical formulation (Loperamide, Zdravlje-Actavis, Serbia and in the presence of its acid degradation products.

  6. Interaction of fibrinogen and albumin with titanium dioxide nanoparticles of different crystalline phases

    International Nuclear Information System (INIS)

    Marucco, Arianna; Fenoglio, Ivana; Turci, Francesco; Fubini, Bice

    2013-01-01

    TiO 2 nanoparticles (NPs) are contained in different kinds of industrial products including paints, self-cleaning glasses, sunscreens. TiO 2 is also employed in photocatalysis and it has been proposed for waste water treatment. Micrometric TiO 2 is generally considered a safe material, while there is concern on the possible health effects of nanometric titania. Due to their small size NPs may migrate within the human body possibly entering in the blood stream. Therefore studies on the interaction of NPs with plasma proteins are needed. In fact, the interaction with proteins is believed to ultimately influences the NPs biological fate. Fibrinogen and albumin are two of the most abundant plasma proteins. They are involved in several important physiological functions. Furthermore, fibrinogen is known to trigger platelet adhesion and inflammation. For these reasons the study of the interaction between these protein and nanoparticles is an important step toward the understanding of the behavior of NPs in the body. In this study we investigated the interaction of albumin and fibrinogen with TiO 2 nanoparticles of different crystal phases (rutile and anatase) using an integrated set of techniques. The amount of adsorbed fibrinogen and albumin for each TiO 2 surface was investigated by using the bicinchoninic acid assay (BCA). The variation of the surface charge of the NP-protein conjugates respect to the naked NPs was used to indirectly estimate both surface coverage and reversibility of the adsorption upon dilution. Surface charge was monitored by measuring the ζ potential with a conventional electrophoretic light scattering (ELS) system. The extent of protein deformation was evaluated by Raman Spectroscopy. We found that both proteins adsorb irreversibly against electrostatic repulsion, likely undergoing conformational changes or selective orientation upon adsorption. The size of primary particles and the particles aggregation rather than the crystal phase modulate the

  7. Analysis of the Precursors, Simulants and Degradation Products of Chemical Warfare Agents.

    Science.gov (United States)

    Witkiewicz, Zygfryd; Neffe, Slawomir; Sliwka, Ewa; Quagliano, Javier

    2018-09-03

    Recent advances in analysis of precursors, simulants and degradation products of chemical warfare agents (CWA) are reviewed. Fast and reliable analysis of precursors, simulants and CWA degradation products is extremely important at a time, when more and more terrorist groups and radical non-state organizations use or plan to use chemical weapons to achieve their own psychological, political and military goals. The review covers the open source literature analysis after the time, when the chemical weapons convention had come into force (1997). The authors stated that during last 15 years increased number of laboratories are focused not only on trace analysis of CWA (mostly nerve and blister agents) in environmental and biological samples, but the growing number of research are devoted to instrumental analysis of precursors and degradation products of these substances. The identification of low-level concentration of CWA degradation products is often more important and difficult than the original CWA, because of lower level of concentration and a very large number of compounds present in environmental and biological samples. Many of them are hydrolysis products and are present in samples in the ionic form. For this reason, two or three instrumental methods are used to perform a reliable analysis of these substances.

  8. Turnover of radio-iodinated and biosynthetically labelled fibrinogen in rhesus monkeys

    International Nuclear Information System (INIS)

    Moza, A.K.

    1982-01-01

    Successful radio-iodination of monkey fibrinogen using a previously documented method for rabbit fibrinogen is reported. The label was securely bound to fibrinogen without any evidence of polymerisation. Turnover rates and other kinetic parameters of fibrinogen using 125 I-fibrinogen have been compared with those obtained with biosynthetically labelled donor 75 Se-fibrinogen. Both studies yielded identical results. The values for normal monkeys showed a half life of 43.8 +- 1.03 h with 125 I-fibrinogen and 47.15 +- 1.24 with 75 Se-fibrinogen. The turnover rate of endogenous 75 Se-fibrinogen following administration of 75 Se-selenomethionine has also been studied. The half disappearance time value of 100.34 h was much longer than the t1/2 values obtained with either 125 I or 75 Se-fibrinogen. This is believed to be due the staggered input of fibrinogen molecules from the liver. (author)

  9. The Sustainable Release of Vancomycin and Its Degradation Products From Nanostructured Collagen/Hydroxyapatite Composite Layers

    Czech Academy of Sciences Publication Activity Database

    Suchý, Tomáš; Šupová, Monika; Klapková, E.; Horný, L.; Rýglová, Šárka; Žaloudková, Margit; Braun, Martin; Sucharda, Zbyněk; Ballay, R.; Veselý, J.; Chlup, H.; Denk, František

    2016-01-01

    Roč. 105, č. 3 (2016), 1288-1294 ISSN 0022-3549 R&D Projects: GA TA ČR(CZ) TA04010330 Institutional support: RVO:67985891 Keywords : anti-infectives * HPLC * coating * controlled release * degradation products * drug delivery systems * nanoparticles * pharmacokinetics * polymeric drug delivery systems Subject RIV: JI - Composite Materials Impact factor: 2.713, year: 2016

  10. Global sensitivity analysis for UNSATCHEM simulations of crop production with degraded waters

    Science.gov (United States)

    One strategy for maintaining irrigated agricultural productivity in the face of diminishing resource availability is to make greater use of marginal quality waters and lands. A key to sustaining systems using degraded irrigation waters is salinity management. Advanced simulation models and decision ...

  11. Particulate and gas-phase products from the atmospheric degradation of chlorpyrifos and chlorpyrifos-oxon

    Science.gov (United States)

    Borrás, Esther; Ródenas, Milagros; Vázquez, Mónica; Vera, Teresa; Muñoz, Amalia

    2015-12-01

    The phosphorothioate structure is highly present in several pesticides. However, there is a lack of information about its degradation process in air and the secondary pollutants formed. Herein, the atmospheric reactions of chlorpyrifos, one of the most world-used insecticide, and its main degradation product - chlorpyrifos-oxon - are described. The photo-oxidation under the presence of NOx was studied in a large outdoor simulation chamber for both chlorpyrifos and chlorpyrifos-oxon, observing a rapid degradation (Half lifetime < 3.5 h for both compounds). Also, the photolysis reactions of both were studied. The formation of particulate matter (aerosol mass yield ranged 6-59%) and gaseous products were monitored. The chemical composition of minor products was studied, identifying 15 multi-oxygenated derivatives. The most abundant products were ring-retaining molecules such as 3,5,6-trichloropyridin-2-ol and ethyl 3,5,6-trichloropyridin-2-yl hydrogen phosphate. An atmospheric degradation mechanism has been amplified based on an oxidation started with OH-nucleophilic attack to Pdbnd S bond.

  12. The degradation of lining of rotary furnaces in the production of zinc oxide

    Czech Academy of Sciences Publication Activity Database

    Luptáková, Natália; Pešlová, F.; Anisimov, E.

    2014-01-01

    Roč. 21, č. 3 (2014), s. 116-121 ISSN 1335-0803 Institutional support: RVO:68081723 Keywords : zinc oxide * the production of zinc oxide * zinc slag * refractories * the degradation of rotary furnace linings Subject RIV: JG - Metallurgy http://ojs.mateng.sk/index.php/Mateng/article/view/133/194

  13. Wood Degradation by Thermotolerant and Thermophilic Fungi for Sustainable Heat Production

    NARCIS (Netherlands)

    Caizan Juanarena, Leire; ter Heijne, Annemiek; Buisman, Cees; Van der Wal, A.

    2016-01-01

    The use of renewable biomass for production of heat and electricity plays an important role in the circular economy. Degradation of wood biomass to produce heat is a clean and novel process proposed as an alternative to wood burning, and could be used for various heating applications. So far, wood

  14. Effects of cellulosic degradation products on uranium sorption in the geosphere

    International Nuclear Information System (INIS)

    Baston, G.M.N.; Berry, J.A.; Bond, K.A.; Boult, K.A.; Brownsword, M.; Linklater, C.M.

    1994-01-01

    The current design concept for intermediate- and some low-level radioactive waste disposal in the UK involves emplacement in a cementitious repository deep underground. The movement of radionuclides away from such a repository through the host rock formation towards the biosphere is expected to be retarded to a significant degree by sorption processes. One major issue being studied is the effect on uranium sorption of degradation products arising from organic waste matter, especially cellulosic materials. The sorption of uranium could be reduced by degradation products, either because of complexation, or through the organic materials competing for sorption sites. Because of the complexity of authentic degradation products, work has also been carried out using gluconate and iso-saccharinate as well-characterised simulants. In the presence of high concentrations of either the authentic or simulated degradation products, significant reductions in uranium sorption have been observed. However, in the presence of lower concentrations of these organic materials, such as would be present in the repository, sorption was reduced at most by only a small margin and, in some cases, the results suggested a slight increase. ((orig.))

  15. Effects of cellulosic degradation products on uranium sorption in the geosphere

    Energy Technology Data Exchange (ETDEWEB)

    Baston, G.M.N. (AEA Technology, Harwell, Didcot, Oxon OX11 0RA (United Kingdom)); Berry, J.A. (AEA Technology, Harwell, Didcot, Oxon OX11 0RA (United Kingdom)); Bond, K.A. (AEA Technology, Harwell, Didcot, Oxon OX11 0RA (United Kingdom)); Boult, K.A. (AEA Technology, Harwell, Didcot, Oxon OX11 0RA (United Kingdom)); Brownsword, M. (AEA Technology, Harwell, Didcot, Oxon OX11 0RA (United Kingdom)); Linklater, C.M. (AEA Technology, Harwell, Didcot, Oxon OX11 0RA (United Kingdom))

    1994-10-01

    The current design concept for intermediate- and some low-level radioactive waste disposal in the UK involves emplacement in a cementitious repository deep underground. The movement of radionuclides away from such a repository through the host rock formation towards the biosphere is expected to be retarded to a significant degree by sorption processes. One major issue being studied is the effect on uranium sorption of degradation products arising from organic waste matter, especially cellulosic materials. The sorption of uranium could be reduced by degradation products, either because of complexation, or through the organic materials competing for sorption sites. Because of the complexity of authentic degradation products, work has also been carried out using gluconate and iso-saccharinate as well-characterised simulants. In the presence of high concentrations of either the authentic or simulated degradation products, significant reductions in uranium sorption have been observed. However, in the presence of lower concentrations of these organic materials, such as would be present in the repository, sorption was reduced at most by only a small margin and, in some cases, the results suggested a slight increase. ((orig.))

  16. HYDROLOGIC CONDITIONS AFFECTING THE TROPOSPHERIC FLUX OF VINCLOZOLIN AND ITS DEGRADATION PRODUCTS

    Science.gov (United States)

    A laboratory chamber was used to determine hydrologic conditions that lead to the tropospheric flux of a suspected anti-androgenic dicarboximide fungicide, vinclozolin (3-(3,5-dichlorophenyl)-5-methyl-5-vinyl-oxzoli-dine-2,4-dione) and three degradation products from sterilized...

  17. Enhanced production of dimethyl phthalate-degrading strain Bacillus sp. QD14 by optimizing fermentation medium

    Directory of Open Access Journals (Sweden)

    Jixian Mo

    2015-05-01

    Conclusion: In this work, the key factors affected by the fermentation of DMP-degrading strain Bacillus sp. QD14 were optimized by PBD, SAM and BBD (RSM; the yield was increased by 57,11% in the conditions in our study. We propose that the conditions optimized in the study can be applied to the fermentation for commercialization production.

  18. Rapid quantification of TBP and TBP degradation product ratios by FTIR-ATR

    International Nuclear Information System (INIS)

    Gillens, A.R.; Powell, B.A.; Clemson University, Clemson, SC

    2013-01-01

    Tri-n-butyl phosphate (TBP) is the key complexant within the plutonium and uranium reduction extraction process used to extract uranium and plutonium from used nuclear fuel. During reprocessing TBP degrades to dibutyl phosphate (DBP), butyl acid phosphate (MBP), butanol, and phosphoric acid over time. A method for rapidly monitoring TBP degradation is needed for the support of nuclear forensics. Therefore, a Fourier transform infrared spectrometry-attenuated total reflectance (FTIR-ATR) technique was developed to determine approximate peak intensity ratios of TBP and its degradation products. The technique was developed by combining variable concentrations of TBP, DBP, and MBP to simulate TBP degradation. This method is achieved by analyzing selected peak positions and peak intensity ratios of TBP and DBP at different stages of degradation. The developed technique was tested on TBP samples degraded with nitric acid. In mock degradation samples, the 1,235 cm -1 peak position shifts to 1,220 cm -1 as the concentration of TBP decreases and DBP increases. Peak intensity ratios of TBP positions at 1,279 and 1,020 cm -1 relative to DBP positions at 909 and 1,003 cm -1 demonstrate an increasing trend as the concentration of DBP increases. The same peak intensity ratios were used to analyze DBP relative to MBP whereas a decreasing trend is seen with increasing DBP concentrations. The technique developed from this study may be used as a tool to determine TBP degradation in nuclear reprocessing via a rapid FTIR-ATR measurement without gas chromatography analysis. (author)

  19. Stimulation of diesel degradation and biosurfactant production by aminoglycosides in a novel oil-degrading bacterium Pseudomonas luteola PRO23

    Directory of Open Access Journals (Sweden)

    Atanasković Iva M.

    2016-01-01

    Full Text Available Bioremediation is promising technology for dealing with oil hydrocarbons contamination. In this research growth kinetics and oil biodegradation efficiency of Pseudomonas luteola PRO23, isolated from crude oil-contaminated soil samples, were investigated under different concentrations (5, 10 and 20 g/L of light and heavy crude oil. More efficient biodegradation and more rapid adaptation and cell growth were obtained in conditions with light oil. The 5 to 10 g/L upgrade of light oil concentration stimulated the microbial growth and the biodegradation efficiency. Further upgrade of light oil concentration and the upgrade of heavy oil concentration both inhibited the microbial growth, as well as biodegradation process. Aminoglycosides stimulated biosurfactant production in P. luteola in the range of sub-inhibitory concentrations (0.3125, 0.625 μg/mL. Aminoglycosides also induced biofilm formation. The production of biosurfactants was the most intense during lag phase and continues until stationary phase. Aminoglycosides also induced changes in P. luteola growth kinetics. In the presence of aminoglycosides this strain degraded 82% of diesel for 96 h. These results indicated that Pseudomonas luteola PRO23 potentially can be used in bioremediation of crude oil-contaminated environments and that aminoglycosides could stimulate this process. [Projekat Ministarstva nauke Republike Srbije, br. TR31080

  20. Enhanced sulfamethoxazole degradation through ammonia oxidizing bacteria co-metabolism and fate of transformation products.

    Science.gov (United States)

    Kassotaki, Elissavet; Buttiglieri, Gianluigi; Ferrando-Climent, Laura; Rodriguez-Roda, Ignasi; Pijuan, Maite

    2016-05-01

    The occurrence of the widely-used antibiotic sulfamethoxazole (SFX) in wastewaters and surface waters has been reported in a large number of studies. However, the results obtained up-to-date have pointed out disparities in its removal. This manuscript explores the enhanced biodegradation potential of an enriched culture of Ammonia Oxidizing Bacteria (AOB) towards SFX. Several sets of batch tests were conducted to establish a link between SFX degradation and specific ammonia oxidation rate. The occurrence, degradation and generation of SFX and some of its transformation products (4-Nitro SFX, Desamino-SFX and N(4)-Acetyl-SFX) was also monitored. A clear link between the degradation of SFX and the nitrification rate was found, resulting in an increased SFX removal at higher specific ammonia oxidation rates. Moreover, experiments conducted under the presence of allylthiourea (ATU) did not present any removal of SFX, suggesting a connection between the AMO enzyme and SFX degradation. Long term experiments (up to 10 weeks) were also conducted adding two different concentrations (10 and 100 μg/L) of SFX in the influent of a partial nitrification sequencing batch reactor, resulting in up to 98% removal. Finally, the formation of transformation products during SFX degradation represented up to 32%, being 4-Nitro-SFX the most abundant. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Fate of CL-20 in sandy soils: Degradation products as potential markers of natural attenuation

    International Nuclear Information System (INIS)

    Monteil-Rivera, Fanny; Halasz, Annamaria; Manno, Dominic; Kuperman, Roman G.; Thiboutot, Sonia; Ampleman, Guy; Hawari, Jalal

    2009-01-01

    Hexanitrohexaazaisowurtzitane (CL-20) is an emerging explosive that may replace the currently used explosives such as RDX and HMX, but little is known about its fate in soil. The present study was conducted to determine degradation products of CL-20 in two sandy soils under abiotic and biotic anaerobic conditions. Biotic degradation was prevalent in the slightly acidic VT soil, which contained a greater organic C content, while the slightly alkaline SAC soil favored hydrolysis. CL-20 degradation was accompanied by the formation of formate, glyoxal, nitrite, ammonium, and nitrous oxide. Biotic degradation of CL-20 occurred through the formation of its denitrohydrogenated derivative (m/z 393 Da) while hydrolysis occurred through the formation of a ring cleavage product (m/z 156 Da) that was tentatively identified as CH 2 =N-C(=N-NO 2 )-CH=N-CHO or its isomer N(NO 2 )=CH-CH=N-CO-CH=NH. Due to their chemical specificity, these two intermediates may be considered as markers of in situ attenuation of CL-20 in soil. - Two key intermediates of CL-20 degradation are potential markers of its natural attenuation in soil

  2. Circulating immune complexes contain citrullinated fibrinogen in rheumatoid arthritis

    Science.gov (United States)

    Zhao, Xiaoyan; Okeke, Nwora Lance; Sharpe, Orr; Batliwalla, Franak M; Lee, Annette T; Ho, Peggy P; Tomooka, Beren H; Gregersen, Peter K; Robinson, William H

    2008-01-01

    Introduction There is increasing evidence that autoantibodies and immune complexes (ICs) contribute to synovitis in rheumatoid arthritis (RA), yet the autoantigens incorporated in ICs in RA remain incompletely characterised. Methods We used the C1q protein to capture ICs from plasma derived from human RA and control patients. Antibodies specific for immunoglobulin were used to detect ICs, and fibrinogen antibodies were used to detect fibrinogen-containing ICs. RA and control plasma were separated by liquid chromatography, and fractions then characterised by ELISA, immunoblotting and mass spectrometry. Immunohistochemical staining was performed on rheumatoid synovial tissue. Results C1q-immunoassays demonstrated increased levels of IgG (p = 0.01) and IgM (p = 0.0002) ICs in plasma derived from RA patients possessing anti-cyclic citrullinated peptide (CCP+) autoantibodies as compared with healthy controls. About one-half of the anti-CCP+ RA possessed circulating ICs containing fibrinogen (p = 0.0004). Fractionation of whole RA plasma revealed citrullinated fibrinogen in the high molecular weight fractions that contained ICs. Positive correlations were observed between fibrinogen-containing ICs and anti-citrullinated fibrinogen autoantibodies, anti-CCP antibody, rheumatoid factor and certain clinical characteristics. Immunohistochemical staining demonstrated co-localisation of fibrinogen, immunoglobulin and complement component C3 in RA pannus tissue. Mass spectrometry analysis of immune complexes immunoprecipitated from RA pannus tissue lysates demonstrated the presence of citrullinated fibrinogen. Conclusion Circulating ICs containing citrullinated fibrinogen are present in one-half of anti-CCP+ RA patients, and these ICs co-localise with C3 in the rheumatoid synovium suggesting that they contribute to synovitis in a subset of RA patients. PMID:18710572

  3. Determination of membrane degradation products in the product water of polymer electrolyte membrane fuel cells using liquid chromatography mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Zedda, Marco

    2011-05-12

    The predominant long term failure of polymer electrolyte membranes (PEM) is caused by hydroxyl radicals generated during fuel cell operation. These radicals attack the polymer, leading to chain scission, unzipping and consequently to membrane decomposition products. The present work has investigated decomposition products of novel sulfonated aromatic hydrocarbon membranes on the basis of a product water analysis. Degradation products from the investigated membrane type and the possibility to detect these compounds in the product water for diagnostic purposes have not been discovered yet. This thesis demonstrates the potential of solid phase extraction and liquid chromatography tandem mass spectrometry (SPE-LC-MS/MS) for the extraction, separation, characterization, identification and quantification of membrane degradation products in the product water of fuel cells. For this purpose, several polar aromatic hydrocarbons with different functional groups were selected as model compounds for the development of reliable extraction, separation and detection methods. The results of this thesis have shown that mixed mode sorbent materials with both weak anion exchange and reversed phase retention properties are well suited for reproducible extraction of both molecules and ions from the product water. The chromatographic separation of various polar aromatic hydrocarbons was achieved by means of phase optimized liquid chromatography using a solvent gradient and on a C18 stationary phase. Sensitive and selective detection of model compounds could be successfully demonstrated by the analysis of the product water using tandem mass spectrometry. The application of a hybrid mass spectrometer (Q Trap) for the characterization of unknown polar aromatic hydrocarbons has led to the identification and confirmation of 4-hydroxybenzoic acid in the product water. In addition, 4-HBA could be verified as a degradation product resulting from PEM decomposition by hydroxyl radicals using an

  4. Effectiveness of commercial microbial products in enhancing oil degradation in Prince William Sound field plots

    International Nuclear Information System (INIS)

    Venosa, A.D.; Haines, J.R.; Allen, D.M.

    1991-01-01

    In the spring of 1990, previously reported laboratory experiments were conducted on 10 commercial microbial products to test for enhanced biodegradation of weathered crude oil from the Exxon Valdez oil spill. The laboratory tests measured the rate and extent of oil degradation in closed flasks. Weathered oil from the beaches in Alaska and seawater from Prince William Sound were used in the tests. Two of the 10 products were found to provide significantly greater alkane degradation than flasks supplemented with mineral nutrients alone. These two products were selected for further testing on a beach in Prince William Sound. A randomized complete block experiment was designed to compare the effectiveness of these two products in enhancing oil degradation compared to simple fertilizer alone. Four small plots consisting of a no nutrient control, a mineral nutrient plot, and two plots receiving mineral nutrients plus the two products, were laid out on a contaminated beach. These four plots comprised a 'block' of treatments, and this block was replicated four times on the same beach. Triplicate samples of beach sediment were collected at four equally spaced time intervals and analyzed for oil residue weight and alkane hydrocarbon profile changes with time. The objective was to determine if either of the two commercial microbiological products was able to enhance bioremediation of an oil-contaminated beach in Prince William Sound to an extent greater than that achievable by simple fertilizer application. Results indicated no significant differences among the four treatments in the 27-day period of the experiment

  5. Study of the effect of the fibre mass UP2 degradation products on radionuclide mobilisation

    Energy Technology Data Exchange (ETDEWEB)

    Duro, Lara; Grive, Mireia; Gaona, Xavier; Bruno, Jordi [Amphos 21 Consulting S.L., Barcelona (Spain); Andersson, Thomas; Boren, Hans; Dario, Maarten [Linkoeping Univ., Linkoeping (Sweden); Allard, Bert; Hagberg, Jessica [Oerebro Univ., Oerebro (Sweden); Kaellstroem, Klas [Swedish Nuclear Fuel and Waste Management Co., Stockholm (Sweden)

    2012-09-15

    This report presents a literature review and laboratory work of the degradation of the fibre UP2, as well as an assessment of the effects of its degradation products on Europium sorption onto cement, as an example of their effects on radionuclide migration. All laboratory work was performed by the Swedish groups (Linkoeping and Oerebro Universities), who also performed some of the literature review. The data interpretation was performed by the Spanish team (Amphos 21). SKB has combined the reports of these studies into this common document and has added minor editorial changes. All these changes have been accepted by the authors.

  6. Identification of Forced Degradation Products of Itopride by LC-PDA and LC-MS

    OpenAIRE

    Joshi, Payal; Bhoir, Suvarna; Bhagwat, A. M.; Vishwanath, K.; Jadhav, R. K.

    2011-01-01

    Degradation products of itopride formed under different forced conditions have been identified using LC-PDA and LC-MS techniques. Itopride was subjected to forced degradation under the conditions of hydrolysis, photolysis, oxidation, dry and wet heat, in accordance with the International Conference on Harmonization. The stress solutions were chromatographed on reversed phase C18 (250×4.6 mm, 5 μm) column with a mobile phase methanol:water (55:45, v/v) at a detection wavelength of 215 nm. Itop...

  7. Study of the effect of the fibre mass UP2 degradation products on radionuclide mobilisation

    International Nuclear Information System (INIS)

    Duro, Lara; Grive, Mireia; Gaona, Xavier; Bruno, Jordi; Andersson, Thomas; Boren, Hans; Dario, Maarten; Allard, Bert; Hagberg, Jessica; Kaellstroem, Klas

    2012-09-01

    This report presents a literature review and laboratory work of the degradation of the fibre UP2, as well as an assessment of the effects of its degradation products on Europium sorption onto cement, as an example of their effects on radionuclide migration. All laboratory work was performed by the Swedish groups (Linkoeping and Oerebro Universities), who also performed some of the literature review. The data interpretation was performed by the Spanish team (Amphos 21). SKB has combined the reports of these studies into this common document and has added minor editorial changes. All these changes have been accepted by the authors

  8. Forced degradation studies of lansoprazole using LC-ESI HRMS and 1 H-NMR experiments: in vitro toxicity evaluation of major degradation products.

    Science.gov (United States)

    Shankar, G; Borkar, R M; Suresh, U; Guntuku, L; Naidu, V G M; Nagesh, N; Srinivas, R

    2017-07-01

    Regulatory agencies from all over the world have set up stringent guidelines with regard to drug degradation products due to their toxic effects or carcinogenicity. Lansoprazole, a proton-pump inhibitor, was subjected to forced degradation studies as per ICH guidelines Q1A (R2). The drug was found to degrade under acidic, basic, neutral hydrolysis and oxidative stress conditions, whereas it was found to be stable under thermal and photolytic conditions. The chromatographic separation of the drug and its degradation products were achieved on a Hiber Purospher, C18 (250 × 4.6 mm, 5 μ) column using 10 mM ammonium acetate and acetonitrile as a mobile phase in a gradient elution mode at a flow rate of 1.0 ml/min. The eight degradation products (DP1-8) were identified and characterized by UPLC/ESI/HRMS with in-source CID experiments combined with accurate mass measurements. DP-1, DP-2 and DP-3 were formed in acidic, DP-4 in basic, DP-5 in neutral and DP-1, DP-6, DP-7 and DP-8 were in oxidation stress condition Among eight degradation products, five were hitherto unknown degradation products. In addition, one of the major degradation products, DP-2, was isolated by using semi preparative HPLC and other two, DP-6 and DP-7 were synthesized. The cytotoxic effect of these degradation products (DP-2, DP-6 and DP-7) were tested on normal human cells such as HEK 293 (embryonic kidney cells) and RWPE-1(normal prostate epithelial cells) by MTT assay. From the results of cytotoxicity, it was found that lansoprazole as well as its degradation products (DP-2, DP-6 and DP-7) were nontoxic up to 50-μM concentrations, and the latter showed slightly higher cytotoxicity when compared with that of lansoprazole. DNA binding studies using spectroscopic techniques indicate that DP-2, DP-6 and DP-7 molecules interact with ctDNA and may bind to its surface. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.

  9. Chemical and photochemical degradation of chlorantraniliprole and characterization of its transformation products.

    Science.gov (United States)

    Lavtižar, Vesna; van Gestel, Cornelis A M; Dolenc, Darko; Trebše, Polonca

    2014-01-01

    This study aimed at assessing the photodegradation of the insecticide chlorantraniliprole (CAP) in deionized water and in tap water amended with humic acids and nitrate. Photolysis was carried out under simulated solar or UV-A light. CAP (39 μM) photodegradation was slightly faster in tap water than in deionized water with half lives of 4.1 and 5.1 days, respectively. Photodegradation rate of CAP was hardly affected by humic acids (up to 100 mg L(-1)) and nitrate. Photodegradation pattern was different in slightly acidic (pH=6.1) deionized water compared to basic (pH=8.0) tap water. Four main degradation products have been isolated and characterized spectroscopically, and crystal structure was recorded for the first two photodegradation products. CAP also degraded in the dark controls, but only at basic pH (23% loss at pH 8.0 in tap water after 6 days), resulting in the formation of one single degradation product. Our study shows that the degradation of chlorantraniliprole in water is a combination of chemical and photochemical reactions, which are highly dependent on the pH of the solution. Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. The degradation of lining of rotary furnaces in the production of zinc oxide

    Directory of Open Access Journals (Sweden)

    Natália Luptáková

    2014-06-01

    Full Text Available This paper is closely connected with the complex problem of degradation relating to the refractories of rotary furnace linings in the production of zinc oxide. Zinc oxide can be produced by variety of ways, but the most common method of production which is used in Europe is indirect, i.e. pyrolytic combustion of zinc. This method is also called "French process" of manufacturing ZnO. But this mentioned method of preparation leads to the creation of the enormous amount of zinc slag including chemical complexes of elements Fe, Zn and Al. The mechanism of degradation of the lining leads to slag rests and it is closely connected with the mutual interaction of the aggressive agents with the components of the lining. This process creates a new undesired surface layer which increased the overall thickness of zinc slag. Stuck slag has the influence on rapid degradation of the linings and moreover it also decreases the production quality of ZnO. Analysis results introduced in this paper are significant information for minimizing of degradation of rotary furnaces.  

  11. Novel chromatographic separation and carbon solid-phase extraction of acetanilide herbicide degradation products.

    Science.gov (United States)

    Shoemaker, Jody A

    2002-01-01

    One acetamide and 5 acetanilide herbicides are currently registered for use in the United States. Over the past several years, ethanesulfonic acid (ESA) and oxanilic acid (OA) degradation products of these acetanilide/acetamide herbicides have been found in U.S. ground waters and surface waters. Alachlor ESA and other acetanilide degradation products are listed on the U.S. Environmental Protection Agency's (EPA) 1998 Drinking Water Contaminant Candidate List. Consequently, EPA is interested in obtaining national occurrence data for these contaminants in drinking water. EPA currently does not have a method for determining these acetanilide degradation products in drinking water; therefore, a research method is being developed using liquid chromatography/negative ion electrospray/mass spectrometry with solid-phase extraction (SPE). A novel chromatographic separation of the acetochlor/alachlor ESA and OA structural isomers was developed which uses an ammonium acetate-methanol gradient combined with heating the analytical column to 70 degrees C. Twelve acetanilide degradates were extracted by SPE from 100 mL water samples using carbon cartridges with mean recoveries >90% and relative standard deviations < or =16%.

  12. A validated stability-indicating RP-HPLC method for levofloxacin in the presence of degradation products, its process related impurities and identification of oxidative degradant.

    Science.gov (United States)

    Lalitha Devi, M; Chandrasekhar, K B

    2009-12-05

    The objective of current study was to develop a validated specific stability indicating reversed-phase liquid chromatographic method for the quantitative determination of levofloxacin as well as its related substances determination in bulk samples, pharmaceutical dosage forms in the presence of degradation products and its process related impurities. Forced degradation studies were performed on bulk sample of levofloxacin as per ICH prescribed stress conditions using acid, base, oxidative, water hydrolysis, thermal stress and photolytic degradation to show the stability indicating power of the method. Significant degradation was observed during oxidative stress and the degradation product formed was identified by LCMS/MS, slight degradation in acidic stress and no degradation was observed in other stress conditions. The chromatographic method was optimized using the samples generated from forced degradation studies and the impurity spiked solution. Good resolution between the peaks corresponds to process related impurities and degradation products from the analyte were achieved on ACE C18 column using the mobile phase consists a mixture of 0.5% (v/v) triethyl amine in sodium dihydrogen orthophosphate dihydrate (25 mM; pH 6.0) and methanol using a simple linear gradient. The detection was carried out at 294 nm. The limit of detection and the limit of quantitation for the levofloxacin and its process related impurities were established. The stressed test solutions were assayed against the qualified working standard of levofloxacin and the mass balance in each case was in between 99.4 and 99.8% indicating that the developed LC method was stability indicating. Validation of the developed LC method was carried out as per ICH requirements. The developed LC method was found to be suitable to check the quality of bulk samples of levofloxacin at the time of batch release and also during its stability studies (long term and accelerated stability).

  13. Phytase production by Aspergillus niger NCIM 563 for a novel application to degrade organophosphorus pesticides.

    Science.gov (United States)

    Shah, Parin C; Kumar, V Ravi; Dastager, Syed G; Khire, Jayant M

    2017-12-01

    The production of phytase using Aspergillus niger NCIM 563 under submerged fermentation conditions was studied using protein rich chickpea flour as substrate. Employing a hybrid statistical media optimization strategy of Plackett-Burman and Box-Behnken experimental designs in shake-flasks gave an increased phytase activity from an initial 66 IU/mL in 216 h to 160 IU/mL in a reduced time of 132 h. Productivity, thus increased by 3.97 times from 7.3 to 29 IU/mL/day. Using the optimized media, the production was successfully scaled-up further and improved up to 164 IU/mL in 96 h by studies carried out employing 2 and 10-L fermenters. The enzyme supernatant was recovered using centrifugal separation of biomass and the stability of the produced phytase was tested for animal feed applications under gastric conditions. In vitro degradation studies of water soluble monocrotophos, methyl parathion and water insoluble chlorpyrifos, pesticides used extensively in agriculture was carried out. It was observed by HPLC analysis that phytase could degrade 72% of chlorpyrifos at pH 7.0, 35 °C. Comparable results were obtained with monocrotophos and methyl parathion. With chlorpyrifos at higher temperature 50 °C as much as 91% degradation could be obtained. The degradation of chlorpyrifos was further validated by spraying phytase on harvested green chilli (Capsicum annuum L) under normal conditions of pH 7.0, 35 °C and the degradation products obtained analyzed by LCMS. Thus, the present study brings out a potentially novel application of phytase for biodegradation of organophosphorus pesticides.

  14. Degradation product characterization of therapeutic oligonucleotides using liquid chromatography mass spectrometry.

    Science.gov (United States)

    Elzahar, N M; Magdy, N; El-Kosasy, Amira M; Bartlett, Michael G

    2018-05-01

    Synthetic antisense phosphorothioate oligonucleotides (PS) have undergone rapid development as novel therapeutic agents. The increasing significance of this class of drugs requires significant investment in the development of quality control methods. The determination of the many degradation pathways of such complex molecules presents a significant challenge. However, an understanding of the potential impurities that may arise is necessary to continue to advance these powerful new therapeutics. In this study, four different antisense oligonucleotides representing several generations of oligonucleotide therapeutic agents were evaluated under various stress conditions (pH, thermal, and oxidative stress) using ion-pairing reversed-phase liquid chromatography tandem mass spectrometry (IP-RPLC-MS/MS) to provide in-depth characterization and identification of the degradation products. The oligonucleotide samples were stressed under different pH values at 45 and 90 °C. The main degradation products were observed to be losses of nucleotide moieties from the 3'- and 5'-terminus, depurination, formation of terminal phosphorothioates, and production of ribose, ribophosphorothioates (Rp), and phosphoribophosphorothioates (pRp). Moreover, the effects of different concentrations of hydrogen peroxide were studied resulting in primarily extensive desulfurization and subsequent oxidation of the phosphorothioate linkage to produce the corresponding phosphodiester. The reaction kinetics for the degradation of the oligonucleotides under the different stress conditions were studied and were found to follow pseudo-first-order kinetics. Differences in rates exist even for oligonucleotides of similar length but consisting of different sequences. Graphical abstract Identification of degradation products across several generations of oligonucleotide therapeutics using LC-MS.

  15. Rates and products of degradation for MTBE and other oxygenate fuel additives in the subsurface environment

    International Nuclear Information System (INIS)

    Tratnyek, P.G.; Church, C.D.; Pankow, J.F.

    1995-01-01

    The recent realization that oxygenated fuel additives such as MTBE are becoming widely distributed groundwater contaminants has created a sudden and pressing demand for data on the processes that control their environmental fate. Explaining and predicting the subsequent environmental fate of these compounds is going to require extrapolations over long time frames that will be very sensitive to the quality of input data on each compound. To provide such data, they have initiated a systematic study of the pathways and kinetics of fuel oxygenate degradation under subsurface conditions. Batch experiments in simplified model systems are being performed to isolate specific processes that may contribute to MTBE degradation. A variety of degradation pathways can be envisioned that lead to t-butyl alcohol (TBA) as the primary or secondary product. However, experiments to date with a facultative iron reducing bacteria showed no evidence for TBA formation. Continuing experiments include mixed cultures from a range of aquifer materials representative of NAWQA study sites

  16. Time extrapolation of radiolytic degradation product kinetics: the case of polyurethane

    International Nuclear Information System (INIS)

    Dannoux, A.

    2007-02-01

    The prediction of the environmental impact of organic materials in nuclear waste geological storage needs knowledge of radiolytic degradation mechanisms and kinetics in aerobic and anaerobic conditions. In this framework, the effect of high doses (> MGy) and the variation of dose rate have to be considered. The material studied is a polyurethane composed of polyether soft segment and aromatic hard segments. Mechanisms were built on the analysis of material submitted to irradiations of simulation (high energy electrons and gamma radiation) by FTIR spectroscopy and gaseous and liquid degradation products by gas mass spectrometry and size exclusion chromatography. The electron paramagnetic resonance study of radical process and the determination of oxygen consumption and gas formation radiolytic yields allowed us to acquire kinetic data and to estimate dose rate and high doses effects. The polyurethane radio-oxidation mainly concerns soft segments and induced cross-linkings and production by scissions of oxidised compounds (esters, alcohols, carboxylic acids). The kinetic of radical termination is rapid and the dose rate effect is limited. After 10 MGy, branching and scission reactions are in equilibrium and low molecular weight products accumulate. At last, the degradation products release in water is influenced by the oxidation rate and the temperature. After 10 MGy, the soluble fraction is stabilised at 25%. The water soluble products identified by electro-spray ionisation mass spectrometry (alcohols, aldehydes, carboxylic acids) potentially formed complexes with radionuclides. (author)

  17. Biodegradation of the alkaline cellulose degradation products generated during radioactive waste disposal.

    Science.gov (United States)

    Rout, Simon P; Radford, Jessica; Laws, Andrew P; Sweeney, Francis; Elmekawy, Ahmed; Gillie, Lisa J; Humphreys, Paul N

    2014-01-01

    The anoxic, alkaline hydrolysis of cellulosic materials generates a range of cellulose degradation products (CDP) including α and β forms of isosaccharinic acid (ISA) and is expected to occur in radioactive waste disposal sites receiving intermediate level radioactive wastes. The generation of ISA's is of particular relevance to the disposal of these wastes since they are able to form complexes with radioelements such as Pu enhancing their migration. This study demonstrates that microbial communities present in near-surface anoxic sediments are able to degrade CDP including both forms of ISA via iron reduction, sulphate reduction and methanogenesis, without any prior exposure to these substrates. No significant difference (n = 6, p = 0.118) in α and β ISA degradation rates were seen under either iron reducing, sulphate reducing or methanogenic conditions, giving an overall mean degradation rate of 4.7 × 10(-2) hr(-1) (SE ± 2.9 × 10(-3)). These results suggest that a radioactive waste disposal site is likely to be colonised by organisms able to degrade CDP and associated ISA's during the construction and operational phase of the facility.

  18. Biodegradation of the alkaline cellulose degradation products generated during radioactive waste disposal.

    Directory of Open Access Journals (Sweden)

    Simon P Rout

    Full Text Available The anoxic, alkaline hydrolysis of cellulosic materials generates a range of cellulose degradation products (CDP including α and β forms of isosaccharinic acid (ISA and is expected to occur in radioactive waste disposal sites receiving intermediate level radioactive wastes. The generation of ISA's is of particular relevance to the disposal of these wastes since they are able to form complexes with radioelements such as Pu enhancing their migration. This study demonstrates that microbial communities present in near-surface anoxic sediments are able to degrade CDP including both forms of ISA via iron reduction, sulphate reduction and methanogenesis, without any prior exposure to these substrates. No significant difference (n = 6, p = 0.118 in α and β ISA degradation rates were seen under either iron reducing, sulphate reducing or methanogenic conditions, giving an overall mean degradation rate of 4.7 × 10(-2 hr(-1 (SE ± 2.9 × 10(-3. These results suggest that a radioactive waste disposal site is likely to be colonised by organisms able to degrade CDP and associated ISA's during the construction and operational phase of the facility.

  19. Method for determination of methyl tert-butyl ether and its degradation products in water

    Science.gov (United States)

    Church, C.D.; Isabelle, L.M.; Pankow, J.F.; Rose, D.L.; Tratnyek, P.G.

    1997-01-01

    An analytical method is described that can detect the major alkyl ether compounds that are used as gasoline oxygenates (methyl tert-butyl ether, MTBE; ethyl tert-butyl ether, ETBE; and tert-amyl methyl ether, TAME) and their most characteristic degradation products (tert-butyl alcohol, TBA; tert-butyl formate, TBF; and tert-amyl alcohol, TAA) in water at sub-ppb concentrations. The new method involves gas chromatography (GC) with direct aqueous injection (DAI) onto a polar column via a splitless injector, coupled with detection by mass spectrometry (MS). DAI-GC/MS gives excellent agreement with conventional purge-and-trap methods for MTBE over a wide range of environmentally relevant concentrations. The new method can also give simultaneous identification of polar compounds that might occur as degradation products of gasoline oxygenates, such as TBA, TBF, TAA, methyl acetate, and acetone. When the method was applied to effluent from a column microcosm prepared with core material from an urban site in New Jersey, conversion of MTBE to TBA was observed after a lag period of 35 days. However, to date, analyses of water samples from six field sites using the DAI-GC/MS method have not produced evidence for the expected products of in situ degradation of MTBE.An analytical method is described that can detect the major alkyl ether compounds that are used as gasoline oxygenates (methyl tert-butyl ether, MTBE; ethyl tert-butyl ether, ETBE; and tert-amyl methyl ether, TAME) and their most characteristic degradation products (tert-butyl alcohol, TBA; tert-butyl formate, TBF; and tert-amyl alcohol, TAA) in water at sub-ppb concentrations. The new method involves gas chromatography (GC) with direct aqueous injection (DAI) onto a polar column via a splitless injector, coupled with detection by mass spectrometry (MS). DAI-GC/MS gives excellent agreement with conventional purge-and-trap methods for MTBE over a wide range of environmentally relevant concentrations. The new method

  20. Large-scale bioreactor production of the herbicide-degrading Aminobacter sp. strain MSH1

    DEFF Research Database (Denmark)

    Schultz-Jensen, Nadja; Knudsen, Berith Elkær; Frkova, Zuzana

    2014-01-01

    The Aminobacter sp. strain MSH1 has potential for pesticide bioremediation because it degrades the herbicide metabolite 2,6-dichlorobenzamide (BAM). Production of the BAM-degrading bacterium using aerobic bioreactor fermentation was investigated. A mineral salt medium limited for carbon and with ......The Aminobacter sp. strain MSH1 has potential for pesticide bioremediation because it degrades the herbicide metabolite 2,6-dichlorobenzamide (BAM). Production of the BAM-degrading bacterium using aerobic bioreactor fermentation was investigated. A mineral salt medium limited for carbon...... and with an element composition similar to the strain was generated. The optimal pH and temperature for strain growth were determined using shaker flasks and verified in bioreactors. Glucose, fructose, and glycerol were suitable carbon sources for MSH1 (μ =0.1 h−1); slower growth was observed on succinate and acetic...... acid (μ =0.01 h−1). Standard conditions for growth of theMSH1 strain were defined at pH 7 and 25 °C, with glucose as the carbon source. In bioreactors (1 and 5 L), the specific growth rate of MSH1 increased from μ =0.1 h−1 on traditional mineral salt medium to μ =0.18 h−1 on the optimized mineral salt...

  1. Characterization of stress degradation products of benazepril by using sophisticated hyphenated techniques.

    Science.gov (United States)

    Narayanam, Mallikarjun; Sahu, Archana; Singh, Saranjit

    2013-01-04

    Benazepril, an anti-hypertensive drug, was subjected to forced degradation studies. The drug was unstable under hydrolytic conditions, yielding benazeprilat, which is a known major degradation product (DP) and an active metabolite. It also underwent photochemical degradation in acid and neutral pH conditions, resulting in multiple minor DPs. The products were separated on a reversed phase (C18) column in a gradient mode, and subjected to LC-MS and LC-NMR studies. Initially, comprehensive mass fragmentation pathway of the drug was established through support of high resolution mass spectrometric (HR-MS) and multi stage tandem mass spectrometric (MS(n)) data. The DPs were also subjected to LC-MS/TOF studies to obtain their accurate masses. Along with, on-line H/D exchange data were obtained to ascertain the number of exchangeable hydrogens in each molecule. LC-(1)H NMR and LC-2DNMR data were additionally acquired in a fraction loop mode. The whole information was successfully employed for the characterization of all the DPs. A complete degradation pathway of the drug was also established. Copyright © 2012 Elsevier B.V. All rights reserved.

  2. Fibrinogen concentrates for bleeding trauma patients: what is the evidence?

    DEFF Research Database (Denmark)

    Meyer, Martin; Ostrowski, S R; Windeløv, N A

    2011-01-01

    A balanced transfusion of red blood cells, fresh frozen plasma and platelets are recommended for massively bleeding trauma patients. Fibrinogen concentrates could potentially lessen or replace the need for fresh frozen plasma and/or platelet transfusions.......A balanced transfusion of red blood cells, fresh frozen plasma and platelets are recommended for massively bleeding trauma patients. Fibrinogen concentrates could potentially lessen or replace the need for fresh frozen plasma and/or platelet transfusions....

  3. Fibrinogen and alpha(1)-antitrypsin in COPD exacerbations

    DEFF Research Database (Denmark)

    Sylvan Ingebrigtsen, Truls; Marott, J. L.; Rode, L.

    2015-01-01

    Background We tested the hypotheses that fibrinogen and alpha(1)-antitrypsin are observationally and genetically associated with exacerbations in COPD. Methods We studied 13 591 individuals with COPD from the Copenhagen General Population Study (2003-2013), of whom 6857 were genotyped for FGB -455...... and exacerbations in instrumental variable analyses. Results Elevated fibrinogen and alpha(1)-antitrypsin levels were associated with increased risk of exacerbations in COPD, HR=1.14 (1.07 to 1.22, p...

  4. Conformational changes of fibrinogen in dispersed carbon nanotubes

    Directory of Open Access Journals (Sweden)

    Park SJ

    2012-08-01

    Full Text Available Sung Jean Park,1 Dongwoo Khang21College of Pharmacy, Gachon University, Yeonsu-gu, Incheon, South Korea; 2School of Nano and Advanced Materials Science Engineering and Center for PRC and RIGET, Gyeongsang National University, Jinju, South KoreaAbstract: The conformational changes of plasma protein structures in response to carbon nanotubes are critical for determining the nanotoxicity and blood coagulation effects of carbon nanotubes. In this study, we identified that the functional intensity of carboxyl groups on carbon nanotubes, which correspond to the water dispersity or hydrophilicity of carbon nanotubes, can induce conformational changes in the fibrinogen domains. Also, elevation of carbon nanotube density can alter the secondary structures (ie, helices and beta sheets of fibrinogen. Furthermore, fibrinogen that had been in contact with the nanoparticle material demonstrated a different pattern of heat denaturation compared with free fibrinogen as a result of a variation in hydrophilicity and concentration of carbon nanotubes. Considering the importance of interactions between carbon nanotubes and plasma proteins in the drug delivery system, this study elucidated the correlation between nanoscale physiochemical material properties of carbon nanotubes and associated structural changes in fibrinogen.Keywords: carbon nanotubes, fibrinogen, nanotoxicity, conformational change, denaturation

  5. Characterization of degradation products from alkaline wet oxidation of wheat straw

    DEFF Research Database (Denmark)

    Klinke, H.B.; Ahring, B.K.; Schmidt, A.S.

    2002-01-01

    to their chemical structure, e.g. diacids (oxalic and succinic acids), furan aldehydes, phenol aldehydes, phenol ketones and phenol acids. Aromatic aldehyde formation was correlated to severe conditions with high temperatures and low pH. Apart from CO2 and water, carboxylic acids were the main degradation products...... degreesC with addition of 12 bar oxygen and 6.5 g l(-1) Na2CO3. At these conditions the hemicellulose fraction from 100 g straw consisted of soluble hemicellulose (16 g), low molecular weight carboxylic acids (11 g), monomeric phenols (0.48 g) and 2-furoic acid (0.01 g). Formic acid and acetic acid...... constituted the majority of degradation products (8.5 g). The main phenol monomers were 4-hydroxybenzaldehyde, vanillin, syringaldehyde, acetosyringone (4-hydroxy-3,5-dimethoxy-acetophenone), vanillic acid and syringic acid, occurring in 0.04-0.12 g per 100 g straw concentrations. High lignin removal from...

  6. PRODUCTION AND RECOVERY OF POLY-Β-HYDROXYBUTYRATE FROM WHEY DEGRADATION BY AZOTOBACTER

    Directory of Open Access Journals (Sweden)

    A. Khanafari , A. Akhavan Sepahei, M. Mogharab

    2006-07-01

    Full Text Available Three strains of Azotobacter chroococcum were studied to produce poly-β hydroxybutyrate as a inclusion body by whey degradation. Optimum degradation whey results were obtained when using whey broth as a fermentation medium without extra salt, temperature at 35 °C and pH 7 (P<0.05. Lambda max for whey broth medium was determined probably about 400 nm. The effect of different nitrogenous rich compounds (NH4NO3, Bactopeptone, Casein, Yeast extract, Meat extract, Protease peptone and Tryptone on whey degradation showed that incorporation of nitrogenous compounds into the medium did not increase whey degradation by Azotobacter chroococcum 1723 (P<0.05. But poly-β hydroxyl-butyrate production was increased in presence Meat extract up to 75% of the cell dry weight after 48h. The addition of nitrogenous sourced (except ammonium nitrate had a positive effect on poly-β hydroxyl-butyrate production as it peaked in the presence of Meat extract and 4.43 g/L was accumulated in comparison to 0.5g at diazotrophically growing cells. Increasing the O2 values resulted by shaking at 122 rpm in decreased poly-β hydroxyl-butyrate yield form 4.43 to 0.04 g/L. The results show that this medium supports the growth of strain 1735 and also that this waste could be utilized as a carbon and nitrogen source. Production of poly-β hydroxyl-butyrate by using whey as a medium looks promising, since the use of inexpensive feed-stocks for poly-β hydroxyl-butyrate is essential if bioplastics are to become competitive products.

  7. Hydrogen and Carbon Black Production from the Degradation of Methane by Thermal Plasma

    Directory of Open Access Journals (Sweden)

    Leila Cottet

    2014-05-01

    Full Text Available Methane gas (CH4 is the main inducer of the so called greenhouse gases effect. Recent scientific research aims to minimize the accumulation of this gas in the atmosphere and to develop processes capable of producing stable materials with added value. Thermal plasma technology is a promising alternative to these applications, since it allows obtaining H2 and solid carbon from CH4, without the parallel formation of byproducts such as CO2 and NOx. In this work, CH4 was degraded by thermal plasma in order to produce hydrogen (H2 and carbon black. The degradation efficiency of CH4, selectivity for H2 production as well as the characterization of carbon black were studied. The best results were obtained in the CH4 flow rate of 5 L min-1 the degradation percentage and the selectivity for H2 production reached 98.8 % and 48.4 %, respectively. At flow rates of less than 5 L min-1 the selectivity for H2 production increases and reaches 91.9 %. The carbon black has obtained amorphous with hydrophobic characteristics and can be marketed to be used in composite material, and can also be activated chemically and/or physically and used as adsorbent material.

  8. Acetylation and glycation of fibrinogen in vitro occur at specific lysine residues in a concentration dependent manner: A mass spectrometric and isotope labeling study

    International Nuclear Information System (INIS)

    Svensson, Jan; Bergman, Ann-Charlotte; Adamson, Ulf; Blombäck, Margareta; Wallén, Håkan; Jörneskog, Gun

    2012-01-01

    Highlights: ► Fibrinogen was incubated in vitro with glucose or aspirin. ► Acetylations and glycations were found at twelve lysine sites by mass spectrometry. ► The labeling by aspirin and glucose occurred dose-dependently. ► No competition between glucose and aspirin for binding to fibrinogen was found. -- Abstract: Aspirin may exert part of its antithrombotic effects through platelet-independent mechanisms. Diabetes is a condition in which the beneficial effects of aspirin are less prominent or absent – a phenomenon called “aspirin resistance”. We investigated whether acetylation and glycation occur at specific sites in fibrinogen and if competition between glucose and aspirin in binding to fibrinogen occurs. Our hypothesis was that such competition might be one explanation to “aspirin resistance” in diabetes. After incubation of fibrinogen in vitro with aspirin (0.8 mM, 24 h) or glucose (100 mM, 5–10 days), we found 12 modified sites with mass spectrometric techniques. Acetylations in the α-chain: αK191, αK208, αK224, αK429, αK457, αK539, αK562, in the β-chain: βK233, and in the γ-chain: γK170 and γK273. Glycations were found at βK133 and γK75, alternatively γK85. Notably, the lysine 539 is a site involved in FXIII-mediated cross-linking of fibrin. With isotope labeling in vitro, using [ 14 C-acetyl]salicylic acid and [ 14 C]glucose, a labeling of 0.013–0.084 and 0.12–0.5 mol of acetylated and glycated adduct/mol fibrinogen, respectively, was found for clinically (12.9–100 μM aspirin) and physiologically (2–8 mM glucose) relevant plasma concentrations. No competition between acetylation and glycation could be demonstrated. Thus, fibrinogen is acetylated at several lysine residues, some of which are involved in the cross-linking of fibrinogen. This may mechanistically explain why aspirin facilitates fibrin degradation. We find no support for the idea that glycation of fibrin(ogen) interferes with acetylation of

  9. Acetylation and glycation of fibrinogen in vitro occur at specific lysine residues in a concentration dependent manner: A mass spectrometric and isotope labeling study

    Energy Technology Data Exchange (ETDEWEB)

    Svensson, Jan, E-mail: jan.svensson@ki.se [Department of Molecular Medicine and Surgery, Karolinska Institutet, Karolinska University Hospital (Solna), SE-171 76 Stockholm (Sweden); Karolinska Institutet, Department of Clinical Sciences, Danderyd Hospital, SE-182 88 Stockholm (Sweden); Bergman, Ann-Charlotte [Department of Molecular Medicine and Surgery, Karolinska Institutet, Karolinska University Hospital (Solna), SE-171 76 Stockholm (Sweden); Adamson, Ulf [Karolinska Institutet, Department of Clinical Sciences, Danderyd Hospital, SE-182 88 Stockholm (Sweden); Blombaeck, Margareta [Department of Molecular Medicine and Surgery, Karolinska Institutet, Karolinska University Hospital (Solna), SE-171 76 Stockholm (Sweden); Wallen, Hakan; Joerneskog, Gun [Karolinska Institutet, Department of Clinical Sciences, Danderyd Hospital, SE-182 88 Stockholm (Sweden)

    2012-05-04

    fibrinogen. This may mechanistically explain why aspirin facilitates fibrin degradation. We find no support for the idea that glycation of fibrin(ogen) interferes with acetylation of fibrinogen.

  10. Cross-linking methods of electrospun fibrinogen scaffolds for tissue engineering applications

    International Nuclear Information System (INIS)

    Sell, Scott A; Garg, Koyal; McClure, Michael J; Bowlin, Gary L; Francis, Michael P; Simpson, David G

    2008-01-01

    The purpose of this study was to enhance the mechanical properties and slow the degradation of an electrospun fibrinogen scaffold, while maintaining the scaffold's high level of bioactivity. Three different cross-linkers were used to achieve this goal: glutaraldehyde vapour, 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide hydrochloride (EDC) in ethanol and genipin in ethanol. Scaffolds with a fibrinogen concentration of 120 mg ml -1 were electrospun and cross-linked with one of the aforementioned cross-linkers. Mechanical properties were determined through uniaxial tensile testing performed on scaffolds incubated under standard culture conditions for 1 day, 7 days and 14 days. Cross-linked scaffolds were seeded with human foreskin fibroblasts (BJ-GFP-hTERT) and cultured for 7, 14 and 21 days, with histology and scanning electron microscopy performed upon completion of the time course. Mechanical testing revealed significantly increased peak stress and modulus values for the EDC and genipin cross-linked scaffolds, with significantly slowed degradation. However, cross-linking with EDC and genipin was shown to have some negative effect on the bioactivity of the scaffolds as cell migration throughout the thickness of the scaffold was slowed.

  11. Environmental degradation, global food production, and risk for large-scale migrations

    International Nuclear Information System (INIS)

    Doeoes, B.R.

    1994-01-01

    This paper attempts to estimate to what extent global food production is affected by the ongoing environmental degradation through processes, such as soil erosion, salinization, chemical contamination, ultraviolet radiation, and biotic stress. Estimates have also been made of available opportunities to improve food production efficiency by, e.g., increased use of fertilizers, irrigation, and biotechnology, as well as improved management. Expected losses and gains of agricultural land in competition with urbanization, industrial development, and forests have been taken into account. Although estimated gains in food production deliberately have been overestimated and losses underestimated, calculations indicate that during the next 30-35 years the annual net gain in food production will be significantly lower than the rate of world population growth. An attempt has also been made to identify possible scenarios for large-scale migrations, caused mainly by rapid population growth in combination with insufficient local food production and poverty. 18 refs, 7 figs, 6 tabs

  12. Degradation and metabolism of synthetic plastics and associated products by Pseudomonas sp.: capabilities and challenges.

    Science.gov (United States)

    Wilkes, R A; Aristilde, L

    2017-09-01

    Synthetic plastics, which are widely present in materials of everyday use, are ubiquitous and slowly-degrading polymers in environmental wastes. Of special interest are the capabilities of microorganisms to accelerate their degradation. Members of the metabolically diverse genus Pseudomonas are of particular interest due to their capabilities to degrade and metabolize synthetic plastics. Pseudomonas species isolated from environmental matrices have been identified to degrade polyethylene, polypropylene, polyvinyl chloride, polystyrene, polyurethane, polyethylene terephthalate, polyethylene succinate, polyethylene glycol and polyvinyl alcohol at varying degrees of efficiency. Here, we present a review of the current knowledge on the factors that control the ability of Pseudomonas sp. to process these different plastic polymers and their by-products. These factors include cell surface attachment within biofilms, catalytic enzymes involved in oxidation or hydrolysis of the plastic polymer, metabolic pathways responsible for uptake and assimilation of plastic fragments and chemical factors that are advantageous or inhibitory to the biodegradation process. We also highlight future research directions required in order to harness fully the capabilities of Pseudomonas sp. in bioremediation strategies towards eliminating plastic wastes. © 2017 The Society for Applied Microbiology.

  13. The degradation of lining of rotary furnaces in the production of zinc oxide

    OpenAIRE

    Natália Luptáková; Evgeniy Anisimov; Františka Pešlová

    2014-01-01

    This paper is closely connected with the complex problem of degradation relating to the refractories of rotary furnace linings in the production of zinc oxide. Zinc oxide can be produced by variety of ways, but the most common method of production which is used in Europe is indirect, i.e. pyrolytic combustion of zinc. This method is also called "French process" of manufacturing ZnO. But this mentioned method of preparation leads to the creation of the enormous amount of zinc slag including ch...

  14. Complexation of Cu2+, Ni2+ and UO22+ by radiolytic degradation products of bitumen

    International Nuclear Information System (INIS)

    Loon, L.R. Van; Kopajtic, Z.

    1990-05-01

    The radiolytic degradation of bitumen was studied under conditions which reflect those which will exist in the near field of a cementitious radioactive waste repository. The potential complexation capacity of the degradation products was studied and complexation experiments with Cu 2+ , Ni 2+ and UO 2 2+ were performed. In general 1:1 complexes with Cu 2+ , Ni 2+ and UO 2 2+ , with log K values of between 5.7 and 6.0 for Cu 2+ , 4.2 for Ni 2+ and 6.1 for UO 2 2+ , were produced at an ionic strength of 0.1 M. The composition of the bitumen water was analysed by GC-MS and IC. The major proportion of the bitumen degradation products in solution were monocarboxylic acids (acetic acid, formic acid, myric acid, stearic acid ...), dicarboxylic acids (oxalic acid, phthalic acid) and carbonates. The experimentally derived log K data are in good agreement with the literature and suggest that oxalate determines the speciation of Cu 2+ , Ni 2+ and UO 2 2+ in the bitumen water below pH=7. However, under the high pH conditions typical of the near field of a cementitious repository, competition with OH-ligands will be large and oxalate, therefore, will not play a significant role in the speciation of radionuclides. The main conclusion of the study is that the radiolytic degradation products of bitumen will have no influence on radionuclide speciation in a cementitious near field and, as such, need not to be considered in the appropriate safety assessment models. (author) 12 figs., 11 tabs., 31 refs

  15. Quantitative Proteomic Approach Targeted to Fibrinogen β Chain in Tissue Gastric Carcinoma

    Directory of Open Access Journals (Sweden)

    Ombretta Repetto

    2018-03-01

    Full Text Available Elevated plasma fibrinogen levels and tumor progression in patients with gastric cancer (GC have been largely reported. However, distinct fibrinogen chains and domains have different effects on coagulation, inflammation, and angiogenesis. The aim of this study was to characterize fibrinogen β chain (FGB in GC tissues. Retrospectively we analyzed the data of matched pairs of normal (N and malignant tissues (T of 28 consecutive patients with GC at diagnosis by combining one- and two-dimensional electrophoresis (1DE and 2DE with immunoblotting and mass spectrometry together with two-dimensional difference in gel electrophoresis (2D-DIGE. 1DE showed bands of the intact FGB at 50 kDa and the cleaved forms containing the fragment D at ~37–40 kDa, which corresponded to 19 spots in 2DE. In particular, spot 402 at ~50 kDa and spots 526 and 548 at ~37 kDa were of interest by showing an increased expression in tumor tissues. A higher content of spot 402 was associated with stomach antrum, while spots 526 and 548 amounts correlated with corpus and high platelet count (>208 × 109/L. The quantification of FGB and cleaved products may help to further characterize the interconnections between GC and platelet/coagulation pathways.

  16. Phosphorus, carbon- and nitrogen interactions in productive and degraded tropical pastures

    Science.gov (United States)

    Oberson, A.; Hegglin, D. D.; Nesper, M.; Rao, I.; Fonte, S.; Ramirez, B.; Velasquez, J.; Tamburini, F.; Bünemann, E. K.; Frossard, E.

    2011-12-01

    Pastures are the main land use in deforested areas of tropical South America. The highly weathered soils of these regions usually have low total and available phosphorus (P) contents. Low P availability can strongly limit plant and animal productivity and other soil ecosystem functions. Most introduced pastures of Brachiaria spp. are grass-alone (GA) while some are grass-legume (GL) pastures. The majority of the introduced pastures, particularly the grass-alone are at some state of degradation (GD). Pasture degradation induces severe loss of plant biomass production, with drastic ecological and economic implications. Although the importance of P deficiency in pasture degradation has been recognized, the knowledge generated on stoichiometry of carbon (C), nitrogen (N) and P along pathways of the nutrient cycles of pastures, with different botanical composition and productivity, has been very limited. We will present results of a case study realized during 2010 to 2011 in the forest margins agro-ecosystem of the department of Caquetá, Colombia. Our objectives were to determine: i) whether P availability is lower in degraded compared to productive pastures, and ii) whether the introduction of legumes in the pasture increases P availability through enhanced biological P cycling through plant growth, plant litter decomposition and the soil microbial biomass; and iii) whether pasture types (GA vs GL) and the state of pasture degradation affect the C:N:P ratios in nutrient pools of the soil-plant system. An on-farm study was conducted on nine farms in the department of Caquetá, Colombia. On every farm three different pasture types were studied: degraded grass alone pastures (GD), productive grass-alone pastures (GA) and productive grass-legume pastures (GL). Basic soil characteristics and indicators on soil P status, microbial P cycling, plant biomass production, plant litter deposition and nutrient concentrations in plant tissue were determined. Analysis of P, C and N

  17. The mechanical properties of dry, electrospun fibrinogen fibers

    Energy Technology Data Exchange (ETDEWEB)

    Baker, Stephen; Sigley, Justin; Helms, Christine C. [Department of Physics, Wake Forest University, Winston-Salem, NC 27109 (United States); Stitzel, Joel [Department of Biomedical Engineering, Wake Forest University Health Sciences, Winston-Salem, NC, 27157 (United States); Berry, Joel; Bonin, Keith [Department of Physics, Wake Forest University, Winston-Salem, NC 27109 (United States); Guthold, Martin, E-mail: gutholdm@wfu.edu [Department of Physics, Wake Forest University, Winston-Salem, NC 27109 (United States)

    2012-02-01

    Due to their low immunogenicity, biodegradability and native cell-binding domains, fibrinogen fibers may be good candidates for tissue engineering scaffolds, drug delivery vehicles and other medical devices. We used a combined atomic force microscope (AFM)/optical microscope technique to study the mechanical properties of individual, electrospun fibrinogen fibers in dry, ambient conditions. The AFM was used to stretch individual fibers suspended over 13.5 {mu}m wide grooves in a transparent substrate. The optical microscope, located below the sample, was used to monitor the stretching process. Electrospun fibrinogen fibers (diameter, 30-200 nm) can stretch to 74% beyond their original length before rupturing at a stress of 2.1 GPa. They can stretch elastically up to 15% beyond their original length. Using incremental stress-strain curves the viscoelastic behavior of these fibers was determined. The total stretch modulus was 4.2 GPa while the relaxed elastic modulus was 3.7 GPa. When held at constant strain, fibrinogen fibers display stress relaxation with a fast and slow relaxation time of 1.2 s and 11 s. In comparison to native and electrospun collagen fibers, dry electrospun fibrinogen fibers are significantly more extensible and elastic. In comparison to wet electrospun fibrinogen fibers, dry fibers are about 1000 times stiffer. - Highlights: Black-Right-Pointing-Pointer Fabricated dry, electrospun, fibrinogen fibers; average diameter, D{sub avg.} = 95 nm. Black-Right-Pointing-Pointer Determined mechanical properties with combined atomic force/optical microscope. Black-Right-Pointing-Pointer Fibers are very extensible ({epsilon}{sub max} = 74%) and elastic ({epsilon}{sub elastic} = 15%). Black-Right-Pointing-Pointer Fiber total modulus, E{sub tot.} = 4.2 GPa; elastic modulus, E{sub el.} = 3.7 GPa. Black-Right-Pointing-Pointer Fiber stress relaxation times: {tau}{sub 1} = 1.2 s and {tau}{sub 2} = 11 s.

  18. The mechanical properties of dry, electrospun fibrinogen fibers

    International Nuclear Information System (INIS)

    Baker, Stephen; Sigley, Justin; Helms, Christine C.; Stitzel, Joel; Berry, Joel; Bonin, Keith; Guthold, Martin

    2012-01-01

    Due to their low immunogenicity, biodegradability and native cell-binding domains, fibrinogen fibers may be good candidates for tissue engineering scaffolds, drug delivery vehicles and other medical devices. We used a combined atomic force microscope (AFM)/optical microscope technique to study the mechanical properties of individual, electrospun fibrinogen fibers in dry, ambient conditions. The AFM was used to stretch individual fibers suspended over 13.5 μm wide grooves in a transparent substrate. The optical microscope, located below the sample, was used to monitor the stretching process. Electrospun fibrinogen fibers (diameter, 30–200 nm) can stretch to 74% beyond their original length before rupturing at a stress of 2.1 GPa. They can stretch elastically up to 15% beyond their original length. Using incremental stress–strain curves the viscoelastic behavior of these fibers was determined. The total stretch modulus was 4.2 GPa while the relaxed elastic modulus was 3.7 GPa. When held at constant strain, fibrinogen fibers display stress relaxation with a fast and slow relaxation time of 1.2 s and 11 s. In comparison to native and electrospun collagen fibers, dry electrospun fibrinogen fibers are significantly more extensible and elastic. In comparison to wet electrospun fibrinogen fibers, dry fibers are about 1000 times stiffer. - Highlights: ► Fabricated dry, electrospun, fibrinogen fibers; average diameter, D avg. = 95 nm. ► Determined mechanical properties with combined atomic force/optical microscope. ► Fibers are very extensible (ε max = 74%) and elastic (ε elastic = 15%). ► Fiber total modulus, E tot. = 4.2 GPa; elastic modulus, E el. = 3.7 GPa. ► Fiber stress relaxation times: τ 1 = 1.2 s and τ 2 = 11 s.

  19. Different Spectrophotometric Methods for Simultaneous Determination of Trelagliptin and Its Acid Degradation Product

    Science.gov (United States)

    Hassan, Mostafa A.; Zaghary, Wafaa A.

    2018-01-01

    New spectrophotometric and chemometric methods were carried out for the simultaneous assay of trelagliptin (TRG) and its acid degradation product (TAD) and applied successfully as a stability indicating assay to recently approved Zafatek® tablets. TAD was monitored using TLC to ensure complete degradation. Furthermore, HPLC was used to confirm dealing with one major acid degradation product. The proposed methods were developed by manipulating zero-order, first-derivative, and ratio spectra of TRG and TAD using simultaneous equation, first-derivative, and mean-centering methods, respectively. Using Spectra Manager II and Minitab v.14 software, the absorbance at 274 nm–260.4 nm, amplitudes at 260.4 nm–274.0 nm, and mean-centered values at 287.6 nm–257.2 nm were measured against methanol as a blank for TRG and TAD, respectively. Linearity and the other validation parameters were acceptable at concentration ranges of 5–50 μg/mL and 2.5–25 μg/mL for TRG and TAD, respectively. Using one-way analysis of variance (ANOVA), the optimized methods were compared and proved to be accurate for the simultaneous assay of TRG and TAD. PMID:29629213

  20. Natural and enhanced anaerobic degradation of 1,1,1-trichloroethane and its degradation products in the subsurface – A critical review

    DEFF Research Database (Denmark)

    Scheutz, Charlotte; Durant, Neal D.; Hansen, Maria Heisterberg

    2011-01-01

    1,1,1-Trichloroethane (TCA) in groundwater is susceptible to a variety of natural degradation mechanisms. Evidence of intrinsic decay of TCA in aquifers is commonly observed; however, TCA remains a persistent pollutant at many sites and some of the daughter products that accumulate from intrinsic...

  1. New approach for determination of the degradation products of fenspiride hydrochloride found in oral liquid formulations.

    Science.gov (United States)

    Cioroiu, Bogdan I; Caba, Ioana C; Prisăcaru, Irina; Cioroiu, Mona E; Lazar, Mihai I; Niculaua, Marius

    2018-05-01

    Fenspiride hydrochloride (FNS) is used in treating chronic inflammatory diseases, most commonly as a liquid oral solution. FNS produces degradation products along with fenspiride N-oxide (FNO) and 1-phenylethyl-4-hydroxy-4-aminomethyl piperidine hydrochloride (PHAP). We aimed to develop and validate a chromatographic method in order to identify the main degradation products in the presence of other compounds from a liquid preparation. The method used a dual gradient using two buffer solutions: the first with pH 4.5 (buffer 1, pH 4.5-MeOH 90:10%, v/v) and the second with pH 2.9 (buffer 2, pH 2.9-acetronitrile-methanol, 65:15:10%, v/v/v). As mentioned, there was a modification of the organic mixture, starting with 10% methanol and ending with a mixture of acetonitrile-methanol (15:10%, v/v). The flow-rate was 1.5 mL/min. According to the elution program, experimental conditions started with 100% solution S1, which decreased to 0% and, simultaneously, solution S2 increased to 100% during the first 10 min and was maintained for a further 5 min. After 15 min, initial conditions were re-established. The linearity interval was 0.5-2 μg/mL and the minimum correlation coefficient was 0.999. The recovery factor was 100.47-103.17% and the limit of quantification was 0.19-0.332 μg/mL. Intra-day maximum precision was 4.08% for FNS and 2.65% for PHAP. This double-gradient mobile phase produced good specificity in relation to the degradation products of FNS and other constituents of the oral liquid formulation. Forced degradation studies revealed other related substances that were confirmed in mass balance analyses. Degradation products were confirmed in acidic, basic and oxidative media. Copyright © 2017 John Wiley & Sons, Ltd.

  2. A stability indicating HPLC method for determination of mebeverine in the presence of its degradation products and kinetic study of its degradation in oxidative condition.

    Science.gov (United States)

    Souri, E; Aghdami, A Negahban; Adib, N

    2014-01-01

    An HPLC method for determination of mebeverine hydrochloride (MH) in the presence of its degradation products was developed. The degradation of MH was studied under hydrolysis, oxidative and photolysis stress conditions. Under alkaline, acidic and oxidative conditions, degradation of MH was observed. The separation was performed using a Symmetry C18 column and a mixture of 50 mM KH2PO4, acetonitrile and tetrahydrfuran (THF) (63:35:2; v/v/v) as the mobile phase. No interference peaks from degradation products in acidic, alkaline and oxidative conditions were observed. The linearity, accuracy and precision of the method were studied. The method was linear over the range of 1-100 μg/ml MH (r(2)>0.999) and the CV values for intra-day and inter-day variations were in the range of 1.0-1.8%. The limit of quantification (LOQ) and the limit of detection (LOD) of the method were 1.0 and 0.2 μg/ml, respectively. Determination of MH in pharmaceutical dosage forms was performed using the developed method. Furthermore the kinetics of the degradation of MH in the presence of hydrogen peroxide was investigated. The proposed method could be a suitable method for routine quality control studies of mebeverine dosage forms.

  3. Detection of the spectroscopic signatures of explosives and their degradation products

    Science.gov (United States)

    Florian, Vivian; Cabanzo, Andrea; Baez, Bibiana; Correa, Sandra; Irrazabal, Maik; Briano, Julio G.; Castro, Miguel E.; Hernandez-Rivera, Samuel P.

    2005-06-01

    Detection and removal of antipersonnel and antitank landmines is a great challenge and a worldwide enviromental and humanitarian problem. Sensors tuned on the spectroscopic signature of the chemicals released from mines are a potential solution. Enviromental factors (temperature, relative humidity, rainfall precipitation, wind, sun irradiation, pressure, etc.) as well as soil characteristics (water content, compaction, porosity, chemical composition, particle size distribution, topography, vegetation, etc), have a direct impact on the fate and transport of the chemicals released from landmines. Chemicals such as TNT, DNT and their degradation products, are semi-volatile, and somewhat soluble in water. Also, they may adsorb strongly to soil particles, and are susceptible to degradation by microorganisms, light, or chemical agents. Here we show an experimental procedure to quantify the effect of the above variables on the spectroscopic signature. A number of soil tanks under controlled conditions are used to study the effect of temperature, water content, relative humidity and light radiation.

  4. Isolation of oxidative degradation products of atorvastatin with supercritical fluid chromatography.

    Science.gov (United States)

    Klobčar, Slavko; Prosen, Helena

    2015-12-01

    The isolation of four oxidative degradation products of atorvastatin using preparative high-performance liquid chromatography applying at least two chromatographic steps is known from the literature. In this paper it is shown that the same four impurities could be isolated from similarly prepared mixtures in only one step using supercritical fluid chromatography. The methods for separation were developed and optimized. The preparation of the mixtures was altered in such a way as to enhance the concentration of desired impurities. Appropriate solvents were applied for collection of separated impurities in order to prevent degradation. The structures of the isolated impurities were confirmed and their purity determined. The preparative supercritical fluid chromatography has proven to be superior to preparative HPLC regarding achieved purity of standards applying fewer chromatographic as well as isolation steps. Copyright © 2015 John Wiley & Sons, Ltd.

  5. Characterization of degradation products of amorphous and polymorphic forms of clopidogrel bisulphate under solid state stress conditions

    DEFF Research Database (Denmark)

    Raijada, Dhara K; Prasad, Bhagwat; Paudel, Amrit

    2010-01-01

    The present study deals with the stress degradation studies on amorphous and polymorphic forms of clopidogrel bisulphate. The objective was to characterize the degradation products and postulate mechanism of decomposition of the drug under solid state stress conditions. For that, amorphous form, ...

  6. Optimization of crude oil degradation by Dietzia cinnamea KA1, capable of biosurfactant production.

    Science.gov (United States)

    Kavynifard, Amirarsalan; Ebrahimipour, Gholamhossein; Ghasempour, Alireza

    2016-05-01

    The aim of this study was isolation and characterization of a crude oil degrader and biosurfactant-producing bacterium, along with optimization of conditions for crude oil degradation. Among 11 isolates, 5 were able to emulsify crude oil in Minimal Salt Medium (MSM) among which one isolate, named KA1, showed the highest potency for growth rate and biodegradation. The isolate was identified as Dietzia cinnamea KA1 using morphological and biochemical characteristics and 16S rRNA gene sequencing. The optimal conditions were 510 mM NaCl, pH 9.0, 35 °C, and minimal requirement of 46.5 mM NH4 Cl and 2.10 mM NaH2 PO4 . Gravimetric test and Gas chromatography-Mass spectroscopy technique (GC-MS) showed that Dietzia cinnamea KA1 was able to utilize and degrade 95.7% of the crude oil after 5 days, under the optimal conditions. The isolate was able to grow and produce biosurfactant when cultured in MSM supplemented with crude oil, glycerol or whey as the sole carbon sources, but bacterial growth was occurred using molasses with no biosurfactant production. This is the first report of biosurfactant production by D. cinnamea using crude oil, glycerol and whey and the first study to report a species of Dietzia degrading a wide range of hydrocarbons in a short time. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Aqueous photodegradation of 4-tert-butylphenol: By-products, degradation pathway and theoretical calculation assessment

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Yanlin [State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092 (China); Shi, Jin; Chen, Hongche [Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Department of Environmental Science & Engineering, Fudan University, Shanghai 200433 (China); Zhao, Jianfu [State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092 (China); Dong, Wenbo, E-mail: wbdong@fudan.edu.cn [Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Department of Environmental Science & Engineering, Fudan University, Shanghai 200433 (China)

    2016-10-01

    4-tert-butylphenol (4-t-BP), an endocrine disrupting chemical, is widely distributed in natural bodies of water but is difficult to biodegrade. In this study, we focused on the transformation of 4-t-BP in photo-initiated degradation processes. The steady-state photolysis and laser flash photolysis (LFP) experiments were conducted in order to elucidate its degradation mechanism. Identification of products was performed using the GC–MS, LC-MS and theoretical calculation techniques. The oxidation pathway of 4-t-BP by hydroxyl radical (HO·) was also studied and H{sub 2}O{sub 2} was added to produce HO·. 4-tert-butylcatechol and 4-tert-butylphenol dimer were produced in 4-t-BP direct photolysis. 4-tert-butylcatechol and hydroquinone were produced by the oxidation of HO·. But the formation mechanism of 4-tert-butylcatechol in the two processes was different. The benzene ring was fractured in 4-t-BP oxidation process and 29% of TOC was degraded after 16 h irradiation. - Highlights: • Photodegradation of 4-t-BP, an endocrine disrupting chemical, has been investigated. • 3 stable byproducts were identified from photolysis and oxidation processes. • 5 transient by-products were concluded from LFP experiments. • The theoretical calculation was performed to confirm the byproducts. • 4-t-BP was degraded with increasing efficiency: 254 nm < H{sub 2}O{sub 2}/313 nm < H{sub 2}O{sub 2}/254 nm.

  8. Biosurfactant production by Pseudomonas fluorescens growing on molasses and its application in phenol degradation

    Science.gov (United States)

    Suryantia, Venty; Marliyana, Soerya Dewi; Wulandari, Astri

    2015-12-01

    A molasses based medium for the biosurfactant production by Pseudomonas fluorescens was developed, where the effect of pre-treated of molasses and medium composition were evaluated. Biosurfactant production was followed by measuring optical density (OD), surface tension and emulsifying index (E24) over 12 days of fermentation. The optimum condition for the biosurfactant production was obtained when a medium containing of 8 g/L nutrient broth, 5 g/L NaCl, 1 g/L NH4NO3 and 5% v/v pre-treated molasses with centrifugation was used as media with 3 days of fermentation. The biosurfactant was identified as a rhamnolipid type biosurfactant which had critical micelle concentration (CMC) value of 801 mg/L and was able to reduce the surface tension of the water from 80 mN/m to 51 mN/m. The biosurfactants had water in oil (w/o) emulsion type. Biosurfactant was able to emulsify various hydrocarbons, which were able to decrase the interfacial tension about 50-75% when benzyl chloride, anisaldehyde and palm oil were used as immiscible compounds. The biosurfactant exhibited the E24 value of about 50% and the stable emulsion was reached up to 30 days when lubricant was used as an immiscible compound. Up to 68% of phenol was degraded in the presence of biosurfactant within 15 days, whereas only 56% of phenol was degraded in the absence of biosurfactant. Overall, the results exhibited that molasses are recommended for the rhamnolipids production which possessed good surface-active properties and had potential application in the enhancement of phenol degradation.

  9. Production of rhamnolipids and diesel oil degradation by bacteria isolated from soil contaminated by petroleum.

    Science.gov (United States)

    Leite, Giuseppe G F; Figueirôa, Juciane V; Almeida, Thiago C M; Valões, Jaqueline L; Marques, Walber F; Duarte, Maria D D C; Gorlach-Lira, Krystyna

    2016-03-01

    Biosurfactants are microbial secondary metabolites. The most studied are rhamnolipids, which decrease the surface tension and have emulsifying capacity. In this study, the production of biosurfactants, with emphasis on rhamnolipids, and diesel oil degradation by 18 strains of bacteria isolated from waste landfill soil contaminated by petroleum was analyzed. Among the studied bacteria, gram-positive endospore forming rods (39%), gram positive rods without endospores (17%), and gram-negative rods (44%) were found. The following methods were used to test for biosurfactant production: oil spreading, emulsification, and hemolytic activity. All strains showed the ability to disperse the diesel oil, while 77% and 44% of the strains showed hemolysis and emulsification of diesel oil, respectively. Rhamnolipids production was observed in four strains that were classified on the basis of the 16S rRNA sequences as Pseudomonas aeruginosa. Only those strains showed the rhlAB gene involved in rhamnolipids synthesis, and antibacterial activity against Escherichia coli, P. aeruginosa, Staphylococcus aureus, Bacillus cereus, Erwinia carotovora, and Ralstonia solanacearum. The highest production of rhamnolipids was 565.7 mg/L observed in mineral medium containing olive oil (pH 8). With regard to the capacity to degrade diesel oil, it was observed that 7 strains were positive in reduction of the dye 2,6-dichlorophenolindophenol (2,6-DCPIP) while 16 had the gene alkane mono-oxygenase (alkB), and the producers of rhamnolipids were positive in both tests. Several bacterial strains have shown high potential to be explored further for bioremediation purposes due to their simultaneous ability to emulsify, disperse, and degrade diesel oil. © 2015 American Institute of Chemical Engineers Biotechnol. Prog., 32:262-270, 2016. © 2015 American Institute of Chemical Engineers.

  10. Ruminal degradation kinetics of protein foods by in vitro gas production technique

    Directory of Open Access Journals (Sweden)

    Ivone Yurika Mizubuti

    2014-02-01

    Full Text Available Chemical analysis of carbohydrates and nitrogen fractions, as well as, determination their carbohydrates digestion rates in soyben meal (SM, crambe meal (CM, radish meal (RM, wet brewery residue (WBR and dehydrated silkworm chrysalis (SCD were accomplished. The kinetics parameters of non-fibrous carbohydrates (NFC and B2 fraction were estimated using cumulative gas production technique. Among the foods studied there was considerable variation in chemical composition. The crambe meal was the only food that did not present synchronism between carbohydrate and nitrogen fractions. In this food there was predominance of A+B1 carbohydrates fractions and B1+B2 nitrogen compounds fraction, and for the other predominated B2 carbohydrate fraction and B1+ B2 nitrogen compounds fraction. There were differences among the digestive kinetic parameters for all foods. The greater participation in gas production due to non-fibrous carbohydrates was found in the crambe meal and oilseed radish meal. The fermentation of fibrous carbohydrates provided higher gas volume in the wet brewery residue and in the soybean meal, however, the soybean meal was food with higher total gas volume. Non fibrous carbohydrates degradation rates of wet brewery residue and dehydrated silkworm chrysalis were far below the limits of degradation of this fraction. Due to the parameters obtained by the cumulative gas production, the soybean meal was the best food, however, all others have potential for use in animal nutrition. The cumulative gas production technique allows the estimative of degradation rates and provides further information about the ruminal fermentation kinetics of foods.

  11. Photocatalytic and photoelectrocatalytic degradation of the drug omeprazole on nanocrystalline titania films in alkaline media: Effect of applied electrical bias on degradation and transformation products

    Energy Technology Data Exchange (ETDEWEB)

    Tantis, Iosif [Department of Chemical Engineering, University of Patras, Caratheodory 1, University Campus, GR-26504 Patras (Greece); Bousiakou, Leda [Department of Physics and Astronomy, King Saud University, Riyadh (Saudi Arabia); Department of Automation Engineering, Technological Educational Institute of Pireaus, GR-12244 Athens (Greece); Frontistis, Zacharias; Mantzavinos, Dionissios [Department of Chemical Engineering, University of Patras, Caratheodory 1, University Campus, GR-26504 Patras (Greece); Konstantinou, Ioannis; Antonopoulou, Maria [Department of Environmental and Natural Resources Management, University of Patras, GR-30100 Agrinio (Greece); Karikas, George-Albert [Department of Medical Laboratories Technology, Technological Educational Institute of Athens, 12210 Athens (Greece); Lianos, Panagiotis, E-mail: lianos@upatras.gr [Department of Chemical Engineering, University of Patras, Caratheodory 1, University Campus, GR-26504 Patras (Greece); FORTH/ICE-HT, P.O. Box 1414, GR-26504 Patras (Greece)

    2015-08-30

    Highlights: • Photocatalytic and photoelectrocatalytic degradation of the proton pump omeprazole. • Improvement of photocatalysis rate by applying a moderate forward bias. • Highlighting of the advantages of photoelectrocatalysis in a straightforward manner. • HPLC and HR-LC–MS analysis of transformation products. - Abstract: Photocatalytic and photoelectrocatalytic degradation of the drug omeprazole has been studied in the presence of nanocrystalline titania films supported on glass slides or transparent FTO electrodes in alkaline environment. Its photocatalytic degradation rate was assessed by its UV absorbance and by HPLC, while its transformation products were analyzed by HR-LC–MS. Based on UV absorbance, omeprazole can be photocatalytically degraded at an average rate of 6.7 × 10{sup −4} min{sup −1} under low intensity UVA irradiation of 1.5 mW cm{sup −2} in the presence of a nanoparticulate titania film. This corresponds to degradation of 1.4 mg of omeprazole per gram of the photocatalyst per liter of solution per hour. The photodegradation rate can be accelerated in a photoelectrochemical cell by applying a forward bias. In this case, the maximum rate reached under the present conditions was 11.6 × 10{sup −4} min{sup −1} by applying a forward bias of +0.6 V vs. Ag/AgCl. Four major transformation products were successfully identified and their profiles were followed by HR-LC–MS. The major degradation path includes the scission of the sulfoxide bridge into the corresponding pyridine and benzimidazole ring derivates and this is accompanied by the release of sulfate anions in the reaction mixture.

  12. ANALYSIS OF THE FLUX OF AN ENDOCRINE DISRUPTING DICARBOXIMIDE AND ITS DEGRADATION PRODUCTS FROM THE SOIL TO THE LOWER TROPOSPHERE

    Science.gov (United States)

    A method for measuring the atmospheric flux of the antiandrogenic dicarboxirnide, vinclozolin, and its degradation products was investigated. A nitric oxide laboratory chamber was modified to measure the flux of semi-volatile compounds. Pesticide application systems and soil in...

  13. Degradation kinetics of organic chloramines and formation of disinfection by-products during chlorination of creatinine.

    Science.gov (United States)

    Zhang, Tianyang; Xu, Bin; Wang, Anqi; Cui, Changzheng

    2018-03-01

    Organic chloramines can interfere with the measurement of effective combined chlorine in chlorinated water and are potential intermediate products of highly toxic disinfection by-products (DBPs). In order to know more about the degradation and transformation of organic chloramines, a typical organic chloramine precursor creatinine was selected for investigation and a corresponding individual organic chloramine chlorocreatinine was prepared in this study. The preparation condition of chlorocreatinine by chlorination was established as chlorine/creatinine = 1 M/M, reaction time = 2 h and pH = 7.0. Then the degradation kinetics of chlorocreatinine during further chlorination was studied, and a second-order rate constant of 1.16 (±0.14) M -1 s -1 was obtained at pH 7.0. Solution pH significantly influenced the degradation rate, and the elementary rate constants of chlorocreatinine with HOCl+H + , HOCl, OCl - and chlorocreatinine - with OCl - were calculated as 2.43 (±1.55) × 10 4  M -2  s -1 , 1.05 (±0.09) M -1 s -1 , 2.86 (±0.30) M -1 s -1 and 3.09 (±0.24) M -1 s -1 , respectively. Besides, it was found that chlorocreatinine could be further converted into several C-DBPs (chloroform and trichloroacetone) and N-DBPs (dichloroacetonitrile (DCAN) and trichloronitromethane (TCNM)) during chlorination. The total yield of DBPs increased obviously with increasing pH, especially for TCNM. In addition, the presence of humic acid in creatinine solution could increase the formation of DCAN obviously during chlorination. Based on the UPLC-Q-TOF-MS analysis, the conversion pathways of chlorocreatinine were proposed. Several kinds of intermediate products were also identified as organic chloramines and some of them could even exist stably during the further chlorination. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Graphene-modified nickel foam electrode for cathodic degradation of nitrofuranzone: Kinetics, transformation products and toxicity

    Directory of Open Access Journals (Sweden)

    Ya Ma

    2017-12-01

    Full Text Available Simple, efficient, and durable electrodes are highly demanded for practical electro­chemical process. In this study, a reduced graphene oxide modified nickel foam electrode (GR‑Ni foam was facilely prepared via one-step cyclic voltammetry electrodeposition of gra­phene oxide suspension onto the Ni foam. The electrochemical degradation of nitrofuran­zone (NFZ, a kind of typical antibiotics was studied on the GR-Ni foam cathode. The cyclic voltammetry and electrochemical impedance spectra analysis confirmed that presence of GR loading accelerated the electron transfer from the cathode surface to NFZ. With the applied cathode potential of −1.25 V (vs. Ag/AgCl, the removal efficiency of NFZ (C0 = 20 mg L−1 at the GR-Ni foam electrode reached up to 99 % within 30 min, showing a higher reaction rate constant (0.1297 min−1 than 0.0870 min−1 at the Pd-Ni foam and 0.0186 min−1 at the Ni foam electrode. It was also found that the pH, dissolved oxygen and NFZ initial concentration have slight effect on NFZ degradation at the GR-Ni foam electrode. The reactions first occurred at nitro groups (-NO2, unsaturated C=N bonds and N-N bonds to generate furan ring-containing products, and then these products were transformed into linear diamine products. The direct reduction by electrons was mainly responsible for NFZ reduction at the GR-Ni foam electrode. Even after 18 cycles, the removal efficiency of NFZ still reached up to 98 % within 1 h. In addition, the cathodic degradation process could eliminate the antibacterial activity of NFZ. The GR-Ni foam electrode would have a great potential in electrochemical process for treating wastewater containing furan antibiotics.

  15. Stability-indicating methods for the determination of racecadotril in the presence of its degradation products.

    Science.gov (United States)

    Mohamed, Afaf O; Fouad, Manal M; Hasan, Mona M; Abdel Razeq, Sawsan A; Elsherif, Zeinab A

    2009-12-01

    Three stability-indicating methods were developed for the determination of racecadotril (RCT) in the presence of its alkaline degradation products. The first was an HPLC method in which efficient chromatographic separation was achieved on a C18 analytical column and a mobile phase of acetonitrile-methanol-water-acetic acid (52:28:20:0.1, v/v/v/v). Linearity was obtained in the range of 4-40 microg/mL with mean accuracy of 99.5 +/- 0.88%. The second method was a densitometric evaluation of thin-layer chromatograms of the drug using a mobile phase of isopropanol-ammonia (33%)-n-hexane (9:0.5:20, v/v/v). The chromatograms were scanned at 232 nm, a wavelength at which RCT can be readily separated from its degradation products and determined in the range of 2-20 microg per spot with mean accuracy of 99.5 +/- 0.56%. The third method is based on the use of first-derivative spectrophotometry (D1) at 240 nm, and the drug was determined in the range of 5-40 microg/mL with mean accuracy of 99.2 +/- 1.02%. The three methods provided satisfactory recovery of the intact drug (100.8 +/- 0.82, 100.4 +/- 0.55, and 99.9 +/- 0.72%, respectively) in the presence of up to 90% of its degradation products. Determination was also successful when analyzing RCT in a formulation in the form of acetorphan packets. Results were statistically analyzed and found to be in accordance with those given by a reported method.

  16. Consumption of 125I labelled fibrinogen in normal subjects

    International Nuclear Information System (INIS)

    Langer, B.; Camargo, E.E.; Reis, J.M.M. dos; Carvalho, N.; Leao, L.E.P.

    1978-01-01

    The metabolism of iodine- 125 labeled human fibrinogen is studied by using three different sets of the radiopharmaceutical (0.9, 1.3 and 1.84 iodine atoms/fibrinogen molecule ratios) in 19 normal subjects. An aliquot of 40 μCi of fibrinogem- 125 I is injected in each subject, on normal dietary conditions and blood samples are withdrawn at 30, 60, 180, 36 and 720 minutes after the injection and, thereafter, one daily sample during 10 days. The compartmental distribution of the tracer is defined by plotting plasma and serum sample counts on a semilogarithmic graph paper. A rapid phase and 3 compartments are obtained. A 'rapid' consumption half-life and a 'real' consumption half-life are defined. The fibrinogen clottability is followed up to the last blood sample by checking the ratios of serum and plasma radioactivities [pt

  17. Photolysis of nonylphenol ethoxylates: the determination of the degradation kinetics and the intermediate products.

    Science.gov (United States)

    Chen, Ling; Zhou, Hai-Yun; Deng, Qin-Ying

    2007-06-01

    The photolysis of nonylphenol ethoxylates with an average oligomers length of ten ethoxylate units (NPEO(10)) in aqueous solution under UV, as well as the influence of humic acid (HA) on the photolysis was studied. A 125W high-pressure mercury lamp was employed as the light source. The intermediate products from the photolysis were determined by LC-MS. The results indicated that NPEO(10) underwent direct photolysis upon exposed to UV. The degradation pathway was complex. Besides the generally proposed degradation pathway of ethylene oxide (EO) side chains shortening, the oxidation of alkyl chain and EO chain led to intermediates having both a carboxylated (as well as carbonylated) ethoxylate and alkyl chain of varying lengths. The hydrogenation of benzene ring was also detected. The kinetics data showed that the first order reaction kinetics could be well used to describe the kinetics of NPEO(10) degradation. In the presence of dissolved organic matter by HA addition, the performance of NPEO(10) photodegradation was reduced. The photolysis rate decreased with increased HA concentration.

  18. Enhancing wastewater degradation and biogas production by intermittent operation of UASB reactors

    International Nuclear Information System (INIS)

    Nadais, Helena; Barbosa, Marta; Capela, Isabel; Arroja, Luis; Ramos, Christian G.; Grilo, Andre; Sousa, Silvia A.; Leitao, Jorge H.

    2011-01-01

    The present work establishes intermittent operation of UASB reactors as a novel form of enhancing the anaerobic degradation of complex wastewaters and its conversion to usable biogas. Results show that the average methane production rate is 25% higher with the intermittent operation than with the continuous mode, meaning that it could produce 25% more electricity or heat. The methanization efficiency obtained in intermittent UASB reactors is around 20% higher than in the continuous systems, confirming a higher biological degradation of the substrates. It has been suggested that intermittent operation causes a forced adaptation of the biomass towards the degradation of complex substrates and results from morphological analyses of the biomass developed in intermittent and continuous UASB reactors showed marked differences between them. In order to gain a deeper knowledge on how microbial populations are affected by these operational parameters, a strategy involving the amplification, cloning, and analysis of the nucleotide sequences of genes encoding the 16S ribosomal RNA was undertaken and is described in this work. This strategy allowed the identification of a total of 49 different sequences. Results from the molecular characterization of the microbial populations are consistent with the higher methanization efficiency of the intermittent mode of operation.

  19. Land Husbandry: Biochar application to reduce land degradation and erosion on cassava production

    Science.gov (United States)

    Yuniwati, E. D.

    2017-12-01

    This field experiment was carried out to examine the effect of increasing crop yield on land degradation and erosion in cassava-based cropping systems. The experiment was also aimed at showing that with proper crop management, the planting of cassava does not result in land degradation, and therefore, a sustainable production system can be obtained. The experiment was done in a farmer's fields in Batu, about 15 km south east of Malang, East Java, Indonesia. The soils are Alfisols with a surface slope of about 8%. There were 8 experimental treatments with two replications. The experiment results show that biochar applications reduce of soil erosion rate of the cassava field were not necessarily higher than those of maize in terms of crop yield and crop management. At low-to-medium yield, also observed the nutrient uptake of cassava was lower than that of maize. At high yield, only the K uptake of cassava was higher than that of maize, whereas the N and P uptake was more or less similar. Soil erosion on the cassava field was significantly higher than that on the maize field; however, this only occurred when there was no suitable crop management. Simple crop managements, such as ridging, biochar application, or manure application could significantly reduce soil erosion. The results also revealed that proper management could prevent land degradation and increase crop yield. In turn, the increase in crop yield could decrease soil erosion and plant nutrient depletion.

  20. Characterization of intermediate products of solar photocatalytic degradation of ranitidine at pilot-scale.

    Science.gov (United States)

    Radjenović, Jelena; Sirtori, Carla; Petrović, Mira; Barceló, Damià; Malato, Sixto

    2010-04-01

    In the present study the mechanisms of solar photodegradation of H(2)-receptor antagonist ranitidine (RNTD) were studied in a well-defined system of a pilot plant scale Compound Parabolic Collector (CPC) reactor. Two types of heterogeneous photocatalytic experiments were performed: catalysed by titanium-dioxide (TiO(2)) semiconductor and by Fenton reagent (Fe(2+)/H(2)O(2)), each one with distilled water and synthetic wastewater effluent matrix. Complete disappearance of the parent compounds and discreet mineralization were attained in all experiments. Furthermore, kinetic parameters, main intermediate products, release of heteroatoms and formation of carboxylic acids are discussed. The main intermediate products of photocatalytic degradation of RNTD have been structurally elucidated by tandem mass spectrometry (MS(2)) experiments performed at quadrupole-time of flight (QqToF) mass analyzer coupled to ultra-performance liquid chromatograph (UPLC). RNTD displayed high reactivity towards OH radicals, although a product of conduction band electrons reduction was also present in the experiment with TiO(2). In the absence of standards, quantification of intermediates was not possible and only qualitative profiles of their evolution could be determined. The proposed TiO(2) and photo-Fenton degradation routes of RNTD are reported for the first time. (c) 2010 Elsevier Ltd. All rights reserved.

  1. Estimation of PMI depends on the changes in ATP and its degradation products.

    Science.gov (United States)

    Mao, Shiwei; Fu, Gaowen; Seese, Ronald R; Wang, Zhen-Yuan

    2013-09-01

    Estimating the time since death, or postmortem interval (PMI), has been one of the biggest difficulties in modern forensic investigation. This study tests if the concentrations of breakdown products of adenosine triphosphate (ATP) correlate with PMI in multiple organs from rat. Brains, spleens, and kidneys of rats were harvested at different time points in carcasses maintained at 4°C or 20°C. High Performance Liquid Chromatography (HPLC) was used to quantify concentrations of metabolites related to ATP degradation. A K value (Kv=100×(Hx+HxR)/(ATP+ADP+AMP+IMP+HxR+Hx)) was calculated and correlated with PMI for each organ and temperature. The results indicate that the K value is a robust index for the estimation of PMI based on highly significant linear correlations between PMI and concentrations of ATP breakdown products. Compared with other current research methods, the changing tendency of ATP and its degradation products may be potentially a better way for the estimation of PMI in medico-legal practice. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  2. Removal of nalidixic acid and its degradation products by an integrated MBR-ozonation system.

    Science.gov (United States)

    Pollice, A; Laera, G; Cassano, D; Diomede, S; Pinto, A; Lopez, A; Mascolo, G

    2012-02-15

    Chemical-biological degradation of a widely spread antibacterial (nalidixic acid) was successfully obtained by an integrated membrane bioreactor (MBR)-ozonation process. The composition of the treated solution simulated the wastewater from the production of the target pharmaceutical, featuring high salinity and a relevant concentration of sodium acetate. Aim of treatment integration was to exploit the synergistic effects of chemical oxidation and bioprocesses, by adopting the latter to remove most of the COD and the ozonation biodegradable products. Integration was achieved by placing ozonation in the recirculation stream of the bioreactor effluent. The recirculation flow rate was three-fold the MBR feed, and the performance of the integrated system was compared to the standard polishing configuration (single ozonation step after the MBR). Results showed that the introduction of the ozonation step did not cause relevant drawbacks to both biological and filtration processes. nalidixic acid passed undegraded through the MBR and was completely removed in the ozonation step. Complete degradation of most of the detected ozonation products was better achieved with the integrated MBR-ozonation process than using the sequential treatment configuration, i.e. ozone polishing after MBR, given the same ozone dosage. Copyright © 2011 Elsevier B.V. All rights reserved.

  3. By-products formation during degradation of isoproturon in aqueous solution. II: Chlorination.

    Science.gov (United States)

    Mascolo, G; Lopez, A; James, H; Fielding, M

    2001-05-01

    After a previous study in which the considered oxidant was ozone (Part I), a laboratory investigation has been carried out to study the degradation of the herbicide isoproturon during its reaction with another oxidant, i.e. chlorine, in aqueous solution (Part II; this paper). The specific aim was to identify the by-products formed. The effects of pH and the presence of bromide ions were studied. Reactions have been carried out at room temperature, in phosphate buffered aqueous solutions, at four pHs (6, 7, 8 and 9). By-products identification was first performed using relatively high initial reagent concentrations which were analytically convenient ([isoproturon] = 40 mg/l, [HClO + ClO-] = 160 mg Cl/l, [Br-] = 80 mg/l). In follow-up studies, the by-products identified during this preliminary step were searched for when using concentration values closer to those actually encountered at real water treatment plants ([isoproturon] = 0.4 and 0.004 mg/l, [HClO + ClO-] = 1.6 mg Cl/l, [Br-] = 0.8 and 0.008 mg/l). Under all of the studied conditions, the results showed that isoproturon is completely degraded and that it decays much faster in the presence of bromide. The pH has a negligible influence when bromide ions are absent. On the contrary, if bromide ions are present, the isoproturon decay is slower at higher pH values. High-performance liquid chromatography-mass spectrometry (HPLC-MS) analyses have led to the identification of several by-products as a result of simultaneous oxidation and substitution reactions, both occurring on the aromatic ring of the herbicide. However, the more abundant by-products are those resulting from the oxidation of the isoproturon aromatic ring. As far as halogenated by-products are concerned, the higher the bromide ion concentration the higher the ratio of brominated to chlorinated by-products. On the basis of the analytical results, a pathway for isoproturon degradation under the studied conditions is proposed.

  4. Toxicity of tetracyclines and tetracycline degradation products to environmentally relevant bacteria, including selected tetracycline-resistant bacteria

    DEFF Research Database (Denmark)

    Halling-Sørensen, B.; Sengeløv, G.; Tjørnelund, J.

    2002-01-01

    Tetracyclines used in veterinary therapy invariably will find their way as parent compound and degradation products to the agricultural field. Major degradation products formed due to the limited stability of parent tetracyclines (tetracycline, chlortetracycline, and oxytetracycline) in aqueous...... at the same concentration level as tetracycline, chlortetracycline, and oxytetracycline on both the sludge and the tetracycline-sensitive soil bacteria. Further, both 5a,6-anhydrotetracychne and 5a,6-anhydrochlortetracycline had potency on tetracycline-resistant bacteria supporting a mode of action different...

  5. Identification of degradation products of ionic liquids in an ultrasound assisted zero-valent iron activated carbon micro-electrolysis system and their degradation mechanism.

    Science.gov (United States)

    Zhou, Haimei; Lv, Ping; Shen, Yuanyuan; Wang, Jianji; Fan, Jing

    2013-06-15

    Ionic liquids (ILs) have potential applications in many areas of chemical industry because of their unique properties. However, it has been shown that the ILs commonly used to date are toxic and not biodegradable in nature, thus development of efficient chemical methods for the degradation of ILs is imperative. In this work, degradation of imidazolium, piperidinium, pyrrolidinium and morpholinium based ILs in an ultrasound and zero-valent iron activated carbon (ZVI/AC) micro-electrolysis system was investigated, and some intermediates generated during the degradation were identified. It was found that more than 90% of 1-alkyl-3-methylimidazolium bromide ([Cnmim]Br, n = 2, 4, 6, 8, 10) could be degraded within 110 min, and three intermediates 1-alkyl-3-methyl-2,4,5-trioxoimidazolidine, 1-alkyl-3-methylurea and N-alkylformamide were detected. On the other hand, 1-butyl-1-methylpiperidinium bromide ([C4mpip]Br), 1-butyl-1-methylpyrrolidinium bromide ([C4mpyr]Br) and N-butyl-N-methylmorpholinium bromide ([C4mmor]Br) were also effectively degraded through the sequential oxidization into hydroxyl, carbonyl and carboxyl groups in different positions of the butyl side chain, and then the N-butyl side chain was broken to form the final products of N-methylpiperidinium, N-methylpyrrolidinium and N-methylmorpholinium, respectively. Based on these intermediate products, degradation pathways of these ILs were suggested. These findings may provide fundamental information on the assessment of the factors related to the environmental fate and environmental behavior of these commonly used ILs. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. The binding of fibrinogen to platelets in diabetes mellitus

    International Nuclear Information System (INIS)

    Minno, G. di; Cerbone, A.M.; Iride, C.; Mancini, M.

    1986-01-01

    Platelets from diabetics are known to be more sensitive in vitro to a variety of aggregating agents, to produce more prostaglandin endoperoxides and thromboxane and to bind more 125 I-fibrinogen than platelets from normal controls. Fibrinogen binding to platelets is a pre-requisite for platelet aggregation. Previous studies suggested a role for prostaglandins and/or thrombaxane A 2 in the exposure of fibrinogen receptors on platelets. The present study compares fibrinogen binding to hyperaggregable platelets from diabetic patients and to normal platelets when prostaglandin/thromboxane formation is suppressed by aspirin. It was found that pre-treatment with aspirin reduced collagen or thrombin-induced binding to platelets from none-retinopathic diabetics to the values seen in controls. By contrast, aspirin did not normalize binding to platelets obtained from retinopathic diabetics. The combination of aspirin with apyrase (an ADP scavenger) almost completely inhibited binding and aggregation of platelets from normal controls or non-retinophatic diabetics exposed to collagen or thrombin, whereas it only partially affected binding and aggregation of platelets from retinopathics. By using a monoclonal antibody (B59.2) to the platelet receptor for fibrinogen, we determined that this receptor was quantitatively and qualitatively the same on platelets from normal controls and diabetics. We conclude that increased fibrinogen binding and hyperaggregability of platelets from none-retinopathic diabetics is related to their capacity to form more prostaglandin endoperoxides/thromboxane than normal platelets. In contrast, hyperaggregability and increased binding of platelets from retinopathics appear at least partly related to a mechanism independent of ADP release and thromboxane synthesis. (Author)

  7. Degradation of 2,4-dichlorophenoxyacetic acid by a halotolerant strain of Penicillium chrysogenum: antibiotic production.

    Science.gov (United States)

    Ferreira-Guedes, Sumaya; Mendes, Benilde; Leitão, Ana Lúcia

    2012-01-01

    The extensive use of pesticides in agriculture has prompted intensive research on chemical and biological methods in order to protect contamination of water and soil resources. In this paper the degradation of the pesticide 2,4-dichlorophenoxyacetic acid by a Penicillium chrysogenum strain previously isolated from a salt mine was studied in batch cultures. Co-degradation of 2,4-dichlorophenoxyacetic acid with additives such as sugar and intermediates of pesticide metabolism was also investigated. Penicillium chrysogenum in solid medium was able to grow at concentrations up to 1000 mg/L of 2,4-dichlorophenoxyacetic acid (2,4-D) with sucrose. Meanwhile, supplementation of the solid medium with glucose and lactose led to fungal growth at concentrations up to 500 mg/L of herbicide. Batch cultures of 2,4-D at 100 mg/L were developed under aerobic conditions with the addition of glucose, lactose and sucrose, showing sucrose as the best additional carbon source. The 2,4-D removal was quantified by liquid chromatography. The fungus was able to use 2,4-D as the sole carbon and energy source under 0%, 2% and 5.9% NaCl. The greatest 2,4-D degradation efficiency was found using alpha-ketoglutarate and ascorbic acid as co-substrates under 2% NaCl at pH 7. Penicillin production was evaluated in submerged cultures by bioassay, and higher amounts of beta-lactam antibiotic were produced when the herbicide was alone. Taking into account the ability of P. chrysogenum CLONA2 to degrade aromatic compounds, this strain could be an interesting tool for 2,4-D herbicide remediation in saline environments.

  8. Rare coagulation disorders: fibrinogen, factor VII and factor XIII.

    Science.gov (United States)

    de Moerloose, P; Schved, J-F; Nugent, D

    2016-07-01

    Rare coagulation disorders (RCDs) include the inherited deficiencies of fibrinogen, factor (F) II, FV, combined FV and VIII, FVII, FX, combined FVII and X, FXI, FXIII and combined congenital deficiency of vitamin K-dependent factors (VKCFDs). Despite their rarity, a deep comprehension of all these disorders is essential to really understand haemostasis. Indeed, even if they share some common features each RCD has some particularity which makes it unique. In this review, we focus on three disorders: fibrinogen, FVII and FXIII. © 2016 John Wiley & Sons Ltd.

  9. The effects of the antibiotics ampicillin, florfenicol, sulfamethazine, and tylosin on biogas production and their degradation efficiency during anaerobic digestion.

    Science.gov (United States)

    Mitchell, Shannon M; Ullman, Jeffrey L; Teel, Amy L; Watts, Richard J; Frear, Craig

    2013-12-01

    The impacts of four common animal husbandry antibiotics (ampicillin, florfenicol, sulfamethazine, and tylosin) on anaerobic digestion (AD) treatment efficiency and the potential for antibiotic degradation during digestion were evaluated. Sulfamethazine and ampicillin exhibited no impact on total biogas production up to 280 and 350 mg/L, respectively, although ampicillin inhibited biogas production rates during early stages of AD. Tylosin reduced biogas production by 10-38% between 130 and 913 mg/L. Florfenicol reduced biogas by ≈ 5%, 40% and 75% at 6.4, 36 and 210 mg/L, respectively. These antibiotic concentrations are higher than commonly seen for mixed feedlot manure, so impacts on full scale AD should be minimal. Antibiotic degradation products were found, confirming AD effectively degraded ampicillin, florfenicol, and tylosin, although some products were persistent throughout the process. Contamination of AD solid and liquid effluents with sulfamethazine and antibiotic transformation products from florfenicol and tylosin could present an environmental concern. Published by Elsevier Ltd.

  10. Estimation of physicochemical properties of 2-ethylhexyl-4-methoxycinnamate (EHMC) degradation products and their toxicological evaluation.

    Science.gov (United States)

    Gackowska, Alicja; Studziński, Waldemar; Kudlek, Edyta; Dudziak, Mariusz; Gaca, Jerzy

    2018-06-01

    The organic UV filters, commonly used in personal protection products, are of concern because of their potential risk to aquatic ecosystems and living organisms. One of UV filters is ethylhexyl-4-methoxycinnamate (EHMC) acid. Studies have shown that, in the presence of oxidizing and chlorinating factors, EHMC forms a series of products with different properties than the substrate. In this study, the toxicities of EHMC and its transformation/degradation products formed under the influence of NaOCl/UV and H 2 O 2 /UV systems in the water medium were tested using Microtox® bioassay and by observation of mortality of juvenile crustaceans Daphnia magna and Artemia Salina. We have observed that oxidation and chlorination products of EHMC show significantly higher toxicity than EHMC alone. The toxicity of chemicals is related to their physicochemical characteristic such as lipophilicity and substituent groups. With the increase in lipophilicity of products, expressed as log K OW , the toxicity (EC 50 ) increases. On the basis of physicochemical properties such as vapour pressure (VP), solubility (S), octanol-water partition coefficient (K OW ), bioconcentration factor (BCF) and half-lives, the overall persistence (P OV ) and long-range transport potential (LRTP) of all the products and EHMC were calculated. It was shown that the most persistent and traveling on the long distances in environment are methoxyphenol chloroderivatives, then methoxybenzene chloroderivatives, EHMC chloroderivatives, methoxybenzaldehyde chloroderivatives and methoxycinnamate acid chloroderivatives. These compounds are also characterised by high toxicity.

  11. Studies on resin degradation products encountered during purification of plutonium by anion exchange

    International Nuclear Information System (INIS)

    Ramanujam, A.; Dhami, P.S.; Gopalakrishnan, V.; Dhumwad, R.K.

    1991-01-01

    Among the methods available for the purification of plutonium in Purex process, anion exchange method offers several advantages. However, on repeated use, the resin gets degraded due to thermal, radiolytic and chemical attacks resulting in chemical as well as physical damage. Frequently, plutonium product eluted from such resin contains significant quantities of white precipitates. A few anion exchange resins were leached with 8 M HNO 3 at 60-80degC and the resin degradation products (RDP) in the leach-extract were found to give similar precipitates with tetravalent metal ions like Pu(IV), Th(IV) etc. Tetra propyl ammonium hydroxide in 8 M HNO 3 (TPAN) also gave a white precipitate with plutonium similar to the one found in the elution streams. The results indicate that delinked quaternary ammonium functional groups might be responsible for the formation of precipitate. The characteristics of precipitates Th-RDP, Th-TPAN and that isolated from elution stream have been investigated. In a separate study a tentative formula for Th-RDP compound is proposed. The influence of RDP on the extraction of plutonium and other components in Purex process was studied and it was found that RDP complexes metal ions thus marginally affecting the kd values. A spectrophotometric method has been standardised to monitor the extent of degradation of anion exchange resins which is based on the ability of RDP to reduce the colour intensity of Th-thoron complex. This technique can be used to study the stability of the anion exchange resins. (author). 8 refs., 8 tabs., 5 figs.,

  12. Investigation of forced and total degradation products of amlodipine besylate by liquid chromatography and liquid chromatography-mass spectrometry

    Directory of Open Access Journals (Sweden)

    Stoiljković Zora Ž.

    2014-01-01

    Full Text Available An isocratic, reversed-phase liquid chromatographic method was applied for the investigation of the degradation products of amlodipine besylate under the stressed conditions in solution. Amlodipine besylate stock solutions were subjected to acid and alkali hydrolysis, chemical oxidation and photodegradation as well as to the electrochemical degradation by cyclic voltammetry in 0.05 mol/L NaHCO3 on gold electrode. The total degradation of amlodipine besylate was achieved in 5 mol/L NaOH at 80°C for 6 h and the compound with molecular formula C15H16NOCl was identified as a main degradation product. Under acidic (5 mol/L HCl at 80°C for 6 h stress conditions 75.2% of amlodipine besylate degradation was recorded. Oxidative degradation in the solution of 3% H2O2-methanol 80:20 at 80°C for 6 h showed that amlodipine besylate degraded to 80.1%. After 14 days of expose in photostability chamber amlodipine besylate solution showed degradation of 32.2%. In electrochemical degradation after 9 hours of cyclization the beginning of amlodipine oxidation was shifted for 200 mV to more negative potentials, with the degradation of 66.5%. Mass spectrometry analysis confirmed the presence of dehydro amlodipine derivate with molecular formula C20H23N2O5Cl in oxidative and acidic conditions while in electrochemical degradation was detected in traces. [Projekat Ministarsva nauke Republike Srbije, br. 172013

  13. Maize production and land degradation: a Portuguese agriculture field case study

    Science.gov (United States)

    Ferreira, Carla S. S.; Pato, João V.; Moreira, Pedro M.; Valério, Luís M.; Guilherme, Rosa; Casau, Fernando J.; Santos, Daniela; Keizer, Jacob J.; Ferreira, António J. D.

    2016-04-01

    While food security is a main challenge faced by human kind, intensive agriculture often leads to soil degradation which then can threaten productivity. Maize is one of the most important crops across the world, with 869 million tons produced worldwide in 2012/2013 (IGC 2015), of which 929.5 thousand tons in Portugal (INE 2014). In Portugal, maize is sown in April/May and harvest occurs generally in October. Conventional maize production requires high inputs of water and fertilizers to achieve higher yields. As Portuguese farmers are typically rather old (on average, 63 years) and typically have a low education level (INE 2014), sustainability of their land management practises is often not a principal concern. This could explain why, in 2009, only 4% of the Portuguese temporary crops were under no-tillage, why only 8% of the farmers performed soil analyses in the previous three years, and why many soils have a low organic matter content (INE 2014). Nonetheless, sustainable land management practices are generally accepted to be the key to reducing agricultural soil degradation, preventing water pollution, and assuring long-term crop production objectives and food security. Sustainable land management should therefore not only be a concern for policy makers but also for farmers, since land degradation will have negative repercussions on the productivity, thus, on their economical income. This paper aims to assess the impact of maize production on soil properties. The study focusses on an 8 ha maize field located in central Portugal, with a Mediterranean climate on a gently sloping terrain (<3%) and with a soil classified as Eutric Fluvisol. On the field, several experiments were carried out with different maize varieties as well as with different fertilizers (solid, liquid and both). Centre pivot irrigation was largely used. Data is available from 2003, and concerns crop yield, fertilization and irrigation practices, as well as soil properties assessed through

  14. Megalanthine, a bioactive sesquiterpenoid from Heliotropium megalanthum, its degradation products and their bioactivities.

    Science.gov (United States)

    Macías, Francisco A; Simonet, Ana M; D'Abrosca, Brigida; Maya, Claudia C; Reina, Matías; González-Coloma, Azucena; Cabrera, Raimundo; Giménez, Cristina; Villarroel, Luis

    2009-01-01

    The new bioactive sesquiterpenoid (3R,6E)-2,6,10-trimethyl-3-(3-p-hydroxyphenylpropanoyloxy)-dodeca-6,11-diene-2,10-diol, named megalanthine, was isolated from the resinous exudates of Heliotropium megalanthum. The degradation products of this compound were identified. Several plant-defensive properties (insecticidal, antifungal, and phytotoxic) were evaluated after obtaining positive results in a preliminary etiolated wheat coleoptile bioassay. This bioassay showed the need to have both the phenolic and sesquiterpene moieties of the natural product present to achieve a biological effect. This result was confirmed in phytotoxicity bioassays. Megalanthine was ruled out as a significant plant-plant defense agent because of its lack of stability. The positive results recorded in the antifungal and antifeedant tests suggest, however, that this chemical is relevant in several ecological interactions involving H. megalanthum.

  15. Gaseous products generated by radiation degradation of N,N-diethylhydroxylamine aqueous solution

    International Nuclear Information System (INIS)

    Wang Jinhua; Wang Shengxiu; Bao Borong; Li Zhen; Li Chun; Zheng Weifang; Zhang Shengdong

    2008-01-01

    In this paper, gaseous products generated by radiation degradation of N,N-diethylhydroxylamine (DEHA) in aqueous solution are studied. The results show that by 10-1000 kGy irradiation of the solution in DEHA concentration of 0.1-0.5 mol·L -1 , the gaseous products were mainly hydrogen, methane, ethane and ethene. The volume fraction of hydrogen did not change much with different concentrations of DEHA. The volume fraction of methane and ethane decreased, but that of ethene increased, with increasing DEHA concentration. The volume fraction of hydrogen, methane and ethane increased with the dose. The relationship of the volume fraction of ethene with the dose had something to do with the DEHA concentration. (authors)

  16. Reactivity of tributyl phosphate degradation products with nitric acid: Relevance to the Tomsk-7 accident

    International Nuclear Information System (INIS)

    Barney, G.S.; Cooper, T.D.

    1995-01-01

    The reaction of a degraded tributyl phosphate (TBP) solvent with nitric acid is thought to have caused the chemical explosion at the Tomsk-7 reprocessing plant at Tomsk, Russia in 1993. The estimated temperature of the organic layer was not high eneough to cause significant reaction of nitric acid with TBP or hydrocarbon diluent compounds. A more reactive organic compound was likely present in the organic layer that reacted with sufficient heat generation to raise the temperature to the point where an autocatalytic oxidation of the organic solvent was initiated. Two of the most likely reactive compounds that are present in degraded TBP solvents are n-butanol and n-butyl nitrate. The reactions of these compounds with nitric acid are the subject of this study. The objective of laboratory-scale tests was to identify chemical reactions that occur when n-butanol and n-butyl nitrate contact heated nitric acid solutions. Reaction products were identified and quantitified, the temperatures at which these reactions occur and heats of reaction were measured, and reaction variables (temperature, nitric acid concentration, organic concentration, and reaction time) were evaluated. Data showed that n-butyl nitrate is less reactive than n-butanol. An essentially complete oxidation reaction of n-butanol at 110-120 C produced four major reaction products. Mass spectrometry identified the major inorganic oxidation products for both n-butanol and n-butyl nitrate as nitric oxide and carbon dioxide. Calculated heats of reaction for n-butanol and n-butyl nitrate to form propionic acid, a major reaction product, are -1860 cal/g n-butanol and -953 cal/g n-butyl nitrate. These heats of reaction are significant and could have raised the temperature of the organic layer in the Tomsk-7 tank to the point where autocatalytic oxidation of other organic compounds present resulted in an explosion

  17. The efficacy of fibrinogen concentrate compared with cryoprecipitate in major obstetric haemorrhage - an observational study.

    LENUS (Irish Health Repository)

    Ahmed, S

    2012-10-01

    Fibrinogen replacement is critical in major obstetric haemorrhage (MOH). Purified, pasteurised fibrinogen concentrate appears to have benefit over cryoprecipitate in ease of administration and safety but is unlicensed in pregnancy. In July 2009, the Irish Blood Transfusion Service replaced cryoprecipitate with fibrinogen.

  18. Prognostic implications of plasma fibrinogen and serum C- reactive ...

    African Journals Online (AJOL)

    Key words: Plasma fibrinogen, serum C-reactive protein, biomarker, non-small cell lung cancer. Tropical Journal of Pharmaceutical Research ... demonstrated in colorectal [11], cervical, oesophageal [12], and pancreatic cancers .... demographic and clinical characteristic features of the patients involved are shown in Table ...

  19. Prognostic implications of plasma fibrinogen and serum Creactive ...

    African Journals Online (AJOL)

    Purpose: To investigate the prognostic implications of plasma fibrinogen and serum C-reactive protein (CRP) levels in tumour resection and survival following successful tumour resection in patients with nonsmall cell lung cancer (NSCLC). Methods: One hundred and fifty-three NSCLC patients who underwent surgical ...

  20. Use of labelled fibrinogen for the detection of phlebitis

    International Nuclear Information System (INIS)

    Serradimigni, A.; Mathieu, P.; Leonetti, J.; Sacerdote, P.; Bory, M.; Djiane, P.; Egre, A.

    The value of 125 I-labelled fibrinogen as a diagnostic tool in the detection of deep vein thrombosis is discussed. The results are compared to those obtained with phlebography and with the clinical symptomatology. The technical problems are described: examination method and interpretation [fr

  1. Study of some parameters of the fibrinogen - fibrin transformation reaction

    International Nuclear Information System (INIS)

    Hollard, D.; Suscillon, M.; Marcille, G.; Rambaud, F.; Baloyan, M.

    1966-01-01

    The authors studied the action of some parameters on the reaction of transformation fibrinogen-fibrin. The five parameters studied are: the concentration of substratum: a certain quantity of enzyme determines an optimum quantity of fibrinogen; the concentration of enzyme: a certain quantity of substratum defines an optimum quantity of enzyme, beyond which the excess of enzyme is unable to act, the substratum being saturated by the enzyme; the concentration of Ca ions: between 0,07 and 0,10 mg of Ca by mg of fibrinogen, the reaction appears with a great speed. Between 0,02 and 0,40 mg of Ca by mg of fibrinogen the fibrin stabilisation is possible, the FSF can act only inside the definite bounds; the ph of the solution: the reaction of the transformation appears with its maximum intensity on physiological ph, the polymerisation is not possible on acid ph; the temperature has an effect which could not really be verified owing to the fact that the technical realisation is difficult. (author) [fr

  2. Thrombus scintigraphy with Ga-67 DFO-DAS-Fibrinogen, 2

    International Nuclear Information System (INIS)

    Kawasaki, Yukiko

    1987-01-01

    In our previous in vivo study 67 Ga DFO-DAS-Fibrinogen was assessed for its usefulness as a radiopharmaceutical for the detection of thrombin in experimental animals (Report 1). The present study was undertaken to appraise the diagnostic value of 67 Ga DFO-DAS-Fibrinogen in human disease, especially in relation to blood coagulability as well as to thrombolytic drug regimen being given, in an effort to investigate its clinical applicability. Involved in this study were 48 patients with thrombosis proven by X-ray CT and other examinations. Of these 48, 42 had arterial thrombosis (20 with aortic aneurysm including the dissecting form, 11 in postoperative condition following vascular surgery with a prosthesis, 9 with intracardiac thrombosis accompanying heart disease, and 1 each with occlusive arteriosclerosis and cerebral infarction) and 6 had venous thrombosis. The 67 Ga DFO-DAS-Fibrinogen test proved to be positive in 55 % of arterial thrombin and in 50 % of venous thrombin. It is interesting to note that as high a positivity rate as 80 % was obtained for aortic aneurysm, although the positivity rate was disappointingly low for left atrial thrombin. No distinct correlation was noted to exist between the degree of accumulation of the tracer in thrombotic lesions and any of factors conceivably of clinical releavance, i.e. time elapsing from onset till testing, thrombolytic medication being given, and hematological factors. 67 Ga DFO-DAS-Fibrinogen appeared to be a radiodiagnostic agent that could possibly indicate the existing activity status of thrombosis. (author)

  3. 21 CFR 864.7340 - Fibrinogen determination system.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Fibrinogen determination system. 864.7340 Section 864.7340 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES HEMATOLOGY AND PATHOLOGY DEVICES Hematology Kits and Packages § 864.7340...

  4. Prognostic implications of plasma fibrinogen and serum C- reactive ...

    African Journals Online (AJOL)

    reactive protein levels in non-small cell lung cancer resection and ... Abstract. Purpose: To investigate the prognostic implications of plasma fibrinogen and serum C-reactive protein ... The possibility of complete resection and associated findings are reported. Results: ... operable using pre-operative chemotherapy and/or ...

  5. Evaluation of the Characteristics of the Adsorption of Fibrinogen ...

    African Journals Online (AJOL)

    ... with calcium and magnesium ions increased the amount of fibrinogen adsorbed onto it as against treatment with potassium ion (a monovalent ion). Electrostatic attraction on the surface of the treated HAP and hydrogen are responsible for the adsorption. The results are useful in fabricating bone and teeth implants that are ...

  6. Preparation and quality control of fibrinogen 99mTc

    International Nuclear Information System (INIS)

    Noto, M.G.; Rabiller, Graciela; Garrie Faget, Claudio; Fisman, Carlos; Manzini, Alberto

    1987-01-01

    A method of fibrinogen preparation is presented in order to label it with 99m Tc employing Sn as reducing agent in alkaline medium. Purity controls by chromatography, coagulation in rabbits and biodistribution in rats were performed. It is concluded that optimal time incubation is between 22 and 23 hs. (M.E.L.) [es

  7. Chromatographic determination of itopride hydrochloride in the presence of its degradation products.

    Science.gov (United States)

    Kaul, Neeraj; Agrawal, Himani; Maske, Pravin; Rao, Janhavi Ramchandra; Mahadik, Kakasaheb Ramoo; Kadam, Shivajirao S

    2005-08-01

    Two sensitive and reproducible methods are described for the quantitative determination of itopride hydrochloride (IH) in the presence of its degradation products. The first method is based on HPLC separation on a reversed phase Kromasil column [C18 (5-microm, 25 cm x 4.6 mm, ID)] at ambient temperature using a mobile phase consisting of methanol and water (70:30, v/v) adjusted to pH 4.0 with orthophosphoric acid with UV detection at 258 nm. The flow rate was 1.0 mL per min with an average operating pressure of 180 kg/cm2. The second method is based on HPTLC separation on silica gel 60 F254 using toluene:methanol:chloroform:10% ammonia (5.0:3.0:6.0:0.1, v/v/v/v) as mobile phase at 270 nm. The analysis of variance (ANOVA) and Student's t-test were applied to correlate the results of IH determination in dosage form by means of HPLC and HPTLC methods. The drug was subjected to acid and alkali hydrolysis, oxidation, dry heat, wet heat treatment, UV, and photodegradation. The proposed HPLC method was utilized to investigate the kinetics of the acidic, alkaline, and oxidative degradation processes at different temperatures and the apparent pseudo-first-order rate constant, half-life, and activation energy were calculated. In addition the pH-rate profile of degradation of IH in constant ionic strength buffer solutions in the pH range 2-11 was studied.

  8. Precipitation of organic arsenic compounds and their degradation products during struvite formation

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Jin-Biao; Yuan, Shoujun [School of Civil Engineering, Hefei University of Technology, Hefei 230009 (China); Institute of Water Treatment and Wastes Reutilization, Hefei University of Technology, Hefei 230009 (China); Wang, Wei, E-mail: dwhit@126.com [School of Civil Engineering, Hefei University of Technology, Hefei 230009 (China); Institute of Water Treatment and Wastes Reutilization, Hefei University of Technology, Hefei 230009 (China); Hu, Zhen-Hu, E-mail: zhhu@hfut.edu.cn [School of Civil Engineering, Hefei University of Technology, Hefei 230009 (China); Institute of Water Treatment and Wastes Reutilization, Hefei University of Technology, Hefei 230009 (China); Yu, Han-Qing [Department of Chemistry, University of Science & Technology of China, Hefei 230026 (China)

    2016-11-05

    Highlights: • Organic and inorganic arsenic compounds precipitated during struvite formation. • Precipitation of organic arsenic compounds in struvite decreased with increasing pH. • Arsenate easily precipitate in struvite as compared to organic arsenic compounds. • Arsenic compounds in solution affected the shape of struvite crystallization products. - Abstract: Roxarsone (ROX) and arsanilic acid (ASA) have been extensively used as organoarsenic animal feed additives. Organic arsenic compounds and their degradation products, arsenate (As(V)) and arsenite (As(III)), exist in the effluent from anaerobic reactors treating animal manure contaminated by ROX or ASA with ammonium (NH{sub 4}{sup +}-N) and phosphate (PO{sub 4}{sup 3−}-P) together. Therefore, arsenic species in the effluent might be involved in the struvite formation process. In this study, the involvement of organic arsenic compounds and their degradation products As(V) and As(III) in the struvite crystallization was investigated. The results demonstrated that arsenic compounds did not substantially affect the PO{sub 4}{sup 3−}-P recovery, but confirmed the precipitation of arsenic during struvite formation. The precipitation of arsenic compounds in struvite was considerably affected by a solution pH from 9.0 to 11.0. With an increase in pH, the content of ASA and ROX in the precipitation decreased, but the contents of As(III) and As(V) increased. In addition, the arsenic content of As(V) in the struvite was higher than that of As(III), ASA and ROX. The results indicated that the struvite could be contaminated when the solution contains arsenic species, but that could be minimized by controlling the solution pH and maintaining anaerobic conditions during struvite formation.

  9. Degradation of fluoroquinolone antibiotics during ionizing radiation treatment and assessment of antibacterial activity, toxicity and biodegradability of the products

    Science.gov (United States)

    Tegze, Anna; Sági, Gyuri; Kovács, Krisztina; Homlok, Renáta; Tóth, Tünde; Mohácsi-Farkas, Csilla; Wojnárovits, László; Takács, Erzsébet

    2018-06-01

    This work aimed at investigating the ionizing radiation induced degradation of two fluoroquinolone antibiotics: norfloxacin and ciprofloxacin. At 0.1 mmol dm-3 concentration a low dose, 2 kGy was sufficient to degrade the initial molecules. However, despite of the high removal efficiency the degrees of both the mineralization and the oxidation were low, ∼10% and ∼25%, respectively. (The difference between the results obtained in norfloxacin and ciprofloxacin solutions was not statistically significant.) Broth microdilution tests carried out on Staphylococcus aureus evidenced removal of antibacterial activity in samples irradiated with 2 kGy. Acute toxicity determined on Vibrio fischeri bacteria showed increased toxicity at low doses indicating that the early degradation products were more toxic than the initial molecules. The results of biodegradation experiments performed in activated sludge have shown that the degradation products have become available to the metabolic processes of the microorganisms.

  10. Yeast Extract Promotes Cell Growth and Induces Production of Polyvinyl Alcohol-Degrading Enzymes

    Directory of Open Access Journals (Sweden)

    Min Li

    2011-01-01

    Full Text Available Polyvinyl alcohol-degrading enzymes (PVAases have a great potential in bio-desizing processes for its low environmental impact and low energy consumption. In this study, the effect of yeast extract on PVAases production was investigated. A strategy of four-point yeast extract addition was developed and applied to maximize cell growth and PVAases production. As a result, the maximum dry cell weight achieved was 1.48 g/L and the corresponding PVAases activity was 2.99 U/mL, which are 46.5% and 176.8% higher than the control, respectively. Applying this strategy in a 7 L fermentor increased PVAases activity to 3.41 U/mL. Three amino acids (glycine, serine, and tyrosine in yeast extract play a central role in the production of PVAases. These results suggest that the new strategy of four-point yeast extract addition could benefit PVAases production.

  11. Risk Factors for Postoperative Fibrinogen Deficiency after Surgical Removal of Intracranial Tumors.

    Directory of Open Access Journals (Sweden)

    Naili Wei

    Full Text Available Higher levels of fibrinogen, a critical element in hemostasis, are associated with increased postoperative survival rates, especially for patients with massive operative blood loss. Fibrinogen deficiency after surgical management of intracranial tumors may result in postoperative intracranial bleeding and severely worsen patient outcomes. However, no previous studies have systematically identified factors associated with postoperative fibrinogen deficiency. In this study, we retrospectively analyzed data from patients who underwent surgical removal of intracranial tumors in Beijing Tiantan Hospital date from 1/1/2013to12/31/2013. The present study found that patients with postoperative fibrinogen deficiency experienced more operative blood loss and a higher rate of postoperative intracranial hematoma, and they were given more blood transfusions, more plasma transfusions, and were administered larger doses of hemocoagulase compared with patients without postoperative fibrinogen deficiency. Likewise, patients with postoperative fibrinogen deficiency had poorer extended Glasgow Outcome Scale (GOSe, longer hospital stays, and greater hospital expenses than patients without postoperative fibrinogen deficiency. Further, we assessed a comprehensive set of risk factors associated with postoperative fibrinogen deficiency via multiple linear regression. We found that body mass index (BMI, the occurrence of postoperative intracranial hematoma, and administration of hemocoagulasewere positively associated with preoperative-to-postoperative plasma fibrinogen consumption; presenting with a malignant tumor was negatively associated with fibrinogen consumption. Contrary to what might be expected, intraoperative blood loss, the need for blood transfusion, and the need for plasma transfusion were not associated with plasma fibrinogen consumption. Considering our findings together, we concluded that postoperative fibrinogen deficiency is closely associated with

  12. Degradation of materials under conditions of thermochemical cycles for hydrogen production

    International Nuclear Information System (INIS)

    Klimas, S.J.; Searle, H.; Stolberg, L.

    2010-01-01

    A capsule method has been developed and employed to measure the degradation rates of selected materials under some of the most challenging conditions relevant to the sulphur-iodine (SI) and the copper-chlorine (Cu-Cl) thermochemical cycles for hydrogen production. The materials tested so far include metals and engineering alloys, structural and functional polymers, elastomers, carbon-based materials, ceramics and glasses, and composites. A number of characterization methods have been used to detect and quantify the degradation of the diverse materials and, when feasible, establish the mode of attack. The paper details the results of this ongoing experimental investigation. The investigation currently focuses on the copper-chlorine hybrid cycle. The environment representative of the conditions in the electrolyser subsystem was approximated with an aqueous solution of hydrochloric acid (13.6 mol/kg), copper(II) chloride (1.36 mol/kg) and copper(I) chloride (1.36 mol/kg) at 160°C and 2.5 MPa (absolute). The current (tentative) recommendations for the selection of the materials required for the construction of the electrolyser subsystem of the copper-chlorine hybrid cycle, and the associated rationale, are presented and discussed. (author)

  13. Natural attenuation of trichloroethene and its degradation products at a lake-shore site

    International Nuclear Information System (INIS)

    An, Youn-Joo; Kampbell, Donald H.; Weaver, James W.; Wilson, John T.; Jeong, Seung-Woo

    2004-01-01

    Subsurface contamination by trichloroethene (TCE) was detected at a Michigan National Priorities List (NPL) site in 1982. The TCE plume resulted from the disposal of spent solvent and other chemicals at an industrial facility located in the eastern shore of Lake Michigan. TCE degradation products of three dichloroethene (DCE) isomers, vinyl chloride (VC) and ethene were present. The plume was depleted of oxygen and methanogenic at certain depths. Transects of the plume were sampled by slotted auger borings the year after the TCE plume was first discovered. Water samples were also taken from lake sediments to a depth of 12 m about 100 m offshore. Later samples were taken along the shoreline of the lake with a hand-driven probe. Later in 1998 water was taken from sediments about 3-m from the shoreline. The average concentration of each chemical and net apparent base coefficient between appropriate pairs of transects between the lower site and lakeshore were calculated. Loss rates were then calculated from an analytical solution of the two-dimensional advective-dispersive-reactive transport equation. Net apparent rate coefficients and a set of coupled reaction rate equations were used to extract the apparent loss coefficients. This study showed the field evidence for natural attenuation of TCE. - Field investigation of TCE contamination at a lake-shore site indicates that TCE is anaerobically degrading under ambient conditions

  14. Recombinant protein production facility for fungal biomass-degrading enzymes using the yeast Pichia pastoris

    Directory of Open Access Journals (Sweden)

    Mireille eHaon

    2015-09-01

    Full Text Available Filamentous fungi are the predominant source of lignocellulolytic enzymes used in industry for the transformation of plant biomass into high-value molecules and biofuels. The rapidity with which new fungal genomic and post-genomic data are being produced is vastly outpacing functional studies. This underscores the critical need for developing platforms dedicated to the recombinant expression of enzymes lacking confident functional annotation, a prerequisite to their functional and structural study. In the last decade, the yeast Pichia pastoris has become increasingly popular as a host for the production of fungal biomass-degrading enzymes, and particularly carbohydrate-active enzymes (CAZymes. This study aimed at setting-up a platform to easily and quickly screen the extracellular expression of biomass-degrading enzymes in Pichia pastoris. We first used three fungal glycoside hydrolases that we previously expressed using the protocol devised by Invitrogen to try different modifications of the original protocol. Considering the gain in time and convenience provided by the new protocol, we used it as basis to set-up the facility and produce a suite of fungal CAZymes (glycoside hydrolases, carbohydrate esterases and auxiliary activity enzyme families out of which more than 70% were successfully expressed. The platform tasks range from gene cloning to automated protein purifications and activity tests, and is open to the CAZyme users’ community.

  15. Spatial variation in biodiversity, soil degradation and productivity in agricultural landscapes in the highlands of Tigray, northern Ethiopia

    NARCIS (Netherlands)

    Hadgu, K.M.; Rossing, W.A.H.; Kooistra, L.; Bruggen, van A.H.C.

    2009-01-01

    There is a growing concern about food security and sustainability of agricultural production in developing countries. However, there are limited attempts to quantify agro-biodiversity losses and relate these losses to soil degradation and crop productivity, particularly in Tigray, Ethiopia. In this

  16. Why do forest products become less available? A pan-tropical comparison of drivers of forest-resource degradation

    NARCIS (Netherlands)

    Hermans, Kathleen; Gerstner, Katharina; Geijzendorffer, Ilse R.; Herold, Martin; Seppelt, Ralf; Wunder, Sven

    2016-01-01

    Forest products provide an important source of income and wellbeing for rural smallholder communities across the tropics. Although tropical forest products frequently become over-exploited, only few studies explicitly address the dynamics of degradation in response to socio-economic drivers. Our

  17. Lifetime design strategy for binary geothermal plants considering degradation of geothermal resource productivity

    International Nuclear Information System (INIS)

    Budisulistyo, Denny; Wong, Choon Seng; Krumdieck, Susan

    2017-01-01

    Highlights: • A new lifetime strategy for binary plants considering thermal resource degradations. • The net present value and energy return on investment are selected as indicators. • The results indicate that the design based on point 2 has the best revenue. • Improving plant performance by parameters adjustments and adaptable designs. - Abstract: This work proposes a lifetime design strategy for binary geothermal plants which takes into account heat resource degradation. A model of the resource temperature and mass flow rate decline over a 30 year plant life is developed from a survey of data. The standard approach to optimise a basic subcritical cycle of n-pentane working fluid and select component sizes is used for the resource characteristics in years 1, 7, 15 and 30. The performances of the four plants designed for the different resource conditions are then simulated over the plant life to obtain the best lifetime design. The net present value and energy return on investment are selected as the measures of merit. The production history of a real geothermal well in the Taupo Volcanic Zone, New Zealand, is used as a case study for the lifetime design strategy. The results indicate that the operational parameters (such as mass flow rate of n-pentane, inlet turbine pressure and air mass flow rate) and plant performance (net power output) decrease over the whole plant life. The best lifetime plant design was at year 7 with partly degraded conditions. This condition has the highest net present value at USD 6,894,615 and energy return on investment at 4.15. Detailed thermo-economic analysis was carried out with the aim of improving the plant performance to overcome the resource degradation in two ways: operational parameters adjustments and adaptable designs. The results shows that mass flow rates of n-pentane and air cooling should be adjusted to maintain the performance over the plant life. The plant design can also be adapted by installing a recuperator

  18. [Determination of sennosides and degraded products in the process of sennoside metabolism by HPLC].

    Science.gov (United States)

    Sun, Yan; Li, Xuetuo; Yu, Xingju

    2004-01-01

    A method for the separation and determination of sennosides A and B and the main composition (sennidins A and B) in degraded products of sennosides by linear gradient high performance liquid chromatography has been developed. Separation conditions were as follows: column, a Spherisorb C18 column (250 mm x 4.6 mm i.d., 10 microm); column temperature, 40 degrees C; detection wavelength, 360 nm; mobile phase A, 1.25% acetic acid aqueous solution; mobile phase B, methanol; linear gradient, 100% A --> (20 min) 100% B. The method is effective, quick, accurate and reproducible. The satisfactory results show that this new method has certain practical values as an approach of real-time analysis in the process of sennoside metabolism.

  19. Procyanidin A2 and Its Degradation Products in Raw, Fermented, and Roasted Cocoa.

    Science.gov (United States)

    De Taeye, Cédric; Caullet, Gilles; Eyamo Evina, Victor Jos; Collin, Sonia

    2017-03-01

    Cocoa is known as an important source of flavan-3-ols, but their fate "from the bean to the bar" is not yet clear. Here, procyanidin A2 found in native cocoa beans (9-13 mg/kg) appeared partially epimerized into A2 E1 through fermentation, whereas a second epimer (A2 E2 ) emerged after roasting. At m/z 575, dehydrodiepicatechin A was revealed to be the major HPLC peak before fermentation, whereas F1, a marker of well-conducted fermentations, becomes the most intense after roasting. RP-HPLC-ESI(-)-HRMS/MS analysis performed on a procyanidin A2 model medium after 12 h at 90 °C revealed many more degradation products than those identified in fermented cocoa, including the last epimer of A2, A2 open structure intermediates (m/z 577), and oxidized A-type dimers (m/z 573).

  20. Gas production due to alpha particle degradation of polyethylene and polyvinylchloride

    International Nuclear Information System (INIS)

    Reed, D.T.; Hoh, J.; Emery, J.; Okajima, S.; Krause, T.

    1998-07-01

    Alpha particle degradation experiments were performed on polyethylene (PE) and polyvinylchloride (PVC) plastic samples typical of Westinghouse Savannah River Company (WSRC) transuranic (TRU) waste. This was done to evaluate the effects of sealing TRU waste during shipment. Experiments were conducted at three temperatures using low dose rates. Predominant products from both plastics were hydrogen, carbon dioxide, and various organic species, with the addition of hydrochloric acid from PVC. In all experiments, the total pressure decreased. Irradiation at 30 and 60 C and at various dose rates caused small changes for both plastics, but at 100 C coupled thermal-radiolytic effects included discoloration of the material as well as large differences in the gas phase composition

  1. Thermal degradation products of saccharides: effect study over Escherichia coli K12S cells

    International Nuclear Information System (INIS)

    Oliveira, R.L.B.C. de.

    1980-01-01

    The heat sterilization of reducing sugars, in the presence of phosphates, in alkaline pH, promotes caramelization reactions, yielding a serie of degradation products. Among them, aldehyde-like compounds seem to be responsible for the decrease in viability of DNA repair-proficient E.coli cells. A positive interaction between toxic solutions and UV-radiation effects is observed in these cells. The sinergism UV-toxic solutions varies in function of post-irradiation time and is dependent on UV dose, indicating the interference of repair processes in toxicity. The effect of non-reducing sugars on cellular viability is negligible, suggesting that toxic substances generation is linked to the presence of at least a free carbonyl group in sugar structure. All tested reducing sugars, when experimental conditions remained constant, have similarly shaped inactivation kinetics and their effects are equally inhibited by catalase activity, during incubation. (author)

  2. Coilin phosphomutants disrupt Cajal body formation, reduce cell proliferation and produce a distinct coilin degradation product.

    Directory of Open Access Journals (Sweden)

    Zunamys I Carrero

    Full Text Available Coilin is a nuclear phosphoprotein that accumulates in Cajal bodies (CBs. CBs participate in ribonucleoprotein and telomerase biogenesis, and are often found in cells with high transcriptional demands such as neuronal and cancer cells, but can also be observed less frequently in other cell types such as fibroblasts. Many proteins enriched within the CB are phosphorylated, but it is not clear what role this modification has on the activity of these proteins in the CB. Coilin is considered to be the CB marker protein and is essential for proper CB formation and composition in mammalian cells. In order to characterize the role of coilin phosphorylation on CB formation, we evaluated various coilin phosphomutants using transient expression. Additionally, we generated inducible coilin phosphomutant cell lines that, when used in combination with endogenous coilin knockdown, allow for the expression of the phosphomutants at physiological levels. Transient expression of all coilin phosphomutants except the phosphonull mutant (OFF significantly reduces proliferation. Interestingly, a stable cell line induced to express the coilin S489D phosphomutant displays nucleolar accumulation of the mutant and generates a N-terminal degradation product; neither of which is observed upon transient expression. A N-terminal degradation product and nucleolar localization are also observed in a stable cell line induced to express a coilin phosphonull mutant (OFF. The nucleolar localization of the S489D and OFF coilin mutants observed in the stable cell lines is decreased when endogenous coilin is reduced. Furthermore, all the phosphomutant cells lines show a significant reduction in CB formation when compared to wild-type after endogenous coilin knockdown. Cell proliferation studies on these lines reveal that only wild-type coilin and the OFF mutant are sufficient to rescue the reduction in proliferation associated with endogenous coilin depletion. These results emphasize

  3. Development of chromatographic methods for analysis of sulfamethoxazole, trimethoprim, their degradation products and preservatives in syrup

    Directory of Open Access Journals (Sweden)

    Perović Ivana

    2014-01-01

    Full Text Available In this paper the experimental conditions for optimal reversed-phase liquid chromatographic (RP-HPLC determination of sulfamethoxazole, trimethoprim and preservatives, as well as degradation products of sulfamethoxazole and trimethoprim in syrup were defined. The determination of active compounds and preservatives was carried out on Zorbax Eclipse XDB-C18, 150 mm × 4.6 mm, 5 μm particle size column, mobile phase flow rate was 1.5 mL min-1, and detection at 235 nm for the active compounds and 254 nm for preservatives. Mobile phase A consisted of 150 mL of acetonitrile, 850 mL of water and 1 mL of triethanolamine (pH 5.90 adjusted with diluted acetic acid, while mobile phase B was acetonitrile. The mobile phase ratio was defined by the gradient program. For the determination of degradation products Zorbax Eclipse Plus C18, 100 mm x 4.6 mm, 3.5 μm particle size column was used, the mobile phase flow rate was 0.5 mL min-1 and detection at 210 nm for 3,4,5-trimethoxybenzoic acid and 254 nm for sulfanilic acid and sulfanilamide. Mobile phase A was 50 mM potassium dihydrogenphosphate (pH 5.60 adjusted with a 0.5 mol L-1 potassium hydroxide, while mobile phase B was acetonitrile. The mobile phase ratio was defined by the gradient program. Through the validation of the developed methods their efficiency and reliability is confirmed and consequently the adequacy for the routine control.

  4. Occurrence of pesticides and some of their degradation products in waters in a Spanish wine region

    Science.gov (United States)

    Herrero-Hernández, E.; Andrades, M. S.; Álvarez-Martín, A.; Pose-Juan, E.; Rodríguez-Cruz, M. S.; Sánchez-Martín, M. J.

    2013-04-01

    SummaryA multi-residual analytical method based on solid phase extraction (SPE) followed by liquid chromatography-electrospray ionisation-mass spectrometry (LC-MS) was developed to monitor pesticides in natural waters. Fifty-eight compounds, including herbicides, fungicides, insecticides and some of their degradation products, were surveyed to evaluate the quality of natural waters throughout the wine-growing region of La Rioja (Rioja DOCa). Ninety-two sampling points were selected, including surface and ground waters that could be affected by agricultural activities covering the region's three sub-areas. Different parameters that may affect the efficiency of the SPE procedure were optimised (sorbent type, elution solvent and sample volume), and matrix-matched standards were used to eliminate the variable matrix effect and ensure good quantification. The developed method allows the determination of target compounds below the level established by the European Union for waters for human use with suitable precision (relative standard deviations lower than 18%) and accuracy (with recoveries over 61%). Forty compounds included in this study (six insecticides, 12 herbicides, 16 fungicides and six degradation products) were detected in one or more samples. The herbicides terbuthylazine, its metabolite desethyl terbuthylazine, fluometuron and ethofumesate and the fungicides pyrimethanil and tebuconazole were the compounds most frequently detected in water samples (present in more than 60% of the samples). Concentrations above 0.1 μg L-1 were detected for 37 of the compounds studied, and in several cases recorded values of over 18 μg L-1. The results reveal the presence of pesticides in most of the samples investigated. In 64% of groundwaters and 62% of surface waters, the sum of compounds detected was higher than 0.5 μg L-1 (the limit established by EU legislation for the sum of all pesticides detected in waters for human use).

  5. Spectroscopic detection of a ubiquitous dissolved pigment degradation product in subsurface waters of the global ocean

    Directory of Open Access Journals (Sweden)

    R. Röttgers

    2012-07-01

    Full Text Available Measurements of light absorption by chromophoric dissolved organic matter (CDOM from subsurface waters of the tropical Atlantic and Pacific Oceans showed a distinct absorption shoulder at 410–415 nm. This indicates an underlying absorption of a pigment whose occurrence is partly correlated with the apparent oxygen utilization (AOU but also found in the deep chlorophyll maximum. A similar absorption maximum at ~415 nm was also found in the particulate fraction of samples taken below the surface mixing layer and is usually attributed to absorption by respiratory pigments of heterotrophic unicellular organisms. In our study, fluorescence measurements of pre-concentrated dissolved organic matter (DOM samples from 200–6000 m confirmed a previous study suggesting that the absorption at ~415 nm was related to fluorescence at 650 nm in the oxygen minimum zone. The absorption characteristics of this fluorophore was examined by fluorescence emission/excitation analysis and showed a clear excitation maximum at 415 nm that could be linked to the absorption shoulder in the CDOM spectra. The spectral characteristics of the substance found in the dissolved and particulate fraction did not match with those of chlorophyll a degradation products (as found in a sample from the sea surface but can be explained by the occurrence of porphyrin pigments from either heterotrophs or autotrophs. Combining the observations of the fluorescence and the 415-nm absorption shoulder suggests that there are high concentrations of a pigment degradation product in subsurface DOM of all major oceans. Most pronouncedly we found this signal in the deep chlorophyll maximum and the oxygen minimum zone of tropical regions. The origin, chemical nature, turnover rate, and fate of this molecule is so far unknown.

  6. Heterologous Expression of Plant Cell Wall Degrading Enzymes for Effective Production of Cellulosic Biofuels

    Science.gov (United States)

    Jung, Sang-Kyu; Parisutham, Vinuselvi; Jeong, Seong Hun; Lee, Sung Kuk

    2012-01-01

    A major technical challenge in the cost-effective production of cellulosic biofuel is the need to lower the cost of plant cell wall degrading enzymes (PCDE), which is required for the production of sugars from biomass. Several competitive, low-cost technologies have been developed to produce PCDE in different host organisms such as Escherichia coli, Zymomonas mobilis, and plant. Selection of an ideal host organism is very important, because each host organism has its own unique features. Synthetic biology-aided tools enable heterologous expression of PCDE in recombinant E. coli or Z. mobilis and allow successful consolidated bioprocessing (CBP) in these microorganisms. In-planta expression provides an opportunity to simplify the process of enzyme production and plant biomass processing and leads to self-deconstruction of plant cell walls. Although the future of currently available technologies is difficult to predict, a complete and viable platform will most likely be available through the integration of the existing approaches with the development of breakthrough technologies. PMID:22911272

  7. Degradation of vitamin C in a product made from mango (Mangifera indica L. and whey protein

    Directory of Open Access Journals (Sweden)

    Fernando Alonso Mendoza-Corvis

    2017-01-01

    Full Text Available This study aimed to determine the kinetics of vitamin C degradation in a product made from mango pulp (Mangifera indica L. and whey protein powder, in order to determine the effect of temperature on its conservation and further evaluate the behavior of the L*, a*, b* and the total color difference (ΔE in the powder product. Vitamin C was determined by the aoac 967.21/90 method using 2,6-dichlorophenol indophenol, and the color was quantified with a HunterLab Color Flex EZ colorimeter. Vitamin C showed greater stability in the powder product ResumoEsta pesquisa procurou determinar a cinética de degradação da vitamina C em um produto em pó elaborado a base de polpa de manga (Mangifera indica L. var. Hilacha e lactisoro, com o fim de conhecer o efeito da temperatura na sua conservação e ademais avaliar o comportamento dos parâmetros L*, a*, b* e a diferença total da cor (ΔE no produto. A vitamina C determinou-se mediante o método aoac 967.21/90, com 2,6-diclorofenol indofe-nol; enquanto que a cor se quantificou com um colorímetro cor Flex EZ marca HunterLab. A vitamina C exibiu maior estabilidade no produto em pó armazenado a uma temperatura de 4 °C, stored at 4 °C with a concentration at the end of the eighth sampling week of 13.94 ± 1.2 mg/10 0 g-1 sample and showing a first order degradation kinetics with k1 values of 0.014 and 0.041 mg/100 g/week at temperatures of 4 °C and 28 °C, respec-tively. The greatest variations in color occurred in samples stored at 28 °C, indicating the influence of the temperature change on the product compo-nents. In addition, L*, a* and b* parameters were less affected under storage temperature of 4 °C, and their values correspond to a second degree polynomial.

  8. Studies on the Conditioning Methods of Spent Tri-butyl Phosphate/Kerosene and its Degradation Product in Different Matrices

    International Nuclear Information System (INIS)

    El-Dessouky, M.I.; El-sourougy, M.R.; Abed El-Aziz, M.M.; Aly, H.F.

    1999-01-01

    The destruction of spent TBP/Kerosene (odourless Kerosene (OK)) with potassium permanganate have been investigated. Comparative studies on the immobilization of spent TBP/Kerosene and its degradation product into different matrices have been carried out. The matrices used include, ordinary Portland cement, silica fume, treated fly ash, epoxy resin and cement mixed with epoxy resin.The different factors affecting solidified waste forms such as, compressive strength, water resistance, thermal stability, chemical resistance, radiological stability and leachability have been investigated. It was found that, epoxy resin and cement mixed with 5,10,20, and 50% of epoxy resin enhance the compressive strength of the solidified waste forms with spent TBP/OK more than that obtained from degradation products. The leaching rates of 152 and 154 Eu and 181 Hf from waste forms containing TBP/OK was found lower than that with degradation product

  9. Time-dependent association between platelet-bound fibrinogen and the Triton X-100 insoluble cytoskeleton

    International Nuclear Information System (INIS)

    Peerschke, E.I.

    1991-01-01

    Previous studies indicated a correlation between the formation of EDTA-resistant (irreversible) platelet-fibrinogen interactions and platelet cytoskeleton formation. The present study explored the direct association of membrane-bound fibrinogen with the Triton X-100 insoluble cytoskeleton of aspirin-treated, gel-filtered platelets, activated but not aggregated with 20 mumol/L adenosine diphosphate (ADP) or 150 mU/mL human thrombin (THR) when bound fibrinogen had become resistant to dissociation by EDTA. Conversion of exogenous 125I-fibrinogen to fibrin was prevented by adding Gly-Pro-Arg and neutralizing THR with hirudin before initiating binding studies. After 60 minutes at 22 degrees C, the cytoskeleton of ADP-treated platelets contained 20% +/- 12% (mean +/- SD, n = 14) of membrane-bound 125I-fibrinogen, representing 10% to 50% of EDTA-resistant fibrinogen binding. The THR-activated cytoskeleton contained 45% +/- 15% of platelet bound fibrinogen, comprising 80% to 100% of EDTA-resistant fibrinogen binding. 125I-fibrinogen was not recovered with platelet cytoskeletons if binding was inhibited by the RGDS peptide, excess unlabeled fibrinogen, or disruption of the glycoprotein (GP) IIb-IIIa complex by EDTA-treatment. Both development of EDTA-resistant fibrinogen binding and fibrinogen association with the cytoskeleton were time dependent and reached maxima 45 to 60 minutes after fibrinogen binding to stimulated platelets. Although a larger cytoskeleton formed after platelet stimulation with thrombin as compared with ADP, no change in cytoskeleton composition was noted with development of EDTA-resistant fibrinogen binding

  10. Analysis of neem oils by LC-MS and degradation kinetics of azadirachtin-A in a controlled environment. Characterization of degradation products by HPLC-MS-MS.

    Science.gov (United States)

    Barrek, Sami; Paisse, Olivier; Grenier-Loustalot, Marie-Florence

    2004-02-01

    Since it was first isolated, the oil extracted from seeds of neem (Azadirachtin indica A juss) has been extensively studied in terms of its efficacy as an insecticide. Several industrial formulations are produced as emulsifiable solutions containing a stated titer of the active ingredient azadirachtin-A (AZ-A). The work reported here is the characterization of a formulation of this insecticide marketed under the name of Neem-azal T/S and kinetic studies of the major active ingredient of this formulation. We initially performed liquid-liquid extraction to isolate the neem oil from other ingredients in the commercial mixture. This was followed by a purification using flash chromatography and semi-preparative chromatography, leading to (13)C NMR identification of structures such as azadirachtin-A, azadirachtin-B, and azadirachtin-H. The neem extract was also characterized by HPLC-MS using two ionization sources, APCI (atmospheric pressure chemical ionization) and ESI (electrospray ionization) in positive and negative ion modes of detection. This led to the identification of other compounds present in the extract-azadirachtin-D, azadirachtin-I, deacetylnimbin, deacetylsalannin, nimbin, and salannin. The comparative study of data gathered by use of the two ionization sources is discussed and shows that the ESI source enables the largest number of structures to be identified. In a second part, kinetic changes in the main product (AZ-A) were studied under precise conditions of pH (2, 4, 6, and 8), temperature (40 to 70 degrees C), and light (UV, dark room and in daylight). This enabled us to determine the degradation kinetics of the product (AZ-A) over time. The activation energy of the molecule (75+/-9 kJ mol(-1)) was determined by examining thermal stability in the range 40 to 70 degrees C. The degradation products of this compound were identified by use of HPLC-MS and HPLC-MS-MS. The results enabled proposal of a chemical degradation reaction route for AZ-A under

  11. Why do forest products become less available? A pan-tropical comparison of drivers of forest-resource degradation

    OpenAIRE

    Hermans, Kathleen; Gerstner, Katharina; Geijzendorffer, Ilse R.; Herold, Martin; Seppelt, Ralf; Wunder, Sven

    2016-01-01

    Forest products provide an important source of income and wellbeing for rural smallholder communities across the tropics. Although tropical forest products frequently become over-exploited, only few studies explicitly address the dynamics of degradation in response to socio-economic drivers. Our study addresses this gap by analyzing the factors driving changes in tropical forest products in the perception of rural smallholder communities. Using the poverty and environment network global datas...

  12. Optimization of liquid-state fermentation conditions for the glyphosate degradation enzyme production of strain Aspergillus oryzae by ultraviolet mutagenesis.

    Science.gov (United States)

    Fu, Gui-Ming; Li, Ru-Yi; Li, Kai-Min; Hu, Ming; Yuan, Xiao-Qiang; Li, Bin; Wang, Feng-Xue; Liu, Cheng-Mei; Wan, Yin

    2016-11-16

    This study aimed to obtain strains with high glyphosate-degrading ability and improve the ability of glyphosate degradation enzyme by the optimization of fermentation conditions. Spore from Aspergillus oryzae A-F02 was subjected to ultraviolet mutagenesis. Single-factor experiment and response surface methodology were used to optimize glyphosate degradation enzyme production from mutant strain by liquid-state fermentation. Four mutant strains were obtained and named as FUJX 001, FUJX 002, FUJX 003, and FUJX 004, in which FUJX 001 gave the highest total enzyme activity. Starch concentration at 0.56%, GP concentration at 1,370 mg/l, initial pH at 6.8, and temperature at 30°C were the optimum conditions for the improved glyphosate degradation endoenzyme production of A. oryzae FUJX 001. Under these conditions, the experimental endoenzyme activity was 784.15 U/100 ml fermentation liquor. The result (784.15 U/100 ml fermentation liquor) was approximately 14-fold higher than that of the original strain. The result highlights the potential of glyphosate degradation enzyme to degrade glyphosate.

  13. The Inhibitory Effect of Natural Products on Protein Fibrillation May Be Caused by Degradation Products – A Study Using Aloin and Insulin

    DEFF Research Database (Denmark)

    Lobbens, Eva Stephanie; Foderà, Vito; Nyberg, Nils

    2016-01-01

    , high-performance liquid chromatography and transmission electron microscopy it was found that a degradation product of aloin, formed over weeks of storage, was able to significantly inhibit insulin fibrillation. The activity of the stored aloin was significantly reduced in the presence of small amounts...... of sodium azide or ascorbic acid, suggesting the active compound to be an oxidation product. A high-performance liquid chromatography method and a liquid chromatography-mass spectrometry method were developed to investigate the degradation products in the aged aloin solution. We found that the major...

  14. HS-SPME-GC-MS analysis of antioxidant degradation products migrating to drinking water from PE materials and PEX pipes

    DEFF Research Database (Denmark)

    Lützhøft, Hans-Christian Holten; Waul, Christopher Kevin; Andersen, Henrik Rasmus

    2013-01-01

    degradation products may leach and enter drinking water. The aim of this investigation was to develop a method for measuring these degradation products with a performance meeting the drinking water quality criteria of 20 µg L−1. Using headspace solid phase microextraction coupled to a gas chromatograph......Polyethylene (PE) and cross-linked polyethylene (PEX) pipes are frequently used in water supply systems. Such pipes contain added antioxidants with phenolic structures, e.g. Irgafos 168, Irganox 1010 and 1076, in order to improve durability. However, phenol, ketone and quinone antioxidant...

  15. Production of pyrite nanoparticles using high energy planetary ball milling for sonocatalytic degradation of sulfasalazine.

    Science.gov (United States)

    Khataee, Alireza; Fathinia, Siavash; Fathinia, Mehrangiz

    2017-01-01

    Sonocatalytic performance of pyrite nanoparticles was evaluated by the degradation of sulfasalazine (SSZ). Pyrite nanoparticles were produced via a high energy mechanical ball milling (MBM) in different processing time from 2h to 6h, in the constant milling speed of 320rpm. X-ray diffraction (XRD), scanning electron microscopy (SEM) coupled with energy dispersive X-ray (EDX), Fourier transform infrared spectroscopy (FT-IR) analysis and Brunauer-Emmett-Teller (BET) confirmed the production of pyrite nanoparticles during 6h of ball milling with the average size distribution of 20-80nm. The effects of various operational parameters including pH value, catalyst amount (mg/L), SSZ concentration (mg/L), ultrasonic frequency (kHz) and reaction time on the SSZ removal efficiency were examined. The obtained results showed that the maximum removal efficiency of 97.00% was obtained at pH value of 4, catalyst dosage of 0.5g/L, SSZ concentration of 10mg/L and reaction time of 30min. Experimental results demonstrated that the kinetic of the degradation process can be demonstrated using Langmuir-Hinshelwood (L-H) kinetic model. The effect of different inorganic ions such as Cl - , CO 3 2- and SO 4 2- was investigated on the L-H reaction rate (k r ) and adsorption (K s ) constants. Results showed that the presence of the mentioned ions significantly influenced the L-H constants. The impact of ethanol as a OH radical scavenger and some enhancers including H 2 O 2 and K 2 S 2 O 8 was investigated on the SSZ removal efficiency. Accordingly, the presence of ethanol suppressed SSZ degradation due to the quenching of OH radicals and the addition of K 2 S 2 O 8 and H 2 O 2 increased the SSZ removal efficiency, due to the formation of SO 4 - and additional OH radicals, respectively. Under the identical conditions of operating parameters, pyrite nanoparticles maintained their catalytic activity during four consecutive runs. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Microbiological degradation of products for detoxication of chemical weapons and organophosphoric herbicides

    Energy Technology Data Exchange (ETDEWEB)

    Zharikov, G.A. [Research Center for Toxicology and Hygienic Regulation of Biopreparations (RCT and HRB), Serpukhov, Moscow region (Russian Federation); Starovoitov, I.I.; Ermakova, I.T.; Shushkova, T.V. [Inst. for Biochemistry and Physiology of Microorganisms, Pushchino, Moscow region (Russian Federation)

    2003-07-01

    Wide and uncontrolled application of some pesticides, herbicides, and insecticides in agriculture has led to intensive contamination of the environment by phosphoroorganic compounds (PO{sub s}). Development of ecologically sound technologies for bioremediation is an urgent task at cleanup of territories contaminated as a result of implementation of chemical weapons destruction program (toxic agents - TA). Presently, the greatest problem when cleaning the environment is decomposition of PO{sub s} with hardly hydrolyzed direct N-D bond. The bond is resistant to photolysis, chemical hydrolysis, heat degradation and it can be found in many natural and anthropogenic PO{sub s} (methylphosphoric acid (MPA), glyphosate or round-up, phosphonolipids, methylphosphonylfloride, etc.). The goal of the present work is search and selection of highly efficient strains of microorganisms-degraders, hydrolyzing C-P bond in phosphoroorganic compounds for further development of technology for bioremediation of contaminated soils. Microorganisms, capable of hydrolysis of PO{sub s} with direct C-P bond, were isolated from soil samples taken at territories, contaminated by TA detoxication products (sarin, soman), as well as from rice fields subjected to long-term treatment by herbicide glyphosate. Activity of isolated microorganism strains was assessed by the amount of produced biomass as well as by specific growth velocity on the media with mentioned above sources of phosphorus and glutamate as a carbon source. As a result, most active bacteria strains, growing with maximal specific velocity 0.12-0.15 hour{sup -1} and producing biomass 2.0-2.5 g/l were selected. (orig.)

  17. Accumulated polymer degradation products as effector molecules in cytotoxicity of polymeric nanoparticles.

    Science.gov (United States)

    Singh, Raman Preet; Ramarao, Poduri

    2013-11-01

    Polymeric nanoparticles (PNPs) are a promising platform for drug, gene, and vaccine delivery. Although generally regarded as safe, the toxicity of PNPs is not well documented. The present study investigated in vitro toxicity of poly-ε-caprolactone, poly(DL-lactic acid), poly(lactide-cocaprolactone), and poly(lactide-co-glycide) NPs and possible mechanism of toxicity. The concentration-dependent effect of PNPs on cell viability was determined in a macrophage (RAW 264.7), hepatocyte (Hep G2), lung epithelial (A549), kidney epithelial (A498), and neuronal (Neuro 2A) cell lines. PNPs show toxicity at high concentrations in all cell lines. PNPs were efficiently internalized by RAW 264.7 cells and stimulated reactive oxygen species and tumor necrosis factor-alpha production. However, reactive nitrogen species and interleukin-6 production as well as lysosomal and mitochondrial stability remained unaffected. The intracellular degradation of PNPs was determined by monitoring changes in osmolality of culture medium and a novel fluorescence recovery after quenching assay. Cell death showed a good correlation with osmolality of culture medium suggesting the role of increased osmolality in cell death.

  18. Mass production of bacterial communities adapted to the degradation of volatile organic compounds (TEX).

    Science.gov (United States)

    Lapertot, Miléna; Seignez, Chantal; Ebrahimi, Sirous; Delorme, Sandrine; Peringer, Paul

    2007-06-01

    This study focuses on the mass cultivation of bacteria adapted to the degradation of a mixture composed of toluene, ethylbenzene, o-, m- and p-xylenes (TEX). For the cultivation process Substrate Pulse Batch (SPB) technique was adapted under well-automated conditions. The key parameters to be monitored were handled by LabVIEW software including, temperature, pH, dissolved oxygen and turbidity. Other parameters, such as biomass, ammonium or residual substrate concentrations needed offline measurements. SPB technique has been successfully tested experimentally on TEX. The overall behavior of the mixed bacterial population was observed and discussed along the cultivation process. Carbon and nitrogen limitations were shown to affect the integrity of the bacterial cells as well as their production of exopolymeric substances (EPS). Average productivity and yield values successfully reached the industrial specifications, which were 0.45 kg(DW)m(-3) d(-1) and 0.59 g(DW)g (C) (-1) , respectively. Accuracy and reproducibility of the obtained results present the controlled SPB process as a feasible technique.

  19. Diagnostic value of radioactive fibrinogen and rheography in phlebitis

    International Nuclear Information System (INIS)

    Serradimigni, A.; Bory, M.; Djiane, P.; Sacerdote, P.; Mathieu, P.; Leonetti, J.; Egre, A.

    1975-01-01

    In 212 patients the diagnostic value of radioactive fibrinogen and rheography in deep venous thrombosis in the leg was studied by comparing the results from these two methods with phlebography. Radioactive fibrinogen seems the better means of diagnosis in early distal phlebitis. However, the method is expensive, the radioactive substance can only be manipulated in certain specialized centers, and is useless in the presence of hematoma. Rheography is less expensive, more easily manipulated, yet less sensitive as only proximal phlebitis can be detected especially when completely occlusive. In addition, active patient cooperation is necessary. The time needed to realize the two methods is a major obstacle; however, they can be fruitful if integrated into a specialized department for the diagnosis and treatment of thrombo-embolic disease [fr

  20. The role of fibrinogen and haemostatic assessment in postpartum haemorrhage

    DEFF Research Database (Denmark)

    Wikkelsø, Anne Juul

    2015-01-01

    Pregnancy is a state of hypercoagulobility that might be an evolutionary way of protecting parturients from exsanguination following child birth. Observational studies suggest an association between a low level of fibrinogen (coagulation factor I) at the start of postpartum haemorrhage (PPH....... Paper III was based on two national Danish registries evaluating the predictability of postpartum blood transfusion. Prediction was found difficult. However, retained placental parts seemed to be the strongest predictor. Since this diagnosis is made very late and often in association with the onset...... describes the protocol for a RCT of early fibrinogen supplementation in women with severe postpartum haemorrhage. Several practical, ethical and trial management challenges need to be addressed when conducting independent clinical research involving parturients with severe bleeding, placebo...

  1. Preparation of 99 sup(m)Tc labeled fibrinogen

    International Nuclear Information System (INIS)

    Almeida, M.A.T.M. de; Silva, C.P.G. da.

    1984-01-01

    A simple method for the preparation of 99 sup(m) TC labelled Fibrinogen using stannous chloride as reducing agent of 99 sup(m) TcO- 4 ion is presented. A sample of 20 mg of Fibrinogen is dissolved in 2 ml of buffer carbonate (pH=8) and 0.3 ml stannous chloride 0.2% is added. A sterile solution of sodium pertechnetate 99 sup(m) Tc eluted from a Mo-Tc generator is immediately added. The mixture rests for 30 minutes and after this period, the obtained yield is about 70%. The lyophilized kits also presented a yield of 70%, being therefore suitable for medical applications. (Author) [pt

  2. End-to-end gene fusions and their impact on the production of multifunctional biomass degrading enzymes

    International Nuclear Information System (INIS)

    Rizk, Mazen; Antranikian, Garabed; Elleuche, Skander

    2012-01-01

    Highlights: ► Multifunctional enzymes offer an interesting approach for biomass degradation. ► Size and conformation of separate constructs play a role in the effectiveness of chimeras. ► A connecting linker allows for maximal flexibility and increased thermostability. ► Genes with functional similarities are the best choice for fusion candidates. -- Abstract: The reduction of fossil fuels, coupled with its increase in price, has made the search for alternative energy resources more plausible. One of the topics gaining fast interest is the utilization of lignocellulose, the main component of plants. Its primary constituents, cellulose and hemicellulose, can be degraded by a series of enzymes present in microorganisms, into simple sugars, later used for bioethanol production. Thermophilic bacteria have proven to be an interesting source of enzymes required for hydrolysis since they can withstand high and denaturing temperatures, which are usually required for processes involving biomass degradation. However, the cost associated with the whole enzymatic process is staggering. A solution for cost effective and highly active production is through the construction of multifunctional enzyme complexes harboring the function of more than one enzyme needed for the hydrolysis process. There are various strategies for the degradation of complex biomass ranging from the regulation of the enzymes involved, to cellulosomes, and proteins harboring more than one enzymatic activity. In this review, the construction of multifunctional biomass degrading enzymes through end-to-end gene fusions, and its impact on production and activity by choosing the enzymes and linkers is assessed.

  3. Clotting of mammalian fibrinogens by papain: A re-examination

    OpenAIRE

    Doolittle, RF

    2014-01-01

    © 2014 American Chemical Society. Papain has long been known to cause the gelation of mammalian fibrinogens. It has also been reported that papain-fibrin is insoluble in dispersing solvents like strong urea or sodium bromide solutions, similar to what is observed with thrombin-generated clots in the presence of factor XIIIa and calcium. In those old studies, both the gelation and subsequent clot stabilization were attributed to papain, although the possibility that the second step might be du...

  4. Plasma circulating fibrinogen stability and moderate beer consumption.

    Science.gov (United States)

    Gorinstein, Shela; Caspi, Abraham; Zemser, Marina; Libman, Imanuel; Goshev, Ivan; Trakhtenberg, Simon

    2003-12-01

    MODERATE BEER CONSUMPTION (MBC) IS CARDIOPROTECTIVE: it positively influences plasma lipid levels and plasma antioxidant activity in beer-consuming individuals. The connection between MBC and blood coagulation is not clearly defined. Forty-two volunteers were equally divided into experimental (EG) and control (CG) groups following coronary bypass surgery. For 30 consecutive days, only patients of the EG consumed 330 mL of beer per day (about 20 g of alcohol). A comprehensive clinical investigation of 42 patients was done. Blood samples were collected before and after the investigation for a wide range of laboratory tests. The plasma fibrinogen was denatured with 8 M urea and intrinsic fluorescence (IF), hydrophobicity and differential scanning calorimetry (DSC) were used to reveal possible qualitative changes. After 30 days of moderate beer consumption, positive changes in the plasma lipid levels, plasma anticoagulant and plasma antioxidant activities were registered in patients of the EG group. In 17 out of 21 patients of the same group, differences in plasma circulating fibrinogen's (PCF), secondary and tertiary structures were found. The stability of fibrinogen, expressed in thermodynamic parameters, has shown that the loosening of the structure takes place under ethanol and urea denaturation. Also fluorescence stability of PCF was decreased. No changes in the lipid levels, anticoagulant and antioxidant activity or changes in PCF were detected in patients of CG. In conclusion, for the first time after a short term of moderate beer consumption some qualitative changes in the plasma circulating fibrinogen were detected: differences in the emission peak response, fluorescence intensity and all thermodynamic data. Together, with the decrease in the PCF concentration it may lead to an elevation of the blood anticoagulant activity.

  5. Fibrinogen-binding and platelet-aggregation activities of a Lactobacillus salivarius septicaemia isolate are mediated by a novel fibrinogen-binding protein.

    Science.gov (United States)

    Collins, James; van Pijkeren, Jan-Peter; Svensson, Lisbeth; Claesson, Marcus J; Sturme, Mark; Li, Yin; Cooney, Jakki C; van Sinderen, Douwe; Walker, Alan W; Parkhill, Julian; Shannon, Oonagh; O'Toole, Paul W

    2012-09-01

    The marketplace for probiotic foods is burgeoning, measured in billions of euro per annum. It is imperative, however, that all bacterial strains are fully assessed for human safety. The ability to bind fibrinogen is considered a potential pathogenicity trait that can lead to platelet aggregation, serious medical complications, and in some instances, death. Here we examined strains from species frequently used as probiotics for their ability to bind human fibrinogen. Only one strain (CCUG 47825), a Lactobacillus salivarius isolate from a case of septicaemia, was found to strongly adhere to fibrinogen. Furthermore, this strain was found to aggregate human platelets at a level comparable to the human pathogen Staphylococcus aureus. By sequencing the genome of CCUG 47825, we were able to identify candidate genes responsible for fibrinogen binding. Complementing the genetic analysis with traditional molecular microbiological techniques enabled the identification of the novel fibrinogen receptor, CCUG_2371. Although only strain CCUG 47825 bound fibrinogen under laboratory conditions, homologues of the novel fibrinogen binding gene CCUG_2371 are widespread among L. salivarius strains, maintaining their potential to bind fibrinogen if expressed. We highlight the fact that without a full genetic analysis of strains for human consumption, potential pathogenicity traits may go undetected. © 2012 Blackwell Publishing Ltd.

  6. Laser-assisted fibrinogen bonding of umbilical vein grafts.

    Science.gov (United States)

    Oz, M C; Williams, M R; Souza, J E; Dardik, H; Treat, M R; Bass, L S; Nowygrod, R

    1993-06-01

    Despite success with autologous tissue welding, laser welding of synthetic vascular prostheses has not been possible. The graft material appears inert and fails to allow the collagen breakdown and electrostatic bonding that results in tissue welding. To develop a laser welding system for graft material, we repaired glutaraldehyde-tanned human umbilical cord vein graft incisions using laser-assisted fibrinogen bonding (LAFB) technology. Modified umbilical vein graft was incised transversely (1.2 cm). Incisions were repaired using sutures, laser energy alone, or LAFB. For LAFB, indocyanine green dye was mixed with human fibrinogen and the compound applied with forceps onto the weld site prior to exposure to 808 nm diode laser energy (power density 4.8 W/cm 2). Bursting pressures for sutured repairs (126.6 +/- 23.4 mm Hg) were similar to LAFB anastomoses (111.6 +/- 55.0 mm Hg). No evidence of collateral thermal injury to the graft material was noted. In vivo evaluation of umbilical graft bonding with canine arteries demonstrates that LAFB can reliably reinforce sutured anastomoses. The described system for bonding graft material with laser exposed fibrinogen may allow creation or reinforcement of vascular anastomoses in procedures where use of autologous tissue is not feasible.

  7. Clinical applications of Ga-67 DFO-DAS-fibrinogen

    International Nuclear Information System (INIS)

    Iio, Masahiro; Ohtake, Tohru; Nishikawa, Junichi; Watanabe, Toshiaki; Yasuhara, Hiroshi; Ohashi, Shigenobu; Takayama, Yutaka; Tada, Yusuke; Shirakawa, Motoaki

    1987-01-01

    Ga-67 DFO-DAS-fibrinogen scanning was performed in 15 patients to detect fresh arterial thrombus. Seven patients were preoperative cases of aortic aneurysm and eight were postoperative cases of graft bypass. Scanning was performed on the first and second days after the injection. Nine of 13 grafts in eight cases were visualized by 67 Ga-DFO-DAS-fibrinogen scan. Velour Dacron grafts were more strongly visualized compared with woven Dacron or Goatex. In three patients with aortic aneurysm in whom fresh thrombus was identified by operative findings, arterial thrombus was clearly visualized by 67 Ga-DFO-DAS-fibrinogen scan, whereas in three other patients with aortic aneurysm, thrombus was not visualized, although it was identified by other examinations. In one case, a marked accumulation was observed in the abdominal aorta, although no arterial thrombus was found at operation. This was thought to be an accumulation in a blood pool because it decreased on the second day. We think it important to observe the relative changes of accumulation. (author)

  8. Fibrinogen titer and glycemic status in women using contraceptives

    International Nuclear Information System (INIS)

    Syed, S.; Qureshi, M.A.

    2002-01-01

    Objective: To assess the coagulation and glycemic status in Pakistani women using contraceptives. Design: The study was conducted prospectively on 70 women and compared with 10 age-matched controls. Place and Duration of Study: The study was conducted at Karachi. Period of study was 18 month. Subjects and Methods: Eighty women aged between 20-45 years selected from low socioeconomic class and poor family background were categorized in control (n=10) and oral and injectable contraceptive users (n = 70). The contraceptives used were tablet Lofemenal, injection Norigest and Norplant implant. Their blood was tested for fibrinogen titer and random blood glucose. Results: There was no appreciable difference either in fibrinogen titer or plasma glucose levels in injectable users as compared to controls, but increased incidence of high fibrinogen titer and borderline blood glucose was observed in oral contraceptive users 25% and 20 % respectively. Conclusion: It was concluded that long-term use of oral contraceptives (> 3 years) might increase the thrombotic tendency and elevate the plasma glucose levels especially in women above 30 years of age. (author)

  9. Rapid and Simultaneous Determination of Acetylsalicylic Acid, Paracetamol, and Their Degradation and Toxic Impurity Products by HPLC in Pharmaceutical Dosage Forms

    OpenAIRE

    AKAY, Cemal

    2008-01-01

    Aims: Determinations of drug impurity and drug degradation products are very important from both pharmacological and toxicological perspectives. Establishment of monitoring methods for impurities and degradation products during pharmaceutical development is necessary because of their potential toxicity. The aim of this study was to develop a rapid and simultaneous determination method for paracetamol and acetylsalicylic acid (ACA) and their degradation and toxic impurity products by high perf...

  10. Pseudomonas pseudoalcaligenes CECT5344, a cyanide-degrading bacterium with by-product (polyhydroxyalkanoates) formation capacity.

    Science.gov (United States)

    Manso Cobos, Isabel; Ibáñez García, María Isabel; de la Peña Moreno, Fernando; Sáez Melero, Lara Paloma; Luque-Almagro, Víctor Manuel; Castillo Rodríguez, Francisco; Roldán Ruiz, María Dolores; Prieto Jiménez, María Auxiliadora; Moreno Vivián, Conrado

    2015-06-10

    Cyanide is one of the most toxic chemicals produced by anthropogenic activities like mining and jewelry industries, which generate wastewater residues with high concentrations of this compound. Pseudomonas pseudoalcaligenes CECT5344 is a model microorganism to be used in detoxification of industrial wastewaters containing not only free cyanide (CN(-)) but also cyano-derivatives, such as cyanate, nitriles and metal-cyanide complexes. Previous in silico analyses suggested the existence of genes putatively involved in metabolism of short chain length (scl-) and medium chain length (mcl-) polyhydroxyalkanoates (PHAs) located in three different clusters in the genome of this bacterium. PHAs are polyesters considered as an alternative of petroleum-based plastics. Strategies to optimize the bioremediation process in terms of reducing the cost of the production medium are required. In this work, a biological treatment of the jewelry industry cyanide-rich wastewater coupled to PHAs production as by-product has been considered. The functionality of the pha genes from P. pseudoalcaligenes CECT5344 has been demonstrated. Mutant strains defective in each proposed PHA synthases coding genes (Mpha(-), deleted in putative mcl-PHA synthases; Spha(-), deleted in the putative scl-PHA synthase) were generated. The accumulation and monomer composition of scl- or mcl-PHAs in wild type and mutant strains were confirmed by gas chromatography-mass spectrometry (GC-MS). The production of PHAs as by-product while degrading cyanide from the jewelry industry wastewater was analyzed in batch reactor in each strain. The wild type and the mutant strains grew at similar rates when using octanoate as the carbon source and cyanide as the sole nitrogen source. When cyanide was depleted from the medium, both scl-PHAs and mcl-PHAs were detected in the wild-type strain, whereas scl-PHAs or mcl-PHAs were accumulated in Mpha(-) and Spha(-), respectively. The scl-PHAs were identified as homopolymers of 3

  11. Fibrinogen estimates are influenced by methods of measurement and hemodilution with colloid plasma expanders.

    Science.gov (United States)

    Fenger-Eriksen, Christian; Moore, Gary W; Rangarajan, Savita; Ingerslev, Jørgen; Sørensen, Benny

    2010-12-01

    Measurement of plasma fibrinogen is often required in critically ill patients or massively bleeding patients being resuscitated with colloid plasma expander. This study aimed at evaluating different assays of plasma fibrinogen after in vitro dilution with commonly used plasma expanders and challenged the hypothesis that levels of fibrinogen are estimated significantly higher in plasma diluted with colloid plasma expander compared with isotonic saline. Fibrinogen measurements were established in plasma samples each diluted in vitro to 30 or 50% with isotonic saline, hydroxyethyl starch (HES) 130/0.4, and human albumin. Fibrinogen levels were assessed using an antigen determination, three photo-optical Clauss methods, one mechanical Clauss method, a prothrombin-derived method, and viscoelastic measurement through thromboelastometry. Measurement of fibrinogen levels was significantly different when performed on alternate analytical platforms. By 30 and 50% dilution with HES 130/0.4 coagulation analyzers using the photo-optical Clauss methods significantly overestimated levels of fibrinogen. Dilution with human albumin did not affect fibrinogen levels except from one analyzer by 50% dilution level. Viscoelastic measurement of fibrin polymerization was reduced at both dilution levels and appeared to reflect the impairment of fibrin polymerization induced by HES 130/0.4 and to a lesser extent human albumin. This study demonstrated that different automated coagulation analyzers revealed significantly different levels of fibrinogen. The presence of colloid plasma expander gave rise to erroneous high levels of fibrinogen returned from some coagulation analyzers employing the method of Clauss. © 2010 American Association of Blood Banks.

  12. Analysis of the safety and pharmacodynamics of human fibrinogen concentrate in animals

    Energy Technology Data Exchange (ETDEWEB)

    Beyerle, Andrea, E-mail: andrea.beyerle@cslbehring.com [CSL Behring GmbH, Preclinical Research and Development, Marburg (Germany); Nolte, Marc W. [CSL Behring GmbH, Preclinical Research and Development, Marburg (Germany); Solomon, Cristina [CSL Behring GmbH, Medical Affairs, Marburg (Germany); Department of Anaesthesiology, Perioperative Medicine and General Intensive Care, Paracelsus Medical University, Salzburg (Austria); Herzog, Eva; Dickneite, Gerhard [CSL Behring GmbH, Preclinical Research and Development, Marburg (Germany)

    2014-10-01

    Fibrinogen, a soluble 340 kDa plasma glycoprotein, is critical in achieving and maintaining hemostasis. Reduced fibrinogen levels are associated with an increased risk of bleeding and recent research has investigated the efficacy of fibrinogen concentrate for controlling perioperative bleeding. European guidelines on the management of perioperative bleeding recommend the use of fibrinogen concentrate if significant bleeding is accompanied by plasma fibrinogen levels less than 1.5–2.0 g/l. Plasma-derived human fibrinogen concentrate has been available for therapeutic use since 1956. The overall aim of the comprehensive series of non-clinical investigations presented was to evaluate i) the pharmacodynamic and pharmacokinetic characteristics and ii) the safety and tolerability profile of human fibrinogen concentrate Haemocomplettan P® (RiaSTAP®). Pharmacodynamic characteristics were assessed in rabbits, pharmacokinetic parameters were determined in rabbits and rats and a safety pharmacology study was performed in beagle dogs. Additional toxicology tests included: single-dose toxicity tests in mice and rats; local tolerance tests in rabbits; and neoantigenicity tests in rabbits and guinea pigs following the introduction of pasteurization in the manufacturing process. Human fibrinogen concentrate was shown to be pharmacodynamically active in rabbits and dogs and well tolerated, with no adverse events and no influence on circulation, respiration or hematological parameters in rabbits, mice, rats and dogs. In these non-clinical investigations, human fibrinogen concentrate showed a good safety profile. This data adds to the safety information available to date, strengthening the current body of knowledge regarding this hemostatic agent. - Highlights: • A comprehensive series of pre-clinical investigations of human fibrinogen concentrate. • Human fibrinogen concentrate was shown to be pharmacodynamically active. • Human fibrinogen concentrate was well tolerated

  13. Analysis of the safety and pharmacodynamics of human fibrinogen concentrate in animals

    International Nuclear Information System (INIS)

    Beyerle, Andrea; Nolte, Marc W.; Solomon, Cristina; Herzog, Eva; Dickneite, Gerhard

    2014-01-01

    Fibrinogen, a soluble 340 kDa plasma glycoprotein, is critical in achieving and maintaining hemostasis. Reduced fibrinogen levels are associated with an increased risk of bleeding and recent research has investigated the efficacy of fibrinogen concentrate for controlling perioperative bleeding. European guidelines on the management of perioperative bleeding recommend the use of fibrinogen concentrate if significant bleeding is accompanied by plasma fibrinogen levels less than 1.5–2.0 g/l. Plasma-derived human fibrinogen concentrate has been available for therapeutic use since 1956. The overall aim of the comprehensive series of non-clinical investigations presented was to evaluate i) the pharmacodynamic and pharmacokinetic characteristics and ii) the safety and tolerability profile of human fibrinogen concentrate Haemocomplettan P® (RiaSTAP®). Pharmacodynamic characteristics were assessed in rabbits, pharmacokinetic parameters were determined in rabbits and rats and a safety pharmacology study was performed in beagle dogs. Additional toxicology tests included: single-dose toxicity tests in mice and rats; local tolerance tests in rabbits; and neoantigenicity tests in rabbits and guinea pigs following the introduction of pasteurization in the manufacturing process. Human fibrinogen concentrate was shown to be pharmacodynamically active in rabbits and dogs and well tolerated, with no adverse events and no influence on circulation, respiration or hematological parameters in rabbits, mice, rats and dogs. In these non-clinical investigations, human fibrinogen concentrate showed a good safety profile. This data adds to the safety information available to date, strengthening the current body of knowledge regarding this hemostatic agent. - Highlights: • A comprehensive series of pre-clinical investigations of human fibrinogen concentrate. • Human fibrinogen concentrate was shown to be pharmacodynamically active. • Human fibrinogen concentrate was well tolerated

  14. Enhancement of organic matter degradation and methane gas production of anaerobic granular sludge by degasification of dissolved hydrogen gas.

    Science.gov (United States)

    Satoh, Hisashi; Bandara, Wasala M K R T W; Sasakawa, Manabu; Nakahara, Yoshihito; Takahashi, Masahiro; Okabe, Satoshi

    2017-11-01

    A hollow fiber degassing membrane (DM) was applied to enhance organic matter degradation and methane gas production of anaerobic granular sludge process by reducing the dissolved hydrogen gas (D-H 2 ) concentration in the liquid phase. DM was installed in the bench-scale anaerobic granular sludge reactors and D-H 2 was removed through DM using a vacuum pump. Degasification improved the organic matter degradation efficiency to 79% while the efficiency was 62% without degasification at 12,000mgL -1 of the influent T-COD concentration. Measurement of D-H 2 concentrations in the liquid phase confirmed that D-H 2 was removed by degasification. Furthermore, the effect of acetate concentrations on the organic matter degradation efficiency was investigated. At acetate concentrations above 3gL -1 , organic matter degradation deteriorated. Degasification enhanced the propionate and acetate degradation. These results suggest that degasification reduced D-H 2 concentration and volatile fatty acids concentrations, prevented pH drop, and subsequent enhanced organic matter degradation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Production and partial characterization of arabinoxylan-degrading enzymes by Penicillium brasilianum under solid-state fermentation

    DEFF Research Database (Denmark)

    Panagiotou, Gianni; Granouillet, P.; Olsson, Lisbeth

    2006-01-01

    The production of a battery of arabinoxylan-degrading enzymes by the fungus Penicillium brasilianum grown on brewer's spent grain (BSG) under solid-state fermentation was investigated. Initial moisture content, initial pH, temperature, and nitrogen source content were optimized to achieve maximum...

  16. Identification of Unsaturated and 2H Polyfluorocarboxylate Homologous Series and Their Detection in Environmental Samples and as Polymer Degradation Products

    Science.gov (United States)

    A pair of homologous series of polyfluorinated degradation products have been identified, both having structures similar to perfluorocarboxylic acids but (i) having a H substitution for F on the α carbon for 2H polyfluorocarboxylic acids (2HPFCAs) and (ii) bearing a double ...

  17. Isolation, identification and characterization of Paenibacillus polymyxa CR1 with potentials for biopesticide, biofertilization, biomass degradation and biofuel production

    OpenAIRE

    Weselowski, Brian; Nathoo, Naeem; Eastman, Alexander William; MacDonald, Jacqueline; Yuan, Ze-Chun

    2016-01-01

    Background Paenibacillus polymyxa is a plant-growth promoting rhizobacterium that could be exploited as an environmentally friendlier alternative to chemical fertilizers and pesticides. Various strains have been isolated that can benefit agriculture through antimicrobial activity, nitrogen fixation, phosphate solubilization, plant hormone production, or lignocellulose degradation. However, no single strain has yet been identified in which all of these advantageous traits have been confirmed. ...

  18. New chromatographic method for separating Omeprazole from its degradation components and the quantitatively determining it in its pharmaceutical products

    International Nuclear Information System (INIS)

    Touma, M.; Rajab, A.; Seuleiman, M.

    2007-01-01

    New chromatographic method for Quantitative Determination of Omeprazole in its Pharmaceutical Products was produced. Omeprazole and its degradation components were well separated in same chromatogram by using high perfume liquid chromatography (HPLC). The new analytical method has been validated by these characteristic tests (accuracy, precision, range, linearity, specificity/selectivity, limit of detection (LOD) and limit of quantitative (LOQ) ).(author)

  19. New chromatographic Methods for Separation of Lansoprazole from its Degradation Components and The Quantitative Determination in its Pharmaceutical Products

    International Nuclear Information System (INIS)

    Touma, M.; Rajab, A.

    2009-01-01

    New chromatographic method was found for Quantitative Determination of Lansoprazole in its pharmaceutical products. Lansoprazole and its degradation components were well separated in same chromatogram by using high perfume liquid chromatography (HPLC). The new analytical method has been validated by these characteristic tests (accuracy, precision, range, linearity, specificity/selectivity, limit of detection (LOD) and limit of quantitative (LOQ)). (author)

  20. Microbial surface displayed enzymes based biofuel cell utilizing degradation products of lignocellulosic biomass for direct electrical energy.

    Science.gov (United States)

    Fan, Shuqin; Hou, Chuantao; Liang, Bo; Feng, Ruirui; Liu, Aihua

    2015-09-01

    In this work, a bacterial surface displaying enzyme based two-compartment biofuel cell for the direct electrical energy conversion from degradation products of lignocellulosic biomass is reported. Considering that the main degradation products of the lignocellulose are glucose and xylose, xylose dehydrogenase (XDH) displayed bacteria (XDH-bacteria) and glucose dehydrogenase (GDH) displayed bacteria (GDH-bacteria) were used as anode catalysts in anode chamber with methylene blue as electron transfer mediator. While the cathode chamber was constructed with laccase/multi-walled-carbon nanotube/glassy-carbon-electrode. XDH-bacteria exhibited 1.75 times higher catalytic efficiency than GDH-bacteria. This assembled enzymatic fuel cell exhibited a high open-circuit potential of 0.80 V, acceptable stability and energy conversion efficiency. Moreover, the maximum power density of the cell could reach 53 μW cm(-2) when fueled with degradation products of corn stalk. Thus, this finding holds great potential to directly convert degradation products of biomass into electrical energy. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Investigation of relationships between removals of tetracycline and degradation products and physicochemical parameters in municipal wastewater treatment plant.

    Science.gov (United States)

    Topal, Murat; Uslu Şenel, Gülşad; Öbek, Erdal; Arslan Topal, E Işıl

    2016-05-15

    Determination of the effect of physicochemical parameters on the removal of tetracycline (TC) and degradation products is important because of the importance of the removal of antibiotics in Wastewater Treatment Plant (WWTP). Therefore, the purpose of this study was to investigate the relationships between removals of TC and degradation products and physicochemical parameters in Municipal Wastewater Treatment Plant (MWWTP). For this aim, (i) the removals of physicochemical parameters in a MWWTP located in Elazığ city (Turkey) were determined (ii) the removals of TC and degradation products in MWWTP were determined (iii) the relationships between removals of TC and degradation products and physicochemical parameters were investigated. TC, 4-epitetracycline (ETC), 4-epianhydrotetracycline (EATC), anhydrotetracycline (ATC), and physicochemical parameters (pH, temperature, electrical conductivity (EC), suspended solids (SS), BOD5, COD, total organic carbon (TOC), NH4(+)-N, NO2(-)-N, NO3(-)-N and O-PO4(-3)) were determined. The calculation of the correlation coefficients of relationships between the physicochemical parameters and TC, EATC, ATC showed that, among the investigated parameters, EATC and SS most correlated. The removals of other physicochemical parameters were not correlated with TC, EATC and ATC. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Urea plus nitrate pretreatment of rice and wheat straws enhances degradation and reduces methane production in in vitro ruminal culture.

    Science.gov (United States)

    Zhang, Xiumin; Wang, Min; Wang, Rong; Ma, Zhiyuan; Long, Donglei; Mao, Hongxiang; Wen, Jiangnan; Bernard, Lukuyu A; Beauchemin, Karen A; Tan, Zhiliang

    2018-04-10

    Urea pretreatment of straw damages fiber structure, while nitrate supplementation of ruminal diets inhibits enteric methane production. The study examined the combined effects of these treatments on ruminal substrate biodegradation and methane production using an in vitro incubation system. Rice and wheat straws were pretreated with urea (40 g kg -1 straw dry matter, DM) and urea + ammonium nitrate (34 + 6 g kg -1 dry matter (DM), respectively), and each straw (control, urea, urea+nitrate) was used in batch culture incubations in three replications (runs). Urea pretreatment increased (P content (+17%) and in vitro DM degradation of rice straw, in comparison with control. Urea+nitrate pretreatment of rice and wheat straws had higher (P content, in vitro DM degradation and propionate molar proportion, and lower (P ruminal biodegradation, facilitate propionate production and reduce methane production from lignified straws. © 2018 Society of Chemical Industry. © 2018 Society of Chemical Industry.

  3. Herbicidal Activity of Glucosinolate Degradation Products in Fermented Meadowfoam (Limnanthes alba) Seed Meal

    Science.gov (United States)

    STEVENS, JAN F.; REED, RALPH L.; ALBER, SUSAN; PRITCHETT, LARRY; MACHADO, STEPHEN

    2009-01-01

    Meadowfoam (Limnanthes alba) is an oilseed crop grown in western Oregon. After extraction of the oil from the seeds, the remaining seed meal contains 2-4% of the glucosinolate, glucolimnanthin. We investigated the effect of fermentation of seed meal on its chemical composition and the effect of the altered composition on downy brome (Bromus tectorum) coleoptile emergence. Incubation of enzyme-inactive seed meal with enzyme-active seeds (1% by weight) resulted in complete degradation of glucolimnanthin and formation of 3-methoxybenzyl isothiocyanate in 28% yield. Fermentation in the presence of an aqueous solution of FeSO4 (10 mM) resulted in the formation of 3-methoxyphenylacetonitrile and 2-(3-methoxyphenyl)ethanethioamide, a novel natural product. The formation of the isothiocyanate, the nitrile and the thioamide, as a total, correlated with an increase of herbicidal potency of seed meal (r2 = 0.96). The results of this study open new possibilities for the refinement of glucosinolate-containing seed meals for use as bioherbicides. PMID:19170637

  4. Porphyromonas gingivalis Promotes Unrestrained Type I Interferon Production by Dysregulating TAM Signaling via MYD88 Degradation.

    Science.gov (United States)

    Mizraji, Gabriel; Nassar, Maria; Segev, Hadas; Sharawi, Hafiz; Eli-Berchoer, Luba; Capucha, Tal; Nir, Tsipora; Tabib, Yaara; Maimon, Avraham; Dishon, Shira; Shapira, Lior; Nussbaum, Gabriel; Wilensky, Asaf; Hovav, Avi-Hai

    2017-01-10

    Whereas type I interferons (IFNs-I) were proposed to be elevated in human periodontitis, their role in the disease remains elusive. Using a bacterial-induced model of murine periodontitis, we revealed a prolonged elevation in IFN-I expression. This was due to the downregulation of TAM signaling, a major negative regulator of IFN-I. Further examination revealed that the expression of certain TAM components was reduced as a result of prolonged degradation of MYD88 by the infection. As a result of such prolonged IFN-I production, innate immunological functions of the gingiva were disrupted, and CD4 + T cells were constitutively primed by dendritic cells, leading to elevated RANKL expression and, subsequently, alveolar bone loss (ABL). Blocking IFN-I signaling restored proper immunological function and prevented ABL. Importantly, a loss of negative regulation on IFN-I expression by TAM signaling was also evident in periodontitis patients. These findings thus suggest a role for IFN-I in the pathogenesis of periodontitis. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  5. Herbicidal activity of glucosinolate degradation products in fermented meadowfoam ( Limnanthes alba ) seed meal.

    Science.gov (United States)

    Stevens, Jan F; Reed, Ralph L; Alber, Susan; Pritchett, Larry; Machado, Stephen

    2009-03-11

    Meadowfoam ( Limnanthes alba ) is an oilseed crop grown in western Oregon. After extraction of the oil from the seeds, the remaining seed meal contains 2-4% of the glucosinolate glucolimnanthin. This study investigated the effect of fermentation of seed meal on its chemical composition and the effect of the altered composition on downy brome ( Bromus tectorum ) coleoptile emergence. Incubation of enzyme-inactive seed meal with enzyme-active seeds (1% by weight) resulted in complete degradation of glucolimnanthin and formation of 3-methoxybenzyl isothiocyanate in 28% yield. Fermentation in the presence of an aqueous solution of FeSO(4) (10 mM) resulted in the formation of 3-methoxyphenylacetonitrile and 2-(3-methoxyphenyl)ethanethioamide, a novel natural product. The formation of the isothiocyanate, the nitrile, and the thioamide, as a total, correlated with an increase of herbicidal potency of the seed meal (r(2) = 0.96). The results of this study open new possibilities for the refinement of glucosinolate-containing seed meals for use as bioherbicides.

  6. Formation of chlorinated breakdown products during degradation of sunscreen agent, 2-ethylhexyl-4-methoxycinnamate in the presence of sodium hypochlorite

    OpenAIRE

    Gackowska , Alicja; Przybyłek , Maciej; Studziński , Waldemar; Gaca , Jerzy

    2016-01-01

    International audience; In this study, a new degradation path of sunscreen active ingredient, 2-ethylhexyl-4-methoxycinnamate (EHMC) and 4-methoxycinnamic acid (MCA) in the presence of sodium hypochlorite (NaOCl), was discussed. The reaction products were detected using gas chromatography–mass spectrometry (GC-MS). Since HOCl treatment leads to more polar products than EHMC, application of polar extracting agents, dichloromethane and ethyl acetate/n-hexane mixture, gave better results in term...

  7. Formation of chlorinated breakdown products during degradation of sunscreen agent, 2-ethylhexyl-4-methoxycinnamate in the presence of sodium hypochlorite

    OpenAIRE

    Gackowska, Alicja; Przybyłek, Maciej; Studziński, Waldemar; Gaca, Jerzy

    2018-01-01

    In this study, a new degradation path of sunscreen active ingredient, 2-ethylhexyl-4-methoxycinnamate (EHMC) and 4-methoxycinnamic acid (MCA) in the presence of sodium hypochlorite (NaOCl), was discussed. The reaction products were detected using gas chromatography-mass spectrometry (GC-MS). Since HOCl treatment leads to more polar products than EHMC, application of polar extracting agents, dichloromethane and ethyl acetate/n-hexane mixture, gave better results in terms of chlorinated breakdo...

  8. Formation of chlorinated breakdown products during degradation of sunscreen agent, 2-ethylhexyl-4-methoxycinnamate in the presence of sodium hypochlorite

    OpenAIRE

    Gackowska, Alicja; Przyby?ek, Maciej; Studzi?ski, Waldemar; Gaca, Jerzy

    2015-01-01

    In this study, a new degradation path of sunscreen active ingredient, 2-ethylhexyl-4-methoxycinnamate (EHMC) and 4-methoxycinnamic acid (MCA) in the presence of sodium hypochlorite (NaOCl), was discussed. The reaction products were detected using gas chromatography?mass spectrometry (GC-MS). Since HOCl treatment leads to more polar products than EHMC, application of polar extracting agents, dichloromethane and ethyl acetate/n-hexane mixture, gave better results in terms of chlorinated breakdo...

  9. THE CHALLENGE OF PD PATIENTS: GLUCOSE AND GLUCOSE DEGRADATION PRODUCTS IN PD SOLUTION

    Directory of Open Access Journals (Sweden)

    Yong-Lim Kim

    2012-06-01

    Full Text Available The main osmotic agent found in the peritoneal dialysis (PD solution is glucose. It has been of a wide use for great crystalloid osmotic power at a low concentration, simple metabolism, and excellent safety. On the other hand, anywhere between 60 to 80% of the glucose in the PD solution is absorbed - a 100 to 300 mg of daily glucose absorption. Once into the systemic circulation, glucose can be a cause for metabolic complications including obesity. Indeed, the diabetiform change observed in the peritoneal membrane in the long-term PD patients is believed attributable to the high-concentration glucose in the PD solution. The glucose absorbed from peritoneal cavity raises the risk of ‘glucose toxicity’, leading to insulin resistance and beta cell failure. Clinical similarity can be found in postprandial hyperglycemia, which is known to be associated with oxidative stress, endothelial dysfunction, NF-κb, and inflammation, affecting myocardial blood flow. Moreover, it is a proven independent risk factor of coronary artery disease in patients with type 2 diabetes, particularly of female gender. Though speculative yet, glucose toxicity might explain a higher mortality of PD patients after the first year compared with those on hemodialysis (more so in female, advanced-age patients with diabetes. Also included in the picture are glucose degradation products (GDPs generated along the course of heat sterilization or storage of the PD solution. They have been shown to induce apoptosis of peritoneal mesothelial cells, renal tubular epithelial cells, and endothelial cells, while spurring production of TGF-β and VEGF and facilitating epithelial mesenchymal transition. GDPs provide a stronger reactivity than glucose in the formation of AGEs, a known cause for microvascular complications and arteriosclerosis. Unfortunately, clinical studies using a low-GDP PD solution have provided mixed results on the residual renal function, peritonitis, peritoneal

  10. Fibrinogen function is impaired in whole blood from patients with cyanotic congenital heart disease

    DEFF Research Database (Denmark)

    Jensen, A S; Johansson, Pär I.; Bochsen, Louise

    2013-01-01

    haemoptysis. METHODS: In a prospective study 75 adult CCHD patients had haematocrit, platelet count, and plasma fibrinogen concentration examined. Furthermore thrombelastography(TEG) as well as TEG Functional Fibrinogen(TEG FF) assay evaluating fibrinogen function(FLEV) was performed. Data were compared...... with historical data regarding previous haemoptysis in CCHD patients. RESULTS: Haematocrit was 57±8% and platelet counts in the lower normal range. TEG revealed a hypocoagulable condition with impaired clot formation. TEG values were correlated to haematocrit, indicating that elevated haematocrit causes impaired....... CONCLUSION: Patients with CCHD are hypocoagulable mainly due to impaired fibrinogen function. Despite a low platelet count, platelet function does not seem to be severely affected in CCHD patients. Haemostasis, and especially fibrinogen function, is negatively affected by elevated haematocrit, and fibrinogen...

  11. Effects of cellulosic degradation product concentration on actinide sorption on tuffs from the Borrowdale Volcanic Group, Sellafield, Cumbria

    International Nuclear Information System (INIS)

    Baston, G.M.N.; Berry, J.A.; Bond, K.A.; Boult, K.A.; Linklater, C.M.

    1994-01-01

    The Nirex Safety Assessment Research Programme includes an investigation into the effects of cellulosic degradation products on the sorption of radioelements onto geological materials. Previous batch sorption studies have shown that the presence of high concentrations of both authentic cellulosic degradation products (produced by alkaline degradation of wood/tissue) and the well-characterised simulant, gluconate, can cause marked reductions in actinide sorption. This work has now been extended to cover a range of concentrations of both authentic cellulosic degradation products and their simulants, gluconate and iso-saccharinate. Geological samples were from the proposed Nirex underground radioactive waste disposal site at Sellafied, Cumbria. The nuclides studied were thorium and plutonium. In the presence of gluconate or iso-saccharinate, at concentrations above 10 -4 M, the present work has confirmed the trends shown by earlier experiments, with a significant reduction in actinide sorption (R D values reduced by less than a factor of two), and in some cases the results suggested a slight increase (R D values increased by up to a factor of four). (orig.)

  12. Effects of cellulosic degradation product concentration on actinide sorption on tuffs from the Borrowdale Volcanic Group, Sellafield, Cumbria

    Energy Technology Data Exchange (ETDEWEB)

    Baston, G.M.N. [AEA Technology, Decommissioning and Waste Management, Harwell (United Kingdom); Berry, J.A. [AEA Technology, Decommissioning and Waste Management, Harwell (United Kingdom); Bond, K.A. [AEA Technology, Decommissioning and Waste Management, Harwell (United Kingdom); Boult, K.A. [AEA Technology, Decommissioning and Waste Management, Harwell (United Kingdom); Linklater, C.M. [AEA Technology, Decommissioning and Waste Management, Harwell (United Kingdom)

    1994-12-31

    The Nirex Safety Assessment Research Programme includes an investigation into the effects of cellulosic degradation products on the sorption of radioelements onto geological materials. Previous batch sorption studies have shown that the presence of high concentrations of both authentic cellulosic degradation products (produced by alkaline degradation of wood/tissue) and the well-characterised simulant, gluconate, can cause marked reductions in actinide sorption. This work has now been extended to cover a range of concentrations of both authentic cellulosic degradation products and their simulants, gluconate and iso-saccharinate. Geological samples were from the proposed Nirex underground radioactive waste disposal site at Sellafied, Cumbria. The nuclides studied were thorium and plutonium. In the presence of gluconate or iso-saccharinate, at concentrations above 10{sup -4} M, the present work has confirmed the trends shown by earlier experiments, with a significant reduction in actinide sorption (R{sub D} values reduced by less than a factor of two), and in some cases the results suggested a slight increase (R{sub D} values increased by up to a factor of four). (orig.)

  13. Localization of thrombi using the Ga-67-DFO-DAS fibrinogen

    International Nuclear Information System (INIS)

    Takahashi, Eriko; Ohta, Yoshiko; Kawasaki, Sachiko; Maki, Masako; Hiroe, Michiaki; Kusakabe, Kiyoko; Kohno, Atsushi; Shigeta, Akiko

    1985-01-01

    This report shows demonstrable thrombus imaging with Ga-67-DFO-DAS fibrinogen in a patient with Marfan's syndrome. Significant Ga-67-DFO-DAS fibrinogen deposition was noted in the leakage surrounding replased graft of ascending aorta and lesion of pulmonary parenchyma which was suspicious of pulmonary infarction. This results promises that Ga-67-DFO-DAS fibrinogen is a useful tool for evaluation of the clotting under various forms of therapy. (author)

  14. Fibrinogen depletion in trauma: early, easy to estimate and central to trauma-induced coagulopathy

    OpenAIRE

    Davenport, Ross; Brohi, Karim

    2013-01-01

    Fibrinogen is fundamental to hemostasis and falls rapidly in trauma hemorrhage, although levels are not routinely measured in the acute bleeding episode. Prompt identification of critically low levels of fibrinogen and early supplementation has the potential to correct trauma-induced coagulation and improve outcomes. Early estimation of hypofibrinogenemia is possible using surrogate markers of shock and hemorrhage; for example, hemoglobin and base excess. Rapid replacement with fibrinogen con...

  15. Fibrinogen depletion in trauma: early, easy to estimate and central to trauma-induced coagulopathy.

    Science.gov (United States)

    Davenport, Ross; Brohi, Karim

    2013-09-24

    Fibrinogen is fundamental to hemostasis and falls rapidly in trauma hemorrhage, although levels are not routinely measured in the acute bleeding episode. Prompt identification of critically low levels of fibrinogen and early supplementation has the potential to correct trauma-induced coagulation and improve outcomes. Early estimation of hypofibrinogenemia is possible using surrogate markers of shock and hemorrhage; for example, hemoglobin and base excess. Rapid replacement with fibrinogen concentrate or cryoprecipitate should be considered a clinical priority in major trauma hemorrhage.

  16. Changes in fibrinogen availability and utilization in an animal model of traumatic coagulopathy

    DEFF Research Database (Denmark)

    Hagemo, Jostein S; Jørgensen, Jørgen; Ostrowski, Sisse R

    2013-01-01

    Impaired haemostasis following shock and tissue trauma is frequently detected in the trauma setting. These changes occur early, and are associated with increased mortality. The mechanism behind trauma-induced coagulopathy (TIC) is not clear. Several studies highlight the crucial role of fibrinogen...... in posttraumatic haemorrhage. This study explores the coagulation changes in a swine model of early TIC, with emphasis on fibrinogen levels and utilization of fibrinogen....

  17. Process-induced degradation of bioresorbable PDLGA in bone tissue scaffold production.

    Science.gov (United States)

    Little, H; Clarke, S A; Cunningham, E; Buchanan, F

    2017-12-28

    Process-induced degradation of clinically relevant resorbable polymers was investigated for two thermal techniques, filament extrusion followed by fused deposition modelling (FDM). The aim was to develop a clear understanding of the relationship between temperature, processing time and resultant process-induced degradation. This acts to address the current knowledge gap in studies involving thermal processing of resorbable polymers. Poly(DL-lactide-co-glycolide) (PDLGA) was chosen for its clinically relevant resorption properties. Furthermore, a comparative study of controlled thermal exposure was conducted through compression moulding PDLGA at a selected range of temperatures (150-225 °C) and times (0.5-20 min). Differential scanning calorimetry (DSC) and gel permeation chromatography (GPC) were used to characterise thermally induced degradation behaviour. DSC proved insensitive to degradation effects, whereas GPC demonstrated distinct reductions in molecular weight allowing for the quantification of degradation. A near-exponential pattern of degradation was identified. Through the application of statistical chain scission equations, a predictive plot of theoretical degradation was created. Thermal degradation was found to have a significant effect on the molecular weight with a reduction of up to 96% experienced in the controlled processing study. The proposed empirical model may assist prediction of changes in molecular weight, however, accuracy limitations are highlighted for twin-screw extrusion, accredited to high-shear mixing. The results from this study highlight the process sensitivity of PDLGA and proposes a methodology for quantification and prediction, which contributes to efforts in understanding the influence of manufacture on performance of degradable medical implants.

  18. Inhibition of ethanol-producing yeast and bacteria by degradation products produced during pre-treatment of biomass

    DEFF Research Database (Denmark)

    Klinke, H.B.; Thomsen, A.B.; Ahring, Birgitte Kiær

    2004-01-01

    for ethanol fermentation. The resulting hydrolyzsates contain substances inhibitory to fermentation-depending on both the raw material (biomass) and the pre-treatment applied. An overview of the inhibitory effect on ethanol production by yeast and bacteria is presented. Apart from furans formed by sugar......An overview of the different inhibitors formed by pre-treatment of lignocellulosic materials and their inhibition of ethanol production in yeast and bacteria is given. Different high temperature physical pre-treatment methods are available to render the carbohydrates in lignocellulose accessible...... degradation, phenol monomers from lignin degradation are important co-factors in hydrolysate inhibition, and inhibitory effects of these aromatic compounds on different ethanol producing microorganisms is reviewed. The furans and phenols generally inhibited growth and ethanol production rate (Q...

  19. The potential of intercropping food crops and energy crop to improve productivity of a degraded agriculture land in arid tropics

    Directory of Open Access Journals (Sweden)

    I.K.D. Jaya

    2014-04-01

    Full Text Available Degraded agricultural lands in the arid tropics have low soil organic carbon (SOC and hence low productivity. Poor farmers that their livelihoods depend highly on these types of lands are suffering. Cropping strategies that are able to improve the soil productivity are needed. In the present study, some intercropping models of food crops with bio-energy crop of castor (Ricinus communis L. were tested to assess their potential to improve the degraded land productivity. The intercropping models were: (1 castor - hybrid maize, (2 castor – short season maize, (3 castor – mungbean, and (4 castor –short season maize – mungbean. The results show that yields of the component crops in monoculture were relatively the same as in intercropping, resulted in a high Land Equivalent Ratio (LER. The highest LER (3.07 was calculated from intercropping castor plants with short season maize crops followed by mungbean with intercropping productivity of IDR 15,097,600.00 ha-1. Intercropping has a great potential to improve degraded agriculture land productivity and castor is a promising plant to improve biodiversity and area coverage on the land.

  20. A Structure Identification and Toxicity Assessment of the Degradation Products of Aflatoxin B₁ in Peanut Oil under UV Irradiation.

    Science.gov (United States)

    Mao, Jin; He, Bing; Zhang, Liangxiao; Li, Peiwu; Zhang, Qi; Ding, Xiaoxia; Zhang, Wen

    2016-11-12

    Aflatoxins, a group of extremely hazardous compounds because of their genotoxicity and carcinogenicity to human and animals, are commonly found in many tropical and subtropical regions. Ultraviolet (UV) irradiation is proven to be an effective method to reduce or detoxify aflatoxins. However, the degradation products of aflatoxins under UV irradiation and their safety or toxicity have not been clear in practical production such as edible oil industry. In this study, the degradation products of aflatoxin B₁ (AFB₁) in peanut oil were analyzed by Ultra Performance Liquid Chromatograph-Thermo Quadrupole Exactive Focus mass spectrometry/mass spectrometry (UPLC-TQEF-MS/MS). The high-resolution mass spectra reflected that two main products were formed after the modification of a double bond in the terminal furan ring and the fracture of the lactone ring, while the small molecules especially nitrogen-containing compound may have participated in the photochemical reaction. According to the above results, the possible photodegradation pathway of AFB₁ in peanut oil is proposed. Moreover, the human embryo hepatocytes viability assay indicated that the cell toxicity of degradation products after UV irradiation was much lower than that of AFB₁, which could be attributed to the breakage of toxicological sites. These findings can provide new information for metabolic pathways and the hazard assessment of AFB₁ using UV detoxification.

  1. A Structure Identification and Toxicity Assessment of the Degradation Products of Aflatoxin B1 in Peanut Oil under UV Irradiation

    Directory of Open Access Journals (Sweden)

    Jin Mao

    2016-11-01

    Full Text Available Aflatoxins, a group of extremely hazardous compounds because of their genotoxicity and carcinogenicity to human and animals, are commonly found in many tropical and subtropical regions. Ultraviolet (UV irradiation is proven to be an effective method to reduce or detoxify aflatoxins. However, the degradation products of aflatoxins under UV irradiation and their safety or toxicity have not been clear in practical production such as edible oil industry. In this study, the degradation products of aflatoxin B1 (AFB1 in peanut oil were analyzed by Ultra Performance Liquid Chromatograph-Thermo Quadrupole Exactive Focus mass spectrometry/mass spectrometry (UPLC-TQEF-MS/MS. The high-resolution mass spectra reflected that two main products were formed after the modification of a double bond in the terminal furan ring and the fracture of the lactone ring, while the small molecules especially nitrogen-containing compound may have participated in the photochemical reaction. According to the above results, the possible photodegradation pathway of AFB1 in peanut oil is proposed. Moreover, the human embryo hepatocytes viability assay indicated that the cell toxicity of degradation products after UV irradiation was much lower than that of AFB1, which could be attributed to the breakage of toxicological sites. These findings can provide new information for metabolic pathways and the hazard assessment of AFB1 using UV detoxification.

  2. A Structure Identification and Toxicity Assessment of the Degradation Products of Aflatoxin B1 in Peanut Oil under UV Irradiation

    Science.gov (United States)

    Mao, Jin; He, Bing; Zhang, Liangxiao; Li, Peiwu; Zhang, Qi; Ding, Xiaoxia; Zhang, Wen

    2016-01-01

    Aflatoxins, a group of extremely hazardous compounds because of their genotoxicity and carcinogenicity to human and animals, are commonly found in many tropical and subtropical regions. Ultraviolet (UV) irradiation is proven to be an effective method to reduce or detoxify aflatoxins. However, the degradation products of aflatoxins under UV irradiation and their safety or toxicity have not been clear in practical production such as edible oil industry. In this study, the degradation products of aflatoxin B1 (AFB1) in peanut oil were analyzed by Ultra Performance Liquid Chromatograph-Thermo Quadrupole Exactive Focus mass spectrometry/mass spectrometry (UPLC-TQEF-MS/MS). The high-resolution mass spectra reflected that two main products were formed after the modification of a double bond in the terminal furan ring and the fracture of the lactone ring, while the small molecules especially nitrogen-containing compound may have participated in the photochemical reaction. According to the above results, the possible photodegradation pathway of AFB1 in peanut oil is proposed. Moreover, the human embryo hepatocytes viability assay indicated that the cell toxicity of degradation products after UV irradiation was much lower than that of AFB1, which could be attributed to the breakage of toxicological sites. These findings can provide new information for metabolic pathways and the hazard assessment of AFB1 using UV detoxification. PMID:27845743

  3. Kinetics of Iodine 131 labelled fibrinogen in cancerous patients. Pharmacological study

    International Nuclear Information System (INIS)

    Boneu-Valmalette, Andree; Bugat, Roland; David, J.-F.; Combes, P.-F.

    1977-01-01

    The results obtained in a previous study using 131 I fibrinogen in cancerous patients suggested a local intravascular clotting process. In order to elucidate the mechanism of fibrinogen kinetic abnormalities different drugs including heparin, prednisone, ticlopidin, aspirin and indomethacin were administred in 68 patients and their effects evaluated by change in the 131 I fibrinogen disappearance rate. The results suggest that these drugs may counteract with the early stages of coagulation (kinin-forming system, factor XII) and that abnormal 131 I fibrinogen kinetic in cancer would be a non specific phenomenon [fr

  4. Sorption and degradation of wastewater-associated pharmaceuticals and personal care products in agricultural soils and sediment.

    Science.gov (United States)

    Zhang, Ting; Wu, Bo; Sun, Na; Ye, Yong; Chen, Huaixia

    2013-01-01

    Pharmaceuticals and personal care products (PPCPs) have drawn popular concerns recently as an emerging class of aquatic contaminants. In this study, adsorption and degradation of four selected PPCPs, metronidazole, tinidazole, caffeine and chloramphenicol, have been investigated in the laboratory using two agricultural soils in China and sediment from Changjiang River. Adsorption tests using a batch equilibrium method demonstrated that adsorption of all tested chemicals in soils could be well described with Freundlich equation, and their adsorption affinity on soil followed the order of chloramphenicol > caffeine > tinidazole > metronidazole. Generally, higher Kf value was associated with soils which had higher organic matter contents (except for caffeine acid in this study). Degradation of selected PPCPs in soils generally followed first-order exponential decay kinetics, and half-lives ranging from 0.97 to 10.21 d. Sterilization generally decreased the degradation rates, indicating that microbial activity played a significant role in the degradation in soils. The degradation rate constant decreased with increasing initial chemical concentrations in soil, implying that the microbial activity was inhibited with high chemical loading levels.

  5. In vitro cytotoxic and genotoxic effects of diphenylarsinic acid, a degradation product of chemical warfare agents

    International Nuclear Information System (INIS)

    Ochi, Takafumi; Suzuki, Toshihide; Isono, Hideo; Kaise, Toshikazu

    2004-01-01

    Diphenylarsinic acid [DPAs(V)], a degradation product of diphenylcyanoarsine or diphenylchloroarsine, both of which were developed as chemical warfare agents, was investigated in terms of its capacity to induce cytotoxic effects, numerical and structural changes of chromosomes, and abnormalities of centrosome integrity and spindle organizations in conjunction with the effects of glutathione (GSH) depletion. DPAs(V) had toxic effects on cultured human hepatocarcinoma HepG2 cells at concentrations more than 0.5 mM. Depletion of GSH reduced the toxic effects of DPAs(V) as well as dimethylarsinic acid [DMAs(V)] toxicity, while toxicity by arsenite [iAs(III)] was enhanced. Exogenously added sulfhydryl (SH) compounds, such as dimercapropropane sulfonate (DMPS), GSH, and dithiothreitol (DTT), enhanced the toxic effects of DPAs(V) while they suppressed iAs(III) toxicity. DPAs(V) caused an increase in the mitotic index, and also structural and numerical changes in chromosomes in V79 Chinese hamster cells. Abnormality of centrosome integrity in mitotic V79 cells and multipolar spindles was also induced by DPAs(V) in a time- and concentration-dependent manner. These results suggested that highly toxic chemicals were generated by the interaction of DPAs(V) with SH compounds. Moreover, enhancements of toxicity by a combination of DPAs(V) and SH compounds suggested a risk in the use of SH compounds as a remedy for intoxication by diphenylarsenic compounds. Investigations on the effects of SH compounds on animals intoxicated with DPAs(V) are warranted

  6. In Vitro Evaluation the Influence of Glass-Ceramic Degradation Products on Osteoblast Cells.

    Directory of Open Access Journals (Sweden)

    Israa K. Sabree

    2016-03-01

    Full Text Available Regenerative medicine focuses on using biomaterials as three-dimensional (3D porous scaffolds, specifically designed to mimic the nature of host tissue and hence to promote cell growth and tissue regeneration. 3D bioactive glass-ceramic scaffolds are one of the most frequently studied types of scaffolds for bone tissue engineering because of their excellent bioactivity and potential for stimulating osteogenesis and angiogenesis. For such purposes, porous 3D 70%SiO2-30%CaO bioactive glass-ceramic scaffolds with three different pore sizes and identical porosity are used in present study to investigate In vitro, the effect of pore size on the degradation rate of scaffold which is achieved through examining changes in the composition of the immersion solution(SBF, simulated body fluid, and to investigate the action of released ions from the bioactive glass-ceramic scaffold during soaking process on osteoblast cells The results confirmed that all three scaffolds behaved in a similar manner and the ions release from the three scaffolds were of comparable concentration, which may be attributable to the identical porosity for all the scaffolds in addition to the using static immersion which delays ions diffusion. The pH of culture media increased from 7.6 to 8.2 after one day soaking. The optical microscopy images demonstrated that high ion concentration (Si, Ca, P in the culture medium could have a negative effect on the cells and induce cell death, while low concentration of ionic dissolution products induces osteoblast proliferation in dilute culture medium.

  7. Screening and Optimization of Bio surfactant Production by the Hydrocarbon-Degrading Bacteria

    International Nuclear Information System (INIS)

    Ainon Hamzah; Noramiza Sabturani; Shahidan Radiman

    2013-01-01

    Bio surfactants are amphiphilic compounds produced by microorganisms as secondary metabolite. The unique properties of bio surfactants make them possible to replace or to be added to synthetic surfactants which are mainly used in food, cosmetics and pharmaceutical industries and in environmental applications. In this study twenty hydrocarbon-degrading bacteria were screened for bio surfactant production. All of the bacterial isolates were grown in mineral salt medium (MSM) with addition of 1 % (v/v) Tapis crude oil as carbon source. The presence of bio surfactant was determined by the drop-collapse test, microplate analysis, oil spreading technique, emulsification index (%EI24) and surface tension measurement. Only one isolate, Pseudomonas aeruginosa UKMP14T, was found to be positive for all the qualitative tests and reducing the surface tension of the medium to 49.5 dynes/ with emulsification index of 25.29 %. This isolate produced bio surfactant optimally at pH 9.0 and incubation temperature of 37 degree Celsius. Furthermore, P. aeruginosa UKMP14T when grown in MSM with addition of 1 % (v/v) glycerol and 1.3 g/ L ammonium sulphate with C/N ratio 14:1 produced bio surfactant with percentage of surface tension reduction at 55 % or 30.6 dynes/ cm with %EI24 of 43 %. This percentage of surface tension reduction represents an increasing reduction in surface tension of medium by 39 % over the value before optimization. This study showed that P. aeruginosa UKMP14T has the ability to biodegrade hydrocarbon and concurrently produce bio surfactant. (author)

  8. In vitro cytotoxic and genotoxic effects of diphenylarsinic acid, a degradation product of chemical warfare agents

    Energy Technology Data Exchange (ETDEWEB)

    Ochi, Takafumi; Suzuki, Toshihide; Isono, Hideo; Kaise, Toshikazu

    2004-10-01

    Diphenylarsinic acid [DPAs(V)], a degradation product of diphenylcyanoarsine or diphenylchloroarsine, both of which were developed as chemical warfare agents, was investigated in terms of its capacity to induce cytotoxic effects, numerical and structural changes of chromosomes, and abnormalities of centrosome integrity and spindle organizations in conjunction with the effects of glutathione (GSH) depletion. DPAs(V) had toxic effects on cultured human hepatocarcinoma HepG2 cells at concentrations more than 0.5 mM. Depletion of GSH reduced the toxic effects of DPAs(V) as well as dimethylarsinic acid [DMAs(V)] toxicity, while toxicity by arsenite [iAs(III)] was enhanced. Exogenously added sulfhydryl (SH) compounds, such as dimercapropropane sulfonate (DMPS), GSH, and dithiothreitol (DTT), enhanced the toxic effects of DPAs(V) while they suppressed iAs(III) toxicity. DPAs(V) caused an increase in the mitotic index, and also structural and numerical changes in chromosomes in V79 Chinese hamster cells. Abnormality of centrosome integrity in mitotic V79 cells and multipolar spindles was also induced by DPAs(V) in a time- and concentration-dependent manner. These results suggested that highly toxic chemicals were generated by the interaction of DPAs(V) with SH compounds. Moreover, enhancements of toxicity by a combination of DPAs(V) and SH compounds suggested a risk in the use of SH compounds as a remedy for intoxication by diphenylarsenic compounds. Investigations on the effects of SH compounds on animals intoxicated with DPAs(V) are warranted.

  9. Clotting of mammalian fibrinogens by papain: a re-examination.

    Science.gov (United States)

    Doolittle, Russell F

    2014-10-28

    Papain has long been known to cause the gelation of mammalian fibrinogens. It has also been reported that papain-fibrin is insoluble in dispersing solvents like strong urea or sodium bromide solutions, similar to what is observed with thrombin-generated clots in the presence of factor XIIIa and calcium. In those old studies, both the gelation and subsequent clot stabilization were attributed to papain, although the possibility that the second step might be due to contaminating factor XIII in fibrinogen preparations was considered. I have revisited this problem in light of knowledge acquired over the past half-century about thiol proteases like papain, which mostly cleave peptide bonds, and transglutaminases like factor XIIIa that catalyze the formation of ε-lysyl-γ-glutamyl cross-links. Recombinant fibrinogen, inherently free of factor XIII and other plasma proteins, formed a stable gel when treated with papain alone. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis revealed that the intermolecular cross-linking in papain-fibrin leads to γ-chain dimers, trimers, and tetramers, just as is the case with thrombin-factor XIIIa-stabilized fibrin. Mass spectrometry of bands excised from gels showed that the cross-linked material is quite different from what occurs with factor XIIIa, however. With papain, the cross-linking occurs between γ chains in neighboring protofibrils becoming covalently linked in a "head-to-tail" fashion by a transpeptidation reaction involving the α-amino group of γ-Tyr1 and a papain cleavage site at γ-Gly403 near the carboxy terminus, rather than by the (reciprocal) "tail-to-tail" manner that occurs with factor XIIIa and that depends on cross-links between γ-Lys406 and γ-Gln398.

  10. Generation of toxic degradation products by sonication of Pluronic® dispersants: implications for nanotoxicity testing

    OpenAIRE

    Wang, Ruhung; Hughes, Tyler; Beck, Simon; Vakil, Samee; Li, Synyoung; Pantano, Paul; Draper, Rockford K.

    2012-01-01

    Poloxamers (known by the trade name Pluronic®) are triblock copolymer surfactants that contain two polyethylene glycol blocks and one polypropylene glycol block of various sizes. Poloxamers are widely used as nanoparticle dispersants for nanotoxicity studies wherein nanoparticles are sonicated with a dispersant to prepare suspensions. It is known that poloxamers can be degraded during sonication and that reactive oxygen species contribute to the degradation process. However, the possibility t...

  11. Production of heterologous cutinases by E. coli and improved enzyme formulation for application on plastic degradation

    OpenAIRE

    Gomes,Daniela S; Matamá,Teresa; Cavaco-Paulo,Artur; Campos-Takaki,Galba M; Salgueiro,Alexandra A

    2013-01-01

    Background: The hydrolytic action of cutinases has been applied to the degradation of plastics. Polyethylene terephthalate (PET) have long half-life which constitutes a major problem for their treatment as urban solid residues. The aim of this work was to characterize and to improve stable the enzyme to optimize the process of degradation using enzymatic hydrolysis of PET by recombinant cutinases. Results: The wild type form of cutinase from Fusarium solani pisi and its C-terminal fusion to c...

  12. Study of the fibrinogen - fibrin transformation kinetics and modifications caused to this reaction by irradiation (X rays) of the fibrinogen solution

    International Nuclear Information System (INIS)

    Hollard, D.; Suscillon, M.; Marcille, G.; Rambaud, F.; Baloyan, M.

    1966-01-01

    The authors present a spectrophotometric method for studying the transformation fibrinogen - fibrin. This method has the advantage of drawing immediately in graph form the three, phases of this transformation: proteolysis or monomerization; polymerisation; clot stabilization. It is a simple, faithful and easily reproductive technic. Owing to this method, they studied modifications of this transformation due to irradiation of fibrinogen solution. Low doses (90 000 R/mn) prevent transverse polymerisation. To upper doses (180 000 R and more), the action of thrombin on fibrinogen does not give an organised clot but a lacteous and fragile gel. There is not here a coagulation in the physiological understanding. (author) [fr

  13. Thin films growth parameters in MAPLE; application to fibrinogen

    International Nuclear Information System (INIS)

    Jelinek, M; Cristescu, R; Kocourek, T; Vorlicek, V; Remsa, J; Stamatin, L; Mihaiescu, D; Stamatin, I; Mihailescu, I N; Chrisey, D B

    2007-01-01

    Increasingly requirements on the thin film quality of functionalized materials are efficiently met by a novel laser processing technique - Matrix Assisted Pulsed Laser Evaporation (MAPLE). Examples of deposition conditions and main features characteristic to film growth rate of MAPLE-fabricated organic materials are summarized. MAPLE experimental results are compared with ones corresponding to the classical Pulsed Laser Deposition (PLD). In particular, the results of investigation of MAPLE-deposited fibrinogen blood protein thin films using a KrF* excimer laser and characterized by FTIR and Raman spectrometry are reported

  14. Photolytic and photocatalytic degradation of quinclorac in ultrapure and paddy field water: identification of transformation products and pathways.

    Science.gov (United States)

    Pareja, Lucía; Pérez-Parada, Andrés; Agüera, Ana; Cesio, Verónica; Heinzen, Horacio; Fernández-Alba, Amadeo R

    2012-05-01

    Quinclorac (QNC) is an effective but rather persistent herbicide commonly used in rice production. This herbicide presents a mean persistence in the environment so its residues are considered of environmental relevance. However, few studies have been conducted to investigate its environmental behavior and degradation. In the present work, direct photolysis and TiO(2) photocatalysis of the target compound in ultrapure and paddy field water were investigated. After 10h photolysis in ultrapure water, the concentration of QNC declined 26% and 54% at 250 and 700 W m(-2), respectively. However, the amount of quinclorac in paddy field water remained almost constant under the same irradiation conditions. QNC dissipated completely after 40 min of TiO(2) photocatalysis in ultrapure water, whereas 130 min were necessary to degrade 98% of the initial concentration in paddy field water. Possible QNC photolytic and photocatalytic degradation pathways are proposed after structure elucidation of the main transformation products, through liquid chromatography-electrospray ionization-quadrupole time-of-flight mass spectrometry and exact mass measurements. Pyridine ring hydroxylation at C-9 followed by ring opening and/or oxidative dechlorination were the key steps of QNC degradation. Copyright © 2012 Elsevier Ltd. All rights reserved.

  15. Influence of low- and high-dose radioiodine therapy on oxidative modification of fibrinogen

    International Nuclear Information System (INIS)

    Schweeger-Exeli, I.J.

    2001-10-01

    Fibrinogen plays a central role in the course of thrombosis and hemostasis. It is soluble in blood and tissue extracts and transformed into the insoluble fibrin network structure in the presence of thrombin. Fibrinogen in circulating blood consists of a population of slightly different molecules with a half-life of 3.5-4.5 days. Various environmental conditions may cause different types of modifications of the molecule leading to a different functional behavior. Introduction of carbonyl groups in amino acid side chains is known as a marker for protein oxidation. Radioiodine therapy, applied in patients suffering from hyperthyroidism or differentiated thyroid carcinoma, may cause an oxidative modification of fibrinogen by formation of free radicals in blood exposed to the radioactive agent 131I. The topic of my thesis was i. to develop a simple and not time consuming method for isolation of fibrinogen from small volumes of human plasma (∼ 6ml), ii. to assess, whether radioiodine therapy causes detectable introduction of carbonyl groups into the fibrinogen molecule, and iii. to analyze an association between thyroid hormone function, fibrinogen levels and protein oxidation by means of carbonyl content. Purification of fibrinogen from human plasma was possible by three different methods (ammonium sulphate/ethanol; glycine/ethanol; glycine). Plasma levels of fibrinogen (Clauss method) and protein carbonyl group content (2,4-DNPH - assay) were determined before and after radioiodine therapy. The results demonstrate a significant increase (p = 0.05) in carbonyl content of human fibrinogen in cancer patients treated with 131I. However, in patients with diagnosed hyperthyroidism values were not significantly altered. In carcinoma patients, baseline fT4 levels and the relative increase in carbonyl content of fibrinogen after radioiodine therapy were correlated (r = 0.83; p 0.005), whereas no such correlation was found in patients with hyperthyroidism. Plasma fibrinogen

  16. Production of cellulose and hemicellulose-degrading enzymes by filamentous fungi cultivated on wet-oxidised wheat straw

    DEFF Research Database (Denmark)

    Thygesen, A.; Thomsen, A.B.; Schmidt, A.S.

    2003-01-01

    The production of cellulose and hemicellulose-degrading enzymes by cultivation of Aspergillus niger ATCC 9029, Botrytis cinerea ATCC 28466, Penicillium brasilianum IBT 20888, Schizophyllum commune ATCC 38548, and Trichoderma reesei Rut-C30 was studied. Wet-oxidised wheat straw suspension suppleme......The production of cellulose and hemicellulose-degrading enzymes by cultivation of Aspergillus niger ATCC 9029, Botrytis cinerea ATCC 28466, Penicillium brasilianum IBT 20888, Schizophyllum commune ATCC 38548, and Trichoderma reesei Rut-C30 was studied. Wet-oxidised wheat straw suspension...... hydrolysis of filter cake from wet-oxidised wheat straw for 48 h with an enzyme loading of 5 FPU/g biomass resulted in glucose yields from cellulose of 58% (w/w) and 39% (w/w) using enzymes produced by R brasilianum and a commercial enzyme mixture, respectively. At higher enzyme loading (25 FPU/g biomass...

  17. MODIS Aqua Optical Throughput Degradation Impact on Relative Spectral Response and Calibration on Ocean Color Products

    Science.gov (United States)

    Lee, Shihyan; Meister, Gerhard

    2017-01-01

    Since Moderate Resolution Imaging Spectroradiometer Aqua's launch in 2002, the radiometric system gains of the reflective solar bands have been degrading, indicating changes in the systems optical throughput. To estimate the optical throughput degradation, the electronic gain changes were estimated and removed from the measured system gain. The derived optical throughput degradation shows a rate that is much faster in the shorter wavelengths than the longer wavelengths. The wavelength-dependent optical throughput degradation modulated the relative spectral response (RSR) of the bands. In addition, the optical degradation is also scan angle-dependent due to large changes in response versus the scan angle over time. We estimated the modulated RSR as a function of time and scan angles and its impacts on sensor radiometric calibration for the ocean science. Our results show that the calibration bias could be up to 1.8 % for band 8 (412 nm) due to its larger out-of-band response. For the other ocean bands, the calibration biases are much smaller with magnitudes at least one order smaller.

  18. [Control on products of NDMA degradation by UV/O3].

    Science.gov (United States)

    Xu, Bing-bing; Chen, Zhong-lin; Qi, Fei; Yang, Lei; Huang, Lu-xi

    2008-12-01

    Comparison experiments of two advanced oxidation processes, UV/O3 and UV/H2O2, were carried out to evaluate their degradation effect of N-nitrosodimethylamine (NDMA) and controlling effect of dimethylamine (DMA) formation. The results showed that UV/H2O2 could enhance NDMA degradation, but could not control on the formation of DMA. UV/O3 was not only effective for NDMA degradation, but also was good at controlling on DMA formation. Furthermore, factors affecting the formation of DMA during degradation of NDMA by UV/O3 were studied. The formation of DMA decreased with O3 dosage increasing and DMA was 0.98 mg x L(-1) with 7.7 mg x L(-1) NDMA and 6.64 mg x L(-1) O3 dose. Solution pH had obvious effect on controlling of DMA formation during degradation of NDMA by UV/O3 . The formation of DMA lightly increased with pH increasing from acid to neutral but dramatically decreased in basic aqueous solution. The formation of DMA was only 0.3 mg x L(-1) when the initial concentration of NDMA was 7.7 mg x L(-1) under pH = 11.0 condition. UV/O3 had better controlling of DMA formation with lesser initial concentration of NDMA.

  19. Improved fibronectin-immobilized fibrinogen microthreads for the attachment and proliferation of fibroblasts

    Directory of Open Access Journals (Sweden)

    Rajangam T

    2013-03-01

    Full Text Available Thanavel Rajangam, Seong Soo A AnDepartment of Bionanotechnology, Gachon University, Seongnam, South KoreaAbstract: The aim of this study was to fabricate fibrinogen (Fbg microfibers with different structural characteristics for the development of 3-D tissue-engineering scaffolds. Fabricated Fbg microfibers were investigated for their biomolecule encapsulation, cell adhesion, and proliferations. Microfibers with three different concentrations of Fbg (5, 10, and 15 wt% were prepared by a gel solvent-extraction method using a silicone rubber tube. Fbg microfibers were covalently modified with fibronectin (FN by using water-soluble 1-ethyl-3-(3-dimethylaminopropyl carbodiimide as the cross-linking agent. Fbg microfibers were characterized by their FN cross-linking properties, structural morphology, and in vitro degradation. Furthermore, FN/Fbg microfibers were evaluated for cell attachment and proliferation. The biocompatibility and cell proliferation of the microfibers were assessed by measuring adenosine triphosphate activity in C2C12 fibroblast cells. Cell attachment and proliferation on microfibers were further examined using fluorescence and scanning electron microscopic images. FN loading on the microfibers was confirmed by fluorescence and infrared spectroscopy. Surface morphology was characterized by scanning electron microscopy, and showed highly aligned nanostructures for fibers made with 15 wt% Fbg, a more porous structure for fibers made with 10 wt% Fbg, and a less porous structure for those made with 5 wt% Fbg. Controlled biodegradation of the fiber was observed for 8 weeks by using an in vitro proteolytic degradation assay. Fbg microfibers with highly aligned nanostructures (15 wt% showed enhanced biomolecule encapsulation, as well as higher cell adhesion and proliferation than another two types of FN/Fbg fibers (5 and 10 wt% and unmodified Fbg fibers. The promising results obtained from the present study reveal that optimal structure

  20. Biosurfactant production from marine hydrocarbon-degrading consortia and pure bacterial strains using crude oil as carbon source

    OpenAIRE

    Antoniou, Eleftheria; Fodelianakis, Stilianos; Korkakaki, Emmanouela; Kalogerakis, Nicolas

    2015-01-01

    Biosurfactants (BS) are green amphiphilic molecules produced by microorganisms during biodegradation, increasing the bioavailability of organic pollutants. In this work, the BS production yield of marine hydrocarbon degraders isolated from Elefsina bay in Eastern Mediterranean Sea has been investigated. The drop collapse test was used as a preliminary screening test to confirm biosurfactant producing strains or mixed consortia. The community structure of the best consortia based on the drop c...

  1. The effect of partial replacement of corn silage on rumen degradability, milk production and composition in lactating primiparous dairy cows

    Directory of Open Access Journals (Sweden)

    Hakan Biricik

    2010-01-01

    Full Text Available The objective of this experiment was to evaluate the effects of partial replacement of corn silage with long alfalfa hay and/or coarse chopped wheat straw on neutral detergent fibre (NDF rumen degradability, milk yield and composition in late lactating dairy cows fed diets with 50% forage on dry matter basis. Twelve late lactating Holstein primiparous cows including four cows equipped with a rumen cannula, averaging 210 ± 20 d in milk and weighing 575 ± 50 kg were randomly assigned in a 4x4 Latin square design. During each of four 21-d periods, cows were fed 4 total mixed diets that were varied in the forage sources: 1 50% corn silage (CS, 2 35% corn silage + 15% wheat straw (CSW, 3 35% corn silage + 15% alfalfa hay (CSA, 4 25% corn silage + 10% wheat straw + 15% alfalfa hay (CSWA. The production of milk averaged 18.55, 20.41 and 20.06 kg/d for unadjusted milk production, 4% fat corrected milk and solid corrected milk, respectively, and was not affected by treatments. Likewise, milk composition or production of milk components was not affected by diets and averaged 4.69% fat, 3.66% protein, 4.51% lactose, 866 g/d fat, 665 g/d protein, 824 g/d lactose. Treatments had no effect on in situ NDF soluble, degradable and potential degradability of all diets, whereas the effective degradability (ED of NDF was greater for cows fed CS diet than for cows fed CSW, CSA and CSWA diets (P<0.05. These values suggested that the partial replacement of corn silage with alfalfa hay and/or wheat straw has no unfavourable effect on the productive parameters.

  2. Gas chromatography-mass spectrometry and high-performance liquid chromatographic analyses of thermal degradation products of common plastics

    OpenAIRE

    Pacakova, V.; Leclercq, P.A.

    1991-01-01

    The thermo-oxidation of five commonly used materials, namely low-density polyethylene, retarded polyethylene, paper with a polyethylene foil, a milk package and filled polypropylene, was studied. Capillary gas chromatography and gas chromatography-mass spectrometry were used to analyze the volatile degradation products, while high-performance liquid chromatography was employed to measure polycyclic aromatic hydrocarbons. The results are discussed from the point of view of toxicity of the prod...

  3. Degradation of Acetaminophen and Its Transformation Products in Aqueous Solutions by Using an Electrochemical Oxidation Cell with Stainless Steel Electrodes

    Directory of Open Access Journals (Sweden)

    Miguel Ángel López Zavala

    2016-09-01

    Full Text Available In this study, a novel electrochemical oxidation cell using stainless steel electrodes was found to be effective in oxidizing acetaminophen and its transformation products in short reaction times. Aqueous solutions of 10 mg/L-acetaminophen were prepared at pH 3, 5, 7, and 9. These solutions were electrochemically treated at direct current (DC densities of 5.7 mA/cm2, 7.6 mA/cm2, and 9.5 mA/cm2. The pharmaceutical and its intermediates/oxidation products were determined by using high pressure liquid chromatography (HPLC. The results showed that electrochemical oxidation processes occurred in the cell. Acetaminophen degradation rate constants increased proportionally with the increase of current intensity. High current densities accelerated the degradation of acetaminophen; however, this effect diminished remarkably at pH values greater than 5. At pH 3 and 9.5 mA/cm2, the fastest degradation of acetaminophen and its intermediates/oxidation products was achieved. To minimize the wear down of the electrodes, a current density ramp is recommended, first applying 9.5 mA/cm2 during 2.5 min or 7.6 mA/cm2 during 7.5 min and then continuing the electrochemical oxidation process at 5.7 mA/cm2. This strategy will hasten the acetaminophen oxidation, extend the electrode’s life, and shorten the reaction time needed to degrade the pharmaceutical and its intermediates/oxidation products. DC densities up to 9.5 mA/cm2 can be supplied by photovoltaic cells.

  4. Release of peptides from Fibrinogen in vitro and in vivo

    International Nuclear Information System (INIS)

    Weibel, S.

    1986-01-01

    The dissertation deals experimentally with the following problem fields: The attempt was made to obtain extremely pure, native peptides from fibrinogen with micropreparation with the help of high-pressure liquid chromatography (HPLC); a HPLC-pure antigen which could be labelled (DAT-FPA) was also to be produced and a HPLC-purified, labelled antigen (J 125 DAT-FPA) for the radioimmunoassay was to be prepared. By applying HPLC-purified FPA-material to immunise rabbits, a highly specific antibody against FPA was obtained, and the radioimmunoassay was decisively improved. Furthermore, a method with a high recovery rate specific for the A-peptides could be found. A procedure was developed which is able to separate the modifications from the plasma from one another and to prove them specifically in ng-quantities. This is the first time that the sensitive method of high-pressure liquid chromatography is used to observe the effects of the snake venom enzymes on fibrinogen over a period of 20 hrs. The kinetics of intravenously administered J 123 DAT-FPA and, in comparison, J 123 FPB β 15-42 in vivo in rabbits with the help of a scintiscanning method, was investigated and the distribution in the organism and the ways of elimination were determined. (orig./MG) [de

  5. Graded substitution of grains with bakery by-products modulates ruminal fermentation, nutrient degradation, and microbial community composition in vitro.

    Science.gov (United States)

    Humer, E; Aditya, S; Kaltenegger, A; Klevenhusen, F; Petri, R M; Zebeli, Q

    2018-04-01

    A new segment of feed industry based on bakery by-products (BBP) has emerged. Yet, information is lacking regarding the effects of inclusion of BBP in ruminant diets on ruminal fermentation and microbiota. Therefore, the aim of this study was to evaluate the effect of the gradual replacement of grains by BBP on ruminal fermentation, nutrient degradation, and microbial community composition using the rumen-simulation technique. All diets consisted of hay and concentrate mixture with a ratio of 42:58 (dry matter basis), but differed in the concentrate composition with either 45% cereal grains or BBP, whereby 15, 30, or 45% of BBP were used in place of cereal grains. The inclusion of increasing levels of BBP in the diet linearly enhanced ruminal degradation of starch from 84% (control) to 96% (45% BBP), while decreasing degradation of crude protein and fiber. The formation of methane was lowered in the 45% BBP diet compared with all other diets. Whereas the ammonia concentration was similar in the control and 15% BBP, a significant decrease was found in 30% BBP (-23%) and 45% BBP (-33%). Also, BBP feeding shifted fermentation profile toward propionate at the expense of acetate. Moreover, isobutyrate linearly decreased with increasing BBP inclusion. Bacterial 16S rRNA Illumina MiSeq (Microsynth AG, Balach, Switzerland) sequencing revealed a decreased microbial diversity for the 45% BBP diet. Furthermore, the replacement of cereal grains with BBP went along with an increased abundance of the genera Prevotella, Roseburia, and Megasphaera, while decreasing Butyrivibrio and several OTU belonging to Ruminococcaceae. In conclusion, the inclusion of BBP at up to 30% of the dry matter had no detrimental effects on pH, fiber degradability, and microbial diversity, and enhanced propionate production. However, a higher replacement level (45%) impaired ruminal fermentation traits and fiber degradation and is not recommended. Copyright © 2018 American Dairy Science Association

  6. Mass spectrometry for the elucidation of the subtle molecular structure of biodegradable polymers and their degradation products.

    Science.gov (United States)

    Kowalczuk, Marek; Adamus, Grażyna

    2016-01-01

    Contemporary reports by Polish authors on the application of mass spectrometric methods for the elucidation of the subtle molecular structure of biodegradable polymers and their degradation products will be presented. Special emphasis will be given to natural aliphatic (co)polyesters (PHA) and their synthetic analogues, formed through anionic ring-opening polymerization (ROP) of β-substituted β-lactones. Moreover, the application of MS techniques for the evaluation of the structure of biodegradable polymers obtained in ionic and coordination polymerization of cyclic ethers and esters as well as products of step-growth polymerization, in which bifunctional or multifunctional monomers react to form oligomers and eventually long chain polymers, will be discussed. Furthermore, the application of modern MS techniques for the assessment of polymer degradation products, frequently bearing characteristic end groups that can be revealed and differentiated by MS, will be discussed within the context of specific degradation pathways. Finally, recent Polish accomplishments in the area of mass spectrometry will be outlined. © 2015 Wiley Periodicals, Inc.

  7. Stability of Anthocyanins and Their Degradation Products from Cabernet Sauvignon Red Wine under Gastrointestinal pH and Temperature Conditions.

    Science.gov (United States)

    Yang, Ping; Yuan, Chunlong; Wang, Hua; Han, Fuliang; Liu, Yangjie; Wang, Lin; Liu, Yang

    2018-02-07

    This study investigated the stability of wine anthocyanins under simulated gastrointestinal pH and temperature conditions, and further studied the evolution of anthocyanin degradation products through simulated digestive conditions. The aim of this study was to investigate the relation between anthocyanins' structure and their digestive stability. Results showed that a total of 22 anthocyanins were identified in wine and most of these anthocyanins remained stable under simulated gastric digestion process. However, a dramatic concentration decrease happened to these anthocyanins during simulated intestinal digestion. The stability of anthocyanins in digestive process appeared to be related to their structure. The methoxy group in the B-ring enhanced the stability of anthocyanins, whereas hydroxyl group resulted in a reduction of their stability. Acylation decreased the stability of malvidin 3- O -glucoside. Pyruvic acid conjugation enhanced the structural stability of pyranoanthocyanins, whereas acetaldehyde attachment weakened their stability. A commercial malvidin 3- O -glucoside standard was used to investigate anthocyanin degradation products under simulated digestion process, and syringic acid, protocatechuic acid and vanillic acid were confirmed to be the degradation products via anthocyanin chalcone conversion path. Gallic acid, protocatechuic acid, vanillic acid, syringic acid, and p -coumaric acid in wine experienced a significant concentration decrease during digestion process. However, wine model solution revealed that phenolic acids remained stable under gastrointestinal conditions, except gallic acid.

  8. Stability of Anthocyanins and Their Degradation Products from Cabernet Sauvignon Red Wine under Gastrointestinal pH and Temperature Conditions

    Directory of Open Access Journals (Sweden)

    Ping Yang

    2018-02-01

    Full Text Available This study investigated the stability of wine anthocyanins under simulated gastrointestinal pH and temperature conditions, and further studied the evolution of anthocyanin degradation products through simulated digestive conditions. The aim of this study was to investigate the relation between anthocyanins’ structure and their digestive stability. Results showed that a total of 22 anthocyanins were identified in wine and most of these anthocyanins remained stable under simulated gastric digestion process. However, a dramatic concentration decrease happened to these anthocyanins during simulated intestinal digestion. The stability of anthocyanins in digestive process appeared to be related to their structure. The methoxy group in the B-ring enhanced the stability of anthocyanins, whereas hydroxyl group resulted in a reduction of their stability. Acylation decreased the stability of malvidin 3-O-glucoside. Pyruvic acid conjugation enhanced the structural stability of pyranoanthocyanins, whereas acetaldehyde attachment weakened their stability. A commercial malvidin 3-O-glucoside standard was used to investigate anthocyanin degradation products under simulated digestion process, and syringic acid, protocatechuic acid and vanillic acid were confirmed to be the degradation products via anthocyanin chalcone conversion path. Gallic acid, protocatechuic acid, vanillic acid, syringic acid, and p-coumaric acid in wine experienced a significant concentration decrease during digestion process. However, wine model solution revealed that phenolic acids remained stable under gastrointestinal conditions, except gallic acid.

  9. The effect of poly-β-hydroxyalkanoates degradation rate on nitrous oxide production in a denitrifying phosphorus removal system.

    Science.gov (United States)

    Wei, Yan; Wang, Shuying; Ma, Bin; Li, Xiyao; Yuan, Zhiguo; He, Yuelan; Peng, Yongzhen

    2014-10-01

    Poly-β-hydroxyalkanoates (PHAs) and free nitrous acid (FNA) have been revealed as significant factors causing nitrous oxide (N2O) production in denitrifying phosphorus removal systems. In this study, the effect of PHA degradation rate on N2O production was studied at low FNA levels. N2O production always maintained at approximately 40% of the amount of nitrite reduced independent of the PHA degradation rate. The electrons distributed to nitrite reduction were 1.6 times that to N2O reduction. This indicated that electron competition between these two steps was not affected by the PHA degradation rate. Continuous feed of nitrate was proposed, and demonstrated to reduce N2O accumulation by 75%. While being kept low, a possible compounding effect of a low-level FNA could not be ruled out. The sludge used likely contained both polyphosphate- and glycogen-accumulating organisms, and the results could not be simply attributed to either group of organisms. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Determination of degradation products and process related impurities of asenapine maleate in asenapine sublingual tablets by UPLC

    Science.gov (United States)

    Kumar, Nitin; Sangeetha, D.; Kalyanraman, L.

    2017-11-01

    For determination of process related impurities and degradation products of asenapine maleate in asenapine sublingual Tablets, a reversed phase, stability indicating UPLC method was developed. Acetonitrile, methanol and potassium dihydrogen phosphate buffer with tetra-n- butyl ammonium hydrogen sulphate as ion pair (pH 2.2; 0.01 M) at flow rate of 0.2 ml/min were used in gradient elution mode. Separation was achieved by using acquity BEH Shield RP18 column (1.7 μm, 2.1 mm×100 mm) at 35 ºC. UV detection was performed at 228 nm. Subsequently the liquid chromatography method was validated as per ICH. The drug product was exposed to the stress conditions of acid hydrolysis, base hydrolysis, water hydrolysis, oxidative, thermal, and photolytic. In oxidative stress and thermal stress significant degradation was observed. All the degradation products were well separated from analyte peak and its impurities. Stability indicating nature of the method was proved by demonstrating the peak purity of Asenapine peak in all the stressed samples. The mass balance was found >95% for all the stress conditions. Based on method validation, the method was found specific, linear, accurate, precise, rugged and robust.

  11. Production of xylan-degrading enzymes by a Trichoderma harzianum strain

    Directory of Open Access Journals (Sweden)

    Cacais André O.Guerreiro

    2001-01-01

    Full Text Available Trichoderma harzianum strain 4 produced extracellular xylan-degrading enzymes, namely beta-xylanase, beta-xylosidase and alpha-arabinofuranosidase, when grown in liquid medium cultures containing oat spelt xylan as inducer. Cellulase activity was not detected. The pattern of xylan-degrading enzymes induction was influenced by the form of xylan present in the medium. They were detected in different incubation periods. Electrophoretic separation of the proteins from liquid culture filtrates by SDS-PAGE showed a variety of bands with high and low molecular weights.

  12. Plasma fibrinogen and factor VII concentrations in adults after prenatal exposure to famine

    NARCIS (Netherlands)

    Roseboom, T. J.; van der Meulen, J. H.; Ravelli, A. C.; Osmond, C.; Barker, D. J.; Bleker, O. P.

    2000-01-01

    To assess the effect of maternal malnutrition during different stages of gestation on plasma concentrations of fibrinogen and factor VII, we investigated 725 people, aged 50 years, born around the time of the Dutch famine 1944-5. After adjustment for sex, plasma fibrinogen concentrations differed by

  13. Elevated plasma fibrinogen associated with reduced pulmonary function and increased risk of chronic obstructive pulmonary disease

    DEFF Research Database (Denmark)

    Dahl, Morten; Tybjaerg-Hansen, A; Vestbo, J

    2001-01-01

    We tested whether increased concentrations of the acute-phase reactant fibrinogen correlate with pulmonary function and rate of chronic obstructive pulmonary disease (COPD) hospitalization. We measured plasma fibrinogen and forced expiratory volume in 1 s (FEV(1)), and assessed prospectively COPD...

  14. The binding of 125I-fibrinogen to blood platelets in patients with chronic uraemia

    International Nuclear Information System (INIS)

    Komarnicki, M.; Zozulinska, M.; Zawilska, K.

    1987-01-01

    The binding of 125 I-fibrinogen to blood platelets was assessed in 41 patients with chronic uremia. The study was performed in three groups of subjects: treated conservatively, with hemodialysis and with peritoneal dialysis. Platelets from uremic patients were shown to be more susceptible to fibrinogen binding than platelets from healthy subjects. (author)

  15. Circulating fibrinogen but not D-dimer level is associated with vital exhaustion in school teachers.

    Science.gov (United States)

    Kudielka, Brigitte M; Bellingrath, Silja; von Känel, Roland

    2008-07-01

    Meta-analyses have established elevated fibrinogen and D-dimer levels in the circulation as biological risk factors for the development and progression of coronary artery disease (CAD). Here, we investigated whether vital exhaustion (VE), a known psychosocial risk factor for CAD, is associated with fibrinogen and D-dimer levels in a sample of apparently healthy school teachers. The teaching profession has been proposed as a potentially high stressful occupation due to enhanced psychosocial stress at the workplace. Plasma fibrinogen and D-dimer levels were measured in 150 middle-aged male and female teachers derived from the first year of the Trier-Teacher-Stress-Study. Log-transformed levels were analyzed using linear regression. Results yielded a significant association between VE and fibrinogen (p = 0.02) but not D-dimer controlling for relevant covariates. Further investigation of possible interaction effects resulted in a significant association between fibrinogen and the interaction term "VE x gender" (p = 0.05). In a secondary analysis, we reran linear regression models for males and females separately. Gender-specific results revealed that the association between fibrinogen and VE remained significant in males but not females. In sum, the present data support the notion that fibrinogen levels are positively related to VE. Elevated fibrinogen might be one biological pathway by which chronic work stress may impact on teachers' cardiovascular health in the long run.

  16. A study on human serum albumin influence on glycation of fibrinogen

    International Nuclear Information System (INIS)

    Kielmas, Martyna; Szewczuk, Zbigniew; Stefanowicz, Piotr

    2013-01-01

    Highlights: •The glycation of fibrinogen was investigated by isotopic labeling method. •The potential glycation sites in fibrinogen were identified. •Human serum albumin (HSA) inhibits the glycation of fibrinogen. •The effect of HSA on fibrinogen glycation is sequence-dependent. -- Abstract: Although in vivo glycation proceeds in complex mixture of proteins, previous studies did not take in consideration the influence of protein–protein interaction on Maillard reaction. The aim of our study was to test the influence of human serum albumin (HSA) on glycation of fibrinogen. The isotopic labeling using [ 13 C 6 ] glucose combined with LC-MS were applied as tool for identification possible glycation sites in fibrinogen and for evaluation the effect of HSA on the glycation level of selected amino acids in fibrinogen. The obtained data indicate that the addition of HSA protects the fibrinogen from glycation. The level of glycation in presence of HSA is reduced by 30–60% and depends on the location of glycated residue in sequence of protein

  17. Positive imaging of venous thrombi and thromboemboli with Ga-67 DFO-DAS-fibrinogen

    Energy Technology Data Exchange (ETDEWEB)

    Yamamoto, Kazutaka; Senda, Michio; Fujita, Toru; Yonekura, Yoshiharu; Kumada, Kaoru; Yokoyama, Akira; Torizuka, Kanji

    1988-05-01

    A newly developed thrombus imaging agent, /sup 67/Ga-DFO-DAS-fibrinogen (/sup 67/Ga-fibrinogen), was used for 22 studies in 20 cases of suspected deep venous thrombosis. Increased accumulation of /sup 67/Ga-fibrinogen in venous thrombi was depicted at 48 h after injection in 10 of the 15 cases (10 of 17 studies) who showed abnormal findings in radionuclide venography. A hot spot in the lung emboli was visualized in two cases. Seven of the eight cases having anticoagulant therapy showed increased /sup 67/Ga-fibrinogen uptake, while follow-up /sup 67/Ga-fibrinogen scintigraphy after the administration of heparin and urokinase did not reveal an abnormal hot spot in one case. /sup 67/Ga-fibrinogen can be made available simply by adding /sup 67/Ga solution to a vial containing fibrinogen-DAS-DFO conjugate. In conclusion, /sup 67/Ga-fibrinogen is considered to be a promising agent for detecting active venous thrombi and to assess the effect of anticoagulant therapy.

  18. Modulation of plasma fibrinogen levels by ciprofibrate and gemfibrozil in primary hyperlipidaemia

    NARCIS (Netherlands)

    de Maat, M. P.; Knipscheer, H. C.; Kastelein, J. J.; Kluft, C.

    1997-01-01

    An elevated plasma fibrinogen level is increasingly accepted as an independent risk indicator of cardiovascular disease. This has enhanced the interest in identifying agents that can normalize elevated plasma fibrinogen levels. One group of agents with this capacity are the fibric acid derivatives,

  19. A study on human serum albumin influence on glycation of fibrinogen

    Energy Technology Data Exchange (ETDEWEB)

    Kielmas, Martyna; Szewczuk, Zbigniew; Stefanowicz, Piotr, E-mail: Piotr.stefanowicz@chem.uni.wroc.pl

    2013-09-13

    Highlights: •The glycation of fibrinogen was investigated by isotopic labeling method. •The potential glycation sites in fibrinogen were identified. •Human serum albumin (HSA) inhibits the glycation of fibrinogen. •The effect of HSA on fibrinogen glycation is sequence-dependent. -- Abstract: Although in vivo glycation proceeds in complex mixture of proteins, previous studies did not take in consideration the influence of protein–protein interaction on Maillard reaction. The aim of our study was to test the influence of human serum albumin (HSA) on glycation of fibrinogen. The isotopic labeling using [{sup 13}C{sub 6}] glucose combined with LC-MS were applied as tool for identification possible glycation sites in fibrinogen and for evaluation the effect of HSA on the glycation level of selected amino acids in fibrinogen. The obtained data indicate that the addition of HSA protects the fibrinogen from glycation. The level of glycation in presence of HSA is reduced by 30–60% and depends on the location of glycated residue in sequence of protein.

  20. Wound healing and degradation of the fibrin sealant Beriplast P following partial liver resection in rabbits.

    Science.gov (United States)

    Kroez, Monika; Lang, Wiegand; Dickneite, Gerhard

    2005-01-01

    The objective of this study was to investigate the degradation kinetics of the fibrin sealant (FS) Beriplast P in an experimental liver surgery model in rabbits. A partial liver resection was performed in 21 rabbits, and the wound area covered with Beriplast P to ensure hemostasis. Wound healing of the resection sites was evaluated morphologically over 11 weeks. Degradation of the FS was evaluated by measuring the thickness of the remaining fibrin layer. Plasma samples were analyzed for antibodies against fibrinogen, albumin, thrombin, fibrin, and factor XIII. No postoperative hemorrhage was observed, indicating successful hemostasis throughout. The FS was degraded with a half-life of about 25 days postapplication and was completely replaced by granulation tissue within 9 weeks. The FS degradation and tissue development followed the general stages of wound healing: inflammation and resorption, proliferation, organization and production of collagen, maturation, and scarring. An immune reaction was elicited against the main four human proteins of the FS. The antibody titers peaked on day 14, with a gradual decrease thereafter. We conclude that the FS accomplished hemostasis, facilitated healing in accordance with natural processes, and was completely degraded over time. In humans, the reduced immunogenicity of the FS would potentially increase its degradation half-life.

  1. Effects of fungal degradation on the CuO oxidation products of lignin: A controlled laboratory study

    Science.gov (United States)

    Hedges, John I.; Blanchette, Robert A.; Weliky, Karen; Devol, Allan H.

    1988-11-01

    Duplicate samples of birch wood were degraded for 0, 4, 8 and 12 weeks by the white-rot fungus, Phlebia tremellosus, and for 12 weeks by 6 other white-rot and brown-rot fungi. P. tremellosus caused progressive weight losses and increased the H/C and O/C of the remnant wood by preferentially degrading the lignin component of the middle lamellae. This fungus increased the absolute (weight loss-corrected) yield of the vanillic acid CuO reaction product above its initial level and exponentially decreased the absolute yields of all other lignin-derived phenols. Total yields of syringyl phenols were decreased 1.5 times as fast as total vanillyl phenol yields. Within both phenol families, aldehyde precursors were degraded faster than precursors of the corresponding ketones, which were obtained in constant proportion to the total phenol yield. Although two other white-rot fungi caused similar lignin compositional trends, a fourth white-rot species, Coriolus versicolor, simultaneously eroded all cell wall components and did not concentrate polysaccharides in the remnant wood. Wood degraded by the three brown-rot fungi exhibited porous cell walls with greatly reduced integrity. The brown-rot fungi also preferentially attacked syringyl structural units, but degraded all phenol precursors at a much slower rate than the white-rotters and did not produce excess vanillic acid. Degradation by P. tremellosus linearly increased the vanillic acid/vanillin ratio, (Ad/Al)v, of the remnant birch wood throughout the 12 week degradation study and exponentially decreased the absolute yields of total vanillyl phenols, total syringyl phenols and the syringyl/vanillyl phenol ratio, S/V. At the highest (Ad/Al)v of 0.50 (12 week samples), total yields of syringyl and vanillyl phenols were decreased by 65% and 80%, respectively, with a resulting reduction of 40% in the original S/V. Many of the diagenetically related compositional trends that have been previously reported for lignins in natural

  2. Substitution of common concentrates with by-products modulated ruminal fermentation, nutrient degradation, and microbial community composition in vitro.

    Science.gov (United States)

    Ertl, P; Knaus, W; Metzler-Zebeli, B U; Klevenhusen, F; Khiaosa-Ard, R; Zebeli, Q

    2015-07-01

    A rumen simulation technique was used to evaluate the effects of the complete substitution of a common concentrate mixture (CON) with a mixture consisting solely of by-products from the food industry (BP) at 2 different forage-to-concentrate ratios on ruminal fermentation profile, nutrient degradation, and abundance of rumen microbiota. The experiment was a 2×2 factorial arrangement with 2 concentrate types (CON and BP) and 2 concentrate levels (25 and 50% of diet dry matter). The experiment consisted of 2 experimental runs with 12 fermentation vessels each (n=6 per treatment). Each run lasted for 10d, with data collection on the last 5d. The BP diets had lower starch, but higher neutral detergent fiber (NDF) and fat contents compared with CON. Degradation of crude protein was decreased, but NDF and nonfiber carbohydrate degradation were higher for the BP diets. At the 50% concentrate level, organic matter degradation tended to be lower for BP and CH4 formation per unit of NDF degraded was also lower for BP. The BP mixture led to a higher concentration of propionate and a lower acetate-to-propionate ratio, whereas concentrations of butyrate and caproate decreased. Concentrate type did not affect microbial community composition, except that the abundance of bacteria of the genus Prevotella was higher for BP. Increasing the concentrate level resulted in higher degradation of organic matter and crude protein. At the higher concentrate level, total short-chain fatty acid formation increased and concentrations of isobutyrate and valerate decreased. In addition, at the 50% concentrate level, numbers of protozoa increased, whereas numbers of methanogens, anaerobic fungi, and fibrolytic bacteria decreased. No interaction was noted between the 2 dietary factors on most variables, except that at the higher concentrate level the effects of BP on CH4 and CO2 formation per unit of NDF degraded, crude protein degradation, and the abundance of Prevotella were more prominent. In

  3. Biodegradation of the Organophosphate Trichlorfon and Its Major Degradation Products by a Novel Aspergillus sydowii PA F-2.

    Science.gov (United States)

    Tian, Jiang; Dong, Qiaofeng; Yu, Chenlei; Zhao, Ruixue; Wang, Jing; Chen, Lanzhou

    2016-06-01

    Trichlorfon (TCF) is an important organophosphate pesticide in agriculture. However, limited information is known about the biodegradation behaviors and kinetics of this pesticide. In this study, a newly isolated fungus (PA F-2) from pesticide-polluted soils was identified as Aspergillus sydowii on the basis of the sequencing of internal transcribed spacer rDNA. This fungus degraded TCF as sole carbon, sole phosphorus, and sole carbon-phosphorus sources in a mineral salt medium (MSM). Optimal TCF degradation conditions were determined through response surface methodology, and results also revealed that 75.31% of 100 mg/L TCF was metabolized within 7 days. The degradation of TCF was accelerated, and the mycelial dry weight of PA F-2 was remarkably increased in MSM supplemented with exogenous sucrose and yeast extract. Five TCF metabolic products were identified through gas chromatography-mass spectrometry. TCF could be initially hydrolyzed to dichlorvos and then be degraded through the cleavage of the P-C bond to produce dimethyl hydrogen phosphate and chloral hydrate. These two compounds were subsequently deoxidized to produce dimethyl phosphite and trichloroethanal. These results demonstrate the biodegradation pathways of TCF and promote the potential use of PA F-2 to bioremediate TCF-contaminated environments.

  4. Isolation, identification and characterization of Paenibacillus polymyxa CR1 with potentials for biopesticide, biofertilization, biomass degradation and biofuel production.

    Science.gov (United States)

    Weselowski, Brian; Nathoo, Naeem; Eastman, Alexander William; MacDonald, Jacqueline; Yuan, Ze-Chun

    2016-10-18

    Paenibacillus polymyxa is a plant-growth promoting rhizobacterium that could be exploited as an environmentally friendlier alternative to chemical fertilizers and pesticides. Various strains have been isolated that can benefit agriculture through antimicrobial activity, nitrogen fixation, phosphate solubilization, plant hormone production, or lignocellulose degradation. However, no single strain has yet been identified in which all of these advantageous traits have been confirmed. P. polymyxa CR1 was isolated from degrading corn roots from southern Ontario, Canada. It was shown to possess in vitro antagonistic activities against the common plant pathogens Phytophthora sojae P6497 (oomycete), Rhizoctonia solani 1809 (basidiomycete fungus), Cylindrocarpon destructans 2062 (ascomycete fungus), Pseudomonas syringae DC3000 (bacterium), and Xanthomonas campestris 93-1 (bacterium), as well as Bacillus cereus (bacterium), an agent of food-borne illness. P. polymyxa CR1 enhanced growth of maize, potato, cucumber, Arabidopsis, and tomato plants; utilized atmospheric nitrogen and insoluble phosphorus; produced the phytohormone indole-3-acetic acid (IAA); and degraded and utilized the major components of lignocellulose (lignin, cellulose, and hemicellulose). P. polymyxa CR1 has multiple beneficial traits that are relevant to sustainable agriculture and the bio-economy. This strain could be developed for field application in order to control pathogens, promote plant growth, and degrade crop residues after harvest.

  5. Transfer of the high-GC cyclohexane carboxylate degradation pathway from Rhodopseudomonas palustris to Escherichia coli for production of biotin.

    Science.gov (United States)

    Bernstein, Jeffrey R; Bulter, Thomas; Liao, James C

    2008-01-01

    This work demonstrates the transfer of the five-gene cyclohexane carboxylate (CHC) degradation pathway from the high-GC alphaproteobacterium Rhodopseudomonas palustris to Escherichia coli, a gammaproteobacterium. The degradation product of this pathway is pimeloyl-CoA, a key metabolite in E. coli's biotin biosynthetic pathway. This pathway is useful for biotin overproduction in E. coli; however, the expression of GC-rich genes is troublesome in this host. When the native R. palustris CHC degradation pathway is transferred to a DeltabioH pimeloyl-CoA auxotroph of E. coli, it is unable to complement growth in the presence of CHC. To overcome this expression problem we redesigned the operon with decreased GC content and removed stretches of high-GC intergenic DNA which comprise the 5' untranslated region of each gene, replacing these features with shorter low-GC sequences. We show this synthetic construct enables growth of the DeltabioH strain in the presence of CHC. When the synthetic degradation pathway is overexpressed in conjunction with the downstream genes for biotin biosynthesis, we measured significant accumulation of biotin in the growth medium, showing that the pathway transfer is successfully integrated with the host metabolism.

  6. Determining of Degradation and Digestion Coefficients of Canola meal Using of In situ and Gas production Techniques

    OpenAIRE

    Younes Tahmazi; Akbar Taghizadeh; Yousef Mehmannavaz; Mehdi Moghaddam

    2015-01-01

    This study was carried out to the determination of nutritive value of canola meal using naylon bag and cumulative gas production techniques in Gizel sheep. Tow fistulated Gizel sheep with average BW 45±2 kg used in a complete randomized design. The cumulative gas production was measured at 2, 4, 6, 8, 12, 16, 24, 36 and 48 h and ruminal DM and CP disappearance were measured up to 96 h. Coefficients of soluble CP degradation of canola meal (A), canola meal treated with 0.5% urea (B) and canola...

  7. The changes in the fibrinogen concentration and coagulation pathways in winter and summer in cattle

    Directory of Open Access Journals (Sweden)

    ameneh khoshvaghti

    2013-08-01

    Full Text Available Fibrinogen is an important coagulation factor and a positive acute phase protein and its levels increases in cases of inflammation infection and stress. The present research was done to determine whether the fibrinogen concentration, prothrombin time (PT and activated partial thromboplastin time (APTT can be affected by seasonal changes. In this study, the blood of ten apparently healthy cows from around Yasouj city were taken under aseptic conditions and, then the plasma was separated. The fibrinogen concentration, was assayed by sedimentation refractometry method, PT and APTT were measurement by coagolometric method. The statistical analysis indicated that there was significant difference between the mean concentration of fibrinogen in summer and winter (P0.05. It is concluded that seasonal changes can affect the fibrinogen concentration but does no affect PT and APTT significantly.

  8. Association of fibrinogen with HbA1C in diabetic foot ulcer

    Science.gov (United States)

    Pase, M. A.; Gatot, D.; Lindarto, D.

    2018-03-01

    Fibrinogen is one of the inflammatory markers of vascular changes and endothelial dysfunction in diabetic patients. The aim of this study to associate serum fibrinogen levels with HbA1C in diabetic foot ulcer (DFU). This study was cross-sectional and retrospective in DFU patients from January to July 2017 in Haji Adam Malik Central General Hospital. The patients enrolled in the study were T2DM with DFU as a complication. The grading of DFU was evaluated according to the Wagner’s Classification. Serum fibrinogen level, HbA1C and ankle-brachial index (ABI) were carried out directly in the patients. Fibrinogen serum levels were found significantly with HbA1C (P=0.001, r=0.387) and ABI (P=0.008, r=-0.454). Fibrinogen serum levels in DFU patients were positively correlated with HbA1C and significantly higher in patients with poor glycemic control.

  9. PEGylated single-walled carbon nanotubes activate neutrophils to increase production of hypochlorous acid, the oxidant capable of degrading nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Vlasova, Irina I., E-mail: irina.vlasova@yahoo.com [Research Institute for Physico-Chemical Medicine, Federal Medico-Biological Agency, Moscow (Russian Federation); Vakhrusheva, Tatyana V. [Research Institute for Physico-Chemical Medicine, Federal Medico-Biological Agency, Moscow (Russian Federation); Sokolov, Alexey V.; Kostevich, Valeria A. [Research Institute for Physico-Chemical Medicine, Federal Medico-Biological Agency, Moscow (Russian Federation); Research Institute for Experimental Medicine, Russian Academy of Medical Science, Saint Petersburg (Russian Federation); Gusev, Alexandr A.; Gusev, Sergey A. [Research Institute for Physico-Chemical Medicine, Federal Medico-Biological Agency, Moscow (Russian Federation); Melnikova, Viktoriya I. [Institute of Developmental Biology, Russian Academy of Science, Moscow (Russian Federation); Lobach, Anatolii S. [Institute of Problems of Chemical Physics, Russian Academy of Science, Chernogolovka (Russian Federation)

    2012-10-01

    Perspectives for the use of carbon nanotubes in biomedical applications depend largely on their ability to degrade in the body into products that can be easily cleared out. Carboxylated single-walled carbon nanotubes (c-SWCNTs) were shown to be degraded by oxidants generated by peroxidases in the presence of hydrogen peroxide. In the present study we demonstrated that conjugation of poly(ethylene glycol) (PEG) to c-SWCNTs does not interfere with their degradation by peroxidase/H{sub 2}O{sub 2} system or by hypochlorite. Comparison of different heme-containing proteins for their ability to degrade PEG-SWCNTs has led us to conclude that the myeloperoxidase (MPO) product hypochlorous acid (HOCl) is the major oxidant that may be responsible for biodegradation of PEG-SWCNTs in vivo. MPO is secreted mainly by neutrophils upon activation. We hypothesize that SWCNTs may enhance neutrophil activation and therefore stimulate their own biodegradation due to MPO-generated HOCl. PEG-SWCNTs at concentrations similar to those commonly used in in vivo studies were found to activate isolated human neutrophils to produce HOCl. Both PEG-SWCNTs and c-SWCNTs enhanced HOCl generation from isolated neutrophils upon serum-opsonized zymosan stimulation. Both types of nanotubes were also found to activate neutrophils in whole blood samples. Intraperitoneal injection of a low dose of PEG-SWCNTs into mice induced an increase in percentage of circulating neutrophils and activation of neutrophils and macrophages in the peritoneal cavity, suggesting the evolution of an inflammatory response. Activated neutrophils can produce high local concentrations of HOCl, thereby creating the conditions favorable for degradation of the nanotubes. -- Highlights: ► Myeloperoxidase (MPO) product hypochlorous acid is able to degrade CNTs. ► PEGylated SWCNTs stimulate isolated neutrophils to produce hypochlorous acid. ► SWCNTs are capable of activating neutrophils in blood samples. ► Activation of

  10. Photocatalysis applied to concrete products - Part 3: Practical relevance and modeling of the degradation process

    NARCIS (Netherlands)

    Hunger, M.; Hüsken, G.; Brouwers, H.J.H.

    2009-01-01

    The third and last part of this article series concludes the characterization of influencing factors on the degradation performance illustrated by the influence of pigments. Furthermore, the results of an accelerated durability test carried out on coated samples described in the second part of this

  11. A STUDY ON THE DEGRADATION MECHANISM OF PHOTOCROSSLINKING PRODUCTS FORMED BY CYCLIZED POLYISOPRENE-DIAZIDE SYSTEM UNDER THE INFLUENCE OF ALKYL BENZENE SULFONIC ACIDS

    Institute of Scientific and Technical Information of China (English)

    HUANG Junlian; SUN Meng

    1989-01-01

    The degradation mechanism of photocrosslinking products formed by cyclized polyisoprene-diazide system under the influence of the different alkyl benzene sulfonic acids was studied. The effects ofalkyl chain length and the concentration of alkyl benzene sulfonic acids on the rate of degradation reaction were discussed. It was found that in the initial stage of degradation, the cyclicity ratio and the average fused ring number did not change considerably, but the percentage of uncyclized parts content varied significantly. The suitable mechanism was supposed.

  12. In vitro degradability and total gas production of biodiesel chain byproducts used as a replacement for cane sugar feed

    Directory of Open Access Journals (Sweden)

    Milenna Nunes Moreira

    2014-09-01

    Full Text Available This study aimed to determine the in vitro degradability of dry matter and the total gas production of oil seed press cake from biodiesel production (Gossypium hirsutum L., Helianthus annuus L., Ricinus communis, Moringa oleífera L. and Pinhão manso curcas L. at four different levels of replacement (0, 30, 50, and 70% for cane sugar (Saccharum officinarum RB. in ruminant feed. Inocula were prepared using the ruminal fluid of three Holstein cows, and data were collected after 48 hours of incubation. The byproducts of Moringa had the highest degradability, and castor presented the lowest values at all evaluated levels of replacement. Castor bean byproduct showed the highest total gas production, cotton showed the lowest production, and the byproduct of Moringa at the 70% level showed the best ruminal fermentation results. These results demonstrate that the use of oil seed press cake from biodiesel production (Helianthus annuus L. and Ricinus communis can replace cane sugar in ruminant feed.

  13. Formation of chlorinated breakdown products during degradation of sunscreen agent, 2-ethylhexyl-4-methoxycinnamate in the presence of sodium hypochlorite.

    Science.gov (United States)

    Gackowska, Alicja; Przybyłek, Maciej; Studziński, Waldemar; Gaca, Jerzy

    2016-01-01

    In this study, a new degradation path of sunscreen active ingredient, 2-ethylhexyl-4-methoxycinnamate (EHMC) and 4-methoxycinnamic acid (MCA) in the presence of sodium hypochlorite (NaOCl), was discussed. The reaction products were detected using gas chromatography-mass spectrometry (GC-MS). Since HOCl treatment leads to more polar products than EHMC, application of polar extracting agents, dichloromethane and ethyl acetate/n-hexane mixture, gave better results in terms of chlorinated breakdown products identification than n-hexane. Reaction of EHMC with HOCl lead to the formation of C=C bridge cleavage products such as 2-ethylhexyl chloroacetate, 1-chloro-4-methoxybenzene, 1,3-dichloro-2-methoxybenzene, and 3-chloro-4-methoxybenzaldehyde. High reactivity of C=C bond attached to benzene ring is also characteristic for MCA, since it can be converted in the presence of HOCl to 2,4-dichlorophenole, 2,6-dichloro-1,4-benzoquinone, 1,3-dichloro-2-methoxybenzene, 1,2,4-trichloro-3-methoxybenzene, 2,4,6-trichlorophenole, and 3,5-dichloro-2-hydroxyacetophenone. Surprisingly, in case of EHMC/HOCl/UV, much less breakdown products were formed compared to non-UV radiation treatment. In order to describe the nature of EHMC and MCA degradation, local reactivity analysis based on the density functional theory (DFT) was performed. Fukui function values showed that electrophilic attack of HOCl to the C=C bridge in EHMC and MCA is highly favorable (even more preferable than phenyl ring chlorination). This suggests that HOCl electrophilic addition is probably the initial step of EHMC degradation.

  14. Lignocellulose degradation and enzyme production by Irpex lacteus CD2 during solid-state fermentation of corn stover.

    Science.gov (United States)

    Xu, Chunyan; Ma, Fuying; Zhang, Xiaoyu

    2009-11-01

    The white rot fungus Irpex lacteus CD2 was incubated on corn stover under solid-state fermentation conditions for different durations, from 5 days up to 120 days. Lignocellulose component loss, enzyme production and Fe3+-reducing activity were studied. The average weight loss ranged from 1.7% to 60.5% during the period of 5-120 days. In contrast to lignin, hemicellulose and cellulose were degraded during the initial time period. After 15 days, 63.0% of hemicellulose was degraded. Cellulose was degraded the most during the first 10 days, and 17.2% was degraded after 10 days. Lignin was significantly degraded and modified, with acid insoluble lignin loss being nearly 80% after 60 days. That weight loss, which was lower than the total component loss, indicated that not all of the lost lignocellulose was converted to carbon dioxide and water, which was indicated by the increase in soluble reducing sugars and acid soluble lignin. Filter paper activity, which corresponds to total cellulase activity, peaked at day 5 and remained at a high level from 40 to 60 days. High hemicellulase activity appeared after 30 days. No ligninases activity was detected during the incipient stage of lignin removal and only low lignin peroxidase activity was detected after 25 days. Apparently, neither of the enzymatic peaks coincided well with the highest amount of component loss. Fe3+-reducing activity could be detected during all the decay periods, which might play an important role in lignin biodegradation by I. lacteus CD2.

  15. Fibrates suppress fibrinogen gene expression in rodents via activation of the peroxisome proliferator-activated receptor-α

    NARCIS (Netherlands)

    Kockx, M.; Gervois, P.P.; Poulain, P.; Derudas, B.; Peters, J.M.; Gonzalez, F.J.; Princen, H.M.G.; Kooistra, T.; Staels, B.

    1999-01-01

    Plasma fibrinogen levels have been identified as an important risk factor for cardiovascular diseases. Among the few compounds known to lower circulating fibrinogen levels in humans are certain fibrates. We have studied the regulation of fibrinogen gene expression by fibrates in rodents. Treatment

  16. Degradation of 2,4,6-Trichlorophenol and hydrogen production simultaneously by TiO2 nanotubes/graphene composite

    Science.gov (United States)

    Slamet, Raudina

    2017-11-01

    Industrial waters in coal pyrolysis process, synthetic chemicals and oil and gas process contain phenol derivatives that are dangerous to the environment and needs to be removed, one of them is 2,4,6-Trichlorophenol. Degradation of 2,4,6-Trichlorophenol and hydrogen production simultaneously have been investigated using TiNT/Graphene composite at various graphene loading and initial concentration of 2,4,6-Trichlorophenol. Optimal graphene loading of 0.6 wt% was obtained in the simultaneous system with 89% elimination of 2,4,6-Trichlorophenol and 986 µmol of hydrogen production. Test results showed that addition of 2,4,6-Trichlorophenol would subsequently increased 2,4,6-Trichlorophenol conversion and enhanced hydrogen production linearly. 2.7 times greater hydrogen production was found in addition of 50 ppm 2,4,6-Trichlorophenol.

  17. Comparison of organic matter degradation in several feedstuffs in the rumen as determined with the nylon bag and gas production techniques

    NARCIS (Netherlands)

    Cone, John W.; Van Gelder, Antonie H.; Bachmann, Herwig; Hindle, Vincent A.

    2002-01-01

    Organic matter (OM) degradation of 21 feedstuffs was investigated with rumen fluid using a rumen in situ technique and a gas production technique. Fitting the nylon bag data to an exponential model showed that there was a high variation in the rate of OM degradation ranging from 1.7% h-1 for

  18. Effects of cellulose degradation products on the mobility of Eu(III) in repositories for low and intermediate level radioactive waste.

    Science.gov (United States)

    Diesen, Veronica; Forsberg, Kerstin; Jonsson, Mats

    2017-10-15

    The deep repository for low and intermediate level radioactive waste SFR in Sweden will contain large amounts of cellulosic waste materials contaminated with radionuclides. Over time the repository will be filled with water and alkaline conditions will prevail. In the present study degradation of cellulosic materials and the ability of cellulosic degradation products to solubilize and thereby mobilise Eu(III) under repository conditions has been investigated. Further, the possible immobilization of Eu(III) by sorption onto cement in the presence of degradation products has been investigated. The cellulosic material has been degraded under anaerobic and aerobic conditions in alkaline media (pH: 12.5) at ambient temperature. The degradation was followed by measuring the total organic carbon (TOC) content in the aqueous phase as a function of time. After 173days of degradation the TOC content is highest in the anaerobic artificial cement pore water (1547mg/L). The degradation products are capable of solubilising Eu(III) and the total europium concentration in the aqueous phase was 900μmol/L after 498h contact time under anaerobic conditions. Further it is shown that Eu(III) is adsorbed to the hydrated cement to a low extent (<9μmol Eu/g of cement) in the presence of degradation products. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Restoration of degraded arid farmland at Project Wadi Attir: Impact of conservation on biological productivity and soil organic matter

    Science.gov (United States)

    Mor-Mussery, Amir; Helman, David; Ben Eli, Michael; Leu, Stefan

    2017-04-01

    The Israeli Negev Desert, as most Mediterranean drylands, is profoundly degraded. We have been documenting degradation and successful rehabilitation approaches in recent research, aiming at maximizing environmental and economic benefits while restoring healthy dryland soils and perennial vegetation to act as carbon sinks. These methods have been implemented for rehabilitation of Project Wadi Attir's. 50 hectares of heavily degraded farmland suffering from intensive soil erosion (expressed in dense gullies net and massive overland flow). Project Wadi Attir is a groundbreaking initiative of the Bedouin community in the Negev, for establishing a model sustainable agricultural operation. The project was initiated by the US-based Sustainability Laboratory and the Hura Municipal Council. The project is designed to demonstrate implementation of holistic sustainability principles developed by The Lab. The project's ecosystem restoration component involves site development, erosion control, soil conservation and improvement, planting of native and agroforestry trees, together with conservation and protection of biodiversity hotspots and avoiding grazing have, within three years, revealed the high biodiversity and productivity potential of this arid/semi-arid landscape. A number of shrublands and loess plots were subject to strict conservation, avoiding tilling and grazing. Soil fertility, productivity and biodiversity of these conserved plots inside the farm boundaries was compared to similar unprotected plots outside the farm fences by sampling in the field and by using satellite imaging. Our findings indicate a gradual improvement of SOM content specifically in the conserved shrubland area. Water infiltration, herbaceous biomass productivity and ants' activity of the protected plots also significantly increased within 3 years compared to the unprotected control areas. Starting from similar soil organic matter content in 2013 (3.3%) in the rocky slopes, in 2016 1% higher

  20. Transformation efficiency and formation of transformation products during photochemical degradation of TCE and PCE at micromolar concentrations.

    Science.gov (United States)

    Dobaradaran, Sina; Lutze, Holger; Mahvi, Amir Hossein; Schmidt, Torsten C

    2014-01-08

    Trichloroethene and tetrachloroethene are the most common pollutants in groundwater and two of the priority pollutants listed by the U.S. Environmental Protection Agency. In previous studies on TCE and PCE photolysis and photochemical degradation, concentration ranges exceeding environmental levels by far with millimolar concentrations of TCE and PCE have been used, and it is not clear if the obtained results can be used to explain the degradation of these contaminants at more realistic environmental concentration levels. Experiments with micromolar concentrations of TCE and PCE in aqueous solution using direct photolysis and UV/H2O2 have been conducted and product formation as well as transformation efficiency have been investigated. SPME/GC/MS, HPLC/UV and ion chromatography with conductivity detection have been used to determine intermediates of degradation. The results showed that chloride was a major end product in both TCE and PCE photodegradation. Several intermediates such as formic acid, dichloroacetic acid, dichloroacetaldehyede, chloroform, formaldehyde and glyoxylic acid were formed during both, UV and UV/H2O2 treatment of TCE. However chloroacetaldehyde and chloroacetic acid were only detected during direct UV photolysis of TCE and oxalic acid was only formed during the UV/H2O2 process. For PCE photodegradation, formic acid, di- and trichloroacetic acids were detected in both UV and UV/H2O2 systems, but formaldehyde and glyoxylic acid were only detected during direct UV photolysis. For water treatment UV/H2O2 seems to be favorable over direct UV photolysis because of its higher degradation efficiency and lower risk for the formation of harmful intermediates.

  1. Metal complexation in near field conditions of nuclear waste repository - stability constant of copper complexation with cellulose degradation products, in alkaline conditions

    International Nuclear Information System (INIS)

    Guede, Kipre Bertin

    2005-11-01

    Copper is a stable element and spent fuel component which constitutes the radioactive waste. The reaction of Copper with cellulose degradation products in alkaline conditions was performed to mimic what occurs in near field conditions of nuclear waste repository. From the characteristics of Cu (II), this thesis aims at inferring the behaviour of radionuclides vis a vis the degradation products of cellulose. The contribution of the present work is therefore the assessment of the stability of the major cellulose degradation product, its affinity for Copper and the extent of the complexation function 13 between Cu (II) and the organic moieties. The formation of cellulose degradation products was followed by measurement of p11, Conductivity, Angle of rotation, relative abundance of aliphatics and aromatics (E4/E6 ) aid by UV-visible spectroscopy. The TOC was determined using the Walkley and Black titration after respectively 31 weeks and 13 weeks of degradation for the reaction mixtures T and A, N. The stability of the major degradation products gave the following figures: ISA(A): - 13 43.39 <ΔG -10639.88 ISA(N): - Ii 436.45<ΔG< -9103.6. The study of the characteristics of Gluconic Acid, as a model compound, was carried out in an attempt to give a general picture of the roper ties of cellulose degradation products. The Complexation between Cu (II) and the organic ligand (Cellulose degradation products) was performed using UV-visible spectroscopy and Ion Distribution technique. The Log B value obtained from the complexation studies at 336 nm for 1 = 0. I Ni NaClO4 and I = 0.01 M NaClO4, falls within a range of 3.48 to 3.74 for the standard reference material (Gluconic Acid), and within I .87 to 2.3 I, and I .6 to 2.01, respectively for the degradation Products ISA (A) and ISA(N). The ion distribution studies showed that: • In (he absence of the degradation product ISA and at pH = 3.68. 56. 17 % of Cu (II) was bound to the resin. • In the presence of ISA and at 2

  2. Insights into the degradation of (CF3)2CHOCH3 and its oxidative product (CF3)2CHOCHO & the formation and catalytic degradation of organic nitrates

    Science.gov (United States)

    Bai, Feng-Yang; Jia, Zi-Man; Pan, Xiu-Mei

    2018-06-01

    In this work, a systematic investigation of the atmospheric oxidation mechanism of (CF3)2CXOCH3 and their oxidative products (CF3)2CXOCHO (X = H, F) initiated by OH radical or Cl atom is performed by density functional theory. This study reveals that the introduction of NO and O2 promotes the formation of organic nitrates, which are hygroscopic and are inclined to form secondary organic aerosols (SOA) and can affect the air quality. The rate constants of the individual reactions are found to be in agreement with the experimental results. One of the intriguing findings of this work is that the peroxynitrite of (CF3)2CHOCH2OONO formed from the subsequent reactions of (CF3)2CHOCH3 is more favorable to isomerize to organic nitrate (CF3)2CHOCH2ONO2 than to dissociate into alkoxy radical (CF3)2CHOCH2O and NO2 because of the lower energy barrier of isomerization. The second significant observation is that the organic nitrate can be degraded more favorably with the presence of NH3, CH3NH2, and CH3NHCH3 than its naked decomposition reaction (CF3)2CHOCH2ONO2→(CF3)2CHOCHO + HONO. The ammonium salt, a vital part of haze, is harmful to human health and can be formed in the existence of the NH3, CH3NH2, and CH3NHCH3. In addition, the toxic substance of peroxyalkyl nitrate (CF3)2CHOC(O)ONO2 which can reduce the visibility of the atmosphere is produced as the primary subsequent oxidation product of (CF3)2CHOCHO in a NO-rich environment. The main species detected experimentally are confirmed by this study. The computational results are crucial to risk assessment and pollution prevention of the volatile organic compounds (VOCs).

  3. Evaluation of effectiveness of bacterial product which can degrade pesticide-dimethoate on the scale of true practice test

    International Nuclear Information System (INIS)

    Pham Thi Le Ha; Tran Thi Thuy; Le Hai; Nguyen Duy Hang; Vo Thi Thu Ha; Nguyen Tuong Ly Lan; Le Tat Mua; Tran Kim Duyen; Mai Hoang Lam

    2004-01-01

    Dimethoate, an organophosphate pesticide has been widely used in Dalat, Lamdong. It is much toxic to birds, human being and other mammals. Its widespread use has caused environmental concern on the basic of frequent detection of dimethoate in soil and water. Microorganisms are key agents in the degradation of waste, oil and a vast array of organic pesticide in terrestrial and aquatic ecosystems. In previous study, bacteria products which can degrade. Dimethoate were produced. The present study was designed to evaluate the effectiveness of bacterial product which can degrade Pesticide-Dimethoate on the scale of true practice test. The results indicated that application bacteria product to soil grown with Cauliflower and Chinese Cabbage sprayed with organic phosphorus pesticides (Dimethoate and Chloropyrifos), the pesticide residues in soil, water and vegetables were as follow: The residues of Dimethoate and Chloropyrifos in soil grown with Cauliflower, Chinese cabbages are different. They concentrated mostly in the surface litter and top soil layers with the depth from 0 to 20 cm. From the depth of 20 cm to 100 cm, the pesticide residues were ignorable. Residue of Chloropyrifos in soil was small as well. Dimethoate residues in soil grown with Cauliflower were higher than that of Chinese cabbages. On the basis of the environmental criteria of Ministry for Science, Technology and Environment (6/95), Dimethoate residues in soil grown with cauliflowers were in excess of the maximum limit. In the case of using bacteria product to soil, pesticide residues in soil were decreased. The results also indicated that Chloropyrifos residues in water (water obtained at the depth of 75 cm and 100 cm by days) were small. Residue of Dimethoate in water small. Residue of Dimethoate in water obtained from the Cauliflower bed were higher than of Chinese cabbages one. Using bacteria product to soil, pesticide residues in water decreased. On the basis of the environmental criteria of

  4. The Primary Role of Fibrinogen-Related Proteins in Invertebrates Is Defense, Not Coagulation

    Science.gov (United States)

    Hanington, Patrick C.; Zhang, Si-Ming

    2010-01-01

    In vertebrates, the conversion of fibrinogen into fibrin is an essential process that underlies the establishment of the supporting protein framework required for coagulation. In invertebrates, fibrinogen-domain-containing proteins play a role in the defense response generated against pathogens; however, they do not function in coagulation, suggesting that this role has been recently acquired. Molecules containing fibrinogen motifs have been identified in numerous invertebrate organisms, and most of these molecules known to date have been linked to defense. Moreover, recent genome projects of invertebrate animals have revealed surprisingly high numbers of fibrinogen-like loci in their genomes, suggesting important and perhaps diverse functions of fibrinogen-like proteins in invertebrates. The ancestral role of molecules containing fibrinogen-related domains (FReDs) with immunity is the focus of this review, with emphasis on specific FReDs called fibrinogen-related proteins (FREPs) identified from the schistosome-transmitting mollusc Biomphalaria glabrata. Herein, we outline the range of invertebrate organisms FREPs can be found in, and detail the roles these molecules play in defense and protection against infection. PMID:21063081

  5. Fibrinogen-Induced Streptococcus mutans Biofilm Formation and Adherence to Endothelial Cells

    Directory of Open Access Journals (Sweden)

    Telma Blanca Lombardo Bedran

    2013-01-01

    Full Text Available Streptococcus mutans, the predominant bacterial species associated with dental caries, can enter the bloodstream and cause infective endocarditis. The aim of this study was to investigate S. mutans biofilm formation and adherence to endothelial cells induced by human fibrinogen. The putative mechanism by which biofilm formation is induced as well as the impact of fibrinogen on S. mutans resistance to penicillin was also evaluated. Bovine plasma dose dependently induced biofilm formation by S. mutans. Of the various plasma proteins tested, only fibrinogen promoted the formation of biofilm in a dose-dependent manner. Scanning electron microscopy observations revealed the presence of complex aggregates of bacterial cells firmly attached to the polystyrene support. S. mutans in biofilms induced by the presence of fibrinogen was markedly resistant to the bactericidal effect of penicillin. Fibrinogen also significantly increased the adherence of S. mutans to endothelial cells. Neither S. mutans cells nor culture supernatants converted fibrinogen into fibrin. However, fibrinogen is specifically bound to the cell surface of S. mutans and may act as a bridging molecule to mediate biofilm formation. In conclusion, our study identified a new mechanism promoting S. mutans biofilm formation and adherence to endothelial cells which may contribute to infective endocarditis.

  6. Clumping factor A-mediated virulence during Staphylococcus aureus infection is retained despite fibrinogen depletion.

    Science.gov (United States)

    Palmqvist, Niklas; Josefsson, Elisabet; Tarkowski, Andrzej

    2004-02-01

    Clumping factor A (ClfA), a fibrinogen-binding protein expressed on the Staphylococcus aureus cell surface, has previously been shown to act as a virulence factor in experimental septic arthritis. Although the interaction between ClfA and fibrinogen is assumed to be of importance for the virulence of S. aureus, this has not been demonstrated in any in vivo model of infection. Therefore, the objective of this study was to investigate the contribution of this interaction to ClfA-mediated virulence in murine S. aureus-induced arthritis. Ancrod, a serine protease with thrombin-like activity, was used to induce in vivo depletion of fibrinogen in mice. Ancrod treatment significantly aggravated septic arthritis following inoculation with a ClfA-expressing strain (Newman) compared to control treatment. Also, ancrod treatment tended to enhance the arthritis induced by a clfA mutant strain (DU5876), indicating that fibrinogen depletion exacerbates septic arthritis in a ClfA-independent manner. Most importantly, the ClfA-expressing strain was much more arthritogenic than the isogenic clfA mutant, following inoculation of fibrinogen-depleted mice. This finding indicates that the interaction between ClfA and free fibrinogen is not required for ClfA-mediated functions contributing to S. aureus virulence. It is conceivable that ClfA contributes to the virulence of S. aureus through interactions with other host ligands than fibrinogen.

  7. Engineered protein degradation of farnesyl pyrophosphate synthase is an effective regulatory mechanism to increase monoterpene production in Saccharomyces cerevisiae

    DEFF Research Database (Denmark)

    Peng, Bingyin; Nielsen, Lars K.; Kampranis, Sotirios C

    2018-01-01

    Monoterpene production in Saccharomyces cerevisae requires the introduction of heterologous monoterpene synthases (MTSs). The endogenous farnesyl pyrosphosphate synthase (FPPS; Erg20p) competes with MTSs for the precursor geranyl pyrophosphate (GPP), which limits the production of monoterpenes. ERG......20 is an essential gene that cannot be deleted and transcriptional down-regulation of ERG20 has failed to improve monoterpene production. Here, we investigated an N-degron-dependent protein degradation strategy to down-regulate Erg20p activity. Degron tagging decreased GFP protein half......-life drastically to 1 h (degron K3K15) or 15 min (degrons KN113 and KN119). Degron tagging of ERG20 was therefore paired with a sterol responsive promoter to ensure sufficient metabolic flux to essential downstream sterols despite the severe destabilisation effect of degron tagging. A dual monoterpene...

  8. Development and validation of a stability-indicating HPLC-UV method for the determination of triamcinolone acetonide and its degradation products in an ointment formulation

    NARCIS (Netherlands)

    van Heugten, A J P; Boer, W.; de Vries, W S; Markesteijn, C M A; Vromans, H

    2018-01-01

    A stability indicating high performance liquid chromatography method has been developed for the determination of triamcinolone acetonide (TCA) and its main degradation products in ointment formulations. The method, based on extensive stress testing using metal salts, azobisisobutyronitrile, acid,

  9. Synergistic effect of co-digestion to enhance anaerobic degradation of catering waste and orange peel for biogas production.

    Science.gov (United States)

    Anjum, Muzammil; Khalid, Azeem; Qadeer, Samia; Miandad, Rashid

    2017-09-01

    Catering waste and orange peel were co-digested using an anaerobic digestion process. Orange peel is difficult to degrade anaerobically due to the presence of antimicrobial agents such as limonene. The present study aimed to examine the feasibility of anaerobic co-digestion of catering waste with orange peel to provide the optimum nutrient balance with reduced inhibitory effects of orange peel. Batch experiments were conducted using catering waste as a potential substrate mixed in varying ratios (20-50%) with orange peel. Similar ratios were followed using green vegetable waste as co-substrate. The results showed that the highest organic matter degradation (49%) was achieved with co-digestion of catering waste and orange peel at a 50% mixing ratio (CF4). Similarly, the soluble chemical oxygen demand (sCOD) was increased by 51% and reached its maximum value (9040 mg l -1 ) due to conversion of organic matter from insoluble to soluble form. Biogas production was increased by 1.5 times in CF4 where accumulative biogas was 89.61 m 3 t -1 substrate compared with 57.35 m 3 t -1 substrate in the control after 80 days. The main reason behind the improved biogas production and degradation is the dilution of inhibitory factors (limonene), with subsequent provision of balanced nutrients in the co-digestion system. The tCOD of the final digestate was decreased by 79.9% in CF4, which was quite high as compared with 68.3% for the control. Overall, this study revealed that orange peel waste is a highly feasible co-substrate for anaerobic digestion with catering waste for enhanced biogas production.

  10. The study analysis of degradation product of Tributyl Phosphate by Gamma radiation and influence in extraction process

    International Nuclear Information System (INIS)

    Damunir; Didiek Herhady, R; Busron-Masduki; Ashar-Waskito; Armanu

    1996-01-01

    The analysis study of degradation product of TBP by gamma radiation using Co-60 Irradiator Irvasena was done. The investigation stressed on analysis and the relation of degradation product of TBP and extraction process. TBP-dodecane 30 % irradiated by radiation doses 1.172x10 3 rad, 1.155x10 5 rad, 1.125x10 7 and 1.155x10 9 rad. The analysis of degradation product of TBP mainly of MBP and DBP were determined in the mixture media of 5 ml isopropyl alcohol, 5 ml ethylene glycol, 5 ml acetone and 15 ml alcohol with potentiometric titration using NaOH 0.1 N in the alcohol solution, at potential condition of 500 mV and potential derivative 500 mV. The experiment shows that the gamma radiation doses 1.125x10 7 rad result 0.125 ± 0.049 mg MBP/ml solvent and 1.556 ± 0.084 mg DBP/ml solvent and radiation doses 1.115x10 9 rad result 26.135 ± 0.114 mg MBP/ml solvent and 62.454 ± 1.107 mg DBP/ml solvent, MBP dan DBP un detectable for radiation doses 1.172x10 3 rad and 1.055x10 5 rad. The result of MBP and DBP analysis compare to Tachehiko Ishihara and Erich Zimmer, using potentiometric titration method for MBP and DBP analysis was reliable addition and none addition. The TBP-dodecane solvent was irradiation by radiation doses 10 7 rad or greater than, is suggested to treat the solvent by regeneration so that doesn't disturbance extraction

  11. A novel fibrin gel derived from hyaluronic acid-grafted fibrinogen

    International Nuclear Information System (INIS)

    Yang, Chiung L; Chen, Hui W; Wang, Tzu C; Wang, Yng J

    2011-01-01

    Fibrinogen is a major plasma protein that forms a three-dimensional fibrin gel upon being activated by thrombin. In this study, we report the synthesis and potential applications of hybrid molecules composed of fibrinogen coupled to the reducing ends of short-chain hyaluronic acids (sHAs) by reductive amination. The grafting of sHAs to fibrinogen was verified by analyzing particle size, zeta potential and gel-electrophoretic mobility of the hybrid molecules. The sHA-fibrinogen hybrid molecules with graft ratios (sHA/fibrinogen) of up to 6.5 retained the ability to form gels in response to thrombin activation. The sHA-fibrin gels were transparent in appearance and exhibited high water content, which were characteristics distinct from those of gels formed by mixtures of sHAs and fibrinogen. The potential applications of the sHA-fibrin gels were evaluated. The sHA-fibrinogen gel with a graft ratio of 3.6 (S3.6F) was examined for its ability to encapsulate and support the differentiation of ATDC5 chondrocyte-like cells. Compared with the fibrinogen-formed gel, cells cultured in the S3.6F gel exhibited increased lacunae formation; moreover, the abundance of cartilaginous extracellular matrix molecules and the expression of chondrocyte marker genes, such as aggrecan, collagen II and Sox9, were also significantly increased. Our data suggest that the three-dimensional gel formed by the sHA-fibrinogen hybrid is a better support than the fibrin gel for chondrogenesis induction.

  12. A novel fibrin gel derived from hyaluronic acid-grafted fibrinogen

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Chiung L; Chen, Hui W; Wang, Tzu C; Wang, Yng J, E-mail: wang@ym.edu.tw [Institute of Biomedical Engineering, National Yang Ming University, No. 155, Sec. 2, Li-Nung St., Shih-Pai, Taipei, Taiwan 112 (China)

    2011-04-15

    Fibrinogen is a major plasma protein that forms a three-dimensional fibrin gel upon being activated by thrombin. In this study, we report the synthesis and potential applications of hybrid molecules composed of fibrinogen coupled to the reducing ends of short-chain hyaluronic acids (sHAs) by reductive amination. The grafting of sHAs to fibrinogen was verified by analyzing particle size, zeta potential and gel-electrophoretic mobility of the hybrid molecules. The sHA-fibrinogen hybrid molecules with graft ratios (sHA/fibrinogen) of up to 6.5 retained the ability to form gels in response to thrombin activation. The sHA-fibrin gels were transparent in appearance and exhibited high water content, which were characteristics distinct from those of gels formed by mixtures of sHAs and fibrinogen. The potential applications of the sHA-fibrin gels were evaluated. The sHA-fibrinogen gel with a graft ratio of 3.6 (S3.6F) was examined for its ability to encapsulate and support the differentiation of ATDC5 chondrocyte-like cells. Compared with the fibrinogen-formed gel, cells cultured in the S3.6F gel exhibited increased lacunae formation; moreover, the abundance of cartilaginous extracellular matrix molecules and the expression of chondrocyte marker genes, such as aggrecan, collagen II and Sox9, were also significantly increased. Our data suggest that the three-dimensional gel formed by the sHA-fibrinogen hybrid is a better support than the fibrin gel for chondrogenesis induction.

  13. Deposition of fibrinogen on the surface of in vitro thrombi prevents platelet adhesion.

    Science.gov (United States)

    Owaynat, Hadil; Yermolenko, Ivan S; Turaga, Ramya; Lishko, Valeryi K; Sheller, Michael R; Ugarova, Tatiana P

    2015-12-01

    The initial accumulation of platelets after vessel injury is followed by thrombin-mediated generation of fibrin which is deposited around the plug. While numerous in vitro studies have shown that fibrin is highly adhesive for platelets, the surface of experimental thrombi in vivo contains very few platelets suggesting the existence of natural anti-adhesive mechanisms protecting stabilized thrombi from platelet accumulation and continuous thrombus propagation. We previously showed that adsorption of fibrinogen on pure fibrin clots results in the formation of a nonadhesive matrix, highlighting a possible role of this process in surface-mediated control of thrombus growth. However, the deposition of fibrinogen on the surface of blood clots has not been examined. In this study, we investigated the presence of intact fibrinogen on the surface of fibrin-rich thrombi generated from flowing blood and determined whether deposited fibrinogen is nonadhesive for platelets. Stabilized fibrin-rich thrombi were generated using a flow chamber and the time that platelets spend on the surface of thrombi was determined by video recording. The presence of fibrinogen and fibrin on the surface of thrombi was analyzed by confocal microscopy using specific antibodies. Examination of the spatial distribution of two proteins revealed the presence of intact fibrinogen on the surface of stabilized thrombi. By manipulating the surface of thrombi to display either fibrin or intact fibrinogen, we found that platelets adhere to fibrin- but not to fibrinogen-coated thrombi. These results indicate that the fibrinogen matrix assembled on the outer layer of stabilized in vitro thrombi protects them from platelet adhesion. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Biosurfactant production from marine hydrocarbon-degrading consortia and pure bacterial strains using crude oil as carbon source

    Directory of Open Access Journals (Sweden)

    Eleftheria eAntoniou

    2015-04-01

    Full Text Available Biosurfactants (BS are green amphiphilic molecules produced by microorganisms during biodegradation, increasing the bioavailability of organic pollutants. In this work, the BS production yield of marine hydrocarbon degraders isolated from Elefsina bay in Eastern Mediterranean Sea has been investigated. The drop collapse test was used as a preliminary screening test to confirm biosurfactant producing strains or mixed consortia. The community structure of the best consortia based on the drop collapse test was determined by 16S-rDNA pyrotag screening. Subsequently, the effect of incubation time, temperature, substrate and supplementation with inorganic nutrients, on biosurfactant production, was examined. Two types of BS - lipid mixtures were extracted from the culture broth; the low molecular weight BS Rhamnolipids and Sophorolipids. Crude extracts were purified by silica gel column chromatography and then identified by thin layer chromatography (TLC and Fourier transform infrared spectroscopy (FT-IR. Results indicate that biosurfactant production yield remains constant and low while it is independent of the total culture biomass, carbon source, and temperature. A constant BS concentration in a culture broth with continuous degradation of crude oil implies that the BS producing microbes generate no more than the required amount of biosurfactants that enables biodegradation of the crude oil. Isolated pure strains were found to have higher specific production yields than the complex microbial marine community-consortia. The heavy oil fraction of crude oil has emerged as a promising substrate for BS production (by marine BS producers with fewer impurities in the final product. Furthermore, a particular strain isolated from sediments, Paracoccus marcusii, may be an optimal choice for bioremediation purposes as its biomass remains trapped in the hydrocarbon phase, not suffering from potential dilution effects by sea currents.

  15. Biosurfactant production from marine hydrocarbon-degrading consortia and pure bacterial strains using crude oil as carbon source.

    Science.gov (United States)

    Antoniou, Eleftheria; Fodelianakis, Stilianos; Korkakaki, Emmanouela; Kalogerakis, Nicolas

    2015-01-01

    Biosurfactants (BSs) are "green" amphiphilic molecules produced by microorganisms during biodegradation, increasing the bioavailability of organic pollutants. In this work, the BS production yield of marine hydrocarbon degraders isolated from Elefsina bay in Eastern Mediterranean Sea has been investigated. The drop collapse test was used as a preliminary screening test to confirm BS producing strains or mixed consortia. The community structure of the best consortia based on the drop collapse test was determined by 16S-rDNA pyrotag screening. Subsequently, the effect of incubation time, temperature, substrate and supplementation with inorganic nutrients, on BS production, was examined. Two types of BS - lipid mixtures were extracted from the culture broth; the low molecular weight BS Rhamnolipids and Sophorolipids. Crude extracts were purified by silica gel column chromatography and then identified by thin layer chromatography and Fourier transform infrared spectroscopy. Results indicate that BS production yield remains constant and low while it is independent of the total culture biomass, carbon source, and temperature. A constant BS concentration in a culture broth with continuous degradation of crude oil (CO) implies that the BS producing microbes generate no more than the required amount of BSs that enables biodegradation of the CO. Isolated pure strains were found to have higher specific production yields than the complex microbial marine community-consortia. The heavy oil fraction of CO has emerged as a promising substrate for BS production (by marine BS producers) with fewer impurities in the final product. Furthermore, a particular strain isolated from sediments, Paracoccus marcusii, may be an optimal choice for bioremediation purposes as its biomass remains trapped in the hydrocarbon phase, not suffering from potential dilution effects by sea currents.

  16. Biosurfactant production from marine hydrocarbon-degrading consortia and pure bacterial strains using crude oil as carbon source

    Science.gov (United States)

    Antoniou, Eleftheria; Fodelianakis, Stilianos; Korkakaki, Emmanouela; Kalogerakis, Nicolas

    2015-01-01

    Biosurfactants (BSs) are “green” amphiphilic molecules produced by microorganisms during biodegradation, increasing the bioavailability of organic pollutants. In this work, the BS production yield of marine hydrocarbon degraders isolated from Elefsina bay in Eastern Mediterranean Sea has been investigated. The drop collapse test was used as a preliminary screening test to confirm BS producing strains or mixed consortia. The community structure of the best consortia based on the drop collapse test was determined by 16S-rDNA pyrotag screening. Subsequently, the effect of incubation time, temperature, substrate and supplementation with inorganic nutrients, on BS production, was examined. Two types of BS – lipid mixtures were extracted from the culture broth; the low molecular weight BS Rhamnolipids and Sophorolipids. Crude extracts were purified by silica gel column chromatography and then identified by thin layer chromatography and Fourier transform infrared spectroscopy. Results indicate that BS production yield remains constant and low while it is independent of the total culture biomass, carbon source, and temperature. A constant BS concentration in a culture broth with continuous degradation of crude oil (CO) implies that the BS producing microbes generate no more than the required amount of BSs that enables biodegradation of the CO. Isolated pure strains were found to have higher specific production yields than the complex microbial marine community-consortia. The heavy oil fraction of CO has emerged as a promising substrate for BS production (by marine BS producers) with fewer impurities in the final product. Furthermore, a particular strain isolated from sediments, Paracoccus marcusii, may be an optimal choice for bioremediation purposes as its biomass remains trapped in the hydrocarbon phase, not suffering from potential dilution effects by sea currents. PMID:25904907

  17. Effect of soil and water conservation on rehabilitation of degraded lands and crop productivity in Maego watershed, North Ethiopia

    Directory of Open Access Journals (Sweden)

    Gebremariam Yaebiyo Dimtsu

    2018-04-01

    Full Text Available Many soil and water conservation (SWC measures were undertaken to decrease land degradation in Ethiopia. However, evaluation of their performance is essential to understand their success or failure and readjusting accordingly in the future planning.  Therefore, the objective of this study was to evaluate effectiveness of SWC measures in rehabilitation of degraded watershed and increase crop productivity in Maego watershed, Ethiopia. Seventy six sample plots were randomly taken from treated and untreated sub-watersheds for woody species and soil sampling. Crops yield was measured on top side, middle zone and below side of SWC structures. There were significantly higher woody species density and diversity, total nitrogen (TN, soil organic matter (SOM and soil moisture in the treated uncultivated land than the untreated one. The highest tree and sapling species density and diversity, TN and SOM were recorded on the exclosure part of the treated sub-watershed. Landscape position affected soil fertility, but has no effect on woody species density and diversity. The highest barley and wheat yield was measured on top side of SWC structures. Therefore, physical SWC structures should be integrated with exclosure to enhance rehabilitation of degraded watersheds/landscapes. Integration of biological SWC measures that improve soil fertility are essential on the cultivated land of the watershed. Most of the existing SWC structures, especially the old ones are filled with accumulated sediment, so maintenance is needed.

  18. Derivative spectrophotometry for the determination of faropenem in the presence of degradation products: an application for kinetic studies.

    Science.gov (United States)

    Cielecka-Piontek, Judyta

    2013-07-01

    A simple and selective derivative spectrophotometric method was developed for the quantitative determination of faropenem in pure form and in pharmaceutical dosage. The method is based on the zero-crossing effect of first-derivative spectrophotometry (λ = 324 nm), which eliminates the overlapping effect caused by the excipients present in the pharmaceutical preparation, as well as degradation products, formed during hydrolysis, oxidation, photolysis, and thermolysis. The method was linear in the concentration range 2.5-300 μg/mL (r = 0.9989) at λ = 341 nm; the limits of detection and quantitation were 0.16 and 0.46 μg/mL, respectively. The method had good precision (relative standard deviation from 0.68 to 2.13%). Recovery of faropenem ranged from 97.9 to 101.3%. The first-order rate constants of the degradation of faropenem in pure form and in pharmaceutical dosage were determined by using first-derivative spectrophotometry. A statistical comparison of the validation results and the observed rate constants for faropenem degradation with these obtained with the high-performance liquid chromatography method demonstrated that both were compatible.

  19. Thermal degradation characteristics and products obtained after pyrolysis of specific polymers found in Waste Electrical and Electronic Equipment

    Institute of Scientific and Technical Information of China (English)

    Evangelia C.Vouvoudi; Aristea T.Rousi; Dimitris S.Achilias

    2017-01-01

    Modern societies strongly support the recycling practices over simple waste accumulation due to environmental harm caused.In the framework of sustainable recycling of plastics from WEEE,pyrolysis is proposed here as a means of obtaining secondary value-added products.The aim of this study was to investigate the thermal degradation and the products obtained after pyrolysis of specific polymers found in the plastic part of WEEE,using thermogravimetric analysis and a pyrolizer equipped with a GC/MS.Polymers studied include ABS,HIPS,PC and a blend having a composition similar to that appearing in WEEE.It was found that,PC shows greater heat endurance compared to the other polymers,whereas ABS depolymerizes in three-steps.The existence of several polymers in the blend results in synergistic effects which decrease the onset and final temperature of degradation.Moreover,the fragmentation occurred in the pyrolyzer,at certain temperatures,resulted in a great variety of compounds,depending on the polymer type,such as monomers,aromatic products,phenolic compounds and hydrocarbons.The main conclusion from this investigation is that pyrolysis could be an effective method for the sustainable recycling of the plastic part of WEEE resulting in a mixture of chemicals with varying composition but being excellent to be used as fuel retrieved from secondary recycling sources.

  20. Degradation Mechanism of Poly(Ether-Urethane) Estane Induced by High Energy Radiation (III) : Radiolytic Gases and Water Soluble Products

    International Nuclear Information System (INIS)

    Dannoux, A.

    2006-01-01

    Within the framework of nuclear waste management, there is interest in the prediction of long-term behaviour of organic materials subjected to high energy radiation. Once organic waste has been stored, gases and low molecular products might be generated from materials irradiated by radionuclides. Long-term behaviour of organic material in nuclear waste has several common concerns with radiation ageing of polymers. But a more detailed description of the chemical evolution is needed for nuclear waste management. In a first approach, an extensive work on radiation ageing is used to identify the different processes encountered during the degradation of a polyurethane, including oxidation dose rate-effects and influence of dose on the oxidation mechanism. In a second approach, a study is performed to identify and quantify gases and possible production of water soluble chemical complexing agents which might enhance radionuclides migration away from the repository. In this work, we present results concerning the production of radiolytic gases and the formation of water soluble oligomers reached with leaching tests Films were made from a poly(ether-urethane) synthesized from methylene bis(p-phenyl isocyanate) (MDI) and poly(tetramethylene glycol) (PTMG) with 1,4 butanediol (BD) and were irradiated by high-energy electron beam to cover a wide doses range and by γ rays to determine the formation/consumption yields of gases. They were measured by mass spectrometry and gas-chromatography/mass spectrometry (GC/MS). The migration of water soluble oligomers in water was reached by measuring the weight loss versus leaching time. The identification of oligomers was performed by using a mass spectrometry with an electrospray ionisation interface (ESI-MS-MS). The analysis of radiolytic gases indicates the formation of H 2 , CO 2 and CO with respective radiolytic yields of 1, 0.5 and 0.3 molecule/100 eV. The consumption of O 2 is evaluated to 6 molecules/100 eV. For absorbed doses

  1. RP-HPLC assay method development for Paracetamol and Lornoxicam in combination and characterization of oxidative degradation products of Lornoxicam

    OpenAIRE

    Jain Pritam S.; Patel Miketa A.; Chaudhari Amar J.; Surana Sanjay J.

    2013-01-01

    A simple, specific, accurate and precise reverse phase high pressure liquid chromatographic method has been developed for the simultaneous determination of Paracetamol and Lornoxicam from tablets and to characterize degradation products of Lornoxicam by reverse phase C18 column (Inertsil ODS 3V C-18, 250 x 4.6 mm, 5 μ). The sample was analyzed using Buffer (0.02504 Molar): Methanol in the ratio of 45:55, as a mobile phase at a flow rate of 1.5 mL/min and de...

  2. Degradation of materials under conditions of thermochemical cycles for hydrogen production - part III

    International Nuclear Information System (INIS)

    Klimas, S.J.; Searle, H.; Guerout, F.

    2011-01-01

    A capsule method was employed to screen a number of materials for degradation under selected conditions of the sulphur-iodine (SI) and the copper-chlorine (Cu-Cl) thermochemical cycles. A summary of the results of an experimental investigation is given. The recommendations for the selection of the materials required for the construction of the electrolyser subsystem of the copper chlorine hybrid cycle are presented and discussed with the associated rationale. Some remaining uncertainties are illustrated on the basis of the experimental evidence gathered. (author)

  3. Aggregation of surface mine soil by interaction between VAM fungi and lignin degradation products of lespedeza

    Energy Technology Data Exchange (ETDEWEB)

    Rothwell, F.M. (USDA Forest Service, Berea, KY (USA). Northeastern Forest Experiment Station, Forestry Sciences Laboratory)

    1984-01-01

    The external mycelium of a vesicular-arbuscular mycorrhizal (VAM) fungus was effective in aggregating a sandy loam minesoil. The polysaccharide nature of the soil binding agent on hyphal surfaces and on the surfaces of sand particles in contact with the hyphae within the aggregate was demonstrated with the periodic acid-Schiff reagent staining reaction. A possible stabilizing mechanism for macroaggregates was proposed that involves a coupling reaction between glucosamines in the hyphal walls of the fungus with phenolic compounds released during lignin degradation of sericea lespedeza root tissue. 28 refs.

  4. Determining of Degradation and Digestion Coefficients of Canola meal Using of In situ and Gas production Techniques

    Directory of Open Access Journals (Sweden)

    Younes Tahmazi

    2015-04-01

    Full Text Available This study was carried out to the determination of nutritive value of canola meal using naylon bag and cumulative gas production techniques in Gizel sheep. Tow fistulated Gizel sheep with average BW 45±2 kg used in a complete randomized design. The cumulative gas production was measured at 2, 4, 6, 8, 12, 16, 24, 36 and 48 h and ruminal DM and CP disappearance were measured up to 96 h. Coefficients of soluble CP degradation of canola meal (A, canola meal treated with 0.5% urea (B and canola meal treated with micro wave (C were 4.74, 15.81 and 15%, and for fermentable portion were 31.05, 39.62 and 65.55%, respectively. The cumulative gas production of soluble and insoluble portions (a+b were 252.13, 213.57 and 240.88 ml/g DM. Metabolizable protein of treatments A, B and C were 283.11, 329.33 and 284.39 g/kg DM, that were not significantly different. The relationship between dry matter and cumulative gas production values for treatments obtained about 0.958, 0.976 and 0.932 and this parameter for crude protein and cumulative gas production achieved 0.987, 0.994 and 0.989, respectively. High correlation between in situ and cumulative gas production techniques indicated that digestibility values can be predicted from cumulative gas production data.

  5. RP-HPLC assay method development for Paracetamol and Lornoxicam in combination and characterization of oxidative degradation products of Lornoxicam

    Directory of Open Access Journals (Sweden)

    Jain Pritam S.

    2013-01-01

    Full Text Available A simple, specific, accurate and precise reverse phase high pressure liquid chromatographic method has been developed for the simultaneous determination of Paracetamol and Lornoxicam from tablets and to characterize degradation products of Lornoxicam by reverse phase C18 column (Inertsil ODS 3V C-18, 250 x 4.6 mm, 5 μ. The sample was analyzed using Buffer (0.02504 Molar: Methanol in the ratio of 45:55, as a mobile phase at a flow rate of 1.5 mL/min and detection at 290 nm. The retention time for Paracetamol and Lornoxicam was found to be 2.45 and 9.40 min respectively. The method can be used for estimation of combination of these drugs in tablets. The method was validated as per ICH guidelines. The linearity of developed method was achieved in the range of 249.09 - 747.29 μg/mL (r2=0.9999 for Paracetamol and 4.0125 - 12.0375 μg/mL (r2=0.9999 for Lornoxicam. Recoveries from tablets were between 98 and 102%. The method was validated with respect to linearity, accuracy, precision, robustness and forced degradation studies which further proved the stability-indicating power. During the forced degradation studies lornoxicam was observed to be labile to alkaline hydrolytic stress and oxidative stress (in the solution form. However, it was stable to the acid hydrolytic, photolytic and thermal stress (in both solid and solution form. The degraded products formed were investigated by electrospray ionization (ESI time-of-flight mass spectrometry, NMR and IR spectroscopy. A possible degradation pathway was outlined based on the results. The method was found to be sensitive with a detection limit of 0.193 μg/ml, 2.768 μg/ml and a quantitation limit of 0.638 μg/ml, 9.137 μg/ml for lornoxicam and paracetamol, respectively. Due to these attributes, the proposed method could be used for routine quality control analysis of these drugs in combined dosage forms.

  6. Degradation of cellulosic materials under the alkaline conditions of a cementitious repository for low- and intermediate level radioactive waste. Pt. III. Effect of degradation products on the sorption of radionuclides on feldspar

    International Nuclear Information System (INIS)

    Loon, L.R. van; Glaus, M.A.; Laube, A.; Stallone, S.

    1999-01-01

    The effect of degradation products of different cellulosic materials on the sorption behaviour of Th(IV), Eu(III) and Ni(II) on feldspar at pH 13.3 was studied. For all three metals, a decrease in sorption could be observed with increasing concentration of organics in solution. For Th(IV), α-ISA is the effective ligand present in the solutions of degraded cellulose, independent on the type of cellulose studied. For Eu(III), α-ISA is the effective ligand in the case of pure cellulose degradation. In the case of other cellulosic materials, unknown ligands cause the sorption reduction. For Ni(II), also unknown ligands cause sorption reduction, independent on the type of cellulose studied. These unknown ligands are not formed during alkaline degradation of cellulose, but are present as impurities in certain cellulosic materials. (orig.)

  7. UV and solar photo-degradation of naproxen: TiO₂ catalyst effect, reaction kinetics, products identification and toxicity assessment.

    Science.gov (United States)

    Jallouli, Nabil; Elghniji, Kais; Hentati, Olfa; Ribeiro, Ana R; Silva, Adrián M T; Ksibi, Mohamed

    2016-03-05

    Direct photolysis and TiO2-photocatalytic degradation of naproxen (NPX) in aqueous solution were studied using a UV lamp and solar irradiation. The degradation of NPX was found to be in accordance with pseudo-first order kinetics, the photocatalytic process being more efficient than photolysis. The NPX removal by photolysis (pHinitial 6.5) was 83% after 3h, with 11% of chemical oxygen demand (COD) reduction, whereas the TiO2-UV process led to higher removals of both NPX (98%) and COD (25%). The apparent pseudo-first-order rate constant (kapp) for NPX degradation by photolysis ranged from 0.0050 min(-1) at pH 3.5 to 0.0095 min(-1) at pH 6.5, while it was estimated to be 0.0063 min(-1) under acidic conditions in photocatalysis, increasing by 4-fold at pH 6.5. Ultra High Performance Liquid chromatography (UHPLC) coupled with a triple quadrupole detector and also a hybrid mass spectrometer which combines the linear ion trap triple quadrupole (LTQ) and OrbiTrap mass analyser, were used to identify NPX degradation products. The main intermediates detected were 1-(6-methoxynaphtalene-2-yl) ethylhydroperoxide, 2-ethyl-6-methoxynaphthalene, 1-(6-methoxynaphtalen-2-yl) ethanol, 1-(6-methoxynaphtalen-2-yl) ethanone and malic acid. Solar photocatalysis of NPX showed COD removals of 33% and 65% after 3 and 4h of treatment, respectively, and some reduction of acute toxicity, evaluated by the exposure of Eisenia andrei to OECD soils spiked with NPX-treated solutions. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Ensiling Characteristics and the In situ Nutrient Degradability of a By-product Feed-based Silage.

    Science.gov (United States)

    Kim, Y I; Oh, Y K; Park, K K; Kwak, W S

    2014-02-01

    This study was conducted to evaluate the ensiling characteristics and the in situ degradability of a by-product feed (BF)-based silage. Before ensilation, the BF-based mixture was composed of 50% spent mushroom substrate, 21% recycled poultry bedding, 15% ryegrass straw, 10.8% rice bran, 2% molasses, 0.6% bentonite, and 0.6% microbial inoculant on a wet basis and ensiled for up to 4 weeks. The BF-based silage contained on average 39.3% moisture, 13.4% crude protein (CP), and 52.2% neutral detergent fiber (NDF), 49% total digestible nutrient, and 37.8% physically effective NDF1.18 on a dry matter (DM) basis. Ensiling the BF-based silage for up to 4 weeks affected (p<0.01) the chemical composition to a small extent, increased (p<0.05) the lactic acid and NH3-N content, and decreased (p<0.05) both the total bacterial and lactic acid bacterial counts from 10(9) to 10(8) cfu/g when compared to that before ensiling. These parameters indicated that the silage was fermented and stored well during the 4-week ensiling period. Compared with rice or ryegrass straws, the BF-based silage had a higher (p<0.05) water-soluble and filterable fraction, a lower insoluble degradable DM and CP fraction (p<0.05), a lower digestible NDF (p<0.05) fraction, a higher (p<0.05) DM and CP disappearance and degradability rate, and a lower (p<0.05) NDF disappearance and degradability rate. These results indicated that cheap, good-quality BF-based roughage could be produced by ensiling SMS, RPB, rice bran, and a minimal amount of straw.

  9. Stability indicating spectrophotometric and spectrodensitometric methods for the determination of diatrizoate sodium in presence of its degradation product

    Science.gov (United States)

    Abd El-Rahman, Mohamed K.; Riad, Safaa M.; Abdel Gawad, Sherif A.; Fawaz, Esraa M.; Shehata, Mostafa A.

    2015-02-01

    Three sensitive, selective, and precise stability indicating methods for the determination of the X-ray contrast agent, diatrizoate sodium (DTA), in the presence of its acidic degradation product (highly cytotoxic 3,5 diamino metabolite) and in pharmaceutical formulation were developed and validated. The first method is a first derivative (D1) spectrophotometric one, which allows the determination of DTA in the presence of its degradate at 231.2 nm (corresponding to zero crossing of the degradate) over a concentration range of 2-24 μg/mL with mean percentage recovery 99.95 ± 0.97%. The second method is the first derivative of the ratio spectra (DD1) by measuring the peak amplitude at 227 nm over the same concentration range as D1 spectrophotometric method, with mean percentage recovery 99.99 ± 1.15%. The third method is a TLC-densitometric one, where DTA was separated from its degradate on silica gel plates using chloroform:methanol:ammonium hydroxide (20:10:2 by volume) as a developing system. This method depends on quantitative densitometric evaluation of thin layer chromatogram of DTA at 238 nm over a concentration range of 4-20 μg/spot, with mean percentage recovery 99.88 ± 0.89%. The selectivity of the proposed methods was tested using laboratory-prepared mixtures. The proposed methods have been successfully applied to the analysis of DTA in pharmaceutical dosage forms without interference from other dosage form additives. The results were statistically compared with the official US pharmacopeial method. No significant difference for either accuracy or precision was observed.

  10. Distribution of iodine-labelled fibrinogen in rat during endotoxin shock

    Energy Technology Data Exchange (ETDEWEB)

    Toth, J [Semmelweis Orvostudomanyi Egyetem, Budapest (Hungary); Spett, B; Bertok, L; Kocsar, L [Orszagos Frederic Joliot-Curie Sugarbiologiai es Sugaregeszsegugyi Kutato Intezet, Budapest (Hungary)

    1978-10-01

    Animals of the experimental and control groups received 10-10 microcurie i.v. /sup 125/I-fibrinogen. The fibrinogen forms a deposit on the surface of the microthrombi and we can find more activity where the thrombi were formed. 60 minutes after administering endotoxin the activity of the ilium of the shocked animals increased significantly (exceeding that of the control group by 37%). A considerable difference may be observed also 120 minutes later, and the activity of the liver amounts to twice the activity of control animals two hours after i.v. /sup 125/I-fibrinogen injection.

  11. Isolation and characterization of a degradation product in leflunomide and a validated selective stability-indicating HPLC–UV method for their quantification

    Directory of Open Access Journals (Sweden)

    Balraj Saini

    2015-06-01

    Full Text Available Leflunomide (LLM is subjected to forced degradation under conditions of hydrolysis, oxidation, dry heat, and photolysis as recommended by International Conference on Harmonization guideline Q1A(R2. In total, four degradation products (I–IV were formed under different conditions. Products I, II and IV were formed in alkaline hydrolytic, acidic hydrolytic and alkaline photolytic conditions. LLM and all degradation products were optimally resolved by gradient elution over a C18 column. The major degradation product (IV formed in hydrolytic alkaline conditions was isolated through column chromatography. Based on its 1H NMR, IR and mass spectral data, it was characterized as a British Pharmacopoeial impurity B. The HPLC method was found to be linear, accurate, precise, sensitive, specific, rugged and robust for quantification of LLM as well as product IV. Finally, the method was applied to stability testing of the commercially available LLM tablets. Keywords: Leflunomide, Characterization, Forced degradation, Degradation product, HPLC–UV

  12. Renewable Energy Production from Waste to Mitigate Climate Change and Counteract Soil Degradation - A Spatial Explicit Assessment for Japan

    Science.gov (United States)

    Kraxner, Florian; Yoshikawa, Kunio; Leduc, Sylvain; Fuss, Sabine; Aoki, Kentaro; Yamagata, Yoshiki

    2014-05-01

    Waste production from urban areas is growing faster than urbanization itself, while at the same time urban areas are increasingly contributing substantial emissions causing climate change. Estimates indicate for urban residents a per capita solid waste (MSW) production of 1.2 kg per day, subject to further increase to 1.5 kg beyond 2025. Waste water and sewage production is estimated at about 260 liters per capita and day, also at increasing rates. Based on these figures, waste - including e.g. MSW, sewage and animal manure - can generally be assumed as a renewable resource with varying organic components and quantity. This paper demonstrates how new and innovative technologies in the field of Waste-to-Green Products can help in various ways not only to reduce costs for waste treatment, reduce the pressure on largely overloaded dump sites, and reduce also the effect of toxic materials at the landfill site and by that i.e. protect the groundwater. Moreover, Waste-to-Green Products can contribute actively to mitigating climate change through fossil fuel substitution and carbon sequestration while at the same time counteracting negative land use effects from other types of renewable energy and feedstock production through substitution. At the same time, the co-production and recycling of fertilizing elements and biochar can substantially counteract soil degradation and improve the soil organic carbon content of different land use types. The overall objective of this paper is to assess the total climate change mitigation potential of MSW, sewage and animal manure for Japan. A techno-economic approach is used to inform the policy discussion on the suitability of this substantial and sustainable mitigation option. We examine the spatial explicit technical mitigation potential from e.g. energy substitution and carbon sequestration through biochar in rural and urban Japan. For this exercise, processed information on respective Japanese waste production, energy demand

  13. Validated stability-indicating methods for the determination of zafirlukast in the presence of its alkaline hydrolysis degradation product

    Directory of Open Access Journals (Sweden)

    Amal M. Abou Al Alamein

    2012-12-01

    Full Text Available Three simple stability-indicating methods for the analysis of Zafirlukast (ZAF in the presence of its alkaline degradation products were developed and validated as per the International Conference on Harmonization (ICH guidelines to evaluate the stability-indicating power of the proposed methods. The developed high-performance liquid chromatographic technique was achieved on ZORBAX–ODS (5 μm, 150 × 4.6 mm, i.d. by isocratic elution with a mixture of acetonitrile/0.05 M phosphate buffer, pH 5.0, (50:50; v/v as a mobile phase at flow rate of 1.0 mL min−1, followed by UV detection at 240 nm. The method could determine ZAF in the range of 2–40 μg mL−1 with a mean percentage recovery of 99.73 ± 0.903. The proposed HPLC method was utilized to investigate the kinetics of alkaline degradation of ZAF. First derivative of the ratio spectra (1DD method was applied to analyze the drug under investigation without any interference from its degradation product with a linearity range of 4–32 μg mL−1 and with a mean percentage recovery of 99.85 ± 0.608. A chemometric method was also developed using the partial least squares (PLS model for selective determination of ZAF in the range of 4–40 μg mL−1, the mean percentage recovery was found to be 100.00 ± 0.336.

  14. Degradation of carbendazim in water via photo-Fenton in Raceway Pond Reactor: assessment of acute toxicity and transformation products.

    Science.gov (United States)

    da Costa, Elizângela Pinheiro; Bottrel, Sue Ellen C; Starling, Maria Clara V M; Leão, Mônica M D; Amorim, Camila Costa

    2018-05-08

    This study aimed at investigating the degradation of fungicide carbendazim (CBZ) via photo-Fenton reactions in artificially and solar irradiated photoreactors at laboratory scale and in a semi-pilot scale Raceway Pond Reactor (RPR), respectively. Acute toxicity was monitored by assessing the sensibility of bioluminescent bacteria (Aliivibrio fischeri) to samples taken during reactions. In addition, by-products formed during solar photo-Fenton were identified by liquid chromatography coupled to mass spectrometry (UFLC-MS). For tests performed in lab-scale, two artificial irradiation sources were compared (UV λ > 254nm and UV-Vis λ > 320nm ). A complete design of experiments was performed in the semi-pilot scale RPR in order to optimize reaction conditions (Fe 2+ and H 2 O 2 concentrations, and water depth). Efficient degradation of carbendazim (> 96%) and toxicity removal were achieved via artificially irradiated photo-Fenton under both irradiation sources. Control experiments (UV photolysis and UV-Vis peroxidation) were also efficient but led to increased acute toxicity. In addition, H 2 O 2 /UV λ > 254nm required longer reaction time (60 minutes) when compared to the photo-Fenton process (less than 1 min). While Fenton's reagent achieved high CBZ and acute toxicity removal, its efficiency demands higher concentration of reagents in comparison to irradiated processes. Solar photo-Fenton removed carbendazim within 15 min of reaction (96%, 0.75 kJ L -1 ), and monocarbomethoxyguanidine, benzimidazole isocyanate, and 2-aminobenzimidazole were identified as transformation products. Results suggest that both solar photo-Fenton and artificially irradiated systems are promising routes for carbendazim degradation.

  15. Enzymatic Analysis of G- and V-Agents and Their Degradation Products

    National Research Council Canada - National Science Library

    Elashvili, Ilya

    2003-01-01

    .... The nerve agents can be hydrolyzed to their respective methylphosphonate alkyl ester (h-agent) products by alkali treatment or by specific hydrolytic enzymes, such as organophosphorus hydrolase...

  16. Validation of an HPLC method for the determination of fleroxacin and its photo-degradation products in pharmaceutical forms.

    Science.gov (United States)

    Djurdjevic, Predrag; Laban, Aleksandra; Jelikic-Stankov, Milena

    2004-01-01

    HPLC determination of fleroxacin in dosage forms was carried out using either reversed-phase column YMC pack ODS-AQ or Supelco LC Hisep shielded hydrophobic phase column, with UV detection at 280 nm. The mobile phase for ODS column consisted of 50:50:0.5 v/v/v and for Hisep column 15:85:0.5 v/v/v acetonitrile-water-triethylamine. The pH of the mobile phase was adjusted to 6.30 for ODS column and to 6.85 for Hisep column, with H3PO4. Linear response was obtained in the concentration range of fleroxacin between 0.01 and 1.30 micrograms/mL. Detection limit was 4.8 ng/mL. Recovery test in the determination of fleroxacin in "Quinodis" tablets (Hoffmann La Roche, nominal mass 400 or 200 mg) was 98-101% for both columns. The effect of the composition and pH of the mobile phase on spectra, retention time and dissociation constants of fleroxacin was discussed. The proposed method could be also used for separation of the photo-degradation products of fleroxacin. Ten degradation products were separated on the ODS-AQ column, thus confirming the suitability of the proposed method for stability study of fleroxacin in pharmaceuticals.

  17. Structural characterization of chemical warfare agent degradation products in decontamination solutions with proton band-selective (1)H-(31)P NMR spectroscopy.

    Science.gov (United States)

    Koskela, Harri; Hakala, Ullastiina; Vanninen, Paula

    2010-06-15

    Decontamination solutions, which are usually composed of strong alkaline chemicals, are used for efficient detoxification of chemical warfare agents (CWAs). The analysis of CWA degradation products directly in decontamination solutions is challenging due to the nature of the matrix. Furthermore, occasionally an unforeseen degradation pathway can result in degradation products which could be eluded to in standard analyses. Here, we present the results of the application of proton band-selective (1)H-(31)P NMR spectroscopy, i.e., band-selective 1D (1)H-(31)P heteronuclear single quantum coherence (HSQC) and band-selective 2D (1)H-(31)P HSQC-total correlation spectroscopy (TOCSY), for ester side chain characterization of organophosphorus nerve agent degradation products in decontamination solutions. The viability of the approach is demonstrated with a test mixture of typical degradation products of nerve agents sarin, soman, and VX. The proton band-selective (1)H-(31)P NMR spectroscopy is also applied in characterization of unusual degradation products of VX in GDS 2000 solution.

  18. OH-radical induced degradation of hydroxybenzoic- and hydroxycinnamic acids and formation of aromatic products-A gamma radiolysis study

    Energy Technology Data Exchange (ETDEWEB)

    Krimmel, Birgit; Swoboda, Friederike [University of Vienna, Department of Nutritional Sciences, Section Radiation Biology (Austria); Solar, Sonja, E-mail: sonja.solar@univie.ac.a [University of Vienna, Department of Nutritional Sciences, Section Radiation Biology (Austria); Reznicek, Gottfried [Department of Pharmacognosy, Althanstrasse 14, A-1090 Vienna (Austria)

    2010-12-15

    The OH-radical induced degradation of hydroxybenzoic acids (HBA), hydroxycinnamic acids (HCiA) and methoxylated derivatives, as well as of chlorogenic acid and rosmarinic acid was studied by gamma radiolysis in aerated aqueous solutions. Primary aromatic products resulting from an OH-radical attachment to the ring (hydroxylation), to the position occupied by the methoxyl group (replacement -OCH{sub 3} by -OH) as well as to the propenoic acid side chain of the cinnamic acids (benzaldehyde formations) were analysed by HPLC-UV and LC-ESI-MS. A comparison of the extent of these processes is given for 3,4-dihydroxybenzoic acid, vanillic acid, isovanillic acid, syringic acid, cinnamic acid, 4-hydroxycinnamic acid, caffeic acid, ferulic acid, isoferulic acid, chlorogenic acid, and rosmarinic acid. For all cinnamic acids and derivatives benzaldehydes were significant oxidation products. With the release of caffeic acid from chlorogenic acid the cleavage of a phenolic glycoside could be demonstrated. Reaction mechanisms are discussed.

  19. Chemical composition and the nutritive value of pistachio epicarp (in situ degradation and in vitro gas production techniques

    Directory of Open Access Journals (Sweden)

    Somayeh Bakhshizadeh

    2014-04-01

    Full Text Available The nutritive value of pistachio epicarp (PE was evaluated by in situ and in vitro techniques. Chemical analysis indicated that PE was high in crude protein (11.30% and low in neutral detergent fiber (26.20%. Total phenols, total tannins, condensed tannins and hydrolysable tannins contents in PE were 8.29%, 4.48%, 0.49% and 3.79%, respectively. Ruminal dry matter and crude protein degradation after 48 hr incubation were 75.21% and 82.52%, respectively. The gas production volume at 48 hr for PE was 122.47 mL g-1DM. As a whole, adding polyethylene glycol (PEG to PE increased (p < 0.05 gas production volumes, organic matter digestibility and the metabolizable energy that illustrated inhibitory effect of phenolics on rumen microbial fermentation and the positive influence of PEG on digestion PE. The results showed that PE possessed potentials to being used as feed supplements.

  20. Chemical composition and the nutritive value of pistachio epicarp (in situ degradation and in vitro gas production techniques).

    Science.gov (United States)

    Bakhshizadeh, Somayeh; Taghizadeh, Akbar; Janmohammadi, Hossein; Alijani, Sadegh

    2014-01-01

    The nutritive value of pistachio epicarp (PE) was evaluated by in situ and in vitro techniques. Chemical analysis indicated that PE was high in crude protein (11.30%) and low in neutral detergent fiber (26.20%). Total phenols, total tannins, condensed tannins and hydrolysable tannins contents in PE were 8.29%, 4.48%, 0.49% and 3.79%, respectively. Ruminal dry matter and crude protein degradation after 48 hr incubation were 75.21% and 82.52%, respectively. The gas production volume at 48 hr for PE was 122.47 mL g(-1)DM. As a whole, adding polyethylene glycol (PEG) to PE increased (p gas production volumes, organic matter digestibility and the metabolizable energy that illustrated inhibitory effect of phenolics on rumen microbial fermentation and the positive influence of PEG on digestion PE. The results showed that PE possessed potentials to being used as feed supplements.

  1. Effect of Tranexamic Acid on Blood Loss, D-Dimer, and Fibrinogen Kinetics in Adult Spinal Deformity Surgery.

    Science.gov (United States)

    Pong, Ryan P; Leveque, Jean-Christophe A; Edwards, Alicia; Yanamadala, Vijay; Wright, Anna K; Herodes, Megan; Sethi, Rajiv K

    2018-05-02

    Antifibrinolytics such as tranexamic acid reduce operative blood loss and blood product transfusion requirements in patients undergoing surgical correction of scoliosis. The factors involved in the unrelenting coagulopathy seen in scoliosis surgery are not well understood. One potential contributor is activation of the fibrinolytic system during a surgical procedure, likely related to clot dissolution and consumption of fibrinogen. The addition of tranexamic acid during a surgical procedure may mitigate the coagulopathy by impeding the derangement in D-dimer and fibrinogen kinetics. We retrospectively studied consecutive patients who had undergone surgical correction of adult spinal deformity between January 2010 and July 2016 at our institution. Intraoperative hemostatic data, surgical time, estimated blood loss, and transfusion records were analyzed for patients before and after the addition of tranexamic acid to our protocol. Each patient who received tranexamic acid and met inclusion criteria was cohort-matched with a patient who underwent a surgical procedure without tranexamic acid administration. There were 17 patients in the tranexamic acid cohort, with a mean age of 60.7 years, and 17 patients in the control cohort, with a mean age of 60.9 years. Estimated blood loss (932 ± 539 mL compared with 1,800 ± 1,029 mL; p = 0.005) and packed red blood-cell transfusions (1.5 ± 1.6 units compared with 4.0 ± 2.1 units; p = 0.001) were significantly lower in the tranexamic acid cohort. In all single-stage surgical procedures that met inclusion criteria, the rise of D-dimer was attenuated from 8.3 ± 5.0 μg/mL in the control cohort to 3.3 ± 3.2 μg/mL for the tranexamic acid cohort (p tranexamic acid cohort to 60.6 ± 35.1 mg/dL (p = 0.004). In patients undergoing spinal surgery, intravenous administration of tranexamic acid is effective at reducing intraoperative blood loss. Monitoring of D-dimer and fibrinogen during spinal surgery suggests that tranexamic acid

  2. The β fibrinogen gene G-455A polymorphism in Asian subjects with ...

    African Journals Online (AJOL)

    Jonny Karunia Fajar

    2016-08-10

    Aug 10, 2016 ... Conclusions: In the Asian population, the b fibrinogen gene G-455A polymorphism was associ- ..... Kazakhstan, Kuwait, Kyrgyzstan, Laos, Lebanon, Malaysia, ... Thailand, Timor-Leste, Turkey, Turkmenistan, United Arab.

  3. Pitfalls of radioisotope diagnosis of deep venous thromboses with /sup 125/I-fibrinogen in traumatology

    Energy Technology Data Exchange (ETDEWEB)

    Novak, K.; Pestal, M. (Vyzkumny Ustav Traumatologicky, Brno (Czechoslovakia))

    1984-05-25

    Experience is described with the examination of deep venous thromboses of the lower extremities using /sup 125/I-fibrinogen. Intravenously administered labelled fibrinogen is taken up into the forming thrombus which may then be detected. Experience is presented with preparations of various makes. It was proved that in injured patients the biological half-life of /sup 125/I-fibrinogen is reduced to 50 hrs and less as against the standard half-life of 96.2 hrs. This is caused by fibrinogen losses owing to the injury, increased intensity of metabolic processes and the quality of the preparation being used. Injured patients should be examined using a highest quality preparation without denaturation damage to the labelled protein.

  4. Pitfalls of radioisotope diagnosis of deep venous thromboses with 125I-fibrinogen in traumatology

    International Nuclear Information System (INIS)

    Novak, K.; Pestal, M.

    1984-01-01

    Experience is described with the examination of deep venous thromboses of the lower extremities using 125 I-fibrinogen. Intravenously administered labelled fibrinogen is taken up into the forming thrombus which may then be detected. Experience is presented with preparations of various makes. It was proved that in injured patients the biological half-life of 125 I-fibrinogen is reduced to 50 hrs and less as against the standard half-life of 96.2 hrs. This is caused by fibrinogen losses owing to the injury, increased intensity of metabolic processes and the quality of the preparation being used. Injured patients should be examined using a highest quality preparation without denaturation damage to the labelled protein. (Ha)

  5. Changes in fibrin D-dimer, fibrinogen, and protein S during pregnancy

    DEFF Research Database (Denmark)

    Hansen, Anette Tarp; Andreasen, Birgitte Horst; Salvig, Jannie Dalby

    2010-01-01

    Background. Pregnancy is a hypercoagulable state with a 5- to 10- fold higher risk of venous thromboembolism. Existing reference intervals for fibrin D-dimer (D-dimer), functional fibrinogen (fibrinogen) and protein S, free antigen (protein S) are based on non-pregnant patients and reference...... intervals for pregnant patients are warranted. Objectives. The aim of the present study was to contribute to the establishment of reference intervals for D-dimer, fibrinogen and protein S during pregnancy and to discuss the use of the analyses during pregnancy. Methods. We included 55 healthy pregnant women...... in gestational week 11–17, with normal current pregnancy. Blood samples were collected in gestational weeks 11–17, 21–27 and 34–37. The three plasma parameters D-dimer, fibrinogen and protein S were analysed by STA-R Evolution®. Results. A significant rise in D-dimer was found from first to second trimester (p...

  6. Fibrinogen concentrate as a treatment for postpartum haemorrhage-induced coagulopathy: A study protocol for a randomised multicentre controlled trial. The fibrinogen in haemorrhage of DELivery (FIDEL) trial.

    Science.gov (United States)

    Ducloy-Bouthors, Anne-Sophie; Mignon, Alexandre; Huissoud, Cyril; Grouin, Jean-Marie; Mercier, Frédéric J

    2016-08-01

    Postpartum haemorrhage (PPH) remains the leading cause for maternal mortality worldwide. Hypofibrinogenaemia has been identified as a major risk factor for progress towards severe PPH. The efficacy of fibrinogen concentrate supplementation in PPH has been shown in various clinical settings but the level of evidence is not sufficient to prove the benefit, evaluate the risks, and determine the value, timing and dose of fibrinogen supplementation in PPH. The FIDEL trial objective is to evaluate the impact of a therapeutic strategy based on the early administration of human fibrinogen concentrate compared to the current practice based on late administration in severe PPH patients requiring second line uterotonics. This is a prospective multicentre, randomised, double-blind, placebo-controlled trial. A total of 412 patients will be randomised if they meet the following criteria: female patients≥18 years old, vaginal delivery, PPH requiring IV administration of prostaglandins (sulprostone) after 20 to 30minutes of oxytocin failure. The participants are assigned to receive either fibrinogen 3g or placebo infusions. The primary endpoint is a composite endpoint defined as the percentage of patients losing at least 4g/dL of Hb, and/or requiring a transfusion of at least 2 units of packed red blood cells, within the 48hours following fibrinogen administration. The purpose of this study is to demonstrate the efficacy and safety of an early fibrinogen concentrate infusion in uncontrolled active PPH. Copyright © 2016 Société française d'anesthésie et de réanimation (Sfar). Published by Elsevier Masson SAS. All rights reserved.

  7. Role of Nitrite in Processed Meat Products and its Degradation during their Storage

    OpenAIRE

    ILIRJANA BOCI; ELDA ZIU; GENTJANA BARDHI

    2014-01-01

    This paper represents the analytical data of nitrite level obtained from the experimental work done on meat processed samples taken from a meat processing plant in Tirana. There has been a long debate and health concern about the nitrite content in meat products. Nitrite is added to e.g. sausages, and hams and other meat products to preserve these products and keep them free from dangerous bacteria. Among the aims are preventing botulism, a dangerous food poison. But also it’s important to us...

  8. Contribution to the study of plasmatic fibrinogen and serum albumin: effects of irradiation

    International Nuclear Information System (INIS)

    Suscillon, M.

    1967-01-01

    The author studies the modifications of properties and structure of serum albumin and fibrinogen solution when subjected to radiation of low energy (X rays). On the other hand, two original techniques are exposed: 1. Amperometric determination of fibrin stabilizing factor or factor XIII of hemostasis. 2. Spectrophotometric study of fibrin formation kinetics. Then showing off and quantitative determination of platelets fibrinogen is exposed. (author) [fr

  9. Iodine-labelling of albumin and fibrinogen and application in selecting implantable material-titanium oxide

    International Nuclear Information System (INIS)

    Liu Fangyan; Zhou Meiying; Zhang Feng

    1998-01-01

    Human serum albumin and fibrinogen were successfully labelled with 125 I. The labelled proteins were further applied to carry out a background study on the selection of the blood-compatible materials. The protein adsorption of four kinds of titanium oxide film was determined and compared. It was found that Sample B can adsorb more albumin and less fibrinogen than other three samples and hold the adsorbed albumin most stably

  10. Effect of supplementation of concentrates or selenium on production and reproduction in cows grazing pastures of high protein degradability

    Energy Technology Data Exchange (ETDEWEB)

    Mongiardino, M E; Humaran, M; Corbellini, C N; Baldan, A M; Cuneo, M; Balbiani, G [Instituto Nacional de Tecnologia Agropecuaria, Moron, Provincia de Buenos Aires (Argentina). Inst. de Patobiologia

    1996-05-01

    Two experiments were carried out to determine whether the deleterious effects of high amounts of degradable protein on reproduction and production of dairy cows could be minimized by a supplemental source of undergradable protein, or grain supplementation while grazing; and to study the effect of selenium supplementation before calving on the incidence of stillbirths, mastitis, puerperal and metabolic disorders. In a first experiment, 24 Holstein cows fed on red and white clover pasture, paired by previous milk production, calving data and body condition, were supplemented with corn silage and one of two concentrates differing only in the proportion of degradable protein (Group H: 71.5% and Group L: 51.5%). The degradable protein intake from pasture supplied 93% of the requirements in both groups. The addition of undergradable protein in the concentrate of Group L did not improve reproductive performance nor milk, butterfat or solids non-fat production. In a second experiment, 132 Holstein cows and heifers were paired likewise. Both animals in each pair were fed similar forage resources, but each one was supplemented with 2 kg/cow corn grain four times a day (Herd 1) or 4 kg/cow tow times a day (Herd 2). One animal in each pair was randomly assigned to receive a barium selenate injection before calving. Rumen ammonia was higher in Herd 1 in both sampling dates (17 vs 4.2 mg/100 ml and 12 vs 9 mg/100 ml), as well as serum urea up to 50 days post-partum (26 vs 19 mg/100 ml, P<0.02). Body condition scores were similar at calving but significantly lower in Herd 1 during the lactation period (P<0.05). Total milk and butterfat production were higher in Herd 2 (6406.2 vs 6893.8 kg and 190.4 vs 203.5 kg, respectively). Selenium improved pregnancy rate to first artificial insemination in Herd 2 (71 vs 50%), and decreased the frequency of downer cows in both herds (5 vs 0%), but had not effect regarding the Wisconsin Mastitis Test results. (author). 36 refs, 4 figs, 3 tabs.

  11. Fibrinogen species as resolved by HPLC-SAXS data processing within the UltraScan Solution Modeler (US-SOMO) enhanced SAS module.

    Science.gov (United States)

    Brookes, Emre; Pérez, Javier; Cardinali, Barbara; Profumo, Aldo; Vachette, Patrice; Rocco, Mattia

    2013-12-01

    Fibrinogen is a large heterogeneous aggregation/degradation-prone protein playing a central role in blood coagulation and associated pathologies, whose structure is not completely resolved. When a high-molecular-weight fraction was analyzed by size-exclusion high-performance liquid chromatography/small-angle X-ray scattering (HPLC-SAXS), several composite peaks were apparent and because of the stickiness of fibrinogen the analysis was complicated by severe capillary fouling. Novel SAS analysis tools developed as a part of the UltraScan Solution Modeler ( US-SOMO ; http://somo.uthscsa.edu/), an open-source suite of utilities with advanced graphical user interfaces whose initial goal was the hydrodynamic modeling of biomacromolecules, were implemented and applied to this problem. They include the correction of baseline drift due to the accumulation of material on the SAXS capillary walls, and the Gaussian decomposition of non-baseline-resolved HPLC-SAXS elution peaks. It was thus possible to resolve at least two species co-eluting under the fibrinogen main monomer peak, probably resulting from in-column degradation, and two others under an oligomers peak. The overall and cross-sectional radii of gyration, molecular mass and mass/length ratio of all species were determined using the manual or semi-automated procedures available within the US-SOMO SAS module. Differences between monomeric species and linear and sideways oligomers were thus identified and rationalized. This new US-SOMO version additionally contains several computational and graphical tools, implementing functionalities such as the mapping of residues contributing to particular regions of P ( r ), and an advanced module for the comparison of primary I ( q ) versus q data with model curves computed from atomic level structures or bead models. It should be of great help in multi-resolution studies involving hydrodynamics, solution scattering and crystallographic/NMR data.

  12. Degradation of cellulosic biomass and its subsequent utilization for the production of chemical feedstocks

    Energy Technology Data Exchange (ETDEWEB)

    Wang, D.I.C.; Cooney, C.L.; Demain, A.L.; Gomez, R.F.; Sinskey, A.J.

    1977-11-01

    Progress in studies on the production of reducing sugars and other products by Clostridium thermocellum on cellulosic biomass is reported. The rate of reducing sugar production using corn residue was found to be equal if not greater than on solka floc. Current work is being devoted towards elucidating discrepancies between reducing sugar analysis and high pressure liquid chromatography sugar analysis in order to permit accurate material balances to be completed. Studies are reported in further characterizing the plasmics of C. thermocellum and in the development of protoplasts of the same microorganism. A process and economic analysis for the production of 200 x 10/sup 6/ pounds (90 x 10/sup 6/ kilograms) per year of soluble reducing sugars from corn stover cellulose, using enzymes derived from Clostridium thermocellum was designed. Acrylic acid was produced in resting cell preparation of Clostridium propionicum from both ..beta..-alanine and from propionic acid. Results from the conversion of corn stover hydrolyzates to lactic acid, a precursor to acrylic acid, show that up to 70% of the sugars produced are converted to lactic acid. Efforts are proceeding to improve the conversion yield and carry out the overall conversion of corn stover to acrylic acid in the same fermentor. Results on the production of acetone and butanol by Clostridium acetobutylicum demonstrated the capability of the strain to produce mixed solvents in concentration and conversion similar to that achieved in industrial processes. Various studies on the production of acetic acid by Clostridium thermoaceticum are also reported.

  13. The effect of 8-week low impact aerobic exercise on plasma fibrinogen concentration in old women

    Directory of Open Access Journals (Sweden)

    Shahla Dehghan

    2013-09-01

    Full Text Available Applied Exercise Physiology focuses on the physiological effects of exercise training on physiological processes, health, and physical well-being. The aim of this study was investigation of effects of 8-week low impact aerobic exercise on plasma fibrinogen concentration in old women. Fibrinogen is one of the most important inflammation factors and a prediction index in cardio vascular diseases. Iranian women especially older ones are generally sedentary because of their traditional and religious believes. Samples were 23 healthy and enable to do physical activity old women of Shahrekord (Chaharmahal va bakhtiary province, Iran retirement home. Subjects were randomly divided to two groups including experimental (n=14 individuals and control (n=11 individuals. First, for assessment of fibrinogen level, 5cc blood samples were obtained after 8 hours nightly fasting from anterior vein in resting condition. Experimental group was participated in 8 week (three times a week LIA training program (15 min in first day with 40% of maximum heart rate until 40 min in last day with 65% of maximum heart rate. All of mentioned measurements repeated at the end of 8 week training. The obtained results showed that 8 week LIA program has significant effect on reduction of old women plasma fibrinogen level (P=0.02. It seems that use of 8 week LIA training has positive effects on improvement of cardiovascular health and prevention of inflammation disease related to plasma fibrinogen level in Iranian old women. Key words: aerobic exercises, old women, fibrinogen.

  14. BOVINE PLASMA FIBRINOGEN AS MARKER IN CLINICAL AND SUB-CLINICAL MASTITIS

    Directory of Open Access Journals (Sweden)

    R. Ali

    2018-06-01

    Full Text Available Plasma samples were collected from healthy as well as clinical and sub-clinical mastitis affected cows from Barasat, West Bengal, India. Plasma samples, after ammonium sulphate precipitation, were dialyzed against several changes of PBS (pH 7.2 to remove the excess ammonium sulphate. Then plasma fibrinogens were purified by gel filtration chromatography on Sephacryl S-200 HR. SDS-PAGE (10% of purified fibrinogen from plasma of healthy cow revealed polypeptide bands of 74, 67 and 57 kDa which represent the α (alpha, β (beta and γ (gamma- chains respectively. On the other hand, purified fibrinogen from plasma of sub-clinical and clinical mastitis affected cow revealed polypeptide bands of 73 (α-chain, 68 kDa (β-chain and 72 (γ-chain, 68 kDa (β-chain respectively. The SDS-PAGE analysis showed the absence of gamma (γ- chain of fibrinogen in both the samples of sub-clinical and clinical mastitis positive cow. Single precipitin line was observed in double immunodiffusion test when purified fibrinogen from healthy, clinical and subclinical mastitis positive cows reacted with hyper immune sera raised in rabbit. No precipitin line was found against the normal control serum. These purified fibrinogens also showed cross reactivity against antibody raised in rabbit when analyzed by western blot technique.

  15. Pre-delivery fibrinogen predicts adverse maternal or neonatal outcomes in patients with placental abruption.

    Science.gov (United States)

    Wang, Liangcheng; Matsunaga, Shigetaka; Mikami, Yukiko; Takai, Yasushi; Terui, Katsuo; Seki, Hiroyuki

    2016-07-01

    Placental abruption is a severe obstetric complication of pregnancy that can cause disseminated intravascular coagulation and progress to massive post-partum hemorrhage. Coagulation disorder due to extreme consumption of fibrinogen is considered the main pathogenesis of disseminated intravascular coagulation in patients with placental abruption. The present study sought to determine if the pre-delivery fibrinogen level could predict adverse maternal or neonatal outcomes in patients with placental abruption. This retrospective medical chart review was conducted in a center for maternal, fetal, and neonatal medicine in Japan with 61 patients with placental abruption. Fibrinogen levels prior to delivery were collected and evaluated for the prediction of maternal and neonatal outcomes. The main outcome measures for maternal outcomes were disseminated intravascular coagulation and hemorrhage, and the main outcome measures for neonatal outcomes were Apgar score at 5 min, umbilical artery pH, and stillbirth. The receiver-operator curve and multivariate logistic regression analyses indicated that fibrinogen significantly predicted overt disseminated intravascular coagulation and the requirement of ≥6 red blood cell units, ≥10 fresh frozen plasma units, and ≥20 fresh frozen plasma units for transfusion. Moderate hemorrhage occurred in 71.5% of patients with a decrease in fibrinogen levels to 155 mg/dL. Fibrinogen could also predict neonatal outcomes. Umbilical artery pH neonatal outcomes with placental abruption. © 2016 Japan Society of Obstetrics and Gynecology. © 2016 Japan Society of Obstetrics and Gynecology.

  16. Fibrinogen is not elevated in the cerebrospinal fluid of patients with multiple sclerosis

    Directory of Open Access Journals (Sweden)

    Ehling Rainer

    2011-10-01

    Full Text Available Abstract Background Elevated plasma fibrinogen levels are a well known finding in acute infectious diseases, acute stroke and myocardial infarction. However its role in the cerebrospinal fluid (CSF of acute and chronic central (CNS and peripheral nervous system (PNS diseases is unclear. Findings We analyzed CSF and plasma fibrinogen levels together with routine parameters in patients with multiple sclerosis (MS, acute inflammatory diseases of the CNS (bacterial and viral meningoencephalitis, BM and VM and PNS (Guillain-Barré syndrome; GBS, as well as in non-inflammatory neurological controls (OND in a total of 103 patients. Additionally, MS patients underwent cerebral MRI scans at time of lumbar puncture. CSF and plasma fibrinogen levels were significantly lower in patients with MS and OND patients as compared to patients with BM, VM and GBS. There was a close correlation between fibrinogen levels and albumin quotient (rho = 0.769, p Conclusions Although previous work has shown clear evidence of the involvement of fibrinogen in MS pathogenesis, this is not accompanied by increased fibrinogen in the CSF compartment.

  17. Fibrinogen plasma concentration is an independent marker of haemodynamic impairment in chronic thromboembolic pulmonary hypertension

    Science.gov (United States)

    Hennigs, Jan K.; Baumann, Hans Jörg; Lüneburg, Nicole; Quast, Gesine; Harbaum, Lars; Heyckendorf, Jan; Sydow, Karsten; Schulte-Hubbert, Bernhard; Halank, Michael; Klose, Hans

    2014-01-01

    Fibrinogen has a crucial role in both inflammation and coagulation, two processes pivotal for the pathogenesis of pulmonary hypertension. We therefore aimed to investigate whether fibrinogen plasma concentrations a) are elevated in pulmonary arterial hypertension (PAH) and chronic thromboembolic pulmonary hypertension (CTEPH) and b) may serve as a novel biomarker for haemodynamic impairment. In a dual-centre, retrospective analysis including 112 patients with PAH (n = 52), CTEPH (n = 49) and a control cohort of patients with suspected PAH ruled out by right heart catheterisation (n = 11), we found fibrinogen plasma concentrations to be increased in patients with PAH (4.1 ± 1.4 g/l) and CTEPH (4.3 ± 1.2 g/l) compared to control patients (3.4 ± 0.5 g/l, p = 0.0035 and p = 0.0004, respectively). In CTEPH patients but not in PAH patients fibrinogen was associated with haemodynamics (p < 0.036) and functional parameters (p < 0.041). Furthermore, fibrinogen was linked to disease severity (WHO functional class, p = 0.017) and independently predicted haemodynamic impairment specifically in CTEPH (p < 0.016). Therefore, fibrinogen seems to represent an important factor in CTEPH pathophysiology and may have the potential to guide clinical diagnosis and therapy. PMID:24770447

  18. Evaluation of fibrinogen-DTPA-99mTc. Biodistribution and imaging studies

    International Nuclear Information System (INIS)

    Lungu, V.; Mihailescu, G.; Fugaru, V.; Preda, A.

    1998-01-01

    Labelling with 99m Tc of fibrinogen, using DTPA anhydride as the bifunctional chelating agent, was studied in animals with venous thrombi. The parameters studied were: i) coupled reaction of 99m Tc with the fibrinogen-DTPA-Sn(II) in lyophilised form; ii) biodistribution studies of fibrinogen- 99m Tc in animals with venous thrombi, and iii) imaging studies by scintigraphic methods. The present study showed that the radiochemical purity of fibrinogen-DTPA- 99m Tc is > 95% for a maximum of 5 mCi (185 MBq) radioactivity of 99m Tc in the 1.5-2 ml volume. Above this level of radioactivity we found a drastic decrease in the radiochemical purity. The radioactivity ratio of the venous thrombi to the blood was 2.32+-0.45. The scintigraphic images showed a significant accumulation of fibrinogen-DTPA- 99m Tc in 1-hour-old thrombi, 1 hour after injection. From this results the diagnostic potential of fibrinogen-DTPA-Sn(II) in kit form was evaluated. (author)

  19. Superior integrin activating capacity and higher adhesion to fibrinogen matrix in buffy coat-derived platelet concentrates (PCs) compared to PRP-PCs.

    Science.gov (United States)

    Beshkar, Pezhman; Hosseini, Ehteramolsadat; Ghasemzadeh, Mehran

    2018-02-01

    Regardless of different sources, methods or devices which are applied for preparation of therapeutic platelets, these products are generally isolated from whole blood by the sedimentation techniques which are based on PRP or buffy coat (BC) separation. As a general fact, platelet preparation and storage are also associated with some deleterious changes that known as platelet storage lesion (PSL). Although these alternations in platelet functional activity are aggravated during storage, whether technical issues within preparation can affect integrin activation and platelet adhesion to fibrinogen were investigated in this study. PRP- and BC-platelet concentrates (PCs) were subjected to flowcytometry analysis to examine the expression of platelet activation marker, P-selectin as well as active confirmation of the GPIIb/IIIa (α IIb β 3 ) on day 0, 1, 3 and 5 post-storage. Platelet adhesion to fibrinogen matrix was evaluated by fluorescence microscopy. Glucose concentration and LDH activity were also measured by colorimetric methods. The increasing P-selectin expression during storage was in a reverse correlation with PAC-1 binding (r = -0.67; p = .001). PRP-PCs showed the higher level of P-selectin expression than BC-PCs, whereas the levels of PAC-1 binding and platelet adhesion to fibrinogen matrix were significantly lower in PRP-PCs. Higher levels of active confirmation of the GPIIb/IIIa in BC-PCs were also associated with greater concentration of glucose in these products. We demonstrated the superior capacities of integrin activation and adhesion to fibrinogen for BC-PCs compared to those of PRP-PCs. These findings may provide more advantages for BC method of platelet preparation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. A New Platform for Profiling Degradation-Related Impurities Via Exploiting the Opportunities Offered by Ion-Selective Electrodes: Determination of Both Diatrizoate Sodium and Its Cytotoxic Degradation Product.

    Science.gov (United States)

    Riad, Safaa M; Abd El-Rahman, Mohamed K; Fawaz, Esraa M; Shehata, Mostafa A

    2018-05-01

    Although the ultimate goal of administering active pharmaceutical ingredients (APIs) is to save countless lives, the presence of impurities and/or degradation products in APIs or formulations may cause harmful physiological effects. Today, impurity profiling (i.e., the identity as well as the quantity of impurity in a pharmaceutical) is receiving critical attention from regulatory authorities. Despite the predominant use of spectroscopic and chromatographic methods over electrochemical methods for impurity profiling of APIs, this work investigates the opportunities offered by electroanalytical methods, particularly, ion-selective electrodes (ISEs), for profiling degradation-related impurities (DRIs) compared with conventional spectroscopic and chromatographic methods. For a meaningful comparison, diatrizoate sodium (DTA) was chosen as the anionic X-ray contrast agent based on its susceptibility to deacetylation into its cytotoxic and mutagenic degradation product, 3,5-diamino-2,4,6 triiodobenzoic acid (DTB). This cationic diamino compound can be also detected as an impurity in the final product because it is used as a synthetic precursor for the synthesis of DTA. In this study, four novel sensitive and selective sensors for the determination of both DTA and its cytotoxic degradation products are presented. Sensors I and II were developed for the determination of the anionic drug, DTA, and sensors III and IV were developed for the determination of the cationic cytotoxic impurity. The use of these novel sensors not only provides a stability-indicating method for the selective determination of DTA in the presence of its degradation product, but also permits DRI profiling. Moreover, a great advantage of these proposed ISE systems is their higher sensitivity for the quantification of DTB relative to other spectroscopic and chromatographic methods, so it can measure trace amounts of DTB impurities in DTA bulk powder and pharmaceutical formulation without a need for

  1. Hotspots of human-induced biomass productivity decline and their social-ecological types toward supporting national policy and local studies on combating land degradation

    Science.gov (United States)

    Vu, Quyet Manh; Le, Quang Bao; Vlek, Paul L. G.

    2014-10-01

    Identification and social-ecological characterization of areas that experience high levels of persistent productivity decline are essential for planning appropriate management measures. Although land degradation is mainly induced by human actions, the phenomenon is concurrently influenced by global climate changes that need to be taken into account in land degradation assessments. This study aims to delineate the geographic hotspots of human-induced land degradation in the country and classify the social-ecological characterizations of each specific degradation hotspot type. The research entailed a long-term time-series (1982-2006) of Normalized Difference Vegetation Index to specify the extents of areas with significant biomass decline or increase in Vietnam. Annual rainfall and temperature time-series were then used to separate areas of human-induced biomass productivity decline from those driven by climate dynamics. Next, spatial cluster analyses identified social-ecological types of degradation for guiding further investigations at regional and local scales. The results show that about 19% of the national land mass experienced persistent declines in biomass productivity over the last 25 years. Most of the degraded areas are found in the Southeast and Mekong River Delta (17,984 km2), Northwest Mountains (14,336 km2), and Central Highlands (13,504 km2). We identified six and five social-ecological types of degradation hotspots in agricultural and forested zones, respectively. Constraints in soil nutrient availability and nutrient retention capability are widely spreading in all degradation hotspot types. These hotspot types are different from each other in social and ecological conditions, suggesting that region-specific strategies are needed for the formulation of land degradation combating policy.

  2. Oxidative degradation of triazine- and sulfonylurea-based herbicides using Fe(VI): The case study of atrazine and iodosulfuron with kinetics and degradation products

    Science.gov (United States)

    The occurrence of common herbicides (Atrazine, ATZ and Iodosufuron, IDS), in waters presents potential risk to human and ecological health. The oxidative degradation of ATZ and IDS by ferrate(VI) (FeVIO42-, Fe(VI)) is studied at different pH levels where kinetically observed se...

  3. Extracellular production and degradation of superoxide in the coral Stylophora pistillata and cultured Symbiodinium.

    Directory of Open Access Journals (Sweden)

    Eldad Saragosti

    2010-09-01

    Full Text Available Reactive oxygen species (ROS are thought to play a major role in cell death pathways and bleaching in scleractinian corals. Direct measurements of ROS in corals are conspicuously in short supply, partly due to inherent problems with ROS quantification in cellular systems.In this study we characterized the dynamics of the reactive oxygen species superoxide anion radical (O(2(- in the external milieu of the coral Stylophora pistillata. Using a sensitive, rapid and selective chemiluminescence-based technique, we measured extracellular superoxide production and detoxification activity of symbiont (non-bleached and aposymbiont (bleached corals, and of cultured Symbiodinium (from clades A and C. Bleached and non-bleached Stylophora fragments were found to produce superoxide at comparable rates of 10(-11-10(-9 mol O(2(- mg protein(-1 min(-1 in the dark. In the light, a two-fold enhancement in O(2(- production rates was observed in non-bleached corals, but not in bleached corals. Cultured Symbiodinium produced superoxide in the dark at a rate of . Light was found to markedly enhance O(2(- production. The NADPH Oxidase inhibitor Diphenyleneiodonium chloride (DPI strongly inhibited O(2(- production by corals (and more moderately by algae, possibly suggesting an involvement of NADPH Oxidase in the process. An extracellular O(2(- detoxifying activity was found for bleached and non-bleached Stylophora but not for Symbiodinium. The O(2(- detoxifying activity was partially characterized and found to resemble that of the enzyme superoxide dismutase (SOD.The findings of substantial extracellular O(2(- production as well as extracellular O(2(- detoxifying activity may shed light on the chemical interactions between the symbiont and its host and between the coral and its environment. Superoxide production by Symbiodinium possibly implies that algal bearing corals are more susceptible to an internal build-up of O(2(-, which may in turn be linked to oxidative stress

  4. JH III production, titers and degradation in relation to reproduction in male and female Anthonomus grandis.

    Science.gov (United States)

    Taub-Montemayor, Tina E; Min, Kyung-Jin; Chen, Zhaorigetu; Bartlett, Terri; Rankin, Mary Ann

    2005-04-01

    Juvenile hormone (JH) is necessary for the production of vitellogenin (Vg) in the boll weevil, Anthonomus grandis. Occurrence of Vg in this species is typically restricted to reproductively competent females, and is not detected in untreated males. However, the JH analog, methoprene stimulates Vg production in intact males and in the isolated abdomens of both male and female boll weevils (where in each case no Vg is detected without treatment), suggesting that males are competent to produce Vg but are normally not stimulated to do so. Preliminary work indicating that male boll weevil corpora allata (CA) produced little or no JH in vitro suggested that failure of males to produce Vg might be due to very low JH levels compared to females. This study re-examines the question of JH in male boll weevils by determining in vitro production of JH III by male CA during the first 10 days after adult emergence, determining hemolymph JH esterase activity during this same time period and hemolymph JH III titers in adults of both sexes. We also re-examine the ability of isolated male abdomens to produce Vg in response to hormonal stimulation, analyzing the effect of a wide range of methoprene and JH III dosages. Results indicate that male A. grandis have circulating JH titers and JH production similar to females. JH esterase activity is slightly but significantly higher in males than females. Vg production by isolated abdomens of both sexes after stimulation with methoprene or JH III was confirmed. Dose response studies indicated that high levels of methoprene were less effective than intermediate doses in stimulating Vg synthesis in both sexes. We conclude that the sexually dimorphic effect of JH on Vg synthesis is not due to differences in JH production or differences in JH titer between the sexes.

  5. 5-Hydroxytryptophan, a major product of tryptophan degradation, is essential for optimal replication of human parainfluenza virus.

    Science.gov (United States)

    Rabbani, M A G; Barik, Sailen

    2017-03-01

    Interferon (IFN) exerts its antiviral effect by inducing a large family of cellular genes, named interferon (IFN)-stimulated genes (ISGs). An intriguing member of this family is indoleamine 2,3-dioxygenase (IDO), which catalyzes the first and rate-limiting step of the main branch of tryptophan (Trp) degradation, the kynurenine pathway. We recently showed that IDO strongly inhibits human parainfluenza virus type 3 (PIV3), a significant respiratory pathogen. Here, we show that 5-hydoxytryptophan (5-HTP), the first product of an alternative branch of Trp degradation and a serotonin precursor, is essential to protect virus growth against IDO in cell culture. We also show that the apparent antiviral effect of IDO on PIV3 is not due to the generation of the kynurenine pathway metabolites, but rather due to the depletion of intracellular Trp by IDO, as a result of which this rare amino acid becomes unavailable for the alternative, proviral 5-HTP pathway. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Effective feather degradation and keratinase production by Bacillus pumilus GRK for its application as bio-detergent additive.

    Science.gov (United States)

    Ramakrishna Reddy, M; Sathi Reddy, K; Ranjita Chouhan, Y; Bee, Hameeda; Reddy, Gopal

    2017-11-01

    An effecient feather-degrading bacterium was isolated from poultry dumping yard and identified as Bacillus pumilus GRK based on 16S rRNA sequencing. Complete feather degradation (98.3±1.52%) with high keratinase production (373±4 U/ml) was observed in 24h under optimized conditions (substrate 1% (w/w); inoculum size 4% (v/v); pH 10; 200rpm at 37°C) with feathers as sole carbon and nitrogen source in tap water. The fermented broth was enriched with amino acids like tryptophan (221.44µg/ml), isoleucine (15.0µg/ml), lysine (10.81µg/ml) and methionine (7.24µg/ml) suggesting its potential use as feed supplement. The keratinase produced was a detergent stable serine protease and its activity was further enhanced by Ca +2 and Mg +2 . Bacillus pumilus GRK keratinase was successfully utilised as bioadditive in detergent formulations for removing the blood stains from cloth without affecting its fiber and texture. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Fate and antibacterial potency of anticoccidial drugs and their main abiotic degradation products

    International Nuclear Information System (INIS)

    Hansen, Martin; Krogh, Kristine A.; Brandt, Asbjorn; Christensen, Jan H.; Halling-Sorensen, Bent

    2009-01-01

    The antibacterial potency of eight anticoccidial drugs was tested in a soil bacteria bioassay (pour plate method), EC 50 -values between 2.4 and 19.6 μM were obtained; however, one compound, nicarbazin exhibited an EC 50 -value above the maximum tested concentration (21 μM, 9.1 mg L -1 ). The potency of mixtures of two of the compounds, narasin and nicarbazin, was synergistic (more than additive) with 10-fold greater antibacterial potency of the mixture than can be explained by their individual EC 50 -values. The influence of pH, temperature, oxygen concentration and light on the transformation of robenidine and salinomycin was investigated. Robenidine was transformed by photolysis (DT 50 of 4.1 days) and was unstable at low pH (DT 50 of approximately 4 days); salinomycin was merely transformed at low pH, the latter into an unknown number of products. The antibacterial potency of the mixtures of transformation products of robenidine after photolysis and at low pH was comparable with that of the parent compound. Finally five photo-transformation products of robenidine were structural elucidated by accurate mass measurements, i-FIT values (isotopic pattern fit) and MS/MS fragmentation patterns. - Five photo-transformation products of robenidine were structural elucidated. This mixture was found to have similar antibacterial potency as the parent compound

  8. Diversity in Production of Xylan-Degrading Enzymes Among Species Belonging to the Trichoderma Section Longibrachiatum

    NARCIS (Netherlands)

    Toth, K.; Gool, van M.P.; Schols, H.A.; Samuels, G.J.; Gruppen, H.; Szakacs, G.

    2013-01-01

    Xylan is an important part of plant biomass and represents a renewable raw material for biorefineries. Contrary to cellulose, the structure of hemicellulose is quite complex. Therefore, the biodegradation of xylan needs the cooperation of many enzymes. For industrial production of xylanase

  9. Analysis of diacetylmorphine, caffeine, and degradation products after volatilization of pharmaceutical heroin for inhalation

    NARCIS (Netherlands)

    Klous, Marjolein G.; Lee, WeiChing; Hillebrand, Michel J. X.; van den Brink, Wim; van Ree, Jan M.; Beijnen, Jos H.

    2006-01-01

    Pharmaceutical smokable heroin was developed for a clinical trial on medical co-prescription of heroin and methadone. This product, consisting of 75% w/w diacetylmorphine base and 25% w/w caffeine anhydrate, was intended for use via "chasing the dragon", that is, inhalation after volatilization.

  10. Diversity in production of xyaln-degrading enzymes among species belonging to the Trichoderma section Longibrachiatum

    Science.gov (United States)

    Xylan is an important part of plant biomass and represents a renewable raw material for biorefineries. Contrary to cellulose, the structure of hemicellulose is quite complex. Therefore, the biodegradation of xylan needs the cooperation of many enzymes. For industrial production of xylanase multienzy...

  11. NOVEL CHROMATOGRAPHIC SEPARATION AND CARBON SOLID PHASE EXTRACTION OF ACETANILIDE HERBICIDE DEGRADATION PRODUCTS

    Science.gov (United States)

    Six acetanilide herbicides are currently registered for use in the U.S. Over the past several years, ethanesufonic acid (ESA) and oxanilic acid (OA) degradatoin products of these acetanilide herbicides have been found in U.S. ground waters and surface waters. "Alachlor ESA and ...

  12. IDENTIFICATION OF DEGRADATION PRODUCTS OF SOME CHEMICAL WARFARE AGENTS BY CAPILLARY ELECTROPHORESIS IONSPRAY MASS-SPECTROMETRY

    NARCIS (Netherlands)

    KOSTIAINEN, R; BRUINS, AP; HAKKINEN, VMA

    1993-01-01

    Capillary zone electrophoresis-ionspray mass spectrometry (CZE-IS-MS) in the negative-ion mode was applied in the identification of five organophosphonic acids, which are the primary hydrolysis products of nerve agents. The spectra exhibit a very abundant (M - H)- ion with minimal fragmentation.

  13. Fate and antibacterial potency of anticoccidial drugs and their main abiotic degradation products

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, Martin [Section of Toxicology and Environmental Chemistry, Faculty of Pharmaceutical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen (Denmark)], E-mail: mah@farma.ku.dk; Krogh, Kristine A. [Section of Toxicology and Environmental Chemistry, Faculty of Pharmaceutical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen (Denmark); Brandt, Asbjorn [Section of Veterinary Medicines, Danish Medicines Agency, Axel Heides Gade 1, DK-2300 Copenhagen (Denmark); Christensen, Jan H. [Section of Soil and Environmental Chemistry, Department of Basic Sciences and Environment, Faculty of Life Sciences, University of Copenhagen, Thorvaldsensvej 40, DK-1871 Frederiksberg (Denmark); Halling-Sorensen, Bent [Section of Toxicology and Environmental Chemistry, Faculty of Pharmaceutical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen (Denmark)

    2009-02-15

    The antibacterial potency of eight anticoccidial drugs was tested in a soil bacteria bioassay (pour plate method), EC{sub 50}-values between 2.4 and 19.6 {mu}M were obtained; however, one compound, nicarbazin exhibited an EC{sub 50}-value above the maximum tested concentration (21 {mu}M, 9.1 mg L{sup -1}). The potency of mixtures of two of the compounds, narasin and nicarbazin, was synergistic (more than additive) with 10-fold greater antibacterial potency of the mixture than can be explained by their individual EC{sub 50}-values. The influence of pH, temperature, oxygen concentration and light on the transformation of robenidine and salinomycin was investigated. Robenidine was transformed by photolysis (DT{sub 50} of 4.1 days) and was unstable at low pH (DT{sub 50} of approximately 4 days); salinomycin was merely transformed at low pH, the latter into an unknown number of products. The antibacterial potency of the mixtures of transformation products of robenidine after photolysis and at low pH was comparable with that of the parent compound. Finally five photo-transformation products of robenidine were structural elucidated by accurate mass measurements, i-FIT values (isotopic pattern fit) and MS/MS fragmentation patterns. - Five photo-transformation products of robenidine were structural elucidated. This mixture was found to have similar antibacterial potency as the parent compound.

  14. Production of native-starch-degrading enzymes by a Bacillus firmus/lentus strain

    NARCIS (Netherlands)

    Wijbenga, Dirk-Jan; Beldman, Gerrit; Veen, Anko; Binnema, Doede

    1991-01-01

    A bacterium belonging to the Bacillus firmus/lentus-complex and capable of growth on native potato starch was isolated from sludge of a pilot plant unit for potato-starch production. Utilization of a crude enzyme preparation obtained from the culture fluid after growth of the microorganism on native

  15. Methane and carbon dioxide production from simulated anaerobic degradation of cattle carcasses

    International Nuclear Information System (INIS)

    Yuan Qi; Saunders, Samuel E.; Bartelt-Hunt, Shannon L.

    2012-01-01

    Highlights: ► This study evaluates methane and carbon dioxide production after land burial of cattle carcasses. ► Disposal of animal mortalities is often overlooked in evaluating the environmental impacts of animal production. ► we quantify annual emissions from cattle carcass disposal in the United States as 1.6 Tg CO 2 equivalents. - Abstract: Approximately 2.2 million cattle carcasses require disposal annually in the United States. Land burial is a convenient disposal method that has been widely used in animal production for disposal of both daily mortalities as well as during catastrophic mortality events. To date, greenhouse gas production after mortality burial has not been quantified, and this study represents the first attempt to quantify greenhouse gas emissions from land burial of animal carcasses. In this study, anaerobic decomposition of both homogenized and unhomogenized cattle carcass material was investigated using bench-scale reactors. Maximum yields of methane and carbon dioxide were 0.33 and 0.09 m 3 /kg dry material, respectively, a higher methane yield than that previously reported for municipal solid waste. Variability in methane production rates were observed over time and between reactors. Based on our laboratory data, annual methane emissions from burial of cattle mortalities in the United States could total 1.6 Tg CO 2 equivalents. Although this represents less than 1% of total emissions produced by the agricultural sector in 2009, greenhouse gas emissions from animal carcass burial may be significant if disposal of swine and poultry carcasses is also considered.

  16. Different spectrophotometric methods applied for the analysis of simeprevir in the presence of its oxidative degradation product: Acomparative study

    Science.gov (United States)

    Attia, Khalid A. M.; El-Abasawi, Nasr M.; El-Olemy, Ahmed; Serag, Ahmed

    2018-02-01

    Five simple spectrophotometric methods were developed for the determination of simeprevir in the presence of its oxidative degradation product namely, ratio difference, mean centering, derivative ratio using the Savitsky-Golay filters, second derivative and continuous wavelet transform. These methods are linear in the range of 2.5-40 μg/mL and validated according to the ICH guidelines. The obtained results of accuracy, repeatability and precision were found to be within the acceptable limits. The specificity of the proposed methods was tested using laboratory prepared mixtures and assessed by applying the standard addition technique. Furthermore, these methods were statistically comparable to RP-HPLC method and good results were obtained. So, they can be used for the routine analysis of simeprevir in quality-control laboratories.

  17. Simultaneous HPLC Determination of Chlordiazepoxide and Mebeverine HCl in the Presence of Their Degradation Products and Impurities

    Directory of Open Access Journals (Sweden)

    Rania N. El-Shaheny

    2015-01-01

    Full Text Available A simple, rapid, and sensitive RP-HPLC method was developed and validated for the simultaneous determination of chlordiazepoxide (CDO and mebeverine HCl (MBV in the presence of CDO impurity (2-amino-5-chlorobenzophenone, ACB and MBV degradation product (veratric acid, VER. Separation was achieved within 9 min on a BDS Hypersil phenyl column (4.5 mm × 250 mm, 5 µm particle size using a mobile phase consisting of acetonitrile: 0.1 M potassium dihydrogen phosphate: triethylamine (35 : 65 : 0.2, v/v/v in an isocratic mode at a flow rate of 1 mL/min. The pH of the mobile phase was adjusted to 4.5 with orthophosphoric acid and UV detection was set at 260 nm. A complete validation procedure was conducted. The proposed method exhibited excellent linearity over the concentration ranges of 1.0–100.0, 10.0–200.0, 2.0–40.0, and 2.0–40.0 µg/mL for CDO, MBV, VER, and ACB, respectively. The proposed method was applied for the simultaneous determination of CDO and MBV in their coformulated tablets with mean percentage recoveries of 99.75 ± 0.62 and 98.61 ± 0.38, respectively. The results of the proposed method were favorably compared with those of a comparison HPLC method using Student t-test and the variance ratio F-test. The chemical structure of MBV degradation product was ascertained by mass spectrometry and IR studies.

  18. Phytoremediation of azoxystrobin and its degradation products in soil by P. major L. under cold and salinity stress.

    Science.gov (United States)

    Romeh, Ahmed Ali Ali

    2017-10-01

    Azoxystrobin is a broad-spectrum, systemic and soil-applied fungicide used for crop protection against the four major classes of pathogenic fungi. The use of azoxystrobin use has induced water pollution and ecotoxicological effects upon aquatic organisms, long half-life in soils, as well as heath issues. Such issues may be solved by phytoremediation. Here, we tested the uptake and translocation of azoxystrobin and its degradation products by Plantago major, under cold stress and salt stress. The result demonstrated that azoxystrobin significantly accumulated in P. major roots under salinity conditions more than that in the P. major roots under cold conditions and natural condition within two days of experimental period. In P. major roots and leaves, the chromatograms of HPLC for azoxystrobin and metabolites under natural condition (control) and stressed samples (cold stress and salt stress) show different patterns of metabolism pathways reflecting changes in the degradation products. Azoxystrobin carboxylic acid (AZ-acid) formed by methyl ester hydrolysis was an important route in the roots and the leaves. AZ-pyOH and AZ-benzoic were detected in P. major roots under cold and salt stress, while did not detected in P. major roots under natural condition. In the leaves, AZ-pyOH and AZ-benzoic were detected in all treatments between 4 and 12days of exposure. Shoots of the stressed plants had greater H 2 O 2 and proline contents than was observed in the control plants. The level of 100mM NaCl treatment induced significantly higher peroxidase (POD) activity than the non-treated control group. Leaf Chlorophyll contents in the plants at 80 and 100mM NaCl were significantly reduced than was observed in the control plants. I concluded that P. major had a high potential to contribute to remediation of saline-soil contaminated with azoxystrobin. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Structure elucidation and in vitro cytotoxicity of ochratoxin α amide, a new degradation product of ochratoxin A.

    Science.gov (United States)

    Bittner, Andrea; Cramer, Benedikt; Harrer, Henning; Humpf, Hans-Ulrich

    2015-05-01

    The mycotoxin ochratoxin A is a secondary metabolite occurring in a wide range of commodities. During the exposure of ochratoxin A to white and blue light, a cleavage between the carbon atom C-14 and the nitrogen atom was described. As a reaction product, the new compound ochratoxin α amide has been proposed based on mass spectrometry (MS) experiments. In the following study, we observed that this compound is also formed at high temperatures such as used for example during coffee roasting and therefore represents a further thermal ochratoxin A degradation product. To confirm the structure of ochratoxin α amide, the compound was prepared in large scale and complete structure elucidation via nuclear magnetic resonance (NMR) and MS was performed. Additionally, first studies on the toxicity of ochratoxin α amide were performed using immortalized human kidney epithelial (IHKE) cells, a cell line known to be sensitive against ochratoxin A with an IC50 value of 0.5 μM. Using this system, ochratoxin α amide revealed no cytotoxicity up to concentrations of 50 μM. Thus, these results propose that the thermal degradation of ochratoxin A to ochratoxin α amide might be a detoxification process. Finally, we present a sample preparation and a HPLC-tandem mass spectrometry (HPLC-MS/MS) method for the analysis of ochratoxin α amide in extrudates and checked its formation during the extrusion of artificially contaminated wheat grits at 150 and 180 °C, whereas no ochratoxin α amide was detectable under these conditions.

  20. Production, Optimization, and Characterization of Organic Solvent Tolerant Cellulases from a Lignocellulosic Waste-Degrading Actinobacterium, Promicromonospora sp. VP111.

    Science.gov (United States)

    Thomas, Lebin; Ram, Hari; Kumar, Alok; Singh, Ved Pal

    2016-07-01

    High costs of natural cellulose utilization and cellulase production are an industrial challenge. In view of this, an isolated soil actinobacterium identified as Promicromonospora sp. VP111 showed potential for production of major cellulases (CMCase, FPase, and β-glucosidase) utilizing untreated agricultural lignocellulosic wastes. Extensive disintegration of microcrystalline cellulose and adherence on it during fermentation divulged true cellulolytic efficiency of the strain. Conventional optimization resulted in increased cellulase yield in a cost-effective medium, and the central composite design (CCD) analysis revealed cellulase production to be limited by cellulose and ammonium sulfate. Cellulase activities were enhanced by Co(+2) (1 mM) and retained up to 60 °C and pH 9.0, indicating thermo-alkaline tolerance. Cellulases showed stability in organic solvents (25 % v/v) with log P ow  ≥ 1.24. Untreated wheat straw during submerged fermentation was particularly degraded and yielded about twofold higher levels of cellulases than with commercial cellulose (Na-CMC and avicel) which is especially economical. Thus, this is the first detailed report on cellulases from an efficient strain of Promicromonospora that was non-hemolytic, alkali-halotolerant, antibiotic (erythromycin, kanamycin, rifampicin, cefaclor, ceftazidime) resistant, multiple heavy metal (Mo(+6) = W(+6) > Pb(+2) > Mn(+2) > Cr(+3) > Sn(+2)), and organic solvent (n-hexane, isooctane) tolerant, which is industrially and environmentally valuable.

  1. Highly selective generation of vanillin by anodic degradation of lignin: a combined approach of electrochemistry and product isolation by adsorption

    Directory of Open Access Journals (Sweden)

    Dominik Schmitt

    2015-04-01

    Full Text Available The oxidative degradation of lignin into a variety of valuable products has been under investigation since the first half of the last century. Especially, the chance to claim this cheap, abundant and renewable source for the production of the important aroma chemical vanillin (1 was one of the major driving forces of lignin research. So far most of the developed methods fail in technical application since no viable concept for work-up is included. This work represents a combined approach of electrochemical conversion of Kraft lignin and product recovery by adsorption on a strongly basic anion exchange resin. Electrolysis conditions are optimized regarding reaction temperatures below 100 °C allowing operation of aqueous electrolytes in simple experimental set-up. Employing ion exchange resins gives rise to a selective removal of low molecular weight phenols from the strongly alkaline electrolyte without acidification and precipitation of remaining lignin. The latter represents a significant advantage compared with conventional work-up protocols of lignin solutions.

  2. Highly selective generation of vanillin by anodic degradation of lignin: a combined approach of electrochemistry and product isolation by adsorption.

    Science.gov (United States)

    Schmitt, Dominik; Regenbrecht, Carolin; Hartmer, Marius; Stecker, Florian; Waldvogel, Siegfried R

    2015-01-01

    The oxidative degradation of lignin into a variety of valuable products has been under investigation since the first half of the last century. Especially, the chance to claim this cheap, abundant and renewable source for the production of the important aroma chemical vanillin (1) was one of the major driving forces of lignin research. So far most of the developed methods fail in technical application since no viable concept for work-up is included. This work represents a combined approach of electrochemical conversion of Kraft lignin and product recovery by adsorption on a strongly basic anion exchange resin. Electrolysis conditions are optimized regarding reaction temperatures below 100 °C allowing operation of aqueous electrolytes in simple experimental set-up. Employing ion exchange resins gives rise to a selective removal of low molecular weight phenols from the strongly alkaline electrolyte without acidification and precipitation of remaining lignin. The latter represents a significant advantage compared with conventional work-up protocols of lignin solutions.

  3. Glucocorticoid control of rat growth hormone gene expression: Effect on cytoplasmic messenger ribonucleic acid production and degradation

    International Nuclear Information System (INIS)

    Gertz, B.J.; Gardner, D.G.; Baxter, J.D.

    1987-01-01

    The effect of the glucocorticoid dexamethasone on the production and degradation of rat GH (rGH) cytoplasmic mRNA was studied in cultured rat pituitary tumor (GC) cells. The incorporation of [3H]uridine into both rGH cytoplasmic mRNA and the pyrimidine nucleotide precursor pool was determined in hormone-treated and control cells. From these measurements glucocorticoid effects on absolute production rates of rGH cytoplasmic mRNA were determined and compared to effects on rGH mRNA accumulation. Rat GH mRNA half-life was then calculated based on a first-order decay model. Rat GH mRNA half-life was also directly assayed by: (1) pulse-chase studies and (2) measuring the kinetics of decay of rGH mRNA in cells after transfer from serum-containing to hormone-deficient media. From these independent analyses rGH mRNA half-life estimates ranged from 28-55 h in different experiments. Within individual experiments there was little variability of rGH mRNA decay rates; glucocorticoids were found not to alter the stability of rGH cytoplasmic mRNA. Glucocorticoid induction of rGH cytoplasmic mRNA accumulation was accounted for solely on the basis of increased mRNA production

  4. Beta fibrinogen gene polymorphisms are associated with plasma fibrinogen and coronary artery disease in patients with myocardial infarction. The ECTIM Study. Etude Cas-Temoins sur l'Infarctus du Myocarde.

    Science.gov (United States)

    Behague, I; Poirier, O; Nicaud, V; Evans, A; Arveiler, D; Luc, G; Cambou, J P; Scarabin, P Y; Bara, L; Green, F; Cambien, F

    1996-02-01

    Polymorphisms of the beta fibrinogen gene have been shown to affect plasma fibrinogen levels and the risk of peripheral arterial disease. We now present the results of a detailed analysis of the beta fibrinogen gene in relation to plasma fibrinogen and to the severity of coronary artery disease (CAD) in patients with myocardial infarction (MI) in the ECTIM Study. Ten polymorphisms of the beta fibrinogen gene, including five new polymorphisms identified by single-strand conformation polymorphism analysis, and one polymorphism in the 3' flanking region of the alpha fibrinogen gene were investigated in 565 patients with MI and 668 control subjects. The polymorphisms were in tight linkage disequilibrium and the genotype frequencies were similar in patients with MI and control subjects. In the multivariate analysis, only two polymorphisms, beta Hae III (P 50% stenosis was estimated by angiography and used as a criterion for severity of CAD. Presence of the less frequent allele of the beta Bcl I (P < .0003) and of other polymorphisms was positively associated with the severity of CAD. Genetic variants of the beta fibrinogen gene are associated with an increased plasma level of fibrinogen, especially in smokers. The association with CAD appears to be the consequence of an increased risk of MI in subjects with severe CAD who carry the predisposing beta fibrinogen genotypes.

  5. Increasing plasma fibrinogen, but unchanged levels of intraplatelet cyclic nucleotides, plasma endothelin-1, factor VII, and neopterin during cholesterol lowering with fluvastatin.

    Science.gov (United States)

    Gottsäter, A; Anwaar, I; Lind, P; Mattiasson, I; Lindgärde, F

    1999-04-01

    Lipid-lowering statin treatment reduces cardiovascular morbidity and mortality and improves endothelial function in patients with hypercholesterolemia. The aim of the present study was to evaluate plasma levels of fibrinogen, factor VII, and the macrophage-derived inflammatory mediator neopterin during lipid lowering. In addition, the endothelial production of platelet antiaggregatory and vasodilatory factors such as nitric oxide and prostacyclin, and vasoconstrictive factors such as endothelin-1, was assessed. Plasma fibrinogen, factor VII, endothelin-1, and the neopterin and intraplatelet nitric oxide and prostacyclin mediators cyclic 3'-5'guanosine monophosphate (cGMP) and cyclic 3'-5'adenosine monophosphate (cAMP) were measured before and 6 months after the institution of treatment with fluvastatin in 17 patients (eight men and nine women, median age 60 years) with vascular disease and previously untreated hypercholesterolemia. After 6 months, a decrease of 1.62 mmol/l [1.26-2.18 (19%); P factor VII [from 1.14 IE/ml (0.58-1.38) to 1.22 IE/ml (0.96-1.46); NS], or plasma neopterin [from 8.6 nmol/l (7.1-11.5) to 8.7 nmol/l (7.9-11.3); NS]. In conclusion, during cholesterol-lowering treatment with fluvastatin, plasma levels of fibrinogen increased whereas intraplatelet cyclic nucleotide levels and plasma endothelin-1, factor VII and neopterin levels were unchanged.

  6. The effect of mucin, fibrinogen and IgG on the corrosion behaviour of Ni-Ti alloy and stainless steel.

    Science.gov (United States)

    Chao, Zhang; Yaomu, Xiao; Chufeng, Liu; Conghua, Liu

    2017-06-01

    In this study, Ni-Ti alloy and stainless steal were exposed to artificial saliva containing fibrinogen, IgG or mucin, and the resultant corrosion behavior was studied. The purpose was to determine the mechanisms by which different types of protein contribute to corrosion. The effect of different proteins on the electrochemical resistance of Ni-Ti and SS was tested by potentiodynamic polarization, and the repair capacity of passivation film was tested by cyclic polarization measurements. The dissolved corrosion products were determined by ICP-OES, and the surface was analyzed by SEM and AFM. The results showed fibrinogen, IgG or mucin could have different influences on the susceptibility to corrosion of the same alloy. Adding protein lead to the decrease of corrosion resistance of SS, whereas protein could slow down the corrosion process of Ni-Ti. For Ni-Ti, adding mucin could enhance the corrosion stability and repair capacity of passivation film. The susceptibility to pitting corrosion of Ni-Ti and stainless steal in fibrinogen AS is not as high as mucin and IgG AS. There are different patterns of deposition formation on the metal surface by different types of protein, which is associated with their effects on the corrosion process of the alloys.

  7. Multifaceted metabolomics approaches for characterization of lignocellulosic biomass degradation products formed during ammonia fiber expansion pretreatment

    Science.gov (United States)

    Vismeh, Ramin

    Lignocellulosic biomass represents a rather unused resource for production of biofuels, and it offers an alternative to food sources including corn starch. However, structural and compositional impediments limit the digestibility of sugar polymers in biomass cell walls. Thermochemical pretreatments improve accessibility of cellulose and hemicellulose to hydrolytic enzymes. However, most pretreatment methods generate compounds that either inhibit enzymatic hydrolysis or exhibit toxicity to fermentive microorganisms. Characterization and quantification of these products are essential for understanding chemistry of the pretreatment and optimizing the process efficiency to achieve higher ethanol yields. Identification of oligosaccharides released during pretreatment is also critical for choosing hydrolases necessary for cost-effective hydrolysis of cellulose and hemicellulose to fermentable monomeric sugars. Two chapters in this dissertation describe new mass spectrometry-based strategies for characterization and quantification of products that are formed during ammonia fiber expansion (AFEX) pretreatment of corn stover. Comparison of Liquid Chromatography Mass Spectrometry (LC/MS) profiles of AFEX-treated corn stover (AFEXTCS) and untreated corn stover (UTCS) extract shows that ammonolysis of lignin carbohydrate ester linkages generates a suite of nitrogenous compounds that are present only in the AFEXTCS extract and represent a loss of ammonia during processing. Several of these products including acetamide, feruloyl, coumaroyl and diferuloyl amides were characterized and quantified in the AFEXTCS extracts. The total amount of characterized and uncharacterized phenolic amides measured 17.4 mg/g AFEXTCS. Maillard reaction products including pyrazines and imidazoles were also identified and measured in the AFEXTCS extract totaling almost 1 mg/g AFEXTCS. The total of quantified nitrogenous products that are formed during AFEX was 43.4 mg/g AFEXTCS which was equivalent

  8. Reduced Transfusion During OLT by POC Coagulation Management and TEG Functional Fibrinogen: A Retrospective Observational Study.

    Science.gov (United States)

    De Pietri, Lesley; Ragusa, Francesca; Deleuterio, Annalisa; Begliomini, Bruno; Serra, Valentina

    2016-01-01

    Patients undergoing orthotopic liver transplantation are at high risk of bleeding complications. Several Authors have shown that thromboelastography (TEG)-based coagulation management and the administration of fibrinogen concentrate reduce the need for blood transfusion. We conducted a single-center, retrospective cohort observational study (Modena Polyclinic, Italy) on 386 consecutive patients undergoing liver transplantation. We assessed the impact on resource consumption and patient survival after the introduction of a new TEG-based transfusion algorithm, requiring also the introduction of the fibrinogen functional thromboelastography test and a maximum amplitude of functional fibrinogen thromboelastography transfusion cutoff (7 mm) to direct in administering fibrinogen (2012-2014, n = 118) compared with a purely TEG-based algorithm previously used (2005-2011, n = 268). After 2012, there was a significant decrease in the use of homologous blood (1502 ± 1376 vs 794 ± 717 mL, P < 0.001), fresh frozen plasma (537 ± 798 vs 98 ± 375 mL, P < 0.001), and platelets (158 ± 280 vs 75 ± 148 mL, P < 0.005), whereas the use of fibrinogen increased (0.1 ± 0.5 vs 1.4 ± 1.8 g, P < 0.001). There were no significant differences in 30-day and 6-month survival between the 2 groups. The implementation of a new coagulation management method featuring the addition of the fibrinogen functional thromboelastography test to the TEG test according to an algorithm which provides for the administration of fibrinogen has helped in reducing the need for transfusion in patients undergoing liver transplantation with no impact on their survival.

  9. Heterozygosity for fibrinogen results in efficient resolution of kidney ischemia reperfusion injury.

    Directory of Open Access Journals (Sweden)

    Amrendra Kumar Ajay

    Full Text Available Fibrinogen (Fg has been recognized to play a central role in coagulation, inflammation and tissue regeneration. Several studies have used Fg deficient mice (Fg(-/- in comparison with heterozygous mice (Fg(+/- to point the proinflammatory role of Fg in diverse pathological conditions and disease states. Although Fg(+/- mice are considered 'normal', plasma Fg is reduced to ~75% of the normal circulating levels present in wild type mice (Fg(+/+. We report that this reduction in Fg protein production in the Fg(+/- mice is enough to protect them from kidney ischemia reperfusion injury (IRI as assessed by tubular injury, kidney dysfunction, necrosis, apoptosis and inflammatory immune cell infiltration. Mechanistically, we observed binding of Fg to ICAM-1 in kidney tissues of Fg(+/+ mice at 24 h following IRI as compared to a complete absence of binding observed in the Fg(+/- and Fg(-/- mice. Raf-1 and ERK were highly activated as evident by significantly higher phosphorylation in the Fg(+/+ kidneys at 24 h following IRI as compared to Fg(+/- and Fg(-/- mice kidneys. On the other hand Cyclin D1 and pRb, indicating higher cell proliferation, were significantly increased in the Fg(+/- and Fg(-/- as compared to Fg(+/+ kidneys. These data suggest that Fg heterozygosity allows maintenance of a critical balance of Fg that enables regression of initial injury and promotes faster resolution of kidney damage.

  10. Monoclonal antibodies from rats immunized with fragment D of human fibrinogen

    International Nuclear Information System (INIS)

    Kennel, S.J.; Chen, J.P.; Lankford, P.K.; Foote, L.J.

    1981-01-01

    Fischer rats were immunized with fragment D (Fg-D) of human fibrinogen (Fg) to obtain antibody specific for neoantigens unique to this molecule. Absorption of serum with whole Fg indicated that some of the antibody produced reacted preferentially with Fg-D. Hybridoma cultures were prepared by fusion of immune rat spleen cells with mouse myeloma P3-X63-Ag8. Monoclonal antibodies obtained from these cultures fell into two classes: (a) Those reacting equally well with Fg and Fg-D. (b) Those reacting preferentially but not absolutely wth Fg-D. Antibody from hybridoma 104-14, a member of the first group had an affinity for Fg-D of 1.5 x 10 9 M -1 while antibodies from 106-59 and 106-71 (group 2) demonstrated much lower affinities of 1.0 x 10 7 and 4.7 x 10 6 M -1 , respectively. The cross reactivity of antibodies in the second group indicated that they react with protein conformations that are altered during production of Fg-D from Fg

  11. Extracellular laccase production and phenolic degradation by an olive mill wastewater isolate

    Directory of Open Access Journals (Sweden)

    R. Kumar

    2018-03-01

    Full Text Available Olive mill wastewater (OMWW presents a challenge to the control of effluents due to the presence of a high organic load, antimicrobial agents (monomeric-polymeric phenols, volatile acids, polyalcohols, and tannins, salinity and acidity. In this study, the production of extracellular laccase, monomeric or polymeric phenol, from an OMWW isolate based on its ability to biodegrade phenols and gallic acid as a model of phenolic compounds in OMWW was investigated. Phylogenetic analysis of the 16S RNA gene sequences identified the bacterial isolate (Acinetobacter REY as being closest to Acinetobacter pittii. This isolate exhibited a constitutive production of extracellular laccase with an activity of 1.5 and 1.3 U ml/L when supplemented with the inducers CuSO4 and CuSO4+phenols, respectively. Batch experiments containing minimal media supplemented with phenols or gallic acid as the sole carbon and energy source were performed in order to characterize their phenolic biodegradability. Acinetobacter REY was capable of biodegrading up to 200 mg/L of phenols and gallic acid both after 10 h and 72 h, respectively.

  12. Production of Proteolytic Enzymes by a Keratin-Degrading Aspergillus niger

    Directory of Open Access Journals (Sweden)

    Fernanda Cortez Lopes

    2011-01-01

    Full Text Available A fungal isolate with capability to grow in keratinous substrate as only source of carbon and nitrogen was identified as Aspergillus niger using the sequencing of the ITS region of the rDNA. This strain produced a slightly acid keratinase and an acid protease during cultivation in feather meal. The peak of keratinolytic activity occurred in 48 h and the maximum proteolytic activity in 96 h. These enzymes were partly characterized as serine protease and aspartic protease, respectively. The effects of feather meal concentration and initial pH on enzyme production were evaluated using a central composite design combined with response surface methodology. The optimal conditions were determined as pH 5.0 for protease and 7.8 for keratinase and 20 g/L of feather meal, showing that both models were predictive. Production of keratinases by A. niger is a less-exploited field that might represent a novel and promising biotechnological application for this microorganism.

  13. Assessment of the breakdown products of solar/UV induced photolytic degradation of food dye tartrazine.

    Science.gov (United States)

    dos Santos, Tuane Cristina; Zocolo, Guilherme Julião; Morales, Daniel Alexandre; Umbuzeiro, Gisela de Aragão; Zanoni, Maria Valnice Boldrin

    2014-06-01

    The food dye tartrazine (CI 19140) was exposed to UV irradiation from an artificial source, a mercury vapor lamp, and a natural one, sunlight. It was observed that conditions such as energy dose, irradiation time, pH and initial dye concentration affected its discoloration. There was 100% of color removal, after 30min of irradiation, when a dye solution 1×10(-5)molL(-1) was submitted to an energy dose of 37.8Jcm(-2). Liquid Chromatography coupled to Diode Array Detection and Mass Spectrometry confirmed the cleavage of the chromophore group and the formation of five by-products at low concentration. Although by-products were formed, the Salmonella/microsome mutagenicity assay performed for both, the dye solution at a dose of 5.34mg/plate and the solutions obtained after exposure to UV irradiation, did not present mutagenic activity for TA98 and TA100 with and without S9. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Enhanced production of raw starch degrading enzyme using agro-industrial waste mixtures by thermotolerant Rhizopus microsporus for raw cassava chip saccharification in ethanol production.

    Science.gov (United States)

    Trakarnpaiboon, Srisakul; Srisuk, Nantana; Piyachomkwan, Kuakoon; Sakai, Kenji; Kitpreechavanich, Vichien

    2017-09-14

    In the present study, solid-state fermentation for the production of raw starch degrading enzyme was investigated by thermotolerant Rhizopus microsporus TISTR 3531 using a combination of agro-industrial wastes as substrates. The obtained crude enzyme was applied for hydrolysis of raw cassava starch and chips at low temperature and subjected to nonsterile ethanol production using raw cassava chips. The agro-industrial waste ratio was optimized using a simplex axial mixture design. The results showed that the substrate mixture consisting of rice bran:corncob:cassava bagasse at 8 g:10 g:2 g yielded the highest enzyme production of 201.6 U/g dry solid. The optimized condition for solid-state fermentation was found as 65% initial moisture content, 35°C, initial pH of 6.0, and 5 × 10 6 spores/mL inoculum, which gave the highest enzyme activity of 389.5 U/g dry solid. The enzyme showed high efficiency on saccharification of raw cassava starch and chips with synergistic activities of commercial α-amylase at 50°C, which promotes low-temperature bioethanol production. A high ethanol concentration of 102.2 g/L with 78% fermentation efficiency was achieved from modified simultaneous saccharification and fermentation using cofermentation of the enzymatic hydrolysate of 300 g raw cassava chips/L with cane molasses.

  15. Comparison of standard fibrinogen measurement methods with fibrin clot firmness assessed by thromboelastometry in patients with cirrhosis.

    Science.gov (United States)

    Vucelic, Dragica; Jesic, Rada; Jovicic, Snezana; Zivotic, Maja; Grubor, Nikica; Trajkovic, Goran; Canic, Ivana; Elezovic, Ivo; Antovic, Aleksandra

    2015-06-01

    The Clauss fibrinogen method and thrombin clotting time (TCT) are still routinely used in patients with cirrhosis to define fibrinogen concentration and clotting potential. The thromboelastometric functional fibrinogen FIBTEM assay evaluates the strength of fibrin-based clots in whole blood, providing information on both quantitative deficit and fibrin polymerization disorders. To compare these three methods of assessing fibrinogen in patients with cirrhosis of different aetiologies, characterized by impairment in fibrinogen concentration as well as functional aberrance. Sixty patients with alcoholic and 24 patients with cholestatic cirrhosis were included (Child-Pugh score (CPs)A, n=24; B, n=32; C, n=28). All parameters were compared with those from a control group. Maximum clot firmness (MCF) in the FIBTEM test was assessed in regard to its relevance in detection of qualitative fibrinogen disorders in comparison with results obtained by standard measurement methods, i.e. the Clauss fibrinogen method and TCT. With increased cirrhosis severity, fibrinogen and FIBTEM-MCF levels significantly declined (p=0.002), while TCT was significantly prolonged (p=0.002). In all CPs groups, fibrinogen strongly correlated with FIBTEM-MCF (r=0.77, r=0.72, r=0.74; pmeasurement in cirrhotic patients, especially in evaluating fibrin polymerization disorders in these patients. Further studies are needed to evaluate the usefulness of this assay in predicting bleeding complications in cirrhotic patients as well as monitoring replacement treatment. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Radiolytically degraded sodium alginate enhances plant growth, physiological activities and alkaloids production in Catharanthus roseus L.

    Directory of Open Access Journals (Sweden)

    M. Naeem

    2015-10-01

    Full Text Available Catharanthus roseus (L. G. Don (Family Apocynaceae is a medicinal plant that produces indole alkaloids used in cancer chemotherapy. The anticancerous alkaloids, viz. vinblastine and vincristine, are mainly present in the leaves of C. roseus. High demand and low yield of these alkaloids in the plant has led to explore the alternative means for their production. Gamma irradiated sodium alginate (ISA has proved as a plant growth promoting substance for various medicinal and agricultural crops. A pot culture experiment was carried out to explore the effect of ISA on plant growth, physiological activities and production of anticancer alkaloids (vinblastine and vincristine in C. roseus at 120 and 150 days after planting (DAP. Foliar application of ISA (0, 20, 40, 60, 80 and 100 mg L−1 significantly improved the performance of C. roseus. 80 mg L−1 of ISA enhanced the leaf-yield by 25.3 and 30.2% and the herbage-yield by 29.4 and 34.4% at 120 and 150 DAP, respectively, as compared to the control. The spray treatment of ISA at 80 mg L−1 improved the yield of vinblastine by 66.7 and 71.4% and of vincristine by 67.6 and 75.6% at 120 and 150 DAP, respectively, in comparison to the control. As compared to control, the application of ISA at 80 mg L−1 resulted in the maximum swell in the content and yield of vindoline, increasing them by 18.9 and 20.8% and by 81.8 and 87.2% at 120 and 150 DAP, respectively.

  17. Degradation of fructans and production of propionic acid by Bacteroides thetaiotaomicron are enhanced by shortage of amino acids

    Directory of Open Access Journals (Sweden)

    Signe eAdamberg

    2014-12-01

    Full Text Available Bacteroides thetaiotaomicron is commonly found in the human colon and stabilizes its ecosystem by the catabolism of various polysaccharides. A model of cross-talk between the metabolism of amino acids and fructans in B. thetaiotaomicron was proposed. The growth of B. thetaiotaomicron DSM 2079 in two defined media containing mineral salts and vitamins, and supplemented with either 20 or 2 amino acids, was studied in an isothermal microcalorimeter. The polyfructans inulin (from chicory and levan (synthesized using levansucrase from Pseudomonas syringae, two fructooligosaccharide preparations with different composition, sucrose and fructose were tested as substrates. The calorimetric power-time curves were substrate specific and typically multiauxic. A surplus of amino acids reduced the consumption of longer oligosaccharides (DP > 3. Bacterial growth was not detected either in the carbohydrate free medium containing amino acids or in the medium with inulin as a sole carbohydrate. In amino acid-restricted medium, fermentation leading to acetic acid formation was dominant at the beginning of growth (up to 24 h, followed by increased lactic acid production, and mainly propionic and succinic acids were produced at the end of fermentation. In the medium supplemented with 20 amino acids, the highest production of D-lactate (82 ± 33 mmol/gDW occurred in parallel with extensive consumption (up to 17 mmol/gDW of amino acids, especially Ser, Thr and Asp. The production of Ala and Glu was observed at growth on all substrates, and the production was enhanced under amino acid deficiency. The study revealed the influence of amino acids on fructan metabolism in B. thetaiotaomicron and showed that defined growth media are invaluable in elucidating quantitative metabolic profiles of the bacteria. Levan was shown to act as an easily degradable substrate for B. thetaiotaomicron. The effect of levan on balancing or modifying colon microbiota will be studied in

  18. Production and degradation of fluorescent dissolved organic matter in surface waters of the eastern north Atlantic ocean

    Science.gov (United States)

    Lønborg, Christian; Yokokawa, Taichi; Herndl, Gerhard J.; Antón Álvarez-Salgado, Xosé

    2015-02-01

    The distribution and fate of coloured dissolved organic matter (CDOM) in the epipelagic Eastern North Atlantic was investigated during a cruise in the summer 2009 by combining field observations and culture experiments. Dissolved organic carbon (DOC) and nitrogen (DON), the absorption spectra of CDOM and the fluorescence intensity of proteins (Ex/Em 280/320 nm; F(280/320)) and marine humic-like substances (F(320/410)) were measured in the upper 200 m. DOC and DON showed higher concentrations in the top 20 m than below, and DOC increased southwards, while DON decreased. F(280/320) and F(320/410) showed maxima near the deep chlorophyll maximum (at about 50 m), suggesting that these fluorophores were linked to phytoplankton production and the metabolism of the associated microbial community. The coloured and fluorescent fractions of DOM showed low levels south of the Azores Front, at about 35 °N, likely due to the accumulated photobleaching of the waters transported eastwards by the Azores current into the study area (at 20°W). Twelve culture experiments were also conducted with surface water (5 m) to assess the impact of microbial degradation processes on the bulk, coloured and fluorescent fractions of DOM. After 72 h of incubation in the darkness, 14±9% (average±SD) of the initial DON was consumed at an average rate of 0.24±0.14 μmol l-1 d-1 and the protein-like fluorescence decayed by 29±9% at a net rate of 0.06±0.03 QSU d-1. These rates were significantly lower south of the Azores front, suggesting that DOM in this region was of a more recalcitrant nature. Conversely, the marine humic-like fluorescence increased at a net rate of 0.013±0.003 QSU d-1. The close linear relationship of DON uptake with F(280/320) consumption (R2= 0.91, p <0.0001, n=12) and F(320/410) production (R2= 0.52, p <0.008, n=12) that we found during these incubation experiments suggest that the protein-like fluorescence can be used as a proxy for the dynamics of the labile DON pool

  19. Reaction kinetics and oxidation products formation in the degradation of ciprofloxacin and ibuprofen by ferrate(VI).

    Science.gov (United States)

    Zhou, Zhengwei; Jiang, Jia-Qian

    2015-01-01

    The treatment of ciprofloxacin (CIP) and ibuprofen (IBU) in test solutions by ferrate(VI) was investigated in this study. A series of jar test was performed in bench-scale at pH 6-9 and ferrate(VI) dose of 1-5 mg L(-1). Results demonstrated that ferrate(VI) removed CIP from test solutions efficiently, with above 70% of reduction under study conditions. In contrary, the removal rates of IBU were very low, less than 25% in all conditions. Raising ferrate(VI) dose improved the treatment performance, while the influence of solution pH was not significant at pH 6-9 compared with that of ferrate(VI) dose. In addition, kinetic studies of ferrate(VI) with both compounds were carried out at pH 8 and pH 9 (20 °C). Ferrate(VI) had a much higher reactivity with CIP than IBU at pH 8 and pH 9, with CIP's apparent second-order rate constants of 113.7±6.3 M(-1) s(-1) and 64.1±1.0 M(-1) s(-1), respectively. The rate constants of ferrate(VI) with IBU were less than 0.2 M(-1) s(-1) at pH 8 and pH 9. Furthermore, seven oxidation products (OPs) were formed during CIP degradation by ferrate(VI). The attack on the piperazinyl ring of the CIP by ferrate(VI) appeared to lead to the cleavage or hydroxylation of the rings, and the attack on the quinolone moiety by ferrate(VI) might lead to the cleavage of the double bond at the six-member heterocyclic ring. No OPs of IBU were detected during ferrate(VI) oxidation due to very small part of IBU was degraded by ferrate(VI). Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Vascular Canals in Permanent Hyaline Cartilage: Development, Corrosion of Nonmineralized Cartilage Matrix, and Removal of Matrix Degradation Products.

    Science.gov (United States)

    Gabner, Simone; Häusler, Gabriele; Böck, Peter

    2017-06-01

    Core areas in voluminous pieces of permanent cartilage are metabolically supplied via vascular canals (VCs). We studied cartilage corrosion and removal of matrix degradation products during the development of VCs in nose and rib cartilage of piglets. Conventional staining methods were used for glycosaminoglycans, immunohistochemistry was performed to demonstrate collagens types I and II, laminin, Ki-67, von Willebrand factor, VEGF, macrophage marker MAC387, S-100 protein, MMPs -2,-9,-13,-14, and their inhibitors TIMP1 and TIMP2. VCs derived from connective tissue buds that bulged into cartilage matrix ("perichondrial papillae", PPs). Matrix was corroded at the tips of PPs or resulting VCs. Connective tissue stromata in PPs and VCs comprised an axial afferent blood vessel, peripherally located wide capillaries, fibroblasts, newly synthesized matrix, and residues of corroded cartilage matrix (collagen type II, acidic proteoglycans). Multinucleated chondroclasts were absent, and monocytes/macrophages were not seen outside the blood vessels. Vanishing acidity characterized areas of extracellular matrix degradation ("preresorptive layers"), from where the dismantled matrix components diffused out. Leached-out material stained in an identical manner to intact cartilage matrix. It was detected in the stroma and inside capillaries and associated downstream veins. We conclude that the delicate VCs are excavated by endothelial sprouts and fibroblasts, whilst chondroclasts are specialized to remove high volumes of mineralized cartilage. VCs leading into permanent cartilage can be formed by corrosion or inclusion, but most VCs comprise segments that have developed in either of these ways. Anat Rec, 300:1067-1082, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  1. Albumin and fibrinogen levels′ relation with orthopedics traumatic patients′ outcome after massive transfusion

    Directory of Open Access Journals (Sweden)

    Mohammadreza Bazavar

    2014-01-01

    Full Text Available Background: Severe bleeding is common during limb trauma. It can lead to hemorrhagic shock required to massive blood transfusion. Coagulopathy is the major complication of massive transfusion-induced increased mortality rate. Aim of this study was evaluation of fibrinogen and albumin levels association with orthopedics traumatic patients′ outcome who received massive transfusion. Methods: In a cross sectional study, 23 patients with severe limb injury admitted to orthopedic emergency department were studied. All the patients received massive transfusion, that is, >10 unit blood. Albumin and fibrinogen levels are measured at admission and 24 h later, and compared according to final outcome. Results: Twenty-three traumatic patients with severe limb injuries were studied, out of which ten (43.2% died and 13 (56.8% were alive. There was significant difference between patients outcome in fibrinogen level after 24 h, but no difference was observed in albumin levels. Based on regression model, fibrinogen after 24 h had a significant role in determining the final outcome in traumatic patients who received massive transfusion (odds ratio 0.48, 95% confidence interval 0.15-0.92, P = 0.02. Conclusions: According to our results, fibrinogen level is the most important factor in determination of orthopedics traumatic patients when received massive transfusion. However, serum albumin does not play any role in patients′ outcome.

  2. Identification of fibrinogen-binding proteins of Aspergillus fumigatus using proteomic approach.

    Science.gov (United States)

    Upadhyay, Santosh Kumar; Gautam, Poonam; Pandit, Hrishikesh; Singh, Yogendra; Basir, Seemi Farhat; Madan, Taruna

    2012-03-01

    Aspergillus fumigatus, the main etiological agent for various forms of human aspergillosis, gets access to the respiratory system of human host by inhalation of airborne conidia. These conidia possibly adhere to extracellular matrix (ECM) proteins. Among the ECM proteins involved in adherence, fibrinogen is thought to be crucial. Here, we studied whether A. fumigatus three-week culture filtrate (3wcf) proteins promote binding of A. fumigatus to ECM proteins and promote fungal growth. We observed that incubation of ECM with 3wcf proteins led to dose- and time-dependent increase in adherence of conidia to the ECM. In order to identify the catalogue of fibrinogen-binding A. fumigatus proteins, we carried out fibrinogen</