WorldWideScience

Sample records for fibrillar aggregates induce

  1. Bivalent Copper Ions Promote Fibrillar Aggregation of KCTD1 and Induce Cytotoxicity.

    Science.gov (United States)

    Liu, Zhepeng; Song, Feifei; Ma, Zhi-Li; Xiong, Qiushuang; Wang, Jingwen; Guo, Deyin; Sun, Guihong

    2016-01-01

    Potassium channel tetramerization domain containing 1 (KCTD1) family members have a BTB/POZ domain, which can facilitate protein-protein interactions involved in the regulation of different signaling pathways. KCTD proteins have potential Zn(2+)/Cu(2+) binding sites with currently unknown structural and functional roles. We investigated potential Cu(2+)-specific effects on KCTD1 using circular dichroism, turbidity measurement, fluorescent dye binding, proteinase K (PK) digestion, cell proliferation and apoptosis assays. These experiments indicate that the KCTD1 secondary structure assumes greater β-sheet content and the proteins aggregate into a PK-resistant form under 20 μM Cu(2+), and this β-sheet-rich aggregation with Cu(2+) promotes fibril formation, which results in increased cell toxicity by apoptosis. Our results reveal a novel role for Cu(2+) in determining the structure and function of KCTD1.

  2. Trans-cellular propagation of Tau aggregation by fibrillar species.

    Science.gov (United States)

    Kfoury, Najla; Holmes, Brandon B; Jiang, Hong; Holtzman, David M; Diamond, Marc I

    2012-06-01

    Aggregation of the microtubule associated protein Tau is associated with several neurodegenerative disorders, including Alzheimer disease and frontotemporal dementia. In Alzheimer disease, Tau pathology spreads progressively throughout the brain, possibly along existing neural networks. However, it is still unclear how the propagation of Tau misfolding occurs. Intriguingly, in animal models, vaccine-based therapies have reduced Tau and synuclein pathology by uncertain mechanisms, given that these proteins are intracellular. We have previously speculated that trans-cellular propagation of misfolding could be mediated by a process similar to prion pathogenesis, in which fibrillar Tau aggregates spread pathology from cell to cell. However, there has been little evidence to demonstrate true trans-cellular propagation of Tau misfolding, in which Tau aggregates from one cell directly contact Tau protein in the recipient cell to trigger further aggregation. Here we have observed that intracellular Tau fibrils are directly released into the medium and then taken up by co-cultured cells. Internalized Tau aggregates induce fibrillization of intracellular Tau in these naive recipient cells via direct protein-protein contact that we demonstrate using FRET. Tau aggregation can be amplified across several generations of cells. An anti-Tau monoclonal antibody blocks Tau aggregate propagation by trapping fibrils in the extracellular space and preventing their uptake. Thus, propagation of Tau protein misfolding among cells can be mediated by release and subsequent uptake of fibrils that directly contact native protein in recipient cells. These results support the model of aggregate propagation by templated conformational change and suggest a mechanism for vaccine-based therapies in neurodegenerative diseases.

  3. Trans-cellular Propagation of Tau Aggregation by Fibrillar Species*

    Science.gov (United States)

    Kfoury, Najla; Holmes, Brandon B.; Jiang, Hong; Holtzman, David M.; Diamond, Marc I.

    2012-01-01

    Aggregation of the microtubule associated protein Tau is associated with several neurodegenerative disorders, including Alzheimer disease and frontotemporal dementia. In Alzheimer disease, Tau pathology spreads progressively throughout the brain, possibly along existing neural networks. However, it is still unclear how the propagation of Tau misfolding occurs. Intriguingly, in animal models, vaccine-based therapies have reduced Tau and synuclein pathology by uncertain mechanisms, given that these proteins are intracellular. We have previously speculated that trans-cellular propagation of misfolding could be mediated by a process similar to prion pathogenesis, in which fibrillar Tau aggregates spread pathology from cell to cell. However, there has been little evidence to demonstrate true trans-cellular propagation of Tau misfolding, in which Tau aggregates from one cell directly contact Tau protein in the recipient cell to trigger further aggregation. Here we have observed that intracellular Tau fibrils are directly released into the medium and then taken up by co-cultured cells. Internalized Tau aggregates induce fibrillization of intracellular Tau in these naive recipient cells via direct protein-protein contact that we demonstrate using FRET. Tau aggregation can be amplified across several generations of cells. An anti-Tau monoclonal antibody blocks Tau aggregate propagation by trapping fibrils in the extracellular space and preventing their uptake. Thus, propagation of Tau protein misfolding among cells can be mediated by release and subsequent uptake of fibrils that directly contact native protein in recipient cells. These results support the model of aggregate propagation by templated conformational change and suggest a mechanism for vaccine-based therapies in neurodegenerative diseases. PMID:22461630

  4. Evaluation of Nanoparticle Tracking for Characterization of Fibrillar Protein Aggregates.

    Science.gov (United States)

    Yang, Dennis T; Lu, Xiaomeng; Fan, Yamin; Murphy, Regina M

    2014-04-01

    Amyloidogenesis is the process of formation of protein aggregates with fibrillar morphology. Because amyloidogenesis is linked to neurodegenerative disease, there is interest in understanding the mechanism of fibril growth. Kinetic models of amyloidogenesis require data on the number concentration and size distribution of aggregates, but this information is difficult to obtain using conventional methods. Nanoparticle tracking analysis (NTA) is a relatively new technique that may be uniquely suited for obtaining these data. In NTA, the two-dimensional (2-D) trajectory of individual particles is tracked, from which the diffusion coefficient, and, hence, hydrodynamic radius is obtained. Here we examine the validity of NTA in tracking number concentration and size of DNA, as a model of a fibrillar macromolecule. We use NTA to examine three amyloidogenic materials: beta-amyloid, transthyretin, and polyglutamine-containing peptides. Our results are instructive in demonstrating the advantages and some limitations of single-particle diffusion measurements for investigating aggregation in protein systems.

  5. Modulation of the gelation efficiency of fibrillar and spherical aggregates by means of thiolation.

    Science.gov (United States)

    Munialo, Claire D; de Jongh, Harmen H J; Broersen, Kerensa; van der Linden, Erik; Martin, Anneke H

    2013-11-27

    Fibrillar and spherical aggregates were prepared from whey protein isolate (WPI). These aggregates were thiolated to a substantial degree to observe any impact on functionality. Sulfur-containing groups were introduced on these aggregates which could be converted to thiol groups by deblocking. Changes on a molecular and microstructural level were studied using tryptophan fluorescence, transmission electron microscopy, and particle size analysis. The average size (nm) of spherical aggregates increased from 38 to 68 nm (blocked variant) and 106 nm (deblocked variant) after thiolation, whereas the structure of fibrillar aggregates was not affected. Subsequently, gels containing these different aggregates were prepared. Rheological measurements showed that thiolation decreased the gelation concentration and increased gel strength for both WPI fibrillar and spherical aggregates. This effect was more pronounced upon thiolation of preformed fibrillar aggregates. The findings suggest that thiolation at a protein aggregate level is a promising strategy to increase gelation efficiency.

  6. Nonlinear surface dilatational rheology and foaming behavior of protein and protein fibrillar aggregates in the presence of natural surfactant

    NARCIS (Netherlands)

    Wan, Zhili; Yang, Xiaoquan; Sagis, L.M.C.

    2016-01-01

    The surface and foaming properties of native soy glycinin (11S) and its heat-induced fibrillar aggregates, in the presence of natural surfactant steviol glycoside (STE), were investigated and compared at pH 7.0 to determine the impact of protein structure modification on protein?surfactant interfaci

  7. Modulation of the Gelation Efficiency of Fibrillar and Spherical Aggregates by Means of Thiolation

    NARCIS (Netherlands)

    Munialo, C.D.; Jongh, H.H.J. de; Broersen, K.; Linden, E. van der; Martin, A.H.

    2013-01-01

    Fibrillar and spherical aggregates were prepared from whey protein isolate (WPI). These aggregates were thiolated to a substantial degree to observe any impact on functionality. Sulfur-containing groups were introduced on these aggregates which could be converted to thiol groups by deblocking. Chang

  8. Modulation of the Gelation Efficiency of Fibrillar and Spherical Aggregates by Means of Thiolation

    NARCIS (Netherlands)

    Munialo, C.D.; Jongh, H.H.J. de; Broersen, K.; Linden, E. van der; Martin, A.H.

    2013-01-01

    Fibrillar and spherical aggregates were prepared from whey protein isolate (WPI). These aggregates were thiolated to a substantial degree to observe any impact on functionality. Sulfur-containing groups were introduced on these aggregates which could be converted to thiol groups by deblocking. Chang

  9. Biological and biophysics aspects of metformin-induced effects: cortex mitochondrial dysfunction and promotion of toxic amyloid pre-fibrillar aggregates

    Science.gov (United States)

    Picone, Pasquale; Vilasi, Silvia; Librizzi, Fabio; Contardi, Marco; Nuzzo, Domenico; Caruana, Luca; Baldassano, Sara; Amato, Antonella; Mulè, Flavia; San Biagio, Pier Luigi; Giacomazza, Daniela; Di Carlo, Marta

    2016-01-01

    The onset of Alzheimer disease (AD) is influenced by several risk factors comprising diabetes. Within this context, antidiabetic drugs, including metformin, are investigated for their effect on AD. We report that in the C57B6/J mice, metformin is delivered to the brain where activates AMP-activated kinase (AMPK), its molecular target. This drug affects the levels of β-secretase (BACE1) and β-amyloid precursor protein (APP), promoting processing and aggregation of β-amyloid (Aβ), mainly in the cortex region. Moreover, metformin induces mitochondrial dysfunction and cell death by affecting the level and conformation of Translocase of the Outer Membrane 40 (TOM40), voltage-dependent anion-selective channels 1 (VDAC1) and hexokinase I (HKI), proteins involved in mitochondrial transport of molecules, including Aβ. By using biophysical techniques we found that metformin is able to directly interact with Aβ influencing its aggregation kinetics and features. These findings indicate that metformin induces different adverse effects, leading to an overall increase of the risk of AD onset. PMID:27509335

  10. Application of MALDI-TOF mass spectrometry for study on fibrillar and oligomeric aggregates of alpha-synuclein

    Directory of Open Access Journals (Sweden)

    Severinovskaya O. V.

    2014-05-01

    Full Text Available Aim. To study the -synuclein (ASN aggregates of different structural origin, namely amyloid fibrils and spherical oligomers, in comparison with a native protein. Methods. MALDI TOF mass spectrometry and atomic for- ce microscopy (AFM. Results. The mass spectra of native and fibrillar ASN have similar character, i. e. they are characterized by the well pronounced peak of protein molecular ion, the low molecular weight associates, and rather low contain of fragmentation products. The spectrum of oligomeric aggregate is characterized by the high contain of fragmentation products, low intensity of protein molecular ion and the absence of peaks of associates. Conclusions. The difference between the spectra of fibrillar and oligomeric ASN could be explained, first, by the different content of the «residual» monomeric ASN and the protein degradation products in the studied samples, and, second, by the different structure-depended mechanisms of the protein degradation induced by the laser ionization. We suggested that the MALDI-TOF mass spectroscopy is a method useful for the investigation of ASN aggregation and characterization of its high order self-associates; besides, there is an interest in estimating the potency of the MALDI-TOF for the analysis of aggregation of various amyloidogenic proteins.

  11. Aggregation behavior of novel heptamethine cyanine dyes upon their binding to native and fibrillar lysozyme.

    Science.gov (United States)

    Vus, Kateryna; Tarabara, Ulyana; Kurutos, Atanas; Ryzhova, Olga; Gorbenko, Galyna; Trusova, Valeriya; Gadjev, Nikolai; Deligeorgiev, Todor

    2017-04-05

    Two newly synthesized symmetrical heptamethine cyanine dyes, AK7-5 and AK7-6, absorbing in the region of low autofluorescence of biological samples, have been tested for their ability to detect proteins aggregated into amyloid fibrils. In aqueous solution these probes possess three absorption bands corresponding to the monomer, dimer and H-aggregate species. The association of the dye with fibrillar lysozyme was followed by the enhancement of the monomer band and the reduction of the H-band. The absorption spectra measured at various fibril concentrations were analyzed in terms of the model allowing for the shift of equilibria between various dye species due to the binding of monomers and dimers of AK7-5 and AK7-6 to amyloid fibrils. The association constants and stoichiometries of the dye-fibril complexation have been evaluated. In contrast to fibrillar lysozyme, the native protein brought about strong J-aggregate formation accompanied by a marked drop in the absorbance of the dye monomer species. Quantum chemical calculations and simple docking studies showed that AK7-5 and AK7-6 monomers can bind to the grooves, running parallel to the fibril axis. Due to their ability to distinguish between the native and fibrillar protein states, the novel cyanines are recommended as complementary to existing amyloid markers.

  12. Curcumin binds to the pre-fibrillar aggregates of Cu/Zn superoxide dismutase (SOD1) and alters its amyloidogenic pathway resulting in reduced cytotoxicity.

    Science.gov (United States)

    Bhatia, Nidhi K; Srivastava, Ankit; Katyal, Nidhi; Jain, Nidhi; Khan, M Ashhar I; Kundu, Bishwajit; Deep, Shashank

    2015-05-01

    Amyotrophic Lateral Sclerosis (ALS) is a fatal neurodegenerative disease that affects motor neurons. Unfortunately, effective therapeutics against this disease is still not available. Almost 20% of familial ALS (fALS) is suggested to be associated with pathological deposition of superoxide dismutase (SOD1). Evidences suggest that SOD1-containing pathological inclusions in ALS exhibit amyloid like properties. An effective strategy to combat ALS may be to inhibit amyloid formation of SOD1 using small molecules. In the present study, we observed the fibrillation of one of the premature forms of SOD1 (SOD1 with reduced disulfide) in the presence of curcumin. Using ThT binding assay, AFM, TEM images and FTIR, we demonstrate that curcumin inhibits the DTT-induced fibrillation of SOD1 and favors the formation of smaller and disordered aggregates of SOD1. The enhancement in curcumin fluorescence on the addition of oligomers and pre-fibrillar aggregates of SOD1 suggests binding of these species to curcumin. Docking studies indicate that putative binding site of curcumin may be the amyloidogenic regions of SOD1. Further, there is a significant increase in SOD1 mediated toxicity in the regime of pre-fibrillar and fibrillar aggregates which is not evident in curcumin containing samples. All these data suggest that curcumin reduces toxicity by binding to the amyloidogenic regions of the species on the aggregation pathway and blocking the formation of the toxic species. Nanoparticles of curcumin with higher aqueous solubility show similar aggregation control as that of curcumin bulk. This suggests a potential role for curcumin in the treatment of ALS.

  13. Non-fibrillar amyloid-{beta} peptide reduces NMDA-induced neurotoxicity, but not AMPA-induced neurotoxicity

    Energy Technology Data Exchange (ETDEWEB)

    Niidome, Tetsuhiro, E-mail: tniidome@pharm.kyoto-u.ac.jp [Department of Neuroscience for Drug Discovery, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto 606-8501 (Japan); Goto, Yasuaki; Kato, Masaru; Wang, Pi-Lin [Department of Neuroscience for Drug Discovery, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto 606-8501 (Japan); Goh, Saori; Tanaka, Naoki [Department of Biomolecular Engineering, Kyoto Institute of Technology, Kyoto 606-8585 (Japan); Akaike, Akinori [Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto 606-8501 (Japan); Kihara, Takeshi; Sugimoto, Hachiro [Department of Neuroscience for Drug Discovery, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto 606-8501 (Japan)

    2009-09-04

    Amyloid-{beta} peptide (A{beta}) is thought to be linked to the pathogenesis of Alzheimer's disease. Recent studies suggest that A{beta} has important physiological roles in addition to its pathological roles. We recently demonstrated that A{beta}42 protects hippocampal neurons from glutamate-induced neurotoxicity, but the relationship between A{beta}42 assemblies and their neuroprotective effects remains largely unknown. In this study, we prepared non-fibrillar and fibrillar A{beta}42 based on the results of the thioflavin T assay, Western blot analysis, and atomic force microscopy, and examined the effects of non-fibrillar and fibrillar A{beta}42 on glutamate-induced neurotoxicity. Non-fibrillar A{beta}42, but not fibrillar A{beta}42, protected hippocampal neurons from glutamate-induced neurotoxicity. Furthermore, non-fibrillar A{beta}42 decreased both neurotoxicity and increases in the intracellular Ca{sup 2+} concentration induced by N-methyl-D-aspartate (NMDA), but not by {alpha}-amino-3-hydrozy-5-methyl-4-isoxazole propionic acid (AMPA). Our results suggest that non-fibrillar A{beta}42 protects hippocampal neurons from glutamate-induced neurotoxicity through regulation of the NMDA receptor.

  14. Nonlinear Surface Dilatational Rheology and Foaming Behavior of Protein and Protein Fibrillar Aggregates in the Presence of Natural Surfactant.

    Science.gov (United States)

    Wan, Zhili; Yang, Xiaoquan; Sagis, Leonard M C

    2016-04-19

    The surface and foaming properties of native soy glycinin (11S) and its heat-induced fibrillar aggregates, in the presence of natural surfactant steviol glycoside (STE), were investigated and compared at pH 7.0 to determine the impact of protein structure modification on protein-surfactant interfacial interactions. The adsorption at, and nonlinear dilatational rheological behavior of, the air-water interface were studied by combining drop shape analysis tensiometry, ellipsometry, and large-amplitude oscillatory dilatational rheology. Lissajous plots of surface pressure versus deformation were used to analyze the surface rheological response in terms of interfacial microstructure. The heat treatment generates a mixture of long fibrils and unconverted peptides. The presence of small peptides in 11S fibril samples resulted in a faster adsorption kinetics than that of native 11S. The addition of STE affected the adsorption of 11S significantly, whereas no apparent effect on the adsorption of the 11S fibril-peptide system was observed. The rheological response of interfaces stabilized by 11S-STE mixtures also differed significantly from the response for 11S fibril-peptide-STE mixtures. For 11S, the STE reduces the degree of strain hardening in extension and increases strain hardening in compression, suggesting the interfacial structure may change from a surface gel to a mixed phase of protein patches and STE domains. The foams generated from the mixtures displayed comparable foam stability to that of pure 11S. For 11S fibril-peptide mixtures STE only significantly affects the response in extension, where the degree of strain softening is decreased compared to the pure fibril-peptide system. The foam stability of the fibril-peptide system was significantly reduced by STE. These findings indicate that fibrillization of globular proteins could be a potential strategy to modify the complex surface and foaming behaviors of protein-surfactant mixtures.

  15. The PPII-to-α-helix transition of poly-l-lysine in methanol/water solvent mixtures accompanied by fibrillar self-aggregation: An influence of fluphenazine molecules.

    Science.gov (United States)

    Cieślik-Boczula, Katarzyna

    2017-08-01

    Fourier-transform infrared, vibrational circular dichroism spectroscopy and transmission electron microscopy are used to follow the structural changes of pure and fluphenazine (FPh)-mixed poly-l-lysine (PLL) triggered by variations of the methanol to water ratio in solvent mixtures. FPh molecules are used as an effective psychotic drug but with a strong Parkinson's-related side effect. To answer the question whether FPh molecules can modify the fibril development, the PLL polypeptide was used as a model of α-helix- and PPII-rich fibrils. It was stated that the presence of FPh molecules did not inhibit the creation of both types of PLL fibrils with clustering features. The methanol-poor aqueous solutions promote the formation of extended polyproline II (PPII) helices; however, the methanol-rich aqueous solutions induce the development of α-helices of both pure and FPh-mixed PLL. Unpredicted and interesting features of PLL fibrillogenesis are evidenced by the formation of uncommon fibrillar aggregates, which are developed in methanol/water solvents from PLL molecules rich in either α-helix or PPII structures. Possibility of PLL molecules to form β-sheet-, α-helix- and PPII-rich fibrils demonstrating that fibrillogenesis is a common phenomenon, and fibrillar aggregates can be based on all of the basic protein secondary structures. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Fibrillar disruption by AC electric field induced oscillation: A case study with human serum albumin.

    Science.gov (United States)

    Sen, Shubhatam; Chakraborty, Monojit; Goley, Snigdha; Dasgupta, Swagata; DasGupta, Sunando

    2017-07-01

    The effect of oscillation induced by a frequency-dependent alternating current (AC) electric field to dissociate preformed amyloid fibrils has been investigated. An electrowetting-on-dielectric type setup has been used to apply the AC field of varying frequencies on preformed fibrils of human serum albumin (HSA). The disintegration potency has been monitored by a combination of spectroscopic and microscopic techniques. The experimental results suggest that the frequency of the applied AC field plays a crucial role in the disruption of preformed HSA fibrils. The extent of stress generated inside the droplet due to the application of the AC field at different frequencies has been monitored as a function of the input frequency of the applied AC voltage. This has been accomplished by assessing the morphology deformation of the oscillating HSA fibril droplets. The shape deformation of the oscillating droplets is characterized using image analysis by measuring the dynamic changes in the shape dependent parameters such as contact angle and droplet footprint radius and the amplitude. It is suggested that the cumulative effects of the stress generated inside the HSA fibril droplets due to the shape deformation induced hydrodynamic flows and the torque induced by the intrinsic electric dipoles of protein due to their continuous periodic realignment in presence of the AC electric field results in the destruction of the fibrillar species. Copyright © 2017. Published by Elsevier B.V.

  17. Hydrogen bonding asymmetric star-shape derivative of bile acid leads to supramolecular fibrillar aggregates that wrap into micrometer spheres.

    Science.gov (United States)

    Myllymäki, Teemu T T; Nonappa; Yang, Hongjun; Liljeström, Ville; Kostiainen, Mauri A; Malho, Jani-Markus; Zhu, X X; Ikkala, Olli

    2016-09-14

    We report that star-shaped molecules with cholic acid cores asymmetrically grafted by low molecular weight polymers with hydrogen bonding end-groups undergo aggregation to nanofibers, which subsequently wrap into micrometer spherical aggregates with low density cores. Therein the facially amphiphilic cholic acid (CA) is functionalized by four flexible allyl glycidyl ether (AGE) side chains, which are terminated with hydrogen bonding 2-ureido-4[1H]pyrimidinone (UPy) end-groups as connected by hexyl spacers, denoted as CA(AGE6-C6H12-UPy)4. This wedge-shaped molecule is expected to allow the formation of a rich variety of solvent-dependent structures due to the complex interplay of interactions, enabled by its polar/nonpolar surface-active structure, the hydrophobicity of the CA in aqueous medium, and the possibility to control hydrogen bonding between UPy molecules by solvent selection. In DMSO, the surfactant-like CA(AGE6-C6H12-UPy)4 self-assembles into nanometer scale micelles, as expected due to its nonpolar CA apexes, solubilized AGE6-C6H12-UPy chains, and suppressed mutual hydrogen bonds between the UPys. Dialysis in water leads to nanofibers with lateral dimensions of 20-50 nm. This is explained by promoted aggregation as the hydrogen bonds between UPy molecules start to become activated, the reduced solvent dispersibility of the AGE-chains, and the hydrophobicity of CA. Finally, in pure water the nanofibers wrap into micrometer spheres having low density cores. In this case, strong complementary hydrogen bonds between UPy molecules of different molecules can form, thus promoting lateral interactions between the nanofibers, as allowed by the hydrophobic hexyl spacers. The wrapping is illustrated by transmission electron microscopy tomographic 3D reconstructions. More generally, we foresee hierarchically structured matter bridging the length scales from molecular to micrometer scale by sequentially triggering supramolecular interactions.

  18. Improvement of foam stabilty of soy protein on fibrillar aggregate by glycosylation%糖接枝处理改善大豆蛋白纤维聚集体泡沫稳定性

    Institute of Scientific and Technical Information of China (English)

    王梦萍; 陈燕琼; 王金梅; 齐军茹; 杨晓泉

    2016-01-01

    为了探究糖接枝对大豆蛋白纤维聚集行为和泡沫性质的影响,明确蛋白质结构与功能的关系,该研究以大豆蛋白(soy protein isolation,SPI)和乳糖(lactose)为原料,通过干热法制备糖接枝大豆蛋白(SPI-lactose conjugate,SPI-Lac),以及在酸性条件下加热诱导其形成纤维聚集体(pH值2.0),制备了一种糖接枝大豆蛋白纤维聚集体(SPI-lactose conjugate fibillar aggregates),并考察了糖接枝对大豆蛋白的纤维聚集行为及泡沫性质的影响。研究结果表明:大豆蛋白在酸性条件下(pH 值2.0)经加热后会发生水解,同时水解产物不断聚集形成大分子的纤维聚集体。糖接枝导致大豆蛋白的水解速度下降,但荧光光强和粒径的结果表明糖接枝能增强纤维聚集能力。SPI-Lac在中性条件下的溶解度(pH值5.0—7.0)显著高于SPI(P<0.05),且不同时间处理的SPI-Lac纤维聚集体均能改善SPI在酸性条件下的溶解度(pH值2.0—5.0)。此外,不同时间处理的SPI-Lac纤维聚集体在酸性条件下的起泡能力均高于SPI纤维聚集体。SPI和SPI-Lac纤维聚集体的形成会导致 SPI 起泡能力的下降,但是短时间酸热处理形成的纤维聚集体泡沫稳定性得到显著改善。因此,糖接枝结合短时间酸热处理制备的糖接枝大豆蛋白纤维聚集体在中性条件下的泡沫稳定性显著提高(P<0.05),是合理有效的蛋白质改性方法。%To improve the solubility of the fibrillar aggregates under neutral condition and increase their functional properties, soy protein isolation (SPI) - lactose conjugate fibrillar aggregates were prepared by conjugating SPI with lactose under dry-heated Maillard reaction and then heating at pH value of 2.0 and 85°C. SPI-lactose conjugate fibrillar aggregates were detected using the dynamic light scattering (DLS) combined with Thioflavine-T fluorometry, transmission

  19. Quercetin protects human brain microvascular endothelial cells from fibrillar β-amyloid1–40-induced toxicity

    Directory of Open Access Journals (Sweden)

    Yongjie Li

    2015-01-01

    Full Text Available Amyloid beta-peptides (Aβ are known to undergo active transport across the blood-brain barrier, and cerebral amyloid angiopathy has been shown to be a prominent feature in the majority of Alzheimer׳s disease. Quercetin is a natural flavonoid molecule and has been demonstrated to have potent neuroprotective effects, but its protective effect on endothelial cells under Aβ-damaged condition is unclear. In the present study, the protective effects of quercetin on brain microvascular endothelial cells injured by fibrillar Aβ1–40 (fAβ1–40 were observed. The results show that fAβ1–40-induced cytotoxicity in human brain microvascular endothelial cells (hBMECs can be relieved by quercetin treatment. Quercetin increases cell viability, reduces the release of lactate dehydrogenase, and relieves nuclear condensation. Quercetin also alleviates intracellular reactive oxygen species generation and increases superoxide dismutase activity. Moreover, it strengthens the barrier integrity through the preservation of the transendothelial electrical resistance value, the relief of aggravated permeability, and the increase of characteristic enzyme levels after being exposed to fAβ1–40. In conclusion, quercetin protects hBMECs from fAβ1–40-induced toxicity.

  20. Abeta42 mutants with different aggregation profiles induce distinct pathologies in Drosophila.

    Directory of Open Access Journals (Sweden)

    Koichi Iijima

    Full Text Available Aggregation of the amyloid-beta-42 (Abeta42 peptide in the brain parenchyma is a pathological hallmark of Alzheimer's disease (AD, and the prevention of Abeta aggregation has been proposed as a therapeutic intervention in AD. However, recent reports indicate that Abeta can form several different prefibrillar and fibrillar aggregates and that each aggregate may confer different pathogenic effects, suggesting that manipulation of Abeta42 aggregation may not only quantitatively but also qualitatively modify brain pathology. Here, we compare the pathogenicity of human Abeta42 mutants with differing tendencies to aggregate. We examined the aggregation-prone, EOFAD-related Arctic mutation (Abeta42Arc and an artificial mutation (Abeta42art that is known to suppress aggregation and toxicity of Abeta42 in vitro. In the Drosophila brain, Abeta42Arc formed more oligomers and deposits than did wild type Abeta42, while Abeta42art formed fewer oligomers and deposits. The severity of locomotor dysfunction and premature death positively correlated with the aggregation tendencies of Abeta peptides. Surprisingly, however, Abeta42art caused earlier onset of memory defects than Abeta42. More remarkably, each Abeta induced qualitatively different pathologies. Abeta42Arc caused greater neuron loss than did Abeta42, while Abeta42art flies showed the strongest neurite degeneration. This pattern of degeneration coincides with the distribution of Thioflavin S-stained Abeta aggregates: Abeta42Arc formed large deposits in the cell body, Abeta42art accumulated preferentially in the neurites, while Abeta42 accumulated in both locations. Our results demonstrate that manipulation of the aggregation propensity of Abeta42 does not simply change the level of toxicity, but can also result in qualitative shifts in the pathology induced in vivo.

  1. Microglial phagocytosis induced by fibrillar β-amyloid is attenuated by oligomeric β-amyloid: implications for Alzheimer's disease

    Directory of Open Access Journals (Sweden)

    Lin Nan

    2011-06-01

    Full Text Available Abstract Background Reactive microglia are associated with β-amyloid (Aβ deposit and clearance in Alzhiemer's Disease (AD. Paradoxically, entocranial resident microglia fail to trigger an effective phagocytic response to clear Aβ deposits although they mainly exist in an "activated" state. Oligomeric Aβ (oAβ, a recent target in the pathogenesis of AD, can induce more potent neurotoxicity when compared with fibrillar Aβ (fAβ. However, the role of the different Aβ forms in microglial phagocytosis, induction of inflammation and oxidation, and subsequent regulation of phagocytic receptor system, remain unclear. Results We demonstrated that Aβ(1-42 fibrils, not Aβ(1-42 oligomers, increased the microglial phagocytosis. Intriguingly, the pretreatment of microglia with oAβ(1-42 not only attenuated fAβ(1-42-triggered classical phagocytic response to fluorescent microspheres but also significantly inhibited phagocytosis of fluorescent labeled fAβ(1-42. Compared with the fAβ(1-42 treatment, the oAβ(1-42 treatment resulted in a rapid and transient increase in interleukin 1β (IL-1β level and produced higher levels of tumor necrosis factor-α (TNF-α, nitric oxide (NO, prostaglandin E2 (PGE2 and intracellular superoxide anion (SOA. The further results demonstrated that microglial phagocytosis was negatively correlated with inflammatory mediators in this process and that the capacity of phagocytosis in fAβ(1-42-induced microglia was decreased by IL-1β, lippolysaccharide (LPS and tert-butyl hydroperoxide (t-BHP. The decreased phagocytosis could be relieved by pyrrolidone dithiocarbamate (PDTC, a nuclear factor-κB (NF-κB inhibitor, and N-acetyl-L-cysteine (NAC, a free radical scavenger. These results suggest that the oAβ-impaired phagocytosis is mediated through inflammation and oxidative stress-mediated mechanism in microglial cells. Furthermore, oAβ(1-42 stimulation reduced the mRNA expression of CD36, integrin β1 (Itgb1, and Ig

  2. Control of aggregation-induced emission by DNA hybridization

    OpenAIRE

    Li, Shaoguang; Langenegger, Simon Matthias; Häner, Robert

    2013-01-01

    Aggregation-induced emission (AIE) was studied by hybridization of dialkynyl-tetraphenylethylene (DATPE) modified DNA strands. Molecular aggregation and fluorescence of DATPEs are controlled by duplex formation.

  3. Inflammation Induces TDP-43 Mislocalization and Aggregation.

    Directory of Open Access Journals (Sweden)

    Ana Sofia Correia

    Full Text Available TAR DNA-binding protein 43 (TDP-43 is a major component in aggregates of ubiquitinated proteins in amyotrophic lateral sclerosis (ALS and frontotemporal lobar degeneration (FTLD. Here we report that lipopolysaccharide (LPS-induced inflammation can promote TDP-43 mislocalization and aggregation. In culture, microglia and astrocytes exhibited TDP-43 mislocalization after exposure to LPS. Likewise, treatment of the motoneuron-like NSC-34 cells with TNF-alpha (TNF-α increased the cytoplasmic levels of TDP-43. In addition, the chronic intraperitoneal injection of LPS at a dose of 1mg/kg in TDP-43(A315T transgenic mice exacerbated the pathological TDP-43 accumulation in the cytoplasm of spinal motor neurons and it enhanced the levels of TDP-43 aggregation. These results suggest that inflammation may contribute to development or exacerbation of TDP-43 proteinopathies in neurodegenerative disorders.

  4. Protein Fibrillar Hydrogels for three-Dimensional Tissue Engineering

    Directory of Open Access Journals (Sweden)

    Hui Yan

    2009-01-01

    Full Text Available Protein self-assembly into highly ordered fibrillar aggregates has attracted increasing attention over recent years, due primarily to its association with disease states such as Alzheimer's. More recently, however, research has focused on understanding the generic behavior of protein self-assembly where fibrillation is typically induced under harsh conditions of low pH and/or high temperature. Moreover the inherent properties of these fibrils, including their nanoscale dimension, environmental responsiveness, and biological compatibility, are attracting substantial interest for exploiting these fibrils for the creation of new materials. Here we will show how protein fibrils can be formed under physiological conditions and their subsequent gelation driven using the ionic strength of cell culture media while simultaneously incorporating cells homogeneously throughout the gel network. The fibrillar and elastic nature of the gel have been confirmed using cryo-transmission electron microscopy and oscillatory rheology, respectively; while cell culture work shows that our hydrogels promote cell spreading, attachment, and proliferation in three dimensions.

  5. Light Induced Aggregation of Specific Single Walled Carbon Nanotubes

    OpenAIRE

    Gopannagari, Madhusudana; Chaturvedi, Harsh

    2015-01-01

    We report optically induced aggregation and consequent separation of specific diameter of pristine single walled carbon nanotubes (SWNT) from stable solution. Well dispersed solution of pristine SWNTs, without any surfactant or functionalization, show rapid aggregation by uniform exposure to UV, visible and NIR illumination. Optically induced aggregation linearly increases with consequent increase in the intensity of light. Aggregated SWNTs were separated from the dispersed supernatant and ch...

  6. Fibrillar dimer formation of islet amyloid polypeptides

    Energy Technology Data Exchange (ETDEWEB)

    Chiu, Chi-cheng [Univ. of Chicago, IL (United States); Argonne National Lab. (ANL), Argonne, IL (United States); de Pablo, Juan J. [Univ. of Chicago, IL (United States); Argonne National Lab. (ANL), Argonne, IL (United States)

    2015-05-08

    Amyloid deposits of human islet amyloid polypeptide (hIAPP), a 37-residue hormone co-produced with insulin, have been implicated in the development of type 2 diabetes. Residues 20 – 29 of hIAPP have been proposed to constitute the amyloidogenic core for the aggregation process, yet the segment is mostly unstructured in the mature fibril, according to solid-state NMR data. Here we use molecular simulations combined with bias-exchange metadynamics to characterize the conformational free energies of hIAPP fibrillar dimer and its derivative, pramlintide. We show that residues 20 – 29 are involved in an intermediate that exhibits transient β-sheets, consistent with recent experimental and simulation results. By comparing the aggregation of hIAPP and pramlintide, we illustrate the effects of proline residues on inhibition of the dimerization of IAPP. The mechanistic insights presented here could be useful for development of therapeutic inhibitors of hIAPP amyloid formation.

  7. Cross bridge slippage induced by the ATP analogue AMP-PNP and stretch in glycerol-extracted fibrillar muscle fibres.

    Science.gov (United States)

    Kuhn, H J

    1978-04-13

    Glycerol-extracted insect fibillar muscle fibers in rigor exhibited both an elastic and a plastic phase in the length-tension diagram. The transition between these phases took place at a critical tension, the "yield point" or elastic limit. In the plastic phase the apparent static elastic modulus became zero, whereas the immediate elastic modulus (measured by rapid length changes completed within 4 ms) exhibited no abrupt change at the yield point. The tension value of the yield point (but not immediate stiffness) was lowered by addition of AMP-PNP and was partially restored by washing out AMP-PNP. The dependence of the critical tension at which plastic flow begins on cooperative cross bridge behaviour is discussed in terms of breaking and reforming acto-myosin linkages. Evidence is presented that addition of AMP-PNP induces slippage of cross bridges on the actin filament by affecting the interaction between myosin and actin.

  8. Molecular Gels Materials with Self-Assembled Fibrillar Networks

    CERN Document Server

    Weiss, Richard G

    2006-01-01

    Molecular gels and fibrillar networks – a comprehensive guide to experiment and theory Molecular Gels: Materials with Self-Assembled Fibrillar Networks provides a comprehensive treatise on gelators, especially low molecular-mass gelators (LMOGs), and the properties of their gels. The structures and modes of formation of the self-assembled fibrillar networks (SAFINs) that immobilize the liquid components of the gels are discussed experimentally and theoretically. The spectroscopic, rheological, and structural features of the different classes of LMOGs are also presented. Many examples of the application of the principal analytical techniques for investigation of molecular gels (including SANS, SAXS, WAXS, UV-vis absorption, fluorescence and CD spectroscopies, scanning electron, transmission electron and optical microscopies, and molecular modeling) are presented didactically and in-depth, as are several of the theories of the stages of aggregation of individual LMOG molecules leading to SAFINs. Several actua...

  9. Effects of Suilysin on Streptococcus suis-induced platelet aggregation

    Directory of Open Access Journals (Sweden)

    Shengwei Zhang

    2016-10-01

    Full Text Available Blood platelets play important roles during pathological thrombocytopenia in streptococcal toxic shock syndrome (STSS. Streptococcus suis (S. suis an emerging human pathogen, can cause STSS similarly to S. pyogenes. However, S. suis interactions with platelets are poorly understood. Here, we found that suilysin (SLY, different from other bacterial cholesterol-dependent cytolysins (CDCs, was the sole stimulus that induced platelet aggregation. Furthermore, the inside-out activation of GPIIb/IIIa of platelets mediated SLY-induced platelet aggregation. This process was triggered by Ca2+ influx that depend on the pore forming on platelets by SLY. Additionally, although SLY induced α-granule release occurred via the MLCK-dependent pathway, PLC-β-IP3/DAG-MLCK and Rho-ROCK-MLCK signaling were not involved in SLY-induced platelet aggregation. Interestingly, the pore dependent Ca2+ influx was also found to participate in the induction of platelet aggregation with pneumolysin (PLY and streptolysin O (SLO, two other CDCs. It is possible that the CDC-mediated platelet aggregation we observed in S. suis is a similar response mechanism to that used by a wide range of bacteria. These findings might lead to the discovery of potential therapeutic targets for S. suis-associated STSS.

  10. Effects of Suilysin on Streptococcus suis-Induced Platelet Aggregation

    Science.gov (United States)

    Zhang, Shengwei; Wang, Junping; Chen, Shaolong; Yin, Jiye; Pan, Zhiyuan; Liu, Keke; Li, Lin; Zheng, Yuling; Yuan, Yuan; Jiang, Yongqiang

    2016-01-01

    Blood platelets play important roles during pathological thrombocytopenia in streptococcal toxic shock syndrome (STSS). Streptococcus suis (S. suis) an emerging human pathogen, can cause STSS similarly to S. pyogenes. However, S. suis interactions with platelets are poorly understood. Here, we found that suilysin (SLY), different from other bacterial cholesterol-dependent cytolysins (CDCs), was the sole stimulus that induced platelet aggregation. Furthermore, the inside-out activation of GPIIb/IIIa of platelets mediated SLY-induced platelet aggregation. This process was triggered by Ca2+ influx that depend on the pore forming on platelets by SLY. Additionally, although SLY induced α-granule release occurred via the MLCK-dependent pathway, PLC-β-IP3/DAG-MLCK and Rho-ROCK-MLCK signaling were not involved in SLY-induced platelet aggregation. Interestingly, the pore dependent Ca2+ influx was also found to participate in the induction of platelet aggregation with pneumolysin (PLY) and streptolysin O (SLO), two other CDCs. It is possible that the CDC-mediated platelet aggregation we observed in S. suis is a similar response mechanism to that used by a wide range of bacteria. These findings might lead to the discovery of potential therapeutic targets for S. suis-associated STSS. PMID:27800304

  11. Fibrillar Adhesive for Climbing Robots

    Science.gov (United States)

    Pamess, Aaron; White, Victor E.

    2013-01-01

    A climbing robot needs to use its adhesive patches over and over again as it scales a slope. Replacing the adhesive at each step is generally impractical. If the adhesive or attachment mechanism cannot be used repeatedly, then the robot must carry an extra load of this adhesive to apply a fresh layer with each move. Common failure modes include tearing, contamination by dirt, plastic deformation of fibers, and damage from loading/ unloading. A gecko-like fibrillar adhesive has been developed that has been shown useful for climbing robots, and may later prove useful for grasping, anchoring, and medical applications. The material consists of a hierarchical fibrillar structure that currently contains two levels, but may be extended to three or four levels in continuing work. The contacting level has tens of thousands of microscopic fibers made from a rubberlike material that bend over and create intimate contact with a surface to achieve maximum van der Waals forces. By maximizing the real area of contact that these fibers make and minimizing the bending energy necessary to achieve that contact, the net amount of adhesion has been improved dramatically.

  12. Rubrene analogues with the aggregation-induced emission enhancement behaviour

    DEFF Research Database (Denmark)

    Zhang, Xiaoxu; Sørensen, Jakob Kryger; Fu, Xiaowei;

    2014-01-01

    In the light of the principle of aggregation-induced emission enhancement (AIEE), the rubrene analogue with orange light-emitting properties is designed and synthesized by substituting the phenyl side groups of rubrene with thienyl groups. To the best of our knowledge, this is the first report...

  13. Sphingosine induces the aggregation of imine-containing peroxidized vesicles.

    Science.gov (United States)

    Jiménez-Rojo, Noemi; Viguera, Ana R; Collado, M Isabel; Sims, Kacee H; Constance, Chad; Hill, Kasey; Shaw, Walt A; Goñi, Félix M; Alonso, Alicia

    2014-08-01

    Lipid peroxidation plays a central role in the pathogenesis of many diseases like atherosclerosis and multiple sclerosis. We have analyzed the interaction of sphingosine with peroxidized bilayers in model membranes. Cu(2+) induced peroxidation was checked following UV absorbance at 245nm, and also using the novel Avanti snoopers®. Mass spectrometry confirms the oxidation of phospholipid unsaturated chains. Our results show that sphingosine causes aggregation of Cu(2+)-peroxidized vesicles. We observed that aggregation is facilitated by the presence of negatively-charged phospholipids in the membrane, and inhibited by anti-oxidants e.g. BHT. Interestingly, long-chain alkylamines (C18, C16) but not their short-chain analogues (C10, C6, C1) can substitute sphingosine as promoters of vesicle aggregation. Furthermore, sphinganine but not sphingosine-1-phosphate can mimic this effect. Formation of imines in the membrane upon peroxidation was detected by (1)H-NMR and it appeared to be necessary for the aggregation effect. (31)P-NMR spectroscopy reveals that sphingosine facilitates formation of non-lamellar phase in parallel with vesicle aggregation. The data might suggest a role for sphingosine in the pathogenesis of atherosclerosis. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Nanoparticle-induced platelet aggregation and vascular thrombosis.

    Science.gov (United States)

    Radomski, Anna; Jurasz, Paul; Alonso-Escolano, David; Drews, Magdalena; Morandi, Maria; Malinski, Tadeusz; Radomski, Marek W

    2005-11-01

    Ever increasing use of engineered carbon nanoparticles in nanopharmacology for selective imaging, sensor or drug delivery systems has increased the potential for blood platelet-nanoparticle interactions. We studied the effects of engineered and combustion-derived carbon nanoparticles on human platelet aggregation in vitro and rat vascular thrombosis in vivo. Multiplewall (MWNT), singlewall (SWNT) nanotubes, C60 fullerenes (C60CS) and mixed carbon nanoparticles (MCN) (0.2-300 microg ml(-1)) were investigated. Nanoparticles were compared with standard urban particulate matter (SRM1648, average size 1.4 microm). Platelet function was studied using lumi aggregometry, phase-contrast, immunofluorescence and transmission electron microscopy, flow cytometry, zymography and pharmacological inhibitors of platelet aggregation. Vascular thrombosis was induced by ferric chloride and the rate of thrombosis was measured, in the presence of carbon particles, with an ultrasonic flow probe. Carbon particles, except C60CS, stimulated platelet aggregation (MCN>or=SWNT>MWNT>SRM1648) and accelerated the rate of vascular thrombosis in rat carotid arteries with a similar rank order of efficacy. All particles resulted in upregulation of GPIIb/IIIa in platelets. In contrast, particles differentially affected the release of platelet granules, as well as the activity of thromboxane-, ADP, matrix metalloproteinase- and protein kinase C-dependent pathways of aggregation. Furthermore, particle-induced aggregation was inhibited by prostacyclin and S-nitroso-glutathione, but not by aspirin. Thus, some carbon nanoparticles and microparticles have the ability to activate platelets and enhance vascular thrombosis. These observations are of importance for the pharmacological use of carbon nanoparticles and pathology of urban particulate matter.

  15. Fluorescence Aggregation-Caused Quenching versus Aggregation-Induced Emission: A Visual Teaching Technology for Undergraduate Chemistry Students

    Science.gov (United States)

    Ma, Xiaofeng; Sun, Rui; Cheng, Jinghui; Liu, Jiaoyan; Gou, Fei; Xiang, Haifeng; Zhou, Xiangge

    2016-01-01

    A laboratory experiment visually exploring two opposite basic principles of fluorescence of aggregation-caused quenching (ACQ) and aggregation-induced emission (AIE) is demonstrated. The students would prepared two salicylaldehyde-based Schiff bases through a simple one-pot condensation reaction of one equiv of 1,2-diamine with 2 equiv of…

  16. Aβ peptide fibrillar architectures controlled by conformational constraints of the monomer.

    Directory of Open Access Journals (Sweden)

    Kristoffer Brännström

    Full Text Available Anomalous self-assembly of the Aβ peptide into fibrillar amyloid deposits is strongly correlated with the development of Alzheimer's disease. Aβ fibril extension follows a template guided "dock and lock" mechanism where polymerisation is catalysed by the fibrillar ends. Using surface plasmon resonance (SPR and quenched hydrogen-deuterium exchange NMR (H/D-exchange NMR, we have analysed the fibrillar structure and polymerisation properties of both the highly aggregation prone Aβ1-40 Glu22Gly (Aβ(40Arc and wild type Aβ1-40 (Aβ(40WT. The solvent protection patterns from H/D exchange experiments suggest very similar structures of the fibrillar forms. However, through cross-seeding experiments monitored by SPR, we found that the monomeric form of Aβ(40WT is significantly impaired to acquire the fibrillar architecture of Aβ(40Arc. A detailed characterisation demonstrated that Aβ(40WT has a restricted ability to dock and isomerise with high binding affinity onto Aβ(40Arc fibrils. These results have general implications for the process of fibril assembly, where the rate of polymerisation, and consequently the architecture of the formed fibrils, is restricted by conformational constraints of the monomers. Interestingly, we also found that the kinetic rate of fibril formation rather than the thermodynamically lowest energy state determines the overall fibrillar structure.

  17. Aluminum induces tau aggregation in vitro but not in vivo.

    Science.gov (United States)

    Mizoroki, Tatsuya; Meshitsuka, Shunsuke; Maeda, Sumihiro; Murayama, Miyuki; Sahara, Naruhiko; Takashima, Akihiko

    2007-07-01

    Etiological studies suggest that aluminum (Al) intake might increase an individual's risk of developing Alzheimer's disease (AD). Biochemical analysis data on the effects of Al, however, are inconsistent. Hence, the pathological involvement of Al in AD remains unclear. If Al is involved in AD, then it is reasonable to hypothesize that Al might be involved in the formation of either amyloid plaques or neurofibrillary tangles (NFTs). Here, we investigated whether Al might be involved in NFT formation by using an in vitro tau aggregation paradigm, a tau-overexpressing neuronal cell line (N2a), and a tau-overexpressing mouse model. Although Al induced tau aggregation in a heparin-induced tau assembly assay, these aggregates were neither thioflavin T positive nor did they resemble tau fibrils seen in human AD brains. With cell lysates from stable cell lines overexpressing tau, the accumulation of SDS-insoluble tau increased when the lysates were treated with at least 100 muM Al-maltolate. Yet Al-maltolate caused illness or death in transgenic mice overexpressing human tau and in non-transgenic littermates well before the Al concentration in the brain reached 100 muM. These results indicate that Al has no direct link to AD pathology.

  18. Complement-induced equine neutrophil adhesiveness and aggregation.

    Science.gov (United States)

    Slauson, D O; Skrabalak, D S; Neilsen, N R; Zwahlen, R D

    1987-05-01

    Equine neutrophils (PMN) were isolated from citrated normal blood by density gradient separation on Ficoll-Hypaque to greater than 96% purity and 98% viability and an average of 3.78 x 10(7) PMN/ml. The agonist C5a des Arg was used in serial dilutions of whole zymosan-activated equine plasma (ZAP) or was partially purified from ZAP by column chromatography. Purified equine PMN exhibited rapid aggregation following incubation with C5a des Arg which was further dependent on the availability of divalent cations, especially Mg++. The microfilament disruptive agent cytochalasin B (5 micrograms/50 microliters) greatly augmented aggregation responses to C5a des Arg. Subaggregating doses of C5a des Arg promoted PMN adhesiveness as assayed on 0.5 x 10 cm borosilicate glass columns containing a 2.0 cm bed of Sephadex G-25. This C5a des Arg-induced increased adhesiveness was inhibitable by prior incubation of the PMN with either non-steroidal (0.065 M phenylbutazone) or steroidal (0.005 M dexamethasone) anti-inflammatory agents. Ultrastructural studies correlated well with functional assays and revealed marked organelle-free lamellipodia formation without PMN-PMN contact at subaggregating doses of the agonist and progressive PMN-PMN contact at aggregating doses. Equine PMN are responsive to C5a des Arg, and induced adhesiveness responses can be manipulated by anti-inflammatory agents.

  19. Aggregation-induced emission—fluorophores and applications

    Science.gov (United States)

    Hong, Yuning

    2016-06-01

    Aggregation-induced emission (AIE) is a novel photophysical phenomenon found in a group of luminogens that are not fluorescent in solution but are highly emissive in the aggregate or solid state. Since the first publication of AIE luminogens in 2001, AIE has become a hot research area in which the number of research papers regarding new AIE molecules and their applications has been increasing in an exponential manner. Thomson Reuters Essential Science Indicators ranked AIE no.3 among the Top 100 Research Frontiers in the field of Chemistry and Materials Science in 2013. In this review, I will give a general introduction of the AIE phenomenon, discuss the structure-property relationship of the AIE lumingens and summarize the recent progress in the applications including as light-emitting materials in optoelectronics, as chemosensors and bioprobes, and for bioimaging (total 69 references cited).

  20. Behavioral transitions induced by speed and noise in animal aggregates

    Science.gov (United States)

    Cambui, Dorílson S.; Iliass, Tarras

    2017-04-01

    In this paper, we used a self-propelled particle model to study the transition between phases of collective behavior observed in animal aggregates. In these systems, transitions occur when individuals shift from one collective state to another. We investigated transitions induced by both the speed and the noise. Statistical quantities that characterize the phase transition driven by noise, such as order parameter, the Binder cumulant and the susceptibility were analyzed, and we used the finite-size scaling theory to estimate the critical exponent ratios β/ν and γ/ν.

  1. The cell aggregating propensity of probiotic actinobacterial isolates: isolation and characterization of the aggregation inducing peptide pheromone.

    Science.gov (United States)

    Muthu Selvam, Ramu; Vinothini, Gopal; Palliyarai Thaiyammal, Sethuramalingam; Latha, Selvanathan; Chinnathambi, Arunachalam; Dhanasekaran, Dharumadurai; Padmanabhan, Parasuraman; Ali Alharbi, Sulaiman; Archunan, Govindaraju

    2016-01-01

    The auto-aggregating ability of a probiotic is a prerequisite for colonization and protection of the gastrointestinal tract, whereas co-aggregation provides a close interaction with pathogenic bacteria. Peptide pheromone mediated signaling has been studied in several systems. However, it has not yet been explored in prokaryotes, especially actinobacteria. Hence, in the present study, the diffusible aggregation promoting factor was purified from the culture supernatant of a potent actinobacterial probiont and characterized using 20 different actinobacterial cultures isolated from the gut region of chicken and goat. The results showed that the pheromone-like compound induces the aggregation propensity of treated isolates. The factor was found to be a heat stable, acidic pH resistant, low molecular weight peptide which enhances the biofilm forming ability of other actinobacterial isolates. The aggregation promoting factor represents a bacterial sex factor (pheromone) and its characterization confirms its usage in the probiotic formulation.

  2. Methylglyoxal-induced modification causes aggregation of myoglobin

    Science.gov (United States)

    Banerjee, Sauradipta; Maity, Subhajit; Chakraborti, Abhay Sankar

    2016-02-01

    Post-translational modification of proteins by Maillard reaction, known as glycation, is thought to be the root cause of different complications, particularly in diabetes mellitus and age-related disorders. Methylglyoxal (MG), a reactive α-oxoaldehyde, increases in diabetic condition and reacts with proteins to form advanced glycation end products (AGEs) following Maillard-like reaction. We have investigated the in vitro effect of MG (200 μM) on the monomeric heme protein myoglobin (Mb) (100 μM) in a time-dependent manner (7 to 18 days incubation at 25 °C). MG induces significant structural alterations of the heme protein, including heme loss, changes in tryptophan fluorescence, decrease of α-helicity with increased β-sheet content etc. These changes occur gradually with increased period of incubation. Incubation of Mb with MG for 7 days results in formation of the AGE adducts: carboxyethyllysine at Lys-16, carboxymethyllysine at Lys-87 and carboxyethyllysine or pyrraline-carboxymethyllysine at Lys-133. On increasing the period of incubation up to 14 days, additional AGEs namely, carboxyethyllysine at Lys-42 and hydroimidazolone or argpyrimidine at Arg-31 and Arg-139 have been detected. MG also induces aggregation of Mb, which is clearly evident with longer period of incubation (18 days), and appears to have amyloid nature. MG-derived AGEs may thus have an important role as the precursors of protein aggregation, which, in turn, may be associated with physiological complications.

  3. Temperature Induced Aggregation and Clouding in Humic Acid Solutions

    Directory of Open Access Journals (Sweden)

    Leah Shaffer

    2015-01-01

    Full Text Available Humic acids in aqueous solution demonstrate inverse temperature-solubility relationships when solution conditions are manipulated to reduce coulombic repulsion among the humic polyanions. These effects were followed by dynamic light scattering (DLS measurements of the resulting aggregates, as well as the addition of a polarity sensitive fluorescent probe (pyrene. The humic solutions could be primed for temperature induced clouding by carefully lowering the pH to a point where hydration effects became dominant. The exact value of the cloud point (CP was a function of both pH and humate concentration. The CPs mostly lay in the range 50–90°C, but DLS showed that temperature induced aggregation proceeded from approximately 30°C onward. Similar effects could be achieved by adding multivalent cations at concentrations below those which cause spontaneous precipitation. The declouding of clouded humate solutions could be affected by lowering the temperature combined with mechanical agitation to disentangle the humic polymers.

  4. Functionality and versatility of aggregation-induced emission luminogens

    Science.gov (United States)

    Feng, Guangxue; Kwok, Ryan T. K.; Tang, Ben Zhong; Liu, Bin

    2017-06-01

    Breakthrough innovations in light-emitting materials have opened new exciting avenues for science and technology over the last few decades. Aggregation-induced emission (AIE) represents one of such innovations. It refers to a unique light-emitting phenomenon, in which luminescent materials that are non-emissive in molecular state can be induced to emit efficiently in aggregated state. The design and development of AIE luminogens (AIEgens) have overcome technical and fundamental limitations that exist in conventional light-emitting materials, and thus generate great opportunities for various applications. In this review, we aim to introduce the wonderful world of AIE to scientists from different disciplines by summarizing the recent progress made in this exciting research field. The mechanistic analyses and the working principles of the AIE processes are first elaborated, which reveal the restriction of intramolecular motions as the main cause for the AIE effect. The different molecular engineering strategies for the design of new AIEgens are subsequently discussed with examples of various AIEgen systems. The recent high-tech applications of AIEgens as optoelectronic materials, chemical sensors, and biomedical probes are presented and discussed. We hope that this review will stimulate more research interest from physics, chemistry, life science, and biomedical fields to this wonderland of AIE.

  5. p53 Aggregates penetrate cells and induce the co-aggregation of intracellular p53.

    Directory of Open Access Journals (Sweden)

    Karolyn J Forget

    Full Text Available Prion diseases are unique pathologies in which the infectious particles are prions, a protein aggregate. The prion protein has many particular features, such as spontaneous aggregation, conformation transmission to other native PrP proteins and transmission from an individual to another. Protein aggregation is now frequently associated to many human diseases, for example Alzheimer's disease, Parkinson's disease or type 2 diabetes. A few proteins associated to these conformational diseases are part of a new category of proteins, called prionoids: proteins that share some, but not all, of the characteristics associated with prions. The p53 protein, a transcription factor that plays a major role in cancer, has recently been suggested to be a possible prionoid. The protein has been shown to accumulate in multiple cancer cell types, and its aggregation has also been reproduced in vitro by many independent groups. These observations suggest a role for p53 aggregates in cancer development. This study aims to test the «prion-like» features of p53. Our results show in vitro aggregation of the full length and N-terminally truncated protein (p53C, and penetration of these aggregates into cells. According to our findings, the aggregates enter cells using macropinocytosis, a non-specific pathway of entry. Lastly, we also show that once internalized by the cell, p53C aggregates can co-aggregate with endogenous p53 protein. Together, these findings suggest prion-like characteristics for p53 protein, based on the fact that p53 can spontaneously aggregate, these aggregates can penetrate cells and co-aggregate with cellular p53.

  6. Mineral trioxide aggregate induces osteoblastogenesis via Atf6

    Directory of Open Access Journals (Sweden)

    Toyonobu Maeda

    2015-06-01

    Full Text Available Mineral trioxide aggregate (MTA has been recommended for various uses in endodontics. To understand the effects of MTA on alveolar bone, we examined whether MTA induces osteoblastic differentiation using MC3T3-E1 cells. MTA enhanced mineralization concomitant with alkaline phosphatase activity in a dose- and time-dependent manner. MTA increased production of collagens (Type I and Type III and matrix metalloproteinases (MMP-9 and MMP-13, suggesting that MTA affects bone matrix remodeling. MTA also induced Bglap (osteocalcin but not Bmp2 (bone morphogenetic protein-2 mRNA expression. We observed induction of Atf6 (activating transcription factor 6, an endoplasmic reticulum (ER stress response transcription factor mRNA expression and activation of Atf6 by MTA treatment. Forced expression of p50Atf6 (active form of Atf6 markedly enhanced Bglap mRNA expression. Chromatin immunoprecipitation assay was performed to investigate the increase in p50Atf6 binding to the Bglap promoter region by MTA treatment. Furthermore, knockdown of Atf6 gene expression by introduction of Tet-on Atf6 shRNA expression vector abrogated MTA-induced mineralization. These results suggest that MTA induces in vitro osteoblastogenesis through the Atf6–osteocalcin axis as ER stress signaling. Therefore, MTA in endodontic treatment may affect alveolar bone healing in the resorbed region caused by pulpal infection.

  7. Curcumin Ameliorates the Reduction Effect of PGE2 on Fibrillar β-Amyloid Peptide (1-42-Induced Microglial Phagocytosis through the Inhibition of EP2-PKA Signaling in N9 Microglial Cells.

    Directory of Open Access Journals (Sweden)

    Gen-Lin He

    Full Text Available Inflammatory activation of microglia and β amyloid (Aβ deposition are considered to work both independently and synergistically to contribute to the increased risk of Alzheimer's disease (AD. Recent studies indicate that long-term use of phenolic compounds provides protection against AD, primarily due to their anti-inflammatory actions. We previously suggested that phenolic compound curcumin ameliorated phagocytosis possibly through its anti-inflammatory effects rather than direct regulation of phagocytic function in electromagnetic field-exposed N9 microglial cells (N9 cells. Here, we explored the prostaglandin-E2 (PGE2-related signaling pathway that involved in curcumin-mediated phagocytosis in fibrillar β-amyloid peptide (1-42 (fAβ42-stimulated N9 cells. Treatment with fAβ42 increased phagocytosis of fluorescent-labeled latex beads in N9 cells. This increase was attenuated in a dose-dependent manner by endogenous and exogenous PGE2, as well as a selective EP2 or protein kinase A (PKA agonist, but not by an EP4 agonist. We also found that an antagonist of EP2, but not EP4, abolished the reduction effect of PGE2 on fAβ42-induced microglial phagocytosis. Additionally, the increased expression of endogenous PGE2, EP2, and cyclic adenosine monophosphate (AMP, and activation of vasodilator-stimulated phosphoprotein, cyclic AMP responsive element-binding protein, and PKA were depressed by curcumin administration. This reduction led to the amelioration of the phagocytic abilities of PGE2-stimulated N9 cells. Taken together, these data suggested that curcumin restored the attenuating effect of PGE2 on fAβ42-induced microglial phagocytosis via a signaling mechanism involving EP2 and PKA. Moreover, due to its immune modulatory effects, curcumin may be a promising pharmacological candidate for neurodegenerative diseases.

  8. Gelation process visualized by aggregation-induced emission fluorogens

    Science.gov (United States)

    Wang, Zhengke; Nie, Jingyi; Qin, Wei; Hu, Qiaoling; Tang, Ben Zhong

    2016-06-01

    Alkaline-urea aqueous solvent system provides a novel and important approach for the utilization of polysaccharide. As one of the most important polysaccharide, chitosan can be well dissolved in this solvent system, and the resultant hydrogel material possesses unique and excellent properties. Thus the sound understanding of the gelation process is fundamentally important. However, current study of the gelation process is still limited due to the absence of direct observation and the lack of attention on the entire process. Here we show the entire gelation process of chitosan LiOH-urea aqueous system by aggregation-induced emission fluorescent imaging. Accompanied by other pseudo in situ investigations, we propose the mechanism of gelation process, focusing on the formation of junction points including hydrogen bonds and crystalline.

  9. Brain propagation of transduced α-synuclein involves non-fibrillar protein species and is enhanced in α-synuclein null mice.

    Science.gov (United States)

    Helwig, Michael; Klinkenberg, Michael; Rusconi, Raffaella; Musgrove, Ruth E; Majbour, Nour K; El-Agnaf, Omar M A; Ulusoy, Ayse; Di Monte, Donato A

    2016-03-01

    Aggregation and neuron-to-neuron transmission are attributes of α-synuclein relevant to its pathogenetic role in human synucleinopathies such as Parkinson's disease. Intraparenchymal injections of fibrillar α-synuclein trigger widespread propagation of amyloidogenic protein species via mechanisms that require expression of endogenous α-synuclein and, possibly, its structural corruption by misfolded conformers acting as pathological seeds. Here we describe another paradigm of long-distance brain diffusion of α-synuclein that involves inter-neuronal transfer of monomeric and/or oligomeric species and is independent of recruitment of the endogenous protein. Targeted expression of human α-synuclein was induced in the mouse medulla oblongata through an injection of viral vectors into the vagus nerve. Enhanced levels of intra-neuronal α-synuclein were sufficient to initiate its caudo-rostral diffusion that likely involved at least one synaptic transfer and progressively reached specific brain regions such as the locus coeruleus, dorsal raphae and amygdala in the pons, midbrain and forebrain. Transfer of human α-synuclein was compared in two separate lines of α-synuclein-deficient mice versus their respective wild-type controls and, interestingly, lack of endogenous α-synuclein expression did not counteract diffusion but actually resulted in a more pronounced and advanced propagation of exogenous α-synuclein. Self-interaction of adjacent molecules of human α-synuclein was detected in both wild-type and mutant mice. In the former, interaction of human α-synuclein with mouse α-synuclein was also observed and might have contributed to differences in protein transmission. In wild-type and α-synuclein-deficient mice, accumulation of human α-synuclein within recipient axons in the pons, midbrain and forebrain caused morphological evidence of neuritic pathology. Tissue sections from the medulla oblongata and pons were stained with different antibodies recognizing

  10. Reversible NaCl-induced aggregation of a monoclonal antibody at low pH: Characterization of aggregates and factors affecting aggregation.

    Science.gov (United States)

    Bickel, Fabian; Herold, Eva Maria; Signes, Alba; Romeijn, Stefan; Jiskoot, Wim; Kiefer, Hans

    2016-10-01

    We investigated the influence of pH and sodium chloride concentration on aggregation kinetics of a monoclonal antibody. Aggregation was induced by sodium chloride addition at low pH. Protein conformation before and after salt addition was determined as well as the reversibility of aggregation. Aggregation was monitored at pH values between 2 and 7 with NaCl up to 1.5M by turbidity measurement and size-exclusion chromatography. Particle size distribution was assessed by using size-exclusion chromatography as well as nanoparticle tracking analysis and flow imaging microscopy. Structural changes were monitored by circular dichroism, Fourier transform infrared and fluorescence spectroscopy. Thermal stability was measured by differential scanning fluorimetry. Aggregation propensity was maximal at low pH and high ionic strength. While thermal stability decreased with pH, the secondary structure remained unchanged down to pH 3.5 and up to 1.5M NaCl. Precipitated protein could be largely reverted to monomers by dilution into salt-free buffer. The re-solubilized antibody was indistinguishable in structure, solubility and monodispersity from the unstressed protein. Also, binding to Protein A was steady. Aggregation could be reduced in the presence of trehalose. The results suggest a reversible aggregation mechanism characterized by a limited change in tertiary structure at low pH and a subsequent loss of colloidal stability resulting from electrostatic repulsion once salt is added to the sample. The experimental setup is robust and allows high-throughput quantification of the effect of additives on aggregation kinetics.

  11. Employing in vitro analysis to test the potency of methylglyoxal in inducing the formation of amyloid-like aggregates of caprine brain cystatin.

    Science.gov (United States)

    Bhat, Waseem Feeroze; Bhat, Sheraz Ahmad; Khaki, Peerzada Shariq Shaheen; Bano, Bilqees

    2015-01-01

    Thiol protease inhibitors (cystatins) are implicated in various disease states from cancer to neurodegenerative conditions and immune responses. Cystatins have high amyloidogenic propensity and they are prone to form fibrillar aggregates leading to amyloidosis. Particularly challenging examples of such disorders occur in type 2 diabetes, Alzheimer's and Parkinson's diseases. The aim of the present study is to find an interaction between the compound methylglyoxal (MG) which is particularly elevated in type 2 diabetes with caprine brain cystatin (CBC). Results have shown that elevated concentration of MG forms amyloid aggregates of CBC. This was achieved by allowing slow growth in a solution containing moderate to high concentrations of MG. When analysed with microscopy, the protein aggregate present in the sample after incubation consisted of extended filaments with ordered structures. This fibrillar material possesses extensive β-sheet structure as revealed by far-UV CD and IR spectroscopy. Furthermore, the fibrils exhibit increased Thioflavin T fluorescence.

  12. Patterns of gravity induced aggregate migration during casting of fluid concretes

    DEFF Research Database (Denmark)

    Spangenberg, Jon; Roussel, N.; Hattel, Jesper Henri

    2012-01-01

    In this paper, aggregate migration patterns during fluid concrete castings are studied through experiments, dimensionless approach and numerical modeling. The experimental results obtained on two beams show that gravity induced migration is primarily affecting the coarsest aggregates resulting in...... that it finds its origin in the non Newtonian nature of fresh concrete and that increasing casting rate shall decrease the magnitude of gravity induced particle migration.......In this paper, aggregate migration patterns during fluid concrete castings are studied through experiments, dimensionless approach and numerical modeling. The experimental results obtained on two beams show that gravity induced migration is primarily affecting the coarsest aggregates resulting...

  13. A new amyloidosis caused by fibrillar aggregates of mutated corneodesmosin

    DEFF Research Database (Denmark)

    Caubet, Cécile; Bousset, Luc; Clemmensen, Ole

    2010-01-01

    Heterozygous nonsense mutations in the CDSN gene encoding corneodesmosin (CDSN), an adhesive protein expressed in cornified epithelia and hair follicles, cause hypotrichosis simplex of the scalp (HSS), a nonsyndromic form of alopecia. Truncated mutants of CDSN ((mut)CDSN), which bear the N...

  14. Phytochelatins inhibit the metal-induced aggregation of alpha-crystallin.

    Science.gov (United States)

    Hori, Yasuhisa; Yoshikawa, Tomoaki; Tsuji, Naoki; Bamba, Takeshi; Aso, Yoshikazu; Kudou, Motonori; Uchida, Yoshiki; Takagi, Masahiro; Harada, Kazuo; Hirata, Kazumasa

    2009-02-01

    Phytochelatins (PCs) are heavy-metal-binding peptides found in some eukaryotes. This study investigates the use of plant-derived PCs for the inhibition of metal-induced protein aggregation. The results of this study show that PCs inhibit zinc-induced alpha-crystallin aggregation, and suggest that PCs might be useful as anti-cataract agents.

  15. Hierarchical Formation of Fibrillar and Lamellar Self-Assemblies from Guanosine-Based Motifs

    Directory of Open Access Journals (Sweden)

    Paolo Neviani

    2010-01-01

    Full Text Available Here we investigate the supramolecular polymerizations of two lipophilic guanosine derivatives in chloroform by light scattering technique and TEM experiments. The obtained data reveal the presence of several levels of organization due to the hierarchical self-assembly of the guanosine units in ribbons that in turn aggregate in fibrillar or lamellar soft structures. The elucidation of these structures furnishes an explanation to the physical behaviour of guanosine units which display organogelator properties.

  16. Structure-Induced Dynamics of Erythrocyte Aggregates by Microscale Simulation

    Directory of Open Access Journals (Sweden)

    Tong Wang

    2013-01-01

    modeling. The technique of immersed boundary-fictitious domain method has been applied to the study of erythrocyte aggregates traversing modeled stenotic microchannels. The effects of stenosis geometry, cell membrane stiffness, and intercellular interaction strength on aggregate hemodynamics including transit velocity are studied. It is found that the width of the stenosis throat and shape of stenosis have a significant influence on the dissociation of the aggregates. Moreover, horizontally orientated erythrocyte aggregates are observed to dissociate much easier than their vertical counterparts under the same simulation conditions. Results from this study contribute to the fundamental understanding and knowledge on the biophysical characteristics of erythrocyte aggregates in microscopic blood flow, which will provide pathological insights into some human diseases, such as malaria.

  17. Induced Interval-Valued Intuitionistic Fuzzy Hybrid Aggregation Operators with TOPSIS Order-Inducing Variables

    Directory of Open Access Journals (Sweden)

    Jun-Ling Zhang

    2012-01-01

    Full Text Available Two induced aggregation operators with novelly designed TOPSIS order-inducing variables are proposed: Induced Interval-valued Intuitionistic Fuzzy Hybrid Averaging (I-IIFHA operator and Induced Interval-valued Intuitionistic Fuzzy Hybrid Geometric (I-IIFHG operator. The merit of two aggregation operators is that they can consider additional preference information of decision maker’s attitudinal characteristics besides argument-dependent information and argument-independent information. Some desirable properties of I-IIFHA and I-IIFHG are studied and theoretical analysis also shows that they can include a wide range of aggregation operators as special cases. Further, we extend these operators to form a novel group decision-making method for selecting the most desirable alternative in multiple attribute multi-interest group decision-making problems with attribute values and decision maker’s interest values taking the form of interval-valued intuitionistic fuzzy numbers, and application research to real estate purchase selection shows its practicality.

  18. UV Light–Induced Aggregation of Titania Submicron Particles

    Directory of Open Access Journals (Sweden)

    Can Zhou

    2016-11-01

    Full Text Available In this study, aggregation of TiO2 (rutile and anatase submicron particles in deionized (DI water under ultra-violet (UV light irradiation was investigated. While no aggregation was observed in the dark, rutile and anatase submicron particles started aggregating upon application of UV light and ceased aggregation in about 2 and 8.4 h, respectively. It has been demonstrated that UV light directly mitigated the particle mobility of TiO2, resulting in a neutralization effect of the Zeta potential. It was also observed that rutile particles aggregated much faster than anatase particles under UV radiation, indicating that the Zeta potential of as-prepared rutile is less than that of anatase in deionized (DI water. In addition, the interaction energy of rutile and anatase particles was simulated using the Derjaguin–Landau–Verwey–Overbeek (DLVO model. The results showed a significant reduction of barrier energy from 118.2 kBT to 33.6 kBT for rutile and from 333.5 kBT to 46.1 kBT for anatase, respectively, which further validated the remarkable influence of UV irradiation on the aggregation kinetics of rutile and anatase submicron particles. This work presents a further understanding of the aggregation mechanism of light-controlled submicron particles and has a promising potential application in environmental remediation.

  19. Multivalent scaffolds induce galectin-3 aggregation into nanoparticles

    Science.gov (United States)

    Goodman, Candace K; Wolfenden, Mark L; Nangia-Makker, Pratima; Michel, Anna K; Raz, Avraham

    2014-01-01

    Summary Galectin-3 meditates cell surface glycoprotein clustering, cross linking, and lattice formation. In cancer biology, galectin-3 has been reported to play a role in aggregation processes that lead to tumor embolization and survival. Here, we show that lactose-functionalized dendrimers interact with galectin-3 in a multivalent fashion to form aggregates. The glycodendrimer–galectin aggregates were characterized by dynamic light scattering and fluorescence microscopy methodologies and were found to be discrete particles that increased in size as the dendrimer generation was increased. These results show that nucleated aggregation of galectin-3 can be regulated by the nucleating polymer and provide insights that improve the general understanding of the binding and function of sugar-binding proteins. PMID:25161713

  20. Ralstonia insidiosa induces cell aggregation by Listeria monocytogenes

    Science.gov (United States)

    Biofilm formation is an important strategy for foodborne bacterial pathogens to survive in stressful environments such as fresh produce processing facilities. Bacterial cell aggregation strongly promotes the initiation of microcolonies and the formation of biofilms on abiological surfaces. We previ...

  1. Multivalent scaffolds induce galectin-3 aggregation into nanoparticles

    Directory of Open Access Journals (Sweden)

    Candace K. Goodman

    2014-07-01

    Full Text Available Galectin-3 meditates cell surface glycoprotein clustering, cross linking, and lattice formation. In cancer biology, galectin-3 has been reported to play a role in aggregation processes that lead to tumor embolization and survival. Here, we show that lactose-functionalized dendrimers interact with galectin-3 in a multivalent fashion to form aggregates. The glycodendrimer–galectin aggregates were characterized by dynamic light scattering and fluorescence microscopy methodologies and were found to be discrete particles that increased in size as the dendrimer generation was increased. These results show that nucleated aggregation of galectin-3 can be regulated by the nucleating polymer and provide insights that improve the general understanding of the binding and function of sugar-binding proteins.

  2. Spontaneous and Induced Platelet Aggregation during Pregnancy and Labor

    Directory of Open Access Journals (Sweden)

    T. P. Bondar

    2016-01-01

    Full Text Available Objective: to evaluate changes in characteristics of spontaneous platelet (Pt aggregation in patients with obstetric complications associated with hereditary thrombophilia.Materials and methods. Blood samples were taken from 52 recently confined women on the first day after labor; at that, ethic regulations for the preanalytical phase were followed. Determination of PlA1/ PlA2 polymorphism enotype was performed by means of amplificationrestriction analysis. Geometrical characteristics of patients' peripheral blood Pt aggregation were studied by means of AFM Integra Prima. The degree of confidence of the parameters under test was determined using the ttest, and the significance level was considered valid at P<0.05.Results. A statistical analysis of the findings demonstrated that the length of Pt aggregates in healthy pregnant women was significantly higher than that in healthy nonpregnant women at all study phases. Patients with the P1A1/P1A2 polymorphism in the GP IIb/IIIa Pt receptor gene demonstrated increased widthm height, and density of Pt aggregates. The changes were most significant during the incubation phase lasting for 15 and 30 minutes. The study of geometric parameters of different exposures demonstrated the following: the longer the incubation period, the greater the difference between geometric parameters of the aggregates (e.g. height, length, and width. Conclusion. The analysis of obtained data demonstrated that the presence of P1A1/P1A2 polymorphism in GP IIb/IIIa Pt gene receptor contributes to the decrease in the platelet response threshold and enhances the spontaneous Pt aggregation. The imaging of aggregates provides strong evidence for the accelerated growth of the aggregates in thrombotic complications of pregnancy.

  3. Agglutination of bacteria using poyvalent nanoparticles of aggregation-induced emissive thiophthalonitrile dyes

    NARCIS (Netherlands)

    Schmidt, B.; Sankaran, S.; Stegemann, L.; Strassert, C.A.; Jonkheijm, Pascal; Voskuhl, Jens

    2016-01-01

    A novel class of aggregation-induced emissive bis(phenylthio)phthalonitrile dyes were synthesized. These dyes assembled into nanoparticles that were equipped with mannose units. The nanoparticles underwent selective interactions with lectins and bacteria. The bright fluorescent aggregates aid in the

  4. Epicuticular lipids induce aggregation in Chagas disease vectors

    Directory of Open Access Journals (Sweden)

    Juárez M Patricia

    2009-01-01

    Full Text Available Abstract Background The triatomine bugs are vectors of the protozoan parasite Trypanosoma cruzi, the causative agent of Chagas disease. Aggregation behavior plays an important role in their survival by facilitating the location of refuges and cohesion of aggregates, helping to keep them safely assembled into shelters during daylight time, when they are vulnerable to predators. There are evidences that aggregation is mediated by thigmotaxis, by volatile cues from their faeces, and by hexane-extractable contact chemoreceptive signals from their cuticle surface. The epicuticular lipids of Triatoma infestans include a complex mixture of hydrocarbons, free and esterified fatty acids, alcohols, and sterols. Results We analyzed the response of T. infestans fifth instar nymphs after exposure to different amounts either of total epicuticular lipid extracts or individual lipid fractions. Assays were performed in a circular arena, employing a binary choice test with filter papers acting as aggregation attractive sites; papers were either impregnated with a hexane-extract of the total lipids, or lipid fraction; or with the solvent. Insects were significantly aggregated around papers impregnated with the epicuticular lipid extracts. Among the lipid fractions separately tested, only the free fatty acid fraction promoted significant bug aggregation. We also investigated the response to different amounts of selected fatty acid components of this fraction; receptiveness varied with the fatty acid chain length. No response was elicited by hexadecanoic acid (C16:0, the major fatty acid component. Octadecanoic acid (C18:0 showed a significant assembling effect in the concentration range tested (0.1 to 2 insect equivalents. The very long chain hexacosanoic acid (C26:0 was significantly attractant at low doses (≤ 1 equivalent, although a repellent effect was observed at higher doses. Conclusion The detection of contact aggregation pheromones has practical

  5. Antimicrobial preservatives induce aggregation of interferon alpha-2a: the order in which preservatives induce protein aggregation is independent of the protein.

    Science.gov (United States)

    Bis, Regina L; Mallela, Krishna M G

    2014-09-10

    Antimicrobial preservatives (APs) are included in liquid multi-dose protein formulations to combat the growth of microbes and bacteria. These compounds have been shown to cause protein aggregation, which leads to serious immunogenic and toxic side-effects in patients. Our earlier work on a model protein cytochrome c (Cyt c) demonstrated that APs cause protein aggregation in a specific manner. The aim of this study is to validate the conclusions obtained from our model protein studies on a pharmaceutical protein. Interferon α-2a (IFNA2) is available as a therapeutic treatment for numerous immune-compromised disorders including leukemia and hepatitis C, and APs have been used in its multi-dose formulation. Similar to Cyt c, APs induced IFNA2 aggregation, demonstrated by the loss of soluble monomer and increase in solution turbidity. The extent of IFNA2 aggregation increased with the increase in AP concentration. IFNA2 aggregation also depended on the nature of AP, and followed the order m-cresol>phenol>benzyl alcohol>phenoxyethanol. This specific order exactly matched with that observed for the model protein Cyt c. These and previously published results on antibodies and other recombinant proteins suggest that the general mechanism by which APs induce protein aggregation may be independent of the protein.

  6. Two-photon induced photoluminescence and singlet oxygen generation from aggregated gold nanoparticles.

    Science.gov (United States)

    Jiang, Cuifeng; Zhao, Tingting; Yuan, Peiyan; Gao, Nengyue; Pan, Yanlin; Guan, Zhenping; Zhou, Na; Xu, Qing-Hua

    2013-06-12

    Metal nanoparticles have potential applications as bioimaging and photosensitizing agents. Aggregation effects are generally believed to be adverse to their biomedical applications. Here we have studied the aggregation effects on two-photon induced photoluminescence and singlet oxygen generation of Au nanospheres and Au nanorods of two different aspect ratios. Aggregated Au nanospheres and short Au nanorods were found to display enhanced two-photon induced photoluminescence and singlet oxygen generation capabilities compared to the unaggregated ones. The two-photon photoluminescence of Au nanospheres and short Au nanorods were enhanced by up to 15.0- and 2.0-fold upon aggregation, and the corresponding two-photon induced singlet oxygen generation capabilities were enhanced by 8.3 and 1.8-fold, respectively. The two-photon induced photoluminescence and singlet oxygen generation of the aggregated long Au nanorods were found to be lower than the unaggregated ones. These results support that the change in their two-photon induced photoluminescence and singlet oxygen generation originate from aggregation modulated two-photon excitation efficiency. This finding is expected to foster more biomedical applications of metal nanoparticles as Au nanoparticles normally exist in an aggregated form in the biological environments. Considering their excellent biocompatibility, high inertness, ready conjugation, and easy preparation, Au nanoparticles are expected to find more applications in two-photon imaging and two-photon photodynamic therapy.

  7. Specific fluorescent detection of fibrillar alpha-synuclein using mono- and trimethine cyanine dyes.

    Science.gov (United States)

    Volkova, K D; Kovalska, V B; Balanda, A O; Losytskyy, M Yu; Golub, A G; Vermeij, R J; Subramaniam, V; Tolmachev, O I; Yarmoluk, S M

    2008-02-01

    With the aim of searching of novel amyloid-specific fluorescent probes the ability of series of mono- and trimethine cyanines based on benzothiazole, pyridine and quinoline heterocycle end groups to recognize fibrillar formations of alpha-synuclein (ASN) was studied. For the first time it was revealed that monomethine cyanines can specifically increase their fluorescence in aggregated ASN presence. Dialkylamino-substituted monomethine cyanine T-284 and meso-ethyl-substituted trimethine cyanine SH-516 demonstrated the higher emission intensity and selectivity to aggregated ASN than classic amyloid stain Thioflavin T, and could be proposed as novel efficient fluorescent probes for fibrillar ASN detection. Studies of structure-function dependences have shown that incorporation of amino- or diethylamino- substituents into the 6-position of the benzothiazole heterocycle yields in a appearance of a selective fluorescent response to fibrillar alpha-synuclein presence. Performed calculations of molecular dimensions of studied cyanine dyes gave us the possibility to presume, that dyes bind with their long axes parallel to the fibril axis via insertion into the neat rows (so called 'channels') running along fibril.

  8. Does ocean acidification induce an upward flux of marine aggregates?

    Directory of Open Access Journals (Sweden)

    X. Mari

    2008-07-01

    Full Text Available The absorption of anthropogenic atmospheric carbon dioxide (CO2 by the ocean provokes its acidification. This acidification may alter several oceanic processes, including the export of biogenic carbon from the upper layer of the ocean, hence providing a feedback on rising atmospheric carbon concentrations. The effect of seawater acidification on transparent exopolymeric particles (TEP driven aggregation and sedimentation processes were investigated by studying the interactions between latex beads and TEP precursors collected in the lagoon of New Caledonia. A suspension of TEP and beads was prepared and the formation of mixed aggregates was monitored as a function of pH under increasing turbulence intensities. The pH was controlled by addition of sulfuric acid. Aggregation and sedimentation processes driven by TEP were drastically reduced when the pH of seawater decreases within the expected limits imposed by increased anthropogenic CO2 emissions. In addition to the diminution of TEP sticking properties, the diminution of seawater pH led to a significant increase of the TEP pool, most likely due to swollen structures. A diminution of seawater pH by 0.2 units or more led to a stop or a reversal of the downward flux of particles. If applicable to oceanic conditions, the sedimentation of marine aggregates may slow down or even stop as the pH decreases, and the vertical flux of organic carbon may reverse. This would enhance both rising atmospheric carbon and ocean acidification.

  9. Does ocean acidification induce an upward flux of marine aggregates?

    Directory of Open Access Journals (Sweden)

    X. Mari

    2008-04-01

    Full Text Available The adsorption of anthropogenic atmospheric carbon dioxide (CO2 by the ocean provokes its acidification. This acidification may alter several oceanic processes, including the export of biogenic carbon from the upper layer of the ocean, hence providing a feedback on rising atmospheric carbon concentrations. The effect of seawater acidification on transparent exopolymeric particles (TEP driven aggregation and sedimentation processes were investigated by studying the interactions between latex beads and TEP precursors collected in the lagoon of New Caledonia. A suspension of TEP and beads was prepared and the formation of mixed aggregates was monitored as a function of pH under increasing turbulence intensities. The pH was controlled by addition of sulfuric acid. Aggregation and sedimentation processes driven by TEP were drastically reduced when the pH of seawater decreases within the expected limits imposed by increased anthropogenic CO2 emissions. In addition to the diminution of TEP sticking properties, the diminution of seawater pH led to a significant increase of the TEP pool, most likely due to swollen structures. A diminution of seawater pH by 0.2 units or more led to a stop or a reversal of the downward flux of particles. If applicable to oceanic conditions, the sedimentation of marine aggregates may slow down or even stop as the pH decreases, and the vertical flux of organic carbon may reverse. This would enhance both rising atmospheric carbon and ocean acidification.

  10. Towards meso -Ester BODIPYs with Aggregation-Induced Emission Properties: The Effect of Substitution Positions

    KAUST Repository

    Chua, Ming Hui

    2015-06-17

    Three meso-ester boron dipyrromethene (BODIPY) dyes have been synthesized and functionalized with aggregation-induced emission (AIE)-active tetraphenylethene or triphenylethene moieties. It was found that functionalizing at the different positions of the BODIPY core resulted in the final dye having different emission properties in response to aggregation: from aggregation-induced quenching (ACQ) to being AIE active. X-ray crystallographic analysis was thus performed to provide an explanation for these differences. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Inducible superoxide dismutase 1 aggregation in transgenic amyotrophic lateral sclerosis mouse fibroblasts.

    Science.gov (United States)

    Turner, Bradley J; Lopes, Elizabeth C; Cheema, Surindar S

    2004-04-01

    High molecular weight detergent-insoluble complexes of superoxide dismutase 1 (SOD1) enzyme are a biochemical abnormality associated with mutant SOD1-linked familial amyotrophic lateral sclerosis (FALS). In the present study, SOD1 protein from spinal cords of transgenic FALS mice was fractionated according to solubility in saline, zwitterionic, non-ionic or anionic detergents. Both endogenous mouse SOD1 and mutant human SOD1 were least soluble in SDS, followed by NP-40 and CHAPS, with an eight-fold greater detergent resistance of mutant protein overall. Importantly, high molecular weight mutant SOD1 complexes were isolated with SDS-extraction only. To reproduce SOD1 aggregate pathology in vitro, primary fibroblasts were isolated and cultured from neonatal transgenic FALS mice. Fibroblasts expressed abundant mutant SOD1 without spontaneous aggregation over time with passage. Proteasomal inhibition of cultures using lactacystin induced dose-dependent aggregation and increased the SDS-insoluble fraction of mutant SOD1, but not endogenous SOD1. In contrast, paraquat-mediated superoxide stress in fibroblasts promoted aggregation of endogenous SOD1, but not mutant SOD1. Treatment of cultures with peroxynitrite or the copper chelator diethyldithiocarbamate (DDC) alone did not modulate aggregation. However, DDC inhibited lactacystin-induced mutant SOD1 aggregation in transgenic fibroblasts, while exogenous copper slightly augmented aggregation. These data suggest that SOD1 aggregates may derive from proteasomal or oxidation-mediated oligomerisation pathways from mutant and endogenous subunits respectively. Furthermore, these pathways may be affected by copper availability. We propose that non-neural cultures such as these transgenic fibroblasts with inducible SOD1 aggregation may be useful for rapid screening of compounds with anti-aggregation potential in FALS.

  12. Aspirin-mediated acetylation induces structural alteration and aggregation of bovine pancreatic insulin.

    Science.gov (United States)

    Yousefi, Reza; Taheri, Behnaz; Alavi, Parnian; Shahsavani, Mohammad Bagher; Asadi, Zahra; Ghahramani, Maryam; Niazi, Ali; Alavianmehr, Mohammad Mehdi; Moosavi-Movahedi, Ali Akbar

    2016-01-01

    The simple aggregation of insulin under various chemical and physical stresses is still an important challenge for both pharmaceutical production and clinical formulation. In the storage form, this protein is subjected to various chemical modifications which alter its physicochemical and aggregation properties. Aspirin (acetylsalicylic acid) which is the most widely used medicine worldwide has been indicated to acetylate a large number of proteins both in vitro and in vivo. In this study, as insulin treated with aspirin at 37°C, a significant level of acetylation was observed by flourescamine and o-phthalaldehyde assay. Also, different spectroscopic techniques, gel electrophoresis, and microscopic assessment were applied to compare the structural variation and aggregation/fibrillation propensity among acetylated and non-acetylated insulin samples. The results of spectroscopic assessments elucidate that acetylation induces insulin unfolding which is accompanied with the exposure of protein hydrophobic patches, a transition from alpha-helix to beta-sheet and increased propensity of the protein for aggregation. The kinetic studies propose that acetylation increases aggregation rate of insulin under both thermal and chemical stresses. Also, gel electrophoresis and dynamic light scattering experiments suggest that acetylation induces insulin oligomerization. Additionally, the results of Thioflavin T fluorescence study, Congo red absorption assessment, and microscopic analysis suggest that acetylation with aspirin enhances the process of insulin fibrillation. Overall, the increased susceptibility of acetylated insulin for aggregation may reflect the fact that this type of modification has significant structural destabilizing effect which finally makes the protein more vulnerable for pathogenic aggregation/fibrillation.

  13. Amyloid-β peptide (1-42) aggregation induced by copper ions under acidic conditions

    Institute of Scientific and Technical Information of China (English)

    Yannan Bin; Xia Li; Yonghui He; Shu Chen; Juan Xiang

    2013-01-01

    It is well known that the aggregation of amyloid-β peptide (Aβ) induced by Cu2+ is related to incubation time,solution pH,and temperature.In this work,the aggregation of Aβ1-42 in the presence of Cu2+ under acidic conditions was studied at different incubation time and temperature (e.g.25 and 37℃).Incubation temperature,pH,and the presence of Cu2+ in Aβ solution were confirmed to alter the morphology of aggregation (fibrils or amorphous aggregates),and the morphology is pivotal for Aβ neurotoxicity and Alzheimer disease (AD) development.The results of atomic force microscopy (AFM) indicated that the formation of Aβ fibrous morphology is preferred at lower pH,but Cu2+ induced the formation of amorphous aggregates.The aggregation rate of Aβ was increased with the elevation of temperature.These results were further confirmed by fluorescence spectroscopy and circular dichroism spectroscopy and it was found that the formation of β-sheet structure was inhibited by Cu2+ binding to Aβ.The result was consistent with AFM observation and the fibrillation process was restrained.We believe that the local charge state in hydrophilic domain of Aβ may play a dominant role in the aggregate morphology due to the strong steric hindrance.This research will be valuable for understanding of Aβ toxicity in AD.

  14. Amyloid-β peptide (1-42) aggregation induced by copper ions under acidic conditions.

    Science.gov (United States)

    Bin, Yannan; Li, Xia; He, Yonghui; Chen, Shu; Xiang, Juan

    2013-07-01

    It is well known that the aggregation of amyloid-β peptide (Aβ) induced by Cu²⁺ is related to incubation time, solution pH, and temperature. In this work, the aggregation of Aβ₁₋₄₂ in the presence of Cu²⁺ under acidic conditions was studied at different incubation time and temperature (e.g. 25 and 37°C). Incubation temperature, pH, and the presence of Cu²⁺ in Aβ solution were confirmed to alter the morphology of aggregation (fibrils or amorphous aggregates), and the morphology is pivotal for Aβ neurotoxicity and Alzheimer disease (AD) development. The results of atomic force microscopy (AFM) indicated that the formation of Aβ fibrous morphology is preferred at lower pH, but Cu²⁺ induced the formation of amorphous aggregates. The aggregation rate of Aβ was increased with the elevation of temperature. These results were further confirmed by fluorescence spectroscopy and circular dichroism spectroscopy and it was found that the formation of β-sheet structure was inhibited by Cu²⁺ binding to Aβ. The result was consistent with AFM observation and the fibrillation process was restrained. We believe that the local charge state in hydrophilic domain of Aβ may play a dominant role in the aggregate morphology due to the strong steric hindrance. This research will be valuable for understanding of Aβ toxicity in AD.

  15. Nutrient deprivation induces α-synuclein aggregation through endoplasmic reticulum stress response and SREBP2 pathway

    OpenAIRE

    Jiang, Peizhou; Gan, Ming; Lin, Wen-Lang; Yen, Shu-Hui C.

    2014-01-01

    Abnormal accumulation of filamentous α-synuclein (α-syn) in neurons, regarded as Lewy bodies (LBs), are a hallmark of Parkinson disease (PD). Although the exact mechanism(s) underlying LBs formation remains unknown, autophagy and ER stress response have emerged as two important pathways affecting α-syn aggregation. In present study we tested whether cells with the tetracycline-off inducible overexpression of α-syn and accumulating α-syn aggregates can benefit from autophagy activation elicite...

  16. Nutrient deprivation induces α-synuclein aggregation through endoplasmic reticulum stress response and SREBP2 pathway

    OpenAIRE

    Peizhou eJiang; Ming eGan; Wen-Lang eLin; Yen, Shu-Hui C.

    2014-01-01

    Abnormal accumulation of filamentous α-synuclein (α-syn) in neurons, regarded as Lewy bodies(LBs), are a hallmark of Parkinson disease (PD). Although the exact mechanism(s) underlying LBs formation remains unknown, autophagy and ER stress response have emerged as two important pathways affecting α-syn aggregation. In present study we tested whether cells with the tetracycline-off inducible overexpression of α-syn and accumulating α-syn aggregates can benefit from autophagy activation elicited...

  17. Mechanisms of the self-assembly of EAK16-family peptides into fibrillar and globular structures: molecular dynamics simulations from nano- to micro-seconds.

    Science.gov (United States)

    Emamyari, Soheila; Kargar, Faezeh; Sheikh-Hasani, Vahid; Emadi, Saeed; Fazli, Hossein

    2015-05-01

    The self-assembly of EAK16-family peptides in a bulk solution was studied using a combination of all-atom and coarse-grained molecular dynamics simulations. In addition, specified concentrations of EAK16 peptides were induced to form fibrillary or globular assemblies in vitro. The results show that the combination of all-atom molecular dynamics simulations on the single- and double-chain levels and coarse-grained simulations on the many-chain level predicts the experimental observations reasonably well. At neutral pH conditions, EAK16-I and EAK16-II assemble into fibrillary structures, whereas EAK16-IV aggregates into globular assemblies. Mechanisms of the formation of fibrillar and globular assemblies are described using the simulation results.

  18. Bacillus pasteurii urease shares with plant ureases the ability to induce aggregation of blood platelets.

    Science.gov (United States)

    Olivera-Severo, D; Wassermann, G E; Carlini, C R

    2006-08-15

    Ureases (EC 3.5.1.5) are highly homologous enzymes found in plants, bacteria and fungi. Canatoxin, an isoform Canavalia ensiformis urease, has several biological properties unrelated to its ureolytic activity, like platelet-aggregating and pro-inflammatory effects. Here, we describe that Bacillus pasteurii urease (BPU) also induces aggregation of rabbit platelets, similar to the canatoxin-induced effect (ED(50) 0.4 and 0.015 mg/mL, respectively). BPU induced-aggregation was blocked in platelets pretreated with dexamethasone and esculetin, a phospholipase A(2) and a lipoxygenase inhibitor, respectively, while platelets treated with indomethacin, a cyclooxygenase inhibitor, showed increased response to BPU. Methoxyverapamil (Ca(2+) channel blocker) and AMP (ADP antagonist) abrogated urease-induced aggregation, whereas the PAF-acether antagonist Web2170 had no effect. We concluded that platelet aggregation induced by BPU is mediated by lipoxygenase-derived eicosanoids and secretion of ADP from the platelets through a calcium-dependent mechanism. Potential relevance of these findings for bacterium-plant interactions and pathogenesis of bacterial infections are discussed.

  19. Extracellular association of APP and tau fibrils induces intracellular aggregate formation of tau.

    Science.gov (United States)

    Takahashi, Muneaki; Miyata, Haruka; Kametani, Fuyuki; Nonaka, Takashi; Akiyama, Haruhiko; Hisanaga, Shin-ichi; Hasegawa, Masato

    2015-06-01

    Alzheimer's disease (AD) is characterized by extracellular amyloid β (Aβ) deposition and intracellular tau aggregation. Many studies have indicated some association between these processes, but it remains unknown how the two pathologies are linked. In this study, we investigated whether expression of amyloid precursor protein (APP) influences extracellular seed-dependent intracellular tau accumulation in cultured cells. Treatment of tau-expressing SH-SY5Y cells with Aβ fibrils did not induce intracellular tau aggregation. On the other hand, in cells expressing both tau and APP, treatment with tau fibrils or Sarkosyl-insoluble tau from AD brains induced intracellular tau aggregation. The seed-dependent intracellular tau aggregation was not induced by expression of APP lacking the extracellular domain. The amount of phosphorylated tau aggregates in cultured cells was dose dependently elevated in response to increased levels of APP on the cell membrane. Our results indicate that the extracellular region of APP is involved in uptake of tau fibrils into cells, raising the possibility that APP, but not Aβ, influences cell-to-cell spreading of tau pathologies in AD by serving as a receptor of abnormal tau aggregates.

  20. Platelet-collagen adhesion enhances platelet aggregation induced by binding of VWF to platelets

    Energy Technology Data Exchange (ETDEWEB)

    Laduca, F.M.; Bell, W.R.; Bettigole, R.E. (Johns Hopkins Univ. School of Medicine, Baltimore, MD (USA) State Univ. of New York, Buffalo (USA))

    1987-11-01

    Ristocetin-induced platelet aggregation (RIPA) was evaluated in the presence of platelet-collagen adhesion. RIPA of normal donor platelet-rich plasma (PRP) demonstrated a primary wave of aggregation mediated by the binding of von Willebrand factor (VWF) to platelets and a secondary aggregation wave, due to a platelet-release reaction, initiated by VWF-platelet binding and inhibitable by acetylsalicylic acid (ASA). An enhanced RIPA was observed in PRP samples to which collagen had been previously added. These subthreshold concentrations of collagen, which by themselves were insufficient to induce aggregation, caused measurable platelet-collagen adhesion. Subthreshold collagen did not cause microplatelet aggregation, platelet release of ({sup 3}H)serotonin, or alter the dose-responsive binding of {sup 125}I-labeled VWF to platelets, which occurred with increasing ristocetin concentrations. However, ASA inhibition of the platelet release reaction prevented collagen-enhanced RIPA. These results demonstrate that platelet-collagen adhesion altered the platelet-release reaction induced by the binding of VWF to platelets causing a platelet-release reaction at a level of VWF-platelet binding not normally initiating a secondary aggregation. These findings suggest that platelet-collagen adhesion enhances platelet function mediated by VWF.

  1. Triggering of inflammasome by aggregated α-synuclein, an inflammatory response in synucleinopathies.

    Directory of Open Access Journals (Sweden)

    Gaia Codolo

    Full Text Available Parkinson's disease (PD is one of the most common neurodegenerative diseases. It is characterized by the loss of dopaminergic neurons in the substantia nigra pars compacta of the brain. Another feature is represented by the formation in these cells of inclusions called Lewy bodies (LB, principally constituted by fibrillar α-synuclein (αSyn. This protein is considered a key element in the aetiology of a group of neurodegenerative disorders termed synucleinopathies, which include PD, but the cellular and molecular mechanisms involved are not completely clear. It is established that the inflammatory process plays a crucial role in the pathogenesis and/or progression of PD; moreover, it is known that aggregated αSyn, released by neurons, activates microglia cells to produce pro-inflammatory mediators, such as IL-1β. IL-1β is one of the strongest pro-inflammatory cytokines; it is produced as an inactive mediator, and its maturation and activation requires inflammasome activation. In particular, the NLRP3 inflammasome is activated by a wide variety of stimuli, among which are crystallized and particulate material. In this work, we investigated the possibility that IL-1β production, induced by fibrillar αSyn, is involved the inflammasome activation. We demonstrated the competence of monomeric and fibrillar αSyn to induce synthesis of IL-1β, through TLR2 interaction; we found that the secretion of the mature cytokine was a peculiarity of the fibrillated protein. Moreover, we observed that the secretion of IL-1β involves NLRP3 inflammasome activation. The latter relies on the phagocytosis of fibrillar αSyn, followed by increased ROS production and cathepsin B release into the cytosol. Taken together, our data support the notion that fibrillar αSyn, likely released by neuronal degeneration, acts as an endogenous trigger inducing a strong inflammatory response in PD.

  2. Cu(II) mediates kinetically distinct, non-amyloidogenic aggregation of amyloid-β peptides

    DEFF Research Database (Denmark)

    Pedersen, Jeppe T.; Østergaard, Jesper; Rozlosnik, Noemi

    2011-01-01

    shifted from fibrillar to non-fibrillar at increasing Cu(II):Aβ ratios. We observed dynamic morphological changes of the aggregates, and that the formation of spherical aggregates appeared to be a common morphological end point independent on the Cu(II) concentration. Experiments with Aβ1-42 were...... compatible with the conclusions for Aβ1-40 even though the low solubility of Aβ1-42 precluded examination under the same conditions as for the Aβ1-40. Experiments with Aβ1-16 and Aβ1-28 showed that other parts than the Cu(II)-binding His residues were important for Cu(II)-inducedaggregation. Based...... on this study we propose three mechanistic models for the Cu(II)-induced aggregation of Aβ1-40 depending on the Cu(II):Aβ ratio, and identify key reaction steps that may be feasible targets for preventing Cu(II)-associated aggregation or toxicity in Alzheimer disease. © 2011 by The American Society...

  3. Inhibitory effect of copper nanoparticles on rosin modified surfactant induced aggregation of lysozyme.

    Science.gov (United States)

    Ishtikhar, Mohd; Usmani, Salman Sadullah; Gull, Nuzhat; Badr, Gamal; Mahmoud, Mohamed H; Khan, Rizwan Hasan

    2015-01-01

    Protein aggregation is associated with many serious diseases including Parkinson's and Alzheimer's. Protein aggregation is a primary problem related with the health of industrial workers who work with the surfactants, metal ions, and cosolvents. We have synthesized rosin-based surfactants, i.e., quaternary amines of rosin diethylaminoethyl esters (QRMAE), which is an ester of rosin acid with polyethylene glycol monomethyl ether. Here, we report the thermal aggregation of lysozyme induced by QRMAE at 65 °C and pH 7.4 for a given time period in which amorphous aggregates are formed and confirm that copper-nanoparticles have the ability to inhibit QRMAE-induced aggregation compared with zinc and silver-nanoparticles. Aggregation experiments was evaluated using several spectroscopic methods and dye binding assay, such as turbidity, Rayleigh light scattering, 1-anilino-8-naphthalene sulfonate (ANS), Thioflavin T (Th T), congo red (CR) and circular dichroism (CD), that was further supported by scanning electron microscopy (SEM) and SEM with EDX. The therapeutic use of nanoparticles and the fact that rosin possesses excellent film-forming properties, and that its derivatives have pharmaceuticals application such as micro encapsulation, coating and film forming, it's matrix materials are used for sustained and controlled release tablets, renders importance and application to the present study.

  4. UV irradiation induced transformation of TiO2 nanoparticles in water: aggregation and photoreactivity.

    Science.gov (United States)

    Sun, Jing; Guo, Liang-Hong; Zhang, Hui; Zhao, Lixia

    2014-10-21

    Transformation of nanomaterials in aqueous environment has significant impact on their behavior in engineered application and natural system. In this paper, UV irradiation induced transformation of TiO2 nanoparticles in aqueous solutions was demonstrated, and its effect on the aggregation and photocatalytic reactivity of TiO2 was investigated. UV irradiation of a TiO2 nanoparticle suspension accelerated nanoparticle aggregation that was dependent on the irradiation duration. The aggregation rate increased from UV irradiation which might be responsible for the change of surface charge and aggregation rate. UV irradiation also changed the photocatalytic degradation rate of Rhodamine B by TiO2, which initially increased with irradiation time, then decreased. Based on the photoluminescence decay and photocurrent collection data, the change was attributed to the variation in interparticle charge transfer kinetics. These results highlight the importance of light irradiation on the transformation and reactivity of TiO2 nanomaterials.

  5. Raman studies of gluten proteins aggregation induced by dietary fibres.

    Science.gov (United States)

    Nawrocka, Agnieszka; Szymańska-Chargot, Monika; Miś, Antoni; Kowalski, Radosław; Gruszecki, Wiesław I

    2016-03-01

    Interactions between gluten proteins and dietary fibre preparations are crucial in the baking industry. The addition of dietary fibre to bread causes significant reduction in its quality which is influenced by changes in the structure of gluten proteins. Fourier transform Raman spectroscopy was applied to determine changes in the structure of gluten proteins modified by seven dietary fibres. The commercially available gluten proteins without starch were mixed with the fibres in three concentrations: 3%, 6% and 9%. The obtained results showed that all fibres, regardless of their origin, caused the same kind of changes i.e. decrease in the α-helix content with a simultaneous increase in the content of antiparallel-β-sheet. The results indicated that presence of cellulose was the probable cause of these changes, and lead to aggregation or abnormal folding of the gluten proteins. Other changes observed in the gluten structure concerning β-structures, conformation of disulphide bridges, and aromatic amino acid environment, depended on the fibres chemical composition.

  6. Anti-aggregation property of thymoquinone induced by copper-nanoparticles: A biophysical approach.

    Science.gov (United States)

    Ishtikhar, Mohd; Rahisuddin; Khan, Mohsin Vahid; Khan, Rizwan Hasan

    2016-12-01

    Quaternary amine of diethylaminoethyl rosin ester (QRMAE), chemically synthesized by rosin modified biocompatible cationic surfactant, has various biological applications in the field of pharmacy as well as used as food product additive. Here, we report biophysical insights in to the interaction mechanism of thymoquinone (TQ), copper nanoparticles (Cu-NPs) and QRMAE with bovine serum albumin (BSA) individually and also in complexes forms to determine their competitive binding affinity. We have also studied the aggregation-inhibition effects of Cu-NPs and TQ individually, as well as in complexes form in the presence of QRMAE surfactant which is responsible for induction of amorphous aggregates in BSA within hours of incubation at 65°C and physiological pH. The formation of aggregates was established by using various spectroscopic methods and dye binding assay. The circular dichroism (CD) spectroscopy showed that QRMAE significantly altered the secondary structure of BSA. However, the presence of TQ and Cu-NPs restricted the aggregation process which was observed to be more efficient when TQ and Cu-NPs were present together. This study provides very significant competitive binding results of QRMAE, Cu-NPs, TQ and protein aggregation behavior at higher temperature which was induced by rosin surfactant QRMAE, and protein aggregation process was inhibited by Cu-NPs, TQ individually and together. Therefore, our finding suggested that rosin surfactant QRMAE has high propensity to induce amorphous aggregation in BSA which was favored at elevated temperature and higher concentration of the protein. When BSA-QRMAE sample was incubated in the presence Cu-NPs under similar condition, the aggregation propensity reduced, and drastically inhibited by TQ and Cu-NPs together. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Effect of polymer aggregation on the open circuit voltage in organic photovoltaic cells: aggregation-induced conjugated polymer gel and its application for preventing open circuit voltage drop.

    Science.gov (United States)

    Kim, Bong-Gi; Jeong, Eun Jeong; Park, Hui Joon; Bilby, David; Guo, L Jay; Kim, Jinsang

    2011-03-01

    To investigate the structure-dependent aggregation behavior of conjugated polymers and the effect of aggregation on the device performance of conjugated polymer photovoltaic cells, new conjugated polymers (PVTT and CN-PVTT) having the same regioregularity but different intermolecular packing were prepared and characterized by means of UV-vis spectroscopy and atomic force microscopy (AFM). Photovoltaic devices were prepared with these polymers under different polymer-aggregate conditions. Polymer aggregation induced by thermal annealing increases the short circuit current but provides no advantage in the overall power conversion efficiency because of a decrease in the open circuit voltage. The device fabricated from a pre-aggregated polymer suspension, acquired from ultrasonic agitation of a conjugated polymer gel, showed enhanced performance because of better phase separation and reduced recombination between polymer/PCBM.

  8. Mechanism by which an elevation of extracellular glucide concentration induces pigment aggregation in medaka melanophores.

    Science.gov (United States)

    Fujii, Ryozo; Goda, Makoto; Oshima, Noriko

    2002-09-15

    An increase in glucide concentration induces pigment aggregation in melanophores in the skin on scales isolated from the medaka, Oryzias latipes. In this study, hexoses (including the common D-isomers of glucose, galactose, fructose, and mannitol) were examined. Denervated melanophores were refractory to such stimuli. An alpha-adrenolytic agent, phentolamine, effectively blocked the responses of normally innervated melanophores. The pigment-aggregating action of glucide was inhibited by withdrawal of Ca(2+) and Mg(2+) ions from the medium. A specific blocker of voltage-dependent N-type Ca(2+) channels, the omega-conotoxin GVIA, also inhibited the glucide action. The conclusion derived is that an elevation of glucide levels acts to open Ca(2+) channels of presynaptic membranes of sympathetic postganglionic fibers, and the consequently released adrenergic transmitter acts on the effector cells to induce the aggregation of their pigmentary organelles. Copyright 2002 Wiley-Liss, Inc.

  9. Patterns of gravity induced aggregate migration during casting of fluid concretes

    Energy Technology Data Exchange (ETDEWEB)

    Spangenberg, J. [Department of Mechanical Engineering, Technical University of Denmark (DTU) (Denmark); Roussel, N., E-mail: Nicolas.roussel@lcpc.fr [Universite Paris Est, Laboratoire Central des Ponts et Chaussees (LCPC) (France); Hattel, J.H. [Department of Mechanical Engineering, Technical University of Denmark (DTU) (Denmark); Sarmiento, E.V.; Zirgulis, G. [Department of Structural Engineering, Norwegian University of Science and Technology (NTNU) (Norway); Geiker, M.R. [Department of Structural Engineering, Norwegian University of Science and Technology (NTNU) (Norway); Department of Civil Engineering, Technical University of Denmark (DTU) (Denmark)

    2012-12-15

    In this paper, aggregate migration patterns during fluid concrete castings are studied through experiments, dimensionless approach and numerical modeling. The experimental results obtained on two beams show that gravity induced migration is primarily affecting the coarsest aggregates resulting in a decrease of coarse aggregates volume fraction with the horizontal distance from the pouring point and in a puzzling vertical multi-layer structure. The origin of this multi layer structure is discussed and analyzed with the help of numerical simulations of free surface flow. Our results suggest that it finds its origin in the non Newtonian nature of fresh concrete and that increasing casting rate shall decrease the magnitude of gravity induced particle migration.

  10. Fractal aggregates induced by liposome-liposome interaction in the presence of Ca2+.

    Science.gov (United States)

    Sabín, J; Prieto, G; Ruso, J M; Sarmiento, F

    2007-10-01

    We present a study of the fractal dimension of clusters of large unilamellar vesicles (LUVs) formed by egg yolk phosphatidylcholine (EYPC), dimyristoylphosphocholine (DMPC) and dipalmitoylphosphocholine (DPPC) induced by Ca2+ . Fractal dimensions were calculated by application of two methods, measuring the angular dependency of the light scattered by the clusters and following the evolution of the cluster size. In all cases, the fractal dimensions fell in the range from 2.1 to 1.8, corresponding to two regimes: diffusion-limited cluster aggregation (DLCA) and reaction-limited cluster aggregation (RLCA). Whereas DMPC clusters showed a typical transition from the RLCA to the DLCA aggregation, EYPC exhibited an unusual behaviour, since the aggregation was limited for a higher concentration than the critical aggregation concentration. The behaviour of DPPC was intermediate, with a transition from the RLCA to the DLCA regimes with cluster sizes depending on Ca2+ concentration. Studies on the reversibility of the aggregates show that EYPC and DPPC clusters can be re-dispersed by dilution with water. DMPC does not present reversibility. Reversibility is evidence of the existence of secondary minima in the DLVO potential between two liposomes. To predict these secondary minima, a correction of the DLVO model was necessary taking into account a repulsive force of hydration.

  11. Photo-induced reduction of Noble metal ions to metal nanoparticles on tubular J-aggregates

    Directory of Open Access Journals (Sweden)

    Stefan Kirstein

    2006-01-01

    Full Text Available Palladium and silver nanoparticles are formed on the surface of tubular J-aggregates of an amphiphilic tetrachlorobenzimidacarbocyanine dye by reduction of the respective metal cations in aqueous solution. Upon addition of the palladium complex Na2PdCl4 to the aggregate solution, the absorption spectrum shows significant changes which is explained by partial destruction of the aggregates. Cryogenic transmission electron microscopy (cryo-TEM images show that the tubular J-aggregates are randomly covered by well-separated Pd nanoparticles of approximately 1–3 nm size. Larger particles and higher particle density along the aggregates are obtained when an auxiliary reducing agent is added to the solution. The presence of the metallic particles leads to efficient fluorescence quenching giving clear evidence for super quenching. In similar experiments using AgNO3, silver nanoparticles are grown which are larger in size but less dense distributed along the aggregates. At least in the case of the silver particles, the spontaneous formation of metal nanoparticles is assumed to be initiated by a photo-induced electron transfer process (PET.

  12. The clinical usefulness of the platelet aggregation test for the diagnosis of heparin-induced thrombocytopenia

    NARCIS (Netherlands)

    Chong, B H; Burgess, J; Ismail, F

    1993-01-01

    The platelet aggregation test is widely used for the diagnosis of heparin-induced thrombocytopenia (HIT), a potentially serious complication of heparin therapy. We have evaluated its sensitivity and specificity in comparison with those of the 14C-serotonin release test. The sensitivity of the platel

  13. The inhibitory activity of ginsenoside Rp4 in adenosine diphosphate-induced platelet aggregation

    Directory of Open Access Journals (Sweden)

    Young-Min Son

    2017-01-01

    Conclusion: G-Rp4 significantly inhibited ADP-induced platelet aggregation and this is mediated via modulating the intracellular signaling molecules. These results indicate that G-Rp4 could be a potential candidate as a therapeutic agent against platelet-related cardiovascular diseases.

  14. Enzyme-induced aggregation of whey proteins with Bacillus licheniformis protease

    NARCIS (Netherlands)

    Creusot, N.P.

    2006-01-01

    Whey proteins are commonly used as ingredient in food. In relation with the gelation properties of whey proteins, this thesis deals with understanding the mechanism of peptide-induced aggregation of whey protein hydrolysates made with Bacillus licheniformis protease (BLP). The results show that BLP

  15. Aggregation of phospholipid vesicles induced by the ribosome inactivating protein saporin.

    Science.gov (United States)

    Hao, Q; Yan, L; Yang, H; Zhang, Y; Gao, G; Yao, Q; Li, Q

    1996-04-01

    Saporin-S6(SO-6) is a single chain ribosome inactivating protein, which can inhibit protein synthesis by inactivating eukaryotic ribosomes. The interaction of SO-6 with phospholipid model systems was described. SO-6 can specifically interact with negatively-charged phospholipid vesicles and it induces the aggregation of the lipid vesicles. The kinetics of the vesicle aggregation induced by SO-6 was studied. The saturating protein/lipid molar ratio was determined to be 1:100 based on titration experiments. The aggregation is dependent on the temperature in a range that was many times higher than the phase transition temperature of the phospholipid. The effect of pH on the aggregation of the vesicles can not be explained by simple deprotonation of side chain amino groups of the protein, and may be related to conformational changes of the protein. The maintenance of physiological ionic strength was required for the aggregation of SO-6 with vesicles. Finally, the interaction was prompted by Ca2+ ions, and was totally inhibited by EDTA, which suggests that SO-6 may interact with phospholipid vesicles in a Ca(2+)-dependent manner.

  16. Theoretical study on electromagnetically induced transparency in molecular aggregate models using quantum Liouville equation method

    Energy Technology Data Exchange (ETDEWEB)

    Minami, Takuya; Nakano, Masayoshi [Department of Materials Engineering Science, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531 (Japan)

    2015-01-22

    Electromagnetically induced transparency (EIT), which is known as an efficient control method of optical absorption property, is investigated using the polarizability spectra and population dynamics obtained by solving the quantum Liouville equation. In order to clarify the intermolecular interaction effect on EIT, we examine several molecular aggregate models composed of three-state monomers with the dipole-dipole coupling. On the basis of the present results, we discuss the applicability of EIT in molecular aggregate systems to a new type of optical switch.

  17. PPARγ ligands decrease hydrostatic pressure-induced platelet aggregation and proinflammatory activity.

    Directory of Open Access Journals (Sweden)

    Fang Rao

    Full Text Available Hypertension is known to be associated with platelet overactivity, but the direct effects of hydrostatic pressure on platelet function remain unclear. The present study sought to investigate whether elevated hydrostatic pressure is responsible for platelet activation and to address the potential role of peroxisome proliferator-activated receptor-γ (PPARγ. We observed that hypertensive patients had significantly higher platelet volume and rate of ADP-induced platelets aggregation compared to the controls. In vitro, Primary human platelets were cultured under standard (0 mmHg or increased (120, 180, 240 mmHg hydrostatic pressure for 18 h. Exposure to elevated pressure was associated with morphological changes in platelets. Platelet aggregation and PAC-1 (the active confirmation of GPIIb/IIIa binding were increased, CD40L was translocated from cytoplasm to the surface of platelet and soluble CD40L (sCD40L was released into the medium in response to elevated hydrostatic pressure (180 and 240 mmHg. The PPARγ activity was up-regulated as the pressure was increased from 120 mmHg to 180 mmHg. Pressure-induced platelet aggregation, PAC-1 binding, and translocation and release of CD40L were all attenuated by the PPARγ agonist Thiazolidinediones (TZDs. These results demonstrate that platelet activation and aggregation are increased by exposure to elevated pressure and that PPARγ may modulate platelet activation induced by high hydrostatic pressure.

  18. Micelle depletion-induced vs. micelle-mediated aggregation in nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Ray, D., E-mail: debes.phys@gmail.com; Aswal, V. K. [Solid State Physics Division, Bhabha Atomic Research Centre, Mumbai 400 085 (India)

    2015-06-24

    The phase behavior anionic silica nanoparticle (Ludox LS30) with non-ionic surfactants decaethylene glycol monododecylether (C12E10) and cationic dodecyltrimethyl ammonium bromide (DTAB) in aqueous electrolyte solution has been studied by small-angle neutron scattering (SANS). The measurements have been carried out for fixed concentrations of nanoparticle (1 wt%), surfactants (1 wt%) and electrolyte (0.1 M NaCl). Each of these nanoparticle–surfactant systems has been examined for different contrast conditions where individual components (nanoparticle or surfactant) are made visible. It is observed that the nanoparticle-micelle system in both the cases lead to the aggregation of nanoparticles. The aggregation is found to be micelle depletion-induced for C12E10 whereas micelle-mediated aggregation for DTAB. Interestingly, it is also found that phase behavior of mixed surfactant (C12E10 + DTAB) system is similar to that of C12E10 (unlike DTAB) micelles with nanoparticles.

  19. Observation of fine particle aggregating behavior induced by high intensity conditioning using high speed CCD

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    The aggregating behavior between bubbles and particles induced by high intensity conditioning (HIC) was studied using high speed CCD technique. Bubble size measurement was conducted, and the attachment behavior between bubbles and particles in HIC cell and flotation cell were observed. The results show that in HIC cell, high intensity conditioning creates an advantage environment for the formation of small size bubble due to hydrodynamic cavitations, and these fine bubbles have high probability of bubble-particle collision,which will enhance fine particle flotation. The bubble-particle attachment experiments indicate that in high intensity conditioning cell, a lot of fine bubbles are produced in situ on the surface of fine particles, and most of fine particles are aggregated under the bridging action of fine bubbles. The observation of bubble-particle interaction in flotation cell illustrates that aggregates created by HIC can be loaded more easily by big air bubble in flotation cell than those created by normal conditioning.

  20. N-acetyl-L-cysteine prevents stress-induced desmin aggregation in cellular models of desminopathy.

    Directory of Open Access Journals (Sweden)

    Bertrand-David Segard

    Full Text Available Mutations within the human desmin gene are responsible for a subcategory of myofibrillar myopathies called desminopathies. However, a single inherited mutation can produce different phenotypes within a family, suggesting that environmental factors influence disease states. Although several mouse models have been used to investigate organ-specific desminopathies, a more general mechanistic perspective is required to advance our knowledge toward patient treatment. To improve our understanding of disease pathology, we have developed cellular models to observe desmin behaviour in early stages of disease pathology, e.g., upon formation of cytoplasmic desmin aggregates, within an isogenic background. We cloned the wildtype and three mutant desmin cDNAs using a Tet-On Advanced® expression system in C2C12 cells. Mutations were selected based on positioning within desmin and capacity to form aggregates in transient experiments, as follows: DesS46Y (head domain; low aggregation, DesD399Y (central rod domain; high aggregation, and DesS460I (tail domain; moderate aggregation. Introduction of these proteins into a C2C12 background permitted us to compare between desmin variants as well as to determine the role of external stress on aggregation. Three different types of stress, likely encountered during muscle activity, were introduced to the cell models-thermal (heat shock, redox-associated (H2O2 and cadmium chloride, and mechanical (stretching stresses-after which aggregation was measured. Cells containing variant DesD399Y were more sensitive to stress, leading to marked cytoplasmic perinuclear aggregations. We then evaluated the capacity of biochemical compounds to prevent this aggregation, applying dexamethasone (an inducer of heat shock proteins, fisetin or N-acetyl-L-cysteine (antioxidants before stress induction. Interestingly, N-acetyl-L-cysteine pre-treatment prevented DesD399Y aggregation during most stress. N-acetyl-L-cysteine has recently been

  1. A 31-residue peptide induces aggregation of tau's microtubule-binding region in cells

    Science.gov (United States)

    Stöhr, Jan; Wu, Haifan; Nick, Mimi; Wu, Yibing; Bhate, Manasi; Condello, Carlo; Johnson, Noah; Rodgers, Jeffrey; Lemmin, Thomas; Acharya, Srabasti; Becker, Julia; Robinson, Kathleen; Kelly, Mark J. S.; Gai, Feng; Stubbs, Gerald; Prusiner, Stanley B.; Degrado, William F.

    2017-09-01

    The self-propagation of misfolded conformations of tau underlies neurodegenerative diseases, including Alzheimer's. There is considerable interest in discovering the minimal sequence and active conformational nucleus that defines this self-propagating event. The microtubule-binding region, spanning residues 244-372, reproduces much of the aggregation behaviour of tau in cells and animal models. Further dissection of the amyloid-forming region to a hexapeptide from the third microtubule-binding repeat resulted in a peptide that rapidly forms fibrils in vitro. We show that this peptide lacks the ability to seed aggregation of tau244-372 in cells. However, as the hexapeptide is gradually extended to 31 residues, the peptides aggregate more slowly and gain potent activity to induce aggregation of tau244-372 in cells. X-ray fibre diffraction, hydrogen-deuterium exchange and solid-state NMR studies map the beta-forming region to a 25-residue sequence. Thus, the nucleus for self-propagating aggregation of tau244-372 in cells is packaged in a remarkably small peptide.

  2. Sorbitol crystallization-induced aggregation in frozen mAb formulations.

    Science.gov (United States)

    Piedmonte, Deirdre Murphy; Hair, Alison; Baker, Priti; Brych, Lejla; Nagapudi, Karthik; Lin, Hong; Cao, Wenjin; Hershenson, Susan; Ratnaswamy, Gayathri

    2015-02-01

    Sorbitol crystallization-induced aggregation of mAbs in the frozen state was evaluated. The effect of protein aggregation resulting from sorbitol crystallization was measured as a function of formulation variables such as protein concentration and pH. Long-term studies were performed on both IgG1 and IgG2 mAbs over the protein concentration range of 0.1-120 mg/mL. Protein aggregation was measured by size-exclusion HPLC (SE-HPLC) and further characterized by capillary-electrophoresis SDS. Sorbitol crystallization was monitored and characterized by subambient differential scanning calorimetry and X-ray diffraction. Aggregation due to sorbitol crystallization is inversely proportional to both protein concentration and formulation pH. At high protein concentrations, sorbitol crystallization was suppressed, and minimal aggregation by SE-HPLC resulted, presumably because of self-stabilization of the mAbs. The glass transition temperature (Tg ') and fragility index measurements were made to assess the influence of molecular mobility on the crystallization of sorbitol. Tg ' increased with increasing protein concentration for both mAbs. The fragility index decreased with increasing protein concentration, suggesting that it is increasingly difficult for sorbitol to crystallize at high protein concentrations.

  3. Salt-induced aggregation of gold nanoparticles for photoacoustic imaging and photothermal therapy of cancer

    Science.gov (United States)

    Sun, Mengmeng; Liu, Fei; Zhu, Yukun; Wang, Wansheng; Hu, Jin; Liu, Jing; Dai, Zhifei; Wang, Kun; Wei, Yen; Bai, Jing; Gao, Weiping

    2016-02-01

    The challenge in photothermal therapy (PTT) is to develop biocompatible photothermal transducers that can absorb and convert near-infrared (NIR) light into heat with high efficiency. Herein, we report salt-induced aggregation of gold nanoparticles (GNPs) in biological media to form highly efficient and biocompatible NIR photothermal transducers for PTT and photothermal/photoacoustic (PT/PA) imaging of cancer. The GNP depots in situ formed by salt-induced aggregation of GNPs show strong NIR absorption induced by plasmonic coupling between adjacent GNPs and very high photothermal conversion efficiency (52%), enabling photothermal destruction of tumor cells. More interestingly, GNPs in situ aggregate in tumors to form GNP depots, enabling simultaneous PT/PA imaging and PTT of the tumors. These findings may provide a simple and effective way to develop a new class of intelligent and biocompatible NIR photothermal transducers with high efficiency for PT/PA imaging and PTT.The challenge in photothermal therapy (PTT) is to develop biocompatible photothermal transducers that can absorb and convert near-infrared (NIR) light into heat with high efficiency. Herein, we report salt-induced aggregation of gold nanoparticles (GNPs) in biological media to form highly efficient and biocompatible NIR photothermal transducers for PTT and photothermal/photoacoustic (PT/PA) imaging of cancer. The GNP depots in situ formed by salt-induced aggregation of GNPs show strong NIR absorption induced by plasmonic coupling between adjacent GNPs and very high photothermal conversion efficiency (52%), enabling photothermal destruction of tumor cells. More interestingly, GNPs in situ aggregate in tumors to form GNP depots, enabling simultaneous PT/PA imaging and PTT of the tumors. These findings may provide a simple and effective way to develop a new class of intelligent and biocompatible NIR photothermal transducers with high efficiency for PT/PA imaging and PTT. Electronic supplementary

  4. Inhibitory Effect of Waste Glass Powder on ASR Expansion Induced by Waste Glass Aggregate

    Directory of Open Access Journals (Sweden)

    Shuhua Liu

    2015-10-01

    Full Text Available Detailed research is carried out to ascertain the inhibitory effect of waste glass powder (WGP on alkali-silica reaction (ASR expansion induced by waste glass aggregate in this paper. The alkali reactivity of waste glass aggregate is examined by two methods in accordance with the China Test Code SL352-2006. The potential of WGP to control the ASR expansion is determined in terms of mean diameter, specific surface area, content of WGP and curing temperature. Two mathematical models are developed to estimate the inhibitory efficiency of WGP. These studies show that there is ASR risk with an ASR expansion rate over 0.2% when the sand contains more than 30% glass aggregate. However, WGP can effectively control the ASR expansion and inhibit the expansion rate induced by the glass aggregate to be under 0.1%. The two mathematical models have good simulation results, which can be used to evaluate the inhibitory effect of WGP on ASR risk.

  5. Inhibitory Effect of Waste Glass Powder on ASR Expansion Induced by Waste Glass Aggregate

    Science.gov (United States)

    Liu, Shuhua; Wang, Shu; Tang, Wan; Hu, Ningning; Wei, Jianpeng

    2015-01-01

    Detailed research is carried out to ascertain the inhibitory effect of waste glass powder (WGP) on alkali-silica reaction (ASR) expansion induced by waste glass aggregate in this paper. The alkali reactivity of waste glass aggregate is examined by two methods in accordance with the China Test Code SL352-2006. The potential of WGP to control the ASR expansion is determined in terms of mean diameter, specific surface area, content of WGP and curing temperature. Two mathematical models are developed to estimate the inhibitory efficiency of WGP. These studies show that there is ASR risk with an ASR expansion rate over 0.2% when the sand contains more than 30% glass aggregate. However, WGP can effectively control the ASR expansion and inhibit the expansion rate induced by the glass aggregate to be under 0.1%. The two mathematical models have good simulation results, which can be used to evaluate the inhibitory effect of WGP on ASR risk. PMID:28793603

  6. Formaldehyde at low concentration induces protein tau into globular amyloid-like aggregates in vitro and in vivo.

    Directory of Open Access Journals (Sweden)

    Chun Lai Nie

    Full Text Available Recent studies have shown that neurodegeneration is closely related to misfolding and aggregation of neuronal tau. Our previous results show that neuronal tau aggregates in formaldehyde solution and that aggregated tau induces apoptosis of SH-SY5Y and hippocampal cells. In the present study, based on atomic force microscopy (AFM observation, we have found that formaldehyde at low concentrations induces tau polymerization whilst acetaldehyde does not. Neuronal tau misfolds and aggregates into globular-like polymers in 0.01-0.1% formaldehyde solutions. Apart from globular-like aggregation, no fibril-like polymerization was observed when the protein was incubated with formaldehyde for 15 days. SDS-PAGE results also exhibit tau polymerizing in the presence of formaldehyde. Under the same experimental conditions, polymerization of bovine serum albumin (BSA or alpha-synuclein was not markedly detected. Kinetic study shows that tau significantly misfolds and polymerizes in 60 minutes in 0.1% formaldehyde solution. However, presence of 10% methanol prevents protein tau from polymerization. This suggests that formaldehyde polymerization is involved in tau aggregation. Such aggregation process is probably linked to the tau's special "worm-like" structure, which leaves the epsilon-amino groups of Lys and thiol groups of Cys exposed to the exterior. Such a structure can easily bond to formaldehyde molecules in vitro and in vivo. Polymerizing of formaldehyde itself results in aggregation of protein tau. Immunocytochemistry and thioflavin S staining of both endogenous and exogenous tau in the presence of formaldehyde at low concentrations in the cell culture have shown that formaldehyde can induce tau into amyloid-like aggregates in vivo during apoptosis. The significant protein tau aggregation induced by formaldehyde and the severe toxicity of the aggregated tau to neural cells may suggest that toxicity of methanol and formaldehyde ingestion is related to

  7. Membrane-Mediated Aggregation of Curvature-Inducing Nematogens and Membrane Tubulation

    OpenAIRE

    N Ramakrishnan; Sunil Kumar, P.B.; Ipsen, John H.

    2013-01-01

    The shapes of cell membranes are largely regulated by membrane-associated, curvature-active proteins. Herein, we use a numerical model of the membrane, recently developed by us, with elongated membrane inclusions possessing spontaneous directional curvatures that could be different along, and perpendicular to, the membrane’s long axis. We show that, due to membrane-mediated interactions, these curvature-inducing membrane-nematogens can aggregate spontaneously, even at low concentrations, and ...

  8. Melatonin inhibits maneb-induced aggregation of alpha-synuclein in rat pheochromocytoma cells.

    Science.gov (United States)

    Ishido, Masami

    2007-03-01

    Melatonin, a secretory product of the pineal gland, is involved in the regulation of circadian and seasonal rhythms, in oncostasis, and in inducing osteoblast differentiation. Furthermore, melatonin is a scavenger of a number of reactive oxygen and reactive nitrogen species both in vitro and in vivo. In this study, the antioxidant nature of melatonin was shown to prevent cultured neural cells from apoptosis induced by endocrine-disrupting chemical, maneb. The neurotoxicity of the fungicide, maneb (1 microg/mL), on the PC12 cells was elicited through apoptotic cell death, concomitant with aggregation of alpha-synuclein, a feature of Parkinson's disease. Activation of caspase-3/7 was associated with this process. A fluorescence rationing technique using a mitochondrial dye revealed that maneb altered the mitochondrial membrane potential of the neural cells. However, melatonin (1 nm) largely prevented the neural cells from the neural toxicant by inhibition of both caspase-3/7 activation and disruption of the mitochondrial transmembrane potential. Furthermore, aggregation of alpha-synuclein by maneb was also inhibited by melatonin. Thus, melatonin prevents maneb-induced neurodegeneration at a nighttime physiological blood concentration, most likely by inhibiting the aggregation of alpha-synuclein as well as preventing mitochondrial dysfunction in PC 12 cells.

  9. Improved Adhesion and Compliancy of Hierarchical Fibrillar Adhesives.

    Science.gov (United States)

    Li, Yasong; Gates, Byron D; Menon, Carlo

    2015-08-01

    The gecko relies on van der Waals forces to cling onto surfaces with a variety of topography and composition. The hierarchical fibrillar structures on their climbing feet, ranging from mesoscale to nanoscale, are hypothesized to be key elements for the animal to conquer both smooth and rough surfaces. An epoxy-based artificial hierarchical fibrillar adhesive was prepared to study the influence of the hierarchical structures on the properties of a dry adhesive. The presented experiments highlight the advantages of a hierarchical structure despite a reduction of overall density and aspect ratio of nanofibrils. In contrast to an adhesive containing only nanometer-size fibrils, the hierarchical fibrillar adhesives exhibited a higher adhesion force and better compliancy when tested on an identical substrate.

  10. Friction Properties of Bio-mimetic Nano-fibrillar Arrays

    Institute of Scientific and Technical Information of China (English)

    CHEN Shao-Hua; MI Chun-Hui

    2009-01-01

    Nano-fibrillar arrays are fabricated using polystyrene materials. The average diameter of each fiber is about 300 nm.Experiments show that such a fibrillar surface possesses a relatively hydrophobic feature with a water contact angle of 142°.Nanoscale friction properties are mainly focused on.It is found that the friction force of polystyrene nano-fibrillar surfaces is obviously enhanced in contrast to polystyrene smooth surfaces.The apparent coefficient of friction increases with the applied load, but is independent of the scanning speed.An interesting observation is that the friction force increases almost linearly with the real contact area, which abides by the fundamental Bowden-Tabor law of nano-scale friction.

  11. Laminopathy-inducing lamin A mutants can induce redistribution of lamin binding proteins into nuclear aggregates.

    Science.gov (United States)

    Hübner, S; Eam, J E; Hübner, A; Jans, D A

    2006-01-15

    Lamins, members of the family of intermediate filaments, form a supportive nucleoskeletal structure underlying the nuclear envelope and can also form intranuclear structures. Mutations within the A-type lamin gene cause a variety of degenerative diseases which are collectively referred to as laminopathies. At the molecular level, laminopathies have been shown to be linked to a discontinuous localization pattern of A-type lamins, with some laminopathies containing nuclear lamin A aggregates. Since nuclear aggregate formation could lead to the mislocalization of proteins interacting with A-type lamins, we set out to examine the effects of FLAG-lamin A N195K and R386K protein aggregate formation on the subnuclear distribution of the retinoblastoma protein (pRb) and the sterol responsive element binding protein 1a (SREBP1a) after coexpression as GFP-fusion proteins in HeLa cells. We observed strong recruitment of both proteins into nuclear aggregates. Nuclear aggregate recruitment of the NPC component nucleoporin NUP153 was also observed and found to be dependent on the N-terminus. That these effects were specific was implied by the fact that a number of other coexpressed karyophilic GFP-fusion proteins, such as the nucleoporin NUP98 and kanadaptin, did not coaggregate with FLAG-lamin A N195K or R386K. Immunofluorescence analysis further indicated that the precursor form of lamin A, pre-lamin A, could be found in intranuclear aggregates. Our results imply that redistribution into lamin A-/pre-lamin A-containing aggregates of proteins such as pRb and SREBP1a could represent a key aspect underlying the molecular pathogenesis of certain laminopathies.

  12. Enzymatic hydrolysis of heat-induced aggregates of whey protein isolate.

    Science.gov (United States)

    O'Loughlin, I B; Murray, B A; Kelly, P M; FitzGerald, R J; Brodkorb, A

    2012-05-16

    The effects of heat-induced denaturation and subsequent aggregation of whey protein isolate (WPI) solutions on the rate of enzymatic hydrolysis was investigated. Both heated (60 °C, 15 min; 65 °C, 5 and 15 min; 70 °C, 5 and 15 min, 75 °C, 5 and 15 min; 80 °C, 10 min) and unheated WPI solutions (100 g L(-1) protein) were incubated with a commercial proteolytic enzyme preparation, Corolase PP, until they reached a target degree of hydrolysis (DH) of 5%. WPI solutions on heating were characterized by large aggregate formation, higher viscosity, and surface hydrophobicity and hydrolyzed more rapidly (P whey proteins exhibited differences in their susceptibility to hydrolysis. Both viscosity and surface hydrophobicity along with insolubility declined as hydrolysis progressed. However, microstructural changes observed by light and confocal laser scanning microscopy (CLSM) provided insights to suggest that aggregate size and porosity may be complementary to denaturation in promoting faster enzymatic hydrolysis. This could be clearly observed in the course of aggregate disintegration, gel network breakdown, and improved solution clarification.

  13. Manganese exposure induces α-synuclein aggregation in the frontal cortex of non-human primates.

    Science.gov (United States)

    Verina, Tatyana; Schneider, Jay S; Guilarte, Tomás R

    2013-03-13

    Aggregation of α-synuclein (α-syn) in the brain is a defining pathological feature of neurodegenerative disorders classified as synucleinopathies. They include Parkinson's disease (PD), dementia with Lewy bodies (DLB), and multiple system atrophy (MSA). Occupational and environmental exposure to manganese (Mn) is associated with a neurological syndrome consisting of psychiatric symptoms, cognitive impairment and parkinsonism. In this study, we examined α-syn immunoreactivity in the frontal cortex of Cynomolgus macaques as part of a multidisciplinary assessment of the neurological effects produced by exposure to moderate levels of Mn. We found increased α-syn-positive cells in the gray matter of Mn-exposed animals, typically observed in pyramidal and medium-sized neurons in deep cortical layers. Some of these neurons displayed loss of Nissl staining with α-syn-positive spherical aggregates. In the white matter we also observed α-syn-positive glial cells and in some cases α-syn-positive neurites. These findings suggest that Mn exposure promotes α-syn aggregation in neuronal and glial cells that may ultimately lead to degeneration in the frontal cortex gray and white matter. To our knowledge, this is the first report of Mn-induced neuronal and glial cell α-syn accumulation and aggregation in the frontal cortex of non-human primates.

  14. Useful multivariate kinetic analysis: Size determination based on cystein-induced aggregation of gold nanoparticles

    Science.gov (United States)

    Rabbani, Faride; Hormozi Nezhad, Mohammad Reza; Abdollahi, Hamid

    2013-11-01

    This study describes spectrometric monitored kinetic processes to determine the size of citrate-capped Au nanoparticles (Au NPs) based on aggregation induced by L-cysteine (L-Cys) as a molecular linker. The Au NPs association process is thoroughly dependent on pH, concentration and size of nanoparticles. Size dependency of aggregation inspirits to determine the average diameters of Au NPs. For this aim the procedure is achieved in aqueous medium at pH 7 (phosphate buffer), and multivariate data including kinetic spectra of Au NPs are collected during aggregation process. Subsequently partial least squares (PLS) modeling is carried out analyzing the obtained data. The model is built on the basis of relation between the kinetics behavior of aggregation and different Au NPs sizes. Training the model was performed using latent variables (LVs) of the original data. The analytical performance of the model was characterized by relative standard error. The proposed method was applied to determination of size in unknown samples. The predicted sizes of unknown samples that obtained by the introduced method are interestingly in agreement with the sizes measured by Transmission Electron Microscopy (TEM) images and Dynamic Light Scattering (DLS) measurement.

  15. Quantification of alginate by aggregation induced by calcium ions and fluorescent polycations.

    Science.gov (United States)

    Zheng, Hewen; Korendovych, Ivan V; Luk, Yan-Yeung

    2016-01-01

    For quantification of polysaccharides, including heparins and alginates, the commonly used carbazole assay involves hydrolysis of the polysaccharide to form a mixture of UV-active dye conjugate products. Here, we describe two efficient detection and quantification methods that make use of the negative charges of the alginate polymer and do not involve degradation of the targeted polysaccharide. The first method utilizes calcium ions to induce formation of hydrogel-like aggregates with alginate polymer; the aggregates can be quantified readily by staining with a crystal violet dye. This method does not require purification of alginate from the culture medium and can measure the large amount of alginate that is produced by a mucoid Pseudomonas aeruginosa culture. The second method employs polycations tethering a fluorescent dye to form suspension aggregates with the alginate polyanion. Encasing the fluorescent dye in the aggregates provides an increased scattering intensity with a sensitivity comparable to that of the conventional carbazole assay. Both approaches provide efficient methods for monitoring alginate production by mucoid P. aeruginosa.

  16. Mechanical agitation induces counterintuitive aggregation of pre-dispersed carbon nanotubes.

    Science.gov (United States)

    Fernandes, Ricardo M F; Buzaglo, Matat; Regev, Oren; Furó, István; Marques, Eduardo F

    2017-05-01

    Mechanical agitation is commonly used to fragment and disperse insoluble materials in liquids. However, here we show that when pristine single-walled carbon nanotubes pre-dispersed in water are subject to vortex-shaking for very short periods (typically 10-60s, power density ∼0.002WmL(-1)), re-aggregation counterintuitively occurs. The initial dispersions are produced using surfactants as dispersants and powerful tip sonication (∼1WmL(-1)) followed by centrifugation. Detailed imaging by light and electron microscopies shows that the vortex-induced aggregates consist of loose networks (1-10(2)μm in size) of intertwined tubes and thin bundles. The average aggregate size increases with vortexing time in an apparently logarithmic manner and depends on the dispersant used, initial concentration of nanotubes and size distribution of bundles. The aggregation is, nonetheless, reversible: if the vortex-shaken dispersions are mildly bath-sonicated (∼0.03WmL(-1)), the flocs break down and re-dispersal occurs. Molecular insight for the mechanism behind this surprising phenomenon is put forth.

  17. Investigation into process-induced de-aggregation of cohesive micronised API particles.

    Science.gov (United States)

    Hoffmann, Magnus; Wray, Patrick S; Gamble, John F; Tobyn, Mike

    2015-09-30

    The aim of this study was to assess the impact of unit processes on the de-aggregation of a cohesive micronised API within a pharmaceutical formulation using near-infrared chemical imaging. The impact on the primary API particles was also investigated using an image-based particle characterization system with integrated Raman analysis. The blended material was shown to contain large, API rich domains which were distributed in-homogeneously across the sample, suggesting that the blending process was not aggressive enough to disperse aggregates of micronised drug particles. Cone milling, routinely used to improve the homogeneity of such cohesive formulations, was observed to substantially reduce the number and size of API rich domains; however, several smaller API domains survived the milling process. Conveyance of the cone milled formulation through the Alexanderwerk WP120 powder feed system completely dispersed all remaining aggregates. Importantly, powder feed transmission of the un-milled formulation was observed to produce an equally homogeneous API distribution. The size of the micronised primary drug particles remained unchanged during powder feed transmission. These findings provide further evidence that this powder feed system does induce shear, and is in fact better able to disperse aggregates of a cohesive micronised API within a blend than the blend-mill-blend step.

  18. Differential inhibition of lipopolysaccharide-induced granulocyte aggregation and prostanoid production by emoxypin.

    Science.gov (United States)

    Kubatiev, A; Turgiev, A; Smirnov, L; Pomoynetsky, V; Dumaev, K

    1990-01-01

    Emoxypin is known to be an effective membrane-stabilizing 3-oxy-pyridine derivative. We attempted to evaluate its influence on lipopolysaccharide (LPS)-induced granulocyte aggregation and prostanoid production. Granulocytes isolated from rabbit venous blood by dextran sedimentation and Pezcoll gradient centrifugation were stirred in the aggregometer cuvette with emoxypin (5mM), indomethacin (50 microM) or their solvents at 37 degrees C for 2 min. Then S. typhimurium LPS (200 micrograms/ml) was added and the aggregation was traced for 5 min. Thromboxane B2 (TxB2), prostaglandins (PG) E, F2 alpha and 13,14-dihydro-15-keto-PGF2 alpha were determined in supernatants radioimmunochemically. Indomethacin did not affect the pattern of aggregation, whereas emoxypin virtually precluded the response. Granulocytes incubated with LPS produced by the 15th sec and 5th min 1.3 and 2.5 times as much TxB2 respectively as did the intact cells (p less than 0.01). LPS had no effect on PGE production. Fifteen-sec contact of granulocytes with LPS had no significant influence on the formation of PGF2 alpha and its 13,14-dihydro-15-keto metabolite. The amount of PGF2 alpha released into the medium by the end of the 5th min of incubation with LPS was 1.5 times higher than in the control (p less than 0.05); the level of 13,14-dihydro-15-keto-PGF2 alpha was decreased 1.6 times (p less than 0.01). Emoxypin abolished totally LPS-induced TxB2 and PGF2 alpha production. We conclude that aggregation and eicosanoid production are independent manifestations of LPS-induced rabbit granulocyte activation.

  19. Rational design and nanofabrication of gecko-inspired fibrillar adhesives.

    Science.gov (United States)

    Hu, Shihao; Xia, Zhenhai

    2012-08-20

    Gecko feet integrate many intriguing functions such as strong adhesion, easy detachment, and self-cleaning. Mimicking gecko toe pad structure leads to the development of new types of fibrillar adhesives useful for various applications. In this Concept article, in addition to the design of adhesive mimics by replicating gecko geometric features, we show a new trend of rational design by adding other physical, chemical, and biological principles on to the geometric merits, for enhancing robustness, responsive control, and durability. Current challenges and future directions are highlighted in the design and nanofabrication of biomimetic fibrillar adhesives.

  20. Gingival tissue-produced inhibition of platelet aggregation and the loss of inhibition in streptozotocin-induced diabetic rats

    Energy Technology Data Exchange (ETDEWEB)

    Kawamura, Keiichiroh; Tamai, Kazuharu; Shirakawa, Masaharu; Okamoto, Hiroshi; Dohi, Toshihiro; Tsujimoto, Akira

    1988-01-01

    Addition of medium incubated with normal rat gingival tissue to platelet-rich plasma inhibited ADP-induced platelet aggregation. The ability of rat gingiva to produce activity inhibiting platelet aggregation was enhanced by the addition of arachidonic acid. Diabetic rat gingiva failed to inhibit platelet aggregation but did produce the anti-platelet aggregating activity in the presence of arachidonic acid. Indomethacin blocked the production of anti-platelet aggregating activity. There was no difference in conversion of (1-/sup 14/C)arachidonic acid to prostaglandins by normal and diabetic rat gingiva. These results suggest that an arachidonic acid metabolite released from gingiva during incubation inhibits platelet aggregation, and the synthesis of the metabolite is impaired in diabetic rat gingiva. A decrease in availability of arachidonic acid may be a causal factor of the defect in diabetic rat gingiva.

  1. Calcium-induced aggregation of archaeal bipolar tetraether liposomes derived from the thermoacidophilic archaeon Sulfolobus acidocaldarius

    Directory of Open Access Journals (Sweden)

    Roby Kanichay

    2003-01-01

    Full Text Available Previously, we showed that the proton permeability of small unilamellar vesicles (SUVs composed of polar lipid fraction E (PLFE from the thermoacidophilic archaeon Sulfolobus acidocaldarius was remarkably low and insensitive to temperature (Komatsu and Chong 1998. In this study, we used photon correlation spectroscopy to investigate the time dependence of PLFE SUV size as a function of Ca2+ concentration. In the absence of Ca2+, vesicle diameter changed little over 6 months. Addition of Ca2+, however, immediately induced formation of vesicle aggregates with an irregular shape, as revealed by confocal fluorescence microscopy. Aggregation was reversible upon addition of EDTA; however, the reversibility varied with temperature as well as incubation time with Ca2+. Freeze-fracture electron microscopy showed that, after a long period of incubation (2 weeks with Ca2+, the PLFE vesicles had not just aggregated, but had fused or coalesced. The initial rate of vesicle aggregation varied sigmoidally with Ca2+ concentration. At pH 6.6, the threshold calcium concentration (Cr for vesicle aggregation at 25 and 40 °C was 11 and 17 mM, respectively. At pH 3.0, the Cr at 25 °C increased to 25 mM. The temperature dependence of Cr may be attributable to changes in membrane surface potential, which was –22.0 and –13.2 mV at 25 and 40 °C, respectively, at pH 6.6, as determined by 2-(p-toluidinylnaphthalene-6-sulfonic acid fluorescence. The variation in surface potential with temperature is discussed in terms of changes in lipid conformation and membrane organization.

  2. Calcium-induced aggregation of archaeal bipolar tetraether liposomes derived from the thermoacidophilic archaeon Sulfolobus acidocaldarius.

    Science.gov (United States)

    Kanichay, Roby; Boni, Lawrence T; Cooke, Peter H; Khan, Tapan K; Chong, Parkson Lee-Gau

    2003-10-01

    Previously, we showed that the proton permeability of small unilamellar vesicles (SUVs) composed of polar lipid fraction E (PLFE) from the thermoacidophilic archaeon Sulfolobus acidocaldarius was remarkably low and insensitive to temperature (Komatsu and Chong 1998). In this study, we used photon correlation spectroscopy to investigate the time dependence of PLFE SUV size as a function of Ca2+ concentration. In the absence of Ca2+, vesicle diameter changed little over 6 months. Addition of Ca2+, however, immediately induced formation of vesicle aggregates with an irregular shape, as revealed by confocal fluorescence microscopy. Aggregation was reversible upon addition of EDTA; however, the reversibility varied with temperature as well as incubation time with Ca2+. Freeze-fracture electron microscopy showed that, after a long period of incubation (2 weeks) with Ca2+, the PLFE vesicles had not just aggregated, but had fused or coalesced. The initial rate of vesicle aggregation varied sigmoidally with Ca2+ concentration. At pH 6.6, the threshold calcium concentration (Cr) for vesicle aggregation at 25 and 40 degrees C was 11 and 17 mM, respectively. At pH 3.0, the Cr at 25 degrees C increased to 25 mM. The temperature dependence of Cr may be attributable to changes in membrane surface potential, which was -22.0 and -13.2 mV at 25 and 40 degrees C, respectively, at pH 6.6, as determined by 2-(p-toluidinyl)naphthalene-6-sulfonic acid fluorescence. The variation in surface potential with temperature is discussed in terms of changes in lipid conformation and membrane organization.

  3. Adenosine diphosphate-induced aggregation of human platelets in flow through tubes. I. Measurement of concentration and size of single platelets and aggregates.

    Science.gov (United States)

    Bell, D N; Spain, S; Goldsmith, H L

    1989-11-01

    A double infusion flow system and particle sizing technique were developed to study the effect of time and shear rate on adenosine diphosphate-induced platelet aggregation in Poiseuille flow. Citrated platelet-rich plasma, PRP, and 2 microM ADP were simultaneously infused into a 40-microliters cylindrical mixing chamber at a fixed flow ratio, PRP/ADP = 9:1. After rapid mixing by a rotating magnetic stirbar, the platelet suspension flowed through 1.19 or 0.76 mm i.d. polyethylene tubing for mean transit times, t, from 0.1 to 86 s, over a range of mean tube shear rate, G, from 41.9 to 1,000 s-1. Known volumes of suspension were collected into 0.5% buffered glutaraldehyde, and all particles in the volume range 1-10(5) microns 3 were counted and sized using a model ZM particle counter (Coulter Electronics Inc., Hialeah, FL) and a logarithmic amplifier. The decrease in the single platelet concentration served as an overall index of aggregation. The decrease in the total particle concentration was used to calculate the collision capture efficiency during the early stages of aggregation, and aggregate growth was followed by changes in the volume fraction of particles of successively increasing size. Preliminary results demonstrate that both collision efficiency and particle volume fraction reveal important aspects of the aggregation process not indicated by changes in the single platelet concentration alone.

  4. Shear-induced reaction-limited aggregation kinetics of brownian particles at arbitrary concentrations.

    Science.gov (United States)

    Zaccone, Alessio; Gentili, Daniele; Wu, Hua; Morbidelli, Massimo

    2010-04-07

    The aggregation of interacting brownian particles in sheared concentrated suspensions is an important issue in colloid and soft matter science per se. Also, it serves as a model to understand biochemical reactions occurring in vivo where both crowding and shear play an important role. We present an effective medium approach within the Smoluchowski equation with shear which allows one to calculate the encounter kinetics through a potential barrier under shear at arbitrary colloid concentrations. Experiments on a model colloidal system in simple shear flow support the validity of the model in the concentration range considered. By generalizing Kramers' rate theory to the presence of shear and collective hydrodynamics, our model explains the significant increase in the shear-induced reaction-limited aggregation kinetics upon increasing the colloid concentration.

  5. Detection of Gold Nanoparticles Aggregation Growth Induced by Nucleic Acid through Laser Scanning Confocal Microscopy

    Science.gov (United States)

    Gary, Ramla; Carbone, Giovani; Petriashvili, Gia; De Santo, Maria Penelope; Barberi, Riccardo

    2016-01-01

    The gold nanoparticle (GNP) aggregation growth induced by deoxyribonucleic acid (DNA) is studied by laser scanning confocal and environmental scanning electron microscopies. As in the investigated case the direct light scattering analysis is not suitable, we observe the behavior of the fluorescence produced by a dye and we detect the aggregation by the shift and the broadening of the fluorescence peak. Results of laser scanning confocal microscopy images and the fluorescence emission spectra from lambda scan mode suggest, in fact, that the intruding of the hydrophobic moiety of the probe within the cationic surfactants bilayer film coating GNPs results in a Förster resonance energy transfer. The environmental scanning electron microscopy images show that DNA molecules act as template to assemble GNPs into three-dimensional structures which are reminiscent of the DNA helix. This study is useful to design better nanobiotechnological devices using GNPs and DNA. PMID:26907286

  6. Detection of Gold Nanoparticles Aggregation Growth Induced by Nucleic Acid through Laser Scanning Confocal Microscopy

    Directory of Open Access Journals (Sweden)

    Ramla Gary

    2016-02-01

    Full Text Available The gold nanoparticle (GNP aggregation growth induced by deoxyribonucleic acid (DNA is studied by laser scanning confocal and environmental scanning electron microscopies. As in the investigated case the direct light scattering analysis is not suitable, we observe the behavior of the fluorescence produced by a dye and we detect the aggregation by the shift and the broadening of the fluorescence peak. Results of laser scanning confocal microscopy images and the fluorescence emission spectra from lambda scan mode suggest, in fact, that the intruding of the hydrophobic moiety of the probe within the cationic surfactants bilayer film coating GNPs results in a Förster resonance energy transfer. The environmental scanning electron microscopy images show that DNA molecules act as template to assemble GNPs into three-dimensional structures which are reminiscent of the DNA helix. This study is useful to design better nanobiotechnological devices using GNPs and DNA.

  7. Active protein aggregates induced by terminally attached self-assembling peptide ELK16 in Escherichia coli

    Directory of Open Access Journals (Sweden)

    Zhou Bihong

    2011-02-01

    Full Text Available Abstract Background In recent years, it has been gradually realized that bacterial inclusion bodies (IBs could be biologically active. In particular, several proteins including green fluorescent protein, β-galactosidase, β-lactamase, alkaline phosphatase, D-amino acid oxidase, polyphosphate kinase 3, maltodextrin phosphorylase, and sialic acid aldolase have been successfully produced as active IBs when fused to an appropriate partner such as the foot-and-mouth disease virus capsid protein VP1, or the human β-amyloid peptide Aβ42(F19D. As active IBs may have many attractive advantages in enzyme production and industrial applications, it is of considerable interest to explore them further. Results In this paper, we report that an ionic self-assembling peptide ELK16 (LELELKLK2 was able to effectively induce the formation of cytoplasmic inclusion bodies in Escherichia coli (E. coli when attached to the carboxyl termini of four model proteins including lipase A, amadoriase II, β-xylosidase, and green fluorescent protein. These aggregates had a general appearance similar to the usually reported cytoplasmic inclusion bodies (IBs under transmission electron microscopy or fluorescence confocal microscopy. Except for lipase A-ELK16 fusion, the three other fusion protein aggregates retained comparable specific activities with the native counterparts. Conformational analyses by Fourier transform infrared spectroscopy revealed the existence of newly formed antiparallel beta-sheet structures in these ELK16 peptide-induced inclusion bodies, which is consistent with the reported assembly of the ELK16 peptide. Conclusions This has been the first report where a terminally attached self-assembling β peptide ELK16 can promote the formation of active inclusion bodies or active protein aggregates in E. coli. It has the potential to render E. coli and other recombinant hosts more efficient as microbial cell factories for protein production. Our observation might

  8. Ellagic acid mitigates SNO-PDI induced aggregation of Parkinsonian biomarkers.

    Science.gov (United States)

    Kabiraj, Parijat; Marin, Jose Eduardo; Varela-Ramirez, Armando; Zubia, Emmanuel; Narayan, Mahesh

    2014-12-17

    Nitrosative stress mediated S-nitrosylation (SNO) of protein disulfide isomerase (PDI), a housekeeping oxidoreductase, has been implicated in the pathogenesis of sporadic Parkinson's (PD) and Alzheimer's (AD) diseases. Previous cell line studies have indicated that SNO-PDI formation provokes synphilin-1 aggregation, the minor Parkinsonian biomarker protein. Yet no work exists investigating whether SNO-PDI induces α-synuclein aggregation, the major Lewy body constituent associated with Parkinson's pathogenesis. Here, we report that SNO-PDI formation is linked to the aggregation of α-synuclein and also provokes α-synuclein:synphilin-1 deposits (Lewy-body-like debris) normally found in the PD brain. Furthermore, we have examined the ability of a small molecule, 2,3,7,8-tetrahydroxy-chromeno[5,4,3-cde]chromene-5,10-dione (ellagic acid; EA) to scavenge NOx radicals and to protect cells from SNO-PDI formation via rotenone insult both, cell-based and cell-independent in vitro experiments. Furthermore, EA not only mitigates nitrosative-stress-induced aggregation of synphilin-1 but also α-synuclein and α-synuclein:synphilin-1 composites (Lewy-like neurites) in PC12 cells. Mechanistic analyses of the neuroprotective phenomena revealed that EA lowered rotenone-instigated reactive oxygen species (ROS) and reactive nitrogen species (RNS) in PC12 cells, imparted antiapoptotic tributes, and directly interfered with SNO-PDI formation. Lastly, we demonstrate that EA can bind human serum albumin (HSA). These results collectively indicate that small molecules can provide a therapeutic foothold for overcoming Parkinson's through a prophylactic approach.

  9. Sequence-dependent abnormal aggregation of human Tau fragment in an inducible cell model.

    Science.gov (United States)

    Liu, Xiao-Ling; Hu, Ji-Ying; Hu, Meng-Yun; Zhang, Yi; Hong, Zheng-Yuan; Cheng, Xiao-Qing; Chen, Jie; Pang, Dai-Wen; Liang, Yi

    2015-08-01

    A pathological hallmark of Alzheimer disease (AD) is the accumulation of misfolded hyperphosphorylated microtubule-associated protein Tau within neurons, forming neurofibrillary tangles and leading to synaptic dysfunction and neuronal death. Here we study sequence-dependent abnormal aggregation of human fragment Tau244-372 in an inducible cell model. As evidenced by confocal laser scanning microscopy, Western blot, and immunogold electron microscopy, fibril-forming motifs are essential and sufficient for abnormal aggregation of Tau244-372 in SH-SY5Y neuroblastoma cells induced by Congo red: when its two fibril-forming segments PHF6 and PHF6* are deleted, Tau244-372 does lose its ability to form fibrils in SH-SY5Y cells, and the replacement of PHF6 and PHF6* with an unrelated amyloidogenic sequence IFQINS from human lysozyme does rescue the fibril-forming ability of Tau244-372 in SH-SY5Y cells. By contrast, insertion of a non-fibril forming peptide GGGGGG does not drive the disabled Tau244-372 to misfold in SH-SY5Y cells. Furthermore, as revealed by quantum dots based probes combined with annexin V staining, annexin V-FITC apoptosis detection assay, and immunofluorescence, fibril-forming motifs are essential and sufficient for early apoptosis of living SH-SY5Y cells induced by abnormal aggregation of Tau244-372. Our results suggest that fibril-forming motifs could be the determinants of Tau protein tending to misfold in living cells, thereby inducing neuronal apoptosis and causing the initiation and development of AD. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Soft grippers using micro-fibrillar adhesives for transfer printing.

    Science.gov (United States)

    Song, Sukho; Sitti, Metin

    2014-07-23

    The adhesive characteristics of fibrillar adhesives on a soft deformable membrane are reported. A soft gripper with an inflatable membrane covered by elastomer mushroom-shaped microfibers have a superior conformation to non-planar 3D part geometries, enabling the transfer printing of various parts serially or in parallel.

  11. Properties of Fibrillar Protein Assemblies and their Percolating Networks

    NARCIS (Netherlands)

    Veerman, C.

    2004-01-01

    Properties of Fibrillar Protein Assemblies and their Percolating Networks. PhD thesis, Wageningen University, The Netherlands Keywords: bovine serum albumin, complex fluids, excluded volume, fibrils, gels, innovation, b-lactoglobulin, ovalbumin, percolation, proteins, rheology, rheo-optics, self-ass

  12. Role of Prion Protein Aggregation in Neurotoxicity

    Directory of Open Access Journals (Sweden)

    Tullio Florio

    2012-07-01

    Full Text Available In several neurodegenerative diseases, such as Parkinson, Alzheimer’s, Huntington, and prion diseases, the deposition of aggregated misfolded proteins is believed to be responsible for the neurotoxicity that characterizes these diseases. Prion protein (PrP, the protein responsible of prion diseases, has been deeply studied for the peculiar feature of its misfolded oligomers that are able to propagate within affected brains, inducing the conversion of the natively folded PrP into the pathological conformation. In this review, we summarize the available experimental evidence concerning the relationship between aggregation status of misfolded PrP and neuronal death in the course of prion diseases. In particular, we describe the main findings resulting from the use of different synthetic (mainly PrP106-126 and recombinant PrP-derived peptides, as far as mechanisms of aggregation and amyloid formation, and how these different spatial conformations can affect neuronal death. In particular, most data support the involvement of non-fibrillar oligomers rather than actual amyloid fibers as the determinant of neuronal death.

  13. White-Light Electroluminescence with Tetraphenylethylene as Emitting Layer of Aggregation-Induced Emissions Enhancement

    Institute of Scientific and Technical Information of China (English)

    罗建芳; 王晓宏; 王筱梅; 苏文明; 陶绪堂; 陈志刚

    2012-01-01

    Tetraphenylethylene (TPE) based molecules with easy synthesis, good thermal stability, and especially their aggregation-induced emissions enhancement (AIEE) effect recently become attractive organic emitting materials due to their potentially practical application in OLEDs. Herein, the AIEE behaviors of tetraphenylethylene dyes (TMTPE and TBTPE) were investigated. Fabricated luminesent device using TMTPE dye as emitting layer displays two strong emitting bands: the blue emission coming from the first-step aggregation and the yellow emission attrib- uted to the second-step aggregation. Thus, it can be utilized to fabricate the white-light OLEDs (WOLEDs) of the single-emitting-component. A three-layer device with the brightness of 1200 cd·m^-2 and current efficiency of 0.78 cd·A^-1 emits the close to white light with the CIE coordinates of x=0.333 and y=0.358, when applied voltage from 8-13 V, verifying that the TPE-based dyes of AIEE effect can be effectively applied in single-emitting- component WOLEDs fabrication.

  14. Prefoldin Plays a Role as a Clearance Factor in Preventing Proteasome Inhibitor-induced Protein Aggregation*

    Science.gov (United States)

    Abe, Akira; Takahashi-Niki, Kazuko; Takekoshi, Yuka; Shimizu, Takashi; Kitaura, Hirotake; Maita, Hiroshi; Iguchi-Ariga, Sanae M. M.; Ariga, Hiroyoshi

    2013-01-01

    Prefoldin is a molecular chaperone composed of six subunits, PFD1–6, and prevents misfolding of newly synthesized nascent polypeptides. Although it is predicted that prefoldin, like other chaperones, modulates protein aggregation, the precise function of prefoldin against protein aggregation under physiological conditions has never been elucidated. In this study, we first established an anti-prefoldin monoclonal antibody that recognizes the prefoldin complex but not its subunits. Using this antibody, it was found that prefoldin was localized in the cytoplasm with dots in co-localization with polyubiquitinated proteins and that the number and strength of dots were increased in cells that had been treated with lactacystin, a proteasome inhibitor, and thapsigargin, an inducer of endoplasmic reticulum stress. Knockdown of prefoldin increased the level of SDS-insoluble ubiquitinated protein and reduced cell viability in lactacystin and thapsigargin-treated cells. Opposite results were obtained in prefoldin-overexpressed cells. It has been reported that mice harboring a missense mutation L110R of MM-1α/PFD5 exhibit neurodegeneration in the cerebellum. Although the prefoldin complex containing L110R MM-1α was properly formed in vitro and in cells derived from L110R MM-1α mice, the levels of ubiquitinated proteins and cytotoxicity were higher in L110R MM-1α cells than in wild-type cells under normal conditions and were increased by lactacystin and thapsigargin treatment, and growth of L110R MM-1α cells was attenuated. Furthermore, the polyubiquitinated protein aggregation level was increased in the brains of L110R MM-1α mice. These results suggest that prefoldin plays a role in quality control against protein aggregation and that dysfunction of prefoldin is one of the causes of neurodegenerative diseases. PMID:23946485

  15. Effect of molecular aggregation on the photo-induced anisotropy in amorphous polymethacrylate bearing an aminonitroazobenzene moiety

    CERN Document Server

    Kim, B J; Choi, D H

    2001-01-01

    We investigated H-type molecular aggregation in a simply spin-coated amorphous homopolymer film of polymethacrylate containing push-pull azobenzene moieties. It was found that the aggregate formation was strongly influenced by thermal treatment and that the aggregate created in the polymer film could be easily disrupted by irradiation of a linearly polarized light. In the first writing cycle of aggregated polymer film, photo-induced birefringence showed a steep increase to the highest value followed by a gradual decrease to the certain asymptotic value under longer irradiation of linearly polarized light. This unique behavior could be attributed to the cooperative motion and the disruption of the aggregated molecules under continuous irradiation of light.

  16. Cholesterol secoaldehyde, an ozonation product of cholesterol, induces amyloid aggregation and apoptosis in murine GT1-7 hypothalamic neurons.

    Science.gov (United States)

    Sathishkumar, K; Xi, Xiaochun; Martin, Roy; Uppu, Rao M

    2007-06-01

    Aldehydic products from ozonation of cholesterol and peroxidation of phospholipids have been shown to accelerate aggregation of amyloid-beta (Abeta) in vitro. Here, we show that 3beta-hydroxy-5-oxo-5,6-secocholestan-6-al (ChSeco), an ozonation product of cholesterol, induces Abeta aggregation, generation of reactive oxygen species (ROS), and cytotoxicity in murine GT1-7 hypothalamic neurons. The formation of Abeta aggregates in situ was dose-dependent at ChSeco concentrations ranging from 1 to 20 microM. The increase in insoluble Abeta aggregates at increasing concentrations of ChSeco was accompanied by a decrease in soluble Abeta as evidenced by Western blot analysis. The formation of ROS in neuronal cells was found to be dose- and time-dependent with the magnitude being higher at 20 microM compared to 10 microM ChSeco or untreated controls. The increase in ROS was associated with depletion of GSH. The cytotoxicity induced by ChSeco involved changes in phosphatidylserine translocation, DNA fragmentation, and caspase 3/7 activity that are characteristic of apoptosis. Pretreatment of neuronal cells with Trolox, a water-soluble analog of alpha-tocopherol offered partial, but significant protection against ChSeco-induced cell death, whereas, N-acetyl-L-cysteine (NAC) completely prevented the cytotoxic effects of ChSeco. NAC and Trolox were without any effects on ChSeco-induced Abeta aggregation. Fibrillogenesis inhibitors, which inhibited Abeta aggregation, did not inhibit cell death induced by ChSeco, implying that ROS generation, and not Abeta aggregation, plays a major role in the observed cytotoxicity. However, since Alzheimer's and other neurodegenerative diseases are slow and progressive, the formation of Abeta aggregates in vivo by ChSeco may have long-term pathological consequences.

  17. Synthesis and Properties of Gelators Derived from Tetraphenylethylene and Gallic Acid with Aggregation-Induced Emission

    Science.gov (United States)

    Luo, Miao; Zhou, Xie; Chi, Zhenguo; Ma, Chunping; Zhang, Yi; Liu, Siwei; Xu, Jiarui

    2013-09-01

    Two novel organogelators (TEG and TAG) based on tetraphenylethylene and 3,4,5-tris(dodecyloxy) benzoic acid were synthesized through ester bond and amido bond linkages, respectively. Compounds TEG and TAG were able to induce gelation in ethanol. Aggregation-induced enhanced emission was observed in these organogelator molecules, with increased fluorescence intensity from the solutions to the gels. The completely thermoreversible gelation occurred due to the aggregation of the organogelators. In the process, a fibrous network was formed by a combination of intermolecular hydrogen bonding, π-π stacking and van der Waals interactions. These phenomena were observed in the xerogels by field-emission scanning electron microscopy and Fourier-transform infrared spectroscopy. The results of differential scanning calorimetry and polarized optical microscopy indicated that compound TAG exhibited stable liquid crystalline phases over a wide temperature range. The linking groups have severe influence on the properties of the organogelators, which was mainly attributed to the hydrogen bonding interaction in compound TAG.

  18. Profilin 1 mutants form aggregates that induce accumulation of prion-like TDP-43.

    Science.gov (United States)

    Tanaka, Yoshinori; Hasegawa, Masato

    2016-07-03

    Mutations in the profilin 1 (PFN1) gene have been identified as a cause of familial amyotrophic lateral sclerosis (ALS), and neuropathological studies indicate that TDP-43 is accumulated in brains of patients with PFN1 mutation. Here, we investigated the role of PFN1 mutations in the formation of prion-like abnormal TDP-43. Expression of PFN1 with pathogenic mutations resulted in the formation of cytoplasmic aggregates positive for p62 and ubiquitin, and these aggregates sequestered endogenous TDP-43. TDP-43 accumulation was facilitated in the presence of proteasome or lysosome inhibitor. Co-expression of mutant PFN1 and TDP-43 increased the levels of detergent-insoluble and phosphorylated TDP-43, and this increase required the C-terminal region of TDP-43. Moreover, detergent-insoluble fractions prepared from cells expressing ALS-linked mutant PFN1 induced seed-dependent accumulation of TDP-43. These findings indicate that expression of PFN1 mutants induces accumulation of TDP-43, and promotes conversion of normal TDP-43 into an abnormal form. These results provide new insight into the mechanisms of TDP-43 proteinopathies and other diseases associated with amyloid-like protein deposition.

  19. Suppression of Kasha's rule as a mechanism for fluorescent molecular rotors and aggregation-induced emission

    Science.gov (United States)

    Qian, Hai; Cousins, Morgan E.; Horak, Erik H.; Wakefield, Audrey; Liptak, Matthew D.; Aprahamian, Ivan

    2017-01-01

    Although there are some proposed explanations for aggregation-induced emission, a phenomenon with applications that range from biosensors to organic light-emitting diodes, current understanding of the quantum-mechanical origin of this photophysical behaviour is limited. To address this issue, we assessed the emission properties of a series of BF2-hydrazone-based dyes as a function of solvent viscosity. These molecules turned out to be highly efficient fluorescent molecular rotors. This property, in addition to them being aggregation-induced emission luminogens, enabled us to probe deeper into their emission mechanism. Time-dependent density functional theory calculations and experimental results showed that the emission is not from the S1 state, as predicted from Kasha's rule, but from a higher energy (>S1) state. Furthermore, we found that suppression of internal conversion to the dark S1 state by restricting the rotor rotation enhances fluorescence, which leads to the proposal that suppression of Kasha's rule is the photophysical mechanism responsible for emission in both viscous solution and the solid state.

  20. Changes of conformation and aggregation state induced by binding of lanthanide ions to insulin

    Institute of Scientific and Technical Information of China (English)

    程驿; 李荣昌; 王夔

    2002-01-01

    To clarify the mechanism of lanthanide ions (Ln3+) on the across-membrane transport of insulin and subsequent reducing blood glucose, the interactions of Ln3+with Zn-insulin and Zn-free insulin are investigated by spectroscopic methods. The results reveal that the binding of Ln3+ to insulin can induce its structure changes from secondary to quaternary structure, depending on the Ln3+ concentration. In the lower concentration, it triggers the conformational changes of insulin monomer in the binding region with insulin receptor (B(24-30)). It would affect insulin-insulin receptor interaction. Moreover, Ln3+ binding promotes the assembly of insulin monomer from dimer to polymer. The potency of Ln3+ in inducing insulin’s aggregation is stronger than that of Zn2+. Furthermore, the aggregation can be reversed partly by EDTA-treatment, indicating that it is not due to denaturation. Similar to Zn2+ effect, Ln3+ can stabilize insulin hexamer in a certain range of concentration, but is stronger than the former.

  1. Changes of conformation and aggregation state induced by binding of lanthanide ions to insulin

    Institute of Scientific and Technical Information of China (English)

    程驿; 李荣昌; 王夔

    2002-01-01

    To clarify the mechanism of lanthanide ions (Ln3+) on the across-membrane transport of insulin and subsequent reducing blood glucose, the interactions of Ln3+ with Zn-insulin and Zn-free insulin are investigated by spectroscopic methods. The results reveal that the binding of Ln3+ to insulin can induce its structure changes from secondary to quaternary structure, depending on the Ln3+ concentration. In the lower concentration, it triggers the conformational changes of insulin monomer in the binding region with insulin receptor (B(24-30)). It would affect insulin-insulin receptor interaction. Moreover, Ln3+ binding promotes the assembly of insulin monomer from dimer to polymer. The potency of Ln3+ in inducing insulin's aggregation is stronger than that of Zn2+. Furthermore, the aggregation can be reversed partly by EDTA-treatment, indicating that it is not due to denaturation. Similar to Zn2+ effect, Ln3+ can stabilize insulin hexamer in a certain range of concentration, but is stronger than the former.

  2. Alkali silica reaction in concrete induced by mortar adhered to recycled aggregate

    Directory of Open Access Journals (Sweden)

    Etxeberria, M.

    2010-02-01

    Full Text Available The durability of recycled concrete must be determined before this material can be used in construction. In this paper the alkali-silica reaction in recycled concrete is analyzed. The recycled concrete is made with recycled aggregates, composed by original limestone aggregates and adhered mortar with reactive silica sand, and high alkali content cement. Due to the manufacturing process used for concrete production and the high water absorption capacity of recycled aggregates, cement accumulation happens in the interface (ITZ. The concentration of alkalis on the surface of recycled aggregates- ITZ and the presence of reactive sand in the mortar adhering to the recycled aggregate induce an alkali-silica reaction in 6-month concrete. The existence of this reaction is confirmed by environmental scanning electron microscopy (ESEM and EDX analysis. The mechanical properties of 6-month recycled concrete were similar to those values at 28-days of curing.

    La durabilidad del hormigón fabricado con árido reciclado es necesario determinarla antes de su utilización como material de construcción. En este artículo se analiza la reacción álcali-sílice manifestada en el hormigón fabricado con árido reciclado procedente de hormigón (compuesto de árido original calizo y mortero adherido de arena sílice reactiva, y cemento de alto contenido en álcalis. Debido al proceso de fabricación del hormigón y la alta capacidad de absorción del árido reciclado se produce una acumulación del cemento en la Interfase (ITZ. Debido al contacto directo de los álcalis del cemento con la arena sílice reactiva se produce una reacción álcali sílice a los 6 meses de edad del hormigón. Se realiza un análisis mediante microscopio electrónico de barrido ambiental (ESEM y sistema analítico de EDX. Se determina que las propiedades mecánicas del hormigón reciclado a 6 meses son similares a las obtenidas a los 28 días de curado.

  3. The secondary and aggregation structural changes of BSA induced by trivalent chromium: A biophysical study

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Mingmao [Institute of Biomedical and Pharmaceutical Technology, Fuzhou University, Fuzhou 350002, Fujian (China); Liu, Yan, E-mail: liuyan@fjirsm.ac.cn [The State Key Lab of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, Fujian (China); Cao, Huan [Institute of Biomedical and Pharmaceutical Technology, Fuzhou University, Fuzhou 350002, Fujian (China); Song, Ling [The State Key Lab of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, Fujian (China); Zhang, Qiqing, E-mail: zhangqiq@126.com [Institute of Biomedical and Pharmaceutical Technology, Fuzhou University, Fuzhou 350002, Fujian (China)

    2015-02-15

    Trivalent chromium Cr(III), which was originally considered to be innocuous as a nutriment, has been suspected to induce some abnormalities in human body recently. In the present work, the effects of Cr(III) on the structural state of BSA were comprehensively investigated through a series of appropriate methods in combination, including X-ray photoelectron spectroscopy (XPS), fourier transform infrared spectroscopy (FTIR), circular dichroism (CD), UV–vis absorption, synchronous fluorescence, fluorescence lifetime analysis, resonance light scattering (RLS), dynamic light scattering (DLS) and excitation–emission matrix spectroscopy (EEMS) methods. XPS accurately described the binding activity of Cr(III) with protein C, N and O atoms. The structural analysis according to FTIR and CD methods showed that the Cr(III) binding altered BSA conformation with a major reduction of α-helix. RLS and DLS analyses demonstrated that the presence of Cr(III) with low concentration could induce the aggregation structural changes of BSA. UV–vis absorption, EEMS and synchronous fluorescence suggested that the interaction between Cr(III) and BSA induced a slight unfolding of the polypeptide backbone and altered the microenvironments of Trp and Tyr residues in BSA. This research is helpful for understanding the structure-function relationship involved in metal ion-protein bioconjugate process. - Highlights: • The effect of Cr(III) on the conformational state of BSA was comprehensively studied. • XPS described the binding activity of Cr(III) with protein C, N and O atoms. • FTIR and CD data revealed secondary structural alteration in BSA. • Cr(III) complexation induced microenvironmental changes of Trp and Tyr. • RLS, DLS and EEMS presented the aggregational states of Cr(III)–BSA complex.

  4. Fibrillar films obtained from sodium soap fibers and polyelectrolyte multilayers.

    Science.gov (United States)

    Zawko, Scott A; Schmidt, Christine E

    2011-08-01

    An objective of tissue engineering is to create synthetic polymer scaffolds with a fibrillar microstructure similar to the extracellular matrix. Here, we present a novel method for creating polymer fibers using the layer-by-layer method and sacrificial templates composed of sodium soap fibers. Soap fibers were prepared from neutralized fatty acids using a sodium chloride crystal dissolution method. Polyelectrolyte multilayers (PEMs) of polystyrene sulfonate and polyallylamine hydrochloride were deposited onto the soap fibers, crosslinked with glutaraldehyde, and then the soap fibers were leached with warm water and ethanol. The morphology of the resulting PEM structures was a dense network of fibers surrounded by a nonfibrillar matrix. Microscopy revealed that the PEM fibers were solid structures, presumably composed of polyelectrolytes complexed with residual fatty acids. These fibrillar PEM films were found to support the attachment of human dermal fibroblasts.

  5. The naphthoquinone plumbagin suppresses ADP-induced rat platelet aggregation through P2Y1-PLC signaling pathway.

    Science.gov (United States)

    Zhang, Qianrui; Liao, Xiaoyan; Wu, Fangjian

    2017-03-01

    Plumbagin (PLB) isolated from Plumbago zeylanica L (Plumbaginaceae) was evaluated for the suppressive effect and mechanism on ADP induced rat platelet aggregation. Adult male SD rats were randomly divided into control group, clopidogrel group, PLB 25mg/kg group and PLB 50mg/kg group. Clopidogrel (13.5mg/kg per day) and PLB (25 and 50mg/kg per day) were orally given to experimental rats by gavage for seven consecutive days. The antiplatelet properties were assessed by measuring the ADP-induced platelet aggregation rate (Aggmax). The level of cAMP in platelets before aggregation was determined by ELISA. The protein expression of pAkt, Akt, pPLC β3 and PLC β3 in platelets was measured by western blot. Our data indicated that PLB (25 and 50mg/kg) significantly inhibited ADP-induced rat platelet aggregation as well as clopidogrel (13.5mg/kg) in a dose dependent manner compared with the control group. PLB (25 and 50mg/kg) remarkably reduced the ADP-induced PLC β3 phosphorylation but not Akt in platelets as compared with the control group. The present study suggests that PLB exerts a suppressive effect on ADP-induced rat platelet aggregation, at least in part, through P2Y1-PLC signaling pathway.

  6. Glyceraldehyde-3-phosphate dehydrogenase aggregation inhibitor peptide: A potential therapeutic strategy against oxidative stress-induced cell death.

    Science.gov (United States)

    Itakura, Masanori; Nakajima, Hidemitsu; Semi, Yuko; Higashida, Shusaku; Azuma, Yasu-Taka; Takeuchi, Tadayoshi

    2015-11-13

    The glycolytic enzyme glyceraldehyde-3-phosphate dehydrogenase (GAPDH) has multiple functions, including mediating oxidative stress-induced neuronal cell death. This process is associated with disulfide-bonded GAPDH aggregation. Some reports suggest a link between GAPDH and the pathogenesis of several oxidative stress-related diseases. However, the pathological significance of GAPDH aggregation in disease pathogenesis remains unclear due to the lack of an effective GAPDH aggregation inhibitor. In this study, we identified a GAPDH aggregation inhibitor (GAI) peptide and evaluated its biological profile. The decapeptide GAI specifically inhibited GAPDH aggregation in a concentration-dependent manner. Additionally, the GAI peptide did not affect GAPDH glycolytic activity or cell viability. The GAI peptide also exerted a protective effect against oxidative stress-induced cell death in SH-SY5Y cells. This peptide could potentially serve as a tool to investigate GAPDH aggregation-related neurodegenerative and neuropsychiatric disorders and as a possible therapy for diseases associated with oxidative stress-induced cell death. Copyright © 2015 Elsevier Inc. All rights reserved.

  7. Suppression of Aggrus/podoplanin-induced platelet aggregation and pulmonary metastasis by a single-chain antibody variable region fragment.

    Science.gov (United States)

    Miyata, Kenichi; Takagi, Satoshi; Sato, Shigeo; Morioka, Hiroshi; Shiba, Kiyotaka; Minamisawa, Tamiko; Takami, Miho; Fujita, Naoya

    2014-12-01

    Almost all highly metastatic tumor cells possess high platelet aggregating abilities, thereby form large tumor cell-platelet aggregates in the microvasculature. Embolization of tumor cells in the microvasculature is considered to be the first step in metastasis to distant organs. We previously identified the platelet aggregation-inducing factor expressed on the surfaces of highly metastatic tumor cells and named as Aggrus. Aggrus was observed to be identical to the marker protein podoplanin (alternative names, T1α, OTS-8, and others). Aggrus is frequently overexpressed in several types of tumors and enhances platelet aggregation by interacting with the platelet receptor C-type lectin-like receptor 2 (CLEC-2). Here, we generated a novel single-chain antibody variable region fragment (scFv) by linking the variable regions of heavy and light chains of the neutralizing anti-human Aggrus monoclonal antibody MS-1 with a flexible peptide linker. Unfortunately, the generated KM10 scFv failed to suppress Aggrus-induced platelet aggregation in vitro. Therefore, we performed phage display screening and finally obtained a high-affinity scFv, K-11. K-11 scFv was able to suppress Aggrus-induced platelet aggregation in vitro. Moreover, K-11 scFv prevented the formation of pulmonary metastasis in vivo. These results suggest that K-11 scFv may be useful as metastasis inhibitory scFv and is expected to aid in the development of preclinical and clinical examinations of Aggrus-targeted cancer therapies.

  8. Role of pH-induced structural change in protein aggregation in foam fractionation of bovine serum albumin

    Directory of Open Access Journals (Sweden)

    Rui Li

    2016-03-01

    Full Text Available For reducing protein aggregation in foam fractionation, the role of pH-induced structural change in the interface-induced protein aggregation was analyzed using bovine serum albumin (BSA as a model protein. The results show that the decrease in pH from 7.0 to 3.0 gradually unfolded the BSA structure to increase the molecular size and the relative content of β-sheet and thus reduced the stability of BSA in the aqueous solution. At the isoelectric point (pH 4.7, BSA suffered the lowest level in protein aggregation induced by the gas–liquid interface. In the pH range from 7.0 to 4.7, most BSA aggregates were formed in the defoaming process while in the pH range from 4.7 to 3.0, the BSA aggregates were formed at the gas–liquid interface due to the unfolded BSA structure and they further aggregated to form insoluble ones in the desorption process.

  9. Zn++ Binding Disrupts the Asp23-Lys28 Salt Bridge without Altering the Hairpin-Shaped Cross-β Structure of Aβ42 Amyloid Aggregates

    Science.gov (United States)

    Mithu, Venus Singh; Sarkar, Bidyut; Bhowmik, Debanjan; Chandrakesan, Muralidharan; Maiti, Sudipta; Madhu, Perunthiruthy K.

    2011-01-01

    Observations like high Zn2+ concentrations in senile plaques found in the brains of Alzheimer's patients and evidences emphasizing the role of Zn2+ in amyloid-β (Aβ)-induced toxicity have triggered wide interest in understanding the nature of Zn2+-Aβ interaction. In vivo and in vitro studies have shown that aggregation kinetics, toxicity, and morphology of Aβ aggregates are perturbed in the presence of Zn2+. Structural studies have revealed that Zn2+ has a binding site in the N-terminal region of monomeric Aβ, but not much is precisely known about the nature of binding of Zn2+ with aggregated forms of Aβ or its effect on the molecular structure of these aggregates. Here, we explore this aspect of the Zn2+-Aβ interaction using one- and two-dimensional 13C and 15N solid-state NMR. We find that Zn2+ causes major structural changes in the N-terminal and the loop region connecting the two β-sheets. It breaks the salt bridge between the side chains of Asp23 and Lys28 by driving these residues into nonsalt-bridge-forming conformations. However, the cross-β structure of Aβ42 aggregates remains unperturbed though the fibrillar morphology changes distinctly. We conclude that the salt bridge is not important for defining the characteristic molecular architecture of Aβ42 but is significant for determining its fibrillar morphology and toxicity. PMID:22261072

  10. Zn(++) binding disrupts the Asp(23)-Lys(28) salt bridge without altering the hairpin-shaped cross-β Structure of Aβ(42) amyloid aggregates.

    Science.gov (United States)

    Mithu, Venus Singh; Sarkar, Bidyut; Bhowmik, Debanjan; Chandrakesan, Muralidharan; Maiti, Sudipta; Madhu, Perunthiruthy K

    2011-12-07

    Observations like high Zn(2+) concentrations in senile plaques found in the brains of Alzheimer's patients and evidences emphasizing the role of Zn(2+) in amyloid-β (Aβ)-induced toxicity have triggered wide interest in understanding the nature of Zn(2+)-Aβ interaction. In vivo and in vitro studies have shown that aggregation kinetics, toxicity, and morphology of Aβ aggregates are perturbed in the presence of Zn(2+). Structural studies have revealed that Zn(2+) has a binding site in the N-terminal region of monomeric Aβ, but not much is precisely known about the nature of binding of Zn(2+) with aggregated forms of Aβ or its effect on the molecular structure of these aggregates. Here, we explore this aspect of the Zn(2+)-Aβ interaction using one- and two-dimensional (13)C and (15)N solid-state NMR. We find that Zn(2+) causes major structural changes in the N-terminal and the loop region connecting the two β-sheets. It breaks the salt bridge between the side chains of Asp(23) and Lys(28) by driving these residues into nonsalt-bridge-forming conformations. However, the cross-β structure of Aβ(42) aggregates remains unperturbed though the fibrillar morphology changes distinctly. We conclude that the salt bridge is not important for defining the characteristic molecular architecture of Aβ(42) but is significant for determining its fibrillar morphology and toxicity. Copyright © 2011 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  11. A design methodology for biologically inspired dry fibrillar adhesives

    Science.gov (United States)

    Aksak, Burak

    Realization of the unique aspects of gecko adhesion and incorporating these aspects into a comprehensive design methodology is essential to enable fabrication of application oriented gecko-inspired dry fibrillar adhesives. To address the need for such a design methodology, we propose a fibrillar adhesion model that evaluates the effect of fiber dimensions and material on adhesive performance of fiber arrays. A fibrillar adhesion model is developed to predict the adhesive characteristics of an array of fibrillar structures, and quantify the effect of fiber length, radius, spacing, and material. Photolithography techniques were utilized to fabricate elastomer microfiber arrays. Fibers that are fabricated from stiff SU-8 photoresist are used to fabricate a flexible negative mold that facilitates fabrication of fiber arrays from various elastomers with high yield. The tips of the cylindrical fibers are modified to mushroom-like tip shapes. Adhesive strengths in excess of 100 kPa is obtained with mushroom tipped elastomer microfibers. Vertically aligned carbon nanofibers (VACNFs) are utilized as enhanced friction materials by partially embedding inside soft polyurethanes. Friction coefficients up to 1 were repeatedly obtained from the resulting VACNF composite structures. A novel fabrication method is used to attach Poly(n-butyl acrylate) (PBA) molecular brush-like structures on the surface of polydimethylsiloxane (PDMS). These brushes are grown on unstructured PDMS and PDMS fibers with mushroom tips. Pull-off force is enhanced by up to 7 times with PBA brush grafted micro-fiber arrays over unstructured PDMS substrate. Adhesion model, initially developed for curved smooth surfaces, is extended to self-affine fractal surfaces to better reflect the adhesion performance of fiber arrays on natural surfaces. Developed adhesion model for fiber arrays is used in an optimization scheme which estimates optimal design parameters to obtain maximum adhesive strength on a given

  12. Crystalline fibrillar gel formation in aqueous surfactant-antioxidant system.

    Science.gov (United States)

    Joseph, Linet Rose; Tata, B V R; Sreejith, Lisa

    2015-08-01

    Cetyltrimethylammonium bromide (CTAB) is a well-known cationic surfactant capable to micellize into diverse morphologies in aqueous medium. We observed the formation of an opaque gel state from aqueous CTAB solution in the presence of the aromatic additive, para-coumaric acid (PCA). Optical microscopic images revealed the presence of large fibrils in the system at room temperature. Gel nature of the fibrils was confirmed by rheological measurements. Presence of interstitial water in the fibrils was recognized with Raman spectroscopy. On heating the sample above 30 (°) C, the fibrillar gel state changes to a transparent liquid state with Newtonian flow properties. Dynamic light scattering study hinted the presence of small micelles in the solution above 30 (°) C. Thus the system showed a temperature-dependent structural transition from opaque water-swollen gel to transparent micellar liquid. The formation of water-swollen fibrillar network is attributed to surfactant-additive intermolecular interactions in aqueous medium. Transition to micelle phase above 30 (°) C is related to Kraft transition which is observed at significantly lower temperature for CTAB in the absence of PCA. The structural features of PCA play a key role in promoting fibrillar network formation and elevating the Kraft transition in aqueous solution of CTAB.

  13. Thrombopoietin, c-Mpl ligand, induces tyrosine phosphorylation of Tyk2, JAK2, and STAT3, and enhances agonists-induced aggregation in platelets in vitro.

    Science.gov (United States)

    Ezumi, Y; Takayama, H; Okuma, M

    1995-10-23

    We investigated in vitro effects of recombinant human thrombopoietin (TPO), or c-Mpl ligand, on human platelets. TPO induced rapid dose-dependent tyrosine phosphorylation of several proteins. We identified Janus tyrosine kinases, Tyk2 and JAK2, and a member of STAT (signal transducers and activators of transcription) family, STAT3, as the tyrosine-phosphorylated proteins in response to TPO. TPO by itself did not cause platelet aggregation and shape change, but augmented ADP-induced aggregation in a dose-dependent manner. Acetylsalicylic acid inhibited the secondary aggregation enhanced by TPO, but not the TPO-induced potentiation of the primary aggregation. TPO modulates platelet activation possibly through protein-tyrosine phosphorylation.

  14. Aggregation-induced emissive nanoparticles for fluorescence signaling in a low cost paper-based immunoassay.

    Science.gov (United States)

    Engels, Jan F; Roose, Jesse; Zhai, Demi Shuang; Yip, Ka Man; Lee, Mei Suet; Tang, Ben Zhong; Renneberg, Reinhard

    2016-07-01

    Low cost paper based immunoassays are receiving interest due to their fast performance and small amounts of biomolecules needed for developing an immunoassay complex. In this work aggregation-induced emissive (AIE) nanoparticles, obtained from a diastereoisomeric mixture of 1,2-di-(4-hydroxyphenyl)-1,2-diphenylethene (TPEDH) in a one-step top-down method, are characterized through Dynamic Light Scattering (DLS), Scanning Electron Microscopy (SEM), and Zeta potential. By measuring the Zeta potential before and after labeling the nanoparticles with antibodies we demonstrate that the colloidal system is stable in a wide pH-range. The AIE-active nanoparticles are deposited on chitosan and glutaraldehyde modified paper pads overcoming the common aggregation-caused quenching (ACQ) effect. Analyte concentrations from 1000ng and below are applied in a model immunocomplex using Goat anti-Rabbit IgG and Rabbit IgG. In the range of 7.81ng-250ng, linear trends with a high R(2) are observed, which leads to a strong increase of the blue fluorescence from the TPEDH nanoparticles.

  15. Interplay between desolvation and secondary structure in mediating cosolvent and temperature induced alpha-synuclein aggregation

    Science.gov (United States)

    Anderson, V. L.; Webb, W. W.; Eliezer, D.

    2012-10-01

    Both increased temperature and moderate concentrations of fluorinated alcohols enhance aggregation of the Parkinson's disease-associated protein α-synuclein (αS). Here, we investigate the secondary structural rearrangements induced by heating and trifluoroethanol [TFE]. At low TFE concentrations, CD spectra feature a negative peak characteristic of disordered polypeptides near 200 nm and a slight shoulder around 220 nm suggesting some polyproline-II content. Upon heating, these peaks weaken, while a weak negative signal develops at 222 nm. At high TFE concentrations, the spectra show distinct minima at 208 and 222 nm, indicative of considerable α-helical structure, which diminish upon heating. We observe a crossover between the low-TFE and high-TFE behavior near 15% TFE, where we previously showed that a partially helical intermediate is populated. We postulate that the protein is well solvated by water at low TFE concentrations and by TFE at high TFE concentrations, but may become desolvated at the crossover point. We discuss the potential roles and interplay of desolvation and helical secondary structure in driving αS aggregation.

  16. A Robust Damage-Reporting Strategy for Polymeric Materials Enabled by Aggregation-Induced Emission.

    Science.gov (United States)

    Robb, Maxwell J; Li, Wenle; Gergely, Ryan C R; Matthews, Christopher C; White, Scott R; Sottos, Nancy R; Moore, Jeffrey S

    2016-09-28

    Microscopic damage inevitably leads to failure in polymers and composite materials, but it is difficult to detect without the aid of specialized equipment. The ability to enhance the detection of small-scale damage prior to catastrophic material failure is important for improving the safety and reliability of critical engineering components, while simultaneously reducing life cycle costs associated with regular maintenance and inspection. Here, we demonstrate a simple, robust, and sensitive fluorescence-based approach for autonomous detection of damage in polymeric materials and composites enabled by aggregation-induced emission (AIE). This simple, yet powerful system relies on a single active component, and the general mechanism delivers outstanding performance in a wide variety of materials with diverse chemical and mechanical properties.

  17. Polyamines induce aggregation of LHC II and quenching of fluorescence in vitro.

    Science.gov (United States)

    Tsiavos, Theodoros; Ioannidis, Nikolaos E; Kotzabasis, Kiriakos

    2012-05-01

    Dissipation of excess excitation energy within the light-harvesting complex of Photosystem II (LHC II) is a main process in plants, which is measured as the non-photochemical quenching of chlorophyll fluorescence or qE. We showed in previous works that polyamines stimulate qE in higher plants in vivo and in eukaryotic algae in vitro. In the present contribution we have tested whether polyamines can stimulate quenching in trimeric LHC II and monomeric light-harvesting complex b proteins from higher plants. The tetramine spermine was the most potent quencher and induced aggregation of LHC II trimers, due to its highly cationic character. Two transients are evident at 100 μM and 350 μM for the fluorescence and absorbance signals of LHC II respectively. On the basis of observations within this work, some links between polyamines and the activation of qE in vivo is discussed.

  18. The influence of the crystal structure on aggregation-induced luminescence of derivatives of aminobenzoic acid

    Science.gov (United States)

    Nosova, D. A.; Zarochentseva, E. P.; Vysotskaya, S. O.; Klemesheva, N. A.; Korotkov, V. I.

    2014-12-01

    The luminescence of three derivatives of 2-(phenylamino)-benzoic acid (N-phenylanthranilic, mefenamic, and niflumic acids) in benzene solution, in the polycrystalline state, and in the hexamethylbenzene matrix is studied. In the crystalline state, these compounds exhibit intense aggregation-induced luminescence. An increase in luminescence is also observed in the impurity crystal. The hexamethylbenzene crystal lattice restricts the mobility of molecules, thus ensuring the rigidity of the molecular structure of acids, which decreases the efficiency of nonradiative electron energy degradation. The main reason for the increase in the luminescence intensity in the case of fixation in a crystalline matrix is the formation of intramolecular hydrogen bonds and dimers of acid molecules.

  19. Crystal Crosslinked Gels with Aggregation-Induced Emissive Crosslinker Exhibiting Swelling Degree-Dependent Photoluminescence

    Directory of Open Access Journals (Sweden)

    Tsuyoshi Oura

    2017-01-01

    Full Text Available The synthesis and photoluminescence properties of crystal crosslinked gels (CCGs with an aggregation-induced emission (AIE active crosslinker derived from tetraphenylethene (TPE is discussed in this article. The CCG was prepared from a metal organic framework (MOF with large pore aperture to allow the penetration of TPE crosslinker. The obtained CCG possessed a rectangular shape originated from the parent MOF, KUMOF. The CCG showed stimuli-responsive photoluminescence behavior depending on the swelling degree, thus the photoluminescence intensity was higher at higher swelling degree. By changing the solvent, water content, or ionic strength, the photoluminescence intensity was controllable, accompanying the change of swelling degree. Moreover, emission color tuning was also achieved by the introduction of luminescent rare earth ions to form a coordination bonding with residual carboxylate inside the CCG.

  20. Conformational stability of fibrillar amyloid-beta oligomers via protofilament pair formation - a systematic computational study.

    Science.gov (United States)

    Kahler, Anna; Sticht, Heinrich; Horn, Anselm H C

    2013-01-01

    Amyloid-[Formula: see text] (A[Formula: see text]) oligomers play a crucial role in Alzheimer's disease due to their neurotoxic aggregation properties. Fibrillar A[Formula: see text] oligomerization can lead to protofilaments and protofilament pairs via oligomer elongation and oligomer association, respectively. Small fibrillar oligomers adopt the protofilament topology, whereas fibrils contain at least protofilament pairs. To date, the underlying growth mechanism from oligomers to the mature fibril still remains to be elucidated. Here, we performed all-atom molecular dynamics simulations in explicit solvent on single layer-like protofilaments and fibril-like protofilament pairs of different size ranging from the tetramer to the 48-mer. We found that the initial U-shaped topology per monomer is maintained over time in all oligomers. The observed deviations of protofilaments from the starting structure increase significantly with size due to the twisting of the in-register parallel [Formula: see text]-sheets. This twist causes long protofilaments to be unstable and leads to a breakage. Protofilament pairs, which are stabilized by a hydrophobic interface, exhibit more fibril-like properties such as the overall structure and the twist angle. Thus, they can act as stable conformational templates for further fibril growth. Key properties like the twist angle, shape complementarity, and energetics show a size-dependent behavior so that small oligomers favor the protofilament topology, whereas large oligomers favor the protofilament pair topology. The region for this conformational transition is at the size of approximately twelve A[Formula: see text] monomers. From that, we propose the following growth mechanism from A[Formula: see text] oligomers to fibrils: (1) elongation of short protofilaments; (2) breakage of large protofilaments; (3) formation of short protofilament pairs; and (4) elongation of protofilament pairs.

  1. Conformational stability of fibrillar amyloid-beta oligomers via protofilament pair formation - a systematic computational study.

    Directory of Open Access Journals (Sweden)

    Anna Kahler

    Full Text Available Amyloid-[Formula: see text] (A[Formula: see text] oligomers play a crucial role in Alzheimer's disease due to their neurotoxic aggregation properties. Fibrillar A[Formula: see text] oligomerization can lead to protofilaments and protofilament pairs via oligomer elongation and oligomer association, respectively. Small fibrillar oligomers adopt the protofilament topology, whereas fibrils contain at least protofilament pairs. To date, the underlying growth mechanism from oligomers to the mature fibril still remains to be elucidated. Here, we performed all-atom molecular dynamics simulations in explicit solvent on single layer-like protofilaments and fibril-like protofilament pairs of different size ranging from the tetramer to the 48-mer. We found that the initial U-shaped topology per monomer is maintained over time in all oligomers. The observed deviations of protofilaments from the starting structure increase significantly with size due to the twisting of the in-register parallel [Formula: see text]-sheets. This twist causes long protofilaments to be unstable and leads to a breakage. Protofilament pairs, which are stabilized by a hydrophobic interface, exhibit more fibril-like properties such as the overall structure and the twist angle. Thus, they can act as stable conformational templates for further fibril growth. Key properties like the twist angle, shape complementarity, and energetics show a size-dependent behavior so that small oligomers favor the protofilament topology, whereas large oligomers favor the protofilament pair topology. The region for this conformational transition is at the size of approximately twelve A[Formula: see text] monomers. From that, we propose the following growth mechanism from A[Formula: see text] oligomers to fibrils: (1 elongation of short protofilaments; (2 breakage of large protofilaments; (3 formation of short protofilament pairs; and (4 elongation of protofilament pairs.

  2. A triple-emission fluorescent probe reveals distinctive amyloid fibrillar polymorphism of wild-type alpha-synuclein and its familial Parkinson's disease mutants.

    Science.gov (United States)

    Celej, M Soledad; Caarls, Wouter; Demchenko, Alexander P; Jovin, Thomas M

    2009-08-11

    Intracytoplasmic neuronal deposits containing amyloid fibrils of the 140-amino acid presynaptic protein alpha-synuclein (AS) are the hallmark of Parkinson's (PD) disease and related neurodegenerative disorders. Three point mutations (A53T, A30P, and E46K) are linked to early onset PD. Compared to the wild-type (WT) protein, the mutants aggregate faster in vitro, but their fibrillar products are quite similar. Using the extrinsic multiple-emission probe 4'-(diethylamino)-3-hydroxyflavone (FE), we demonstrate unique and distinct spectroscopic signatures for the amyloid fibrils formed by the WT and mutant AS, presumably indicative of subtle differences in supramolecular structure. The two well-separated emission bands of the FE probe originate from a proton transfer reaction in the excited state. The ratiometric response constitutes a sensitive, tunable reporter of microenvironmental properties such as polarity and hydrogen bonding. The very distinctive fluorescence spectra of the FE probe bound to the four AS variants reflect different tautomeric equilibria in the excited state and the existence of at least two different binding sites in the fibrils for the dye. Deconvolution of the two-dimensional excitation-emission spectra leads to estimations of different local dielectric constants and extents of hydration characteristic of the proteins. The sensitivity of such a simple external probe to conformational alterations induced by point mutations is unprecedented and provides new insight into key phenomena related to amyloid fibrils: plasticity, polymorphism, propagation of structural features, and structure-function relationships underlying toxicity.

  3. Amorphous Aggregation of Cytochrome c with Inherently Low Amyloidogenicity Is Characterized by the Metastability of Supersaturation and the Phase Diagram.

    Science.gov (United States)

    Lin, Yuxi; Kardos, József; Imai, Mizue; Ikenoue, Tatsuya; Kinoshita, Misaki; Sugiki, Toshihiko; Ishimori, Koichiro; Goto, Yuji; Lee, Young-Ho

    2016-03-01

    Despite extensive studies on the folding and function of cytochrome c, the mechanisms underlying its aggregation remain largely unknown. We herein examined the aggregation behavior of the physiologically relevant two types of cytochrome c, metal-bound cytochrome c, and its fragment with high amyloidogenicity as predicted in alcohol/water mixtures. Although the aggregation propensity of holo cytochrome c was low due to high solubility, markedly unfolded apo cytochrome c, lacking the heme prosthetic group, strongly promoted the propensity for amorphous aggregation with increases in hydrophobicity. Silver-bound apo cytochrome c increased the capacity of fibrillar aggregation (i.e., protofibrils or immature fibrils) due to subtle structural changes of apo cytochrome c by strong binding of silver. However, mature amyloid fibrils were not detected for any of the cytochrome c variants or its fragment, even with extensive ultrasonication, which is a powerful amyloid inducer. These results revealed the intrinsically low amyloidogenicity of cytochrome c, which is beneficial for its homeostasis and function by facilitating the folding and minimizing irreversible amyloid formation. We propose that intrinsically low amyloidogenicity of cytochrome c is attributed to the low metastability of supersaturation. The phase diagram constructed based on solubility and aggregate type is useful for a comprehensive understanding of protein aggregation. Furthermore, amorphous aggregation, which is also viewed as a generic property of proteins, and amyloid fibrillation can be distinguished from each other by the metastability of supersaturation.

  4. Orally given gastroprotective capsaicin does not modify aspirin-induced platelet aggregation in healthy male volunteers (human phase I examination).

    Science.gov (United States)

    Sandor, B; Papp, J; Mozsik, Gy; Szolcsanyi, J; Keszthelyi, Zs; Juricskay, I; Toth, K; Habon, Tamas

    2014-12-01

    Capsaicin is a well-known component of red pepper. Recent studies have shown that capsaicin could prevent gastric ulcer provoked by various NSAID-s like acetylsalicylic acid (ASA). Primary objective of this human clinical phase I trial was to investigate whether two different doses of capsaicin co-administered with ASA could alter the inhibitory effect of ASA on platelet aggregation. 15 healthy male subjects were involved in the study and treated orally with 400 μg capsaicin, 800 μg capsaicin, 500 mg ASA, 400 μg capsaicin+500 mg ASA and 800 μg capsaicin+500 mg ASA. Blood was drawn before and 1, 2, 6 and 24 hours after the drug administration. After that epinephrine induced platelet aggregation was measured by optical aggregometry. Between treatments, volunteers had a 6-day wash-out period. Our results showed that capsaicin had no effect on platelet aggregation, while as expected, ASA monotherapy resulted in a significant and clinically effective platelet aggregation inhibition (p ≤ 0.001). The combined ASA-capsaicin therapies reached equivalent effectiveness in platelet aggregation inhibition as ASA monotherapy. Our investigation proved that capsaicin did not influence the inhibitory effect of ASA on platelet aggregation, thus the capsaicin-ASA treatment would combine the antiplatelet effect of ASA with the possible gastroprotection of capsaicin.

  5. Pressure effects on the structure, kinetic, and thermodynamic properties of heat-induced aggregation of protein studied by FT-IR spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Taniguchi, Y [Applied Chemistry Department, Ritsumeikan University, Kusatsu, Shiga 525-8577 (Japan); Okuno, A [Research Department 3, Central Research, Bridgestone Co. Kodaira, Tokyo 187-8531 (Japan); Kato, M, E-mail: taniguti@sk.ritsumei.ac.j [Pharmaceutical Sciences Department, Ritsumeikan University, Kusatsu, Shiga 525-8577 (Japan)

    2010-03-01

    Pressure can retrain the heat-induced aggregation and dissociate the heat-induced aggregates. We observed the aggregation-preventing pressure effect and the aggregates-dissociating pressure effect to characterize the heat-induced aggregation of equine serum albumin (ESA) by FT-IR spectroscopy. The results suggest the {alpha}-helical structure collapses at the beginning of heat-induced aggregation through the swollen structure, and then the rearrangement of structure to the intermolecular {beta}-sheet takes place through partially unfolded structure. We determined the activation volume for the heat-induced aggregation ({Delta}V'' = +93 ml/mol) and the partial molar volume difference between native state and heat-induced aggregates ({Delta}V=+32 ml/mol). This positive partial molar volume difference suggests that the heat-induced aggregates have larger internal voids than the native structure. Moreover, the positive volume change implies that the formation of the intermolecular {beta}-sheet is unfavorable under high pressure.

  6. Liquid-Crystalline Star-Shaped Supergelator Exhibiting Aggregation-Induced Blue Light Emission.

    Science.gov (United States)

    Pathak, Suraj Kumar; Pradhan, Balaram; Gupta, Monika; Pal, Santanu Kumar; Sudhakar, Achalkumar Ammathnadu

    2016-09-13

    A family of closely related star-shaped stilbene-based molecules containing an amide linkage are synthesized, and their self-assembly in liquid-crystalline and gel states was investigated. The number and position of the peripheral alkyl tails were systematically varied to understand the structure-property relation. Interestingly, one of the molecules with seven peripheral chains was bimesomorphic, exhibiting columnar hexagonal and columnar rectangular phases, whereas the rest of them stabilized the room-temperature columnar hexagonal phase. The self-assembly of these molecules in liquid-crystalline and organogel states is extremely sensitive to the position and number of alkoxy tails in the periphery. Two of the compounds with six and seven peripheral tails exhibited supergelation behavior in long-chain hydrocarbon solvents. One of these compounds with seven alkyl chains was investigated further, and it has shown higher stability and moldability in the gel state. The xerogel of the same compound was characterized with the help of extensive microscopic and X-ray diffraction studies. The nanofibers in the xerogel are found to consist of molecules arranged in a lamellar fashion. Furthermore, this compound shows very weak emission in solution but an aggregation-induced emission property in the gel state. Considering the dearth of solid-state blue-light-emitting organic materials, this molecular design is promising where the self-assembly and emission in the aggregated state can be preserved. The nonsymmetric design lowers the phase-transition temperatures.The presence of an amide bond helps to stabilize columnar packing over a long range because of its polarity and intermolecular hydrogen bonding in addition to promoting organogelation.

  7. DNA packaging induced by micellar aggregates: a novel in vitro DNA condensation system.

    Science.gov (United States)

    Ghirlando, R; Wachtel, E J; Arad, T; Minsky, A

    1992-08-11

    Evidence for a conceptually novel DNA packaging process is presented. X-ray scattering, electron microscopy, and circular dichroism measurements indicate that in the presence of positively charged micellar aggregates and flexible anionic polymers, such as negatively charged polypeptides or single-stranded RNA species, a complex is formed in which DNA molecules are partially embedded within a micellar scaffold and partially condensed into highly packed chiral structures. Based on studies of micelle-DNA and micelle-flexible anionic polymer systems, as well as on the known effects of a high charge density upon the micellar organization, a DNA packaging model is proposed. According to this model, the DNA induces the elongation of the micelles into rodlike aggregates, forming a closely packed matrix in which the DNA molecules are immobilized. In contrast, the flexible anionic polymers stabilize clusters of spherical micelles which are proposed to effect a capping of the rodlike micelles, thus arresting their elongation and creating surfactant-free segments of the DNA that are able to converge and collapse. Thus, unlike other in vitro DNA packaging systems, in which condensation follows encounters between charge-neutralized DNA molecules, a prepackaging phase where the DNA is immobilized within a matrix is proposed in this case. Cellular and nuclear membranes have been implicated in DNA packaging processes in vivo, and negatively charged polyelectrolytes were shown to be involved in the processes. These observations, combined with the basic tenets of the DNA condensation system described here, allow for the progression to the study of more elaborate model systems and thus might lead to insights into the nature and roles of the intricate in vivo DNA-membrane complexes.

  8. Temperature induced structural transitions from native to unfolded aggregated states of tobacco etch virus protease

    Science.gov (United States)

    Zhu, Guo-Fei; Ren, Si-Yan; Xi, Lei; Du, Lin-Fang; Zhu, Xiao-Feng

    2015-02-01

    Tobacco etch virus protease (TEVp) is widely used to remove fusion tags from recombinant proteins because of its high and unique specificity. This work describes the conformational and the thermodynamic properties in the unfolding/refolding process of TEVp3M (three-point mutant: L56V/S135G/S219V) induced by temperature. With temperature increasing from 20 to 100 °C, the CD spectra showed a transition trend from α-helix to β-sheet, and the fluorescence emission, synchronous fluorescence, ANS and RLS spectroscopy consistently revealed that the temperature-induced unfolding process behaved in a three-state manner, for there was a relatively stable intermediate state observed around 50 °C. The reversibility of thermal unfolding of TEVp3M further showed that the transition from the native to the intermediate state was reversible (below 50 °C), however the transition from the intermediate to the unfolded state was irreversible (above 60 °C). Moreover, aggregates were observed above 60 °C as revealed by SDS-PAGE, Thioflavin-T fluorescence and Congo red absorbance.

  9. Psychological stress as a determinant of protein levels and salivary-induced aggregation of Streptococcus gordonii in human whole saliva

    NARCIS (Netherlands)

    Bosch, J.A.; Brand, H.S.; Ligtenberg, T.J.M.; Bermond, B.; Hoogstraten, J.; Nieuw Amerongen, A.V.

    1996-01-01

    Several pathologies of the oral cavity have been associated with stress, so we investigated salivary-induced aggregation during psychological stress. In addition, salivary total protein, alpha-amylase, and secretory immunoglobulin A (s-IgA) were assessed. In this longitudinal study, 28 dental

  10. Protective effects of Nitraria retusa extract and its constituent isorhamnetin against amyloid β-induced cytotoxicity and amyloid β aggregation.

    Science.gov (United States)

    Iida, Akihisa; Usui, Takeo; Zar Kalai, Feten; Han, Junkyu; Isoda, Hiroko; Nagumo, Yoko

    2015-01-01

    Nitraria retusa is a halophyte species that is distributed in North Africa and used as a traditional medicinal plant. In this study, N. retusa ethanol extract and its constituent isorhamnetin (IRA) protected against amyloid β (Aβ)-induced cytotoxicity in human neuroblastoma SH-SY5Y cells. An in vitro Aβ aggregation assay suggested that IRA destabilizes Aβ fibrils.

  11. The 26S Proteasome Degrades the Soluble but Not the Fibrillar Form of the Yeast Prion Ure2p In Vitro.

    Directory of Open Access Journals (Sweden)

    Kai Wang

    Full Text Available Yeast prions are self-perpetuating protein aggregates that cause heritable and transmissible phenotypic traits. Among these, [PSI+] and [URE3] stand out as the most studied yeast prions, and result from the self-assembly of the translation terminator Sup35p and the nitrogen catabolism regulator Ure2p, respectively, into insoluble fibrillar aggregates. Protein quality control systems are well known to govern the formation, propagation and transmission of these prions. However, little is known about the implication of the cellular proteolytic machineries in their turnover. We previously showed that the 26S proteasome degrades both the soluble and fibrillar forms of Sup35p and affects [PSI+] propagation. Here, we show that soluble native Ure2p is degraded by the proteasome in an ubiquitin-independent manner. Proteasomal degradation of Ure2p yields amyloidogenic N-terminal peptides and a C-terminal resistant fragment. In contrast to Sup35p, fibrillar Ure2p resists proteasomal degradation. Thus, structural variability within prions may dictate their ability to be degraded by the cellular proteolytic systems.

  12. Blockade of the formation of insoluble ubiquitinated protein aggregates by EGCG3"Me in the alloxan-induced diabetic kidney.

    Directory of Open Access Journals (Sweden)

    Shuxian Cai

    Full Text Available BACKGROUND: Renal accumulation of reactive carbonyl compounds (RCCs has been linked to the progression of diabetic nephropathy. We previously demonstrated that carbonyl stress induces the formation of amino-carbonyl cross-links and sharply increases the content of β-sheet-rich structures, which is the seed of insoluble aggregates formation, and tea catechin (--epigallocatechin 3-gallate (EGCG can reverse this process in vitro and in vivo. In this study, methylated derivative (--epigallocatechin-3-O-(3-O-methyl-gallate (EGCG3"Me was hypothesized to neutralize carbonyl stress mediating the formation of insoluble ubiquitinated protein (IUP aggregates, and reduce the early development of diabetic nephropathy. METHODS AND RESULTS: Diabetes was induced in mice by intraperitoneally injecting alloxan monohydrate (200 mg/kg/d twice and administering EGCG3"Me by gavage for 15 d. Reagent case and western blot results showed that, in diabetic kidneys, the carbonyl proteins in the serum increased; and in insoluble protein fraction, 4-hydroxynonenal-modified proteins, IUP aggregates and p62 accumulated; FT-IR study demonstrated that the lipid content, anti-parallel β-sheet structure and aggregates increased. EGCG3"Me treatment could effectively reverse this process, even better than the negative control treatment. CONCLUSIONS: EGCG3"Me exhibiting anti-β-sheet-rich IUP aggregate properties, maybe represents a new strategy to impede the progression of diabetic nephropathy and other diabetic complications.

  13. Nonlinear Absorption Spectroscopy of Porphyrin J-aggregates in Aqueous Solution: Evidence for Control of Degree of Association by Light-Induced Force

    Science.gov (United States)

    Shirakawa, Masayuki; Nakata, Kazuaki; Suzuki, Masaya; Kobayashi, Takayoshi; Tokunaga, Eiji

    2017-04-01

    Spectroscopic evidence was obtained for molecular aggregation states to be controlled by the irradiation of light, which is off-resonant below the peak absorption energies of both monomers and well-grown J-aggregates. In low (undersaturated)-concentration aqueous solutions of porphyrin molecules (tetraphenyl porphyrin tetrasulfonic acid; TPPS) where the monomer absorbance dominates, irradiation with a 532 nm laser induces a decrease in the monomer absorbance and an increase in the aggregate absorbance. The increase in the absorbance of J-aggregates occurs in a broad spectral range associated with the increase in the number of not only variously sized oligomer aggregates but also aggregates structurally different from well-grown stable J-aggregates. In high-concentration solutions where the J-aggregate absorbance dominates, a blue shift of the absorption peak of J-aggregates is induced at the same 532 nm irradiation, corresponding to a decrease in the aggregation number or in the association energy. By contrast, for spin-coated polymer films of monomers and J-aggregates where molecules are immobile, these features are not observed. It is remarkable that the gradient force potential is smaller by more than seven orders of magnitude than the kinetic energy of the thermal motion of the molecule at room temperature, but the absorption change in solution indicating the increase in the number of aggregates is as large as ΔA ˜ 10-3 in magnitude.

  14. Effect of the crude extract of Cestrum parqui on carrageenin-induced rat paw oedema and aggregation of human blood platelets.

    Science.gov (United States)

    Shehnaz, D; Hamid, F; Baqai, F T; Uddin Ahmad, V

    1999-08-01

    An extract of Cestrum parqui aerial parts in methanol:water (1:1) showed inhibition of carrageenin-induced oedema. The aggregation of human blood platelets induced by adenosine diphosphate and platelet activating factor was also inhibited (IC(50)s were 3 and 2 mg/mL, respectively). On the contrary, the extract did not inhibit arachidonic acid-mediated platelet aggregation.

  15. Aggregation-induced fluorescence behavior of triphenylamine-based Schiff bases: the combined effect of multiple forces.

    Science.gov (United States)

    Yang, Mingdi; Xu, Dongling; Xi, Wengang; Wang, Lianke; Zheng, Jun; Huang, Jing; Zhang, Jingyan; Zhou, Hongping; Wu, Jieying; Tian, Yupeng

    2013-10-18

    Eight triphenylamine (TPA)-based Schiff bases that exhibit different aggregation-induced emission (AIE) or aggregation-caused quenching (ACQ) behavior in tetrahydrofuran (THF)/water mixtures have been synthesized and characterized. The photophysical properties in solution, aqueous suspension, film, and the crystalline state along with their relationships were comparatively investigated. The single-crystal structures of 1-8 indicate that compact π···π stacking or excimers induce fluorescence quenching of 1, 2, 5, and 7. However, the existence of J aggregates or multiple intra- and intermolecular interactions restrict the intramolecular vibration and rotation, enabling compounds 3, 4, 6, and 8 to exhibit good AIE character. The size and growth process of particles with different water fractions were studied using scanning electron microscopy, which demonstrated that smaller uniformly dispersed nanoparticles in the THF/water mixtures favor fluorescence emission. The above results suggest that the combined effects of multiple forces caused by structural variation have a great influence on their molecular packing, electronic structure, and aggregation-induced fluorescence properties. In addition, piezofluorochromic experiments verified the potential applications of 4 and 6.

  16. Inhibitory effects and mechanisms of high molecular-weight phlorotannins from Sargassum thunbergii on ADP-induced platelet aggregation

    Institute of Scientific and Technical Information of China (English)

    WEI Yuxi; WANG Changyun; LI Jing; GUO Qi; QI Hongtao

    2009-01-01

    We evaluated the effects of high molecular-weight phlorotannins from Sargassum thunbergii (STP) on ADP-induced platelet aggregation and arachidonic acid (AA) metabolism in New Zealand white rabbits and Wistar rats. The inhibition of STP on platelet aggregation was investigated using a turbidimetric method, and the levels of the terminal products of AA metabolism were measured using the corresponding kits for maleic dialdehyde (MDA), thromboxane B2 (TXB2) and 6-keto-prostaglandin F1α (6-keto-PGF1α) by colorimetry and radioimmunoassay, as appropriate. We found that STP could inhibit ADP-induced platelet aggregation, and the inhibitory ratio was 91.50% at the STP concentration of 4.0 mg/mL. Furthermore, STP markedly affected AA metabolism by decreasing the synthesis of MDA (P<0.01) and increasing the synthesis of 6-keto-PGF1α, thus changing the plasma TXB2/6-keto-PGF1α balance when the platelets were activated (P<0.01). Therefore, STP altered AA metabolism and these findings partly revealed the molecular mechanism by which STP inhibits ADP-induced platelet aggregation.

  17. Duration of exposure to high fluid shear stress is critical in shear-induced platelet activation-aggregation.

    Science.gov (United States)

    Zhang, Jian-ning; Bergeron, Angela L; Yu, Qinghua; Sun, Carol; McBride, Latresha; Bray, Paul F; Dong, Jing-fei

    2003-10-01

    Platelet functions are increasingly measured under flow conditions to account for blood hydrodynamic effects. Typically, these studies involve exposing platelets to high shear stress for periods significantly longer than would occur in vivo. In the current study, we demonstrate that the platelet response to high shear depends on the duration of shear exposure. In response to a 100 dyn/cm2 shear stress for periods less than 10-20 sec, platelets in PRP or washed platelets were aggregated, but minimally activated as demonstrated by P-selectin expression and binding of the activation-dependent alphaIIbbeta3 antibody PAC-1 to sheared platelets. Furthermore, platelet aggregation under such short pulses of high shear was subjected to rapid disaggregation. The disaggregated platelets could be re-aggregated by ADP in a pattern similar to unsheared platelets. In comparison, platelets that are exposed to high shear for longer than 20 sec are activated and aggregated irreversibly. In contrast, platelet activation and aggregation were significantly greater in whole blood with significantly less disaggregation. The enhancement is likely via increased collision frequency of platelet-platelet interaction and duration of platelet-platelet association due to high cell density. It may also be attributed to the ADP release from other cells such as red blood cells because increased platelet aggregation in whole blood was partially inhibited by ADP blockage. These studies demonstrate that platelets have a higher threshold for shear stress than previously believed. In a pathologically relevant timeframe, high shear alone is likely to be insufficient in inducing platelet activation and aggregation, but acts synergistically with other stimuli.

  18. Fluorogens with Aggregation Induced Emission: Ideal Photoacoustic Contrast Reagents Due to Intramolecular Rotation.

    Science.gov (United States)

    Geng, Junlong; Liao, Lun-De; Qin, Wei; Tang, Ben Zhong; Thakor, Nitish; Liu, Bin

    2015-02-01

    Exogenous contrast agents with high sensitivity are highly desirable for photoacoustic (PA) imaging. In this work, we show that fluorogens with aggregation induced emission (AIE) characteristics are born with strong PA signals. In addition, we find that the PA signal of conventional fluorophores could be significantly enhanced through conjugation with tetraphenylethene (TPE), an iconic AIE fluorogen. Taking 2,3-bis[4-(diphenylamino)phenyl]fumaronitrile (TPAFN) as an example, conjugation between TPAFN and TPE affords 2,3-bis(4-(phenyl(4-(1,2,2-triphenylvinyl)phenyl)amino)phenyl) fumaroni-trile (TPETPAFN), a molecule with significant AIE characteristics, which shows 170% higher PA signals as compared to that of TPAFN. The higher PA signal of TPETPAFN is mainly ascribed to the enhanced molecular rotation, which is beneficial to its thermal expansion upon light absorption. Moreover, the significantly reduced PA signals for TPETPAFN in solvents with high viscosity or as nanoparticles further highlight the contribution of molecular rotation on PA signals.

  19. Astrocyte-derived tissue Transglutaminase affects fibronectin deposition, but not aggregation, during cuprizone-induced demyelination

    Science.gov (United States)

    Espitia Pinzon, Nathaly; Sanz-Morello, Berta; Brevé, John J. P.; Bol, John G. J. M.; Drukarch, Benjamin; Bauer, Jan; Baron, Wia; van Dam, Anne-Marie

    2017-01-01

    Astrogliosis as seen in Multiple Sclerosis (MS) develops into astroglial scarring, which is beneficial because it seals off the site of central nervous system (CNS) damage. However, astroglial scarring also forms an obstacle that inhibits axon outgrowth and (re)myelination in brain lesions. This is possibly an important cause for incomplete remyelination in the CNS of early stage MS patients and for failure in remyelination when the disease progresses. In this study we address whether under demyelinating conditions in vivo, tissue Transglutaminase (TG2), a Ca2+ -dependent enzyme that catalyses posttranslational modification of proteins, contributes to extracellular matrix (ECM) deposition and/or aggregation. We used the cuprizone model for de- and remyelination. TG2 immunoreactivity and enzymatic activity time-dependently appeared in astrocytes and ECM, respectively, in the corpus callosum of cuprizone-treated mice. Enhanced presence of soluble monomeric and multimeric fibronectin was detected during demyelination, and fibronectin immunoreactivity was slightly decreased in cuprizone-treated TG2−/− mice. In vitro TG2 overexpression in astrocytes coincided with more, while knock-down of TG2 with less fibronectin production. TG2 contributes, at least partly, to fibronectin production, and may play a role in fibronectin deposition during cuprizone-induced demyelination. Our observations are of interest in understanding the functional implications of TG2 during astrogliosis. PMID:28128219

  20. Reaction-induced fracturing in a hot pressed calcite-periclase aggregate

    Science.gov (United States)

    Kuleci, H.; Ulven, O. I.; Rybacki, E.; Wunder, B.; Abart, R.

    2017-01-01

    The chemo-mechanical feedbacks associated with hydration of periclase immersed in a calcite matrix were investigated experimentally. Dense calcite-periclase aggregates with calcite to periclase ratio of 90/10 and 95/5 by volume were prepared by hot isostatic pressing. Subsequent hydration experiments were performed in a hydrothermal apparatus at temperatures of 580-610 °C and a pressure of 200 MPa for run durations of 5-60 min. The rate of the periclase to brucite transformation was primarily controlled by the access of fluid. Where fluid was present, the reaction was too fast for the associated positive volume increase of the solids of about 100% to be accommodated by creep of the calcite matrix, and fracturing was induced. The newly formed cracks greatly enhanced the access of fluid leading to a positive feedback between hydration and fracturing. Mostly the newly formed cracks follow pre-existing grain boundaries in the calcite matrix. Comparison of experimental results with numerical 2D discrete element modelling (DEM) of crack formation revealed that the geometry of the crack pattern around a reacting particle depends on the shape of the original periclase particle, on the mechanical strength of the particle-matrix interface and on the mechanical strength and arrangement of grain boundaries in the calcite matrix in the immediate vicinity of the swelling particle.

  1. Accelerated stability studies for moisture-induced aggregation of tetanus toxoid.

    Science.gov (United States)

    Jain, Nishant Kumar; Roy, Ipsita

    2011-03-01

    The study was carried out to evaluate the effect of exposing solid tetanus toxoid to moisture in two different ways on the structure and function of the toxoid. Tetanus toxoid was exposed to moisture by (i) the addition of an optimized amount of buffer and (ii) incubation under an environment provided by a saturated solution of K(2)CrO(4.) The changes in the conformational, structural and antigenic properties of tetanus toxoid were measured and compared. Results show that even at a similar level of moisture-induced aggregation, the amounts of water absorbed by the two preparations of tetanus toxoid are different. Differences in antigenicity and changes in structure of the toxoid at primary, secondary and tertiary structure levels were seen. Although both conditions are used to mimic accelerated stability conditions in the laboratory, the final products are different in the two cases. Thus, conditions for 'accelerated stability studies' for therapeutic proteins need to be selected with care so that they resemble the fate of the actual product.

  2. Synthetic Quorum Sensing and Induced Aggregation in Model Microcapsule Colonies with Repressilator Feedback

    Science.gov (United States)

    Shum, Henry; Yashin, Victor; Balazs, Anna

    We model a system of synthetic microcapsules that communicate chemically by releasing nanoparticles or signaling molecules. These signaling species bind to receptors on the shells of capsules and modulate the target shell's permeability, thereby controlling nanoparticle release from the target capsule. Using the repressilator regulatory network motif, whereby three species suppress the production of the next in a cyclic fashion, we show that large amplitude oscillations in nanoparticle release can emerge when many capsules are close together. This exemplifies quorum sensing, which is the ability of cells to gauge their population density and collectively initiate a new behavior once a critical density is reached. We present a physically realizable model in which the oscillations exhibited in crowded populations induce aggregation of the microcapsules, mimicking complex biological behavior of the slime mold Dictyostelium discoideum with only simple, synthetic components. We also show that the clusters can be dispersed and reformed repeatedly and controllably by addition of chemical stimuli, demonstrating possible applications in creating reconfigurable or programmable materials.

  3. Depletion induced encapsulation by dumbbell-shaped patchy colloids stabilize microspheres against aggregation.

    Science.gov (United States)

    Wolters, Joost Robert; Verweij, Joanne E; Avvisati, Guido; Dijkstra, Marjolein; Kegel, Willem K

    2017-03-08

    In this paper, we demonstrate the stabilization of polystyrene microspheres by encapsulating them with dumbbell-shaped colloids with a sticky and a non-sticky lobe. Upon adding a depletant, an effective short ranged attraction is induced between the microspheres and the smaller, smooth lobes of the dumbbells, making those specifically sticky, whereas the interaction with the larger lobes of the dumbbells is considerably less attractive due to their rough surface, which reduces the overlap volume and leaves them non-sticky. The encapsulation of the microspheres by these rough-smooth patchy dumbbells is investigated using a combination of experiments and computer simulations, both resulting in partial coverage of the template particles. For larger microspheres, the depletion attraction is stronger, resulting in a larger fraction of dumbbells that are attached with both lobes to the surface of microspheres. We thus find a template curvature dependent orientation of the dumbbells. In the Monte Carlo simulations, the introduction of such a small, curvature dependent attraction between the rough lobes of the dumbbells resulted in an increased coverage. However, kinetic constraints imposed by the dumbbell geometry seem to prevent optimal packing of the dumbbells on the template particles under all investigated conditions in experiments and simulations. Despite the incomplete coverage, the encapsulation by dumbbell particles does prevent aggregation of the microspheres, thus acting as a colloid-sized steric stabilizer.

  4. Thermally-induced aggregation and fusion of protein-free lipid vesicles.

    Science.gov (United States)

    Ibarguren, Maitane; Bomans, Paul H H; Ruiz-Mirazo, Kepa; Frederik, Peter M; Alonso, Alicia; Goñi, Félix M

    2015-12-01

    Membrane fusion is an important phenomenon in cell biology and pathology. This phenomenon can be modeled using vesicles of defined size and lipid composition. Up to now fusion models typically required the use of chemical (polyethyleneglycol, cations) or enzymatic catalysts (phospholipases). We present here a model of lipid vesicle fusion induced by heat. Large unilamellar vesicles consisting of a phospholipid (dioleoylphosphatidylcholine), cholesterol and diacylglycerol in a 43:57:3 mol ratio were employed. In this simple system, fusion was the result of thermal fluctuations, above 60 °C. A similar system containing phospholipid and cholesterol but no diacylglycerol was observed to aggregate at and above 60 °C, in the absence of fusion. Vesicle fusion occurred under our experimental conditions only when (31)P NMR and cryo-transmission electron microscopy of the lipid mixtures used in vesicle preparation showed non-lamellar lipid phase formation (hexagonal and cubic). Non-lamellar structures are probably the result of lipid reassembly of the products of individual fusion events, or of fusion intermediates. A temperature-triggered mechanism of lipid reassembly might have occurred at various stages of protocellular evolution.

  5. Synthesis, Aggregation Induced Emission and Mechanochromic Luminescence of New β-Diketone Derivatives Bearing Tetraphenylene Moieties.

    Science.gov (United States)

    Shi, Haijie; Liu, Rui; Zhu, Senqiang; Gong, Qiqi; Shi, Hong; Zhu, Xiaolin; Zhu, Hongjun

    2016-11-01

    A series of β-diketone derivatives bearing tetraphenylene (TPE) moieties were synthesized and characterized. Their photophysical properties were investigated systematically via spectroscopic and theoretical methods. All compounds exhibit broad absorption bands between 300 and 450 nm, which are assigned to the (1)π-π* transition of the conjugated system mixed intramolecular charge-transfer (ICT) transitions. Meanwhile, the emission of these compounds in solution at room temperature (λ em = 458 ~ 509 nm) can be attributed to the (1)π,π*/(1)ICT state. Introduction of freely rotatable TPE to conventional β-diketone luminophors quenches their light emissions in the solutions, but endows these molecules with aggregation-induced emission (AIE) characteristics in the condensed phase due to the restriction of intramolecular rotation. The spectroscopic studies and theoretical calculations indicate that the photophysical properties of these β-diketone derivatives can be tuned by the appended substituents, which would be useful for rational design of AIE compounds with high solid state luminescence performance. Furthermore, these AIE-active compounds exhibited distinct piezofluorochromic properties and switched reversibly upon grinding-fuming. Their photophysical properties have been investigated with the aim to provide a basis for elucidating the structure-property correlations and developing new multi-stimuli responsive luminescent materials.

  6. Membrane-mediated aggregation of curvature-inducing nematogens and membrane tubulation.

    Science.gov (United States)

    Ramakrishnan, N; Sunil Kumar, P B; Ipsen, John H

    2013-03-05

    The shapes of cell membranes are largely regulated by membrane-associated, curvature-active proteins. Herein, we use a numerical model of the membrane, recently developed by us, with elongated membrane inclusions possessing spontaneous directional curvatures that could be different along, and perpendicular to, the membrane's long axis. We show that, due to membrane-mediated interactions, these curvature-inducing membrane-nematogens can aggregate spontaneously, even at low concentrations, and change the local shape of the membrane. We demonstrate that for a large group of such inclusions, where the two spontaneous curvatures have equal sign, the tubular conformation and sometimes the sheet conformation of the membrane are the common equilibrium shapes. We elucidate the factors necessary for the formation of these protein lattices. Furthermore, the elastic properties of the tubes, such as their compressional stiffness and persistence length, are calculated. Finally, we discuss the possible role of nematic disclination in capping and branching of the tubular membranes. Copyright © 2013 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  7. Membrane-Mediated Aggregation of Curvature-Inducing Nematogens and Membrane Tubulation

    Science.gov (United States)

    Ramakrishnan, N.; Sunil Kumar, P.B.; Ipsen, John H.

    2013-01-01

    The shapes of cell membranes are largely regulated by membrane-associated, curvature-active proteins. Herein, we use a numerical model of the membrane, recently developed by us, with elongated membrane inclusions possessing spontaneous directional curvatures that could be different along, and perpendicular to, the membrane’s long axis. We show that, due to membrane-mediated interactions, these curvature-inducing membrane-nematogens can aggregate spontaneously, even at low concentrations, and change the local shape of the membrane. We demonstrate that for a large group of such inclusions, where the two spontaneous curvatures have equal sign, the tubular conformation and sometimes the sheet conformation of the membrane are the common equilibrium shapes. We elucidate the factors necessary for the formation of these protein lattices. Furthermore, the elastic properties of the tubes, such as their compressional stiffness and persistence length, are calculated. Finally, we discuss the possible role of nematic disclination in capping and branching of the tubular membranes. PMID:23473484

  8. Membrane aggregation and perturbation induced by antimicrobial peptide of S-thanatin

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Guoqiu, E-mail: guoqiuwu@163.com [Center of Clinical Laboratory Medicine of Zhongda Hospital, Southeast University, Nanjing (China); Wu, Hongbin; Li, Linxian; Fan, Xiaobo; Ding, Jiaxuan; Li, Xiaofang; Xi, Tao [Biotechnology Center, Department of Life Science and Biotechnology, China Pharmaceutical University, Nanjing 210009 (China); Shen, Zilong, E-mail: Zilongshen@sina.com [Biotechnology Center, Department of Life Science and Biotechnology, China Pharmaceutical University, Nanjing 210009 (China)

    2010-04-23

    Thanatin, a 21-residue peptide, is an inducible insect peptide. In our previous study, we have identified a novel thanatin analog of S-thanatin, which exhibited a broad antimicrobial activity against bacteria and fungi with low hemolytic activity. This study was aimed to delineate the antimicrobial mechanism of S-thanatin and identify its interaction with bacterial membranes. In this study, membrane phospholipid was found to be the target for S-thanatin. In the presence of vesicles, S-thanatin interestingly led to the aggregation of anionic vesicles and sonicated bacteria. Adding S-thanatin to Escherichia coli suspension would result in the collapse of membrane and kill bacteria. The sensitivity assay of protoplast elucidated the importance of outer membrane (OM) for S-thanatin's antimicrobial activity. Compared with other antimicrobial peptide, S-thanatin produced chaotic membrane morphology and cell debris in electron microscopic appearance. These results supported our hypothesis that S-thanatin bound to negatively charged LPS and anionic lipid, impeded membrane respiration, exhausted the intracellular potential, and released periplasmic material, which led to cell death.

  9. Curcumin alters the salt bridge-containing turn region in amyloid β(1-42) aggregates.

    Science.gov (United States)

    Mithu, Venus Singh; Sarkar, Bidyut; Bhowmik, Debanjan; Das, Anand Kant; Chandrakesan, Muralidharan; Maiti, Sudipta; Madhu, Perunthiruthy K

    2014-04-18

    Amyloid β (Aβ) fibrillar deposits in the brain are a hallmark of Alzheimer disease (AD). Curcumin, a common ingredient of Asian spices, is known to disrupt Aβ fibril formation and to reduce AD pathology in mouse models. Understanding the structural changes induced by curcumin can potentially lead to AD pharmaceutical agents with inherent bio-compatibility. Here, we use solid-state NMR spectroscopy to investigate the structural modifications of amyloid β(1-42) (Aβ42) aggregates induced by curcumin. We find that curcumin induces major structural changes in the Asp-23-Lys-28 salt bridge region and near the C terminus. Electron microscopy shows that the Aβ42 fibrils are disrupted by curcumin. Surprisingly, some of these alterations are similar to those reported for Zn(2+) ions, another agent known to disrupt the fibrils and alter Aβ42 toxicity. Our results suggest the existence of a structurally related family of quasi-fibrillar conformers of Aβ42, which is stabilized both by curcumin and by Zn(2+.)

  10. Biochar-induced negative carbon mineralization priming effects in a coastal wetland soil: Roles of soil aggregation and microbial modulation.

    Science.gov (United States)

    Zheng, Hao; Wang, Xiao; Luo, Xianxiang; Wang, Zhenyu; Xing, Baoshan

    2017-08-19

    Biochar can sequestrate carbon (C) in soils and affect native soil organic carbon (SOC) mineralization via priming effects. However, the roles of soil aggregation and microbial regulation in priming effects of biochars on SOC in coastal wetland soils are poorly understood. Thus, a coastal wetland soil (δ(13)C -22‰) was separated into macro-micro aggregates (53-2000μm, MA) and silt-clay fractions (priming effect using two (13)C enriched biochars produced from corn straw (δ(13)C -11.58‰) at 350 and 550°C. The two biochars induced negative priming effect on the native SOC mineralization in the both soil aggregate size fractions, attributed to the enhanced stability of the soil aggregates resulting from the intimate physico-chemical associations between the soil minerals and biochar particles. Additionally, biochar amendments increased soil microbial biomass C and resulted in a lower metabolic quotient, suggesting that microbes in biochar amended aggregates could likely incorporate biomass C rather than mineralize it. Moreover, the biochar amendments induced obvious shifts of the bacterial community towards low C turnover bacteria taxa (e.g., Actinobacteria and Deltaproteobacteria) and the bacteria taxa responsible for stabilizing soil aggregates (e.g., Actinobacteria and Acidobacteria), which also accounted for the negative priming effect. Overall, these results suggested that biochar had considerable merit for stabilizing SOC in the coastal soil and thus has potential to restore and/or enhance "blue C" sink in the degraded coastal wetland ecosystem. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Heat-Induced Aggregation of Whey Proteins in Aqueous Solutions below Their Isoelectric Point

    NARCIS (Netherlands)

    Cornacchia, L.; Forquenot de la Fortelle, C.; Venema, P.

    2014-01-01

    Processing beverages containing high concentrations of globular proteins represents a technological challenge due to their instability during heating caused by protein aggregation and gelation. Aggregation of whey protein mixtures was investigated in aqueous model systems at pH 3.5, 4.0, and 4.5 at

  12. Thiosemicarbazone modification of 3-acetyl coumarin inhibits Aβ peptide aggregation and protect against Aβ-induced cytotoxicity.

    Science.gov (United States)

    Ranade, Dnyanesh S; Bapat, Archika M; Ramteke, Shefali N; Joshi, Bimba N; Roussel, Pascal; Tomas, Alain; Deschamps, Patrick; Kulkarni, Prasad P

    2016-10-01

    Aggregation of amyloid β peptide (Aβ) is an important event in the progression of Alzheimer's disease. Therefore, among the available therapeutic approaches to fight with disease, inhibition of Aβ aggregation is widely studied and one of the promising approach for the development of treatments for Alzheimer's disease. Thiosemicarbazone compounds are known for their variety of biological activities. However, the potential of thiosemicarbazone compounds towards inhibition of Aβ peptide aggregation and the subsequent toxicity is little explored. Herein, we report synthesis and x-ray crystal structure of novel compound 3-acetyl coumarin thiosemicarbazone and its efficacy toward inhibition of Aβ(1-42) peptide aggregation. Our results indicate that 3-acetyl coumarin thiosemicarbazone inhibits Aβ(1-42) peptide aggregation up to 80% compared to the parent 3-acetyl coumarin which inhibits 52%. Further, 3-acetyl coumarin thiosemicarbazone provides neuroprotection against Aβ-induced cytotoxicity in SH-SY5Y cell line. These findings indicate that thiosemicarbazone modification renders 3-acetyl coumarin neuroprotective properties.

  13. Effect of carbon sources on the aggregation of photo fermentative bacteria induced by L-cysteine for enhancing hydrogen production.

    Science.gov (United States)

    Xie, Guo-Jun; Liu, Bing-Feng; Ding, Jie; Wang, Qilin; Ma, Chao; Zhou, Xu; Ren, Nan-Qi

    2016-12-01

    Poor flocculation of photo fermentative bacteria resulting in continuous biomass washout from photobioreactor is a critical challenge to achieve rapid and stable hydrogen production. In this work, the aggregation of Rhodopseudomonas faecalis RLD-53 was successfully developed in a photobioreactor and the effects of different carbon sources on hydrogen production and aggregation ability were investigated. Extracellular polymeric substances (EPS) production by R. faecalis RLD-53 cultivated using different carbon sources were stimulated by addition of L-cysteine. The absolute ζ potentials of R. faecalis RLD-53 were considerably decreased with addition of L-cysteine, and aggregation barriers based on DLVO dropped to 15-43 % of that in control groups. Thus, R. faecalis RLD-53 flocculated effectively, and aggregation abilities of strain RLD-53 cultivated with acetate, propionate, lactate and malate reached 29.35, 32.34, 26.07 and 24.86 %, respectively. In the continuous test, hydrogen-producing activity was also promoted and reached 2.45 mol H2/mol lactate, 3.87 mol H2/mol propionate and 5.10 mol H2/mol malate, respectively. Therefore, the aggregation of R. faecalis RLD-53 induced by L-cysteine is independent on the substrate types, which ensures the wide application of this technology to enhance hydrogen recovery from wastewater dominated by different organic substrates.

  14. Milk protein suspensions enriched with three essential minerals: Physicochemical characterization and aggregation induced by a novel enzymatic pool.

    Science.gov (United States)

    Lombardi, Julia; Spelzini, Darío; Corrêa, Ana Paula Folmer; Brandelli, Adriano; Risso, Patricia; Boeris, Valeria

    2016-04-01

    Structural changes of casein micelles and their aggregation induced by a novel enzymatic pool isolated from Bacillus spp. in the presence of calcium, magnesium or zinc were investigated. The effect of cations on milk protein structure was studied using fluorescence and dynamic light scattering. In the presence of cations, milk protein structure rearrangements and larger casein micelle size were observed. The interaction of milk proteins with zinc appears to be of a different nature than that with calcium or magnesium. Under the experimental conditions assayed, the affinity of each cation for some groups present in milk proteins seems to play an important role, besides electrostatic interaction. On the other hand, the lowest aggregation times were achieved at the highest calcium and zinc concentrations (15 mM and 0.25 mM, respectively). The study found that the faster the aggregation of casein micelles, the less compact the gel matrix obtained. Cation concentrations affected milk protein aggregation kinetics and the structure of the aggregates formed.

  15. Tungsten-induced denaturation and aggregation of epoetin alfa during primary packaging as a cause of immunogenicity.

    Science.gov (United States)

    Seidl, Andreas; Hainzl, Otmar; Richter, Marleen; Fischer, Robert; Böhm, Stephan; Deutel, Britta; Hartinger, Martin; Windisch, Jörg; Casadevall, Nicole; London, Gerard Michel; Macdougall, Iain

    2012-06-01

    Following two cases of neutralizing antibodies to epoetin alfa in an investigational clinical study, a small number of individual syringes of two drug product batches were found to contain unusually high levels of aggregation at the end of the clinical trial. We undertook an extensive analytical approach to determine the root-cause of the increased aggregation in the affected batches. Soluble tungsten was found in the syringes, most likely derived from the pins used to manufacture the syringes. Spiking of epoetin alfa with sodium polytungstate or an extract of tungsten pins used to manufacture the syringes induced the formation of aggregates, both dimers that appeared to be covalently linked by disulphide bonds as well as higher-order aggregates. Sodium polytungstate had also a strong denaturing effect on the protein. We propose tungsten-mediated unfolding and aggregation of epoetin alfa in pre-filled syringes as a potential root cause for increased immunogenicity. This finding may be more broadly applicable to this and other classes of therapeutic proteins.

  16. Rosin Surfactant QRMAE Can Be Utilized as an Amorphous Aggregate Inducer: A Case Study of Mammalian Serum Albumin.

    Science.gov (United States)

    Ishtikhar, Mohd; Chandel, Tajjali Ilm; Ahmad, Aamir; Ali, Mohd Sajid; Al-Lohadan, Hamad A; Atta, Ayman M; Khan, Rizwan Hasan

    2015-01-01

    Quaternary amine of diethylaminoethyl rosin ester (QRMAE), chemically synthesized biocompatible rosin based cationic surfactant, has various biological applications including its use as a food product additive. In this study, we examined the amorphous aggregation behavior of mammalian serum albumins at pH 7.5, i.e., two units above their isoelectric points (pI ~5.5), and the roles played by positive charge and hydrophobicity of exogenously added rosin surfactant QRMAE. The study was carried out on five mammalian serum albumins, using various spectroscopic methods, dye binding assay, circular dichroism and electron microscopy. The thermodynamics of the binding of mammalian serum albumins to cationic rosin modified surfactant were established using isothermal titration calorimetry (ITC). It was observed that a suitable molar ratio of protein to QRMAE surfactant enthusiastically induces amorphous aggregate formation at a pH above two units of pI. Rosin surfactant QRMAE-albumins interactions revealed a unique interplay between the initial electrostatic and the subsequent hydrophobic interactions that play an important role towards the formation of hydrophobic interactions-driven amorphous aggregate. Amorphous aggregation of proteins is associated with varying diseases, from the formation of protein wine haze to the expansion of the eye lenses in cataract, during the expression and purification of recombinant proteins. This study can be used for the design of novel biomolecules or drugs with the ability to neutralize factor(s) responsible for the aggregate formation, in addition to various other industrial applications.

  17. Rosin Surfactant QRMAE Can Be Utilized as an Amorphous Aggregate Inducer: A Case Study of Mammalian Serum Albumin.

    Directory of Open Access Journals (Sweden)

    Mohd Ishtikhar

    Full Text Available Quaternary amine of diethylaminoethyl rosin ester (QRMAE, chemically synthesized biocompatible rosin based cationic surfactant, has various biological applications including its use as a food product additive. In this study, we examined the amorphous aggregation behavior of mammalian serum albumins at pH 7.5, i.e., two units above their isoelectric points (pI ~5.5, and the roles played by positive charge and hydrophobicity of exogenously added rosin surfactant QRMAE. The study was carried out on five mammalian serum albumins, using various spectroscopic methods, dye binding assay, circular dichroism and electron microscopy. The thermodynamics of the binding of mammalian serum albumins to cationic rosin modified surfactant were established using isothermal titration calorimetry (ITC. It was observed that a suitable molar ratio of protein to QRMAE surfactant enthusiastically induces amorphous aggregate formation at a pH above two units of pI. Rosin surfactant QRMAE-albumins interactions revealed a unique interplay between the initial electrostatic and the subsequent hydrophobic interactions that play an important role towards the formation of hydrophobic interactions-driven amorphous aggregate. Amorphous aggregation of proteins is associated with varying diseases, from the formation of protein wine haze to the expansion of the eye lenses in cataract, during the expression and purification of recombinant proteins. This study can be used for the design of novel biomolecules or drugs with the ability to neutralize factor(s responsible for the aggregate formation, in addition to various other industrial applications.

  18. Vascular pentraxin 3 controls arterial thrombosis by targeting collagen and fibrinogen induced platelets aggregation

    Science.gov (United States)

    Bonacina, F.; Barbieri, S.S.; Cutuli, L.; Amadio, P.; Doni, A.; Sironi, M.; Tartari, S.; Mantovani, A.; Bottazzi, B.; Garlanda, C.; Tremoli, E.; Catapano, A.L.; Norata, G.D.

    2016-01-01

    Aim The long pentraxin PTX3 plays a non-redundant role during acute myocardial infarction, atherosclerosis and in the orchestration of tissue repair and remodeling during vascular injury, clotting and fibrin deposition. The aim of this work is to investigate the molecular mechanisms underlying the protective role of PTX3 during arterial thrombosis. Methods and results PTX3 KO mice transplanted with bone marrow from WT or PTX3 KO mice presented a significant reduction in carotid artery blood flow following FeCl3 induced arterial thrombosis (− 80.36 ± 11.5% and − 95.53 ± 4.46%), while in WT mice transplanted with bone marrow from either WT or PTX3 KO mice, the reduction was less dramatic (− 45.55 ± 1.37% and − 53.39 ± 9.8%), thus pointing to a protective effect independent of a hematopoietic cell's derived PTX3. By using P-selectin/PTX3 double KO mice, we further excluded a role for P-selectin, a target of PTX3 released by neutrophils, in vascular protection played by PTX3. In agreement with a minor role for hematopoietic cell-derived PTX3, platelet activation (assessed by flow cytometric expression of markers of platelet activation) was similar in PTX3 KO and WT mice as were haemostatic properties. Histological analysis indicated that PTX3 localizes within the thrombus and the vessel wall, and specific experiments with the N-terminal and the C-terminal PTX3 domain showed the ability of PTX3 to selectively dampen either fibrinogen or collagen induced platelet adhesion and aggregation. Conclusion PTX3 interacts with fibrinogen and collagen and, by dampening their pro-thrombotic effects, plays a protective role during arterial thrombosis. PMID:26976330

  19. Comparison of Tooth Discoloration Induced by Calcium-Enriched Mixture and Mineral Trioxide Aggregate

    Science.gov (United States)

    Rouhani, Armita; Akbari, Majid; Farhadi-faz, Aida

    2016-01-01

    Introduction: The aim of this in vitro study was to evaluate the tooth discoloration induced by calcium-enriched mixture (CEM) cement and mineral trioxide aggregate (MTA). Methods and Materials: Forty five endodontically treated human maxillary central incisors were selected and divided into three groups (n=15) after removing the coronal 3 mm of the obturating materials. In the MTA group, white MTA plug was placed in pulp chamber and coronal zone of the root canal. In CEM cement group, CEM plug was placed in the tooth in the same manner. In both groups, a wet cotton pellet was placed in the access cavity and the teeth were temporarily sealed. After 24 h the teeth were restored with resin composite. In the negative control group the teeth were also restored with resin composite. The color change in the cervical third of teeth was measured with a colorimeter and was repeated 3 times for each specimen. The teeth were kept in artificial saliva for 6 months. After this period, the color change was measured again. Data were collected by Commission International de I'Eclairage's L*a*b color values, and corresponding ΔE values were calculated. The results were analyzed using the one-way ANOVA and post-hoc Tukey’s test with the significance level defined as 0.05. Results: There was no significant differences between CEM group and control group in mean discoloration. The mean tooth discoloration in MTA group was significantly greater than CEM and control groups (P<0.05). Conclusion: According to the result of the present study CEM cement did not induce tooth discoloration after six months. Therefore it can be used in vital pulp therapy of esthetically sensitive teeth. PMID:27471526

  20. Tunneling electron induced molecular electroluminescence from individual porphyrin J-aggregates

    Energy Technology Data Exchange (ETDEWEB)

    Meng, Qiushi; Zhang, Chao; Zhang, Yang, E-mail: zhyangnano@ustc.edu.cn, E-mail: zcdong@ustc.edu.cn; Zhang, Yao; Liao, Yuan; Dong, Zhenchao, E-mail: zhyangnano@ustc.edu.cn, E-mail: zcdong@ustc.edu.cn [Hefei National Laboratory for Physical Sciences at the Microscale and Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026 (China)

    2015-07-27

    We investigate molecular electroluminescence from individual tubular porphyrin J-aggregates on Au(111) by tunneling electron excitations in an ultrahigh-vacuum scanning tunneling microscope (STM). High-resolution STM images suggest a spiral tubular structure for the porphyrin J-aggregate with highly ordered “brickwork”-like arrangements. Such aggregated nanotube is found to behave like a self-decoupled molecular architecture and shows red-shifted electroluminescence characteristics of J-aggregates originated from the delocalized excitons. The positions of the emission peaks are found to shift slightly depending on the excitation sites, which, together with the changes in the observed spectral profiles with vibronic progressions, suggest a limited exciton coherence number within several molecules. The J-aggregate electroluminescence is also found unipolar, occurring only at negative sample voltages, which is presumably related to the junction asymmetry in the context of molecular excitations via the carrier injection mechanism.

  1. Differential inhibition of tumour cell-induced platelet aggregation by the nicotinate aspirin prodrug (ST0702) and aspirin

    Science.gov (United States)

    Medina, Carlos; Harmon, Shona; Inkielewicz, Iwona; Santos-Martinez, Maria Jose; Jones, Michael; Cantwell, Paula; Bazou, Despina; Ledwidge, Mark; Radomski, Marek W; Gilmer, John F

    2012-01-01

    BACKGROUND AND PURPOSE Tumour cell-induced platelet aggregation (TCIPA) facilitates cancer cell invasion, angiogenesis and the formation of metastatic foci. TCIPA can be modulated by pharmacological inhibitors of MMP-2 and ADP; however, the COX inhibitor aspirin did not prevent TCIPA. In this study, we have tested the pharmacological effects of a new group of isosorbide-based aspirin prodrugs on TCIPA. EXPERIMENTAL APPROACH TCIPA was induced in human platelets by mixing with human adenocarcinoma or fibrosarcoma cells under no flow and flow conditions. The release of gelatinases and P-selectin expression during TCIPA were studied by zymography and flow cytometry respectively. KEY RESULTS Tumour cells caused platelet aggregation. This aggregation resulted in the release of MMP-2 and a significant up-regulation of P-selectin on platelets, indicative of platelet activation. Pharmacological modulation of TCIPA revealed that ST0702, one of the aspirin prodrugs, down-regulated TCIPA while aspirin was ineffective. The deacetylated metabolite of ST0702, 5-nicotinate salicylate (ST0702 salicylate), down-regulated both ADP-stimulated platelet aggregation and TCIPA. CONCLUSIONS AND IMPLICATIONS Our results show that ST0702 was an effective inhibitor of TCIPA in vitro. Its deacetylated metabolite may contribute to the effects of ST0702 by inhibiting ADP-mediated TCIPA. PMID:22122360

  2. Neutrophil Cathepsin G, but Not Elastase, Induces Aggregation of MCF-7 Mammary Carcinoma Cells by a Protease Activity-Dependent Cell-Oriented Mechanism

    Directory of Open Access Journals (Sweden)

    Satoru Yui

    2014-01-01

    Full Text Available We previously found that a neutrophil serine protease, cathepsin G, weakens adherence to culture substrates and induces E-cadherin-dependent aggregation of MCF-7 human breast cancer cells through its protease activity. In this study, we examined whether aggregation is caused by degradation of adhesion molecules on the culture substrates or through an unidentified mechanism. We compared the effect of treatment with cathepsin G and other proteases, including neutrophil elastase against fibronectin- (FN- coated substrates. Cathepsin G and elastase potently degraded FN on the substrates and induced aggregation of MCF-7 cells that had been subsequently seeded onto the substrate. However, substrate-bound cathepsin G and elastase may have caused cell aggregation. After inhibiting the proteases on the culture substrates using the irreversible inhibitor phenylmethylsulfonyl fluoride (PMSF, we examined whether aggregation of MCF-7 cells was suppressed. PMSF attenuated cell aggregation on cathepsin G-treated substrates, but the effect was weak in cells pretreated with high concentrations of cathepsin G. In contrast, PMSF did not suppress cell aggregation on elastase-treated FN. Moreover, cathepsin G, but not elastase, induced aggregation on poly-L-lysine substrates which are not decomposed by these enzymes, and the action of cathepsin G was nearly completely attenuated by PMSF. These results suggest that cathepsin G induces MCF-7 aggregation through a cell-oriented mechanism.

  3. Cathepsin G Induces Cell Aggregation of Human Breast Cancer MCF-7 Cells via a 2-Step Mechanism: Catalytic Site-Independent Binding to the Cell Surface and Enzymatic Activity-Dependent Induction of the Cell Aggregation

    Directory of Open Access Journals (Sweden)

    Riyo Morimoto-Kamata

    2012-01-01

    Full Text Available Neutrophils often invade various tumor tissues and affect tumor progression and metastasis. Cathepsin G (CG is a serine protease secreted from activated neutrophils. Previously, we have shown that CG induces the formation of E-cadherin-mediated multicellular spheroids of human breast cancer MCF-7 cells; however, the molecular mechanisms involved in this process are unknown. In this study, we investigated whether CG required its enzymatic activity to induce MCF-7 cell aggregation. The cell aggregation-inducing activity of CG was inhibited by pretreatment of CG with the serine protease inhibitors chymostatin and phenylmethylsulfonyl fluoride. In addition, an enzymatically inactive S195G (chymotrypsinogen numbering CG did not induce cell aggregation. Furthermore, CG specifically bound to the cell surface of MCF-7 cells via a catalytic site-independent mechanism because the binding was not affected by pretreatment of CG with serine protease inhibitors, and cell surface binding was also detected with S195G CG. Therefore, we propose that the CG-induced aggregation of MCF-7 cells occurs via a 2-step process, in which CG binds to the cell surface, independently of its catalytic site, and then induces cell aggregation, which is dependent on its enzymatic activity.

  4. A Diffusion Model of Field-Induced Aggregation in Ferrofluid Film

    Institute of Scientific and Technical Information of China (English)

    FANG Wen-Xiao; HE Zhen-Hui; CHEN Di-Hu; ZHAO Yan-E

    2008-01-01

    By introducing Arrhenius behaviour to the ferroparticles on the surface of the aggregated columnar structure in a diffusion model, equilibrium equations are set up. The solution of the equations shows that to keep the aggregated structures stable, a characteristic fleld is needed. The aggregation is enhanced by magnetic fields, yet suppressed as the temperature increases. Analysing the influence of the magnetic field on the interaction energy between the dipolar particles, we estimate the portion of the diffusing particles, and provide the agreeable ratio of the column radius over the centre-to-centre spacing between columns in a hexagonal columnar structure formed under a perpendicular magnetic field.

  5. Fibrillar Organic Phases And Their Roles In Rigid Biological Composites

    Energy Technology Data Exchange (ETDEWEB)

    Arey, Bruce W.; Park, John J.; Mayer, George

    2015-06-01

    This study focused on determining the presence of organic phases in the siliceous components of rigid marine composites ("glass" sponge spicules), and thereby to clarify how those composites dissipate significant mechanical energy. Through the use of imaging by helium ion microscopy in the examination of the spicules, the organic phase that is present between the layers of hydrated silica was also detected within the silica cylinders of the composite, indicating the existence therein of a network, scaffolding, or other pattern that has not yet been determined. It was concluded that the presence of an interpenetrating network of some kind, and tenacious fibrillar interfaces are responsible for the large energy dissipation in these siliceous composites by viscoelastic processes. This discovery means that future mechanics analyses of such composites, extending to large deformations must consider such interpenetrating phases.

  6. Role of fibrillar Tenascin-C in metastatic pancreatic cancer.

    Science.gov (United States)

    Chen, Jian; Chen, Zhiyu; Chen, Ming; Li, Dajiang; Li, Zhihua; Xiong, Yan; Dong, Jiahong; Li, Xiaowu

    2009-04-01

    Interaction of cancer cells with stroma cells facilitates tumor progression by rebuilding the existing extracellular matrix (ECM) microenvironment. In the tumor, upregulation of Tenascin-C (Tn-C) expression potentially can alter tumor behavior. However, the molecular mechanisms by which tumor-stroma interactions affect the tumor microenvironment have not been well characterized. In this study, we analyzed the expression of fibrillar Tn-C (fTn-C) in human metastatic pancreatic cancers. After co-culturing two pancreatic cancer cell lines, highly metastatic BxPc3 cells and non-metastatic PaCa2 cells, with stromal fibroblasts (SF), we evaluated the roles of matrix metalloproteinase 2 (MMP-2) activation and SF in promoting Tn-C organization. Next, we evaluated whether fibrillar Tn-C promotes pancreatic cancer cell movement using cell adhesion and migration assays. Finally, we observed the relationship between MMP-2 activation and fTn-C formation in vivo by injecting the BxPc3 and PaCa2 cells into nude mice. We found that fTn-C was increased in metastatic pancreatic cancer. The fTn-C expression correlated with MMP-2 activity. In the in vitro co-culture, fTn-C organization was found only in BxPc3/SF co-cultures, and required the participation of active MMP-2. The fTn-C reduced cell adhesion and promote pancreatic cancer cell migration by decreasing the adhesive interactions between integrin alpha6beta1 and the ECM. The in vivo tumorigenesis analysis showed that the fTn-C formation and active MMP-2 were significantly increased in the BxPc3 tumors, compared to the PaCa2 tumors. These results demonstrate that Tn-C deposition into the ECM requires participation of active MMP-2 and SF. The deposited Tn-C could promote pancreatic cancer progression.

  7. Kinetics of self-induced aggregation of Brownian particles: non-Markovian and non-Gaussian features

    CERN Document Server

    Ghosh, Pulak Kumar; Bag, Bidhan Chandra

    2012-01-01

    In this paper we have studied a model for self-induced aggregation in Brownian particle incorporating the non-Markovian and non-Gaussian character of the associated random noise process. In this model the time evolution of each individual is guided by an over-damped Langevin equation of motion with a non-local drift resulting from the local unbalance distributions of the other individuals. Our simulation result shows that colored nose can induce the cluster formation even at large noise strength. Another observation is that critical noise strength grows very rapidly with increase of noise correlation time for Gaussian noise than non Gaussian one. However, at long time limit the cluster number in aggregation process decreases with time following a power law. The exponent in the power law increases remarkable for switching from Markovian to non Markovian noise process.

  8. Biodentine and mineral trioxide aggregate induce similar cellular responses in a fibroblast cell line.

    Science.gov (United States)

    Corral Nuñez, Camila M; Bosomworth, Helen J; Field, Claire; Whitworth, John M; Valentine, Ruth A

    2014-03-01

    The aim of this study was to assess the cell viability and messenger RNA expression of interleukin (IL)-1α and IL-6 in 3T3 fibroblast cells when in direct contact with Biodentine (Septodont, Saint Maur de Fossés, France) and mineral trioxide aggregate (MTA). Biodentine and MTA were coated onto coverslips and allowed to set. An uncoated coverslip and one coated with GC Fuji IX (GC Corporation, Tokyo, Japan) were used as controls. Coverslips were cultured with 3T3 fibroblast cells. Cell viability was assessed quantitatively using AlamarBlue dye (Serotec, Oxford, UK) after 3, 6, 24, and 72 hours. Morphologic cell changes of 3T3 cells in contact with BD and MTA were observed by scanning electron microscopy, and cytokine expression was assessed at the messenger RNA level by semiquantitative reverse-transcription polymerase chain reaction after 3 and 24 hours of direct contact with the materials. Cells in contact with Biodentine and MTA showed similar viability to untreated control cells at all time points, with the exception of 6 hours when viability was decreased with both treatments. Examination by scanning electron microscopy revealed cells adhering to most of the Biodentine surface after 24 hours. However, for MTA samples, significantly fewer cells were observed. The messenger RNA expression of IL-1α and IL-6 by cells in contact with Biodentine was similar to cells in contact with MTA. Biodentine and MTA showed similar cytotoxicity and induced a similar pattern of cytokine expression. Copyright © 2014 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  9. Stabilization of tetanus and diphtheria toxoids against moisture-induced aggregation.

    OpenAIRE

    Schwendeman, S P; Costantino, H R; Gupta, R.K.; Siber, G R; Klibanov, A M; Langer, R.

    1995-01-01

    The progress toward single-dose vaccines has been limited by the poor solid-state stability of vaccine antigens within controlled-release polymers, such as poly(lactide-co-glycolide). For example, herein we report that lyophilized tetanus toxoid aggregates during incubation at 37 degrees C and elevated humidity--i.e., conditions relevant to its release from such systems. The mechanism and extent of this aggregation are dependent on the moisture level in the solid protein, with maximum aggrega...

  10. Enhanced Shear-induced Platelet Aggregation Due to Low-temperature Storage

    Science.gov (United States)

    2013-07-01

    pathogen inactivation technologies.4,5 In principle, storage of PLTs under refrigeration (4°C), which is standard practice for red blood cells (RBCs), can...by more than 100% (i.e., twofold) compared to freshly isolated PLTs at high shear rates. Effect of cell – cell collisions and fluid shear stress on...in aggregating stored PLTs. PLT aggregation under shear is controlled by cell – cell collision frequency and the force applied to the cells .26 These

  11. Protein folding, unfolding and aggregation. Pressure induced intermediate states on the refolding pathway of horseradish peroxidase

    Science.gov (United States)

    Smeller, László; Fidy, Judit; Heremans, Karel

    2004-04-01

    We studied the refolding and aggregation of pressure unfolded proteins. Horseradish peroxidase was found to be very stable and no partially folded intermediates were populated during the refolding. However, the removal of the haem group or the Ca2+ ions or reduction of the disulfide bridge destabilized the protein, resulting in a significant amount of aggregation prone intermediate conformation. Substitution of the haem for fluorescent porphyrin however did not influence the refolding of the protein.

  12. Ectoine and hydroxyectoine inhibit thermal-induced aggregation and increase thermostability of recombinant human interferon Alfa2b.

    Science.gov (United States)

    Salmannejad, Faranak; Nafissi-Varcheh, Nastaran

    2017-01-15

    This study is to investigate whether ectoines (ectoine and hydroxyectoine) can reduce aggregation of rhIFNα2b in aqueous solutions on thermal stress. The effect of thermal stress condition on the stability was therefore investigated using size exclusion-high performance liquid chromatography (SE-HPLC), different spectroscopic measurements, dynamic light scattering (DLS), electrophoresis, and differential scanning calorimetry (DSC). All experiments were performed in a sodium phosphate buffer system (100mM, pH7). The protein samples (100μg/ml) were incubated at 50°C for 14days in the absence or presence (1, 10, 20, and 100mM) of ectoines. In summary, thermal-induced aggregation was reduced in the presence of ectoines, regardless of the ectoines concentration in different periods of incubation time by analyzing with SE-HPLC and turbidity measurement. The inhibitory effect of ectoines on the aggregation was shown by other techniques used. The optimal ectoines concentration was 10mM for aggregation reduction, so samples containing of 10mM of ectoines were selected for further evaluation. Secondary structural and conformational stability increased in presence of ectoines as measured by far-UV circular dichroism and fluorescence spectroscopy, respectively. DSC showed slight increase in Tm of interferon in the presence of ectoines. Hydroxyectoine had superior protein-stabilizing properties than ectoine. In conclusion, this study demonstrates that ectoine and hydroxyectoine are highly effective excipients which can significantly reduce the thermal-induced aggregation of rhIFNα2b at low concentration.

  13. Priming effects in aggregate size fractions induced by glucose addition and grinding

    Science.gov (United States)

    Tian, Jing; Blagodatskaya, Evgenia; Pausch, Johanna; Kuzaykov, Yakov

    2014-05-01

    It is widely recognized that soil organic matter (SOM) mineralization can be accelerated (positive priming) or retarded (negative priming) by addition of easily available substrates to soil. SOM is a heterogeneous mixture, which contains numerous compounds with different degradability and turnover rates times. Nevertheless, so far, there is still lack of knowledge on identifying single fractions of the SOM as the source of C and N released by priming effects. The aim of this study was to determine the priming effect as related to different aggregate fractions, aggregate disruption and the amounts of substrate. In a 49 days incubation experiment, the soil samples were separated into three aggregate fractions (>2 mm, 2-0.25 mm and 0.25 mm) than in the microaggregates (priming effect increased as added glucose increased in all intact aggregate size, and highest priming effect was observed in >2 mm fraction. However, the magnitude of priming effect response to glucose addition depended on the aggregate size after grinding. This study demonstrates that substrate amounts, aggregate fractionation and grinding can have obvious impacts on priming effect, indicating important implications for understanding SOM cycling and stability.

  14. The effect of magnetic field induced aggregates on ultrasound propagation in aqueous magnetic fluid

    Science.gov (United States)

    Parekh, Kinnari; Upadhyay, R. V.

    2017-06-01

    Ultrasonic wave propagation in the aqueous magnetic fluid is investigated for different particle concentrations. The sound velocity decreases while acoustic impedance increases with increasing concentrations. The velocity anisotropy is observed upon application of magnetic field. The velocity anisotropy fits with Tarapov's theory suggests the presence of aggregates in the system. We report that these aggregates are thermodynamically unstable and the length of aggregate changes continuously with increasing concentration and, or magnetic field and resulted in a decrease in effective magnetic moment. The Taketomi's theory fits well with the experimental data suggesting that the particle clusters are aligned in the direction of the magnetic field. The radius of cluster found to increase with increasing concentration, and then decreases whereas the elastic force constant increases and then becomes constant. The increase in cluster radius indicates elongation of aggregate length due to tip-to-tip interaction of aggregates whereas for higher concentration, the lateral alignment is more favorable than tip-to-tip alignment of aggregates which reduces the cluster radius making elastic force constant to raise. Optical images show that the chains are fluctuating and confirming the lateral alignment of chains at higher fields.

  15. Antimicrobial peptide (Cn-AMP2) from liquid endosperm of Cocos nucifera forms amyloid-like fibrillar structure.

    Science.gov (United States)

    Gour, Shalini; Kaushik, Vibha; Kumar, Vijay; Bhat, Priyanka; Yadav, Subhash C; Yadav, Jay K

    2016-04-01

    Cn-AMP2 is an antimicrobial peptide derived from liquid endosperm of coconut (Cocos nucifera). It consists of 11 amino acid residues and predicted to have high propensity for β-sheet formation that disposes this peptide to be amyloidogenic. In the present study, we have examined the amyloidogenic propensities of Cn-AMP2 in silico and then tested the predictions under in vitro conditions. The in silico study revealed that the peptide possesses high amyloidogenic propensity comparable with Aβ. Upon solubilisation and agitation in aqueous buffer, Cn-AMP2 forms visible aggregates that display bathochromic shift in the Congo red absorbance spectra, strong increase in thioflavin T fluorescence and fibrillar morphology under transmission electron microscopy. All these properties are typical of an amyloid fibril derived from various proteins/peptides including Aβ.

  16. Arginine-aromatic interactions and their effects on arginine-induced solubilization of aromatic solutes and suppression of protein aggregation

    KAUST Repository

    Shah, Dhawal

    2011-09-21

    We examine the interaction of aromatic residues of proteins with arginine, an additive commonly used to suppress protein aggregation, using experiments and molecular dynamics simulations. An aromatic-rich peptide, FFYTP (a segment of insulin), and lysozyme and insulin are used as model systems. Mass spectrometry shows that arginine increases the solubility of FFYTP by binding to the peptide, with the simulations revealing the predominant association of arginine to be with the aromatic residues. The calculations further show a positive preferential interaction coefficient, Γ XP, contrary to conventional thinking that positive Γ XP\\'s indicate aggregation rather than suppression of aggregation. Simulations with lysozyme and insulin also show arginine\\'s preference for aromatic residues, in addition to acidic residues. We use these observations and earlier results reported by us and others to discuss the possible implications of arginine\\'s interactions with aromatic residues on the solubilization of aromatic moieties and proteins. Our results also highlight the fact that explanations based purely on Γ XP, which measures average affinity of an additive to a protein, could obscure or misinterpret the underlying molecular mechanisms behind additive-induced suppression of protein aggregation. © 2011 American Institute of Chemical Engineers (AIChE).

  17. Comparative analysis of human γD-crystallin aggregation under physiological and low pH conditions.

    Directory of Open Access Journals (Sweden)

    Josephine W Wu

    Full Text Available Cataract, a major cause of visual impairment worldwide, is the opacification of the eye's crystalline lens due to aggregation of the crystallin proteins. The research reported here is aimed at investigating the aggregating behavior of γ-crystallin proteins in various incubation conditions. Thioflavin T binding assay, circular dichroism spectroscopy, 1-anilinonaphthalene-8-sulfonic acid fluorescence spectroscopy, intrinsic (tryptophan fluorescence spectroscopy, light scattering, and electron microscopy were used for structural characterization. Molecular dynamics simulations and bioinformatics prediction were performed to gain insights into the γD-crystallin mechanisms of fibrillogenesis. We first demonstrated that, except at pH 7.0 and 37°C, the aggregation of γD-crystallin was observed to be augmented upon incubation, as revealed by turbidity measurements. Next, the types of aggregates (fibrillar or non-fibrillar aggregates formed under different incubation conditions were identified. We found that, while a variety of non-fibrillar, granular species were detected in the sample incubated under pH 7.0, the fibrillogenesis of human γD-crystallin could be induced by acidic pH (pH 2.0. In addition, circular dichroism spectroscopy, 1-anilinonaphthalene-8-sulfonic acid fluorescence spectroscopy, and intrinsic fluorescence spectroscopy were used to characterize the structural and conformational features in different incubation conditions. Our results suggested that incubation under acidic condition led to a considerable change in the secondary structure and an enhancement in solvent-exposure of the hydrophobic regions of human γD-crystallin. Finally, molecular dynamics simulations and bioinformatics prediction were performed to better explain the differences between the structures and/or conformations of the human γD-crystallin samples and to reveal potential key protein region involved in the varied aggregation behavior. Bioinformatics analyses

  18. Aggregation-induced reversal of transport distances of soil organic matter: are our balances correct?

    Science.gov (United States)

    Hu, Yaxian; Kuhn, Nikolaus

    2014-05-01

    The effect of soil erosion on global carbon cycling, especially as a source or sink of green-house gases (GHGs), is the subject of intense debate. The controversy arises mostly from the lack of information on the fate of eroded soil organic carbon (SOC) as it moves from the site of erosion to the site of longer-term deposition. This requires improved understanding the transport distances of eroded SOC, which is principally related to the settling velocities of sediment fractions that carry the eroded SOC. For aggregated soils, settling velocities are affected by their actual aggregate size rather than the mineral grain size distribution. Aggregate stability is, in turn, strongly influenced by soil organic matter. This study aims at identifying the effect of aggregation on the transport distances of eroded SOC and its susceptibility to mineralization after transport and deposition. A rainfall simulation was carried out on a silty loam soil. The eroded sediments were fractionated by a settling tube apparatus into six different size classes according to their settling velocities and likely transport distances. Weight, SOC concentration and instantaneous respiration rates of the fractions of the six classes were measured. Our results show that: 1) 41% of the eroded SOC was transported with coarse aggregates that would be likely re-distributed across landscapes; 2) erosion was prone to accelerate the mineralization of eroded organic carbon immediately after erosion, compared to undisturbed aggregates; 3) erosion might make a higher contribution to atmospheric CO2 than the estimation made without considering the effects of aggregation and extra SOC mineralization during transport.

  19. Direct observation of electric field induced pattern formation and particle aggregation in ferrofluids

    Energy Technology Data Exchange (ETDEWEB)

    Rajnak, Michal; Kopcansky, Peter; Timko, Milan [Institute of Experimental Physics SAS, Watsonova 47, 04001 Košice (Slovakia); Petrenko, Viktor I. [Joint Institute for Nuclear Research, Joliot-Curie 6, 141980 Dubna, Moscow Region (Russian Federation); Kyiv Taras Shevchenko National University, Volodymyrska Street 64, Kyiv 01033 (Ukraine); Avdeev, Mikhail V. [Joint Institute for Nuclear Research, Joliot-Curie 6, 141980 Dubna, Moscow Region (Russian Federation); Ivankov, Olexandr I. [Joint Institute for Nuclear Research, Joliot-Curie 6, 141980 Dubna, Moscow Region (Russian Federation); Kyiv Taras Shevchenko National University, Volodymyrska Street 64, Kyiv 01033 (Ukraine); Moscow Institute of Physics and Technology, Institutskiy per. 9, Dolgoprudniy 141700 (Russian Federation); Feoktystov, Artem [Jülich Centre for Neutron Science (JCNS) at Heinz Maier-Leibnitz Zentrum (MLZ), Forschungszentrum Jülich GmbH, Lichtenbergstr. 1, 85747 Garching (Germany); Dolnik, Bystrik; Kurimsky, Juraj [Faculty of Electrical Engineering and Informatics, Technical University of Košice, Letná 9, 04200 Košice (Slovakia)

    2015-08-17

    Ferrofluids typically respond to magnetic fields and can be manipulated by external magnetic fields. Here, we report on formation of visually observable patterns in a diluted low-polarity ferrofluid exposed to external electric fields. This presents a specific type of ferrofluid structure driven by a combined effect of electrohydrodynamics and electrical body forces. The free charge and permittivity variation are considered to play a key role in the observed phenomenon. The corresponding changes in the ferrofluid structure have been found at nanoscale as well. By small-angle neutron scattering (SANS), we show that the magnetic nanoparticles aggregate in direct current (dc) electric field with a strong dependence on the field intensity. The anisotropic aggregates preferably orient in the direction of the applied electric field. Conducting SANS experiments with alternating current (ac) electric fields of various frequencies, we found a critical frequency triggering the aggregation process. Our experimental study could open future applications of ferrofluids based on insulating liquids.

  20. Nitric oxide inhibited the melanophore aggregation induced by extracellular calcium concentration in snakehead fish, Channa punctatus.

    Science.gov (United States)

    Biswas, Saikat P; Palande, Nikhil V; Jadhao, Arun G

    2011-12-01

    We studied the role of nitric oxide (NO) and extra-cellular Ca(2+) on the melanophores in Indian snakehead teleost, Channa punctatus. Increase of Ca(2+) level in the external medium causes pigment aggregation in melanophores. This pigment-aggregating effect was found to be inhibited when the external medium contained spontaneous NO donor, sodium nitro prusside (SNP) at all the levels of concentration tested. Furthermore, it has been observed that SNP keeps the pigment in dispersed state even after increasing the amount of Ca(2+). In order to test whether NO donor SNP causes dispersion of pigments or not is checked by adding the inhibitor of nitric oxide synthase, N-omega-Nitro-L-arginine (L-NNA) in the medium. It has been noted that the inhibitor L-NNA blocked the effect of NO donor SNP causing aggregation of pigments. In that way NO is inhibiting the effect of extracellular Ca(2+), keeping the pigment dispersed.

  1. Role of amorphous and aggregate phases on field-induced exciton dissociation in a conjugated polymer

    Science.gov (United States)

    Mróz, Marta M.; Lüer, Larry; Houarner-Rassin, Coralie; Anderson, Harry L.; Cabanillas-Gonzalez, Juan

    2013-01-01

    We have applied electric field assisted pump-probe spectroscopy in order to unravel the interplay of amorphous and aggregate phases on the polaron-pair photogeneration process in a conjugated porphyrin polymer. We find that excitons photogenerated in both phases are precursors for polaron pairs with different yields. Kinetic modeling indicates a substantially larger barrier for exciton dissociation in aggregates compared to amorphous areas. The majority of polaron pairs are however formed in aggregate phases due to efficient energy transfer from the amorphous phase. Based on the change in the Stark shift associated with the photogenerated polaron density, we provide a picture of the motion of polaron pairs under the external electric field.

  2. Aggregation of soy protein-isoflavone complexes and gel formation induced by glucono-δ-lactone in soymilk

    Science.gov (United States)

    Hsia, Sheng-Yang; Hsiao, Yu-Hsuan; Li, Wen-Tai; Hsieh, Jung-Feng

    2016-10-01

    This study investigated the glucono-δ-lactone (GDL)-induced aggregation of isoflavones and soy proteins in soymilk. High-performance liquid chromatography (HPLC) analysis indicated that isoflavones mixed with β-conglycinin (7S) and glycinin (11S) proteins formed 7S-isoflavone and 11S-isoflavone complexes in soymilk supernatant fraction (SSF). Most of the soy protein-isoflavone complexes then precipitated into the soymilk pellet fraction (SPF) following the addition of 4 mM GDL, whereupon the pH value of the soymilk dropped from 6.6 to 5.9. Sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) and HPLC analysis suggest that the addition of 4 mM GDL induced the aggregation of most 7S (α’, α and β subunits), 11S acidic and 11S basic proteins as well as isoflavones, including most aglycones, including daidzein, glycitein, genistein and a portion of glucosides, including daidzin, glycitin, genistin, malonyldaidzin and malonylgenistin. These results provide an important reference pertaining to the effects of GDL on the aggregation of soy protein-isoflavone complexes and could benefit future research regarding the production of tofu from soymilk.

  3. Selective inhibition of aggregation/fibrillation of bovine serum albumin by osmolytes: Mechanistic and energetics insights

    Science.gov (United States)

    Dasgupta, Moumita

    2017-01-01

    Bovine serum albumin (BSA) is an important transport protein of the blood and its aggregation/fibrillation would adversely affect its transport ability leading to metabolic disorder. Therefore, understanding the mechanism of fibrillation/aggregation of BSA and design of suitable inhibitor molecules for stabilizing its native conformation, are of utmost importance. The qualitative and quantitative aspects of the effect of osmolytes (proline, hydroxyproline, glycine betaine, sarcosine and sorbitol) on heat induced aggregation/fibrillation of BSA at physiological pH (pH 7.4) have been studied employing a combination of fluorescence spectroscopy, Rayleigh scattering, isothermal titration calorimetry (ITC), dynamic light scattering (DLS) and transmission electron microscopy (TEM). Formation of fibrils by BSA under the given conditions was confirmed from increase in fluorescence emission intensities of Thioflavin T over a time period of 600 minutes and TEM images. Absence of change in fluorescence emission intensities of 8-Anilinonaphthalene-1-sulfonic acid (ANS) in presence of native and aggregated BSA signify the absence of any amorphous aggregates. ITC results have provided important insights on the energetics of interaction of these osmolytes with different stages of the fibrillar aggregates of BSA, thereby suggesting the possible modes/mechanism of inhibition of BSA fibrillation by these osmolytes. The heats of interaction of the osmolytes with different stages of fibrillation of BSA do not follow a trend, suggesting that the interactions of stages of BSA aggregates are osmolyte specific. Among the osmolytes used here, we found glycine betaine to be supporting and promoting the aggregation process while hydroxyproline to be maximally efficient in suppressing the fibrillation process of BSA, followed by sorbitol, sarcosine and proline in the following order of their decreasing potency: Hydroxyproline> Sorbitol> Sarcosine> Proline> Glycine betaine. PMID:28207877

  4. Dabigatran reduces thrombin-induced platelet aggregation and activation in a dose-dependent manner

    DEFF Research Database (Denmark)

    Vinholt, Pernille Just; Nielsen, Christian; Söderström, Anna Cecilia

    2017-01-01

    Dabigatran is an oral anticoagulant and a reversible inhibitor of thrombin. Further, dabigatran might affect platelet function through a direct effect on platelet thrombin receptors. The aim was to investigate the effect of dabigatran on platelet activation and platelet aggregation. Healthy donor...

  5. Nestin+cells forming spheroids aggregates resembling tumorspheres in experimental ENU-induced gliomas.

    Science.gov (United States)

    García-Blanco, Alvaro; Bulnes, Susana; Pomposo, Iñigo; Carrasco, Alex; Lafuente, José Vicente

    2016-12-01

    Nestin+cells from spheroid aggregates display typical histopathological features compatible with cell stemness. Nestin and CD133+cells found in glioblastomas, distributed frequently around aberrant vessels, are considered as potential cancer stem cells. They are possible targets for antitumoral therapy because they lead the tumorigenesis, invasiveness and angiogenesis. However, little is known about their role and presence in low-grade gliomas. The aim of this work is to localize and characterize the distribution of these cells inside tumors during the development of experimental endogenous glioma. For this study, a single dose of Ethyl-nitrosourea was injected into pregnant rats. Double immunofluorescences were performed in order to identify stem-like and differentiated cells. Low-grade gliomas display Nestin+cells distributed throughout the tumor. More malignant gliomas show, in addition to that, a perivascular location with some Nestin+cells co-expressing CD133 or VEGF, and the intratumoral spheroid aggregates of Nestin/CD133+cells. These structures are encapsulated by well-differentiated VEGF/GFAP+cells. Spheroid aggregates increase in size in the most malignant stages. Spheroid aggregates have morphological and phenotypic similarities to in vitro neurospheres and could be an in vivo analogue of them. These arrangements could be a reservoir of undifferentiated cells formed to escape adverse microenvironments.

  6. Roles of autophagy in MPP+-induced neurotoxicity in vivo: the involvement of mitochondria and α-synuclein aggregation.

    Directory of Open Access Journals (Sweden)

    Kai-Chih Hung

    Full Text Available Macroautophagy (also known as autophagy is an intracellular self-eating mechanism and has been proposed as both neuroprotective and neurodestructive in the central nervous system (CNS neurodegenerative diseases. In the present study, the role of autophagy involving mitochondria and α-synuclein was investigated in MPP+ (1-methyl-4-phenylpyridinium-induced oxidative injury in chloral hydrate-anesthetized rats in vivo. The oxidative mechanism underlying MPP+-induced neurotoxicity was identified by elevated lipid peroxidation and heme oxygenase-1 levels, a redox-regulated protein in MPP+-infused substantia nigra (SN. At the same time, MPP+ significantly increased LC3-II levels, a hallmark protein of autophagy. To block MPP+-induced autophagy in rat brain, Atg7siRNA was intranigrally infused 4 d prior to MPP+ infusion. Western blot assay showed that in vivo Atg7siRNA transfection not only reduced Atg7 levels in the MPP+-infused SN but attenuated MPP+-induced elevation in LC3-II levels, activation of caspase 9 and reduction in tyrosine hydroxylase levels, indicating that autophagy is pro-death. The immunostaining study demonstrated co-localization of LC3 and succinate dehydrogenase (a mitochondrial complex II as well as LC3 and α-synuclein, suggesting that autophagy may engulf mitochondria and α-synuclein. Indeed, in vivo Atg7siRNA transfection mitigated MPP+-induced reduction in cytochrome c oxidase. In addition, MPP+-induced autophagy differentially altered the α-synuclein aggregates in the infused SN. In conclusion, autophagy plays a prodeath role in the MPP+-induced oxidative injury by sequestering mitochondria in the rat brain. Moreover, our data suggest that the benefits of autophagy depend on the levels of α-synuclein aggregates in the nigrostriatal dopaminergic system of the rat brain.

  7. Zinc binding to RNA recognition motif of TDP-43 induces the formation of amyloid-like aggregates.

    Science.gov (United States)

    Garnier, Cyrille; Devred, François; Byrne, Deborah; Puppo, Rémy; Roman, Andrei Yu; Malesinski, Soazig; Golovin, Andrey V; Lebrun, Régine; Ninkina, Natalia N; Tsvetkov, Philipp O

    2017-07-28

    Aggregation of TDP-43 (transactive response DNA binding protein 43 kDa) is a hallmark of certain forms of amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD). Moreover, intracellular TDP-43-positive inclusions are often found in other neurodegenerative diseases. Recently it was shown that zinc ions can provoke the aggregation of endogenous TDP-43 in cells, allowing to assume a direct interaction of TDP-43 with zinc ions. In this work, we investigated zinc binding to the 102-269 TDP-43 fragment, which comprise the two RNA recognition motifs. Using isothermal titration calorimetry, mass spectrometry, and differential scanning fluorimetry, we showed that zinc binds to this TDP-43 domain with a dissociation constant in the micromolar range and modifies its tertiary structure leading to a decrease of its thermostability. Moreover, the study by dynamic light scattering and negative stain electron microscopy demonstrated that zinc ions induce auto-association process of this TDP-43 fragment into rope-like structures. These structures are thioflavin-T-positive allowing to hypothesize the direct implication of zinc ions in pathological aggregation of TDP-43.

  8. The Kinetics of Dislocation Loop Formation in Ferritic Alloys Through the Aggregation of Irradiation Induced Defects

    Science.gov (United States)

    Kohnert, Aaron Anthony

    The mechanical properties of materials are often degraded over time by exposure to irradiation environments, a phenomenon that has hindered the development of multiple nuclear reactor design concepts. Such property changes are the result of microstructural changes induced by the collision of high energy particles with the atoms in a material. The lattice defects generated in these recoil events migrate and interact to form extended damage structures. This study has used theoretical models based on the mean field chemical reaction rate theory to analyze the aggregation of isolated lattice defects into larger microstructural features that are responsible for long term property changes, focusing on the development of black dot damage in ferritic iron based alloys. The purpose of such endeavors is two-fold. Primarily, such models explain and quantify the processes through which these microstructures form. Additionally, models provide insight into the behavior and properties of the point defects and defect clusters which drive general microstructural evolution processes. The modeling effort presented in this work has focused on physical fidelity, drawing from a variety of sources of information to characterize the unobservable defect generation and agglomeration processes that give rise to the observable features reported in experimental data. As such, the models are based not solely on isolated point defect creation, as is the case with many older rate theory approaches, but instead on realistic estimates of the defect cluster population produced in high energy cascade damage events. Experimental assessments of the microstructural changes evident in transmission electron microscopy studies provide a means to measure the efficacy of the kinetic models. Using common assumptions of the mobility of defect clusters generated in cascade damage conditions, an unphysically high density of damage features develops at the temperatures of interest with a temperature dependence

  9. Zinc induces unfolding and aggregation of dimeric arginine kinase by trapping reversible unfolding intermediate.

    Science.gov (United States)

    Liu, Taotao; Wang, Xicheng

    2010-11-01

    Arginine kinase plays an important role in the cellular energy metabolism of invertebrates. Dimeric arginine kinase (dAK) is unique in some marine invertebrates. The effects of Zn²(+) on the unfolding and aggregation of dAK from the sea cucumber Stichopus japonicus were investigated. Our results indicated that Zn²(+) caused dAK inactivation accompanied by conformational unfolding, the exposure of hydrophobic surface, and aggregation. Kinetic studies showed the inactivation and unfolding of dAK followed biphasic kinetic courses. Zn²(+) can affect unfolding and refolding of dAK by trapping the reversible intermediate. Our study provides important information regarding the effect of Zn²(+) on metabolic enzymes in marine invertebrates.

  10. The yeast peroxiredoxin Tsa1 protects against protein-aggregate-induced oxidative stress

    OpenAIRE

    2014-01-01

    ABSTRACT Peroxiredoxins are ubiquitous thiol-specific proteins that have multiple functions in stress protection, including protection against oxidative stress. Tsa1 is the major yeast peroxiredoxin and we show that it functions as a specific antioxidant to protect the cell against the oxidative stress caused by nascent-protein misfolding and aggregation. Yeast mutants lacking TSA1 are sensitive to misfolding caused by exposure to the proline analogue azetidine-2-carboxylic acid (AZC). AZC pr...

  11. α-Synuclein-induced Aggregation of Cytoplasmic Vesicles in Saccharomyces cerevisiae

    OpenAIRE

    Soper, James H.; Roy, Subhojit; Stieber, Anna; Lee, Eliza; Wilson, Robert B.; Trojanowski, John Q.; Burd, Christopher G.; Lee, Virginia M.-Y.

    2008-01-01

    Aggregated α-synuclein (α-syn) fibrils form Lewy bodies (LBs), the signature lesions of Parkinson's disease (PD) and related synucleinopathies, but the pathogenesis and neurodegenerative effects of LBs remain enigmatic. Recent studies have shown that when overexpressed in Saccharomyces cerevisiae, α-syn localizes to plasma membranes and forms cytoplasmic accumulations similar to human α-syn inclusions. However, the exact nature, composition, temporal evolution, and underlying mechanisms of ye...

  12. Jack bean (Canavalia ensiformis) urease induces eicosanoid-modulated hemocyte aggregation in the Chagas' disease vector Rhodnius prolixus.

    Science.gov (United States)

    Defferrari, M S; da Silva, R; Orchard, I; Carlini, C R

    2014-05-01

    Ureases are multifunctional proteins that display biological activities independently of their enzymatic function, such as induction of exocytosis and insecticidal effects. Rhodnius prolixus, a major vector of Chagas' disease, is a model for studies on the entomotoxicity of jack bean urease (JBU). We have previously shown that JBU induces the production of eicosanoids in isolated tissues of R. prolixus. In insects, the immune response comprises cellular and humoral reactions, and is centrally modulated by eicosanoids. Cyclooxygenase products signal immunity in insects, mainly cellular reactions, such as hemocyte aggregation. In searching for a link between JBU's toxic effects and immune reactions in insects, we have studied the effects of this toxin on R. prolixus hemocytes. JBU triggers aggregation of hemocytes after injection into the hemocoel and when applied to isolated cells. On in vitro assays, the eicosanoid synthesis inhibitors dexamethasone (phospholipase A2 indirect inhibitor) and indomethacin (cyclooxygenase inhibitor) counteracted JBU's effect, indicating that eicosanoids, more specifically cyclooxygenase products, are likely to mediate the aggregation response. Contrarily, the inhibitors esculetin and baicalein were inactive, suggesting that lipoxygenase products are not involved in JBU's effect. Extracellular calcium was also necessary for JBU's effect, in agreement to other cell models responsive to ureases. A progressive darkening of the medium of JBU-treated hemocytes was observed, suggestive of a humoral response. JBU was immunolocalized in the cultured cells upon treatment along with cytoskeleton damage. The highest concentration of JBU tested on cultured cells also led to nuclei aggregation of adherent hemocytes. This is the first time urease has been shown to affect insect hemocytes, contributing to our understanding of the entomotoxic mechanisms of action of this protein.

  13. Role of Au nanoparticle aggregation in laser induced anisotropy of ITO transparent substrates

    Energy Technology Data Exchange (ETDEWEB)

    Kityk, I.V., E-mail: iwank74@gmail.com [Electrical Engineering Department, Czetochowa University Technology, Armii Krajowej 17, Czestochowa (Poland); Ebothe, J.; Bercu, N-B. [Laboratoire de Recherche en Nanosciences, E.A. 4682, Université de Reims, 21 rue Clément Ader, 51685 Reims cedex 02 (France); Aziz, Md. Abdul [Center of Research Excellence in Nanotechnology, King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia); Oyama, Munetaka [Department of Material Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto 615-8520 (Japan)

    2014-02-05

    Highlights: • Principal role of Au NP surface aggregation on the output photoinduced birefringence is shown. • The higher changes are obtained for the samples with sizes 30 nm. • The process is slowly relaxed. -- Abstract: A principal possibility to achieve the photoinduced anisotropy in the Au NP deposited onto the ITO substrate is experimentally shown. The sizes of the Au NP forming the corresponding nanocomposites were 20 nm, 30 nm and 40 nm. As a photoinducing light source we have used two coherent beam originating from the Er:glass laser generating at 1540 nm with frequency repetition 15 Hz as well as its second harmonic doubled frequency signal at 770 nm. The effect is sensitive to the angle between the two laser beams as well as to the Au NP sizes, inter-particle distances and topology connected with their aggregation. The effect shows slow relaxation to the initial state. The optimal conditions are achieved for nanocomposites formed by 30 nm despite the expected 20 nm. This one may be caused by crucial role of the partial aggregation which even changes the effective grain sizes. The contribution of the dipole–dipole as well as quadrupole–dipole interactions to the changes of the anisotropy is discussed. The excitation is far from the resonance which allow to predict that effective role play overlap with nanotrapping levels. So principal role may belongs to surface topology and which is studied using the birefringence directly connected with the anisotropy.

  14. Solvents induced ZnO nanoparticles aggregation associated with their interfacial effect on organic solar cells.

    Science.gov (United States)

    Li, Pandeng; Jiu, Tonggang; Tang, Gang; Wang, Guojie; Li, Jun; Li, Xiaofang; Fang, Junfeng

    2014-10-22

    ZnO nanofilm as a cathode buffer layer has surface defects due to the aggregations of ZnO nanoparticles, leading to poor device performance of organic solar cells. In this paper, we report the ZnO nanoparticles aggregations in solution can be controlled by adjusting the solvents ratios (chloroform vs methanol). These aggregations could influence the morphology of ZnO film. Therefore, compact and homogeneous ZnO film can be obtained to help achieve a preferable power conversion efficiency of 8.54% in inverted organic solar cells. This improvement is attributed to the decreased leakage current and the increased electron-collecting efficiency as well as the improved interface contact with the active layer. In addition, we find the enhanced maximum exciton generation rate and exciton dissociation probability lead to the improvement of device performance due to the preferable ZnO dispersion. Compared to other methods of ZnO nanofilm fabrication, it is the more convenient, moderate, and effective to get a preferable ZnO buffer layer for high-efficiency organic solar cells.

  15. Varicella-zoster virus induces the formation of dynamic nuclear capsid aggregates

    Energy Technology Data Exchange (ETDEWEB)

    Lebrun, Marielle [University of Liege (ULg), GIGA-Infection Immunity and Inflammation, Laboratory of Virology and Immunology, Liege (Belgium); Thelen, Nicolas; Thiry, Marc [University of Liege (ULg), GIGA-Neurosciences, Laboratory of Cellular and Tissular Biology, Liege (Belgium); Riva, Laura; Ote, Isabelle; Condé, Claude; Vandevenne, Patricia [University of Liege (ULg), GIGA-Infection Immunity and Inflammation, Laboratory of Virology and Immunology, Liege (Belgium); Di Valentin, Emmanuel [University of Liege (ULg), GIGA-Viral Vectors Platform, Liege (Belgium); Bontems, Sébastien [University of Liege (ULg), GIGA-Infection Immunity and Inflammation, Laboratory of Virology and Immunology, Liege (Belgium); Sadzot-Delvaux, Catherine, E-mail: csadzot@ulg.ac.be [University of Liege (ULg), GIGA-Infection Immunity and Inflammation, Laboratory of Virology and Immunology, Liege (Belgium)

    2014-04-15

    The first step of herpesviruses virion assembly occurs in the nucleus. However, the exact site where nucleocapsids are assembled, where the genome and the inner tegument are acquired, remains controversial. We created a recombinant VZV expressing ORF23 (homologous to HSV-1 VP26) fused to the eGFP and dually fluorescent viruses with a tegument protein additionally fused to a red tag (ORF9, ORF21 and ORF22 corresponding to HSV-1 UL49, UL37 and UL36). We identified nuclear dense structures containing the major capsid protein, the scaffold protein and maturing protease, as well as ORF21 and ORF22. Correlative microscopy demonstrated that the structures correspond to capsid aggregates and time-lapse video imaging showed that they appear prior to the accumulation of cytoplasmic capsids, presumably undergoing the secondary egress, and are highly dynamic. Our observations suggest that these structures might represent a nuclear area important for capsid assembly and/or maturation before the budding at the inner nuclear membrane. - Highlights: • We created a recombinant VZV expressing the small capsid protein fused to the eGFP. • We identified nuclear dense structures containing capsid and procapsid proteins. • Correlative microscopy showed that the structures correspond to capsid aggregates. • Procapsids and partial capsids are found within the aggregates of WT and eGFP-23 VZV. • FRAP and FLIP experiments demonstrated that they are dynamic structures.

  16. Amino acid induced fractal aggregation of gold nanoparticles: Why and how.

    Science.gov (United States)

    Doyen, Matthieu; Goole, Jonathan; Bartik, Kristin; Bruylants, Gilles

    2016-02-15

    Gold colloids are the object of many studies as they are reported to have potential biological sensing, imaging and drug delivery applications. In the presence of certain amino acids the aggregation of the gold nanoparticles into linear structures is observed, as highlighted by the appearance of a second plasmon band in the UV-Vis spectra of the colloid. The mechanism behind this phenomenon is still under debate. In order to help elucidate this issue, the interaction between gold colloids and different amino acids, modified amino acids and molecules mimicking their side-chain was monitored by UV-Vis absorption, DLS and TEM. The results show that phenomenon can be rationalized in terms of the Diffusion Limited Colloid Aggregation (DLCA) model which gives rise to the fractal aggregation colloids. The global charge of the compound, which influences the ionic strength of the solution, and the ease with which the compound can interact with the GNPs and affect their surface potential, are, the two parameters which control the DLCA regime. Calculations based on the Derjaguin, Landau, Verwey and Overbeek (DLVO) theory confirm all the experimental observations.

  17. Predictive response surface model for heat-induced rheological changes and aggregation of whey protein concentrate.

    Science.gov (United States)

    Alvarez, Pedro A; Emond, Charles; Gomaa, Ahmed; Remondetto, Gabriel E; Subirade, Muriel

    2015-02-01

    Whey proteins are now far more than a by-product of cheese processing. In the last 2 decades, food manufacturers have developed them as ingredients, with the dairy industry remaining as a major user. For many applications, whey proteins are modified (denatured) to alter their structure and functional properties. The objective of this research was to study the influence of 85 to 100 °C, with protein concentration of 8% to 12%, and treatment times of 5 to 30 min, while measuring rheological properties (storage modulus, loss modulus, and complex viscosity) and aggregation (intermolecular beta-sheet formation) in dispersions of whey protein concentrate (WPC). A Box-Behnken Response Surface Methodology modeled the heat denaturation of liquid sweet WPC at 3 variables and 3 levels. The model revealed a very significant fit for viscoelastic properties, and a lesser fit for protein aggregation, at temperatures not previously studied. An exponential increase of rheological parameters was governed by protein concentration and temperature, while a modest linear relationship of aggregation was governed by temperature. Models such as these can serve as valuable guides to the ingredient and dairy industries to develop target products, as whey is a major ingredient in many functional foods.

  18. SDF-1α/CXCR4 Signaling in Lipid Rafts Induces Platelet Aggregation via PI3 Kinase-Dependent Akt Phosphorylation.

    Science.gov (United States)

    Ohtsuka, Hiroko; Iguchi, Tomohiro; Hayashi, Moyuru; Kaneda, Mizuho; Iida, Kazuko; Shimonaka, Motoyuki; Hara, Takahiko; Arai, Morio; Koike, Yuichi; Yamamoto, Naomasa; Kasahara, Kohji

    2017-01-01

    Stromal cell-derived factor-1α (SDF-1α)-induced platelet aggregation is mediated through its G protein-coupled receptor CXCR4 and phosphatidylinositol 3 kinase (PI3K). Here, we demonstrate that SDF-1α induces phosphorylation of Akt at Thr308 and Ser473 in human platelets. SDF-1α-induced platelet aggregation and Akt phosphorylation are inhibited by pretreatment with the CXCR4 antagonist AMD3100 or the PI3K inhibitor LY294002. SDF-1α also induces the phosphorylation of PDK1 at Ser241 (an upstream activator of Akt), GSK3β at Ser9 (a downstream substrate of Akt), and myosin light chain at Ser19 (a downstream element of the Akt signaling pathway). SDF-1α-induced platelet aggregation is inhibited by pretreatment with the Akt inhibitor MK-2206 in a dose-dependent manner. Furthermore, SDF-1α-induced platelet aggregation and Akt phosphorylation are inhibited by pretreatment with the raft-disrupting agent methyl-β-cyclodextrin. Sucrose density gradient analysis shows that 35% of CXCR4, 93% of the heterotrimeric G proteins Gαi-1, 91% of Gαi-2, 50% of Gβ and 4.0% of PI3Kβ, and 4.5% of Akt2 are localized in the detergent-resistant membrane raft fraction. These findings suggest that SDF-1α/CXCR4 signaling in lipid rafts induces platelet aggregation via PI3K-dependent Akt phosphorylation.

  19. SDF-1α/CXCR4 Signaling in Lipid Rafts Induces Platelet Aggregation via PI3 Kinase-Dependent Akt Phosphorylation

    Science.gov (United States)

    Hayashi, Moyuru; Kaneda, Mizuho; Iida, Kazuko; Shimonaka, Motoyuki; Hara, Takahiko; Arai, Morio; Koike, Yuichi; Yamamoto, Naomasa; Kasahara, Kohji

    2017-01-01

    Stromal cell-derived factor-1α (SDF-1α)-induced platelet aggregation is mediated through its G protein-coupled receptor CXCR4 and phosphatidylinositol 3 kinase (PI3K). Here, we demonstrate that SDF-1α induces phosphorylation of Akt at Thr308 and Ser473 in human platelets. SDF-1α-induced platelet aggregation and Akt phosphorylation are inhibited by pretreatment with the CXCR4 antagonist AMD3100 or the PI3K inhibitor LY294002. SDF-1α also induces the phosphorylation of PDK1 at Ser241 (an upstream activator of Akt), GSK3β at Ser9 (a downstream substrate of Akt), and myosin light chain at Ser19 (a downstream element of the Akt signaling pathway). SDF-1α-induced platelet aggregation is inhibited by pretreatment with the Akt inhibitor MK-2206 in a dose-dependent manner. Furthermore, SDF-1α-induced platelet aggregation and Akt phosphorylation are inhibited by pretreatment with the raft-disrupting agent methyl-β-cyclodextrin. Sucrose density gradient analysis shows that 35% of CXCR4, 93% of the heterotrimeric G proteins Gαi-1, 91% of Gαi-2, 50% of Gβ and 4.0% of PI3Kβ, and 4.5% of Akt2 are localized in the detergent-resistant membrane raft fraction. These findings suggest that SDF-1α/CXCR4 signaling in lipid rafts induces platelet aggregation via PI3K-dependent Akt phosphorylation. PMID:28072855

  20. Effect of alginate on the aggregation kinetics of copper oxide nanoparticles (CuO NPs): bridging interaction and hetero-aggregation induced by Ca(2.).

    Science.gov (United States)

    Miao, Lingzhan; Wang, Chao; Hou, Jun; Wang, Peifang; Ao, Yanhui; Li, Yi; Lv, Bowen; Yang, Yangyang; You, Guoxiang; Xu, Yi

    2016-06-01

    The stability of CuO nanoparticles (NPs) is expected to play a key role in the environmental risk assessment of nanotoxicity in aquatic systems. In this study, the effect of alginate (model polysaccharides) on the stability of CuO NPs in various environmentally relevant ionic strength conditions was investigated by using time-resolved dynamic light scattering. Significant aggregation of CuO NPs was observed in the presence of both monovalent and divalent cations. The critical coagulation concentrations (CCC) were 54.5 and 2.9 mM for NaNO3 and Ca(NO3)2, respectively. The presence of alginate slowed nano-CuO aggregation rates over the entire NaNO3 concentration range due to the combined electrostatic and steric effect. High concentrations of Ca(2+) (>6 mM) resulted in stronger adsorption of alginate onto CuO NPs; however, enhanced aggregation of CuO NPs occurred simultaneously under the same conditions. Spectroscopic analysis revealed that the bridging interaction of alginate with Ca(2+) might be an important mechanism for the enhanced aggregation. Furthermore, significant coagulation of the alginate molecules was observed in solutions of high Ca(2+) concentrations, indicating a hetero-aggregation mechanism between the alginate-covered CuO NPs and the unabsorbed alginate. These results suggested a different aggregation mechanism of NPs might co-exist in aqueous systems enriched with natural organic matter, which should be taken into consideration in future studies. Graphical abstract Hetero-aggregation mechanism of CuO nanoparticles and alginate under high concentration of Ca(2.)

  1. Aluminum, copper, iron and zinc differentially alter amyloid-Aβ(1-42) aggregation and toxicity.

    Science.gov (United States)

    Bolognin, Silvia; Messori, Luigi; Drago, Denise; Gabbiani, Chiara; Cendron, Laura; Zatta, Paolo

    2011-06-01

    Amyloid-β(1-42) (Aβ) is believed to play a crucial role in the ethiopathogenesis of Alzheimer's Disease (AD). In particular, its interactions with biologically relevant metal ions may lead to the formation of highly neurotoxic complexes. Here we describe the species that are formed upon reacting Aβ with several biometals, namely copper, zinc, iron, and with non-physiological aluminum to assess whether different metal ions are able to differently drive Aβ aggregation. The nature of the resulting Aβ-metal complexes and of the respective aggregates was ascertained through a number of biophysical techniques, including electrospray ionization mass spectrometry, dynamic light scattering, fluorescence, transmission electron microscopy and by the use of conformation-sensitive antibodies (OC, αAPF). Metal binding to Aβ is shown to confer highly different chemical properties to the resulting complexes; accordingly, their overall aggregation behaviour was deeply modified. Both aluminum(III) and iron(III) ions were found to induce peculiar aggregation properties, ultimately leading to the formation of annular protofibrils and of fibrillar oligomers. Notably, only Aβ-aluminum was characterized by the presence of a relevant percentage of aggregates with a mean radius slightly smaller than 30 nm. In contrast, both zinc(II) and copper(II) ions completely prevented the formation of soluble fibrillary aggregates. The biological effects of the various Aβ-metal complexes were studied in neuroblastoma cell cultures: Aβ-aluminum turned out to be the only species capable of triggering amyloid precursor and tau181 protein overproduction. Our results point out that Al can effectively interact with Aβ, forming "structured" aggregates with peculiar biophysical properties which are associated with a high neurotoxicity.

  2. A novel method for study of the aggregation of protein induced by metal ion aluminum(III) using resonance Rayleigh scattering technique

    Science.gov (United States)

    Long, Xiufen; Zhang, Caihua; Cheng, Jiongjia; Bi, Shuping

    2008-01-01

    We present a novel method for the study of the aggregation of protein induced by metal ion aluminum(III) using resonance Rayleigh scattering (RRS) technique. In neutral Tris-HCl medium, the effect of this aggregation of protein results in the enhancement of RRS intensity and the relationship between the enhancement of the RRS signal and the Al concentration is nonlinear. On this basis, we established a new method for the determination of the critical induced-aggregation concentrations ( CCIAC) of metal ion Al(III) inducing the protein aggregation. Our results show that many factors, such as, pH value, anions, salts, temperature and solvents have obvious effects. We also studied the extent of aggregation and structural changes using ultra-violet spectrometry, protein intrinsic fluorescence and circular dichroism to further understand the exact mechanisms of the aggregation characteristics of proteins induced by metal ion Al(III) at the molecular level, to help us to develop effective methods to investigate the toxicity of metal ion Al, and to provide theoretical and quantitative evidences for the development of appropriate treatments for neurodementia such as Parkinson's disease, Alzheimer's disease and dementia related to dialysis.

  3. Studies on the photophysical properties of 1,8-naphthalimide derivative and aggregation induced emission recognition for casein

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Yang, E-mail: 66160692@qq.com [Department of Chemistry and Chemical Engineering, Xi' an University of Arts and Science, No. 168, Taibai South Road, Xi' an, Shaanxi 710065 (China); Liang, Xuhua; Fan, Jun [School of Chemical Engineering, Northwest University, No. 229, Taibai North Road, Xi' an, Shaanxi 710069 (China); Han, Quan, E-mail: xahanq@hotmail.com [Department of Chemistry and Chemical Engineering, Xi' an University of Arts and Science, No. 168, Taibai South Road, Xi' an, Shaanxi 710065 (China)

    2013-09-15

    A novel water-soluble 1,8-naphthalimide derivative 1, bearing two acetic carboxylic groups, exhibited fluorescent turn-on recognition for casein micelle based on the aggregation induced emission (AIE) character. The photophysical properties of 1 consisting of donor and acceptor units were investigated by the solvation effect. Changing from polar to non-polar solvent increased the solvent interaction; both the excitation and emission spectra were shifted to shorter wavelength and intensity decreased through taking advantage of twisted intramolecular charge transfer (TICT) and self-association fluorescence emission. Moreover, the red-shift and quenching in protic solvent were caused by the excited-state hydrogen bond strengthening effect. The density functional theory (DFT) and time dependent density functional theory (TDDFT) were used to obtain the most stable structure, electronic excitation energy, dipole moments and charge distribution. The AIE mechanism of 1 with casein micelle was due to 1 docked in the hydrophobic cavity between sub-micelles and bound with amino acid residues, resulting in the aggregation of 1 on the casein micelle surface and emission enhancement, based on which, a novel casein assay method was developed. The proposed method exhibited a good linear range from 0.1 to 10.5 μg mL{sup −1}, with the detection limit of 3.0 ng mL{sup −1}. Satisfactory reproducibility, reversibility and a short response time were realized. This method was applied for the determination of casein in milk powder samples, avoiding the interferences from other components and illegal additives in milk. -- Highlights: • A water-soluble 1,8-naphthalimide-based fluorescent probe 1 was synthesized. • Photophysical characterization of 1 was studied. • Aggregation induced emission enhancement of 1 with casein was investigated. • A novel casein quantification method was developed.

  4. Quantifying the interfibrillar spacing and fibrillar orientation of the aortic extracellular matrix using histology image processing: toward multiscale modeling.

    Science.gov (United States)

    Shahmirzadi, Danial; Bruck, Hugh A; Hsieh, Adam H

    2013-05-01

    An essential part of understanding tissue microstructural mechanics is to establish quantitative measures of the morphological changes. Given the complex, highly localized, and interactive architecture of the extracellular matrix, developing techniques to reproducibly quantify the induced microstructural changes has been found to be challenging. In this paper, a new method for quantifying the changes in the fibrillar organization is developed using histology images. A combinatorial frequency-spatial image processing approach was developed based on the Fourier and Hough transformations of histology images to measure interfibrillar spacing and fibrillar orientation, respectively. The method was separately applied to the inner and outer wall thickness of native- and elastin-isolated aortic tissues under different loading states. Results from both methods were interpreted in a complementary manner to obtain a more complete understanding of morphological changes due to tissue deformations at the microscale. The observations were consistent in quantifying the observed morphological changes during tissue deformations and in explaining such changes in terms of tissue-scale phenomena. The findings of this study could pave the way for more rigorous modeling of structure-property relationships in soft tissues, with implications extendable to cardiovascular constitutive modeling and tissue engineering.

  5. Inhibition of collagen-induced platelet aggregation by anopheline antiplatelet protein, a saliva protein from a malaria vector mosquito.

    Science.gov (United States)

    Yoshida, Shigeto; Sudo, Toshiki; Niimi, Masashi; Tao, Lian; Sun, Bing; Kambayashi, Junichi; Watanabe, Hiroyuki; Luo, Enjie; Matsuoka, Hiroyuki

    2008-02-15

    During blood feeding, mosquitoes inject saliva containing a mixture of molecules that inactivate or inhibit various components of the hemostatic response to the bite injury as well as the inflammatory reactions produced by the bite, to facilitate the ingestion of blood. However, the molecular functions of the individual saliva components remain largely unknown. Here, we describe anopheline antiplatelet protein (AAPP) isolated from the saliva of Anopheles stephensi, a human malaria vector mosquito. AAPP exhibited a strong and specific inhibitory activity toward collagen-induced platelet aggregation. The inhibitory mechanism involves direct binding of AAPP to collagen, which blocks platelet adhesion to collagen and inhibits the subsequent increase in intracellular Ca(2+) concentration ([Ca(2+)]i). The binding of AAPP to collagen effectively blocked platelet adhesion via glycoprotein VI (GPVI) and integrin alpha(2)beta(1). Cell adhesion assay showed that AAPP inhibited the binding of GPVI to collagen type I and III without direct effect on GPVI. Moreover, intravenously administered recombinant AAPP strongly inhibited collagen-induced platelet aggregation ex vivo in rats. In summary, AAPP is a malaria vector mosquito-derived specific antagonist of receptors that mediate the adhesion of platelets to collagen. Our study may provide important insights for elucidating the effects of mosquito blood feeding against host hemostasis.

  6. Creation of reduced fat foods: influence of calcium-induced droplet aggregation on microstructure and rheology of mixed food dispersions.

    Science.gov (United States)

    Wu, Bi-cheng; Degner, Brian; McClements, David Julian

    2013-12-15

    The impact of calcium-induced fat droplet aggregation on the microstructure and physicochemical properties of model mixed colloidal dispersions was investigated. These systems consisted of 2 wt% whey protein-coated fat droplets and 4 wt% modified starch granules heated to induce starch swelling (pH 7). Optical and confocal microscopy showed that the fat droplets were dispersed within the interstitial region between the swollen starch granules. The structural organisation of the fat droplets within these interstitial regions could be modulated by controlling the calcium concentration: (i) at a low calcium concentration the droplets were evenly distributed; (ii) at an intermediate calcium concentration they formed a layer around the starch granules; (iii) at a high calcium concentration they formed a network of aggregated droplets. Paste-like materials were produced when the fat droplets formed a three-dimensional network in the interstitial region. The properties of fat droplet-starch granule suspensions can be modulated by altering the electrostatic interactions to alter microstructure.

  7. In vitro platelet activation, aggregation and platelet-granulocyte complex formation induced by surface modified single-walled carbon nanotubes.

    Science.gov (United States)

    Fent, János; Bihari, Péter; Vippola, Minnamari; Sarlin, Essi; Lakatos, Susan

    2015-08-01

    Surface modification of single-walled carbon nanotubes (SWCNTs) such as carboxylation, amidation, hydroxylation and pegylation is used to reduce the nanotube toxicity and render them more suitable for biomedical applications than their pristine counterparts. Toxicity can be manifested in platelet activation as it has been shown for SWCNTs. However, the effect of various surface modifications on the platelet activating potential of SWCNTs has not been tested yet. In vitro platelet activation (CD62P) as well as the platelet-granulocyte complex formation (CD15/CD41 double positivity) in human whole blood were measured by flow cytometry in the presence of 0.1mg/ml of pristine or various surface modified SWCNTs. The effect of various SWCNTs was tested by whole blood impedance aggregometry, too. All tested SWCNTs but the hydroxylated ones activate platelets and promote platelet-granulocyte complex formation in vitro. Carboxylated, pegylated and pristine SWCNTs induce whole blood aggregation as well. Although pegylation is preferred from biomedical point of view, among the samples tested by us pegylated SWCNTs induced far the most prominent activation and a well detectable aggregation of platelets in whole blood.

  8. CD147 and CD98 complex-mediated homotypic aggregation attenuates the CypA-induced chemotactic effect on Jurkat T cells.

    Science.gov (United States)

    Guo, Na; Zhang, Kui; Lv, Minghua; Miao, Jinlin; Chen, Zhinan; Zhu, Ping

    2015-02-01

    Homotypic cell aggregation plays important roles in physiological and pathological processes, including embryogenesis, immune responses, angiogenesis, tumor cell invasion and metastasis. CD147 has been implicated in most of these phenomena, and it was identified as a T cell activation-associated antigen due to its obvious up-regulation in activated T cells. However, the explicit function and mechanism of CD147 in T cells have not been fully elucidated. In this study, large and compact aggregates were observed in Jurkat T cells after treatment with the specific CD147 monoclonal antibody HAb18 or after the expression of CD147 was silenced by RNA interference, which indicated an inhibitory effect of CD147 in T cell homotypic aggregation. Knocking down CD147 expression resulted in a significant decrease in CD98, along with prominent cell aggregation, similar to that treated by CD98 and CD147 monoclonal antibodies. Furthermore, decreased cell chemotactic activity was observed following CD147- and CD98-mediated cell aggregation, and increased aggregation was correlated with a decrease in the chemotactic ability of the Jurkat T cells, suggesting that CD147- and CD98-mediated homotypic cell aggregation plays a negative role in T cell chemotaxis. Our data also showed that p-ERK, p-ZAP70, p-CD3ζ and p-LCK were significantly decreased in the CD147- and CD98-knocked down Jurkat T cells, which suggested that decreased CD147- and/or CD98-induced homotypic T cell aggregation and aggregation-inhibited chemotaxis might be associated with these signaling pathways. A role for CD147 in cell aggregation and chemotaxis was further indicated in primary CD4(+) T cells. Similarly, low expression of CD147 in primary T cells induced prominent cell aggregation and this aggregation attenuated primary T cell chemotactic ability in response to CypA. Our results have demonstrated the correlation between homotypic cell aggregation and the chemotactic response of T cells to CypA, and these data

  9. Early stages of salmon calcitonin aggregation: effect induced by ageing and oxidation processes in water and in the presence of model membranes.

    Science.gov (United States)

    Gaudiano, Maria Cristina; Colone, Marisa; Bombelli, Cecilia; Chistolini, Pietro; Valvo, Luisa; Diociaiuti, Marco

    2005-06-30

    The natural ageing- and hydrogen peroxide-induced aggregation of salmon calcitonin were studied in water and in the presence of dipalmitoylphosphatidylcholine (DPPC) liposomes. The early stages of the aggregation process at low protein concentration were investigated by means of Circular Dichroism spectroscopy (CD) and conventional and immunogold labelling Transmission Electron Microscopy (TEM). In buffered water solution, salmon calcitonin showed a two-stage conformational variation related to fibril formation and phase-separation of larger aggregates. A first stage, characterised by small conformational changes but a decrease in dichroic band intensity, was followed by a second stage, 6 days after, leading to higher conformational variations and aggregations. Salmon calcitonin showed a distinct modification in the secondary structure and aggregate morphology in the presence of hydrogen peroxide with respect to natural ageing, indicating that the two aggregation processes (natural and chemical-induced) followed a distinct mechanism. The oxidised forms of the peptide were separated by liquid chromatography. The same study was performed in the presence of DPPC liposomes. The results obtained by conventional and immunogold labelling TEM evidenced that salmon calcitonin in buffered water solution essentially does not enter the liposomes but forms around them a fibril network characterised by the same conformational changes after 6 days. The oxidised sample in the presence of liposomes showed a "fibrils hank", separated from liposomes. The presence of liposomes did not affect either the aggregation or the conformational modifications yet observed by TEM and CD in water solution.

  10. Root Cause Analysis of Tungsten-Induced Protein Aggregation in Pre-filled Syringes.

    Science.gov (United States)

    Liu, Wei; Swift, Rob; Torraca, Gianni; Nashed-Samuel, Yasser; Wen, Zai-Qing; Jiang, Yijia; Vance, Aylin; Mire-Sluis, Anthony; Freund, Erwin; Davis, Janice; Narhi, Linda

    2010-01-01

    Particles isolated from a pre-filled syringe containing a protein-based solution were identified as aggregated protein and tungsten. The origin of the tungsten was traced to the tungsten pins used in the supplier's syringe barrel forming process. A tungsten recovery study showed that the vacuum stopper placement process has a significant impact on the total amount of tungsten in solutions. The air gap formed in the syringe funnel area (rich in residual tungsten) becomes accessible to solutions when the vacuum is pulled. Leachable tungsten deposits that were not removed by the supplier's wash process are concentrated in this small area. Extraction procedures used to measure residual tungsten in empty syringes would under-report the tungsten quantity unless the funnel area is wetted during the extraction. Improved syringe barrel forming and washing processes at the supplier have lowered the residual tungsten content and significantly reduced the risk of protein aggregate formation. This experience demonstrates that packaging component manufacturing processes, which are outside the direct control of drug manufacturers, can have an impact on the drug product quality. Thus close technical communication with suppliers of product contact components plays an important role in making a successful biotherapeutic.

  11. Mildly oxidized HDL decrease agonist-induced platelet aggregation and release of pro-coagulant platelet extracellular vesicles.

    Science.gov (United States)

    Tafelmeier, M; Fischer, A; Orsó, E; Konovalova, T; Böttcher, A; Liebisch, G; Matysik, S; Schmitz, G

    2017-05-01

    Stored platelet concentrates (PLCs) for therapeutic purpose, develop a platelet storage lesion (PSL), characterized by impaired platelet (PLT) viability and function, platelet extracellular vesicle (PL-EV) release and profound lipidomic changes. Whereas oxidized low-density lipoprotein (oxLDL) activates PLTs and promotes atherosclerosis, effects linked to oxidized high-density lipoprotein (oxHDL) are poorly characterized. PLCs from blood donors were treated with native (nHDL) or mildly oxidized HDL (moxHDL) for 5days under blood banking conditions. Flow cytometry, nanoparticle tracking analysis (NTA), aggregometry, immunoblot analysis and mass spectrometry were carried out to analyze PL-EV and platelet exosomes (PL-EX) release, PLT aggregation, protein expression, and PLT and plasma lipid composition. In comparison to total nHDL, moxHDL significantly decreased PL-EV release by -36% after 5days of PLT storage and partially reversed agonist-induced PLT aggregation. PL-EV release positively correlated with PLT aggregation. MoxHDL improved PLT membrane lipid homeostasis through enhanced uptake of lysophospholipids and their remodeling to corresponding phospholipid species. This also appeared for sphingomyelin (SM) and d18:0/d18:1 sphingosine-1-phosphate (S1P) at the expense of ceramide (Cer) and hexosylceramide (HexCer) leading to reduced Cer/S1P ratio as PLT-viability indicator. This membrane remodeling was associated with increased content of CD36 and maturation of scavenger receptor-B1 (SR-B1) protein in secreted PL-EVs. MoxHDL, more potently than nHDL, improves PLT-membrane lipid homeostasis, partially antagonizes PL-EV release and agonist-induced PLT aggregation. Altogether, this may be the result of more efficient phospho- and sphingolipid remodeling mediated by CD36 and SR-B1 in the absence of ABCA1 on PLTs. As in vitro supplement in PLCs, moxHDL has the potential to improve PLC quality and to prolong storage. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Ordered fibrillar morphology of donor-acceptor conjugated copolymers at multiple scales via blending with flexible polymers and solvent vapor annealing: insight into photophysics and mechanism.

    Science.gov (United States)

    Wang, Haiyang; Liu, Jiangang; Xu, Yaozhuo; Yu, Xinhong; Xing, Rubo; Han, Yanchun

    2014-01-28

    The ordered, aligned fibrillar morphology at multiple scales of a donor-acceptor (D-A) conjugated copolymer of 3,6-bis-(thiophen-2-yl)-N,N'-bis(2-octyl-1-dodecyl)-1,4-dioxo-pyrrolo[3,4-c]pyrrole and thieno[3,2-b]thiophene (PDBT-TT) was prepared via blending with flexible polymers (PS13.7k, PDBT-TT/PS = 1/10 w/w) followed by chloroform (CF) solvent vapor annealing (SVA) for 24 h. The aligned fibrillar bundles were of about 500 nm width, consisting of parallel aligned nanofibrils of ab. 10 nm width. It was found that the direction of backbones in nanofibrils was parallel to the long axis of nanofibrils, which implied an intense intra-chain conjugation associated with extended backbones and J-aggregation of PDBT-TT. This ordered morphology corresponded to the characteristic photophysical features of (i) red-shifted absorption arising from J-aggregation, (ii) larger Davydov splitting, (iii) the prevailing absorbance of J-aggregation over H-aggregation in its UV-Vis spectrum and (iv) more red-shifted max photoluminescence emission, compared with the films prepared via the other methods. By investigating the Raman spectra and XRD profiles, it is proposed that the origin of the best morphological and photophysical order is the combination of blending and SVA. The limited and "flexible" space formed due to phase separation between PDBT-TT and PS facilitated the motion of rigid PDBT-TT chains and promoted their stacking order as templates, and CF vapor assisted the conformational transition of chains to more "coil-like" to help them reorganize in a thermodynamic stable way.

  13. Effects of hesperidin, a flavanone glycoside interaction on the conformation, stability, and aggregation of lysozyme: multispectroscopic and molecular dynamic simulation studies?

    Science.gov (United States)

    Ratnaparkhi, Aditi; Muthu, Shivani A; Shiriskar, Sonali M; Pissurlenkar, Raghuvir R S; Choudhary, Sinjan; Ahmad, Basir

    2015-09-01

    Hesperidin (HESP), a flavanone glycoside, shows high antioxidant properties and possess ability to go through the blood-brain barrier. Therefore, it could be a potential drug molecule against aggregation based diseases such as Alzheimer's, Parkinson's, and systemic amyloidoses. In this work, we investigated the potential of HESP to interact with hen egg-white lysozyme (HEWL) monomer and prevent its aggregation. The HESP-HEWL binding studies were performed using a fluorescence quenching technique, molecular docking and molecular dynamics simulations. We found a strong interaction of HESP with the lysozyme monomer (Ka, ~ 5 × 10(4) M(-1)) mainly through hydrogen bonding, water bridges, and hydrophobic interactions. We showed that HESP molecule spanned the highly aggregation prone region (amino acid residues 48-101) of HEWL and prevented its fibrillar aggregation. Further, we found that HESP binding completely inhibited amorphous aggregation of the protein induced by disulfide-reducing agent tries-(2-carboxyethyl) phosphine. Conformational and stability studies as followed by various tertiary and secondary structure probes revealed that HESP binding only marginally affected the lysozyme monomer conformation and increased both stability and reversibility of the protein against thermal denaturation. Future studies should investigate detail effects of HESP on solvent dynamics, structure, and toxicity of various aggregates. The answers to these questions will not only target the basic sciences, but also have application in biomedical and biotechnological sciences.

  14. Effect of phosphate buffer on aggregation kinetics of citrate-coated silver nanoparticles induced by monovalent and divalent electrolytes.

    Science.gov (United States)

    Afshinnia, K; Baalousha, M

    2017-03-01

    The attachment efficiency (α) is an important parameter that can be used to characterize nanoparticle (NPs) aggregation behavior and has been a topic of discussion of several papers in the past few years. The importance of α is because it is one of the key parameters that can be used to model NP environmental fate and behavior. This study uses UV-vis and laser Doppler electrophoresis to monitor the aggregation behavior of citrate-coated silver nanoparticles (cit-AgNPs) induced by Na(+) and Ca(2+) as counter ions in the presence and absence of Suwannee River fulvic acid (SRFA) as a surrogate of natural organic matter and different concentrations of phosphate buffer (0-1mM). Results demonstrate that phosphate buffer, which serves to maintain pH nearly constant over the course of a reaction, is an important determinant of NP aggregation behavior. Increasing phosphate buffer concentration results in a decrease in the critical coagulation concentrations (CCC) of cit-AgNPs to lower counter ion concentration and an increase of α at the same counter ion concentration, both in the absence and presence of SRFA. SRFA stabilizes AgNPs and increases the CCC to higher counter ion concentrations. The outcome of this study can be used to rationalize the variation in α and CCC values reported in the literature for NPs with similar physicochemical properties, where different α and CCC values are reported when different types of buffers and buffer concentrations are used in different studies. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. The use of quartz crystal microbalance with dissipation (QCM-D for studying nanoparticle-induced platelet aggregation

    Directory of Open Access Journals (Sweden)

    Santos-Martinez MJ

    2012-01-01

    Full Text Available Maria Jose Santos-Martinez1–3, Iwona Inkielewicz-Stepniak1,4, Carlos Medina1, Kamil Rahme5,6, Deirdre M D'Arcy1, Daniel Fox3, Justin D Holmes3,5, Hongzhou Zhang3, Marek Witold Radomski3,51School of Pharmacy and Pharmaceutical Sciences, 2School of Medicine, 3Center for Research on Adaptive Nanostructures and Nanodevices, Trinity College Dublin, Dublin, Ireland; 4Department of Medicinal Chemistry, Medical University of Gdansk, Gdansk, Poland; 5Materials and Supercritical Fluids Group, Department of Chemistry and the Tyndall National Institute, University College Cork, Cork, Ireland; 6Department of Sciences, Faculty of Natural and Applied Science, Notre Dame University, Zouk Mosbeh, LebanonAbstract: Interactions between blood platelets and nanoparticles have both pharmacological and toxicological significance and may lead to platelet activation and aggregation. Platelet aggregation is usually studied using light aggregometer that neither mimics the conditions found in human microvasculature nor detects microaggregates. A new method for the measurement of platelet microaggregation under flow conditions using a commercially available quartz crystal microbalance with dissipation (QCM-D has recently been developed. The aim of the current study was to investigate if QCM-D could be used for the measurement of nanoparticle-platelet interactions. Silica, polystyrene, and gold nanoparticles were tested. The interactions were also studied using light aggregometry and flow cytometry, which measured surface abundance of platelet receptors. Platelet activation was imaged using phase contrast and scanning helium ion microscopy. QCM-D was able to measure nanoparticle-induced platelet microaggregation for all nanoparticles tested at concentrations that were undetectable by light aggregometry and flow cytometry. Microaggregates were measured by changes in frequency and dissipation, and the presence of platelets on the sensor surface was confirmed and imaged by

  16. Exogenous H2S facilitating ubiquitin aggregates clearance via autophagy attenuates type 2 diabetes-induced cardiomyopathy.

    Science.gov (United States)

    Wu, Jichao; Tian, Zhiliang; Sun, Yu; Lu, Cuicui; Liu, Ning; Gao, Zhaopeng; Zhang, Linxue; Dong, Shiyun; Yang, Fan; Zhong, Xin; Xu, Changqing; Lu, Fanghao; Zhang, Weihua

    2017-08-10

    Diabetic cardiomyopathy (DCM) is a serious complication of diabetes. Hydrogen sulphide (H2S), a newly found gaseous signalling molecule, has an important role in many regulatory functions. The purpose of this study is to investigate the effects of exogenous H2S on autophagy and its possible mechanism in DCM induced by type II diabetes (T2DCM). In this study, we found that sodium hydrosulphide (NaHS) attenuated the augment in left ventricular (LV) mass and increased LV volume, decreased reactive oxygen species (ROS) production and ameliorated H2S production in the hearts of db/db mice. NaHS facilitated autophagosome content degradation, reduced the expression of P62 (a known substrate of autophagy) and increased the expression of microtubule-associated protein 1 light chain 3 II. It also increased the expression of autophagy-related protein 7 (ATG7) and Beclin1 in db/db mouse hearts. NaHS increased the expression of Kelch-like ECH-associated protein 1 (Keap-1) and reduced the ubiquitylation level in the hearts of db/db mice. 1,4-Dithiothreitol, an inhibitor of disulphide bonds, increased the ubiquitylation level of Keap-1, suppressed the expression of Keap-1 and abolished the effects of NaHS on ubiquitin aggregate clearance and ROS production in H9C2 cells treated with high glucose and palmitate. Overall, we concluded that exogenous H2S promoted ubiquitin aggregate clearance via autophagy, which might exert its antioxidative effect in db/db mouse myocardia. Moreover, exogenous H2S increased Keap-1 expression by suppressing its ubiquitylation, which might have an important role in ubiquitin aggregate clearance via autophagy. Our findings provide new insight into the mechanisms responsible for the antioxidative effects of H2S in the context of T2DCM.

  17. pH-Induced aggregated melanin nanoparticles for photoacoustic signal amplification

    Science.gov (United States)

    Ju, Kuk-Youn; Kang, Jeeun; Pyo, Jung; Lim, Joohyun; Chang, Jin Ho; Lee, Jin-Kyu

    2016-07-01

    We present a new melanin-like nanoparticle (MelNP) and its performance evaluation results. This particle is proposed as an exogenous contrast agent for photoacoustic (PA) imaging. Conventional PA contrast agents are based on non-biological materials. In contrast, the MelNPs are organic nanoparticles inspired by natural melanin. Melanin is an endogenous chromophore that has the ability to produce a PA signal in vivo. The developed MelNPs are capable of aggregating with one another under mildly acidic conditions after introducing hydrolysis-susceptible citraconic amide on the surface of bare MelNPs. We ascertained that the physical aggregation of the MelNPs resulted in an increased PA signal strength in the near-infrared window of biological tissue (i.e., 700 nm) without absorption tuning. This phenomenon is likely because of the overlapping thermal fields of the developed MelNPs. The PA signal produced from the developed MelNPs, after exposure to mildly acidic conditions (i.e., pH 6), is 8.1 times stronger than under neutral conditions. This unique characteristic found in this study can be utilized in a practical strategy for highly sensitive in vivo cancer target imaging in response to its acidic microenvironment. This approach to amplify the PA response of MelNPs in clusters could accelerate the use of MelNPs as an alternative to non-biological nanoprobes, so that MelNPs may be applicable in PA imaging and functional PA imaging such as stimuli sensitive, multimodal, and theranostic imaging.We present a new melanin-like nanoparticle (MelNP) and its performance evaluation results. This particle is proposed as an exogenous contrast agent for photoacoustic (PA) imaging. Conventional PA contrast agents are based on non-biological materials. In contrast, the MelNPs are organic nanoparticles inspired by natural melanin. Melanin is an endogenous chromophore that has the ability to produce a PA signal in vivo. The developed MelNPs are capable of aggregating with one

  18. The impact of temporal aggregation of solid precipitation measurements on the correction for wind-induced undercatch.

    Science.gov (United States)

    Stagnaro, Mattia; Colli, Matteo; Lanza, Luca

    2017-04-01

    Solid precipitation measurements are affected by systematic wind-induced errors, due to the aerodynamic response of catching type gauges. The snowflakes deviate from their undisturbed trajectories due to the alteration of the airflow field around the body of the gauge and the corresponding developed turbulence. The resulting effect consists in a certain degree of undercatch, which is a function of the undisturbed wind velocity. The correction of wind-induced errors has been addressed in the literature from the conceptual, numerical and experimental point of view. The Collection Efficiency (CE) curve of a single gauge, i.e. the relationship between the expected undercatch and the undisturbed wind speed, is derived from CFD simulations or field test studies (Colli et al., 2015; Wolff et al., 2015). This is used to apply a suitable transfer function (TF) to correct the wind-induced errors in real world measurements. Snowfall depth and wind speed measurements are commonly recorded at a temporal resolution in the order of 30-60 minutes, although the effect of wind bursts can affect the measurements at a much higher resolution. In this work, we investigate the impact of the aggregation scale on the accuracy of snowfall data when corrected by using the transfer function. From the WMO SPICE (Solid Precipitation Intercomparison Experiment) field campaign, we selected a number of snowfall events recorded at the Marshall Field test site (Colorado, USA) during the winter seasons from 2013 to 2015. We used three Geonor weighing type gauges with different configurations: unshielded, Single Alter shielded (SA) and the Double Fence Intercomparison Reference (DFIR). Both precipitation and wind speed data are quality controlled and provided with the time resolution of one minute. The Transfer Function has been derived from the selected number of snowfall events by comparison with the field reference (DFIR). Starting from the reference snowfall measurements and the wind speed values

  19. The use of quartz crystal microbalance with dissipation (QCM-D) for studying nanoparticle-induced platelet aggregation

    Science.gov (United States)

    Santos-Martinez, Maria Jose; Inkielewicz-Stepniak, Iwona; Medina, Carlos; Rahme, Kamil; D’Arcy, Deirdre M; Fox, Daniel; Holmes, Justin D; Zhang, Hongzhou; Radomski, Marek Witold

    2012-01-01

    Interactions between blood platelets and nanoparticles have both pharmacological and toxicological significance and may lead to platelet activation and aggregation. Platelet aggregation is usually studied using light aggregometer that neither mimics the conditions found in human microvasculature nor detects microaggregates. A new method for the measurement of platelet microaggregation under flow conditions using a commercially available quartz crystal microbalance with dissipation (QCM-D) has recently been developed. The aim of the current study was to investigate if QCM-D could be used for the measurement of nanoparticle-platelet interactions. Silica, polystyrene, and gold nanoparticles were tested. The interactions were also studied using light aggregometry and flow cytometry, which measured surface abundance of platelet receptors. Platelet activation was imaged using phase contrast and scanning helium ion microscopy. QCM-D was able to measure nanoparticle-induced platelet microaggregation for all nanoparticles tested at concentrations that were undetectable by light aggregometry and flow cytometry. Microaggregates were measured by changes in frequency and dissipation, and the presence of platelets on the sensor surface was confirmed and imaged by phase contrast and scanning helium ion microscopy. PMID:22275839

  20. Boron-doped graphene quantum dots for selective glucose sensing based on the "abnormal" aggregation-induced photoluminescence enhancement.

    Science.gov (United States)

    Zhang, Li; Zhang, Zhi-Yi; Liang, Ru-Ping; Li, Ya-Hua; Qiu, Jian-Ding

    2014-05-06

    A hydrothermal approach for the cutting of boron-doped graphene (BG) into boron-doped graphene quantum dots (BGQDs) has been proposed. Various characterizations reveal that the boron atoms have been successfully doped into graphene structures with the atomic percentage of 3.45%. The generation of boronic acid groups on the BGQDs surfaces facilitates their application as a new photoluminescence (PL) probe for label free glucose sensing. It is postulated that the reaction of the two cis-diol units in glucose with the two boronic acid groups on the BGQDs surfaces creates structurally rigid BGQDs-glucose aggregates, restricting the intramolecular rotations and thus resulting in a great boost in the PL intensity. The present unusual "aggregation-induced PL increasing" sensing process excludes any saccharide with only one cis-diol unit, as manifested by the high specificity of BGQDs for glucose over its close isomeric cousins fructose, galactose, and mannose. It is believed that the doping of boron can introduce the GQDs to a new kind of surface state and offer great scientific insights to the PL enhancement mechanism with treatment of glucose.

  1. Drosophila UNC-45 prevents heat-induced aggregation of skeletal muscle myosin and facilitates refolding of citrate synthase

    Energy Technology Data Exchange (ETDEWEB)

    Melkani, Girish C.; Lee, Chi F.; Cammarato, Anthony [Department of Biology and the Molecular Biology Institute, San Diego State University, San Diego, CA 92182-4614 (United States); Bernstein, Sanford I., E-mail: sbernst@sciences.sdsu.edu [Department of Biology and the Molecular Biology Institute, San Diego State University, San Diego, CA 92182-4614 (United States)

    2010-05-28

    UNC-45 belongs to the UCS (UNC-45, CRO1, She4p) domain protein family, whose members interact with various classes of myosin. Here we provide structural and biochemical evidence that Escherichia coli-expressed Drosophila UNC-45 (DUNC-45) maintains the integrity of several substrates during heat-induced stress in vitro. DUNC-45 displays chaperone function in suppressing aggregation of the muscle myosin heavy meromyosin fragment, the myosin S-1 motor domain, {alpha}-lactalbumin and citrate synthase. Biochemical evidence is supported by electron microscopy, which reveals the first structural evidence that DUNC-45 prevents inter- or intra-molecular aggregates of skeletal muscle heavy meromyosin caused by elevated temperatures. We also demonstrate for the first time that UNC-45 is able to refold a denatured substrate, urea-unfolded citrate synthase. Overall, this in vitro study provides insight into the fate of muscle myosin under stress conditions and suggests that UNC-45 protects and maintains the contractile machinery during in vivo stress.

  2. Fabrication of aggregation-induced emission based fluorescent nanoparticles and their biological imaging application: recent progress and perspectives

    Directory of Open Access Journals (Sweden)

    Bin Yang

    2016-06-01

    Full Text Available Aggregation-induced emission (AIE dyes have received wide-spread concern since their inception. Several types of AIE-based fluorescent nanoparticle (FNP have been developed, and the potential applications of these FNPs have also been explored. Recent studies of AIE-based FNPs in biological areas have suggested that they show promise as bio-materials for cell imaging and other biomedical applications. This article reviews recent progress in the synthesis of AIE-based FNPs via non-covalent, covalent and novel one-pot strategies, and the subsequent cell-imaging of those AIE-based FNPs. Many successes have been achieved, and there is still plenty of space for the development of AIE-based FNPs as new bio-materials.

  3. Efficient light harvesting of a luminescent solar concentrator using excitation energy transfer from an aggregation-induced emitter.

    Science.gov (United States)

    Banal, James L; Ghiggino, Kenneth P; Wong, Wallace W H

    2014-12-14

    The compromise between light absorption and reabsorption losses limits the potential light conversion efficiency of luminescent solar concentrators (LSCs). Current approaches do not fully address both issues. By using the excitation energy transfer (EET) strategy with a donor chromophore that exhibits aggregation-induced emission (AIE) behaviour, it is shown that both transmission and reabsorption losses can be minimized in a LSC device achieving high light collection and concentration efficiencies. The light harvesting performance of the LSC developed has been characterized using fluorescence quantum yield measurements and Monte Carlo ray tracing simulations. Comparative incident photon conversion efficiency and short-circuit current data based on the LSC coupled to a silicon solar cell provide additional evidence for improved performance.

  4. An optical fiber taper fluorescent probe for detection of nitro-explosives based on tetraphenylethylene with aggregation-induced emission

    Science.gov (United States)

    Liu, Fukun; Cui, Minxin; Ma, Jiajun; Zou, Gang; Zhang, Qijin

    2017-07-01

    In this work, we report a novel optical fiber taper fluorescent probe for detection of nitro-explosives. The probe was fabricated by an in-situ photo-plating through evanescent wave and transmitted light initiated thiol-ene ;click; reaction, from which a cross-linked fluorescence porous polymer film was covalently bonded on the surface of the fiber taper. The film exhibits well-organized porous structure due to the presence of polyhedral oligomeric vinylsilsesquioxane moieties, and simultaneously displays strong fluorescence from tetraphenylethylene with aggregation-induced emission property. These two characters make the probe show a remarkable sensitivity, anti-photo-bleaching and a repeatability in detection of TNT and DNT vapors by fluorescence quenching. In addition, the detection is not interfered in the presence of other volatile organic gases.

  5. Detection of adenosine triphosphate through polymerization-induced aggregation of actin-conjugated gold/silver nanorods

    Science.gov (United States)

    Liao, Yu-Ju; Shiang, Yen-Chun; Chen, Li-Yi; Hsu, Chia-Lun; Huang, Chih-Ching; Chang, Huan-Tsung

    2013-11-01

    We have developed a simple and selective nanosensor for the optical detection of adenosine triphosphate (ATP) using globular actin-conjugated gold/silver nanorods (G-actin-Au/Ag NRs). By simply mixing G-actin and Au/Ag NRs (length ˜56 nm and diameter ˜12 nm), G-actin-Au/Ag NRs were prepared which were stable in physiological solutions (25 mM Tris-HCl, 150 mM NaCl, 5.0 mM KCl, 3.0 mM MgCl2 and 1.0 mM CaCl2; pH 7.4). Introduction of ATP into the G-actin-Au/Ag NR solutions in the presence of excess G-actin induced the formation of filamentous actin-conjugated Au/Ag NR aggregates through ATP-induced polymerization of G-actin. When compared to G-actin-modified spherical Au nanoparticles having a size of 13 nm or 56 nm, G-actin-Au/Ag NRs provided better sensitivity for ATP, mainly because the longitudinal surface plasmon absorbance of the Au/Ag NR has a more sensitive response to aggregation. This G-actin-Au/Ag NR probe provided high sensitivity (limit of detection 25 nM) for ATP with remarkable selectivity (>10-fold) over other adenine nucleotides (adenosine, adenosine monophosphate and adenosine diphosphate) and nucleoside triphosphates (guanosine triphosphate, cytidine triphosphate and uridine triphosphate). It also allowed the determination of ATP concentrations in plasma samples without conducting tedious sample pretreatments; the only necessary step was simple dilution. Our experimental results are in good agreement with those obtained from a commercial luciferin-luciferase bioluminescence assay. Our simple, sensitive and selective approach appears to have a practical potential for the clinical diagnosis of diseases (e.g. cystic fibrosis) associated with changes in ATP concentrations.

  6. Latent heat induced rotation limited aggregation in 2D ice nanocrystals

    CERN Document Server

    Bampoulis, Pantelis; Kooij, E Stefan; Lohse, Detlef; Zandvliet, Harold J W; Poelsema, Bene

    2016-01-01

    The basic science responsible for the fascinating shapes of ice crystals and snowflakes is still not understood. Insufficient knowledge of the interaction potentials and the lack of relevant experimental access to the growth process are to blame for this failure. Here, we study the growth of fractal nanostructures in a two-dimensional (2D) system, intercalated between mica and graphene. Based on our Scanning Tunneling Spectroscopy (STS) data we provide compelling evidence that these fractals are 2D ice. They grow while they are in material contact with the atmosphere at 20 $^{\\circ}$C and without significant thermal contact to the ambient. The growth is studied in-situ, in real time and space at the nanoscale. We find that the growing 2D ice nanocrystals assume a fractal shape, which is conventionally attributed to Diffusion Limited Aggregation (DLA). However, DLA requires a low mass density mother phase, in contrast to the actual currently present high mass density mother phase. Latent heat effects and conse...

  7. Alpha-synuclein-induced aggregation of cytoplasmic vesicles in Saccharomyces cerevisiae.

    Science.gov (United States)

    Soper, James H; Roy, Subhojit; Stieber, Anna; Lee, Eliza; Wilson, Robert B; Trojanowski, John Q; Burd, Christopher G; Lee, Virginia M-Y

    2008-03-01

    Aggregated alpha-synuclein (alpha-syn) fibrils form Lewy bodies (LBs), the signature lesions of Parkinson's disease (PD) and related synucleinopathies, but the pathogenesis and neurodegenerative effects of LBs remain enigmatic. Recent studies have shown that when overexpressed in Saccharomyces cerevisiae, alpha-syn localizes to plasma membranes and forms cytoplasmic accumulations similar to human alpha-syn inclusions. However, the exact nature, composition, temporal evolution, and underlying mechanisms of yeast alpha-syn accumulations and their relevance to human synucleinopathies are unknown. Here we provide ultrastructural evidence that alpha-syn accumulations are not comprised of LB-like fibrils, but are associated with clusters of vesicles. Live-cell imaging showed alpha-syn initially localized to the plasma membrane and subsequently formed accumulations in association with vesicles. Imaging of truncated and mutant forms of alpha-syn revealed the molecular determinants and vesicular trafficking pathways underlying this pathological process. Because vesicular clustering is also found in LB-containing neurons of PD brains, alpha-syn-mediated vesicular accumulation in yeast represents a model system to study specific aspects of neurodegeneration in PD and related synucleinopathies.

  8. Reparative Dentinogenesis Induced by Mineral Trioxide Aggregate: A Review from the Biological and Physicochemical Points of View

    Directory of Open Access Journals (Sweden)

    Takashi Okiji

    2009-01-01

    Full Text Available This paper aims to review the biological and physicochemical properties of mineral trioxide aggregate (MTA with respect to its ability to induce reparative dentinogenesis, which involves complex cellular and molecular events leading to hard-tissue repair by newly differentiated odontoblast-like cells. Compared with that of calcium hydroxide-based materials, MTA is more efficient at inducing reparative dentinogenesis in vivo. The available literature suggests that the action of MTA is attributable to the natural wound healing process of exposed pulps, although MTA can stimulate hard-tissue-forming cells to induce matrix formation and mineralization in vitro. Physicochemical analyses have revealed that MTA not only acts as a “calcium hydroxide-releasing” material, but also interacts with phosphate-containing fluids to form apatite precipitates. MTA also shows better sealing ability and structural stability, but less potent antimicrobial activity compared with that of calcium hydroxide. The clinical outcome of direct pulp capping and pulpotomy with MTA appears quite favorable, although the number of controled prospective studies is still limited. Attempts are being conducted to improve the properties of MTA by the addition of setting accelerators and the development of new calcium silicate-based materials.

  9. UV-inducible cellular aggregation of the hyperthermophilic archaeon Sulfolobus solfataricus is mediated by pili formation

    NARCIS (Netherlands)

    Froels, Sabrina; Ajon, Malgorzata; Wagner, Michaela; Teichmann, Daniela; Zolghadr, Behnam; Folea, Mihaela; Boekema, Egbert J.; Driessen, Arnold J. M.; Schleper, Christa; Albers, Sonja-Verena

    2008-01-01

    The hyperthermophilic archaeon Sulfolobus solfataricus has been shown to exhibit a complex transcriptional response to UV irradiation involving 55 genes. Among the strongest UV-induced genes was a putative pili biogenesis operon encoding a potential secretion ATPase, two pre-pilins, a putative trans

  10. Glycosylated asterisks are among the most potent low valency inducers of Concanavalin A aggregation.

    Science.gov (United States)

    Sleiman, Mazen; Varrot, Annabelle; Raimundo, Jean-Manuel; Gingras, Marc; Goekjian, Peter G

    2008-12-28

    A new class of sulfurated, semi-rigid, radial and low-valent glycosylated asterisk ligands with potential dual function as ligand and probe has some of the highest inhibition potencies of Con A-induced hemagglutination, by using a cross-linking mechanism of Con A which amplifies the enhancement to near nanomolar concentrations with the alpha-d-mannose asterisk.

  11. Pulsed electric field (PEF)-induced aggregation between lysozyme, ovalbumin and ovotransferrin in multi-protein system.

    Science.gov (United States)

    Wu, Li; Zhao, Wei; Yang, Ruijin; Yan, Wenxu

    2015-05-15

    The aggregation of multi-proteins is of great interest in food processing and a good understanding of the formation of aggregates during PEF processing is needed for the application of the process to pasteurize protein-based foods. The aggregates formation of a multi-protein system (containing ovalbumin, ovotransferrin and lysozyme) was studied through turbidity, size exclusion chromatography and SDS-PAGE patterns for interaction studies and binding forces. Results from size exclusion chromatography indicated that there was no soluble aggregates formed during PEF processing. The existence of lysozyme was important to form insoluble aggregates in the chosen ovalbumin solution. The results of SDS-PAGE patterns indicated that lysozyme was prone to precipitate, and was relatively the higher component of aggregates. Citric acid could be effective in inhibiting lysozyme from interacting with other proteins during PEF processing. Blocking the free sulphydryl by N-ethylmaleimide (NEM) did not affect aggregation inhibition.

  12. Enhanced aggregation of androgen receptor in induced pluripotent stem cell-derived neurons from spinal and bulbar muscular atrophy.

    Science.gov (United States)

    Nihei, Yoshihiro; Ito, Daisuke; Okada, Yohei; Akamatsu, Wado; Yagi, Takuya; Yoshizaki, Takahito; Okano, Hideyuki; Suzuki, Norihiro

    2013-03-22

    Spinal and bulbar muscular atrophy (SBMA) is an X-linked motor neuron disease caused by a CAG repeat expansion in the androgen receptor (AR) gene. Ligand-dependent nuclear accumulation of mutant AR protein is a critical characteristic of the pathogenesis of SBMA. SBMA has been modeled in AR-overexpressing animals, but precisely how the polyglutamine (polyQ) expansion leads to neurodegeneration is unclear. Induced pluripotent stem cells (iPSCs) are a new technology that can be used to model human diseases, study pathogenic mechanisms, and develop novel drugs. We established SBMA patient-derived iPSCs, investigated their cellular biochemical characteristics, and found that SBMA-iPSCs can differentiate into motor neurons. The CAG repeat numbers in the AR gene of SBMA-iPSCs and also in the atrophin-1 gene of iPSCs derived from another polyQ disease, dentato-rubro-pallido-luysian atrophy (DRPLA), remain unchanged during reprogramming, long term passage, and differentiation, indicating that polyQ disease-associated CAG repeats are stable during maintenance of iPSCs. The level of AR expression is up-regulated by neuronal differentiation and treatment with the AR ligand dihydrotestosterone. Filter retardation assays indicated that aggregation of ARs following dihydrotestosterone treatment in neurons derived from SBMA-iPSCs increases significantly compared with neurological control iPSCs, easily recapitulating the pathological feature of mutant ARs in SBMA-iPSCs. This phenomenon was not observed in iPSCs and fibroblasts, thereby showing the neuron-dominant phenotype of this disease. Furthermore, the HSP90 inhibitor 17-allylaminogeldanamycin sharply decreased the level of aggregated AR in neurons derived from SBMA-iPSCs, indicating a potential for discovery and validation of candidate drugs. We found that SBMA-iPSCs possess disease-specific biochemical features and could thus open new avenues of research into not only SBMA, but also other polyglutamine diseases.

  13. Core Cross-Linked Multiarm Star Polymers with Aggregation-Induced Emission and Temperature Responsive Fluorescence Characteristics

    KAUST Repository

    Zhang, Zhen

    2017-05-19

    Aggregation-induced emission (AIE) active core cross-linked multiarm star polymers, carrying polystyrene (PS), polyethylene (PE), or polyethylene-b-polycaprolactone (PE-b-PCL) arms, have been synthesized through an “arm-first” strategy, by atom transfer radical copolymerization (ATRP) of a double styrene-functionalized tetraphenylethene (TPE-2St) used as a cross-linker with linear arm precursors possessing terminal ATRP initiating moieties. Polyethylene macroinitiator (PE–Br) was prepared via the polyhomologation of dimethylsulfoxonium methylide with triethylborane followed by oxidation/hydrolysis and esterification of the produced PE–OH with 2-bromoisobutyryl bromide; polyethylene-block-poly(ε-caprolactone) diblock macroinitiator was derived by combining polyhomologation with ring-opening polymerization (ROP). All synthesized star polymers showed AIE-behavior either in solution or in bulk. At high concentration in good solvents (e.g., THF, or toluene) they exhibited low photoluminescence (PL) intensity due to the inner filter effect. In sharp contrast to the small molecule TPE-2St, the star polymers were highly emissive in dilute THF solutions. This can be attributed to the cross-linked structure of poly(TPE-2St) core which restricts the intramolecular rotation and thus induces emission. In addition, the PL intensity of PE star polymers in THF(solvent)/n-hexane(nonsolvent) mixtures, due to their nearly spherical shape, increased when the temperature decreased from 55 to 5 °C with a linear response in the range 40–5 °C.

  14. Some Induced Correlated Aggregating Operators with Interval Grey Uncertain Linguistic Information and Their Application to Multiple Attribute Group Decision Making

    Directory of Open Access Journals (Sweden)

    Zu-Jun Ma

    2013-01-01

    Full Text Available We propose the interval grey uncertain linguistic correlated ordered arithmetic averaging (IGULCOA operator and the induced interval grey uncertain linguistic correlated ordered arithmetic averaging (I-IGULCOA operator based on the correlation properties of the Choquet integral and the interval grey uncertain linguistic variables to investigate the multiple attribute group decision making (MAGDM problems, in which both the attribute weights and the expert weights are correlative. Firstly, the relative concepts of interval grey uncertain linguistic variables are defined and the operation rules between the two interval grey uncertain linguistic variables are established. Then, two new aggregation operators: the interval grey uncertain linguistic correlated ordered arithmetic averaging (IGULCOA operator and the induced interval grey uncertain linguistic correlated ordered arithmetic averaging (I-IGULCOA operator are developed and some desirable properties of the I-IGULCOA operator are studied, such as commutativity, idempotency, monotonicity, and boundness. Furthermore, the IGULCOA and I-IGULCOA operators based approach is developed to solve the MAGDM problems, in which both the attribute weights and the expert weights are correlative and the attribute values take the form of the interval grey uncertain linguistic variables. Finally, an illustrative example is given to verify the developed approach and to demonstrate its practicality and effectiveness.

  15. Small-angle X-ray scattering studies of metastable intermediates of beta-lactoglobulin isolated after heat-induced aggregation

    DEFF Research Database (Denmark)

    Carrotta, R.; Arleth, L.; Pedersen, J.S.

    2003-01-01

    Small-angle x-ray scattering was used for studying intermediate species, isolated after heat-induced aggregation of the A variant of bovine P-lactoglobulin. The intermediates were separated in two fractions, the heated metastable dimer and heated metastable oligomers larger than the dimer. The pa...

  16. Effect of extraction pH on heat-induced aggregation, gelation and microstructure of protein isolate from quinoa (Chenopodium quinoa Willd)

    NARCIS (Netherlands)

    Ruiz, Geraldine Avila; Xiao, Wukai; Boekel, van Tiny; Minor, Marcel; Stieger, Markus

    2016-01-01

    The aim of this study was to determine the influence of extraction pH on heat-induced aggregation, gelation and microstructure of suspensions of protein isolates extracted from quinoa (Chenopodium quinoa Willd). Quinoa seed protein was extracted by alkaline treatment at various pH values (pH 8

  17. Synthesis of huaicarbon A/B and their activating effects on platelet glycoprotein VI receptor to mediate collagen-induced platelet aggregation

    Science.gov (United States)

    Yu, Hongli; Chen, Yeqing; Wu, Hao; Wang, Kuilong; Liu, Liping; Zhang, Xingde

    2017-01-01

    Quercetin and rhamnose were efficiently converted into huaicarbon A/B by heating at 250°C for 10-15 min or at 200°C for 25-30 min. With the optimum molar ratio of quercetin/rhamnose (1:3), huaicarbon A and B yields reached 25% and 16% respectively after heating at 250°C, with 55% quercetin conversion. Huaicarbon A/B both promoted washed platelet aggregation dose-dependently, which was antagonized by an inhibitor of glycoprotein VI (GPVI) receptor. Similarly, they both promoted collagen-induced platelet aggregation in platelet-rich plasma in dose-dependent manners. According to the S type dose-response model, EC50 values of huaicarbon A and huaicarbon B were calculated as 33.48 μM and 48.73 μM respectively. They induced intracellular Ca2+ accumulation that was specifically blocked by GPVI antagonist. Huaicarbon A/B enhanced intracellular Ca2+ accumulation and facilitated collagen-induced platelet aggregation, which were blocked by GPVI antagonist. They were conducive to collagen-induced platelet aggregation by activating platelet GPVI receptor. PMID:28337278

  18. Effect of extraction pH on heat-induced aggregation, gelation and microstructure of protein isolate from quinoa (Chenopodium quinoa Willd)

    NARCIS (Netherlands)

    Ruiz, Geraldine Avila; Xiao, Wukai; Boekel, van Tiny; Minor, Marcel; Stieger, Markus

    2016-01-01

    The aim of this study was to determine the influence of extraction pH on heat-induced aggregation, gelation and microstructure of suspensions of protein isolates extracted from quinoa (Chenopodium quinoa Willd). Quinoa seed protein was extracted by alkaline treatment at various pH values (pH 8 (E

  19. Incorporation of an aggregation-induced-emissive tetraphenylethene derivative into cationic gene delivery vehicles manifested the nuclear translocation of uncomplexed DNA.

    Science.gov (United States)

    Han, Xiongqi; Chen, Qixian; Lu, Hongguang; Guo, Pan; Li, Wei; Wu, Guolin; Ma, Jianbiao; Gao, Hui

    2016-03-11

    A fluorophore displaying aggregation-induced emission was introduced at the terminus of branched polyethylenimine (PEI). The formulated polyplex not only demonstrated an improved safety profile and preserved transfection activity but also importantly indicated that the uncomplexed naked DNA rather than the polyplexes translocated into the nucleus.

  20. Direct Correlation Between Ligand-Induced α-Synuclein Oligomers and Amyloid-like Fibril Growth

    DEFF Research Database (Denmark)

    Pedersen, Martin Nors; Foderà, Vito; Horvath, Istvan

    2015-01-01

    Aggregation of proteins into amyloid deposits is the hallmark of several neurodegenerative diseases such as Alzheimer's and Parkinson's disease. The suggestion that intermediate oligomeric species may be cytotoxic has led to intensified investigations of pre-fibrillar oligomers, which...

  1. Pathological tendons maintain sufficient aligned fibrillar structure on ultrasound tissue characterization (UTC).

    Science.gov (United States)

    Docking, S I; Cook, J

    2016-06-01

    Structural disorganization in the tendon is associated with tendinopathy, with little research investigating whether disorganization overwhelms the overall structural integrity of the tendon. This study investigated the mean cross-sectional area (CSA) of aligned fibrillar structure as detected by ultrasound tissue characterization (UTC) in the pathological and normal Achilles and patellar tendons. Ninety-one participants had their Achilles and/or patellar tendons scanned using UTC to capture a three-dimensional image of the tendon and allow a semi-quantification of the echopattern. The mean CSA of aligned fibrillar structure (echo type I + II) and disorganized structure (echo type III + IV) was calculated based on UTC algorithms. Each tendon was classified as either pathological or normal based solely on gray-scale ultrasound. The mean CSA of aligned fibrillar structure was significantly greater (P ≤ 0.001) in the pathological tendon compared with the normal tendon, despite the pathological tendon containing greater amounts of disorganized structure (P ≤ 0.001). A significant relationship was observed between the mean CSA of disorganized structure and anteroposterior diameter of the Achilles (R(2)  = 0.587) and patellar (R(2)  = 0.559) tendons. This study is the first to show that pathological tendons have sufficient levels of aligned fibrillar structure. Pathological tendons may compensate for areas of disorganization by increasing in tendon thickness. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  2. Strain Stiffening of Fibrillar Collagen during Individual and Collective Cell Migration Identified by AFM Nanoindentation

    NARCIS (Netherlands)

    Helvert, S. van; Friedl, P.

    2016-01-01

    The multistep process of cell migration requires cells to dynamically couple to extracellular interfaces and generate traction force or friction for displacement of the cell body. When deformed, biopolymer networks, including fibrillar collagen and fibrin, undergo a nonlinear elasticity change that

  3. Specific fluorescent detection of fibrillar α-synuclein using mono- and trimethine cyanine dyes

    NARCIS (Netherlands)

    Volkova, K.D.; Kovalska, V.B.; Balanda, A.O.; Losytskyy, M.Yu; Golub, A.G.; Vermeij, R.J.; Subramaniam, V.; Tolmachev, O.I.; Yarmoluk, S.M.

    2008-01-01

    With the aim of searching of novel amyloid-specific fluorescent probes the ability of series of mono- and trimethine cyanines based on benzothiazole, pyridine and quinoline heterocycle end groups to recognize fibrillar formations of α-synuclein (ASN) was studied. For the first time it was revealed t

  4. Hierarchical model of fibrillar collagen distribution for polarization-resolved SHG microscopy

    Science.gov (United States)

    Tuer, Adam E.; Akens, Margarete K.; Krouglov, Serguei; Sandkuijl, Daaf; Wilson, Brian C.; Whyne, Cari M.; Barzda, Virginijus

    2013-02-01

    A hierarchical model of the organization of fibrillar collagen is developed and its implications on polarization-resolved second harmonic generation (SHG) microscopy are investigated. A "ground-up" approach is employed to develop the theory for understanding of the origin of SHG from fibrillar collagen. The effects of fibril ultrastructure and fibril macroscopic organization on the second-order polarization properties of fibrillar collagen are presented in conjunction with recent ab initio results performed on a collagen triple-helix model (-GLY-PRO-HYP-)n. Various tissues containing fibrillar collagen are quantified using a polarization-resolved SHG technique, termed polarization-in, polarization-out (PIPO) and interpreted in light of the aforementioned theory. The method involves varying the incident laser polarization, while monitoring the SHG intensity through an analyzer. From the SHG polarization data the orientation of the fibers, in biological tissue, can be deduced. Unique PIPO signatures are observed for different rat tissues and interpreted in terms of the collagen composition, fibril ultrastructure, and macroscopic organization. Similarities and discrepancies in the second-order polarization properties of different collagen types and ultrastructures will be presented. PIPO SHG microscopy shows promise in its ability to quantify the organization of collagen in various tissues. The ability to characterize the structure of collagen in various tissue microenvironments will aid in the study of numerous collagen related biological process, including tissue diseases, wound repair, and tumor development and progression.

  5. A seeded propagation of Cu,Zn-superoxide dismutase aggregates in amyotrophic lateral sclerosis

    Directory of Open Access Journals (Sweden)

    Mariko eOgawa

    2014-03-01

    Full Text Available Abnormal accumulation of protein inclusions in motor neurons has been known as a major pathological change in amyotrophic lateral sclerosis (ALS. Increasing numbers of proteins including mutant Cu,Zn-superoxide dismutase (SOD1 have been identified as constituents of pathological inclusions in a form of insoluble fibrillar aggregates. Notably, protein fibrillar aggregates exhibit a self-perpetuating property, which can convert a soluble native protein into insoluble fibrillar aggregates. Such seeding reaction of protein fibrils can accelerate the aggregation significantly and would contribute to the spread of inclusion pathologies from an affected cell to its neighboring cells in neurodegenerative diseases. In ALS, a pathological change first occurs at the site of disease onset and then propagates throughout the affected tissues in a time-dependent manner; therefore, it can be assumed that seeded aggregation may be the key factor of disease progression in ALS. In this mini review, we will briefly summarize recent studies on possible roles of a seeded aggregation of SOD1 in pathomechanism of ALS.

  6. A seeded propagation of Cu, Zn-superoxide dismutase aggregates in amyotrophic lateral sclerosis

    Science.gov (United States)

    Ogawa, Mariko; Furukawa, Yoshiaki

    2014-01-01

    Abnormal accumulation of protein inclusions in motor neurons has been known as a major pathological change in amyotrophic lateral sclerosis (ALS). Increasing numbers of proteins including mutant Cu, Zn-superoxide dismutase (SOD1) have been identified as constituents of pathological inclusions in a form of insoluble fibrillar aggregates. Notably, protein fibrillar aggregates exhibit a self-perpetuating property, which can convert a soluble native protein into insoluble fibrillar aggregates. Such “seeding reaction” of protein fibrils can accelerate the aggregation significantly and would contribute to the spread of inclusion pathologies from an affected cell to its neighboring cells in neurodegenerative diseases. In ALS, a pathological change first occurs at the site of disease onset and then propagates throughout the affected tissues in a time-dependent manner; therefore, it can be assumed that seeded aggregation may be the key factor of disease progression in ALS. In this mini review, we will briefly summarize recent studies on possible roles of a seeded aggregation of SOD1 in pathomechanism of ALS. PMID:24672430

  7. Propagation of Tau aggregates.

    Science.gov (United States)

    Goedert, Michel; Spillantini, Maria Grazia

    2017-05-30

    Since 2009, evidence has accumulated to suggest that Tau aggregates form first in a small number of brain cells, from where they propagate to other regions, resulting in neurodegeneration and disease. Propagation of Tau aggregates is often called prion-like, which refers to the capacity of an assembled protein to induce the same abnormal conformation in a protein of the same kind, initiating a self-amplifying cascade. In addition, prion-like encompasses the release of protein aggregates from brain cells and their uptake by neighbouring cells. In mice, the intracerebral injection of Tau inclusions induced the ordered assembly of monomeric Tau, followed by its spreading to distant brain regions. Short fibrils constituted the major species of seed-competent Tau. The existence of several human Tauopathies with distinct fibril morphologies has led to the suggestion that different molecular conformers (or strains) of aggregated Tau exist.

  8. In-cell aggregation of a polyglutamine-containing chimera is a multistep process initiated by the flanking sequence.

    Science.gov (United States)

    Ignatova, Zoya; Thakur, Ashwani K; Wetzel, Ronald; Gierasch, Lila M

    2007-12-14

    Toxicity in amyloid diseases is intimately linked to the nature of aggregates, with early oligomeric species believed to be more cytotoxic than later fibrillar aggregates. Yet mechanistic understanding of how aggregating species evolve with time is currently lacking. We have explored the aggregation process of a chimera composed of a globular protein (cellular retinoic acid-binding protein, CRABP) and huntingtin exon 1 with polyglutamine tracts either above (Q53) or below (Q20) the pathological threshold using Escherichia coli cells as a model intracellular environment. Previously we showed that fusion of the huntingtin exon 1 sequence with >40Q led to structural perturbation and decreased stability of CRABP (Ignatova, Z., and Gierasch, L. M. (2006) J. Biol. Chem. 281, 12959-12967). Here we report that the Q53 chimera aggregates in cells via a multistep process: early stage aggregates are spherical and detergent-soluble, characteristics of prefibrillar aggregates, and appear to be dominated structurally by CRABP, in that they can promote aggregation of a CRABP variant but not oligoglutamine aggregation, and the CRABP domain is relatively sequestered based on its protection from proteolysis. Late stage aggregates appear to be dominated by polyGln; they are fibrillar, detergent-resistant, capable of seeding aggregation of oligoglutamine but not the CRABP variant, and show relative protection of the polyglutamine-exon1 domain from proteolysis. These results point to an evolution of the dominant sequences in intracellular aggregates and may provide molecular insight into origins of toxic prefibrillar aggregates.

  9. Tel, a Frequent Target of Leukemic Translocations, Induces Cellular Aggregation and Influences Expression of Extracellular Matrix Components

    Directory of Open Access Journals (Sweden)

    L. Van Rompaey

    1999-12-01

    Full Text Available Tel is an Ets transcription factor that is the target of chromosome translocations in lymphoid and myeloid leukemias and in solid tumors. It contains two functional domains, a pointed oligomerization domain and a DNAbinding domain. Retroviral transduction of a wild-type Tel cDNA into a clonal subline of NIH3T3 fibroblasts resulted in a striking morphologic change: at confluency, the cells reorganized into a specific “bridge-like” pattern over the entire surface of the culture dish, started migrating, thereby leaving circular holes in the monolayer. Thereafter, formation of cellular cords became apparent. This sequence of events was inhibited by coating the culture dishes with fibronectin and collagen IV. Retroviral transduction of Tel into MS1 endothelial cells reproduced the aggregation phenotype, but not the cellular cord formation. Tel -mutagenesis showed that both the pointed domain and the DNAbinding domain of Tel are required for the morphologic change. Other Ets family genes, Fli-1 and Ets-1 that are both endogenously expressed in endothelial cells, could not induce this morphologic change. Exogenous Tel expression is associated with transcriptional upregulation of entactin/nidogen, Smad5, Col3a1, CD44 and fibronectin, downregulation of Coliai and secretory leukocyte protease inhibitor. Interestingly, Tel, Smad5, fibronectin, Coliai and Col3a1 all have essential roles during vascular development.

  10. Gadolinium-functionalized aggregation-induced emission dots as dual-modality probes for cancer metastasis study.

    Science.gov (United States)

    Li, Kai; Ding, Dan; Prashant, Chandrasekharan; Qin, Wei; Yang, Chang-Tong; Tang, Ben Zhong; Liu, Bin

    2013-12-01

    Understanding the localization and engraftment of tumor cells at postintravasation stage of metastasis is of high importance in cancer diagnosis and treatment. Advanced fluorescent probes and facile methodologies for cell tracing play a key role in metastasis studies. In this work, we design and synthesize a dual-modality imaging dots with both optical and magnetic contrast through integration of a magnetic resonance imaging reagent, gadolinium(III), into a novel long-term cell tracing probe with aggregation-induced emission (AIE) in far-red/near-infrared region. The obtained fluorescent-magnetic AIE dots have both high fluorescence quantum yield (25%) and T1 relaxivity (7.91 mM(-1) s(-1) ) in aqueous suspension. After further conjugation with a cell membrane penetrating peptide, the dual-modality dots can be efficiently internalized into living cells. The gadolinium(III) allows accurate quantification of biodistribution of cancer cells via intraveneous injection, while the high fluorescence provides engraftment information of cells at single cellular level. The dual-modality AIE dots show obvious synergistic advantages over either single imaging modality and hold great promises in advanced biomedical studies.

  11. In vitro cytotoxicity of fluorescent silica nanoparticles hybridized with aggregation-induced emission luminogens for living cell imaging.

    Science.gov (United States)

    Xia, Yun; Li, Min; Peng, Tao; Zhang, Weijie; Xiong, Jun; Hu, Qinggang; Song, Zifang; Zheng, Qichang

    2013-01-07

    Fluorescent silica nanoparticles (FSNPs) can provide high-intensity and photostable fluorescent signals as a probe for biomedical analysis. In this study, FSNPs hybridized with aggregation-induced emission (AIE) luminogens (namely FSNP-SD) were successfully fabricated by a surfactant-free sol-gel method. The FSNP-SD were spherical, monodisperse and uniform in size, with an average diameter of approximately 100 nm, and emitted strong fluorescence at the peak of 490 nm. The FSNP-SD selectively stained the cytoplasmic regions and were distributed in the cytoplasm. Moreover, they can stay inside cells, enabling the tacking of cells over a long period of time. The intracellular vesicles and multinucleated cells were increase gradually with the rise of FSNP-SD concentration. Both cell viability and survival only lost less than 20% when the cells were exposed to the high concentration of 100 μg/mL FSNP-SD. Additionally, the cell apoptosis and intracellular ROS assay indicated that FSNP-SD had no significant toxic effects at the maximum working concentration of 80 μg/mL. This study demonstrated that the FSNP-SD are promising biocompatible fluorescent probes for living cell imaging.

  12. In Vitro Cytotoxicity of Fluorescent Silica Nanoparticles Hybridized with Aggregation-Induced Emission Luminogens for Living Cell Imaging

    Directory of Open Access Journals (Sweden)

    Yun Xia

    2013-01-01

    Full Text Available Fluorescent silica nanoparticles (FSNPs can provide high-intensity and photostable fluorescent signals as a probe for biomedical analysis. In this study, FSNPs hybridized with aggregation-induced emission (AIE luminogens (namely FSNP-SD were successfully fabricated by a surfactant-free sol-gel method. The FSNP-SD were spherical, monodisperse and uniform in size, with an average diameter of approximately 100 nm, and emitted strong fluorescence at the peak of 490 nm. The FSNP-SD selectively stained the cytoplasmic regions and were distributed in the cytoplasm. Moreover, they can stay inside cells, enabling the tacking of cells over a long period of time. The intracellular vesicles and multinucleated cells were increase gradually with the rise of FSNP-SD concentration. Both cell viability and survival only lost less than 20% when the cells were exposed to the high concentration of 100 μg/mL FSNP-SD. Additionally, the cell apoptosis and intracellular ROS assay indicated that FSNP-SD had no significant toxic effects at the maximum working concentration of 80 μg/mL. This study demonstrated that the FSNP-SD are promising biocompatible fluorescent probes for living cell imaging.

  13. Design and application of anthracene derivative with aggregation-induced emission charateristics for visualization and monitoring of erythropoietin unfolding.

    Science.gov (United States)

    Sun, Binjie; Yang, Xiaojun; Ma, Lin; Niu, Caixia; Wang, Fangfang; Na, Na; Wen, Jiying; Ouyang, Jin

    2013-02-12

    Erythropoietin (EPO) is an attractive protein-unfolding/folding model because of its high degree of unfolding and folding reversibility and intermediate size. Due to its function for regulating red blood cell production by stimulating late erythroid precursor cells, EPO presents obvious values to biological research. A nonemissive anthracene derivative, that is 9,10-bis[4-(3-sulfonatopropoxyl)-styryl]anthracene sodium salt (BSPSA), with aggregation-induced emission (AIE) charateristics shows a novel phenomenon of AIE when EPO is added. The AIE biosensor for EPO shows the limit of detection is 1 × 10(-9) M. Utilizing the AIE feature of BSPSA, the unfolding process of EPO using guanidine hydrochloride is monitored, which indicates three steps for the folding structures of EPO to transform to random coil. Computational modeling suggests that the BSPSA luminogens prefer docking in the hydrophobic cavity in the EPO folding structures, and the assembly of BSPSA in this cavity makes the AIE available, making the monitoring of unfolding of EPO possible.

  14. Hexaphenylbenzene-Based, π-Conjugated Snowflake-Shaped Luminophores: Tunable Aggregation-Induced Emission Effect and Piezofluorochromism.

    Science.gov (United States)

    Chang, Zheng-Feng; Jing, Ling-Min; Wei, Cong; Dong, Yu-Ping; Ye, Yan-Chun; Zhao, Yong Sheng; Wang, Jin-Liang

    2015-06-01

    In this work, two rigid, multiple tetraphenylethene (TPE)-substituted, π-conjugated, snowflake-shaped luminophores BT and BPT were facilely synthesized by using a 6-fold Suzuki coupling reaction. These molecules are constructed based on the nonplanar structure of propeller-shaped hexaphenylbenzene (HPB) or benzene as core groups and TPE as end groups. As a result, they reserve the intrinsic aggregation-induced emission (AIE) property of the TPE moiety. Meanwhile, both fluorescence quantum yield and piezochromic behavior in the solid state can be tuned or switched by inserting the phenyl bridges through changing the twisting conformation. The more extended structure BPT showed a much stronger AIE effect and higher ΦF,f in the solid state in comparison with that of BT. Furthermore, an excellent optical waveguide application of these molecules was achieved. However, the revisable piezofluorochromic behavior has only appeared when BT was ground using a pestle and treated with solvent. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Ag@Aggregation-induced emission dye core/shell nanostructures with enhanced one- and two-photon fluorescence

    Science.gov (United States)

    Wang, Cheng; Li, Yang; Xu, Qiujin; Luo, Liang

    2017-10-01

    Combining plasmonic nanostructures with two-photon fluorescence materials is a promising way to significantly enhance two-photon fluorescence. Ag@1,4-bis(2-cyano-2-phenylethenyl) benzene (BCPEB) core/shell nanostructures were fabricated by simply incubating the isolated Ag nanoparticles with BCPEB microrods in ethanol. BCPEB was chosen as the fluorescent organic molecule owing to the aggregation-induced-emission (AIE) nature which would reduce the emission loss as being practically applied in solid phase. By utilizing the match of the extinction spectrum of Ag nanoparticles and BCPEB's absorption band, the target Ag@BCPEB core/shell nanostructures showed an enhanced one-photon (12×) fluorescence, integrating with SERS signal as well. Moreover, the resultant second harmonic generation of Ag nanoparticles under two-photon excitation also well matched with the absorption band of BCPEB, and significant enhanced two-photon (17×) fluorescence was obtained. The confocal images of NIH-3T3 cells with these nanostructures under one- and two-photon excitation showed good contrast and brightness for bio-imaging.

  16. Acid-Induced Cold Gelation of Globular Proteins: Effects of Protein Aggregate Characteristics and Disulfide Bonding on Rheological Properties

    NARCIS (Netherlands)

    Alting, A.C.; Weijers, M.; Hoog, E.H.A. de; Pijpekamp, A.M. van de; Cohen Stuart, M.A.; Hamer, R.J.; Kruif, C.G. de; Visschers, R.W.

    2004-01-01

    The process of cold gelation of ovalbumin and the properties of the resulting cold-set gels were compared to those of whey protein isolate. Under the chosen heating conditions, most protein was organized in aggregates. For both protein preparations, the aggregates consisted of covalently linked mono

  17. Acid-induced cold gelation of globular proteins: effects of protein aggregate characteristics ans disulfide bonding on Rheological properties.

    NARCIS (Netherlands)

    Alting, A.C.; Weijers, M.; Hoog, de E.H.A.; Pijpekamp, A.M.; Cohen Stuart, M.A.; Hamer, R.J.; Kruif, de C.G.; Visschers, R.W.

    2004-01-01

    The process of cold gelation of ovalbumin and the properties of the resulting cold-set gels were compared to those of whey protein isolate. Under the chosen heating conditions, most protein was organized in aggregates. For both protein preparations, the aggregates consisted of covalently linked mono

  18. Acid-Induced Cold Gelation of Globular Proteins: Effects of Protein Aggregate Characteristics and Disulfide Bonding on Rheological Properties

    NARCIS (Netherlands)

    Alting, A.C.; Weijers, M.; Hoog, E.H.A. de; Pijpekamp, A.M. van de; Cohen Stuart, M.A.; Hamer, R.J.; Kruif, C.G. de; Visschers, R.W.

    2004-01-01

    The process of cold gelation of ovalbumin and the properties of the resulting cold-set gels were compared to those of whey protein isolate. Under the chosen heating conditions, most protein was organized in aggregates. For both protein preparations, the aggregates consisted of covalently linked mono

  19. Near-infrared fluorescence amplified organic nanoparticles with aggregation-induced emission characteristics for in vivo imaging

    Science.gov (United States)

    Geng, Junlong; Zhu, Zhenshu; Qin, Wei; Ma, Lin; Hu, Yong; Gurzadyan, Gagik G.; Tang, Ben Zhong; Liu, Bin

    2013-12-01

    Near-infrared (NIR) fluorescence signals are highly desirable to achieve high resolution in biological imaging. To obtain NIR emission with high brightness, fluorescent nanoparticles (NPs) are synthesized by co-encapsulation of 2,3-bis(4-(phenyl(4-(1,2,2-triphenylvinyl)phenylamino)phenyl)fumaronitrile (TPETPAFN), a luminogen with aggregation-induced emission (AIE) characteristics, and a NIR fluorogen of silicon 2,3-naphthalocyanine bis(trihexylsilyloxide) (NIR775) using 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[methoxy(polyethylene glycol)-2000] as the encapsulation matrix. The good spectral overlap between the emission of TPETPAFN and the absorption of NIR775 leads to efficient energy transfer, resulting in a 47-fold enhancement of the NIR775 emission intensity upon excitation of TPETPAFN at 510 nm as compared to that upon direct excitation of NIR775 at 760 nm. The obtained fluorescent NPs show sharp NIR emission with a band width of 20 nm, a large Stokes shift of 275 nm, good photostability and low cytotoxicity. In vivo imaging study reveals that the synthesized NPs are able to provide high fluorescence contrast in live animals. The Förster resonance energy transfer strategy overcomes the intrinsic limitation of broad emission spectra for AIE NPs, which opens new opportunities to synthesize organic NPs with high brightness and narrow emission for potential applications in multiplex sensing and imaging.Near-infrared (NIR) fluorescence signals are highly desirable to achieve high resolution in biological imaging. To obtain NIR emission with high brightness, fluorescent nanoparticles (NPs) are synthesized by co-encapsulation of 2,3-bis(4-(phenyl(4-(1,2,2-triphenylvinyl)phenylamino)phenyl)fumaronitrile (TPETPAFN), a luminogen with aggregation-induced emission (AIE) characteristics, and a NIR fluorogen of silicon 2,3-naphthalocyanine bis(trihexylsilyloxide) (NIR775) using 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[methoxy(polyethylene glycol)-2000

  20. Sequence dependent aggregation of peptides and fibril formation

    Science.gov (United States)

    Hung, Nguyen Ba; Le, Duy-Manh; Hoang, Trinh X.

    2017-09-01

    Deciphering the links between amino acid sequence and amyloid fibril formation is key for understanding protein misfolding diseases. Here we use Monte Carlo simulations to study the aggregation of short peptides in a coarse-grained model with hydrophobic-polar (HP) amino acid sequences and correlated side chain orientations for hydrophobic contacts. A significant heterogeneity is observed in the aggregate structures and in the thermodynamics of aggregation for systems of different HP sequences and different numbers of peptides. Fibril-like ordered aggregates are found for several sequences that contain the common HPH pattern, while other sequences may form helix bundles or disordered aggregates. A wide variation of the aggregation transition temperatures among sequences, even among those of the same hydrophobic fraction, indicates that not all sequences undergo aggregation at a presumable physiological temperature. The transition is found to be the most cooperative for sequences forming fibril-like structures. For a fibril-prone sequence, it is shown that fibril formation follows the nucleation and growth mechanism. Interestingly, a binary mixture of peptides of an aggregation-prone and a non-aggregation-prone sequence shows the association and conversion of the latter to the fibrillar structure. Our study highlights the role of a sequence in selecting fibril-like aggregates and also the impact of a structural template on fibril formation by peptides of unrelated sequences.

  1. Influence of heat and shear induced protein aggregation on the in vitro digestion rate of whey proteins.

    Science.gov (United States)

    Singh, Tanoj K; Øiseth, Sofia K; Lundin, Leif; Day, Li

    2014-11-01

    Protein intake is essential for growth and repair of body cells, the normal functioning of muscles, and health related immune functions. Most food proteins are consumed after undergoing various degrees of processing. Changes in protein structure and assembly as a result of processing impact the digestibility of proteins. Research in understanding to what extent the protein structure impacts the rate of proteolysis under human physiological conditions has gained considerable interest. In this work, four whey protein gels were prepared using heat processing at two different pH values, 6.8 and 4.6, with and without applied shear. The gels showed different protein network microstructures due to heat induced unfolding (at pH 6.8) or lack of unfolding, thus resulting in fine stranded protein networks. When shear was applied during heating, particulate protein networks were formed. The differences in the gel microstructures resulted in considerable differences in their rheological properties. An in vitro gastric and intestinal model was used to investigate the resulting effects of these different gel structures on whey protein digestion. In addition, the rate of digestion was monitored by taking samples at various time points throughout the in vitro digestion process. The peptides in the digesta were profiled using SDS-polyacrylamide gel electrophoresis, reversed-phase-HPLC and LC-MS. Under simulated gastric conditions, whey proteins in structured gels were hydrolysed faster than native proteins in solution. The rate of peptides released during in vitro digestion differed depending on the structure of the gels and extent of protein aggregation. The outcomes of this work highlighted that changes in the network structure of the protein can influence the rate and pattern of its proteolysis under gastrointestinal conditions. Such knowledge could assist the food industry in designing novel food formulations to control the digestion kinetics and the release of biologically

  2. Mechanics of load-drag-unload contact cleaning of gecko-inspired fibrillar adhesives.

    Science.gov (United States)

    Abusomwan, Uyiosa A; Sitti, Metin

    2014-10-14

    Contact self-cleaning of gecko-inspired synthetic adhesives with mushroom-shaped tips has been demonstrated recently using load-drag-unload cleaning procedures similar to that of the natural animal. However, the underlying mechanics of contact cleaning has yet to be fully understood. In this work, we present a detailed experiment of contact self-cleaning that shows that rolling is the dominant mechanism of cleaning for spherical microparticle contaminants, during the load-drag-unload procedure. We also study the effect of dragging rate and normal load on the particle rolling friction. A model of spherical particle rolling on an elastomer fibrillar adhesive interface is developed and agrees well with the experimental results. This study takes us closer to determining design parameters for achieving self-cleaning fibrillar adhesives.

  3. A multifunctional probe with aggregation-induced emission characteristics for selective fluorescence imaging and photodynamic killing of bacteria over mammalian cells.

    Science.gov (United States)

    Gao, Meng; Hu, Qinglian; Feng, Guangxue; Tomczak, Nikodem; Liu, Rongrong; Xing, Bengang; Tang, Ben Zhong; Liu, Bin

    2015-04-02

    A multifunctional probe aggregation-induced emission-Zinc(II)-dipicolylamine (AIE-ZnDPA) is developed for selective targeting, fluorescence imaging, and photodynamic killing of both Gram-positive and Gram-negative bacteria over mammalian cells. The probe has significant advantages in simple probe design, enhanced fluorescence upon bacteria binding, excellent photostability, and broad-spectrum antibacterial activity with almost no harm to mammalian cells.

  4. Improved Bio-inspired Artificial Gecko Adhesive by Using Hierarchical Fibrillar Structures

    OpenAIRE

    Li, Yasong

    2014-01-01

    Geckos are well known for being rapid climbers that have long existed in nature. The reversible and reusable adhesive on their feet intrigues scientists to explore a bio-mimetic adhesive, which inherits the adhesion properties of the gecko’s adhesives. Recent advances in electron microscopy reveal the secret of gecko’s climbing ability: there are hierarchical fibrillar structures branching from the skin of their climbing feet. Sizes of these hierarchical fibrils range from micrometer to nanom...

  5. Fluorescence characterization of co-immobilization-induced multi-enzyme aggregation in a polymer matrix using Förster resonance energy transfer (FRET): toward the metabolon biomimic.

    Science.gov (United States)

    Wu, Fei; Minteer, Shelley D

    2013-08-12

    Sequential metabolic enzymes can form supramolecular complexes named metabolons in vivo through enzyme-enzyme association or aggregation to facilitate efficient substrate channeling. By separately labeling enzymes with lysine-targeting carboxylic acid succinimidyl ester fluorophores of distinct excitation wavelengths, this research presents a quantitative study of polymer-entrapment-induced in vitro multi-enzyme aggregation from three Krebs cycle enzymes using Förster resonance energy transfer (FRET) to find potential polymer materials for immobilizing enzyme cascades and inducing the metabolon biomimic formation on electrodes. The effect of hydrophobic modification of linear polyethylenimine, Nafion, and chitosan polymers on metabolon formation has been investigated through photobleaching FRET imaging in addition to traditional steady-state fluorescence spectroscopy. By partially destroying FRET acceptors of longer excitation wavelength, increased fluorescence from dequenched donors of shorter excitation wavelength was measured and enzyme interactions in terms of energy-transfer efficiencies were mapped point by point. Results show that trimethyloctadecylammonium-modified Nafion works best in inducing multi-enzyme aggregation and exhibits a promising future in immobilized metabolon biomimics with the most uniform enzyme organization, as indicated by the protein distance distribution.

  6. [Induction of native platelets aggregation by incubation media of the UV irradiated leukocytes: possible role of the photo-induced ADP release].

    Science.gov (United States)

    Anosov, A K; Gorbach, M M

    2014-01-01

    It is shown that during incubation after UV irradiation (22-24 hours at 7-9 degrees C) irradiated isolated rabbit leukocytes release the compound(s) which induces platelets aggregation in the native platelet rich plasma. Treatment of the incubation media of irradiated leukocytes by heat (5 minutes at 100 degrees C) does not significantly change its pro-aggregation activity. Treatment of the platelet-rich plasma by the incubation media of irradiated leukocytes without stirring induces the refractoriness of platelets to ADP. The platelets treated by ADP without stirring do not react to the incubation media of irradiated leukocytes. The absorption spectrum of the incubation media of irradiated leukocytes has the maximum at 260 nm similar to that of the absorption spectra of ADP. It is possible that UVradiation induces the ADP release from leukocytes during post-irradiation incubation. Accumulation of this substance in the incubation media may be the cause of its pro-aggregation activity for native blood platelets.

  7. Amphiphilic Beads as Depots for Sustained Drug Release Integrated into Fibrillar Scaffolds

    Science.gov (United States)

    Gaharwar, Akhilesh K.; Mihaila, Silvia M.; Kulkarni, Ashish A.; Patel, Alpesh; Di Luca, Andrea; Reis, Rui L.; Gomes, Manuela E.; van Blitterswijk, Clemens; Moroni, Lorenzo; Khademhosseini, Ali

    2014-01-01

    Native extracellular matrix (ECM) is a complex fibrous structure loaded with bioactive cues that affects the surrounding cells. A promising strategy to mimicking native tissue architecture for tissue engineering applications is to engineer fibrous scaffolds using electrospinning. By loading appropriate bioactive cues within these fibrous scaffolds, various cellular functions such as cell adhesion, proliferation and differentiation can be regulated. Here, we report on the encapsulation and sustained release of model hydrophobic drug (dexamethasone (Dex)) within beaded fibrillar scaffold of poly(ethylene oxide terephthalate)-poly(butylene terephthalate) (PEOT/PBT), a polyether-ester multiblock copolymer to direct differentiation of human mesenchymal stem cells (hMSCs). The amphiphilic beads act as depots for sustained drug release that is integrated into the fibrillar scaffolds. The entrapment of Dex within the beaded structure results in sustained release of drug over the period of 28 days. This is mainly attributed to the diffusion driven release of Dex from the amphiphilic electrospun scaffolds. In vitro results indicate that hMSCs cultured on Dex containing beaded fibrillar scaffolds exhibit an increase in osteogenic differentiation potential, as evidenced by increased alkaline phosphatase (ALP) activity, compared to the direct infusion of Dex in culture medium. The formation of mineralized matrix is also significantly enhanced due to the controlled Dex release from the fibrous scaffolds. This approach can be used to engineer scaffolds with appropriate chemical cues to direct tissue regeneration. PMID:24794894

  8. Protein-peptide interaction: study of heat-induced aggregation and gelation of β-lactoglobulin in the presence of two peptides from its own hydrolysate.

    Science.gov (United States)

    Kosters, Hans A; Wierenga, Peter A; de Vries, Renko; Gruppen, Harry

    2013-05-08

    Two peptides, [f135-158] and [f135-162]-SH, were used to study the binding of the peptides to native β-lactolobulin, as well as the subsequent effects on aggregation and gelation of β-lactoglobulin. The binding of the peptide [f135-158] to β-lactoglobulin at room temperature was confirmed by SELDI-TOF-MS. It was further illustrated by increased turbidity of mixed solutions of peptide and protein (at pH 7), indicating association of proteins and peptides in larger complexes. At pH below the isoelectric point of the protein, the presence of peptides did not lead to an increased turbidity, showing the absence of complexation. The protein-peptide complexes formed at pH 7 were found to dissociate directly upon heating. After prolonged heating, extensive aggregation was observed, whereas no aggregation was seen for the pure protein or pure peptide solutions. The presence of the free sulfhydryl group in [f135-162]-SH resulted in a 10 times increase in the amount of aggregation of β-lactoglobulin upon heating, illustrating the additional effect of the free sulfhydryl group. Subsequent studies on the gel strength of heat-induced gels also showed a clear difference between these two peptides. The replacement of additional β-lactoglobulin by [f135-158] resulted in a decrease in gel strength, whereas replacement by peptide [f135-162]-SH increased gel strength.

  9. Thiophene functionalized silicon-containing aggregation-induced emission enhancement materials: applications as fluorescent probes for the detection of nitroaromatic explosives in aqueous-based solutions.

    Science.gov (United States)

    Wang, Xuefeng; Bian, Jiangyan; Xu, Lichao; Wang, Hua; Feng, Shengyu

    2015-12-28

    Two novel aggregation-induced emission enhancement (AIEE) molecules, namely, 3,4-diphenyl-2,5-di(2-thienyl)phenyltrimethylsilane (DPTB-TMS) and bis[3,4-diphenyl- 2,5-di(2-thienyl)phenyl]methylphenylsilane (DPTB-TMS) were designed and synthesized. The optical properties of the two silanes were completely opposite to the traditional luminescent materials. Unlike the aggregation caused quenching, they all emit faint fluorescence in the dispersed state, while emission intensity increased sharply in aggregate states. Fluorescence spectra showed that the two compounds exhibited AIEE properties and that is due to the weak π-π stacking caused by the restriction of intramolecular rotations of dye segments, particularly the -SiMe3 and thienyl groups in the aggregate state. As fluorescent (FL) probes, the fluorescence quenching behavior was further investigated. Thanks to the richer-electron thiophene groups, both compounds showed good performance in detecting nitroaromatics, especially picric acid (PA). The two AIEE FL probes exhibited better quenching efficiency in aqueous-based than in organic-based solutions. For DPTB-MPS, the addition of 80 μM nitrobenzene, 60 μM m-nitrobenzene and 40 μM PA resulted in about 50% quenching in aqueous solutions. The quenching mechanism would be electron transfer from silanes to nitroaromatics. This work provides a basis for designing organic-silanes with "abnormal" but useful optical properties and FL probes with AIEE properties for the detection of nitroaromatics.

  10. A mobile system for a comprehensive online-characterization of nanoparticle aggregates based on wide-angle light scattering and laser-induced incandescence

    Energy Technology Data Exchange (ETDEWEB)

    Huber, Franz J. T.; Will, Stefan, E-mail: stefan.will@fau.de [Lehrstuhl für Technische Thermodynamik (LTT), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen 91058 (Germany); Erlangen Graduate School in Advanced Optical Technologies (SAOT), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen 91052 (Germany); Cluster of Excellence Engineering of Advanced Materials (EAM), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen 91052 (Germany); Altenhoff, Michael [Lehrstuhl für Technische Thermodynamik (LTT), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen 91058 (Germany); Erlangen Graduate School in Advanced Optical Technologies (SAOT), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen 91052 (Germany)

    2016-05-15

    A mobile demonstrator for the comprehensive online-characterization of gas-borne nanoparticle aggregates is presented. Two optical measurement techniques are combined, both utilizing a pulsed Nd:YAG laser as light source. Aggregate size and fractal dimension are measured by Wide-Angle Light Scattering (WALS). An ellipsoidal mirror images elastically scattered light from scattering angles between 10° and 165° onto a CCD-camera chip resulting in an almost complete scattering diagram with high angular resolution. Primary particle size and volume fraction are measured by time-resolved Laser-Induced Incandescence (TiRe-LII). Here, particles are heated up to about 3000 K by the short laser pulse, the enhanced thermal radiation signal is detected with gated photomultiplier tubes. Analysis of the signal decay time and maximum LII-signal allows for the determination of primary particle diameter and volume fraction. The performance of the system is demonstrated by combined measurements on soot nanoparticle aggregates from a soot aerosol generator. Particle and aggregate sizes are varied by using different equivalence ratios of the combustion in the generator. Soot volume fraction can be adjusted by different levels of dilution with air. Online-measurements were carried out demonstrating the favorable performance of the system and the potential for industrial applications such as process control and product development. The particle properties obtained are confirmed through transmission electron microscopy analysis on representative samples.

  11. Non-Arrhenius protein aggregation.

    Science.gov (United States)

    Wang, Wei; Roberts, Christopher J

    2013-07-01

    Protein aggregation presents one of the key challenges in the development of protein biotherapeutics. It affects not only product quality but also potentially impacts safety, as protein aggregates have been shown to be linked with cytotoxicity and patient immunogenicity. Therefore, investigations of protein aggregation remain a major focus in pharmaceutical companies and academic institutions. Due to the complexity of the aggregation process and temperature-dependent conformational stability, temperature-induced protein aggregation is often non-Arrhenius over even relatively small temperature windows relevant for product development, and this makes low-temperature extrapolation difficult based simply on accelerated stability studies at high temperatures. This review discusses the non-Arrhenius nature of the temperature dependence of protein aggregation, explores possible causes, and considers inherent hurdles for accurately extrapolating aggregation rates from conventional industrial approaches for selecting accelerated conditions and from conventional or more advanced methods of analyzing the resulting rate data.

  12. Surface rheological properties of liquid-liquid interfaces stabilized by protein fibrillar aggregates and protein-polysaccharide complexes

    NARCIS (Netherlands)

    Humblet-Hua, K.N.P.; Linden, van der E.; Sagis, L.M.C.

    2013-01-01

    In this study we have investigated the surface rheological properties of oil-water interfaces stabilized by fibrils from lysozyme (long and semi-flexible and short and rigid ones), fibrils from ovalbumin (short and semi-flexible), lysozyme-pectin complexes, or ovalbumin-pectin complexes. We have

  13. A novel fusion protein domain III-capsid from dengue-2, in a highly aggregated form, induces a functional immune response and protection in mice.

    Science.gov (United States)

    Valdés, Iris; Bernardo, Lidice; Gil, Lázaro; Pavón, Alekis; Lazo, Laura; López, Carlos; Romero, Yaremis; Menendez, Ivón; Falcón, Viviana; Betancourt, Lázaro; Martín, Jorge; Chinea, Glay; Silva, Ricardo; Guzmán, María G; Guillén, Gerardo; Hermida, Lisset

    2009-11-25

    Based on the immunogenicity of domain III from the Envelope protein of dengue virus as well as the proven protective capacity of the capsid antigen, we have designed a novel domain III-capsid chimeric protein with the goal of obtaining a molecule potentially able to induce both humoral and cell-mediated immunity (CMI). After expression of the recombinant gene in Escherichia coli, the domain III moiety retained its antigenicity as evaluated with anti-dengue sera. In order to explore alternatives for modulating the immunogenicity of the protein, it was mixed with oligodeoxynucleotides in order to obtain particulated aggregates and then immunologically evaluated in mice in comparison with non-aggregated controls. Although the humoral immune response induced by both forms of the protein was equivalent, the aggregated variant resulted in a much stronger CMI as measured by in vitro IFN-gamma secretion and protection experiments, mediated by CD4(+) and CD8(+) cells. The present work provides additional evidence in support for a crucial role of CMI in protection against dengue virus and describes a novel vaccine candidate against the disease based on a recombinant protein that can stimulate both arms of the acquired immune system.

  14. Inhibition of β-amyloid Aggregation By Albiflorin, Aloeemodin And Neohesperidin And Their Neuroprotective Effect On Primary Hippocampal Cells Against β-amyloid Induced Toxicity.

    Science.gov (United States)

    Ho, See-Lok; Poon, Chung-Yan; Lin, Chengyuan; Yan, Ting; Kwong, Daniel Wai-Jing; Yung, Ken Kin-Lam; Wong, Man S; Bian, Zhaoxiang; Li, Hung-Wing

    2015-01-01

    Being one of the hallmarks of Alzheimer's disease, β-amyloid (Aβ) aggregates induce complicated neurotoxicity. Evidences show that the underlying mechanism of neurotoxicity involves a glutamate receptor subtype, N-methyl-D-aspartate (NMDA) receptor, an increase in intracellular calcium(II) ion loading as well as an elevation in oxidation stress. In this work, among the 35 chemical components of Chinese herbal medicines (CHMs) being screened for inhibitors of Aβ aggregation, four of them, namely albiflorin, aloeemodin, neohesperidin and physcion, were found for the first time to exhibit a potent inhibitory effect on Aβ(1-40) and Aβ(1-42) aggregation. Their neuroprotective capability on primary hippocampal neuronal cells was also investigated by MTT assay, ROS assay and intracellular calcium(II) ion concentration measurement. It was interesting to find that physcion was rather toxic to neuronal cells while albiflorin, aloeemodin and neohesperidin reduced the toxicity and ROS induced by both monomeric and oligomeric Aβ species. In addition, albiflorin was particularly powerful in maintaining the intracellular Ca(2+) concentration.

  15. Monte Carlo simulations of protein amyloid formation reveal origin of sigmoidal aggregation kinetics.

    Science.gov (United States)

    Linse, Björn; Linse, Sara

    2011-07-01

    Severe conditions and lack of cure for many amyloid diseases make it highly desired to understand the underlying principles of formation of fibrillar aggregates (amyloid). Here, amyloid formation from peptides was studied using Monte Carlo simulations. Systems of 20, 50, 100, 200 or 500 hexapeptides were simulated. Association kinetics were modeled equal for fibrillar and other (inter- and intra-peptide) contacts and assumed to be faster the lower the effective contact order, which represents the distance in space. Attempts to form contacts were thus accepted with higher probability the lower the effective contact order, whereby formation of new contacts next to preexisting ones is favored by shorter physical separation. Kinetic discrimination was invoked by using two different life-times for formed contacts. Contacts within amyloid fibrils were assumed to have on average longer life-time than other contacts. We find that the model produces fibrillation kinetics with a distinct lag phase, and that the fibrillar contacts need to dissociate on average 5-20 times slower than all other contacts for the fibrillar structure to dominate at equilibrium. Analysis of the species distribution along the aggregation process shows that no other intermediate is ever more populated than the dimer. Instead of a single nucleation event there is a concomitant increase in average aggregate size over the whole system, and the occurrence of multiple parallel processes makes the process more reproducible the larger the simulated system. The sigmoidal shape of the aggregation curves arises from cooperativity among multiple interactions within each pair of peptides in a fibril. A governing factor is the increasing probability as the aggregation process proceeds of neighboring reinforcing contacts. The results explain the very strong bias towards cross β-sheet fibrils in which the possibilities for cooperativity among interactions involving neighboring residues and the repetitive use of

  16. Small heat shock protein Hsp27 prevents heat-induced aggregation of F-actin by forming soluble complexes with denatured actin.

    Science.gov (United States)

    Pivovarova, Anastasia V; Chebotareva, Natalia A; Chernik, Ivan S; Gusev, Nikolai B; Levitsky, Dmitrii I

    2007-11-01

    Previously, we have shown that the small heat shock protein with apparent molecular mass 27 kDa (Hsp27) does not affect the thermal unfolding of F-actin, but effectively prevents aggregation of thermally denatured F-actin [Pivovarova AV, Mikhailova VV, Chernik IS, Chebotareva NA, Levitsky DI & Gusev NB (2005) Biochem Biophys Res Commun331, 1548-1553], and supposed that Hsp27 prevents heat-induced aggregation of F-actin by forming soluble complexes with denatured actin. In the present work, we applied dynamic light scattering, analytical ultracentrifugation and size exclusion chromatography to examine the properties of complexes formed by denatured actin with a recombinant human Hsp27 mutant (Hsp27-3D) mimicking the naturally occurring phosphorylation of this protein at Ser15, Ser78, and Ser82. Our results show that formation of these complexes occurs upon heating and accompanies the F-actin thermal denaturation. All the methods show that the size of actin-Hsp27-3D complexes decreases with increasing Hsp27-3D concentration in the incubation mixture and that saturation occurs at approximately equimolar concentrations of Hsp27-3D and actin. Under these conditions, the complexes exhibit a hydrodynamic radius of approximately 16 nm, a sedimentation coefficient of 17-20 S, and a molecular mass of about 2 MDa. It is supposed that Hsp27-3D binds to denatured actin monomers or short oligomers dissociated from actin filaments upon heating and protects them from aggregation by forming relatively small and highly soluble complexes. This mechanism might explain how small heat shock proteins prevent aggregation of denatured actin and by this means protect the cytoskeleton and the whole cell from damage caused by accumulation of large insoluble aggregates under heat shock conditions.

  17. Chirality-driven intrinsic spin-glass ordering and field-induced ferromagnetism in Ni3Al nanoparticle aggregates

    Science.gov (United States)

    Kaul, S. N.; Messala, Umasankar

    2016-03-01

    Weak itinerant-electron ferromagnet Ni3Al is driven to magnetic instability (quantum critical point, QCP, where the long-range ferromagnetic order of the bulk ceases to exist) by reducing the average crystallite size to d=50 nm. 'Zero-field' (H=0) linear and nonlinear ac-susceptibilities, measured on Ni3Al nanoparticle aggregates, with d=50 nm (S1) and d=5 nm (S2), provide strong evidence for two spin glass (SG)-like thermodynamic phase transitions: one at Ti(H = 0) ≃ 30 K (Ti† (H = 0) ≃ 230 K) and the other at a lower temperature Tp(H = 0) ≃ 8 K (Th(H = 0) ≃ 52 K) in S1 (S2). 'In-field' (H ≠ 0) linear ac-susceptibility and dc magnetization demonstrate that the thermodynamic nature of these transitions is preserved in finite fields. The presently determined H-T phase diagrams for the samples S1 and S2 are compared with those predicted by the Kotliar-Sompolinsky and Gabay-Toulouse mean-field models and Monte Carlo simulations, based on the chirality-driven spin glass (SG) ordering scenario, for a three-dimensional nearest-neighbor Heisenberg SG system with or without weak random anisotropy. Such a detailed comparison permits us to unambiguously identify various 'zero-field' and 'in-field' SG phase transitions as: (i) the simultaneous paramagnetic (PM)-chiral glass (CG) and PM-SG phase transitions at Ti(H), (ii) the PM-CG transition at Ti† (H), (iii) the replica symmetry-breaking SG transition at Tp(H), and (iv) the continuous spin-rotation symmetry-breaking SG transition at Th(H). In the presence of random anisotropy, magnetization fails to saturate even at 90 kOe in S1 whereas negligibly small anisotropy allows even fields as weak as 1 kOe to saturate magnetization and induce ferromagnetism in S2. Due to the proximity to CG/SG-QCP, magnetization and susceptibility both exhibit non-Fermi liquid behavior over a wide range at low temperatures.

  18. Temperature-induced aggregation in aqueous solutions of pluronic F68 triblock copolymer containing small amount of o-xylene

    DEFF Research Database (Denmark)

    Borbely, S.; Pedersen, J.S.

    2000-01-01

    The temperature- and concentration-dependent aggregation of EO(78)PO(30)EO(78) triblock copolymer in aqueous solutions has been studied in the concentration range from 5 to 200 g/dm(3) at 25 degrees C, 45 degrees C and 60 degrees C. The influence of o-xylene on the micellization was measured at v...... at various (from 5 to 40) molar ratio of additive to polymer. The aggregates were described as polydisperse spheres with tethered Gaussian polymer chains. The results of the least-squares fit is briefly discussed. (C) 2000 Elsevier Science B.V. All rights reserved....

  19. Investigating the feasibility of scale up and automation of human induced pluripotent stem cells cultured in aggregates in feeder free conditions.

    Science.gov (United States)

    Soares, Filipa A C; Chandra, Amit; Thomas, Robert J; Pedersen, Roger A; Vallier, Ludovic; Williams, David J

    2014-03-10

    The transfer of a laboratory process into a manufacturing facility is one of the most critical steps required for the large scale production of cell-based therapy products. This study describes the first published protocol for scalable automated expansion of human induced pluripotent stem cell lines growing in aggregates in feeder-free and chemically defined medium. Cells were successfully transferred between different sites representative of research and manufacturing settings; and passaged manually and using the CompacT SelecT automation platform. Modified protocols were developed for the automated system and the management of cells aggregates (clumps) was identified as the critical step. Cellular morphology, pluripotency gene expression and differentiation into the three germ layers have been used compare the outcomes of manual and automated processes.

  20. Inhibition of glutamate receptors reduces the homocysteine-induced whole blood platelet aggregation but does not affect superoxide anion generation or platelet membrane fluidization.

    Science.gov (United States)

    Karolczak, Kamil; Pieniazek, Anna; Watala, Cezary

    2017-01-01

    Homocysteine (Hcy) is an excitotoxic amino acid. It is potentially possible to prevent Hcy-induced toxicity, including haemostatic impairments, by antagonizing glutaminergic receptors. Using impedance aggregometry with arachidonate and collagen as platelet agonists, we tested whether the blockade of platelet NMDA (N-methyl-D-aspartate), AMPA (α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid) and kainate receptors with their inhibitors: MK-801 (dizocilpine hydrogen maleate, [5R,10S]-[+]-5-methyl-10,11-dihydro-5H-dibenzo[a,d]cyclohepten-5,10-imine), CNQX (7-nitro-2,3-dioxo-1,4-dihydroquinoxaline-6-carbonitrile) and UBP-302 (2-{[3-[(2S)-2-amino-2-carboxyethyl]-2,6-dioxo-3,6-dihydropyrimidin 1(2H)-yl]methyl}benzoic acid) may hamper Hcy-dependent platelet aggregation. All the tested compounds significantly inhibited Hcy-augmented aggregation of blood platelets stimulated either with arachidonate or collagen. Hcy stimulated the generation of superoxide anion in whole blood samples in a concentration-dependent manner; however, this process appeared as independent on ionotropic glutamate receptors, as well as on NADPH oxidase and protein kinase C, and was not apparently associated with the extent of either arachidonate- or collagen-dependent platelet aggregation. Moreover, Hcy acted as a significant fluidizer of surface (more hydrophilic) and inner (more hydrophobic) regions of platelet membrane lipid bilayer, when used at the concentration range from 10 to 50 µmol/l. However, this effect was independent on the Hcy action through glutamate ionotropic receptors, since there was no effects of MK-801, CNQX or UBP-302 on Hcy-mediated membrane fluidization. In conclusion, Hcy-induced changes in whole blood platelet aggregation are mediated through the ionotopic excitotoxic receptors, although the detailed mechanisms underlying such interactions remain to be elucidated.

  1. A pyrene-benzthiazolium conjugate portraying aggregation induced emission, a ratiometric detection and live cell visualization of HSO{sub 3}{sup −}

    Energy Technology Data Exchange (ETDEWEB)

    Diwan, Uzra; Kumar, Virendra [Department of Chemistry (Centre of Advanced Study), Faculty of Science, Banaras Hindu University, Varanasi, Uttar Pradesh 221005 (India); Mishra, Rakesh K. [Photosciences and Photonics, Chemical Sciences and Technology Division, CSIR–National Institute for Interdisciplinary Science and Technology, Thiruvananthapuram 695019 (India); Rana, Nishant Kumar; Koch, Biplob; Singh, Manish Kumar [Department of Zoology (Centre of Advanced Study), Faculty of Science, Banaras Hindu University, Varanasi 221005 (India); Upadhyay, K.K., E-mail: drkaushalbhu@yahoo.co.in [Department of Chemistry (Centre of Advanced Study), Faculty of Science, Banaras Hindu University, Varanasi, Uttar Pradesh 221005 (India)

    2016-07-27

    The present study deals with the photophysical property of a pyrene-benzthiazolium conjugate R1, as a strong intramolecular charge transfer (ICT) probe exhibiting long wavelength emission in the red region. Unlike traditional planar polyaromatic hydrocarbons whose aggregation generally quenches the light emission, the pyrene based R1 was found to display aggregation-induced emission (AIE) property along with simultaneous increase in its quantum yield upon increasing the water content of the medium. The R1 exhibits high specificity towards HSO{sub 3}{sup −}/SO{sub 3}{sup 2−} by interrupting its own ICT producing there upon a large ratiometric blue shift of ∼220 nm in its emission spectrum. The lowest detection limit for the above measurement was found to be 8.90 × 10{sup −8} M. The fluorescent detection of HSO{sub 3}{sup −} was also demonstrated excellently by test paper strip and silica coated TLC plate incorporating R1. The live cell imaging of HSO{sub 3}{sup −} through R1 in HeLa cells was studied using fluorescence microscopic studies. The particle size and morphological features of R1 and R1-HSO{sub 3}{sup −} aggregates in aqueous solution were characterized by DLS along with SEM analysis.- Highlights: • A pyrene-benzthiazolium conjugate probe (R1) itself showed interesting phenomenon of an aggregation-induced emission (AIE). • R1 emits in the red channel and effectively utilized as a colorimetric and ratiometric fluorescent sensor for HSO{sub 3}{sup −}. • The nano-dimensional spherical particles of R1 got enlarged upon its interaction with the HSO{sub 3}{sup −}. • R1 can efficiently stain HSO{sub 3}{sup −} in live cells and can be used for the on-spot detection of the same.

  2. P2Y6 Receptor Antagonist MRS2578 Inhibits Neutrophil Activation and Aggregated Neutrophil Extracellular Trap Formation Induced by Gout-Associated Monosodium Urate Crystals.

    Science.gov (United States)

    Sil, Payel; Hayes, Craig P; Reaves, Barbara J; Breen, Patrick; Quinn, Shannon; Sokolove, Jeremy; Rada, Balázs

    2017-01-01

    Human neutrophils (polymorphonuclear leukocytes [PMNs]) generate inflammatory responses within the joints of gout patients upon encountering monosodium urate (MSU) crystals. Neutrophil extracellular traps (NETs) are found abundantly in the synovial fluid of gout patients. The detailed mechanism of MSU crystal-induced NET formation remains unknown. Our goal was to shed light on possible roles of purinergic signaling and neutrophil migration in mediating NET formation induced by MSU crystals. Interaction of human neutrophils with MSU crystals was evaluated by high-throughput live imaging using confocal microscopy. We quantitated NET levels in gout synovial fluid supernatants and detected enzymatically active neutrophil primary granule enzymes, myeloperoxidase, and human neutrophil elastase. Suramin and PPADS, general P2Y receptor blockers, and MRS2578, an inhibitor of the purinergic P2Y6 receptor, blocked NET formation triggered by MSU crystals. AR-C25118925XX (P2Y2 antagonist) did not inhibit MSU crystal-stimulated NET release. Live imaging of PMNs showed that MRS2578 represses neutrophil migration and blocked characteristic formation of MSU crystal-NET aggregates called aggregated NETs. Interestingly, the store-operated calcium entry channel inhibitor (SK&F96365) also reduced MSU crystal-induced NET release. Our results indicate that the P2Y6/store-operated calcium entry/IL-8 axis is involved in MSU crystal-induced aggregated NET formation, but MRS2578 could have additional effects affecting PMN migration. The work presented in the present study could lead to a better understanding of gouty joint inflammation and help improve the treatment and care of gout patients.

  3. Soluble Epoxide Hydrolase Inhibition Attenuates MPTP-Induced Neurotoxicity in the Nigrostriatal Dopaminergic System: Involvement of α-Synuclein Aggregation and ER Stress.

    Science.gov (United States)

    Huang, Hui-Ju; Wang, Yi-Ting; Lin, Hui-Ching; Lee, Yi-Hsuan; Lin, Anya Maan-Yuh

    2017-08-18

    Soluble epoxide hydrolase (sEH) is widely expressed in the mammalian brain and possesses dual enzymatic activities, including C-terminal epoxide hydrolase (C-EH) which degrades epoxyeicosatrienoic acid (EET), a beneficial arachidonic acid metabolite. In the present study, the neuroprotective effect of sEH inhibition on 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced neurodegeneration of nigrostriatal dopaminergic system was investigated using genetic and pharmacological approaches. MPTP (15 mg/kg) was intraperitoneally injected in sEH knockout (KO) mice and C57BL/6J mice as wild-type (WT) mice. Compared with the MPTP-treated WT mice, MPTP-induced reductions in striatal dopamine content and nigral tyrosine hydroxylase level (TH, a biomarker of dopaminergic neurons) were less significant in the treated sEH mice. Furthermore, MPTP-induced HO-1 elevation (a redox-regulated protein), α-synuclein aggregation, and caspase 12 activation (a hallmark of ER stress) were less prominent in sEH KO mice than in WT mice. These data indicate that sEH KO mice are more resistant to MPTP-induced neurotoxicity. The pharmacological effect of N-[1-(1-oxopropyl)-4-piperidinyl]-N0-[4-(trifluoromethoxy)phenyl)-urea (TPPU, an sEH inhibitor) on MPTP-induced neurotoxicity was investigated in WT mice. TPPU (1 mg/kg, i.p.) attenuated MPTP-induced reduction in striatal dopamine content, TH-positive cell numbers, TH, and pro-caspase 9 protein levels (an initiator caspase of apoptosis) in mouse SN. Moreover, TPPU reduced MPTP-induced HO-1 elevation, α-synuclein aggregation and caspase 12 activation, indicating that TPPU is effective in attenuating MPTP-induced oxidative stress, apoptosis, protein aggregation, and ER stress. In conclusion, our study suggests that sEH is a potential target for developing therapies for parkinsonism. Furthermore, sEH inhibitors may be of clinical significance for treating CNS neurodegenerative diseases.

  4. Fibrillar structures formed by covalently bound, short, β-stranded peptides on self-assembled monolayers.

    Science.gov (United States)

    Dugger, Jason W; Webb, Lauren J

    2015-03-24

    The ability to maintain or reproduce biomolecular structures on inorganic substrates has the potential to impact diverse fields such as sensing and molecular electronics, as well as the study of biological self-assembly and structure-function relationships. Because the structure and self-assembly of biomolecules are exquisitely sensitive to their local chemical and electrostatic environment, the goal of reproducing or mimicking biological function in an abiological environment, including at a surface, is challenging. However, simple and well-characterized chemical modifications of prepared surfaces can be used to tune surface chemistry, structure, electrostatics, and reactivity of inorganic materials to facilitate biofunctionalization and function. Here, we describe the covalent attachment of 13-residue β-stranded peptides containing alkyne groups to a flat gold surface functionalized with an azide-terminated self-assembled monolayer through a Huisgen cycloaddition, or "click", reaction. The chemical composition and structural morphology of these surfaces were characterized using X-ray photoelectron spectroscopy, grazing incidence angle reflection-absorption infrared spectroscopy, surface circular dichroism, and atomic force microscopy. The surface-bound β-strands self-assemble into antiparallel β-sheets to form fibrillar structures 24.9 ± 1.6 nm in diameter and 2.83 ± 0.74 nm in height on the reactive surface. The results herein provide a platform for studying and controlling the self-assembly process of biomolecules into larger supermolecular structures while allowing tunable control through chemical functionalization of the surface. Interest in the mechanisms of formation of fibrillar structures has most commonly been associated with neurodegenerative diseases, such as Alzheimer's and Parkinson's, but fibrils may actually represent the thermodynamic low-energy conformation of a much larger class of peptides and proteins. The protocol developed here is an

  5. Load sharing in bioinspired fibrillar adhesives with backing layer interactions and interfacial misalignment

    Science.gov (United States)

    Bacca, Mattia; Booth, Jamie A.; Turner, Kimberly L.; McMeeking, Robert M.

    2016-11-01

    Bio-inspired fibrillar adhesives rely on the utilization of short-range intermolecular forces harnessed by intimate contact at fibril tips. The combined adhesive strength of multiple fibrils can only be utilized if equal load sharing (ELS) is obtained at detachment. Previous investigations have highlighted that mechanical coupling of fibrils through a compliant backing layer gives rise to load concentration and the nucleation and propagation of interfacial flaws. However, misalignment of the adhesive and contacting surface has not been considered in theoretical treatments of load sharing with backing layer interactions. Alignment imperfections are difficult to avoid for a flat-on-flat interfacial configuration. In this work we demonstrate that interfacial misalignment can significantly alter load sharing and the kinematics of detachment in a model adhesive system. Load sharing regimes dominated by backing layer interactions and misalignment are revealed, the transition between which is controlled by the misalignment angle, fibril separation, and fibril compliance. In the regime dominated by misalignment, backing layer deformation can counteract misalignment giving rise to improved load sharing when compared to an identical fibrillar array with a rigid backing layer. This result challenges the conventional belief that stiffer (and thinner) backing layers consistently reduce load concentration among fibrils. Finally, we obtain analytically the fibril compliance distribution required to harness backing layer interactions to obtain ELS. Through fibril compliance optimization, ELS can be obtained even with misalignment. However, since misalignment is typically not deterministic, it is of greater practical significance that the array optimized for perfect alignment exhibits load sharing superior to that of a homogeneous array subject to misalignment. These results inform the design of fibrillar arrays with graded compliance capable of exhibiting improved load sharing

  6. Characteristics of a self-assembled fibrillar gel prepared from red stingray collagen

    OpenAIRE

    Bae, Inwoo; Osatomi, Kiyoshi; Yoshida, Asami; Yamaguchi, Atsuko; Tachibana, Katsuyasu; Oda, Tatsuya; Hara, Kenji

    2009-01-01

    A translucent collagen gel was formed from a transparent acidic solution of red stingray collagen by adjusting to physiological ionic strength and pH in phosphate buffer and then incubating at 25–37°C. During fibril formation from red stingray collagen, the turbidity increased when the NaCl concentration was increased at constant pH and the rate of fibril formation was accelerated by higher pH or lower NaCl concentration. The T m of red stingray collagen fibrillar gel was estimated as 44.3 ±...

  7. Sulindac Sulfide Induces the Formation of Large Oligomeric Aggregates of the Alzheimer's Disease Amyloid-β Peptide Which Exhibit Reduced Neurotoxicity.

    Science.gov (United States)

    Prade, Elke; Barucker, Christian; Sarkar, Riddhiman; Althoff-Ospelt, Gerhard; Lopez del Amo, Juan Miguel; Hossain, Shireen; Zhong, Yifei; Multhaup, Gerd; Reif, Bernd

    2016-03-29

    Alzheimer's disease is characterized by deposition of the amyloid β-peptide (Aβ) in brain tissue of affected individuals. In recent years, many potential lead structures have been suggested that can potentially be used for diagnosis and therapy. However, the mode of action of these compounds is so far not understood. Among these small molecules, the nonsteroidal anti-inflammatory drug (NSAID) sulindac sulfide received a lot of attention. In this manuscript, we characterize the interaction between the monomeric Aβ peptide and the NSAID sulindac sulfide. We find that sulindac sulfide efficiently depletes the pool of toxic oligomers by enhancing the rate of fibril formation. In vitro, sulindac sulfide forms colloidal particles which catalyze the formation of fibrils. Aggregation is immediate, presumably by perturbing the supersaturated Aβ solution. We find that sulindac sulfide inducedaggregates are structurally homogeneous. The C-terminal part of the peptide adopts a β-sheet structure, whereas the N-terminus is disordered. The salt bridge between D23 and K28 is present, similar as in wild type fibril structures. (13)C-(19)F transferred echo double resonance experiments suggest that sulindac sulfide colocalizes with the Aβ peptide in the aggregate.

  8. Design of small molecules that target metal-A{beta} species and regulate metal-induced A{beta} aggregation and neurotoxicity.

    Science.gov (United States)

    Choi, Jung-Suk; Braymer, Joseph J; Nanga, Ravi P R; Ramamoorthy, Ayyalusamy; Lim, Mi Hee

    2010-12-21

    The accumulation of metal ions and amyloid-β (Aβ) aggregates found in the brain of patients with Alzheimer's disease (AD) has been suggested to be involved in AD pathogenesis. To investigate metal-Aβ-associated pathways in AD, development of chemical tools to target metal-Aβ species is desired. Only a few efforts, however, have been reported. Here, we report bifunctional small molecules, N-(pyridin-2-ylmethyl)aniline (L2-a) and N(1),N(1)-dimethyl-N(4)-(pyridin-2-ylmethyl)benzene-1,4-diamine (L2-b) that can interact with both metal ions and Aβ species, as determined by spectroscopic methods including high-resolution NMR spectroscopy. Using the bifunctional compound L2-b, metal-inducedaggregation and neurotoxicity were modulated in vitro as well as in human neuroblastoma cells. Furthermore, treatment of human AD brain tissue homogenates containing metal ions and Aβ species with L2-b showed disassembly of Aβ aggregates. Therefore, our studies presented herein demonstrate the value of bifunctional compounds as chemical tools for investigating metal-Aβ-associated events and their mechanisms in the development and pathogenesis of AD and as potential therapeutics.

  9. Stable and Size-Tunable Aggregation-Induced Emission Nanoparticles Encapsulated with Nanographene Oxide and Applications in Three-Photon Fluorescence Bioimaging.

    Science.gov (United States)

    Zhu, Zhenfeng; Qian, Jun; Zhao, Xinyuan; Qin, Wei; Hu, Rongrong; Zhang, Hequn; Li, Dongyu; Xu, Zhengping; Tang, Ben Zhong; He, Sailing

    2016-01-26

    Organic fluorescent dyes with high quantum yield are widely applied in bioimaging and biosensing. However, most of them suffer from a severe effect called aggregation-caused quenching (ACQ), which means that their fluorescence is quenched at high molecular concentrations or in the aggregation state. Aggregation-induced emission (AIE) is a diametrically opposite phenomenon to ACQ, and luminogens with this feature can effectively solve this problem. Graphene oxide has been utilized as a quencher for many fluorescent dyes, based on which biosensing can be achieved. However, using graphene oxide as a surface modification agent of fluorescent nanoparticles is seldom reported. In this article, we used nanographene oxide (NGO) to encapsulate fluorescent nanoparticles, which consisted of a type of AIE dye named TPE-TPA-FN (TTF). NGO significantly improved the stability of nanoparticles in aqueous dispersion. In addition, this method could control the size of nanoparticles' flexibly as well as increase their emission efficiency. We then used the NGO-modified TTF nanoparticles to achieve three-photon fluorescence bioimaging. The architecture of ear blood vessels in mice and the distribution of nanoparticles in zebrafish could be observed clearly. Furthermore, we extended this method to other AIE luminogens and showed it was widely feasible.

  10. Effect of extraction pH on heat-induced aggregation, gelation and microstructure of protein isolate from quinoa (Chenopodium quinoa Willd).

    Science.gov (United States)

    Ruiz, Geraldine Avila; Xiao, Wukai; van Boekel, Martinus; Minor, Marcel; Stieger, Markus

    2016-10-15

    The aim of this study was to determine the influence of extraction pH on heat-induced aggregation, gelation and microstructure of suspensions of protein isolates extracted from quinoa (Chenopodium quinoa Willd). Quinoa seed protein was extracted by alkaline treatment at various pH values (pH 8 (E8), 9 (E9), 10 (E10) and 11 (E11)), followed by acid precipitation. The obtained protein isolates were freeze dried. The protein isolates E8 and E9 resulted in a lower protein yield as well as less protein denaturation. These isolates also had a higher protein purity, more protein bands at higher molecular weights, and a higher protein solubility in the pH range of 3-4.5, compared to the isolates E10 and E11. Heating the 10%w/w protein isolate suspensions E8 and E9 led to increased aggregation, and semi-solid gels with a dense microstructure were formed. The isolate suspensions E10 and E11, on the other hand, aggregated less, did not form self-supporting gels and had loose particle arrangements. We conclude that extraction pH plays an important role in determining the functionality of quinoa protein isolates.

  11. Chlorin e6 Prevents ADP-Induced Platelet Aggregation by Decreasing PI3K-Akt Phosphorylation and Promoting cAMP Production

    Directory of Open Access Journals (Sweden)

    Ji Young Park

    2013-01-01

    Full Text Available A number of reagents that prevent thrombosis have been developed but were found to have serious side effects. Therefore, we sought to identify complementary and alternative medicinal materials that are safe and have long-term efficacy. In the present studies, we have assessed the ability of chlorine e6 (CE6 to inhibit ADP-induced aggregation of rat platelets and elucidated the underlying mechanism. CE6 inhibited platelet aggregation induced by 10 µM ADP in a concentration-dependent manner and decreased intracellular calcium mobilization and granule secretion (i.e., ATP and serotonin release. Western blotting revealed that CE6 strongly inhibited the phosphorylations of PI3K, Akt, c-Jun N-terminal kinase (JNK, and different mitogen-activated protein kinases (MAPKs including extracellular signal-regulated kinase 1/2 (ERK1/2 as well as p38-MAPK. Our study also demonstrated that CE6 significantly elevated intracellular cAMP levels and decreased thromboxane A2 formation in a concentration-dependent manner. Furthermore, we determined that CE6 initiated the activation of PKA, an effector of cAMP. Taken together, our findings indicate that CE6 may inhibit ADP-induced platelet activation by elevating cAMP levels and suppressing PI3K/Akt activity. Finally, these results suggest that CE6 could be developed as therapeutic agent that helps prevent thrombosis and ischemia.

  12. Neuroprotection of inositol hexaphosphate and changes of mitochondrion mediated apoptotic pathway and α-synuclein aggregation in 6-OHDA induced parkinson's disease cell model.

    Science.gov (United States)

    Zhang, Zheng; Hou, Lin; Li, Xianghong; Ju, Chuanxia; Zhang, Jinyu; Li, Xin; Wang, Xiuli; Liu, Cun; Lv, Yuqiang; Wang, Yuehua

    2016-02-15

    Animal and cell experiments showed that inositol hexaphosphate (IP6) was protective on neurons in parkinson's disease (PD) model, but the underlying mechanism of this action was not extensively elucidated. To address this question, we established 6-hydroxydopamine (6-OHDA) induced human dopaminergic cell line SH-SY5Y as PD cell model and testified the neuroprotection of IP6. Through hoechst nuclear stain method and flow cytometric analysis, apoptosis induced by 6-OHDA was blocked by IP6 pretreatment. Significant protection against reactive oxygen species (ROS) and lipid peroxidation product malondialdehyde (MDA) was observed in 6-OHDA induced cells pretreated with IP6. To further investigate the mechanism of anti-apoptotic effect of IP6, expression of mediators in mitochondrion dependent apoptotic pathway was detected. Results indicated that loss of mitochondrial membrane potential, cytochrome c releasing, upregulation of Bcl-2-associated X protein (Bax), downregulation of B-cell CLL/lymphoma 2 (Bcl-2) and caspases activation were reversed by IP6. In addition, using flow cytometric method and western blot approach, our data showed that IP6 attenuated the rise of calcium and α-synuclein aggregation in cytosol. Collectively, IP6 exerted its neuroprotection on dopaminergic cells in PD cell model and the mechanism may be associated with changes of mitochondrion mediated apoptotic pathway and α-synuclein aggregation.

  13. One-Pot Click Access to a Cyclodextrin Dimer-Based Novel Aggregation Induced Emission Sensor and Monomer-Based Chiral Stationary Phase

    Directory of Open Access Journals (Sweden)

    Xiaoli Li

    2016-11-01

    Full Text Available A ‘two birds, one stone’ strategy was developed via a one-pot click reaction to simultaneously prepare a novel cyclodextrin (CD dimer based aggregation induced emission (AIE sensor (AIE-DCD and a monomer based chiral stationary phase (CSP-MCD for chiral high performance liquid chromatography (CHPLC. AIE-DCD was found to afford satisfactory AIE response for specific detection of Zn2+ with a detection limit of 50 nM. CSP-MCD exhibits excellent enantioseparation ability toward dansyl amino acids, where the resolution of dansyl amino leucine reaches 5.43.

  14. Antigen 43 from Escherichia coli induces inter- and intraspecies cell aggregation and changes in colony morphology of Pseudomonas fluorescens

    DEFF Research Database (Denmark)

    Kjærgaard, Kristian; Schembri, Mark; Hasman, Henrik;

    2000-01-01

    Antigen 43 (Ag43) is a surface-displayed autotransporter protein of Escherichia coli. By virtue of its self-association characteristics, this protein is able to mediate autoaggregation and flocculation off. coli cells in static cultures. Additionally, surface display of Ag43 is associated...... with a distinct frizzy colony morphology in E. coli. Here we show that Ag43 can be expressed in a functional form on the surface of the environmentally important Pseudomonas fluorescens strain SBW25 with ensuing cell aggregation and frizzy colony types. Using green fluorescence protein-tagged cells, we...... demonstrate that Ag43 can be used as a tool to provide interspecies cell aggregation between E. coli and P. fluorescens. Furthermore, Ag43 expression enhances biofilm formation in P. fluorescens to glass surfaces. The versatility of this protein was also reflected in Ag43 surface display in a variety of other...

  15. Fabrication and magnetic-induced aggregation of Fe{sub 3}O{sub 4}–noble metal composites for superior SERS performances

    Energy Technology Data Exchange (ETDEWEB)

    Gan, Zibao; Zhao, Aiwu, E-mail: awzhao@iim.ac.cn; Zhang, Maofeng; Wang, Dapeng; Guo, Hongyan; Tao, Wenyu; Gao, Qian; Mao, Ranran; Liu, Erhu [Chinese Academy of Sciences, Institute of Intelligent Machines (China)

    2013-11-15

    Fe{sub 3}O{sub 4}–noble metal composites were obtained by combining Au, Ag nanoparticles (NPs) with 3-aminopropyltrimethoxysilane-functionalized Fe{sub 3}O{sub 4} NPs. UV–Visible absorption spectroscopy demonstrates the obtained Fe{sub 3}O{sub 4}–noble metal composites inherit the typical surface plasmon resonance bands of Au, Ag at 533 and 453 nm, respectively. Magnetic measurements also indicated that the superparamagnetic Fe{sub 3}O{sub 4}–noble metal composites have excellent magnetic response behavior. A magnetic-induced idea was introduced to change their aggregated states and take full advantage of their surface-enhanced Raman scattering (SERS) performances. Under the induction of an external magnetic field, the bifunctional Fe{sub 3}O{sub 4}–noble metal aggregates exhibit the unique superiority in SERS detection of Rhodamine 6G (R6G), compared with the naturally dispersed Au, Ag NPs. Especially, the detection limit of the Fe{sub 3}O{sub 4}–Ag aggregates for R6G is as low as 10{sup −14} M, and the calculated EF reaches up to 1.2 × 10{sup 6}, which meets the requirements for trace detection of analytes. Furthermore, the superiority could be extended to sensitive detection of other organic molecules, such as 4-mercaptopyridine. This work provides a new insight for active adjustment of the aggregated states of SERS substrates and the optimization of SERS performances.

  16. J-aggregation, its impact on excited state dynamics and unique solvent effects on macroscopic assembly of a core-substituted naphthalenediimide

    KAUST Repository

    Kar, Haridas

    2015-03-12

    Herein we reveal a straightforward supramolecular design for the H-bonding driven J-aggregation of an amine-substituted cNDI in aliphatic hydrocarbons. Transient absorption spectroscopy reveals sub-ps intramolecular electron transfer in isolated NDI molecules in a THF solution followed by a fast recombination process, while a remarkable extension of the excited state lifetime by more than one order of magnitude occurred in methylcyclohexane likely owing to an increased charge-separation as a result of better delocalization of the charge-separated states in J-aggregates. We also describe unique solvent-effects on the macroscopic structure and morphology. While J-aggregation with similar photophysical characteristics was noticed in all the tested aliphatic hydrocarbons, the morphology strongly depends on the “structure” of the solvents. In linear hydrocarbons (n-hexane, n-octane, n-decane or n-dodecane), formation of an entangled fibrillar network leads to macroscopic gelation while in cyclic hydrocarbons (methylcyclohexane or cyclohexane) although having a similar polarity, the cNDI exhibits nanoscale spherical particles. These unprecedented solvent effects were rationalized by establishing structure-dependent specific interactions of the solvent molecules with the cNDI which may serve as a general guideline for solvent-induced morphology-control of structurally related self-assembled materials.

  17. Hydrogen peroxide is generated during the very early stages of aggregation of the amyloid peptides implicated in Alzheimer disease and familial British dementia.

    Science.gov (United States)

    Tabner, Brian J; El-Agnaf, Omar M A; Turnbull, Stuart; German, Matthew J; Paleologou, Katerina E; Hayashi, Yoshihito; Cooper, Leanne J; Fullwood, Nigel J; Allsop, David

    2005-10-28

    Alzheimer disease and familial British dementia are neurodegenerative diseases that are characterized by the presence of numerous amyloid plaques in the brain. These lesions contain fibrillar deposits of the beta-amyloid peptide (Abeta) and the British dementia peptide (ABri), respectively. Both peptides are toxic to cells in culture, and there is increasing evidence that early "soluble oligomers" are the toxic entity rather than mature amyloid fibrils. The molecular mechanisms responsible for this toxicity are not clear, but in the case of Abeta, one prominent hypothesis is that the peptide can induce oxidative damage via the formation of hydrogen peroxide. We have developed a reliable method, employing electron spin resonance spectroscopy in conjunction with the spin-trapping technique, to detect any hydrogen peroxide generated during the incubation of Abeta and other amyloidogenic peptides. Here, we monitored levels of hydrogen peroxide accumulation during different stages of aggregation of Abeta-(1-40) and ABri and found that in both cases it was generated as a short "burst" early on in the aggregation process. Ultrastructural studies with both peptides revealed that structures resembling "soluble oligomers" or "protofibrils" were present during this early phase of hydrogen peroxide formation. Mature amyloid fibrils derived from Abeta-(1-40) did not generate hydrogen peroxide. We conclude that hydrogen peroxide formation during the early stages of protein aggregation may be a common mechanism of cell death in these (and possibly other) neurodegenerative diseases.

  18. Protein aggregation and lyophilization: Protein structural descriptors as predictors of aggregation propensity

    OpenAIRE

    Roughton, Brock C.; Iyer, Lavanya K.; Bertelsen, Esben; Topp, Elizabeth M.; Camarda, Kyle V.

    2013-01-01

    Lyophilization can induce aggregation in therapeutic proteins, but the relative importance of protein structure, formulation and processing conditions are poorly understood. To evaluate the contribution of protein structure to lyophilization-induced aggregation, fifteen proteins were co-lyophilized with each of five excipients. Extent of aggregation following lyophilization, measured using size-exclusion chromatography, was correlated with computational and biophysical protein structural desc...

  19. Construction aggregates

    Science.gov (United States)

    Nelson, T.I.; Bolen, W.P.

    2007-01-01

    Construction aggregates, primarily stone, sand and gravel, are recovered from widespread naturally occurring mineral deposits and processed for use primarily in the construction industry. They are mined, crushed, sorted by size and sold loose or combined with portland cement or asphaltic cement to make concrete products to build roads, houses, buildings, and other structures. Much smaller quantities are used in agriculture, cement manufacture, chemical and metallurgical processes, glass production and many other products.

  20. Influence of collagen source on fibrillar architecture and properties of vitrified collagen membranes.

    Science.gov (United States)

    Majumdar, Shoumyo; Guo, Qiongyu; Garza-Madrid, Marcos; Calderon-Colon, Xiomara; Duan, Derek; Carbajal, Priscilla; Schein, Oliver; Trexler, Morgana; Elisseeff, Jennifer

    2016-02-01

    Collagen vitrigel membranes are transparent biomaterials characterized by a densely organized, fibrillar nanostructure that show promise in the treatment of corneal injury and disease. In this study, the influence of different type I collagen sources and processing techniques, including acid-solubilized collagen from bovine dermis (Bov), pepsin-solubilized collagen from human fibroblast cell culture (HuCC), and ficin-solubilized collagen from recombinant human collagen expressed in tobacco leaves (rH), on the properties of the vitrigel membranes was evaluated. Postvitrification carbodiimide crosslinking (CX) was also carried out on the vitrigels from each collagen source, forming crosslinked counterparts BovXL, HuCCXL, and rHXL, respectively. Collagen membrane ultrastructure and biomaterial properties were found to rely heavily on both collagen source and crosslinking. Bov and HuCC samples showed a random fibrillar organization of collagen, whereas rH vitrigels showed remarkable regional fibril alignment. After CX, light transmission was enhanced in all groups. Denaturation temperatures after CX increased in all membranes, of which the highest increase was seen in rH (14.71°C), suggesting improved thermal stability of the collagen fibrils in the membranes. Noncrosslinked rH vitrigels may be reinforced through CX to reach levels of mechanical strength and thermal stability comparable to Bov.

  1. On the observation of the need for an unusually high concentration of cysteine and homocysteine to induce aggregation of polymer-stabilized gold nano particles

    Energy Technology Data Exchange (ETDEWEB)

    Radhakumary, C.; Sreenivasan, K., E-mail: sreeni@sctimst.ac.in [Sree Chitra Tirunal Institute for Medical Sciences and Technology, Laboratory for Polymer Analysis, Biomedical Technology Wing (India)

    2013-02-15

    This study reports the interaction of chitosan-stabilized gold nanoparticles (CH-AuNPs) with cysteine (Cys) and homocysteine (Hcys) in aqueous media at pH 1.4. Since the polymer precipitates at higher pH, and the amino acids Cys and HCys are soluble at acidic pH, we kept the pH around 1.4 for stabilizing the particles. Zeta potential of CH-AuNPs was found to be positive and it is reasonable to assume that +ve Cys or Hcys at pH 1.4 will experience repulsive force. However, TEM images and absorption spectra indicated formation of aggregates including rod-like assembly. An interesting observation was the need for unusually high concentration of analytes (Cys and Hcys) to induce the assembly of CH-AuNPs. We also found time bound variation of the optical properties probably indicating the interaction is kinetically controlled and only a fraction of the analyte molecules having sufficient energy can bind onto the particles. We observed that at elevated temperature, the reaction was faster with a lower concentration of Cys or Hcys. These observations were supported by the classical Derjaguin-Landau-Verwey-Overbeek (DLVO) theory which describes the interparticle interaction and the colloidal stability in solution. Only molecules possessing enough energy to cross this force barrier can cause the aggregation. We also noted a time lag between Cys and Hcys to influence optical properties reflecting the possibility of using this simple approach to discriminate these two clinically relevant molecules. Our observation shows that simple sensing as well as generation of novel nanostructures could be manipulated by a judicious choice of conditions such as stabilizing agents, pH, etc.Graphical AbstractMore energetic ones cross the barrier to induce aggregation.

  2. Theory of activated-rate processes under shear with application to shear-induced aggregation of colloids.

    Science.gov (United States)

    Zaccone, Alessio; Wu, Hua; Gentili, Daniele; Morbidelli, Massimo

    2009-11-01

    Using an approximation scheme within the convective diffusion (two-body Smoluchowski) equation framework, we unveil the shear-driven aggregation mechanism at the origin of structure formation in sheared colloidal systems. The theory, verified against numerics and experiments, explains the induction time followed by explosive (irreversible) rise of viscosity observed in charge-stabilized colloidal and protein systems under steady shear. The Arrhenius-type equation with shear derived here, extending Kramers' theory in the presence of shear, clearly demonstrates the important role of shear drive in activated-rate processes as they are encountered in soft condensed matter.

  3. Triplatin, a platelet aggregation inhibitor from the salivary gland of the triatomine vector of Chagas disease, binds to TXA(2) but does not interact with glycoprotein PVI.

    Science.gov (United States)

    Ma, Dongying; Assumpção, Teresa C F; Li, Yuan; Andersen, John F; Ribeiro, José; Francischetti, Ivo M B

    2012-01-01

    Salivary glands from haematophagous animals express a notable diversity of negative modulators of platelet function. Triplatin is an inhibitor of collagen-induced platelet aggregation which has been described as an antagonist of glycoprotein VI (GPVI). Because triplatin displays sequence homology to members of the lipocalin family of proteins, we investigated whether triplatin mechanism of action could be explained by interaction with pro-haemostatic prostaglandins. Our results demonstrate that triplatin inhibits platelet aggregation induced by low doses of collagen, thromboxane A2 (TXA(2)) mimetic (U46619), and arachidonic acid (AA). On the other hand, it does not inhibit platelet aggregation by convulxin, PMA, or low-dose ADP. Isothermal titration calorimetry (ITC) revealed that triplatin binds AA, cTXA(2), TXB(2), U46619 or prostaglandin (PG)H(2) mimetic (U51605). Consistent with its ligand specificity, triplatin induces relaxation of rat aorta contracted with U46619. Triplatin also interacts with PGF(2α) and PGJ(2), but not with leukotrienes, AA or biogenic amines. Surface plasmon resonance experiments failed to demonstrate interaction of triplatin with GPVI; it also did to inhibit platelet adhesion to fibrillar or soluble collagen. Because triplatin displays sequence similarity to apolipoprotein D (ApoD) - a lipocalin associated with high-density lipoprotein, ApoD was tested as a putative TXA(2)-binding molecule. ITC failed to demonstrate binding of ApoD to all prostanoids described above, or to AA. Furthermore, ApoD was devoid of inhibitory properties towards platelets activation by AA, collagen, or U46619. In conclusion, triplatin mechanism of action has been elucidated without ambiguity as a novel TXA(2)- and PGF(2α)- binding protein. It conceivably blocks platelet aggregation and vasoconstriction, thus contributing to successful blood feeding at the vector-host interface.

  4. Sir2 is induced by oxidative stress in a yeast model of Huntington disease and its activation reduces protein aggregation.

    Science.gov (United States)

    Sorolla, M Alba; Nierga, Clara; Rodríguez-Colman, M José; Reverter-Branchat, Gemma; Arenas, Alicia; Tamarit, Jordi; Ros, Joaquim; Cabiscol, Elisa

    2011-06-01

    Huntington disease (HD) is a neurodegenerative disorder caused by expansion of CAG trinucleotide repeats, leading to an elongated polyglutamine sequence (polyQ) in the huntingtin protein. Misfolding of mutant polyQ proteins with expanded tracts results in aggregation, causing cytotoxicity. Oxidative stress in HD has been documented in humans as important to disease progression. Using yeast cells as a model of HD, we report that when grown at high glucose concentration, cells expressing mutant polyQ do not show apparent oxidative stress. At higher cell densities, when glucose becomes limiting and cells are metabolically shifting from fermentation to respiration, protein oxidation and catalase activity increases in relation to the length of the polyQ tract. Oxidative stress, either endogenous as a result of mutant polyQ expression or exogenously generated, increases Sir2 levels. Δ sir2 cells expressing expanded polyQ lengths show signs of oxidative stress even at the early exponential phase. In a wild-type background, isonicotinamide, a Sir2 activator, decreases mutant polyQ aggregation and the stress generated by expanded polyQ. Taken together, these results describe mutant polyQ proteins as being more toxic in respiring cells, causing oxidative stress and an increase in Sir2 levels. Activation of Sir2 would play a protective role against this toxicity. Copyright © 2011 Elsevier Inc. All rights reserved.

  5. Management of trauma-induced inflammatory root resorption using mineral trioxide aggregate obturation: two-year follow up.

    Science.gov (United States)

    Güzeler, Irem; Uysal, Serdar; Cehreli, Zafer C

    2010-12-01

    Inflammatory root resorption is a serious complication of dental trauma, which leads to progressive loss of the root structure. This report describes the treatment a previously traumatized young maxillary lateral incisor, severely affected by inflammatory root resorption. An 11-year-old boy presented with pain and mobility in his maxillary incisors which experienced fall trauma 2 years earlier. Radiographic examination revealed incomplete root development of the right central incisor, associated with advanced inflammatory root resorption and a periapical lesion. Following removal of a prior long-term calcium hydroxide dressing, the root canal was submitted to a 2-week irrigation regimen involving 1.25% sodium hypochlorite and 2% chlorhexidine gluconate. Thereafter, the entire root was filled with mineral trioxide aggregate. The radiographic follow up at 6 months showed arrest of root resorption and initiation of periapical healing in the absence of clinical symptoms and mobility. This was followed by advanced osseous regeneration and re-establishment of the periodontal space at 12 and 24 months. From the present case, it can be concluded that mineral trioxide aggregate obturation can be a viable option that can improve the healing outcomes in cases of severe inflammatory root resorption in young permanent teeth.

  6. Superhydrophobic and oleophilic open-cell foams from fibrillar blends of polypropylene and polytetrafluoroethylene.

    Science.gov (United States)

    Rizvi, Ali; Chu, Raymond K M; Lee, Jung H; Park, Chul B

    2014-12-10

    Effective removal of oils from water is of global significance for environmental protection. In this study, we investigate the hydrophobicity and oleophilicity of open-cell polymer foams prepared in a continuous and scalable extrusion process. The material used to prepare the open-cell foams is a fibrillar blend of polypropylene (PP) and polytetrafluoroethylene (PTFE). Scanning electron microscopy (SEM) images of the morphology of the PP/PTFE fibrillar blend reveal that the PTFE has a fibrillar morphology in the PP matrix. SEM micrograph of the extruded foam shows the formation of an interconnected open-cell structure. Using nitrogen pycnometry, the open-cell content is estimated to be 97.7%. A typical bulk density of the open-cell foam is measured to be about 0.07 g cm(-3) corresponding to a void fraction of 92%. Thus, a large three-dimensional space is made available for oil storage. A drop of water on the cross-section of the extruded open-cell foam forms a contact angle of 160° suggesting that the open-cell foam exhibits superhydrophobicity. The open-cell foam can selectively absorb various petroleum products, such as octane, gasoline, diesel, kerosene, light crude oil, and heavy crude oil from water and the uptake capacities range from about 5 to 24 g g(-1). The uptake kinetics can be enhanced by exposing the open-cell foam to high intensity ultrasound which increases the surface porosity of the thin, impervious, foam "skin" layer. The reusability of the foam can be improved by using a matrix polymer which demonstrates superior elastic properties and prevents the foams from undergoing a large permanent deformation upon compression to "squeeze out" the oil. For example, when the PP homopolymer matrix is replaced with a PP random copolymer, the permanent deformation for 10 compressive cycles is reduced from about 30% to 10%. To the best of our knowledge, these PP-based open-cell foams outperform PP-based absorbents conventionally used for oil-spill cleanup

  7. Studies on aggregation-propensities and secondary structural transformations of proteins

    Institute of Scientific and Technical Information of China (English)

    JI Li-Na; GAO Yong-Guang; ZHANG Feng; LI Hong-Tao; HU Hong-Yu; HU Jun

    2005-01-01

    The insoluble and fibrillar aggregates of some proteins are thought to be the pathological cause of neurodegenerative diseases. The aggregation-propensities of different types of proteins were investigated by Thioflavine T fluorescence assay and atomic force microscopy imaging. Then, the structural transformations of the proteins from aqueous state to solid state were studied by circular dichroism spectroscopy. The results indicate that proteins of different secondary structure show variations in their aggregation-propensities, together with their various structural transformations from aqueous state to solid state. Our studies imply that the structural transformation of proteins from solution to solid state is closely associated with their aggregation-propensities, which will provide insight into the molecular mechanism of protein aggregation in neurodegenerative diseases.

  8. The dynamic relationship between low birthweight and induced abortion in New York City. An aggregate time-series analysis.

    Science.gov (United States)

    Joyce, T; Grossman, M

    1990-11-01

    We use a vector autoregression to examine the dynamic relationship between the race-specific percentage of pregnancies terminated by induced abortion and the race-specific percentage of low-birthweight births in New York City. With monthly data beginning in 1972, we find that induced abortion explains low birthweight for blacks, but not for whites. There is no evidence of feedback from low birthweight to induced abortion. The findings suggest that unanticipated decreases in the percentage of pregnancies terminated by induced abortion would worsen birth outcomes among blacks in New York City.

  9. DRAG ON SUBMICRON NANOPARTICLE AGGREGATES

    Institute of Scientific and Technical Information of China (English)

    F.; Einar; Kruis

    2005-01-01

    A new procedure was developed for estimating the effective collision diameter of an aggregate composed of primary particles of any size. The coagulation coefficient of two oppositely charged particles was measured experimentally and compared with classic Fuchs theory, including a new method to account for particle non-sphericity. A second set of experiments were performed on well-defined nanoparticle aggregates at different stages of sintering, i.e. from the aggregate to the fully sintered stage. Here, electrical mobility was used to characterize the particle drag. The aggregates are being built from two different size-fractionated nanoparticle aerosols, the non-aggregated particles are discarded by an electrofilter and then they are passed through a furnace at concentrations low enough not to induce coagulation.

  10. Fluorescent turn-on detection and assay of water based on 4-(2-dimethylaminoethyloxy)-N-octadecyl-1,8-naphthalimide with aggregation-induced emission enhancement

    Science.gov (United States)

    Sun, Yang; Liang, Xuhua; Wei, Song; Fan, Jun; Yang, Xiaohui

    2012-11-01

    The photophysical properties of 4-(2-dimethylaminoethyloxy)-N-octadecyl-1,8-naphthalimide (DON) consisting of donor and acceptor units were investigated in different solutions. Changing from a non-polar to a polar solvent increased the solvent interaction and both the excitation and emission spectra were shifted to longer wavelength and intensity decreased through taking advantage of twisted intramolecular charge transfer (TICT). Density functional theory (DFT) calculations and spectral analyses revealed that such fluorophores were capable of sensing protons by intramolecular charge transfer (ICT). Empirical and quantum mechanical calculations showed that the electron donating effect of the dimethylamino group decreased the change in dipole moment on excitation which resulted in a fluorescence quantum yield remarkably enhanced as the solvent polarity increased. In alkaline media the fluorescence of DON was quenched owing to photoinduced electron transfer being disabled in acidic media. The pKa of the 1,8-naphthailimide dye was 6.70, which defines the dye as a highly efficient "off-on" switch. DON exhibited a typical aggregation-induced emission enhancement (AIEE) behavior that it is virtually nonemissive in organic solvent but highly luminescent in water, as a result of the restriction of free intramolecular rotation of a C-N bond and the non-planar configuration in the aggregate state. The hydrophobicity of octadecyl group provided DON with a fluorescent response to water based on AIEE and the water-dependent spectral characteristics of DON, and the AIEE of DON caused by the effect of water and formation of J-aggregation states. In the range of 0-79.8% (v/v), the fluorescence intensity of DON in acetone solution increased as a linear function of the water content. The optimum detection limits were of 0.011%, 0.0021%, and 0.0033% of water in acetone, ethanol, and acetonitrile, respectively. Satisfactory reproducibility, reversibility and a short response time were

  11. PEG-stabilized core-shell nanoparticles: impact of linear versus dendritic polymer shell architecture on colloidal properties and the reversibility of temperature-induced aggregation.

    Science.gov (United States)

    Gillich, Torben; Acikgöz, Canet; Isa, Lucio; Schlüter, A Dieter; Spencer, Nicholas D; Textor, Marcus

    2013-01-22

    Superparamagnetic iron oxide nanoparticles (SPIONs) have been widely used experimentally and also clinically tested in diverse areas of biology and medicine. Applications include magnetic resonance imaging, cell sorting, drug delivery, and hyperthermia. Physicochemical surface properties are particularly relevant in the context of achieving high colloidal nanoparticle (NP) stability and preventing agglomeration (particularly challenging in biological fluids), increasing blood circulation time, and possibly targeting specific cells or tissues through the presentation of bioligands. Traditionally, NP surfaces are sterically stabilized with hydrophilic polymeric matrices, such as dextran or linear poly(ethylene glycol) brushes. While dendrimers have found applications as drug carriers, dispersants with dendritic ("dendrons") or hyperbranched structures have been comparatively neglected despite their unique properties, such as a precisely defined molecular structure and the ability to present biofunctionalities at high density at the NP periphery. This work covers the synthesis of SPIONs and their stabilization based on poly(ethylene glycol) (PEG) and oligo(ethylene glycol) (OEG) chemistry and compares the physicochemical properties of NPs stabilized with linear and dendritic macromolecules of comparable molecular weight. The results highlight the impact of the polymeric interface architecture on solubility, colloidal stability, hydrodynamic radius, and thermoresponsive behavior. Dendron-stabilized NPs were found to provide excellent colloidal stability, despite a smaller hydrodynamic radius and lower degree of soft shell hydration compared to linear PEG analogues. Moreover, for the same grafting density and molecular weight of the stabilizers, OEG dendron-stabilized NPs show a reversible temperature-induced aggregation behavior, in contrast to the essentially irreversible aggregation and sedimentation observed for the linear PEG analogues. This new class of

  12. Exquisite 1D Assemblies Arising from Rationally Designed Asymmetric Donor-Acceptor Architectures Exhibiting Aggregation-Induced Emission as a Function of Auxiliary Acceptor Strength.

    Science.gov (United States)

    Singh, Roop Shikha; Mukhopadhyay, Sujay; Biswas, Arnab; Pandey, Daya Shankar

    2016-01-11

    One-dimensional nanostructures with aggregation-induced emission (AIE) properties have been fabricated to keep the pace with growing demand from optoelectronics applications. The compounds 2-[4-(4-methylpiperazin-1-yl)benzylidene]malononitrile (PM1), 2-{4-[4-(pyridin-2-yl)piperazin-1-yl]-benzylidene}malononitrile (PM2), and 2-{4-[4-(pyrimidin-2-yl)piperazin-1-yl]benzylidene}malononitrile (PM3) have been designed and synthesized by melding piperazine and dicyanovinylene to investigate AIE in an asymmetric donor-acceptor (D-A) construct of A'-D-π-A- topology. The synthetic route has been simplified by using phenylpiperazine as a weak donor (D), dicyanovinylene as an acceptor (A), and pyridyl/pyrimidyl groups (PM2/PM3) as auxiliary acceptors (A'). It has been established that A' plays a vital role in triggering AIE in these compounds because the same D-A construct led to aggregation-caused quenching upon replacing A' with an electron-donating ethyl group (PM1). Moreover, the effect of restricted intramolecular rotation and twisted intramolecular charge transfer on the mechanism of AIE has also been investigated. Furthermore, it has been clearly shown that the optical disparities of these A'-D-π-A architectures are a direct consequence of comparative A' strength. Single-crystal X-ray analyses provided justification for role of intermolecular interactions in aggregate morphology. Electrochemical and theoretical studies affirmed the effect of the A' strength on the overall properties of the A'-D-π-A system.

  13. Calcitonin gene-related peptide induced migraine attacks in patients with and without familial aggregation of migraine

    DEFF Research Database (Denmark)

    Guo, Song; Christensen, Anne Francke; Liu, Marie Louise

    2017-01-01

    BACKGROUND: Calcitonin gene-related peptide provokes migraine attacks in 65% of patients with migraine without aura. Whether aggregation of migraine in first-degree relatives (family load) or a high number of risk-conferring single nucleotide polymorphisms contributes to migraine susceptibility...... to calcitonin gene-related peptide infusion in migraine patients is unknown. We hypothesized that genetic enrichment plays a role in triggering of migraine and, therefore, migraine without aura patients with high family load would report more migraine attacks after calcitonin gene-related peptide infusion than...... patients with low family load. METHODS: We allocated 40 previously genotyped migraine without aura patients to receive intravenous infusion of 1.5 µg/min calcitonin gene-related peptide and recorded migraine attacks including headache characteristics and associated symptoms. Information of familial...

  14. Ultrafast fluorescent decay induced by metal-mediated dipole-dipole interaction in two-dimensional molecular aggregates

    CERN Document Server

    Hu, Qing; Nam, Sang Hoon; Xiao, Jun; Liu, Yongmin; Zhang, Xiang; Fang, Nicholas X

    2016-01-01

    Two-dimensional molecular aggregate (2DMA), a thin sheet of strongly interacting dipole molecules self-assembled at close distance on an ordered lattice, is a fascinating fluorescent material. It is distinctively different from the single or colloidal dye molecules or quantum dots in most previous research. In this paper, we verify for the first time that when a 2DMA is placed at a nanometric distance from a metallic substrate, the strong and coherent interaction between the dipoles inside the 2DMA dominates its fluorescent decay at picosecond timescale. Our streak-camera lifetime measurement and interacting lattice-dipole calculation reveal that the metal-mediated dipole-dipole interaction shortens the fluorescent lifetime to about one half and increases the energy dissipation rate by ten times than expected from the noninteracting single-dipole picture. Our finding can enrich our understanding of nanoscale energy transfer in molecular excitonic systems and may designate a new direction for developing fast a...

  15. Aggregation induced Raman scattering of squaraine dye: Implementation in diagnosis of cervical cancer dysplasia by SERS imaging.

    Science.gov (United States)

    Narayanan, Nisha; Karunakaran, Varsha; Paul, Willi; Venugopal, Karunakaran; Sujathan, K; Kumar Maiti, Kaustabh

    2015-08-15

    The extent of squaraine dye aggregation that reflects on surface enhanced Raman signal scattering (SERS) intensity upon adsorption on nano-roughened gold surface has been investigated. Here we have synthesized a serious of six squaraine dyes consisting of two different electron donor moiety i.e. 1,1,2-trimethyl-1H-benzo[e]indole and 2-methylbenzo[d]thiazole which modulates the chemisorptions and hydrophobicity being designated as SQ1, SQ2, SQ3, SQ4, SQ5 and SQ6. Interestingly, SQ2 (mono lipoic acid appended), SQ5 and SQ6 (conjugated with hexyl and dodecyl side chain) squaraine derivatives having more tendency of aggregation in DMSO-water mixed solvent showed significant increase of Raman scattering in the fingerprint region when chemisorbed on spherical gold nanoparticles. Two sets of SERS nanotags were prepared with colloidal gold nanoparticle (Au-NPs size: 40 nm) by incorporating Raman reporters SQ2 and SQ5 followed by thiolated PEG encapsulation (SH-PEG, SH-PEG-COOH) denoted as AuNPs-SQ2-PEG and AuNPs-SQ5-PEG. Further conjugation of these nanotag with monoclonal antibodies specific to over expressed receptors, EGFR and p16/Ki-67 in cervical cancer cell, HeLa showed prominent SERS mapping intensity and selectivity towards cell surface and nucleus. The fast and accurate recognition obtained by antibody triggered SERS-nanotag has been compared with conventional time consuming immunocytochemistry technique which prompted us to extend further investigation using real patient cervical smear sample for a non-invasive, ultrafast and accurate diagnosis.

  16. A condensation-ordering mechanism in nanoparticle-catalyzed peptide aggregation.

    Directory of Open Access Journals (Sweden)

    Stefan Auer

    2009-08-01

    Full Text Available Nanoparticles introduced in living cells are capable of strongly promoting the aggregation of peptides and proteins. We use here molecular dynamics simulations to characterise in detail the process by which nanoparticle surfaces catalyse the self-assembly of peptides into fibrillar structures. The simulation of a system of hundreds of peptides over the millisecond timescale enables us to show that the mechanism of aggregation involves a first phase in which small structurally disordered oligomers assemble onto the nanoparticle and a second phase in which they evolve into highly ordered as their size increases.

  17. Protein Fibrillar Nanopolymers: Molecular-Level Insights into Their Structural, Physical and Mechanical Properties

    Science.gov (United States)

    Trusova, Valeriya M.

    2015-09-01

    Amyloid fibrils represent a generic class of mechanically strong and stable biomaterials with extremely advantageous properties. Although amyloids were initially associated only with severe neurological disorders, the role of these structures nowadays is shifting from health debilitating to highly beneficial both in biomedical and technological aspects. Intensive involvement of fibrillar assemblies into the wide range of pathogenic and functional processes strongly necessitate the molecular level characterization of the structural, physical and elastic features of protein nanofibrils. In the present contribution, we made an attempt to highlight the up-to-date progress in the understanding of amyloid properties from the polymer physics standpoint. The fundamental insights into protein fibril behavior are essential not only for development of therapeutic strategies to combat the protein misfolding disorders but also for rational and precise design of novel biodegradable protein-based nanopolymers.

  18. A cyclic undecamer peptide mimics a turn in folded Alzheimer amyloid β and elicits antibodies against oligomeric and fibrillar amyloid and plaques.

    Directory of Open Access Journals (Sweden)

    Peter Hoogerhout

    Full Text Available The 39- to 42-residue amyloid β (Aβ peptide is deposited in extracellular fibrillar plaques in the brain of patients suffering from Alzheimer's Disease (AD. Vaccination with these peptides seems to be a promising approach to reduce the plaque load but results in a dominant antibody response directed against the N-terminus. Antibodies against the N-terminus will capture Aβ immediately after normal physiological processing of the amyloid precursor protein and therefore will also reduce the levels of non-misfolded Aβ, which might have a physiologically relevant function. Therefore, we have targeted an immune response on a conformational neo-epitope in misfolded amyloid that is formed in advance of Aβ-aggregation. A tetanus toxoid-conjugate of the 11-meric cyclic peptide Aβ(22-28-YNGK' elicited specific antibodies in Balb/c mice. These antibodies bound strongly to the homologous cyclic peptide-bovine serum albumin conjugate, but not to the homologous linear peptide-conjugate, as detected in vitro by enzyme-linked immunosorbent assay. The antibodies also bound--although more weakly--to Aβ(1-42 oligomers as well as fibrils in this assay. Finally, the antibodies recognized Aβ deposits in AD mouse and human brain tissue as established by immunohistological staining. We propose that the cyclic peptide conjugate might provide a lead towards a vaccine that could be administered before the onset of AD symptoms. Further investigation of this hypothesis requires immunization of transgenic AD model mice.

  19. A label-free colorimetric aptasensor for simple, sensitive and selective detection of Pt (II) based on platinum (II)-oligonucleotide coordination induced gold nanoparticles aggregation.

    Science.gov (United States)

    Fan, Daoqing; Zhai, Qingfeng; Zhou, Weijun; Zhu, Xiaoqing; Wang, Erkang; Dong, Shaojun

    2016-11-15

    Herein, a gold nanoparticles (AuNPs) based label-free colorimetric aptasensor for simple, sensitive and selective detection of Pt (II) was constructed for the first time. Four bases (G-G mismatch) mismatched streptavidin aptamer (MSAA) was used to protect AuNPs from salt-induced aggregation and recognize Pt (II) specifically. Only in the presence of Pt (II), coordination occurs between G-G bases and Pt (II), leading to the activation of streptavidin aptamer. Streptavidin coated magnetic beads (MBs) were used as separation agent to separate Pt (II)-coordinated MSAA. The residual less amount of MSAA could not efficiently protect AuNPs anymore and aggregation of AuNPs will produce a colorimetric product. With the addition of Pt (II), a pale purple-to-blue color variation could be observed by the naked eye. A detection limit of 150nM and a linear range from 0.6μM to 12.5μM for Pt (II) could be achieved without any amplification.

  20. Microrheological characterization of collagen systems: from molecular solutions to fibrillar gels.

    Directory of Open Access Journals (Sweden)

    Marjan Shayegan

    Full Text Available Collagen is the most abundant protein in the extracellular matrix (ECM, where its structural organization conveys mechanical information to cells. Using optical-tweezers-based microrheology, we investigated mechanical properties both of collagen molecules at a range of concentrations in acidic solution where fibrils cannot form and of gels of collagen fibrils formed at neutral pH, as well as the development of microscale mechanical heterogeneity during the self-assembly process. The frequency scaling of the complex shear modulus even at frequencies of ∼10 kHz was not able to resolve the flexibility of collagen molecules in acidic solution. In these solutions, molecular interactions cause significant transient elasticity, as we observed for 5 mg/ml solutions at frequencies above ∼200 Hz. We found the viscoelasticity of solutions of collagen molecules to be spatially homogeneous, in sharp contrast to the heterogeneity of self-assembled fibrillar collagen systems, whose elasticity varied by more than an order of magnitude and in power-law behavior at different locations within the sample. By probing changes in the complex shear modulus over 100-minute timescales as collagen self-assembled into fibrils, we conclude that microscale heterogeneity appears during early phases of fibrillar growth and continues to develop further during this growth phase. Experiments in which growing fibrils dislodge microspheres from an optical trap suggest that fibril growth is a force-generating process. These data contribute to understanding how heterogeneities develop during self-assembly, which in turn can help synthesis of new materials for cellular engineering.

  1. Signature of an aggregation-prone conformation of tau

    Science.gov (United States)

    Eschmann, Neil A.; Georgieva, Elka R.; Ganguly, Pritam; Borbat, Peter P.; Rappaport, Maxime D.; Akdogan, Yasar; Freed, Jack H.; Shea, Joan-Emma; Han, Songi

    2017-03-01

    The self-assembly of the microtubule associated tau protein into fibrillar cell inclusions is linked to a number of devastating neurodegenerative disorders collectively known as tauopathies. The mechanism by which tau self-assembles into pathological entities is a matter of much debate, largely due to the lack of direct experimental insights into the earliest stages of aggregation. We present pulsed double electron-electron resonance measurements of two key fibril-forming regions of tau, PHF6 and PHF6*, in transient as aggregation happens. By monitoring the end-to-end distance distribution of these segments as a function of aggregation time, we show that the PHF6(*) regions dramatically extend to distances commensurate with extended β-strand structures within the earliest stages of aggregation, well before fibril formation. Combined with simulations, our experiments show that the extended β-strand conformational state of PHF6(*) is readily populated under aggregating conditions, constituting a defining signature of aggregation-prone tau, and as such, a possible target for therapeutic interventions.

  2. Time-dependent inhibitory effects of cGMP-analogues on thrombin-induced platelet-derived microparticles formation, platelet aggregation, and P-selectin expression.

    Science.gov (United States)

    Nygaard, Gyrid; Herfindal, Lars; Kopperud, Reidun; Aragay, Anna M; Holmsen, Holm; Døskeland, Stein Ove; Kleppe, Rune; Selheim, Frode

    2014-07-01

    In platelets, nitric oxide (NO) activates cGMP/PKG signalling, whereas prostaglandins and adenosine signal through cAMP/PKA. Cyclic nucleotide signalling has been considered to play an inhibitory role in platelets. However, an early stimulatory effect of NO and cGMP-PKG signalling in low dose agonist-induced platelet activation have recently been suggested. Here, we investigated whether different experimental conditions could explain some of the discrepancy reported for platelet cGMP-PKG-signalling. We treated gel-filtered human platelets with cGMP and cAMP analogues, and used flow cytometric assays to detect low dose thrombin-induced formation of small platelet aggregates, single platelet disappearance (SPD), platelet-derived microparticles (PMP) and thrombin receptor agonist peptide (TRAP)-induced P-selectin expression. All four agonist-induced platelet activation phases were blocked when platelets were costimulated with the PKG activators 8-Br-PET-cGMP or 8-pCPT-cGMP and low-doses of thrombin or TRAP. However, extended incubation with 8-Br-PET-cGMP decreased its inhibition of TRAP-induced P-selectin expression in a time-dependent manner. This effect did not involve desensitisation of PKG or PKA activity, measured as site-specific VASP phosphorylation. Moreover, PKG activators in combination with the PKA activator Sp-5,6-DCL-cBIMPS revealed additive inhibitory effect on TRAP-induced P-selectin expression. Taken together, we found no evidence for a stimulatory role of cGMP/PKG in platelets activation and conclude rather that cGMP/PKG signalling has an important inhibitory function in human platelet activation.

  3. Detection of the critical micelle concentration of cationic and anionic surfactants based on aggregation-induced emission property of hexaphenylsilole derivatives

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    We report a fluorescence "turn-on" method to detect the critical micelle concentration (CMC) of surfactants. This method works well for both cationic and anionic surfactants. It employs an unprecedented mechanism (aggregation-induced emission, or AIE) to determine the CMC values, and the results are consistent with the data obtained by the classical techniques. In addition, this method renders the convenient detection of the CMC values. Any large and professional instruments are unnecessary, instead, a portable UV lamp and an ultrasonic generator are enough to carry out the detection in an ordinary laboratory. Considering that micelles are interesting entities and have found applications in many important fields such as emulsion polymerization, template of nanosized materials synthesis, controllable drug delivery and macromolecular self-assembling. Our experimental results may offer a facile, sensitive and promising method to detect the formation of micelles constructed by the new amphiphilic molecules and macromolecules.

  4. Detection of the critical micelle concentration of cationic and anionic surfactants based on aggregation-induced emission property of hexaphenylsilole derivatives

    Institute of Scientific and Technical Information of China (English)

    TANG Li; JIN JiaKe; ZHANG Shuang; MAO Yu; SUN JingZhi; YUAN WangZhang; ZHAO Hui; XU HaiPeng; QIN AnJun; TANG Ben Zhong

    2009-01-01

    We report a fluorescence "turn-on" method to detect the critical micelle concentration (CMC) of sur-factants. This method works well for both cationic and anionic surfactants. It employs an unprece-dented mechanism (aggregation-induced emission, or AIE) to determine the CMC values, and the re-suits are consistent with the data obtained by the classical techniques. In addition, this method renders the convenient detection of the CMC values. Any large and professional instruments are unnecessary, instead, a portable UV lamp and an ultrasonic generator are enough to carry out the detection in an ordinary laboratory. Considering that micelles are interesting entities and have found applications in many important fields such as emulsion polymerization, template of nanoeized materials synthesis, controllable drug delivery and macromolecular self-assembling. Our experimental results may offer a facile, sensitive and promising method to detect the formation of micelles constructed by the new amphiphilic molecules and macromolecules.

  5. Aggregation-Induced Emission Active Metal-Free Chemosensing Platform for Highly Selective Turn-On Sensing and Bioimaging of Pyrophosphate Anion.

    Science.gov (United States)

    Gogoi, Abhijit; Mukherjee, Sandipan; Ramesh, Aiyagari; Das, Gopal

    2015-07-07

    We report the synthesis of a metal-free chemosensor for highly selective sensing of pyrophosphate (PPi) anion in physiological medium. The novel phenylbenzimidazole functionalized imine containing chemosensor (L; [2,6-bis(((4-(1H-benzo[d]imidazol-2-yl)phenyl)imino) methyl)-4 methyl phenol]) could sense PPi anion through "turn-on" colorimetric and fluorimetric responses in a very competitive environment. The overall sensing mechanism is based on the aggregation-induced emission (AIE) phenomenon. Moreover, a real time in-field device application was demonstrated by sensing PPi in paper strips coated with L. Interestingly, detection of intracellular PPi ions in model human cells could also be possible by fluorescence microscopic studies without any toxicity to these cells.

  6. Cucurbitacin B induces rapid depletion of the G-actin pool through reactive oxygen species-dependent actin aggregation in melanoma cells

    Institute of Scientific and Technical Information of China (English)

    Yanting Zhang; Dongyun Ouyang; Lihui Xu; Yuhua Ji; Qingbing Zha; Jiye Cai; Xianhui He

    2011-01-01

    Cucurbitacin B (CuB), a triterpenoid compound isolated from Cucurbitaceae plants, has been reported as a promising anti-cancer agent, yet its action mechanism is still controversial. In this study, we explored the potential mechanism of CuB in murine B16F10 melanoma cells.Anti-proliferation and anti-invasion effects were assessed in cultured cells, and in vivo anti-tumor activity was evaluated in a murine subcutaneous melanoma model. Flow cytometry was adopted to analyze cell cycle distribution and reactive oxygen species (ROS) levels. Actin levels were determined by western blot analysis, and the profiles of differential expressed proteins were identified by a quantitative proteomic approach. The results showed that CuB exerted inhibitory effects on cell proliferation, colony formation, as well as migration and invasion potential of the melanoma cells. The growth of subcutaneous melanoma was significantly inhibited in mice treated with CuB when compared with control group. Furthermore,CuB treatment caused rapid cell membrane blebbing and deformation, and induced G2/M-phase arrest and formation of multiploid cells. Notably, the G-actin pool was rapidly depleted and actin aggregates were formed quickly after CuB treatment. A number of cytoskeleton-regulatory proteins were differentially regulated. Blockage of ROS production significantly reduced the G-actin depletion ability and the anti-tumor activity of CuB. These findings indicate that CuB induces rapid depletion of the G-actin pool through ROS-dependent actin aggregation in melanoma cells, which may at least partly account for its anti-tumor activity.

  7. Quantification of the binding properties of Cu2+ to the amyloid beta peptide: coordination spheres for human and rat peptides and implication on Cu2+-induced aggregation.

    Science.gov (United States)

    Hong, Lian; Carducci, Tessa M; Bush, William D; Dudzik, Christopher G; Millhauser, Glenn L; Simon, John D

    2010-09-02

    There is no consensus on the coordinating ligands for Cu(2+) by Abeta. However, the differences in peptide sequence between human and rat have been hypothesized to alter metal ion binding in a manner that alters Cu(2+)-induced aggregation of Abeta. Herein, we employ isothermal titration calorimetry (ITC), circular dichroism (CD), and electron paramagnetic resonance (EPR) spectroscopy to examine the Cu(2+) coordination spheres to human and rat Abeta and an extensive set of Abeta(16) mutants. EPR of the mutant peptides is consistent with a 3N1O binding geometry, like the native human peptide at pH 7.4. The thermodynamic data reveal an equilibrium between three coordination spheres, {NH(2), O, N(Im)(His6), N(-)}, {NH(2), O, N(Im)(His6), N(Im)(His13)}, and {NH(2), O, N(Im)(His6), N(Im)(His14)}, for human Abeta(16) but one dominant coordination for rat Abeta(16), {NH(2), O, N(Im)(His6), N(-)}, at pH 7.4-6.5. ITC and CD data establish that the mutation R5G is sufficient for reproducing this difference in Cu(2+) binding properties at pH 7.4. The substitution of bulky and positively charged Arg by Gly is proposed to stabilize the coordination {NH(2), O-, N(Im)(His6), N(-)} that then results in one dominating coordination sphere for the case of the rat peptide. The differences in the coordination geometries for Cu(2+) by the human and rat Abeta are proposed to contribute to the variation in the ability of Cu(2+) to induce aggregation of Abeta peptides.

  8. α-Synuclein aggregation, seeding and inhibition by scyllo-inositol

    Energy Technology Data Exchange (ETDEWEB)

    Ibrahim, Tarek [Biological Sciences, Sunnybrook Research Institute (Canada); Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, M4N 3M5, ON (Canada); McLaurin, JoAnne, E-mail: jmclaurin@sri.utoronto.ca [Biological Sciences, Sunnybrook Research Institute (Canada); Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, M4N 3M5, ON (Canada)

    2016-01-15

    Recent literature demonstrates the accelerated aggregation of α-synuclein, a protein implicated in the pathogenesis of Parkinson's disease (PD), by the presence of preformed fibrillar conformers in vitro. Furthermore, these preformed fibrillar seeds are suggested to accelerate pathological induction in vivo when injected into the brains of mice. Variation in the results of in vivo studies is proposed to be caused by α-synuclein conformational variants. To investigate the impact of amino acid sequence on seeding efficiency, human and mouse α-synuclein seeds, which vary at 7 amino acid residues, were generated and cross-seeding kinetics studied. Using transmission electron microscopy (TEM), we confirmed that mouse α-synuclein aggregated more rapidly than human α-synuclein. Subsequently, we determined that seeding of human and mouse α-synuclein was more rapid in the presence of seeds generated from the same species. In addition, an established amyloid inhibitor, scyllo-inositol, was examined for potential inhibitory effects on α-synuclein aggregation. TEM analysis of protein:inhibitor assays demonstrated that scyllo-inositol inhibits the aggregation of α-synuclein, suggesting the therapeutic potential of the small molecule in PD. - Highlights: • Mouse α-syn fibrillizes in a significantly shorter timeframe than human α-syn. • Seeding of monomers is more efficient when seeds originate from the same species. • scyllo-Inositol has anti-aggregation effects on mouse and human α-syn.

  9. Exposure to perchlorate induces the formation of macrophage aggregates in the trunk kidney of zebrafish and mosquitofish

    Science.gov (United States)

    Capps, T.; Mukhi, S.; Rinchard, J.J.; Theodorakis, C.W.; Blazer, V.S.; Patino, R.

    2004-01-01

    Environmental contamination of ground and surface waters by perchlorate, derived from ammonium perchlorate (AP) and other perchlorate salts, is of increasing concern. Exposure to perchlorate can impair the thyroid endocrine system, which is thought to modulate renal and immune function in vertebrates. This study with zebrafish Danio rerio and eastern mosquitofish Gambusia holbrooki examined the histological effects of perchlorate on the trunk kidney, which in teleosts serves excretory and hemopoietic functions and therefore may be a target of perchlorate effects. Adult zebrafish of both sexes were exposed in the laboratory to waterborne, AP-derived perchlorate at measured concentrations of 18 mg/L for 8 weeks. Adult male mosquitofish were exposed to waterborne sodium perchlorate at measured perchlorate concentrations of 1-92 mg/L for 8 weeks. Control fish were kept in untreated water. The region of the body cavity containing the trunk kidney was processed from each fish for histological analysis. Macrophage aggregates (MAs), possible markers of contaminant exposure or immunotoxic effect, were present in the hemopoietic region of the kidney in both species exposed to perchlorate. The estimated percent area of kidney sections occupied by MAs was greater in zebrafish exposed to perchlorate at 18 mg/L (P kidney is affected by exposure to perchlorate. The concentrations of perchlorate at which the effects were noted are relatively high but within the range reported in some contaminated habitats.

  10. Aggregation-induced white-light emission from the triple-stranded dinuclear Sm(iii) complex.

    Science.gov (United States)

    Leng, Jiaqi; Li, Hongfeng; Chen, Peng; Sun, Wenbin; Gao, Ting; Yan, Pengfei

    2014-08-28

    A novel bis-β-diketone ligand, 4,4'-bis(4,4,4-trifluoro-1,3-dioxobutyl)(phenoxy)-1,1'-binaphthalene (BTPB), is designed for synthesis of a white light emissive lanthanide complex. The ligand bears two benzoyl β-diketonate sites linked by a 1,1'-binaphthoxy spacer. Reaction of the doubly negatively charged bis-bidentate ligand with lanthanide ions forms triple-stranded dinuclear complexes Sm2(BTPB)3(H2O)4 () and Gd2(BTPB)3(H2O)4 (), which have been fully characterized by various spectroscopic techniques. UV-Vis absorption and emission spectroscopic techniques are used to investigate photophysical properties of the ligand and its complexes in THF and CHCl3. In some cases aggregation of the ligand results in the appearance of a new luminescence band at about 510 nm in addition to the monomer fluorescence. In complex , partial energy transfer from BTPB results in Sm(iii)-based red light emission in addition to the BTPB-based blue/green emission. With the variation of the excited wavelength and concentration of the solution, complex shows a tunable white light emission with the balance of three primary colors. This is an unusual case of observation of white light emission from a single molecule Sm(iii) complex.

  11. Impact of Dabigatran versus Phenprocoumon on ADP Induced Platelet Aggregation in Patients with Atrial Fibrillation with or without Concomitant Clopidogrel Therapy (the Dabi-ADP-1 and Dabi-ADP-2 Trials

    Directory of Open Access Journals (Sweden)

    Amadea M. Martischnig

    2015-01-01

    Full Text Available Background. A relevant number of patients receive triple therapy with clopidogrel, aspirin, and oral anticoagulation. Clopidogrel’s efficacy on ADP induced platelet function may be influenced by concomitant antithrombotic therapies. Data regarding the effect of dabigatran on platelet function is limited to in vitro studies and healthy individuals. Methods. The “Dabi-ADP-1” and “Dabi-ADP-2” trials randomized patients with atrial fibrillation to either dabigatran or phenprocoumon for a 2-week period. In Dabi-ADP-1 (n=70 patients with clopidogrel therapy were excluded and in Dabi-ADP-2 (n=46 patients had to be treated concomitantly with clopidogrel. The primary endpoint was ADP-induced platelet aggregation between dabigatran and phenprocoumon at 14 days. Secondary endpoints were ADPtest HS-, TRAP-, and COL-induced platelet aggregation. Results. There was no significant difference regarding the primary endpoint between both groups in either trial (Dabi-ADP-1: Dabigatran: 846 [650–983] AU × min versus phenprocoumon: 839 [666–1039] AU × min, P=0.90 and Dabi-ADP-2: 326 [268–462] versus 350 [214–535], P=0.70 or regarding the secondary endpoints, ADPtest HS-, TRAP-, and COL-induced platelet aggregation. Conclusion. Dabigatran as compared to phenprocoumon has no impact on ADP-induced platelet aggregation in atrial fibrillation patients neither with nor without concomitant clopidogrel therapy.

  12. Intravenous immunglobulin binds beta amyloid and modifies its aggregation, neurotoxicity and microglial phagocytosis in vitro.

    Directory of Open Access Journals (Sweden)

    Susann Cattepoel

    Full Text Available Intravenous Immunoglobulin (IVIG has been proposed as a potential therapeutic for Alzheimer's disease (AD and its efficacy is currently being tested in mild-to-moderate AD. Earlier studies reported the presence of anti-amyloid beta (Aβ antibodies in IVIG. These observations led to clinical studies investigating the potential role of IVIG as a therapeutic agent in AD. Also, IVIG is known to mediate beneficial effects in chronic inflammatory and autoimmune conditions by interfering with various pathological processes. Therefore, we investigated the effects of IVIG and purified polyclonal Aβ-specific antibodies (pAbs-Aβ on aggregation, toxicity and phagocytosis of Aβ in vitro, thus elucidating some of the potential mechanisms of action of IVIG in AD patients. We report that both IVIG and pAbs-Aβ specifically bound to Aβ and inhibited its aggregation in a dose-dependent manner as measured by Thioflavin T assay. Additionally, IVIG and the purified pAbs-Aβ inhibited Aβ-induced neurotoxicity in the SH-SY5Y human neuroblastoma cell line and prevented Aβ binding to rat primary cortical neurons. Interestingly, IVIG and pAbs-Aβ also increased the number of phagocytosing cells as well as the amount of phagocytosed fibrillar Aβ by BV-2 microglia. Phagocytosis of Aβ depended on receptor-mediated endocytosis and was accompanied by upregulation of CD11b expression. Importantly, we could also show that Privigen dose-dependently reversed Aβ-mediated LTP inhibition in mouse hippocampal slices. Therefore, our in vitro results suggest that IVIG may have an impact on different processes involved in AD pathogenesis, thereby promoting further understanding of the effects of IVIG observed in clinical studies.

  13. Heat-induced denaturation and aggregation of ovalbumin at neutral pH described by irreversible first-order kinetics

    NARCIS (Netherlands)

    Weijers, M.; Barneveld, P.A.; Cohen Stuart, M.A.; Visschers, R.W.

    2003-01-01

    The heat-induced denaturation kinetics of two different sources of ovalbumin at pH 7 was studied by chromatography and differential scanning calorimetry. The kinetics was found to be independent of protein concentration and salt concentration, but was strongly dependent on temperature. For highly

  14. Inherent toxicity of aggregates implies a common mechanism for protein misfolding diseases.

    Science.gov (United States)

    Bucciantini, Monica; Giannoni, Elisa; Chiti, Fabrizio; Baroni, Fabiana; Formigli, Lucia; Zurdo, Jesús; Taddei, Niccolò; Ramponi, Giampietro; Dobson, Christopher M; Stefani, Massimo

    2002-04-04

    A range of human degenerative conditions, including Alzheimer's disease, light-chain amyloidosis and the spongiform encephalopathies, is associated with the deposition in tissue of proteinaceous aggregates known as amyloid fibrils or plaques. It has been shown previously that fibrillar aggregates that are closely similar to those associated with clinical amyloidoses can be formed in vitro from proteins not connected with these diseases, including the SH3 domain from bovine phosphatidyl-inositol-3'-kinase and the amino-terminal domain of the Escherichia coli HypF protein. Here we show that species formed early in the aggregation of these non-disease-associated proteins can be inherently highly cytotoxic. This finding provides added evidence that avoidance of protein aggregation is crucial for the preservation of biological function and suggests common features in the origins of this family of protein deposition diseases.

  15. Acid phosphatase activity in liver macrophage aggregates as a marker for pollution-induced immunomodulation of the non-specific immune response in fish

    Science.gov (United States)

    Broeg, Katja

    2003-10-01

    The activity of acid phosphatase in liver macrophage aggregates (MA-AP) of different fish species was used as a marker for a pollution-induced modulation of the digestive capacity of phagocytes, since functions of the non-specific immune response play a central role in the maintenance of animals' health. Based upon the investigation of more than 900 individual flounders (Platichthys flesus) and mullets (Liza aurata), natural variations, gender-specific differences and pollution-induced alterations in AP activity are demonstrated in this study. MA-AP activity was dependent on temperature and season but, nevertheless, distinctions between differently polluted areas were visible in all sampling campaigns with lowest MA-AP activity in fish from the polluted areas of the German Bight and the Israeli coast of the Mediterranean Sea. For organochlorine contaminants, as well as for mercury and copper, a significant correlation could be observed between residue concentrations in fish tissues and MA-AP activity. In all cases, except mercury which showed a positive correlation, AP activity was suppressed in animals with a high contaminant burden. MA-AP activity turned out to give reliable and consistent results for a quantification of immunomodulation in both fish species.

  16. Two-Step Amyloid Aggregation: Sequential Lag Phase Intermediates

    Science.gov (United States)

    Castello, Fabio; Paredes, Jose M.; Ruedas-Rama, Maria J.; Martin, Miguel; Roldan, Mar; Casares, Salvador; Orte, Angel

    2017-01-01

    The self-assembly of proteins into fibrillar structures called amyloid fibrils underlies the onset and symptoms of neurodegenerative diseases, such as Alzheimer’s and Parkinson’s. However, the molecular basis and mechanism of amyloid aggregation are not completely understood. For many amyloidogenic proteins, certain oligomeric intermediates that form in the early aggregation phase appear to be the principal cause of cellular toxicity. Recent computational studies have suggested the importance of nonspecific interactions for the initiation of the oligomerization process prior to the structural conversion steps and template seeding, particularly at low protein concentrations. Here, using advanced single-molecule fluorescence spectroscopy and imaging of a model SH3 domain, we obtained direct evidence that nonspecific aggregates are required in a two-step nucleation mechanism of amyloid aggregation. We identified three different oligomeric types according to their sizes and compactness and performed a full mechanistic study that revealed a mandatory rate-limiting conformational conversion step. We also identified the most cytotoxic species, which may be possible targets for inhibiting and preventing amyloid aggregation.

  17. TRiC’s tricks inhibit huntingtin aggregation

    Science.gov (United States)

    Shahmoradian, Sarah H; Galaz-Montoya, Jesus G; Schmid, Michael F; Cong, Yao; Ma, Boxue; Spiess, Christoph; Frydman, Judith; Ludtke, Steven J; Chiu, Wah

    2013-01-01

    In Huntington’s disease, a mutated version of the huntingtin protein leads to cell death. Mutant huntingtin is known to aggregate, a process that can be inhibited by the eukaryotic chaperonin TRiC (TCP1-ring complex) in vitro and in vivo. A structural understanding of the genesis of aggregates and their modulation by cellular chaperones could facilitate the development of therapies but has been hindered by the heterogeneity of amyloid aggregates. Using cryo-electron microscopy (cryoEM) and single particle cryo-electron tomography (SPT) we characterize the growth of fibrillar aggregates of mutant huntingtin exon 1 containing an expanded polyglutamine tract with 51 residues (mhttQ51), and resolve 3-D structures of the chaperonin TRiC interacting with mhttQ51. We find that TRiC caps mhttQ51 fibril tips via the apical domains of its subunits, and also encapsulates smaller mhtt oligomers within its chamber. These two complementary mechanisms provide a structural description for TRiC’s inhibition of mhttQ51 aggregation in vitro. DOI: http://dx.doi.org/10.7554/eLife.00710.001 PMID:23853712

  18. The CCAAT/enhancer binding protein (C/EBP δ is differently regulated by fibrillar and oligomeric forms of the Alzheimer amyloid-β peptide

    Directory of Open Access Journals (Sweden)

    Nilsson Lars NG

    2011-04-01

    Full Text Available Abstract Background The transcription factors CCAAT/enhancer binding proteins (C/EBP α, β and δ have been shown to be expressed in brain and to be involved in regulation of inflammatory genes in concert with nuclear factor κB (NF-κB. In general, C/EBPα is down-regulated, whereas both C/EBPβ and δ are up-regulated in response to inflammatory stimuli. In Alzheimer's disease (AD one of the hallmarks is chronic neuroinflammation mediated by astrocytes and microglial cells, most likely induced by the formation of amyloid-β (Aβ deposits. The inflammatory response in AD has been ascribed both beneficial and detrimental roles. It is therefore important to delineate the inflammatory mediators and signaling pathways affected by Aβ deposits with the aim of defining new therapeutic targets. Methods Here we have investigated the effects of Aβ on expression of C/EBP family members with a focus on C/EBPδ in rat primary astro-microglial cultures and in a transgenic mouse model with high levels of fibrillar Aβ deposits (tg-ArcSwe by western blot analysis. Effects on DNA binding activity were analyzed by electrophoretic mobility shift assay. Cross-talk between C/EBPδ and NF-κB was investigated by analyzing binding to a κB site using a biotin streptavidin-agarose pull-down assay. Results We show that exposure to fibril-enriched, but not oligomer-enriched, preparations of Aβ inhibit up-regulation of C/EBPδ expression in interleukin-1β-activated glial cultures. Furthermore, we observed that, in aged transgenic mice, C/EBPα was significantly down-regulated and C/EBPβ was significantly up-regulated. C/EBPδ, on the other hand, was selectively down-regulated in the forebrain, a part of the brain showing high levels of fibrillar Aβ deposits. In contrast, no difference in expression levels of C/EBPδ between wild type and transgenic mice was detected in the relatively spared hindbrain. Finally, we show that interleukin-1β-induced C/EBPδ DNA

  19. Time-dependent inhibitory effects of cGMP-analogues on thrombin-induced platelet-derived microparticles formation, platelet aggregation, and P-selectin expression

    Energy Technology Data Exchange (ETDEWEB)

    Nygaard, Gyrid [Proteomic Unit at University of Bergen (PROBE), University of Bergen, Bergen (Norway); Department of Biomedicine, University of Bergen, Bergen (Norway); Herfindal, Lars; Kopperud, Reidun [Department of Biomedicine, University of Bergen, Bergen (Norway); Aragay, Anna M. [Department of Biomedicine, University of Bergen, Bergen (Norway); Molecular Biology Institute of Barcelona (IBMB, CSIC), Barcelona (Spain); Holmsen, Holm; Døskeland, Stein Ove; Kleppe, Rune [Department of Biomedicine, University of Bergen, Bergen (Norway); Selheim, Frode, E-mail: Frode.Selheim@biomed.uib.no [Proteomic Unit at University of Bergen (PROBE), University of Bergen, Bergen (Norway); Department of Biomedicine, University of Bergen, Bergen (Norway)

    2014-07-04

    Highlights: • We investigated the impact of cyclic nucleotide analogues on platelet activation. • Different time dependence were found for inhibition of platelet activation. • Additive effect was found using PKA- and PKG-activating analogues. • Our results may explain some of the discrepancies reported for cNMP signalling. - Abstract: In platelets, nitric oxide (NO) activates cGMP/PKG signalling, whereas prostaglandins and adenosine signal through cAMP/PKA. Cyclic nucleotide signalling has been considered to play an inhibitory role in platelets. However, an early stimulatory effect of NO and cGMP-PKG signalling in low dose agonist-induced platelet activation have recently been suggested. Here, we investigated whether different experimental conditions could explain some of the discrepancy reported for platelet cGMP-PKG-signalling. We treated gel-filtered human platelets with cGMP and cAMP analogues, and used flow cytometric assays to detect low dose thrombin-induced formation of small platelet aggregates, single platelet disappearance (SPD), platelet-derived microparticles (PMP) and thrombin receptor agonist peptide (TRAP)-induced P-selectin expression. All four agonist-induced platelet activation phases were blocked when platelets were costimulated with the PKG activators 8-Br-PET-cGMP or 8-pCPT-cGMP and low-doses of thrombin or TRAP. However, extended incubation with 8-Br-PET-cGMP decreased its inhibition of TRAP-induced P-selectin expression in a time-dependent manner. This effect did not involve desensitisation of PKG or PKA activity, measured as site-specific VASP phosphorylation. Moreover, PKG activators in combination with the PKA activator Sp-5,6-DCL-cBIMPS revealed additive inhibitory effect on TRAP-induced P-selectin expression. Taken together, we found no evidence for a stimulatory role of cGMP/PKG in platelets activation and conclude rather that cGMP/PKG signalling has an important inhibitory function in human platelet activation.

  20. Structure and developmental expression of a sea urchin fibrillar collagen gene.

    Science.gov (United States)

    D'Alessio, M; Ramirez, F; Suzuki, H R; Solursh, M; Gambino, R

    1989-12-01

    We have isolated and characterized cDNA and genomic clones that specify a Paracentrotus lividus procollagen chain. The cDNAs code for 160 uninterrupted Gly-Xaa-Yaa triplets and a 252-amino acid carboxyl propeptide. Analysis of the deduced amino acid sequences indicated that the sea urchin polypeptide exhibits structural features that are characteristic of the fibril-forming class of collagen molecules. Partial characterization of two genomic recombinants revealed that the 3' end of the echinoid gene displays a complex organization that closely resembles that of a prototypical vertebrate fibrillar collagen gene. In situ and Northern (RNA) blot hybridizations established the size, time of appearance, and tissue distribution of the collagen transcripts in the developing sea urchin embryo. Collagen mRNA, approximately equal to 6 kilobases in size, is first detected in the forming primary mesenchyme cells of late blastulae where it progressively accumulates until the free swimming/feeding pluteus larval stage. Interestingly, collagen transcripts are also detected in the forming secondary mesenchyme cells of late gastrulae, and by the prism stage, their derivatives appear to be the most intensively labeled cells.

  1. Fibrillar organization in tendons: A pattern revealed by percolation characteristics of the respective geometric network

    Directory of Open Access Journals (Sweden)

    Daniel Andres Dos Santos

    2014-06-01

    Full Text Available Since the tendon is composed by collagen fibrils of various sizes connected between them through molecular cross-links, it sounds logical to model it via a heterogeneous network of fibrils. Using cross sectional images, that network is operatively inferred from the respective Gabriel graph of the fibril mass centers. We focus on network percolation characteristics under an ordered activation of fibrils (progressive recruitment going from the smallest to the largest fibril. Analyses of percolation were carried out on a repository of images of digital flexor tendons obtained from samples of lizards and frogs. Observed percolation thresholds were compared against values derived from hypothetical scenarios of random activation of nodes. Strikingly, we found a significant delay for the occurrence of percolation in actual data. We interpret this finding as the consequence of some non-random packing of fibrillar units into a size-constrained geometric pattern. We erect an ideal geometric model of balanced interspersion of polymorphic units that accounts for the delayed percolating instance. We also address the circumstance of being percolation curves mirrored by the empirical curves of stress-strain obtained from the same studied tendons. By virtue of this isomorphism, we hypothesize that the inflection points of both curves are different quantitative manifestations of a common transitional process during mechanical load transference.

  2. Differential Relationships of Reactive Astrocytes and Microglia to Fibrillar Amyloid Deposits in Alzheimer Disease

    Science.gov (United States)

    Serrano-Pozo, Alberto; Muzikansky, Alona; Gómez-Isla, Teresa; Growdon, John H.; Betensky, Rebecca A.; Frosch, Matthew P.; Hyman, Bradley T.

    2013-01-01

    While it is clear that astrocytes and microglia cluster around dense-core amyloid plaques in Alzheimer disease (AD), whether they are primarily attracted to amyloid deposits or are just reacting to plaque-associated neuritic damage remains elusive. We postulate that astrocytes and microglia may differentially respond to fibrillar amyloid β (Aβ). Therefore, we quantified the size distribution of dense-core Thioflavin-S (ThioS)-positive plaques in the temporal neocortex of 40 AD patients and the microglial and astrocyte responses in their vicinity (≤50 μm), and performed correlations between both measures. As expected, both astrocytes and microglia were clearly spatially associated with ThioS-positive plaques (p = 0.0001, ≤50 μm vs. >50 μm from their edge), but their relationship to ThioS-positive plaque size differed; larger ThioS-positive plaques were associated with more surrounding activated microglia (p = 0.0026), but this effect was not observed with reactive astrocytes. Microglial response to dense-core plaques appears to be proportional to their size, which we postulate reflects a chemotactic effect of Aβ. By contrast, plaque-associated astrocytic response does not correlate with plaque size and seems to parallel the behavior of plaque-associated neuritic damage. PMID:23656989

  3. Hierarchical macroscopic fibrillar adhesives: in situ study of buckling and adhesion mechanisms on wavy substrates.

    Science.gov (United States)

    Bauer, Christina T; Kroner, Elmar; Fleck, Norman A; Arzt, Eduard

    2015-12-01

    Nature uses hierarchical fibrillar structures to mediate temporary adhesion to arbitrary substrates. Such structures provide high compliance such that the flat fibril tips can be better positioned with respect to asperities of a wavy rough substrate. We investigated the buckling and adhesion of hierarchically structured adhesives in contact with flat smooth, flat rough and wavy rough substrates. A macroscopic model for the structural adhesive was fabricated by molding polydimethylsiloxane into pillars of diameter in the range of 0.3-4.8 mm, with up to three different hierarchy levels. Both flat-ended and mushroom-shaped hierarchical samples buckled at preloads one quarter that of the single level structures. We explain this behavior by a change in the buckling mode; buckling leads to a loss of contact and diminishes adhesion. Our results indicate that hierarchical structures can have a strong influence on the degree of adhesion on both flat and wavy substrates. Strategies are discussed that achieve highly compliant substrates which adhere to rough substrates.

  4. From the Cover: Shape insensitive optimal adhesion of nanoscale fibrillar structures

    Science.gov (United States)

    Gao, Huajian; Yao, Haimin

    2004-05-01

    Gecko and many insects have adopted nanoscale fibrillar structures on their feet as adhesion devices. Here, we consider adhesion between a single fiber and a substrate by van der Waals or electrostatic interactions. For a given contact area A, the theoretical pull-off force of the fiber is thA where th is the theoretical strength of adhesion. We show that it is possible to design an optimal shape of the tip of the fiber to achieve the theoretical pull-off force. However, such design tends to be unreliable at the macroscopic scale because the pull-off force is sensitive to small variations in the tip shape. We find that a robust design of shape-insensitive optimal adhesion becomes possible only when the diameter of the fiber is reduced to length scales on the order of 100 nm. In general, optimal adhesion could be achieved by a combination of size reduction and shape optimization. The smaller the size, the less important the shape. At large contact sizes, optimal adhesion could still be achieved if the shape can be manufactured to a sufficiently high precision. The robust design of optimal adhesion at nanoscale provides a plausible explanation for the convergent evolution of hairy attachment systems in biology.

  5. Identifying structural features of fibrillar islet amyloid polypeptide using site-directed spin labeling.

    Science.gov (United States)

    Jayasinghe, Sajith A; Langen, Ralf

    2004-11-12

    Pancreatic amyloid deposits, composed primarily of the 37-residue islet amyloid polypeptide (IAPP), are a characteristic feature found in more than 90% of patients with type II diabetes. Although IAPP amyloid deposits are associated with areas of pancreatic islet beta-cell dysfunction and depletion and are thought to play a role in disease, their structure is unknown. We used electron paramagnetic resonance spectroscopy to analyze eight spin-labeled derivatives of IAPP in an effort to determine structural features of the peptide. In solution, all eight derivatives gave rise to electron paramagnetic resonance spectra with sharp lines indicative of rapid motion on the sub-nanosecond time scale. These spectra are consistent with a rapidly tumbling and highly dynamic peptide. In contrast, spectra for the fibrillar form exhibit reduced mobility and the presence of strong intermolecular spin-spin interactions. The latter implies that the peptide subunits are ordered and that the same residues from neighboring peptides are in close proximity to one another. Our data are consistent with a parallel arrangement of IAPP peptides within the amyloid fibril. Analysis of spin label mobility indicates a high degree of order throughout the peptide, although the N-terminal region is slightly less ordered. Possible similarities with respect to the domain organization and parallelism of Alzheimer's amyloid beta peptide fibrils are discussed.

  6. α-Synuclein aggregation, seeding and inhibition by scyllo-inositol.

    Science.gov (United States)

    Ibrahim, Tarek; McLaurin, JoAnne

    2016-01-15

    Recent literature demonstrates the accelerated aggregation of α-synuclein, a protein implicated in the pathogenesis of Parkinson's disease (PD), by the presence of preformed fibrillar conformers in vitro. Furthermore, these preformed fibrillar seeds are suggested to accelerate pathological induction in vivo when injected into the brains of mice. Variation in the results of in vivo studies is proposed to be caused by α-synuclein conformational variants. To investigate the impact of amino acid sequence on seeding efficiency, human and mouse α-synuclein seeds, which vary at 7 amino acid residues, were generated and cross-seeding kinetics studied. Using transmission electron microscopy (TEM), we confirmed that mouse α-synuclein aggregated more rapidly than human α-synuclein. Subsequently, we determined that seeding of human and mouse α-synuclein was more rapid in the presence of seeds generated from the same species. In addition, an established amyloid inhibitor, scyllo-inositol, was examined for potential inhibitory effects on α-synuclein aggregation. TEM analysis of protein:inhibitor assays demonstrated that scyllo-inositol inhibits the aggregation of α-synuclein, suggesting the therapeutic potential of the small molecule in PD.

  7. Dependence on solution conditions of aggregation and amyloid formation by an SH3 domain.

    Science.gov (United States)

    Zurdo, J; Guijarro, J I; Jiménez, J L; Saibil, H R; Dobson, C M

    2001-08-10

    The formation of amyloid fibrils by the SH3 domain of the alpha-subunit of bovine phosphatidylinositol-3'-kinase (PI3-SH3) has been investigated under carefully controlled solution conditions. NMR and CD characterisation of the denatured states from which fibrils form at low pH show that their properties can be correlated with the nature of the resulting aggregates defined by EM and FTIR spectroscopy. Compact partially folded states, favoured by the addition of anions, are prone to precipitate rapidly into amorphous species, whilst well-defined fibrillar structures are formed slowly from more expanded denatured states. Kinetic data obtained by a variety of techniques show a clear lag phase in the formation of amyloid fibrils. NMR spectroscopy shows no evidence for a significant population of small oligomers in solution during or after this lag phase. EM and FTIR indicate the presence of amorphous aggregates (protofibrils) rich in beta-structure after the lag phase but prior to the development of well-defined amyloid fibrils. These observations strongly suggest a nucleation and growth mechanism for the formation of the ordered aggregates. The morphologies of the fibrillar structures were found to be highly sensitive to the pH at which the protein solutions are incubated. This can be attributed to the effect of small perturbations in the electrostatic interactions that stabilise the contacts between the protofilaments forming the amyloid fibrils. Moreover, different hydrogen bonding patterns related to the various aggregate morphologies can be distinguished by FTIR analysis. Copyright 2001 Academic Press.

  8. The process of EDC-NHS cross-linking of reconstituted collagen fibres increases collagen fibrillar order and alignment

    Directory of Open Access Journals (Sweden)

    D. V. Shepherd

    2015-01-01

    Full Text Available We describe the production of collagen fibre bundles through a multi-strand, semi-continuous extrusion process. Cross-linking using an EDC (1-ethyl-3-(3-dimethylaminopropylcarbodiimide, NHS (N-hydroxysuccinimide combination was considered. Atomic Force Microscopy and Raman spectroscopy focused on how cross-linking affected the collagen fibrillar structure. In the cross-linked fibres, a clear fibrillar structure comparable to native collagen was observed which was not observed in the non-cross-linked fibre. The amide III doublet in the Raman spectra provided additional evidence of alignment in the cross-linked fibres. Raman spectroscopy also indicated no residual polyethylene glycol (from the fibre forming buffer or water in any of the fibres.

  9. The process of EDC-NHS cross-linking of reconstituted collagen fibres increases collagen fibrillar order and alignment

    Science.gov (United States)

    Shepherd, D. V.; Shepherd, J. H.; Ghose, S.; Kew, S. J.; Cameron, R. E.; Best, S. M.

    2015-01-01

    We describe the production of collagen fibre bundles through a multi-strand, semi-continuous extrusion process. Cross-linking using an EDC (1-ethyl-3-(3-dimethylaminopropyl)carbodiimide), NHS (N-hydroxysuccinimide) combination was considered. Atomic Force Microscopy and Raman spectroscopy focused on how cross-linking affected the collagen fibrillar structure. In the cross-linked fibres, a clear fibrillar structure comparable to native collagen was observed which was not observed in the non-cross-linked fibre. The amide III doublet in the Raman spectra provided additional evidence of alignment in the cross-linked fibres. Raman spectroscopy also indicated no residual polyethylene glycol (from the fibre forming buffer) or water in any of the fibres.

  10. Effects of Oxidized Low Density Lipoprotein and Native LDL on Low Shear-Induced Platelet Aggregation(Special Issue in Hornor of the Retirement of Professor Makoto Iwata at the Department of Neurology, Tokyo Women's Medical University)

    OpenAIRE

    矢野, 知佐子; 山崎, 昌子; 内山, 真一郎; 岩田, 誠; YANO, Chisako; YAMAZAKI, Masako; UCHIYAMA, Shinichiro; IWATA, Makoto

    2008-01-01

    Oxidized LDL (ox-LDL) is known to be closely associated with atherosclerosis, and it is one of the sources of oxidized cellular injury. Previous studies show that ox-LDL affects platelet aggregation. We studied the effects of ox-LDL on shear-induced platelet aggregation (SIPA) and compared it with native LDL. Methods: We incubated ox-LDL with LDL and CuSO_4 for 16 hours at 37℃. We incubated platelet-rich plasma (PRP) with ox-LDL or native LDL, and measured SIP A. And we compared the effect of...

  11. Mechanism of copper(II)-induced misfolding of Parkinson's disease protein.

    Science.gov (United States)

    Rose, Frisco; Hodak, Miroslav; Bernholc, Jerzy

    2011-01-01

    α-synuclein (aS) is a natively unfolded pre-synaptic protein found in all Parkinson's disease patients as the major component of fibrillar plaques. Metal ions, and especially Cu(II), have been demonstrated to accelerate aggregation of aS into fibrillar plaques, the precursors to Lewy bodies. In this work, copper binding to aS is investigated by a combination of quantum and molecular mechanics simulations. Starting from the experimentally observed attachment site, several optimized structures of Cu-binding geometries are examined. The most energetically favorable attachment results in significant allosteric changes, making aS more susceptible to misfolding. Indeed, an inverse kinematics investigation of the configuration space uncovers a dynamically stable β-sheet conformation of Cu-aS that serves as a nucleation point for a second β-strand. Based on these findings, we propose an atomistic mechanism of copper-induced misfolding of aS as an initial event in the formation of Lewy bodies and thus in PD pathogenesis.

  12. Effect of nordihydroguaiaretic acid cross-linking on fibrillar collagen: in vitro evaluation of fibroblast adhesion strength and migration

    Directory of Open Access Journals (Sweden)

    Ana Y. Rioja

    2017-04-01

    Full Text Available Fixation is required to reinforce reconstituted collagen for orthopedic bioprostheses such as tendon or ligament replacements. Previous studies have demonstrated that collagen fibers cross-linked by the biocompatible dicatechol nordihydroguaiaretic acid (NDGA have mechanical strength comparable to native tendons. This work focuses on investigating fibroblast behavior on fibrillar and NDGA cross-linked type I collagen to determine if NDGA modulates cell adhesion, morphology, and migration. A spinning disk device that applies a range of hydrodynamic forces under uniform chemical conditions was employed to sensitively quantify cell adhesion strength, and a radial barrier removal assay was used to measure cell migration on films suitable for these quantitative in vitro assays. The compaction of collagen films, mediated by the drying and cross-linking fabrication process, suggests a less open organization compared to native fibrillar collagen that likely allowed the collagen to form more inter-chain bonds and chemical links with NDGA polymers. Fibroblasts strongly adhered to and migrated on native and NDGA cross-linked fibrillar collagen; however, NDGA modestly reduced cell spreading, adhesion strength and migration rate. Thus, it is hypothesized that NDGA cross-linking masked some adhesion receptor binding sites either physically, chemically, or both, thereby modulating adhesion and migration. This alteration in the cell-material interface is considered a minimal trade-off for the superior mechanical and compatibility properties of NDGA cross-linked collagen compared to other fixation approaches.

  13. Pinocembrin Protects Human Brain Microvascular Endothelial Cells against Fibrillar Amyloid- β1−40 Injury by Suppressing the MAPK/NF- κ B Inflammatory Pathways

    Directory of Open Access Journals (Sweden)

    Rui Liu

    2014-01-01

    Full Text Available Cerebrovascular accumulation of amyloid-β (Aβ peptides in Alzheimer’s disease (AD may contribute to disease progression through Aβ-induced microvascular endothelial pathogenesis. Pinocembrin has been shown to have therapeutic effects in AD models. These effects correlate with preservation of microvascular function, but the effect on endothelial cells under Aβ-damaged conditions is unclear. The present study focuses on the in vitro protective effect of pinocembrin on fibrillar Aβ1−40 (fAβ1−40 injured human brain microvascular endothelial cells (hBMECs and explores potential mechanisms. The results demonstrate that fAβ1−40-induced cytotoxicity in hBMECs can be rescued by pinocembrin treatment. Pinocembrin increases cell viability, reduces the release of LDH, and relieves nuclear condensation. The mechanisms of this reversal from Aβ may be associated with the inhibition of inflammatory response, involving inhibition of MAPK activation, downregulation of phosphor-IKK level, relief of IκBα degradation, blockage of NF-κB p65 nuclear translocation, and reduction of the release of proinflammatory cytokines. Pinocembrin does not show obvious effects on regulating the redox imbalance after exposure to fAβ1−40. Together, the suppression of MAPK and the NF-κB signaling pathways play a significant role in the anti-inflammation of pinocembrin in hBMECs subjected to fAβ1−40. This may serve as a therapeutic agent for BMEC protection in Alzheimer’s-related deficits.

  14. Dysfunction of constitutive and inducible ubiquitin-proteasome system in amyotrophic lateral sclerosis: implication for protein aggregation and immune response.

    Science.gov (United States)

    Bendotti, Caterina; Marino, Marianna; Cheroni, Cristina; Fontana, Elena; Crippa, Valeria; Poletti, Angelo; De Biasi, Silvia

    2012-05-01

    The ubiquitin-proteasome system (UPS) is the major intracellular proteolytic mechanism controlling the degradation of misfolded/abnormal proteins. A common hallmark in amyotrophic lateral sclerosis (ALS) and in other neurodegenerative disorders is the accumulation of misfolded/abnormal proteins into the damaged neurons, leading to the formation of cellular inclusions that are mostly ubiquitin-positive. Although proteolysis is a complex mechanism requiring the participation of different pathways, the abundant accumulation of ubiquitinated proteins strongly suggests an important contribution of UPS to these neuropathological features. The use of cellular and animal models of ALS, particularly those expressing mutant SOD1, the gene mutation most represented in familiar ALS, has provided significant evidence for a role of UPS in protein inclusions formation and motor neuron death. This review will specifically discuss this piece of evidence and provide suggestions of potential strategies for therapeutic intervention. We will also discuss the finding that, unlike the constitutive proteasome subunits, the inducible subunits are overexpressed early during disease progression in SOD1 mice models of ALS. These subunits form the immunoproteasome and generate peptides for the major histocompatibility complex class I molecules, suggesting a role of this system in the immune responses associated with the pathological features of ALS. Since recent discoveries indicate that innate and adaptive immunity may influence the disease process, in this review we will also provide evidence of a possible connection between immune-inflammatory reactions and UPS function, in the attempt to better understand the etiopathology of ALS and to identify appropriate targets for novel treatment strategies of this devastating disease. Copyright © 2011 Elsevier Ltd. All rights reserved.

  15. Extracellular Tau Oligomers Induce Invasion of Endogenous Tau into the Somatodendritic Compartment and Axonal Transport Dysfunction.

    Science.gov (United States)

    Swanson, Eric; Breckenridge, Leigham; McMahon, Lloyd; Som, Sreemoyee; McConnell, Ian; Bloom, George S

    2017-01-01

    Aggregates composed of the microtubule associated protein, tau, are a hallmark of Alzheimer's disease and non-Alzheimer's tauopathies. Extracellular tau can induce the accumulation and aggregation of intracellular tau, and tau pathology can be transmitted along neural networks over time. There are six splice variants of central nervous system tau, and various oligomeric and fibrillar forms are associated with neurodegeneration in vivo. The particular extracellular forms of tau capable of transferring tau pathology from neuron to neuron remain ill defined, however, as do the consequences of intracellular tau aggregation on neuronal physiology. The present study was undertaken to compare the effects of extracellular tau monomers, oligomers, and filaments comprising various tau isoforms on the behavior of cultured neurons. We found that 2N4R or 2N3R tau oligomers provoked aggregation of endogenous intracellular tau much more effectively than monomers or fibrils, or of oligomers made from other tau isoforms, and that a mixture of all six isoforms most potently provoked intracellular tau accumulation. These effects were associated with invasion of tau into the somatodendritic compartment. Finally, we observed that 2N4R oligomers perturbed fast axonal transport of membranous organelles along microtubules. Intracellular tau accumulation was often accompanied by increases in the run length, run time and instantaneous velocity of membranous cargo. This work indicates that extracellular tau oligomers can disrupt normal neuronal homeostasis by triggering axonal tau accumulation and loss of the polarized distribution of tau, and by impairing fast axonal transport.

  16. Mulifunctional Dendritic Emitter: Aggregation-Induced Emission Enhanced, Thermally Activated Delayed Fluorescent Material for Solution-Processed Multilayered Organic Light-Emitting Diodes

    Science.gov (United States)

    Matsuoka, Kenichi; Albrecht, Ken; Yamamoto, Kimihisa; Fujita, Katsuhiko

    2017-01-01

    Thermally activated delayed fluorescence (TADF) materials emerged as promising light sources in third generation organic light-emitting diodes (OLED). Much effort has been invested for the development of small molecular TADF materials and vacuum process-based efficient TADF-OLEDs. In contrast, a limited number of solution processable high-molecular weight TADF materials toward low cost, large area, and scalable manufacturing of solution processed TADF-OLEDs have been reported so far. In this context, we report benzophenone-core carbazole dendrimers (GnB, n = generation) showing TADF and aggregation-induced emission enhancement (AIEE) properties along with alcohol resistance enabling further solution-based lamination of organic materials. The dendritic structure was found to play an important role for both TADF and AIEE activities in the neat films. By using these multifunctional dendritic emitters as non-doped emissive layers, OLED devices with fully solution processed organic multilayers were successfully fabricated and achieved maximum external quantum efficiency of 5.7%.

  17. Black tattoo inks induce reactive oxygen species production correlating with aggregation of pigment nanoparticles and product brand but not with the polycyclic aromatic hydrocarbon content.

    Science.gov (United States)

    Høgsberg, Trine; Jacobsen, Nicklas Raun; Clausen, Per Axel; Serup, Jørgen

    2013-07-01

    Black tattoo inks are composed of carbon nanoparticles, additives and water and may contain polycyclic aromatic hydrocarbons (PAHs). We aimed to clarify whether reactive oxygen species (ROS) induced by black inks in vitro is related to pigment chemistry, physico-chemical properties of the ink particles and the content of chemical additives and contaminants including PAHs. The study included nine brands of tattoo inks of six colours each (black, red, yellow, blue, green and white) and two additional black inks of different brands (n = 56). The ROS formation potential was determined by the dichlorofluorescein (DCFH) assay. A semiquantitative method was developed for screening extractable organic compounds in tattoo ink based on gas chromatography-mass spectrometry (GC-MS) and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS). Two black inks produced high amounts of ROS. Peroxyl radicals accounted for up to 72% of the free radicals generated, whereas hydroxyl radicals and H₂O₂ accounted for brands. Ten of 11 black inks had PAH concentrations exceeding the European Council's recommended level, and all 11 exceeded the recommended level for benzo(a)pyrene. It is a new finding that aggregation of tattoo pigment particles correlates with ROS production and brand, independently of chemical composition including PAHs. ROS is hypothesized to be implicated in minor clinical symptoms.

  18. Betaine (N,N,N-trimethylglycine) averts photochemically-induced thrombosis in pial microvessels in vivo and platelet aggregation in vitro.

    Science.gov (United States)

    Nemmar, Abderrahim; Yuvaraju, Priya; Beegam, Sumaya; Ali, Badreldin H

    2015-07-01

    Betaine (N,N,N-trimethylglycine) is an important food component with established health benefits through its homocysteine-lowering effects, and is used to lower total homocysteine concentration in plasma of patients with homocystinuria. It is well established that hyperhomocysteinemia is an established risk factor for cardiovascular disease and stroke. However, the possible protective effect of betaine on coagulation events in vivo and in vitro has thus far not been studied. Betaine was given to mice at oral doses of either 10 mg/kg (n = 6) or 40 mg/kg (n = 6) for seven consecutive days, and control mice (n = 6) received water only. The thrombotic occlusion time in photochemically induced thrombosis in pial arterioles was significantly delayed in mice pretreated with betaine at doses of 10 mg/kg (P betaine. In vitro, in whole blood samples collected from untreated mice (n = 3-5), betaine (0.01-1 mg/mL) significantly reversed platelet aggregation induced by adenosine diphosphate (5 µM). The number of circulating platelets and plasma concentration of fibrinogen in vivo were not significantly affected by betaine pretreament compared with the control group. Lipid peroxidation (LPO) in mice pretreated with betaine was significantly reduced compared with the control group. Moreover, betaine (0.01-1 mg/mL) caused a dose-dependent and significant prolongation of PT (n = 5) and aPTT (n = 4-6). In conclusion, our data show that betaine protected against coagulation events in vivo and in vitro and decreased LPO in plasma.

  19. Visual and surface plasmon resonance sensor for zirconium based on zirconium-induced aggregation of adenosine triphosphate-stabilized gold nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Qi, Wenjing; Zhao, Jianming [State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022 (China); University of the Chinese Academy of Sciences, No. 19A Yuquanlu, Beijing 100049 (China); Zhang, Wei; Liu, Zhongyuan [State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022 (China); Xu, Min [State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022 (China); University of the Chinese Academy of Sciences, No. 19A Yuquanlu, Beijing 100049 (China); Anjum, Saima [State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022 (China); University of the Chinese Academy of Sciences, No. 19A Yuquanlu, Beijing 100049 (China); Department of Chemistry, Faculty of Science, The Islamia University of Bahawalpur, 63100 (Pakistan); Majeed, Saadat [State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022 (China); University of the Chinese Academy of Sciences, No. 19A Yuquanlu, Beijing 100049 (China); Department of Chemistry, Bahauddin Zakaryia University, Multan 60800 (Pakistan); Xu, Guobao, E-mail: guobaoxu@ciac.jl.cn [State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022 (China)

    2013-07-17

    Graphical abstract: Visual and surface plasmon resonance (SPR) sensor for Zr(IV) has been developed for the first time based on Zr(IV)-induced change of SPR absorption spectra of ATP-stabilized AuNP solutions. -- Highlights: •Visual and SPR absorption Zr{sup 4+} sensors have been developed for the first time. •The high affinity between Zr{sup 4+} and ATP makes sensor highly sensitive and selective. •A fast response to Zr{sup 4+} within 4 min. -- Abstract: Owing to its high affinity with phosphate, Zr(IV) can induce the aggregation of adenosine 5′-triphosphate (ATP)-stabilized AuNPs, leading to the change of surface plasmon resonance (SPR) absorption spectra and color of ATP-stabilized AuNP solutions. Based on these phenomena, visual and SPR sensors for Zr(IV) have been developed for the first time. The A{sub 660} {sub nm}/A{sub 518} {sub nm} values of ATP-stabilized AuNPs in SPR absorption spectra increase linearly with the concentrations of Zr(IV) from 0.5 μM to 100 μM (r = 0.9971) with a detection limit of 95 nM. A visual Zr(IV) detection is achieved with a detection limit of 30 μM. The sensor shows excellent selectivity against other metal ions, such as Cu{sup 2+}, Fe{sup 3+}, Cd{sup 2+}, and Pb{sup 2+}. The recoveries for the detection of 5 μM, 10 μM, 25 μM and 75 μM Zr(IV) in lake water samples are 96.0%, 97.0%, 95.6% and 102.4%, respectively. The recoveries of the proposed SPR method are comparable with those of ICP-OES method.

  20. Variation in dietary salt intake induces coordinated dynamics of monocyte subsets and monocyte-platelet aggregates in humans: implications in end organ inflammation.

    Directory of Open Access Journals (Sweden)

    Xin Zhou

    Full Text Available BACKGROUND: Monocyte activation and tissue infiltration are quantitatively associated with high-salt intake induced target organ inflammation. We hypothesized that high-salt challenge would induce the expansion of CD14++CD16+ monocytes, one of the three monocyte subsets with a pro-inflammatory phenotype, that is associated with target organ inflammation in humans. METHODOLOGY/PRINCIPAL FINDINGS: A dietary intervention study was performed in 20 healthy volunteers, starting with a 3-day usual diet and followed with a 7-day high-salt diet (≥15 g NaCl/day, and a 7-day low-salt diet (≤5 g NaCl/day. The amounts of three monocyte subsets ("classical" CD14++CD16-, "intermediate" CD14++CD16+ and "non-classical" CD14+CD16++ and their associations with monocyte-platelet aggregates (MPAs were measured by flow cytometry. Blood oxygen level-dependent magnetic resonance imaging (BOLD-MRI was used to evaluate renal hypoxia. Switching to a high-salt diet resulted in CD14++ monocyte activation and a rapid expansion of CD14++CD16+ subset and MPAs, with a reciprocal decrease in the percentages of CD14++CD16- and CD14+CD16++ subsets. In vitro study using purified CD14++ monocytes revealed that elevation in extracellular [Na(+] could lead to CD14++CD16+ expansion via a ROS dependent manner. In addition, high-salt intake was associated with progressive hypoxia in the renal medulla (increased R2* signal and enhanced urinary monocyte chemoattractant protein-1 (MCP-1 excretion, indicating a temporal and spatial correlation between CD14++CD16+ subset and renal inflammation. The above changes could be completely reversed by a low-salt diet, whereas blood pressure levels remained unchanged during dietary intervention. CONCLUSIONS/SIGNIFICANCE: The present work demonstrates that short-term increases in dietary salt intake could induce the expansion of CD14++CD16+ monocytes, as well as an elevation of MPAs, which might be the underlying cellular basis of high-salt induced

  1. Oxidation, aggregation and immunogenicity of therapeutic proteins

    NARCIS (Netherlands)

    Torosantucci, Riccardo

    2013-01-01

    The aim of the research described in this thesis is to study the chemical mechanisms responsible for protein aggregation induced by metal catalyzed oxidation and to investigate the relationship between protein oxidation, aggregation and immunogenicity. To this end, recombinant human insulin

  2. Sources of variability in platelet accumulation on type 1 fibrillar collagen in microfluidic flow assays.

    Directory of Open Access Journals (Sweden)

    Keith B Neeves

    Full Text Available Microfluidic flow assays (MFA that measure shear dependent platelet function have potential clinical applications in the diagnosis and treatment of bleeding and thrombotic disorders. As a step towards clinical application, the objective of this study was to measure how phenotypic and genetic factors, as well as experimental conditions, affect the variability of platelet accumulation on type 1 collagen within a MFA. Whole blood was perfused over type 1 fibrillar collagen at wall shear rates of 150, 300, 750 and 1500 s⁻¹ through four independent channels with a height of 50 µm and a width of 500 µm. The accumulation of platelets was characterized by the lag time to 1% platelet surface coverage (Lag(T, the rate of platelet accumulation (V(PLT, and platelet surface coverage (SC. A cohort of normal donors was tested and the results were correlated to plasma von Willebrand factor (VWF levels, platelet count, hematocrit, sex, and collagen receptors genotypes. VWF levels were the strongest determinant of platelet accumulation. VWF levels were positively correlated to V(PLT and SC at all wall shear rates. A longer Lag(T for platelet accumulation at arterial shear rates compared to venous shear rates was attributed to the time required for plasma proteins to adsorb to collagen. There was no association between platelet accumulation and hematocrit or platelet count. Individuals with the AG genotype of the GP6 gene had lower platelet accumulation than individuals with the AA genotype at 150 s⁻¹ and 300 s⁻¹. Recalcified blood collected into sodium citrate and corn trypsin inhibitor (CTI resulted in diminished platelet accumulation compared to CTI alone, suggesting that citrate irreversibly diminishes platelet function. This study the largest association study of MFA in healthy donors (n = 104 and will likely set up the basis for the determination of the normal range of platelet responses in this type of assay.

  3. Fabrication and evaluation of Bis-GMA/TEGDMA dental resins/composites containing nano fibrillar silicate.

    Science.gov (United States)

    Tian, Ming; Gao, Yi; Liu, Yi; Liao, Yiliang; Hedin, Nyle E; Fong, Hao

    2008-02-01

    To investigate the reinforcement of Bis-GMA/TEGDMA dental resins (without conventional glass filler) and composites (with conventional glass filler) with various mass fractions of nano fibrillar silicate (FS). Three dispersion methods were studied to separate the silanized FS as nano-scaled single crystals and uniformly distribute them into dental matrices. The photo-curing behaviors of the Bis-GMA/TEGDMA/FS resins were monitored in situ by RT-NIR to study the photopolymerization rate and the vinyl double bond conversion. Mechanical properties (flexural strength, elastic modulus and work-of-fracture) of the nano FS reinforced resins/composites were tested, and analysis of variance (ANOVA) was used for the statistical analysis of the acquired data. The morphology of nano FS and the representative fracture surfaces of its reinforced resins/composites were examined by SEM/TEM. Impregnation of small mass fractions (1% and 2.5%) of nano FS into Bis-GMA/TEGDMA (50/50 mass ratio) dental resins/composites improved the mechanical properties substantially. Larger mass fraction of impregnation (7.5%), however, did not further improve the mechanical properties (one way ANOVA, P>0.05) and may even reduce the mechanical properties. The high degree of separation and uniform distribution of nano FS into dental resins/composites was a challenge. Impregnation of nano FS into dental resins/composites could result in two opposite effects: a reinforcing effect due to the highly separated and uniformly distributed nano FS single crystals, or a weakening effect due to the formation of FS agglomerates/particles. Uniform distribution of highly separated nano FS single crystals into dental resins/composites could significantly improve the mechanical properties of the resins/composites.

  4. Quantitative thermophoretic study of disease-related protein aggregates.

    Science.gov (United States)

    Wolff, Manuel; Mittag, Judith J; Herling, Therese W; Genst, Erwin De; Dobson, Christopher M; Knowles, Tuomas P J; Braun, Dieter; Buell, Alexander K

    2016-03-17

    Amyloid fibrils are a hallmark of a range of neurodegenerative disorders, including Alzheimer's and Parkinson's diseases. A detailed understanding of the physico-chemical properties of the different aggregated forms of proteins, and of their interactions with other compounds of diagnostic or therapeutic interest, is crucial for devising effective strategies against such diseases. Protein aggregates are situated at the boundary between soluble and insoluble structures, and are challenging to study because classical biophysical techniques, such as scattering, spectroscopic and calorimetric methods, are not well adapted for their study. Here we present a detailed characterization of the thermophoretic behavior of different forms of the protein α-synuclein, whose aggregation is associated with Parkinson's disease. Thermophoresis is the directed net diffusional flux of molecules and colloidal particles in a temperature gradient. Because of their low volume requirements and rapidity, analytical methods based on this effect have considerable potential for high throughput screening for drug discovery. In this paper we rationalize and describe in quantitative terms the thermophoretic behavior of monomeric, oligomeric and fibrillar forms of α-synuclein. Furthermore, we demonstrate that microscale thermophoresis (MST) is a valuable method for screening for ligands and binding partners of even such highly challenging samples as supramolecular protein aggregates.

  5. Ageing and hypoxia cause protein aggregation in mitochondria.

    Science.gov (United States)

    Kaufman, Daniel M; Wu, Xia; Scott, Barbara A; Itani, Omar A; Van Gilst, Marc R; Bruce, James E; Michael Crowder, C

    2017-10-01

    Aggregation of cytosolic proteins is a pathological finding in disease states, including ageing and neurodegenerative diseases. We have previously reported that hypoxia induces protein misfolding in Caenorhabditis elegans mitochondria, and electron micrographs suggested protein aggregates. Here, we seek to determine whether mitochondrial proteins actually aggregate after hypoxia and other cellular stresses. To enrich for mitochondrial proteins that might aggregate, we performed a proteomics analysis on purified C. elegans mitochondria to identify relatively insoluble proteins under normal conditions (110 proteins identified) or after sublethal hypoxia (65 proteins). A GFP-tagged mitochondrial protein (UCR-11 - a complex III electron transport chain protein) in the normally insoluble set was found to form widespread aggregates in mitochondria after hypoxia. Five other GFP-tagged mitochondrial proteins in the normally insoluble set similarly form hypoxia-induced aggregates. Two GFP-tagged mitochondrial proteins from the soluble set as well as a mitochondrial-targeted GFP did not form aggregates. Ageing also resulted in aggregates. The number of hypoxia-induced aggregates was regulated by the mitochondrial unfolded protein response (UPRmt) master transcriptional regulator ATFS-1, which has been shown to be hypoxia protective. An atfs-1(loss-of-function) mutant and RNAi construct reduced the number of aggregates while an atfs-1(gain-of-function) mutant increased aggregates. Our work demonstrates that mitochondrial protein aggregation occurs with hypoxic injury and ageing in C. elegans. The UPRmt regulates aggregation and may protect from hypoxia by promoting aggregation of misfolded proteins.

  6. Aggregation kinetics of a simulated telechelic polymer

    Science.gov (United States)

    Wilson, Mark; Rabinovitch, Avinoam; Baljon, Arlette R. C.

    2011-12-01

    We investigate the aggregation kinetics of a simulated telechelic polymer gel. In the hybrid molecular dynamics (MD)/Monte Carlo (MC) algorithm, aggregates of associating end groups form and break according to MC rules, while the position of the polymers in space is dictated by MD. As a result, the aggregate sizes change over time. In order to describe this aggregation process, we employ master equations. They define changes in the number of aggregates of a certain size in terms of reaction rates. These reaction rates indicate the likelihood that two aggregates combine to form a large one, or that a large aggregate splits into two smaller parts. The reaction rates are obtained from the simulations for a range of temperatures. Our results indicate that the rates are not only temperature dependent, but also a function of the sizes of the aggregates involved in the reaction. Using the measured rates, solutions to the master equations are shown to be stable and in agreement with the aggregate size distribution, as obtained directly from simulation data. Furthermore, we show how temperature-induced variations in these rates give rise to the observed changes in the aggregate distribution that characterizes the sol-gel transition.

  7. Effect of antimicrobial preservatives on partial protein unfolding and aggregation.

    Science.gov (United States)

    Hutchings, Regina L; Singh, Surinder M; Cabello-Villegas, Javier; Mallela, Krishna M G

    2013-02-01

    One-third of protein formulations are multi-dose. These require antimicrobial preservatives (APs); however, some APs have been shown to cause protein aggregation. Our previous work on a model protein cytochrome c indicated that partial protein unfolding, rather than complete unfolding, triggers aggregation. Here, we examined the relative strength of five commonly used APs on such unfolding and aggregation, and explored whether stabilizing the aggregation 'hot-spot' reduces such aggregation. All APs induced protein aggregation in the order m-cresol > phenol > benzyl alcohol > phenoxyethanol > chlorobutanol. All these enhanced the partial protein unfolding that includes a local region which was predicted to be the aggregation 'hot-spot'. The extent of destabilization correlated with the extent of aggregation. Further, we show that stabilizing the 'hot-spot' reduces aggregation induced by all five APs. These results indicate that m-cresol causes the most protein aggregation, whereas chlorobutanol causes the least protein aggregation. The same protein region acts as the 'hot-spot' for aggregation induced by different APs, implying that developing strategies to prevent protein aggregation induced by one AP will also work for others.

  8. Appraisal of role of the polyanionic inducer length on amyloid formation by 412-residue 1N4R Tau protein: A comparative study.

    Science.gov (United States)

    Jangholi, Abolfazl; Ashrafi-Kooshk, Mohammad Reza; Arab, Seyed Shahriar; Riazi, Gholamhossein; Mokhtari, Farzad; Poorebrahim, Mansour; Mahdiuni, Hamid; Kurganov, Boris I; Moosavi-Movahedi, Ali Akbar; Khodarahmi, Reza

    2016-11-01

    In many neurodegenerative diseases, formation of protein fibrillar aggregates has been observed as a major pathological change. Neurofibrillary tangles, mainly composed of fibrils formed by the microtubule-associated protein; Tau, are a hallmark of a group of neurodegenerative diseases such as Alzheimer's disease. Tau belongs to the class of natively unfolded proteins and partially folds into an ordered β-structure during aggregation. Polyanionic cofactors such as heparin are commonly used as inducer of Tau aggregation in vitro. The role of heparin in nucleation and elongation steps during Tau fibril formation is not fully understood. In the current study, aggregation kinetics as well as structure of Tau amyloid fibrils, by using the 1N4R isoform, have been reproducibly determined in the presence of heparin and the shorter molecule; enoxaparin. The kinetic studies demonstrated that heparin (not enoxaparin) efficiently accelerates Tau amyloid formation and revealed, mechanistically, that the molecular weight of the inducer is important in accelerating amyloidogenesis. The kinetic parameter values of Tau amyloid aggregation, especially, the amyloid aggregation extent, were relatively different in the presence of heparin and enoxaparin, at various stoichiometries of the inducers binding. Also, based on the results, obtained from CD, FTIR, AFM and XRD studies, it may be suggested that the inducer length plays a critical role mainly in the nucleation process, so that it determines that oligomers lie on or off the pathway of Tau fibrillization. The biochemical results herein suggest that the chemical environment of the extracellular matrix as well as localization of distinct glycosaminoglycans may influence deposition behavior of Tau amyloidosis. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. Modified ionic liquid cold-induced aggregation dispersive liquid-liquid microextraction combined with spectrofluorimetry for trace determination of ofloxacin in pharmaceutical and biological samples

    Science.gov (United States)

    Zeeb, M.; Ganjali, M.R.; Norouzi, P.

    2011-01-01

    Background and the purpose of the study Ofloxacin is a quinolone synthetic antibiotic, which acts against resistant mutants of bacteria by inhibiting DNA gyrase. This antibacterial agent is widely used in the treatment of respiratory tract, urinary tract and tissue-based infections, which are caused by Gram-positive and Gram-negative bacteria. In this work, an efficient modified ionic liquid cold-induced aggregation dispersive liquid-liquid microextraction (M-IL-CIA-DLLME) was combined with spectrofluorimetry for trace determination of ofloxacin in real samples. Methods In this microextraction method, hydrophobic 1-hexyl-3-methylimidazolium hexafluorophosphate ([Hmim] [PF6]) ionic liquid (IL) as a microextraction solvent was dispersed into a heated sample solution containing sodium hexafluorophosphate (NaPF6) (as a common ion) and the analyte of interest. Afterwards, the resultant solution was cooled in an ice-water bath and a cloudy condition was formed due to a considerable decrease of IL solubility. After centrifuging, the enriched phase was introduced to the spectrofluorimeter for the determination of ofloxacin. Results and major conclusion In this technique, the performance of the microextraction method was not influenced by variations in the ionic strength of the sample solution (up to 30% w/v). Furthermore, [Hmim][PF6] IL was chosen as a green microextraction phase and an alternative to traditional toxic organic solvents. Different parameters affecting the analytical performance were studied and optimized. At optimum conditions, a relatively broad linear dynamic range of 0.15-125 µg l-1 and a limit of detection (LOD) of 0.029 µg l-1 were obtained. The relative standard deviation (R.S.D.) obtained for the determination of five replicates of the 10 ml solution containing 50 µg l-1 ofloxacin was 2.7%. Finally, the combined methodology was successfully applied to ofloxacin determination in actual pharmaceutical formulations and biological samples. PMID

  10. Application of Cold-Induced Aggregation Microextraction Based on Ionic Liquid for Determination of Trace Amount of Cadmium and Lead in Powder Milk Samples

    Directory of Open Access Journals (Sweden)

    Mostafa Delavar

    2014-06-01

    Full Text Available Background: cold-induced aggregation micro extraction based (CIAME based on ionic liquid was used as a rapid and simple method for determination trace amounts of cadmium and lead in milk powder by analysis with flame atomic absorption spectrometry (FAAS. Methods: Sample solution containing of Cd2+ and Pb2+ in dynamic range, phosphate buffer (pH = 9, 3 ml, diethyl dithiocarbamate (complexing agent, Triton X-100, NaPF6 ,[HMIM][PF6] (extraction solvent were transferred into conical bottom glass tube. Sample was kept in a thermostated bath and then ice bath; a cloudy solution was formed. Two phases separated by centrifugation. After removing of aqueous phase, IL-phase was dissolved in methanol and diluted was injected to the FAAS by microsampler introduction. Results: ILs, containing imidazoliumcation and hexafluoro phosphate anion, [HMIM][PF6](70mg, 200 mg NaPF6 ,0.01 mol.L-1 DDTC, 0.015% of Triton X-100 obtained, pH 9 and centrifuge time; 5 min (4000 rmp was chosen. Detection limit were obtained 0.12 µgL-1, 1.61µgL-1, RSD 0.95%, 2.2% and enrichment factor of 70, 67 for Cd and Pb, respectively. Conclusion: CIAME allows determination of cadmium and lead in real samples in a simple, rapid and safe method with only a small amount of ionic liquid was used. In comparison with the organic solvent extraction, CIAME is much safer and the determination of species in high ionic strength samples is possible.

  11. Modified Ionic Liquid Cold-Induced Aggregation Dispersive Liquid-Liquid Microextraction Combined with Spectrofluorimetry for Trace Determination of Ofloxacin in Pharmaceutical and Biological Samples

    Directory of Open Access Journals (Sweden)

    P. Norouzi

    2011-12-01

    Full Text Available Background and the purpose of the study: Ofloxacin is a quinolone synthetic antibiotic, which acts against resistant mutants of bacteria by inhibiting DNA gyrase. This antibacterial agent is widely used in the treatment of respiratory tract, urinary tract and tissue-based infections, which are caused by Gram-positive and Gram-negative bacteria. In this work, an efficient modified ionic liquid cold-induced aggregation dispersive liquid-liquid microextraction (M-IL-CIA-DLLME was combined with spectrofluorimetry for trace determination of ofloxacin in real samples.Methods: In this microextraction method, hydrophobic 1-hexyl-3-methylimidazolium hexafluorophosphate ([Hmim] [PF6] ionic liquid (IL as a microextraction solvent was dispersed into a heated sample solution containing sodium hexafluorophosphate (NaPF6 (as a common ion and the analyte of interest. Afterwards, the resultant solution was cooled in an ice-water bath and a cloudy condition was formed due to a considerable decrease of IL solubility. After centrifuging, the enriched phase was introduced to the spectrofluorimeter for the determination of ofloxacin.Results and major conclusion: In this technique, the performance of the microextraction method was not influenced by variations in the ionic strength of the sample solution (up to 30% w/v. Furthermore, [Hmim][PF6] IL was chosen as a green microextraction phase and an alternative to traditional toxic organic solvents. Different parameters affecting the analytical performance were studied and optimized. At optimum conditions, a relatively broad linear dynamic range of 0.15-125 μg l-1 and a limit of detection (LOD of 0.029 μg l-1 were obtained. The relative standard deviation (R.S.D. obtained for the determination of five replicates of the 10 ml solution containing 50 μg l-1 ofloxacin was 2.7%. Finally, the combined methodology was successfully applied to ofloxacin determination in actual pharmaceutical formulations and biological samples.

  12. CD40-induced aggregation of MHC class II and CD80 on the cell surface leads to an early enhancement in antigen presentation.

    Science.gov (United States)

    Clatza, Abigail; Bonifaz, Laura C; Vignali, Dario A A; Moreno, José

    2003-12-15

    Ligation of CD40 on B cells increases their ability to present Ag and to activate MHC class II (MHC-II)-restricted T cells. How this occurs is not entirely clear. In this study we demonstrate that CD40 ligation on Ag-presenting B cells (APC) for a short period between 30 min and 3 h has a rapid, augmenting effect on the ability of a B cell line and normal B cells to activate T cells. This is not due to alterations in Ag processing or to an increase in surface expression of CD80, CD86, ICAM-1, or MHC-II. This effect is particularly evident with naive, resting T lymphocytes and appears to be more pronounced under limiting Ag concentrations. Shortly after CD40 ligation on a B cell line, MHC-II and CD80 progressively accumulated in cholesterol-enriched microdomains on the cell surface, which correlated with an initial enhancement in their Ag presentation ability. Moreover, CD40 ligation induced a second, late, more sustained enhancement of Ag presentation, which correlates with a significant increase in CD80 expression by APC. Thus, CD40 signaling enhances the efficiency with which APC activate T cells by at least two related, but distinct, mechanisms: an early stage characterized by aggregation of MHC-II and CD80 clusters, and a late stage in which a significant increase in CD80 expression is observed. These results raise the possibility that one important role of CD40 is to contribute to the formation of the immunological synapse on the APC side.

  13. The carbonate radical anion-induced covalent aggregation of human copper, zinc superoxide dismutase, and alpha-synuclein: intermediacy of tryptophan- and tyrosine-derived oxidation products.

    Science.gov (United States)

    Zhang, Hao; Andrekopoulos, Christopher; Joseph, Joy; Crow, John; Kalyanaraman, B

    2004-06-01

    In this review, we describe the free radical mechanism of covalent aggregation of human copper, zinc superoxide dismutase (hSOD1). Bicarbonate anion (HCO3-) enhances the covalent aggregation of hSOD1 mediated by the SOD1 peroxidase-dependent formation of carbonate radical anion (CO3*-), a potent and selective oxidant. This species presumably diffuses out the active site of hSOD1 and reacts with tryptophan residue located on the surface of hSOD1. The oxidative degradation of tryptophan to kynurenine and N-formyl kynurenine results in the covalent crosslinking and aggregation of hSOD1. Implications of oxidant-mediated aggregation of hSOD1 in the increased cytotoxicity of motor neurons in amyotrophic lateral sclerosis are discussed.

  14. Tendon and ligament fibrillar crimps give rise to left-handed helices of collagen fibrils in both planar and helical crimps.

    Science.gov (United States)

    Franchi, Marco; Ottani, Vittoria; Stagni, Rita; Ruggeri, Alessandro

    2010-03-01

    Collagen fibres in tendons and ligaments run straight but in some regions they show crimps which disappear or appear more flattened during the initial elongation of tissues. Each crimp is formed of collagen fibrils showing knots or fibrillar crimps at the crimp top angle. The present study analyzes by polarized light microscopy, scanning electron microscopy, transmission electron microscopy the 3D morphology of fibrillar crimp in tendons and ligaments of rat demonstrating that each fibril in the fibrillar region always twists leftwards changing the plane of running and sharply bends modifying the course on a new plane. The morphology of fibrillar crimp in stretched tendons fulfills the mechanical role of the fibrillar crimp acting as a particular knot/biological hinge in absorbing tension forces during fibril strengthening and recoiling collagen fibres when stretching is removed. The left-handed path of fibrils in the fibrillar crimp region gives rise to left-handed fibril helices observed both in isolated fibrils and sections of different tendons and ligaments (flexor digitorum profundus muscle tendon, Achilles tendon, tail tendon, patellar ligament and medial collateral ligament of the knee). The left-handed path of fibrils represents a new final suprafibrillar level of the alternating handedness which was previously described only from the molecular to the microfibrillar level. When the width of the twisting angle in the fibrillar crimp is nearly 180 degrees the fibrils appear as left-handed flattened helices forming crimped collagen fibres previously described as planar crimps. When fibrils twist with different subsequent rotational angles (< 180 degrees ) they always assume a left-helical course but, running in many different nonplanar planes, they form wider helical crimped fibres.

  15. 基于扩展OWA算子的数据信息聚合方法研究%Research on data information aggregation method based on induced OWA operator

    Institute of Scientific and Technical Information of China (English)

    韦纯福; 牛义锋

    2013-01-01

    在数据信息聚合的过程中通常会用到有序加权平均聚合算子,然而有序加权平均聚合算子只是考虑了数据信息所处聚合位置的重要度,却很少考虑数据本身的重要度。针对这种缺点和不足,提出了一种扩展的有序加权几何平均聚合算子,证明了该扩展聚合算子的一些基本性质定理;从理论上分析了该扩展聚合算子的科学性和合理性;通过一个算例的对比分析,证实了该扩展的聚合算子在数据信息聚合时更能真实地反映实际情况。%The Ordered Weighted Aggregation(OWA)operator only considers the ordered position of the given argument and few considers the given argument itself in the aggregation of data information. An induced Ordered Weighted Geometric Averaging (IOWGA)operator is presented, which not only considers the ordered position of the given argument but also consider the given argument itself, and some properties are proved. Then aggregation method of decision information based on the induced aggregation operator is scientific and reasonable by theoretical analysis. At last, the method is proved that can more scientifically reflect the real situation by comparative analysis with the common aggregation operators.

  16. Neurofibrillary tangle-like tau pathology induced by synthetic tau fibrils in primary neurons over-expressing mutant tau.

    Science.gov (United States)

    Guo, Jing L; Lee, Virginia M Y

    2013-03-18

    Increasing evidence demonstrates the transmissibility of fibrillar species of tau protein, but this has never been directly tested in neurons, the cell type most affected by formation of tau inclusions in neurodegenerative tauopathies. Here we show that synthetic tau fibrils made from recombinant protein not only time-dependently recruit normal tau into neurofibrillary tangle-like insoluble aggregates in primary hippocampal neurons over-expressing human tau, but also induce neuritic tau pathology in non-transgenic neurons. This study provides highly compelling support for the protein-only hypothesis of pathological tau transmission in primary neurons and describes a useful neuronal model for studying the pathogenesis of tauopathies. Copyright © 2013 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  17. Characterization of fibrillar collagens and extracellular matrix of glandular benign prostatic hyperplasia nodules.

    Directory of Open Access Journals (Sweden)

    Tyler M Bauman

    Full Text Available Recent studies have associated lower urinary tract symptoms (LUTS in men with prostatic fibrosis, but a definitive link between collagen deposition and LUTS has yet to be demonstrated. The objective of this study was to evaluate ECM and collagen content within normal glandular prostate tissue and glandular BPH, and to evaluate the association of clinical parameters of LUTS with collagen content.Fibrillar collagen and ECM content was assessed in normal prostate (48 patients and glandular BPH nodules (24 patients using Masson's trichrome stain and Picrosirius red stain. Second harmonic generation (SHG imaging was used to evaluate collagen content. Additional BPH tissues (n = 47 were stained with Picrosirius red and the association between clinical parameters of BPH/LUTS and collagen content was assessed.ECM was similar in normal prostate and BPH (p = 0.44. Total collagen content between normal prostate and glandular BPH was similar (p = 0.27, but a significant increase in thicker collagen bundles was observed in BPH (p = 0.045. Using SHG imaging, collagen content in BPH (mean intensity = 62.52; SEM = 2.74 was significantly higher than in normal prostate (51.77±3.49; p = 0.02. Total collagen content was not associated with treatment with finasteride (p = 0.47 or α-blockers (p = 0.52, pre-TURP AUA symptom index (p = 0.90, prostate-specific antigen (p = 0.86, post-void residual (PVR; p = 0.32, prostate size (p = 0.21, or post-TURP PVR (p = 0.51. Collagen content was not associated with patient age in patients with BPH, however as men aged normal prostatic tissue had a decreased proportion of thick collagen bundles.The proportion of larger bundles of collagen, but not total collagen, is increased in BPH nodules, suggesting that these large fibers may play a role in BPH/LUTS. Total collagen content is independent of clinical parameters of BPH and LUTS. If fibrosis and overall ECM deposition are

  18. Immobilization of homogeneous monomeric, oligomeric and fibrillar Aβ species for reliable SPR measurements.

    Science.gov (United States)

    Frenzel, Daniel; Glück, Julian M; Brener, Oleksandr; Oesterhelt, Filipp; Nagel-Steger, Luitgard; Willbold, Dieter

    2014-01-01

    There is strong evidence that the amyloid-beta peptide (Aβ) plays a central role in the pathogenesis of Alzheimer's disease (AD). In this context, a detailed quantitative description of the interactions with different Aβ species is essential for characterization of physiological and artificial ligands. However, the high aggregation propensity of Aβ in concert with its susceptibility to structural changes due to even slight changes in solution conditions has impeded surface plasmon resonance (SPR) studies with homogeneous Aβ conformer species. Here, we have adapted the experimental procedures to state-of-the-art techniques and established novel approaches to reliably overcome the aforementioned challenges. We show that the application of density gradient centrifugation (DGC) for sample purification and the use of a single chain variable fragment (scFv) of a monoclonal antibody directed against the amino-terminus of Aβ allows reliable SPR measurements and quality control of the immobilized Aβ aggregate species at any step throughout the experiment.

  19. Immobilization of homogeneous monomeric, oligomeric and fibrillar Aβ species for reliable SPR measurements.

    Directory of Open Access Journals (Sweden)

    Daniel Frenzel

    Full Text Available There is strong evidence that the amyloid-beta peptide (Aβ plays a central role in the pathogenesis of Alzheimer's disease (AD. In this context, a detailed quantitative description of the interactions with different Aβ species is essential for characterization of physiological and artificial ligands. However, the high aggregation propensity of Aβ in concert with its susceptibility to structural changes due to even slight changes in solution conditions has impeded surface plasmon resonance (SPR studies with homogeneous Aβ conformer species. Here, we have adapted the experimental procedures to state-of-the-art techniques and established novel approaches to reliably overcome the aforementioned challenges. We show that the application of density gradient centrifugation (DGC for sample purification and the use of a single chain variable fragment (scFv of a monoclonal antibody directed against the amino-terminus of Aβ allows reliable SPR measurements and quality control of the immobilized Aβ aggregate species at any step throughout the experiment.

  20. Distinguishing aggregate formation and aggregate clearance using cell based assays

    NARCIS (Netherlands)

    E. Eenjes, E.; J.M. Dragich; H. Kampinga (Harm); A. Yamamoto, A.

    2016-01-01

    textabstractThe accumulation of ubiquitinated proteinaceous inclusions represents a complex process, reflecting the disequilibrium between aggregate formation and aggregate clearance. Although decreasing aggregate formation or augmenting aggregate clearance will ultimately lead to diminished aggrega

  1. Serum replacement with albumin-associated lipids prevents excess aggregation and enhances growth of induced pluripotent stem cells in suspension culture.

    Science.gov (United States)

    Horiguchi, Ikki; Sakai, Yasuyuki

    2016-07-08

    Suspension culture systems are currently under investigation for the mass production of pluripotent stem (PS) cells for tissue engineering; however, the control of cell aggregation in suspension culture remains challenging. Existing methods to control aggregation such as microwell culture are difficult to scale up. To address this issue, in this study a novel method that incorporates the addition of KnockOut Serum Replacement (KSR) to the PS cell culture medium was described. The method regulated cellular aggregation and significantly improved cell growth (a 2- to 10-fold increase) without any influence on pluripotency. In addition, albumin-associated lipids as the major working ingredient of KSR responsible for this inhibition of aggregation were identified. This is one of the simplest methods described to date to control aggregation and requires only chemically synthesizable reagents. Thus, this method has the potential to simplify the mass production process of PS cells and thus lower their cost. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:1009-1016, 2016.

  2. Heparin-induced platelet aggregation (H-IPA): dose/response relationship for two low molecular weight (LMW) heparin preparations (CY 216 and CY 222)

    Energy Technology Data Exchange (ETDEWEB)

    Brace, L.D.; Fareed, J.

    1986-03-01

    The authors have previously demonstrated that heparin and a LMW heparin derivative (PK 10169) causes platelet aggregation in a dose-dependent manner that can be inhibited by antagonists of the thromboxane pathway. Using fractions of these agents separated on the basis of molecular weight (MW) by gel permeation chromatography, the authors showed that H-IPA was directly dependent upon the MW of the agents tested. In order to further examine this MW dependence, the authors tested two other LMW heparin preparations, CY 216 and CY 222 and subfractions of these agents separated on the basis of MW. Citrate anticoagulated whole blood was drawn from drug-free normal healthy donors whose platelets aggregated when heparin was added to their platelet-rich plasma (PRP). PRP was prepared, various concentrations of the agents or their subfractions were added and aggregation was monitored for 40 minutes at 37/sup 0/C. The results demonstrate that like heparin and PK 10169, CY 216 and CY 222 caused platelet aggregation in a dose and MW dependent manner. Fractions with MW less than 2500 daltons caused aggregation only at concentrations exceeding the therapeutic range of the agents. The authors conclude that the ability to cause H-IPA is an inherent property of heparin and its fractions.

  3. Computational selection of inhibitors of Abeta aggregation and neuronal toxicity.

    Science.gov (United States)

    Chen, Deliang; Martin, Zane S; Soto, Claudio; Schein, Catherine H

    2009-07-15

    Alzheimer's disease (AD) is characterized by the cerebral accumulation of misfolded and aggregated amyloid-beta protein (Abeta). Disease symptoms can be alleviated, in vitro and in vivo, by 'beta-sheet breaker' pentapeptides that reduce plaque load. However the peptide nature of these compounds, made them biologically unstable and unable to penetrate membranes with high efficiency. The main goal of this study was to use computational methods to identify small molecule mimetics with better drug-like properties. For this purpose, the docked conformations of the active peptides were used to identify compounds with similar activities. A series of related beta-sheet breaker peptides were docked to solid state NMR structures of a fibrillar form of Abeta. The lowest energy conformations of the active peptides were used to design three dimensional (3D)-pharmacophores, suitable for screening the NCI database with Unity. Small molecular weight compounds with physicochemical features and a conformation similar to the active peptides were selected, ranked by docking and biochemical parameters. Of 16 diverse compounds selected for experimental screening, 2 prevented and reversed Abeta aggregation at 2-3microM concentration, as measured by Thioflavin T (ThT) fluorescence and ELISA assays. They also prevented the toxic effects of aggregated Abeta on neuroblastoma cells. Their low molecular weight and aqueous solubility makes them promising lead compounds for treating AD.

  4. Determining the fibrillar orientation of bast fibres with polarized light microscopy: the modified Herzog test (red plate test) explained.

    Science.gov (United States)

    Haugan, E; Holst, B

    2013-11-01

    The identification of bast fibre samples, in particular, bast fibres used in textiles, is an important issue in archaeology, criminology and other scientific fields. One of the characteristic features of bast fibres is their fibrillar orientation, referred to as Z- or S twist (or alternatively right- and left-handed fibres). An empirical test for determining the fibrillar orientation using polarized light microscopy has been known in the community for many years. It is referred to as the modified Herzog test or red plate test. The test has the reputation for never producing false results, but also for occasionally not working. However, so far, no proper justification has been provided in the literature that the 'no false results' assumption is really correct and it has also not been clear up till now, why the method sometimes does not work. In this paper, we present an analytical model for the modified Herzog test, which explains why the test never gives a false result. We also provide an explanation for why the Herzog test sometimes does not work: According to our model, the Herzog test will not work if none of the three distinct layers in the secondary cell wall is significantly thicker than the others.

  5. Determining the fibrillar orientation of bast fibres with polarized light microscopy: the modified Herzog test (red plate test) explained

    Science.gov (United States)

    HAUGAN, E; HOLST, B

    2013-01-01

    The identification of bast fibre samples, in particular, bast fibres used in textiles, is an important issue in archaeology, criminology and other scientific fields. One of the characteristic features of bast fibres is their fibrillar orientation, referred to as Z- or S twist (or alternatively right- and left-handed fibres). An empirical test for determining the fibrillar orientation using polarized light microscopy has been known in the community for many years. It is referred to as the modified Herzog test or red plate test. The test has the reputation for never producing false results, but also for occasionally not working. However, so far, no proper justification has been provided in the literature that the ‘no false results’ assumption is really correct and it has also not been clear up till now, why the method sometimes does not work. In this paper, we present an analytical model for the modified Herzog test, which explains why the test never gives a false result. We also provide an explanation for why the Herzog test sometimes does not work: According to our model, the Herzog test will not work if none of the three distinct layers in the secondary cell wall is significantly thicker than the others. PMID:24020614

  6. Catalytically active telomerase holoenzyme is assembled in the dense fibrillar component of the nucleolus during S phase.

    Science.gov (United States)

    Lee, Ji Hoon; Lee, Yang Sin; Jeong, Sun Ah; Khadka, Prabhat; Roth, Jürgen; Chung, In Kwon

    2014-02-01

    The maintenance of human telomeres requires the ribonucleoprotein enzyme telomerase, which is composed of telomerase reverse transcriptase (TERT), telomerase RNA component, and several additional proteins for assembly and activity. Telomere elongation by telomerase in human cancer cells involves multiple steps including telomerase RNA biogenesis, holoenzyme assembly, intranuclear trafficking, and telomerase recruitment to telomeres. Although telomerase has been shown to accumulate in Cajal bodies for association with telomeric chromatin, it is unclear where and how the assembly and trafficking of catalytically active telomerase is regulated in the context of nuclear architecture. Here, we show that the catalytically active holoenzyme is initially assembled in the dense fibrillar component of the nucleolus during S phase. The telomerase RNP is retained in nucleoli through the interaction of hTERT with nucleolin, a major nucleolar phosphoprotein. Upon association with TCAB1 in S phase, the telomerase RNP is transported from nucleoli to Cajal bodies, suggesting that TCAB1 acts as an S-phase-specific holoenzyme component. Furthermore, depletion of TCAB1 caused an increase in the amount of telomerase RNP associated with nucleolin. These results suggest that the TCAB1-dependent trafficking of telomerase to Cajal bodies occurs in a step separate from the holoenzyme assembly in nucleoli. Thus, we propose that the dense fibrillar component is the provider of active telomerase RNP for supporting the continued proliferation of cancer and stem cells.

  7. Hierarchical model of fibrillar collagen organization for interpreting the second-order susceptibility tensors in biological tissue.

    Science.gov (United States)

    Tuer, Adam E; Akens, Margarete K; Krouglov, Serguei; Sandkuijl, Daaf; Wilson, Brian C; Whyne, Cari M; Barzda, Virginijus

    2012-11-21

    The second-order nonlinear polarization properties of fibrillar collagen in various rat tissues (vertebrae, tibia, tail tendon, dermis, and cornea) are investigated with polarization-dependent second-harmonic generation (P-SHG) microscopy. Three parameters are extracted: the second-order susceptibility ratio, R = [Formula: see text] ; a measure of the fibril distribution asymmetry, |A|; and the weighted-average fibril orientation, . A hierarchical organizational model of fibrillar collagen is developed to interpret the second-harmonic generation polarization properties. Highlights of the model include: collagen type (e.g., type-I, type-II), fibril internal structure (e.g., straight, constant-tilt), and fibril architecture (e.g., parallel fibers, intertwined, lamellae). Quantifiable differences in internal structure and architecture of the fibrils are observed. Occurrence histograms of R and |A| distinguished parallel from nonparallel fibril distributions. Parallel distributions possessed low parameter values and variability, whereas nonparallel distributions displayed an increase in values and variability. From the P-SHG parameters of vertebrae tissue, a three-dimensional reconstruction of lamellae of intervertebral disk is presented.

  8. FibrilTool, an ImageJ plug-in to quantify fibrillar structures in raw microscopy images.

    Science.gov (United States)

    Boudaoud, Arezki; Burian, Agata; Borowska-Wykręt, Dorota; Uyttewaal, Magalie; Wrzalik, Roman; Kwiatkowska, Dorota; Hamant, Olivier

    2014-02-01

    Cell biology heavily relies on the behavior of fibrillar structures, such as the cytoskeleton, yet the analysis of their behavior in tissues often remains qualitative. Image analysis tools have been developed to quantify this behavior, but they often involve an image pre-processing stage that may bias the output and/or they require specific software. Here we describe FibrilTool, an ImageJ plug-in based on the concept of nematic tensor, which can provide a quantitative description of the anisotropy of fiber arrays and their average orientation in cells, directly from raw images obtained by any form of microscopy. FibrilTool has been validated on microtubules, actin and cellulose microfibrils, but it may also help analyze other fibrillar structures, such as collagen, or the texture of various materials. The tool is ImageJ-based, and it is therefore freely accessible to the scientific community and does not require specific computational setup. The tool provides the average orientation and anisotropy of fiber arrays in a given region of interest (ROI) in a few seconds.

  9. Elongated fibrillar structure of a streptococcal adhesin assembled by the high-affinity association of [alpha]- and PPII-helices

    Energy Technology Data Exchange (ETDEWEB)

    Larson, Matthew R.; Rajashankar, Kanagalaghatta R.; Patel, Manisha H.; Robinette, Rebekah A.; Crowley, Paula J.; Michalek, Suzanne; Brady, L. Jeannine; Deivanayagam, Champion (Cornell); (UAB); (Florida)

    2010-08-18

    Streptococcus mutans antigen I/II (AgI/II) is a cell surface-localized protein adhesin that interacts with salivary components within the salivary pellicle. AgI/II contributes to virulence and has been studied as an immunological and structural target, but a fundamental understanding of its underlying architecture has been lacking. Here we report a high-resolution (1.8 {angstrom}) crystal structure of the A{sub 3}VP{sub 1} fragment of S. mutans AgI/II that demonstrates a unique fibrillar form (155 {angstrom}) through the interaction of two noncontiguous regions in the primary sequence. The A{sub 3} repeat of the alanine-rich domain adopts an extended {alpha}-helix that intertwines with the P{sub 1} repeat polyproline type II (PPII) helix to form a highly extended stalk-like structure heretofore unseen in prokaryotic or eukaryotic protein structures. Velocity sedimentation studies indicate that full-length AgI/II that contains three A/P repeats extends over 50 nanometers in length. Isothermal titration calorimetry revealed that the high-affinity association between the A{sub 3} and P{sub 1} helices is enthalpically driven. Two distinct binding sites on AgI/II to the host receptor salivary agglutinin (SAG) were identified by surface plasmon resonance (SPR). The current crystal structure reveals that AgI/II family proteins are extended fibrillar structures with the number of alanine- and proline-rich repeats determining their length.

  10. pH-Regulated Reversible Transition Between Polyion Complexes (PIC) and Hydrogen-Bonding Complexes (HBC) with Tunable Aggregation-Induced Emission.

    Science.gov (United States)

    Tian, Sidan; Liu, Guhuan; Wang, Xiaorui; Wu, Tao; Yang, Jinxian; Ye, Xiaodong; Zhang, Guoying; Hu, Jinming; Liu, Shiyong

    2016-02-17

    The mimicking of biological supramolecular interactions and their mutual transitions to fabricate intelligent artificial systems has been of increasing interest. Herein, we report the fabrication of supramolecular micellar nanoparticles consisting of quaternized poly(ethylene oxide)-b-poly(2-dimethylaminoethyl methacrylate) (PEO-b-PQDMA) and tetrakis(4-carboxylmethoxyphenyl)ethene (TPE-4COOH), which was capable of reversible transition between polyion complexes (PIC) and hydrogen bonding complexes (HBC) with tunable aggregation-induced emission (AIE) mediated by solution pH. At pH 8, TPE-4COOH chromophores can be directly dissolved in aqueous milieu without evident fluorescence emission. However, upon mixing with PEO-b-PQDMA, polyion complexes were formed by taking advantage of electrostatic interaction between carboxylate anions and quaternary ammonium cations and the most compact PIC micelles were achieved at the isoelectric point (i.e., [QDMA(+)]/[COO(-)] = 1), as confirmed by dynamic light scattering (DLS) measurement. Simultaneously, fluorescence spectroscopy revealed an evident emission turn-on and the maximum fluorescence intensity was observed near the isoelectric point due to the restriction of intramolecular rotation of TPE moieties within the PIC cores. The kinetic study supported a micelle fusion/fission mechanism on the formation of PIC micelles at varying charge ratios, exhibiting a quick time constant (τ1) relating to the formation of quasi-equilibrium micelles and a slow time constant (τ2) corresponding to the formation of final equilibrium micelles. Upon deceasing the pH of PIC micelles from 8 to 2 at the [QDMA(+)]/[COO(-)] molar ratio of 1, TPE-4COOH chromophores became gradually protonated and hydrophobic. The size of micellar nanoparticles underwent a remarkable decrease, whereas the fluorescence intensity exhibited a further increase by approximately 7.35-fold, presumably because of the formation of HBC micelles comprising cationic PQDMA

  11. Immunohistochemical evaluation of fibrillar components of the extracellular matrix of transversalis fascia and anterior abdominal rectus sheath in men with inguinal hernia

    Directory of Open Access Journals (Sweden)

    Rogério De Oliveira Gonçalves

    Full Text Available OBJECTIVE: to evaluate the role of fibrillar extracellular matrix components in the pathogenesis of inguinal hernias. METHODS: samples of the transverse fascia and of the anterior sheath of the rectus abdominis muscle were collected from 40 men aged between 20 and 60 years with type II and IIIA Nyhus inguinal hernia and from 10 fresh male cadavers (controls without hernia in the same age range. The staining technique was immunohistochemistry for collagen I, collagen III and elastic fibers; quantification of fibrillar components was performed with an image analysis processing software. RESULTS: no statistically significant differences were found in the amount of elastic fibers, collagen I and collagen III, and the ratio of collagen I / III among patients with inguinal hernia when compared with subjects without hernia. CONCLUSION: the amount of fibrillar extracellular matrix components did not change in patients with and without inguinal hernia.

  12. Orthogonal flexible Rydberg aggregates

    Science.gov (United States)

    Leonhardt, K.; Wüster, S.; Rost, J. M.

    2016-02-01

    We study the link between atomic motion and exciton transport in flexible Rydberg aggregates, assemblies of highly excited light alkali-metal atoms, for which motion due to dipole-dipole interaction becomes relevant. In two one-dimensional atom chains crossing at a right angle adiabatic exciton transport is affected by a conical intersection of excitonic energy surfaces, which induces controllable nonadiabatic effects. A joint exciton-motion pulse that is initially governed by a single energy surface is coherently split into two modes after crossing the intersection. The modes induce strongly different atomic motion, leading to clear signatures of nonadiabatic effects in atomic density profiles. We have shown how this scenario can be exploited as an exciton switch, controlling direction and coherence properties of the joint pulse on the second of the chains [K. Leonhardt et al., Phys. Rev. Lett. 113, 223001 (2014), 10.1103/PhysRevLett.113.223001]. In this article we discuss the underlying complex dynamics in detail, characterize the switch, and derive our isotropic interaction model from a realistic anisotropic one with the addition of a magnetic bias field.

  13. Orthogonal flexible Rydberg aggregates

    CERN Document Server

    Leonhardt, K; Rost, J M

    2015-01-01

    We study the link between atomic motion and exciton transport in flexible Rydberg aggregates, assemblies of highly excited light alkali atoms, for which motion due to dipole-dipole interaction becomes relevant. In two one-dimensional atom chains crossing at a right angle adiabatic exciton transport is affected by a conical intersection of excitonic energy surfaces, which induces controllable non-adiabatic effects. A joint exciton/motion pulse that is initially governed by a single energy surface is coherently split into two modes after crossing the intersection. The modes induce strongly different atomic motion, leading to clear signatures of non-adiabatic effects in atomic density profiles. We have shown how this scenario can be exploited as an exciton switch, controlling direction and coherence properties of the joint pulse on the second of the chains [K.~Leonhardt {\\it et al.}, Phys.~Rev.~Lett. {\\bf 113} 223001 (2014)]. In this article we discuss the underlying complex dynamics in detail, characterise the ...

  14. Iron-induced platelet aggregation measurement : a novel method to measure platelet function in stenting for ST segment elevation myocardial infarction

    NARCIS (Netherlands)

    Smit, J. J. J.; van Oeveren, W.; Ottervanger, J. P.; Slingerland, R. J.; Remijn, J. A.; Zijlstra, F.; van 't Hof, A. W. J.

    2009-01-01

    Iron and (stainless) steel are potent platelet aggregation activators, and may be involved in stent thrombosis, a serious complication after intracoronary stenting. Current platelet function tests are suboptimal, because of inappropriate agonists and/or lack of reproducibility. We tested the feasibi

  15. Self-assembly of caseinomacropeptide as a potential key mechanism in the formation of visible storage induced aggregates in acidic whey protein isolate dispersions

    DEFF Research Database (Denmark)

    Villumsen, Nanna Stengaard; Jensen, Hanne Bak; Thu Le, Thao Thi

    2015-01-01

    Visible aggregates formed during storage in acidic whey protein isolate (WPI) dispersions represent a challenge to the beverage industry. Batch-to-batch variations are observed that prevents consistent quality and shelf-life prediction. Heat-treatment of WPI dispersions at 120°C for 20s instead...

  16. Aggregation-induced growth and transformation of β-FeOOH nanorods to micron-sized α-Fe2O3 spindles

    DEFF Research Database (Denmark)

    Frandsen, Cathrine; Legg, Benjamin A.; Comolli, Luis R.

    2014-01-01

    Intimate interconnection of crystal growth, (oriented) aggregation and phase transformation seem common in the formation of nano-and microcrystalline materials from solutions. Yet, the mechanistic linkages between the different processes have not been fully understood. In this work, we studied th...

  17. Loss of metal ions, disulfide reduction and mutations related to familial ALS promote formation of amyloid-like aggregates from superoxide dismutase.

    Directory of Open Access Journals (Sweden)

    Zeynep A Oztug Durer

    Full Text Available Mutations in the gene encoding Cu-Zn superoxide dismutase (SOD1 are one of the causes of familial amyotrophic lateral sclerosis (FALS. Fibrillar inclusions containing SOD1 and SOD1 inclusions that bind the amyloid-specific dye thioflavin S have been found in neurons of transgenic mice expressing mutant SOD1. Therefore, the formation of amyloid fibrils from human SOD1 was investigated. When agitated at acidic pH in the presence of low concentrations of guanidine or acetonitrile, metalated SOD1 formed fibrillar material which bound both thioflavin T and Congo red and had circular dichroism and infrared spectra characteristic of amyloid. While metalated SOD1 did not form amyloid-like aggregates at neutral pH, either removing metals from SOD1 with its intramolecular disulfide bond intact or reducing the intramolecular disulfide bond of metalated SOD1 was sufficient to promote formation of these aggregates. SOD1 formed amyloid-like aggregates both with and without intermolecular disulfide bonds, depending on the incubation conditions, and a mutant SOD1 lacking free sulfhydryl groups (AS-SOD1 formed amyloid-like aggregates at neutral pH under reducing conditions. ALS mutations enhanced the ability of disulfide-reduced SOD1 to form amyloid-like aggregates, and apo-AS-SOD1 formed amyloid-like aggregates at pH 7 only when an ALS mutation was also present. These results indicate that some mutations related to ALS promote formation of amyloid-like aggregates by facilitating the loss of metals and/or by making the intramolecular disulfide bond more susceptible to reduction, thus allowing the conversion of SOD1 to a form that aggregates to form resembling amyloid. Furthermore, the occurrence of amyloid-like aggregates per se does not depend on forming intermolecular disulfide bonds, and multiple forms of such aggregates can be produced from SOD1.

  18. Effects of protein aggregates: an immunologic perspective.

    Science.gov (United States)

    Rosenberg, Amy S

    2006-08-04

    The capacity of protein aggregates to enhance immune responses to the monomeric form of the protein has been known for over a half-century. Despite the clear connection between protein aggregates and antibody mediated adverse events in treatment with early therapeutic protein products such as intravenous immune globulin (IVIG) and human growth hormone, surprisingly little is known about the nature of the aggregate species responsible for such effects. This review focuses on a framework for understanding how aggregate species potentially interact with the immune system to enhance immune responses, garnered from basic immunologic research. Thus, protein antigens presented in a highly arrayed structure, such as might be found in large nondenatured aggregate species, are highly potent in inducing antibody responses even in the absence of T-cell help. Their potency may relate to the ability of multivalent protein species to extensively cross-link B-cell receptor, which (1) activates B cells via Bt kinases to proliferate, and (2) targets protein to class II major histocompatibility complex (MHC)-loading compartments, efficiently eliciting T-cell help for antibody responses. The review further focuses on protein aggregates as they affect an immunogenicity risk assessment, the use of animal models and studies in uncovering effects of protein aggregates, and changes in product manufacture and packaging that may affect generation of protein aggregates.

  19. Inversion of Supramolecular Chirality by Sonication-Induced Organogelation

    Science.gov (United States)

    Maity, Sibaprasad; Das, Priyadip; Reches, Meital

    2015-01-01

    Natural helical structures have inspired the formation of well-ordered peptide-based chiral nanostructures in vitro. These structures have drawn much attention owing to their diverse applications in the area of asymmetric catalysts, chiral photonic materials, and nanoplasmonics. The self-assembly of two enantiomeric fluorinated aromatic dipeptides into ordered chiral fibrillar nanostructures upon sonication is described. These fibrils form organogels. Our results clearly indicate that fluorine-fluorine interactions play an important role in self-assembly. Circular dichroism analysis revealed that both peptides (peptides 1 and 2), containing two fluorines, depicted opposite cotton effects in their monomeric form compared with their aggregated form. This shows that supramolecular chirality inversion took place during the stimuli-responsive self-aggregation process. Conversely, peptide 3, containing one fluorine, did not exhibit chirality inversion in sonication-induced organogelation. Therefore, our results clearly indicate that fluorination plays an important role in the organogelation process of these aromatic dipeptides. Our findings may have broad implications regarding the design of chiral nanostructures for possible applications such as chiroptical switches, asymmetric catalysis, and chiral recognitions. PMID:26553508

  20. Preventing disulfide bond formation weakens non-covalent forces among lysozyme aggregates.

    Directory of Open Access Journals (Sweden)

    Vijay Kumar Ravi

    Full Text Available Nonnative disulfide bonds have been observed among protein aggregates in several diseases like amyotrophic lateral sclerosis, cataract and so on. The molecular mechanism by which formation of such bonds promotes protein aggregation is poorly understood. Here in this work we employ previously well characterized aggregation of hen eggwhite lysozyme (HEWL at alkaline pH to dissect the molecular role of nonnative disulfide bonds on growth of HEWL aggregates. We employed time-resolved fluorescence anisotropy, atomic force microscopy and single-molecule force spectroscopy to quantify the size, morphology and non-covalent interaction forces among the aggregates, respectively. These measurements were performed under conditions when disulfide bond formation was allowed (control and alternatively when it was prevented by alkylation of free thiols using iodoacetamide. Blocking disulfide bond formation affected growth but not growth kinetics of aggregates which were ∼50% reduced in volume, flatter in vertical dimension and non-fibrillar in comparison to control. Interestingly, single-molecule force spectroscopy data revealed that preventing disulfide bond formation weakened the non-covalent interaction forces among monomers in the aggregate by at least ten fold, thereby stalling their growth and yielding smaller aggregates in comparison to control. We conclude that while constrained protein chain dynamics in correctly disulfide bonded amyloidogenic proteins may protect them from venturing into partial folded conformations that can trigger entry into aggregation pathways, aberrant disulfide bonds in non-amyloidogenic proteins (like HEWL on the other hand, may strengthen non-covalent intermolecular forces among monomers and promote their aggregation.

  1. Novel bio-spectroscopic imaging reveals disturbed protein homeostasis and thiol redox with protein aggregation prior to hippocampal CA1 pyramidal neuron death induced by global brain ischemia in the rat.

    Science.gov (United States)

    Hackett, Mark J; Smith, Shari E; Caine, Sally; Nichol, Helen; George, Graham N; Pickering, Ingrid J; Paterson, Phyllis G

    2015-12-01

    Global brain ischemia resulting from cardiac arrest and cardiac surgery can lead to permanent brain damage and mental impairment. A clinical hallmark of global brain ischemia is delayed neurodegeneration, particularly within the CA1 subsector of the hippocampus. Unfortunately, the biochemical mechanisms have not been fully elucidated, hindering optimization of current therapies (i.e., therapeutic hypothermia) or development of new therapies. A major limitation to elucidating the mechanisms that contribute to neurodegeneration and understanding how these are influenced by potential therapies is the inability to relate biochemical markers to alterations in the morphology of individual neurons. Although immunocytochemistry allows imaging of numerous biochemical markers at the sub-cellular level, it is not a direct chemical imaging technique and requires successful "tagging" of the desired analyte. Consequently, important biochemical parameters, particularly those that manifest from oxidative damage to biological molecules, such as aggregated protein levels, have been notoriously difficult to image at the cellular or sub-cellular level. It has been hypothesized that reactive oxygen species (ROS) generated during ischemia and reperfusion facilitate protein aggregation, impairing neuronal protein homeostasis (i.e., decreasing protein synthesis) that in turn promotes neurodegeneration. Despite indirect evidence for this theory, direct measurements of morphology and ROS induced biochemical damage, such as increased protein aggregates and decreased protein synthesis, within the same neuron is lacking, due to the unavailability of a suitable imaging method. Our experimental approach has incorporated routine histology with novel wide-field synchrotron radiation Fourier transform infrared imaging (FTIRI) of the same neurons, ex vivo within brain tissue sections. The results demonstrate for the first time that increased protein aggregation and decreased levels of total protein

  2. Targeted theranostic platinum(IV) prodrug with a built-in aggregation-induced emission light-up apoptosis sensor for noninvasive early evaluation of its therapeutic responses in situ.

    Science.gov (United States)

    Yuan, Youyong; Kwok, Ryan T K; Tang, Ben Zhong; Liu, Bin

    2014-02-12

    Targeted drug delivery to tumor cells with minimized side effects and real-time in situ monitoring of drug efficacy is highly desirable for personalized medicine. In this work, we report the synthesis and biological evaluation of a chemotherapeutic Pt(IV) prodrug whose two axial positions are functionalized with a cyclic arginine-glycine-aspartic acid (cRGD) tripeptide for targeting integrin αvβ3 overexpressed cancer cells and an apoptosis sensor which is composed of tetraphenylsilole (TPS) fluorophore with aggregation-induced emission (AIE) characteristics and a caspase-3 enzyme specific Asp-Glu-Val-Asp (DEVD) peptide. The targeted Pt(IV) prodrug can selectively bind to αvβ3 integrin overexpressed cancer cells to facilitate cellular uptake. In addition, the Pt(IV) prodrug can be reduced to active Pt(II) drug in cells and release the apoptosis sensor TPS-DEVD simultaneously. The reduced Pt(II) drug can induce the cell apoptosis and activate caspase-3 enzyme to cleave the DEVD peptide sequence. Due to free rotation of the phenylene rings, TPS-DEVD is nonemissive in aqueous media. The specific cleavage of DEVD by caspase-3 generates the hydrophobic TPS residue, which tends to aggregate, resulting in restriction of intramolecular rotations of the phenyl rings and ultimately leading to fluorescence enhancement. Such noninvasive and real-time imaging of drug-induced apoptosis in situ can be used as an indicator for early evaluation of the therapeutic responses of a specific anticancer drug.

  3. Aggregation of BiTe monolayer on Bi2Te3 (111) induced by diffusion of intercalated atoms in the van der Waals gap

    Science.gov (United States)

    Wang, Zhi-Wen; Huang, Wen-Kai; Zhang, Kai-Wen; Shu, Da-Jun; Wang, Mu; Li, Shao-Chun

    2017-03-01

    We report a postgrowth aging mechanism of Bi2Te3 (111) films with scanning tunneling microscopy in combination with density functional theory calculation. It is found that a monolayered structure with a squared lattice symmetry gradually aggregates from the surface steps. Theoretical calculations indicate that the van der Waals (vdW) gap not only acts as a natural reservoir for self-intercalated Bi and Te atoms, but also provides them easy diffusion pathways. Once hopping out of the gap, these defective atoms prefer to develop into a two-dimensional BiTe superstructure on the Bi2Te3 (111) surface driven by positive energy gain. Considering the common nature of weak bonding between vdW layers, we expect such unusual diffusion and aggregation of the intercalated atoms may be of general importance for most kinds of vdW layered materials.

  4. Intertwisted fibrillar diamond-like carbon films prepared by electron cyclotron resonance microwave plasma enhanced chemical vapour deposition

    Institute of Scientific and Technical Information of China (English)

    杨武保; 王久丽; 张谷令; 范松华; 刘赤子; 杨思泽

    2003-01-01

    In this paper, the structures, optical and mechanical properties of diamond-like carbon films are studied, which are prepared by a self-fabricated electron cyclotron resonance microwave plasma chemical vapour deposition method at room temperature in the ambient gases of mixed acetylene and nitrogen. The morphology and microstructure of the processed film are characterized by the atomic force microscope image, Raman spectra and middle Fourier transform infrared transmittance spectra, which reveal that there is an intertwisted fibrillar diamond-like structure in the film and the film is mainly composed of sp3 CH, sp3 C-C, sp2 C=C, C=N and C60. The film micro-hardness and bulk modulus are measured by a nano-indenter and the refractive constant and deposition rate are also calculated.

  5. Impact of Particle Aggregation on Nanoparticle Reactivity

    Science.gov (United States)

    Jassby, David

    2011-12-01

    decline in hydroxyl radical generation could be attributed to two key parameters. First, increased aggregate size was associated with increased particle shadowing, as determined from the observed decrease in the rate of optically induced transitions. Secondly, aggregate structure was associated both with increased shadowing (denser aggregates exhibited more shadowing than similarly sized loose aggregates), and with an increase in radical quenching on neighboring particle surfaces in an aggregate. Aggregation had a positive impact on hydroxylated fullerene membrane separation, increasing removal efficiency to around 80%, regardless of transmembrane pressure. However, the type of electrolyte used determined whether aggregation was successful at increasing removal. Divalent ions, capable of forming strong covalent bonds with surface oxygen groups, increased removal efficiency and made it pressure insensitive. In contrast, monovalent ions increased removal efficiency slightly, but maintained the pressure dependence of the removal efficiency. Evidence is presented to support the hypothesis that divalently aggregated hydroxylated fullerenes deform under increased pressure and partially penetrate the membrane. Finally, nanoparticle reactive properties depend on the primary particle aggregation state. Both size and structure are key factors when evaluating nanomaterial reactivity under aggregation-inducing conditions. However, the impact of aggregation is not easily predicted. Some materials exhibit a decreased reactivity while others experience an increase. Therefore, the impact of aggregation on nanoparticle reactive properties must be evaluated on a material-by-material basis, while considering all of the particle and aggregate characteristics as well as environmental ones.

  6. Losartan inhibits the adhesion of rat platelets to fibrillar collagen--a potential role of nitric oxide and prostanoids.

    Science.gov (United States)

    Matys, T; Chabielska, E; Pawlak, R; Kucharewicz, I; Buczko, W

    2000-12-01

    The aim of the study was to evaluate the effect of losartan on rat platelet adhesion to fibrillar collagen. Washed platelets were counted before and after 15 minutes incubation with collagen (50 microg/ml) and the percentage of adhering platelets was calculated as the index of their adhesion. When the platelets were incubated with collagen 40.8 +/- 0.3% of the platelets adhered. Losartan produced a dose dependent decrease in a number of adhering platelets both when the drug was administered to the animals ex vivo at doses of 3, 10 and 30 mg/kg (p < 0.01-0.001) or was added to the preparation of washed platelets in vitro in concentrations of 10(-8)-10(-5) M (p < 0.01-0.001). In the next step of the study we assessed the influence of L-NAME (10 mg/kg ex vivo, 30 microM in vitro) and indomethacin (2.5 mg/kg ex vivo, 30 microM in vitro) on the antiadhesive effect of losartan (10 mg/kg ex vivo, 10(-6) M in vitro). Blockade of nitric oxide synthase with L-NAME partially reversed the antiadhesive effect of losartan both ex vivo and in vitro. Indomethacin diminished the inhibitory effect of losartan on platelet adhesion when administered ex vivo, but it failed to modify this parameter when added to the suspension of platelets in vitro. In conclusion, losartan reduces platelet adhesion to fibrillar collagen in a dose-dependent manner. The observed action of losartan seems to be mediated mainly by endothelium- and platelet-derived nitric oxide.

  7. Aggregations in Flatworms.

    Science.gov (United States)

    Liffen, C. L.; Hunter, M.

    1980-01-01

    Described is a school project to investigate aggregations in flatworms which may be influenced by light intensity, temperature, and some form of chemical stimulus released by already aggregating flatworms. Such investigations could be adopted to suit many educational levels of science laboratory activities. (DS)

  8. Platelet activation and aggregation

    DEFF Research Database (Denmark)

    Jensen, Maria Sander; Larsen, O H; Christiansen, Kirsten

    2013-01-01

    This study introduces a new laboratory model of whole blood platelet aggregation stimulated by endogenously generated thrombin, and explores this aspect in haemophilia A in which impaired thrombin generation is a major hallmark. The method was established to measure platelet aggregation initiated...

  9. Aggregates from mineral wastes

    Directory of Open Access Journals (Sweden)

    Baic Ireneusz

    2016-01-01

    Full Text Available The problem concerning the growing demand for natural aggregates and the need to limit costs, including transportation from remote deposits, cause the increase in growth of interest in aggregates from mineral wastes as well as in technologies of their production and recovery. The paper presents the issue related to the group of aggregates other than natural. A common name is proposed for such material: “alternative aggregates”. The name seems to be fully justified due to adequacy of this term because of this raw materials origin and role, in comparison to the meaning of natural aggregates based on gravel and sand as well as crushed stones. The paper presents characteristics of the market and basic application of aggregates produced from mineral wastes, generated in the mining, power and metallurgical industries as well as material from demolished objects.

  10. Marine Synechococcus Aggregation

    Science.gov (United States)

    Neuer, S.; Deng, W.; Cruz, B. N.; Monks, L.

    2016-02-01

    Cyanobacteria are considered to play an important role in the oceanic biological carbon pump, especially in oligotrophic regions. But as single cells are too small to sink, their carbon export has to be mediated by aggregate formation and possible consumption by zooplankton producing sinking fecal pellets. Here we report results on the aggregation of the ubiquitous marine pico-cyanobacterium Synechococcus as a model organism. We first investigated the mechanism behind such aggregation by studying the potential role of transparent exopolymeric particles (TEP) and the effects of nutrient (nitrogen or phosphorus) limitation on the TEP production and aggregate formation of these pico-cyanobacteria. We further studied the aggregation and subsequent settling in roller tanks and investigated the effects of the clays kaolinite and bentonite in a series of concentrations. Our results show that despite of the lowered growth rates, Synechococcus in nutrient limited cultures had larger cell-normalized TEP production, formed a greater volume of aggregates, and resulted in higher settling velocities compared to results from replete cultures. In addition, we found that despite their small size and lack of natural ballasting minerals, Synechococcus cells could still form aggregates and sink at measureable velocities in seawater. Clay minerals increased the number and reduced the size of aggregates, and their ballasting effects increased the sinking velocity and carbon export potential of aggregates. In comparison with the Synechococcus, we will also present results of the aggregation of the pico-cyanobacterium Prochlorococcus in roller tanks. These results contribute to our understanding in the physiology of marine Synechococcus as well as their role in the ecology and biogeochemistry in oligotrophic oceans.

  11. Protein aggregate myopathies

    Directory of Open Access Journals (Sweden)

    Sharma M

    2005-01-01

    Full Text Available Protein aggregate myopathies (PAM are an emerging group of muscle diseases characterized by structural abnormalities. Protein aggregate myopathies are marked by the aggregation of intrinsic proteins within muscle fibers and fall into four major groups or conditions: (1 desmin-related myopathies (DRM that include desminopathies, a-B crystallinopathies, selenoproteinopathies caused by mutations in the, a-B crystallin and selenoprotein N1 genes, (2 hereditary inclusion body myopathies, several of which have been linked to different chromosomal gene loci, but with as yet unidentified protein product, (3 actinopathies marked by mutations in the sarcomeric ACTA1 gene, and (4 myosinopathy marked by a mutation in the MYH-7 gene. While PAM forms 1 and 2 are probably based on impaired extralysosomal protein degradation, resulting in the accumulation of numerous and diverse proteins (in familial types in addition to respective mutant proteins, PAM forms 3 and 4 may represent anabolic or developmental defects because of preservation of sarcomeres outside of the actin and myosin aggregates and dearth or absence of other proteins in these actin or myosin aggregates, respectively. The pathogenetic principles governing protein aggregation within muscle fibers and subsequent structural sarcomeres are still largely unknown in both the putative catabolic and anabolic forms of PAM. Presence of inclusions and their protein composition in other congenital myopathies such as reducing bodies, cylindrical spirals, tubular aggregates and others await clarification. The hitherto described PAMs were first identified by immunohistochemistry of proteins and subsequently by molecular analysis of their genes.

  12. Charged Dust Aggregate Interactions

    Science.gov (United States)

    Matthews, Lorin; Hyde, Truell

    2015-11-01

    A proper understanding of the behavior of dust particle aggregates immersed in a complex plasma first requires a knowledge of the basic properties of the system. Among the most important of these are the net electrostatic charge and higher multipole moments on the dust aggregate as well as the manner in which the aggregate interacts with the local electrostatic fields. The formation of elongated, fractal-like aggregates levitating in the sheath electric field of a weakly ionized RF generated plasma discharge has recently been observed experimentally. The resulting data has shown that as aggregates approach one another, they can both accelerate and rotate. At equilibrium, aggregates are observed to levitate with regular spacing, rotating about their long axis aligned parallel to the sheath electric field. Since gas drag tends to slow any such rotation, energy must be constantly fed into the system in order to sustain it. A numerical model designed to analyze this motion provides both the electrostatic charge and higher multipole moments of the aggregate while including the forces due to thermophoresis, neutral gas drag, and the ion wakefield. This model will be used to investigate the ambient conditions leading to the observed interactions. This research is funded by NSF Grant 1414523.

  13. Smart Cu(II)-aptamer complexes based gold nanoplatform for tumor micro-environment triggered programmable intracellular prodrug release, photodynamic treatment and aggregation induced photothermal therapy of hepatocellular carcinoma

    Science.gov (United States)

    Zhang, Da; Zheng, Aixian; Li, Juan; Wu, Ming; Wu, Lingjie; Wei, Zuwu; Liao, Naishun; Zhang, Xiaolong; Cai, Zhixiong; Yang, Huanghao; Liu, Gang; Liu, Xiaolong; Liu, Jingfeng

    2017-01-01

    This study describes smart Cu(II)-aptamer complexes based gold nanoplatform for tumor micro-environment triggered programmable prodrug release, in demand photodynamic therapy and aggregation induced photothermal ablation of hepatocellular carcinoma. The nanoplatform is consist of monodispersed gold nanoparticle (GNP) that is binding to HCC cell specific targeting aptamers (TLS11a) through Au-S bond; the aptamer is labeled with Ce6 at the 5'end and coordinated with Cu(II) through (GA)10 repeating bases to load AQ4N at the 3' end. In normal physiological conditions, the fluorescence and ROS generation ability of Ce6 are quenched by GNPs via RET; but in cancerous cells, the fluorescence and the ROS generation of Ce6 could be recovered by cleavage of Au-S bond through high level of intracellular GSH for real-time imaging and in demand PDT. Meanwhile, the prodrug AQ4N release could be triggered by acid-cleavage of coordination bonds, then accompanied by a release of Cu(II) that would induce the electrostatic aggregation of GNPs for photo-thermal ablation; furthermore, the significantly enhanced chemotherapy efficiency could be achieved by PDT produced hypoxia to convert AQ4N into AQ4. In summary, here described nanoplatform with tumor cell specific responsive properties and programmable PDT/PTT/chemotherapy functions, might be an interesting synergistic strategy for HCC treatment. PMID:28042325

  14. On the characterization of intermediates in the isodesmic aggregation pathway of hen lysozyme at alkaline pH.

    Directory of Open Access Journals (Sweden)

    Vijay Kumar Ravi

    Full Text Available Protein aggregation leading to formation of amyloid fibrils is a symptom of several diseases like Alzheimer's, type 2 diabetes and so on. Elucidating the poorly understood mechanism of such phenomena entails the difficult task of characterizing the species involved at each of the multiple steps in the aggregation pathway. It was previously shown by us that spontaneous aggregation of hen-eggwhite lysozyme (HEWL at room temperature in pH 12.2 is a good model to study aggregation. Here in this paper we investigate the growth kinetics, structure, function and dynamics of multiple intermediate species populating the aggregation pathway of HEWL at pH 12.2. The different intermediates were isolated by varying the HEWL monomer concentration in the 300 nM-0.12 mM range. The intermediates were characterized using techniques like steady-state and nanosecond time-resolved fluorescence, atomic force microscopy and dynamic light scattering. Growth kinetics of non-fibrillar HEWL aggregates were fitted to the von Bertalanffy equation to yield a HEWL concentration independent rate constant (k = (6.6 ± 0.6 × 10(-5 s(-1. Our results reveal stepwise changes in size, molecular packing and enzymatic activity among growing HEWL aggregates consistent with an isodesmic aggregation model. Formation of disulphide bonds that crosslink the monomers in the aggregate appear as a unique feature of this aggregation. AFM images of multiple amyloid fibrils emanating radially from amorphous aggregates directly confirmed that on-pathway fibril formation was feasible under isodesmic polymerization. The isolated HEWL aggregates are revealed as polycationic protein nanoparticles that are robust at neutral pH with ability to take up non-polar molecules like ANS.

  15. Cholesterol impairment contributes to neuroserpin aggregation

    Science.gov (United States)

    Giampietro, Costanza; Lionetti, Maria Chiara; Costantini, Giulio; Mutti, Federico; Zapperi, Stefano; La Porta, Caterina A. M.

    2017-01-01

    Intraneural accumulation of misfolded proteins is a common feature of several neurodegenerative pathologies including Alzheimer’s and Parkinson’s diseases, and Familial Encephalopathy with Neuroserpin Inclusion Bodies (FENIB). FENIB is a rare disease due to a point mutation in neuroserpin which accelerates protein aggregation in the endoplasmic reticulum (ER). Here we show that cholesterol depletion induced either by prolonged exposure to statins or by inhibiting the sterol reg-ulatory binding-element protein (SREBP) pathway also enhances aggregation of neuroserpin proteins. These findings can be explained considering a computational model of protein aggregation under non-equilibrium conditions, where a decrease in the rate of protein clearance improves aggregation. Decreasing cholesterol in cell membranes affects their biophysical properties, including their ability to form the vesicles needed for protein clearance, as we illustrate by a simple mathematical model. Taken together, these results suggest that cholesterol reduction induces neuroserpin aggregation, even in absence of specific neuroserpin mutations. The new mechanism we uncover could be relevant also for other neurodegenerative diseases associated with protein aggregation. PMID:28255164

  16. Cholesterol impairment contributes to neuroserpin aggregation

    Science.gov (United States)

    Giampietro, Costanza; Lionetti, Maria Chiara; Costantini, Giulio; Mutti, Federico; Zapperi, Stefano; La Porta, Caterina A. M.

    2017-03-01

    Intraneural accumulation of misfolded proteins is a common feature of several neurodegenerative pathologies including Alzheimer’s and Parkinson’s diseases, and Familial Encephalopathy with Neuroserpin Inclusion Bodies (FENIB). FENIB is a rare disease due to a point mutation in neuroserpin which accelerates protein aggregation in the endoplasmic reticulum (ER). Here we show that cholesterol depletion induced either by prolonged exposure to statins or by inhibiting the sterol reg-ulatory binding-element protein (SREBP) pathway also enhances aggregation of neuroserpin proteins. These findings can be explained considering a computational model of protein aggregation under non-equilibrium conditions, where a decrease in the rate of protein clearance improves aggregation. Decreasing cholesterol in cell membranes affects their biophysical properties, including their ability to form the vesicles needed for protein clearance, as we illustrate by a simple mathematical model. Taken together, these results suggest that cholesterol reduction induces neuroserpin aggregation, even in absence of specific neuroserpin mutations. The new mechanism we uncover could be relevant also for other neurodegenerative diseases associated with protein aggregation.

  17. Small heat shock protein Hsp27 protects myosin S1 from heat-induced aggregation, but not from thermal denaturation and ATPase inactivation.

    Science.gov (United States)

    Markov, Denis I; Pivovarova, Anastasia V; Chernik, Ivan S; Gusev, Nikolai B; Levitsky, Dmitrii I

    2008-04-30

    We applied different methods, such as turbidity measurements, dynamic light scattering, differential scanning calorimetry and co-sedimentation assay, to analyze the interaction of small heat shock protein Hsp27 with isolated myosin head (myosin subfragment 1, S1) under heat-stress conditions. Upon heating at 43 degrees C, Hsp27 effectively suppresses S1 aggregation, and this effect is enhanced by mutations mimicking Hsp27 phosphorylation. However, Hsp27 was unable to prevent thermal unfolding of myosin heads and to maintain their ATPase activity under heat-shock conditions.

  18. Aggregated Computational Toxicology Online Resource

    Data.gov (United States)

    U.S. Environmental Protection Agency — Aggregated Computational Toxicology Online Resource (AcTOR) is EPA's online aggregator of all the public sources of chemical toxicity data. ACToR aggregates data...

  19. Active matter model of Myxococcus xanthus aggregation

    Science.gov (United States)

    Patch, Adam; Bahar, Fatmagul; Liu, Guannan; Thutupalli, Shashi; Welch, Roy; Yllanes, David; Shaevitz, Joshua; Marchetti, M. Cristina

    Myxococcus xanthus is a soil-dwelling bacterium that exhibits several fascinating collective behaviors including streaming, swarming, and generation of fruiting bodies. A striking feature of M. xanthus is that it periodically reverses its motility direction. The first stage of fruiting body formation is characterized by the aggregation of cells on a surface into round mesoscopic structures. Experiments have shown that this aggregation relies heavily on regulation of the reversal rate and local mechanical interactions, suggesting motility-induced phase separation may play an important role. We have adapted self-propelled particle models to include cell reversal and motility suppression resulting from sporulation observed in aggregates. Using 2D molecular dynamics simulations, we map the phase behavior in the space of Péclet number and local density and examine the kinetics of aggregation for comparison to experiments.

  20. Interaction between amyloid beta peptide and an aggregation blocker peptide mimicking islet amyloid polypeptide.

    Directory of Open Access Journals (Sweden)

    Nasrollah Rezaei-Ghaleh

    Full Text Available Assembly of amyloid-beta peptide (Aβ into cytotoxic oligomeric and fibrillar aggregates is believed to be a major pathologic event in Alzheimer's disease (AD and interfering with Aβ aggregation is an important strategy in the development of novel therapeutic approaches. Prior studies have shown that the double N-methylated analogue of islet amyloid polypeptide (IAPP IAPP-GI, which is a conformationally constrained IAPP analogue mimicking a non-amyloidogenic IAPP conformation, is capable of blocking cytotoxic self-assembly of Aβ. Here we investigate the interaction of IAPP-GI with Aβ40 and Aβ42 using NMR spectroscopy. The most pronounced NMR chemical shift changes were observed for residues 13-20, while residues 7-9, 15-16 as well as the C-terminal half of Aβ--that is both regions of the Aβ sequence that are converted into β-strands in amyloid fibrils--were less accessible to solvent in the presence of IAPP-GI. At the same time, interaction of IAPP-GI with Aβ resulted in a concentration-dependent co-aggregation of Aβ and IAPP-GI that was enhanced for the more aggregation prone Aβ42 peptide. On the basis of the reduced toxicity of the Aβ peptide in the presence of IAPP-GI, our data are consistent with the suggestion that IAPP-GI redirects Aβ into nontoxic "off-pathway" aggregates.

  1. Extended polyglutamine tracts cause aggregation and structural perturbation of an adjacent beta barrel protein.

    Science.gov (United States)

    Ignatova, Zoya; Gierasch, Lila M

    2006-05-05

    Formation of fibrillar intranuclear inclusions and related neuropathologies of the CAG-repeat disorders are linked to the expansion of a polyglutamine tract. Despite considerable effort, the etiology of these devastating diseases remains unclear. Although polypeptides with glutamine tracts recapitulate many of the observed characteristics of the gene products with CAG repeats, such as in vitro and in vivo aggregation and toxicity in model organisms, extended polyglutamine segments have also been reported to structurally perturb proteins into which they are inserted. Additionally, the sequence context of a polyglutamine tract has recently been shown to modulate its propensity to aggregate. These findings raise the possibility that indirect influences of the repeat tract on adjacent protein domains are contributory to pathologies. Destabilization of an adjacent domain may lead to loss of function, as well as favoring non-native structures in the neighboring domain causing them to be prone to intermolecular association and consequent aggregation. To explore these phenomena, we have used chimeras of a well studied globular protein and exon 1 of huntingtin. We find that expansion of the polyglutamine segment beyond the pathological threshold (>35 glutamines) results in structural perturbation of the neighboring protein whether the huntingtin exon is N- or C-terminal. Elongation of the polyglutamine region also substantially increases the propensity of the chimera to aggregate, both in vitro and in vivo, and in vitro aggregation kinetics of a chimera with a 53-glutamine repeat follow a nucleation polymerization mechanism with a monomeric nucleus.

  2. Nortriptyline inhibits aggregation and neurotoxicity of alpha-synuclein by enhancing reconfiguration of the monomeric form.

    Science.gov (United States)

    Collier, Timothy J; Srivastava, Kinshuk R; Justman, Craig; Grammatopoulous, Tom; Hutter-Paier, Birgit; Prokesch, Manuela; Havas, Daniel; Rochet, Jean-Christophe; Liu, Fang; Jock, Kevin; de Oliveira, Patrícia; Stirtz, Georgia L; Dettmer, Ulf; Sortwell, Caryl E; Feany, Mel B; Lansbury, Peter; Lapidus, Lisa; Paumier, Katrina L

    2017-10-01

    The pathology of Parkinson's disease and other synucleinopathies is characterized by the formation of intracellular inclusions comprised primarily of misfolded, fibrillar α-synuclein (α-syn). One strategy to slow disease progression is to prevent the misfolding and aggregation of its native monomeric form. Here we present findings that support the contention that the tricyclic antidepressant compound nortriptyline (NOR) has disease-modifying potential for synucleinopathies. Findings from in vitro aggregation and kinetics assays support the view that NOR inhibits aggregation of α-syn by directly binding to the soluble, monomeric form, and by enhancing reconfiguration of the monomer, inhibits formation of toxic conformations of the protein. We go on to demonstrate that NOR inhibits the accumulation, aggregation and neurotoxicity of α-syn in multiple cell and animal models. These findings suggest that NOR, a compound with established safety and efficacy for treatment of depression, may slow progression of α-syn pathology by directly binding to soluble, native, α-syn, thereby inhibiting pathological aggregation and preserving its normal functions. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Responses of the Microalga Chlorophyta sp. to Bacterial Quorum Sensing Molecules (N-Acylhomoserine Lactones): Aromatic Protein-Induced Self-Aggregation.

    Science.gov (United States)

    Zhou, Dandan; Zhang, Chaofan; Fu, Liang; Xu, Liang; Cui, Xiaochun; Li, Qingcheng; Crittenden, John C

    2017-03-21

    Bacteria and microalgae often coexist during the recycling of microalgal bioresources in wastewater treatment processes. Although the bacteria may compete with the microalgae for nutrients, they could also facilitate microalgal harvesting by forming algal-bacterial aggregates. However, very little is known about interspecies interactions between bacteria and microalgae. In this study, we investigated the responses of a model microalga, Chlorophyta sp., to the typical quorum sensing (QS) molecules N-acylhomoserine lactones (AHLs) extracted from activated sludge bacteria. Chlorophyta sp. self-aggregated in 200 μm bioflocs by secreting 460-1000 kDa aromatic proteins upon interacting with AHLs, and the settling efficiency of Chlorophyta sp. reached as high as 41%. However, Chlorophyta sp. cells were essentially in a free suspension in the absence of AHLs. Fluorescence intensity of the aromatic proteins had significant (P microalga. Transcriptome results further revealed up-regulation of synthesis pathways for aromatic proteins from tyrosine and phenylalanine that was assisted by anthranilate accumulation. To the best of our knowledge, this is the first study to confirm that eukaryotic microorganisms can sense and respond to prokaryotic QS molecules.

  4. 猪链球菌溶血素(SLY)引起血小板聚集活性分析%Activity identification of Streptococcus suis suilysin inducing platelets aggregation

    Institute of Scientific and Technical Information of China (English)

    张省委; 刘鹏; 徐茂凯; 尚学义; 郑玉玲; 袁媛; 姜永强

    2016-01-01

    目的:研究重组表达的2型猪链球菌溶血素( SLY)与血小板的相互作用,为临床猪链球菌感染的救治提供理论基础。方法镍柱亲和层析法纯化重组SLY蛋白,光密度法检测其溶血活性,再通过血小板聚集仪和扫描电子显微镜观察SLY蛋白与血小板的相互作用,并研究抗血小板药物阿司匹林对SLY引起的血小板聚集的影响,通过比较野生株05ZYH33和sly基因突变株Δsly对小鼠体内血小板体积和数量的影响,推测SLY蛋白对体内血小板的影响。结果与结论重组SLY蛋白溶血活性为2000 HU,1μg/ml SLY蛋白可引起血小板高度聚集,5 mmol/L阿司匹林可显著抑制聚集,SLY蛋白可引起小鼠体内单个血小板体积增大和血小板数量减少。%Objective To explore the interaction of streptococcus suis serotype 2 recombinant suilysin ( SLY ) with platelets, and provide the theoretical basis for clinic treatment of patients infected with S.suis.Methods The nickel column affinity chromatography was used to purify the recombinant SLY.The hemolytic acivity was identified by optical density before the platelets aggregation induced by a SLY was detected by a platelet aggregometer or electron microscope and the effect of aspirin on platelets aggregation was analyzed.The impact of wild type 05ZYH33 and sly-deficient mutant strainΔSLY on platelets of mice was compared to predict the interaction of the SLY with platelets in vivo.Results and Conclusion Hemolytic activity of recombinant SLY was 2000 hemolytic units( HU) and platelets aggregation was induced at 1 μg/ml.The aggregation can be inhibited by aspirin in 5 mmol/L.SLY can also increase the volume and reduce the amount of platelets in mice.

  5. Depletion - flocculation in oil-in-water emulsions using fibrillar protein assemblies

    NARCIS (Netherlands)

    Blijdenstein, T.B.J.; Veerman, C.; Linden, van der E.

    2004-01-01

    This paper shows that low concentrations of -lactoglobulin fibrils can induce depletion-flocculation in -lactoglobulin-stabilized oil-in-water emulsions. The minimum required fibril concentration for flocculation was determined experimentally for fibril lengths of about 3 and 0.1 m. The minimum fibr

  6. Three-dimensional second-harmonic generation imaging of fibrillar collagen in biological tissues.

    Science.gov (United States)

    Xie, Jiansong; Ferbas, John; Juan, Gloria

    2012-07-01

    Multiphoton-induced second-harmonic generation (SHG) has developed into a very powerful approach for in depth visualization of some biological structures with high specificity. In this unit, we describe the basic principles of three-dimensional SHG microscopy. In addition, we illustrate how SHG imaging can be utilized to assess collagen fibrils in biological tissues. Some technical considerations are also addressed.

  7. Recycled aggregates concrete: aggregate and mix properties

    Directory of Open Access Journals (Sweden)

    González-Fonteboa, B.

    2005-09-01

    Full Text Available This study of structural concrete made with recycled concrete aggregate focuses on two issues: 1. The characterization of such aggregate on the Spanish market. This involved conducting standard tests to determine density, water absorption, grading, shape, flakiness and hardness. The results obtained show that, despite the considerable differences with respect to density and water absorption between these and natural aggregates, on the whole recycled aggregate is apt for use in concrete production. 2. Testing to determine the values of basic concrete properties: mix design parameters were established for structural concrete in non-aggressive environments. These parameters were used to produce conventional concrete, and then adjusted to manufacture recycled concrete aggregate (RCA concrete, in which 50% of the coarse aggregate was replaced by the recycled material. Tests were conducted to determine the physical (density of the fresh and hardened material, water absorption and mechanical (compressive strength, splitting tensile strength and modulus of elasticity properties. The results showed that, from the standpoint of its physical and mechanical properties, concrete in which RCA accounted for 50% of the coarse aggregate compared favourably to conventional concrete.

    Se aborda el estudio de hormigones estructurales fabricados con áridos reciclados procedentes de hormigón, incidiéndose en dos aspectos: 1. Caracterización de tales áridos, procedentes del mercado español. Para ello se llevan a cabo ensayos de densidad, absorción, granulometría, coeficiente de forma, índice de lajas y dureza. Los resultados obtenidos han puesto de manifiesto que, a pesar de que existen diferencias notables (sobre todo en cuanto a densidad y absorción con los áridos naturales, las características de los áridos hacen posible la fabricación de hormigones. 2. Ensayos sobre propiedades básicas de los hormigones: se establecen parámetros de dosificaci

  8. Protein Colloidal Aggregation Project

    Science.gov (United States)

    Oliva-Buisson, Yvette J. (Compiler)

    2014-01-01

    To investigate the pathways and kinetics of protein aggregation to allow accurate predictive modeling of the process and evaluation of potential inhibitors to prevalent diseases including cataract formation, chronic traumatic encephalopathy, Alzheimer's Disease, Parkinson's Disease and others.

  9. Aggregation and Averaging.

    Science.gov (United States)

    Siegel, Irving H.

    The arithmetic processes of aggregation and averaging are basic to quantitative investigations of employment, unemployment, and related concepts. In explaining these concepts, this report stresses need for accuracy and consistency in measurements, and describes tools for analyzing alternative measures. (BH)

  10. Cell aggregation and sedimentation.

    Science.gov (United States)

    Davis, R H

    1995-01-01

    The aggregation of cells into clumps or flocs has been exploited for decades in such applications as biological wastewater treatment, beer brewing, antibiotic fermentation, and enhanced sedimentation to aid in cell recovery or retention. More recent research has included the use of cell aggregation and sedimentation to selectively separate subpopulations of cells. Potential biotechnological applications include overcoming contamination, maintaining plasmid-bearing cells in continuous fermentors, and selectively removing nonviable hybridoma cells from perfusion cultures.

  11. Controlling solution-phase polymer aggregation with molecular weight and solvent additives to optimize polymer-fullerene bulk heterojunction solar cells

    KAUST Repository

    Bartelt, Jonathan A.

    2014-03-20

    The bulk heterojunction (BHJ) solar cell performance of many polymers depends on the polymer molecular weight (M n) and the solvent additive(s) used for solution processing. However, the mechanism that causes these dependencies is not well understood. This work determines how M n and solvent additives affect the performance of BHJ solar cells made with the polymer poly(di(2-ethylhexyloxy)benzo[1,2-b:4,5-b\\']dithiophene-co- octylthieno[3,4-c]pyrrole-4,6-dione) (PBDTTPD). Low M n PBDTTPD devices have exceedingly large fullerene-rich domains, which cause extensive charge-carrier recombination. Increasing the M n of PBDTTPD decreases the size of these domains and significantly improves device performance. PBDTTPD aggregation in solution affects the size of the fullerene-rich domains and this effect is linked to the dependency of PBDTTPD solubility on M n. Due to its poor solubility high M n PBDTTPD quickly forms a fibrillar polymer network during spin-casting and this network acts as a template that prevents large-scale phase separation. Furthermore, processing low M n PBDTTPD devices with a solvent additive improves device performance by inducing polymer aggregation in solution and preventing large fullerene-rich domains from forming. These findings highlight that polymer aggregation in solution plays a significant role in determining the morphology and performance of BHJ solar cells. The performance of poly(di(2-ethylhexyloxy) benzo[1,2-b:4,5-b\\']dithiophene-co-octylthieno[3,4-c]pyrrole-4,6-dione) (PBDTTPD) bulk heterojunction solar cells strongly depends on the polymer molecular weight, and processing these bulk heterojunctions with a solvent additive preferentially improves the performance of low molecular weight devices. It is demonstrated that polymer aggregation in solution significantly impacts the thin-film bulk heterojunction morphology and is vital for high device performance. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. H- and J-aggregation of fluorene-based chromophores.

    Science.gov (United States)

    Deng, Yonghong; Yuan, Wen; Jia, Zhe; Liu, Gao

    2014-12-11

    Understanding of H- and J-aggregation behaviors in fluorene-based polymers is significant both for determining the origin of various red-shifted emissions occurring in blue-emitting polyfluorenes and for developing polyfluorene-based device performance. In this contribution, we demonstrate a new theory of the H- and J-aggregation of polyfluorenes and oligofluorenes, and understand the influence of chromosphere aggregation on their photoluminescent properties. H- and J-aggregates are induced by a continuous increasing concentration of the oligofluorene or polyfluorene solution. A relaxed molecular configuration is simulated to illustrate the spatial arrangement of the bonding of fluorenes. It is indicated that the relaxed state adopts a 21 helical backbone conformation with a torsion angle of 18° between two connected repeat units. This configuration makes the formation of H- and J-aggregates through the strong π-π interaction between the backbone rings. A critical aggregation concentration is observed to form H- and J-aggregates for both polyfluorenes and oligofluorenes. These aggregates show large spectral shifts and distinct shape changes in photoluminescent excitation (PLE) and emission (PL) spectroscopy. Compared with "isolated" chromophores, H-aggregates induce absorption spectral blue-shift and fluorescence spectral red-shift but largely reduce fluorescence efficiency. "Isolated" chromophores not only refer to "isolated molecules" but also include those associated molecules if their conjugated backbones are not compact enough to exhibit perturbed absorption and emission. J-aggregates induce absorption spectral red-shift and fluorescence spectral red-shift but largely enhance fluorescence efficiency. The PLE and PL spectra also show that J-aggregates dominate in concentrated solutions. Different from the excimers, the H- and J-aggregate formation changes the ground-state absorption of fluorene-based chromophores. H- and J-aggregates show changeable

  13. Annealing Induced Aggregations and Sign Alterations of Nonlinear Absorption and Refraction of Dense Au Nanoparticles in TiO2 Films

    Institute of Scientific and Technical Information of China (English)

    PENG Xiao-Niu; LI Min; YU Liao; ZHANG Xian; ZHOU Li

    2008-01-01

    Au-TiO2 dis-conductive composite films with Au atom concentrate as high as 82% are prepared by using reactive co-sputtering technique. The annealing effect on the nanostructures and optical nonlinearities of the composite films are investigated. Au nanoparticles aggregated to semi-continuum network structures during the annealing processes. As the annealing temperature increases from 25℃ to 400℃, the surface plasmon absorption band is shifted and its strength is increased, consequently, the nonlinear absorption coefficient β decreases from 5.6 x104 cm/GW to -1.7×104 cm/GW, while the nonlinear refractive index r increases from -0.95 cm2/GW to 1.3 cm2 /GW.

  14. Conformational Chirality of the Biphenyl Groups Induced by the Aggregation of Poly{bis[4-(4'-(S)-2-methylbutoxy)- Biphenoxy] Phosphazene}

    Institute of Scientific and Technical Information of China (English)

    TANG Xianhui; LI Baozong; LI Yi; YANG Yonggang

    2016-01-01

    Poly{bis[4-(4'-(S)-2-methylbutoxy)biphenyloxy]phosphazene}(PP-C) was designed and successfully synthesized, and then characterized by means of FT-IR spectroscopy,1H- and31P-NMR, GPC spectroscopy, wide angle X-ray diffraction and differential scanning calorimetry. The results indicated that for PP-C, theMw is 2.18×105 and the PDI is 1.96. PP-C was a kind of crystallized polymer with a crystallizing point of -2.0℃ and a melting point of 28℃. The conformational chirality of the PP-C molecules was studied using circular dichroism spectrum. It was found that in dilute THF solution, the biphenyl groups in the PP-C molecules twisted randomly. However, when the PP-C formed aggregates, the biphenyl groups tended to twist single-handedly, which was controlled by the adjacent chiral alkoxy groups.

  15. Chaperone effects on prion and nonprion aggregates.

    Science.gov (United States)

    Rikhvanov, Eugene G; Romanova, Nina V; Chernoff, Yury O

    2007-01-01

    Exposure to high temperature or other stresses induces a synthesis of heat shock proteins. Many of these proteins are molecular chaperones, and some of them help cells to cope with heat-induced denaturation and aggregation of other proteins. In the last decade, chaperones have received increased attention in connection with their role in maintenance and propagation of the Saccharomyces cerevisiae prions, infectious or heritable agents transmitted at the protein level. Recent data suggest that functioning of the chaperones in reactivation of heat-damaged proteins and in propagation of prions is based on the same molecular mechanisms but may lead to different consequences depending on the type of aggregate. In both cases the concerted and balanced action of "chaperones' team," including Hsp104, Hsp70, Hsp40 and possibly other proteins, determines whether a misfolded protein is to be incorporated into an aggregate, rescued to the native state or targeted for degradation.

  16. Involvement of fibrinogen specific binding in erythrocyte aggregation

    OpenAIRE

    Lominadze, David; DEAN, WILLIAM L.

    2002-01-01

    Increased fibrinogen concentration and erythrocyte aggregation are significant risk factors during various cardiovascular diseases and cerebrovascular disorders. Currently, fibrinogen-induced erythrocyte aggregation is thought to be caused by a non-specific binding mechanism. However, the published data on changes in erythrocyte aggregation during hypertension point to the possible existence of other mechanism(s). Therefore, we tested the hypothesis that specific binding of fibrinogen is invo...

  17. The study of amorphous aggregation of tobacco mosaic virus coat protein by dynamic light scattering.

    Science.gov (United States)

    Panyukov, Yuliy; Yudin, Igor; Drachev, Vladimir; Dobrov, Evgeny; Kurganov, Boris

    2007-04-01

    The kinetics of heat-induced and cetyltrimethylammonium bromide induced amorphous aggregation of tobacco mosaic virus coat protein in Na(+)/Na(+) phosphate buffer, pH 8.0, have been studied using dynamic light scattering. In the case of thermal aggregation (52 degrees C) the character of the dependence of the hydrodynamic radius (R(h)) on time indicates that at certain instant the population of aggregates is split into two components. The size of the aggregates of one kind remains practically constant in time, whereas the size of aggregates of other kind increases monotonously in time reaching the values characteristic of aggregates prone to precipitation (R(h)=900-1500 nm). The construction of the light scattering intensity versus R(h) plots shows that the large aggregates (the start aggregates) exist in the system at the instant the initial increase in the light scattering intensity is observed. For thermal aggregation the R(h) value for the start aggregates is independent of the protein concentration and equal to 21.6 nm. In the case of the surfactant-induced aggregation (at 25 degrees C) no splitting of the aggregates into two components is observed and the size of the start aggregates turns out to be much larger (107 nm) than on the thermal aggregation. The dependence of R(h) on time for both heat-induced aggregation and surfactant-induced aggregation after a lapse of time follows the power law indicating that the aggregation process proceeds in the kinetic regime of diffusion-limited cluster-cluster aggregation. Fractal dimension is close to 1.8. The molecular chaperone alpha-crystallin does not affect the kinetics of tobacco mosaic virus coat protein thermal aggregation.

  18. 岩乌头根部的生物碱类成分及其抗PAF活性%Diterpenoid Alkaloids from roots of Aconitum recemulosum and their inhibitory effects on PAF-induced platelet aggregation

    Institute of Scientific and Technical Information of China (English)

    葛永辉; 穆淑珍; 张建新; 汪冶; 孙黔云; 郝小江

    2009-01-01

    Objective:To study diterpenoid alkaloids from the roots of Aconitum recemulosum,and their inhibitory effects on PAF-induced platelet aggregation.Method:The root of A.recemulosum was extracted with 95% EtOH.The total alkaloids extracted were isolated and purified by several kinds of column chromatography over silica gel,RP-18,and Sephadex LH-20,and identified based on spectral analysis.And the inhibitory effects of isolated compounds on PAF-induced platelet aggregation were detected.Result:Five alkaloids were isolated and identified as sachaconitine(1),14-acetylsachaconitine(2),hemsleyanine C(3),circinasine A(4),and talatisamine(5).The results showed compounds 1 and 2 have moderate inhibition effect on PAF.Conclusion:Compounds 1-5 were firstly isolated from this plant.Furthermore,compounds 1 and 2 possessed moderate inhibitory effects on PAF-induced platelet aggregation.%目的:研究岩乌头根部的二萜生物碱类成分及其抗PAF活性.方法:95%乙醇提取,所得浸膏采用经典的酸-碱处理方法,得到总碱,总碱经硅胶,RP-18,sephadex LH-20等多种材料柱色谱分离,得到生物碱单体,再通过波谱解析鉴定其化学结构;并对分离鉴定的生物碱进行抗PAF活性的检测.结果:分离鉴定了5个二萜类生物碱,分别为sachaconitine(1),14-acetylsachaconitine(2),hemsleyanine C(3),circinasine A(4),talatisamine(5);化合物1和2显示了一定的抗PAF活性.结论:所有化合物均为首次从该植物中分得,化合物1和2对PAF诱导的血小板聚集具有一定的抑制作用.

  19. Fibrillar beta-amyloid peptide Aβ1–40 activates microglial proliferation via stimulating TNF-α release and H2O2 derived from NADPH oxidase: a cell culture study

    Directory of Open Access Journals (Sweden)

    Sharpe Martyn

    2006-09-01

    Full Text Available Abstract Background Alzheimer's disease is characterized by the accumulation of neuritic plaques, containing activated microglia and β-amyloid peptides (Aβ. Fibrillar Aβ can activate microglia, resulting in production of toxic and inflammatory mediators like hydrogen peroxide, nitric oxide, and cytokines. We have recently found that microglial proliferation is regulated by hydrogen peroxide derived from NADPH oxidase. Thus, in this study, we investigated whether Aβ can stimulate microglial proliferation and cytokine production via activation of NADPH oxidase to produce hydrogen peroxide. Methods Primary mixed glial cultures were prepared from the cerebral cortices of 7-day-old Wistar rats. At confluency, microglial cells were isolated by tapping, replated, and treated either with or without Aβ. Hydrogen peroxide production by cells was measured with Amplex Red and peroxidase. Microglial proliferation was assessed under a microscope 0, 24 and 48 hours after plating. TNF-α and IL-1β levels in the culture medium were assessed by ELISA. Results We found that 1 μM fibrillar (but not soluble Aβ1–40 peptide induced microglial proliferation and caused release of hydrogen peroxide, TNF-α and IL-1β from microglial cells. Proliferation was prevented by the NADPH oxidase inhibitor apocynin (10 μM, by the hydrogen peroxide-degrading enzyme catalase (60 U/ml, and by its mimetics EUK-8 and EUK-134 (20 μM; as well as by an antibody against TNF-α and by a soluble TNF receptor inhibitor. Production of TNF-α and IL-1β, measured after 24 hours of Aβ treatment, was also prevented by apocynin, catalase and EUKs, but the early release (measured after 1 hour of Aβ treatment of TNF-α was insensitive to apocynin or catalase. Conclusion These results indicate that Aβ1–40-induced microglial proliferation is mediated both by microglial release of TNF-α and production of hydrogen peroxide from NADPH oxidase. This suggests that TNF-α and NADPH

  20. Optical dynamics of molecular aggregates

    NARCIS (Netherlands)

    de Boer, Steven

    2006-01-01

    The subject of this thesis is the spectroscopy and dynamics of molecular aggregates in amorphous matrices. Aggregates of three different molecules were studied. The molecules are depicted in Fig. (1.1). Supersaturated solutions of these molecules show aggregate formation. Aggregation is a process si