WorldWideScience

Sample records for fibrillar adhesive microstructure

  1. Improved Adhesion and Compliancy of Hierarchical Fibrillar Adhesives.

    Science.gov (United States)

    Li, Yasong; Gates, Byron D; Menon, Carlo

    2015-08-05

    The gecko relies on van der Waals forces to cling onto surfaces with a variety of topography and composition. The hierarchical fibrillar structures on their climbing feet, ranging from mesoscale to nanoscale, are hypothesized to be key elements for the animal to conquer both smooth and rough surfaces. An epoxy-based artificial hierarchical fibrillar adhesive was prepared to study the influence of the hierarchical structures on the properties of a dry adhesive. The presented experiments highlight the advantages of a hierarchical structure despite a reduction of overall density and aspect ratio of nanofibrils. In contrast to an adhesive containing only nanometer-size fibrils, the hierarchical fibrillar adhesives exhibited a higher adhesion force and better compliancy when tested on an identical substrate.

  2. Reversible adhesion switching of porous fibrillar adhesive pads by humidity.

    Science.gov (United States)

    Xue, Longjian; Kovalev, Alexander; Dening, Kirstin; Eichler-Volf, Anna; Eickmeier, Henning; Haase, Markus; Enke, Dirk; Steinhart, Martin; Gorb, Stanislav N

    2013-01-01

    We report reversible adhesion switching on porous fibrillar polystyrene-block-poly(2-vinyl pyridine) (PS-b-P2VP) adhesive pads by humidity changes. Adhesion at a relative humidity of 90% was more than nine times higher than at a relative humidity of 2%. On nonporous fibrillar adhesive pads of the same material, adhesion increased only by a factor of ~3.3. The switching performance remained unchanged in at least 10 successive high/low humidity cycles. Main origin of enhanced adhesion at high humidity is the humidity-induced decrease in the elastic modulus of the polar component P2VP rather than capillary force. The presence of spongelike continuous internal pore systems with walls consisting of P2VP significantly leveraged this effect. Fibrillar adhesive pads on which adhesion is switchable by humidity changes may be used for preconcentration of airborne particulates, pollutants, and germs combined with triggered surface cleaning.

  3. Fibrillar Adhesive for Climbing Robots

    Science.gov (United States)

    Pamess, Aaron; White, Victor E.

    2013-01-01

    A climbing robot needs to use its adhesive patches over and over again as it scales a slope. Replacing the adhesive at each step is generally impractical. If the adhesive or attachment mechanism cannot be used repeatedly, then the robot must carry an extra load of this adhesive to apply a fresh layer with each move. Common failure modes include tearing, contamination by dirt, plastic deformation of fibers, and damage from loading/ unloading. A gecko-like fibrillar adhesive has been developed that has been shown useful for climbing robots, and may later prove useful for grasping, anchoring, and medical applications. The material consists of a hierarchical fibrillar structure that currently contains two levels, but may be extended to three or four levels in continuing work. The contacting level has tens of thousands of microscopic fibers made from a rubberlike material that bend over and create intimate contact with a surface to achieve maximum van der Waals forces. By maximizing the real area of contact that these fibers make and minimizing the bending energy necessary to achieve that contact, the net amount of adhesion has been improved dramatically.

  4. Fabrication and Characterization of Gecko-inspired Fibrillar Adhesive

    Science.gov (United States)

    Kim, Yongkwan

    Over the last decade, geckos' remarkable ability to stick to and climb surfaces found in nature has motivated a wide range of scientific interest in engineering gecko-mimetic surface for various adhesive and high friction applications. The high adhesion and friction of its pads have been attributed to a complex array of hairy structures, which maximize surface area for van der Waals interaction between the toes and the counter-surface. While advances in micro- and nanolithography technique have allowed fabrication of increasingly sophisticated gecko mimetic surfaces, it remains a challenge to produce an adhesive as robust as that of the natural gecko pads. In order to rationally design gecko adhesives, understanding the contact behavior of fibrillar interface is critical. The first chapter of the dissertation introduces gecko adhesion and its potential applications, followed by a brief survey of gecko-inspired adhesives. Challenges that limit the performance of the current adhesives are presented. In particular, it is pointed out that almost all testing of gecko adhesives have been on clean, smooth glass, which is ideal for adhesion due to high surface energy and low roughness. Surfaces in application are more difficult to stick to, so the understanding of failure modes in low energy and rough surfaces is important. The second chapter presents a fabrication method for thermoplastic gecko adhesive to be used for a detailed study of fibrillar interfaces. Low-density polyethylene nanofibers are replicated from a silicon nanowire array fabricated by colloidal lithography and metal-catalyzed chemical etching. This process yields a highly ordered array of nanofibers over a large area with control over fiber diameter, length, and number density. The high yield and consistency of the process make it ideal for a systematic study on factors that affect adhesion and friction of gecko adhesives. The following three chapters examine parameters that affect macroscale friction of

  5. Soft grippers using micro-fibrillar adhesives for transfer printing.

    Science.gov (United States)

    Song, Sukho; Sitti, Metin

    2014-07-23

    The adhesive characteristics of fibrillar adhesives on a soft deformable membrane are reported. A soft gripper with an inflatable membrane covered by elastomer mushroom-shaped microfibers have a superior conformation to non-planar 3D part geometries, enabling the transfer printing of various parts serially or in parallel. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Mechanics of load-drag-unload contact cleaning of gecko-inspired fibrillar adhesives.

    Science.gov (United States)

    Abusomwan, Uyiosa A; Sitti, Metin

    2014-10-14

    Contact self-cleaning of gecko-inspired synthetic adhesives with mushroom-shaped tips has been demonstrated recently using load-drag-unload cleaning procedures similar to that of the natural animal. However, the underlying mechanics of contact cleaning has yet to be fully understood. In this work, we present a detailed experiment of contact self-cleaning that shows that rolling is the dominant mechanism of cleaning for spherical microparticle contaminants, during the load-drag-unload procedure. We also study the effect of dragging rate and normal load on the particle rolling friction. A model of spherical particle rolling on an elastomer fibrillar adhesive interface is developed and agrees well with the experimental results. This study takes us closer to determining design parameters for achieving self-cleaning fibrillar adhesives.

  7. Hierarchical macroscopic fibrillar adhesives: in situ study of buckling and adhesion mechanisms on wavy substrates.

    Science.gov (United States)

    Bauer, Christina T; Kroner, Elmar; Fleck, Norman A; Arzt, Eduard

    2015-10-23

    Nature uses hierarchical fibrillar structures to mediate temporary adhesion to arbitrary substrates. Such structures provide high compliance such that the flat fibril tips can be better positioned with respect to asperities of a wavy rough substrate. We investigated the buckling and adhesion of hierarchically structured adhesives in contact with flat smooth, flat rough and wavy rough substrates. A macroscopic model for the structural adhesive was fabricated by molding polydimethylsiloxane into pillars of diameter in the range of 0.3-4.8 mm, with up to three different hierarchy levels. Both flat-ended and mushroom-shaped hierarchical samples buckled at preloads one quarter that of the single level structures. We explain this behavior by a change in the buckling mode; buckling leads to a loss of contact and diminishes adhesion. Our results indicate that hierarchical structures can have a strong influence on the degree of adhesion on both flat and wavy substrates. Strategies are discussed that achieve highly compliant substrates which adhere to rough substrates.

  8. Effect of rate on adhesion and static friction of a film-terminated fibrillar interface.

    Science.gov (United States)

    Vajpayee, Shilpi; Long, Rong; Shen, Lulin; Jagota, Anand; Hui, Chung-Yuen

    2009-03-03

    A film-terminated fibrillar interface has been shown to result in significant enhancement of adhesion and static friction compared to a flat control. This enhancement increases with interfibril spacing. In this, the first of a two-part study, by studying the effect of rate on adhesion and static friction, we show that both adhesion and static friction enhancement are due to a crack-trapping mechanism. For adhesion, as measured by an indentation experiment, an analytical model is used to relate the applied indenter displacement rate and measured forces to contact line velocity and energy release rate, respectively. The two mechanisms for adhesion enhancement--varying rate and crack-trapping--are found to be coupled multiplicatively.

  9. Effect of nordihydroguaiaretic acid cross-linking on fibrillar collagen: in vitro evaluation of fibroblast adhesion strength and migration

    Directory of Open Access Journals (Sweden)

    Ana Y. Rioja

    2017-04-01

    Full Text Available Fixation is required to reinforce reconstituted collagen for orthopedic bioprostheses such as tendon or ligament replacements. Previous studies have demonstrated that collagen fibers cross-linked by the biocompatible dicatechol nordihydroguaiaretic acid (NDGA have mechanical strength comparable to native tendons. This work focuses on investigating fibroblast behavior on fibrillar and NDGA cross-linked type I collagen to determine if NDGA modulates cell adhesion, morphology, and migration. A spinning disk device that applies a range of hydrodynamic forces under uniform chemical conditions was employed to sensitively quantify cell adhesion strength, and a radial barrier removal assay was used to measure cell migration on films suitable for these quantitative in vitro assays. The compaction of collagen films, mediated by the drying and cross-linking fabrication process, suggests a less open organization compared to native fibrillar collagen that likely allowed the collagen to form more inter-chain bonds and chemical links with NDGA polymers. Fibroblasts strongly adhered to and migrated on native and NDGA cross-linked fibrillar collagen; however, NDGA modestly reduced cell spreading, adhesion strength and migration rate. Thus, it is hypothesized that NDGA cross-linking masked some adhesion receptor binding sites either physically, chemically, or both, thereby modulating adhesion and migration. This alteration in the cell-material interface is considered a minimal trade-off for the superior mechanical and compatibility properties of NDGA cross-linked collagen compared to other fixation approaches.

  10. Contact compliance effects in the frictional response of bioinspired fibrillar adhesives

    Science.gov (United States)

    Piccardo, Marco; Chateauminois, Antoine; Fretigny, Christian; Pugno, Nicola M.; Sitti, Metin

    2013-01-01

    The shear failure and friction mechanisms of bioinspired adhesives consisting of elastomer arrays of microfibres terminated by mushroom-shaped tips are investigated in contact with a rigid lens. In order to reveal the interplay between the vertical and lateral loading directions, experiments are carried out using a custom friction set-up in which normal stiffness can be made either high or low when compared with the stiffness of the contact between the fibrillar adhesive and the lens. Using in situ contact imaging, the shear failure of the adhesive is found to involve two successive mechanisms: (i) cavitation and peeling at the contact interface between the mushroom-shaped fibre tip endings and the lens; and (ii) side re-adhesion of the fibre's stem to the lens. The extent of these mechanisms and their implications regarding static friction forces is found to depend on the crosstalk between the normal and lateral loading directions that can result in contact instabilities associated with fibre buckling. In addition, the effects of the viscoelastic behaviour of the polyurethane material on the rate dependence of the shear response of the adhesive are accounted for. PMID:23554349

  11. Effects of metal coatings on adhesive characteristics of Gecko-like microstructures

    International Nuclear Information System (INIS)

    Kim Kyu Hye; An, Tea Chang; Hwang, Hui Yun

    2015-01-01

    Recently, there have been several studies on the inspiration and application of optimized natural structures. One study introduced a new adhesion method that was inspired by the feet of geckos because of their superior features such as high adhesion strength, ease-of-removal, and they are environmentally friendly. Various micro- or nano-structures were fabricated and tested for gecko-like dry adhesives, but gecko-like dry adhesives that were developed became easily worn from frequent use. In this study, we propose a metal-coating method to improve the durability of gecko-like dry adhesives. We evaluate the initial adhesion strength and durability by performing repeated adhesion tests on a glass plate. The initial adhesive strength of gold-coated micro-structures was 60% of that for non-coated ones. However, the adhesive strength of gold-coated micro-structures was kept as 58% of their initial adhesion strength, while that of non-coated ones was only 40%

  12. Effects of metal coatings on adhesive characteristics of Gecko-like microstructures

    Energy Technology Data Exchange (ETDEWEB)

    Kim Kyu Hye; An, Tea Chang; Hwang, Hui Yun [Dept. of Mechanical Design Engineering, Andong National University, Andong (Korea, Republic of)

    2015-11-15

    Recently, there have been several studies on the inspiration and application of optimized natural structures. One study introduced a new adhesion method that was inspired by the feet of geckos because of their superior features such as high adhesion strength, ease-of-removal, and they are environmentally friendly. Various micro- or nano-structures were fabricated and tested for gecko-like dry adhesives, but gecko-like dry adhesives that were developed became easily worn from frequent use. In this study, we propose a metal-coating method to improve the durability of gecko-like dry adhesives. We evaluate the initial adhesion strength and durability by performing repeated adhesion tests on a glass plate. The initial adhesive strength of gold-coated micro-structures was 60% of that for non-coated ones. However, the adhesive strength of gold-coated micro-structures was kept as 58% of their initial adhesion strength, while that of non-coated ones was only 40%.

  13. 3D collagen fibrillar microstructure guides pancreatic cancer cell phenotype and serves as a critical design parameter for phenotypic models of EMT.

    Directory of Open Access Journals (Sweden)

    T J Puls

    Full Text Available Pancreatic cancer, one of the deadliest cancers, is characterized by high rates of metastasis and intense desmoplasia, both of which are associated with changes in fibrillar type I collagen composition and microstructure. Epithelial to mesenchymal transition (EMT, a critical step of metastasis, also involves a change in extracellular matrix (ECM context as cells detach from basement membrane (BM and engage interstitial matrix (IM. The objective of this work was to develop and apply an in-vitro three-dimensional (3D tumor-ECM model to define how ECM composition and biophysical properties modulate pancreatic cancer EMT. Three established pancreatic ductal adenocarcinoma (PDAC lines were embedded within 3D matrices prepared with type I collagen Oligomer (IM at various fibril densities to control matrix stiffness or Oligomer and Matrigel combined at various ratios while maintaining constant matrix stiffness. Evaluation of cell morphology and protein expression at both the cellular- and population-levels revealed a spectrum of matrix-driven EMT phenotypes that were dependent on ECM composition and architecture as well as initial PDAC phenotype. In general, exposure to fibrillar IM was sufficient to drive EMT, with cells displaying spindle-shaped morphology and mesenchymal markers, and non-fibrillar BM promoted more epithelial behavior. When cultured within low density Oligomer, only a subpopulation of epithelial BxPC-3 cells displayed EMT while mesenchymal MiaPaCa-2 cells displayed more uniform spindle-shaped morphologies and mesenchymal marker expression. Interestingly, as IM fibril density increased, associated changes in spatial constraints and matrix stiffness resulted in all PDAC lines growing as tight clusters; however mesenchymal marker expression was maintained. Collectively, the comparison of these results to other in-vitro tumor models highlights the role of IM fibril microstructure in guiding EMT heterogeneity and showcases the potential

  14. Stress relaxing hyaluronic acid-collagen hydrogels promote cell spreading, fiber remodeling, and focal adhesion formation in 3D cell culture.

    Science.gov (United States)

    Lou, Junzhe; Stowers, Ryan; Nam, Sungmin; Xia, Yan; Chaudhuri, Ovijit

    2018-02-01

    The physical and architectural cues of the extracellular matrix (ECM) play a critical role in regulating important cellular functions such as spreading, migration, proliferation, and differentiation. Natural ECM is a complex viscoelastic scaffold composed of various distinct components that are often organized into a fibrillar microstructure. Hydrogels are frequently used as synthetic ECMs for 3D cell culture, but are typically elastic, due to covalent crosslinking, and non-fibrillar. Recent work has revealed the importance of stress relaxation in viscoelastic hydrogels in regulating biological processes such as spreading and differentiation, but these studies all utilize synthetic ECM hydrogels that are non-fibrillar. Key mechanotransduction events, such as focal adhesion formation, have only been observed in fibrillar networks in 3D culture to date. Here we present an interpenetrating network (IPN) hydrogel system based on HA crosslinked with dynamic covalent bonds and collagen I that captures the viscoelasticity and fibrillarity of ECM in tissues. The IPN hydrogels exhibit two distinct processes in stress relaxation, one from collagen and the other from HA crosslinking dynamics. Stress relaxation in the IPN hydrogels can be tuned by modulating HA crosslinker affinity, molecular weight of the HA, or HA concentration. Faster relaxation in the IPN hydrogels promotes cell spreading, fiber remodeling, and focal adhesion (FA) formation - behaviors often inhibited in other hydrogel-based materials in 3D culture. This study presents a new, broadly adaptable materials platform for mimicking key ECM features of viscoelasticity and fibrillarity in hydrogels for 3D cell culture and sheds light on how these mechanical and structural cues regulate cell behavior. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Fibrillar films obtained from sodium soap fibers and polyelectrolyte multilayers.

    Science.gov (United States)

    Zawko, Scott A; Schmidt, Christine E

    2011-08-01

    An objective of tissue engineering is to create synthetic polymer scaffolds with a fibrillar microstructure similar to the extracellular matrix. Here, we present a novel method for creating polymer fibers using the layer-by-layer method and sacrificial templates composed of sodium soap fibers. Soap fibers were prepared from neutralized fatty acids using a sodium chloride crystal dissolution method. Polyelectrolyte multilayers (PEMs) of polystyrene sulfonate and polyallylamine hydrochloride were deposited onto the soap fibers, crosslinked with glutaraldehyde, and then the soap fibers were leached with warm water and ethanol. The morphology of the resulting PEM structures was a dense network of fibers surrounded by a nonfibrillar matrix. Microscopy revealed that the PEM fibers were solid structures, presumably composed of polyelectrolytes complexed with residual fatty acids. These fibrillar PEM films were found to support the attachment of human dermal fibroblasts. Copyright © 2011 Wiley Periodicals, Inc.

  16. Indentation versus Rolling: Dependence of Adhesion on Contact Geometry for Biomimetic Structures.

    Science.gov (United States)

    Moyle, Nichole; He, Zhenping; Wu, Haibin; Hui, Chung-Yuen; Jagota, Anand

    2018-04-03

    Numerous biomimetic structures made from elastomeric materials have been developed to produce enhancement in properties such as adhesion, static friction, and sliding friction. As a property, one expects adhesion to be represented by an energy per unit area that is usually sensitive to the combination of shear and normal stresses at the crack front but is otherwise dependent only on the two elastic materials that meet at the interface. More specifically, one would expect that adhesion measured by indentation (a popular and convenient technique) could be used to predict adhesion hysteresis in the more practically important rolling geometry. Previously, a structure with a film-terminated fibrillar geometry exhibited dramatic enhancement of adhesion by a crack-trapping mechanism during indentation with a rigid sphere. Roughly isotropic structures such as the fibrillar geometry show a strong correlation between adhesion enhancement in indentation versus adhesion hysteresis in rolling. However, anisotropic structures, such as a film-terminated ridge-channel geometry, surprisingly show a dramatic divergence between adhesion measured by indentation versus rolling. We study this experimentally and theoretically, first comparing the adhesion of the anisotropic ridge-channel structure to the roughly isotropic fibrillar structure during indentation with a rigid sphere, where only the isotropic structure shows adhesion enhancement. Second, we examine in more detail the anomalous anisotropic film-terminated ridge-channel structure during indentation with a rigid sphere versus rolling to show why these structures show a dramatic adhesion enhancement for the rolling case and no adhesion enhancement for indentation.

  17. On the strain-induced fibrillar microstructure of polyethylene: Influence of chemical structure, initial morphology and draw temperature

    Directory of Open Access Journals (Sweden)

    B. Xiong

    2016-04-01

    Full Text Available The influence of crystalline microstructure and molecular topology on the strain-induced fibrillar transformation of semi-crystalline polyethylenes having various chemical structures including co-unit content and molecular weight and crystallized under various thermal treatments was studied by in situ SAXS at different draw temperatures. The long period of the nascent microfibrils, Lpf, proved to be strongly dependent on the draw temperature but non-sensitive to the initial crystallization conditions. Lpf was smaller than the initial long period. Both findings have been ascribed to the straininduced melting-recrystallization process as generally claimed in the literature. The microfibrils diameter, Df, was shown to depend on the draw temperature and initial microstructure in a different way as Lpf. The evolution of Df was shown to correlate with the interfacial layer thickness that mainly depends on the chemical structure of the chains. It was concluded that, in contrast to Lpf, the microfibril diameter should not be directly sensitive to the strain-induced melting-recrystallization. The proposed scenario is that after the generation of the protofibrils by fragmentation of the crystalline lamellae at yielding, the diameter of the microfibril during the course of their stabilization should be governed by the chain-unfolding and subsequent aggregation of the unfolded chains onto the lateral surface of the microfibrils. The morphogenesis of the microfibrils should therefore essentially depend on the chemical structure of the polymer that governs its crystallization ability, its chain topology and subsequently its fragmentation process at yielding. This scenario is summed up in a sketch.

  18. Smooth muscle cell rigidity and extracellular matrix organization influence endothelial cell spreading and adhesion formation in coculture.

    Science.gov (United States)

    Wallace, Charles S; Strike, Sophie A; Truskey, George A

    2007-09-01

    Efforts to develop functional tissue-engineered blood vessels have focused on improving the strength and mechanical properties of the vessel wall, while the functional status of the endothelium within these vessels has received less attention. Endothelial cell (EC) function is influenced by interactions between its basal surface and the underlying extracellular matrix. In this study, we utilized a coculture model of a tissue-engineered blood vessel to evaluate EC attachment, spreading, and adhesion formation to the extracellular matrix on the surface of quiescent smooth muscle cells (SMCs). ECs attached to and spread on SMCs primarily through the alpha(5)beta(1)-integrin complex, whereas ECs used either alpha(5)beta(1)- or alpha(v)beta(3)-integrin to spread on fibronectin (FN) adsorbed to plastic. ECs in coculture lacked focal adhesions, but EC alpha(5)beta(1)-integrin bound to fibrillar FN on the SMC surface, promoting rapid fibrillar adhesion formation. As assessed by both Western blot analysis and quantitative real-time RT-PCR, coculture suppressed the expression of focal adhesion proteins and mRNA, whereas tensin protein and mRNA expression were elevated. When attached to polyacrylamide gels with similar elastic moduli as SMCs, focal adhesion formation and the rate of cell spreading increased relative to ECs in coculture. Thus, the elastic properties are only one factor contributing to EC spreading and focal adhesion formation in coculture. The results suggest that the softness of the SMCs and the fibrillar organization of FN inhibit focal adhesions and reduce cell spreading while promoting fibrillar adhesion formation. These changes in the type of adhesions may alter EC signaling pathways in tissue-engineered blood vessels.

  19. On the Adhesion performance of a single electrospun fiber

    Science.gov (United States)

    Baji, Avinash; Zhou, Limin; Mai, Yiu-Wing; Yang, Zhifang; Yao, Haimin

    2015-01-01

    The micro- and nano-scale fibrillar structures found on the feet of spiders and geckos function as adhesion devices which allow them to adhere to both molecularly smooth and rough surfaces. This adhesion has been argued to arise from intermolecular forces, such as van der Waals (vdW) force, acting at the interface between any two materials in contact. Thus, it is possible to mimic their adhesion using synthetic nanostructured analogs. Herein, we report the first successful pull-off force measurements on a single electrospun fiber and show the potential of using electrospinning to fabricate adhesive analogs. A single fiber is glued to the atomic force microscope cantilever, and its adhesion to a metal substrate is studied by recording the pull-off force/displacement curves. The measured adhesive force of ~18 nN matches closely that of their biological counterparts. Similar to natural structures, the adhesive mechanism of these electrospun structures is controlled by vdW interactions.

  20. Molecular Gels Materials with Self-Assembled Fibrillar Networks

    CERN Document Server

    Weiss, Richard G

    2006-01-01

    Molecular gels and fibrillar networks – a comprehensive guide to experiment and theory Molecular Gels: Materials with Self-Assembled Fibrillar Networks provides a comprehensive treatise on gelators, especially low molecular-mass gelators (LMOGs), and the properties of their gels. The structures and modes of formation of the self-assembled fibrillar networks (SAFINs) that immobilize the liquid components of the gels are discussed experimentally and theoretically. The spectroscopic, rheological, and structural features of the different classes of LMOGs are also presented. Many examples of the application of the principal analytical techniques for investigation of molecular gels (including SANS, SAXS, WAXS, UV-vis absorption, fluorescence and CD spectroscopies, scanning electron, transmission electron and optical microscopies, and molecular modeling) are presented didactically and in-depth, as are several of the theories of the stages of aggregation of individual LMOG molecules leading to SAFINs. Several actua...

  1. Autonomous patterning of cells on microstructured fine particles

    International Nuclear Information System (INIS)

    Takeda, Iwori; Kawanabe, Masato; Kaneko, Arata

    2015-01-01

    Regularly patterned cells can clarify cellular function and are required in some biochip applications. This study examines cell patterning along microstructures and the effect of microstructural geometry on selective cellular adhesion. Particles can be autonomously assembled on a soda-lime glass substrate that is chemically patterned by immersion in a suspension of fine particles. By adopting various sizes of fine particles, we can control the geometry of the microstructure. Cells adhere more readily to microstructured fine particles than to flat glass substrate. Silica particles hexagonally packed in 5–40 μm line and space microstructures provide an effective cell scaffold on the glass substrate. Cultured cells tend to attach and proliferate along the microstructured region while avoiding the flat region. The difference in cell adhesion is attributed to their geometries, as both of the silica particles and soda-lime glass are hydrophilic related with cell adhesiveness. After cell seeding, cells adhered to the flat region migrated toward the microstructured region. For most of the cells to assemble on the scaffold, the scaffolding microstructures must be spaced by at most 65 μm. - Highlights: • PS and SiO 2 particles provide effective scaffolds for cells. • Cells that adhere to microstructured particles successfully proliferate and differentiate. • Selective adhesion and growth along the scaffold can be achieved by patterning the fine particle microstructure. • Cells adhered to flat regions migrate toward microstructured regions. • Selective adhesion by cells depends on the microstructural geometry; specifically, on the inter-line spacing

  2. Effects of contact cap dimension on dry adhesion of bioinspired mushroom-shaped surfaces

    Science.gov (United States)

    Wang, Yue; Shao, Jinyou; Ding, Yucheng; Li, Xiangming; Tian, Hongmiao; Hu, Hong

    2015-03-01

    Dry adhesion observed in small creatures, such as spiders, insects, and geckos, has many great advantages such as repeatability and strong adhesiveness. In order to mimic these unique performances, fibrillar surface with a mushroom shaped end has drawn lots of attentions because of its advantage in efficiently enhancing adhesion compared with other sphere or simple flat ends. Here, in order to study the effects of contact cap dimension on adhesion strength, patterned surfaces of mushroom-shaped micropillars with differing cap diameters are fabricated based on the conventional photolithography and molding. The normal adhesion strength of these dry adhesives with varying cap diameters is measured with home-built equipment. The strength increases with the rise of cap diameter, and interestingly it becomes strongest when the mushroom caps join together.

  3. Relation between microstructure and adhesion of hot dip galvanized zinc coatings on dual phase steel

    International Nuclear Information System (INIS)

    Song, G.M.; Vystavel, T.; Pers, N. van der; De Hosson, J.Th.M.; Sloof, W.G.

    2012-01-01

    Highlights: ► Amorphous manganese oxides present at the steel surface impair the adhesion of the zinc coating. ► The adhesion of the various interfaces that exist in zinc coated steel is quantitatively estimated using the “Macroscopic Atom” model. ► Zinc coating delaminates along the zinc layer/inhibition layer and ζ-FeZn 13 particle/inhibition layer interfaces, which agrees the theoretical calculation. - Abstract: The microstructure of hot dip galvanized zinc coatings on dual phase steel was investigated by electron microscopy and the coating adhesion characterized by tensile testing. The zinc coating consists of a zinc layer and columnar ζ-FeZn 13 particles on top of a thin inhibition layer adjacent to the steel substrate. The inhibition layer is a thin compact and continuous layer that consists of η-Fe 2 Al 5–x Zn x fine and coarse particles. The coarse faceted particles are on top and fine faceted particles are at the bottom. The steel surface is covered with small fraction manganese oxides, which may impair adhesion of the zinc coating. The adhesion at various interfaces that exist in zinc-coated steel was quantitatively estimated using a so-called “macroscopic atom” model. In addition, the adhesion at the interfaces in zinc-coated steel was qualitatively assessed by examining the fracture and delamination behavior upon tensile testing. In accordance with this model, fracture along zinc grain boundaries preceded fracture along the zinc layer/inhibition layer and ζ-FeZn 13 particle/inhibition layer interfaces.

  4. Biologically-inspired synthetic dry adhesives for wall-climbing robots

    Science.gov (United States)

    Murphy, Michael P.

    Animals such as insects, spiders, and lizards are capable of clinging to and climbing on a variety of surfaces, from rough stone to smooth silicon. Hairy microscale arrays of structures on their feet conform to surface roughness to create millions of points of contact, creating a large overall contact area. Weak intermolecular forces (van der Waals forces) between each fiber tip and the surface sum to large overall forces due to the high number of contacts. In this work we present the fabrication, characterization, and demonstration of synthetic polyurethane fibrillar adhesives inspired by these animals. Angled polymer micro-fiber arrays are fabricated and characterized. A tip modification technique is presented which enables fabrication of fibers with flat mushroom shaped tips which greatly increase the adhesion of the fibers, up to 5N/cm 2 (normal direction), and with a magnitude within the range of geckos (10 N/cm2) in the shear direction on smooth surfaces. We present a fabrication technique to create fibers with angled flat mushroom-shaped tips which replicate the directional characteristics of geckos, gripping in one direction (within the range of gecko adhesion) and releasing easily in the other. Multilevel hierarchical structures with specialized tips for roughness adaptation are also presented. Fiber hierarchies from the millimeter scale to the sub-micron scale are demonstrated, including three-level fiber fabrication with specialized tips. Hierarchical structures demonstrate up to 5 times the adhesion of an unstructured sample, and requiring up to 10 times the detachment energy. Finally, an agile, wireless, palm-sized wall climbing robot which uses the synthetic fibrillar dry adhesives to climb is presented. Waalbot , named after the van der Waals forces it uses to climb, exploits the attachment and detachment characteristics of the developed dry adhesives, capabilities include climbing smooth surfaces such as glass in any orientation on any surface slope

  5. Polymorphism of fibrillar structures depending on the size of assembled Aβ17-42 peptides

    Science.gov (United States)

    Cheon, Mookyung; Kang, Mooseok; Chang, Iksoo

    2016-01-01

    The size of assembled Aβ17-42 peptides can determine polymorphism during oligomerization and fibrillization, but the mechanism of this effect is unknown. Starting from separate random monomers, various fibrillar oligomers with distinct structural characteristics were identified using discontinuous molecular dynamics simulations based on a coarse-grained protein model. From the structures observed in the simulations, two characteristic oligomer sizes emerged, trimer and paranuclei, which generated distinct structural patterns during fibrillization. A majority of the simulations for trimers and tetramers formed non-fibrillar oligomers, which primarily progress to off-pathway oligomers. Pentamers and hexamers were significantly converted into U-shape fibrillar structures, meaning that these oligomers, called paranuclei, might be potent on-pathway intermediates in fibril formation. Fibrillar oligomers larger than hexamers generated substantial polymorphism in which hybrid structures were readily formed and homogeneous fibrillar structures appeared infrequently. PMID:27901087

  6. Effect of low temperature oxygen plasma treatment on microstructure and adhesion force of graphene

    Science.gov (United States)

    Zhu, Jun; Deng, Heijun; Xue, Wei; Wang, Quan

    2018-01-01

    Graphene has attracted strong attention due to its unique mechanical, electrical, thermal and magnetic properties. In this work, we investigate the effect of low temperature oxygen plasma treatment on microstructure and adhesion force of single-layer graphene (SLG). Low temperature oxygen plasma is used to treat SLG grown by chemical vapor deposition through varying the exposure time. Raman spectroscopy, X-ray photoelectron spectroscopy and atomic force microscopy are utilized to identify changes before and after treatment. Raman spectra of treated graphene reveal that peak intensity of the characteristic D and D' peaks increase. Meanwhile, degradation of the G and 2D peaks in X-ray photoelectron spectroscopy indicates that abundant Csbnd OH and Cdbnd O functional groups are introduced into graphene after treatment. AFM investigation shows that surface roughness and adhesion force of treated graphene increase significantly firstly and then slowly. Therefore, this work would offer a practical route to improve the performance of graphene-based devices.

  7. Microstructure and adhesion strength of Sn-9Zn-xAg lead-free solders wetted on Cu substrate

    International Nuclear Information System (INIS)

    Chang, T.-C.; Chou, S.-M.; Hon, M.-H.; Wang, M.-C.

    2006-01-01

    The microstructure and adhesion strength of the Sn-9Zn-xAg lead-free solders wetted on Cu substrates have been investigated by differential scanning calorimetry, optical microscopy, scanning electron microscopy, energy dispersive spectrometry and pull-off testing. The liquidus temperatures of the Sn-9Zn-xAg solder alloys are 222.1, 226.7, 231.4 and 232.9 deg. C for x = 2.5, 3.5, 5.0 and 7.5 wt%, respectively. A flat interface can be obtained as wetted at 350 deg. C at a rate of 11.8 mm/s. The adhesion strength of the Sn-9Zn-xAg/Cu interfaces decreases from 23.09 ± 0.31 to 12.32 ± 1.40 MPa with increasing Ag content from 2.5 to 7.5 wt% at 400 deg. C. After heat treatment at 150 deg. C, the adhesion strength of the Sn-9Zn-xAg/Cu interface decreases with increasing aging time

  8. Cell-mediated fibre recruitment drives extracellular matrix mechanosensing in engineered fibrillar microenvironments

    Science.gov (United States)

    Baker, Brendon M.; Trappmann, Britta; Wang, William Y.; Sakar, Mahmut S.; Kim, Iris L.; Shenoy, Vivek B.; Burdick, Jason A.; Chen, Christopher S.

    2015-12-01

    To investigate how cells sense stiffness in settings structurally similar to native extracellular matrices, we designed a synthetic fibrous material with tunable mechanics and user-defined architecture. In contrast to flat hydrogel surfaces, these fibrous materials recapitulated cell-matrix interactions observed with collagen matrices including stellate cell morphologies, cell-mediated realignment of fibres, and bulk contraction of the material. Increasing the stiffness of flat hydrogel surfaces induced mesenchymal stem cell spreading and proliferation; however, increasing fibre stiffness instead suppressed spreading and proliferation for certain network architectures. Lower fibre stiffness permitted active cellular forces to recruit nearby fibres, dynamically increasing ligand density at the cell surface and promoting the formation of focal adhesions and related signalling. These studies demonstrate a departure from the well-described relationship between material stiffness and spreading established with hydrogel surfaces, and introduce fibre recruitment as a previously undescribed mechanism by which cells probe and respond to mechanics in fibrillar matrices.

  9. Cadherin adhesion, tissue tension, and noncanonical Wnt signaling regulate fibronectin matrix organization.

    Science.gov (United States)

    Dzamba, Bette J; Jakab, Karoly R; Marsden, Mungo; Schwartz, Martin A; DeSimone, Douglas W

    2009-03-01

    In this study we demonstrate that planar cell polarity signaling regulates morphogenesis in Xenopus embryos in part through the assembly of the fibronectin (FN) matrix. We outline a regulatory pathway that includes cadherin adhesion and signaling through Rac and Pak, culminating in actin reorganization, myosin contractility, and tissue tension, which, in turn, directs the correct spatiotemporal localization of FN into a fibrillar matrix. Increased mechanical tension promotes FN fibril assembly in the blastocoel roof (BCR), while reduced BCR tension inhibits matrix assembly. These data support a model for matrix assembly in tissues where cell-cell adhesions play an analogous role to the focal adhesions of cultured cells by transferring to integrins the tension required to direct FN fibril formation at cell surfaces.

  10. Controllable load sharing for soft adhesive interfaces on three-dimensional surfaces

    Science.gov (United States)

    Song, Sukho; Drotlef, Dirk-Michael; Majidi, Carmel; Sitti, Metin

    2017-05-01

    For adhering to three-dimensional (3D) surfaces or objects, current adhesion systems are limited by a fundamental trade-off between 3D surface conformability and high adhesion strength. This limitation arises from the need for a soft, mechanically compliant interface, which enables conformability to nonflat and irregularly shaped surfaces but significantly reduces the interfacial fracture strength. In this work, we overcome this trade-off with an adhesion-based soft-gripping system that exhibits enhanced fracture strength without sacrificing conformability to nonplanar 3D surfaces. Composed of a gecko-inspired elastomeric microfibrillar adhesive membrane supported by a pressure-controlled deformable gripper body, the proposed soft-gripping system controls the bonding strength by changing its internal pressure and exploiting the mechanics of interfacial equal load sharing. The soft adhesion system can use up to ˜26% of the maximum adhesion of the fibrillar membrane, which is 14× higher than the adhering membrane without load sharing. Our proposed load-sharing method suggests a paradigm for soft adhesion-based gripping and transfer-printing systems that achieves area scaling similar to that of a natural gecko footpad.

  11. Advanced gecko-foot-mimetic dry adhesives based on carbon nanotubes.

    Science.gov (United States)

    Hu, Shihao; Xia, Zhenhai; Dai, Liming

    2013-01-21

    Geckos can run freely on vertical walls and even ceilings. Recent studies have discovered that gecko's extraordinary climbing ability comes from a remarkable design of nature with nanoscale beta-keratin elastic hairs on their feet and toes, which collectively generate sufficiently strong van der Waals force to hold the animal onto an opposing surface while at the same time disengaging at will. Vertically aligned carbon nanotube (VA-CNT) arrays, resembling gecko's adhesive foot hairs with additional superior mechanical, chemical and electrical properties, have been demonstrated to be a promising candidate for advanced fibrillar dry adhesives. The VA-CNT arrays with tailor-made hierarchical structures can be patterned and/or transferred onto various flexible substrates, including responsive polymers. This, together with recent advances in nanofabrication techniques, could offer 'smart' dry adhesives for various potential applications, even where traditional adhesives cannot be used. A detailed understanding of the underlying mechanisms governing the material properties and adhesion performances is critical to the design and fabrication of gecko inspired CNT dry adhesives of practical significance. In this feature article, we present an overview of recent progress in both fundamental and applied frontiers for the development of CNT-based adhesives by summarizing important studies in this exciting field, including our own work.

  12. Advanced gecko-foot-mimetic dry adhesives based on carbon nanotubes

    Science.gov (United States)

    Hu, Shihao; Xia, Zhenhai; Dai, Liming

    2012-12-01

    Geckos can run freely on vertical walls and even ceilings. Recent studies have discovered that gecko's extraordinary climbing ability comes from a remarkable design of nature with nanoscale beta-keratin elastic hairs on their feet and toes, which collectively generate sufficiently strong van der Waals force to hold the animal onto an opposing surface while at the same time disengaging at will. Vertically aligned carbon nanotube (VA-CNT) arrays, resembling gecko's adhesive foot hairs with additional superior mechanical, chemical and electrical properties, have been demonstrated to be a promising candidate for advanced fibrillar dry adhesives. The VA-CNT arrays with tailor-made hierarchical structures can be patterned and/or transferred onto various flexible substrates, including responsive polymers. This, together with recent advances in nanofabrication techniques, could offer `smart' dry adhesives for various potential applications, even where traditional adhesives cannot be used. A detailed understanding of the underlying mechanisms governing the material properties and adhesion performances is critical to the design and fabrication of gecko inspired CNT dry adhesives of practical significance. In this feature article, we present an overview of recent progress in both fundamental and applied frontiers for the development of CNT-based adhesives by summarizing important studies in this exciting field, including our own work.

  13. Glycosaminoglycans and fibrillar collagen in Priapulida: a histo- and cytochemical study.

    Science.gov (United States)

    Welsch, U; Erlinger, R; Storch, V

    1992-12-01

    The distribution of glycosaminoglycans and fibrillar collagen was studied in various tissues of priapulids, which represent an ancient group of marine metazoa. Sulphated glycosaminoglycans, as demonstrated at the electron microscopical level by Cupromeronic blue, were predominantly found in the cuticle, in basement membranes and also in the narrow connective tissue space below epidermis and anterior intestine. On the basis of their morphology the Cupromeronic blue precipitates could be divided into several groups. Fibrillar collagen occurred in the connective tissue under the epidermis and the epithelium of the anterior intestine. The spatial interrelationship between fibrillar collagen and glycosaminoglycans lacked with some exceptions, the high regularity found in connective tissues of other invertebrates and of vertebrates. This might be related to the special skeletal system of priapulids, consisting mainly of a strong extracellular cuticle and the turgor of the fluid-filled body cavity. In such a system the usual supportive structures seem to be of less functional significance.

  14. Heterogeneity of Focal Adhesions and Focal Contacts in Motile Fibroblasts.

    Science.gov (United States)

    Gladkikh, Aleena; Kovaleva, Anastasia; Tvorogova, Anna; Vorobjev, Ivan A

    2018-01-01

    Cell-extracellular matrix (ECM) adhesion is an important property of virtually all cells in multicellular organisms. Cell-ECM adhesion studies, therefore, are very significant both for biology and medicine. Over the last three decades, biomedical studies resulted in a tremendous advance in our understanding of the molecular basis and functions of cell-ECM adhesion. Based on morphological and molecular criteria, several different types of model cell-ECM adhesion structures including focal adhesions, focal complexes, fibrillar adhesions, podosomes, and three-dimensional matrix adhesions have been described. All the subcellular structures that mediate cell-ECM adhesion are quite heterogeneous, often varying in size, shape, distribution, dynamics, and, to a certain extent, molecular constituents. The morphological "plasticity" of cell-ECM adhesion perhaps reflects the needs of cells to sense, adapt, and respond to a variety of extracellular environments. In addition, cell type (e.g., differentiation status, oncogenic transformation, etc.) often exerts marked influence on the structure of cell-ECM adhesions. Although molecular, genetic, biochemical, and structural studies provide important maps or "snapshots" of cell-ECM adhesions, the area of research that is equally valuable is to study the heterogeneity of FA subpopulations within cells. Recently time-lapse observations on the FA dynamics become feasible, and behavior of individual FA gives additional information on cell-ECM interactions. Here we describe a robust method of labeling of FA using plasmids with fluorescent markers for paxillin and vinculin and quantifying the morphological and dynamical parameters of FA.

  15. A microfabricated gecko-inspired controllable and reusable dry adhesive

    International Nuclear Information System (INIS)

    Chary, Sathya; Tamelier, John; Turner, Kimberly

    2013-01-01

    Geckos utilize a robust reversible adhesive to repeatedly attach and detach from a variety of vertical and inverted surfaces, using structurally anisotropic micro- and nano-scale fibrillar structures. These fibers, when suitably articulated, are able to control the real area of contact and thereby generate high-to-low van der Waals forces. Key characteristics of the natural system include highly anisotropic adhesion and shear forces for controllable attachment, a high adhesion to initial preload force ratio (μ′) of 8–16, lack of inter-fiber self-adhesion, and operation over more than 30 000 cycles without loss of adhesion performance. A highly reusable synthetic adhesive has been developed using tilted polydimethylsiloxane (PDMS) half-cylinder micron-scale fibers, retaining up to 77% of the initial value over 10 000 repeated test cycles against a flat glass puck. In comparison with other gecko-inspired adhesives tested over 10 000 cycles or more thus far, this paper reports the highest value of μ′, along with a large shear force of ∼78 kPa, approaching the 88–226 kPa range of gecko toes. The anisotropic adhesion forces are close to theoretical estimates from the Kendall peel model, quantitatively showing how lateral shearing articulation in a manner similar to the gecko may be used to obtain adhesion anisotropy with synthetic fibers using a combination of tilt angle and anisotropic fiber geometry. (paper)

  16. A microfabricated gecko-inspired controllable and reusable dry adhesive

    Science.gov (United States)

    Chary, Sathya; Tamelier, John; Turner, Kimberly

    2013-02-01

    Geckos utilize a robust reversible adhesive to repeatedly attach and detach from a variety of vertical and inverted surfaces, using structurally anisotropic micro- and nano-scale fibrillar structures. These fibers, when suitably articulated, are able to control the real area of contact and thereby generate high-to-low van der Waals forces. Key characteristics of the natural system include highly anisotropic adhesion and shear forces for controllable attachment, a high adhesion to initial preload force ratio (μ‧) of 8-16, lack of inter-fiber self-adhesion, and operation over more than 30 000 cycles without loss of adhesion performance. A highly reusable synthetic adhesive has been developed using tilted polydimethylsiloxane (PDMS) half-cylinder micron-scale fibers, retaining up to 77% of the initial value over 10 000 repeated test cycles against a flat glass puck. In comparison with other gecko-inspired adhesives tested over 10 000 cycles or more thus far, this paper reports the highest value of μ‧, along with a large shear force of ˜78 kPa, approaching the 88-226 kPa range of gecko toes. The anisotropic adhesion forces are close to theoretical estimates from the Kendall peel model, quantitatively showing how lateral shearing articulation in a manner similar to the gecko may be used to obtain adhesion anisotropy with synthetic fibers using a combination of tilt angle and anisotropic fiber geometry.

  17. Anisotropic Adhesion Properties of Triangular-Tip-Shaped Micropillars

    KAUST Repository

    Kwak, Moon Kyu

    2011-06-01

    Directional dry adhesive microstructures consisting of high-density triangular-tip-shaped micropillars are described. The wide-tip structures allow for unique directional shear adhesion properties with respect to the peeling direction, along with relatively high normal adhesion. © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Anisotropic Adhesion Properties of Triangular-Tip-Shaped Micropillars

    KAUST Repository

    Kwak, Moon Kyu; Jeong, Hoon Eui; Bae, Won Gyu; Jung, Ho-Sup; Suh, Kahp Y.

    2011-01-01

    Directional dry adhesive microstructures consisting of high-density triangular-tip-shaped micropillars are described. The wide-tip structures allow for unique directional shear adhesion properties with respect to the peeling direction, along with relatively high normal adhesion. © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Superhydrophobic surfaces fabricated by femtosecond laser with tunable water adhesion: from lotus leaf to rose petal.

    Science.gov (United States)

    Long, Jiangyou; Fan, Peixun; Gong, Dingwei; Jiang, Dafa; Zhang, Hongjun; Li, Lin; Zhong, Minlin

    2015-05-13

    Superhydrophobic surfaces with tunable water adhesion have attracted much interest in fundamental research and practical applications. In this paper, we used a simple method to fabricate superhydrophobic surfaces with tunable water adhesion. Periodic microstructures with different topographies were fabricated on copper surface via femtosecond (fs) laser irradiation. The topography of these microstructures can be controlled by simply changing the scanning speed of the laser beam. After surface chemical modification, these as-prepared surfaces showed superhydrophobicity combined with different adhesion to water. Surfaces with deep microstructures showed self-cleaning properties with extremely low water adhesion, and the water adhesion increased when the surface microstructures became flat. The changes in surface water adhesion are attributed to the transition from Cassie state to Wenzel state. We also demonstrated that these superhydrophobic surfaces with different adhesion can be used for transferring small water droplets without any loss. We demonstrate that our approach provides a novel but simple way to tune the surface adhesion of superhydrophobic metallic surfaces for good potential applications in related areas.

  20. Enhancing dry adhesives and replica molding with ethyl cyano-acrylate

    International Nuclear Information System (INIS)

    Bovero, E; Menon, C

    2014-01-01

    The use of cyano-acrylate to improve the performance of dry adhesives and their method of fabrication is investigated. Specifically, the contributions of this work are: (1) a new adhesion method to adhere to a large variety of surfaces, (2) a strategy to increase the compliance of dry adhesives, and (3) an improved fabrication process for micro-structured dry adhesives based on replica molding. For the first contribution, the adhesion method consists of anchoring a micro-structured dry adhesive to a surface through a layer of hardened ethyl cyano-acrylate (ECA). This method increases the adhesion of the orders of magnitude at the expense of leaving residue after detachment. However, this method preserves reusability. For the second contribution, a double-sided dry adhesive is obtained by introducing a substrate with a millimeter-sized pillar structure, which enabled further increasing adhesion. For the third contribution, an ECA layer is used as a mold for the fabrication of new adhesives. These new types of molds proved able to produce dry adhesives with high reproducibility and low degradation. (paper)

  1. A Novel Electrostatic/Microstructured Adhesive with Dust Mitigation Capabilities

    Data.gov (United States)

    National Aeronautics and Space Administration — This work will develop a novel electrostatic/gecko-like adhesive that will demonstrate an order-of-magnitude improvement of electrostatic adhesion pressure coupled...

  2. New Altered Non-Fibrillar Collagens in Human Dilated Cardiomyopathy: Role in the Remodeling Process.

    Directory of Open Access Journals (Sweden)

    Carolina Gil-Cayuela

    Full Text Available In dilated cardiomyopathy (DCM, cardiac failure is accompanied by profound alterations of extracellular matrix associated with the progression of cardiac dilation and left ventricular (LV dysfunction. Recently, we reported alterations of non-fibrillar collagen expression in ischemic cardiomyopathy linked to fibrosis and cardiac remodeling. We suspect that expression changes in genes coding for non-fibrillar collagens may have a potential role in DCM development.This study sought to analyze changes in the expression profile of non-fibrillar collagen genes in patients with DCM and to examine relationships between cardiac remodeling parameters and the expression levels of these genes.Twenty-three human left ventricle tissue samples were obtained from DCM patients (n = 13 undergoing heart transplantation and control donors (n = 10 for RNA sequencing analysis. We found increased mRNA levels of six non-fibrillar collagen genes, such as COL4A5, COL9A1, COL21A1, and COL23A1 (P < 0.05 for all, not previously described in DCM. Protein levels of COL8A1 and COL16A1 (P < 0.05 for both, were correspondingly increased. We also identified TGF-β1 significantly upregulated and related to both COL8A1 and COL16A1. Interestingly, we found a significant relationship between LV mass index and the gene expression level of COL8A1 (r = 0.653, P < 0.05.In our research, we identified new non-fibrillar collagens with altered expression in DCM, being COL8A1 overexpression directly related to LV mass index, suggesting that they may be involved in the progression of cardiac dilation and remodeling.

  3. Dynamics of fibrillar precursors of shishes as a function of stress

    Energy Technology Data Exchange (ETDEWEB)

    Balzano, Luigi; Cavallo, Dario; Van Erp, Tim B; Ma Zhe; Housmans, Jan-Willem; Fernandez-Ballester, Lucia; Peters, Gerrit W M, E-mail: G.W.M.Peters@tue.n

    2010-11-15

    Shishes are fibrillar crystallites that can be created by deforming a polymer melt. The formation of shishes takes place when flow is strong enough to stretch molecules. In the early stages, bundles of stretched molecules with pre-crystalline order form metastable precursors whose stability depends on their size and, hence, on the stress level. We find that for a specific isotactic polypropylene, close to the nominal melting point, a stress larger than 0.10 MPa leads to stable fibrillar precursors that are partially crystalline immediately after flow. On the other hand, below 0.10 MPa, the aspect ratio of precursors tends to unity and the lack of crystallinity makes these structures prone to dissolution.

  4. In-Situ Roughening of Polymeric Microstructures

    Science.gov (United States)

    Shadpour, Hamed; Allbritton, Nancy L.

    2010-01-01

    A method to perform in-situ roughening of arrays of microstructures weakly adherent to an underlying substrate was presented. SU8, 1002F, and polydimethylsiloxane (PDMS) microstructures were roughened by polishing with a particle slurry. The roughness and the percentage of dislodged or damaged microstructures was evaluated as a function of the roughening time for both SU8 and 1002F structures. A maximal RMS roughness of 7-18 nm for the surfaces was obtained within 15 to 30 s of polishing with the slurry. This represented a 4-9 fold increase in surface roughness relative to that of the native surface. Less than 0.8% of the microstructures on the array were removed or damage after 5 min of polishing. Native and roughened arrays were assessed for their ability to support fibronectin adhesion and cell attachment and growth. The quantity of adherent fibronectin was increased on roughened arrays by two-fold over that on native arrays. Cell adhesion to the roughened surfaces was also increased compared to native surfaces. Surface roughening with the particle slurry also improved the ability to stamp molecules onto the substrate during microcontact printing. Roughening both the PDMS stamp and substrate resulted in up to a 20-fold improvement in the transfer of BSA-Alexa Fluor 647 from the stamp to the substrate. Thus roughening of micron-scale surfaces with a particle slurry increased the adhesion of biomolecules as well as cells to microstructures with little to no damage to large scale arrays of the structures. PMID:20423129

  5. Evidence for van der Waals adhesion in gecko setae.

    Science.gov (United States)

    Autumn, Kellar; Sitti, Metin; Liang, Yiching A; Peattie, Anne M; Hansen, Wendy R; Sponberg, Simon; Kenny, Thomas W; Fearing, Ronald; Israelachvili, Jacob N; Full, Robert J

    2002-09-17

    Geckos have evolved one of the most versatile and effective adhesives known. The mechanism of dry adhesion in the millions of setae on the toes of geckos has been the focus of scientific study for over a century. We provide the first direct experimental evidence for dry adhesion of gecko setae by van der Waals forces, and reject the use of mechanisms relying on high surface polarity, including capillary adhesion. The toes of live Tokay geckos were highly hydrophobic, and adhered equally well to strongly hydrophobic and strongly hydrophilic, polarizable surfaces. Adhesion of a single isolated gecko seta was equally effective on the hydrophobic and hydrophilic surfaces of a microelectro-mechanical systems force sensor. A van der Waals mechanism implies that the remarkable adhesive properties of gecko setae are merely a result of the size and shape of the tips, and are not strongly affected by surface chemistry. Theory predicts greater adhesive forces simply from subdividing setae to increase surface density, and suggests a possible design principle underlying the repeated, convergent evolution of dry adhesive microstructures in gecko, anoles, skinks, and insects. Estimates using a standard adhesion model and our measured forces come remarkably close to predicting the tip size of Tokay gecko seta. We verified the dependence on size and not surface type by using physical models of setal tips nanofabricated from two different materials. Both artificial setal tips stuck as predicted and provide a path to manufacturing the first dry, adhesive microstructures.

  6. Penta-fibrillar assembly: A Building block collagen based materials

    Indian Academy of Sciences (India)

    There is a smartness in the way the penta-fibrils behave in collagen based biomaterials. It is one of the intriguing nano material with a size of about 4 nano meter diagonal size. There are several intermolecular forces that participate in the penta fibrillar assembly, which derive importance in smart behavior of collagen.

  7. Preparation and study of new rubber to steel adhesive systems

    International Nuclear Information System (INIS)

    Labaj, I.; Ondrusova, D.; Dubec, A.; Pajtasova, M.; Kohutiar, M.

    2017-01-01

    The present paper deals with the preparation of new rubber to steel adhesive systems using the steel surface treatment by applying the adhesive coats based on Co (II) and Cu(II) salts. For demonstration of coats chemical composition EDX analysis was used. The topography and microstructure of prepared adhesive coats were investigated using Scanning Electron Microscopy. Finally the efficiency of adhesion between rubber blends and coated metal steel pieces was evaluated according to Test ASTM D429 Rubber to metal adhesion, method A. The adhesive strength resulting values of prepared steel samples with new adhesive coats were compared with samples covered with adhesive systems commonly used in industry. (authors)

  8. uPARAP/Endo180 is essential for cellular uptake of collagen and promotes fibroblast collagen adhesion

    DEFF Research Database (Denmark)

    Engelholm, Lars H; List, Karin; Netzel-Arnett, Sarah

    2003-01-01

    The uptake and lysosomal degradation of collagen by fibroblasts constitute a major pathway in the turnover of connective tissue. However, the molecular mechanisms governing this pathway are poorly understood. Here, we show that the urokinase plasminogen activator receptor-associated protein (u......, these cells had diminished initial adhesion to a range of different collagens, as well as impaired migration on fibrillar collagen. These studies identify a central function of uPARAP/Endo180 in cellular collagen interactions....

  9. Gecko toe and lamellar shear adhesion on macroscopic, engineered rough surfaces.

    Science.gov (United States)

    Gillies, Andrew G; Henry, Amy; Lin, Hauwen; Ren, Angela; Shiuan, Kevin; Fearing, Ronald S; Full, Robert J

    2014-01-15

    The role in adhesion of the toes and lamellae - intermediate-sized structures - found on the gecko foot remains unclear. Insight into the function of these structures can lead to a more general understanding of the hierarchical nature of the gecko adhesive system, but in particular how environmental topology may relate to gecko foot morphology. We sought to discern the mechanics of the toes and lamellae by examining gecko adhesion on controlled, macroscopically rough surfaces. We used live Tokay geckos, Gekko gecko, to observe the maximum shear force a gecko foot can attain on an engineered substrate constructed with sinusoidal patterns of varying amplitudes and wavelengths in sizes similar to the dimensions of the toes and lamellae structures (0.5 to 6 mm). We found shear adhesion was significantly decreased on surfaces that had amplitudes and wavelengths approaching the lamella length and inter-lamella spacing, losing 95% of shear adhesion over the range tested. We discovered that the toes are capable of adhering to surfaces with amplitudes much larger than their dimensions even without engaging claws, maintaining 60% of shear adhesion on surfaces with amplitudes of 3 mm. Gecko adhesion can be predicted by the ratio of the lamella dimensions to surface feature dimensions. In addition to setae, remarkable macroscopic-scale features of gecko toes and lamellae that include compliance and passive conformation are necessary to maintain contact, and consequently, generate shear adhesion on macroscopically rough surfaces. Findings on the larger scale structures in the hierarchy of gecko foot function could provide the biological inspiration to drive the design of more effective and versatile synthetic fibrillar adhesives.

  10. Motility Control of Bacteria-Actuated Biodegradable Polymeric Microstructures by Selective Adhesion Methods

    Directory of Open Access Journals (Sweden)

    Hyung Jung Yoo

    2014-11-01

    Full Text Available Certain bacteria have motility and can be made non-toxic, and using them for drug delivery has been proposed. For example, using bacteria with flagella motion in multiple spin actuators in drug delivery microrobots has been suggested. This paper investigates various adhesion enhancement methods for attaching bacteria on preferred surfaces of cubic polymeric microstructures to achieve the directional control of motion. Serratia marcescens which has an excellent swimming behavior and 50-μm sized cubic structures made of biodegradable poly-capro-lactone (PCL are used. Three treatment methods are investigated and compared to the untreated control case. The first method is retarding bacterial attachments by coating certain surfaces with bovine serum albumin (BSA which makes those surfaces anti-adherent to bacteria. The second and third methods are roughening the surfaces with X-ray irradiation and plasma respectively to purposely increase bacterial attachments on the roughened surfaces. The measured motilities of bacteria-tethered PCL microactuators are 1.40 μm/s for the BSA coating method, 0.82 μm/s for the X-ray irradiation, and 3.89 μm/s for the plasma treatment method. Therefore, among the methods investigated in the paper the plasma treatment method achieves the highest directionality control of bacteria motility.

  11. From the Cover: Evidence for van der Waals adhesion in gecko setae

    Science.gov (United States)

    Autumn, Kellar; Sitti, Metin; Liang, Yiching A.; Peattie, Anne M.; Hansen, Wendy R.; Sponberg, Simon; Kenny, Thomas W.; Fearing, Ronald; Israelachvili, Jacob N.; Full, Robert J.

    2002-09-01

    Geckos have evolved one of the most versatile and effective adhesives known. The mechanism of dry adhesion in the millions of setae on the toes of geckos has been the focus of scientific study for over a century. We provide the first direct experimental evidence for dry adhesion of gecko setae by van der Waals forces, and reject the use of mechanisms relying on high surface polarity, including capillary adhesion. The toes of live Tokay geckos were highly hydrophobic, and adhered equally well to strongly hydrophobic and strongly hydrophilic, polarizable surfaces. Adhesion of a single isolated gecko seta was equally effective on the hydrophobic and hydrophilic surfaces of a microelectro-mechanical systems force sensor. A van der Waals mechanism implies that the remarkable adhesive properties of gecko setae are merely a result of the size and shape of the tips, and are not strongly affected by surface chemistry. Theory predicts greater adhesive forces simply from subdividing setae to increase surface density, and suggests a possible design principle underlying the repeated, convergent evolution of dry adhesive microstructures in gecko, anoles, skinks, and insects. Estimates using a standard adhesion model and our measured forces come remarkably close to predicting the tip size of Tokay gecko seta. We verified the dependence on size and not surface type by using physical models of setal tips nanofabricated from two different materials. Both artificial setal tips stuck as predicted and provide a path to manufacturing the first dry, adhesive microstructures.

  12. Laser-Based Surface Modification of Microstructure for Carbon Fiber-Reinforced Plastics

    Science.gov (United States)

    Yang, Wenfeng; Sun, Ting; Cao, Yu; Li, Shaolong; Liu, Chang; Tang, Qingru

    2018-05-01

    Bonding repair is a powerful feature of carbon fiber-reinforced plastics (CFRP). Based on the theory of interface bonding, the interface adhesion strength and reliability of the CFRP structure will be directly affected by the microscopic features of the CFRP surface, including the microstructure, physical, and chemical characteristics. In this paper, laser-based surface modification was compared to Peel-ply, grinding, and polishing to comparatively evaluate the surface microstructure of CFRP. The surface microstructure, morphology, fiber damage, height and space parameters were investigated by scanning electron microscopy (SEM) and laser confocal microscopy (LCM). Relative to the conventional grinding process, laser modification of the CFRP surface can result in more uniform resin removal and better processing control and repeatability. This decreases the adverse impact of surface fiber fractures and secondary damage. The surface properties were significantly optimized, which has been reflected such things as the obvious improvement of surface roughness, microstructure uniformity, and actual area. The improved surface microstructure based on laser modification is more conducive to interface bonding of CFRP structure repair. This can enhance the interfacial adhesion strength and reliability of repair.

  13. Ultra-low Temperature Curable Conductive Silver Adhesive with different Resin Matrix

    Science.gov (United States)

    Zhou, Xingli; Wang, Likun; Liao, Qingwei; Yan, Chao; Li, Xing; Qin, Lei

    2018-03-01

    The ultra-low temperature curable conductive silver adhesive with curing temperature less than 100 °C needed urgently for the surface conductive treatment of piezoelectric composite material due to the low thermal resistance of composite material and low adhesion strength of adhesive. An ultra-low temperature curable conductive adhesive with high adhesion strength was obtained for the applications of piezoelectric composite material. The microstructure, conductive properties and adhesive properties with different resin matrix were investigated. The conductive adhesive with AG-80 as the resin matrix has the shorter curing time (20min), lower curing temperature (90°C) and higher adhesion strength (7.6MPa). The resistivity of AG-80 sample has the lower value (2.13 × 10-4Ω·cm) than the 618 sample (4.44 × 10-4Ω·cm).

  14. Three dimensional microstructural network of elastin, collagen, and cells in Achilles tendons.

    Science.gov (United States)

    Pang, Xin; Wu, Jian-Ping; Allison, Garry T; Xu, Jiake; Rubenson, Jonas; Zheng, Ming-Hao; Lloyd, David G; Gardiner, Bruce; Wang, Allan; Kirk, Thomas Brett

    2017-06-01

    Similar to most biological tissues, the biomechanical, and functional characteristics of the Achilles tendon are closely related to its composition and microstructure. It is commonly reported that type I collagen is the predominant component of tendons and is mainly responsible for the tissue's function. Although elastin has been found in varying proportions in other connective tissues, previous studies report that tendons contain very small quantities of elastin. However, the morphology and the microstructural relationship among the elastic fibres, collagen, and cells in tendon tissue have not been well examined. We hypothesize the elastic fibres, as another fibrillar component in the extracellular matrix, have a unique role in mechanical function and microstructural arrangement in Achilles tendons. It has been shown that elastic fibres present a close connection with the tenocytes. The close relationship of the three components has been revealed as a distinct, integrated and complex microstructural network. Notably, a "spiral" structure within fibril bundles in Achilles tendons was observed in some samples in specialized regions. This study substantiates the hierarchical system of the spatial microstructure of tendon, including the mapping of collagen, elastin and tenocytes, with 3-dimensional confocal images. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 35:1203-1214, 2017. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  15. Collagenous microstructure of the glenoid labrum and biceps anchor.

    Science.gov (United States)

    Hill, A M; Hoerning, E J; Brook, K; Smith, C D; Moss, J; Ryder, T; Wallace, A L; Bull, A M J

    2008-06-01

    The glenoid labrum is a significant passive stabilizer of the shoulder joint. However, its microstructural form remains largely unappreciated, particularly in the context of its variety of functions. The focus of labral microscopy has often been histology and, as such, there is very little appreciation of collagen composition and arrangement of the labrum, and hence the micromechanics of the structure. On transmission electron microscopy, significant differences in diameter, area and perimeter were noted in the two gross histological groups of collagen fibril visualized; this suggests a heterogeneous collagenous composition with potentially distinct mechanical function. Scanning electron microscopy demonstrated three distinct zones of interest: a superficial mesh, a dense circumferential braided core potentially able to accommodate hoop stresses, and a loosely packed peri-core zone. Confocal microscopy revealed an articular surface fine fibrillar mesh potentially able to reduce surface friction, bundles of circumferential encapsulated fibres in the bulk of the tissue, and bone anchoring fibres at the osseous interface. Varying microstructure throughout the depth of the labrum suggests a role in accommodating different types of loading. An understanding of the labral microstructure can lead to development of hypotheses based upon an appreciation of this component of material property. This may aid an educated approach to surgical timing and repair.

  16. Nanomechanical properties of distinct fibrillar polymorphs of the protein α-synuclein

    Science.gov (United States)

    Makky, Ali; Bousset, Luc; Polesel-Maris, Jérôme; Melki, Ronald

    2016-11-01

    Alpha-synuclein (α-Syn) is a small presynaptic protein of 140 amino acids. Its pathologic intracellular aggregation within the central nervous system yields protein fibrillar inclusions named Lewy bodies that are the hallmarks of Parkinson’s disease (PD). In solution, pure α-Syn adopts an intrinsically disordered structure and assembles into fibrils that exhibit considerable morphological heterogeneity depending on their assembly conditions. We recently established tightly controlled experimental conditions allowing the assembly of α-Syn into highly homogeneous and pure polymorphs. The latter exhibited differences in their shape, their structure but also in their functional properties. We have conducted an AFM study at high resolution and performed a statistical analysis of fibrillar α-Syn shape and thermal fluctuations to calculate the persistence length to further assess the nanomechanical properties of α-Syn polymorphs. Herein, we demonstrated quantitatively that distinct polymorphs made of the same protein (wild-type α-Syn) show significant differences in their morphology (height, width and periodicity) and physical properties (persistence length, bending rigidity and axial Young’s modulus).

  17. Communication between integrin receptors facilitates epicardial cell adhesion and matrix organization.

    Science.gov (United States)

    Pae, So Hyun; Dokic, Danijela; Dettman, Robert W

    2008-04-01

    Formation of the epicardium requires interactions between alpha(4)beta(1) integrin, and the extracellular matrix. We investigated the role of other integrins expressed by epicardial cells. We detected transcripts for alpha(5), alpha(8), alpha(v), beta(1), beta(3), and beta(5) integrins in the chick proepicardial organ (PE). We demonstrate that alpha(5)beta(1), alpha(8)beta(1), and alpha(v)beta(3) integrins are expressed by chick epicardial mesothelial cells (EMCs). Migration of EMCs in vitro was reduced by RGD-containing peptides. Using adenoviruses expressing an antisense to chick alpha(4) (AdGFPalpha4AS), full-length (Adhalpha4V5), and C-terminal deleted alpha(4) (Adhalpha4DeltaCV5), we found that EMCs were less able to adhere to vitronectin and fibronectin(120) indicating that alpha(4)beta(1) plays a role in regulating EMC adhesion to ligands of alpha(5)beta(1), alpha(8)beta(1), and alpha(v)beta(3). In Adhalpha4DeltaCV5-infected EMCs, alpha(5)beta(1) was diminished in fibrillar adhesions and new FN matrix assembly was abnormal. We propose that cooperation between alpha(4)beta(1) and RGD integrins is important for EMC adhesion and subepicardial matrix formation. (c) 2008 Wiley-Liss, Inc.

  18. The fibronectin-binding integrins alpha5beta1 and alphavbeta3 differentially modulate RhoA-GTP loading, organization of cell matrix adhesions, and fibronectin fibrillogenesis

    DEFF Research Database (Denmark)

    Danen, Erik H J; Sonneveld, Petra; Brakebusch, Cord

    2002-01-01

    We have studied the formation of different types of cell matrix adhesions in cells that bind to fibronectin via either alpha5beta1 or alphavbeta3. In both cases, cell adhesion to fibronectin leads to a rapid decrease in RhoA activity. However, alpha5beta1 but not alphavbeta3 supports high levels ...... receptors expressed on a cell dictates the ability of fibronectin to stimulate RhoA-mediated organization of cell matrix adhesions.......We have studied the formation of different types of cell matrix adhesions in cells that bind to fibronectin via either alpha5beta1 or alphavbeta3. In both cases, cell adhesion to fibronectin leads to a rapid decrease in RhoA activity. However, alpha5beta1 but not alphavbeta3 supports high levels...... of RhoA activity at later stages of cell spreading, which are associated with a translocation of focal contacts to peripheral cell protrusions, recruitment of tensin into fibrillar adhesions, and fibronectin fibrillogenesis. Expression of an activated mutant of RhoA stimulates alphavbeta3-mediated...

  19. Effect of electrostatic Interactions on the Percolation Concentration of Fibrillar ß-Lactoglobuline Gels

    NARCIS (Netherlands)

    Veerman, C.; Ruis, H.G.M.; Sagis, L.M.C.; Linden, van der E.

    2002-01-01

    The effect of electrostatic interactions on the critical percolation concentration (cp) of fibrillar -lactoglobulin gels at pH 2 was investigated using rheological measurements, transmission electron microscopy (TEM), and performing conversion experiments. A decreasing cp with increasing ionic

  20. Wet self-cleaning of superhydrophobic microfiber adhesives formed from high density polyethylene.

    Science.gov (United States)

    Lee, Jongho; Fearing, Ronald S

    2012-10-30

    Biologically inspired adhesives developed for switchable and controllable adhesion often require repetitive uses in general, dirty, environments. Superhydrophobic microstructures on the lotus leaf lead to exceptional self-cleaning of dirt particles on nonadhesive surfaces with water droplets. This paper describes the self-cleaning properties of a hard-polymer-based adhesive formed with high-aspect-ratio microfibers from high-density polyethylene (HDPE). The microfiber adhesive shows almost complete wet self-cleaning of dirt particles with water droplets, recovering 98% of the adhesion of the pristine microfiber adhesives. The low contact angle hysteresis indicates that the surface of microfiber adhesives is superhydrophobic. Theoretical and experimental studies reveal a design parameter, length, which can control the adhesion without affecting the superhydrophobicity. The results suggest some properties of biologically inspired adhesives can be controlled independently by adjusting design parameters.

  1. The optimal shape of elastomer mushroom-like fibers for high and robust adhesion

    Directory of Open Access Journals (Sweden)

    Burak Aksak

    2014-05-01

    Full Text Available Over the last decade, significant effort has been put into mimicking the ability of the gecko lizard to strongly and reversibly cling to surfaces, by using synthetic structures. Among these structures, mushroom-like elastomer fiber arrays have demonstrated promising performance on smooth surfaces matching the adhesive strengths obtained with the natural gecko foot-pads. It is possible to improve the already impressive adhesive performance of mushroom-like fibers provided that the underlying adhesion mechanism is understood. Here, the adhesion mechanism of bio-inspired mushroom-like fibers is investigated by implementing the Dugdale–Barenblatt cohesive zone model into finite elements simulations. It is found that the magnitude of pull-off stress depends on the edge angle θ and the ratio of the tip radius to the stalk radius β of the mushroom-like fiber. Pull-off stress is also found to depend on a dimensionless parameter χ, the ratio of the fiber radius to a length-scale related to the dominance of adhesive stress. As an estimate, the optimal parameters are found to be β = 1.1 and θ = 45°. Further, the location of crack initiation is found to depend on χ for given β and θ. An analytical model for pull-off stress, which depends on the location of crack initiation as well as on θ and β, is proposed and found to agree with the simulation results. Results obtained in this work provide a geometrical guideline for designing robust bio-inspired dry fibrillar adhesives.

  2. Binding, internalization and fate of Huntingtin Exon1 fibrillar assemblies in mitotic and nonmitotic neuroblastoma cells.

    Science.gov (United States)

    Ruiz-Arlandis, G; Pieri, L; Bousset, L; Melki, R

    2016-02-01

    The aggregation of Huntingtin (HTT) protein and of its moiety encoded by its Exon1 (HTTExon1) into fibrillar structures inside neurons is the molecular hallmark of Huntington's disease. Prion-like transmission of these aggregates between cells has been demonstrated. The cell-to-cell transmission mechanisms of these protein aggregates and the susceptibility of different kinds of neuronal cells to these toxic assemblies still need assessment. Here, we documented the binding to and internalization by differentiated and undifferentiated neuroblastoma cells of exogenous fibrillar HTTExon1 and polyglutamine (polyQ) polypeptides containing the same number of glutamines. We assessed the contribution of endocytosis to fibrillar HTTExon1 uptake, their intracellular localization and fate. We observed that undifferentiated neuroblastoma cells were more susceptible to fibrillar HTTExon1 and polyQ than their differentiated counterparts. Furthermore, we demonstrated that exogenous HTTExon1 aggregates are mainly taken up by endocytosis and directed to lysosomal compartments in both mitotic and quiescent cells. These data suggest that the rates of endocytic processes that differ in mitotic and quiescent cells strongly impact the uptake of exogenous HTTExon1 and polyQ fibrils. This may be either the consequence of distinct metabolisms or distributions of specific protein partners for amyloid-like assemblies at the surface of highly dividing versus quiescent cells. Our results highlight the importance of endocytic processes in the internalization of exogenous HTTExon1 fibrils and suggest that a proportion of those assemblies reach the cytosol where they can amplify by recruiting the endogenous protein after escaping, by yet an unknown process, from the endo-lysosomal compartments. © 2015 British Neuropathological Society.

  3. Location of rRNA transcription to the nucleolar components: disappearance of the fibrillar centers in nucleoli of regenerating rat hepatocytes.

    Science.gov (United States)

    Montanaro, Lorenzo; Govoni, Marzia; Orrico, Catia; Treré, Davide; Derenzini, Massimo

    2011-01-01

    The precise location of rDNA transcription to the components of mammalian cell nucleolus is still debated. This was due to the fact that all the molecules necessary for rRNA synthesis are located in two of the three components, the fibrillar centers (FCs) and the dense fibrillar component (DFC), which together with the granular component (GC) are considered to be constantly present in mammalian cell nucleoli. In the present study we demonstrated that in nucleoli of many regenerating rat hepatocytes at 15 h after partial hepatectomy the FCs were no longer present, only the DFC and the GC being detected. At this time of regeneration the rRNA transcriptional activity was three fold that of resting hepatocytes, while the synthesis of DNA was not yet significantly increased, indicating that these nucleolar changes were due to the rRNA synthesis up-regulation. The DFC appeared to be organized in numerous, small, roundish tufts of fibrils. The silver staining procedure for AgNOR proteins, which are associated with the ribosomal genes, selectively and homogeneously stained these fibrillar tufts. Immuno-gold visualization of the Upstream Binding Factor (UBF), which is associated with the promoter region and the transcribed portion of the rRNA 45S gene, demonstrated that UBF was selectively located in the fibrillar tufts. We concluded that in proliferating rat hepatocytes the increased synthesis of rRNA induced an activation of the rRNA transcription machinery located in the fibrillar centers which, by becoming associated with the ribonucleoprotein transcripts, assumed the morphological pattern of the DFC.

  4. Flat punch adhesion: transition from fracture-based to strength-limited pull-off

    International Nuclear Information System (INIS)

    Jiang, Yijie; Turner, Kevin T; Grierson, David S

    2014-01-01

    The adhesion of a cylindrical flat punch to a surface due to interatomic forces is a well-known problem that is important in many applications, including indentation experiments and the adhesion of fibrillar structures. Traditionally, the pull-off force has been related to the work of adhesion and punch geometry via the Kendall solution that uses a Griffith energy balance to assess crack propagation and pull-off. More recently, it has been shown that under certain conditions, notably at small punch diameters, the contact can behave in a ‘strength-limited’ fashion in which the interface separates uniformly rather than via crack propagation. Here, a Maugis-Dugdale-type analysis of power-law-shaped bodies in contact is used to examine the change in behaviour from the fracture-based Kendall solution to strength-limited pull-off for cylindrical flat punches. The transition from fracture-based to strength-limited behaviour is described in terms of a non-dimensional parameter that is similar to previous quantities used to describe the transition and is a function of the punch size, the elasticity of the contact, and the adhesion properties. The results of this relatively simple analysis compare favourably with results from more complex computational simulations. In addition, the results are used to develop a function that quantifies the transition between the Kendall solution and the strength-limited solution in order to facilitate interpretation of adhesion measurements in the transition regime between the two limits. Finally, the power-law analysis is used to assess the sensitivity of the transition to the exact shape of the punch. (paper)

  5. Characterization of adhesive of polyurethane from castor oil by FTIR, TGA and XRD

    International Nuclear Information System (INIS)

    Azevedo, Elaine C.; Santana, Simone S. de M.; Nascimento, Eduardo M. do; Claro Neto, Salvador; Lepienski, Carlos M.

    2009-01-01

    Castor oil polyurethanes are an alternative to adhesives that emanate volatile compounds. This adhesive come from a renewable source and has very low toxicity. In this work the microstructural and thermal characterization is presented. This material is partially crystalline. The mass loss start at 240 deg C and the glass transition temperature is 60 deg C. Then the adhesive is adequate to be employed at temperatures lower than 60 deg C. (author)

  6. Molecular nanomechanics of nascent bone: fibrillar toughening by mineralization

    Science.gov (United States)

    Buehler, Markus J.

    2007-07-01

    Mineralized collagen fibrils are highly conserved nanostructural building blocks of bone. By a combination of molecular dynamics simulation and theoretical analysis it is shown that the characteristic nanostructure of mineralized collagen fibrils is vital for its high strength and its ability to sustain large deformation, as is relevant to the physiological role of bone, creating a strong and tough material. An analysis of the molecular mechanisms of protein and mineral phases under large deformation of mineralized collagen fibrils reveals a fibrillar toughening mechanism that leads to a manifold increase of energy dissipation compared to fibrils without mineral phase. This fibrillar toughening mechanism increases the resistance to fracture by forming large local yield regions around crack-like defects, a mechanism that protects the integrity of the entire structure by allowing for localized failure. As a consequence, mineralized collagen fibrils are able to tolerate microcracks of the order of several hundred micrometres in size without causing any macroscopic failure of the tissue, which may be essential to enable bone remodelling. The analysis proves that adding nanoscopic small platelets to collagen fibrils increases their Young's modulus and yield strength as well as their fracture strength. We find that mineralized collagen fibrils have a Young's modulus of 6.23 GPa (versus 4.59 GPa for the collagen fibril), yield at a tensile strain of 6.7% (versus 5% for the collagen fibril) and feature a fracture stress of 0.6 GPa (versus 0.3 GPa for the collagen fibril).

  7. Molecular nanomechanics of nascent bone: fibrillar toughening by mineralization

    International Nuclear Information System (INIS)

    Buehler, Markus J

    2007-01-01

    Mineralized collagen fibrils are highly conserved nanostructural building blocks of bone. By a combination of molecular dynamics simulation and theoretical analysis it is shown that the characteristic nanostructure of mineralized collagen fibrils is vital for its high strength and its ability to sustain large deformation, as is relevant to the physiological role of bone, creating a strong and tough material. An analysis of the molecular mechanisms of protein and mineral phases under large deformation of mineralized collagen fibrils reveals a fibrillar toughening mechanism that leads to a manifold increase of energy dissipation compared to fibrils without mineral phase. This fibrillar toughening mechanism increases the resistance to fracture by forming large local yield regions around crack-like defects, a mechanism that protects the integrity of the entire structure by allowing for localized failure. As a consequence, mineralized collagen fibrils are able to tolerate microcracks of the order of several hundred micrometres in size without causing any macroscopic failure of the tissue, which may be essential to enable bone remodelling. The analysis proves that adding nanoscopic small platelets to collagen fibrils increases their Young's modulus and yield strength as well as their fracture strength. We find that mineralized collagen fibrils have a Young's modulus of 6.23 GPa (versus 4.59 GPa for the collagen fibril), yield at a tensile strain of 6.7% (versus 5% for the collagen fibril) and feature a fracture stress of 0.6 GPa (versus 0.3 GPa for the collagen fibril)

  8. Interfacial adhesion of laser clad functionally graded materials

    NARCIS (Netherlands)

    Pei, Y. T.; Ocelik, V.; De Hosson, J. T. M.

    2003-01-01

    Specially designed samples of laser clad AlSi40 functionally graded materials (FGM) are made for evaluating the interfacial adhesion. To obtain the interfacial bond strength notches are made right at the interface of the FGMs. In-situ microstructural observations during straining in a field-emission

  9. Interfacial adhesion of laser clad functionally graded materials

    NARCIS (Netherlands)

    De Hosson, JTM; Pei, YT; Ocelik, [No Value; Sudarshan, TS; Stiglich, JJ; Jeandin, M

    2002-01-01

    Specially designed samples of laser clad AlSi40 functionally graded materials (FGM) are made for evaluating the interfacial adhesion. To obtain the interfacial bond strength notches are made right at the interface of the FGMs. In-sitit microstructural observations during straining in an FEG-ESEM

  10. Automated determination of fibrillar structures by simultaneous model building and fiber diffraction refinement.

    Science.gov (United States)

    Potrzebowski, Wojciech; André, Ingemar

    2015-07-01

    For highly oriented fibrillar molecules, three-dimensional structures can often be determined from X-ray fiber diffraction data. However, because of limited information content, structure determination and validation can be challenging. We demonstrate that automated structure determination of protein fibers can be achieved by guiding the building of macromolecular models with fiber diffraction data. We illustrate the power of our approach by determining the structures of six bacteriophage viruses de novo using fiber diffraction data alone and together with solid-state NMR data. Furthermore, we demonstrate the feasibility of molecular replacement from monomeric and fibrillar templates by solving the structure of a plant virus using homology modeling and protein-protein docking. The generated models explain the experimental data to the same degree as deposited reference structures but with improved structural quality. We also developed a cross-validation method for model selection. The results highlight the power of fiber diffraction data as structural constraints.

  11. Noninvasive Quantitative Imaging of Collagen Microstructure in Three-Dimensional Hydrogels Using High-Frequency Ultrasound.

    Science.gov (United States)

    Mercado, Karla P; Helguera, María; Hocking, Denise C; Dalecki, Diane

    2015-07-01

    Collagen I is widely used as a natural component of biomaterials for both tissue engineering and regenerative medicine applications. The physical and biological properties of fibrillar collagens are strongly tied to variations in collagen fiber microstructure. The goal of this study was to develop the use of high-frequency quantitative ultrasound to assess collagen microstructure within three-dimensional (3D) hydrogels noninvasively and nondestructively. The integrated backscatter coefficient (IBC) was employed as a quantitative ultrasound parameter to detect, image, and quantify spatial variations in collagen fiber density and diameter. Collagen fiber microstructure was varied by fabricating hydrogels with different collagen concentrations or polymerization temperatures. IBC values were computed from measurements of the backscattered radio-frequency ultrasound signals collected using a single-element transducer (38-MHz center frequency, 13-47 MHz bandwidth). The IBC increased linearly with increasing collagen concentration and decreasing polymerization temperature. Parametric 3D images of the IBC were generated to visualize and quantify regional variations in collagen microstructure throughout the volume of hydrogels fabricated in standard tissue culture plates. IBC parametric images of corresponding cell-embedded collagen gels showed cell accumulation within regions having elevated collagen IBC values. The capability of this ultrasound technique to noninvasively detect and quantify spatial differences in collagen microstructure offers a valuable tool to monitor the structural properties of collagen scaffolds during fabrication, to detect functional differences in collagen microstructure, and to guide fundamental research on the interactions of cells and collagen matrices.

  12. Mac-2 binding protein is a cell-adhesive protein of the extracellular matrix which self-assembles into ring-like structures and binds beta1 integrins, collagens and fibronectin

    DEFF Research Database (Denmark)

    Sasaki, T; Brakebusch, C; Engel, J

    1998-01-01

    Human Mac-2 binding protein (M2BP) was prepared in recombinant form from the culture medium of 293 kidney cells and consisted of a 92 kDa subunit. The protein was obtained in a native state as indicated by CD spectroscopy, demonstrating alpha-helical and beta-type structure, and by protease resis...... in the extracellular matrix of several mouse tissues....... in solid-phase assays to collagens IV, V and VI, fibronectin and nidogen, but not to fibrillar collagens I and III or other basement membrane proteins. The protein also mediated adhesion of cell lines at comparable strength with laminin. Adhesion to M2BP was inhibited by antibodies to integrin beta1...

  13. Immunohistochemical evaluation of fibrillar components of the extracellular matrix of transversalis fascia and anterior abdominal rectus sheath in men with inguinal hernia

    Directory of Open Access Journals (Sweden)

    Rogério De Oliveira Gonçalves

    Full Text Available OBJECTIVE: to evaluate the role of fibrillar extracellular matrix components in the pathogenesis of inguinal hernias. METHODS: samples of the transverse fascia and of the anterior sheath of the rectus abdominis muscle were collected from 40 men aged between 20 and 60 years with type II and IIIA Nyhus inguinal hernia and from 10 fresh male cadavers (controls without hernia in the same age range. The staining technique was immunohistochemistry for collagen I, collagen III and elastic fibers; quantification of fibrillar components was performed with an image analysis processing software. RESULTS: no statistically significant differences were found in the amount of elastic fibers, collagen I and collagen III, and the ratio of collagen I / III among patients with inguinal hernia when compared with subjects without hernia. CONCLUSION: the amount of fibrillar extracellular matrix components did not change in patients with and without inguinal hernia.

  14. Hierarchical Formation of Fibrillar and Lamellar Self-Assemblies from Guanosine-Based Motifs

    Directory of Open Access Journals (Sweden)

    Paolo Neviani

    2010-01-01

    Full Text Available Here we investigate the supramolecular polymerizations of two lipophilic guanosine derivatives in chloroform by light scattering technique and TEM experiments. The obtained data reveal the presence of several levels of organization due to the hierarchical self-assembly of the guanosine units in ribbons that in turn aggregate in fibrillar or lamellar soft structures. The elucidation of these structures furnishes an explanation to the physical behaviour of guanosine units which display organogelator properties.

  15. Development and characterization of amorphous acrylate networks for use as switchable adhesives inspired from shapememory behavior

    Science.gov (United States)

    Lakhera, Nishant

    Several types of insects and animals such as spiders and geckos are inherently able to climb along vertical walls and ceilings. This remarkable switchable adhesive behavior has been attributed to the fibrillar structures on their feet, with size ranging from few nanometers to a few micrometers depending on the species. Several studies have attempted to create synthetic micro-patterned surfaces trying to imitate this adhesive behavior seen in nature. The experimental procedures are scattered, with sole purpose of trying to increase adhesion, thereby making direct comparison between studies very difficult. There is a lack of fundamental understanding on adhesion of patterned surfaces. The influence of critical parameters like material modulus, glass transition temperature, viscoelastic effects, temperature and water absorption on adhesion is not fully explored and characterized. These parameters are expected to have a decisive influence on adhesion behavior of the polymer. Previous studies have utilized conventional "off-the-shelf" materials like epoxy, polyurethanes etc. It is however, impossible to change the material modulus, glass transition temperature etc. of these polymer systems without changing the base constituents itself, thereby explaining the gaps in the current research landscape. The purpose of this study was to use acrylate shape-memory polymers (SMPs) for their ability to be tailored to specific mechanical properties by control of polymer chemistry, without changing the base constituents. Polymer networks with tailorable glass transition, material modulus, water absorption etc. were developed and adhesion studies were performed to investigate the influence of temperature, viscoelastic effects, material modulus on the adhesion behavior of flat acrylate polymer surfaces. The knowledge base gained from these studies was utilized to better understand the fundamental mechanisms associated with adhesion behavior of patterned acrylate surfaces. Thermally

  16. Plasma Electrolytic Oxidation of Titanium Implant Surfaces: Microgroove-Structures Improve Cellular Adhesion and Viability.

    Science.gov (United States)

    Hartjen, Philip; Hoffmann, Alexia; Henningsen, Anders; Barbeck, Mike; Kopp, Alexander; Kluwe, Lan; Precht, Clarissa; Quatela, Olivia; Gaudin, Robert; Heiland, Max; Friedrich, Reinhard E; Knipfer, Christian; Grubeanu, Daniel; Smeets, Ralf; Jung, Ole

    2018-01-01

    Plasma electrolytic oxidation (PEO) is an established electrochemical treatment technique that can be used for surface modifications of metal implants. In this study we to treated titanium implants with PEO, to examine the resulting microstructure and to characterize adhesion and viability of cells on the treated surfaces. Our aim was to identify an optimal surface-modification for titanium implants in order to improve soft-tissue integration. Three surface-variants were generated on titanium alloy Ti6Al4V by PEO-treatment. The elemental composition and the microstructures of the surfaces were characterized using energy dispersive X-ray spectroscopy, scanning electron microscopy and profilometry. In vitro cytocompatibility of the surfaces was assessed by seeding L929 fibroblasts onto them and measuring the adhesion, viability and cytotoxicity of cells by means of live/dead staining, XTT assay and LDH assay. Electron microscopy and profilometry revealed that the PEO-surface variants differed largely in microstructure/topography, porosity and roughness from the untreated control material as well as from one another. Roughness was generally increased after PEO-treatment. In vitro, PEO-treatment led to improved cellular adhesion and viability of cells accompanied by decreased cytotoxicity. PEO-treatment provides a promising strategy to improve the integration of titanium implants with surrounding tissues. Copyright© 2018, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  17. Fibrillar dimer formation of islet amyloid polypeptides

    Energy Technology Data Exchange (ETDEWEB)

    Chiu, Chi-cheng [Univ. of Chicago, IL (United States); Argonne National Lab. (ANL), Argonne, IL (United States); de Pablo, Juan J. [Univ. of Chicago, IL (United States); Argonne National Lab. (ANL), Argonne, IL (United States)

    2015-05-08

    Amyloid deposits of human islet amyloid polypeptide (hIAPP), a 37-residue hormone co-produced with insulin, have been implicated in the development of type 2 diabetes. Residues 20 – 29 of hIAPP have been proposed to constitute the amyloidogenic core for the aggregation process, yet the segment is mostly unstructured in the mature fibril, according to solid-state NMR data. Here we use molecular simulations combined with bias-exchange metadynamics to characterize the conformational free energies of hIAPP fibrillar dimer and its derivative, pramlintide. We show that residues 20 – 29 are involved in an intermediate that exhibits transient β-sheets, consistent with recent experimental and simulation results. By comparing the aggregation of hIAPP and pramlintide, we illustrate the effects of proline residues on inhibition of the dimerization of IAPP. The mechanistic insights presented here could be useful for development of therapeutic inhibitors of hIAPP amyloid formation.

  18. Fibrillar dimer formation of islet amyloid polypeptides

    Directory of Open Access Journals (Sweden)

    Chi-cheng Chiu

    2015-09-01

    Full Text Available Amyloid deposits of human islet amyloid polypeptide (hIAPP, a 37-residue hormone co-produced with insulin, have been implicated in the development of type 2 diabetes. Residues 20 – 29 of hIAPP have been proposed to constitute the amyloidogenic core for the aggregation process, yet the segment is mostly unstructured in the mature fibril, according to solid-state NMR data. Here we use molecular simulations combined with bias-exchange metadynamics to characterize the conformational free energies of hIAPP fibrillar dimer and its derivative, pramlintide. We show that residues 20 – 29 are involved in an intermediate that exhibits transient β-sheets, consistent with recent experimental and simulation results. By comparing the aggregation of hIAPP and pramlintide, we illustrate the effects of proline residues on inhibition of the dimerization of IAPP. The mechanistic insights presented here could be useful for development of therapeutic inhibitors of hIAPP amyloid formation.

  19. Decreased expression of microRNA-29 family in leiomyoma contributes to increased major fibrillar collagen production.

    Science.gov (United States)

    Marsh, Erica E; Steinberg, Marissa L; Parker, J Brandon; Wu, Ju; Chakravarti, Debabrata; Bulun, Serdar E

    2016-09-01

    To determine the expression and function of the microRNA-29 family (miRNA-29a, miRNA-29b, miRNA-29c) in human leiomyoma and myometrium. Basic science experimental design. Academic medical center. Women undergoing surgery for symptomatic uterine fibroids. Overexpression and knockdown of miRNA-29a, miRNA-29b, and miRNA-29c in primary leiomyoma and myometrial cells. [1] Expression of the miRNA-29 family members in vivo in leiomyoma versus myometrium; [2] Major fibrillar collagen (I, II, III) expression in leiomyoma and myometrial cells with manipulation of miRNA-29 species. Members of the miRNA-29 family (29a, 29b, 29c) are all down-regulated in leiomyoma versus myometrium in vivo. The expression of the miRNA-29 family can be successfully modulated in primary leiomyoma and myometrial cells. Overexpression of the miRNA-29 family in leiomyoma cells results in down-regulation of the major fibrillar collagens. Down-regulation of the miRNA-29 species in myometrium results in an increase in collagen type III deposition. The miRNA-29 family is consistently down-regulated in leiomyoma compared to matched myometrial tissue. This down-regulation contributes to the increased collagen seen in leiomyomas versus myometrium. When miRNA-29 members are overexpressed in leiomyoma cells, protein levels of all of the major fibrillar collagens decrease. The miRNA-29 members are potential therapeutic targets in this highly prevalent condition. Copyright © 2016 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.

  20. The 26S Proteasome Degrades the Soluble but Not the Fibrillar Form of the Yeast Prion Ure2p In Vitro.

    Directory of Open Access Journals (Sweden)

    Kai Wang

    Full Text Available Yeast prions are self-perpetuating protein aggregates that cause heritable and transmissible phenotypic traits. Among these, [PSI+] and [URE3] stand out as the most studied yeast prions, and result from the self-assembly of the translation terminator Sup35p and the nitrogen catabolism regulator Ure2p, respectively, into insoluble fibrillar aggregates. Protein quality control systems are well known to govern the formation, propagation and transmission of these prions. However, little is known about the implication of the cellular proteolytic machineries in their turnover. We previously showed that the 26S proteasome degrades both the soluble and fibrillar forms of Sup35p and affects [PSI+] propagation. Here, we show that soluble native Ure2p is degraded by the proteasome in an ubiquitin-independent manner. Proteasomal degradation of Ure2p yields amyloidogenic N-terminal peptides and a C-terminal resistant fragment. In contrast to Sup35p, fibrillar Ure2p resists proteasomal degradation. Thus, structural variability within prions may dictate their ability to be degraded by the cellular proteolytic systems.

  1. The 26S Proteasome Degrades the Soluble but Not the Fibrillar Form of the Yeast Prion Ure2p In Vitro

    Science.gov (United States)

    Wang, Kai; Redeker, Virginie; Madiona, Karine; Melki, Ronald; Kabani, Mehdi

    2015-01-01

    Yeast prions are self-perpetuating protein aggregates that cause heritable and transmissible phenotypic traits. Among these, [PSI +] and [URE3] stand out as the most studied yeast prions, and result from the self-assembly of the translation terminator Sup35p and the nitrogen catabolism regulator Ure2p, respectively, into insoluble fibrillar aggregates. Protein quality control systems are well known to govern the formation, propagation and transmission of these prions. However, little is known about the implication of the cellular proteolytic machineries in their turnover. We previously showed that the 26S proteasome degrades both the soluble and fibrillar forms of Sup35p and affects [PSI +] propagation. Here, we show that soluble native Ure2p is degraded by the proteasome in an ubiquitin-independent manner. Proteasomal degradation of Ure2p yields amyloidogenic N-terminal peptides and a C-terminal resistant fragment. In contrast to Sup35p, fibrillar Ure2p resists proteasomal degradation. Thus, structural variability within prions may dictate their ability to be degraded by the cellular proteolytic systems. PMID:26115123

  2. The study of adhesion and nanomechanical properties of DLC films deposited on tool steels

    International Nuclear Information System (INIS)

    Chen, Kuan-Wei; Lin, Jen-Fin

    2009-01-01

    In this study, thin diamond-like carbon (DLC) films were deposited onto a steel substrate. By using the plasma immersion ion implantation (PIII) technique, a nitrogen layer was formed on the steel surface before depositing the DLC films. This PIII formed nitrogen layer, which acts as the buffer layer, has apparently increased the adhesion between the DLC film and the steel substrate. The microstructures, the nanomechanical properties, and the adhesion of the DLC were investigated by the techniques of X-ray diffraction (XRD), transmission electron microscopy (TEM), nanoindentation, and nanoscratch. Results show that the hardness and Young's modulus were significantly improved, up to 2 to 9 times; while the implantation depth and the microstructure of the nitrogen layers vary with nitrogen/hydrogen ratio (N:H = 1:0, 1:1, 1:3). Raman analyses indicate that the I(D)/I(G) ratio increases with the thickness of DLC film. By using the PIII technique in the steel substrate, the adhesion of the DLC film onto the substrate is greatly enhanced, and wear resistance is elevated if the DLC film is sufficiently thick.

  3. Application of MALDI-TOF mass spectrometry for study on fibrillar and oligomeric aggregates of alpha-synuclein

    NARCIS (Netherlands)

    Severinovskaya, O. V.; Kovalska, V B; Losytskyy, M Yu; Cherepanov, V. V.; Subramaniam, V.; Yarmoluk, S M

    2014-01-01

    Aim. To study the α-synuclein (ASN) aggregates of different structural origin, namely amyloid fibrils and spherical oligomers, in comparison with a native protein. Methods. MALDI TOF mass spectrometry and atomic force microscopy (AFM). Results. The mass spectra of native and fibrillar ASN have

  4. The FRIABLE1 gene product affects cell adhesion in Arabidopsis.

    Directory of Open Access Journals (Sweden)

    Lutz Neumetzler

    Full Text Available Cell adhesion in plants is mediated predominantly by pectins, a group of complex cell wall associated polysaccharides. An Arabidopsis mutant, friable1 (frb1, was identified through a screen of T-DNA insertion lines that exhibited defective cell adhesion. Interestingly, the frb1 plants displayed both cell and organ dissociations and also ectopic defects in organ separation. The FRB1 gene encodes a Golgi-localized, plant specific protein with only weak sequence similarities to known proteins (DUF246. Unlike other cell adhesion deficient mutants, frb1 mutants do not have reduced levels of adhesion related cell wall polymers, such as pectins. Instead, FRB1 affects the abundance of galactose- and arabinose-containing oligosaccharides in the Golgi. Furthermore, frb1 mutants displayed alteration in pectin methylesterification, cell wall associated extensins and xyloglucan microstructure. We propose that abnormal FRB1 action has pleiotropic consequences on wall architecture, affecting both the extensin and pectin matrices, with consequent changes to the biomechanical properties of the wall and middle lamella, thereby influencing cell-cell adhesion.

  5. Study of new rubber to steel adhesive systems based on Co(II and Cu(II sulphides coats

    Directory of Open Access Journals (Sweden)

    Labaj Ivan

    2018-01-01

    Full Text Available The presented paper deals with the preparation of new rubber to steel adhesive systems using the steel surface treatment with deposition of adhesive coats based on Co(II and Cu(II sulphides. Efficiency of new prepared adhesive systems containing Co(II and Cu(II sulphides has been compared with the efficiency of double layer adhesive system commonly used in industry. The chemical composition of prepared adhesive systems was determined using the EDX analysis. Scanning Electron Microscopy (SEM was used for study of topography and microstructure of prepared rubber to steel adhesive systems (Co(II, Cu(II sulphide, double layer adhesive system. For determination of adhesion strength between rubber blends and metal pieces with various adhesive systems deposited on these pieces, the test according to ASTM D429 standard relating to Rubber to metal adhesion, method A was used. For all test samples, the same type of rubber blend and the same curing conditions have been used.

  6. Influence of spray parameters on the microstructure and mechanical properties of gas-tunnel plasma sprayed hydroxyapatite coatings

    International Nuclear Information System (INIS)

    Morks, M.F.; Kobayashi, Akira

    2007-01-01

    For biomedical applications, hydroxyapatite (HA) coatings were deposited on 304 stainless steel substrate by using a gas tunnel type plasma spraying process. The influences of spraying distances and plasma arc currents on the microstructure, hardness and adhesion properties of HA coatings were investigated. Microstructure observation by SEM showed that HA coatings sprayed at low plasma power have a porous structure and poor hardness. HA coatings sprayed at high plasma power and short spraying distance are characterized by good adhesion and low porosity with dense structure. Hardness increased for HA coatings sprayed at shorter spraying distance and higher plasma power, mainly due to the formation of dense coatings

  7. Comparison of performance coatings thermally sprayed subject to testing adhesive wear

    International Nuclear Information System (INIS)

    Marangoni, G.F.; Arnt, A.B.C.; Rocha, M.R. da

    2014-01-01

    In this work, the microstructural changes and wear resistance adhesive coatings obtained from powders thermally sprayed by high velocity oxy-fuel (HVOF) were evaluated. Based coatings chrome-nickel and tungsten-cobalt are applied in conditions subject to intense wear especially abrasive. With the aim of evaluate the performance of these coatings under conditions of adhesive wear, these coatings samples were tested by the standard ASTM G99. As test parameters were used: Tungsten carbide pin (SAE 52100) with 6 mm diameter, normal load of 50N and a tangential velocity of 0.5 m / s. The worn surfaces of the coatings were characterized by optical and scanning electron microscopy and X-ray diffraction. Results indicate that the performance front wear is related to the conditions of adhesion and uniformity of the coating applied. (author)

  8. Quantitative analysis of three-dimensional fibrillar collagen microstructure within the normal, aged and glaucomatous human optic nerve head.

    Science.gov (United States)

    Jones, H J; Girard, M J; White, N; Fautsch, M P; Morgan, J E; Ethier, C R; Albon, J

    2015-05-06

    The aim of this study was to quantify connective tissue fibre orientation and alignment in young, old and glaucomatous human optic nerve heads (ONH) to understand ONH microstructure and predisposition to glaucomatous optic neuropathy. Transverse (seven healthy, three glaucomatous) and longitudinal (14 healthy) human ONH cryosections were imaged by both second harmonic generation microscopy and small angle light scattering (SALS) in order to quantify preferred fibre orientation (PFO) and degree of fibre alignment (DOFA). DOFA was highest within the peripapillary sclera (ppsclera), with relatively low values in the lamina cribrosa (LC). Elderly ppsclera DOFA was higher than that in young ppsclera (p < 0.00007), and generally higher than in glaucoma ppsclera. In all LCs, a majority of fibres had preferential orientation horizontally across the nasal-temporal axis. In all glaucomatous LCs, PFO was significantly different from controls in a minimum of seven out of 12 LC regions (p < 0.05). Additionally, higher fibre alignment was observed in the glaucomatous inferior-temporal LC (p < 0.017). The differences between young and elderly ONH fibre alignment within regions suggest that age-related microstructural changes occur within the structure. The additional differences in fibre alignment observed within the glaucomatous LC may reflect an inherent susceptibility to glaucomatous optic neuropathy, or may be a consequence of ONH remodelling and/or collapse.

  9. Block Copolymer Adhesion Measured by Contact Mechanics Methods

    Science.gov (United States)

    Falsafi, A.; Bates, S.; Tirrell, M.; Pocius, A. V.

    1997-03-01

    Adhesion measurements for a series of polyolefin diblocks and triblocks are presented. These materials have poly(ethylene-propylene) or poly(ethyl-ethylene) rubbery block, and semicrystalline polyethylene block as physical crosslinker. The experiments consist of compression and decompression profiles of contact area between the samples as a function of normal load, analyzed by the JKR Theory. The samples are prepared either by formation of caps from the bulk material in melting and subsequent cooling, and/or coating them in thin films on surface modified elastic foundations of polydimethylsiloxane caps. The latter minimizes the viscoelastic losses which are dominant in the bulk of material. The effect of molecular architecture and microstructure on adhesion energy and dynamics of separation, obtained from decompression experiments, is discussed in view of their influence on molecular arrangements at the contacting surfaces.

  10. Scalable and continuous fabrication of bio-inspired dry adhesives with a thermosetting polymer.

    Science.gov (United States)

    Lee, Sung Ho; Kim, Sung Woo; Kang, Bong Su; Chang, Pahn-Shick; Kwak, Moon Kyu

    2018-04-04

    Many research groups have developed unique micro/nano-structured dry adhesives by mimicking the foot of the gecko with the use of molding methods. Through these previous works, polydimethylsiloxane (PDMS) has been developed and become the most commonly used material for making artificial dry adhesives. The material properties of PDMS are well suited for making dry adhesives, such as conformal contacts with almost zero preload, low elastic moduli for stickiness, and easy cleaning with low surface energy. From a performance point of view, dry adhesives made with PDMS can be highly advantageous but are limited by its low productivity, as production takes an average of approximately two hours. Given the low productivity of PDMS, some research groups have developed dry adhesives using UV-curable materials, which are capable of continuous roll-to-roll production processes. However, UV-curable materials were too rigid to produce good adhesion. Thus, we established a PDMS continuous-production system to achieve good productivity and adhesion performance. We designed a thermal roll-imprinting lithography (TRL) system for the continuous production of PDMS microstructures by shortening the curing time by controlling the curing temperature (the production speed is up to 150 mm min-1). Dry adhesives composed of PDMS were fabricated continuously via the TRL system.

  11. The use of amorphous silica-alumina-based additive in the adhesive dry mixes of building materials

    Directory of Open Access Journals (Sweden)

    Loganina VI

    2018-01-01

    Full Text Available Proved the possibility of using amorphous aluminosilicate as a modifying agent for the adhesive dry mixes. Are given the data on the microstructure and chemical composition of the amorphous aluminosilicates. Installed , that the microstructure of the synthetic additives is characterized by particles of round shape, dimensions 5,208-5,704 μm, Also there are particles of elongated shape in size 7.13-8.56 μm. Predominate chemical elements O, Si, Na, S, and Al in quantity 60.69%, 31.26%, 24.23%, 18.69% and 8.29% respectively. Described the character changes in the rheological properties of cement-sand mortar, depending on the percentage of additives. Determined, that the introduction in the cement-sand mortar the additive based on amorphous aluminosilicate leads to higher values of plastic strength. Are given the model of cement stone strength using synthetic additives in the formulation. The results of the evaluation of the frost resistance of cement-based tile adhesives with the use of amorphous aluminosilicates as a modifying additive are presented. In the article is determined the mark on frost resistance of tile glue and frost resistance of the contact zone of tile glue. The evaluation of the performance properties of the layer of tile adhesive on the basis of cement, dry mixes. The calculation of the value of displacement of the adhesive layer made on the basis of the developed recipes cement dry mixes applied to a vertical surface. Experimental data obtained values of displacement tiles relative to the substrate. Described the results of physical and mechanical properties of tile adhesive made on the basis of the developed adhesive dry mix formulations.

  12. Brain propagation of transduced α-synuclein involves non-fibrillar protein species and is enhanced in α-synuclein null mice.

    Science.gov (United States)

    Helwig, Michael; Klinkenberg, Michael; Rusconi, Raffaella; Musgrove, Ruth E; Majbour, Nour K; El-Agnaf, Omar M A; Ulusoy, Ayse; Di Monte, Donato A

    2016-03-01

    Aggregation and neuron-to-neuron transmission are attributes of α-synuclein relevant to its pathogenetic role in human synucleinopathies such as Parkinson's disease. Intraparenchymal injections of fibrillar α-synuclein trigger widespread propagation of amyloidogenic protein species via mechanisms that require expression of endogenous α-synuclein and, possibly, its structural corruption by misfolded conformers acting as pathological seeds. Here we describe another paradigm of long-distance brain diffusion of α-synuclein that involves inter-neuronal transfer of monomeric and/or oligomeric species and is independent of recruitment of the endogenous protein. Targeted expression of human α-synuclein was induced in the mouse medulla oblongata through an injection of viral vectors into the vagus nerve. Enhanced levels of intra-neuronal α-synuclein were sufficient to initiate its caudo-rostral diffusion that likely involved at least one synaptic transfer and progressively reached specific brain regions such as the locus coeruleus, dorsal raphae and amygdala in the pons, midbrain and forebrain. Transfer of human α-synuclein was compared in two separate lines of α-synuclein-deficient mice versus their respective wild-type controls and, interestingly, lack of endogenous α-synuclein expression did not counteract diffusion but actually resulted in a more pronounced and advanced propagation of exogenous α-synuclein. Self-interaction of adjacent molecules of human α-synuclein was detected in both wild-type and mutant mice. In the former, interaction of human α-synuclein with mouse α-synuclein was also observed and might have contributed to differences in protein transmission. In wild-type and α-synuclein-deficient mice, accumulation of human α-synuclein within recipient axons in the pons, midbrain and forebrain caused morphological evidence of neuritic pathology. Tissue sections from the medulla oblongata and pons were stained with different antibodies recognizing

  13. Bond Performance and Structural Characterization of Polysaccharide Wood Adhesive Made from Konjac Glucomannan/Chitosan/Polyvinyl Alcohol

    Directory of Open Access Journals (Sweden)

    Rong Gu

    2016-08-01

    Full Text Available The bond performance and bonding mechanism were evaluated for a Konjac glucomannan (KGM, Chitosan (CS, and polyvinyl alcohol (PVOH blended wood adhesive. An optimized experimental strategy was used to investigate the effects of the formula parameters of adhesives on the bonding strength of plywood using a Box-Behnken design and response surface methodology (RSM. The microstructure of the blended adhesives was analyzed by Fourier transform infrared spectroscopy (FTIR and scanning electron microscopy (SEM. An optimum bonding strength (3.42 ± 0.31 MPa was achieved with concentrations of KGM, CS, and 10% PVOH of 2.3%, 2.3%, and 5.0%, respectively. There was strong hydrogen bonding between the KGM, CS, and 10% PVOH adhesives and the interface. SEM observations indicated that the blended adhesive exhibited a net-like structure that increased the overall bonding strength. These results provided the scientific basis for the continual development of environmentally friendly wood adhesives and the improvement of processing conditions.

  14. Stochastic multi-scale analysis of homogenised properties considering uncertainties in cellular solid microstructures using a first-order perturbation

    Directory of Open Access Journals (Sweden)

    Khairul Salleh Basaruddin

    Full Text Available Randomness in the microstructure due to variations in microscopic properties and geometrical information is used to predict the stochastically homogenised properties of cellular media. Two stochastic problems at the micro-scale level that commonly occur due to fabrication inaccuracies, degradation mechanisms or natural heterogeneity were analysed using a stochastic homogenisation method based on a first-order perturbation. First, the influence of Young's modulus variation in an adhesive on the macroscopic properties of an aluminium-adhesive honeycomb structure was investigated. The fluctuations in the microscopic properties were then combined by varying the microstructure periodicity in a corrugated-core sandwich plate to obtain the variation of the homogenised property. The numerical results show that the uncertainties in the microstructure affect the dispersion of the homogenised property. These results indicate the importance of the presented stochastic multi-scale analysis for the design and fabrication of cellular solids when considering microscopic random variation.

  15. Mechanical stability and adhesion of ceramic coatings deposited on steels

    International Nuclear Information System (INIS)

    Ignat, M.; Armann, A.; Moberg, L.; Sibieude, F.

    1991-01-01

    This paper presents the results of two sorts of deformation experiment performed on coating/substrate systems. The coating/substrate systems were constituted by coatings of titanium nitride and chromium carbide, deposited in both cases on steel substrates. The formation experiments were cyclic bending tests on macroscopic samples with chromium carbide coatings, and straining experiments performed in a scanning electron microscope on samples with titanium nitride coatings. By the analysis of our experimental results we develop an attempt to correlate the mechanical stability of the systems with the interfacial adhesion, by taking into account the internal residual stresses as an adhesion parameter. For the samples with chromium carbide coatings, the evolution of internal stresses is detected from X-ray diffractometry and discussed in terms of the observed induced damaging mechanisms, in the cyclic tests. For the samples with titanium nitride coatings, we discussed the adhesion from the microstructural observations and from the critical parameters determined during the in-situ straining experiments. (orig.)

  16. Mechanism of sliding friction on a film-terminated fibrillar interface.

    Science.gov (United States)

    Shen, Lulin; Jagota, Anand; Hui, Chung-Yuen

    2009-03-03

    We study the mechanism of sliding friction on a film-terminated fibrillar interface. It has been shown that static friction increases significantly with increasing spacing between fibrils, and with increasing rate of loading. However, surprisingly, the sliding friction remains substantially unaffected both by geometry and by the rate of loading. The presence of the thin terminal film is a controlling factor in determining the sliding friction. Experimentally, and by a simple model in which the indenter is held up by the tension in the thin film, we show how the indenter maintains a nearly constant contact area that is independent of the fibril spacing, resulting in constant sliding friction. By this mechanism, using the film-terminated structure, one can enhance the static friction without affecting the sliding behavior.

  17. Fibrillar Structure and Charge Determine the Interaction of Polyglutamine Protein Aggregates with the Cell Surface*

    Science.gov (United States)

    Trevino, R. Sean; Lauckner, Jane E.; Sourigues, Yannick; Pearce, Margaret M.; Bousset, Luc; Melki, Ronald; Kopito, Ron R.

    2012-01-01

    The pathogenesis of most neurodegenerative diseases, including transmissible diseases like prion encephalopathy, inherited disorders like Huntington disease, and sporadic diseases like Alzheimer and Parkinson diseases, is intimately linked to the formation of fibrillar protein aggregates. It is becoming increasingly appreciated that prion-like intercellular transmission of protein aggregates can contribute to the stereotypical spread of disease pathology within the brain, but the mechanisms underlying the binding and uptake of protein aggregates by mammalian cells are largely uninvestigated. We have investigated the properties of polyglutamine (polyQ) aggregates that endow them with the ability to bind to mammalian cells in culture and the properties of the cell surface that facilitate such uptake. Binding and internalization of polyQ aggregates are common features of mammalian cells and depend upon both trypsin-sensitive and trypsin-resistant saturable sites on the cell surface, suggesting the involvement of cell surface proteins in this process. polyQ aggregate binding depends upon the presence of a fibrillar amyloid-like structure and does not depend upon electrostatic interaction of fibrils with the cell surface. Sequences in the huntingtin protein that flank the amyloid-forming polyQ tract also influence the extent to which aggregates are able to bind to cell surfaces. PMID:22753412

  18. Effect of Zirconia Nanoparticles in Epoxy-Silica Hybrid Adhesives to Join Aluminum Substrates

    Directory of Open Access Journals (Sweden)

    José de Jesús Figueroa-Lara

    2017-09-01

    Full Text Available This research presents the interaction of the epoxy polymer diglicydil ether of bisphenol-A (DGEBA with silica (SiO2 nanoparticles plus zirconia (ZrO2 nanoparticles obtained via the sol-gel method in the synthesis of an epoxy-silica-zirconia hybrid adhesive cured with polyamide. ZrO2 nanoparticles were added to the epoxy-silica hybrid adhesive produced in situ to modify the apparent shear strength of two adhesively bonded aluminum specimens. The results showed that the addition of different amounts of ZrO2 nanoparticles increased the shear strength of the adhesively bonded aluminum joint, previously treated by sandblasting, immersion in hot water and silanized with a solution of hydrolyzed 3-glycidoxipropyltrimethoxysilane (GPTMS. The morphology and microstructure of the nanoparticles and aluminum surfaces were examined by scanning electron microscopy (SEM, and elemental analysis was performed with the Energy-dispersive X-ray spectroscopy (EDS detector; the chemical groups were investigated during the aluminum surface modification using Fourier transform infrared spectroscopy (FTIR.

  19. Femtosecond laser-induced microstructures on Ti substrates for reduced cell adhesion

    Science.gov (United States)

    Heitz, J.; Plamadeala, C.; Muck, M.; Armbruster, O.; Baumgartner, W.; Weth, A.; Steinwender, C.; Blessberger, H.; Kellermair, J.; Kirner, S. V.; Krüger, J.; Bonse, J.; Guntner, A. S.; Hassel, A. W.

    2017-12-01

    Miniaturized pacemakers with a surface consisting of a Ti alloy may have to be removed after several years from their implantation site in the heart and shall, therefore, not be completely overgrown by cells or tissue. A method to avoid this may be to create at the surface by laser-ablation self-organized sharp conical spikes, which provide too little surface for cells (i.e., fibroblasts) to grow on. For this purpose, Ti-alloy substrates were irradiated in the air by 790 nm Ti:sapphire femtosecond laser pulses at fluences above the ablation threshold. The laser irradiation resulted in pronounced microstructure formation with hierarchical surface morphologies. Murine fibroblasts were seeded onto the laser-patterned surface and the coverage by cells was evaluated after 3-21 days of cultivation by means of scanning electron microscopy. Compared to flat surfaces, the cell density on the microstructures was significantly lower, the coverage was incomplete, and the cells had a clearly different morphology. The best results regarding suppression of cell growth were obtained on spike structures which were additionally electrochemically oxidized under acidic conditions. Cell cultivation with additional shear stress could reduce further the number of adherent cells.

  20. Reduction of Liquid Bridge Force for 3D Microstructure Measurements

    Directory of Open Access Journals (Sweden)

    Hiroshi Murakami

    2016-05-01

    Full Text Available Recent years have witnessed an increased demand for a method for precise measurement of the microstructures of mechanical microparts, microelectromechanical systems, micromolds, optical devices, microholes, etc. This paper presents a measurement system for three-dimensional (3D microstructures that use an optical fiber probe. This probe consists of a stylus shaft with a diameter of 2.5 µm and a glass ball with a diameter of 5 µm attached to the stylus tip. In this study, the measurement system, placed in a vacuum vessel, is constructed suitably to prevent adhesion of the stylus tip to the measured surface caused by the surface force resulting from the van der Waals force, electrostatic force, and liquid bridge force. First, these surface forces are analyzed with the aim of investigating the causes of adhesion. Subsequently, the effects of pressure inside the vacuum vessel on surface forces are evaluated. As a result, it is found that the surface force is 0.13 µN when the pressure inside the vacuum vessel is 350 Pa. This effect is equivalent to a 60% reduction in the surface force in the atmosphere.

  1. Intracellular Calreticulin Regulates Multiple Steps in Fibrillar Collagen Expression, Trafficking, and Processing into the Extracellular Matrix*

    OpenAIRE

    Van Duyn Graham, Lauren; Sweetwyne, Mariya T.; Pallero, Manuel A.; Murphy-Ullrich, Joanne E.

    2009-01-01

    Calreticulin (CRT), a chaperone and Ca2+ regulator, enhances wound healing, and its expression correlates with fibrosis in animal models, suggesting that CRT regulates production of the extracellular matrix. However, direct regulation of collagen matrix by CRT has not been previously demonstrated. We investigated the role of CRT in the regulation of fibrillar collagen expression, secretion, processing, and deposition in the extracellular matrix by fibroblasts. Mouse embryonic fibroblasts defi...

  2. Fibril specific, conformation dependent antibodies recognize a generic epitope common to amyloid fibrils and fibrillar oligomers that is absent in prefibrillar oligomers

    Directory of Open Access Journals (Sweden)

    Rasool Suhail

    2007-09-01

    Full Text Available Abstract Background Amyloid-related degenerative diseases are associated with the accumulation of misfolded proteins as amyloid fibrils in tissue. In Alzheimer disease (AD, amyloid accumulates in several distinct types of insoluble plaque deposits, intracellular Aβ and as soluble oligomers and the relationships between these deposits and their pathological significance remains unclear. Conformation dependent antibodies have been reported that specifically recognize distinct assembly states of amyloids, including prefibrillar oligomers and fibrils. Results We immunized rabbits with a morphologically homogeneous population of Aβ42 fibrils. The resulting immune serum (OC specifically recognizes fibrils, but not random coil monomer or prefibrillar oligomers, indicating fibrils display a distinct conformation dependent epitope that is absent in prefibrillar oligomers. The fibril epitope is also displayed by fibrils of other types of amyloids, indicating that the epitope is a generic feature of the polypeptide backbone. The fibril specific antibody also recognizes 100,000 × G soluble fibrillar oligomers ranging in size from dimer to greater than 250 kDa on western blots. The fibrillar oligomers recognized by OC are immunologically distinct from prefibrillar oligomers recognized by A11, even though their sizes overlap broadly, indicating that size is not a reliable indicator of oligomer conformation. The immune response to prefibrillar oligomers and fibrils is not sequence specific and antisera of the same specificity are produced in response to immunization with islet amyloid polypeptide prefibrillar oligomer mimics and fibrils. The fibril specific antibodies stain all types of amyloid deposits in human AD brain. Diffuse amyloid deposits stain intensely with anti-fibril antibody although they are thioflavin S negative, suggesting that they are indeed fibrillar in conformation. OC also stains islet amyloid deposits in transgenic mouse models of type

  3. Fibrillar polyaniline/diatomite composite synthesized by one-step in situ polymerization method

    International Nuclear Information System (INIS)

    Li Xingwei; Li Xiaoxuan; Wang Gengchao

    2005-01-01

    A fibrillar polyaniline/diatomite composite was prepared by one-step in situ polymerization of aniline in the dispersed system of diatomite, and was characterized via Fourier-transform infrared spectra (FT-IR), UV-vis-NIR spectra, wide-angle X-ray diffraction (WXRD), thermogravimetric analysis (TGA) and transmission electron microscopy (TEM), as well as conductivity. Morphology of the composite is uniform nanofibers, which the diameters of nanofibers are about 50-80 nm. The conductivity of polyaniline/diatomite composite contained 28% polyaniline is 0.29 S cm -1 at 25 deg. C, and temperature of thermal degradation has reached 493 deg. C in air. The composite has potential commercial applications as fillers for electromagnetic shielding materials and conductive coatings

  4. Microstructure Development and Its Influence on the Properties of Styrene-Ethylene-Butylene-Styrene/Polystyrene Blends

    Directory of Open Access Journals (Sweden)

    Ritima Banerjee

    2018-04-01

    Full Text Available The present work is a novel attempt to understand the microstructure of styrene-ethylene-butylene-styrene (SEBS/polystyrene (PS blends not only through morphological studies, but also thermal, mechanical and rheological characterizations. SEBS/PS blends containing 10, 30 and 50 wt % PS were processed in a micro-compounder and characterized. Scanning electron microscopy (SEM studies, with selective staining of the PS phase, revealed the presence of PS as nanometer-sized domains, as well as phase-separated micrometer-sized aggregates. Blends with 30 and 50 wt % PS exhibited a fibrillar microstructure, obeying Hirsch’s model of short fiber composites. A remarkable increase in glass transition temperature indicated a strong interaction of the fibrils with SEBS. All blends showed two modes of relaxation corresponding to the two phases. A single mode of relaxation of the PS phase has been attributed to combined effects of the partial miscibility of the added PS, along with the interaction of the fibrils with SEBS. The long relaxation time of the elastomeric phase indicated the tendency of these materials to undergo time-dependent shrinkage in secondary processing operations. An increase in PS content resulted in the lowering of the shear viscosity and energy requirement for mixing, indicating the ease of processing.

  5. VANGL2 interacts with integrin αv to regulate matrix metalloproteinase activity and cell adhesion to the extracellular matrix.

    Science.gov (United States)

    Jessen, Tammy N; Jessen, Jason R

    2017-12-15

    Planar cell polarity (PCP) proteins are implicated in a variety of morphogenetic processes including embryonic cell migration and potentially cancer progression. During zebrafish gastrulation, the transmembrane protein Vang-like 2 (VANGL2) is required for PCP and directed cell migration. These cell behaviors occur in the context of a fibrillar extracellular matrix (ECM). While it is thought that interactions with the ECM regulate cell migration, it is unclear how PCP proteins such as VANGL2 influence these events. Using an in vitro cell culture model system, we previously showed that human VANGL2 negatively regulates membrane type-1 matrix metalloproteinase (MMP14) and activation of secreted matrix metalloproteinase 2 (MMP2). Here, we investigated the functional relationship between VANGL2, integrin αvβ3, and MMP2 activation. We provide evidence that VANGL2 regulates cell surface integrin αvβ3 expression and adhesion to fibronectin, laminin, and vitronectin. Inhibition of MMP14/MMP2 activity suppressed the cell adhesion defect in VANGL2 knockdown cells. Furthermore, our data show that MMP14 and integrin αv are required for increased proteolysis by VANGL2 knockdown cells. Lastly, we have identified integrin αvβ3 as a novel VANGL2 binding partner. Together, these findings begin to dissect the molecular underpinnings of how VANGL2 regulates MMP activity and cell adhesion to the ECM. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  6. Hardness and microstructure analysis of damaged gear caused by adhesive wear

    Science.gov (United States)

    Mahendra, Rizky Budi; Nugroho, Sri; Ismail, Rifky

    2018-03-01

    This study was a result from research on repairing project of damaged elevator gear box. The objective of this research is to analyze the failure part on elevator gearbox at flourmill factory. The equipment was damaged after one year installed and running on factory. Severe wear was occurred on high speed helical gear. These helical gear was one of main part of elevator gearbox in flour mill manufacture. Visually, plastic deformation didn't occurred and not visible on the failure helical gear shaft. Some test would be performed to check the chemical composition, microstructure and hardness of failure helical gear. The material of failure helical gear shaft was a medium carbon steel alloy. The microstructure was showed a martensitic phase formed on the surface to the center area of gear shaft. Otherwise, the depth of hardness layer slight formed on surface and lack depth of hardness layer was a main trigger of severe wear. It was not enough to resist wear due to friction caused by rolling and sliding on surface between high speed gear and low speed gear. Enhancement of hardness layer on surface and depth of hardness layer will make the component has more long life time. Furthermore, to perform next research is needed to analyze the reliability of enhanced hardness on layer and depth of hardness layer on helical gear shaft.

  7. Adhesion and wear properties of boro-tempered ductile iron

    International Nuclear Information System (INIS)

    Kayali, Yusuf; Yalcin, Yilmaz; Taktak, Suekrue

    2011-01-01

    Highlights: → In this study, the wear and adhesion properties of BDI were investigated. → Boro-tempering process under several heat treatment conditions was examined. → Optical microscope, SEM and XRD analysis were carried out to investigate the microstructure. → It was observed that boro-tempering process improves micro-hardness and wear properties of ductile irons. -- Abstract: In this study, adhesion and wear properties of boro-tempered ductile iron (BDI) were investigated. Boro-tempering was carried out on two stage processes i.e. boronizing and tempering. At the first stage, ductile iron samples were boronized by using pack process at 900 o C for 1, 3, and 5 h and then, secondly tempered at 250, 300, 350, and 400 o C for 1 h. X-ray diffraction (XRD) analysis of boro-tempered samples showed that FeB and Fe 2 B phases were found on the surface of the samples. The Daimler-Benz Rockwell-C adhesion test was used to assess the adhesion of boride layer. Test result showed that adhesion decreased with increasing boriding time and increased with increasing tempering temperature. Dry sliding wear tests of these samples were performed against Al 2 O 3 ball at a constant sliding speed and loads of 5 and 10 N. Wear tests indicated that boro-tempering heat treatment increased wear resistance of ductile iron. In addition, it was found that while wear rate of boro-tempered samples decreased with increasing boriding time, there is no significant affect of tempering temperature on wear rate.

  8. The adhesive strength and initial viscosity of denture adhesives.

    Science.gov (United States)

    Han, Jian-Min; Hong, Guang; Dilinuer, Maimaitishawuti; Lin, Hong; Zheng, Gang; Wang, Xin-Zhi; Sasaki, Keiichi

    2014-11-01

    To examine the initial viscosity and adhesive strength of modern denture adhesives in vitro. Three cream-type denture adhesives (Poligrip S, Corect Cream, Liodent Cream; PGS, CRC, LDC) and three powder-type denture adhesives (Poligrip Powder, New Faston, Zanfton; PGP, FSN, ZFN) were used in this study. The initial viscosity was measured using a controlled-stress rheometer. The adhesive strength was measured according to ISO-10873 recommended procedures. All data were analyzed independently by one-way analysis of variance combined with a Student-Newman-Keuls multiple comparison test at a 5% level of significance. The initial viscosity of all the cream-type denture adhesives was lower than the powder-type adhesives. Before immersion in water, all the powder-type adhesives exhibited higher adhesive strength than the cream-type adhesives. However, the adhesive strength of cream-type denture adhesives increased significantly and exceeded the powder-type denture adhesives after immersion in water. For powder-type adhesives, the adhesive strength significantly decreased after immersion in water for 60 min, while the adhesive strength of the cream-type adhesives significantly decreased after immersion in water for 180 min. Cream-type denture adhesives have lower initial viscosity and higher adhesive strength than powder type adhesives, which may offer better manipulation properties and greater efficacy during application.

  9. Biocompatibility and bond degradation of poly-acrylic acid coated copper iodide-adhesives.

    Science.gov (United States)

    ALGhanem, Adi; Fernandes, Gabriela; Visser, Michelle; Dziak, Rosemary; Renné, Walter G; Sabatini, Camila

    2017-09-01

    To investigate the effect of poly-acrylic acid (PAA) copper iodide (CuI) adhesives on bond degradation, tensile strength, and biocompatibility. PAA-CuI particles were incorporated into Optibond XTR, Optibond Solo and XP Bond in 0.1 and 0.5mg/ml. Clearfil SE Protect, an MDPB-containing adhesive, was used as control. The adhesives were applied to human dentin, polymerized and restored with composite in 2mm-increments. Resin-dentin beams (0.9±0.1mm 2 ) were evaluated for micro-tensile bond strength after 24h, 6 months and 1year. Hourglass specimens (10×2×1mm) were evaluated for ultimate tensile strength (UTS). Cell metabolic function of human gingival fibroblast cells exposed to adhesive discs (8×1mm) was assessed with MTT assay. Copper release from adhesive discs (5×1mm) was evaluated with UV-vis spectrophotometer after immersion in 0.9% NaCl for 1, 3, 5, 7, 10, 14, 21 and 30 days. SEM, EDX and XRF were conducted for microstructure characterization. XTR and Solo did not show degradation when modified with PAA-CuI regardless of the concentration. The UTS for adhesives containing PAA-CuI remained unaltered relative to the controls. The percent viable cells were reduced for Solo 0.5mg/ml and XP 0.1 or 0.5mg/ml PAA-CuI. XP demonstrated the highest ion release. For all groups, the highest release was observed at days 1 and 14. PAA-CuI particles prevented the bond degradation of XTR and Solo after 1year without an effect on the UTS for any adhesive. Cell viability was affected for some adhesives. A similar pattern of copper release was demonstrated for all adhesives. Copyright © 2017. Published by Elsevier Ltd.

  10. Conformational targeting of fibrillar polyglutamine proteins in live cells escalates aggregation and cytotoxicity.

    Directory of Open Access Journals (Sweden)

    Erik Kvam

    2009-05-01

    Full Text Available Misfolding- and aggregation-prone proteins underlying Parkinson's, Huntington's and Machado-Joseph diseases, namely alpha-synuclein, huntingtin, and ataxin-3 respectively, adopt numerous intracellular conformations during pathogenesis, including globular intermediates and insoluble amyloid-like fibrils. Such conformational diversity has complicated research into amyloid-associated intracellular dysfunction and neurodegeneration. To this end, recombinant single-chain Fv antibodies (scFvs are compelling molecular tools that can be selected against specific protein conformations, and expressed inside cells as intrabodies, for investigative and therapeutic purposes.Using atomic force microscopy (AFM and live-cell fluorescence microscopy, we report that a human scFv selected against the fibrillar form of alpha-synuclein targets isomorphic conformations of misfolded polyglutamine proteins. When expressed in the cytoplasm of striatal cells, this conformation-specific intrabody co-localizes with intracellular aggregates of misfolded ataxin-3 and a pathological fragment of huntingtin, and enhances the aggregation propensity of both disease-linked polyglutamine proteins. Using this intrabody as a tool for modulating the kinetics of amyloidogenesis, we show that escalating aggregate formation of a pathologic huntingtin fragment is not cytoprotective in striatal cells, but rather heightens oxidative stress and cell death as detected by flow cytometry. Instead, cellular protection is achieved by suppressing aggregation using a previously described intrabody that binds to the amyloidogenic N-terminus of huntingtin. Analogous cytotoxic results are observed following conformational targeting of normal or polyglutamine-expanded human ataxin-3, which partially aggregate through non-polyglutamine domains.These findings validate that the rate of aggregation modulates polyglutamine-mediated intracellular dysfunction, and caution that molecules designed to

  11. One-step derivation of mesenchymal stem cell (MSC-like cells from human pluripotent stem cells on a fibrillar collagen coating.

    Directory of Open Access Journals (Sweden)

    Yongxing Liu

    Full Text Available Controlled differentiation of human embryonic stem cells (hESCs and induced pluripotent stem cells (iPSCs into cells that resemble adult mesenchymal stem cells (MSCs is an attractive approach to obtain a readily available source of progenitor cells for tissue engineering. The present study reports a new method to rapidly derive MSC-like cells from hESCs and hiPSCs, in one step, based on culturing the cells on thin, fibrillar, type I collagen coatings that mimic the structure of physiological collagen. Human H9 ESCs and HDFa-YK26 iPSCs were singly dissociated in the presence of ROCK inhibitor Y-27632, plated onto fibrillar collagen coated plates and cultured in alpha minimum essential medium (alpha-MEM supplemented with 10% fetal bovine serum, 50 uM magnesium L-ascorbic acid phosphate and 100 nM dexamethasone. While fewer cells attached on the collagen surface initially than standard tissue culture plastic, after culturing for 10 days, resilient colonies of homogenous spindle-shaped cells were obtained. Flow cytometric analysis showed that a high percentage of the derived cells expressed typical MSC surface markers including CD73, CD90, CD105, CD146 and CD166 and were negative as expected for hematopoietic markers CD34 and CD45. The MSC-like cells derived from pluripotent cells were successfully differentiated in vitro into three different lineages: osteogenic, chondrogenic, and adipogenic. Both H9 hES and YK26 iPS cells displayed similar morphological changes during the derivation process and yielded MSC-like cells with similar properties. In conclusion, this study demonstrates that bioimimetic, fibrillar, type I collagen coatings applied to cell culture plates can be used to guide a rapid, efficient derivation of MSC-like cells from both human ES and iPS cells.

  12. Wood : adhesives

    Science.gov (United States)

    A.H. Conner

    2001-01-01

    This chapter on wood adhesives includes: 1) Classification of wood adhesives 2) Thermosetting wood adhesives 3) Thermoplastic adhesives, 4) Wood adhesives based on natural sources 5) Nonconventional bonding of wood 6) Wood bonding.

  13. Collagen metabolism and basement membrane formation in cultures of mouse mammary epithelial cells: Induction of assembly on fibrillar type I collagen substrata

    International Nuclear Information System (INIS)

    David, G.; van der Schueren, B.; van den Berghe, H.; Nusgens, B.; Van Cauwenberge, D.; Lapiere, C.

    1987-01-01

    Collagen metabolism was compared in cultures of mouse mammary epithelial cells maintained on plastic or fibrillar type I collagen gel substrata. The accumulation of dialysable and non-dialysable [ 3 H]hydroxyproline and the identification of the collagens produced suggest no difference between substrata in the allover rates of collagen synthesis and degradation. The proportion of the [ 3 H]collagen which accumulates in the monolayers of cultures on collagen, however, markedly exceeds that of cultures on plastic. Cultures on collagen deposit a sheet-like layer of extracellular matrix materials on the surface of the collagen fibers. Transformed cells on collagen produce and accumulate more [ 3 H]collage, yet are less effective in basement membrane formation than normal cells, indicting that the accumulation of collagen alone and the effect of interstitial collagen thereupon do not suffice. Thus, exogenous fibrillar collagen appears to enhance, but is not sufficient for proper assembly of collagenous basement membrane components near the basal epithelial cell surface

  14. Coating of hydrophobins on three-dimensional electrospun poly(lactic-co-glycolic acid) scaffolds for cell adhesion

    Energy Technology Data Exchange (ETDEWEB)

    Hou Sen; Li Xinxin; Li Xiaoyu; Feng Xizeng, E-mail: xzfeng@nankai.edu.c [College of Life Science, Nankai University, Weijin Road 94, Tianjin, 300071 (China)

    2009-09-15

    Surface modification with hydrophobins is very important for cell adhesion in its applications in biosensor fabrication. In this study, we modified the surface of three-dimensional electrospun poly(lactide-co-glycolide) (PLGA) scaffolds with hydrophobin HFBI and collagen, and investigated its applications for cell adhesion. We found that HFBI could not only improve the hydrophilicity of the three-dimensional electrospun PLGA scaffolds but also endow the electrospun PLGA scaffolds with water permeability. This permeability should be attributed to both the hydrophilicity of the modified PLGA surface and the large positive capillary effect induced by the microstructures. Further experiment indicated that HFBI modification could improve collagen immobilization on the electrospun PLGA scaffolds and the HFBI/collagen modified electrospun PLGA scaffolds showed higher efficiency in promoting cell adhesion than the native PLGA scaffolds. This finding should be of potential application in biosensor device fabrication.

  15. Microstructures of friction welded joints of AZ31 to AM60 magnesium alloys

    Energy Technology Data Exchange (ETDEWEB)

    Fukumoto, S.; Ono, T.; Tanaka, S.; Tsubakino, H. [Graduate School of Engineering, Himeji Inst. of Tech., Hyogo (Japan); Tomita, T.; Aritoshi, M. [Hyogo Prefectural Inst. of Industrial Research, Kobe, Hyogo (Japan); Okita, K. [Inst. of Industrial Research, Osaka Sangyo Univ., Osaka (Japan)

    2003-07-01

    AZ31 magnesium alloy was friction-welded to AM60 and the microstructures and the friction welding process were studied. The microstructures changed near the weld interface. The AZ31 was refined to a grain size of several {mu}m near the weld interface. The nucleation occurred in the shear bands that were introduced during the welding process. On the other hand, the eutectic structure was deformed and the lamellar structure which was composed of {alpha}-Mg and Mg{sub 17}Al{sub 12} was formed near the weld interface in AM60 alloy. In the friction process, the adhesion and peel off occurred alternately between AZ31 and AM60. Eventually, bonding was completed during upset process. (orig.)

  16. Cellular Adhesion and Adhesion Molecules

    OpenAIRE

    SELLER, Zerrin

    2014-01-01

    In recent years, cell adhesion and cell adhesion molecules have been shown to be important for many normal biological processes, including embryonic cell migration, immune system functions and wound healing. It has also been shown that they contribute to the pathogenesis of a large number of common human disorders, such as rheumatoid arthritis and tumor cell metastasis in cancer. In this review, the basic mechanisms of cellular adhesion and the structural and functional features of adhes...

  17. Reduction of the Adhesive Friction of Elastomers through Laser Texturing of Injection Molds

    Directory of Open Access Journals (Sweden)

    Joel Voyer

    2017-11-01

    Full Text Available It is well known that elastomers usually possess poor dry sliding friction properties due to their highly adhesive character. In order to overcome this problematic behavior in industrial applications, interfacial materials such as oils, greases, coatings, or lacks are normally used in order to separate or to functionalize the contact surfaces of elastomers. Alternatively, the high adhesion tendency of elastomers may be explicitly reduced by modifying the elastomer composition itself or by enabling a reduction of its effective contact area through, for example, surface laser texturing. This second approach, i.e., the reduction of the adhesive character of elastomers through laser structuring, will be the main topic of the present study. For this purpose, different micro-sized grooved structures were produced on flat injection molds using an ultra-short pulsed laser. The micro-structured molds were then used to produce injection molded micro-ridged Liquid Silicone Rubber (LSR sample pads. The investigations consisted firstly of determining the degree of replication of the mold micro-structures onto the surface of the LSR pads and secondly, to ascertain the degree of reduction of the friction force (or coefficient of friction of these micro-ridged LSR pads in comparison to the benchmark (unstructured LSR pads when tested under dry conditions against Aluminum alloy (Al-6082 or PA6.6-GF30 plates. For this second part of the investigation, the normal force (or contact pressure dependency of the coefficient of friction was determined through stepwise load increasing friction tests. The results of these investigations have shown that the production of micro-ridged surfaces on LSR pads through laser structuring of the injection molds could be successfully achieved and that it enables a significant reduction of the friction force for low normal forces (or contact pressures, where the component of adhesion friction is playing an important and determining

  18. Early career: Templating of liquid crystal microstructures by reversible addition-fragmentation chain transfer polymerization

    Energy Technology Data Exchange (ETDEWEB)

    Heinen, Jennifer M. (O' Donnell) [Iowa State Univ., Ames, IA (United States)

    2014-12-31

    This research has shown that the microstructure of self-assembled copolymers can be decoupled from the polymer chemistry. The simplest polymer architecture, linear block copolymers, is valuable for a broad range of applications, including adhesives and coatings, medical devices, electronics and energy storage, because these block copolymers reproducibly self-assemble into microphase separated nanoscale domains. Unfortunately, the self-assembled microstructure is tuned by polymer composition, thus limiting the potential to simultaneously optimize chemical, mechanical, and transport properties for desired applications. To this end, much work was been put into manipulating block copolymer self-assembly independently of polymer composition. These efforts have included the use of additives or solvents to alter polymer chain conformation, the addition of a third monomer to produce ABC triblock terpolymers, architectures with mixed blocks, such as tapered/gradient polymers, and the synthesis of other nonlinear molecular architectures. This work has shown that the microstructures formed by linear ABC terpolymers can be altered by controlling the architecture of the polymer molecules at a constant monomer composition, so that the microstructure is tuned independently from the chemical properties.

  19. Impact of Different Binders on the Roughness, Adhesion Strength, and Other Properties of Mortars with Expanded Cork.

    Science.gov (United States)

    Barnat-Hunek, Danuta; Widomski, Marcin K; Szafraniec, Małgorzata; Łagód, Grzegorz

    2018-03-01

    The aim of the research that is presented in this paper was to evaluate the physical and mechanical properties of heat-insulating mortars with expanded cork aggregates and different binders. In this work, the measurements of surface roughness and adhesion strength, supported by determination of basic mechanical and physical parameters, such as density, bulk density, open porosity, total porosity, absorbability, thermal conductivity coefficient, compressive strength, flexural strength, and frost resistance of mortars containing expanded oak cork, were performed. The scanning electron microscope (SEM) investigations demonstrated the microstructure, contact zone, and distribution of pores in the heat-insulating mortars containing expanded cork. The results indicated that the addition of expanded cork and different binders in heat-insulating mortars triggers changes in their roughness and adhesion strength. The SEM research confirmed the very good adhesion of the paste to the cork aggregate.

  20. Adhesion

    Science.gov (United States)

    ... Supplements Videos & Tools Español You Are Here: Home → Medical Encyclopedia → Adhesion URL of this page: //medlineplus.gov/ency/article/001493.htm Adhesion To use the sharing features on this page, please enable JavaScript. Adhesions are bands of scar-like tissue that form between two ...

  1. Switchable Adhesion in Vacuum Using Bio-Inspired Dry Adhesives.

    Science.gov (United States)

    Purtov, Julia; Frensemeier, Mareike; Kroner, Elmar

    2015-11-04

    Suction based attachment systems for pick and place handling of fragile objects like glass plates or optical lenses are energy-consuming and noisy and fail at reduced air pressure, which is essential, e.g., in chemical and physical vapor deposition processes. Recently, an alternative approach toward reversible adhesion of sensitive objects based on bioinspired dry adhesive structures has emerged. There, the switching in adhesion is achieved by a reversible buckling of adhesive pillar structures. In this study, we demonstrate that these adhesives are capable of switching adhesion not only in ambient air conditions but also in vacuum. Our bioinspired patterned adhesive with an area of 1 cm(2) provided an adhesion force of 2.6 N ± 0.2 N in air, which was reduced to 1.9 N ± 0.2 N if measured in vacuum. Detachment was induced by buckling of the structures due to a high compressive preload and occurred, independent of air pressure, at approximately 0.9 N ± 0.1 N. The switch in adhesion was observed at a compressive preload between 5.6 and 6.0 N and was independent of air pressure. The difference between maximum adhesion force and adhesion force after buckling gives a reasonable window of operation for pick and place processes. High reversibility of the switching behavior is shown over 50 cycles in air and in vacuum, making the bioinspired switchable adhesive applicable for handling operations of fragile objects.

  2. Ultrastructural changes in nucleoli and fibrillar centers under the effect of local ultraviolet microbeam irradiation of interphase culture cells

    International Nuclear Information System (INIS)

    Zatsepina, O.V.; Voronkova, L.N.; Sakharov, V.N.; Chentsov, Y.S.

    1989-01-01

    As shown previously, ultraviolet (uv) microbeam irradiation of one of the two mature nucleoli within an interphase cell nucleus causes significant diminution and inactivation of the irradiated nucleolus and compensatory growth and activation of the nonirradiated one. In the present work we describe the results of an ultrastructural study of this phenomenon. The changes in the nucleoli were examined by means of complete series of ultrathin sections obtained from seven irradiated pig kidney cells. The compensatory hypertrophy of the nonirradiated nucleoli is shown to be accompanied by a nearly twofold increase in the number of fibrillar centers (FCs) and by a decrease in their linear dimensions compared with the control cells of the same ploidy. In the degraded nucleoli the number of FCs decreases, but their dimensions increase. Ultraviolet microbeam irradiation causes dramatic diminution of the dense fibrillar component within the irradiated nucleoli as well. The nucleolar capacity for compensatory hypertrophy indicates that in addition to active ribosomal genes, mature nucleoli also contain silent genes capable of being activated under extreme conditions to sustain the required level of rRNA synthesis. It is assumed that activation of latent ribosomal genes is accompanied by FC fragmentation without a considerable increase in their total volume per cell

  3. Involvement of rho-gtpases in fibroblast adhesion and fibronectine fibrillogenesis under stretch

    Science.gov (United States)

    Guignandon, A.; Lambert, C.; Rattner, A.; Servotte, S.; Lapiere, C.; Nusgens, B.; Vico, L.

    The Rho family small GTPases play a crucial role in mediating cellular adaptation to mechanical stimulation (MS), and possibly to microgravity (μg), through effects on the cytoskeleton and cell adhesion which is, in turn, mainly regulated by fibronectin fibrillogenesis (FnF). It remains unclear how mechanical stimulation is transduced to the Rho signaling pathways and how it impacts on fibronectin (fbn) fibrillogenesis (FnF). μg (2 days, mission STS-095) led to de-adhesion of fibroblasts and modification of the underlying extracellular matrix. To determine whether GTPases modulated FnF, we generated stable cell lines expressing high level of activated RhoA and Rac1 (QL) as compared to wild type (WI26-WT). After MS application [8% deformation, 1Hz, 15 min., 3 times/day for 1-2 days], we quantified focal adhesion (vinculin, paxillin, FAKY397), f-actin stress fibers (Sf) and FnF with home-developed softwares. We reported that after MS, Sf are more rapidly (30min) formed under the nucleus in Wi26-WT (+100%) and Rac1 (+200%) than in RhoA (+20%). Vinculin & paxillin were only restricted to the cell edge in static conditions and homogeneously distributed after MS in WT and Rac1. The relative area of contacts (vinculin & paxillin) was more dramatically enhanced by MS in Rac1 (+80%) than in WT (+40%) and RhoA (+25%) indicating that new focal contacts are formed under MS and supported the presence of Sf. MS Activation of FAK (FAKY397) was clear in WT and Rac1 and reduced in RhoA. FnF was restricted to cell-cell contacts zone without any change in the relative area of fbn after a 2-days MS. However we found more numerous spots of fbn at the cell center in Rac1 as compared with RhoA & WT suggesting that these fibrillar contacts will grow upon maturation and modulate FnF. The results indicate that MS induces formation of Sf and focal adhesions and enhances FF. RhoA has been shown to induce the formation of Sf and focal adhesions, and Rac1 activation decreases Rho activity in

  4. Altered Sputum Microstructure as a Marker of Airway Obstruction in Cystic Fibrosis Patients

    Science.gov (United States)

    Duncan, Gregg; Jung, James; West, Natalie; Boyle, Michael; Suk, Jung Soo; Hanes, Justin

    In the lungs of cystic fibrosis (CF) patients, highly viscoelastic mucus remains stagnant in the lung leading to obstructed airways prone to recurrent infections. Bulk-fluid rheological measurement is primarily used to assess the pathological features of mucus. However, this approach is limited in detecting microscopic properties on the length scale of pathogens and immune cells. We have shown in prior work based on the transport of muco-inert nanoparticles (MIP) in CF sputum that patients can carry significantly different microstructural properties. In this study, we aimed to determine the factors leading to variations between patients in sputum microstructure and their clinical implications. The microrheological properties of CF sputum were measured using multi-particle tracking experiments of MIP. MIP were made by grafting polyethylene glycol onto the surface of polystyrene nanoparticles which prior work has shown prevents adhesion to CF sputum. Biochemical analyses show that sputum microstructure was significantly altered by elevated mucin and DNA content. Reduction in sputum pore size is characteristic of patients with obstructed airways as indicated by measured pulmonary function tests. Our microstructural read-out may serve as a novel biomarker for CF.

  5. Bacterial Adhesion on the Titanium and Stainless-Steel Surfaces Undergone Two Different Treatment Methods: Polishing and Ultrafast Laser Treatment

    Science.gov (United States)

    Chik, N.; Zain, W. S. Wan Md; Mohamad, A. J.; Sidek, M. Z.; Ibrahim, W. H. Wan; Reif, A.; Rakebrandt, J. H.; Pfleging, W.; Liu, X.

    2018-05-01

    Bacterial adhesion has become a significant problem in many industries causing billions of dollars for its complicated removal treatment and maintenance. In this study, metal surfaces undergone treatment with ultrafast laser with varies power. The microstructure produced on its original surfaces were expected to prevent the adhesion of Escherichia coli (E. coli) ATCC 8739 and Staphylococcus aureus (S. aureus) ATCC 6838. The laser treatment was performed at 380 fs pulse duration, 515 µm central wavelength and a repetition rate of 200 kHz. Stainless steel AISI 316L was treated with an average laser power of 0.04 W (SS-0.04) and 0.11 W (SS-0.11), while Grade 5 titanium alloy was tested with high laser power 0.11 W (T-0.11). The adhesion was observed after 16 hours and the number of adhering bacteria was counted per cm2. The result achieved shows that, increasing the average laser power is leading to an enhanced S. aureus adhesion while E. coli adhesion is reduced which is due to the hydrophobicity interaction and difference in surface texture. Meanwhile, the laser treatment showed significant reduction of the bacterial adhesion on its surface compared to the polished surfaces. Thus, ultrafast laser texturing can be suggested as a promising method to reduce the bacterial adhesion, which reduced the adhesion of >80% for E. coli and >20% for S. aureus.

  6. Controlling cell adhesion via replication of laser micro/nano-textured surfaces on polymers

    Energy Technology Data Exchange (ETDEWEB)

    Koufaki, Niki; Ranella, Anthi; Barberoglou, Marios; Psycharakis, Stylianos; Fotakis, Costas; Stratakis, Emmanuel [Institute of Electronic Structure and Laser (IESL), Foundation for Research and Technology-Hellas (FORTH), 711 10, Heraklion, Crete (Greece); Aifantis, Katerina E, E-mail: stratak@iesl.forth.gr [Lab of Mechanics and Materials, Aristotle University of Thessaloniki, Thessaloniki (Greece)

    2011-12-15

    The aim of this study is to investigate cell adhesion and viability on highly rough polymeric surfaces with gradient roughness ratios and wettabilities prepared by microreplication of laser micro/nano-textured Si surfaces. Negative replicas on polydimethylsiloxane as well as positive ones on a photocurable (organically modified ceramic) and a biodegradable (poly(lactide-co-glycolide)) polymer have been successfully reproduced. The final culture substrates comprised from forests of micron-sized conical spikes exhibiting a range of roughness ratios and wettabilities, was achieved by changing the laser fluence used to fabricate the original template surfaces. Cell culture experiments were performed with the fibroblast NIH/3T3 and PC12 neuronal cell lines in order to investigate how these surfaces are capable of modulating different types of cellular responses including, viability, adhesion and morphology. The results showed a preferential adhesion of both cell types on the microstructured surfaces compared to the unstructured ones. In particular, the fibroblast NIH/3T3 cells show optimal adhesion for small roughness ratios, independent of the surface wettability and polymer type, indicating a non-monotonic dependence of cell adhesion on surface energy. In contrast, the PC12 cells were observed to adhere well to the patterned surfaces independent of the roughness ratio and wettability. These experimental findings are correlated with micromechanical measurements performed on the unstructured and replicated surfaces and discussed on the basis of previous observations describing the relation of cell response to surface energy and rigidity.

  7. Controlling cell adhesion via replication of laser micro/nano-textured surfaces on polymers

    International Nuclear Information System (INIS)

    Koufaki, Niki; Ranella, Anthi; Barberoglou, Marios; Psycharakis, Stylianos; Fotakis, Costas; Stratakis, Emmanuel; Aifantis, Katerina E

    2011-01-01

    The aim of this study is to investigate cell adhesion and viability on highly rough polymeric surfaces with gradient roughness ratios and wettabilities prepared by microreplication of laser micro/nano-textured Si surfaces. Negative replicas on polydimethylsiloxane as well as positive ones on a photocurable (organically modified ceramic) and a biodegradable (poly(lactide-co-glycolide)) polymer have been successfully reproduced. The final culture substrates comprised from forests of micron-sized conical spikes exhibiting a range of roughness ratios and wettabilities, was achieved by changing the laser fluence used to fabricate the original template surfaces. Cell culture experiments were performed with the fibroblast NIH/3T3 and PC12 neuronal cell lines in order to investigate how these surfaces are capable of modulating different types of cellular responses including, viability, adhesion and morphology. The results showed a preferential adhesion of both cell types on the microstructured surfaces compared to the unstructured ones. In particular, the fibroblast NIH/3T3 cells show optimal adhesion for small roughness ratios, independent of the surface wettability and polymer type, indicating a non-monotonic dependence of cell adhesion on surface energy. In contrast, the PC12 cells were observed to adhere well to the patterned surfaces independent of the roughness ratio and wettability. These experimental findings are correlated with micromechanical measurements performed on the unstructured and replicated surfaces and discussed on the basis of previous observations describing the relation of cell response to surface energy and rigidity.

  8. Surface and Microstructural Failures of PET-Coated ECCS Plates by Salmon-Polymer Interaction

    Directory of Open Access Journals (Sweden)

    Ernesto Zumelzu

    2016-03-01

    Full Text Available The new types of knowledge-intensive, multilayer containers consist of steel plates protected against corrosion by nanometric electrolytic chromium (Cr0 and chromium oxide (Cr2O3 layers chemically bonded to polyethylene terephthalate (PET polymer coating to preserve food. It was observed that after emptying the cans, the salmon adhered to the polymer coating, changing its color, and that this adhesion increased with longer storage times. This work was aimed at determining the product-container interactions and their characterization by X-ray diffraction (XRD, confocal Raman and micro-Raman imaging and scanning electron microscopy (SEM analysis. The zones of adhesion showed surface changes, variations in crystallinity and microstructural degradation of the PET coating. In addition, localized damages altering the functional properties of the multilayer system were observed as microcracking in the chromium layers that protect the steel. The degradation undergone was evaluated and characterized at a surface and microstructural level to establish the failure mechanisms, which were mainly associated with the activity of the adhered muscle and its biochemical components. Finally, a recommendation is done to preserve the useful life and functionality of cans for the preservation and efficient use of resources with an impact on recycling and environmental conservancy.

  9. Laser-assisted patterning of double-sided adhesive tapes for optofluidic chip integration

    Science.gov (United States)

    Zamora, Vanessa; Janeczka, Christian; Arndt-Staufenbiel, Norbert; Havlik, George; Queisser, Marco; Schröder, Henning

    2018-02-01

    Portable high-sensitivity biosensors exhibit a growing demand in healthcare, food industry and environmental monitoring sectors. Optical biosensors based on photonic integration platforms are attractive candidates due to their high sensitivity, compactness and multiplexing capabilities. However, they need a low-cost and reliable integration with the microfluidic system. Laser-micropatterned double-sided biocompatible adhesive tapes are promising bonding layers for hybrid integration of an optofluidic biochip. As a part of the EU-PHOCNOSIS project, double-sided adhesive tapes have been proposed to integrate the polymer microfluidic system with the optical integrated waveguide sensor chip. Here the adhesive tape should be patterned in a micrometer scale in order to create an interaction between the sample that flows through the polymer microchannel and the photonic sensing microstructure. Three laser-assisted structuring methods are investigated to transfer microchannel patterns to the adhesive tape. The test structure design consists of a single channel with 400 μm wide, 30 mm length and two circular receivers with 3 mm radius. The best structuring results are found by using the picosecond UV laser where smooth and straight channel cross-sections are obtained. Such patterned tapes are used to bond blank polymer substrates to blank silicon substrates. As a proof of concept, the hybrid integration is tested using colored DI-water. Structuring tests related to the reduction of channel widths are also considered in this work. The use of this technique enables a simple and rapid manufacturing of narrow channels (50-60 μm in width) in adhesive tapes, achieving a cheap and stable integration of the optofluidic biochip.

  10. Adhesion in microelectronics

    CERN Document Server

    Mittal, K L

    2014-01-01

    This comprehensive book will provide both fundamental and applied aspects of adhesion pertaining to microelectronics in a single and easily accessible source. Among the topics to be covered include; Various theories or mechanisms of adhesionSurface (physical or chemical) characterization of materials as it pertains to adhesionSurface cleaning as it pertains to adhesionWays to improve adhesionUnraveling of interfacial interactions using an array of pertinent techniquesCharacterization of interfaces / interphasesPolymer-polymer adhesionMetal-polymer adhesion  (metallized polymers)Polymer adhesi

  11. Investigation of surface properties and adhesion mechanisms in the combination of different layers, with the aid of surface analysis methods

    International Nuclear Information System (INIS)

    Olschewski, T.

    1991-01-01

    The aim of the investigations was to characterize the surface properties of organic coating materials and inorganic substrates, which are relevant in the context of microstructure technique developments and to obtain information on the adhesion mechanisms present. Two systems were examined which play an important part in micro-technique, i.e.: for the LIGA process and in the development of micro-sensors based on Chem FET's for chemical analysis. For these systems, i.e.: PMMA/TiO 2 and PVC adipate/Si 3 N 4 , adhesion mechanisms were expected, which occur particularly frequently in adhesive combination of polymers with inorganic substrates, i.e.: the mechanical gearing between polymer molecules and substrate structures and a chemical interaction between the boundary layers of the organic top coating and the inorganic substrate. (orig./DG) [de

  12. Adhesion science

    CERN Document Server

    Comyn, John

    1997-01-01

    The use of adhesives is widespread and growing, and there are few modern artefacts, from the simple cereal packet, to the jumbo jet, that are without this means of joining. Adhesion Science provides an illuminating account of the science underlying the use of adhesives, a branch of chemical technology which is fundamental to the science of coatings and composite materials and to the performance of all types of bonded structures. This book guides the reader through the essential basic polymer science, and the chemistry of adhesives in use at present. It discusses surface preparation for adhesive bonding, and the use of primers and coupling agents. There is a detailed chapter on contact angles and what can be predicted from them. A simple guide on stress distribution joints and how this relates to testing is included. It also examines the interaction of adhesives and the environment, including an analysis of the resistance of joints to water, oxygen and ultra-violet light. Adhesion Science provides a comprehens...

  13. Microstructural Dynamics and Rheology of Suspensions of Rigid Fibers

    Science.gov (United States)

    Butler, Jason E.; Snook, Braden

    2018-01-01

    The dynamics and rheology of suspensions of rigid, non-Brownian fibers in Newtonian fluids are reviewed. Experiments, theories, and computer simulations are considered, with an emphasis on suspensions at semidilute and concentrated conditions. In these suspensions, interactions between the particles strongly influence the microstructure and rheological properties of the suspension. The interactions can arise from hydrodynamic disturbances, giving multibody interactions at long ranges and pairwise lubrication forces over short distances. For concentrated suspensions, additional interactions due to excluded volume (contacts) and adhesive forces are addressed. The relative importance of the various interactions as a function of fiber concentration is assessed.

  14. The Influence of Chain Microstructure of Biodegradable Copolyesters Obtained with Low-Toxic Zirconium Initiator to In Vitro Biocompatibility

    Science.gov (United States)

    Orchel, Arkadiusz; Kasperczyk, Janusz; Marcinkowski, Andrzej; Pamula, Elzbieta; Orchel, Joanna; Bielecki, Ireneusz

    2013-01-01

    Because of the wide use of biodegradable materials in tissue engineering, it is necessary to obtain biocompatible polymers with different mechanical and physical properties as well as degradation ratio. Novel co- and terpolymers of various composition and chain microstructure have been developed and applied for cell culture. The aim of this study was to evaluate the adhesion and proliferation of human chondrocytes to four biodegradable copolymers: lactide-coglycolide, lactide-co-ε-caprolactone, lactide-co-trimethylene carbonate, glycolide-co-ε-caprolactone, and one terpolymer glycolide-colactide-co-ε-caprolactone synthesized with the use of zirconium acetylacetonate as a nontoxic initiator. Chain microstructure of the copolymers was analyzed by means of 1H and 13C NMR spectroscopy and surface properties by AFM technique. Cell adhesion and proliferation were determined by CyQUANT Cell Proliferation Assay Kit. After 4 h the chondrocyte adhesion on the surface of studied materials was comparable to standard TCPS. Cell proliferation occurred on all the substrates; however, among the studied polymers poly(L-lactide-coglycolide) 85 : 15 that characterized the most blocky structure best supported cell growth. Chondrocytes retained the cell membrane integrity evaluated by the LDH release assay. As can be summarized from the results of the study, all the studied polymers are well tolerated by the cells that make them appropriate for human chondrocytes growth. PMID:24062998

  15. Denture Adhesives

    Science.gov (United States)

    ... Devices Products and Medical Procedures Dental Devices Denture Adhesives Share Tweet Linkedin Pin it More sharing options ... Wearers Reporting Problems to the FDA Background Denture adhesives are pastes, powders or adhesive pads that may ...

  16. Stretchable, Adhesion-Tunable Dry Adhesive by Surface Wrinkling

    KAUST Repository

    Jeong, Hoon Eui

    2010-02-16

    We introduce a simple yet robust method of fabricating a stretchable, adhesion-tunable dry adhesive by combining replica molding and surface wrinkling. By utilizing a thin, wrinkled polydimethyl siloxane (PDMS) sheet with a thickness of 1 mm with built-in micropillars, active, dynamic control of normal and shear adhesion was achieved. Relatively strong normal (∼10.8 N/cm2) and shear adhesion (∼14.7 N/cm2) forces could be obtained for a fully extended (strained) PDMS sheet (prestrain of∼3%), whereas the forces could be rapidly reduced to nearly zero once the prestrain was released (prestrain of ∼0.5%). Moreover, durability tests demonstrated that the adhesion strength in both the normal and shear directions was maintained over more than 100 cycles of attachment and detachment. © 2010 American Chemical Society.

  17. Stretchable, Adhesion-Tunable Dry Adhesive by Surface Wrinkling

    KAUST Repository

    Jeong, Hoon Eui; Kwak, Moon Kyu; Suh, Kahp Y.

    2010-01-01

    We introduce a simple yet robust method of fabricating a stretchable, adhesion-tunable dry adhesive by combining replica molding and surface wrinkling. By utilizing a thin, wrinkled polydimethyl siloxane (PDMS) sheet with a thickness of 1 mm with built-in micropillars, active, dynamic control of normal and shear adhesion was achieved. Relatively strong normal (∼10.8 N/cm2) and shear adhesion (∼14.7 N/cm2) forces could be obtained for a fully extended (strained) PDMS sheet (prestrain of∼3%), whereas the forces could be rapidly reduced to nearly zero once the prestrain was released (prestrain of ∼0.5%). Moreover, durability tests demonstrated that the adhesion strength in both the normal and shear directions was maintained over more than 100 cycles of attachment and detachment. © 2010 American Chemical Society.

  18. Influence of laser surface modifying of polyethylene terephthalate on fibroblast cell adhesion

    International Nuclear Information System (INIS)

    Mirzadeh, H.; Dadsetan, M.

    2003-01-01

    Attempts have been made to evaluate the changes in physical and chemical properties of the polyethylene terephthalate (PET) surface due to laser irradiation. These changes have been investigated from viewpoints of microstructuring and its effect on fibroblast cell behavior. The surfaces of PET were irradiated using CO 2 and KrF excimer pulsed laser. The changes were characterized by attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy, scanning electron microscopy (SEM) and contact angle measurements. The data from ATR-FTIR spectra showed that the crystallinity in the surface region decreased due to the CO 2 and excimer laser irradiation. SEM observations showed that specific microstructures were created on the PET surface due to laser irradiation. In order to study biocompatibility and cell behavior, we utilized standard in vitro L929-fibroblast cell culture system. Fibroblast cell adhesion and spreading were significantly correlated to the morphology and wettability of the laser irradiated PET surface

  19. Adhesion enhancement of diamond-like carbon thin films on Ti alloys by incorporation of nanodiamond particles

    International Nuclear Information System (INIS)

    Zhang, C.Z.; Tang, Y.; Li, Y.S.; Yang, Q.

    2013-01-01

    Coating adherent diamond-like carbon (DLC) thin films directly on Ti alloys is technologically difficult. This research incorporates nanodiamond particles to form a diamond/DLC composite interlayer to enhance the adhesion of DLC thin films on Ti6Al4V substrates. Initially, nanodiamond particles were deposited on Ti6Al4V substrates by microwave plasma enhanced chemical vapor deposition from a methane–hydrogen gas mixture. A DLC thin film was then deposited, on top of the nanodiamond particles, by direct ion beam deposition. Scanning electron microscopy, Atomic force microscopy, X-ray Diffraction and Raman spectroscopy were used to characterize the microstructure and chemical bonding of the deposited particles and films, and Rockwell indentation testing was used to evaluate the adhesion of the deposited films. The results indicate that the pre-deposited nanodiamond particles significantly enhance the interfacial adhesion between the DLC thin film and the Ti6Al4V substrate, possibly by enhanced interfacial bonding, mechanical interlocking, and stress relief. - Highlights: ► Nanodiamond particles were deposited on Ti6Al4V before DLC deposition. ► Diamond/DLC composite film was formed by incorporation of nanodiamond particles. ► Greatly enhanced adhesion of diamond/DLC composite film on Ti6Al4V was achieved. ► Enhanced adhesion is by increased interfacial bonding and mechanical interlocking

  20. Adhesion enhancement of diamond-like carbon thin films on Ti alloys by incorporation of nanodiamond particles

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, C.Z.; Tang, Y. [Department of Mechanical Engineering, University of Saskatchewan, 57 Campus Drive, Saskatoon, SK, Canada S7N 5A9 (Canada); Li, Y.S. [Plasma Physics Laboratory, University of Saskatchewan, 116 Science Place, Saskatoon, SK, Canada S7N 5E2 (Canada); Yang, Q., E-mail: qiaoqin.yang@usask.ca [Department of Mechanical Engineering, University of Saskatchewan, 57 Campus Drive, Saskatoon, SK, Canada S7N 5A9 (Canada)

    2013-01-01

    Coating adherent diamond-like carbon (DLC) thin films directly on Ti alloys is technologically difficult. This research incorporates nanodiamond particles to form a diamond/DLC composite interlayer to enhance the adhesion of DLC thin films on Ti6Al4V substrates. Initially, nanodiamond particles were deposited on Ti6Al4V substrates by microwave plasma enhanced chemical vapor deposition from a methane–hydrogen gas mixture. A DLC thin film was then deposited, on top of the nanodiamond particles, by direct ion beam deposition. Scanning electron microscopy, Atomic force microscopy, X-ray Diffraction and Raman spectroscopy were used to characterize the microstructure and chemical bonding of the deposited particles and films, and Rockwell indentation testing was used to evaluate the adhesion of the deposited films. The results indicate that the pre-deposited nanodiamond particles significantly enhance the interfacial adhesion between the DLC thin film and the Ti6Al4V substrate, possibly by enhanced interfacial bonding, mechanical interlocking, and stress relief. - Highlights: ► Nanodiamond particles were deposited on Ti6Al4V before DLC deposition. ► Diamond/DLC composite film was formed by incorporation of nanodiamond particles. ► Greatly enhanced adhesion of diamond/DLC composite film on Ti6Al4V was achieved. ► Enhanced adhesion is by increased interfacial bonding and mechanical interlocking.

  1. Universal adhesives: the next evolution in adhesive dentistry?

    Science.gov (United States)

    Alex, Gary

    2015-01-01

    Every so often a new material, technique, or technological breakthrough spurs a paradigm shift in the way dentistry is practiced. The development and evolution of reliable enamel and dentin bonding agents is one such example. Indeed, the so-called "cosmetic revolution" in dentistry blossomed in large part due to dramatic advances in adhesive technology. It is the ability to bond various materials in a reasonably predictable fashion to both enamel and dentin substrates that enables dentists to routinely place porcelain veneers, direct and indirect composites, and a plethora of other restorative and esthetic materials. In fact, the longevity and predictability of many (if not most) current restorative procedures is wholly predicated on the dentist's ability to bond various materials to tooth tissues. Adhesive systems have progressed from the largely ineffective systems of the 1970s and early 1980s to the relatively successful total- and self-etching systems of today. The latest players in the adhesive marketplace are the so-called "universal adhesives." In theory, these systems have the potential to significantly simplify and expedite adhesive protocols and may indeed represent the next evolution in adhesive dentistry. But what defines a universal system, and are all these new systems truly "universal" and everything they are claimed to be? This article will examine the origin, chemistry, strengths, weaknesses, and clinical relevance of this new genre of dental adhesives.

  2. INFLUENCE OF PLASMA NITRIDING ON THE CORROSION BEHAVIOUR AND ADHESION OF DLC COATINGS DEPOSITED ON AISI 420 STAINLESS STEEL

    Directory of Open Access Journals (Sweden)

    Jorge N. Pecina

    2016-06-01

    Full Text Available In this work the corrosion behavior and adhesion of two DLC (“Diamond Like Carbon” films (“Soft” and “Hard” were studied. Both coatings were deposited by PACVD (“Plasma Assisted Chemical Vapour Deposition” on plasma-nitrided and non-nitrided AISI 420 stainless steel. Raman spectroscopy was conducted and surface hardness was measured. The microstructure by OM and SEM, was observed. Adhesion tests were performed with C. Rockwell indentation test. Salt Spray and immersion were performed in HCl. The “Soft” coating was 20 μm thick, the “Hard” film was about 2.5 μm. The hardness was of 500 HV in the “Soft” DLC and 1400 HV in the “Hard” DLC. Both coatings presented low friction coefficient and good adhesion when they were deposited on nitrided steel. Also presented good resistance to atmospheric corrosion. HCl DLC degradation slowed rapidly introduced uncoated samples.

  3. INFLUENCE OF REPAINTING ON THE MECHANICAL PROPERTIES, SURFACE TOPOGRAPHY AND MICROSTRUCTURE OF POLYESTER POWDER COATINGS

    Directory of Open Access Journals (Sweden)

    Mirosław Szala

    2017-06-01

    This study examined three different electrostatic spray epoxy coatings with matt, silk gloss and fine structure-matt finish. Test panels were prepared as single- and double-layer paint coatings on the aluminum alloy 6060 substrate. Hence, six test sets of coatings were deposited. Each set contained six samples. The microstructure of the cross section of coating was investigated by scanning electron microscopy (SEM and light optical microscopy (metallographic and stereoscopy microscope. The chemical composition of coating was analyzed by the SEM-EDS method. The 2D surface roughness of single- and double-layer coatings and 3D surface topography maps were examined using a profile measurement gauge. The mechanical properties of coatings were measured by cupping, bending, impact, adhesion to substrate tests run according to standard procedures. As a result, the influence of repainting of polyester powder coatings on their properties was determined. The results demonstrate that repainting has no effect on the microstructure and coating adhesion to substrate as well as the bending test results and roughness of matt and silk gloss coatings. It has been found that repainting affects the results of impact and cupping tests as well as the roughness of samples with fine structure surface finish.

  4. Bacterial Adhesion & Blocking Bacterial Adhesion

    DEFF Research Database (Denmark)

    Vejborg, Rebecca Munk

    2008-01-01

    , which influence the transition from a planktonic lifestyle to a sessile lifestyle, have been studied. Protein conditioning film formation was found to influence bacterial adhesion and subsequent biofilm formation considerable, and an aqueous extract of fish muscle tissue was shown to significantly...... tract to the microbial flocs in waste water treatment facilities. Microbial biofilms may however also cause a wide range of industrial and medical problems, and have been implicated in a wide range of persistent infectious diseases, including implantassociated microbial infections. Bacterial adhesion...... is the first committing step in biofilm formation, and has therefore been intensely scrutinized. Much however, still remains elusive. Bacterial adhesion is a highly complex process, which is influenced by a variety of factors. In this thesis, a range of physico-chemical, molecular and environmental parameters...

  5. Adhesion enhancement of biomimetic dry adhesives by nanoparticle in situ synthesis

    International Nuclear Information System (INIS)

    Díaz Téllez, J P; Harirchian-Saei, S; Li, Y; Menon, C

    2013-01-01

    A novel method to increase the adhesion strength of a gecko-inspired dry adhesive is presented. Gold nanoparticles are synthesized on the tips of the microfibrils of a polymeric dry adhesive to increase its Hamaker constant. Formation of the gold nanoparticles is qualitatively studied through a colour change in the originally transparent substance and quantitatively analysed using ultraviolet–visible spectrophotometry. A pull-off force test is employed to quantify the adhesion enhancement. Specifically, adhesion forces of samples with and without embedded gold nanoparticles are measured and compared. The experimental results indicate that an adhesion improvement of 135% can be achieved. (paper)

  6. Protein adhesives

    Science.gov (United States)

    Charles R. Frihart; Linda F. Lorenz

    2018-01-01

    Nature uses a wide variety of chemicals for providing adhesion internally (e.g., cell to cell) and externally (e.g., mussels to ships and piers). This adhesive bonding is chemically and mechanically complex, involving a variety of proteins, carbohydrates, and other compounds.Consequently,the effect of protein structures on adhesive properties is only partially...

  7. Radiation-curable adhesives

    International Nuclear Information System (INIS)

    Woods, J.G.

    1992-01-01

    Radiation-curable adhesives may be classified into two broad categories. In the first category, adhesive bonding occurs as a direct result of irradiation. The second category includes pressure-sensitive and hot-melt adhesives, which are composed of linear or lightly cross-linked polymers prepared by a radiation-induced polymerization reaction. This chapter is mainly concerned with radiation-curable adhesives of the first category. The various adhesive types are discussed and adhesive performance is examined, particularly in relation to the chemistry and chemical technology which underlies the individual materials. A description of a limited number of representative applications is included as is an outline of recent developments of curing and dispensing equipment. 268 refs., 14 figs., 13 tabs

  8. Switchable bio-inspired adhesives

    Science.gov (United States)

    Kroner, Elmar

    2015-03-01

    Geckos have astonishing climbing abilities. They can adhere to almost any surface and can run on walls and even stick to ceilings. The extraordinary adhesion performance is caused by a combination of a complex surface pattern on their toes and the biomechanics of its movement. These biological dry adhesives have been intensely investigated during recent years because of the unique combination of adhesive properties. They provide high adhesion, allow for easy detachment, can be removed residue-free, and have self-cleaning properties. Many aspects have been successfully mimicked, leading to artificial, bio-inspired, patterned dry adhesives, and were addressed and in some aspects they even outperform the adhesion capabilities of geckos. However, designing artificial patterned adhesion systems with switchable adhesion remains a big challenge; the gecko's adhesion system is based on a complex hierarchical surface structure and on advanced biomechanics, which are both difficult to mimic. In this paper, two approaches are presented to achieve switchable adhesion. The first approach is based on a patterned polydimethylsiloxane (PDMS) polymer, where adhesion can be switched on and off by applying a low and a high compressive preload. The switch in adhesion is caused by a reversible mechanical instability of the adhesive silicone structures. The second approach is based on a composite material consisting of a Nickel- Titanium (NiTi) shape memory alloy and a patterned adhesive PDMS layer. The NiTi alloy is trained to change its surface topography as a function of temperature, which results in a change of the contact area and of alignment of the adhesive pattern towards a substrate, leading to switchable adhesion. These examples show that the unique properties of bio-inspired adhesives can be greatly improved by new concepts such as mechanical instability or by the use of active materials which react to external stimuli.

  9. Effect of counterface roughness on the friction of bionic wall-shaped microstructures for gecko-like attachments.

    Science.gov (United States)

    Kasem, Haytam; Cohen, Yossi

    2017-08-04

    Hairy adhesive systems involved in gecko locomotion have drawn the interest of many researchers regarding the development of bionic solutions for fast and reversible adhesive technologies. To date, despite extensive efforts to design gecko-inspired adhesive surfaces, adhesion and friction capacities are often evaluated using smooth and rigid counterfaces, in general glass, whereas most natural and artificial surfaces inevitably have a certain level of roughness. For that reason, in this study experiments tested the effects of the substrate roughness on the friction of bionic wale-shaped microstructures for gecko-like attachments. To this end, 12 substrates with different isotropic roughness were prepared using the same Epoxy material. Friction force was measured under various normal loads. It was concluded that classical roughness parameters, considered separately, are not appropriate to explain roughness-related variations in friction force. This has led us to develop a new integrative roughness parameter that combines characteristics of the surface. The parameter is capable of classifying the obtained experimental results in a readable way. An analytical model based on the experimental results has been developed to predict the variation of the friction force as a function of counterface roughness and applied normal load.

  10. TRIM15 is a focal adhesion protein that regulates focal adhesion disassembly

    Science.gov (United States)

    Uchil, Pradeep D.; Pawliczek, Tobias; Reynolds, Tracy D.; Ding, Siyuan; Hinz, Angelika; Munro, James B.; Huang, Fang; Floyd, Robert W.; Yang, Haitao; Hamilton, William L.; Bewersdorf, Joerg; Xiong, Yong; Calderwood, David A.; Mothes, Walther

    2014-01-01

    ABSTRACT Focal adhesions are macromolecular complexes that connect the actin cytoskeleton to the extracellular matrix. Dynamic turnover of focal adhesions is crucial for cell migration. Paxillin is a multi-adaptor protein that plays an important role in regulating focal adhesion dynamics. Here, we identify TRIM15, a member of the tripartite motif protein family, as a paxillin-interacting factor and a component of focal adhesions. TRIM15 localizes to focal contacts in a myosin-II-independent manner by an interaction between its coiled-coil domain and the LD2 motif of paxillin. Unlike other focal adhesion proteins, TRIM15 is a stable focal adhesion component with restricted mobility due to its ability to form oligomers. TRIM15-depleted cells display impaired cell migration and reduced focal adhesion disassembly rates, in addition to enlarged focal adhesions. Thus, our studies demonstrate a cellular function for TRIM15 as a regulatory component of focal adhesion turnover and cell migration. PMID:25015296

  11. Proteomic dataset of the sea urchin Paracentrotus lividus adhesive organs and secreted adhesive.

    Science.gov (United States)

    Lebesgue, Nicolas; da Costa, Gonçalo; Ribeiro, Raquel Mesquita; Ribeiro-Silva, Cristina; Martins, Gabriel G; Matranga, Valeria; Scholten, Arjen; Cordeiro, Carlos; Heck, Albert J R; Santos, Romana

    2016-06-01

    Sea urchins have specialized adhesive organs called tube feet, which mediate strong but reversible adhesion. Tube feet are composed by a disc, producing adhesive and de-adhesive secretions for substratum attachment, and a stem for movement. After detachment the secreted adhesive remains bound to the substratum as a footprint. Recently, a label-free quantitative proteomic approach coupled with the latest mass-spectrometry technology was used to analyze the differential proteome of Paracentrotus lividus adhesive organ, comparing protein expression levels in the tube feet adhesive part (the disc) versus the non-adhesive part (the stem), and also to profile the proteome of the secreted adhesive (glue). This data article contains complementary figures and results related to the research article "Deciphering the molecular mechanisms underlying sea urchin reversible adhesion: a quantitative proteomics approach" (Lebesgue et al., 2016) [1]. Here we provide a dataset of 1384 non-redundant proteins, their fragmented peptides and expression levels, resultant from the analysis of the tube feet differential proteome. Of these, 163 highly over-expressed tube feet disc proteins (>3-fold), likely representing the most relevant proteins for sea urchin reversible adhesion, were further annotated in order to determine the potential functions. In addition, we provide a dataset of 611 non-redundant proteins identified in the secreted adhesive proteome, as well as their functional annotation and grouping in 5 major protein groups related with adhesive exocytosis, and microbial protection. This list was further analyzed to identify the most abundant protein groups and pinpoint putative adhesive proteins, such as Nectin, the most abundant adhesive protein in sea urchin glue. The obtained data uncover the key proteins involved in sea urchins reversible adhesion, representing a step forward to the development of new wet-effective bio-inspired adhesives.

  12. Proteomic dataset of the sea urchin Paracentrotus lividus adhesive organs and secreted adhesive

    Directory of Open Access Journals (Sweden)

    Nicolas Lebesgue

    2016-06-01

    Full Text Available Sea urchins have specialized adhesive organs called tube feet, which mediate strong but reversible adhesion. Tube feet are composed by a disc, producing adhesive and de-adhesive secretions for substratum attachment, and a stem for movement. After detachment the secreted adhesive remains bound to the substratum as a footprint. Recently, a label-free quantitative proteomic approach coupled with the latest mass-spectrometry technology was used to analyze the differential proteome of Paracentrotus lividus adhesive organ, comparing protein expression levels in the tube feet adhesive part (the disc versus the non-adhesive part (the stem, and also to profile the proteome of the secreted adhesive (glue. This data article contains complementary figures and results related to the research article “Deciphering the molecular mechanisms underlying sea urchin reversible adhesion: a quantitative proteomics approach” (Lebesgue et al., 2016 [1]. Here we provide a dataset of 1384 non-redundant proteins, their fragmented peptides and expression levels, resultant from the analysis of the tube feet differential proteome. Of these, 163 highly over-expressed tube feet disc proteins (>3-fold, likely representing the most relevant proteins for sea urchin reversible adhesion, were further annotated in order to determine the potential functions. In addition, we provide a dataset of 611 non-redundant proteins identified in the secreted adhesive proteome, as well as their functional annotation and grouping in 5 major protein groups related with adhesive exocytosis, and microbial protection. This list was further analyzed to identify the most abundant protein groups and pinpoint putative adhesive proteins, such as Nectin, the most abundant adhesive protein in sea urchin glue. The obtained data uncover the key proteins involved in sea urchins reversible adhesion, representing a step forward to the development of new wet-effective bio-inspired adhesives.

  13. Effect of adhesive thickness on adhesively bonded T-joint

    International Nuclear Information System (INIS)

    Abdullah, A R; Afendi, Mohd; Majid, M S Abdul

    2013-01-01

    The aim of this work is to analyze the effect of adhesive thickness on tensile strength of adhesively bonded stainless steel T-joint. Specimens were made from SUS 304 Stainless Steel plate and SUS 304 Stainless Steel perforated plate. Four T-joint specimens with different adhesive thicknesses (0.5, 1.0, 1.5 and 2.0 mm) were made. Experiment result shows T-joint specimen with adhesive thickness of 1.0 mm yield highest maximum load. Identical T-joint specimen jointed by spot welding was also tested. Tensile test shows welded T-Joint had eight times higher tensile load than adhesively bonded T-joint. However, in low pressure application such as urea granulator chamber, high tensile strength is not mandatory. This work is useful for designer in fertilizer industry and others who are searching for alternative to spot welding

  14. Photocrosslinked nanocomposite hydrogels from PEG and silica nanospheres: Structural, mechanical and cell adhesion characteristics

    International Nuclear Information System (INIS)

    Gaharwar, Akhilesh K.; Rivera, Christian; Wu, Chia-Jung; Chan, Burke K.; Schmidt, Gudrun

    2013-01-01

    Photopolymerized hydrogels are extensively investigated for various tissue engineering applications, primarily due to their ability to form hydrogels in a minimally invasive manner. Although photocrosslinkable hydrogels provide necessary biological and chemical characteristics to mimic cellular microenvironments, they often lack sufficient mechanical properties. Recently, nanocomposite approaches have demonstrated potential to overcome these deficits by reinforcing the hydrogel network with. In this study, we investigate some physical, chemical, and biological properties of photocrosslinked poly(ethylene glycol) (PEG)-silica hydrogels. The addition of silica nanospheres significantly suppresses the hydration degree of the PEG hydrogels, indicating surface interactions between the silica nanospheres and the polymer chains. No significant change in hydrogel microstructure or average pore size due to the addition of silica nanospheres was observed. However, addition of silica nanospheres significantly increases both the mechanical strength and the toughness of the hydrogel networks. The biological properties of these nanocomposite hydrogels were evaluated by seeding fibroblast cells on the hydrogel surface. While the PEG hydrogels showed minimum cell adhesion, spreading and proliferation, the addition of silica nanospheres enhanced initial cell adhesion, promoted cell spreading and increased the metabolic activity of the cells. Overall, results indicate that the addition of silica nanospheres improves the mechanical stiffness and cell adhesion properties of PEG hydrogels and can be used for biomedical applications that required controlled cell adhesion. - Graphical abstract: Structural, mechanical and biological properties of photocrosslinked nanocomposite hydrogels from silica and poly(ethylene oxide) are investigated. Silica reinforce the hydrogel network and improved mechanical strength. Addition of induces cell adhesion characteristic properties for various

  15. Proteomic dataset of the sea urchin Paracentrotus lividus adhesive organs and secreted adhesive

    NARCIS (Netherlands)

    Lebesgue, Nicolas; da Costa, Gonçalo; Ribeiro, Raquel Mesquita; Ribeiro-Silva, Cristina; Martins, Gabriel G; Matranga, Valeria; Scholten, Arjen; Cordeiro, Carlos; Heck, Albert J R; Santos, Romana

    Sea urchins have specialized adhesive organs called tube feet, which mediate strong but reversible adhesion. Tube feet are composed by a disc, producing adhesive and de-adhesive secretions for substratum attachment, and a stem for movement. After detachment the secreted adhesive remains bound to the

  16. Mechanics ofadhesion and contact self-cleaning of bio-inspired microfiberadhesives

    Science.gov (United States)

    Abusomwan, Uyiosa Anthony

    The remarkable attachment system of geckos has inspired the development of dry microfiber adhesives through the last two decades. Some of the notable characteristics of gecko-inspired fibrillar adhesives include: strong, directional, and controllable adhesion to smooth and rough surfaces in air, vacuum, and under water; ability to maintain strong adhesion during repeated use; anti-fouling and self-cleaning after contamination. Given these outstanding qualities, fibrillar adhesives promise an extensive range of use in industrial, robotic, manufacturing, medical, and consumer products. Significant advancements have been made in the design of geckoinspired microfiber adhesives with the characteristic properties listed above, with the exception of the anti-fouling and self-cleaning features. The self-cleaning mechanism of the gecko's adhesion system plays an important role to its ability to remain sticky in various environments. Similarly, enabling self-cleaning capability for synthetic microfiber adhesives will lead to robust performance in various areas of application. Presently, the practical use of fibrillar adhesives is restricted mainly to clean environments, where they are free from contaminants. The goal of this thesis is to conduct a detailed study of the mechanisms and mechanics of contact-based self-cleaning of gecko-inspired microfiber adhesives. This work focuses on contact self-cleaning mechanisms, as a more practical approach to cleaning. Previous studies on the cleaning of microfiber adhesives have mostly focused on mechanisms that involve complete removal of the contaminants from the adhesive. In this thesis, a second cleaning process is proposed whereby particles are removed from the tip of the microfibers and embedded between adjacent microfibers or in grooves patterned onto the adhesive, where they are no longer detrimental to the performance of the adhesive. In this work, a model of adhesion for microfiber adhesives that take the deformation of the

  17. Cell adhesion on NiTi thin film sputter-deposited meshes

    Energy Technology Data Exchange (ETDEWEB)

    Loger, K. [Inorganic Functional Materials, Institute for Materials Science, Faculty of Engineering, University of Kiel (Germany); Engel, A.; Haupt, J. [Department of Cardiovascular Surgery, University Hospital of Schleswig-Holstein, Kiel (Germany); Li, Q. [Biocompatible Nanomaterials, Institute for Materials Science, Faculty of Engineering, University of Kiel (Germany); Lima de Miranda, R. [Inorganic Functional Materials, Institute for Materials Science, Faculty of Engineering, University of Kiel (Germany); ACQUANDAS GmbH, Kiel (Germany); Quandt, E. [Inorganic Functional Materials, Institute for Materials Science, Faculty of Engineering, University of Kiel (Germany); Lutter, G. [Department of Cardiovascular Surgery, University Hospital of Schleswig-Holstein, Kiel (Germany); Selhuber-Unkel, C. [Biocompatible Nanomaterials, Institute for Materials Science, Faculty of Engineering, University of Kiel (Germany)

    2016-02-01

    Scaffolds for tissue engineering enable the possibility to fabricate and form biomedical implants in vitro, which fulfill special functionality in vivo. In this study, free-standing Nickel–Titanium (NiTi) thin film meshes were produced by means of magnetron sputter deposition. Meshes contained precisely defined rhombic holes in the size of 440 to 1309 μm{sup 2} and a strut width ranging from 5.3 to 9.2 μm. The effective mechanical properties of the microstructured superelastic NiTi thin film were examined by tensile testing. These results will be adapted for the design of the holes in the film. The influence of hole and strut dimensions on the adhesion of sheep autologous cells (CD133 +) was studied after 24 h and after seven days of incubation. Optical analysis using fluorescence microscopy and scanning electron microscopy showed that cell adhesion depends on the structural parameters of the mesh. After 7 days in cell culture a large part of the mesh was covered with aligned fibrous material. Cell adhesion is particularly facilitated on meshes with small rhombic holes of 440 μm{sup 2} and a strut width of 5.3 μm. Our results demonstrate that free-standing NiTi thin film meshes have a promising potential for applications in cardiovascular tissue engineering, particularly for the fabrication of heart valves. - Highlights: • Freestanding NiTi thin film scaffolds were fabricated with magnetron sputtering process. • Effective mechanical properties of NiTi scaffolds can be adapted by the mesh structure parameters. • Cell adhesion on the NiTi thin film scaffold is controlled by the structure parameters of the mesh. • Cells strongly adhere after seven days and form a confluent layer on the mesh.

  18. Cell adhesion on NiTi thin film sputter-deposited meshes

    International Nuclear Information System (INIS)

    Loger, K.; Engel, A.; Haupt, J.; Li, Q.; Lima de Miranda, R.; Quandt, E.; Lutter, G.; Selhuber-Unkel, C.

    2016-01-01

    Scaffolds for tissue engineering enable the possibility to fabricate and form biomedical implants in vitro, which fulfill special functionality in vivo. In this study, free-standing Nickel–Titanium (NiTi) thin film meshes were produced by means of magnetron sputter deposition. Meshes contained precisely defined rhombic holes in the size of 440 to 1309 μm 2 and a strut width ranging from 5.3 to 9.2 μm. The effective mechanical properties of the microstructured superelastic NiTi thin film were examined by tensile testing. These results will be adapted for the design of the holes in the film. The influence of hole and strut dimensions on the adhesion of sheep autologous cells (CD133 +) was studied after 24 h and after seven days of incubation. Optical analysis using fluorescence microscopy and scanning electron microscopy showed that cell adhesion depends on the structural parameters of the mesh. After 7 days in cell culture a large part of the mesh was covered with aligned fibrous material. Cell adhesion is particularly facilitated on meshes with small rhombic holes of 440 μm 2 and a strut width of 5.3 μm. Our results demonstrate that free-standing NiTi thin film meshes have a promising potential for applications in cardiovascular tissue engineering, particularly for the fabrication of heart valves. - Highlights: • Freestanding NiTi thin film scaffolds were fabricated with magnetron sputtering process. • Effective mechanical properties of NiTi scaffolds can be adapted by the mesh structure parameters. • Cell adhesion on the NiTi thin film scaffold is controlled by the structure parameters of the mesh. • Cells strongly adhere after seven days and form a confluent layer on the mesh.

  19. Fabrication of anti-adhesion surfaces on aluminium substrates of rubber plastic moulds using electrolysis plasma treatment

    Science.gov (United States)

    Meng, Jianbing; Dong, Xiaojuan; Wei, Xiuting; Yin, Zhanmin

    2015-04-01

    An anti-adhesion surface with a water contact angle of 167° was fabricated on aluminium samples of rubber plastic moulds by electrolysis plasma treatment using mixed electrolytes of C6H5O7(NH4)3 and Na2SO4, followed by fluorination. To optimise the fabrication conditions, several important processing parameters such as the discharge voltage, discharge time, concentrations of supporting electrolyte and stearic acid ethanol solution were examined systematically. Using scanning electron microscopy (SEM) to analyse surfaces morphology, micrometer scale pits, and protrusions were found on the surface, with numerous nanometer mastoids contained in the protrusions. These binary micro/nano-scale structures, which are similar to the micro-structures of soil-burrowing animals, play a critical role in achieving low adhesion properties. Otherwise, the anti-adhesion behaviours of the resulting samples were analysed by the atomic force microscope (AFM), Fourier-transform infrared spectrophotometer (FTIR), electrons probe micro-analyzer (EPMA), optical contact angle meter, digital Vickers microhardness (Hv) tester, and electronic universal testing. The results show that the electrolysis plasma treatment does not require complex processing parameters, using a simple device, and is an environment-friendly and effective method. Under the optimised conditions, the contact angle (CA) for the modified anti-adhesion surface is up to 167°, the sliding angle (SA) is less than 2°, roughness of the sample surface is only 0.409μm. Moreover, the adhesion force and Hv are 0. 9KN and 385, respectively.

  20. Fabrication of anti-adhesion surfaces on aluminium substrates of rubber plastic moulds using electrolysis plasma treatment

    Directory of Open Access Journals (Sweden)

    Jianbing Meng

    2015-04-01

    Full Text Available An anti-adhesion surface with a water contact angle of 167° was fabricated on aluminium samples of rubber plastic moulds by electrolysis plasma treatment using mixed electrolytes of C6H5O7(NH43 and Na2SO4, followed by fluorination. To optimise the fabrication conditions, several important processing parameters such as the discharge voltage, discharge time, concentrations of supporting electrolyte and stearic acid ethanol solution were examined systematically. Using scanning electron microscopy (SEM to analyse surfaces morphology, micrometer scale pits, and protrusions were found on the surface, with numerous nanometer mastoids contained in the protrusions. These binary micro/nano-scale structures, which are similar to the micro-structures of soil-burrowing animals, play a critical role in achieving low adhesion properties. Otherwise, the anti-adhesion behaviours of the resulting samples were analysed by the atomic force microscope (AFM, Fourier-transform infrared spectrophotometer (FTIR, electrons probe micro-analyzer (EPMA, optical contact angle meter, digital Vickers microhardness (Hv tester, and electronic universal testing. The results show that the electrolysis plasma treatment does not require complex processing parameters, using a simple device, and is an environment-friendly and effective method. Under the optimised conditions, the contact angle (CA for the modified anti-adhesion surface is up to 167°, the sliding angle (SA is less than 2°, roughness of the sample surface is only 0.409μm. Moreover, the adhesion force and Hv are 0. 9KN and 385, respectively.

  1. Chapter 9:Wood Adhesion and Adhesives

    Science.gov (United States)

    Charles R. Frihart

    2013-01-01

    The recorded history of bonding wood dates back at least 3000 years to the Egyptians (Skeist and Miron 1990, River 1994a), and adhesive bonding goes back to early mankind (Keimel 2003). Although wood and paper bonding are the largest applications for adhesives, some of the fundamental aspects leading to good bonds are not fully understood. Better understanding of these...

  2. Effects of sintering temperature on the microstructural evolution and wear behavior of WCp reinforced Ni-based coatings

    Science.gov (United States)

    Chen, Chuan-hui; Bai, Yang; Ye, Xu-chu

    2014-12-01

    This article focuses on the microstructural evolution and wear behavior of 50wt%WC reinforced Ni-based composites prepared onto 304 stainless steel substrates by vacuum sintering at different sintering temperatures. The microstructure and chemical composition of the coatings were investigated by X-ray diffraction (XRD), differential thermal analysis (DTA), scanning and transmission electron microscopy (SEM and TEM) equipped with energy-dispersive X-ray spectroscopy (EDS). The wear resistance of the coatings was tested by thrust washer testing. The mechanisms of the decomposition, dissolution, and precipitation of primary carbides, and their influences on the wear resistance have been discussed. The results indicate that the coating sintered at 1175°C is composed of fine WC particles, coarse M6C (M=Ni, Fe, Co, etc.) carbides, and discrete borides dispersed in solid solution. Upon increasing the sintering temperature to 1225°C, the microstructure reveals few incompletely dissolved WC particles trapped in larger M6C, Cr-rich lamellar M23C6, and M3C2 in the austenite matrix. M23C6 and M3C2 precipitates are formed in both the γ/M6C grain boundary and the matrix. These large-sized and lamellar brittle phases tend to weaken the wear resistance of the composite coatings. The wear behavior is controlled simultaneously by both abrasive wear and adhesive wear. Among them, abrasive wear plays a major role in the wear process of the coating sintered at 1175°C, while the effect of adhesive wear is predominant in the coating sintered at 1225°C.

  3. Cell behaviour on chemically microstructured surfaces

    International Nuclear Information System (INIS)

    Magnani, Agnese; Priamo, Alfredo; Pasqui, Daniela; Barbucci, Rolando

    2003-01-01

    Micropatterned surfaces with different chemical topographies were synthesised in order to investigate the influence of surface chemistry and topography on cell behaviour. The microstructured materials were synthesised by photoimmobilising natural Hyaluronan (Hyal) and its sulphated derivative (HyalS), both adequately functionalised with a photorective moiety, on glass substrates. Four different grating patterns (10, 25, 50 and 100 μm) were used to pattern the hyaluronan. The micropatterned samples were analysed by Secondary Ions Mass Spectrometry, Scanning Electron Microscopy (SEM) and Atomic Force Microscopy to investigate the chemistry and the topography of the surfaces. The spectroscopic and microscopic analysis of the microstructured surfaces revealed that the photoimmobilisation process was successful, demonstrating that the photomask patterns were well reproduced on the sample surface. The influence of chemical topographies on the cell behaviour was then analysed. Human and 3T3 fibroblasts, bovine aortic and human (HGTFN line) endothelial cells were used and their behaviour on the micropatterned surfaces was analysed in terms of adhesion, proliferation, locomotion and orientation. Both chemical and topographical controls were found to be important for cell guidance. By decreasing the stripe dimensions, a more fusiform shape of cell was observed. At the same time, the cell locomotion and orientation parallel to the structure increased. However, differences in cell behaviour were detected according to both cell type and micropattern dimensions

  4. Design and fabrication of polymer based dry adhesives inspired by the gecko adhesive system

    Science.gov (United States)

    Jin, Kejia

    There has been significant interest in developing dry adhesives mimicking the gecko adhesive system, which offers several advantages compared to conventional pressure sensitive adhesives. Specifically, gecko adhesive pads have anisotropic adhesion properties: the adhesive pads (spatulae) stick strongly when sheared in one direction but are non-adherent when sheared in the opposite direction. This anisotropy property is attributed to the complex topography of the array of fine tilted and curved columnar structures (setae) that bear the spatulae. In this thesis, easy, scalable methods, relying on conventional and unconventional techniques are presented to incorporate tilt in the fabrication of synthetic polymer-based dry adhesives mimicking the gecko adhesive system, which provide anisotropic adhesion properties. In the first part of the study, the anisotropic adhesion and friction properties of samples with various tilt angles to test the validity of a nanoscale tape-peeling model of spatular function are measured. Consistent with the Peel Zone model, samples with lower tilt angles yielded larger adhesion forces. Contact mechanics of the synthetic array were highly anisotropic, consistent with the frictional adhesion model and gecko-like. Based on the original design, a new design of gecko-like dry adhesives was developed which showed superior tribological properties and furthermore showed anisotropic adhesive properties without the need for tilt in the structures. These adhesives can be used to reversibly suspend weights from vertical surfaces (e.g., walls) and, for the first time to our knowledge, horizontal surfaces (e.g., ceilings) by simultaneously and judiciously activating anisotropic friction and adhesion forces. Furthermore, adhesion properties between artificial gecko-inspired dry adhesives and rough substrates with varying roughness are studied. The results suggest that both adhesion and friction forces on a rough substrate depends significantly on the

  5. Adhesion property of epoxidized natural rubber (ENR-based adhesives containing calcium carbonate

    Directory of Open Access Journals (Sweden)

    2008-06-01

    Full Text Available The adhesion property (i.e. viscosity, loop tack and peel strength of epoxidized natural rubber (ENR 25 and ENR 50 grade-based pressure-sensitive adhesive was studied in the presence of calcium carbonate. The range of calcium carbonate loaded was from 10 to 50 parts per hundred parts of rubber (phr. Coumarone-indene resin was used as the tackifier and its concentration was fixed at 80 phr. Toluene was chosen as the solvent throughout the investigation. The substrates (PET film/paper were coated with the adhesive using a SHEEN hand coater at a coating thickness of 60 µm. Viscosity of the adhesive was measured by a HAAKE Rotary Viscometer whereas loop tack and peel strength were determined by a Llyod Adhesion Tester operating at 30 cm/min. Results show that viscosity of ENR-based adhesives increases gradually with increase in calcium carbonate loading due to the concentration effect of the filler. However, for loop tack and peel strength, it passes through a maximum at 30 phr calcium carbonate, an observation which is attributed to the optimum wettability of adhesive on the substrate at this adhesive composition. ENR 25-based adhesive consistently exhibits higher adhesion property than ENR 50 for all calcium carbonate loadings studied.

  6. Strong composition dependence of adhesive properties of ultraviolet curing adhesives with modified acrylates

    Science.gov (United States)

    Feng, Yefeng; Li, Yandong; Wang, Fupeng; Peng, Cheng; Xu, Zhichao; Hu, Jianbing

    2018-05-01

    Ultraviolet (UV) curable adhesives have been widely researched in fields of health care and electronic components. UV curing systems with modified acrylic ester prepolymers have been frequently employed. In order to clarify composition dependence of adhesive properties of adhesives containing modified acrylates, in this work, several UV curing adhesives bearing urethane and epoxy acrylates were designed and fabricated. The effects of prepolymer, diluent, feed ratio, initiator and assistant on adhesive performances were investigated. This work might offer a facile route to gain promising high-performance UV curable adhesives with desired adhesive traits through regulating their compositions.

  7. Primary structure and subcellular localization of two fimbrial subunit-like proteins involved in the biosynthesis of K99 fibrillae.

    Science.gov (United States)

    Roosendaal, E; Jacobs, A A; Rathman, P; Sondermeyer, C; Stegehuis, F; Oudega, B; de Graaf, F K

    1987-09-01

    Analysis of the nucleotide sequence of the distal part of the fan gene cluster encoding the proteins involved in the biosynthesis of the fibrillar adhesin, K99, revealed the presence of two structural genes, fanG and fanH. The amino acid sequence of the gene products (FanG and FanH) showed significant homology to the amino acid sequence of the fibrillar subunit protein (FanC). Introduction of a site-specific frameshift mutation in fanG or fanH resulted in a simultaneous decrease in fibrillae production and adhesive capacity. Analysis of subcellular fractions showed that, in contrast to the K99 fibrillar subunit (FanC), both the FanH and the FanG protein were loosely associated with the outer membrane, possibly on the periplasmic side, but were not components of the fimbriae themselves.

  8. Continuous and scalable fabrication of bioinspired dry adhesives via a roll-to-roll process with modulated ultraviolet-curable resin.

    Science.gov (United States)

    Yi, Hoon; Hwang, Insol; Lee, Jeong Hyeon; Lee, Dael; Lim, Haneol; Tahk, Dongha; Sung, Minho; Bae, Won-Gyu; Choi, Se-Jin; Kwak, Moon Kyu; Jeong, Hoon Eui

    2014-08-27

    A simple yet scalable strategy for fabricating dry adhesives with mushroom-shaped micropillars is achieved by a combination of the roll-to-roll process and modulated UV-curable elastic poly(urethane acrylate) (e-PUA) resin. The e-PUA combines the major benefits of commercial PUA and poly(dimethylsiloxane) (PDMS). It not only can be cured within a few seconds like commercial PUA but also possesses good mechanical properties comparable to those of PDMS. A roll-type fabrication system equipped with a rollable mold and a UV exposure unit is also developed for the continuous process. By integrating the roll-to-roll process with the e-PUA, dry adhesives with spatulate tips in the form of a thin flexible film can be generated in a highly continuous and scalable manner. The fabricated dry adhesives with mushroom-shaped microstructures exhibit a strong pull-off strength of up to ∼38.7 N cm(-2) on the glass surface as well as high durability without any noticeable degradation. Furthermore, an automated substrate transportation system equipped with the dry adhesives can transport a 300 mm Si wafer over 10,000 repeating cycles with high accuracy.

  9. Enhanced antiadhesive properties of chitosan/hyaluronic acid polyelectrolyte multilayers driven by thermal annealing: Low adherence for mammalian cells and selective decrease in adhesion for Gram-positive bacteria.

    Science.gov (United States)

    Muzzio, Nicolás E; Pasquale, Miguel A; Diamanti, Eleftheria; Gregurec, Danijela; Moro, Marta Martinez; Azzaroni, Omar; Moya, Sergio E

    2017-11-01

    The development of antifouling coatings with restricted cell and bacteria adherence is fundamental for many biomedical applications. A strategy for the fabrication of antifouling coatings based on the layer-by-layer assembly and thermal annealing is presented. Polyelectrolyte multilayers (PEMs) assembled from chitosan and hyaluronic acid were thermally annealed in an oven at 37°C for 72h. The effect of annealing on the PEM properties and topography was studied by atomic force microscopy, ζ-potential, circular dichroism and contact angle measurements. Cell adherence on PEMs before and after annealing was evaluated by measuring the cell spreading area and aspect ratio for the A549 epithelial, BHK kidney fibroblast, C2C12 myoblast and MC-3T3-E1 osteoblast cell lines. Chitosan/hyaluronic acid PEMs show a low cell adherence that decreases with the thermal annealing, as observed from the reduction in the average cell spreading area and more rounded cell morphology. The adhesion of S. aureus (Gram-positive) and E. coli (Gram-negative) bacteria strains was quantified by optical microscopy, counting the number of colony-forming units and measuring the light scattering of bacteria suspension after detachment from the PEM surface. A 20% decrease in bacteria adhesion was selectively observed in the S. aureus strain after annealing. The changes in mammalian cell and bacteria adhesion correlate with the changes in topography of the chitosan/hyaluronic PEMs from a rough fibrillar 3D structure to a smoother and planar surface after thermal annealing. Copyright © 2017. Published by Elsevier B.V.

  10. Simultaneous Changes of Spatial Memory and Spine Density after Intrahippocampal Administration of Fibrillar Aβ 1–42 to the Rat Brain

    OpenAIRE

    Borbély, Emőke; Horváth, János; Furdan, Szabina; Bozsó, Zsolt; Penke, Botond; Fülöp, Lívia

    2014-01-01

    Several animal models of Alzheimer's disease have been used in laboratory experiments. Intrahippocampal injection of fibrillar amyloid-beta (fAβ) peptide represents one of the most frequently used models, mimicking Aβ deposits in the brain. In our experiment synthetic fAβ 1–42 peptide was administered to rat hippocampus. The effect of the Aβ peptide on spatial memory and dendritic spine density was studied. The fAβ 1–42-treated rats showed decreased spatial learning ability measured in Morris...

  11. Adhesive properties and adhesive joints strength of graphite/epoxy composites

    Science.gov (United States)

    Rudawska, Anna; Stančeková, Dana; Cubonova, Nadezda; Vitenko, Tetiana; Müller, Miroslav; Valášek, Petr

    2017-05-01

    The article presents the results of experimental research of the adhesive joints strength of graphite/epoxy composites and the results of the surface free energy of the composite surfaces. Two types of graphite/epoxy composites with different thickness were tested which are used to aircraft structure. The single-lap adhesive joints of epoxy composites were considered. Adhesive properties were described by surface free energy. Owens-Wendt method was used to determine surface free energy. The epoxy two-component adhesive was used to preparing the adhesive joints. Zwick/Roell 100 strength device were used to determination the shear strength of adhesive joints of epoxy composites. The strength test results showed that the highest value was obtained for adhesive joints of graphite-epoxy composite of smaller material thickness (0.48 mm). Statistical analysis of the results obtained, the study showed statistically significant differences between the values of the strength of the confidence level of 0.95. The statistical analysis of the results also showed that there are no statistical significant differences in average values of surface free energy (0.95 confidence level). It was noted that in each of the results the dispersion component of surface free energy was much greater than polar component of surface free energy.

  12. Insightful understanding of the role of clay topology on the stability of biomimetic hybrid chitosan-clay thin films and CO2-dried porous aerogel microspheres

    OpenAIRE

    Frindy, Sana; Primo Arnau, Ana Maria; Qaiss, Abou el Kacem; Bouhfid, Rachid; Lahcini, Mohamed; García Gómez, Hermenegildo; Bousmina, Mosto; El Kadib, Abdelkrim

    2016-01-01

    [EN] Three natural clay-based microstructures, namely layered montmorillonite (MMT), nanotubular halloysite (HNT) and micro-fibrillar sepiolite (SP) were used for the synthesis of hybrid chitosan-clay thin films and porous aerogel microspheres. At a first glance, a decrease in the viscosity of the three gel forming solutions was noticed as a result of breaking the mutual polymeric chains interaction by the clay microstructure. Upon casting, chitosan-clay films displayed enhanced hydrophilicit...

  13. Bacterial endotoxin adhesion to different types of orthodontic adhesives

    Directory of Open Access Journals (Sweden)

    Priscilla Coutinho ROMUALDO

    Full Text Available Abstract Bacterial endotoxin (LPS adhesion to orthodontic brackets is a known contributing factor to inflammation of the adjacent gingival tissues. Objective The aim of this study was to assess whether LPS adheres to orthodontic adhesive systems, comparing two commercial brands. Material and Methods Forty specimens were fabricated from Transbond XT and Light Bond composite and bonding agent components (n=10/component, then contaminated by immersion in a bacterial endotoxin solution. Contaminated and non-contaminated acrylic resin samples were used as positive and negative control groups, respectively. LPS quantification was performed by the Limulus Amebocyte Lysate QCL-1000™ test. Data obtained were scored and subjected to the Chi-square test using a significance level of 5%. Results There was endotoxin adhesion to all materials (p0.05. There was no significant difference (p>0.05 among commercial brands. Affinity of endotoxin was significantly greater for the bonding agents (p=0.0025. Conclusions LPS adhered to both orthodontic adhesive systems. Regardless of the brand, the endotoxin had higher affinity for the bonding agents than for the composites. There is no previous study assessing the affinity of LPS for orthodontic adhesive systems. This study revealed that LPS adheres to orthodontic adhesive systems. Therefore, additional care is recommended to orthodontic applications of these materials.

  14. Adhesive Strength of dry Adhesive Structures Depending on the Thickness of Metal Coating

    International Nuclear Information System (INIS)

    Kim, Gyu Hye; Kwon, Da Som; Kim, Mi Jung; Kim, Su Hee; Yoon, Ji Won; An, Tea Chang; Hwang, Hui Yun

    2016-01-01

    Recently, engineering applications have started to adopt solutions inspired by nature. The peculiar adhesive properties of gecko skin are an example, as they allow the animal to move freely on vertical walls and even on ceilings. The high adhesive forces between gecko feet and walls are due to the hierarchical microscopical structure of the skin. In this study, the effect of metal coatings on the adhesive strength of synthetic, hierarchically structured, dry adhesives was investigated. Synthetic dry adhesives were fabricated using PDMS micro-molds prepared by photolithography. Metal coatings on synthetic dry adhesives were formed by plasma sputtering. Adhesive strength was measured by pure shear tests. The highest adhesion strengths were found with coatings composed of 4 nm thick layers of Indium, 8 nm thick layers of Zinc and 6 nm thick layers of Gold, respectively

  15. Adhesive Strength of dry Adhesive Structures Depending on the Thickness of Metal Coating

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Gyu Hye; Kwon, Da Som; Kim, Mi Jung; Kim, Su Hee; Yoon, Ji Won; An, Tea Chang; Hwang, Hui Yun [Andong National Univ., Andong (Korea, Republic of)

    2016-07-15

    Recently, engineering applications have started to adopt solutions inspired by nature. The peculiar adhesive properties of gecko skin are an example, as they allow the animal to move freely on vertical walls and even on ceilings. The high adhesive forces between gecko feet and walls are due to the hierarchical microscopical structure of the skin. In this study, the effect of metal coatings on the adhesive strength of synthetic, hierarchically structured, dry adhesives was investigated. Synthetic dry adhesives were fabricated using PDMS micro-molds prepared by photolithography. Metal coatings on synthetic dry adhesives were formed by plasma sputtering. Adhesive strength was measured by pure shear tests. The highest adhesion strengths were found with coatings composed of 4 nm thick layers of Indium, 8 nm thick layers of Zinc and 6 nm thick layers of Gold, respectively.

  16. Physics of adhesion

    International Nuclear Information System (INIS)

    Gerberich, W W; Cordill, M J

    2006-01-01

    Adhesion physics was relegated to the lowest echelons of academic pursuit until the advent of three seemingly disconnected events. The first, atomic force microscopy (AFM), eventually allowed fine-scale measurement of adhesive point contacts. The second, large-scale computational materials science, now permits both hierarchical studies of a few thousand atoms from first principles or of billions of atoms with less precise interatomic potentials. The third is a microelectronics industry push towards the nanoscale which has provided the driving force for requiring a better understanding of adhesion physics. In the present contribution, an attempt is made at conjoining these separate events into an updating of how theoretical and experimental approaches are providing new understanding of adhesion physics. While all material couples are briefly considered, the emphasis is on metal/semiconductor and metal/ceramic interfaces. Here, adhesion energies typically range from 1 to 100 J m -2 where the larger value is considered a practical work of adhesion. Experimental emphasis is on thin-film de-adhesion for 10 to 1000 nm thick films. For comparison, theoretical approaches from first principles quantum mechanics to embedded atom methods used in multi-scale modelling are utilized

  17. Microstructure and mechanical properties of weld-bonded and resistance spot welded magnesium-to-steel dissimilar joints

    International Nuclear Information System (INIS)

    Xu, W.; Chen, D.L.; Liu, L.; Mori, H.; Zhou, Y.

    2012-01-01

    Highlights: ► Adhesive reduces shrinkage porosity and stress concentration around the weld nugget. ► Adhesive promotes the formation of intermetallic compounds during weld bonding. ► In Mg/steel joints fusion zone appears only at the Mg side with dendritic structures. ► Weld-bonded Mg/steel joints are considerably stronger than RSW Mg/steel joints. ► Fatigue strength is three-fold higher for weld-bonded joints than for RSW joints. - Abstract: The aim of this study was to evaluate microstructures, tensile and fatigue properties of weld-bonded (WB) magnesium-to-magnesium (Mg/Mg) similar joints and magnesium-to-steel (Mg/steel) dissimilar joints, in comparison with resistance spot welded (RSW) Mg/steel dissimilar joints. In the WB Mg/Mg joints, equiaxed dendritic and divorced eutectic structures formed in the fusion zone (FZ). In the dissimilar joints of RSW and WB Mg/steel, FZ appeared only at Mg side with equiaxed and columnar dendrites. At steel side no microstructure changed in the WB Mg/steel joints, while the microstructure in the RSW Mg/steel joints consisted of lath martensite, bainite, pearlite and retained austenite leading to an increased microhardness. The relatively low cooling rate suppressed the formation of shrinkage porosity but promoted the formation of MgZn 2 and Mg 7 Zn 3 in the WB Mg/steel joints. The added adhesive layer diminished stress concentration around the weld nugget. Both WB Mg/Mg and Mg/steel joints were significantly stronger than RSW Mg/steel joints in terms of the maximum tensile shear load and energy absorption, which also increased with increasing strain rate. Fatigue strength was three-fold higher for WB Mg/Mg and Mg/steel joints than for RSW Mg/steel joints. Fatigue failure in the RSW Mg/steel joints occurred from the heat-affected zone near the notch root at lower load levels, and in the mode of interfacial fracture at higher load levels, while it occurred in the Mg base metal at a maximum cyclic load up to ∼10 kN in

  18. Influences of pretreatment and hard baking on the mechanical reliability of SU-8 microstructures

    International Nuclear Information System (INIS)

    Morikaku, Toshiyuki; Kaibara, Yoshinori; Inoue, Shozo; Namazu, Takahiro; Inoue, Masatoshi; Miura, Takuya; Suzuki, Takaaki; Oohira, Fumikazu

    2013-01-01

    In this paper, the influences of pretreatment and hard baking on the mechanical characteristics of SU-8 microstructures are described. Four types of samples with different combinations of O 2 plasma ashing, primer coating and hard baking were prepared for shear strength tests and uniaxial tensile tests. Specially developed shear test equipment was used to experimentally measure the shear adhesion strength of SU-8 micro posts on a glass substrate. The adhesiveness was strengthened by hard baking at 200 °C for 60 min, whereas other pretreatment processes hardly affected the strength. The pretreatment and hard baking effects on the adhesive strength were compared with those on the fracture strength measured by uniaxial tensile testing. There were no influences of O 2 plasma ashing on both the strengths, and primer coating affected only tensile strength. The primer coating effect as well as the hard baking effect on stress relaxation phenomena in uniaxial tension was observed as well. Fourier transform infrared spectroscopy demonstrated that surface degradation and epoxide-ring opening polymerization would have given rise to the primer coating effect and the hard baking effect on the mechanical characteristics, respectively. (paper)

  19. Influences of pretreatment and hard baking on the mechanical reliability of SU-8 microstructures

    Science.gov (United States)

    Morikaku, Toshiyuki; Kaibara, Yoshinori; Inoue, Masatoshi; Miura, Takuya; Suzuki, Takaaki; Oohira, Fumikazu; Inoue, Shozo; Namazu, Takahiro

    2013-10-01

    In this paper, the influences of pretreatment and hard baking on the mechanical characteristics of SU-8 microstructures are described. Four types of samples with different combinations of O2 plasma ashing, primer coating and hard baking were prepared for shear strength tests and uniaxial tensile tests. Specially developed shear test equipment was used to experimentally measure the shear adhesion strength of SU-8 micro posts on a glass substrate. The adhesiveness was strengthened by hard baking at 200 °C for 60 min, whereas other pretreatment processes hardly affected the strength. The pretreatment and hard baking effects on the adhesive strength were compared with those on the fracture strength measured by uniaxial tensile testing. There were no influences of O2 plasma ashing on both the strengths, and primer coating affected only tensile strength. The primer coating effect as well as the hard baking effect on stress relaxation phenomena in uniaxial tension was observed as well. Fourier transform infrared spectroscopy demonstrated that surface degradation and epoxide-ring opening polymerization would have given rise to the primer coating effect and the hard baking effect on the mechanical characteristics, respectively.

  20. Surface Tension Flows inside Surfactant-Added Poly(dimethylsiloxane Microstructures with Velocity-Dependent Contact Angles

    Directory of Open Access Journals (Sweden)

    Jyh Jian Chen

    2014-03-01

    Full Text Available Filling of liquid samples is realized in a microfluidic device with applications including analytical systems, biomedical devices, and systems for fundamental research. The filling of a disk-shaped polydimethylsiloxane (PDMS microchamber by liquid is analyzed with reference to microstructures with inlets and outlets. The microstructures are fabricated using a PDMS molding process with an SU-8 mold. During the filling, the motion of the gas-liquid interface is determined by the competition among inertia, adhesion, and surface tension. A single ramp model with velocity-dependent contact angles is implemented for the accurate calculation of surface tension forces in a three-dimensional volume-of-fluid based model. The effects of the parameters of this functional form are investigated. The influences of non-dimensional parameters, such as the Reynolds number and the Weber number, both determined by the inlet velocity, on the flow characteristics are also examined. An oxygen-plasma-treated PDMS substrate is utilized, and the microstructure is modified to be hydrophilic. Flow experiments are conducted into both hydrophilic and hydrophobic PDMS microstructures. Under a hydrophobic wall condition, numerical simulations with imposed boundary conditions of static and dynamic contact angles can successfully predict the moving of the meniscus compared with experimental measurements. However, for a hydrophilic wall, accurate agreement between numerical and experimental results is obvious as the dynamic contact angles were implemented.

  1. Non-uniform self-assembly: On the anisotropic architecture of α-synuclein supra-fibrillar aggregates.

    Science.gov (United States)

    Semerdzhiev, Slav A; Shvadchak, Volodymyr V; Subramaniam, Vinod; Claessens, Mireille M A E

    2017-08-09

    Although the function of biopolymer hydrogels in nature depends on structural anisotropy at mesoscopic length scales, the self-assembly of such anisotropic structures in vitro is challenging. Here we show that fibrils of the protein α-synuclein spontaneously self-assemble into structurally anisotropic hydrogel particles. While the fibrils in the interior of these supra-fibrillar aggregates (SFAs) are randomly oriented, the fibrils in the periphery prefer to cross neighboring fibrils at high angles. This difference in organization coincides with a significant difference in polarity of the environment in the central and peripheral parts of the SFA. We rationalize the structural anisotropy of SFAs in the light of the observation that αS fibrils bind a substantial amount of counterions. We propose that, with the progress of protein polymerization into fibrils, this binding of counterions changes the ionic environment which triggers a change in fibril organization resulting in anisotropy in the architecture of hydrogel particles.

  2. Microstructure, mechanical behavior and biocompatibility of powder metallurgy Nb-Ti-Ta alloys as biomedical material.

    Science.gov (United States)

    Liu, Jue; Chang, Lin; Liu, Hairong; Li, Yongsheng; Yang, Hailin; Ruan, Jianming

    2017-02-01

    Microstructures, mechanical properties, apatite-forming ability and in vitro experiments were studied for Nb-25Ti-xTa (x=10, 15, 20, 25, 35at.%) alloys fabricated by powder metallurgy. It is confirmed that the alloys could achieve a relative density over 80%. Meanwhile, the increase in Ta content enhances the tensile strength, elastic modulus and hardness of the as-sintered alloys. When increasing the sintering temperatures, the microstructure became more homogeneous for β phase, resulting in a decrease in the modulus and strength. Moreover, the alloys showed a good biocompatibility due to the absence of cytotoxic elements, and were suitable for apatite formation and cell adhesion. In conclusion, Nb-25Ti-xTa alloys are potentially useful in biomedical applications with their mechanical and biological properties being evaluated in this work. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Reflections about Adhesive Systems

    OpenAIRE

    de Freitas Borges, Marciano; Diesel, Pâmela Gutheil; Corrêa, Fernanda Gomez; Bernardi, Eledana; Fernandes Montagner, Anelise; Skupien, Jovito Adiel; Susin, Alexandre Henrique

    2010-01-01

    The adhesive systems are responsible for an efficient union between teeth and resin, resulting in a longevity restoration. They are organic molecules di or multifunctional that contain reactive groups that interact with dentin and with the resin monomer of composite resin. The adhesive systems are characterized by wet adhesion, which is a result of presence of hidrophylics radicals in their compositions, to promote a better bond and the best properties of the adhesion. Adhesive systems may us...

  4. Vaginal epithelial cells regulate membrane adhesiveness to co-ordinate bacterial adhesion.

    Science.gov (United States)

    Younes, Jessica A; Klappe, Karin; Kok, Jan Willem; Busscher, Henk J; Reid, Gregor; van der Mei, Henny C

    2016-04-01

    Vaginal epithelium is colonized by different bacterial strains and species. The bacterial composition of vaginal biofilms controls the balance between health and disease. Little is known about the relative contribution of the epithelial and bacterial cell surfaces to bacterial adhesion and whether and how adhesion is regulated over cell membrane regions. Here, we show that bacterial adhesion forces with cell membrane regions not located above the nucleus are stronger than with regions above the nucleus both for vaginal pathogens and different commensal and probiotic lactobacillus strains involved in health. Importantly, adhesion force ratios over membrane regions away from and above the nucleus coincided with the ratios between numbers of adhering bacteria over both regions. Bacterial adhesion forces were dramatically decreased by depleting the epithelial cell membrane of cholesterol or sub-membrane cortical actin. Thus, epithelial cells can regulate membrane regions to which bacterial adhesion is discouraged, possibly to protect the nucleus. © 2015 John Wiley & Sons Ltd.

  5. Microstructure and properties of thick nanocomposite TiN/Si{sub 3}N{sub 4} coatings on Vanadis 23 HS steel

    Energy Technology Data Exchange (ETDEWEB)

    Moskalewicz, Tomasz; Czyrska-Filemonowicz, Aleksandra [AGH Univ. of Science and Technology, Faculty of Metals Engineering and Industrial Computer Science, Krakow (Poland); Zimowski, Slawomir [AGH Univ. of Science and Technology, Faculty of Mechanical Engineering and Robotics, Krakow (Poland); Wendler, Bogdan; Progalskiy, Ivan [Lodz Univ. of Technology (Poland). Inst. of Materials Science and Engineering

    2015-07-15

    The microstructure and selected micro-mechanical properties of a 13.4 μm thick nanocomposite TiN/Si{sub 3}N{sub 4} coating deposited onto Vanadis 23 HS steel by a new gas pulsed magnetron sputtering technique were investigated. Scanning and transmission electron microscopy were employed to investigate the detailed microstructure of the coating. It was found that the coating exhibited a fully nanocrystalline structure and was composed of two zones: the outer zone with columnar structure and the inner one with equiaxed, fine columnar structure. Both zones consisted mainly of the δ-TiN nanocrystallites with a small amount of α-Si{sub 3}N{sub 4} and β-Si{sub 3}N{sub 4}. In order to increase coating adhesion to the substrate, a graded intermediate layer consisting of three different phases (pure Cr, CrN and Cr2N) was applied. The hardness of the as-deposited TiN/Si{sub 3}N{sub 4} coating was equal to 48 GPa, whereas it was equal to 40 GPa after annealing. The coatings exhibited very good adhesion to the underlying steel substrate.

  6. Dry adhesives with sensing features

    International Nuclear Information System (INIS)

    Krahn, J; Menon, C

    2013-01-01

    Geckos are capable of detecting detachment of their feet. Inspired by this basic observation, a novel functional dry adhesive is proposed, which can be used to measure the instantaneous forces and torques acting on an adhesive pad. Such a novel sensing dry adhesive could potentially be used by climbing robots to quickly realize and respond appropriately to catastrophic detachment conditions. The proposed torque and force sensing dry adhesive was fabricated by mixing Carbon Black (CB) and Polydimethylsiloxane (PDMS) to form a functionalized adhesive with mushroom caps. The addition of CB to PDMS resulted in conductive PDMS which, when under compression, tension or torque, resulted in a change in the resistance across the adhesive patch terminals. The proposed design of the functionalized dry adhesive enables distinguishing an applied torque from a compressive force in a single adhesive pad. A model based on beam theory was used to predict the change in resistance across the terminals as either a torque or compressive force was applied to the adhesive patch. Under a compressive force, the sensing dry adhesive was capable of measuring compression stresses from 0.11 Pa to 20.9 kPa. The torque measured by the adhesive patch ranged from 2.6 to 10 mN m, at which point the dry adhesives became detached. The adhesive strength was 1.75 kPa under an applied preload of 1.65 kPa for an adhesive patch with an adhesive contact area of 7.07 cm 2 . (paper)

  7. Dry adhesives with sensing features

    Science.gov (United States)

    Krahn, J.; Menon, C.

    2013-08-01

    Geckos are capable of detecting detachment of their feet. Inspired by this basic observation, a novel functional dry adhesive is proposed, which can be used to measure the instantaneous forces and torques acting on an adhesive pad. Such a novel sensing dry adhesive could potentially be used by climbing robots to quickly realize and respond appropriately to catastrophic detachment conditions. The proposed torque and force sensing dry adhesive was fabricated by mixing Carbon Black (CB) and Polydimethylsiloxane (PDMS) to form a functionalized adhesive with mushroom caps. The addition of CB to PDMS resulted in conductive PDMS which, when under compression, tension or torque, resulted in a change in the resistance across the adhesive patch terminals. The proposed design of the functionalized dry adhesive enables distinguishing an applied torque from a compressive force in a single adhesive pad. A model based on beam theory was used to predict the change in resistance across the terminals as either a torque or compressive force was applied to the adhesive patch. Under a compressive force, the sensing dry adhesive was capable of measuring compression stresses from 0.11 Pa to 20.9 kPa. The torque measured by the adhesive patch ranged from 2.6 to 10 mN m, at which point the dry adhesives became detached. The adhesive strength was 1.75 kPa under an applied preload of 1.65 kPa for an adhesive patch with an adhesive contact area of 7.07 cm2.

  8. Reversible Thermoset Adhesives

    Science.gov (United States)

    Mac Murray, Benjamin C. (Inventor); Tong, Tat H. (Inventor); Hreha, Richard D. (Inventor)

    2016-01-01

    Embodiments of a reversible thermoset adhesive formed by incorporating thermally-reversible cross-linking units and a method for making the reversible thermoset adhesive are provided. One approach to formulating reversible thermoset adhesives includes incorporating dienes, such as furans, and dienophiles, such as maleimides, into a polymer network as reversible covalent cross-links using Diels Alder cross-link formation between the diene and dienophile. The chemical components may be selected based on their compatibility with adhesive chemistry as well as their ability to undergo controlled, reversible cross-linking chemistry.

  9. Fabrication of anti-adhesion surfaces on aluminium substrates of rubber plastic moulds using electrolysis plasma treatment

    Energy Technology Data Exchange (ETDEWEB)

    Meng, Jianbing, E-mail: jianbingmeng@126.com; Dong, Xiaojuan; Wei, Xiuting; Yin, Zhanmin [School of Mechanical Engineering, Shandong University of Technology, Zibo, 255049 (China)

    2015-04-15

    An anti-adhesion surface with a water contact angle of 167° was fabricated on aluminium samples of rubber plastic moulds by electrolysis plasma treatment using mixed electrolytes of C{sub 6}H{sub 5}O{sub 7}(NH{sub 4}){sub 3} and Na{sub 2}SO{sub 4}, followed by fluorination. To optimise the fabrication conditions, several important processing parameters such as the discharge voltage, discharge time, concentrations of supporting electrolyte and stearic acid ethanol solution were examined systematically. Using scanning electron microscopy (SEM) to analyse surfaces morphology, micrometer scale pits, and protrusions were found on the surface, with numerous nanometer mastoids contained in the protrusions. These binary micro/nano-scale structures, which are similar to the micro-structures of soil-burrowing animals, play a critical role in achieving low adhesion properties. Otherwise, the anti-adhesion behaviours of the resulting samples were analysed by the atomic force microscope (AFM), Fourier-transform infrared spectrophotometer (FTIR), electrons probe micro-analyzer (EPMA), optical contact angle meter, digital Vickers microhardness (Hv) tester, and electronic universal testing. The results show that the electrolysis plasma treatment does not require complex processing parameters, using a simple device, and is an environment-friendly and effective method. Under the optimised conditions, the contact angle (CA) for the modified anti-adhesion surface is up to 167°, the sliding angle (SA) is less than 2°, roughness of the sample surface is only 0.409μm. Moreover, the adhesion force and H{sub v} are 0. 9KN and 385, respectively.

  10. TANNIN ADHESIVES AS AN ALTENATIVE TO THE SYNTHETIC PHENOLIC ADHESIVES

    Directory of Open Access Journals (Sweden)

    Semra Çolak

    2003-04-01

    Full Text Available Recently, increasing attention has been paid industrially to the use of tannin formaldehyde adhesives in production of wood based panel products such as particleboard, fiber board and plywood. The researches on the use of tannin extracts as a wood adhesive started in 1950, however, they proceeded very slowly since the problems associated with the application of them. The idea which tannin extract can be used replace the oil-based phenolic adhesive was the base of several studies after the oil crisis of the 1970s. In the past, the economical aspects were important in the researches on the tannin-based adhesives. Nowadays, however, both economical and ecological factors should have taken into consideration in wood bonding.

  11. Particle adhesion and removal

    CERN Document Server

    Mittal, K L

    2015-01-01

    The book provides a comprehensive and easily accessible reference source covering all important aspects of particle adhesion and removal.  The core objective is to cover both fundamental and applied aspects of particle adhesion and removal with emphasis on recent developments.  Among the topics to be covered include: 1. Fundamentals of surface forces in particle adhesion and removal.2. Mechanisms of particle adhesion and removal.3. Experimental methods (e.g. AFM, SFA,SFM,IFM, etc.) to understand  particle-particle and particle-substrate interactions.4. Mechanics of adhesion of micro- and  n

  12. Energetics of bacterial adhesion

    International Nuclear Information System (INIS)

    Loosdrecht, M.C.M. van; Zehnder, A.J.B.

    1990-01-01

    For the description of bacterial adhesion phenomena two different physico-chemical approaches are available. The first one, based on a surface Gibbs energy balance, assumes intimate contact between the interacting surfaces. The second approach, based on colloid chemical theories (DLVO theory), allows for two types of adhesion: 1) secondary minimum adhesion, which is often weak and reversible, and 2) irreversible primary minimum adhesion. In the secondary minimum adhesion a thin water film remains present between the interacting surface. The merits of both approaches are discussed in this paper. In addition, the methods available to measure the physico-chemical surface characteristics of bacteria and the influence of adsorbing (in)organic compounds, extracellular polymers and cell surface appendages on adhesion are summarized. (author) 2 figs., 1 tab., 50 refs

  13. Morphological Evaluation of the Adhesive/Enamel interfaces of Two-step Self-etching Adhesives and Multimode One-bottle Self-etching Adhesives.

    Science.gov (United States)

    Sato, Takaaki; Takagaki, Tomohiro; Matsui, Naoko; Hamba, Hidenori; Sadr, Alireza; Nikaido, Toru; Tagami, Junji

    To evaluate the acid-base resistant zone (ABRZ) at the adhesive/enamel interface of self-etching adhesives with or without prior phosphoric acid etching. Four adhesives were used in 8 groups: Clearfil SE Bond (SEB), Optibond XTR (XTR), Scotchbond Universal Adhesive (SBU), and Clearfil BOND SE ONE (ONE) without prior phosphoric-acid etching, and each adhesive with phosphoric acid etching for 10 s (P-SEB, P-XTR, P-SBU and P-ONE, respectively). After application of self-etching adhesives on ground enamel surfaces of human teeth, a flowable composite was placed. For observation of the acid-base resistant zone (ABRZ), the bonded interface was exposed to demineralizing solution (pH 4.5) for 4.5 h, followed by 5% NaOCl with ultrasonication for 20 min. After the acid-base challenge, morphological attributes of the interface were observed using SEM. ABRZ formation was confirmed in all groups. The funnel-shaped erosion beneath the interface was present in SBU and ONE, where nearly 10 to 15 μm of enamel was dissolved. With phosphoric acid etching, the ABRZs were obviously thicker compared with no phosphoric acid etching. Enamel beneath the bonding interface was more susceptible to acid dissolution in SBU and ONE. In the case of the one-bottle self-etching adhesives and universal adhesives that intrinsically have higher pH values, enamel etching should be recommended to improve the interfacial quality.

  14. Influence of Application Time and Etching Mode of Universal Adhesives on Enamel Adhesion.

    Science.gov (United States)

    Sai, Keiichi; Takamizawa, Toshiki; Imai, Arisa; Tsujimoto, Akimasa; Ishii, Ryo; Barkmeier, Wayne W; Latta, Mark A; Miyazaki, Masashi

    2018-01-01

    To investigate the influence of application time and etching mode of universal adhesives on enamel adhesion. Five universal adhesives, Adhese Universal, Bondmer Lightless, Clearfil Universal Bond Quick, G-Premio Bond, and Scotchbond Universal, were used. Bovine incisors were prepared and divided into four groups of ten teeth each. SBS, Ra, and SFE were determined after the following procedures: 1. self-etch mode with immediate air blowing after application (IA); 2. self-etch mode with prolonged application time (PA); 3. etch-and-rinse mode with IA; 4. etch-and-rinse mode with PA. After 24-h water storage, the bonded assemblies were subjected to shear bond strength (SBS) tests. For surface roughness (Ra) and surface free energy (SFE) measurements, the adhesives were simply applied to the enamel and rinsed with acetone and water before the measurements were carried out. Significantly higher SBS and Ra values were obtained with etch-and-rinse mode than with self-etch mode regardless of the application time or type of adhesive. Although most adhesives showed decreased SFE values with increased application time in self-etch mode, SFE values in etch-and-rinse mode were dependent on the adhesive type and application time. Etching mode, application time, and type of adhesive significantly influenced the SBS, Ra, and SFE values.

  15. Data in support of the identification of neuronal and astrocyte proteins interacting with extracellularly applied oligomeric and fibrillar α-synuclein assemblies by mass spectrometry.

    Science.gov (United States)

    Shrivastava, Amulya Nidhi; Redeker, Virginie; Fritz, Nicolas; Pieri, Laura; Almeida, Leandro G; Spolidoro, Maria; Liebmann, Thomas; Bousset, Luc; Renner, Marianne; Léna, Clément; Aperia, Anita; Melki, Ronald; Triller, Antoine

    2016-06-01

    α-Synuclein (α-syn) is the principal component of Lewy bodies, the pathophysiological hallmark of individuals affected by Parkinson disease (PD). This neuropathologic form of α-syn contributes to PD progression and propagation of α-syn assemblies between neurons. The data we present here support the proteomic analysis used to identify neuronal proteins that specifically interact with extracellularly applied oligomeric or fibrillar α-syn assemblies (conditions 1 and 2, respectively) (doi: 10.15252/embj.201591397[1]). α-syn assemblies and their cellular partner proteins were pulled down from neuronal cell lysed shortly after exposure to exogenous α-syn assemblies and the associated proteins were identified by mass spectrometry using a shotgun proteomic-based approach. We also performed experiments on pure cultures of astrocytes to identify astrocyte-specific proteins interacting with oligomeric or fibrillar α-syn (conditions 3 and 4, respectively). For each condition, proteins interacting selectively with α-syn assemblies were identified by comparison to proteins pulled-down from untreated cells used as controls. The mass spectrometry data, the database search and the peak lists have been deposited to the ProteomeXchange Consortium database via the PRIDE partner repository with the dataset identifiers PRIDE: PXD002256 to PRIDE: PXD002263 and doi: 10.6019/PXD002256 to 10.6019/PXD002263.

  16. Investigation of stand-off distance effect on structure, adhesion and hardness of copper coatings obtained by the APS technique

    Science.gov (United States)

    Masoumeh, Goudarzi; Shahrooz, Saviz; Mahmood, Ghoranneviss; Ahmad, Salar Elahi

    2018-03-01

    The outbreak of the disease and infection in the hospital environment and medical equipment is one of the concerns of modern life. One of the effective ways for preventing and reducing the complications of infections is modification of the surface. Here, the handmade atmospheric plasma spray system is used for accumulating copper as an antibacterial agent on the 316L stainless steel substrate, which applies to hospital environment and medical equipment. As a durable coating with proper adhesion is needed on the substrate, the effect of stand-off distance (SOD) which is an important parameter of the spray on the microstructure, the hardness and adhesion of the copper coating on the 316L stainless steel were investigated. The structure and phase composition of copper depositions were investigated using scanning electron microscopy and X-ray diffraction. The adhesion and hardness of depositions are evidenced using the cross cut tester and Vickers hardness tester, respectively. The findings confirm that the voids in the coatings increase with increasing SOD, which leads to decreasing the hardness of coatings and also the adhesion strength between depositions and substrate. In addition, by increasing the SOD, the oxygen content and the size of grains in the lamellae (fine structure) of coatings also increase.

  17. Estimation of Frost Resistance of the Tile Adhesive on a Cement Based with Application of Amorphous Aluminosilicates as a Modifying Additive

    Science.gov (United States)

    Ivanovna Loganina, Valentina; Vladimirovna Zhegera, Christina

    2017-10-01

    In the article given information on the possibility of using amorphous aluminosilicates as a modifying additive in the offered tile cement adhesive. In the article, the data on the preparation of an additive based on amorphous aluminosilicates, on its microstructure and chemical composition. Presented information on the change in the porosity of cement stone when introduced of amorphous aluminosilicates in the his composition. The formulation of a dry building mix on a cement base is proposed with use of an additive based on amorphous aluminosilicates as a modifying additive. Recipe of dry adhesive mixes include Portland cement M400, mineral aggregate in proportion fraction 0.63-0.315:0.315-0.14 respectively 80:20 (%) and filling density of 1538.2 kg/m3, a plasticizer Kratasol, redispersible powder Neolith P4400 and amorphous alumnosilicates. The developed formulation can be used as a tile adhesive for finishing walls of buildings and structure with tiles. Presented results of the evaluation of frost resistance of adhesives based on cement with using of amorphous aluminosilicates as a modifying additive. Installed the mark on the frost resistance of tile glue and frost resistance of the contact zone of adhesive. Established, that the adhesive layer based on developed formulation dry mixture is crack-resistant and frost-resistant for conditions city Penza and dry humidity zone - zone 3 and climatic subarea IIB (accordance with Building codes and regulations 23-01-99Ȋ) cities Russia’s.

  18. Synaptic Cell Adhesion

    OpenAIRE

    Missler, Markus; Südhof, Thomas C.; Biederer, Thomas

    2012-01-01

    Chemical synapses are asymmetric intercellular junctions that mediate synaptic transmission. Synaptic junctions are organized by trans-synaptic cell adhesion molecules bridging the synaptic cleft. Synaptic cell adhesion molecules not only connect pre- and postsynaptic compartments, but also mediate trans-synaptic recognition and signaling processes that are essential for the establishment, specification, and plasticity of synapses. A growing number of synaptic cell adhesion molecules that inc...

  19. Focal adhesion kinase maintains, but not increases the adhesion of dental pulp cells.

    Science.gov (United States)

    Qian, Yuyan; Shao, Meiying; Zou, Wenlin; Wang, Linyan; Cheng, Ran; Hu, Tao

    2017-04-01

    Focal adhesion kinase (FAK) functions as a key enzyme in the integrin-mediated adhesion-signalling pathway. Here, we aimed to investigate the effects of FAK on adhesion of human dental pulp (HDP) cells. We transfected lentiviral vectors to silence or overexpress FAK in HDP cells ex vivo. Early cell adhesion, cell survival and focal contacts (FCs)-related proteins (FAK and paxillin) were examined. By using immunofluorescence, the formation of FCs and cytoskeleton was detected, respectively. We found that both adhesion and survival of HDP cells were suppressed by FAK inhibition. However, FAK overexpression slightly inhibited cell adhesion and exhibited no change in cell survival compared with the control. A thick rim of cytoskeleton accumulated and smaller dot-shaped FCs appeared in FAK knockdown cells. Phosphorylation of paxillin (p-paxillin) was inhibited in FAK knockdown cells, verifying that the adhesion was inhibited. Less cytoskeleton and elongated FCs were observed in FAK-overexpressed cells. However, p-paxillin had no significant difference compared with the control. In conclusion, the data suggest that FAK maintains cell adhesion, survival and cytoskeleton formation, but excessive FAK has no positive effects on these aspects.

  20. Microstructured Block Copolymer Surfaces for Control of Microbe Adhesion and Aggregation

    Directory of Open Access Journals (Sweden)

    Ryan R. Hansen

    2014-03-01

    Full Text Available The attachment and arrangement of microbes onto a substrate is influenced by both the biochemical and physical surface properties. In this report, we develop lectin-functionalized substrates containing patterned, three-dimensional polymeric structures of varied shapes and densities and use these to investigate the effects of topology and spatial confinement on lectin-mediated microbe immobilization. Films of poly(glycidyl methacrylate-block-4,4-dimethyl-2-vinylazlactone (PGMA-b-PVDMA were patterned on silicon surfaces into line arrays or square grid patterns with 5 μm wide features and varied pitch. The patterned films had three-dimensional geometries with 900 nm film thickness. After surface functionalization with wheat germ agglutinin, the size of Pseudomonas fluorescens aggregates immobilized was dependent on the pattern dimensions. Films patterned as parallel lines or square grids with a pitch of 10 μm or less led to the immobilization of individual microbes with minimal formation of aggregates. Both geometries allowed for incremental increases in aggregate size distribution with each increase in pitch. These engineered surfaces combine spatial confinement with affinity-based capture to control the extent of microbe adhesion and aggregation, and can also be used as a platform to investigate intercellular interactions and biofilm formation in microbial populations of controlled sizes.

  1. Application of NiMoNb adhesion layer on plasma-treated polyimide substrate for flexible electronic devices

    Energy Technology Data Exchange (ETDEWEB)

    Bang, S.-H.; Kim, K.-K.; Jung, H.-Y.; Kim, T.-H.; Jeon, S.-H. [Metal and Material Technology Group, R and D Center, LS Mtron Ltd., Gyeonggi 431-080 (Korea, Republic of); Seol, Jae-Bok, E-mail: zptkfm20@hanmail.net [Max-Planck-Insititut für Eisenforschung, Max-Planck-Str. 1, D-40237 Düsseldorf (Germany)

    2014-05-02

    A thin film, NiMoNb, was introduced as an adhesion layer between the Cu metal and the insulator polyimide substrate in a flexible Cu-clad laminated structure. Using 90° peel test, we evaluated the peel strength of the system as a function of the thickness of the adhesion layer. An increase in the NiMoNb thickness from 7 to 40 nm enhanced the peel strength of the deposited systems. After plasma treatment by the roll-to-roll method, the multilayer structure showed an outstanding peel strength of ∼ 529 N/m, even after thermal annealing at 150 °C for 168 h. We also studied the role of plasma treatment of the polyimide substrate on the adhesion strength and microstructure of a flexible Cu-clad laminated structure by peel strength, atomic force microscopy, X-ray photoelectron spectroscopy, and transmission electron microscopy. These experimental observations showed that the plasma-treated polyimide substrate with the deposition of NiMoNb showed the enhanced adhesion of ∼ 656 N/m, because of the change of functional groups, which affected the bonding force and crystallinity of the thin films deposited on polyimide, rather than an increase in the surface roughness. - Highlights: • NiMoNb film on polyimide substrate was employed for higher peel strength. • Plasma-treated substrate enhances the peel strength of multilayer. • Even when annealed at 150 °C, plasma-treated films showed enhanced peel strength.

  2. Application of NiMoNb adhesion layer on plasma-treated polyimide substrate for flexible electronic devices

    International Nuclear Information System (INIS)

    Bang, S.-H.; Kim, K.-K.; Jung, H.-Y.; Kim, T.-H.; Jeon, S.-H.; Seol, Jae-Bok

    2014-01-01

    A thin film, NiMoNb, was introduced as an adhesion layer between the Cu metal and the insulator polyimide substrate in a flexible Cu-clad laminated structure. Using 90° peel test, we evaluated the peel strength of the system as a function of the thickness of the adhesion layer. An increase in the NiMoNb thickness from 7 to 40 nm enhanced the peel strength of the deposited systems. After plasma treatment by the roll-to-roll method, the multilayer structure showed an outstanding peel strength of ∼ 529 N/m, even after thermal annealing at 150 °C for 168 h. We also studied the role of plasma treatment of the polyimide substrate on the adhesion strength and microstructure of a flexible Cu-clad laminated structure by peel strength, atomic force microscopy, X-ray photoelectron spectroscopy, and transmission electron microscopy. These experimental observations showed that the plasma-treated polyimide substrate with the deposition of NiMoNb showed the enhanced adhesion of ∼ 656 N/m, because of the change of functional groups, which affected the bonding force and crystallinity of the thin films deposited on polyimide, rather than an increase in the surface roughness. - Highlights: • NiMoNb film on polyimide substrate was employed for higher peel strength. • Plasma-treated substrate enhances the peel strength of multilayer. • Even when annealed at 150 °C, plasma-treated films showed enhanced peel strength

  3. Ceramic Adhesive and Methods for On-Orbit Repair of Re-Entry Vehicles

    Science.gov (United States)

    Riedell, James A.; Easler, Timothy E.

    2013-01-01

    ), and confirmed that the microstructure of the resulting repair leads to durability and resistance to melting or flow. Its processability and working life in a vacuum was demonstrated by NASA astronauts in glovebox processing studies, as well as on-orbit in the open space shuttle bay. All of these advantages increase the working life of NASA vehicles, as well as improve safety for any crew on a manned vehicle. The adhesive, trademarked NOAX(TM). or Non-Oxide Adhesive Experimental, flew on all space shuttle missions from Return To Flight (STS-114) until the final flight (STS- 135) as a crack repair material for the leading edges and nose cap of the vehicle. NOAX(TM) was patented under U.S. Patents 7,628,878 and 7,888,277.

  4. Adhesion measurement of highly-ordered TiO2 nanotubes on Ti-6Al-4V alloy

    Directory of Open Access Journals (Sweden)

    Masoud Sarraf

    2017-12-01

    Full Text Available Self-assembled nanotubular arrays on Ti alloys could be used for more effective implantable devices in various medical approaches. In the present work, the adhesion of TiO2 nanotubes (TiO2 NTs on Ti-6Al-4V (Ti64 was investigated by laser spallation and scratch test techniques. At first, electrochemical anodization was performed in an ammonium fluoride solution dissolved in a 90:10 ethane-1,2-diol (ethylene glycol and water solvent mixture. This process was performed at room temperature (23 °C at a steady potential of 60 V for 1 h. Next, the TiO2 nanotubes layer was heat-treated to improve the adhesion of the coating. The formation of selforganized TiO2 nanotubes as well as the microstructural evolution, are strongly dependent on the processing parameters and subsequent annealing. From microscopic analysis, highly oriented arrays of TiO2 nanotubes were grown by thermal treatment for 90 min at 500 °C. Further heat treatment above 500 °C led to the detachment of the nanotubes and the complete destruction of the nanotubes occurred at temperature above 700 °C. Scratch test analysis over a constant scratch length (1000 µm indicated that the failure point was shifted from 247.4 to 557.9 µm while the adhesion strength was increased from ∼862 to ∼1814 mN after annealing at 500 °C. The adhesion measurement determined by laser spallation technique provided an intrinsic adhesion strength of 51.4 MPa for the TiO2 nanotubes on the Ti64 substrate.

  5. Adhesion of multimode adhesives to enamel and dentin after one year of water storage.

    Science.gov (United States)

    Vermelho, Paulo Moreira; Reis, André Figueiredo; Ambrosano, Glaucia Maria Bovi; Giannini, Marcelo

    2017-06-01

    This study aimed to evaluate the ultramorphological characteristics of tooth-resin interfaces and the bond strength (BS) of multimode adhesive systems to enamel and dentin. Multimode adhesives (Scotchbond Universal (SBU) and All-Bond Universal) were tested in both self-etch and etch-and-rinse modes and compared to control groups (Optibond FL and Clearfil SE Bond (CSB)). Adhesives were applied to human molars and composite blocks were incrementally built up. Teeth were sectioned to obtain specimens for microtensile BS and TEM analysis. Specimens were tested after storage for either 24 h or 1 year. SEM analyses were performed to classify the failure pattern of beam specimens after BS testing. Etching increased the enamel BS of multimode adhesives; however, BS decreased after storage for 1 year. No significant differences in dentin BS were noted between multimode and control in either evaluation period. Storage for 1 year only reduced the dentin BS for SBU in self-etch mode. TEM analysis identified hybridization and interaction zones in dentin and enamel for all adhesives. Silver impregnation was detected on dentin-resin interfaces after storage of specimens for 1 year only with the SBU and CSB. Storage for 1 year reduced enamel BS when adhesives are applied on etched surface; however, BS of multimode adhesives did not differ from those of the control group. In dentin, no significant difference was noted between the multimode and control group adhesives, regardless of etching mode. In general, multimode adhesives showed similar behavior when compared to traditional adhesive techniques. Multimode adhesives are one-step self-etching adhesives that can also be used after enamel/dentin phosphoric acid etching, but each product may work better in specific conditions.

  6. Prevention of bacterial adhesion

    DEFF Research Database (Denmark)

    Klemm, Per; Vejborg, Rebecca Munk; Hancock, Viktoria

    2010-01-01

    . As such, adhesion represents the Achilles heel of crucial pathogenic functions. It follows that interference with adhesion can reduce bacterial virulence. Here, we illustrate this important topic with examples of techniques being developed that can inhibit bacterial adhesion. Some of these will become...

  7. THz Properties of Adhesives

    Science.gov (United States)

    Stübling, E.; Gomell, L.; Sommer, S.; Winkel, A.; Kahlmeyer, M.; Böhm, S.; Koch, M.

    2018-06-01

    We determined the THz properties of 12 different adhesives which are mainly used for industrial purposes. The adhesives applied can be classified according to their chemical structure: epoxy resins, acrylic resins, and polyurethane based materials. This work represents a basis for future studies, which will concentrate on aging effects, including the absorption of water of adhesive joints. Thus, the dielectric properties of the unaged adhesives are investigated and the results of these measurements are described herein.

  8. Bio-inspired reversible underwater adhesive.

    Science.gov (United States)

    Zhao, Yanhua; Wu, Yang; Wang, Liang; Zhang, Manman; Chen, Xuan; Liu, Minjie; Fan, Jun; Liu, Junqiu; Zhou, Feng; Wang, Zuankai

    2017-12-20

    The design of smart surfaces with switchable adhesive properties in a wet environment has remained a challenge in adhesion science and materials engineering. Despite intense demands in various industrial applications and exciting progress in mimicking the remarkable wet adhesion through the delicate control of catechol chemistry, polyelectrolyte complex, and supramolecular architectures, the full recapitulation of nature's dynamic function is limited. Here, we show a facile approach to synthesize bioinspired adhesive, which entails the reversible, tunable, and fast regulation of the wet adhesion on diverse surfaces. The smart wet adhesive takes advantage of the host-guest molecular interaction and the adhesive nature of catechol chemistry, as well as the responsive polymer, allowing for screening and activation of the interfacial interaction simply by a local temperature trigger in an on-demand manner. Our work opens up an avenue for the rational design of bioinspired adhesives with performances even beyond nature.

  9. Long-term In Vitro Adhesion of Polyalkenoate-based Adhesives to Dentin.

    Science.gov (United States)

    Sezinando, Ana; Perdigão, Jorge; Ceballos, Laura

    2017-01-01

    To study the influence of a polyalkenoate copolymer (VCP) on the immediate (24 h) and 6-month dentin bonding stability of VCP-based adhesives, using microtensile bond strength (μTBS), nanoleakage (NL), and ultramorphological analyses (FE-SEM). Eighty-four caries-free molars were randomly assigned to seven adhesives: Clearfil SE Bond (CSE, Kuraray Noritake); Adper Single Bond Plus (SB, 3M ESPE); SB without VCP (SBnoVCP, 3M ESPE); Scotchbond Universal Adhesive applied as a etch-and-rinse adhesive (SBU_ER); SBU without VCP applied as an etch-and-rinse adhesive (SBUnoVCP_ER); SBU applied as a self-etch adhesive (SBU_SE, 3M ESPE); SBU without VCP applied as a self-etch adhesive (SBUnoVCP_SE, 3M ESPE). Half of the beams were tested after 24 h, and the other half was aged in water for 6 months prior to testing. For each tooth/evaluation time, two beams were randomly selected for NL analysis. Statistical analyses of µTBS results were performed using two-way ANOVA, Tukey's post-hoc tests, and Student's t-test for paired data (α = 0.05). Nanoleakage was statistically analyzed using the Kruskal-Wallis and Mann-Whitney tests, with Wilcoxon's test for paired data. For FE-SEM, four caries-free molars were assigned to each of the seven groups. Dentin disks were restored and cross sectioned into halves. One half was observed at 24 h, and the other at 6 months. The highest 6-month mean μTBS was obtained with SBU_SE/SBUnoVCP_SE and SBUnoVCP_ER. SBUnoVCP_SE resulted in greater silver deposition at 6 months. FE-SEM observations showed that CSE and SBU_SE specimens resulted in a submicron hybrid layer without signs of degradation at 6 months. VCP may contribute to the long-term bonding stability of VCP-based adhesives.

  10. Bioinspired pressure actuated adhesive system

    NARCIS (Netherlands)

    Paretkar, D.R.; Kamperman, M.M.G.; Schneider, A.S.; Martina, D.; Creton, C.; Arzt, E.

    2011-01-01

    We developed a dry synthetic adhesive system inspired by gecko feet adhesion that can switch reversibly from adhesion to non-adhesion with applied pressure as external stimulus. Micropatterned polydimethylsiloxane (PDMS) surfaces with pillars of 30 µm length and 10 µm diameter were fabricated using

  11. Albumin fibrillization induces apoptosis via integrin/FAK/Akt pathway

    Directory of Open Access Journals (Sweden)

    Liang Chi-Ming

    2009-01-01

    Full Text Available Abstract Background Numerous proteins can be converted to amyloid-like fibrils to increase cytotoxicity and induce apoptosis, but the methods generally require a high concentration of protein, vigorous shaking, or fibril seed. As well, the detailed mechanism of the cytotoxic effects is not well characterized. In this study, we have developed a novel process to convert native proteins into the fibrillar form. We used globular bovine serum albumin (BSA as a model protein to verify the properties of the fibrillar protein, investigated its cellular effects and studied the signaling cascade induced by the fibrillar protein. Results We induced BSA, a non-cytotoxic globular protein, to become fibril by a novel process involving Superdex-200 column chromatography in the presence of anionic or zwittergenic detergent(s. The column pore size was more important than column matrix composite in fibril formation. The fibrillar BSA induced apoptosis in BHK-21 cell as well as breast cancer cell line T47D. Pre-treating cells with anti-integrin antibodies blocked the apoptotic effect. Fibrillar BSA, but not globular BSA, bound to integrin, dephosphorylated focal adhesion kinase (FAK, Akt and glycogen synthase kinase-3β (GSK-3β. Conclusion We report on a novel process for converting globular proteins into fibrillar form to cause apoptosis by modulating the integrin/FAK/Akt/GSK-3β/caspase-3 signaling pathway. Our findings may be useful for understanding the pathogenesis of amyloid-like fibrils and applicable for the development of better therapeutic agents that target the underlying mechanism(s of the etiologic agents.

  12. Resistance to wear and microstructure of martensitic welds deposits for recharge

    International Nuclear Information System (INIS)

    Gualco, Agustin; Svoboda, Hernan G; Surian, Estela S; Vedia, Luis A

    2006-01-01

    This work studied the welding metal for a martensitic steel (alloyed to Cr, Mn, Mo, V and W), deposited with a tubular metal-cored wire with gaseous protection of 82%Ar-18%Co 2 on a low carbon steel using the semi-automatic welding process. Transverse pieces were cut from the welded coupon for microstructural characterization, measurement of hardness profiles, determination of the chemical composition and wear trials. The microstructural characterization was done using optic and scanning electronic microscopes, X-rays diffraction and energy-dispersive X-ray spectroscopy and Vicker microhardness (1 kg.) was measured. The wear trials (metal-metal) were performed in an Amsler machine under pure flow conditions. Different loads were used and the reference material was a SAE 1020 steel. The temperatures for each case were measured and the weight loss curves were defined as a function of the distance run and of the load. After testing the wear surfaces and the debris were measured. The microstructure of the welded deposit mostly consists of martensite and some retained austenite, with a pattern of dendritic segregation, and a hardness on the surface of 612 HVI. A lineal variation between the weight loss and the load applied was obtained as a response to the wear. The following phenomena were observed: abrasion, plastic deformation, oxidation and adhesion to the wear surfaces, as well as a tempering effect in the condition of the biggest load. The wear mechanisms acting on both surfaces were identified (CW)

  13. Elimination of the reactivation process in the adhesion of chlorinated SBS rubber with polychloroprene adhesives

    Directory of Open Access Journals (Sweden)

    2007-04-01

    Full Text Available Chlorination treatment of a thermoplastic styrene-butadiene-styrene rubber (SBS with a 3 wt% solution of trichloroisocyanuric acid (TCI in methyl ethyl ketone (MEK introduces chlorinated and oxidized moieties on the rubber surface which increase its surface energy and produces surface microroughness. Consequently adhesion properties, evaluated by T-peel strength measurements in chlorinated SBS/solvent based-polyurethane adhesive/leather joints, are enhanced. In this study, two solvent-based polychloroprene adhesives (PCP0 and PCP30R have been considered as an alternative to the commonly used solvent-based polyurethane adhesive (PU. A thermoreactive phenolic resin was added to one of the polychloroprene adhesive formulations (PCP30R. This tackifier resin favors chlorination of the adhesive and reinforces the interface between the chlorinated adhesive and the chlorinated rubber surface. Besides, PCP30R adhesive does not need adhesive reactivation and considerable high T-peel strength value (5.7±0.3 kN/m was obtained. Elimination of the reactivation process implies a considerable improvement of the manufacturing process in the footwear industry.

  14. In vitro assessments on bacterial adhesion and corrosion performance of TiN coating on Ti6Al4V titanium alloy synthesized by multi-arc ion plating

    International Nuclear Information System (INIS)

    Lin Naiming; Huang Xiaobo; Zhang Xiangyu; Fan Ailan; Qin Lin; Tang Bin

    2012-01-01

    TiN coating was synthesized on Ti6Al4V titanium alloy surface by multi-arc ion plating (MIP) technique. Surface morphology, cross sectional microstructure, elemental distributions and phase compositions of the obtained coating were analyzed by means of scanning electron microscope (SEM), optical microscope (OM), glow discharge optical emission spectroscope (GDOES) and X-ray diffraction (XRD). Bacterial adhesion and corrosion performance of Ti6Al4V and the TiN coating were assessed via in vitro bacterial adhesion tests and corrosion experiments, respectively. The results indicated that continuous and compact coating which was built up by pure TiN with a typical columnar crystal structure has reached a thickness of 1.5 μm. This TiN coating could significantly reduce the bacterial adhesion and enhance the corrosion resistance of Ti6Al4V substrate.

  15. Microstructure taxonomy based on spatial correlations: Application to microstructure coarsening

    International Nuclear Information System (INIS)

    Fast, Tony; Wodo, Olga; Ganapathysubramanian, Baskar; Kalidindi, Surya R.

    2016-01-01

    To build materials knowledge, rigorous description of the material structure and associated tools to explore and exploit information encoded in the structure are needed. These enable recognition, categorization and identification of different classes of microstructure and ultimately enable to link structure with properties of materials. Particular interest lies in the protocols capable of mining the essential information in large microstructure datasets and building robust knowledge systems that can be easily accessed, searched, and shared by the broader materials community. In this paper, we develop a protocol based on automated tools to classify microstructure taxonomies in the context of coarsening behavior which is important for long term stability of materials. Our new concepts for enhanced description of the local microstructure state provide flexibility of description. The mathematical description of microstructure that capture crucial attributes of the material, although central to building materials knowledge, is still elusive. The new description captures important higher order spatial information, but at the same time, allows down sampling if less information is needed. We showcase the classification protocol by studying coarsening of binary polymer blends and classifying steady state structures. We study several microstructure descriptions by changing the microstructure local state order and discretization and critically evaluate their efficacy. Our analysis revealed the superior properties of microstructure representation is based on the first order-gradient of the atomic fraction.

  16. Reversible low adhesive to high adhesive superhydrophobicity transition on ZnO nanoparticle surfaces

    International Nuclear Information System (INIS)

    Li, Jian; Jing, Zhijiao; Yang, Yaoxia; Zha, Fei; Yan, Long; Lei, Ziqiang

    2014-01-01

    Superhydrophobic ZnO surfaces with water contact angle of 162° and sliding angle of 2° were fabricated successfully by spraying hydrophobic ZnO nanoparticle suspensions without limitations the shape and size of substrates. The as-prepared superhydrophobic ZnO surfaces are low adhesive and a water droplet easily rolls off with the surface slightly tilted. However, after being irradiated by UV light through a photomask, it becomes highly adhesive, on which a water droplet is firmly pinned without any movement. Further annealing the irradiated film, water droplets can roll off the surface again. Reversible transition between the low adhesive rolling state and high adhesive pinning state can be realized simply by UV illumination and heat treatment alternately. At the same time, the maximum adhesive force between the superhydrophobic ZnO surfaces and the water droplet changes from extreme low (∼5.1 μN) to very high (∼136.1 μN). When irradiated without a photomask, the surface became hydrophilic. Additionally, a water droplet can be transfered from the low adhesive superhydrophobic ZnO surfaces to the hydrophilic ZnO surfaces using the high adhesive superhydrophobic ZnO surfaces as a mechanical hand.

  17. Compatibility of selected plant-based shortening as lard substitute: microstructure, polymorphic forms and textural properties

    Directory of Open Access Journals (Sweden)

    N. A.M. Yanty

    2017-03-01

    Full Text Available A study was carried out to determine the compatibility of three plant-based shortening mixtures to lard shortening (LD in terms of microstructure, polymorphic forms, and textural properties. The shortenings of binary, ternary, and quaternary fat mixtures were prepared according to a standard procedure by blending mee fat (MF with palm stearin (PS in a 99:1 (w/w ratio; avocado fat (Avo with PS and cocoa butter (CB in a 84:7:9 (w/w ratio; palm oil (PO with PS, soybean oil (SBO and CB in a 38:5:52:5 (w/w ratio, respectively. The triacylglycerol composition, polymorphic forms, crystal morphology, and textural properties of the shortening were evaluated. This study found that all three plant-based shortenings and LD shortening were similar with respect to their consistency, hardness and compression and adhesiveness values. However, all plant-based shortening was found to be dissimilar to LD shortening with respect to microstructure.

  18. Compatibility of selected plant-based shortening as lard substitute: microstructure, polymorphic forms and textural properties

    International Nuclear Information System (INIS)

    Yanty, N.A.M.; Marikkar, J.M.N.; Miskandar, M.S.; Bockstaele, F. Van; Dewettinck, K.; Nusantoro, B.P.

    2017-01-01

    A study was carried out to determine the compatibility of three plant-based shortening mixtures to lard shortening (LD) in terms of microstructure, polymorphic forms, and textural properties. The shortenings of binary, ternary, and quaternary fat mixtures were prepared according to a standard procedure by blending mee fat (MF) with palm stearin (PS) in a 99:1 (w/w) ratio; avocado fat (Avo) with PS and cocoa butter (CB) in a 84:7:9 (w/w) ratio; palm oil (PO) with PS, soybean oil (SBO) and CB in a 38:5:52:5 (w/w) ratio, respectively. The triacylglycerol composition, polymorphic forms, crystal morphology, and textural properties of the shortening were evaluated. This study found that all three plant-based shortenings and LD shortening were similar with respect to their consistency, hardness and compression and adhesiveness values. However, all plant-based shortening was found to be dissimilar to LD shortening with respect to microstructure. [es

  19. Microstructure and adhesion strength of Sn-9Zn-1.5Ag-xBi (x = 0 wt% and 2 wt%)/Cu after electrochemical polarization in a 3.5 wt% NaCl solution

    Energy Technology Data Exchange (ETDEWEB)

    Li, W.-L. [Department of Mechanical Engineering, National Kaohsiung University of Applied Sciences, 415 Chien-Kung Road, Kaohsiung 80782, Taiwan (China); Institute of Nanotechnology and Microsystems Engineering, National Cheng Kung University, 1 Ta-Hsueh Road, Tainan 70101, Taiwan (China); Chen, Y.-R.; Chang, K.-M. [Department of Mechanical Engineering, National Kaohsiung University of Applied Sciences, 415 Chien-Kung Road, Kaohsiung 80782, Taiwan (China); Liu, C.-Y.; Hon, M.-H. [Department of Materials Science and Engineering, National Cheng Kung University, 1 Ta-Hsueh Road, Tainan 70101, Taiwan (China); Wang, M.-C. [Faculty of Fragrance and Cosmetics, Kaohsiung Medical University, 100 Shihchuan 1st Road, Kaohsiung 80728, Taiwan (China)], E-mail: mcwang@kmu.edu.tw

    2008-08-11

    The microstructure and adhesion strength of the Sn-9Zn-1.5Ag-xBi (x = 0 wt% and 2 wt%)/Cu interface after electrochemical polarization have been studied by X-ray diffraction (XRD), scanning electron microscopy (SEM) and pull-off testing. The equilibrium potentials of Sn-9Zn-1.5Ag/Cu and Sn-9Zn-1.5Ag-2Bi/Cu are -1.31 V{sub sce} and -1.22 V{sub sce}, respectively, indicating that Sn-9Zn-1.5Ag-2Bi/Cu has a better corrosion resistance than that of Sn-9Zn-1.5Ag/Cu. The intermetallic compounds of Cu{sub 6}Sn{sub 5}, Cu{sub 5}Zn{sub 8} and Ag{sub 3}Sn are formed at the soldered interface between the Sn-9Zn-1.5Ag-xBi solder alloy and the Cu substrate. The scallop-shaped Cu{sub 6}Sn{sub 5} is close to the Cu substrate and the scallop-shaped Cu{sub 5}Zn{sub 8} is found at the interface in the solder matrix after soldering at 250 deg. C for 10 s. The corrosion products are ZnCl{sub 2}, SnCl{sub 2} and ZnO. On the other hand, pits are also formed on the surface of both solder alloys. The interfacial adhesion strength of the Sn-9Zn-1.5Ag/Cu and Sn-9Zn-1.5Ag-2Bi/Cu decreases from 8.27 {+-} 0.56 MPa and 12.67 {+-} 0.45 MPa to 4.78 {+-} 0.45 MPa and 8.14 {+-} 0.38 MPa, respectively, after electrochemical polarization in a 3.5 wt% NaCl solution. The fracture path of the Sn-9Zn-1.5Ag-2Bi/Cu is along the solder alloy/ZnO and solder/Cu{sub 6}Sn{sub 5} interfaces.

  20. PH dependent adhesive peptides

    Science.gov (United States)

    Tomich, John; Iwamoto, Takeo; Shen, Xinchun; Sun, Xiuzhi Susan

    2010-06-29

    A novel peptide adhesive motif is described that requires no receptor or cross-links to achieve maximal adhesive strength. Several peptides with different degrees of adhesive strength have been designed and synthesized using solid phase chemistries. All peptides contain a common hydrophobic core sequence flanked by positively or negatively charged amino acids sequences.

  1. Micro- and nanostructured Al{sub 2}O{sub 3} surfaces for controlled vascular endothelial and smooth muscle cell adhesion and proliferation

    Energy Technology Data Exchange (ETDEWEB)

    Aktas, Cenk, E-mail: cenk.aktas@inm-gmbh.de [INM - Leibniz Institute for New Materials, CVD/Biosurfaces Division, 66123 Saarbruecken (Germany); Doerrschuck, Eva; Schuh, Cathrin [Clinic of Paediatric Cardiology, Saarland University, Building 9, 66424 Homburg (Germany); Miro, Marina Martinez; Lee, Juseok [INM - Leibniz Institute for New Materials, CVD/Biosurfaces Division, 66123 Saarbruecken (Germany); Puetz, Norbert; Wennemuth, Gunther [Department of Anatomy and Cell Biology, Saarland University, Building 61, 66424 Homburg (Germany); Metzger, Wolfgang; Oberringer, Martin [Department of Trauma-, Hand- and Reconstructive Surgery, Saarland University, Building 57, 66424 Homburg (Germany); Veith, Michael [INM - Leibniz Institute for New Materials, CVD/Biosurfaces Division, 66123 Saarbruecken (Germany); Department of Inorganic Chemistry, University of Saarland, Building C 4 1, 66123 Saarbruecken (Germany); Abdul-Khaliq, Hashim [Clinic of Paediatric Cardiology, Saarland University, Building 9, 66424 Homburg (Germany)

    2012-07-01

    The effect of the micro- and nanotopography on vascular cell-surface interaction is investigated using nano- and microstructured Al{sub 2}O{sub 3} as model substrate. Two different nanostructured Al{sub 2}O{sub 3} surfaces composed of low density (LD) and high density (HD) nanowires (NWs) were synthesized by chemical vapour deposition (CVD) and commercially available microstructured Al{sub 2}O{sub 3} plates were used for comparison. A clear diverging response of human umbilical vein endothelial cells (HUVEC) and human umbilical vein smooth muscle cells (HUVSMC) was observed on these nano- and microstructured surfaces. LD Al{sub 2}O{sub 3} NWs seem to enhance the proliferation of HUVECs selectively. This selective control of the cell-surface interaction by topography may represent a key issue for the future stent material design. - Highlights: Black-Right-Pointing-Pointer Nanostructured alumina surfaces triggers selective adhesion and proliferation of endothelial cells. Black-Right-Pointing-Pointer Catalyst free synthesis of nanowires. Black-Right-Pointing-Pointer Topography induces selective cell response.

  2. Cohesion and Adhesion with Proteins

    Science.gov (United States)

    Charles R. Frihart

    2016-01-01

    With increasing interest in bio-based adhesives, research on proteins has expanded because historically they have been used by both nature and humans as adhesives. A wide variety of proteins have been used as wood adhesives. Ancient Egyptians most likely used collagens tobond veneer to wood furniture, then came casein (milk), blood, fish scales, and soy adhesives, with...

  3. Many Roles of Wood Adhesives

    Science.gov (United States)

    Charles R. Frihart

    2014-01-01

    Although wood bonding is one of the oldest applications of adhesives, going back to early recorded history (1), some aspects of wood bonds are still not fully understood. Most books in the general area of adhesives and adhesion do not cover wood bonding. However, a clearer understanding of wood bonding and wood adhesives can lead to improved products. This is important...

  4. Advanced Electrochemical Machining (ECM) for tungsten surface micro-structuring in blanket applications

    International Nuclear Information System (INIS)

    Holstein, Nils; Krauss, Wolfgang; Konys, Jürgen; Heuer, Simon; Weber, Thomas

    2016-01-01

    Highlights: • Electrochemical Machining is an appropriate tool for tungsten shaping. • Progress in shaping achieved by combination of ECM with advanced micro-lithography. • Application in First Wall for connection of plasma facing material to breeder blanket. • Successful development of adhesion promotors by ECM for plasma spraying interlayers. • Microstructure electrochemical manufacturing of tungsten in sizes of 100 μm achieved. - Abstract: Plasma facing components for fusion applications must have to exhibit long-term stability under extreme physical conditions, and therefore any material imperfections caused by mechanical and/or thermal stresses in the shaping processes cannot be tolerated due to a high risk of possible technical failures under fusion conditions. To avoid such defects, the method of Electrochemical Machining (ECM) enables a complete defect-free processing of removal of tungsten material during the desired shaping, also for high penetration depths. Furthermore, supported by lithographic mask pretreatment, three-dimensional distinct geometric structures can be positive-imaged via the directional galvanic dissolution applying M-ECM process into the tungsten bulk material. New required applications for tungsten components, e.g. as adhesion promotors in W-surfaces to enable sure grip and bonding of thick plasma-spraying layers for blanket components, will define the way of further miniaturization of well-established millimeter dimensioned M-ECM shaping processes to dimensions of 100 μm and furthermore down to 50 μm. Besides current M-ECM limits the article describes inevitable needs of further developments for mask resists, mask materials and the resulting ECM parameters, to reach the needed accuracy in tungsten microstructure. The achieved progress and observed correlations of processing parameters will be manifested by produced demonstrators made by the new “μM”-ECM process.

  5. Advanced Electrochemical Machining (ECM) for tungsten surface micro-structuring in blanket applications

    Energy Technology Data Exchange (ETDEWEB)

    Holstein, Nils, E-mail: nils.holstein@kit.edu [Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, D-76344 Eggenstein-Leopoldshafen, Baden-Württemberg (Germany); Krauss, Wolfgang; Konys, Jürgen [Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, D-76344 Eggenstein-Leopoldshafen, Baden-Württemberg (Germany); Heuer, Simon; Weber, Thomas [Research Center Jülich, Institute of Energy- and Climate Research – Plasma Physics (IEK-4), D-52425 Jülich (Germany)

    2016-11-01

    Highlights: • Electrochemical Machining is an appropriate tool for tungsten shaping. • Progress in shaping achieved by combination of ECM with advanced micro-lithography. • Application in First Wall for connection of plasma facing material to breeder blanket. • Successful development of adhesion promotors by ECM for plasma spraying interlayers. • Microstructure electrochemical manufacturing of tungsten in sizes of 100 μm achieved. - Abstract: Plasma facing components for fusion applications must have to exhibit long-term stability under extreme physical conditions, and therefore any material imperfections caused by mechanical and/or thermal stresses in the shaping processes cannot be tolerated due to a high risk of possible technical failures under fusion conditions. To avoid such defects, the method of Electrochemical Machining (ECM) enables a complete defect-free processing of removal of tungsten material during the desired shaping, also for high penetration depths. Furthermore, supported by lithographic mask pretreatment, three-dimensional distinct geometric structures can be positive-imaged via the directional galvanic dissolution applying M-ECM process into the tungsten bulk material. New required applications for tungsten components, e.g. as adhesion promotors in W-surfaces to enable sure grip and bonding of thick plasma-spraying layers for blanket components, will define the way of further miniaturization of well-established millimeter dimensioned M-ECM shaping processes to dimensions of 100 μm and furthermore down to 50 μm. Besides current M-ECM limits the article describes inevitable needs of further developments for mask resists, mask materials and the resulting ECM parameters, to reach the needed accuracy in tungsten microstructure. The achieved progress and observed correlations of processing parameters will be manifested by produced demonstrators made by the new “μM”-ECM process.

  6. Rheology and adhesion of poly(acrylic acid)/laponite nanocomposite hydrogels as biocompatible adhesives.

    Science.gov (United States)

    Shen, Muxian; Li, Li; Sun, Yimin; Xu, Jun; Guo, Xuhong; Prud'homme, Robert K

    2014-02-18

    Biocompatible nanocomposite hydrogels (NC gels) consisting of poly(acrylic acid) (PAA) and nanosized clay (Laponite) were successfully synthesized by in situ free-radical polymerization of acrylic acid (AA) in aqueous solutions of Laponite. The obtained NC gels were uniform and transparent. Their viscosity, storage modulus G', and loss modulus G″ increased significantly upon increasing the content of Laponite and the dose of AA, while exhibiting a maximum with increasing the neutralization degree of AA. They showed tunable adhesion by changing the dose of Laponite and monomer as well as the neutralization degree of AA, as determined by 180° peel strength measurement. The maximal adhesion was shown when reaching a balance between cohesion and fluidity. A homemade Johnson-Kendall-Roberts (JKR) instrument was employed to study the surface adhesion behavior of the NC gels. The combination of peel strength, rheology, and JKR measurements offers the opportunity of insight into the mechanism of adhesion of hydrogels. The NC gels with tunable adhesion should be ideal candidates for dental adhesive, wound dressing, and tissue engineering.

  7. Microstructure, Tensile Adhesion Strength and Thermal Shock Resistance of TBCs with Different Flame-Sprayed Bond Coat Materials Onto BMI Polyimide Matrix Composite

    Science.gov (United States)

    Abedi, H. R.; Salehi, M.; Shafyei, A.

    2017-10-01

    In this study, thermal barrier coatings (TBCs) composed of different bond coats (Zn, Al, Cu-8Al and Cu-6Sn) with mullite top coats were flame-sprayed and air-plasma-sprayed, respectively, onto bismaleimide matrix composites. These polyimide matrix composites are of interest to replace PMR-15, due to concerns about the toxicity of the MDA monomer from which PMR-15 is made. The results showed that pores and cracks appeared at the bond coat/substrate interface for the Al-bonded TBC because of its high thermal conductivity and diffusivity resulting in transferring of high heat flux and temperature to the polymeric substrate during top coat deposition. The other TBC systems due to the lower conductivity and diffusivity of bonding layers could decrease the adverse thermal effect on the polymer substrate during top coat deposition and exhibited adhesive bond coat/substrate interfaces. The tensile adhesion test showed that the adhesion strength of the coatings to the substrate is inversely proportional to the level of residual stress in the coatings. However, the adhesion strength of Al bond-coated sample decreased strongly after mullite top coat deposition due to thermal damage at the bond coat/substrate interface. TBC system with the Cu-6Sn bond coat exhibited the best thermal shock resistance, while Al-bonded TBC showed the lowest. It was inferred that thermal mismatch stresses and oxidation of the bond coats were the main factors causing failure in the thermal shock test.

  8. Effect of inorganic fillers in paper on the adhesion of pressure-sensitive adhesives

    Science.gov (United States)

    Weixu Chen; Xiaoyan Tang; John Considine; Kevin T. Turner

    2011-01-01

    Inorganic fillers are inexpensive materials used to increase the density, smoothness and other properties of paper that are important for printing. In the current study, the adhesion of pressure-sensitive adhesives (PSAs), a common type of adhesive used in labels and tapes, to papers containing varying amounts and types of fillers is investigated. Papers with three...

  9. Measuring Rock-Fluid Adhesion Directly

    Science.gov (United States)

    Tadmor, R.

    2017-12-01

    We show how to measure directly solid-liquid adhesion. We consider the normal adhesion, the work adhesion, and the lateral adhesion. The technique at the center of the method is Centrifugal Adhesion Balance (CAB) which allows coordinated manipulation of normal and lateral forces. For example: 1. It allows to induce an increase in the normal force which pulls on a liquid drop while keeping zero lateral force. This method mimics a drop that is subjected to a gravitational force that is gradually increasing. 2. It allows to increase the lateral force at zero normal force, mimicking zero gravity. From this one can obtain additional solid-liquid interaction parameters. When performing work of adhesion measurements, the values obtained are independent of drop size and are in agreement with theoretical predictions.

  10. Comparison of enamel bond fatigue durability of universal adhesives and two-step self-etch adhesives in self-etch mode.

    Science.gov (United States)

    Tsujimoto, Akimasa; Barkmeier, Wayne W; Hosoya, Yumiko; Nojiri, Kie; Nagura, Yuko; Takamizawa, Toshiki; Latta, Mark A; Miyazaki, Masashi

    2017-10-01

    To comparatively evaluate universal adhesives and two-step self-etch adhesives for enamel bond fatigue durability in self-etch mode. Three universal adhesives (Clearfil Universal Bond; G-Premio Bond; Scotchbond Universal Adhesive) and three two-step self-etch adhesives (Clearfil SE Bond; Clearfil SE Bond 2; OptiBond XTR) were used. The initial shear bond strength and shear fatigue strength of the adhesive to enamel in self-etch mode were determined. The initial shear bond strengths of the universal adhesives to enamel in self-etch mode was significantly lower than those of two-step self-etch adhesives and initial shear bond strengths were not influenced by type of adhesive in each adhesive category. The shear fatigue strengths of universal adhesives to enamel in self-etch mode were significantly lower than that of Clearfil SE Bond and Clearfil SE Bond 2, but similar to that OptiBond XTR. Unlike two-step self-etch adhesives, the initial shear bond strength and shear fatigue strength of universal adhesives to enamel in self-etch mode was not influenced by the type of adhesive. This laboratory study showed that the enamel bond fatigue durability of universal adhesives was lower than Clearfil SE Bond and Clearfil SE Bond 2, similar to Optibond XTR, and was not influenced by type of adhesive, unlike two-step self-etch adhesives.

  11. Gastrin-releasing peptide induces monocyte adhesion to vascular endothelium by upregulating endothelial adhesion molecules

    International Nuclear Information System (INIS)

    Kim, Mi-Kyoung; Park, Hyun-Joo; Kim, Yeon; Kim, Hyung Joon; Bae, Soo-Kyung; Bae, Moon-Kyoung

    2017-01-01

    Gastrin-releasing peptide (GRP) is a neuropeptide that plays roles in various pathophysiological conditions including inflammatory diseases in peripheral tissues; however, little is known about whether GRP can directly regulate endothelial inflammatory processes. In this study, we showed that GRP promotes the adhesion of leukocytes to human umbilical vein endothelial cells (HUVECs) and the aortic endothelium. GRP increased the expression of intercellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1) by activating nuclear factor-κB (NF-κB) in endothelial cells. In addition, GRP activated extracellular signal-regulated kinase 1/2 (ERK1/2), p38MAPK, and AKT, and the inhibition of these signaling pathways significantly reduced GRP-induced monocyte adhesion to the endothelium. Overall, our results suggested that GRP may cause endothelial dysfunction, which could be of particular relevance in the development of vascular inflammatory disorders. - Highlights: • GRP induces adhesion of monocytes to vascular endothelium. • GRP increases the expression of endothelial adhesion molecules through the activation of NF-κB. • ERK1/2, p38MAPK, and Akt pathways are involved in the GRP-induced leukocyte adhesiveness to endothelium.

  12. Wet adhesion with application to tree frog adhesive toe pads and tires

    International Nuclear Information System (INIS)

    Persson, B N J

    2007-01-01

    Strong adhesion between solids with rough surfaces is only possible if at least one of the solids is elastically very soft. Some lizards and spiders are able to adhere (dry adhesion) and move on very rough vertical surfaces due to very compliant surface layers on their attachment pads. Flies, bugs, grasshoppers and tree frogs have less compliant pad surface layers, and in these cases adhesion to rough surfaces is only possible because the animals inject a wetting liquid into the pad-substrate contact area, which generates a relative long-range attractive interaction due to the formation of capillary bridges. In this presentation I will discuss some aspects of wet adhesion for tree frogs and give some comments related to tire applications

  13. Wet adhesion with application to tree frog adhesive toe pads and tires

    Energy Technology Data Exchange (ETDEWEB)

    Persson, B N J [IFF, FZ-Juelich, 52425 Juelich (Germany)

    2007-09-19

    Strong adhesion between solids with rough surfaces is only possible if at least one of the solids is elastically very soft. Some lizards and spiders are able to adhere (dry adhesion) and move on very rough vertical surfaces due to very compliant surface layers on their attachment pads. Flies, bugs, grasshoppers and tree frogs have less compliant pad surface layers, and in these cases adhesion to rough surfaces is only possible because the animals inject a wetting liquid into the pad-substrate contact area, which generates a relative long-range attractive interaction due to the formation of capillary bridges. In this presentation I will discuss some aspects of wet adhesion for tree frogs and give some comments related to tire applications.

  14. Microstructure, mechanical properties, and biological response to functionally graded HA coatings

    International Nuclear Information System (INIS)

    Rabiei, Afsaneh; Blalock, Travis; Thomas, Brent; Cuomo, Jerry; Yang, Y.; Ong, Joo

    2007-01-01

    Hydroxyapatite (HA) [Ca 10 (PO 4 ) 6 (OH) 2 ] is the primary mineral content, representing 43% by weight, of bone. Applying a thin layer of HA, to the surface of a metal implant, can promote osseointegration and increase the mechanical stability of the implant. In this study, a biocompatible coating comprising an HA film with functionally graded crystallinity is being deposited on a heated substrate in an Ion Beam Assisted Deposition (IBAD) system. The microstructure of the film was studied using Transmission Electron Microscopy techniques. Finally, initial cell adhesion and cell differentiation on the coating was evaluated using ATCC CRL 1486 human embryonic palatal mesenchymal cell, an osteoblast precursor cell line. The results have shown superior mechanical properties and biological response to the functionally graded HA film

  15. Intercellular adhesion molecule-1 augments myoblast adhesion and fusion through homophilic trans-interactions.

    Science.gov (United States)

    Pizza, Francis X; Martin, Ryan A; Springer, Evan M; Leffler, Maxwell S; Woelmer, Bryce R; Recker, Isaac J; Leaman, Douglas W

    2017-07-11

    The overall objective of the study was to identify mechanisms through which intercellular adhesion molecule-1 (ICAM-1) augments the adhesive and fusogenic properties of myogenic cells. Hypotheses were tested using cultured myoblasts and fibroblasts, which do not constitutively express ICAM-1, and myoblasts and fibroblasts forced to express full length ICAM-1 or a truncated form lacking the cytoplasmic domain of ICAM-1. ICAM-1 mediated myoblast adhesion and fusion were quantified using novel assays and cell mixing experiments. We report that ICAM-1 augments myoblast adhesion to myoblasts and myotubes through homophilic trans-interactions. Such adhesive interactions enhanced levels of active Rac in adherent and fusing myoblasts, as well as triggered lamellipodia, spreading, and fusion of myoblasts through the signaling function of the cytoplasmic domain of ICAM-1. Rac inhibition negated ICAM-1 mediated lamellipodia, spreading, and fusion of myoblasts. The fusogenic property of ICAM-1-ICAM-1 interactions was restricted to myogenic cells, as forced expression of ICAM-1 by fibroblasts did not augment their fusion to ICAM-1+ myoblasts/myotubes. We conclude that ICAM-1 augments myoblast adhesion and fusion through its ability to self-associate and initiate Rac-mediated remodeling of the actin cytoskeleton.

  16. Gecko adhesion pad: a smart surface?

    Science.gov (United States)

    Pesika, Noshir S.; Zeng, Hongbo; Kristiansen, Kai; Zhao, Boxin; Tian, Yu; Autumn, Kellar; Israelachvili, Jacob

    2009-11-01

    Recently, it has been shown that humidity can increase the adhesion of the spatula pads that form the outermost (adhesive) surface of the tokay gecko feet by 50% relative to the main adhesion mechanism (i.e. van der Waals adhesive forces), although the mechanism by which the enhancement is realized is still not well understood. A change in the surface hydrophobicity of a gecko setal array is observed when the array, which supports the spatulae, is exposed to a water drop for more than 20 min, suggesting a change in the hydrophilic-lyophilic balance (HLB), and therefore of the conformation of the surface proteins. A surface force apparatus (SFA) was used to quantify these changes, i.e. in the adhesion and friction forces, while shearing the setal array against a silica surface under (i) dry conditions, (ii) 100% humidity and (iii) when fully immersed in water. The adhesion increased in the humid environment but greatly diminished in water. Although the adhesion forces changed significantly, the friction forces remained unaffected, indicating that the friction between these highly textured surfaces is 'load-controlled' rather than 'adhesion-controlled'. These results demonstrate that the gecko adhesive pads have the ability to exploit environmental conditions to maximize their adhesion and stabilize their friction forces. Future designs of synthetic dry adhesives inspired by the gecko can potentially include similar 'smart' surfaces that adapt to their environment.

  17. Gecko adhesion pad: a smart surface?

    International Nuclear Information System (INIS)

    Pesika, Noshir S; Zeng Hongbo; Kristiansen, Kai; Israelachvili, Jacob; Zhao, Boxin; Tian Yu; Autumn, Kellar

    2009-01-01

    Recently, it has been shown that humidity can increase the adhesion of the spatula pads that form the outermost (adhesive) surface of the tokay gecko feet by 50% relative to the main adhesion mechanism (i.e. van der Waals adhesive forces), although the mechanism by which the enhancement is realized is still not well understood. A change in the surface hydrophobicity of a gecko setal array is observed when the array, which supports the spatulae, is exposed to a water drop for more than 20 min, suggesting a change in the hydrophilic-lyophilic balance (HLB), and therefore of the conformation of the surface proteins. A surface force apparatus (SFA) was used to quantify these changes, i.e. in the adhesion and friction forces, while shearing the setal array against a silica surface under (i) dry conditions, (ii) 100% humidity and (iii) when fully immersed in water. The adhesion increased in the humid environment but greatly diminished in water. Although the adhesion forces changed significantly, the friction forces remained unaffected, indicating that the friction between these highly textured surfaces is 'load-controlled' rather than 'adhesion-controlled'. These results demonstrate that the gecko adhesive pads have the ability to exploit environmental conditions to maximize their adhesion and stabilize their friction forces. Future designs of synthetic dry adhesives inspired by the gecko can potentially include similar 'smart' surfaces that adapt to their environment.

  18. Some Structural Observations of Self-Assembling, Fibrillar Gels Composed of Two-Directional Bolaform Arborols

    Energy Technology Data Exchange (ETDEWEB)

    Sun, J.

    2005-01-12

    Arborols are dumbbell shaped molecules (bolaform amphiphiles) in which a hydrophobic spacer separates two hydrophilic end groups. They are a valuable model for naturally occurring fibers, such as actin or amyloid. Applications to materials science can be envisioned. On cooling from warm aqueous or methanolic solutions, arborols spontaneously assemble into long fibers. When the solutions are above a certain concentration that depends on the hydrophilic/hydrophobic balance, this leads to thermally reversible gels stabilized by a mechanism that is poorly understood. With the help of wide angle X-ray scattering, details of the arborol fiber and gel structure were obtained on wet gels. The characteristic dimensions of the fibers vary in a sensible fashion with the molecular specifics. Solvent character appears to affect the average domain length of arborols stacked into fibers. Fluorescently labeled arborols were prepared. The label does not prevent incorporation into the fibrillar structure, rendering fibril bundles visible in wet gels. Bundles are visible in concentrated gels, but not in less concentrated sols. These results are consistent with observations of dried arborols using atomic force microscopy and with previously published freeze-fracture electron microscopy and small angle X-ray scattering experiments on dried gels.

  19. Biomimetic superhydrophobic surface of high adhesion fabricated with micronano binary structure on aluminum alloy.

    Science.gov (United States)

    Liu, Yan; Liu, Jindan; Li, Shuyi; Liu, Jiaan; Han, Zhiwu; Ren, Luquan

    2013-09-25

    Triggered by the microstructure characteristics of the surfaces of typical plant leaves such as the petals of red roses, a biomimetic superhydrophobic surface with high adhesion is successfully fabricated on aluminum alloy. The essential procedure is that samples were processed by a laser, then immersed and etched in nitric acid and copper nitrate, and finally modified by DTS (CH3(CH2)11Si(OCH3)3). The obtained surfaces exhibit a binary structure consisting of microscale crater-like pits and nanoscale reticula. The superhydrophobicity can be simultaneously affected by the micronano binary structure and chemical composition of the surface. The contact angle of the superhydrophobic surface reaches up to 158.8 ± 2°. Especially, the surface with micronano binary structure is revealed to be an excellent adhesive property with petal-effect. Moreover, the superhydrophobic surfaces show excellent stability in aqueous solution with a large pH range and after being exposed long-term in air. In this way, the multifunctional biomimetic structural surface of the aluminum alloy is fabricated. Furthermore, the preparation technology in this article provides a new route for other metal materials.

  20. Data in support of the identification of neuronal and astrocyte proteins interacting with extracellularly applied oligomeric and fibrillar α-synuclein assemblies by mass spectrometry

    Directory of Open Access Journals (Sweden)

    Amulya Nidhi Shrivastava

    2016-06-01

    Full Text Available α-Synuclein (α-syn is the principal component of Lewy bodies, the pathophysiological hallmark of individuals affected by Parkinson disease (PD. This neuropathologic form of α-syn contributes to PD progression and propagation of α-syn assemblies between neurons. The data we present here support the proteomic analysis used to identify neuronal proteins that specifically interact with extracellularly applied oligomeric or fibrillar α-syn assemblies (conditions 1 and 2, respectively (doi: 10.15252/embj.201591397 [1]. α-syn assemblies and their cellular partner proteins were pulled down from neuronal cell lysed shortly after exposure to exogenous α-syn assemblies and the associated proteins were identified by mass spectrometry using a shotgun proteomic-based approach. We also performed experiments on pure cultures of astrocytes to identify astrocyte-specific proteins interacting with oligomeric or fibrillar α-syn (conditions 3 and 4, respectively. For each condition, proteins interacting selectively with α-syn assemblies were identified by comparison to proteins pulled-down from untreated cells used as controls. The mass spectrometry data, the database search and the peak lists have been deposited to the ProteomeXchange Consortium database via the PRIDE partner repository with the dataset identifiers PRIDE: http://www.ebi.ac.uk/pride/archive/projects/PXD002256 to PRIDE: http://www.ebi.ac.uk/pride/archive/projects/PXD002263 and doi: 10.6019/http://www.ebi.ac.uk/pride/archive/projects/PXD002256 to 10.6019/http://www.ebi.ac.uk/pride/archive/projects/PXD002263.

  1. Optical adhesive property study

    Energy Technology Data Exchange (ETDEWEB)

    Sundvold, P.D.

    1996-01-01

    Tests were performed to characterize the mechanical and thermal properties of selected optical adhesives to identify the most likely candidate which could survive the operating environment of the Direct Optical Initiation (DOI) program. The DOI system consists of a high power laser and an optical module used to split the beam into a number of channels to initiate the system. The DOI requirements are for a high shock environment which current military optical systems do not operate. Five candidate adhesives were selected and evaluated using standardized test methods to determine the adhesives` physical properties. EC2216, manufactured by 3M, was selected as the baseline candidate adhesive based on the test results of the physical properties.

  2. Adhesion mechanism of a gecko-inspired oblique structure with an adhesive tip for asymmetric detachment

    International Nuclear Information System (INIS)

    Sekiguchi, Yu; Sato, Chiaki; Takahashi, Kunio

    2015-01-01

    An adhesion model of an oblique structure with an adhesive tip is proposed by considering a limiting stress for adhesion to describe the detachment mechanism of gecko foot hairs. When a force is applied to the root of the oblique structure, normal and shear stresses are generated at contact and the adhesive tip is detached from the surface when reaching the limiting stress. An adhesion criterion that considers both the normal and shear stresses is introduced, and the asymmetric detachment of the oblique structure is theoretically investigated. In addition, oblique beam array structures are manufactured, and an inclination effect of the structure on the asymmetric detachment is experimentally verified. (paper)

  3. Design methodology for nano-engineered surfaces to control adhesion: Application to the anti-adhesion of particles

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Taekyung [National Center for Optically-Assisted Ultra-High Precision Mechanical Systems, Yonsei University, Seoul 03722 (Korea, Republic of); School of Mechanical Engineering, Yonsei University, Seoul 03722 (Korea, Republic of); Min, Cheongwan [National Center for Optically-Assisted Ultra-High Precision Mechanical Systems, Yonsei University, Seoul 03722 (Korea, Republic of); Jung, Myungki; Lee, Jinhyung; Park, Changsu [National Center for Optically-Assisted Ultra-High Precision Mechanical Systems, Yonsei University, Seoul 03722 (Korea, Republic of); School of Mechanical Engineering, Yonsei University, Seoul 03722 (Korea, Republic of); Kang, Shinill, E-mail: snlkang@yonsei.ac.kr [National Center for Optically-Assisted Ultra-High Precision Mechanical Systems, Yonsei University, Seoul 03722 (Korea, Republic of); School of Mechanical Engineering, Yonsei University, Seoul 03722 (Korea, Republic of)

    2016-12-15

    Highlights: • A design method using the Derjaguin approximation with FEA for low-adhesion surface. • Fabrication of nanostructures with small adhesion forces by presented design method. • Characterization of adhesion force via AFM FD-curve with modified atypical tips. • Verification of low-adhesion of designed surfaces using centrifugal detachment tests. • Investigation of interdependence of hydrophobicity and anti-adhesion force. - Abstract: With increasing demand for means of controlling surface adhesion in various applications, including the semiconductor industry, optics, micro/nanoelectromechanical systems, and the medical industry, nano-engineered surfaces have attracted much attention. This study suggests a design methodology for nanostructures using the Derjaguin approximation in conjunction with finite element analysis for the control of adhesion forces. The suggested design methodology was applied for designing a nano-engineered surface with low-adhesion properties. To verify this, rectangular and sinusoidal nanostructures were fabricated and analyzed using force-distance curve measurements using atomic force microscopy and centrifugal detachment testing. For force-distance curve measurements, modified cantilevers with tips formed with atypical particles were used. Subsequently, centrifugal detachment tests were also conducted. The surface wettability of rectangular and sinusoidal nanostructures was measured and compared with the measured adhesion force and the number of particles remaining after centrifugal detachment tests.

  4. Mechanical stress and stress release channels in 10–350 nm palladium hydrogen thin films with different micro-structures

    International Nuclear Information System (INIS)

    Wagner, Stefan; Kramer, Thilo; Uchida, Helmut; Dobron, Patrik; Cizek, Jakub; Pundt, Astrid

    2016-01-01

    For thin metal films adhered to rigid substrates hydrogen uptake results in compressive stresses in the GPa range. Stresses affect the thermodynamics as well as the durability of thin films, but many films can release stress above critical stress values. Depending on the films' thickness, microstructure and adhesion to the substrate, which determine the energy available in the nano-sized system, stress release is conducted via different release mechanisms. To evaluate the different mechanisms, Palladium thin films ranging from 10 nm to 350 nm and with three different types of microstructures (nanocrystalline, multi-oriented epitaxy and three-fold epitaxy) are studied with special focus on the mechanical stress. In-situ substrate curvature measurements, XRD stress analyses and acoustic emission (AE) measurements are conducted to determine intrinsic stresses, hydrogen-induced stress changes and stress release signals. By this complementary experimental approach, different stress release mechanisms (named channels) are identified. Discrete stress relaxation (DSR) events are found already within the overall linear elastic stress-strain regime. Energies to stimulate DSRs lay well below the formation energy of dislocations, and may allow the movement of defects pre-existing in the films. For higher strain energies, all studied films can release stress by the formation of new dislocations and plastic deformation. When the adhesion to the substrate is small, an alternative release channel of film buckling opens for thick films.

  5. Gecko adhesion pad: a smart surface?

    Energy Technology Data Exchange (ETDEWEB)

    Pesika, Noshir S [Chemical and Biomolecular Engineering Department, Tulane University, New Orleans, LA 70118 (United States); Zeng Hongbo [Chemical and Materials Engineering Department, University of Alberta, Edmonton, AB, T6G 2V4 (Canada); Kristiansen, Kai; Israelachvili, Jacob [Chemical Engineering Department, University of California, Santa Barbara, CA 93117 (United States); Zhao, Boxin [Chemical Engineering Department and Waterloo Institute of Nanotechnology, University of Waterloo, Ontario, N2L 3G1 (Canada); Tian Yu [State Key Laboratory of Tribology, Department of Precision Instruments, Tsinghua University, Beijing 100084 (China); Autumn, Kellar, E-mail: npesika@tulane.ed [Department of Biology, Lewis and Clark College, Portland, OR 97219 (United States)

    2009-11-18

    Recently, it has been shown that humidity can increase the adhesion of the spatula pads that form the outermost (adhesive) surface of the tokay gecko feet by 50% relative to the main adhesion mechanism (i.e. van der Waals adhesive forces), although the mechanism by which the enhancement is realized is still not well understood. A change in the surface hydrophobicity of a gecko setal array is observed when the array, which supports the spatulae, is exposed to a water drop for more than 20 min, suggesting a change in the hydrophilic-lyophilic balance (HLB), and therefore of the conformation of the surface proteins. A surface force apparatus (SFA) was used to quantify these changes, i.e. in the adhesion and friction forces, while shearing the setal array against a silica surface under (i) dry conditions, (ii) 100% humidity and (iii) when fully immersed in water. The adhesion increased in the humid environment but greatly diminished in water. Although the adhesion forces changed significantly, the friction forces remained unaffected, indicating that the friction between these highly textured surfaces is 'load-controlled' rather than 'adhesion-controlled'. These results demonstrate that the gecko adhesive pads have the ability to exploit environmental conditions to maximize their adhesion and stabilize their friction forces. Future designs of synthetic dry adhesives inspired by the gecko can potentially include similar 'smart' surfaces that adapt to their environment.

  6. Adhesion and multi-materials

    International Nuclear Information System (INIS)

    Schultz, J.

    1997-01-01

    Adhesion is a multidisciplinary science relevant to many practical fields. The main application of adhesion is bonding by adhesives. This technique is widely used in the industrial world and more specifically in the advanced technical domains. Adhesion is also involved in multi-component materials such as coatings, multilayer materials, polymer blends, composite materials... The multidisciplinary aspect of adhesion is well demonstrated by considering the wide variety of concepts, models and theories proposed for its description. An example of the adhesion between a fiber and a matrix in a composite material will lead to a general model relating the molecular properties of the interface to its capacity of stress transfer and hence to the macroscopic mechanical properties of the composite. This relationship is valid whatever the fiber (glass, carbon, polymeric) or the polymer matrix (thermoplastics, thermosetting). Any deviation from this model can be attributed to the existence of an interfacial zone or interphase exhibiting properties, mainly mechanical properties, different from the bulk matrix. Two examples are examined: the first one deals with the creation of a trans crystalline interphase in a semi-crystalline thermoplastic matrix and the second one is concerned with the formation of a pseudo glassy interphase in an elastomer matrix. These examples stress the need for complementary approaches in the understanding of adhesion phenomena at different levels of knowledge, from molecular to macroscopic. They also show how important it is to understand the mechanisms of formation of inter phases in order to be able to master the performance of multicomponent materials. (Author)

  7. Comparing Soy Flour Wood Adhesives to Purified Soy Protein Adhesives

    Science.gov (United States)

    Charles R. Frihart; Linda F. Lorenz

    2013-01-01

    While economics dictate that soy-based wood adhesives be made with soy flour, much of the recent literature on soy-based wood adhesives has involved using soy protein isolate. The obvious assumption is that the additional carbohydrates in the flour but not in the isolate only serve as inert diluents. Our studies have shown that the isolate can provide 10 times the wet...

  8. Microstructure evolution and microstructure/mechanical properties relationships in alpha+beta titanium alloys

    Science.gov (United States)

    Lee, Eunha

    In this study, the microstructural evolution of Timetal 550 was investigated. Timetal 550 showed two types of phase transformations (martensitic and nucleation and growth) depending on the cooling rate from the beta region. The alpha phase initially precipitated at the prior beta grain boundaries, and it had a Burgers OR with one of the adjacent grains. It was found that colonies could grow, even in the fast-cooled Timetal 550 sample, from the grain boundary alpha into the prior beta grain with which it exhibited the Burgers OR. Three orientation relationships were also found between alpha laths in the basketweave microstructure. Microhardness testing demonstrated that fast-cooled Timetal 550 samples with basketweave microstructure were harder than slowly-cooled samples with colony microstructure. Orientation-dependent deformation was found in the colony microstructure. Specifically, when the surface normal is perpendicular to the [0001] of alpha, the material deforms easily in the direction perpendicular to the [0001] of alpha. Fuzzy logic and Bayesian neural network models were developed to predict the room temperature tensile properties of Timetal 550. This involved the development of a database relating microstructural features to mechanical properties. A Gleeble 3800 thermal-mechanical simulator was used to develop various microstructures. Microstructural features of tensile-tested samples were quantified using stereological procedures. The quantified microstructural features and the tensile properties were used as inputs and outputs, respectively, for modeling the relationships between them. The individual influence of five microstructural features on tensile properties was determined using the established models. The microstructural features having the greatest impact on UTS and YS were the thickness of alpha laths and the width of grain boundary alpha layer, and the microstructural features having the greatest impact on elongation were the thickness of

  9. Artificial Microstructures to Investigate Microstructure-Property Relationships in Metallic Glasses

    Science.gov (United States)

    Sarac, Baran

    Technology has evolved rapidly within the last decade, and the demand for higher performance materials has risen exponentially. To meet this demand, novel materials with advanced microstructures have been developed and are currently in use. However, the already complex microstructure of technological relevant materials imposes a limit for currently used development strategies for materials with optimized properties. For this reason, a strategy to correlate microstructure features with properties is still lacking. Computer simulations are challenged due to the computing size required to analyze multi-scale characteristics of complex materials, which is orders of magnitude higher than today's state of the art. To address these challenges, we introduced a novel strategy to investigate microstructure-property relationships. We call this strategy "artificial microstructure approach", which allows us to individually and independently control microstructural features. By this approach, we defined a new way of analyzing complex microstructures, where microstructural second phase features were precisely varied over a wide range. The artificial microstructures were fabricated by the combination of lithography and thermoplastic forming (TPF), and subsequently characterized under different loading conditions. Because of the suitability and interesting properties of metallic glasses, we proposed to use this toolbox to investigate the different deformation modes in cellular structures and toughening mechanism in metallic glass (MG) composites. This study helped us understand how to combine the unique properties of metallic glasses such as high strength, elasticity, and thermoplastic processing ability with plasticity generated from heterostructures of metallic glasses. It has been widely accepted that metallic glass composites are very complex, and a broad range of contributions have been suggested to explain the toughening mechanism. This includes the shear modulus, morphology

  10. Influence of substrate modulus on gecko adhesion

    Science.gov (United States)

    Klittich, Mena R.; Wilson, Michael C.; Bernard, Craig; Rodrigo, Rochelle M.; Keith, Austin J.; Niewiarowski, Peter H.; Dhinojwala, Ali

    2017-03-01

    The gecko adhesion system fascinates biologists and materials scientists alike for its strong, reversible, glue-free, dry adhesion. Understanding the adhesion system’s performance on various surfaces can give clues as to gecko behaviour, as well as towards designing synthetic adhesive mimics. Geckos encounter a variety of surfaces in their natural habitats; tropical geckos, such as Gekko gecko, encounter hard, rough tree trunks as well as soft, flexible leaves. While gecko adhesion on hard surfaces has been extensively studied, little work has been done on soft surfaces. Here, we investigate for the first time the influence of macroscale and nanoscale substrate modulus on whole animal adhesion on two different substrates (cellulose acetate and polydimethylsiloxane) in air and find that across 5 orders of magnitude in macroscale modulus, there is no change in adhesion. On the nanoscale, however, gecko adhesion is shown to depend on substrate modulus. This suggests that low surface-layer modulus may inhibit the gecko adhesion system, independent of other influencing factors such as macroscale composite modulus and surface energy. Understanding the limits of gecko adhesion is vital for clarifying adhesive mechanisms and in the design of synthetic adhesives for soft substrates (including for biomedical applications and wearable electronics).

  11. The neural cell adhesion molecule

    DEFF Research Database (Denmark)

    Berezin, V; Bock, E; Poulsen, F M

    2000-01-01

    During the past year, the understanding of the structure and function of neural cell adhesion has advanced considerably. The three-dimensional structures of several of the individual modules of the neural cell adhesion molecule (NCAM) have been determined, as well as the structure of the complex...... between two identical fragments of the NCAM. Also during the past year, a link between homophilic cell adhesion and several signal transduction pathways has been proposed, connecting the event of cell surface adhesion to cellular responses such as neurite outgrowth. Finally, the stimulation of neurite...

  12. Nucleation and growth of cadherin adhesions

    International Nuclear Information System (INIS)

    Lambert, Mireille; Thoumine, Olivier; Brevier, Julien; Choquet, Daniel; Riveline, Daniel; Mege, Rene-Marc

    2007-01-01

    Cell-cell contact formation relies on the recruitment of cadherin molecules and their anchoring to actin. However, the precise chronology of events from initial cadherin trans-interactions to adhesion strengthening is unclear, in part due to the lack of access to the distribution of cadherins within adhesion zones. Using N-cadherin expressing cells interacting with N-cadherin coated surfaces, we characterized the formation of cadherin adhesions at the ventral cell surface. TIRF and RIC microscopies revealed streak-like accumulations of cadherin along actin fibers. FRAP analysis indicated that engaged cadherins display a slow turnover at equilibrium, compatible with a continuous addition and removal of cadherin molecules within the adhesive contact. Association of cadherin cytoplasmic tail to actin as well as actin cables and myosin II activity are required for the formation and maintenance of cadherin adhesions. Using time lapse microscopy we deciphered how cadherin adhesions form and grow. As lamellipodia protrude, cadherin foci stochastically formed a few microns away from the cell margin. Neo-formed foci coalesced aligned and coalesced with preformed foci either by rearward sliding or gap filling to form cadherin adhesions. Foci experienced collapse at the rear of cadherin adhesions. Based on these results, we present a model for the nucleation, directional growth and shrinkage of cadherin adhesions

  13. Adhesive Bonding and Corrosion Performance Investigated as a Function of Aluminum Oxide Chemistry and Adhesives

    NARCIS (Netherlands)

    Abrahami, S.T.; Hauffman, T.; de Kok, John M.M.; Terryn, H.A.; Mol, J.M.C.

    2017-01-01

    The long-term strength and durability of an adhesive bond is dependent on the stability of the oxide-adhesive interface. As such, changes in the chemistry of the oxide and/or the adhesive are expected to modify the interfacial properties and affect the joint performance in practice. The upcoming

  14. Soy protein adhesives

    Science.gov (United States)

    Charles R. Frihart

    2010-01-01

    In the quest to manufacture and use building materials that are more environmentally friendly, soy adhesives can be an important component. Trees fix and store carbon dioxide in the atmosphere. After the trees are harvested, machinery converts the wood into strands, which are then bonded together with adhesives to form strandboard, used in constructing long-lasting...

  15. Temperature Effects on Adhesive Bond Strengths and Modulus for Commonly Used Spacecraft Structural Adhesives

    Science.gov (United States)

    Ojeda, Cassandra E.; Oakes, Eric J.; Hill, Jennifer R.; Aldi, Dominic; Forsberg, Gustaf A.

    2011-01-01

    A study was performed to observe how changes in temperature and substrate material affected the strength and modulus of an adhesive bondline. Seven different adhesives commonly used in aerospace bonded structures were tested. Aluminum, titanium and Invar adherends were cleaned and primed, then bonded using the manufacturer's recommendations. Following surface preparation, the coupons were bonded with the adhesives. The single lap shear coupons were then pull tested per ASTM D 1002 Standard Test Method for Apparent Shear Strength of Single- Lap-Joint over a temperature range from -150 deg C up to +150 deg C. The ultimate strength was calculated and the resulting data were converted into B-basis design allowables. Average and Bbasis results were compared. Results obtained using aluminum adherends are reported. The effects of using different adherend materials and temperature were also studied and will be reported in a subsequent paper. Dynamic Mechanical Analysis (DMA) was used to study variations in adhesive modulus with temperature. This work resulted in a highly useful database for comparing adhesive performance over a wide range of temperatures, and has facilitated selection of the appropriate adhesive for spacecraft structure applications.

  16. Regulative mechanisms of chondrocyte adhesion

    DEFF Research Database (Denmark)

    Schmal, Hagen; Mehlhorn, Alexander T; Fehrenbach, Miriam

    2006-01-01

    Interaction between chondrocytes and extracellular matrix is considered a key factor in the generation of grafts for matrix-associated chondrocyte transplantation. Therefore, our objective was to study the influence of differentiation status on cellular attachment. Adhesion of chondrocytes...... to collagen type II increased after removal from native cartilage up to the third day in monolayer in a dose-dependent manner. Following dedifferentiation after the second passage, adhesion to collagen types I (-84%) and II (-46%) decreased, whereas adhesion to fibrinogen (+59%) and fibronectin (+43......%) increased. A cartilage construct was developed based on a clinically established collagen type I scaffold. In this matrix, more than 80% of the cells could be immobilized by mechanisms of adhesion, filtration, and cell entrapment. Confocal laser microscopy revealed focal adhesion sites as points of cell...

  17. Microstructure, optimum pigment content and low infrared emissivity of polyurethane/Ag composite coatings

    International Nuclear Information System (INIS)

    Zhang, Weigang; Xu, Guoyue; Ding, Ruya; Qiao, Jialiang; Duan, Kaige

    2013-01-01

    Polyurethane (PU)/Ag composite coatings with low infrared emissivity were successfully prepared by using PU and flaky Ag powders as adhesives and pigments, respectively. The infrared emissivity and microstructure of as-prepared products were systematically investigated by infrared emissometer and scanning electron microscopy, respectively. Infrared emissivity measurement shows that the emissivity of the coatings approaches the lowest value of 0.082 at the wavelength of 8–14 µm when the Ag content is about 20 wt%. Microstructure observation shows that the coatings have similar one-dimensional photonic structural characteristics. According to the structural characteristics, a simulation method for optimum pigment content and the cause of low infrared emissivity of the coatings were successfully obtained and discussed by using the theories of one-dimensional photonic structure, respectively. The results indicate that the low infrared emissivity of PU/Ag composite coatings is derived from the similar one-dimensional photonic structure in the coatings, and the calculated optimum Ag content is in good agreement with the experimental value, which reveals that it is a practical simulation method for optimum pigment content of low infrared emissivity composite coatings

  18. Adhesion molecules

    CERN Document Server

    Preedy, Victor R

    2016-01-01

    This book covers the structure and classification of adhesion molecules in relation to signaling pathways and gene expression. It discusses immunohistochemical localization, neutrophil migration, and junctional, functional, and inflammatory adhesion molecules in pathologies such as leukocyte decompression sickness and ischemia reperfusion injury. Highlighting the medical applications of current research, chapters cover diabetes, obesity, and metabolic syndrome; hypoxia; kidney disease; smoking, atrial fibrillation, and heart disease, the brain and dementia; and tumor proliferation. Finally, it looks at molecular imaging and bioinformatics, high-throughput technologies, and chemotherapy.

  19. Current dental adhesives systems. A narrative review.

    Science.gov (United States)

    Milia, Egle; Cumbo, Enzo; Cardoso, Rielson Jose A; Gallina, Giuseppe

    2012-01-01

    Adhesive dentistry is based on the development of materials which establish an effective bond with the tooth tissues. In this context, adhesive systems have attracted considerable research interest in recent years. Successful adhesive bonding depends on the chemistry of the adhesive, on appropriate clinical handling of the material as well as on the knowledge of the morphological changes caused on dental tissue by different bonding procedures. This paper outlines the status of contemporary adhesive systems, with particular emphasis on chemical characteristics and mode of interaction of the adhesives with enamel and dentinal tissues. Dental adhesives are used for several clinical applications and they can be classified based on the clinical regimen in "etch-and-rinse adhesives" and "self-etch adhesives". Other important considerations concern the different anatomical characteristics of enamel and dentine which are involved in the bonding procedures that have also implications for the technique used as well as for the quality of the bond. Etch-and-rinse adhesive systems generally perform better on enamel than self-etching systems which may be more suitable for bonding to dentine. In order to avoid a possible loss of the restoration, secondary caries or pulp damage due to bacteria penetration or due to cytotoxicity effects of eluted adhesive components, careful consideration of several factors is essential in selecting the suitable bonding procedure and adhesive system for the individual patient situation.

  20. Mena binds α5 integrin directly and modulates α5β1 function.

    Science.gov (United States)

    Gupton, Stephanie L; Riquelme, Daisy; Hughes-Alford, Shannon K; Tadros, Jenny; Rudina, Shireen S; Hynes, Richard O; Lauffenburger, Douglas; Gertler, Frank B

    2012-08-20

    Mena is an Ena/VASP family actin regulator with roles in cell migration, chemotaxis, cell-cell adhesion, tumor cell invasion, and metastasis. Although enriched in focal adhesions, Mena has no established function within these structures. We find that Mena forms an adhesion-regulated complex with α5β1 integrin, a fibronectin receptor involved in cell adhesion, motility, fibronectin fibrillogenesis, signaling, and growth factor receptor trafficking. Mena bound directly to the carboxy-terminal portion of the α5 cytoplasmic tail via a 91-residue region containing 13 five-residue "LERER" repeats. In fibroblasts, the Mena-α5 complex was required for "outside-in" α5β1 functions, including normal phosphorylation of FAK and paxillin and formation of fibrillar adhesions. It also supported fibrillogenesis and cell spreading and controlled cell migration speed. Thus, fibroblasts require Mena for multiple α5β1-dependent processes involving bidirectional interactions between the extracellular matrix and cytoplasmic focal adhesion proteins.

  1. Micromorphological characterization of adhesive interface of sound dentin and total-etch and self-etch adhesives.

    Science.gov (United States)

    Drobac, Milan; Stojanac, Igor; Ramić, Bojana; Premović, Milica; Petrović, Ljubomir

    2015-01-01

    The ultimate goal in restorative dentistry has always been to achieve strong and permanent bond between the dental tissues and filling materials. It is not easy to achieve this task because the bonding process is different for enamel and dentin-dentin is more humid and more organic than enamel. It is moisture and organic nature of dentin that make this hard tissue very complex to achieve adhesive bond. One of the first and most widely used tools for examining the adhesive bond between hard dental tissues and composite restorative materials is scanning electron microscopy. The aim of this study was scanning electron microscopy analyzes the interfacial micro morphology of total-etch and self-etch adhesives. Micro morphological characteristics of interface between total-etch adhesive (Prime & Bond NT) in combination with the corresponding composite (Ceram X Mono) were compared with those of self-etching adhesive (AdheSE One) in, combination with the corresponding composite (Tetric EvoCeram). The specimens were observed under 1000 x magnification of scanning electron microscopy (JEOL, JSM-6460 Low Vacuum). Measurement of the thickness of the hybrid layer of the examined com posite systems was performed with the software of the device used (NIH Image Analyser). Micromorphological analysis of interface showed that the hybrid layer in sound dentin was well formed, its average thickness being 2.68 microm, with a large number of resin tags and a large amount of lateral branches for specimens with a composite system Prime & Bond NT-Ceram X Mono. However, the specimens' with composite systems Adhese One-Tetric EvoCeram did not show the presence of hybrid layer and the resin tags were poorly represented. The results of this study suggest that total-etch adhesives bond better with sound dentin than self-etch adhesive.

  2. Effects of solvent evaporation time on immediate adhesive properties of universal adhesives to dentin.

    Science.gov (United States)

    Luque-Martinez, Issis V; Perdigão, Jorge; Muñoz, Miguel A; Sezinando, Ana; Reis, Alessandra; Loguercio, Alessandro D

    2014-10-01

    To evaluate the microtensile bond strengths (μTBS) and nanoleakage (NL) of three universal or multi-mode adhesives, applied with increasing solvent evaporation times. One-hundred and forty caries-free extracted third molars were divided into 20 groups for bond strength testing, according to three factors: (1) Adhesive - All-Bond Universal (ABU, Bisco, Inc.), Prime&Bond Elect (PBE, Dentsply), and Scotchbond Universal Adhesive (SBU, 3M ESPE); (2) Bonding strategy - self-etch (SE) or etch-and-rinse (ER); and (3) Adhesive solvent evaporation time - 5s, 15s, and 25s. Two extra groups were prepared with ABU because the respective manufacturer recommends a solvent evaporation time of 10s. After restorations were constructed, specimens were stored in water (37°C/24h). Resin-dentin beams (0.8mm(2)) were tested at 0.5mm/min (μTBS). For NL, forty extracted molars were randomly assigned to each of the 20 groups. Dentin disks were restored, immersed in ammoniacal silver nitrate, sectioned and processed for evaluation under a FESEM in backscattered mode. Data from μTBS were analyzed using two-way ANOVA (adhesive vs. drying time) for each strategy, and Tukey's test (α=0.05). NL data were computed with non-parametric tests (Kruskal-Wallis and Mann-Whitney tests, α=0.05). Increasing solvent evaporation time from 5s to 25s resulted in statistically higher mean μTBS for all adhesives when used in ER mode. Regarding NL, ER resulted in greater NL than SE for each of the evaporation times regardless of the adhesive used. A solvent evaporation time of 25s resulted in the lowest NL for SBU-ER. Residual water and/or solvent may compromise the performance of universal adhesives, which may be improved with extended evaporation times. Copyright © 2014 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  3. Peritoneal adhesions after laparoscopic gastrointestinal surgery.

    Science.gov (United States)

    Mais, Valerio

    2014-05-07

    Although laparoscopy has the potential to reduce peritoneal trauma and post-operative peritoneal adhesion formation, only one randomized controlled trial and a few comparative retrospective clinical studies have addressed this issue. Laparoscopy reduces de novo adhesion formation but has no efficacy in reducing adhesion reformation after adhesiolysis. Moreover, several studies have suggested that the reduction of de novo post-operative adhesions does not seem to have a significant clinical impact. Experimental data in animal models have suggested that CO₂ pneumoperitoneum can cause acute peritoneal inflammation during laparoscopy depending on the insufflation pressure and the surgery duration. Broad peritoneal cavity protection by the insufflation of a low-temperature humidified gas mixture of CO₂, N₂O and O₂ seems to represent the best approach for reducing peritoneal inflammation due to pneumoperitoneum. However, these experimental data have not had a significant impact on the modification of laparoscopic instrumentation. In contrast, surgeons should train themselves to perform laparoscopy quickly, and they should complete their learning curves before testing chemical anti-adhesive agents and anti-adhesion barriers. Chemical anti-adhesive agents have the potential to exert broad peritoneal cavity protection against adhesion formation, but when these agents are used alone, the concentrations needed to prevent adhesions are too high and could cause major post-operative side effects. Anti-adhesion barriers have been used mainly in open surgery, but some clinical data from laparoscopic surgeries are already available. Sprays, gels, and fluid barriers are easier to apply in laparoscopic surgery than solid barriers. Results have been encouraging with solid barriers, spray barriers, and gel barriers, but they have been ambiguous with fluid barriers. Moreover, when barriers have been used alone, the maximum protection against adhesion formation has been no

  4. Functionally Graded Adhesives for Composite Joints

    Science.gov (United States)

    Stapleton, Scott E.; Waas, Anthony M.; Arnold, Steven M.

    2012-01-01

    Adhesives with functionally graded material properties are being considered for use in adhesively bonded joints to reduce the peel stress concentrations located near adherend discontinuities. Several practical concerns impede the actual use of such adhesives. These include increased manufacturing complications, alterations to the grading due to adhesive flow during manufacturing, and whether changing the loading conditions significantly impact the effectiveness of the grading. An analytical study is conducted to address these three concerns. An enhanced joint finite element, which uses an analytical formulation to obtain exact shape functions, is used to model the joint. Furthermore, proof of concept testing is conducted to show the potential advantages of functionally graded adhesives. In this study, grading is achieved by strategically placing glass beads within the adhesive layer at different densities along the joint.

  5. Adhesive bonding of wood materials

    Science.gov (United States)

    Charles B. Vick

    1999-01-01

    Adhesive bonding of wood components has played an essential role in the development and growth of the forest products industry and has been a key factor in the efficient utilization of our timber resource. The largest use of adhesives is in the construction industry. By far, the largest amounts of adhesives are used to manufacture building materials, such as plywood,...

  6. Wood Composite Adhesives

    Science.gov (United States)

    Gomez-Bueso, Jose; Haupt, Robert

    The global environment, in which phenolic resins are being used for wood composite manufacture, has changed significantly during the last decade. This chapter reviews trends that are driving the use and consumption of phenolic resins around the world. The review begins with recent data on volume usage and regional trends, followed by an analysis of factors affecting global markets. In a section on environmental factors, the impact of recent formaldehyde emission regulations is discussed. The section on economics introduces wood composite production as it relates to the available adhesive systems, with special emphasis on the technical requirement to improve phenolic reactivity. Advances in composite process technology are introduced, especially in regard to the increased demands the improvements place upon adhesive system performance. The specific requirements for the various wood composite families are considered in the context of adhesive performance needs. The results of research into current chemistries are discussed, with a review of recent findings regarding the mechanisms of phenolic condensation and acceleration. Also, the work regarding alternate natural materials, such as carbohydrates, lignins, tannins, and proteinaceous materials, is presented. Finally, new developments in alternative adhesive technologies are reported.

  7. Comparison of enamel bond fatigue durability between universal adhesives and two-step self-etch adhesives: Effect of phosphoric acid pre-etching.

    Science.gov (United States)

    Suda, Shunichi; Tsujimoto, Akimasa; Barkmeier, Wayne W; Nojiri, Kie; Nagura, Yuko; Takamizawa, Toshiki; Latta, Mark A; Miyazaki, Masashi

    2018-03-30

    The effect of phosphoric acid pre-etching on enamel bond fatigue durability of universal adhesives and two-step self-etch adhesives was investigated. Four universal adhesives and three two-step self-etch adhesives were used. The initial shear bond strengths and shear fatigue strengths to enamel with and without phosphoric acid pre-etching using the adhesives were determined. SEM observations were also conducted. Phosphoric acid pre-etching of enamel was found to increase the bond fatigue durability of universal adhesives, but its effect on two-step self-etch adhesives was material-dependent. In addition, some universal adhesives with phosphoric acid pre-etching showed similar bond fatigue durability to the two-step self-etch adhesives, although the bond fatigue durability of universal adhesives in self-etch mode was lower than that of the two-step self-etch adhesives. Phosphoric acid pre-etching enhances enamel bond fatigue durability of universal adhesives, but the effect of phosphoric acid pre-etching on the bond fatigue durability of two-step self-etch adhesives was material-dependent.

  8. Quantitative measurement of changes in adhesion force involving focal adhesion kinase during cell attachment, spread, and migration

    International Nuclear Information System (INIS)

    Wu, C.-C.; Su, H.-W.; Lee, C.-C.; Tang, M.-J.; Su, F.-C.

    2005-01-01

    Focal adhesion kinase (FAK) is a critical protein for the regulation of integrin-mediated cellular functions and it can enhance cell motility in Madin-Darby canine kidney (MDCK) cells by hepatocyte growth factor (HGF) induction. We utilized optical trapping and cytodetachment techniques to measure the adhesion force between pico-Newton and nano-Newton (nN) for quantitatively investigating the effects of FAK on adhesion force during initial binding (5 s), beginning of spreading (30 min), spreadout (12 h), and migration (induced by HGF) in MDCK cells with overexpressed FAK (FAK-WT), FAK-related non-kinase (FRNK), as well as normal control cells. Optical tweezers was used to measure the initial binding force between a trapped cell and glass coverslide or between a trapped bead and a seeded cell. In cytodetachment, the commercial atomic force microscope probe with an appropriate spring constant was used as a cyto-detacher to evaluate the change of adhesion force between different FAK expression levels of cells in spreading, spreadout, and migrating status. The results demonstrated that FAK-WT significantly increased the adhesion forces as compared to FRNK cells throughout all the different stages of cell adhesion. For cells in HGF-induced migration, the adhesion force decreased to almost the same level (∼600 nN) regardless of FAK levels indicating that FAK facilitates cells to undergo migration by reducing the adhesion force. Our results suggest FAK plays a role of enhancing cell adhesive ability in the binding and spreading, but an appropriate level of adhesion force is required for HGF-induced cell migration

  9. Extra-fibrillar matrix mechanics of annulus fibrosus in tension and compression.

    Science.gov (United States)

    Cortes, Daniel H; Elliott, Dawn M

    2012-07-01

    The annulus fibrosus (AF) of the disk is a highly nonlinear and anisotropic material that undergoes a complex combination of loads in multiple orientations. The tensile mechanical behavior of AF in the lamellar plane is dominated by collagen fibers and has been accurately modeled using exponential functions. On the other hand, AF mechanics perpendicular to the lamella, in the radial direction, depend on the properties of the ground matrix with little to no fiber contribution. The ground matrix is mainly composed of proteoglycans (PG), which are negatively charged macromolecules that maintain the tissue hydration via osmotic pressure. The mechanical response of the ground matrix can be divided in the contribution of osmotic pressure and an elastic solid part known as extra-fibrillar matrix (EFM). Mechanical properties of the ground matrix have been measured using tensile and confined compression tests. However, EFM mechanics have not been measured directly. The objective of this study was to measure AF nonlinear mechanics of the EFM in tension and compression. To accomplish this, a combination of osmotic swelling and confined compression in disk radial direction, perpendicular to the lamella, was used. For this type of analysis, it was necessary to define a stress-free reference configuration. Thus, a brief analysis on residual stress in the disk and a procedure to estimate the reference configuration are presented. The proposed method was able to predict similar swelling deformations when using different loading protocols and models for the EFM, demonstrating its robustness. The stress-stretch curve of the EFM was linear in the range 0.9 disk and can be applied to differentiate between functional degeneration effects such as PG loss and stiffening due to cross-linking.

  10. Age Increases Monocyte Adhesion on Collagen

    Science.gov (United States)

    Khalaji, Samira; Zondler, Lisa; Kleinjan, Fenneke; Nolte, Ulla; Mulaw, Medhanie A.; Danzer, Karin M.; Weishaupt, Jochen H.; Gottschalk, Kay-E.

    2017-05-01

    Adhesion of monocytes to micro-injuries on arterial walls is an important early step in the occurrence and development of degenerative atherosclerotic lesions. At these injuries, collagen is exposed to the blood stream. We are interested whether age influences monocyte adhesion to collagen under flow, and hence influences the susceptibility to arteriosclerotic lesions. Therefore, we studied adhesion and rolling of human peripheral blood monocytes from old and young individuals on collagen type I coated surface under shear flow. We find that firm adhesion of monocytes to collagen type I is elevated in old individuals. Pre-stimulation by lipopolysaccharide increases the firm adhesion of monocytes homogeneously in older individuals, but heterogeneously in young individuals. Blocking integrin αx showed that adhesion of monocytes to collagen type I is specific to the main collagen binding integrin αxβ2. Surprisingly, we find no significant age-dependent difference in gene expression of integrin αx or integrin β2. However, if all integrins are activated from the outside, no differences exist between the age groups. Altered integrin activation therefore causes the increased adhesion. Our results show that the basal increase in integrin activation in monocytes from old individuals increases monocyte adhesion to collagen and therefore the risk for arteriosclerotic plaques.

  11. Adhesion of Zinc Hot-dip Coatings

    Directory of Open Access Journals (Sweden)

    Michal Černý

    2014-01-01

    Full Text Available The work is focused on verification of quality adhesion of zinc coating. It describes elements which affect quality and adhesive solidity within the coating. For assessment itself it will be neccessary to get know the basic elements which can affect adhesion of hot-dip coating which will be essential for choosing suitable samples for verification itself. These elements characterise acoustic responses during delamination coating. They affect elements influencing progress of signal. In research there is also a summary of existing methods for testing adhesion of coatings. As a result a new proposal of a new method comes out for purpose of quality testing of adhesion zinc hot-dip coating. The results of verification of this method are put to scientific analysis and findings lead to assessment of proposed method and its application in technical practise.The goal of this contribution is also include to proposed methodology testing adhesion zinc coating by nondestructive diagnostic method of acoustic emission (AE, which would monitor characterise progress of coating delamination of hot-dip zinc from basic material in way to adhesion tests would be practicable in situ. It can be enabled by analysis and assessment of results acquired by method AE and its application within verification of new method of adhesion anti-corrosive zinc coating.

  12. Influence on proliferation and adhesion of human gingival fibroblasts from different titanium surface decontamination treatments: An in vitro study.

    Science.gov (United States)

    Cao, Jie; Wang, Tong; Pu, Yinfei; Tang, Zhihui; Meng, Huanxin

    2018-03-01

    To investigate the effects of different decontamination treatments on microstructure of titanium (Ti) surface as well as proliferation and adhesion of human gingival fibroblasts (HGFs). Ti discs with machined (M) and sand blasted, acid etched (SAE) surfaces were treated with five different decontamination treatments: (1) stainless steel curette (SSC), ultrasonic system with (2) straight carbon fiber tip (UCF) or (3) metal tip (UM), (4) rotating Ti brush (RTB), and (5) Er:YAG laser (30 mJ/pulse at 30 Hz). Surface roughness was analyzed under optical interferometry. HGFs were cultured on each disc. Proliferation and adhesive strength were analyzed. qRT-PCR and ELISA were performed to detect the RNA and protein expression of FAK, ITGB1, COL1A1, and FN1 respectively from different Ti surfaces. Surface roughness increased on M surface. Proliferation, adhesive strength and gene expression were higher on M surface than SAE surface. Decontamination treatments affected surface parameters significantly (P < 0.001), making M surface less smooth while SAE surface became less rough. SSC, UCF, UM and RTB decreased proliferation on M surfaces significantly (P < 0.05). UCF, RTB and laser increased proliferation on SAE surface significantly (P < 0.05). UM decreased adhesive strength on M surface significantly and laser increased adhesive strength on SAE surface significantly (P < 0.05). Gene expression increased with time and was altered by decontamination treatments significantly (P < 0.001). Decontamination treatments influence surface roughness and cell behavior of HGFs. Laser might be an optimal decontamination treatment which has the least negative effect on M surface and the most positive effect on SAE surface. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. EB curable laminating adhesives

    International Nuclear Information System (INIS)

    Matsuyama, Asao; Kobayashi, Masahide; Gotoh, Sakiko

    1992-01-01

    New developed solvent free EB curable laminating adhesives have two liquid components, A with hydroxy and acryloyl group, B with isocyanate and acryloyl group in a molecule. These EB laminating adhesives do not need any aging process, which is a big advantage, and are very suitable for environment, safety, and health because of no heating process and solvent free formulas. And we have made basic research about the relation of peel strength or heat seal strength versus Tg of cured film, elongation at break, elastic modulus, and so on. Basic specifications of the new developed adhesives are shown. (author)

  14. Platelet adhesiveness: the effect of centrifugation on the measurement of adhesiveness in platelet-rich plasma

    Science.gov (United States)

    McBride, J. A.

    1968-01-01

    Platelet adhesiveness has been measured in citrated whole blood and in platelet-rich plasma obtained from normal subjects, splenectomized patients, and from patients in whom the diagnosis of recurrent venous thrombosis had been made. The duration of centrifugation used in the preparation of platelet-rich plasma was found to have a profound effect on the measurement of platelet adhesiveness because the figure for platelet adhesiveness measured in platelet-rich plasma obtained by centrifugation was considerably lower than that found in citrated whole blood. This effect was particularly marked when platelet-rich plasma was obtained from subjects in whom platelet adhesiveness measured in whole blood was increased. PMID:5699080

  15. Local elasticity and adhesion of nanostructures on Drosophila melanogaster wing membrane studied using atomic force microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Wagner, Ryan, E-mail: rbwagner@purdue.edu [School of Mechanical Engineering, Purdue University, West Lafayette (United States); Brick Nanotechnology Center, Purdue University, West Lafayette (United States); Pittendrigh, Barry R. [Department of Entomology, University of Illinois, Champaign (United States); Raman, Arvind, E-mail: raman@purdue.edu [School of Mechanical Engineering, Purdue University, West Lafayette (United States); Brick Nanotechnology Center, Purdue University, West Lafayette (United States)

    2012-10-15

    Highlights: Black-Right-Pointing-Pointer We studied the wing membrane of Drosophila melanogaster with atomic force microscopy. Black-Right-Pointing-Pointer We report the structure, elasticity, and adhesion on the wing membrane in air and nitrogen environments. Black-Right-Pointing-Pointer Results provide insight into the nature of the wing membrane enabling the development of biomimetic surface and micro air vehicles. - Abstract: Insect wings have a naturally occurring, complex, functional, hierarchical microstructure and nanostructure, which enable a remarkably water-resistant and self-cleaning surface. Insect wings are used as a basis for engineering biomimetic materials; however, the material properties of these nanostructures such as local elastic modulus and adhesion are poorly understood. We studied the wings of the Canton-S strain of Drosophila melanogaster (hereafter referred to as Drosophila) with atomic force microscopy (AFM) to quantify the local material properties of Drosophila wing surface nanostructures. The wings are found to have a hierarchical structure of 10-20 {mu}m long, 0.5-1 {mu}m diameter hair, and at a much smaller scale, 100 nm diameter and 30-60 nm high bumps. The local properties of these nanoscale bumps were studied under ambient and dry conditions with force-volume AFM. The wing membrane was found to have a elastic modulus on the order of 1000 MPa and the work of adhesion between the probe and wing membrane surface was found to be on the order of 100 mJ/m{sup 2}, these properties are the same order of magnitude as common thermoplastic polymers such as polyethylene. The difference in work of adhesion between the nanoscale bump and membrane does not change significantly between ambient (relative humidity of 30%) or dry conditions. This suggests that the nanoscale bumps and the surrounding membrane are chemically similar and only work to increase hydrophobicity though surface roughening or the geometric lotus effect.

  16. Local elasticity and adhesion of nanostructures on Drosophila melanogaster wing membrane studied using atomic force microscopy

    International Nuclear Information System (INIS)

    Wagner, Ryan; Pittendrigh, Barry R.; Raman, Arvind

    2012-01-01

    Highlights: ► We studied the wing membrane of Drosophila melanogaster with atomic force microscopy. ► We report the structure, elasticity, and adhesion on the wing membrane in air and nitrogen environments. ► Results provide insight into the nature of the wing membrane enabling the development of biomimetic surface and micro air vehicles. - Abstract: Insect wings have a naturally occurring, complex, functional, hierarchical microstructure and nanostructure, which enable a remarkably water-resistant and self-cleaning surface. Insect wings are used as a basis for engineering biomimetic materials; however, the material properties of these nanostructures such as local elastic modulus and adhesion are poorly understood. We studied the wings of the Canton-S strain of Drosophila melanogaster (hereafter referred to as Drosophila) with atomic force microscopy (AFM) to quantify the local material properties of Drosophila wing surface nanostructures. The wings are found to have a hierarchical structure of 10–20 μm long, 0.5–1 μm diameter hair, and at a much smaller scale, 100 nm diameter and 30–60 nm high bumps. The local properties of these nanoscale bumps were studied under ambient and dry conditions with force-volume AFM. The wing membrane was found to have a elastic modulus on the order of 1000 MPa and the work of adhesion between the probe and wing membrane surface was found to be on the order of 100 mJ/m 2 , these properties are the same order of magnitude as common thermoplastic polymers such as polyethylene. The difference in work of adhesion between the nanoscale bump and membrane does not change significantly between ambient (relative humidity of 30%) or dry conditions. This suggests that the nanoscale bumps and the surrounding membrane are chemically similar and only work to increase hydrophobicity though surface roughening or the geometric lotus effect.

  17. Adhesive Joints in Wind Turbine Blades

    DEFF Research Database (Denmark)

    Jørgensen, Jeppe Bjørn

    to be determined in several different ways. The accuracy of different ways of measuring residual stresses in the adhesive was tested by applying five different methods on a single sandwich test specimen (laminate/adhesive/laminate) that was instrumented with strain gauges and fiber Bragg gratings. Quasi...... of the project is to develop new- and to improve the existing design rules for adhesive joints in wind turbine blades. The first scientific studies of adhesive joints were based on stress analysis, which requires that the bond-line is free of defects, but this is rarely the case for a wind turbine blade. Instead...... curing and test temperatures) on the formation of transverse cracks in the adhesive were tested experimentally. It was assumed that the transverse cracks evolved due to a combination of mechanical- and residual stresses in the adhesive. A new approach was developed that allows the residual stress...

  18. Influence of Conditioning Time of Universal Adhesives on Adhesive Properties and Enamel-Etching Pattern.

    Science.gov (United States)

    Cardenas, A M; Siqueira, F; Rocha, J; Szesz, A L; Anwar, M; El-Askary, F; Reis, A; Loguercio, A

    2016-01-01

    To evaluate the effect of application protocol in resin-enamel microshear bond strength (μSBS), in situ degree of conversion, and etching pattern of three universal adhesive systems. Sixty-three extracted third molars were sectioned in four parts (buccal, lingual, and proximals) and divided into nine groups, according to the combination of the main factors-Adhesive (Clearfil Universal, Kuraray Noritake Dental Inc, Tokyo, Japan; Futurabond U, VOCO, Cuxhaven, Germany; and Scotchbond Universal Adhesive, 3M ESPE, St Paul, MN, USA)-and enamel treatment/application time (etch-and-rinse mode [ER], self-etch [SE] application for 20 seconds [SE20], and SE application for 40 seconds [SE40]). Specimens were stored in water (37°C/24 h) and tested at 1.0 mm/min (μSBS). The degree of conversion of the adhesives at the resin-enamel interfaces was evaluated using micro-Raman spectroscopy. The enamel-etching pattern was evaluated under a scanning electron microscope. Data were analyzed with two-way analysis of variance and Tukey test (α=0.05). In general, the application of the universal adhesives in the SE40 produced μSBS and degree of conversion that were higher than in the SE20 (puniversal adhesives in the SE mode may be a viable alternative to increase the degree of conversion, etching pattern, and resin-enamel bond strength.

  19. Microstructure and mechanical properties of nanostructure multilayer CrN/Cr coatings on titanium alloy

    International Nuclear Information System (INIS)

    Wiecinski, Piotr; Smolik, Jerzy; Garbacz, Halina; Kurzydlowski, Krzysztof J.

    2011-01-01

    Five different nanostructured, multilayer coatings (CrN/Cr)x8 with different thickness ratio of Cr and CrN layers were deposited by PAPVD (Plasma Assisted Physical Vapour Deposition) vacuum arc method on Ti6Al4V titanium alloy. The microstructure, chemical and phase composition of the CrN and Cr sub-layers were characterized by SEM with EDX and Cs-corrected dedicated STEM on cross-sections prepared by focus ion beam. Besides, hardness and Young's modulus of the (Cr/CrN)x8 coatings has been measured. The adhesion has been tested by scratch test method. The obtained (CrN/Cr) multilayer coatings, 5-6 μm in thickness, have homogeneous and nanocrystalline structure, free of pores and cracks. The microstructures of Cr and CrN layers consist of columnar grains below 100 nm in diameter. The hardness and Young's modulus of these coatings depend linearly on thickness ratio of Cr and CrN layers. The decrease of the thickness ratio Cr/CrN 0.81 to 0.15 results in the increase of hardness from 1275 HV to 1710 HV and Young's modulus from 260 GPa to 271 GPa.

  20. 21 CFR 175.125 - Pressure-sensitive adhesives.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Pressure-sensitive adhesives. 175.125 Section 175...) FOOD FOR HUMAN CONSUMPTION (CONTINUED) INDIRECT FOOD ADDITIVES: ADHESIVES AND COMPONENTS OF COATINGS Substances for Use Only as Components of Adhesives § 175.125 Pressure-sensitive adhesives. Pressure-sensitive...

  1. AN ANALYTICAL STUDY IN ADHESIVE BOWEL OBSTRUCTION

    Directory of Open Access Journals (Sweden)

    Gerald Anand Raja

    2017-04-01

    Full Text Available BACKGROUND Peritoneal adhesions can be defined as abnormal fibrous bands between organs or tissues or both in the abdominal cavity that are normally separated. Adhesions may be acquired or congenital; however, most are acquired as a result of peritoneal injury, the most common cause of which is abdominopelvic surgery. Less commonly, adhesions may form as the result of inflammatory conditions, intraperitoneal infection or abdominal trauma. The extent of adhesion formation varies from one patient to another and is most dependent on the type and magnitude of surgery performed as well as whether any postoperative complications develop. Fortunately, most patients with adhesions do not experience any overt clinical symptoms. For others, adhesions may lead to any one of a host of problems and can be the cause of significant morbidity and mortality. MATERIALS AND METHODS This is a retrospective study of 50 patients admitted in Government Royapettah Hospital with adhesive bowel obstruction between September 2008 to September 2010. All patients were admitted and managed either conservatively or surgically. RESULTS 1. Adhesive bowel disease is the most common cause for bowel obstruction followed by hernias. 2. Increased incidence is noted in females. 3. Increased incidence of adhesions was documented in gynaecological and colorectal surgeries. 4. Below umbilical incisions have higher propensity for adhesion formation. 5. Laparotomies done for infective aetiology have higher adhesion risks. 6. Most of adhesive obstructions can be managed conservatively. 7. Adhesiolysis preferably laparoscopic can be done. For gangrenous bowel resection and anastomosis or ostomy done. 8. Given the above risk factors, adhesive bowel disease can be prevented to a certain extent. CONCLUSION The formation of peritoneal adhesions continues to plague patients, surgeons and society. Although, research in this area is ongoing, there is currently no method that is 100% effective in

  2. Microscopic Pillars and Tubes Fabricated by Using Fish Dentine as a Molding Template

    Directory of Open Access Journals (Sweden)

    Weiqun Li

    2014-08-01

    Full Text Available Biomaterials in nature exhibit delicate structures that are greatly beyond the capability of the current manufacturing techniques. Duplicating these structures and applying them in engineering may help enhance the performance of traditional functional materials and structures. Inspired by gecko’s hierarchical micro- and nano-fibrillar structures for adhesion, in this work we fabricated micro-pillars and tubes by adopting the tubular dentine of black carp fish teeth as molding template. The adhesion performances of the fabricated micro-pillars and tubes were characterized and compared. It was found that the pull-off force of a single pillar was about twice of that of the tube with comparable size. Such unexpected discrepancy in adhesion was analyzed based on the contact mechanics theories.

  3. Disorders of adhesions or adhesion-related disorder: monolithic entities or part of something bigger--CAPPS?

    Science.gov (United States)

    Wiseman, David M

    2008-07-01

    The purpose of this article is to review progress in the field of abdominopelvic adhesions and the validity of its two underlying assumptions: (1) The formation of adhesions results in infertility, bowel obstruction, or other complications. Reducing or avoiding adhesions will curb these sequelae. (2) "Adhesions" is a monolithic entity to be tackled without regard to any other condition. Evidence is discussed to validate the first assumption. We reviewed progress in the field by examining hospital data. We found a growing trend in the number and cost of discharges for just two adhesion-related diagnoses, and the low usage of adhesion barriers appears in at most 5% of appropriate procedures. Data from an Internet-based survey suggested that the problem may be partly due to ignorance among patients and physicians about adhesions and their prevention. Two other surveys of patients visiting the adhesions.org Web site defined more fully adhesion-related disorder (ARD). The first survey ( N = 466) described a patient with chronic pain, gastrointestinal disturbances, an average of nine bowel obstructions, and an inability to work or maintain family or social relationships. The second survey (687 U.S. women) found a high (co-) prevalence of abdominal or pelvic adhesions (85%), chronic abdominal or pelvic pain (69%), irritable bowel syndrome (55%), recurrent bowel obstruction (44%), endometriosis (40%), and interstitial cystitis (29%). This pattern suggests that although "adhesions" may start out as a monolithic entity, an adhesions patient may develop related conditions (ARD) until they merge into an independent entity where they are practically indistinguishable from patients with multiple symptoms originating from other abdominopelvic conditions such as pelvic or bladder pain. Rather than use terms that constrain the required multidisciplinary, biopsychosocial approach to these patients by the paradigms of the specialty related to the patient's initial symptom set, the

  4. Effect of a low-viscosity adhesive resin on the adhesion of metal brackets to enamel etched with hydrochloric or phosphoric acid combined with conventional adhesives.

    Science.gov (United States)

    Yetkiner, Enver; Ozcan, Mutlu; Wegehaupt, Florian Just; Wiegand, Annette; Eden, Ece; Attin, Thomas

    2013-12-01

    This study investigated the effect of a low-viscosity adhesive resin (Icon) applied after either hydrochloric (HCl) or phosphoric acid (H3PO4) on the adhesion of metal brackets to enamel. Failure types were analyzed. The crowns of bovine incisors (N = 20) were sectioned mesio-distally and inciso-gingivally, then randomly assigned to 4 groups according to the following protocols to receive mandibular incisor brackets: 1) H3PO4 (37%)+TransbondXT (3M UNITEK); 2) H3PO4 (37%)+Icon+TransbondXT; 3) HCl (15%)+Icon (DMG)+TransbondXT 4) HCl (15%)+Icon+Heliobond (Ivoclar Vivadent)+TransbondXT. Specimens were stored in distilled water at 37°C for 24 h and thermocycled (5000x, 5°C to 55°C). The shear bond strength (SBS) test was performed using a universal testing machine (1 mm/min). Failure types were classified according to the Adhesive Remnant Index (ARI). Contact angles of adhesive resins were measured (n = 5 per adhesive) on ceramic surfaces. No significant difference in SBS was observed, implying no difference between combinations of adhesive resins and etching agents (p = 0.712; ANOVA). The Weibull distribution presented significantly lower Weibull modulus (m) of group 3 (m = 2.97) compared to other groups (m = 5.2 to 6.6) (p group 1 (45.4 ± 7.9) > group 2 (44.2 ± 10.6) > group 3 (42.6 ± 15.5). While in groups 1, 3, and 4 exclusively an ARI score of 0 (no adhesive left on tooth) was observed, in group 2, only one specimen demonstrated score 1 (less than half of adhesive left on tooth). Contact angle measurements were as follows: Icon (25.86 ± 3.81 degrees), Heliobond (31.98 ± 3.17 degrees), TransbondXT (35 ± 2.21 degrees). Icon can be safely used with the conventional adhesives tested on surfaces etched with either HCl or H3PO4.

  5. Numerical implementation of multiple peeling theory and its application to spider web anchorages.

    Science.gov (United States)

    Brely, Lucas; Bosia, Federico; Pugno, Nicola M

    2015-02-06

    Adhesion of spider web anchorages has been studied in recent years, including the specific functionalities achieved through different architectures. To better understand the delamination mechanisms of these and other biological or artificial fibrillar adhesives, and how their adhesion can be optimized, we develop a novel numerical model to simulate the multiple peeling of structures with arbitrary branching and adhesion angles, including complex architectures. The numerical model is based on a recently developed multiple peeling theory, which extends the energy-based single peeling theory of Kendall, and can be applied to arbitrarily complex structures. In particular, we numerically show that a multiple peeling problem can be treated as the superposition of single peeling configurations even for complex structures. Finally, we apply the developed numerical approach to study spider web anchorages, showing how their function is achieved through optimal geometrical configurations.

  6. Aspirin augments hyaluronidase induced adhesion inhibition ...

    African Journals Online (AJOL)

    Postoperative adhesions occur after virtually all abdomino-pelvic surgery and are the leading cause of intestinal obstruction and other gynaecologic problems. We used an animal model to test the efficacy of combined administration of aspirin and hyaluronidase on adhesion formation. Adhesions were induced using ...

  7. Microstructure, mechanical and tribological characterization of CrN/DLC/Cr-DLC multilayer coating with improved adhesive wear resistance

    Science.gov (United States)

    Sui, Xudong; Liu, Jinyu; Zhang, Shuaituo; Yang, Jun; Hao, Junying

    2018-05-01

    Adhesive wear is one of the major reasons for the failure of components during various tribological application, especially for rubbing with viscous materials. This study presents CrN/DLC/Cr-DLC multilayer composite coatings prepared on a plasma enhanced chemical vapor deposition (PECVD) device with the close field unbalanced magnetron sputtering ion plating (CFUBMSIP) technique. SEM, XRD and Raman spectroscopy were used to determine the structure of multilayer coatings. It was found that the multilayer coatings are composed by the alternating CrN and DLC layers. Compared with the single CrN coatings, the friction coefficient of the CrN/DLC/Cr-DLC multilayer coating decreases about more than seven times after sliding a distance of 500 m. This helps to reduce the adhesive wear of multilayer coatings. Compared with the single CrN and DLC coating, the wear rate of the CrN/DLC/Cr-DLC multilayer coating is reduced by an order of magnitude to 7.10 × 10-17 (sliding with AISI 440C) and 2.64 × 10-17 (sliding with TC4) m3/(N m). The improved tribological performance of multilayer coatings mainly attributes to the introduction of lubricant DLC and hard support CrN layers, the enhancement of crack propagation inhibition, and the increment of elastic recovery value We (71.49%) by multilayer design method.

  8. Adhesion and adhesion changes at the copper metal-(acrylonitrile-butadiene-styrene) polymer interface

    NARCIS (Netherlands)

    Kisin, S.; Varst, van der P.G.T.; With, de G.

    2007-01-01

    It is known that the adhesive strength of metallic films on polymer substrates often changes in the course of time. To study this effect in more detail, the adhesion energy of sputtered and galvanically strengthened copper coatings on acrylonitrile–butadiene–styrene polymer substrate was determined

  9. Epoxy-resin adhesive and method for bonding using such an epoxy resin adhesive

    NARCIS (Netherlands)

    Bhowmik, S.; Poulis, J.A.; Benedictus, R.

    2008-01-01

    The invention relates to an epoxy resin adhesive comprising a dotation of nano-substances, wherein the nano- substances are selected from the group comprising carbon-fibre nanotubes, carbon nano-fibres, silicate nano powders, and wherein the nano-substances are dispersed in the adhesive with a

  10. Adhesion of Pharmaceutical Binding Agents I-Adhesion to polymeric materials

    Directory of Open Access Journals (Sweden)

    Hossain Orafai

    1996-08-01

    Full Text Available Adhesion of three commonly used pharmaceutical binding agents, HPMC , PVP and Gelatin to five different polymeric sheet materials was studied. After conditioning, the bond strength of the specimens were measured by shear testing method using a suitablely designed apparatus. The results were correlated to the surface energies and the solubiiity parameters of the adherends. It is concluded that the thermodynamic properties and the solubility parameters are dominant when the mechanisms of adhesion are by adsorption and diffusion respectively.

  11. Normally Oriented Adhesion versus Friction Forces in Bacterial Adhesion to Polymer-Brush Functionalized Surfaces Under Fluid Flow

    NARCIS (Netherlands)

    Swartjes, Jan J. T. M.; Veeregowda, Deepak H.; van der Mei, Henny C.; Busscher, Henk J.; Sharma, Prashant K.

    2014-01-01

    Bacterial adhesion is problematic in many diverse applications. Coatings of hydrophilic polymer chains in a brush configuration reduce bacterial adhesion by orders of magnitude, but not to zero. Here, the mechanism by which polymer-brush functionalized surfaces reduce bacterial adhesion from a

  12. an Adhesive Patch

    Directory of Open Access Journals (Sweden)

    S. Mojtaba Taghizadeh

    2013-01-01

    Full Text Available Drug-in-adhesive transdermal drug delivery systems  TDDSs containing stimulants, termed as energetic substances, such as caffeine and pantothenic acid, were studied. Caffeine is a white crystalline substance and a stimulant to central nervous system. In humans, caffeine acts as a central nervous system stimulant, temporarily warding off drowsiness and restoring alertness. Pantothenic acid, also recognized as vitamin B5, is a water-soluble vitamin. For many animals, pantothenic acid is an essential nutrient. Animals require pantothenic acid to synthesize and metabolize proteins, carbohydrates and fats. For this purpose caffeine and pantothenic acid were  used  as  drug  components with  6.32%  and  1.12%  loadings,  in  different functional and non-functional acrylic pressure sensitive adhesives (PSAs of 52.89%, respectively. Ethylene glycol as a chemical enhancer was used in all TDDSs with 39.67%. The effect of PSAs  type on  in vitro  release and adhesion properties  (peel strength and tack values from drug delivery devices were evaluated. It was found that TDDS containing -COOH functional PSA showed  the  lowest steady state fux. The adhesion properties of the samples were improved by addition of functional acrylic PSA in formulations.

  13. Flotillins Regulate Focal Adhesions by Interacting with α-Actinin and by Influencing the Activation of Focal Adhesion Kinase

    Directory of Open Access Journals (Sweden)

    Antje Banning

    2018-04-01

    Full Text Available Cell–matrix adhesion and cell migration are physiologically important processes that also play a major role in cancer spreading. In cultured cells, matrix adhesion depends on integrin-containing contacts such as focal adhesions. Flotillin-1 and flotillin-2 are frequently overexpressed in cancers and are associated with poor survival. Our previous studies have revealed a role for flotillin-2 in cell–matrix adhesion and in the regulation of the actin cytoskeleton. We here show that flotillins are important for cell migration in a wound healing assay and influence the morphology and dynamics of focal adhesions. Furthermore, anchorage-independent growth in soft agar is enhanced by flotillins. In the absence of flotillins, especially flotillin-2, phosphorylation of focal adhesion kinase and extracellularly regulated kinase is diminished. Flotillins interact with α-actinin, a major regulator of focal adhesion dynamics. These findings are important for understanding the molecular mechanisms of how flotillin overexpression in cancers may affect cell migration and, especially, enhance metastasis formation.

  14. The adhesive bonding of beryllium structural components

    International Nuclear Information System (INIS)

    Fullerton-Batten, R.C.

    1977-01-01

    Where service conditions permit, adhesive bonding is a highly recommendable, reliable means of joining beryllium structural parts. Several important programs have successfully used adhesive bonding for joining structural and non-structural beryllium components. Adhesive bonding minimizes stress concentrations associated with other joining techniques and considerably improves fatigue resistance. In addition, no degradation of base metal properties occur. In many instances, structural joints can be fabricated more cheaply by adhesive bonding or in combination with adhesive bonding than by any other method used alone. An evaluation program on structural adhesive bonding of beryllium sheet components is described. A suitable surface pretreatment for beryllium adherends prior to bonding is given. Tensile shear strength and fatigue properties of FM 1000 and FM 123-5 adhesive bonded joints are reviewed and compared with data obtained from riveted joints of similar geometry. (author)

  15. Microstructure and micromechanical properties of electrodeposited Zn–Mo coatings on steel

    Energy Technology Data Exchange (ETDEWEB)

    Kazimierczak, Honorata, E-mail: h.kazimierczak@imim.pl [Institute of Metallurgy and Material Science, Polish Academy of Sciences, 30-059 Krakow, Reymonta 25 (Poland); Ozga, Piotr [Institute of Metallurgy and Material Science, Polish Academy of Sciences, 30-059 Krakow, Reymonta 25 (Poland); Berent, Katarzyna [Academic Centre for Materials and Nanotechnology, AGH University of Science and Technology, 30-059 Krakow, Mickiewicza Av. 30 (Poland); Kot, Marcin [Faculty of Mechanical Engineering and Robotics, AGH University of Science and Technology, 30-059 Krakow, Mickiewicza Av. 30 (Poland)

    2015-07-05

    Highlights: • The conditions for electrodeposition of uniform and compact Zn–Mo coatings have been studied. • Zn–Mo coatings microstructure can be controlled by the molybdenum content. • Surface roughness can be controlled by the content of Mo in coatings. • The value of microhardness grows gradually with the increase of Mo content up to 3 wt.%. - Abstract: The aim of the work was to characterise the new coating material based on zinc with the addition of molybdenum, electrodeposited on steel substrate from nontoxic, citrate based electrolytes. The surface composition of deposits was ascertained by chemical analysis (WDXRF). The morphology of coatings was studied by SEM. The surface morphology and roughness of Zn–Mo coatings on steel was investigated by AFM. The microhardness and Young modulus were determined by indentation technique, whereas the coating adhesion to the substrate was examined by means of scratch test. The optimal ranges of electrodeposition parameters, enabling the preparation of good quality coatings (i.e. uniform, compact, with good adhesion to the substrate), was specified. The morphology of deposits depends significantly on the content of molybdenum and on the thickness of electrodeposited layer. The microhardness of Zn–Mo coating increases with the increase of molybdenum content up to 3 wt.% and then reaches about 3.5 GPa, which is almost five times that of the value of the microhardness of the Zn coating studied.

  16. Microstructure and surface mechanical properties of pulse electrodeposited nickel

    Energy Technology Data Exchange (ETDEWEB)

    Ul-Hamid, A., E-mail: anwar@kfupm.edu.sa [Center of Research Excellence in Corrosion (CoRE-C), Research Institute, King Fahd University of Petroleum and Minerals, P.O. Box 1073, Dhahran 31261 (Saudi Arabia); Dafalla, H.; Quddus, A.; Saricimen, H.; Al-Hadhrami, L.M. [Center of Research Excellence in Corrosion (CoRE-C), Research Institute, King Fahd University of Petroleum and Minerals, P.O. Box 1073, Dhahran 31261 (Saudi Arabia)

    2011-09-01

    The surface of carbon steel was modified by electrochemical deposition of Ni in a standard Watt's bath using dc and pulse plating electrodeposition. The aim was to compare the microstructure and surface mechanical properties of the deposit obtained by both techniques. Materials characterization was conducted using field emission scanning electron microscope fitted with scanning transmission electron detector, atomic force microscope and X-ray diffractometer. Nanoindentation hardness, elastic modulus, adhesion, coefficients of friction and wear rates were determined for both dc and pulse electrodeposits. Experimental results indicate that pulse electrodeposition produced finer Ni grains compared to dc plating. Size of Ni grains increased with deposition. Both dc and pulse deposition resulted in grain growth in preferred (2 0 0) orientation. However, presence of Ni (1 1 1) grains increased in deposits produced by pulse deposition. Pulse plated Ni exhibited higher hardness, creep and coefficient of friction and lower modulus of elasticity compared to dc plated Ni.

  17. Electrically Conductive Epoxy Adhesives

    Directory of Open Access Journals (Sweden)

    Lan Bai

    2011-02-01

    Full Text Available Conductive adhesives are widely used in electronic packaging applications such as die attachment and solderless interconnections, component repair, display interconnections, and heat dissipation. The effects of film thickness as functions of filler volume fraction, conductive filler size, shape, as well as uncured adhesive matrix viscosity on the electrical conduction behavior of epoxy-based adhesives are presented in this work. For this purpose, epoxy-based adhesives were prepared using conductive fillers of different size, shape, and types, including Ni powder, flakes, and filaments, Ag powder, and Cu powder. The filaments were 20 μm in diameter, and 160 or 260 μm in length. HCl and H3PO4 acid solutions were used to etch and remove the surface oxide layers from the fillers. The plane resistance of filled adhesive films was measured using the four-point method. In all cases of conductive filler addition, the planar resistivity levels for the composite adhesive films increased when the film thickness was reduced. The shape of resistivity-thickness curves was negative exponential decaying type and was modeled using a mathematical relation. The relationships between the conductive film resistivities and the filler volume fractions were also derived mathematically based on the experimental data. Thus, the effects of surface treatment of filler particles, the type, size, shape of fillers, and the uncured epoxy viscosity could be included empirically by using these mathematical relations based on the experimental data. By utilizing the relations we proposed to model thickness-dependent and volume fraction-dependent conduction behaviors separately, we were able to describe the combined and coupled volume fraction-film thickness relationship mathematically based on our experimental data.

  18. Microstructure and wettability of root canal dentine and root canal filling materials after different chemical irrigation

    International Nuclear Information System (INIS)

    Antonijevic, Djordje; Milovanovic, Petar; Brajkovic, Denis; Ilic, Dragan; Hahn, Michael; Amling, Michael; Rakocevic, Zlatko; Djuric, Marija; Busse, Björn

    2015-01-01

    Graphical abstract: - Highlights: • Different irrigation solutions and disinfectants were used for treatment of root canal dentine and gutta-percha points. • Materials surface characteristics were assessed using quantitative backscattered electron imaging, reference point indentation, and contact angle analyzer. • The most significant differences in mineralization, indentation, and adhesive outcomes were observed after ethylenediaminetetraacetic acid treatment. • Irrigation solutions confer to superior sealing ability of endodontic filling materials. • Micromechanical characteristics of dentine after irrigation are considerable reduced. - Abstract: The objective of this study was to determine the effects of various irrigation solutions on root canal dentine and gutta-percha surface properties. In addition, the effects of disinfectant chemicals on the wettability and surface morphological properties of the filling materials were evaluated. Ethylenediaminetetraacetic acid (EDTA), citric acid, and ozone were employed as irrigation solutions for dentine and gutta-percha treatment. Thereafter, the samples’ microstructure, degree of mineralization, and mechanical properties were assessed by means of quantitative backscattered electron imaging (qBEI) and reference point indentation (RPI). A contact angle analyzer was used to measure adhesion on the tested materials. Here, EDTA had the most significant affect on both the mechanical properties and the adhesive behavior of dentine. Citric acid did not affect dentine wettability, whereas the indentation properties and the mineralization were reduced. Similar effects were observed when ozone was used. The dentinal tubules were significantly widened in citric acid compared to the ozone group. EDTA causes considerable micromechanical surface alteration of dentine and gutta-percha, but represents the best option in clinical cases where a high adhesiveness of the filling materials is desired.

  19. Microstructure and wettability of root canal dentine and root canal filling materials after different chemical irrigation

    Energy Technology Data Exchange (ETDEWEB)

    Antonijevic, Djordje; Milovanovic, Petar [Laboratory for Anthropology, Institute for Anatomy, Faculty of Medicine, University of Belgrade, Belgrade (Serbia); Brajkovic, Denis [Department of Dentistry, Faculty of Medical Sciences, University of Kragujevac, Kragujevac (Serbia); Ilic, Dragan [Department of Restorative Medicine, School of Dental Medicine, University of Belgrade, Belgrade (Serbia); Hahn, Michael; Amling, Michael [Department of Osteology and Biomechanics (IOBM), University Medical Center Hamburg-Eppendorf, Lottestr. 55A, 22529 Hamburg (Germany); Rakocevic, Zlatko [Laboratory for Atomic Physics, Institute for Nuclear Science “Vinca”, University of Belgrade, Belgrade (Serbia); Djuric, Marija [Laboratory for Anthropology, Institute for Anatomy, Faculty of Medicine, University of Belgrade, Belgrade (Serbia); Busse, Björn, E-mail: b.busse@uke.uni-hamburg.de [Department of Osteology and Biomechanics (IOBM), University Medical Center Hamburg-Eppendorf, Lottestr. 55A, 22529 Hamburg (Germany)

    2015-11-15

    Graphical abstract: - Highlights: • Different irrigation solutions and disinfectants were used for treatment of root canal dentine and gutta-percha points. • Materials surface characteristics were assessed using quantitative backscattered electron imaging, reference point indentation, and contact angle analyzer. • The most significant differences in mineralization, indentation, and adhesive outcomes were observed after ethylenediaminetetraacetic acid treatment. • Irrigation solutions confer to superior sealing ability of endodontic filling materials. • Micromechanical characteristics of dentine after irrigation are considerable reduced. - Abstract: The objective of this study was to determine the effects of various irrigation solutions on root canal dentine and gutta-percha surface properties. In addition, the effects of disinfectant chemicals on the wettability and surface morphological properties of the filling materials were evaluated. Ethylenediaminetetraacetic acid (EDTA), citric acid, and ozone were employed as irrigation solutions for dentine and gutta-percha treatment. Thereafter, the samples’ microstructure, degree of mineralization, and mechanical properties were assessed by means of quantitative backscattered electron imaging (qBEI) and reference point indentation (RPI). A contact angle analyzer was used to measure adhesion on the tested materials. Here, EDTA had the most significant affect on both the mechanical properties and the adhesive behavior of dentine. Citric acid did not affect dentine wettability, whereas the indentation properties and the mineralization were reduced. Similar effects were observed when ozone was used. The dentinal tubules were significantly widened in citric acid compared to the ozone group. EDTA causes considerable micromechanical surface alteration of dentine and gutta-percha, but represents the best option in clinical cases where a high adhesiveness of the filling materials is desired.

  20. Aluminum and steel adhesion with polyurethanes from castor oil adhesives submitted to gamma irradiation

    International Nuclear Information System (INIS)

    Azevedo, Elaine C.; Assumpcao, Roberto L.; Nascimento, Eduardo M. do; Claro Neto, Salvador; Soboll, Daniel S.

    2009-01-01

    Polyurethanes adhesive from castor oil is used to join aluminum and steel pieces. The effect of gamma radiation on the resistance to tension tests is investigated. The aluminum and steel pieces after being glued with the adhesive were submitted to gamma irradiation in doses of 1 kGy, 25 kGy and 100 kGy. The rupture strength of the joints after irradiation have a slightly increase or remains practically unchanged indicating that the adhesive properties is not affected by the gamma radiation. (author)

  1. Adhesive performance of a multi-mode adhesive system: 1-year in vitro study.

    Science.gov (United States)

    Marchesi, Giulio; Frassetto, Andrea; Mazzoni, Annalisa; Apolonio, Fabianni; Diolosà, Marina; Cadenaro, Milena; Di Lenarda, Roberto; Pashley, David H; Tay, Franklin; Breschi, Lorenzo

    2014-05-01

    The aim of this study was to investigate the adhesive stability over time of a multi-mode one-step adhesive applied using different bonding techniques on human coronal dentine. The hypotheses tested were that microtensile bond strength (μTBS), interfacial nanoleakage expression and matrix metalloproteinases (MMPs) activation are not affected by the adhesive application mode (following the use of self-etch technique or with the etch-and-rinse technique on dry or wet dentine) or by ageing for 24h, 6 months and 1year in artificial saliva. Human molars were cut to expose middle/deep dentine and assigned to one of the following bonding systems (N=15): (1) Scotchbond Universal (3M ESPE) self-etch mode, (2) Scotchbond Universal etch-and-rinse technique on wet dentine, (3) Scotchbond Universal etch-and-rinse technique on dry dentine, and (4) Prime&Bond NT (Dentsply De Trey) etch-and-rinse technique on wet dentine (control). Specimens were processed for μTBS test in accordance with the non-trimming technique and stressed to failure after 24h, 6 months or 1 year. Additional specimens were processed and examined to assay interfacial nanoleakage and MMP expression. At baseline, no differences between groups were found. After 1 year of storage, Scotchbond Universal applied in the self-etch mode and Prime&Bond NT showed higher μTBS compared to the other groups. The lowest nanoleakage expression was found for Scotchbond Universal applied in the self-etch mode, both at baseline and after storage. MMPs activation was found after application of each tested adhesive. The results of this study support the use of the self-etch approach for bonding the tested multi-mode adhesive system to dentine due to improved stability over time. Improved bonding effectiveness of the tested universal adhesive system on dentine may be obtained if the adhesive is applied with the self-etch approach. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Investigations on the viscoelastic performance of pressure sensitive adhesives in drug-in-adhesive type transdermal films.

    Science.gov (United States)

    Wolff, Hans-Michael; Irsan; Dodou, Kalliopi

    2014-08-01

    We aimed to investigate the effect of solubility parameter and drug concentration on the rheological behaviour of drug-in-adhesive films intended for transdermal application. Films were prepared over a range of drug concentrations (5%, 10% and 20% w/w) using ibuprofen, benzoic acid, nicotinic acid and lidocaine as model drugs in acrylic (Duro-Tak 87-4287 and Duro-Tak 87900A) or silicone (Bio-PSA 7-4301 and Bio-PSA 7-4302) pressure sensitive adhesives (PSAs). Saturation status of films was determined using light microscopy. Viscoelastic parameters were measured in rheology tests at 32°C. Subsaturated films had lower viscoelastic moduli whereas saturated films had higher moduli than the placebo films and/or a concentration-dependent increase in their modulus. Saturation concentration of each drug in the films was reflected by decreasing/increasing viscoelastic patterns. The viscoelastic windows (VWs) of the adhesive and drug-in-adhesive films clearly depicted the effect of solubility parameter differences, molar concentration of drug in the adhesive film and differences in PSA chemistry. Drug solubility parameters and molar drug concentrations have an impact on rheological patterns and thus on the adhesive performance of tested pressure sensitive adhesives intended for use in transdermal drug delivery systems. Use of the Flory equation in its limiting form was appropriate to predict drug solubility in the tested formulations.

  3. Enhancing the Adhesive Strength of a Plywood Adhesive Developed from Hydrolyzed Specified Risk Materials

    Directory of Open Access Journals (Sweden)

    Birendra B. Adhikari

    2016-08-01

    Full Text Available The current production of wood composites relies mostly on formaldehyde-based adhesives such as urea formaldehyde (UF and phenol formaldehyde (PF resins. As these resins are produced from non-renewable resources, and there are some ongoing issues with possible health hazard due to formaldehyde emission from such products, the purpose of this research was to develop a formaldehyde-free plywood adhesive utilizing waste protein as a renewable feedstock. The feedstock for this work was specified risk material (SRM, which is currently being disposed of either by incineration or by landfilling. In this report, we describe a technology for utilization of SRM for the development of an environmentally friendly plywood adhesive. SRM was thermally hydrolyzed using a Canadian government-approved protocol, and the peptides were recovered from the hydrolyzate. The recovered peptides were chemically crosslinked with polyamidoamine-epichlorohydrin (PAE resin to develop an adhesive system for bonding of plywood specimens. The effects of crosslinking time, peptides/crosslinking agent ratio, and temperature of hot pressing of plywood specimens on the strength of formulated adhesives were investigated. Formulations containing as much as 78% (wt/wt peptides met the ASTM (American Society for Testing and Materials specifications of minimum dry and soaked shear strength requirement for UF resin type adhesives. Under the optimum conditions tested, the peptides–PAE resin-based formulations resulted in plywood specimens having comparable dry as well as soaked shear strength to that of commercial PF resin.

  4. Syndecan proteoglycans and cell adhesion

    DEFF Research Database (Denmark)

    Woods, A; Oh, E S; Couchman, J R

    1998-01-01

    It is now becoming clear that a family of transmembrane proteoglycans, the syndecans, have important roles in cell adhesion. They participate through binding of matrix ligand to their glycosaminoglycan chains, clustering, and the induction of signaling cascades to modify the internal microfilament...... organization. Syndecans can modulate the type of adhesive responses induced by other matrix ligand-receptor interactions, such as those involving the integrins, and so contribute to the control of cell morphology, adhesion and migration....

  5. Effect of atmospheric-pressure plasma treatment on the adhesion properties of a thin adhesive layer in a selective transfer process

    Science.gov (United States)

    Yoon, Min-Ah; Kim, Chan; Hur, Min; Kang, Woo Seok; Kim, Jaegu; Kim, Jae-Hyun; Lee, Hak-Joo; Kim, Kwang-Seop

    2018-01-01

    The adhesion between a stamp and thin film devices is crucial for their transfer on a flexible substrate. In this paper, a thin adhesive silicone layer on the stamp was treated by atmospheric pressure plasma to locally control the adhesion strength for the selective transfer. The adhesion strength of the silicone layer was significantly reduced after the plasma treatment, while its surface energy was increased. To understand the inconsistency between the adhesion strength and surface energy changes, the surface properties of the silicone layer were characterized using nanoindentation and X-ray photoelectron spectroscopy. These techniques revealed that a thin, hard, silica-like layer had formed on the surface from plasma-enhanced oxidation. This layer played an important role in decreasing the contact area and increasing the interfacial slippage, resulting in decreased adhesion. As a practical application, the transfer process was demonstrated on GaN LEDs that had been previously delaminated by a laser lift-off (LLO) process. Although the LEDs were not transferred onto the treated adhesive layer due to the reduced adhesion, the untreated adhesive layer could readily pick up the LEDs. It is expected that this simple method of controlling the adhesion of a stamp with a thin adhesive layer would enable a continuous, selective and large-scale roll-to-roll selective transfer process and thereby advance the development of flexible, stretchable and wearable electronics.

  6. Denture Adhesives in Prosthodontics: An Overview.

    Science.gov (United States)

    Kumar, P Ranjith; Shajahan, P A; Mathew, Jyothis; Koruthu, Anil; Aravind, Prasad; Ahammed, M Fazeel

    2015-01-01

    The use of denture adhesives is common among denture wearers, and it is also prescribed by many dentists. Prescribing denture adhesives has been viewed by many prosthodontists as a means of compensating for any defects in the fabrication procedures. Denture adhesives add to the retention and thereby improve chewing ability, reduce any instability, provide comfort and eliminate the accumulation of food debris beneath the dentures. Consequently, they increase the patient's sense of security and satisfaction. However, obtaining the advice of the dental practitioner prior to the use of adhesives is a must.

  7. Polyurethane adhesives in flat roofs

    Directory of Open Access Journals (Sweden)

    Bogárová Markéta

    2017-01-01

    Full Text Available It is necessary to stabilize individual layers of flat roofs, mainly because of wind suction. Apart from anchoring and surcharge, these layers can be secured by bonding. At present gluing is an indispensable and widely used stabilization method. On our market we can found many types of adhesives, most widely used are based on polyurethane. This paper focuses on problematic about stabilization thermal insulation from expanded polystyrene to vapor barrier from bitumen. One of the main issues is to calculate the exact amount of adhesive, which is required to guarantee the resistance against wind suction. In this problematic we can not find help neither in technical data sheets provided by the manufactures. Some of these data sheets contain at least information about amount of adhesive depending on location in roof plane and building height, but they do not specify the strength of such connection. It was therefore resorted to select several representatives polyurethane adhesives and their subsequent testing on specimens simulating the flat roof segment. The paper described the test methodology and results for two types of polyurethane adhesives.

  8. In vitro investigation of protein adsorption and platelet adhesion on inorganic biomaterial surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Yan Huang [State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096 (China); Lue Xiaoying [State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096 (China)], E-mail: luxy@seu.edu.cn; Ma Jingwu [State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096 (China); Nan Huang [Institute of Biomaterials and Surface Engineering, Southwest Jiaotong University, Chengdu 610031 (China)], E-mail: nhuang@263.com

    2008-11-15

    The aim of this paper was to study the surface properties, protein adsorption and platelet adhesion behaviors of diamond-like carbon (DLC) and titanium (Ti) films. The surface energy and microstructures of these films were characterized by contact angle measurement and atomic force microscopy (AFM). A modified Coomassie brilliant blue (CBB) protein assay was used to study the amount of adsorbed proteins. Platelet adhesion was assessed by scanning electron microscopy (SEM). The AFM results show that the DLC film is smoother than Ti. Protein adsorption results from CBB protein assay show that the ratio of adsorbed albumin (Alb) to IgG (R{sub A/I}) on DLC is larger than Ti, which coincide with the sequence of the ratio of interfacial tension between solid surface and Alb ({gamma}{sub S,Alb}) to interfacial tension between surface and IgG ({gamma}{sub S,IgG}) ({gamma}{sub S,Alb}/{gamma}{sub S,IgG}). The DLC film has a preferential adsorption for Alb. The results suggest that the ratio of {gamma}{sub S,Alb}/{gamma}{sub S,IgG} may indicate an Alb/IgG affinity ratio of materials. More platelets adhere on Ti film than on DLC, which may correspond to the surface roughness of materials. The conclusion is the blood compatibility of DLC seems to be better than Ti.

  9. Rapid and Localized Mechanical Stimulation and Adhesion Assay: TRPM7 Involvement in Calcium Signaling and Cell Adhesion.

    Directory of Open Access Journals (Sweden)

    Wagner Shin Nishitani

    Full Text Available A cell mechanical stimulation equipment, based on cell substrate deformation, and a more sensitive method for measuring adhesion of cells were developed. A probe, precisely positioned close to the cell, was capable of a vertical localized mechanical stimulation with a temporal frequency of 207 Hz, and strain magnitude of 50%. This setup was characterized and used to probe the response of Human Umbilical Endothelial Vein Cells (HUVECs in terms of calcium signaling. The intracellular calcium ion concentration was measured by the genetically encoded Cameleon biosensor, with the Transient Receptor Potential cation channel, subfamily M, member 7 (TRPM7 expression inhibited. As TRPM7 expression also regulates adhesion, a relatively simple method for measuring adhesion of cells was also developed, tested and used to study the effect of adhesion alone. Three adhesion conditions of HUVECs on polyacrylamide gel dishes were compared. In the first condition, the substrate is fully treated with Sulfo-SANPAH crosslinking and fibronectin. The other two conditions had increasingly reduced adhesion: partially treated (only coated with fibronectin, with no use of Sulfo-SANPAH, at 5% of the normal amount and non-treated polyacrylamide gels. The cells showed adhesion and calcium response to the mechanical stimulation correlated to the degree of gel treatment: highest for fully treated gels and lowest for non-treated ones. TRPM7 inhibition by siRNA on HUVECs caused an increase in adhesion relative to control (no siRNA treatment and non-targeting siRNA, but a decrease to 80% of calcium response relative to non-targeting siRNA which confirms the important role of TRPM7 in mechanotransduction despite the increase in adhesion.

  10. Hydration water and microstructure in calcium silicate and aluminate hydrates

    International Nuclear Information System (INIS)

    Fratini, Emiliano; Ridi, Francesca; Chen, Sow-Hsin; Baglioni, Piero

    2006-01-01

    angle x-ray scattering (WAXD) that characterize how additives affect both the hydrated microstructure development and the original grain size. In particular, SPs alter the morphology of the hydrated phases, which no longer grow with the classic fibrillar structure on the grain surface, but nucleate in solution as globular structures. All this information converges in a quantitative, and at molecular level, description of the mechanisms involved in the setting process of one of the materials most widely used by human beings

  11. Adhesion force imaging in air and liquid by adhesion mode atomic force microscopy

    NARCIS (Netherlands)

    van der Werf, Kees; Putman, C.A.J.; Putman, Constant A.; de Grooth, B.G.; Greve, Jan

    1994-01-01

    A new imaging mode for the atomic force microscope(AFM), yielding images mapping the adhesion force between tip and sample, is introduced. The adhesion mode AFM takes a force curve at each pixel by ramping a piezoactuator, moving the silicon‐nitride tip up and down towards the sample. During the

  12. Strategies to improve the adhesion of rubbers to adhesives by means of plasma surface modification

    Science.gov (United States)

    Martín-Martínez, J. M.; Romero-Sánchez, M. D.

    2006-05-01

    The surface modifications produced by treatment of a synthetic sulfur vulcanized styrene-butadiene rubber with oxidizing (oxygen, air, carbon dioxide) and non oxidizing (nitrogen, argon) RF low pressure plasmas, and by treatment with atmospheric plasma torch have been assessed by ATR-IR and XPS spectroscopy, SEM, and contact angle measurements. The effectiveness of the low pressure plasma treatment depended on the gas atmosphere used to generate the plasma. A lack of relationship between surface polarity and wettability, and peel strength values was obtained, likely due to the cohesive failure in the rubber obtained in the adhesive joints. In general, acceptable adhesion values of plasma treated rubber were obtained for all plasmas, except for nitrogen plasma treatment during 15 minutes due to the creation of low molecular weight moieties on the outermost rubber layer. A toluene wiping of the N{2 } plasma treated rubber surface for 15 min removed those moieties and increased adhesion was obtained. On the other hand, the treatment of the rubber with atmospheric pressure by means of a plasma torch was proposed. The wettability of the rubber was improved by decreasing the rubber-plasma torch distance and by increasing the duration because a partial removal of paraffin wax from the rubber surface was produced. The rubber surface was oxidized by the plasma torch treatment, and the longer the duration of the plasma torch treatment, the higher the degree of surface oxidation (mainly creation of C O moieties). However, although the rubber surface was effectively modified by the plasma torch treatment, the adhesion was not greatly improved, due to the migration of paraffin wax to the treated rubber-polyurethane adhesive interface once the adhesive joint was produced. On the other hand, the extended treatment with plasma torch facilitated the migration of zinc stearate to the rubber-adhesive interface, also contributing to deteriorate the adhesion in greater extent. Finally

  13. Behavior of adhesion forces of silicone adhesive sealants and mastic butyl under the influence of ionizing radiation

    International Nuclear Information System (INIS)

    Costa, Wanderley da

    2012-01-01

    Adhesives are products that can keep materials together by bonds between the surfaces. Sealants are products that can keep filled a space between two surfaces, through a barrier that is configured as a 'bridge' between the two surfaces. The mastic is a product made of a mixture of substances with the primary butyl polymer, with the consistency of a mass not dried that can be used as a sealant. The polysiloxane, also known as silicone are the most important synthetic polymers with inorganic structure, and are matrices of silicone adhesive sealants. To demonstrate the behavior of the adhesive forces of these products under different conditions, we used five different techniques. These products were subjected to two different conditions to verify the behavior of adhesion, one at the environmental condition and another under the ionizing radiation. The results showed not only differences between products (silicone and mastic), but also that the adhesive forces have different behaviors under the conditions which the samples were subjected. With this was reached the goal of this study that aspired show the differences between the mastic and silicone, this last one is often considered - erroneously - the same as mastic. Thus it was proven that: 1. silicone can be regarded as an adhesive and a sealant at ambient conditions, 2. mastic improves substantially adhesion in an environment of ionizing radiation and this property can be an excellent alternative to the adhesive market. (author)

  14. Denture adhesives: a systematic review.

    Science.gov (United States)

    Papadiochou, Sofia; Emmanouil, Ioannis; Papadiochos, Ioannis

    2015-05-01

    Denture adhesives have been the objective of scientific research for over half a century. Although they are used by denture wearers worldwide, investigations of their effectiveness and biocompatibility have led to controversial conclusions. The purpose of this study was to review the literature data with regard to the effectiveness and biocompatibility of denture adhesives as well as the attitudes of both patients and dental professionals toward these materials. An electronic search of English peer-reviewed dental literature in the Medline database was conducted to evaluate the effectiveness and biocompatibility of denture adhesives. There was no limitation in publication year, so the search included all the available scientific evidence included in that particular database until March 2014. Specific inclusion criteria were used for the selection of the appropriate articles. A manual search of the citations of the obtained articles followed to extend the electronic search. A full text review was carried out for only 32 articles. Of the 32 articles, 21 examined the efficacy of denture adhesives in terms of retention and stability and masticatory performance, 6 evaluated the issue of the biocompatibility of denture adhesives, and 5 presented the attitudes of either professionals or patients toward these materials. The majority of clinical studies supported the fact that denture adhesives enhance the retention, stability, and masticatory performance of a removable prosthesis. In terms of biocompatibility, long-term in vivo studies to investigate potential harmful effects were lacking. Patients are satisfied with denture adhesives that meet their needs. Copyright © 2015 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  15. Adhesives from modified soy protein

    Science.gov (United States)

    Sun, Susan [Manhattan, KS; Wang, Donghai [Manhattan, KS; Zhong, Zhikai [Manhattan, KS; Yang, Guang [Shanghai, CN

    2008-08-26

    The present invention provides useful adhesive compositions having similar adhesive properties to conventional UF and PPF resins. The compositions generally include a protein portion and modifying ingredient portion selected from the group consisting of carboxyl-containing compounds, aldehyde-containing compounds, epoxy group-containing compounds, and mixtures thereof. The composition is preferably prepared at a pH level at or near the isoelectric point of the protein. In other preferred forms, the adhesive composition includes a protein portion and a carboxyl-containing group portion.

  16. Mechanisms of adhesion in geckos.

    Science.gov (United States)

    Autumn, Kellar; Peattie, Anne M

    2002-12-01

    The extraordinary adhesive capabilities of geckos have challenged explanation for millennia, since Aristotle first recorded his observations. We have discovered many of the secrets of gecko adhesion, yet the millions of dry, adhesive setae on the toes of geckos continue to generate puzzling new questions and valuable answers. Each epidermally-derived, keratinous seta ends in hundreds of 200 nm spatular tips, permitting intimate contact with rough and smooth surfaces alike. Prior studies suggested that adhesive force in gecko setae was directly proportional to the water droplet contact angle (θ) , an indicator of the free surface energy of a substrate. In contrast, new theory suggests that adhesion energy between a gecko seta and a surface (W(GS)) is in fact proportional to (1 + cosθ), and only for θ > 60°. A reanalysis of prior data, in combination with our recent study, support the van der Waals hypothesis of gecko adhesion, and contradict surface hydrophobicity as a predictor of adhesion force. Previously, we and our collaborators measured the force production of a single seta. Initial efforts to attach a seta failed because of improper 3D orientation. However, by simulating the dynamics of gecko limbs during climbing (based on force plate data) we discovered that, in single setae, a small normal preload, combined with a 5 μm displacement yielded a very large adhesive force of 200 microNewton (μN), 10 times that predicted by whole-animal measurements. 6.5 million setae of a single tokay gecko attached maximally could generate 130 kg force. This raises the question of how geckos manage to detach their feet in just 15 ms. We discovered that simply increasing the angle that the setal shaft makes with the substrate to 30° causes detachment. Understanding how simultaneous attachment and release of millions of setae are controlled will require an approach that integrates levels ranging from molecules to lizards.

  17. Tissue adhesives for simple traumatic lacerations.

    Science.gov (United States)

    Beam, Joel W

    2008-01-01

    Farion K, Osmond MH, Hartling L, et al. Tissue adhesives for traumatic lacerations in children and adults. Cochrane Database Syst Rev. 2001(4);CD003326. What is the clinical evidence base for tissue adhesives in the management of simple traumatic lacerations? Studies were identified by searches of the following databases: Cochrane Wounds Group Specialized Trials Register (September 2003), Cochrane Central Register of Controlled Trials (CENTRAL) (CDROM 2003, issue 3), MEDLINE (1966 to September 2003, week 1), EMBASE (1988 to 2003, week 36), Web of Science Science Citation Index (1975 to September 13, 2003) and various clinical trials registers (September 2003). Investigators and product manufacturers were contacted to identify additional eligible studies. The search terms included wounds and injuries, laceration, face injury, nose injury, tissue adhesives, and acrylates. Each study fulfilled the following criteria: (1) The study was a randomized controlled trial that compared tissue adhesives with standard wound closure (SWC) (sutures, staples, adhesive strips) or tissue adhesive with tissue adhesive. (2) The wounds were acute, linear lacerations less than 12 hours old, resulting from blunt or sharp trauma. (3) The wound length, width, and depth allowed for approximation of the edges with minimal tension after deep sutures were placed, if required. Studies were included with no language or publication status restriction, with participants of any age recruited in an emergency department, outpatient clinic, walk-in clinic, or other primary care setting. Studies were excluded if the wounds were stellate lacerations, puncture wounds, mammalian bites, infected, heavily contaminated or devitalized, crossing joints or mucocutaneous junctions, in hair-bearing areas, or in patients with keloid formation or chronic illness. The characteristics of the study and participants, interventions, outcome measures, and findings were extracted by one author and verified by a second

  18. Microstructure and properties of composite polyetheretherketone/Bioglass® coatings deposited on Ti–6Al–7Nb alloy for medical applications

    International Nuclear Information System (INIS)

    Moskalewicz, Tomasz; Seuss, Sigrid; Boccaccini, Aldo R.

    2013-01-01

    Composite polyetheretherketone (PEEK)/Bioglass ® coatings were electrophoretically deposited on two phase α + β Ti–6Al–7Nb titanium alloy substrates. A heat treatment was performed to improve the adhesion of the coatings to the substrate. The microstructure of the coatings and substrate was examined by light microscopy, scanning- and transmission electron microscopy methods as well as by X-ray diffractometry. Coatings deposited from suspensions with PEEK/Bioglass ® weight ratio of 0.3 showed the best quality. Coatings of 40 μm thickness, exhibiting uniform porosity, without any cracks or presence of large voids were produced. The microstructure of the coatings was observed to be composed of Bioglass ® particles fairly homogeneously embedded in a PEEK matrix. STEM-EDX line analysis revealed diffusion of Na from the glass to the PEEK matrix after heat-treatment. The results demonstrate that electrophoretic deposition (EPD) is a very useful method to deposit uniform and reproducible microporous composite PEEK/Bioglass ® coatings on titanium alloy substrate for biomedical applications.

  19. Microstructure and High Temperature Mechanical Property of Fe-Cr-B Based Metal/Ceramic Composite Manufactured by Metal Injection Molding Process

    Science.gov (United States)

    Lee, Kee-Ahn; Gwon, Jin-Han; Yoon, Tae-Sik

    2018-03-01

    This study investigated the microstructure and the room and high temperature mechanical properties of Fe-Cr-B alloy manufactured by metal injection molding. In addition, hot isostatic pressing was performed to increase the density of the material, and a comparison of properties was made. Microstructural observation confirmed a bi-continuous structure composed of a three-dimensional network of α-Fe phase and (Cr,Fe)2B phase. The HIPed specimen featured a well-formed adhesion between the α-Fe phase and boride, and the number of fine pores was significantly reduced. The tensile results confirmed that the HIPed specimen (RT to 900 °C) had higher strengths compared to the as-sintered specimen, and the change of elongation starting from 700 °C was significantly greater in the HIPed specimen. Fractography suggested that cracks propagated mostly along the interface between the α-Fe matrix and boride in the as-sintered specimen, while direct fracture of boride was observed in addition to interface separation in the HIPed specimen.

  20. Adhesive compositions and methods

    Science.gov (United States)

    Allen, Scott D.; Sendijarevic, Vahid; O'Connor, James

    2017-12-05

    The present invention encompasses polyurethane adhesive compositions comprising aliphatic polycarbonate chains. In one aspect, the present invention encompasses polyurethane adhesives derived from aliphatic polycarbonate polyols and polyisocyanates wherein the polyol chains contain a primary repeating unit having a structure:. In another aspect, the invention provides articles comprising the inventive polyurethane compositions as well as methods of making such compositions.

  1. Adhesive interactions with wood

    Science.gov (United States)

    Charles R. Frihart

    2004-01-01

    While the chemistry for the polymerization of wood adhesives has been studied systematically and extensively, the critical aspects of the interaction of adhesives with wood are less clearly understood. General theories of bond formation need to be modified to take into account the porosity of wood and the ability of chemicals to be absorbed into the cell wall....

  2. Human climbing with efficiently scaled gecko-inspired dry adhesives

    OpenAIRE

    Hawkes, Elliot W.; Eason, Eric V.; Christensen, David L.; Cutkosky, Mark R.

    2015-01-01

    Since the discovery of the mechanism of adhesion in geckos, many synthetic dry adhesives have been developed with desirable gecko-like properties such as reusability, directionality, self-cleaning ability, rough surface adhesion and high adhesive stress. However, fully exploiting these adhesives in practical applications at different length scales requires efficient scaling (i.e. with little loss in adhesion as area grows). Just as natural gecko adhesives have been used as a benchmark for syn...

  3. Adhesion Between Poly(dimethylsiloxane) Layers

    DEFF Research Database (Denmark)

    Yu, Liyun; Daugaard, Anders Egede; Skov, Anne Ladegaard

    Different adhesion methods of poly(dimethylsiloxane) (PDMS) layers were studied with respect to adhesional force and the resulting rheology of the two-layered PDMS films were investigated. The role of adhesion between PDMS layers on the performances of two-layer structures was studied with peel...... strength test and by SEM pictures. The rheology of the double-layered compared to the monolayer films changed in some cases which indicates that the adhesion process needs to be carefully introduced in order not to alter the final properties....

  4. Quercetin protects human brain microvascular endothelial cells from fibrillar β-amyloid1–40-induced toxicity

    Directory of Open Access Journals (Sweden)

    Yongjie Li

    2015-01-01

    Full Text Available Amyloid beta-peptides (Aβ are known to undergo active transport across the blood-brain barrier, and cerebral amyloid angiopathy has been shown to be a prominent feature in the majority of Alzheimer׳s disease. Quercetin is a natural flavonoid molecule and has been demonstrated to have potent neuroprotective effects, but its protective effect on endothelial cells under Aβ-damaged condition is unclear. In the present study, the protective effects of quercetin on brain microvascular endothelial cells injured by fibrillar Aβ1–40 (fAβ1–40 were observed. The results show that fAβ1–40-induced cytotoxicity in human brain microvascular endothelial cells (hBMECs can be relieved by quercetin treatment. Quercetin increases cell viability, reduces the release of lactate dehydrogenase, and relieves nuclear condensation. Quercetin also alleviates intracellular reactive oxygen species generation and increases superoxide dismutase activity. Moreover, it strengthens the barrier integrity through the preservation of the transendothelial electrical resistance value, the relief of aggravated permeability, and the increase of characteristic enzyme levels after being exposed to fAβ1–40. In conclusion, quercetin protects hBMECs from fAβ1–40-induced toxicity.

  5. Gecko-inspired bidirectional double-sided adhesives.

    Science.gov (United States)

    Wang, Zhengzhi; Gu, Ping; Wu, Xiaoping

    2014-05-14

    A new concept of gecko-inspired double-sided adhesives (DSAs) is presented. The DSAs, constructed by dual-angled (i.e. angled base and angled tip) micro-pillars on both sides of the backplane substrate, are fabricated by combinations of angled etching, mould replication, tip modification, and curing bonding. Two types of DSA, symmetric and antisymmetric (i.e. pillars are patterned symmetrically or antisymmetrically relative to the backplane), are fabricated and studied in comparison with the single-sided adhesive (SSA) counterparts through both non-conformal and conformal tests. Results indicate that the DSAs show controllable and bidirectional adhesion. Combination of the two pillar-layers can either amplify (for the antisymmetric DSA, providing a remarkable and durable adhesion capacity of 25.8 ± 2.8 N cm⁻² and a high anisotropy ratio of ∼8) or counteract (for the symmetric DSA, generating almost isotropic adhesion) the adhesion capacity and anisotropic level of one SSA (capacity of 16.2 ± 1.7 N cm⁻² and anisotropy ratio of ∼6). We demonstrate that these two DSAs can be utilized as a facile fastener for two individual objects and a small-scale delivery setup, respectively, complementing the functionality of the commonly studied SSA. As such, the double-sided patterning is believed to be a new branch in the further development of biomimetic dry adhesives.

  6. Shear Adhesion of Tapered Nanopillar Arrays.

    Science.gov (United States)

    Cho, Younghyun; Minsky, Helen K; Jiang, Yijie; Yin, Kaiyang; Turner, Kevin T; Yang, Shu

    2018-04-04

    Tapered nanopillars with various cross sections, including cone-shaped, stepwise, and pencil-like structures (300 nm in diameter at the base of the pillars and 1.1 μm in height), are prepared from epoxy resin templated by nanoporous anodic aluminum oxide (AAO) membranes. The effect of pillar geometry on the shear adhesion behavior of these nanopillar arrays is investigated via sliding experiments in a nanoindentation system. In a previous study of arrays with the same geometry, it was shown that cone-shaped nanopillars exhibit the highest adhesion under normal loading while stepwise and pencil-like nanopillars exhibit lower normal adhesion strength due to significant deformation of the pillars that occurs with increasing indentation depth. Contrary to the previous studies, here, we show that pencil-like nanopillars exhibit the highest shear adhesion strength at all indentation depths among three types of nanopillar arrays and that the shear adhesion increases with greater indentation depth due to the higher bending stiffness and closer packing of the pencil-like nanopillar array. Finite element simulations are used to elucidate the deformation of the pillars during the sliding experiments and agree with the nanoindentation-based sliding measurements. The experiments and finite element simulations together demonstrate that the shape of the nanopillars plays a key role in shear adhesion and that the mechanism is quite different from that of adhesion under normal loading.

  7. Hot deformation behavior and microstructure evolution of TA15 titanium alloy with nonuniform microstructure

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Pengfei; Zhan, Mei, E-mail: zhanmei@nwpu.edu.cn; Fan, Xiaoguang; Lei, Zhenni; Cai, Yang

    2017-03-24

    The flow behavior and microstructure evolution of a near α titanium alloy with nonuniform microstructure during hot deformation were studied by isothermal compression test and electron backscatter diffraction technique. It is found that the nonuniform microstructure prior to deformation consists of equiaxed α, lamellar α in the colony form and β phase, and the α colony keeps the Burgers orientation relationship with β phase. The flow stress of nonuniform microstructure exhibits significant flow softening after reaching the peak stress at a low strain, which is similar to the lamellar microstructure. Nevertheless, the existence of equiaxed α in nonuniform microstructure makes its flow stress and softening rate be lower than the lamellar microstructure. During deformation, the lamellar α undertakes most of the deformation and turns to be rotated, bended and globularized. Moreover, these phenomena exhibit significant heterogeneity due to the orientation dependence of the deformation of lamellar α. The continuous dynamic recrystallization and bending of lamellar α lead to the “fragmentation” during globularization of lamellar α. The bending of lamellar α is speculated as a form of plastic buckling, because the bending of lamellar α almost proceed in the manner of “rigid rotation” and presents opposite bending directions for the adjacent colonies.

  8. The adhesion of pacemaker skin wounds with Histoacryl tissue adhesive: an analysis of its efficacy and cost

    International Nuclear Information System (INIS)

    Zhou Yong; Jiang Haibin; Qin Yongwen; Chen Shaoping

    2011-01-01

    Objective: To evaluate the clinical efficacy and cost of Histoacryl tissue adhesive in adhering the pacemaker skin wounds. Methods: During the period from April 2010 to October 2010, permanent cardiac pacemaker implantation was performed in 112 patients in authors' hospital. The patients were divided into tissue adhesive group (n=64) and conventional suture group (n=48). Histoacryl tissue adhesive was employed in patients of tissue adhesive group. The extent of wound healing, the post-procedure hospitalization days and the hospitalization cost were recorded, and the results were compared between the two groups. Results: The clinical baselines of the two groups were compatible with each other. Primary closure of wounds was achieved in all patients of two groups. The mean post-procedure hospitalization time in tissue adhesive group and in conventional suture group was (4.4±1.4) days and (6.2±1.3) days respectively, the difference between the two groups was statistically significant (P<0.01). If the costs of pacemaker equipment, surgery and DSA were not included, the mean medical expenses in tissue adhesive group and in conventional suture group were (4383.39±792.40) and (4199.81±1059.93) Chinese Yuan respectively, and no significant difference in medical expenses existed between the two groups (P=0.651). Conclusion: Histoacryl tissue adhesive can effectively adhere pacemaker wounds tissue. Compared to the use of conventional suture, the use of Histoacryl tissue adhesive can reduce the post-procedure hospitalization days although the medical expenses are quite the same as that using conventional suture treatment. (authors)

  9. Self-assembled Nano-layering at the Adhesive interface.

    Science.gov (United States)

    Yoshida, Y; Yoshihara, K; Nagaoka, N; Hayakawa, S; Torii, Y; Ogawa, T; Osaka, A; Meerbeek, B Van

    2012-04-01

    According to the 'Adhesion-Decalcification' concept, specific functional monomers within dental adhesives can ionically interact with hydroxyapatite (HAp). Such ionic bonding has been demonstrated for 10-methacryloyloxydecyl dihydrogen phosphate (MDP) to manifest in the form of self-assembled 'nano-layering'. However, it remained to be explored if such nano-layering also occurs on tooth tissue when commercial MDP-containing adhesives (Clearfil SE Bond, Kuraray; Scotchbond Universal, 3M ESPE) were applied following common clinical application protocols. We therefore characterized adhesive-dentin interfaces chemically, using x-ray diffraction (XRD) and energy-dispersive x-ray spectroscopy (EDS), and ultrastructurally, using (scanning) transmission electron microscopy (TEM/STEM). Both adhesives revealed nano-layering at the adhesive interface, not only within the hybrid layer but also, particularly for Clearfil SE Bond (Kuraray), extending into the adhesive layer. Since such self-assembled nano-layering of two 10-MDP molecules, joined by stable MDP-Ca salt formation, must make the adhesive interface more resistant to biodegradation, it may well explain the documented favorable clinical longevity of bonds produced by 10-MDP-based adhesives.

  10. Stochastic Effects in Microstructure

    Directory of Open Access Journals (Sweden)

    Glicksman M.E.

    2002-01-01

    Full Text Available We are currently studying microstructural responses to diffusion-limited coarsening in two-phase materials. A mathematical solution to late-stage multiparticle diffusion in finite systems is formulated with account taken of particle-particle interactions and their microstructural correlations, or "locales". The transition from finite system behavior to that for an infinite microstructure is established analytically. Large-scale simulations of late-stage phase coarsening dynamics show increased fluctuations with increasing volume fraction, Vv, of the mean flux entering or leaving particles of a given size class. Fluctuations about the mean flux were found to depend on the scaled particle size, R/, where R is the radius of a particle and is the radius of the dispersoid averaged over the population within the microstructure. Specifically, small (shrinking particles tend to display weak fluctuations about their mean flux, whereas particles of average, or above average size, exhibit strong fluctuations. Remarkably, even in cases of microstructures with a relatively small volume fraction (Vv ~ 10-4, the particle size distribution is broader than that for the well-known Lifshitz-Slyozov limit predicted at zero volume fraction. The simulation results reported here provide some additional surprising insights into the effect of diffusion interactions and stochastic effects during evolution of a microstructure, as it approaches its thermodynamic end-state.

  11. High-performance mussel-inspired adhesives of reduced complexity.

    Science.gov (United States)

    Ahn, B Kollbe; Das, Saurabh; Linstadt, Roscoe; Kaufman, Yair; Martinez-Rodriguez, Nadine R; Mirshafian, Razieh; Kesselman, Ellina; Talmon, Yeshayahu; Lipshutz, Bruce H; Israelachvili, Jacob N; Waite, J Herbert

    2015-10-19

    Despite the recent progress in and demand for wet adhesives, practical underwater adhesion remains limited or non-existent for diverse applications. Translation of mussel-inspired wet adhesion typically entails catechol functionalization of polymers and/or polyelectrolytes, and solution processing of many complex components and steps that require optimization and stabilization. Here we reduced the complexity of a wet adhesive primer to synthetic low-molecular-weight catecholic zwitterionic surfactants that show very strong adhesion (∼50 mJ m(-2)) and retain the ability to coacervate. This catecholic zwitterion adheres to diverse surfaces and self-assembles into a molecularly smooth, thin (adhesive for nanofabrication. This study significantly simplifies bio-inspired themes for wet adhesion by combining catechol with hydrophobic and electrostatic functional groups in a small molecule.

  12. Understanding Surface Adhesion in Nature: A Peeling Model.

    Science.gov (United States)

    Gu, Zhen; Li, Siheng; Zhang, Feilong; Wang, Shutao

    2016-07-01

    Nature often exhibits various interesting and unique adhesive surfaces. The attempt to understand the natural adhesion phenomena can continuously guide the design of artificial adhesive surfaces by proposing simplified models of surface adhesion. Among those models, a peeling model can often effectively reflect the adhesive property between two surfaces during their attachment and detachment processes. In the context, this review summarizes the recent advances about the peeling model in understanding unique adhesive properties on natural and artificial surfaces. It mainly includes four parts: a brief introduction to natural surface adhesion, the theoretical basis and progress of the peeling model, application of the peeling model, and finally, conclusions. It is believed that this review is helpful to various fields, such as surface engineering, biomedicine, microelectronics, and so on.

  13. Infliximab TNF-alpha antagonist decreases intraabdominal adhesions

    International Nuclear Information System (INIS)

    Kurukahvecioglu, O.; Koksal, H.; Yazicioglu, O.; Kerem, M.; Taneri, F.; Gulbahar, O.; Erdem, O.; Engin, D.

    2007-01-01

    Objective was to evaluate the effect of infliximab on adhesion formation and its associated morbidity and complications. This study was performed in the Faculty of Medicine, Gaze University, Turkey between July 2005 and October 2005. Thirty-five rats were randomly divided into 4 groups. Laparotomy was performed in the Sham group (n=5), whereas cecal abrasion was carried out in all other groups. After cecal abrasion 0.9% sodium chloride was administered in the saline group (n=10), infliximab was administered to the study group (n=10) and nothing was administered to the last group (n=10). Adhesion formation was evaluated with macroscopic adhesion scoring systems. Peritoneal fluid samples and mesenteric lymph node biopsies were taken to rule out bacterial peritonitis. Blood and peritoneal irrigation fluids samples were taken to measure the Tumor necrosis factor-alpha (TNF-alpha) levels. Macroscopic adhesion scores showed fewer adhesions in the infliximab group. The infliximab group had significantly fewer adhesions than the abrasion control and saline groups. According to the histological findings, there were no statistically significant differences between the groups. Early blocking of the activity of TNF-alpha after cecal abrasion resulted in lower rates of adhesion formation, macroscopically. The TNF-alpha, a proinflammatory cytokine appears to be an important mediator for postoperative adhesion formation. (author)

  14. Silk Fibroin Aqueous-Based Adhesives Inspired by Mussel Adhesive Proteins.

    Science.gov (United States)

    Burke, Kelly A; Roberts, Dane C; Kaplan, David L

    2016-01-11

    Silk fibroin from the domesticated silkworm Bombyx mori is a naturally occurring biopolymer with charged hydrophilic terminal regions that end-cap a hydrophobic core consisting of repeating sequences of glycine, alanine, and serine residues. Taking inspiration from mussels that produce proteins rich in L-3,4-dihydroxyphenylalanine (DOPA) to adhere to a variety of organic and inorganic surfaces, the silk fibroin was functionalized with catechol groups. Silk fibroin was selected for its high molecular weight, tunable mechanical and degradation properties, aqueous processability, and wide availability. The synthesis of catechol-functionalized silk fibroin polymers containing varying amounts of hydrophilic polyethylene glycol (PEG, 5000 g/mol) side chains was carried out to balance silk hydrophobicity with PEG hydrophilicity. The efficiency of the catechol functionalization reaction did not vary with PEG conjugation over the range studied, although tuning the amount of PEG conjugated was essential for aqueous solubility. Adhesive bonding and cell compatibility of the resulting materials were investigated, where it was found that incorporating as little as 6 wt % PEG prior to catechol functionalization resulted in complete aqueous solubility of the catechol conjugates and increased adhesive strength compared with silk lacking catechol functionalization. Furthermore, PEG-silk fibroin conjugates maintained their ability to form β-sheet secondary structures, which can be exploited to reduce swelling. Human mesenchymal stem cells (hMSCs) proliferated on the silks, regardless of PEG and catechol conjugation. These materials represent a protein-based approach to catechol-based adhesives, which we envision may find applicability as biodegradable adhesives and sealants.

  15. Advances in biomaterials for preventing tissue adhesion.

    Science.gov (United States)

    Wu, Wei; Cheng, Ruoyu; das Neves, José; Tang, Jincheng; Xiao, Junyuan; Ni, Qing; Liu, Xinnong; Pan, Guoqing; Li, Dechun; Cui, Wenguo; Sarmento, Bruno

    2017-09-10

    Adhesion is one of the most common postsurgical complications, occurring simultaneously as the damaged tissue heals. Accompanied by symptoms such as inflammation, pain and even dyskinesia in particular circumstances, tissue adhesion has substantially compromised the quality of life of patients. Instead of passive treatment, which involves high cost and prolonged hospital stay, active intervention to prevent the adhesion from happening has been accepted as the optimized strategy against this complication. Herein, this paper will cover not only the mechanism of adhesion forming, but also the biomaterials and medicines used in its prevention. Apart from acting as a direct barrier, biomaterials also show promising anti-adhesive bioactivity though their intrinsic physical and chemical are still not completely unveiled. Considering the diversity of human tissue organization, it is imperative that various biomaterials in combination with specific medicine could be tuned to fit the microenvironment of targeted tissues. With the illustration of different adhesion mechanism and solutions, we hope this review can become a beacon and further inspires the development of anti-adhesion biomedicines. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. A study of the native cell wall structures of the marine alga Ventricaria ventricosa (Siphonocladales, Chlorophyceae) using atomic force microscopy.

    Science.gov (United States)

    Eslick, Enid M; Beilby, Mary J; Moon, Anthony R

    2014-04-01

    A substantial proportion of the architecture of the plant cell wall remains unknown with a few cell wall models being proposed. Moreover, even less is known about the green algal cell wall. Techniques that allow direct visualization of the cell wall in as near to its native state are of importance in unravelling the spatial arrangement of cell wall structures and hence in the development of cell wall models. Atomic force microscopy (AFM) was used to image the native cell wall of living cells of Ventricaria ventricosa (V. ventricosa) at high resolution under physiological conditions. The cell wall polymers were identified mainly qualitatively via their structural appearance. The cellulose microfibrils (CMFs) were easily recognizable and the imaging results indicate that the V. ventricosa cell wall has a cross-fibrillar structure throughout. We found the native wall to be abundant in matrix polysaccharides existing in different curing states. The soft phase matrix polysaccharides susceptible by the AFM scanning tip existed as a glutinous fibrillar meshwork, possibly incorporating both the pectic- and hemicellulosic-type substances. The hard phase matrix producing clearer images, revealed coiled fibrillar structures associated with CMFs, sometimes being resolved as globular structures by the AFM tip. The coiling fibrillar structures were also seen in the images of isolated cell wall fragments. The mucilaginous component of the wall was discernible from the gelatinous cell wall matrix as it formed microstructural domains over the surface. AFM has been successful in imaging the native cell wall and revealing novel findings such as the 'coiling fibrillar structures' and cell wall components which have previously not been seen, that is, the gelatinous matrix phase.

  17. Structural adhesives directory and databook

    CERN Document Server

    Wilson, Jo

    1996-01-01

    A worldwide directory of commercially available adhesive products for use in a wide range of engineering disciplines. Along with product names and suppliers, basic property data are tabulated and cross-referenced. The book is subdivided according to class of adhesive, with introductions to each class followed by comparison tables and datasheets for each adhesive. The datasheets contain detailed information, from product codes to environmental properties and are therefore of interest across a broad readership. Standardized data will aid the user in cross-comparison between different manufacturers and in easily identifying the required information.

  18. Controllable biomimetic adhesion using embedded phase change material

    International Nuclear Information System (INIS)

    Krahn, J; Sameoto, D; Menon, C

    2011-01-01

    In many cases, such as in the instance of climbing robots or temporary adhesives, there is the need to be able to dynamically control the level of adhesion a biomimetic dry adhesive can provide. In this study, the effect of changing the backing layer stiffness of a dry adhesive is examined. Embedding a phase change material within the backing of a synthetic dry adhesive sheet allows the stiffness to be tailored at different points of a preload and adhesion cycle. Larger contact areas and more equal load sharing between adhesive fibres can be achieved by increasing the backing layer stiffness after initial deformation when the adhesive backing is loaded in its softened state. Adhesion behaviour is examined when the backing layer is maintained in solid and softened phases during complete load cycles and for load cycles under the condition of contact with the softened phase backing followed by pull-off during the solid phase. Absolute adhesion force is increased for trials in which a soft backing layer hardens prior to pull-off. This effect is due to the increased contact area made between the rounded probe and the softened material during preloading and the more equal load sharing condition during pull-off when the backing layer becomes stiff again

  19. Lignin-Furfural Based Adhesives

    Directory of Open Access Journals (Sweden)

    Prajakta Dongre

    2015-07-01

    Full Text Available Lignin recovered from the hot-water extract of sugar maple (Acer saccharum is used in this study to synthesize adhesive blends to replace phenol-formaldehyde (PF resin. Untreated lignin is characterized by lignin content and nuclear magnetic resonance (NMR analysis. The molecular weight distribution of the lignin and the blends are characterized by size exclusion chromatography (SEC. The effect of pH (0.3, 0.65 and 1, ex situ furfural, and curing conditions on the tensile properties of adhesive reinforced glass fibers is determined and compared to the reinforcement level of commercially available PF resin. The adhesive blend prepared at pH = 0.65 with no added furfural exhibits the highest tensile properties and meets 90% of the PF tensile strength.

  20. Advances in modeling and design of adhesively bonded systems

    CERN Document Server

    Kumar, S

    2013-01-01

    The book comprehensively charts a way for industry to employ adhesively bonded joints to make systems more efficient and cost-effective Adhesively bonded systems have found applications in a wide spectrum of industries (e.g., aerospace, electronics, construction, ship building, biomedical, etc.) for a variety of purposes. Emerging adhesive materials with improved mechanical properties have allowed adhesion strength approaching that of the bonded materials themselves. Due to advances in adhesive materials and the many potential merits that adhesive bonding offers, adhesive bonding has replac

  1. Adhesion of Antireflective Coatings in Multijunction Photovoltaics: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Brock, Ryan; Dauskardt, Reinhold H.; Miller, David C.

    2016-06-16

    The development of a new composite dual cantilever beam (cDCB) thin-film adhesion testing method is reported, which allows the measurement of adhesion on the fragile thin substrates used in multijunction photovoltaics. We address the adhesion of several antireflective coating systems on multijunction cells. By varying interface chemistry and morphology, we demonstrate the ensuing effects on adhesion and help to develop an understanding of how high adhesion can be achieved, as adhesion values ranging from 0.5 J/m2 to 10 J/m2 were measured. Damp Heat (85 degrees C/85% RH) was used to invoke degradation of interfacial adhesion. We show that even with germanium substrates that fracture easily, quantitative measurements of adhesion can still be made at high test yield. The cDCB test is discussed as an important new methodology, which can be broadly applied to any system that makes use of thin, brittle, or otherwise fragile substrates.

  2. Sliding Adhesion Dynamics of Isolated Gecko Setal Arrays

    Science.gov (United States)

    Sponberg, Simon; Autumn, Kellar

    2003-03-01

    The tokay gecko (Gekko gecko) can adhere to nearly any surface through van der Waals interactions of the specialized setae (b-keratin "hairs") of its toe pads. Our recent research has suggested that a gecko is substantially overbuilt for static adhesion requiring as little as 0.03of its theoretical adhesive capacity. We performed the first sliding adhesion experiments on this novel biological adhesive to determine its response to dynamic loading. We isolated arrays of setae and constructed a precision controlled Robo-toe to study sliding effects. Our results indicate that, unlike many typical adhesives, gecko setal arrays exhibit an increased frictional force upon sliding (mk > ms) which further increases with velocity, suggesting that perturbation rejection may be an evolutionary design principle underlying the evolution of the gecko adhesive. We compare these dynamic properties with those of other adhesives and explore the impacts of these results on the design of artificial adhesives.

  3. Adhesion mechanisms of nanoparticle silver to substrate materials: identification

    International Nuclear Information System (INIS)

    Joo, Sungchul; Baldwin, Daniel F

    2010-01-01

    Nanoparticle silver (NPS) conductors are increasingly being investigated for printed electronics applications. However, the adhesion mechanism of the nanoparticle silver to substrate materials has not been identified yet. In particular, the adhesion of NPS to organic materials such as the widely used polyimide Kapton HN and Kapton FPC dry films is concerned with low adhesion strength because the processed polymer surface is chemically inert. Moreover, its adhesion to substrate materials such as benzocyclobutene (BCB), copper and aluminum was found to be very weak. Therefore, in this paper, the mechanisms of NPS adhesion to organic and inorganic materials are identified as the first step in improving NPS adhesion strength. Improving the adhesion strength of NPS will be the key issue for printed electronics applications. The adhesion of NPS to substrate materials was found to be mainly attributed to van der Waals forces based on particle adhesion mechanisms. This finding provides the initiative of developing an adhesion prediction model of NPS to substrate materials in order to provide guidelines for improving the NPS adhesion strength to the substrate materials used in printed electronics.

  4. Bacterial adhesion to unworn and worn silicone hydrogel lenses.

    Science.gov (United States)

    Vijay, Ajay Kumar; Zhu, Hua; Ozkan, Jerome; Wu, Duojia; Masoudi, Simin; Bandara, Rani; Borazjani, Roya N; Willcox, Mark D P

    2012-08-01

    The objective of this study was to determine the bacterial adhesion to various silicone hydrogel lens materials and to determine whether lens wear modulated adhesion. Bacterial adhesion (total and viable cells) of Staphylococcus aureus (31, 38, and ATCC 6538) and Pseudomonas aeruginosa (6294, 6206, and GSU-3) to 10 commercially available different unworn and worn silicone hydrogel lenses was measured. Results of adhesion were correlated to polymer and surface properties of contact lenses. S. aureus adhesion to unworn lenses ranged from 2.8 × 10 to 4.4 × 10 colony forming units per lens. The highest adhesion was to lotrafilcon A lenses, and the lowest adhesion was to asmofilcon A lenses. P. aeruginosa adhesion to unworn lenses ranged from 8.9 × 10 to 3.2 × 10 colony forming units per lens. The highest adhesion was to comfilcon A lenses, and the lowest adhesion was to asmofilcon A and balafilcon A lenses. Lens wear altered bacterial adhesion, but the effect was specific to lens and strain type. Adhesion of bacteria, regardless of genera/species or lens wear, was generally correlated with the hydrophobicity of the lens; the less hydrophobic the lens surface, the greater the adhesion. P. aeruginosa adhered in higher numbers to lenses in comparison with S. aureus strains, regardless of the lens type or lens wear. The effect of lens wear was specific to strain and lens. Hydrophobicity of the silicone hydrogel lens surface influenced the adhesion of bacterial cells.

  5. Human climbing with efficiently scaled gecko-inspired dry adhesives.

    Science.gov (United States)

    Hawkes, Elliot W; Eason, Eric V; Christensen, David L; Cutkosky, Mark R

    2015-01-06

    Since the discovery of the mechanism of adhesion in geckos, many synthetic dry adhesives have been developed with desirable gecko-like properties such as reusability, directionality, self-cleaning ability, rough surface adhesion and high adhesive stress. However, fully exploiting these adhesives in practical applications at different length scales requires efficient scaling (i.e. with little loss in adhesion as area grows). Just as natural gecko adhesives have been used as a benchmark for synthetic materials, so can gecko adhesion systems provide a baseline for scaling efficiency. In the tokay gecko (Gekko gecko), a scaling power law has been reported relating the maximum shear stress σmax to the area A: σmax ∝ A(-1/4). We present a mechanical concept which improves upon the gecko's non-uniform load-sharing and results in a nearly even load distribution over multiple patches of gecko-inspired adhesive. We created a synthetic adhesion system incorporating this concept which shows efficient scaling across four orders of magnitude of area, yielding an improved scaling power law: σmax ∝ A(-1/50). Furthermore, we found that the synthetic adhesion system does not fail catastrophically when a simulated failure is induced on a portion of the adhesive. In a practical demonstration, the synthetic adhesion system enabled a 70 kg human to climb vertical glass with 140 cm(2) of adhesive per hand. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  6. ADHESIVE SYSTEM AFFECTS REPAIR BOND STRENGTH OF RESIN COMPOSITE

    Directory of Open Access Journals (Sweden)

    Özgür IRMAK

    2017-10-01

    Full Text Available Purpose: This study evaluated the effects of different adhesive systems on repair bond strength of aged resin composites. Materials and Methods: Ninety composite discs were built and half of them were subjected to thermal aging. Aged and non-aged specimens were repaired with resin composite using three different adhesive systems; a two-step self-etch adhesive, a two-step total-etch adhesive and a one-step self-etch adhesive; then they were subjected to shear forces. Data were analyzed statistically. Results: Adhesive type and aging significantly affected the repair bond strengths (p<0.0001. No statistical difference was found in aged composite groups repaired with two-step self- etch or two-step total-etch adhesive. One-step self-etch adhesive showed lower bond strength values in aged composite repair (p<0.0001. Conclusion: In the repair of aged resin composite, two-step self-etch and two-step total-etch adhesives exhibited higher shear bond strength values than that of one-step self-etch adhesive.

  7. Designing Hydrogel Adhesives for Corneal Wound Repair

    Science.gov (United States)

    Grinstaff, Mark W.

    2013-01-01

    Today, corneal wounds are repaired using nylon sutures. Yet there are a number of complications associated with suturing the cornea, and thus there is interest in an adhesive to replace or supplement sutures in the repair of corneal wounds. We are designing and evaluating corneal adhesives prepared from dendrimers – single molecular weight, highly branched polymers. We have explored two strategies to form these ocular adhesives. The first involves a photocrosslinking reaction and the second uses a peptide ligation reactions to couple the individual dendrimers together to from the adhesive. These adhesives were successfully used to repair corneal perforations, close the flap produced in a LASIK procedure, and secure a corneal transplant. PMID:17889330

  8. TiO2 Nanotubes on Transparent Substrates: Control of Film Microstructure and Photoelectrochemical Water Splitting Performance

    Directory of Open Access Journals (Sweden)

    Matus Zelny

    2018-01-01

    Full Text Available Transfer of semiconductor thin films on transparent and or flexible substrates is a highly desirable process to enable photonic, catalytic, and sensing technologies. A promising approach to fabricate nanostructured TiO2 films on transparent substrates is self-ordering by anodizing of thin metal films on fluorine-doped tin oxide (FTO. Here, we report pulsed direct current (DC magnetron sputtering for the deposition of titanium thin films on conductive glass substrates at temperatures ranging from room temperature to 450 °C. We describe in detail the influence that deposition temperature has on mechanical, adhesion and microstructural properties of titanium film, as well as on the corresponding TiO2 nanotube array obtained after anodization and annealing. Finally, we measure the photoelectrochemical water splitting activity of different TiO2 nanotube samples showing that the film deposited at 150 °C has much higher activity correlating well with the lower crystallite size and the higher degree of self-organization observed in comparison with the nanotubes obtained at different temperatures. Importantly, the film showing higher water splitting activity does not have the best adhesion on glass substrate, highlighting an important trade-off for future optimization.

  9. Scaling Principles for Understanding and Exploiting Adhesion

    Science.gov (United States)

    Crosby, Alfred

    A grand challenge in the science of adhesion is the development of a general design paradigm for adhesive materials that can sustain large forces across an interface yet be detached with minimal force upon command. Essential to this challenge is the generality of achieving this performance under a wide set of external conditions and across an extensive range of forces. Nature has provided some guidance through various examples, e.g. geckos, for how to meet this challenge; however, a single solution is not evident upon initial investigation. To help provide insight into nature's ability to scale reversible adhesion and adapt to different external constraints, we have developed a general scaling theory that describes the force capacity of an adhesive interface in the context of biological locomotion. We have demonstrated that this scaling theory can be used to understand the relative performance of a wide range of organisms, including numerous gecko species and insects, as well as an extensive library of synthetic adhesive materials. We will present the development and testing of this scaling theory, and how this understanding has helped guide the development of new composite materials for high capacity adhesives. We will also demonstrate how this scaling theory has led to the development of new strategies for transfer printing and adhesive applications in manufacturing processes. Overall, the developed scaling principles provide a framework for guiding the design of adhesives.

  10. Microleakage comparison of three types of adhesive systems versus GIC-based adhesive in class V composite restorations

    Directory of Open Access Journals (Sweden)

    Mostafa Sadeghi

    2016-06-01

    Full Text Available Background and aims: New dentin bonding agents and techniques have been developed to reduce microleakage and create higher bond strength. This in-vitro study compared the microleakage of three resin-based adhesives versus a GIC-based adhesive on class V composite restorations.  Materials and Methods: Class V cavities were prepared on the buccal surfaces of 72 sound premolars, randomly assigned to six groups (n=12 and treated as follows: without any treatment (negative control group; total-etch (OptiBond Solo Plus; two-step self-etch (OptiBond XTR; one-step self-etch (OptiBond All-in-One and GIC-based adhesive (Fuji bond LC with pre-cure and co-cure techniques. The treated cavities were filled with a micro-hybrid resin composite (Point 4, Kerr. Following finishing and polishing procedures, the specimens were placed in 100% humidity, stored in distilled water, thermocycled and then immersed in a methylene blue, sectioned, evaluated for microleakage and scored on a 0 to 3 ordinal scale.  Results: None of the adhesives tested were capable of completely eliminating marginal microleakage. There were statistically significant differences among the test groups at occlusal margins; but at cervical margins were not. The Fuji Bond LC with co-cure and control groups had significantly greater microleakage scores at the occlusal margins. At the cervical margins, the bonded restorations with OptiBond XTR and OptiBond All-in-One adhesives presented significantly lower microleakage scores. Also, there were no significant differences between the resin adhesive groups both at occlusal and cervical margins. The microleakage scores at the cervical margins were markedly higher than the occlusal margins in the groups bonded with OptiBond Solo Plus and Fuji Bond LC with pre-cure. The differences between Fuji Bond LC adhesive with pre-cure and co-cure techniques were significant. Conclusion: This study encourages application of the Fuji bond LC adhesive with pre

  11. Syndecan-4 and focal adhesion function

    DEFF Research Database (Denmark)

    Woods, A; Couchman, J R

    2001-01-01

    Two groups have now reported the viability of mice that lack syndecan-4. These mice have wound healing/angiogenesis problems, and fibroblasts from these animals differ in adhesion and migration from normal. This is consistent with recent in vitro data indicating a need for signaling via syndecan-4...... for focal adhesion formation, and reports that overexpression of proteins that bind syndecan-4 can modify cell adhesion and migration....

  12. Imaging brain tumour microstructure.

    Science.gov (United States)

    Nilsson, Markus; Englund, Elisabet; Szczepankiewicz, Filip; van Westen, Danielle; Sundgren, Pia C

    2018-05-08

    Imaging is an indispensable tool for brain tumour diagnosis, surgical planning, and follow-up. Definite diagnosis, however, often demands histopathological analysis of microscopic features of tissue samples, which have to be obtained by invasive means. A non-invasive alternative may be to probe corresponding microscopic tissue characteristics by MRI, or so called 'microstructure imaging'. The promise of microstructure imaging is one of 'virtual biopsy' with the goal to offset the need for invasive procedures in favour of imaging that can guide pre-surgical planning and can be repeated longitudinally to monitor and predict treatment response. The exploration of such methods is motivated by the striking link between parameters from MRI and tumour histology, for example the correlation between the apparent diffusion coefficient and cellularity. Recent microstructure imaging techniques probe even more subtle and specific features, providing parameters associated to cell shape, size, permeability, and volume distributions. However, the range of scenarios in which these techniques provide reliable imaging biomarkers that can be used to test medical hypotheses or support clinical decisions is yet unknown. Accurate microstructure imaging may moreover require acquisitions that go beyond conventional data acquisition strategies. This review covers a wide range of candidate microstructure imaging methods based on diffusion MRI and relaxometry, and explores advantages, challenges, and potential pitfalls in brain tumour microstructure imaging. Copyright © 2018. Published by Elsevier Inc.

  13. Adhesion of silver films to ion-bombarded alumina

    International Nuclear Information System (INIS)

    Erck, R.A.; Fenske, G.R.

    1990-01-01

    This paper reports on silver films deposited on alumina substrates using ion bombardment. Adhesion strength was measured as a function of deposition conditions, sputter-cleaning time, and bombarding ion species, using a pull-type adhesion tester. Argon- and argon/oxygen-ion sputtering produced large increases in adhesion strength, with the greatest increases occurring for oxygen-ion bombardment. Adhesion strength increased monotonically as a function of ion sputtering time. At a given deposition rate, further enhancement of adhesion is seen with concurrent ion bombardment

  14. Photovoltaic module with adhesion promoter

    Science.gov (United States)

    Xavier, Grace

    2013-10-08

    Photovoltaic modules with adhesion promoters and methods for fabricating photovoltaic modules with adhesion promoters are described. A photovoltaic module includes a solar cell including a first surface and a second surface, the second surface including a plurality of interspaced back-side contacts. A first glass layer is coupled to the first surface by a first encapsulating layer. A second glass layer is coupled to the second surface by a second encapsulating layer. At least a portion of the second encapsulating layer is bonded directly to the plurality of interspaced back-side contacts by an adhesion promoter.

  15. Surface Nb-ALLOYING on 0.4C-13Cr Stainless Steel: Microstructure and Tribological Behavior

    Science.gov (United States)

    Yu, Shengwang; You, Kai; Liu, Xiaozhen; Zhang, Yihui; Wang, Zhenxia; Liu, Xiaoping

    2016-02-01

    0.4C-13Cr stainless steel was alloyed with niobium using double glow plasma surface alloying and tribological properties of Nb-alloyed steel such as hardness, friction and wear were measured. Effects of the alloying temperature on microstructure and the tribological behavior of the alloyed steel were investigated compared with untreated steel. Formation mechanisms of Nb-alloyed layers and increased wear resistance were also studied. The result shows that after surface Nb-alloying treatment, the 0.4C-13Cr steel exhibits a diffusion adhesion at the alloyed layer/substrate interface and improved tribological property. The friction coefficient of Nb-alloyed steel is decreased by about 0.3-0.45 and the wear rate after Nb-alloying is only 2-5% of untreated steel.

  16. Computational discovery of extremal microstructure families

    Science.gov (United States)

    Chen, Desai; Skouras, Mélina; Zhu, Bo; Matusik, Wojciech

    2018-01-01

    Modern fabrication techniques, such as additive manufacturing, can be used to create materials with complex custom internal structures. These engineered materials exhibit a much broader range of bulk properties than their base materials and are typically referred to as metamaterials or microstructures. Although metamaterials with extraordinary properties have many applications, designing them is very difficult and is generally done by hand. We propose a computational approach to discover families of microstructures with extremal macroscale properties automatically. Using efficient simulation and sampling techniques, we compute the space of mechanical properties covered by physically realizable microstructures. Our system then clusters microstructures with common topologies into families. Parameterized templates are eventually extracted from families to generate new microstructure designs. We demonstrate these capabilities on the computational design of mechanical metamaterials and present five auxetic microstructure families with extremal elastic material properties. Our study opens the way for the completely automated discovery of extremal microstructures across multiple domains of physics, including applications reliant on thermal, electrical, and magnetic properties. PMID:29376124

  17. Do uniform tangential interfacial stresses enhance adhesion?

    Science.gov (United States)

    Menga, Nicola; Carbone, Giuseppe; Dini, Daniele

    2018-03-01

    We present theoretical arguments, based on linear elasticity and thermodynamics, to show that interfacial tangential stresses in sliding adhesive soft contacts may lead to a significant increase of the effective energy of adhesion. A sizable expansion of the contact area is predicted in conditions corresponding to such scenario. These results are easily explained and are valid under the assumptions that: (i) sliding at the interface does not lead to any loss of adhesive interaction and (ii) spatial fluctuations of frictional stresses can be considered negligible. Our results are seemingly supported by existing experiments, and show that frictional stresses may lead to an increase of the effective energy of adhesion depending on which conditions are established at the interface of contacting bodies in the presence of adhesive forces.

  18. Structural Evaluation of the RSRM Nozzle Replacement Adhesive

    Science.gov (United States)

    Batista-Rodriguez, A.; McLennan, M. L.; Palumbos, A. V.; Richardson, D. E.

    1999-01-01

    This paper describes the structural performance evaluation of a replacement adhesive for the Reusable Solid Rocket Motor (RSRM) nozzle utilizing finite element analysis. Due to material obsolescence and industrial safety issues, the two current structural adhesives, EA 913 and EA 946 are to be replaced with a new adhesive. TIGA 321. The structural evaluation in support of the adhesive replacement effort includes residual stress, transportation, and flight analyses. Factors of safety are calculated using the stress response from each analysis. The factors of safety are used as the limiting criteria to compare the replacement adhesive against the current adhesives. Included in this paper are the analytical approach, assumptions and modeling techniques as well as the results of the evaluation. An important factor to the evaluation is the similarity in constitutive material properties (elastic modulus and Poisson's ratio) between TIGA 321 and EA 913. This similarity leads to equivalent material response from the two adhesives. However, TIGA 321 surpasses EA 913's performance due to higher material capabilities. Conversely, the change in stress response from EA 946 to TIGA 321 is more apparent: this is primarily attributed to the difference in the modulii of the two adhesives, which differ by two orders of magnitude. The results of the bondline evaluation indicate that the replacement adhesive provides superior performance than the current adhesives with only minor exceptions. Furthermore, TIGA 321 causes only a minor chance in the response of the phenolic and metal components.

  19. Evaluation of high temperature structural adhesives for extended service

    Science.gov (United States)

    Hendricks, C. L.; Hill, S. G.

    1984-01-01

    High temperature stable adhesive systems were evaluated for potential Supersonic Cruise Research (SCR) vehicle applications. The program was divided into two major phases: Phase I 'Adhesive Screening' evaluated eleven selected polyimide (PI) and polyphenylquinoxaline (PPQ) adhesive resins using eight different titanium (6Al-4V) adherend surface preparations; Phase II 'Adhesive Optimization and Characterization' extensively evaluated two adhesive systems, selected from Phase I studies, for chemical characterization and environmental durability. The adhesive systems which exhibited superior thermal and environmental bond properties were LARC-TPI polyimide and polyphenylquinoxaline both developed at NASA Langley. The latter adhesive system did develop bond failures at extended thermal aging due primarily to incompatibility between the surface preparation and the polymer. However, this study did demonstrate that suitable adhesive systems are available for extended supersonic cruise vehicle design applications.

  20. Deformation microstructures

    DEFF Research Database (Denmark)

    Hansen, N.; Huang, X.; Hughes, D.A.

    2004-01-01

    Microstructural characterization and modeling has shown that a variety of metals deformed by different thermomechanical processes follows a general path of grain subdivision, by dislocation boundaries and high angle boundaries. This subdivision has been observed to very small structural scales...... of the order of 10 nm, produced by deformation under large sliding loads. Limits to the evolution of microstructural parameters during monotonic loading have been investigated based on a characterization by transmission electron microscopy. Such limits have been observed at an equivalent strain of about 10...

  1. Tensile and fatigue properties of weld-bonded and adhesive-bonded magnesium alloy joints

    International Nuclear Information System (INIS)

    Xu, W.; Liu, L.; Zhou, Y.; Mori, H.; Chen, D.L.

    2013-01-01

    The microstructures, tensile and fatigue properties of weld-bonded (WB) AZ31B-H24 Mg/Mg joints with different sizes of bonding area were evaluated and compared with the adhesive-bonded (AB) Mg/Mg joints. Typical equiaxed dendritic structures containing divorced eutectic Mg 17 Al 12 particles formed in the fusion zone of both WB-1 (with a bonding area of 35 mm×35 mm) and WB-0.5 (with a bonding area of 17.5 mm×35 mm) joints. Less solidification shrinkage cracking was observed in the WB-0.5 joints than WB-1 joints. While the WB-0.5 joints exhibited a slightly lower maximum tensile shear stress than the AB-0.5 joints (with a bonding area of 17.5 mm×35 mm), the energy absorption was equivalent. Although the AB-0.5 joints exhibited a higher fatigue resistance at higher cyclic stress levels, both the AB-0.5 and WB-0.5 joints showed an equivalent fatigue resistance at lower cyclic stress levels. A higher fatigue limit was observed in the WB-0.5 joints than in the WB-1 joints owing to the presence of fewer shrinkage pores. Cohesive failure mode along the adhesive layer in conjunction with partial nugget pull-out from the weld was observed at the higher cyclic loads, and fatigue failure occurred in the base metal at the lower cyclic loads

  2. Adhesion of rhodium films on metallic substrates

    International Nuclear Information System (INIS)

    Marot, L.; Covarel, G.; Tuilier, M.-H.; Steiner, R.; Oelhafen, P.

    2008-01-01

    Rhodium coated metallic films were prepared by magnetron sputtering on metallic substrates. All films were elaborated in same conditions on copper, molybdenum and stainless steel. Adhesion strength tests were carried out by scratch test. The results reveal that the adhesion strength between the film and the substrate is influenced by the hardness of the substrate. Increase of deposition temperature improves the adhesion of the coating. In addition, pre-treatment of substrates by a filtered cathodic vacuum arc and the layer thickness have has some effects on the final adhesion strength

  3. Adhesion of rhodium films on metallic substrates

    Energy Technology Data Exchange (ETDEWEB)

    Marot, L. [Department of Physics, University of Basel, Klingelbergstrasse 82, CH-4056 Basel (Switzerland)], E-mail: laurent.marot@unibas.ch; Covarel, G.; Tuilier, M.-H. [Laboratoire Mecanique, Materiaux et Procedes de Fabrication, Pole STIC-SPI-Math 61 rue Albert Camus, Universite de Haute-Alsace, F-68093 - Mulhouse Cedex (France); Steiner, R.; Oelhafen, P. [Department of Physics, University of Basel, Klingelbergstrasse 82, CH-4056 Basel (Switzerland)

    2008-09-01

    Rhodium coated metallic films were prepared by magnetron sputtering on metallic substrates. All films were elaborated in same conditions on copper, molybdenum and stainless steel. Adhesion strength tests were carried out by scratch test. The results reveal that the adhesion strength between the film and the substrate is influenced by the hardness of the substrate. Increase of deposition temperature improves the adhesion of the coating. In addition, pre-treatment of substrates by a filtered cathodic vacuum arc and the layer thickness have has some effects on the final adhesion strength.

  4. Anti-adhesive properties of fish tropomyosins

    DEFF Research Database (Denmark)

    Vejborg, Rebecca Munk; Bernbom, Nete; Gram, Lone

    2008-01-01

    Aims: We have recently found that preconditioning of stainless steel surfaces with an aqueous fish muscle extract can significantly impede bacterial adhesion. The purpose of this study was to identify and characterize the primary components associated with this bacteria-repelling effect. Methods...... to the formation of a proteinaceous conditioning film composed primarily of fish tropomyosins. These fibrous proteins formed a considerable anti-adhesive conditioning layer on and reduced bacterial adhesion to several different materials including polystyrene, vinyl plastic, stainless steel and glass. The protein...... the importance of substratum's physiochemical properties and exposure time with regards to protein adsorption/elution efficiency and subsequent bacterial adhesion. Significance and Impact of the Study: Fish tropomyosin-coatings could potentially offer a nontoxic and relatively inexpensive measure of reducing...

  5. Focal adhesion interactions with topographical structures: a novel method for immuno-SEM labelling of focal adhesions in S-phase cells.

    Science.gov (United States)

    Biggs, M J P; Richards, R G; Wilkinson, C D W; Dalby, M J

    2008-07-01

    Current understanding of the mechanisms involved in osseointegration following implantation of a biomaterial has led to adhesion quantification being implemented as an assay of cytocompatibility. Such measurement can be hindered by intra-sample variation owing to morphological changes associated with the cell cycle. Here we report on a new scanning electron microscopical method for the simultaneous immunogold labelling of cellular focal adhesions and S-phase nuclei identified by BrdU incorporation. Prior to labelling, cellular membranes are removed by tritonization and antigens of non-interest blocked by serum incubation. Adhesion plaque-associated vinculin and S-phase nuclei were both separately labelled with a 1.4 nm gold colloid and visualized by subsequent colloid enhancement via silver deposition. This study is specifically concerned with the effects microgroove topographies have on adhesion formation in S-phase osteoblasts. By combining backscattered electron (BSE) imaging with secondary electron (SE) imaging it was possible to visualize S-phase nuclei and the immunogold-labelled adhesion sites in one energy 'plane' and the underlying nanotopography in another. Osteoblast adhesion to these nanotopographies was ascertained by quantification of adhesion complex formation.

  6. Radiation curable adhesive compositions and composite structures

    International Nuclear Information System (INIS)

    Brenner, W.

    1984-01-01

    This disclosure relates to novel adhesive compositions and composite structures utilizing the same, wherein said adhesive compositions contain an elastomer, a chemically compatible ethylenically unsaturated monomer, a tackifier, an adhesion promoter, and optionally, pigments, fillers, thickeners and flow control agents which are converted from the liquid to the solid state by exposure to high energy ionizing radiation such as electron beam. A particularly useful application for such adhesive compositions comprises the assembly of certain composite structures or laminates consisting of, for example, a fiber flocked rubber sheet and a metal base with the adhesive fulfilling the multiple functions of adhering the flocked fiber to the rubber sheet as well as adhering the rubber sheet to the metal base. Optionally, the rubber sheet itself may also be cured at the same time as the adhesive composition with all operations being carried out at ambient temperatures and in the presence of air, with exposure of said assembly to selected dosages of high energy ionizing radiation. These adhesive compositions contain no solvents thereby almost eliminating air pollution or solvent toxicity problems, and offer substantial savings in energy and labor as they are capable of curing in very short time periods without the use of external heat which might damage the substrate

  7. Evaluation of polyethylene glycol/polylactic acid films in the prevention of adhesions in the rabbit adhesion formation and reformation sidewall models.

    Science.gov (United States)

    Rodgers, K; Cohn, D; Hotovely, A; Pines, E; Diamond, M P; diZerega, G

    1998-03-01

    To assess the efficacy of bioresorbable films consisting of various polyethylene glycol 6000 and polylactic acid block copolymers on the formation and reformation of adhesions in rabbit models of adhesion development between the sidewall to the adjacent cecum and bowel. The composition of the different polymers was expressed by the number of monomeric units in the block, namely, ethylene oxide (EO) and lactic acid (LA), respectively. Studies of the efficacy of EO/LA films were conducted in rabbit sidewall adhesion formation studies in the presence and absence of blood and in rabbit adhesion reformation studies. REPEL (Life Medical Sciences, Edison, NJ), a film of EO/LA ratio 3.0 manufactured under commercial conditions, was also tested in these animal models. University-based laboratory. New Zealand white rabbits. Placement of films of various EO/LA ratios at the site of injury to the parietal peritoneum. Adhesion formation and reformation. Films of various EO/LA ratios, Seprafilm (Genzyme, Cambridge, MA) and Interceed (Johnson and Johnson Medical, Arlington, TX) placed over an area of excised sidewall at the time of initial injury were highly efficacious in the prevention of adhesion formation. A film of EO/LA ratio 3.7, in contrast with Interceed, was also shown to maintain maximal efficacy in the reduction of adhesion formation in the presence of blood. Further, a film of EO/LA ratio 3.0 produced under commercial conditions, REPEL, was highly efficacious in reducing adhesion development in the rabbit models of adhesion and reformation. These studies suggest that bioresorbable EO/LA films reduced adhesion development in rabbit models of adhesion formation and reformation.

  8. Optics of dielectric microstructures

    DEFF Research Database (Denmark)

    Søndergaard, Thomas

    2002-01-01

    From the work carried out within the ph.d. project two topics have been selected for this thesis, namely emission of radiation by sources in dielectric microstructures, and planar photonic crystal waveguides. The work done within the first topic, emission of radiation by sources in dielectric...... microstructures, will be presented in the part I of this thesis consisting of the chapters 2-5. An introductions is given in chapter 2. In part I three methods are presented for calculating spontaneous and classical emission from sources in dielectric microstructures. The first method presented in chapter 3...... is based on the Fermi Golden Rule, and spontaneous emission from emitters in a passive dielectric microstructure is calculated by summing over the emission into each electromagnetic mode of the radiation field. This method is applied to investigate spontaneous emission in a two-dimensional photonic crystal...

  9. Controlling adhesive behavior during recycling

    Science.gov (United States)

    Carl Houtman; Karen Scallon; Jihui Guo; XinPing Wang; Steve Severtson; Mark Kroll; Mike Nowak

    2004-01-01

    Adhesives can be formulated to facilitate their removal by typical paper recycling unit operations. The investigations described in this paper are focused on determining fundamental properties that control particle size during pulping. While pressure-sensitive adhesives (PSAs) with high elastic moduli tend to survive pulping with larger particles, facestock and...

  10. Microstructuring of glasses

    CERN Document Server

    Hülsenberg, Dagmar; Bismarck, Alexander

    2008-01-01

    As microstructured glass becomes increasingly important for microsystems technology, the main application fields include micro-fluidic systems, micro-analysis systems, sensors, micro-actuators and implants. And, because glass has quite distinct properties from silicon, PMMA and metals, applications exist where only glass devices meet the requirements. The main advantages of glass derive from its amorphous nature, the precondition for its - theoretically - direction-independent geometric structurability. Microstructuring of Glasses deals with the amorphous state, various glass compositions and their properties, the interactions between glasses and the electromagnetic waves used to modify it. Also treated in detail are methods for influencing the geometrical microstructure of glasses by mechanical, chemical, thermal, optical, and electrical treatment, and the methods and equipment required to produce actual microdevices.

  11. Bio-Inspired Controllable Adhesive

    Science.gov (United States)

    2008-12-01

    pad of the tarsus – which act as a sort of hydraulic suspension. The lamellae contain rows of thin slender fibers , called setae, approximately 130 µm...in length and 20 µm in diameter (Hildebrand, 1988), Fig.1. The terminus of each seta branches into thousands of smaller fibers , or spatular stalks...ADHESION TESTING The structures were characterized (Northen et al., 2008) using a home-built adhesion test apparatus ( Basalt - II) with C. Greiner

  12. Role of cellular adhesions in tissue dynamics spectroscopy

    Science.gov (United States)

    Merrill, Daniel A.; An, Ran; Turek, John; Nolte, David

    2014-02-01

    Cellular adhesions play a critical role in cell behavior, and modified expression of cellular adhesion compounds has been linked to various cancers. We tested the role of cellular adhesions in drug response by studying three cellular culture models: three-dimensional tumor spheroids with well-developed cellular adhesions and extracellular matrix (ECM), dense three-dimensional cell pellets with moderate numbers of adhesions, and dilute three-dimensional cell suspensions in agarose having few adhesions. Our technique for measuring the drug response for the spheroids and cell pellets was biodynamic imaging (BDI), and for the suspensions was quasi-elastic light scattering (QELS). We tested several cytoskeletal chemotherapeutic drugs (nocodazole, cytochalasin-D, paclitaxel, and colchicine) on three cancer cell lines chosen from human colorectal adenocarcinoma (HT-29), human pancreatic carcinoma (MIA PaCa-2), and rat osteosarcoma (UMR-106) to exhibit differences in adhesion strength. Comparing tumor spheroid behavior to that of cell suspensions showed shifts in the spectral motion of the cancer tissues that match predictions based on different degrees of cell-cell contacts. The HT-29 cell line, which has the strongest adhesions in the spheroid model, exhibits anomalous behavior in some cases. These results highlight the importance of using three-dimensional tissue models in drug screening with cellular adhesions being a contributory factor in phenotypic differences between the drug responses of tissue and cells.

  13. Micromagnetism and the microstructure of ferromagnetic solids

    CERN Document Server

    Kronmüller, Helmut

    2003-01-01

    Here is a fundamental introduction to microstructure magnetic property relations where microstructures on atomic, nano- and micrometer scales are considered. The authors demonstrate that outstanding magnetic properties require an optimization of microstructural properties where the microstructures in crystalline materials are point defects and dislocations as well as grain and phase boundaries. In amorphous alloys the type of microstructures on atomic scales are defined and used to describe intrinsic and extrinsic properties.

  14. Gecko-Inspired Electrospun Flexible Fiber Arrays for Adhesion

    Science.gov (United States)

    Najem, Johnny F.

    The ability of geckos to adhere to vertical solid surfaces comes from their remarkable feet with millions of projections terminating in nanometer spatulae. We present a simple yet robust method for fabricating directionally sensitive dry adhesives. By using electrospun nylon 6 nanofiber arrays, we create gecko-inspired dry adhesives, that are electrically insulating, and that show shear adhesion strength of 27 N/cm2 on a glass slide. This measured value is 270% that reported of gecko feet and 97-fold above normal adhesion strength of the same arrays. The data indicate a strong shear binding-on and easy normal lifting-off. This anisotropic strength distribution is attributed to an enhanced shear adhesion strength with decreasing fiber diameter (d) and an optimum performance of nanofiber arrays in the shear direction over a specific range of thicknesses. With use of electrospinning, we report the fabrication of nylon 6 nanofiber arrays that show a friction coefficient (mu) of 11.5. These arrays possess significant shear adhesion strength and low normal adhesion strength. Increasing the applied normal load considerably enhances the shear adhesion strength and mu, irrespective of d and fiber arrays thickness (T). Fiber bending stiffness and fiber surface roughness are considerably decreased with diminishing d while fiber packing density is noticeably increased. These enhancements are proposed to considerably upsurge the shear adhesion strength between nanofiber arrays and a glass slide. The latter upsurge is mainly attributed to a sizeable proliferation in van der Waals (vdW) forces. These nanofiber arrays can be alternatively bound-on and lifted-off over a glass slide with a trivial decrease in the initial mu and adhesion strength. By using selective coating technique, we have also created hierarchical structures having closely packed nanofibers with d of 50 nm. We determine the effects of applied normal load, fiber surface roughness, loading angle, d, T, and repeated

  15. Improving adhesion of seasonings to crackers with hydrocolloid solutions.

    Science.gov (United States)

    Armstrong, Matthew E; Barringer, Sheryl A

    2013-11-01

    Food powders were applied on crackers that had been coated using water, oil, emulsion, sucrose, or hydrocolloid solutions. The hydrocolloids that were used include gellan gum, kappa-carrageenan, methylcellulose, gum karaya, gum tragacanth, gum arabic, guar gum, modified starch, and maltodextrin. Solutions of similar hydrophobicity to the powder gave the greatest adhesion. NaCl, barbecue (BBQ), ranch, and sour cream & onion (SC&O) seasoning showed greatest adhesion with water, cheese powder with an emulsion of 12.5% to 25% oil, and cocoa powder with oil. For NaCl, BBQ, ranch, and SC&O seasoning, hydrocolloids improved the adhesion over using water alone, with gellan gum providing the greatest adhesion. Hydrocolloid structural differences, including the presence or absence of branching, substitution of sugar units, and molecular weight affect water binding and thickening of the hydrocolloid spray that seemed to be significant factors affecting adhesion of powders to the target surface. For cheese powder, hydrocolloids were capable of replacing the oil within an emulsion while improving or maintaining the same level of adhesion, with gum arabic providing the greatest adhesion. For cocoa powder, hydrocolloid solutions were ineffective adhesives due to differences in hydrophilicity that result in insolubility. The effect of hydrocolloid concentration on adhesion was dependent both on the hydrocolloid type and the concentration that is sprayable, with 0.5% being the optimum concentration for most gums. Adhesion using sucrose solutions was determined by particle size and relative hydrophobicity. Increasing sucrose concentration decreased adhesion of smaller particles, but increased adhesion of larger particles. Adhesion of NaCl significantly increased with decreasing NaCl size using oil, water, and sucrose solutions. © 2013 Institute of Food Technologists®

  16. The detailed analysis of the spray time effects of the aluminium coating using self-generated atmospheric plasma spray system on the microstructure and corrosion behaviour

    Directory of Open Access Journals (Sweden)

    Sh. Khandanjou

    Full Text Available In the present paper our aim is to investigate the effect of the spray time of the aluminium coated layers on the microstructure and corrosion behaviour. For this purpose we use the self-generated atmospheric plasma spray system for coating of aluminium on the carbon steel substrate. The different thicknesses of coating are created. To evaluate this effect we use the several analyses such as X-ray diffraction, scanning electron microscope, Micro hardness analysis by Vickers method, Adhesion strength analysis and electrochemical polarization test. The results are very interesting and show that due to low porosity, thicker layers are more homogeneous. The nanoparticles are observed in the thicker layers. The micro hardness tests show that the thicker layers have the better micro hardness value. Next, the adhesion strength tests illustrate that the highest adhesion strength are for longer spray times. On the other hand, the corrosion resistance behaviour of the coating is investigated by electrochemical polarization test. It is shown that the corrosion resistance increases by increasing the thickness due to low percentage of porosity. Keywords: Plasma spray, Thickness, Aluminium, Micro hardness, Corrosion resistance

  17. Fibrillar organization in tendons: A pattern revealed by percolation characteristics of the respective geometric network

    Directory of Open Access Journals (Sweden)

    Daniel Andres Dos Santos

    2014-06-01

    Full Text Available Since the tendon is composed by collagen fibrils of various sizes connected between them through molecular cross-links, it sounds logical to model it via a heterogeneous network of fibrils. Using cross sectional images, that network is operatively inferred from the respective Gabriel graph of the fibril mass centers. We focus on network percolation characteristics under an ordered activation of fibrils (progressive recruitment going from the smallest to the largest fibril. Analyses of percolation were carried out on a repository of images of digital flexor tendons obtained from samples of lizards and frogs. Observed percolation thresholds were compared against values derived from hypothetical scenarios of random activation of nodes. Strikingly, we found a significant delay for the occurrence of percolation in actual data. We interpret this finding as the consequence of some non-random packing of fibrillar units into a size-constrained geometric pattern. We erect an ideal geometric model of balanced interspersion of polymorphic units that accounts for the delayed percolating instance. We also address the circumstance of being percolation curves mirrored by the empirical curves of stress-strain obtained from the same studied tendons. By virtue of this isomorphism, we hypothesize that the inflection points of both curves are different quantitative manifestations of a common transitional process during mechanical load transference.

  18. In vitro and in vivo biocompatibility study on laser 3D microstructurable polymers

    Science.gov (United States)

    Malinauskas, Mangirdas; Baltriukiene, Daiva; Kraniauskas, Antanas; Danilevicius, Paulius; Jarasiene, Rasa; Sirmenis, Raimondas; Zukauskas, Albertas; Balciunas, Evaldas; Purlys, Vytautas; Gadonas, Roaldas; Bukelskiene, Virginija; Sirvydis, Vytautas; Piskarskas, Algis

    2012-09-01

    Films and microstructured scaffolds have been fabricated using direct laser writing out of different polymers: hybrid organic-inorganic ORMOCORE b59, acrylate-based AKRE23, novel organic-inorganic Zr containing hybrid SZ2080, and biodegradable PEG-DA-258. Adult myogenic stem cells were grown on these surfaces in vitro. Their adhesion, growth, and viability test results suggest good potential applicability of the materials in biomedical practice. Pieces of these polymers were implanted in rat's paravertebral back tissue. Histological examination of the implants and surrounding tissue ex vivo after 3 weeks of implantation was conducted and results show the materials to be at least as biocompatible as surgical clips or sutures. The applied direct laser writing technique seems to offer good future prospects in a polymeric 3D scaffold design for artificial tissue engineering with autologous stem cells.

  19. Potential for Biobased Adhesives in Wood Bonding

    Science.gov (United States)

    Charles R. Frihart

    2016-01-01

    There has been a resurgence of interest and research on using bio-based materials as wood adhesives; however, they have achieved only limited market acceptance. To better understand this low level of replacement, it is important to understand why adhesives work or fail in moisture durability tests. A holistic model for wood adhesives has been developed that clarifies...

  20. Endogenous production of fibronectin is required for self-renewal of cultured mouse embryonic stem cells

    OpenAIRE

    Hunt, Geoffrey C.; Singh, Purva; Schwarzbauer, Jean E.

    2012-01-01

    Pluripotent cells are attached to the extracellular matrix (ECM) as they make cell fate decisions within the stem cell niche. Here we show that the ubiquitous ECM protein fibronectin is required for self-renewal decisions by cultured mouse embryonic stem (mES) cells. Undifferentiated mES cells produce fibronectin and assemble a fibrillar matrix. Increasing the level of substrate fibronectin increased cell spreading and integrin receptor signaling through focal adhesion kinase, while concomita...

  1. Effects of a hybrid micro/nanorod topography-modified titanium implant on adhesion and osteogenic differentiation in rat bone marrow mesenchymal stem cells.

    Science.gov (United States)

    Zhang, Wenjie; Li, Zihui; Huang, Qingfeng; Xu, Ling; Li, Jinhua; Jin, Yuqin; Wang, Guifang; Liu, Xuanyong; Jiang, Xinquan

    2013-01-01

    Various methods have been used to modify titanium implant surfaces with the aim of achieving better osseointegration. In this study, we fabricated a clustered nanorod structure on an acid-etched, microstructured titanium plate surface using hydrogen peroxide. We also evaluated biofunctionalization of the hybrid micro/nanorod topography on rat bone marrow mesenchymal stem cells. Scanning electron microscopy and x-ray diffraction were used to investigate the surface topography and phase composition of the modified titanium plate. Rat bone marrow mesenchymal stem cells were cultured and seeded on the plate. The adhesion ability of the cells was then assayed by cell counting at one, 4, and 24 hours after cell seeding, and expression of adhesion-related protein integrin β1 was detected by immunofluorescence. In addition, a polymerase chain reaction assay, alkaline phosphatase and Alizarin Red S staining assays, and osteopontin and osteocalcin immunofluorescence analyses were used to evaluate the osteogenic differentiation behavior of the cells. The hybrid micro/nanoscale texture formed on the titanium surface enhanced the initial adhesion activity of the rat bone marrow mesenchymal stem cells. Importantly, the hierarchical structure promoted osteogenic differentiation of these cells. This study suggests that a hybrid micro/nanorod topography on a titanium surface fabricated by treatment with hydrogen peroxide followed by acid etching might facilitate osseointegration of a titanium implant in vivo.

  2. Amperometric Adhesion Signals of Liposomes, Cells and Droplets

    OpenAIRE

    Ivošević DeNardis, N.; Žutić, V.; Svetličić, V.; Frkanec, R.

    2009-01-01

    Individual soft microparticles (liposomes, living cells and organic droplets) in aqueous media are characterized by their adhesion signals using amperometry at the dropping mercury electrode. We confirmed that the general mechanism established for adhesion of hydrocarbon droplets and cells is valid as well for liposome adhesion within a wide range of surface charge densities. Incidents and shape of adhesion signals in liposome suspensions reflect liposome polydispersity, surface charge den...

  3. Reverse adhesion of a gecko-inspired synthetic adhesive switched by an ion-exchange polymer-metal composite actuator.

    Science.gov (United States)

    Guo, Dong-Jie; Liu, Rui; Cheng, Yu; Zhang, Hao; Zhou, Li-Ming; Fang, Shao-Ming; Elliott, Winston Howard; Tan, Wei

    2015-03-11

    Inspired by how geckos abduct, rotate, and adduct their setal foot toes to adhere to different surfaces, we have developed an artificial muscle material called ion-exchange polymer-metal composite (IPMC), which, as a synthetic adhesive, is capable of changing its adhesion properties. The synthetic adhesive was cast from a Si template through a sticky colloid precursor of poly(methylvinylsiloxane) (PMVS). The PMVS array of setal micropillars had a high density of pillars (3.8 × 10(3) pillars/mm(2)) with a mean diameter of 3 μm and a pore thickness of 10 μm. A graphene oxide monolayer containing Ag globular nanoparticles (GO/Ag NPs) with diameters of 5-30 nm was fabricated and doped in an ion-exchanging Nafion membrane to improve its carrier transfer, water-saving, and ion-exchange capabilities, which thus enhanced the electromechanical response of IPMC. After being attached to PMVS micropillars, IPMC was actuated by square wave inputs at 1.0, 1.5, or 2.0 V to bend back and forth, driving the micropillars to actively grip or release the surface. To determine the adhesion of the micropillars, the normal adsorption and desorption forces were measured as the IPMC drives the setal micropillars to grip and release, respectively. Adhesion results demonstrated that the normal adsorption forces were 5.54-, 14.20-, and 23.13-fold higher than the normal desorption forces under 1.0, 1.5, or 2.0 V, respectively. In addition, shear adhesion or friction increased by 98, 219, and 245%, respectively. Our new technique provides advanced design strategies for reversible gecko-inspired synthetic adhesives, which might be used for spiderman-like wall-climbing devices with unprecedented performance.

  4. Hysteroscopic Management Of Intrauterin Adhesion

    Directory of Open Access Journals (Sweden)

    Ayşegül Dikmen

    2013-03-01

    Full Text Available Objective: Assessment of preoperative and postoperative outcomes of patients that were performed hysterescopic intrauterine adhesiolysis. Material and method: We reviewed 24 patients that underwent hysterescopy with the complaints of amenorrhea, hypomenorrhea, recurrent pregnancy loss between 2004-2008. The most complaints of patients were infertilty amenorrhea. Results: Adhesions occurs mainly as a result of trauma to the gravid uterine cavity in 14 patients. When classifying patients with their intrauterine adhesions, Grade 3 was the most frequently seen. Adhesiolisis was performed with hysteresopic scissors in all patients. In postoperative period following synechiolysis, 10 patients were treated with estrogen and progestogen, 11 of them used intrauterine device with estrogen and progestogen therapy, foley catheter was used in 3 patients. Hysterescopy was performed in 5 patients for second time because of adhesion suspicions. The re-adhesiolysis performed to 3 patients because of determined to mild adhesion. Conclusion: After hysterescopic adhesiolysis, all patients with the complaint of amenorrhea had regular menstruation. Pregnancy after treatment occured in 4 patients but live birth rate was 75%.

  5. Effect of molecular weight and testing rate on adhesion property of pressure-sensitive adhesives prepared from epoxidized natural rubber

    International Nuclear Information System (INIS)

    Khan, Imran; Poh, B.T.

    2011-01-01

    Research highlights: → Elucidation of adhesion property of epoxidized natural rubber (ENR 25). → Correlation of peel and shear strength with molecular weight and rate of testing. → Confirmation of miscibility of tackifier and ENR 25 by DSC and FTIR study. → Applicability of Fox equation in ENR 25/coumarone-indene resin system. -- Abstract: The dependence of peel strength and shear strength of epoxidized natural rubber (ENR 25)-based pressure-sensitive adhesive on molecular weight and rate of testing was investigated using coumarone-indene as the tackifying resin. Toluene and polyethylene terephthalate (PET) were used as the solvent and substrate respectively throughout the study. A SHEEN hand coater was used to coat the adhesive on the substrate at a coating thickness of 120 μm. All the adhesion properties were determined by a Llyod Adhesion Tester operating at different rates of testing. Result shows that peel strength and shear strength increases up to an optimum molecular weight of 6.5 x 10 4 of ENR 25. For peel strength, the observation is attributed to the combined effects of wettability and mechanical strength of rubber at the optimum molecular weight, whereas for the shear strength, it is ascribed to the increasing amount of adhesive present in the coating layer which enhances the shear resistance of the adhesive. Peel strength and shear strength also increases with increase in rate of testing, an observation which is associated to the viscoeslastic response of the adhesive. Differential scanning calorimetry (DSC) and Fourier transform infrared spectroscopy (FTIR) study confirms the miscibility of tackifier and the ENR 25.

  6. CD147-targeting siRNA inhibits cell-matrix adhesion of human malignant melanoma cells by phosphorylating focal adhesion kinase.

    Science.gov (United States)

    Nishibaba, Rie; Higashi, Yuko; Su, Juan; Furukawa, Tatsuhiko; Kawai, Kazuhiro; Kanekura, Takuro

    2012-01-01

    CD147/basigin, highly expressed on the surface of malignant tumor cells including malignant melanoma (MM) cells, plays a critical role in the invasiveness and metastasis of MM. Metastasis is an orchestrated process comprised of multiple steps including adhesion and invasion. Integrin, a major adhesion molecule, co-localizes with CD147/basigin on the cell surface. Using the human MM cell line A375 that highly expresses CD147/basigin, we investigated whether CD147/basigin is involved in adhesion in association with integrin. CD147/basigin was knocked-down using siRNA targeting CD147 to elucidate the role of CD147/basigin. Cell adhesion was evaluated by adhesion assay on matrix-coated plates. The localization of integrin was inspected under a confocal microscope and the expression and phosphorylation of focal adhesion kinase (FAK), a downstream kinase of integrin, were examined by western blot analysis. Silencing of CD147/basigin in A375 cells by siRNA induced the phosphorylation of FAK at Y397. Integrin identified on the surface of parental cells was distributed in a speckled fashion in the cytoplasm of CD147 knockdown cells, resulting in morphological changes from a round to a polygonal shape with pseudopodial protrusions. Silencing of CD147/basigin in A375 cells clearly weakened their adhesiveness to collagen I and IV. Our results suggest that CD147/basigin regulates the adhesion of MM cells to extracellular matrices and of integrin β1 signaling via the phosphorylation of FAK. © 2011 Japanese Dermatological Association.

  7. Quantitative wood–adhesive penetration with X-ray computed tomography

    Energy Technology Data Exchange (ETDEWEB)

    Paris, Jesse L.; Kamke, Frederick A. (Oregon State U.); (Willamette Valley)

    2015-09-01

    Micro X-ray computed tomography (XCT) was used to analyze the 3D adhesive penetration behavior of different wood–adhesive bondlines. Three adhesives, a phenol formaldehyde (PF), a polymeric diphenylmethane diisocyanate (pMDI), and a hybrid polyvinyl acetate (PVA), all tagged with iodine for enhanced X-ray attenuation, were used to prepare single-bondline laminates in two softwoods, Douglas-fir and loblolly pine, and one hardwood, a hybrid polar. Adhesive penetration depth was measured with two separate calculations, and results were compared with 2D fluorescent micrographs. A total of 54 XCT scans were collected, representing six replicates of each treatment type; each replicate, however, consisted of approximately 1500 individual, cross-section slices stacked along the specimen length. As these adhesives were highly modified, the presented results do not indicate typical behavior for their broader adhesive classes. Still, clear penetration differences were observed between each adhesive type, and between wood species bonded with both the PF and pMDI adhesives. Furthermore, penetration results depended on the calculation method used. Two adhesive types with noticeably different resin distributions in the cured bondline, showed relatively similar penetration depths when calculated with a traditional effective penetration equation. However, when the same data was calculated with a weighted penetration calculation, which accounts for both adhesive area and depth, the results appeared to better represent the different distributions depicted in the photomicrographs and tomograms. Additionally, individual replicate comparisons showed variation due to specimen anatomy, not easily observed or interpreted from 2D images. Finally, 3D views of segmented 3D adhesive phases offered unique, in-situ views of the cured adhesive structures. In particular, voids formed by CO2 bubbles generated during pMDI cure were clearly visible in penetrated columns of the solidified

  8. Effect of Paste Flux Concentration on Adhesion Behavior

    Directory of Open Access Journals (Sweden)

    DU Quan-bin

    2017-11-01

    Full Text Available In view of the problem that paste flux is difficult to spread uniformly on the surface of filler metal, the adhesion behavior of the different concentrations of paste flux on the surface of filler metal was studied by the equipment of OM, wetting angle tester and surface tensiometer. The results show that adhesive layer is gradually thickened with the increase of the concentration of paste flux. A small amount of shrinkage appears in the thin adhesive layer. however, mass paste flux slides off filler metal when adhesive layer is thicker, accompanying by severe aggregation and shrinkage. For the ideal surface, the adhesive tension of paste flux with different concentrations of paste flux is the same. For the actual surface, the stripe groove additional pressure is formed when paste flux wets stripe groove, and the additional pressure is the main reason for the lagging phenomenon of the shrinkage of the adhesive layer. With the increase of paste flux concentration, the additional pressure decreases, the hysteresis resistance decreases, and the shrinkage increases. A relationship is satisfied when the shrinkage takes place in thin adhesive layer, this is ΔWC ≥ A+ΔP. Whether the shrinkage occurs mainly depends on the adhesion tension and the additional pressure.

  9. Primary Adhesion in Enteromorpha. Cue Detection and Surface Selection in the Settlement and Adhesion of Enteromorpha Spores

    National Research Council Canada - National Science Library

    Callow, James

    2001-01-01

    .... spore settlement and adhesion. Our results provide the most comprehensive characterisation of the settlement and adhesion processes and the roles of surface-associated cues, of any soft-fouling species to date, We have shown...

  10. Adhesion Strength of Biomass Ash Deposits

    DEFF Research Database (Denmark)

    Laxminarayan, Yashasvi; Jensen, Peter Arendt; Wu, Hao

    2015-01-01

    This study investigates the shear adhesion strength of biomass ash deposits on superheater tubes. Artificial biomass ash deposits were prepared on superheater tubes and sintered in an oven at temperatures up to 1000°C. Subsequently, the deposits were sheared off with the help of an electrically...... controlled arm. Higher sintering temperatures resulted in greater adhesion strengths, with a sharp increase observed near the melting point of the ash. Repetition of experiments with fixed operation conditions revealed considerable variation in the obtained adhesion strengths, portraying the stochastic...

  11. Probing bacterial adhesion at the single-cell level

    DEFF Research Database (Denmark)

    Zeng, Guanghong; Müller, Torsten; Meyer, Rikke Louise

    be considered. We have developed a simple and versatile method to make single-cell bacterial probes for measuring single cell adhesion by force spectroscopy using atomic force microscopy (AFM). A single-cell probe was readily made by picking up a bacterial cell from a glass surface by approaching a tipless AFM...... cantilever coated with the commercial cell adhesive CellTakTM. We applied the method to study adhesion of living cells to abiotic surfaces at the single-cell level. Immobilisation of single bacterial cells to the cantilever was stable for several hours, and viability was confirmed by Live/Dead staining...... on the adhesion force, we explored the bond formation and adhesive strength of four different bacterial strains towards three abiotic substrates with variable hydrophobicity and surface roughness. The adhesion force and final rupture length were dependent on bacterial strains, surfaces properties, and time...

  12. Insights into adhesion of abalone: A mechanical approach.

    Science.gov (United States)

    Li, Jing; Zhang, Yun; Liu, Sai; Liu, Jianlin

    2018-01-01

    Many living creatures possess extremely strong capability of adhesion, which has aroused great attention of many scientists and engineers. Based on the self-developed equipment, we measured the normal and shear adhesion strength of the abalone underwater and out of water on different contact surfaces. It is found that the adhesion force of the abalone can amount to 200 or 300 times its body weight. The effects of wettability and roughness of the surface, and the frictional coefficient of mucus on the adhesion strength have been discussed. The theoretical calculation manifests that the normal adhesion force mainly stems from the suction pressure, van der Waals force and capillary force of the pedal, and their limit values are given. These findings may provide some inspirations to engineer new-typed materials, micro-devices, adhesives and medicine. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Transfer of microstructure pattern of CNTs onto flexible substrate using hot press technique for sensing applications

    International Nuclear Information System (INIS)

    Mishra, Prabhash; Tai, Nyan-Hwa; Harsh; Islam, S.S.

    2013-01-01

    Graphical abstract: - Highlights: • Successfully transfer of microstructure patterned CNTs on PET substrate. • Demonstrate as resistor-based NH 3 gas sensor in the sub-ppm range. • Excellent photodetector having instantaneous response and recovery characteristics. • An effective technique to grow and produce flexible electronic device. - Abstract: In this work, we report the successful and efficient transfer process of two- dimensional (2-D) vertically aligned carbon nanotubes (CNTs) onto polyethylene terephthalate (PET) substrate by hot pressing method with an aim to develop flexible sensor devices. Carbon nanotubes are synthesized by cold wall thermal chemical vapor deposition using patterned SiO 2 substrate under low pressure. The height of the pattern of CNTs is controlled by reaction time. The entire growth and transfer process is carried out within 30 min. Strong adhesion between the nanotube and polyethylene terephthalate substrate was observed in the post-transferred case. Raman spectroscopy and scanning electron microscope (SEM) studies are used to analyze the microstructure of carbon nanotube film before and after hot pressing. This technique shows great potential for the fabrication of flexible sensing devices. We report for the first time, the application of patterned microstructure developed by this technique in the development of gas sensor and optoelectronic device. Surface resistive mode is used for detection of ammonia (NH 3 ) gas in the sub-ppm range. An impressive photoconducting response is also observed in the visible wavelength. The reproducibility of the sample was checked and the results indicate the possibility of use of carbon nanotube as gas sensor, photodetector, CCDs etc

  14. Transfer of microstructure pattern of CNTs onto flexible substrate using hot press technique for sensing applications

    Energy Technology Data Exchange (ETDEWEB)

    Mishra, Prabhash [Department of Material Science and Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan (China); Nano-Sensor Research Laboratory, F/O Engineering and Technology, Jamia Millia Islamia, Jamia Nagar, New Delhi (India); Tai, Nyan-Hwa [Department of Material Science and Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan (China); Harsh [Nano-Sensor Research Laboratory, F/O Engineering and Technology, Jamia Millia Islamia, Jamia Nagar, New Delhi (India); Islam, S.S., E-mail: safiul5996@gmail.com [Nano-Sensor Research Laboratory, F/O Engineering and Technology, Jamia Millia Islamia, Jamia Nagar, New Delhi (India)

    2013-08-01

    Graphical abstract: - Highlights: • Successfully transfer of microstructure patterned CNTs on PET substrate. • Demonstrate as resistor-based NH{sub 3} gas sensor in the sub-ppm range. • Excellent photodetector having instantaneous response and recovery characteristics. • An effective technique to grow and produce flexible electronic device. - Abstract: In this work, we report the successful and efficient transfer process of two- dimensional (2-D) vertically aligned carbon nanotubes (CNTs) onto polyethylene terephthalate (PET) substrate by hot pressing method with an aim to develop flexible sensor devices. Carbon nanotubes are synthesized by cold wall thermal chemical vapor deposition using patterned SiO{sub 2} substrate under low pressure. The height of the pattern of CNTs is controlled by reaction time. The entire growth and transfer process is carried out within 30 min. Strong adhesion between the nanotube and polyethylene terephthalate substrate was observed in the post-transferred case. Raman spectroscopy and scanning electron microscope (SEM) studies are used to analyze the microstructure of carbon nanotube film before and after hot pressing. This technique shows great potential for the fabrication of flexible sensing devices. We report for the first time, the application of patterned microstructure developed by this technique in the development of gas sensor and optoelectronic device. Surface resistive mode is used for detection of ammonia (NH{sub 3}) gas in the sub-ppm range. An impressive photoconducting response is also observed in the visible wavelength. The reproducibility of the sample was checked and the results indicate the possibility of use of carbon nanotube as gas sensor, photodetector, CCDs etc.

  15. A mucus adhesion promoting protein, MapA, mediates the adhesion of Lactobacillus reuteri to Caco-2 human intestinal epithelial cells.

    Science.gov (United States)

    Miyoshi, Yukihiro; Okada, Sanae; Uchimura, Tai; Satoh, Eiichi

    2006-07-01

    Lactobacillus reuteri is one of the dominant lactobacilli found in the gastrointestinal tract of various animals. A surface protein of L. reuteri 104R, mucus adhesion promoting protein (MapA), is considered to be an adhesion factor of this strain. We investigated the relation between MapA and adhesion of L. reuteri to human intestinal (Caco-2) cells. Quantitative analysis of the adhesion of L. reuteri strains to Caco-2 cells showed that various L. reuteri strains bind not only to mucus but also to intestinal epithelial cells. In addition, purified MapA bound to Caco-2 cells, and this binding inhibited the adhesion of L. reuteri in a concentration-dependent manner. Based on these observations, the adhesion of L. reuteri appears due to the binding of MapA to receptor-like molecules on Caco-2 cells. Further, far-western analysis indicated the existence of multiple receptor-like molecules in Caco-2 cells.

  16. Syndecans, signaling, and cell adhesion

    DEFF Research Database (Denmark)

    Couchman, J R; Woods, A

    1996-01-01

    structures within the heparan sulfate chains, leaving the roles of chondroitin sulfate chains and extracellular portion of the core proteins to be elucidated. Evidence that syndecans are a class of receptor involved in cell adhesion is mounting, and their small cytoplasmic domains may link...... transmembrane signaling from matrix to cytoskeleton, as proposed for other classes of adhesion receptors....

  17. Design rules for biomolecular adhesion: lessons from force measurements.

    Science.gov (United States)

    Leckband, Deborah

    2010-01-01

    Cell adhesion to matrix, other cells, or pathogens plays a pivotal role in many processes in biomolecular engineering. Early macroscopic methods of quantifying adhesion led to the development of quantitative models of cell adhesion and migration. The more recent use of sensitive probes to quantify the forces that alter or manipulate adhesion proteins has revealed much greater functional diversity than was apparent from population average measurements of cell adhesion. This review highlights theoretical and experimental methods that identified force-dependent molecular properties that are central to the biological activity of adhesion proteins. Experimental and theoretical methods emphasized in this review include the surface force apparatus, atomic force microscopy, and vesicle-based probes. Specific examples given illustrate how these tools have revealed unique properties of adhesion proteins and their structural origins.

  18. Modelling microstructural evolution under irradiation

    International Nuclear Information System (INIS)

    Tikare, V.

    2015-01-01

    Microstructural evolution of materials under irradiation is characterised by some unique features that are not typically present in other application environments. While much understanding has been achieved by experimental studies, the ability to model this microstructural evolution for complex materials states and environmental conditions not only enhances understanding, it also enables prediction of materials behaviour under conditions that are difficult to duplicate experimentally. Furthermore, reliable models enable designing materials for improved engineering performance for their respective applications. Thus, development and application of mesoscale microstructural model are important for advancing nuclear materials technologies. In this chapter, the application of the Potts model to nuclear materials will be reviewed and demonstrated, as an example of microstructural evolution processes. (author)

  19. Adhesion properties of styrene-butadiene rubber (SBR/Standard Malaysian Rubber (SMR L-based adhesives in the presence of phenol formaldehyde resin

    Directory of Open Access Journals (Sweden)

    2007-10-01

    Full Text Available The adhesion properties, i. e. viscosity, tack and peel strength of styrene-butadiene rubber (SBR/Standard Malaysian Rubber (SMR L-based pressure-sensitive adhesive was studied using phenol formaldehyde resin as the tackifying resin. Toluene was used as the solvent throughout the experiment. SBR composition in SBR/SMR L blend used was 0, 20, 40, 60, 80, 100%. Three different resin loadings, i. e. 40, 80 and 120 parts per hundred parts of rubber (phr were used in the adhesive formulation. The viscosity of adhesive was determined by a HAAKE Rotary Viscometer whereas loop tack and peel strength of paper/polyethylene terephthalate (PET film were measured using a Lloyd Adhesion Tester operating at 30 cm/min. Results indicate that the viscosity of adhesive decreases with increasing % SBR whereas loop tack passes through a maximum value at 20% SBR for all resin loadings. Except for the control sample (without resin, the peel strength shows a maximum value at 60% SBR for the three modes of peel tests. For a fixed % SBR, adhesive sample containing 40 phr phenol formaldehyde resin always exhibits the highest loop tack and peel strength, an observation which is associated to the optimum wettability of adhesive on the substrate.

  20. Factors influencing bacterial adhesion to contact lenses.

    Science.gov (United States)

    Dutta, Debarun; Cole, Nerida; Willcox, Mark

    2012-01-01

    The process of any contact lens related keratitis generally starts with the adhesion of opportunistic pathogens to contact lens surface. This article focuses on identifying the factors which have been reported to affect bacterial adhesion to contact lenses. Adhesion to lenses differs between various genera/species/strains of bacteria. Pseudomonas aeruginosa, which is the predominant causative organism, adheres in the highest numbers to both hydrogel and silicone hydrogel lenses in vitro. The adhesion of this strain reaches maximum numbers within 1h in most in vitro studies and a biofilm has generally formed within 24 h of cells adhering to the lens surface. Physical and chemical properties of contact lens material affect bacterial adhesion. The water content of hydroxyethylmethacrylate (HEMA)-based lenses and their iconicity affect the ability of bacteria to adhere. The higher hydrophobicity of silicone hydrogel lenses compared to HEMA-based lenses has been implicated in the higher numbers of bacteria that can adhere to their surfaces. Lens wear has different effects on bacterial adhesion, partly due to differences between wearers, responses of bacterial strains and the ability of certain tear film proteins when bound to a lens surface to kill certain types of bacteria.

  1. Transforming Anaerobic Adhesives into Highly Durable and Abrasion Resistant Superhydrophobic Organoclay Nanocomposite Films: A New Hybrid Spray Adhesive for Tough Superhydrophobicity

    Science.gov (United States)

    Bayer, Ilker S.; Brown, Andrea; Steele, Adam; Loth, Eric

    2009-12-01

    The authors report fabrication of tough nanostructured self-cleaning superhydrophobic polymer-organoclay films from anaerobic acrylic adhesives displaying strong adhesion to metal surfaces. Both industrial and bio-grade anaerobic adhesives such as bone cements could be used. Montmorillonite clay filled anaerobic adhesives were modified by blending with a water dispersed fluoro-methacrylic latex in solution to form abrasion resistant interpenetrating polymer network films upon spray casting. The adhesive films could cure by thermosetting in oxygen-rich environments. Very high contact angles with low hysteresis were also measured for acidic (pH 2) and basic (pH 11) aqueous buffer solutions indicating resistance to acidic and basic media.

  2. A comprehensive toxicological evaluation of three adhesives using experimental cigarettes.

    Science.gov (United States)

    Coggins, Christopher R E; Jerome, Ann M; Lilly, Patrick D; McKinney, Willie J; Oldham, Michael J

    2013-01-01

    Adhesives are used in several different manufacturing operations in the production of cigarettes. The use of new, "high-speed-manufacture" adhesives (e.g. vinyl acetate based) could affect the smoke chemistry and toxicology of cigarettes, compared with older "low-speed-manufacture" adhesives (e.g. starch based). This study was conducted to determine whether the inclusion of different levels of three adhesives (ethylene vinyl acetate, polyvinyl acetate and starch) in experimental cigarettes results in different smoke chemistry and toxicological responses in in vitro and in vivo assays. A battery of tests (analytical chemistry, in vitro and in vivo assays) was used to compare the chemistry and toxicology of smoke from experimental cigarettes made with different combinations of the three adhesives. Varying levels of the different side-seam adhesives, as well as the transfer of adhesives from packaging materials, were tested. There were differences in some mainstream cigarette smoke constituents as a function of the level of adhesive added to experimental cigarettes and between the tested adhesives. None of these differences translated into statistically significant differences in the in vitro or in vivo assays. The use of newer "high-speed-manufacture" vinyl acetate-based adhesives in cigarettes does not produce toxicological profiles that prevent the adhesives from replacing the older "low-speed-manufacture" adhesives (such as starch).

  3. Structural adhesives for missile external protection material

    Science.gov (United States)

    Banta, F. L.; Garzolini, J. A.

    1981-07-01

    Two basic rubber materials are examined as possible external substrate protection materials (EPM) for missiles. The analysis provided a data base for selection of the optimum adhesives which are compatible with the substrate, loads applied and predicted bondline temperatures. Under the test conditions, EA934/NA was found to be the optimum adhesive to bond VAMAC 2273 and/or NBR/EPDM 9969A to aluminum substrate. The optimum adhesive for composite structures was EA956. Both of these adhesives are two-part epoxy systems with a pot life of approximately two hours. Further research is suggested on field repair criteria, nuclear hardness and survivability effects on bondline, and ageing effects.

  4. Focal adhesions and cell-matrix interactions

    DEFF Research Database (Denmark)

    Woods, A; Couchman, J R

    1988-01-01

    Focal adhesions are areas of cell surfaces where specializations of cytoskeletal, membrane and extracellular components combine to produce stable cell-matrix interactions. The morphology of these adhesions and the components identified in them are discussed together with possible mechanisms...

  5. Shear Bond Strengths of Different Adhesive Systems to Biodentine

    Science.gov (United States)

    Odabaş, Mesut Enes; Bani, Mehmet; Tirali, Resmiye Ebru

    2013-01-01

    The aim of this study was to measure the shear bond strength of different adhesive systems to Biodentine with different time intervals. Eighty specimens of Biodentine were prepared and divided into 8 groups. After 12 minutes, 40 samples were randomly selected and divided into 4 groups of 10 each: group 1: (etch-and-rinse adhesive system) Prime & Bond NT; group 2: (2-step self-etch adhesive system) Clearfil SE Bond; group 3: (1-step self-etch adhesive systems) Clearfil S3 Bond; group 4: control (no adhesive). After the application of adhesive systems, composite resin was applied over Biodentine. This procedure was repeated 24 hours after mixing additional 40 samples, respectively. Shear bond strengths were measured using a universal testing machine, and the data were subjected to 1-way analysis of variance and Scheffé post hoc test. No significant differences were found between all of the adhesive groups at the same time intervals (12 minutes and 24 hours) (P > .05). Among the two time intervals, the lowest value was obtained for group 1 (etch-and-rinse adhesive) at a 12-minute period, and the highest was obtained for group 2 (two-step self-etch adhesive) at a 24-hour period. The placement of composite resin used with self-etch adhesive systems over Biodentine showed better shear bond strength. PMID:24222742

  6. Spatiotemporal patterns formed by deformed adhesive in peeling

    International Nuclear Information System (INIS)

    Yamazaki, Yoshihiro; Toda, Akihiko

    2007-01-01

    Dynamical properties of peeling an adhesive tape are investigated experimentally as an analogy of sliding friction. An adhesive tape is peeled by pulling an elastic spring connected to the tape. Controlling its spring constant k and pulling speed V, peel force is measured and spatiotemporal patterns formed on the peeled tape by deformed adhesive are observed. It is found that there exist two kinds of adhesive state in peeling front. The emergence of multiple states is caused by the stability of a characteristic structure (tunnel structure) formed by deformed adhesive. Tunnel structures are distributed spatiotemporally on adhesive tape after peeling. Based on the spatiotemporal distribution, a morphology-dynamical phase diagram is constructed on k-V space and is divided into the four regions: (A) uniform pattern with tunnel structure, (B) uniform pattern without tunnel structure, (C) striped pattern with oscillatory peeling, and (D) spatiotemporally coexistent pattern

  7. Culinary Medicine-Jalebi Adhesions.

    Science.gov (United States)

    Kapoor, Vinay K

    2016-02-01

    Culinary terms have been used to describe anatomy (bean-shaped kidneys), pathology (strawberry gall bladder), clinical signs (café-au-lait spots), radiological images (sausage-shaped pancreas), etc. While Indian cuisine is popular all over the world, no Indian dish finds mention in medical terminology. In intra-abdominal adhesions, sometimes, the intestinal loops are so densely adherent that it is difficult to make out proximal from distal and it is impossible to separate them without injuring the bowel resulting in spill of contents-resection is the only option (Fig. 1). Jalebi, an Indian dessert, has a single long tubular strip of fried batter filled with sugary syrup so intertwined that it is impossible to discern its ends; if broken, the syrup spills out-the best way to relish it is to chew the whole piece (Fig. 2). Because of these similarities between them, I propose to name dense intra-abdominal adhesions as 'jalebi adhesions.'

  8. Adhesion of non-selective CVD tungsten to silicon dioxide

    International Nuclear Information System (INIS)

    Woodruff, D.W.; Wilson, R.H.; Sanchez-Martinez, R.A.

    1986-01-01

    Adhesion of non-selective, CVD tungsten to silicon dioxide is a critical issue in the development of tungsten as a metalization for VLSI circuitry. Without special adhesion promoters, tungsten deposited from WF/sub 6/ and H/sub 2/ has typically failed a standard tape test over all types of silicon oxides and nitrides. The reasons for failure of thin films, and CVD tungsten in particular are explored along with standard techniques for improving adhesion of thin films. Experiments are reported which include a number of sputtered metals as adhesion promoters, as well as chemical and plasma treatment of the oxide surface. Sputtered molybdenum is clearly the superior adhesion promoting layer from these tests. Traditional adhesion layers such as chromium or titanium failed as adhesion layers for CVD tungsten possibly due to chemical reactions between the WF/sub 6/ and Cr or Ti

  9. Functionalization of CoCr surfaces with cell adhesive peptides to promote HUVECs adhesion and proliferation

    Energy Technology Data Exchange (ETDEWEB)

    Castellanos, Maria Isabel, E-mail: maria.isabel.castellanos@upc.edu [Biomaterials, Biomechanics and Tissue Engineering Group, Department of Materials Science and Metallurgical Engineering, Technical University of Catalonia (UPC), ETSEIB, 08028 Barcelona (Spain); Centre for Research in Nanoengineering (CRNE), UPC, 08028 Barcelona (Spain); Mas-Moruno, Carlos, E-mail: carles.mas.moruno@upc.edu [Biomaterials, Biomechanics and Tissue Engineering Group, Department of Materials Science and Metallurgical Engineering, Technical University of Catalonia (UPC), ETSEIB, 08028 Barcelona (Spain); Centre for Research in Nanoengineering (CRNE), UPC, 08028 Barcelona (Spain); Grau, Anna, E-mail: agraugar@gmail.com [Biomaterials, Biomechanics and Tissue Engineering Group, Department of Materials Science and Metallurgical Engineering, Technical University of Catalonia (UPC), ETSEIB, 08028 Barcelona (Spain); Centre for Research in Nanoengineering (CRNE), UPC, 08028 Barcelona (Spain); Serra-Picamal, Xavier, E-mail: xserrapicamal@gmail.com [Institute for Bioengineering of Catalonia (IBEC), 08028 Barcelona (Spain); University of Barcelona and CIBER-BBN, 08036 Barcelona (Spain); Institució Catalana de Recerca i Estudis Avançats (ICREA), 08010 Barcelona (Spain); Trepat, Xavier, E-mail: xtrepat@ub.edu [Institute for Bioengineering of Catalonia (IBEC), 08028 Barcelona (Spain); University of Barcelona and CIBER-BBN, 08036 Barcelona (Spain); Institució Catalana de Recerca i Estudis Avançats (ICREA), 08010 Barcelona (Spain); Albericio, Fernando, E-mail: fernando.albericio@irbbarcelona.org [Department of Chemistry, University of Barcelona, CIBER-BBN, 08028 Barcelona (Spain); Joner, Michael, E-mail: michaeljoner@me.com [Department of Cardiology, Deutsches Herzzentrum München, 80636 Munich (Germany); CVPath Institute, Gaithersburg, MD 20878 (United States); and others

    2017-01-30

    Highlights: • We immobilized peptides on CoCr alloy through physisorption and covalent bonding. • Surface activation is an essential step prior to silanization to enhance peptide attachment. • Biofunctionalized surface characteristics were discussed. • RGDS, YIGSR and combination peptides display an improved HUVECs adhesion and proliferation. - Abstract: Biomimetic surface modification with peptides that have specific cell-binding moieties is a promising approach to improve endothelialization of metal-based stents. In this study, we functionalized CoCr surfaces with RGDS, REDV, YIGSR peptides and their combinations to promote endothelial cells (ECs) adhesion and proliferation. An extensive characterization of the functionalized surfaces was performed by XPS analysis, surface charge and quartz crystal microbalance with dissipation monitoring (QCM-D), which demonstrated the successful immobilization of the peptides to the surface. Cell studies demonstrated that the covalent functionalization of CoCr surfaces with an equimolar combination of RGDS and YIGSR represents the most powerful strategy to enhance the early stages of ECs adhesion and proliferation, indicating a positive synergistic effect between the two peptide motifs. Although these peptide sequences slightly increased smooth muscle cells (SMCs) adhesion, these values were ten times lower than those observed for ECs. The combination of RGDS with the REDV sequence did not show synergistic effects in promoting the adhesion or proliferation of ECs. The strategy presented in this study holds great potential to overcome clinical limitations of current metal stents by enhancing their capacity to support surface endothelialization.

  10. The electron beam cure of epoxy paste adhesives

    International Nuclear Information System (INIS)

    Farmer, J.D.; Janke, C.J.; Lopata, V.J.

    1998-01-01

    Recently developed epoxy paste adhesives were electron beam cured and experimentally explored to determine their suitability for use in an aerospace-quality aircraft component. There were two major goals for this program. The first was to determine whether the electron beam-curable past adhesives were capable of meeting the requirements of the US Air Force T-38 supersonic jet trainer composite windshield frame. The T-38 windshield frame's arch is currently manufactured by bonding thin stainless steel plies using an aerospace-grade thermally-cured epoxy film adhesive. The second goal was to develop the lowest cost hand layup and debulk process that could be used to produce laminated steel plies with acceptable properties. The laminate properties examined to determine adhesive suitability include laminate mechanical and physical properties at room, adhesive tack, out-time capability, and the debulk requirements needed to achieve these properties. Eighteen past adhesives and four scrim cloths were experimentally examined using this criteria. One paste adhesive was found to have suitable characteristics in each of these categories and was later chosen for the manufacture of the T-38 windshield frame. This experimental study shows that by using low-cost debulk and layup processes, the electron beam-cured past adhesive mechanical and physical properties meet the specifications of the T-38 composite windshield frame

  11. Design and characterization of a carbon-nanotube-reinforced adhesive coating for piezoelectric ceramic discs

    International Nuclear Information System (INIS)

    Lanzara, G; Chang, F-K

    2009-01-01

    The silver paste electrode of piezoelectric (PZT) ceramic discs has been shown to produce a weak interface bond between a bare PZT and its paste coating under a peeling force. In this work, an investigation was conducted to reinforce the bond with a high density array of oriented carbon nanotube nano-electrodes (CNTs-NEA), between a bare PZT ceramic and a metal substrate. The ensuing design and fabrication of a carbon-nanotube-coated piezoelectric disc (CPZT) is presented along with a study of the bondline integrity of a CPZT mounted on a hosting structure. The CPZT has its electrode silver paste coating replaced with a high density array of CNTs-NEA. Mechanical tests were performed to characterize the shear strength of the bondline between CPZT discs and the substrate. The test results were compared with shear strengths of the bondlines made of pure non-conductive adhesive and adhesive with randomly mixed CNTs. The comparison showed the oriented CNT coating on PZTs could significantly enhance the interfacial shear strength. Through the microscopic examination, it was evident that the ratio between the CNT length (Lc) and the bond thickness (H) significantly influenced the bond strength of CPZT discs. Three major interface microstructure types and their corresponding failure modes for specific Lc/H values were identified. The study also showed that failure did not occur along the interface between the PZT ceramic element and the CNT coating

  12. Adhesion Promoters in Bituminous Road Materials: A Review

    Directory of Open Access Journals (Sweden)

    Cesare Oliviero Rossi

    2017-05-01

    Full Text Available This review focuses on certain classes of organic compounds known variously in the specific literature of asphalt as adhesion promoters, antistripping agents, wetting agents, antistrips, or adhesion agents. These kinds of organic additives are currently formulated to enhance the bitumen coating of mineral aggregates and improve the workability of asphalt mixtures. In this review, the term “adhesion promoters” includes both synthetic organic compounds as well as those extracted from natural resources, mixed in trace amounts to bitumen. Their main role is to alter the interfacial energy, so that the presence of water, even in trace, does not weaken the bitumen-aggregate bond and tends to favor adhesion. The report also considers the chemical functionalities that play a predominant role in bonding, as well as the effects of surface modification of the aggregate due to the presence of adhesion promoters in pre-blended bituminous mixtures. Although bitumen is widely used in road pavement construction and the discussion is mainly addressed to the improvement of adhesion in road materials, adhesion and wetting properties can also represent a general issue in various bitumen-based industrial products.

  13. Growth and microstructure of columnar Y-doped SrZrO{sub 3} films deposited on Pt-coated MgO by pulsed laser deposition

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Sijun, E-mail: sluo1@tulane.edu; Riggs, Brian C.; Shipman, Joshua T.; Adireddy, Shiva; Sklare, Samuel C.; Chrisey, Douglas B., E-mail: dchrisey@tulane.edu [Department of Physics and Engineering Physics, Tulane University, New Orleans, Louisiana 70118 (United States); Zhang, Xiaodong; Koplitz, Brent [Department of Chemistry, Tulane University, New Orleans, Louisiana 70118 (United States)

    2015-07-21

    Direct integration of proton conductor films on Pt-coated substrates opens the way to film-based proton transport devices. Columnar SrZr{sub 0.95}Y{sub 0.05}O{sub 3−δ} (SZY) films with dense microstructure were deposited on Pt-coated MgO(100) substrates at 830 °C by pulsed laser deposition. The optimal window of ambient O{sub 2} pressure for good crystallinity of SZY films is from 400 to 600 mTorr. The ambient O{sub 2} compresses the plasma plume of SZY and increases the deposition rate. The 10 nm thick Ti adhesion layer on MgO(100) greatly affects the orientation of the sputtered Pt layers. Pt deposited directly on MgO shows a highly (111)-preferred orientation and leads to preferentially oriented SZY films while the addition of a Ti adhesion layer makes Pt show a less preferential orientation that leads to randomly oriented SZY films. The RMS surface roughness of preferentially oriented SZY films is larger than that of randomly oriented SZY films deposited under the same ambient O{sub 2} pressure. As the O{sub 2} pressure increased, the RMS surface roughness of preferentially oriented SZY films increased, reaching 45.7 nm (2.61% of film thickness) at 600 mTorr. This study revealed the ambient O{sub 2} pressure and orientation dependent surface roughness of SZY films grown on Pt-coated MgO substrates, which provides the potential to control the surface microstructure of SZY films for electrochemical applications in film-based hydrogen devices.

  14. Tuneable adhesion through novel binder technologies

    NARCIS (Netherlands)

    Wouters, M.E.L.; Burghoorn, M.M.A.; Ingenhut, B.; Timmer, K.; Rentrop, C.H.A.; Bots, T.L.; Oosterhuis, G.; Fischer, H.R.

    2011-01-01

    A reversible crosslinking mechanism enabling bonding and debonding of adhesives and coatings based on Diels-Alder chemistry is described. The Diels-Alder compounds form a covalently crosslinked network at low temperatures that break at elevated temperatures. As a result, the adhesive exhibits good

  15. Syndecans: synergistic activators of cell adhesion

    DEFF Research Database (Denmark)

    Woods, A; Couchman, J R

    1998-01-01

    Cell-surface proteoglycans participate in cell adhesion, growth-factor signalling, lipase activity and anticoagulation. Until recently, only the roles of the glycosaminoglycan chains were investigated. Now, with molecular characterization of several core proteins, the roles of each individual...... molecules modulating integrin-based adhesion....

  16. Adhesion of tissue glues to different biological substrates

    NARCIS (Netherlands)

    Bochynska, A. I.; Hannink, G.; Buma, P.; Grijpma, D. W.

    2017-01-01

    Tissue adhesives are attractive materials with potential to replace the use of sutures and staples in the repair of the injured tissues. The research field of tissue adhesives is dynamically growing, and different methods and tissue models are employed to evaluate the adhesive properties of newly

  17. Adhesion of tissue glues to different biological substrates

    NARCIS (Netherlands)

    Bochynska, Agnieszka; Hannink, G.; Buma, P.; Grijpma, Dirk W.

    2016-01-01

    Tissue adhesives are attractive materials with potential to replace the use of sutures and staples in the repair of the injured tissues. The research field of tissue adhesives is dynamically growing, and different methods and tissue models are employed to evaluate the adhesive properties of newly

  18. Microstructured metal molds fabricated via investment casting

    International Nuclear Information System (INIS)

    Cannon, Andrew H; King, William P

    2010-01-01

    This paper describes an investment casting process to produce aluminum molds having integrated microstructures. Unlike conventional micromolding tools, the aluminum mold was large and had complex curved surfaces. The aluminum was cast from curved microstructured ceramic molds which were themselves cast from curved microstructured rubber. The aluminum microstructures had an aspect ratio of 1:1 and sizes ranging from 25 to 50 µm. Many structures were successfully cast into the aluminum with excellent replication fidelity, including circular, square and triangular holes. We demonstrate molding of large, curved surfaces having surface microstructures using the aluminum mold.

  19. Immunotherapeutic modulation of intraperitoneal adhesions by Asparagus racemosus.

    Directory of Open Access Journals (Sweden)

    Rege N

    1989-10-01

    Full Text Available The hypothesis that macrophages appear to play a pivotal role in the development of intraperitoneal adhesions and that modulation of macrophage activity, therefore, is likely to provide a tool for prevention of adhesions, was tested in the present study. Effect of Asparagus racemosus, an indigenous agent with immunostimulant properties, was evaluated in an animal model of intraperitoneal adhesions induced by caecal rubbing. Animals were sacrificed 15 days following surgery. The peritoneal macrophages were collected to assess their activity. At the same time, peritoneal cavity was examined for the presence of adhesions, which were graded. A significant decrease was observed in the adhesion scores attained by animals receiving Asparagus racemosus. This was associated with significant increase in the activity of macrophages (70.1 +/- 2.52, compared to that in surgical controls (53.77 +/- 10.8. These findings support our hypothesis and provide a novel approach for the prevention and management of post-operative adhesions.

  20. Repeated origin and loss of adhesive toepads in geckos.

    Directory of Open Access Journals (Sweden)

    Tony Gamble

    Full Text Available Geckos are well known for their extraordinary clinging abilities and many species easily scale vertical or even inverted surfaces. This ability is enabled by a complex digital adhesive mechanism (adhesive toepads that employs van der Waals based adhesion, augmented by frictional forces. Numerous morphological traits and behaviors have evolved to facilitate deployment of the adhesive mechanism, maximize adhesive force and enable release from the substrate. The complex digital morphologies that result allow geckos to interact with their environment in a novel fashion quite differently from most other lizards. Details of toepad morphology suggest multiple gains and losses of the adhesive mechanism, but lack of a comprehensive phylogeny has hindered efforts to determine how frequently adhesive toepads have been gained and lost. Here we present a multigene phylogeny of geckos, including 107 of 118 recognized genera, and determine that adhesive toepads have been gained and lost multiple times, and remarkably, with approximately equal frequency. The most likely hypothesis suggests that adhesive toepads evolved 11 times and were lost nine times. The overall external morphology of the toepad is strikingly similar in many lineages in which it is independently derived, but lineage-specific differences are evident, particularly regarding internal anatomy, with unique morphological patterns defining each independent derivation.

  1. Repeated origin and loss of adhesive toepads in geckos.

    Science.gov (United States)

    Gamble, Tony; Greenbaum, Eli; Jackman, Todd R; Russell, Anthony P; Bauer, Aaron M

    2012-01-01

    Geckos are well known for their extraordinary clinging abilities and many species easily scale vertical or even inverted surfaces. This ability is enabled by a complex digital adhesive mechanism (adhesive toepads) that employs van der Waals based adhesion, augmented by frictional forces. Numerous morphological traits and behaviors have evolved to facilitate deployment of the adhesive mechanism, maximize adhesive force and enable release from the substrate. The complex digital morphologies that result allow geckos to interact with their environment in a novel fashion quite differently from most other lizards. Details of toepad morphology suggest multiple gains and losses of the adhesive mechanism, but lack of a comprehensive phylogeny has hindered efforts to determine how frequently adhesive toepads have been gained and lost. Here we present a multigene phylogeny of geckos, including 107 of 118 recognized genera, and determine that adhesive toepads have been gained and lost multiple times, and remarkably, with approximately equal frequency. The most likely hypothesis suggests that adhesive toepads evolved 11 times and were lost nine times. The overall external morphology of the toepad is strikingly similar in many lineages in which it is independently derived, but lineage-specific differences are evident, particularly regarding internal anatomy, with unique morphological patterns defining each independent derivation.

  2. Microstructure characterization of ceramic nuclear fuel

    International Nuclear Information System (INIS)

    Boehmert, J.; Gaessner, W.

    1984-08-01

    A system of characterizing methods is described based on quantitative ceramographic methods. This system is applicable in quality assurance of UO 2 nuclear fuel in small-scale production and for determining microstructural parameters in scientific investigations. The system is based essentially on the measuring of microstructural parameters by the methods of linear analysis by the VEB Carl Zeiss Jena EPIQUANT mechanical optical microstructural analyzer. It is completed by measuring the pore size using automatic the television analyzer QTM. Before the quantitative microstructural characterization, in each case the morphology of the structure is estimated qualitatively. (author)

  3. Preparation and characterization of UV-curable cationic composite adhesive

    International Nuclear Information System (INIS)

    Shen Yan; Yang Wenbin; Li Yintao; Xie Changqiong; Li Yingjun; Cheng Yafei; Zhou Yuanlin; Lu Zhongyuan

    2011-01-01

    UV-curable cationic composite adhesives containing TiO 2 nanostructures were prepared by using 3, 4-epoxycyclohexylmethyl-3, 4-epoxycyclohexanecarboxylate(CE) as monomer, triphenylsulfonium hexafluorophosphate salt (PI-432) as photoinitiator and titanium isopropoxide (TIP) as inorganic precursor. The morphology of the composite adhesives was characterized by atom force microscopy (AFM). The effect of TIP content on refractive index and transmittance of adhesives were studied. The results show that TiO 2 nanostructures, the average diameter of which is 20 nm or so, can be uniformly dispersed in polymers of composite adhesives. The refractive index of adhesives can be adjusted from 1.501 9 to 1.544 9 with the change of TIP content. The transmittance of adhesives has a slight reduce with the increase of TIP content. When TIP content is up to 40%, the transmittance of composite adhesives remains around 90% or so. (authors)

  4. Synthesis of LTA zeolite for bacterial adhesion

    Energy Technology Data Exchange (ETDEWEB)

    Belaabed, R.; Eabed, S.; Addaou, A.; Laajab, A.; Rodriguez, M.A.; Lahsini, A.

    2016-07-01

    High affinity and adhesion capacity for Gram-positive bacteria on minerals has been widely studied. In this work the adhesion of bacteria on synthesized zeolite has been studied. The Zeolite Linde Type A (LTA) has been synthesized using hydrothermal route using processing parameters to obtain low cost materials. For adhesion studies Staphylococcus aureus and Bacillus subtilis were used as Gram-positive bacteria, Escherichia coli and Pseudomonas aeruginosa are used as Gram-negative bacteria. X-ray diffraction, environmental scanning electron microscope and attenuated total reflection-Fourier transform infrared spectroscopy were used to characterize the synthesized zeolite. To evaluate the bacterial adhesion to zeolite LTA the hydrophobicity and surface properties are examined using contact angle measurement. (Author)

  5. Dissecting signaling and functions of adhesion G protein-coupled receptors

    DEFF Research Database (Denmark)

    Araç, Demet; Aust, Gabriela; Calebiro, Davide

    2012-01-01

    G protein-coupled receptors (GPCRs) comprise an expanded superfamily of receptors in the human genome. Adhesion class G protein-coupled receptors (adhesion-GPCRs) form the second largest class of GPCRs. Despite the abundance, size, molecular structure, and functions in facilitating cell and matrix...... contacts in a variety of organ systems, adhesion-GPCRs are by far the most poorly understood GPCR class. Adhesion-GPCRs possess a unique molecular structure, with extended N-termini containing various adhesion domains. In addition, many adhesion-GPCRs are autoproteolytically cleaved into an N......-terminal fragment (NTF, NT, α-subunit) and C-terminal fragment (CTF, CT, β-subunit) at a conserved GPCR autoproteolysis-inducing (GAIN) domain that contains a GPCR proteolysis site (GPS). These two features distinguish adhesion-GPCRs from other GPCR classes. Though active research on adhesion-GPCRs in diverse areas...

  6. Study on microstructure and properties of Mg-alloy surface alloying layer fabricated by EPC

    Directory of Open Access Journals (Sweden)

    Chen Dongfeng

    2010-02-01

    Full Text Available AZ91D surface alloying was investigated through evaporative pattern casting (EPC technology. Aluminum powder (0.074 to 0.104 mm was used as the alloying element in the experiment. An alloying coating with excellent properties was fabricated, which mainly consisted of adhesive, co-solvent, suspending agent and other ingredients according to desired proportion. Mg-alloy melt was poured under certain temperature and the degree of negative pressure. The microstructure of the surface layer was examined by means of scanning electron microscopy. It has been found that a large volume fraction of network new phases were formed on the Mg-alloy surface, the thickness of the alloying surface layer increased with the alloying coating increasing from 0.3 mm to 0.5 mm, and the microstructure became compact. Energy dispersive X-ray (EDX analysis was used to determine the chemical composition of the new phases. It showed that the new phases mainly consist of β-Mg17Al12, in addition to a small quantity of inter-metallic compounds and oxides. A micro-hardness test and a corrosion experiment to simulate the effect of sea water were performed. The result indicated that the highest micro-hardness of the surface reaches three times that of the matrix. The corrosion rate of alloying samples declines to about a fifth of that of the as-cast AZ91D specimen.

  7. Preparation and testing of plant seed meal-based wood adhesives.

    Science.gov (United States)

    He, Zhongqi; Chapital, Dorselyn C

    2015-03-05

    Recently, the interest in plant seed meal-based products as wood adhesives has steadily increased, as these plant raw materials are considered renewable and environment-friendly. These natural products may serve as alternatives to petroleum-based adhesives to ease environmental and sustainability concerns. This work demonstrates the preparation and testing of the plant seed-based wood adhesives using cottonseed and soy meal as raw materials. In addition to untreated meals, water washed meals and protein isolates are prepared and tested. Adhesive slurries are prepared by mixing a freeze-dried meal product with deionized water (3:25 w/w) for 2 hr. Each adhesive preparation is applied to one end of 2 wood veneer strips using a brush. The tacky adhesive coated areas of the wood veneer strips are lapped and glued by hot-pressing. Adhesive strength is reported as the shear strength of the bonded wood specimen at break. Water resistance of the adhesives is measured by the change in shear strength of the bonded wood specimens at break after water soaking. This protocol allows one to assess plant seed-based agricultural products as suitable candidates for substitution of synthetic-based wood adhesives. Adjustments to the adhesive formulation with or without additives and bonding conditions could optimize their adhesive properties for various practical applications.

  8. Microstructure and properties of TiAlSiN coatings prepared by hybrid PVD technology

    International Nuclear Information System (INIS)

    Yu Donghai; Wang Chengyong; Cheng Xiaoling; Zhang Fenglin

    2009-01-01

    TiAlSiN coatings with different Si content were prepared by hollow cathode discharge (HCD) and mid-frequency magnetron sputtering (MFMS) hybrid coating deposition technology. The chemical composition, microstructure, mechanical properties of these coatings were systematically investigated by means of energy dispersive spectrometry (EDS), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), nanoindentation measurement, scratch and high speed milling hardened steel tests. The coatings prepared by this method showed the structure of crystalline phase was corresponding to that of TiAlN, however, different preferred orientation with addition of Si. Proper content of Si into TiAlN led to increase of microhardness and adhesion. TiAlSiN coated end mill with Si content of 4.78 at.% had the least flank wear, which was improved about 20% milling distance than TiAlN coated end mill.

  9. Microstructure and properties of TiAlSiN coatings prepared by hybrid PVD technology

    Energy Technology Data Exchange (ETDEWEB)

    Yu Donghai [Faculty of Electromechanical Engineering, Guangdong University of Technology, Guangzhou 510006 (China); Wang Chengyong, E-mail: cywang@gdut.edu.c [Faculty of Electromechanical Engineering, Guangdong University of Technology, Guangzhou 510006 (China); Cheng Xiaoling; Zhang Fenglin [Faculty of Electromechanical Engineering, Guangdong University of Technology, Guangzhou 510006 (China)

    2009-07-01

    TiAlSiN coatings with different Si content were prepared by hollow cathode discharge (HCD) and mid-frequency magnetron sputtering (MFMS) hybrid coating deposition technology. The chemical composition, microstructure, mechanical properties of these coatings were systematically investigated by means of energy dispersive spectrometry (EDS), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), nanoindentation measurement, scratch and high speed milling hardened steel tests. The coatings prepared by this method showed the structure of crystalline phase was corresponding to that of TiAlN, however, different preferred orientation with addition of Si. Proper content of Si into TiAlN led to increase of microhardness and adhesion. TiAlSiN coated end mill with Si content of 4.78 at.% had the least flank wear, which was improved about 20% milling distance than TiAlN coated end mill.

  10. Adhesives technology for electronic applications materials, processing, reliability

    CERN Document Server

    Licari, James J

    2011-01-01

    Adhesives are widely used in the manufacture and assembly of electronic circuits and products. Generally, electronics design engineers and manufacturing engineers are not well versed in adhesives, while adhesion chemists have a limited knowledge of electronics. This book bridges these knowledge gaps and is useful to both groups. The book includes chapters covering types of adhesive, the chemistry on which they are based, and their properties, applications, processes, specifications, and reliability. Coverage of toxicity, environmental impacts and the regulatory framework make this book par

  11. Adhesion studies by instrumental indentation testing

    NARCIS (Netherlands)

    Hangen, U.D.; Downs, S.; Kranenburg, J.M.; Hoogenboom, R.; Schubert, U.S.

    2006-01-01

    The miniaturization of devices and the advances in nanotechnol.-enabled products has led to the requirement of an increased understanding of the various interactions present in nanoscale contacts - including adhesion and surface tension. It is well known that adhesion plays an important role in the

  12. Low-Cost Chemical-Responsive Adhesive Sensing Chips.

    Science.gov (United States)

    Tan, Weirui; Zhang, Liyuan; Shen, Wei

    2017-12-06

    Chemical-responsive adhesive sensing chip is a new low-cost analytical platform that uses adhesive tape loaded with indicator reagents to detect or quantify the target analytes by directly sticking the tape to the samples of interest. The chemical-responsive adhesive sensing chips can be used with paper to analyze aqueous samples; they can also be used to detect and quantify solid, particulate, and powder analytes. The colorimetric indicators become immediately visible as the contact between the functionalized adhesives and target samples is made. The chemical-responsive adhesive sensing chip expands the capability of paper-based analytical devices to analyze solid, particulate, or powder materials via one-step operation. It is also a simpler alternative way, to the covalent chemical modification of paper, to eliminate indicator leaching from the dipstick-style paper sensors. Chemical-responsive adhesive chips can display analytical results in the form of colorimetric dot patterns, symbols, and texts, enabling clear understanding of assay results by even nonprofessional users. In this work, we demonstrate the analyses of heavy metal salts in silica powder matrix, heavy metal ions in water, and bovine serum albumin in an aqueous solution. The detection is one-step, specific, sensitive, and easy-to-operate.

  13. Use of Adhesion Promoters in Asphalt Mixtures

    Directory of Open Access Journals (Sweden)

    Cihlářová Denisa

    2018-03-01

    Full Text Available The purpose of asphalt binder as a significant binder in road constructions is to permanently bind aggregates of different compositions and grain sizes. The asphalt binder itself does not have suitable adhesiveness, so after a period of time, bare grains can appear. This results in a gradual separation of the grains from an asphalt layer and the presence of potholes in a pavement. Adhesion promoters or adhesive agents are important and proven promoters in practice. They are substances mainly based on the fatty acids of polyamides which should increase the reliability of the asphalt’s binder adhesion to the aggregates, thus increasing the lifetime period of the asphalt mixture as well as its resistance to mechanical strain. The amount of a promoter or agent added to the asphalt mixture is negligible and constitutes about 0.3% of the asphalt’s binder weight. Nevertheless, even this quantity significantly increases the adhesive qualities of an asphalt binder. The article was created in cooperatation with the Slovak University of Technology, in Bratislava, Slovakia, and focuses on proving the new AD2 adhesive additive and comparing it with the Addibit and Wetfix BE promoters used on aggregates from the Skuteč - Litická and Bystřec quarries.

  14. Adhesion Strength of Biomass Ash Deposits

    DEFF Research Database (Denmark)

    Laxminarayan, Yashasvi; Jensen, Peter Arendt; Wu, Hao

    2016-01-01

    . Therefore, timely removal of ash deposits is essential for optimal boiler operation. In order to improve the qualitative and quantitative understanding of deposit shedding in boilers, this study investigates the shear adhesion strength of biomass ash deposits on superheater tubes. Artificial biomass ash...... deposits were prepared on superheater tubes and sintered in an oven at temperatures up to 1000 °C. Subsequently, the deposits were sheared off by an electrically controlled arm, and the corresponding adhesion strength was measured. The results reveal the effect of temperature, ash/deposit composition......, sintering duration, and steel type on the adhesion strength....

  15. Thermal and microstructural modelling in weld heat-affected zones: microstructural development

    International Nuclear Information System (INIS)

    Ribera, J.M.; Prado, J.M.

    1996-01-01

    After having analysed in Part 2 of this work the thermal effects caused by a welding process, a metallurgical model which uses those results is proposed to predict the hardness and the microstructure resulting in weld heat affected zones. This model simulates the decomposition of austenite to its various products: martensite, bainite, pearlite and ferrite. Thus, it allows one to optimize welding process parameters to achieve the best microstructure possible. (Author) 5 refs

  16. Evaluation of the efficiency of denture cleaners for removing denture adhesives.

    Science.gov (United States)

    Harada-Hada, Kae; Hong, Guang; Abekura, Hitoshi; Murata, Hiroshi

    2016-12-01

    We developed a new scoring index for assessing the removability of denture adhesives and evaluated the removal efficiency of denture cleaners. Although our understanding of the importance of denture care is increasing, little is known about the effectiveness and efficiency of denture cleaners on denture adhesives. Therefore, guidelines for proper cleaning are necessary. We used five denture cleaner solutions on two cream adhesives, one powder adhesive and one cushion adhesive. After immersion in the denture cleaners for a designated time, we evaluated the area of the sample plate still covered by denture adhesive. Cream adhesives were removed more completely after immersion in majority of the denture cleaners than in water. Powder adhesive was removed more quickly than cream adhesives. Cushion adhesive was not removed by immersion in either the denture cleaners or water control. Some denture cleaners could liquefy cream adhesives more than water, but these differences were not observed in case of powder and cushion adhesives. © 2015 John Wiley & Sons A/S and The Gerodontology Association. Published by John Wiley & Sons Ltd.

  17. Natural and bio-inspired underwater adhesives: Current progress and new perspectives

    Science.gov (United States)

    Cui, Mengkui; Ren, Susu; Wei, Shicao; Sun, Chengjun; Zhong, Chao

    2017-11-01

    Many marine organisms harness diverse protein molecules as underwater adhesives to achieve strong and robust interfacial adhesion under dynamic and turbulent environments. Natural underwater adhesion phenomena thus provide inspiration for engineering adhesive materials that can perform in water or high-moisture settings for biomedical and industrial applications. Here we review examples of biological adhesives to show the molecular features of natural adhesives and discuss how such knowledge serves as a heuristic guideline for the rational design of biologically inspired underwater adhesives. In view of future bio-inspired research, we propose several potential opportunities, either in improving upon current L-3, 4-dihydroxyphenylalanine-based and coacervates-enabled adhesives with new features or engineering conceptually new types of adhesives that recapitulate important characteristics of biological adhesives. We underline the importance of viewing natural adhesives as dynamic materials, which owe their outstanding performance to the cellular coordination of protein expression, delivery, deposition, assembly, and curing of corresponding components with spatiotemporal control. We envision that the emerging synthetic biology techniques will provide great opportunities for advancing both fundamental and application aspects of underwater adhesives.

  18. Natural and bio-inspired underwater adhesives: Current progress and new perspectives

    Directory of Open Access Journals (Sweden)

    Mengkui Cui

    2017-11-01

    Full Text Available Many marine organisms harness diverse protein molecules as underwater adhesives to achieve strong and robust interfacial adhesion under dynamic and turbulent environments. Natural underwater adhesion phenomena thus provide inspiration for engineering adhesive materials that can perform in water or high-moisture settings for biomedical and industrial applications. Here we review examples of biological adhesives to show the molecular features of natural adhesives and discuss how such knowledge serves as a heuristic guideline for the rational design of biologically inspired underwater adhesives. In view of future bio-inspired research, we propose several potential opportunities, either in improving upon current L-3, 4-dihydroxyphenylalanine-based and coacervates-enabled adhesives with new features or engineering conceptually new types of adhesives that recapitulate important characteristics of biological adhesives. We underline the importance of viewing natural adhesives as dynamic materials, which owe their outstanding performance to the cellular coordination of protein expression, delivery, deposition, assembly, and curing of corresponding components with spatiotemporal control. We envision that the emerging synthetic biology techniques will provide great opportunities for advancing both fundamental and application aspects of underwater adhesives.

  19. Impact of x-Linkable Polymer Blends on Phase Morphology and Adhesion

    Science.gov (United States)

    Liu, Chun; Wan, Grace; Keene, Ellen; Harris, Joseph; Zhang, Sipei; Anderson, Stephanie; Li Pi Shan, Colin

    Adhesion to dissimilar substrate is highly important to multiple industrial applications such as automotive adhesives, food packaging, transportation etc. Adhesive design has to include components that are affinity to both substrates, e.g. high surface energy polar and low surface non-polar substrates. Typically, these adhesive components are thermodynamically incompatible with each other, leading to macrophase separation and thus adhesive failure. By using functional adhesive components plus some additives, the adhesive can be in-situ cross-linked to prevent the macrophase separation with controlled phase morphology. Herein, we present the study on a cross-linkable adhesive formulation consisting of acrylic emulsion and polyolefin aqueous dispersion with additives for enhancing cross-linking and controlled phase morphologies. Contact angle measurement and ATR-IR spectroscopy are used to characterize the properties of adhesive surface. DMA is used to study the mechanical property of adhesive before and after cross-linking. The detailed phase morphologies are revealed by AFM, SEM and TEM. The resulting adhesive morphologies are correlated with the adhesive performance to establish structure-property relationship.

  20. Syndecan-4 and integrins: combinatorial signaling in cell adhesion

    DEFF Research Database (Denmark)

    Couchman, J R; Woods, A

    1999-01-01

    It is now becoming clear that additional transmembrane components can modify integrin-mediated adhesion. Syndecan-4 is a transmembrane heparan sulfate proteoglycan whose external glycosaminoglycan chains can bind extracellular matrix ligands and whose core protein cytoplasmic domain can signal...... during adhesion. Two papers in this issue of JCS demonstrate, through transfection studies, that syndecan-4 plays roles in the formation of focal adhesions and stress fibers. Overexpression of syndecan-4 increases focal adhesion formation, whereas a partially truncated core protein that lacks the binding...... site for protein kinase C(&agr;) and phosphatidylinositol 4, 5-bisphosphate acts as a dominant negative inhibitor of focal adhesion formation. Focal adhesion induction does not require interaction between heparan sulfate glycosaminoglycan and ligand but can occur when non-glycanated core protein...

  1. Factors influencing bacterial adhesion to contact lenses

    OpenAIRE

    Dutta, Debarun; Cole, Nerida; Willcox, Mark

    2012-01-01

    The process of any contact lens related keratitis generally starts with the adhesion of opportunistic pathogens to contact lens surface. This article focuses on identifying the factors which have been reported to affect bacterial adhesion to contact lenses. Adhesion to lenses differs between various genera/species/strains of bacteria. Pseudomonas aeruginosa, which is the predominant causative organism, adheres in the highest numbers to both hydrogel and silicone hydrogel lenses in vitro. The ...

  2. Functionality Effect of Pressure Sensitive Adhesives on In Vitro Drug Release Behavior of Fentanyl Drug in an Adhesive Patch

    Directory of Open Access Journals (Sweden)

    S.M. Taghizadeh

    2009-12-01

    Full Text Available Some formulations of drug in adhesive transdermal drug delivery systems (TDDSs( with different functional and non-functional acrylic pressure sensitive adhesives PSAs( were prepared. For this purpose fentanyl was used as a drug component. The effects of PSAs type on skin permeation and in vitro drug release from devices were evaluated using hydrodynamically well-characterized Chien permeation system fitted with excised rat abdominal skin. The adhesion properties of devices (peel strength and tack values( were obtained. It was found that TDDS with –COOH functional PSA had the lowest steady state flux. Drug release was followed by Higuchi's kinetic model. Adhesion properties of the samples were improved by addition of functional PSA in the formulations.

  3. Semiconductors and semimetals epitaxial microstructures

    CERN Document Server

    Willardson, Robert K; Beer, Albert C; Gossard, Arthur C

    1994-01-01

    Newly developed semiconductor microstructures can now guide light and electrons resulting in important consequences for state-of-the-art electronic and photonic devices. This volume introduces a new generation of epitaxial microstructures. Special emphasis has been given to atomic control during growth and the interrelationship between the atomic arrangements and the properties of the structures.Key Features* Atomic-level control of semiconductor microstructures* Molecular beam epitaxy, metal-organic chemical vapor deposition* Quantum wells and quantum wires* Lasers, photon(IR)detectors, heterostructure transistors

  4. Experimental microstructures MOX fuels elaboration

    International Nuclear Information System (INIS)

    Gotta, M.J.; Dubois, S.; Lechelle, J.; Sornay, P.

    2000-01-01

    In order to propose a new MOX fuel, owning higher combustion rate, studies are realized at the CEA in collaboration with Cogema, EDF and Framatome. New microstructures of MOX are looked for around two approaches: the grains size and the plutonium distribution. These approaches are presented and discussed in this paper. The first one develops big grains microstructures obtained, either with anionic (sulfur), or cationic (Cr 2 O 3 ) additives. The second one concerns the CER-CER type composite microstructures. (A.L.B.)

  5. Adhesive performance of precoated brackets after expiration.

    Science.gov (United States)

    Cloud, Cayce C; Trojan, Terry M; Suliman, Sam N; Tantbirojn, Daranee; Versluis, Antheunis

    2016-03-01

    To evaluate adhesive performance in terms of debonding forces of precoated metal and ceramic brackets 4 years after expiration. Buccal and lingual surfaces of embedded extracted maxillary premolars were etched with 34% Tooth Conditioner Gel (Dentsply Caulk, Milford, Del), rinsed, and dried. Transbond MIP (3M Unitek, Monrovia, Calif) was applied prior to placing adhesive precoated brackets (APC II Victory stainless steel and APC Plus Clarity ceramic brackets, 3M Unitek). The preexpiration brackets had 29-35 months before, and the postexpiration brackets were 45-52 months past, their expiration dates. Sample size was 17-21 per group. Debonding forces were determined by subjecting the bonded brackets to a shear force in a universal testing machine. Debonding forces were compared using two-way ANOVA. Debonded surfaces were examined under a stereomicroscope to determine failure modes, which were compared using the chi-square test. No statistically significant difference was found in debonding forces (P  =  .8581) or failure modes (P  =  .4538) between expired and unexpired brackets. Metal brackets required statistically significantly higher debonding forces than did ceramic brackets (P  =  .0001). For both expired and unexpired brackets, failure modes were mostly cohesive in the adhesive layer for ceramic brackets, and mixed between adhesive and cohesive failure in the adhesive layer for metal brackets. Adhesive precoated brackets did not have any reduction in enamel-adhesion properties up to 4 years after their expiration date. Extended shelf life testing for precoated dental brackets may be worth considering.

  6. Efficacy and safety of the C-Qur™ Film Adhesion Barrier for the prevention of surgical adhesions (CLIPEUS Trial): study protocol for a randomized controlled trial.

    Science.gov (United States)

    Stommel, Martijn W J; Strik, Chema; ten Broek, Richard P G; van Goor, Harry

    2014-09-26

    Adhesions develop in over 90% of patients after intra-abdominal surgery. Adhesion barriers are rarely used despite the high morbidity caused by intra-abdominal adhesions. Only one of the currently available adhesion barriers has demonstrated consistent evidence for reducing adhesions in visceral surgery. This agent has limitations through poor handling characteristics because it is sticky on both sides. C-Qur™ Film is a novel thin film adhesion barrier and it is sticky on only one side, resulting in better handling characteristics. The objective of this study is to assess efficacy and safety of C-Qur™ Film to decrease the incidence of adhesions after colorectal surgery. This is a prospective, investigator initiated, randomized, double-blinded, multicenter trial. Eligible patients undergoing colorectal resection requiring temporary loop ileostomy or loop/split colostomy by laparotomy or hand assisted laparoscopy will be included in the trial. Before closure, patients are randomized 1:1 to either the treatment arm (C-Qur™ Film) or control arm (no adhesion barrier). Patients will return 8 to 16 weeks post-colorectal resection for take down of their ostomy. During ostomy takedown, adhesions will be evaluated for incidence, extent, and severity. The primary outcome evaluation will be assessment of adhesions to the incision site. It is hypothesized that the use of C-Qur™ Film underneath the primary incision reduces the incidence of adhesion at the incision by 30%. To demonstrate 30% reduction in the incidence of adhesions, a sample size of 84 patients (32 + 10 per group (25% drop out)) is required (two-sided test, α = 0.05, 80% power). Results of this study add to the evidence on the use of anti-adhesive barriers in open and laparoscopic 'hand-assisted' colorectal surgery. We chose incidence of adhesions to the incision site as primary outcome measure since clinical outcomes such as small bowel obstruction, secondary infertility and adhesiolysis related

  7. Isolation and biochemical characterization of underwater adhesives from diatoms.

    Science.gov (United States)

    Poulsen, Nicole; Kröger, Nils; Harrington, Matthew J; Brunner, Eike; Paasch, Silvia; Buhmann, Matthias T

    2014-01-01

    Many aquatic organisms are able to colonize surfaces through the secretion of underwater adhesives. Diatoms are unicellular algae that have the capability to colonize any natural and man-made submerged surfaces. There is great technological interest in both mimicking and preventing diatom adhesion, yet the biomolecules responsible have so far remained unidentified. A new method for the isolation of diatom adhesive material is described and its amino acid and carbohydrate composition determined. The adhesive materials from two model diatoms show differences in their amino acid and carbohydrate compositions, but also share characteristic features including a high content of uronic acids, the predominance of hydrophilic amino acid residues, and the presence of 3,4-dihydroxyproline, an extremely rare amino acid. Proteins containing dihydroxyphenylalanine, which mediate underwater adhesion of mussels, are absent. The data on the composition of diatom adhesives are consistent with an adhesion mechanism based on complex coacervation of polyelectrolyte-like biomolecules.

  8. Effect of the adhesive antibiotic TA on adhesion and initial growth of E-coli on silicone rubber

    NARCIS (Netherlands)

    Simhi, E; van der Mei, HC; Ron, EZ; Rosenberg, E; Busscher, HJ

    2000-01-01

    Catheter-associated urinary tract infection is the most common nosocomial infection, and contributes to patient morbidity and mortality. We investigated the effect that the TA adhesive antibiotic had on adhesion and initial growth in urine of Escherichia coli on silicone rubber. The TA antibiotic

  9. Inhomogeneous microstructural growth by irradiation

    DEFF Research Database (Denmark)

    Krishan, K.; Singh, Bachu Narain; Leffers, Torben

    1985-01-01

    In the present paper we discuss the development of heterogeneous microstructure for uniform irradiation conditions. It is shown that microstructural inhomogeneities on a scale of 0.1 μm can develop purely from kinematic considerations because of the basic structure of the rate equations used...... to describe such evolution. Two aspects of the growth of such inhomogeneities are discussed. Firstly, it is shown that a local variation in the sink densities of the various microstructural defects will tend to enhance the inhomogeneity rather than remove it. Secondly, such inhomogeneities will lead to point...... defect fluxes that result in a spatial growth of the inhomogeneous region, which will be stopped only when the microstructural density around this region becomes large. The results have important implications in the formation of denuded zones and void formation in metals....

  10. Geckos as Springs: Mechanics Explain Across-Species Scaling of Adhesion.

    Directory of Open Access Journals (Sweden)

    Casey A Gilman

    Full Text Available One of the central controversies regarding the evolution of adhesion concerns how adhesive force scales as animals change in size, either among or within species. A widely held view is that as animals become larger, the primary mechanism that enables them to climb is increasing pad area. However, prior studies show that much of the variation in maximum adhesive force remains unexplained, even when area is accounted for. We tested the hypothesis that maximum adhesive force among pad-bearing gecko species is not solely dictated by toepad area, but also depends on the ratio of toepad area to gecko adhesive system compliance in the loading direction, where compliance (C is the change in extension (Δ relative to a change in force (F while loading a gecko's adhesive system (C = dΔ/dF. Geckos are well-known for their ability to climb on a range of vertical and overhanging surfaces, and range in mass from several grams to over 300 grams, yet little is understood of the factors that enable adhesion to scale with body size. We examined the maximum adhesive force of six gecko species that vary in body size (~2-100 g. We also examined changes between juveniles and adults within a single species (Phelsuma grandis. We found that maximum adhesive force and toepad area increased with increasing gecko size, and that as gecko species become larger, their adhesive systems become significantly less compliant. Additionally, our hypothesis was supported, as the best predictor of maximum adhesive force was not toepad area or compliance alone, but the ratio of toepad area to compliance. We verified this result using a synthetic "model gecko" system comprised of synthetic adhesive pads attached to a glass substrate and a synthetic tendon (mechanical spring of finite stiffness. Our data indicate that increases in toepad area as geckos become larger cannot fully account for increased adhesive abilities, and decreased compliance must be included to explain the scaling of

  11. Geckos as Springs: Mechanics Explain Across-Species Scaling of Adhesion.

    Science.gov (United States)

    Gilman, Casey A; Imburgia, Michael J; Bartlett, Michael D; King, Daniel R; Crosby, Alfred J; Irschick, Duncan J

    2015-01-01

    One of the central controversies regarding the evolution of adhesion concerns how adhesive force scales as animals change in size, either among or within species. A widely held view is that as animals become larger, the primary mechanism that enables them to climb is increasing pad area. However, prior studies show that much of the variation in maximum adhesive force remains unexplained, even when area is accounted for. We tested the hypothesis that maximum adhesive force among pad-bearing gecko species is not solely dictated by toepad area, but also depends on the ratio of toepad area to gecko adhesive system compliance in the loading direction, where compliance (C) is the change in extension (Δ) relative to a change in force (F) while loading a gecko's adhesive system (C = dΔ/dF). Geckos are well-known for their ability to climb on a range of vertical and overhanging surfaces, and range in mass from several grams to over 300 grams, yet little is understood of the factors that enable adhesion to scale with body size. We examined the maximum adhesive force of six gecko species that vary in body size (~2-100 g). We also examined changes between juveniles and adults within a single species (Phelsuma grandis). We found that maximum adhesive force and toepad area increased with increasing gecko size, and that as gecko species become larger, their adhesive systems become significantly less compliant. Additionally, our hypothesis was supported, as the best predictor of maximum adhesive force was not toepad area or compliance alone, but the ratio of toepad area to compliance. We verified this result using a synthetic "model gecko" system comprised of synthetic adhesive pads attached to a glass substrate and a synthetic tendon (mechanical spring) of finite stiffness. Our data indicate that increases in toepad area as geckos become larger cannot fully account for increased adhesive abilities, and decreased compliance must be included to explain the scaling of adhesion in

  12. Experimental approach for adhesion strength of ATF cladding

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Donghyun; Kim, Hyochan; Yang, Yongsik; In, Wangkee [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Kim, Haksung [Hanyang University, Seoul (Korea, Republic of)

    2016-10-15

    The quality of a coating depends on the quality of its adhesion bond strength between the coating and the underlying substrate. Therefore, it is essential to evaluate the adhesion properties of the coating. There are many available test methods for the evaluation of coatings adhesion bond strength. Considering these restrictions of the coated cladding, the scratch test is useful for evaluation of adhesion properties compared to other methods. The purpose of the present study is to analyze the possibility of adhesion bond strength evaluation of ATF coated cladding by scratch testing on coatings cross sections. Experimental approach for adhesion strength of ATF coated cladding was investigated in the present study. The scratch testing was chosen as a testing method. Uncoated zircaloy-4 tube was employed as a reference and plasma spray and arc ion coating were selected as a ATF coated claddings for comparison. As a result, adhesion strengths of specimens affect the measured normal and tangential forces. For the future, the test will be conducted for CrAl coated cladding by laser coating, which is the most promising ATF cladding. Computational analysis with finite element method will also be conducted to analyze a stress distribution in the cladding tube.

  13. Acid-base interactions in microbial adhesion to hexadecane and chloroform

    NARCIS (Netherlands)

    Bos, R; Busscher, HJ; Geertsema-Doornbusch, GI; Van Der Mei, HC; Mittal, KL

    2000-01-01

    Acid-base interactions play an important role in adhesion, including microbial adhesion to surfaces. Qualitatively acid-base interactions in microbial adhesion can be demonstrated by comparing adhesion to hexadecane (a negatively charged interface in aqueous solutions, unable to exert acid-base

  14. Relationships between acoustic emissions and microstructures

    International Nuclear Information System (INIS)

    Rao, G.V.; Gopal, R.

    1979-01-01

    Results of a systematic study of 'microstructure-deformation-acoustic emission' relationships on two widely used pressure retaining component materials, namely A533-B nuclear pressure vessel steel and a 7075 aluminum alloy, are presented. The study consists of conducting acoustic monitored tensile tests on a variety of quenched and aged microstructures in the two alloy systems and extensive microstructural characterization of test specimens by light optic and electron microscopy techniques. The results suggest a consistent relationship between acoustic emissions and microdeformation mechanisms. The role of specific microstructural constituents in generating acoustic emissions in the two alloys is discussed. (author)

  15. Postoperative adhesion prevention in gynecologic surgery with hyaluronic acid.

    Science.gov (United States)

    Carta, G; Cerrone, L; Iovenitti, P

    2004-01-01

    Despite improvements in surgical instrumentation and techniques, adhesions continue to form after most procedures. Peritoneal adhesions develop in 60-90% of women who undergo major gynecological operations. This adhesion formation causes significant postoperative morbidity such as bowel obstruction (65%), infertility (15-20%), and chronic pelvic pain (40%). To demonstrate the efficacy of a hyaluronic acid product (Hyalobarrier Gel) for the prevention of adhesions in gynecological surgery. From October 2000 to July 2002, 18 women from 26 to 41 years old (mean age 33.66) underwent myomectomy via laparotomy as their first abdominal operation. Between August 2001 and May 2003, the patients underwent a second-look laparoscopy (7 women, 38.9%, 15 sites, 42.8%) or a second-look laparotomy (11 women, 61.1%, 20 sites, 57.1%) during which all the 35 sites corresponding to the previous myomectomies were analyzed. During the second-look procedure the presence, localization and severity of adhesions were evaluated using the Operative Laparoscopy Study Group Classification (OLSG) and American Fertility Society Classification (AFSC). All patients underwent a second-look laparoscopy/laparotomy and only five of 18 (27.7%) showed pelvic adhesions in seven sites (20%) of previous myomectomies. No adhesion was found on the previous sites of myomectomies of pedunculated leiomyomas so, excluding those, adhesions were found in seven of 29 sites of myomectomies (24.1%). The present study emphasizes the need for improved treatments to prevent adhesions, as there is no doubt that adhesions represent one of the major causes of female morbidity.

  16. Synthesis and characterization of novel halloysite-incorporated adhesive resins.

    Science.gov (United States)

    Feitosa, Sabrina A; Münchow, Eliseu A; Al-Zain, Afnan O; Kamocki, Krzysztof; Platt, Jeffrey A; Bottino, Marco C

    2015-11-01

    To investigate the effects of Halloysite® aluminosilicate clay nanotubes (HNTs) addition on selected physical, mechanical, and biological properties of experimental adhesive resins. Experimental dentin adhesive resins were prepared by mixing Bis-GMA, TEGDMA, HEMA (50/25/25wt.%), and photo-initiators. As-received HNTs were then incorporated into the resin mixture at distinct concentrations: 0 (HNT-free, control), 1, 2.5, 5, 7.5, 10, and 20wt.%. The degree of conversion (DC), radiopacity (RP), Knoop hardness (KHN), flexural strength (FS), and cytotoxicity analyses were carried out for each adhesive formulation. The adhesive resin of Adper Scotchbond Multi-Purpose (SBMP) was used as the commercially available reference for both the RP and cytotoxicity tests. Data were statistically analyzed using One-Way ANOVA and Tukey's test (p≤0.05). All adhesives exhibited similar DC (p=0.1931). The RP of adhesives was improved with the addition of up to 5wt.% of HNTs (p<0.001). Adhesives containing 5-10wt.% of HNTs led to greater KHN when compared to the control (p<0.001). The FS was reduced only when 20wt.% of HNTs was added (p≤0.001). None of the prepared adhesives was cytotoxic. The incorporation of up to 10wt.% of HNTs into the adhesive resins did not jeopardize the tested physical and biological properties. When using HNTs as carriers of drugs/bioactive compounds, the amount of the former added into adhesive resin materials should not exceed 10wt.%; otherwise, a significant reduction in physicomechanical properties may be expected. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Combined effects of PEG hydrogel elasticity and cell-adhesive coating on fibroblast adhesion and persistent migration.

    Science.gov (United States)

    Missirlis, Dimitris; Spatz, Joachim P

    2014-01-13

    The development and use of synthetic, cross-linked, macromolecular substrates with tunable elasticity has been instrumental in revealing the mechanisms by which cells sense and respond to their mechanical microenvironment. We here describe a hydrogel based on radical-free, cross-linked poly(ethylene glycol) to study the effects of both substrate elasticity and type of adhesive coating on fibroblast adhesion and migration. Hydrogel elasticity was controlled through the structure and concentration of branched precursors, which efficiently react via Michael-type addition to produce the polymer network. We found that cell spreading and focal adhesion characteristics are dependent on elasticity for all types of coatings (RGD peptide, fibronectin, vitronectin), albeit with significant differences in magnitude. Importantly, fibroblasts migrated slower but more persistently on stiffer hydrogels, with the effects being more pronounced on fibronectin-coated substrates. Therefore, our results validate the hydrogels presented in this study as suitable for future mechanosensing studies and indicate that cell adhesion, polarity, and associated migration persistence are tuned by substrate elasticity and biochemical properties.

  18. Functional Group Imaging by Adhesion AFM

    NARCIS (Netherlands)

    Berger, C.E.H.; Berger, C.E.H.; van der Werf, Kees; Kooyman, R.P.H.; de Grooth, B.G.; Greve, Jan

    1995-01-01

    Recently developed adhesion atomic force microscopy was used as a technique to map the spatial arrangement of chemical functional groups at a surface with a lateral resolution of 20 nm. The ratio of the adhesion forces for different functional groups can be compared with values determined from the

  19. In-vitro transdentinal diffusion of monomers from adhesives.

    Science.gov (United States)

    Putzeys, Eveline; Duca, Radu Corneliu; Coppens, Lieve; Vanoirbeek, Jeroen; Godderis, Lode; Van Meerbeek, Bart; Van Landuyt, Kirsten L

    2018-06-01

    Biocompatibility of adhesives is important since adhesives may be applied on dentin near the pulp. Accurate knowledge of the quantity of monomers reaching the pulp is important to determine potential side effects. The aim of this study was to assess the transdentinal diffusion of residual monomers from dental adhesive systems using an in-vitro pulp chamber model. Dentin disks with a thickness of 300 µm were produced from human third molars. These disks were fixed between two open-ended glass tubes, representing an in-vitro pulp chamber. The etch-and-rinse adhesive OptiBond FL and the self-etch adhesive Clearfil SE Bond were applied to the dentin side of the disks, while on in the pulpal side, the glass tube was filled with 600 µL water. The transdentinal diffusion of different monomers was quantified using ultra-performance liquid chromatography-tandem mass spectrometry. The monomers HEMA, CQ, BisGMA, GPDM, 10-MDP and UDMA eluted from the dental materials and were able to diffuse through the dentin disks to a certain extent. Compounds with a lower molecular weight (uncured group: HEMA 7850 nmol and CQ 78.2 nmol) were more likely to elute and diffuse compared to monomers with a higher molecular weight (uncured group: BisGMA 0.42 nmol). When the adhesives were left uncured, diffusion was up to 10 times higher compared to the cured conditions. This in-vitro research resulted in the quantification of various monomers able to diffuse through dentin and therefore contributes to a more detailed understanding about the potential exposure of the dental pulp to monomers from dental adhesives. Biocompatibility of adhesives is important since adhesives may be applied on dentin near the pulp, where tubular density and diameter are greatest. Copyright © 2018. Published by Elsevier Ltd.

  20. Arachnids secrete a fluid over their adhesive pads.

    Directory of Open Access Journals (Sweden)

    Anne M Peattie

    Full Text Available BACKGROUND: Many arachnids possess adhesive pads on their feet that help them climb smooth surfaces and capture prey. Spider and gecko adhesives have converged on a branched, hairy structure, which theoretically allows them to adhere solely by dry (solid-solid intermolecular interactions. Indeed, the consensus in the literature is that spiders and their smooth-padded relatives, the solifugids, adhere without the aid of a secretion. METHODOLOGY AND PRINCIPAL FINDINGS: We investigated the adhesive contact zone of living spiders, solifugids and mites using interference reflection microscopy, which allows the detection of thin liquid films. Like insects, all the arachnids we studied left behind hydrophobic fluid footprints on glass (mean refractive index: 1.48-1.50; contact angle: 3.7-11.2°. Fluid was not always secreted continuously, suggesting that pads can function in both wet and dry modes. We measured the attachment forces of single adhesive setae from tarantulas (Grammostola rosea by attaching them to a bending beam with a known spring constant and filming the resulting deflection. Individual spider setae showed a lower static friction at rest (26%±2.8 SE of the peak friction than single gecko setae (Thecadactylus rapicauda; 96%±1.7 SE. This may be explained by the fact that spider setae continued to release fluid after isolation from the animal, lubricating the contact zone. SIGNIFICANCE: This finding implies that tarsal secretions occur within all major groups of terrestrial arthropods with adhesive pads. The presence of liquid in an adhesive contact zone has important consequences for attachment performance, improving adhesion to rough surfaces and introducing rate-dependent effects. Our results leave geckos and anoles as the only known representatives of truly dry adhesive pads in nature. Engineers seeking biological inspiration for synthetic adhesives should consider whether model species with fluid secretions are appropriate to their

  1. Humidity dependence of adhesion for silane coated microcantilevers

    International Nuclear Information System (INIS)

    De Boer, Maarten P.; Mayer, Thomas M.; Carpick, Robert W.; Michalske, Terry A.; Srinivasan, U.; Maboudian, R.

    1999-01-01

    This study examines adhesion between silane-coated micromachined surfaces that are exposed to humid conditions. Our quantitative values for interfacial adhesion energies are determined from an in-situ optical measurement of deformations in partly-adhered cantilever beams. We coated micromachined cantilevers with either ODTS (C(sub 18)H(sub 37)SiCl(sub 3)) or FDTS (C(sub 8)F(sub 17)C(sub 2)H(sub 4)SiCl(sub 3)) with the objective of creating hydrophobic surfaces whose adhesion would be independent of humidity. In both cases, the adhesion energy is significantly lower than for uncoated, hydrophilic surfaces. For relative humidities (RH) less than 95% (ODTS) and 80% (FDTS) the adhesion energy was extremely low and constant. In fact, ODTS-coated beams exposed to saturated humidity conditions and long (48 hour) exposures showed only a factor of two increase in adhesion energy. Surprisingly, FDTS coated beams, which initially have a higher contact angle (115(degree)) with water than do ODTS coated beams (112(degree)), proved to be much more sensitive to humidity. The FDTS coated surfaces showed a factor of one hundred increase in adhesion energy after a seven hour exposure to 90% RH. Atomic force microscopy revealed agglomerated coating material after exposed to high RH, suggesting a redistribution of the monolayer film. This agglomeration was more prominent for FDTS than ODTS. These findings suggest a new mechanism for uptake of moisture under high humidity conditions. At high humidities, the silane coatings can reconfigure from a surface to a bulk phase leaving behind locally hydrophilic sites which increase the average measured adhesion energy. In order for the adhesion increase to be observed, a significant fraction of the monolayer must be converted from the surface to the bulk phase

  2. Mechanistic study of the rubber-brass adhesion interphase

    Science.gov (United States)

    Ashirgade, Akshay

    Brass-plated steel tire cords form an essential strengthening component of a radial automobile tire. Adhesion between rubber compound and brass-plated steel tire cord is crucial in governing the overall performance of tires. The rubber-brass interfacial adhesion is influenced by the chemical composition and thickness of the interfacial layer. It has been shown that the interfacial layer consists mainly of sulfides and oxides of copper and zinc. This thesis discusses the effect of changes in the chemical composition and the structure of the interfacial layers due to addition of adhesion promoter resins. Grazing incidence X-Ray Diffraction (GIXRD) experiments were run on sulfidized polished brass coupons previously bonded to six experimental rubber compounds. It was confirmed that heat and humidity conditions lead to physical and chemical changes of the rubber-steel tire cord interfacial layer, closely related to the degree of rubber-brass adhesion. Morphological transformation of the interfacial layer led to loss of adhesion after aging. The adhesion promoter resins inhibit unfavorable morphological changes in the interfacial layer thus stabilizing it during aging and prolonging failure. Tire cord adhesion tests illustrated that the one-component resins improved adhesion after aging using a rubber compound with lower cobalt loading. Based on the acquired diffraction profiles, these resins were also found to impede crystallization of the sulfide layer after aging leading to improved adhesion. Secondary Ion Mass Spectrometry (SIMS) depth profiles, SEM micrographs and AFM images strongly corroborated the findings from GIXRD. FTIR was utilized in a novel way to understand the degradation mechanism due to aging. A model for rubber and interfacial layer degradation is proposed to illustrate the effect of aging and the one-component resins. This interfacial analysis adds valuable new information to our understanding of the complex nature of the rubber-brass bonding

  3. Preparation and Properties of Cassava Starch-based Wood Adhesives

    Directory of Open Access Journals (Sweden)

    Qing Xu

    2016-06-01

    Full Text Available A biodegradable, environmentally friendly starch-based wood adhesive with cassava starch as a raw material and butyl acrylate (BA as a co-monomer was synthesized. Results revealed that this cassava starch-based wood adhesive (SWA was more stable than corn starch-based wood adhesive, and its bonding performance was close to that of commercial PVAc emulsion, even after 90 days of storage. Further analysis found that the improved stability of the adhesive could be attributed to its low minimum film forming temperature (MFFT and glass transition temperature (Tg of cassava starch. Moreover, the amount of total volatile organic compounds (TVOCs emitted by the cassava starch-based wood adhesive were much lower than the Chinese national standard control criteria. Therefore, cassava SWA might be a potential alternative to traditional petrochemical-based wood adhesives.

  4. Role of flexural stiffness of leukocyte microvilli in adhesion dynamics

    Science.gov (United States)

    Wu, Tai-Hsien; Qi, Dewei

    2018-03-01

    Previous work reported that microvillus deformation has an important influence on dynamics of cell adhesion. However, the existing studies were limited to the extensional deformation of microvilli and did not consider the effects of their bending deformation on cell adhesion. This Rapid Communication investigates the effects of flexural stiffness of microvilli on the rolling process related to adhesion of leukocytes by using a lattice-Boltzmann lattice-spring method (LLM) combined with adhesive dynamics (AD) simulations. The simulation results reveal that the flexural stiffness of microvilli and their bending deformation have a profound effect on rolling velocity and adhesive forces. As the flexural stiffness of the microvilli decreases, their bending angles increase, resulting in an increase in the number of receptor-ligand bonds and adhesive bonding force and a decrease in the rolling velocity of leukocytes. The effects of flexural stiffness on deformation and adhesion represent crucial factors involved in cell adhesion.

  5. Single-cell force spectroscopy of pili-mediated adhesion

    Science.gov (United States)

    Sullan, Ruby May A.; Beaussart, Audrey; Tripathi, Prachi; Derclaye, Sylvie; El-Kirat-Chatel, Sofiane; Li, James K.; Schneider, Yves-Jacques; Vanderleyden, Jos; Lebeer, Sarah; Dufrêne, Yves F.

    2013-12-01

    Although bacterial pili are known to mediate cell adhesion to a variety of substrates, the molecular interactions behind this process are poorly understood. We report the direct measurement of the forces guiding pili-mediated adhesion, focusing on the medically important probiotic bacterium Lactobacillus rhamnosus GG (LGG). Using non-invasive single-cell force spectroscopy (SCFS), we quantify the adhesion forces between individual bacteria and biotic (mucin, intestinal cells) or abiotic (hydrophobic monolayers) surfaces. On hydrophobic surfaces, bacterial pili strengthen adhesion through remarkable nanospring properties, which - presumably - enable the bacteria to resist high shear forces under physiological conditions. On mucin, nanosprings are more frequent and adhesion forces larger, reflecting the influence of specific pili-mucin bonds. Interestingly, these mechanical responses are no longer observed on human intestinal Caco-2 cells. Rather, force curves exhibit constant force plateaus with extended ruptures reflecting the extraction of membrane nanotethers. These single-cell analyses provide novel insights into the molecular mechanisms by which piliated bacteria colonize surfaces (nanosprings, nanotethers), and offer exciting avenues in nanomedicine for understanding and controlling the adhesion of microbial cells (probiotics, pathogens).

  6. THE EFFECT OF DEGREASING ON ADHESIVE JOINT STRENGTH

    Directory of Open Access Journals (Sweden)

    Anna Rudawska

    2017-03-01

    Full Text Available The paper investigates the effect of degreasing, a surface preparation methods in adhesive bonding, on adhesive joint strength. 5 types of degreasing agents were used in the study: acetone, extraction naphtha, Ultramyt, Wiko and Loctite 7061. The degreasing operation was performed by three methods: rubbing, spraying and immersion. Strength tests were performed on single-lap adhesive joints of hot-dip galvanized metal sheets made with Loctite 9466 adhesive according to the above variants of surface preparation. The experimental results demonstrate that adhesive joint strength is significantly affected by the applied degreasing agent. Moreover, the method of application of the degreasing agent is crucial, too. The results of strength testing reveal that the most effective degreasing method for hot-dip galvanized metal sheet adhesive joints is spraying using extraction naphtha. Thereby degreased samples have the highest immediate strength and shear strength. The use of extraction naph-tha is also effective in combination with degreasing by rubbing; however, it is not effective when used in combi-nation with immersion, as reflected in the lowest strength results.

  7. Carbon nanotube based gecko inspired self-cleaning adhesives

    Science.gov (United States)

    Sethi, Sunny; Ge, Liehui; Ajayan, Pulickel; Ali, Dhinojwala

    2008-03-01

    Wall climbing organisms like geckos have unique ability to attach to different surfaces without use of any viscoelastic material. The hairy structure found in gecko feet allows them to obtain intimate contact over a large area thus allowing then to adhere using van der Waals interactions. Not only high adhesion, the geometry of the hairs makes gecko feet self cleaning, thus allowing them to walk continuously without worrying about loosing adhesive strength. Such properties if mimicked synthetically could form basis of a new class of materials, which, unlike conventional adhesives would show two contradictory properties, self cleaning and high adhesion. Such materials would form essential component of applications like wall climbing robot. We tried to synthesize such material using micropatterened vertically aligned carbon nanotubes. When dealing with large areas, probability of defects in the structure increase, forming patterns instead of using uniform film of carbon nanotubes helps to inhibit crack propagation, thus gives much higher adhesive strength than a uniform film. When carbon nanotube patterns with optimized aspect ratio are used, both high adhesion and self cleaning properties are observed.

  8. Tuning cell adhesion by direct nanostructuring silicon into cell repulsive/adhesive patterns

    International Nuclear Information System (INIS)

    Premnath, Priyatha; Tavangar, Amirhossein; Tan, Bo; Venkatakrishnan, Krishnan

    2015-01-01

    Developing platforms that allow tuning cell functionality through incorporating physical, chemical, or mechanical cues onto the material surfaces is one of the key challenges in research in the field of biomaterials. In this respect, various approaches have been proposed and numerous structures have been developed on a variety of materials. Most of these approaches, however, demand a multistep process or post-chemical treatment. Therefore, a simple approach would be desirable to develop bio-functionalized platforms for effectively modulating cell adhesion and consequently programming cell functionality without requiring any chemical or biological surface treatment. This study introduces a versatile yet simple laser approach to structure silicon (Si) chips into cytophobic/cytophilic patterns in order to modulate cell adhesion and proliferation. These patterns are fabricated on platforms through direct laser processing of Si substrates, which renders a desired computer-generated configuration into patterns. We investigate the morphology, chemistry, and wettability of the platform surfaces. Subsequently, we study the functionality of the fabricated platforms on modulating cervical cancer cells (HeLa) behaviour. The results from in vitro studies suggest that the nanostructures efficiently repel HeLa cells and drive them to migrate onto untreated sites. The study of the morphology of the cells reveals that cells evade the cytophobic area by bending and changing direction. Additionally, cell patterning, cell directionality, cell channelling, and cell trapping are achieved by developing different platforms with specific patterns. The flexibility and controllability of this approach to effectively structure Si substrates to cell-repulsive and cell-adhesive patterns offer perceptible outlook for developing bio-functionalized platforms for a variety of biomedical devices. Moreover, this approach could pave the way for developing anti-cancer platforms that selectively repel

  9. Tuning cell adhesion by direct nanostructuring silicon into cell repulsive/adhesive patterns

    Energy Technology Data Exchange (ETDEWEB)

    Premnath, Priyatha, E-mail: priyatha.premnath@ryerson.ca [Micro/Nanofabrication Laboratory, Department of Mechanical and Industrial Engineering, Ryerson University, 350 Victoria Street, Toronto, ON, Canada M5B 2K3 (Canada); Tavangar, Amirhossein, E-mail: atavanga@ryerson.ca [Micro/Nanofabrication Laboratory, Department of Mechanical and Industrial Engineering, Ryerson University, 350 Victoria Street, Toronto, ON, Canada M5B 2K3 (Canada); Tan, Bo, E-mail: tanbo@ryerson.ca [Nanocharacterization Laboratory, Department of Aerospace Engineering, Ryerson University, 350 Victoria Street, Toronto, ON, Canada M5B 2K3 (Canada); Venkatakrishnan, Krishnan, E-mail: venkat@ryerson.ca [Micro/Nanofabrication Laboratory, Department of Mechanical and Industrial Engineering, Ryerson University, 350 Victoria Street, Toronto, ON, Canada M5B 2K3 (Canada)

    2015-09-10

    Developing platforms that allow tuning cell functionality through incorporating physical, chemical, or mechanical cues onto the material surfaces is one of the key challenges in research in the field of biomaterials. In this respect, various approaches have been proposed and numerous structures have been developed on a variety of materials. Most of these approaches, however, demand a multistep process or post-chemical treatment. Therefore, a simple approach would be desirable to develop bio-functionalized platforms for effectively modulating cell adhesion and consequently programming cell functionality without requiring any chemical or biological surface treatment. This study introduces a versatile yet simple laser approach to structure silicon (Si) chips into cytophobic/cytophilic patterns in order to modulate cell adhesion and proliferation. These patterns are fabricated on platforms through direct laser processing of Si substrates, which renders a desired computer-generated configuration into patterns. We investigate the morphology, chemistry, and wettability of the platform surfaces. Subsequently, we study the functionality of the fabricated platforms on modulating cervical cancer cells (HeLa) behaviour. The results from in vitro studies suggest that the nanostructures efficiently repel HeLa cells and drive them to migrate onto untreated sites. The study of the morphology of the cells reveals that cells evade the cytophobic area by bending and changing direction. Additionally, cell patterning, cell directionality, cell channelling, and cell trapping are achieved by developing different platforms with specific patterns. The flexibility and controllability of this approach to effectively structure Si substrates to cell-repulsive and cell-adhesive patterns offer perceptible outlook for developing bio-functionalized platforms for a variety of biomedical devices. Moreover, this approach could pave the way for developing anti-cancer platforms that selectively repel

  10. Fracture mechanics and microstructures

    International Nuclear Information System (INIS)

    Gee, M.G.; Morrell, R.

    1986-01-01

    The influence of microstructure on defects in ceramics, and the consequences of their presence for the application of fracture mechanics theories are reviewed. The complexities of microstructures, especially the multiphase nature, the crystallographic anisotropy and the resultant anisotropic physical properties, and the variation of microstructure and surface finish from point to point in real components, all lead to considerable uncertainties in the actual performance of any particular component. It is concluded that although the concepts of fracture mechanics have been and will continue to be most useful for the qualitative explanation of fracture phenomena, the usefulness as a predictive tool with respect to most existing types of material is limited by the interrelation between material microstructure and mechanical properties. At present, the only method of eliminating components with unsatisfactory mechanical properties is to proof-test them, despite the fact that proof-testing itself is limited in ability to cope with changes to the component in service. The aim of the manufacturer must be to improve quality and consistency within individual components, from component to component, and from batch to batch. The aim of the fracture specialist must be to study longer-term properties to improve the accuracy of behaviour predictions with a stronger data base. Materials development needs to concentrate on obtaining defect-free materials that can be translated into more-reliable products, using our present understanding of the influence of microstructure on strength and toughness

  11. Cleavage and Cell Adhesion Properties of Human Epithelial Cell Adhesion Molecule (HEPCAM)*

    Science.gov (United States)

    Tsaktanis, Thanos; Kremling, Heidi; Pavšič, Miha; von Stackelberg, Ricarda; Mack, Brigitte; Fukumori, Akio; Steiner, Harald; Vielmuth, Franziska; Spindler, Volker; Huang, Zhe; Jakubowski, Jasmine; Stoecklein, Nikolas H.; Luxenburger, Elke; Lauber, Kirsten; Lenarčič, Brigita; Gires, Olivier

    2015-01-01

    Human epithelial cell adhesion molecule (HEPCAM) is a tumor-associated antigen frequently expressed in carcinomas, which promotes proliferation after regulated intramembrane proteolysis. Here, we describe extracellular shedding of HEPCAM at two α-sites through a disintegrin and metalloprotease (ADAM) and at one β-site through BACE1. Transmembrane cleavage by γ-secretase occurs at three γ-sites to generate extracellular Aβ-like fragments and at two ϵ-sites to release human EPCAM intracellular domain HEPICD, which is efficiently degraded by the proteasome. Mapping of cleavage sites onto three-dimensional structures of HEPEX cis-dimer predicted conditional availability of α- and β-sites. Endocytosis of HEPCAM warrants acidification in cytoplasmic vesicles to dissociate protein cis-dimers required for cleavage by BACE1 at low pH values. Intramembrane cleavage sites are accessible and not part of the structurally important transmembrane helix dimer crossing region. Surprisingly, neither chemical inhibition of cleavage nor cellular knock-out of HEPCAM using CRISPR-Cas9 technology impacted the adhesion of carcinoma cell lines. Hence, a direct function of HEPCAM as an adhesion molecule in carcinoma cells is not supported and appears to be questionable. PMID:26292218

  12. Bioinspired design of a ridging shovel with anti-adhesive and drag reducing

    Directory of Open Access Journals (Sweden)

    Zhijun Zhang

    2015-03-01

    Full Text Available Learning from the microstructure of the convex (concave and ridging (triangle and arc-shaped shapes of fresh lotus leaves and shark skin, bionic ridging shovels was designed with the characteristics of adhesion and resistance reduction. Ten ridging shovel models were established, and the interaction process with the soil by ANSYS is discussed. Stress analysis results showed that the bionic ridging shovel was more obvious in visbreaking and in the resistance reduction effect. An indoor soil bin experiment with the bionic ridging shovel and the prototype ridging shovel was operated as follows: the ridging resistance of the three types of ridging shovel was tested under the condition of two soil moistures (18.61% and 20.9% and three different ridging speeds (0.68, 0.87, and 1.11 m/s. In this article, the structure, the mechanism, and their relationship to the functions are discussed. The results of this study will be useful in practical application in the field of agricultural machinery toward practical use and industrialization.

  13. Mutant matrix metalloproteinase-9 reduces postoperative peritoneal adhesions in rats.

    Science.gov (United States)

    Atta, Hussein; El-Rehany, Mahmoud; Roeb, Elke; Abdel-Ghany, Hend; Ramzy, Maggie; Gaber, Shereen

    2016-02-01

    Postoperative peritoneal adhesions continue to be a major source of morbidity and occasional mortality. Studies have shown that matrix metalloproteinase-9 (MMP-9) levels are decreased postoperatively which may limits matrix degradation and participate in the development of peritoneal adhesions. In this proof-of-principle study, we evaluated the effect of gene therapy with catalytically inactive mutant MMP-9 on postoperative peritoneal adhesions in rats. Adenovirus encoding mutant MMP-9 (Ad-mMMP-9) or saline was instilled in the peritoneal cavity after cecal and parietal peritoneal injury in rats. Expression of mutant MMP-9 transcript was verified by sequencing. Adenovirus E4 gene expression, adhesion scores, MMP-9, tissue plasminogen activator (tPA), plasminogen activator inhibitor-1 (PAI-1) and transforming growth factor-β1 (TGF-β1) expression were evaluated at sacrifice one week after treatment. Both mutant MMP-9 transcripts and adenovirus E4 gene were expressed in Ad-mMMP-9 treated adhesions. Adhesions severity decreased significantly (p = 0.036) in the Ad-mMMP-9-treated compared with saline-treated adhesions. Expression of MMP-9 mRNA and protein were elevated (p = 0.001 and p = 0.029, respectively) in the Ad-mMMP-9-treated adhesions compared with saline-treated adhesions. While tPA levels were increased (p = 0.02) in Ad-mMMP-9 treated adhesions compared with saline-treated adhesions, TGF-β1 and PAI-1 levels were decreased (p = 0.017 and p = 0.042, respectively). No difference in mortality were found between groups (p = 0.64). Mutant MMP-9 gene therapy effectively transduced peritoneal adhesions resulting in reduction of severity of primary peritoneal adhesions. Copyright © 2016 IJS Publishing Group Limited. Published by Elsevier Ltd. All rights reserved.

  14. Sub micrometric fibrillar structures of codoped poly aniline obtained by co-oxidation using the NaCl O/ammonium peroxydisulfate system: synthesis and characterization

    Energy Technology Data Exchange (ETDEWEB)

    Osorio F, J. E.; Gomez Y, C.; Hernandez P, M. A.; Corea T, M. L., E-mail: josorio@ipn.mx [IPN, Escuela Superior de Ingenieria Quimica e Industrias Extractivas, U. P. Adolfo Lopez Mateos, Av. Instituto Politecnico Nacional s/n, Col. San Pedro Zacatenco, 07738 Mexico D. F. (Mexico)

    2013-07-01

    A mixture of ammonium peroxydisulfate and sodium hypochlorite (NaCl O) (co-oxi dating system) were used to obtain poly aniline (PANi) doped with HCl and camphorsulfonic acid (CsA) (co-doping). The effect of HCl/CsA ratio added during polymerization structure, morphology and electrical conductivity of the conducting polymer was investigated. When NaCl O is used, the polymerization rate is substantially increased and the morphology changes from micrometric granular to nano metric fibrillar. CsA was used as complementary dopant but also to improve the solubility of PANi in common solvents. However, results suggest that quinone-like heterocycles containing carbonyl radicals as well as phenazine-type aromatic rings might be impeding an efficient doping in detriment of the conductivity. For the characterization X-Ray diffraction analysis, UV visible spectroscopy and scanning electron microscopy were used. (Author)

  15. Sub micrometric fibrillar structures of codoped poly aniline obtained by co-oxidation using the NaCl O/ammonium peroxydisulfate system: synthesis and characterization

    International Nuclear Information System (INIS)

    Osorio F, J. E.; Gomez Y, C.; Hernandez P, M. A.; Corea T, M. L.

    2013-01-01

    A mixture of ammonium peroxydisulfate and sodium hypochlorite (NaCl O) (co-oxi dating system) were used to obtain poly aniline (PANi) doped with HCl and camphorsulfonic acid (CsA) (co-doping). The effect of HCl/CsA ratio added during polymerization structure, morphology and electrical conductivity of the conducting polymer was investigated. When NaCl O is used, the polymerization rate is substantially increased and the morphology changes from micrometric granular to nano metric fibrillar. CsA was used as complementary dopant but also to improve the solubility of PANi in common solvents. However, results suggest that quinone-like heterocycles containing carbonyl radicals as well as phenazine-type aromatic rings might be impeding an efficient doping in detriment of the conductivity. For the characterization X-Ray diffraction analysis, UV visible spectroscopy and scanning electron microscopy were used. (Author)

  16. Microstructures and tribological properties of laser cladded Ti-based metallic glass composite coatings

    International Nuclear Information System (INIS)

    Lan, Xiaodong; Wu, Hong; Liu, Yong; Zhang, Weidong; Li, Ruidi; Chen, Shiqi; Zai, Xiongfei; Hu, Te

    2016-01-01

    Metallic glass composite coatings Ti 45 Cu 41 Ni 9 Zr 5 and Ti 45 Cu 41 Ni 6 Zr 5 Sn 3 (at.%) on a Ti-30Nb-5Ta-7Zr (wt.%) (TNTZ) alloy were prepared by laser cladding. The microstructures of the coatings were characterized by means of X-ray diffractometry (XRD), scanning electron microscopy (SEM) equipped with energy dispersive X-ray analyzer (EDXA), and transmission electron microscopy (TEM). Results indicated that the coatings have an amorphous structure embedded with a few nanocrystalline phases and dendrites. A partial substitution of Ni by Sn can improve the glass forming ability of Ti-base metallic glass system, and induce the formation of nano-sized Ni 2 SnTi phase during the cyclic laser heating. The tribological behavior of both the substrate and the coatings was investigated in detail. A significant improvement in both the hardness and the wear resistance of the coatings was achieved with the addition of Sn. The relationship between the wear resistance and the microstructures of the coatings was discussed. - Highlights: •Ti-based metallic glass composite coatings were prepared by laser cladding. •The wear resistance is greatly improved by laser cladding of composite coatings. •Substitution of Ni by Sn increases GFA and wear resistance of the coatings. •A good balance of crystalline/amorphous phases improves the wear resistance. •Adhesive wear serves as the dominant wear mechanism of the composite coatings.

  17. Role of surface layer collagen binding protein from indigenous Lactobacillus plantarum 91 in adhesion and its anti-adhesion potential against gut pathogen.

    Science.gov (United States)

    Yadav, Ashok Kumar; Tyagi, Ashish; Kaushik, Jai Kumar; Saklani, Asha Chandola; Grover, Sunita; Batish, Virender Kumar

    2013-12-14

    Human feacal isolates were ascertain as genus Lactobacillus using specific primer LbLMA1/R16-1 and further identified as Lactobacillus plantarum with species specific primers Lpl-3/Lpl-2. 25 L. plantarum strains were further assessed for hydrophobicity following the microbial adhesion to hydrocarbons (MATH) method and colonization potentials based on their adherence to immobilized human collagen type-1. Surface proteins were isolated from selected L. plantarum 91(Lp91) strain. The purified collagen binding protein (Cbp) protein was assessed for its anti-adhesion activity against enteric Escherichia coli 0157:H7 pathogen on immobilized collagen. Four L. plantarum strains displayed high degree of hydrophobicity and significant adhesion to collagen. A 72 kDa protein was purified which reduced 59.71% adhesion of E. coli 0157:H7 on immobilized collagen as compared to control well during adhesion assay. Cbp protein is the major influencing factor in inhibition of E. coli 0157:H7 adhesion with extracellular matrix (ECM) components. Hydrophobicity and adhesion potential are closely linked attributes precipitating in better colonization potential of the lactobacillus strains. Cbp is substantiated as a crucial surface protein contributing in adhesion of lactobacillus strains. The study can very well be the platform for commercialization of indigenous probiotic strain once their functional attributes are clinically explored. Copyright © 2013 Elsevier GmbH. All rights reserved.

  18. The role of adhesion energy in controlling cell?cell contacts

    OpenAIRE

    Ma?tre, Jean-L?on; Heisenberg, Carl-Philipp

    2011-01-01

    Recent advances in microscopy techniques and biophysical measurements have provided novel insight into the molecular, cellular and biophysical basis of cell adhesion. However, comparably little is known about a core element of cell?cell adhesion?the energy of adhesion at the cell?cell contact. In this review, we discuss approaches to understand the nature and regulation of adhesion energy, and propose strategies to determine adhesion energy between cells in vitro and in vivo.

  19. Cell Adhesion Minimization by a Novel Mesh Culture Method Mechanically Directs Trophoblast Differentiation and Self-Assembly Organization of Human Pluripotent Stem Cells.

    Science.gov (United States)

    Okeyo, Kennedy Omondi; Kurosawa, Osamu; Yamazaki, Satoshi; Oana, Hidehiro; Kotera, Hidetoshi; Nakauchi, Hiromitsu; Washizu, Masao

    2015-10-01

    Mechanical methods for inducing differentiation and directing lineage specification will be instrumental in the application of pluripotent stem cells. Here, we demonstrate that minimization of cell-substrate adhesion can initiate and direct the differentiation of human pluripotent stem cells (hiPSCs) into cyst-forming trophoblast lineage cells (TLCs) without stimulation with cytokines or small molecules. To precisely control cell-substrate adhesion area, we developed a novel culture method where cells are cultured on microstructured mesh sheets suspended in a culture medium such that cells on mesh are completely out of contact with the culture dish. We used microfabricated mesh sheets that consisted of open meshes (100∼200 μm in pitch) with narrow mesh strands (3-5 μm in width) to provide support for initial cell attachment and growth. We demonstrate that minimization of cell adhesion area achieved by this culture method can trigger a sequence of morphogenetic transformations that begin with individual hiPSCs attached on the mesh strands proliferating to form cell sheets by self-assembly organization and ultimately differentiating after 10-15 days of mesh culture to generate spherical cysts that secreted human chorionic gonadotropin (hCG) hormone and expressed caudal-related homeobox 2 factor (CDX2), a specific marker of trophoblast lineage. Thus, this study demonstrates a simple and direct mechanical approach to induce trophoblast differentiation and generate cysts for application in the study of early human embryogenesis and drug development and screening.

  20. Peel testing behavior of mushroom-top terminated structured adhesives

    Science.gov (United States)

    Hossfeld, Craig Kenneth

    Synthetic structured surfaces have been created based on the extraordinary adhesive ability exhibited by insects, spiders, and geckos. The adhesion of synthetic and natural structured adhesives is attributed to the cumulative addition of van der Waals forces acting on the structures of the surface. It has been shown that for synthetic surfaces a "mushroom top" or "flanged" terminating structure exhibits the highest adhesion. Unfortunately, due to the variety of testing and fabrication techniques and the small scale of previous studies, the detachment behavior of these structures is not well understood. This research systematically investigated the effect of peel angle, pillar diameter, flange diameter, and pillar aspect ratio on the force required for peeling. Explicit emphasis was placed on relatively large pillar structures to allow for in situ optical visualization in order to gain insights into fundamental mechanisms which dictate peeling. Traditional molding techniques were used to fabricate optical-scale mushroom terminated structures with pillar diameters of 1mm and 400microm and aspect ratios of 1, 3, and 5. Results were quantitatively compared to peel testing theory for conventional adhesives. It was convincingly demonstrated that the adhesive energy of a patterned surface changes as function of angle, and cannot be treated as a constant. The variability in the energy was linked to mechanistic differences in detachment through in situ observations and finite element analysis. Experimental results show that smaller pillars do not necessarily lead to higher adhesion during peeling, aspect ratio plays little role in peeling adhesive behavior, and pillar flange size is critical to adhesion. The conclusions from this study outline design parameters for mushroom topped dry adhesives in peeling applications.

  1. Staying sticky: contact self-cleaning of gecko-inspired adhesives.

    Science.gov (United States)

    Mengüç, Yigit; Röhrig, Michael; Abusomwan, Uyiosa; Hölscher, Hendrik; Sitti, Metin

    2014-05-06

    The exceptionally adhesive foot of the gecko remains clean in dirty environments by shedding contaminants with each step. Synthetic gecko-inspired adhesives have achieved similar attachment strengths to the gecko on smooth surfaces, but the process of contact self-cleaning has yet to be effectively demonstrated. Here, we present the first gecko-inspired adhesive that has matched both the attachment strength and the contact self-cleaning performance of the gecko's foot on a smooth surface. Contact self-cleaning experiments were performed with three different sizes of mushroom-shaped elastomer microfibres and five different sizes of spherical silica contaminants. Using a load-drag-unload dry contact cleaning process similar to the loads acting on the gecko foot during locomotion, our fully contaminated synthetic gecko adhesives could recover lost adhesion at a rate comparable to that of the gecko. We observed that the relative size of contaminants to the characteristic size of the microfibres in the synthetic adhesive strongly determined how and to what degree the adhesive recovered from contamination. Our approximate model and experimental results show that the dominant mechanism of contact self-cleaning is particle rolling during the drag process. Embedding of particles between adjacent fibres was observed for particles with diameter smaller than the fibre tips, and further studied as a temporary cleaning mechanism. By incorporating contact self-cleaning capabilities, real-world applications of synthetic gecko adhesives, such as reusable tapes, clothing closures and medical adhesives, would become feasible.

  2. Microtensile bond strength of eleven contemporary adhesives to enamel.

    Science.gov (United States)

    Inoue, Satoshi; Vargas, Marcos A; Abe, Yasuhiko; Yoshida, Yasuhiro; Lambrechts, Paul; Vanherle, Guido; Sano, Hidehiko; Van Meerbeek, Bart

    2003-10-01

    To compare the microtensile bond strength (microTBS) to enamel of 10 contemporary adhesives, including three one-step self-etch systems, four two-step self-etch systems and three two-step total-etch systems, with that of a conventional three-step total-etch adhesive. Resin composite (Z100, 3M) was bonded to flat, #600-grit wet-sanded enamel surfaces of 18 extracted human third molars using the adhesives strictly according to the respective manufacturer's instructions. After storage overnight in 37 degrees C water, the bonded specimens were sectioned into 2-4 thin slabs of approximately 1 mm thickness and 2.5 mm width. They were then trimmed into an hourglass shape with an interface area of approximately 1 mm2, and subsequently subjected to microTBS-testing with a cross-head speed of 1 mm/minute. The microTBS to enamel varied from 3.2 MPa for the experimental one-step self-etch adhesive PQ/Universal (self-etch) to 43.9 MPa for the two-step total-etch adhesive Scotchbond 1. When compared with the conventional three-step total-etch adhesive OptiBond FL, the bond strengths of most adhesives with simplified application procedures were not significantly different, except for two one-step self-etch adhesives, experimental PQ/Universal (self-etch) and One-up Bond F, that showed lower bond strengths. Specimen failures during sample preparation were recorded for the latter adhesives as well.

  3. Passively stuck: death does not affect gecko adhesion strength.

    Science.gov (United States)

    Stewart, William J; Higham, Timothy E

    2014-12-01

    Many geckos use adhesive toe pads on the bottom of their digits to attach to surfaces with remarkable strength. Although gecko adhesion has been studied for hundreds of years, gaps exist in our understanding at the whole-animal level. It remains unclear whether the strength and maintenance of adhesion are determined by the animal or are passively intrinsic to the system. Here we show, for the first time, that strong adhesion is produced passively at the whole-animal level. Experiments on both live and recently euthanized tokay geckos (Gekko gecko) revealed that death does not affect the dynamic adhesive force or motion of a gecko foot when pulled along a vertical surface. Using a novel device that applied repeatable and steady-increasing pulling forces to the foot in shear, we found that the adhesive force was similarly high and variable when the animal was alive (mean ± s.d. = 5.4 ± 1.7 N) and within 30 min after death (5.4 ± 2.1 N). However, kinematic analyses showed that live geckos are able to control the degree of toe pad engagement and can rapidly stop strong adhesion by hyperextending the toes. This study offers the first assessment of whole-animal adhesive force under extremely controlled conditions. Our findings reveal that dead geckos maintain the ability to adhere with the same force as living animals, disproving that strong adhesion requires active control. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  4. Human plasma fibrinogen adsorption and platelet adhesion to polystyrene.

    Science.gov (United States)

    Tsai, W B; Grunkemeier, J M; Horbett, T A

    1999-02-01

    The purpose of this study was to further investigate the role of fibrinogen adsorbed from plasma in mediating platelet adhesion to polymeric biomaterials. Polystyrene was used as a model hydrophobic polymer; i.e., we expected that the role of fibrinogen in platelet adhesion to polystyrene would be representative of other hydrophobic polymers. Platelet adhesion was compared to both the amount and conformation of adsorbed fibrinogen. The strategy was to compare platelet adhesion to surfaces preadsorbed with normal, afibrinogenemic, and fibrinogen-replenished afibrinogenemic plasmas. Platelet adhesion was determined by the lactate dehydrogenase (LDH) method, which was found to be closely correlated with adhesion of 111In-labeled platelets. Fibrinogen adsorption from afibrinogenemic plasma to polystyrene (Immulon I(R)) was low and polystyrene preadsorbed with fibrinogen-replenished afibrinogenemic plasma. Addition of even small, subnormal concentrations of fibrinogen to afibrinogenemic plasma greatly increased platelet adhesion. In addition, surface-bound fibrinogen's ability to mediate platelet adhesion was different, depending on the plasma concentration from which fibrinogen was adsorbed. These differences correlated with changes in the binding of a monoclonal antibody that binds to the Aalpha chain RGDS (572-575), suggesting alteration in the conformation or orientation of the adsorbed fibrinogen. Platelet adhesion to polystyrene preadsorbed with blood plasma thus appears to be a strongly bivariate function of adsorbed fibrinogen, responsive to both low amounts and altered states of the adsorbed molecule. Copyright 1999 John Wiley & Sons, Inc.

  5. New adhesives and bonding techniques. Why and when?

    Science.gov (United States)

    Scotti, Nicola; Cavalli, Giovanni; Gagliani, Massimo; Breschi, Lorenzo

    Nowadays, adhesive dentistry is a fundamental part of daily clinical work. The evolution of adhesive materials and techniques has been based on the need for simplicity in the step-by-step procedures to obtain long-lasting direct and indirect restorations. For this reason, recently introduced universal multimode adhesives represent a simple option for creating a hybrid layer, with or without the use of phosphoric acid application. However, it is important to understand the limitations of this latest generation of adhesive systems as well as how to use them on coronal and radicular dentin. Based on the findings in the literature, universal multimode adhesives have shown promising results, even if the problem of hybrid layer degradation due to the hydrolytic activity of matrix metalloproteinases (MMPs) still exists. Studies are therefore required to help us understand how to reduce this degradation.

  6. Causes of defects and accuracy of structure reproduction in deep-etch X-ray lithography using synchrotron radiation

    International Nuclear Information System (INIS)

    Mohr, J.; Ehrfeld, W.; Muenchmeyer, D.

    1988-07-01

    Under the LIGA process plastic microstructures with extraordinarily high aspect ratios are produced by means of deep-etch synchrotron radiation lithography. These microstructures are used as templates for the fabrication by electroforming of metallic microstructures. The several hundred micrometer thick resist layers required in the process are polymerized directly on a metal base plate using a methacrylate based resin. This provides sufficient stability during the production process and also a reliable plating base for the electrodeposition of the metal. Perfect adhesion of micron-sized microstructures on a smooth surface can be achieved if the polished metal surface is sputtered with titanium and chemically oxidized afterwards. Alternatively it is also possible to add an internal adhesion promoter like methacryl oxypropyl trimethoxy silane to the resin. By means of this adhesion promoter chemical bonding between the metal surface and the polymer is achieved. (orig.)

  7. Biobased adhesives and non-conventional bonding

    Science.gov (United States)

    Charles Frihart

    2010-01-01

    Biobased adhesives fall into several major classes based upon their chemical structures. Starches are used in large volume, especially in the paper products industries, but cellulosics generally do not have the strength and water resistance needed for most wood products. Several authors have covered cellulosics adhesives (Baumann and Conner 2002, Pizzi 2006). However...

  8. Influence of Blood Contamination During Multimode Adhesive ...

    African Journals Online (AJOL)

    2018-01-30

    Jan 30, 2018 ... (μTBS) of multimode adhesives to dentin when using the self‑etch approach. Materials and Methods: ... adhesion, the collagen fibers collapse during the. Introduction ..... The failure mode was determined using an optical.

  9. Prevailing Torque Locking Feature in Threaded Fasteners Using Anaerobic Adhesive

    Science.gov (United States)

    Hernandez, Alan; Hess, Daniel P.

    2016-01-01

    This paper presents results from tests to assess the use of anaerobic adhesive for providing a prevailing torque locking feature in threaded fasteners. Test procedures are developed and tests are performed on three fastener materials, four anaerobic adhesives, and both unseated assembly conditions. Five to ten samples are tested for each combination. Tests for initial use, reuse without additional adhesive, and reuse with additional adhesive are performed for all samples. A 48-hour cure time was used for all initial use and reuse tests. Test data are presented as removal torque versus removal angle with the specification required prevailing torque range added for performance assessment. Percent specification pass rates for the all combinations of fastener material, adhesive, and assembly condition are tabulated and reveal use of anaerobic adhesive as a prevailing torque locking feature is viable. Although not every possible fastener material and anaerobic adhesive combination provides prevailing torque values within specification, any combination can be assessed using the test procedures presented. Reuse without additional anaerobic adhesive generally provides some prevailing torque, and in some cases within specification. Reuse with additional adhesive often provides comparable removal torque data as in initial use.

  10. Physical characterization of the liquid adhesive from orb-weaving spiders

    Energy Technology Data Exchange (ETDEWEB)

    Torres, Fernando G., E-mail: fgtorres@pucp.edu.pe; Troncoso, Omar P.; Cavalie, Fernando

    2014-01-01

    Orb-weaving spiders produce bioadhesives that are used to capture their prey. In this paper, the physical properties of these adhesives are characterised. The liquid adhesive from Argiope argentata spiders has been studied and the morphological properties of the droplets, including size, shape and volume were determined. An estimation of viscosity and Young's modulus using atomic force microscopy has also been carried out. Morphological characterization confirmed that the liquid adhesive displayed a typical beads-on-a-string (BOAS) morphology on the silk fibres. The experimental data confirmed that the elastic modulus of the liquid adhesive from A. argentata was in the range 20–100 kPa which is in agreement with the Dahlquist criterion for adhesives. - Highlights: • The adhesive of the A. Argentata spiders displayed a beads-on-a-string morphology. • The adhesive drops had an average radius of 6.5 μm. • The adhesive drops had an estimated contact angle of 10°. • The estimated apparent viscosity of the adhesive was in the range 340–680 Pa·s. • AFM indentation measurements provided a Young's modulus value of 70 ± 47 kPa.

  11. A bio-inspired approach for in situ synthesis of tunable adhesive

    International Nuclear Information System (INIS)

    Sun, Leming; Yi, Sijia; Wang, Yongzhong; Pan, Kang; Zhong, Qixin; Zhang, Mingjun

    2014-01-01

    Inspired by the strong adhesive produced by English ivy, this paper proposes an in situ synthesis approach for fabricating tunable nanoparticle enhanced adhesives. Special attention was given to tunable features of the adhesive produced by the biological process. Parameters that may be used to tune properties of the adhesive will be proposed. To illustrate and validate the proposed approach, an experimental platform was presented for fabricating tunable chitosan adhesive enhanced by Au nanoparticles synthesized in situ. This study contributes to a bio-inspired approach for in situ synthesis of tunable nanocomposite adhesives by mimicking the natural biological processes of ivy adhesive synthesis. (paper)

  12. Microstructures and mechanical properties of aging materials

    International Nuclear Information System (INIS)

    Liaw, P.K.; Viswanathan, R.; Murty, K.L.; Simonen, E.P.; Frear, D.

    1993-01-01

    This book contains a collection of papers presented at the symposium on ''Microstructures and Mechanical Properties of Aging Materials,'' that was held in Chicago, IL. November 2-5, 1992 in conjunction with the Fall Meeting of The Minerals, Metals and Materials Society (TMS). The subjects of interest in the symposium included: (1) mechanisms of microstructural degradation, (2) effects of microstructural degradation on mechanical behavior, (3) development of life prediction methodology for in-service structural and electronic components, (4) experimental techniques to monitor degradation of microstructures and mechanical properties, and (5) effects of environment on microstructural degradation and mechanical properties. Individual papers have been processed separately for inclusion in the appropriate data bases

  13. Effect of initial microstructure on the microstructural evolution and mechanical properties of Ti during cold rolling

    International Nuclear Information System (INIS)

    Stolyarov, V.V.; Zhu, Y.T.; Raab, G.I.; Zharikov, A.I.; Valiev, R.Z.

    2004-01-01

    Ultrafine-grained (UFG) Ti rods were produced via cold rolling UFG and coarse-grained (CG) Ti stocks. The initial UFG stock was produced via equal channel angular pressing. It was found that the initial UFG structure had beneficial influence on the mechanical properties of the cold-rolled Ti rods. Compared with Ti rods with initial CG microstructure, the Ti rods with the initial UFG microstructure have both higher strength and higher ductility after being cold rolled to varying strains. Transmission electron microscopy revealed that the Ti rods with the initial UFG microstructure had finer, more homogeneous microstructures after cold rolling. This study demonstrates the merit of UFG Ti processed by ECAP for further shaping and forming into structural components with superior mechanical properties

  14. Tensile and shear strength of adhesives

    Science.gov (United States)

    Stibolt, Kenneth A.

    1990-01-01

    This experiment is conducted in a freshman-level course: Introduction to Engineering Materials. There are no prerequisites for the course although students should have some knowledge of basic algebra. The objectives are to tension and shear test adhesives and to determine the tensile and shear properties of adhesives. Details of equipment of procedure are given.

  15. 3D Scaffolds with Different Stiffness but the Same Microstructure for Bone Tissue Engineering.

    Science.gov (United States)

    Chen, Guobao; Dong, Chanjuan; Yang, Li; Lv, Yonggang

    2015-07-29

    A growing body of evidence has shown that extracellular matrix (ECM) stiffness can modulate stem cell adhesion, proliferation, migration, differentiation, and signaling. Stem cells can feel and respond sensitively to the mechanical microenvironment of the ECM. However, most studies have focused on classical two-dimensional (2D) or quasi-three-dimensional environments, which cannot represent the real situation in vivo. Furthermore, most of the current methods used to generate different mechanical properties invariably change the fundamental structural properties of the scaffolds (such as morphology, porosity, pore size, and pore interconnectivity). In this study, we have developed novel three-dimensional (3D) scaffolds with different degrees of stiffness but the same 3D microstructure that was maintained by using decellularized cancellous bone. Mixtures of collagen and hydroxyapatite [HA: Ca10(PO4)6(OH)2] with different proportions were coated on decellularized cancellous bone to vary the stiffness (local stiffness, 13.00 ± 5.55 kPa, 13.87 ± 1.51 kPa, and 37.7 ± 19.6 kPa; bulk stiffness, 6.74 ± 1.16 kPa, 8.82 ± 2.12 kPa, and 23.61 ± 8.06 kPa). Microcomputed tomography (μ-CT) assay proved that there was no statistically significant difference in the architecture of the scaffolds before or after coating. Cell viability, osteogenic differentiation, cell recruitment, and angiogenesis were determined to characterize the scaffolds and evaluate their biological responses in vitro and in vivo. The in vitro results indicate that the scaffolds developed in this study could sustain adhesion and growth of rat mesenchymal stem cells (MSCs) and promote their osteogenic differentiation. The in vivo results further demonstrated that these scaffolds could help to recruit MSCs from subcutaneous tissue, induce them to differentiate into osteoblasts, and provide the 3D environment for angiogenesis. These findings showed that the method we developed can build scaffolds with

  16. The effect of water on the gecko adhesive system

    Science.gov (United States)

    Stark, Alyssa Yeager

    The gecko adhesive system is a dry, reversible adhesive that is virtually surface-insensitive due to the utilization of intermolecular van der Waals forces. Remarkably, although detailed models of the adhesive mechanism exist and hundreds of gecko-inspired synthetics have been fabricated, our ability to fully replicate the system still falls short. One reason for this is our limited understanding of how the system performs in natural environments. To begin to resolve this I focused on one particular environmental parameter, water. Although thin layers of water can disrupt van der Waals forces, I hypothesized that geckos are able to retain or regain adhesive function on wet surfaces. I was motivated to investigate this hypothesis because many species of gecko are native to the tropics, a climate where we expect surface water to be prevalent, thus it is likely geckos have some mechanism to overcome the challenges associated with surface water and wetting. Despite the challenge water should pose to adhesion, I found that when tested on hydrophobic substrates geckos cling equally well in air and water. Conversely, on wet hydrophilic substrates geckos cannot support their body weight. Investigating these results further, I found that the superhydrophobic nature of the adhesive toe pads allows geckos to form an air bubble around their foot, which when pressed into contact with a hydrophobic substrate likely removes water from the adhesive interface. When the toe pads are no longer superhydrophobic however, geckos cannot support their body weight and fall from substrates. In order to regain adhesion geckos only need to take about ten steps on a dry substrate to self-dry their toe pads. Finally, when measuring a dynamic component of adhesion, running, we found that geckos are able to maintain speed on misted hydrophobic and hydrophilic substrates, contrary to what we would predict based on static shear adhesion measurements. In conclusion, my research provides a detailed

  17. Influence of N2/Ar Flow Ratio on Microstructure and Properties of the AlCrSiN Coatings Deposited by High-Power Impulse Magnetron Sputtering

    Directory of Open Access Journals (Sweden)

    Bai-Song Li

    2017-12-01

    Full Text Available The cutting properties of tools can be greatly improved by AlCrSiN coatings. The AlCrSiN coatings with nitrogen content in the range of 28.2–56.3 at.% were prepared by varying the N2/Ar flow ratio from 1/4 to 1/1. The influence of N2/Ar flow ratio on composition, microstructure, and mechanical properties, as well as the tribological properties, of the coatings was investigated. With increasing N content, the coating microstructure gradually evolved from single fcc-(Cr,AlN (200 phase to the mixture of fcc-(Cr,AlN and hcp-(Cr,AlN phase, which corresponds to an increased crystallinity within the coatings. The coating presents the highest hardness and best wear resistance for an N2/Ar flow ratio of 1/1, but the film adhesive strength and inner stress decreased obviously with increasing N2/Ar flow ratio, which was attributed to the rapid reduction of particle kinetic energy induced by the obstruction of neutral nitride particles between target and substrates. The highest H3/E*2 value exhibited the lowest wear rate, at 0.81 × 10−14 m3/(N·m, indicating that it had the best resistance to plastic deformation. The main wear mechanisms of the as-deposited coatings were abrasive wear and adhesive wear. The increasing crystallinity of the interior coatings resulted in higher hardness and better tribological behavior with an increase in N2/Ar flow ratio.

  18. Microstructured hollow fibers for ultrafiltration

    NARCIS (Netherlands)

    Culfaz, Pmar Zeynep; Culfaz, P.Z.; Rolevink, Hendrikus H.M.; van Rijn, C.J.M.; Lammertink, Rob G.H.; Wessling, Matthias

    2010-01-01

    Hollow fiber ultrafiltration membranes with a corrugated outer microstructure were prepared from a PES/PVP blend. The effect of spinning parameters such as air gap, take-up speed, polymer dope viscosity and coagulation value on the microstructure and membrane characteristics was investigated. Fibers

  19. ADHESION OF BIOCOMPATIBLE TiNb COATING

    Directory of Open Access Journals (Sweden)

    Tomas Kolegar

    2017-06-01

    Full Text Available Preparation of a coating with a high quality requires good adhesion of the film to the substrate. The paper deals with the adhesion of biocompatible TiNb coating with different base materials. Several materials such as titanium CP grade 2, titanium alloys Ti6Al4V and stainless steel AISI 316L were measured. Testing samples were made in the shape of small discs. Those samples were coated with a TiNb layer by using the PVD method (magnetron sputtering. Onto the measured layer of TiNb an assistant cylinder was stuck using a high strength epoxy adhesive E1100S. The sample with the assistant cylinder was fixed into a special fixture and the whole assembly underwent pull-off testing for adhesion. The main result of this experiment was determining the strength needed to peel the layer and morphology and size of the breakaway. As a result, we will be able to determine the best base material and conditions where the coating will be remain intact with the base material.

  20. Microfabricated adhesive mimicking gecko foot-hair

    Science.gov (United States)

    Geim, A. K.; Dubonos, S. V.; Grigorieva, I. V.; Novoselov, K. S.; Zhukov, A. A.; Shapoval, S. Yu.

    2003-07-01

    The amazing climbing ability of geckos has attracted the interest of philosophers and scientists alike for centuries. However, only in the past few years has progress been made in understanding the mechanism behind this ability, which relies on submicrometre keratin hairs covering the soles of geckos. Each hair produces a miniscule force ~10-7 N (due to van der Waals and/or capillary interactions) but millions of hairs acting together create a formidable adhesion of ~10 N cm-2: sufficient to keep geckos firmly on their feet, even when upside down on a glass ceiling. It is very tempting to create a new type of adhesive by mimicking the gecko mechanism. Here we report on a prototype of such 'gecko tape' made by microfabrication of dense arrays of flexible plastic pillars, the geometry of which is optimized to ensure their collective adhesion. Our approach shows a way to manufacture self-cleaning, re-attachable dry adhesives, although problems related to their durability and mass production are yet to be resolved.