WorldWideScience

Sample records for fibre reinforced polymers

  1. Glass Fibre Reinforced Polymers

    NARCIS (Netherlands)

    Nikolaou, N.; Karagianni, L.; Sarakiniatti, M.V.

    2014-01-01

    This "designers' manual" is made during the TIDO-course AR0533 Innovation & Sustainability. Fibre reinforced polymers (FRPs) have been used in many applications over the years, from new construction to retrofitting. They are lightweight, no-corrosive, exhibit high specific strength and specific

  2. Glass Fibre Reinforced Polymers

    NARCIS (Netherlands)

    Nikolaou, N.; Karagianni, L.; Sarakiniatti, M.V.

    2014-01-01

    This "designers' manual" is made during the TIDO-course AR0533 Innovation & Sustainability. Fibre reinforced polymers (FRPs) have been used in many applications over the years, from new construction to retrofitting. They are lightweight, no-corrosive, exhibit high specific strength and specific sti

  3. Fibre reinforced polymer nanocomposites

    NARCIS (Netherlands)

    Vlasveld, D.P.N.

    2005-01-01

    In this thesis the results are described of the research on a combination of two types of composites: thermoplastic nanocomposites and continuous fibre composites. In this three-phase composite the main reinforcing phase are continuous glass or carbon fibres, and the matrix consists of a polyamide 6

  4. Investigation of digital light processing using fibre-reinforced polymers

    DEFF Research Database (Denmark)

    Hofstätter, Thomas; Pedersen, David Bue; Nielsen, Jakob Skov

    2016-01-01

    of fibre length and shape compared to layer thickness has been investigated including concepts to circumvent clustering of the fibres.This research contributes to the implementation of fibre-reinforced polymers in additive manufacturing technologies. Digital light processing allows generation...... of miniaturized objects with relatively high surface quality compared to other additive manufacturing technologies. This paper aim to move fibre reinforced resin parts one step closer towards mechanically strong production-quality components.......-reinforced polymers in digital light processing (DLP) are limited. Fibre-reinforced polymer composites were manufactured into test objects using digital light processing. Short fibres were used in an unordered manner. An anisotropic property due to fibre orientation within the material was observed. The importance...

  5. Investigation of digital light processing using fibre-reinforced polymers

    DEFF Research Database (Denmark)

    Hofstätter, Thomas; Pedersen, David Bue; Nielsen, Jakob Skov

    2016-01-01

    of fibre length and shape compared to layer thickness has been investigated including concepts to circumvent clustering of the fibres.This research contributes to the implementation of fibre-reinforced polymers in additive manufacturing technologies. Digital light processing allows generation...... of miniaturized objects with relatively high surface quality compared to other additive manufacturing technologies. This paper aim to move fibre reinforced resin parts one step closer towards mechanically strong production-quality components.......-reinforced polymers in digital light processing (DLP) are limited. Fibre-reinforced polymer composites were manufactured into test objects using digital light processing. Short fibres were used in an unordered manner. An anisotropic property due to fibre orientation within the material was observed. The importance...

  6. Mechanical properties of natural fibre reinforced polymer composites

    Indian Academy of Sciences (India)

    A S Singha; Vijay Kumar Thakur

    2008-10-01

    During the last few years, natural fibres have received much more attention than ever before from the research community all over the world. These natural fibres offer a number of advantages over traditional synthetic fibres. In the present communication, a study on the synthesis and mechanical properties of new series of green composites involving Hibiscus sabdariffa fibre as a reinforcing material in urea–formaldehyde (UF) resin based polymer matrix has been reported. Static mechanical properties of randomly oriented intimately mixed Hibiscus sabdariffa fibre reinforced polymer composites such as tensile, compressive and wear properties were investigated as a function of fibre loading. Initially urea–formaldehyde resin prepared was subjected to evaluation of its optimum mechanical properties. Then reinforcing of the resin with Hibiscus sabdariffa fibre was accomplished in three different forms: particle size, short fibre and long fibre by employing optimized resin. Present work reveals that mechanical properties such as tensile strength, compressive strength and wear resistance etc of the urea–formaldehyde resin increases to considerable extent when reinforced with the fibre. Thermal (TGA/DTA/DTG) and morphological studies (SEM) of the resin and biocomposites have also been carried out.

  7. Fabrication and characterization of S. cilliare fibre reinforced polymer composites

    Indian Academy of Sciences (India)

    A S Singha; Vijay Kumar Thakur

    2009-02-01

    In the recent times, there has been an ever-increasing interest in green composite materials for its applications in the field of industries, aerospace, sports, household etc and in many other fields. In this paper, fabrication of Saccharum cilliare fibre reinforced green polymer composites using resorcinol formaldehyde (RF) as a novel matrix has been reported. A systematic approach for processing of polymer is presented. Effect of fibre loading on mechanical properties like flexural, tensile, compressive and wear resistances has also been determined. Reinforcing of the RF resin with Saccharum cilliare (SC) fibre was done in the form of particle size (200 micron). Present work reveals that mechanical properties of the RF resin have been found to increase up to 30% fibre loading and then decreases. Morphological and thermal studies of the resin, fibre and particle reinforced (P-Rnf) green composites have also been studied.

  8. Structural Engineering Properties of Fibre Reinforced Concrete Based On Recycled Glass Fibre Polymer (GFRP)

    OpenAIRE

    Adetiloye A; Ephraim M. E

    2015-01-01

    Glass fibre reinforced plastics (GFRP) based on resin recovered from recycling plastic waste has been shown to possess mechanical properties satisfying normative requirements. This paper investigates the flexural behavior of concrete beams reinforced with GFRP produced from resin recovered from recycled plastic wastes. A total of twelve of beams of sizes 150 ×150 ×900mm and 100 × 100 × 500mm reinforced with GFRP made from recycled glass fibre reinforced polymer was tested. The fle...

  9. Tensile properties of glass/natural jute fibre-reinforced polymer bars for concrete reinforcement

    Science.gov (United States)

    Han, J. W.; Lee, S. K.; Kim, K. W.; Park, C. G.

    2015-12-01

    The tensile performance of glass/natural jute fibre-reinforced polymer (FRP) bar, intended for concrete reinforcement was evaluated as a function of volume fraction of natural jute fibre. Natural jute fibre, mixed at a ratio of 7:3 with vinyl ester, was surface-treated with a silane coupling agent and used to replaced glass fibre in the composite in volume fractions of 0%, 30%, 50%, 70%, and 100%. The tensile load-displacement curve showed nearly linear elastic behaviour up to 50% natural jute fibre, but was partially nonlinear at a proportion of 70%. However, the glass/natural jute FRP bars prepared using 100% natural jute fibre showed linear elastic behaviour. Tensile strength decreased as the natural jute fibre volume fraction increased because the tensile strength of natural jute fibre is much lower than that of glass fibre (about 1:8.65). The degree of reduction was not proportional to the natural jute fibre volume fraction due to the low density of natural jute fibre (1/2 that of glass fibre). Thus, as the mix proportion of natural jute fibre increased, the amount (wt%) and number of fibres used also increased.

  10. Fatigue Micromechanism Characterization in Carbon Fibre Reinforced Polymers Using Synchrotron Radiation Computed Tomography

    Science.gov (United States)

    2014-12-18

    AFRL-AFOSR-UK-TR-2015-0002 Fatigue micromechanism characterization in carbon fibre reinforced polymers using synchrotron radiation computed...SUBTITLE Fatigue micromechanism characterization in carbon fibre reinforced polymers using synchrotron radiation computed tomography 5a. CONTRACT...particularly within the aerospace sector due to their high specific stiffness and strength. CFRPs are widely identified as being very fatigue resistant, but

  11. Self Healing Fibre-reinforced Polymer Composites: an Overview

    Science.gov (United States)

    Bond, Ian P.; Trask, Richard S.; Williams, Hugo R.; Williams, Gareth J.

    Lightweight, high-strength, high-stiffness fibre-reinforced polymer composite materials are leading contenders as component materials to improve the efficiency and sustainability of many forms of transport. For example, their widespread use is critical to the success of advanced engineering applications, such as the Boeing 787 and Airbus A380. Such materials typically comprise complex architectures of fine fibrous reinforcement e.g. carbon or glass, dispersed within a bulk polymer matrix, e.g. epoxy. This can provide exceptionally strong, stiff, and lightweight materials which are inherently anisotropic, as the fibres are usually arranged at a multitude of predetermined angles within discrete stacked 2D layers. The direction orthogonal to the 2D layers is usually without reinforcement to avoid compromising in-plane performance, which results in a vulnerability to damage in the polymer matrix caused by out-of-plane loading, i.e. impact. Their inability to plastically deform leaves only energy absorption via damage creation. This damage often manifests itself internally within the material as intra-ply matrix cracks and inter-ply delaminations, and can thus be difficult to detect visually. Since relatively minor damage can lead to a significant reduction in strength, stiffness and stability, there has been some reticence by designers for their use in safety critical applications, and the adoption of a `no growth' approach (i.e. damage propagation from a defect constitutes failure) is now the mindset of the composites industry. This has led to excessively heavy components, shackling of innovative design, and a need for frequent inspection during service (Richardson 1996; Abrate 1998).

  12. Synthesis and Characterization of Short Saccaharum Cilliare Fibre Reinforced Polymer Composites

    Directory of Open Access Journals (Sweden)

    A. S. Singha

    2009-01-01

    Full Text Available This paper deals with the synthesis of short Saccaharum Cilliare fibre (SC reinforced Urea-Formaldehyde (UF matrix based polymer composites. Present work reveals that mechanical properties such as: tensile strength, compressive strength, flexural strength and wear resistance of the UF matrix increase up to 30% fibre loading(in terms of weight and then decreases for higher loading when fibers are incorporated into the matrix polymer. Morphological and Thermal studies of the matrix, fibre and short fibre reinforced (SF-Rnf green composites have also been carried out. The results obtained emphasize the applications of these fibres, as potential reinforcing materials in bio based composites.

  13. Natural fibres-based polymers: Part I—Mechanical analysis of Pine needles reinforced biocomposites

    Indian Academy of Sciences (India)

    Vijay Kumar Thakur; A S Singha

    2010-06-01

    Lack of resources and increasing environmental pollution has evoked great interest in the research of materials that are friendly to our health and environment. Polymer composites fabricated from natural fibres is currently the most promising area in polymer science. Keeping in view the various advantages of natural fibres, in current series of green composites a study on natural fibre reinforced polymer composites has been made. This paper presents the results of an experimental series designed to assess the possibility of Pine needles as reinforcing material in polymer composites. First of all, urea–formaldehyde resin was synthesized and optimized by evaluating its mechanical properties. Optimized resin was reinforced with employing Pine needles of different dimensions such as particle reinforcement, short fibre reinforcement and long fibre reinforcement. Experimental results obtained shows that mechanical properties such as tensile strength, compressive strength and wear resistance of UF resin increases to a considerable extent when reinforced with Pine needles. Further it has been observed that particle reinforcement is more effective as compared to short fibre and long fibre reinforcement. These results suggest that Pine needles can be potential candidates for use in natural fibre reinforced polymer composites. Thermal and morphological studies of these composites have also been carried out.

  14. Structural Engineering Properties of Fibre Reinforced Concrete Based On Recycled Glass Fibre Polymer (GFRP

    Directory of Open Access Journals (Sweden)

    Adetiloye A

    2015-04-01

    Full Text Available Glass fibre reinforced plastics (GFRP based on resin recovered from recycling plastic waste has been shown to possess mechanical properties satisfying normative requirements. This paper investigates the flexural behavior of concrete beams reinforced with GFRP produced from resin recovered from recycled plastic wastes. A total of twelve of beams of sizes 150 ×150 ×900mm and 100 × 100 × 500mm reinforced with GFRP made from recycled glass fibre reinforced polymer was tested. The flexural test results yielded lower ultimate load, lower stiffness and larger deflections at the same load when compared with the control steel reinforced beam. However, the ultimate flexural strength of beams, reinforced with GFRP from recycled resin was at least four times higher than that of the control unreinforced beam. This is in agreement, quantitatively and qualitatively, with the trend of these parameters in GFRP reinforced concrete based on virgin resins. The results therefore confirm the applicability for structural uses of GFRP reinforcement made from recycled plastic waste, with the accompanying benefits of wealth creation, value addition and environmental sustainability.

  15. Review of current strategies to induce self-healing behaviour in fibre reinforced polymer based composites

    NARCIS (Netherlands)

    Zwaag, van der S.; Grande, A.M.; Post, W.; Garcia, S.J.; Bor, T.C.

    2014-01-01

    This paper addresses the various strategies to induce self-healing behaviour in fibre reinforced polymer based composites. A distinction is made between the extrinsic and intrinsic healing strategies. These strategies can be applied at the level of the fibre, the fibre/matrix interface or at the lev

  16. A Micro Raman Investigation of Viscoelasticity in Short Fibre Reinforced Polymer Matrix Composites

    DEFF Research Database (Denmark)

    Schjødt-Thomsen, Jan

    The purpose of the present Ph.D. project is to investigate the load transfer mechanisms between the fibre and matrix and the stress/strain fields in and around single fibres in short fibre reinforced viscoelastic polymer matrix composites subjected to various loading histories. The materials...

  17. Shear Capacity of Steel and Polymer Fibre Reinforced Concrete Beams

    DEFF Research Database (Denmark)

    Kragh-Poulsen, Jens C.; Hoang, Cao Linh; Goltermann, Per

    2011-01-01

    This paper deals with the application of a plasticity model for shear strength estimation of fibre reinforced concrete beams without stirrups. When using plastic theory to shear problems in structural concrete, the so-called effective strengths are introduced, usually determined by calibrating...... the plastic solutions with tests. This approach is, however, problematic when dealing with fibre reinforced concrete (FRC), as the effective strengths depend also on the type and the amount of fibres. In this paper, it is suggested that the effective tensile strength of FRC can be determined on the basis...

  18. Electron beam irradiation in natural fibres reinforced polymers (NFRP)

    Energy Technology Data Exchange (ETDEWEB)

    Kechaou, B. [LaMaCoP - Faculte des sciences de Sfax, 3018 Sfax (Tunisia); LTDS-UMR 5513 - Ecole Centrale de Lyon, B.P 163 69134 Ecully Cedex (France); Salvia, M. [LTDS-UMR 5513 - Ecole Centrale de Lyon, B.P 163 69134 Ecully Cedex (France); Fakhfakh, Z. [LaMaCoP - Faculte des sciences de Sfax, 3018 Sfax (Tunisia); Juve, D. [LTDS-UMR 5513 - Ecole Centrale de Lyon, B.P 163 69134 Ecully Cedex (France); Boufi, S. [LSME-Faculte des Sciences de Sfax, 3018 Sfax (Tunisia); Kallel, A. [LaMaCoP - Faculte des sciences de Sfax, 3018 Sfax (Tunisia); Treheux, D. [LTDS-UMR 5513 - Ecole Centrale de Lyon, B.P 163 69134 Ecully Cedex (France)], E-mail: daniel.treheux@ec-lyon.fr

    2008-11-15

    This study focuses on the electric charge motion in unsatured polyester and epoxy composites reinforced by natural fibres of Alfa type, treated by different coupling agents. The electric charging phenomenon is studied by scanning electron microscopy mirror effect (SEMME) coupled with the induced current method (ICM). Previously, using the same approach, glass fibre reinforced epoxy (GFRE) was studied to correlate mechanical [B. Kchaou, C. Turki, M. Salvia, Z. Fakhfakh, D. Treheux, Composites Science and Technology 64 (2004) 1467], or tribological [B. Kchaou, C. Turki, M. Salvia, Z. Fakhfakh, D. Treheux, Dielectric and friction behaviour of unidirectionalglass fibre reinforced epoxy (GFRE), Wear, 265 (2008) 763.] properties and dielectric properties. It was shown that the dielectric properties of the fibre-matrix interfaces play a significant role in the optimization of the composite. This result seems to be the same for natural fibre composites: the fibre-matrix interfaces allow a diffusion of the electric charges which can delocalize the polarization energy and consequently delay the damage of the composite. However, a non-suited sizing can lead to a new trapping of electric charges along these same interfaces with, as a consequence, a localization of the polarisation energy. The optimum composite is obtained for one sizing which helps, at the same time, to have a strong fibre-matrix adhesion and an easy flow of the electric charges along the interface.

  19. A Review of the Flammability Factors of Kenaf and Allied Fibre Reinforced Polymer Composites

    Directory of Open Access Journals (Sweden)

    C. H. Lee

    2014-01-01

    Full Text Available Natural fibre is a well-known reinforcement fibre in polymer-matrix Composites (PMC lately. Natural fibre has fast growing and abundance properties which make it available at very low cost. For kenaf fibre there is long lists of research projects which have been done regarding its behaviour, and properties and modification made to it. In this paper, fire flammability is the main concern for natural fibre reinforced polymer (NFRP composites especially kenaf fibre. To estimate its flammability, a wide range of factors can be considered such as fibre content, type of matrices, pH conditions, treatment, and fire retardant (FR filler’s type. The most important criteria are the ignition time, rate of propagation, and fire behavior. thermogravimetric analysis (TGA, different scanning calorimetric (DSC, and dynamic mechanical analysis (DMA are the three most famous methods used to investigate the fire behaviour of composites.

  20. The Influence of Moisture on the Performance of Polymer Fibre-Reinforced Asphalt Mixture

    Directory of Open Access Journals (Sweden)

    Kamaruddin Ibrahim

    2016-01-01

    Full Text Available A number of researches have been done worldwide to evaluate the damage caused by water in bituminous pavements. The use of the retained strength ratios obtained from laboratory moisture damage tests is a useful tool in making quantitative predictions of the related damage caused by water. This study involved laboratory work on the effect of water on the performance of bituminous mixtures. Comparisons are made between the performances of Hot-rolled Asphalt (HRA bituminous mixtures containing base bitumen of 50 pen grade to that of a polymer-fibre reinforced HRA mixture. Two types of polymer fibre were studied, namely polypropylene and polyester and these fibre were added in different concentrations in the bituminous mixtures. Changes in both the cohesive properties of the bitumen and the adhesion of the bitumen to the aggregate surface were observed as a result of exposing the bituminous mixtures to moisture. The effect of polymer fibre reinforcement in bituminous mixtures helps reduce the level of moisture damage. This was evident in the lower moisture susceptibility achieved in the polymer fibre reinforced bituminous mixtures as compared to the control mixture. The additional bitumen in the fibre reinforced mixtures also afforded an increased film thickness on the aggregate particles, thus affording additional protection of the mixtures from moisture. The reinforcement of polymer fibres in bituminous mixtures also acts to decrease the moisture sensitivity of the bitumen to aggregate bonding. This may be due to the strengthening of the wetted binder matrix that helps promote both adhesion and cohesion retention.

  1. Utilisation of fibre reinforced polymer (FRP) composites in the confinement of concrete

    OpenAIRE

    Ciupala, Mihaela Anca; Pilakoutas, K.; Mortazavi, A.A.

    2007-01-01

    This paper presents an experimental investigation carried out on concrete cylinders\\ud confined with fibre reinforced polymers (FRP), subjected to monotonic and cyclic loading.\\ud Carbon fibres (CFRP) were used as confining material for the concrete specimens. The failure\\ud mode, reinforcement ratio based on jacket thickness and type of loading are examined. The study\\ud shows that external confinement of concrete can enhance its strength and ductility as well as result\\ud in large energy ab...

  2. Shear Strengthening of Corbels with Carbon Fibre Reinforced Polymers (CFRP

    Directory of Open Access Journals (Sweden)

    Nawaz, A.

    2010-09-01

    Full Text Available Corbels constitute what are known as “disturbed” regions in concrete structures, where typical shear failure may be anticipated on the grounds of small shear span-to-depth ratios. The concentration of stress induced by the weight of girders on the very small loadbearing areas in corbels often causes cracking in bridges and other structures. Little experimental research can be found in the literature on the shear strengthening of corbels. In the present study, nine such members were tested. Two had no carbon fibre reinforced polymers attached, while CFRP laminates were externally bonded to the other seven, in a number of different spatial arrangements. Ultimate shear strength was found and compared for all specimens. The results showed that CFRP configuration and geometry directly affected corbel shear strength, which was higher in all the CFRPstrengthened corbels than in the controls. The highest strength values were recorded for specimens whose shear-critical area was wrapped in CFRP.

    Las ménsulas constituyen lo que conocemos como regiones de “distorsión” en las estructuras de hormigón, zonas en que pueden preverse roturas por cortante debido a las bajas relaciones luz de cortante-canto presentes en ellas. La concentración de solicitaciones producida por el peso de las vigas sobre superficies de carga muy reducidas en las ménsulas a menudo provoca el agrietamiento de puentes y otras estructuras de obra civil. En la literatura especializada sobre el refuerzo a cortante de las ménsulas existen escasos ejemplos de estudios experimentales. Para la presente investigación se han realizado ensayos con nueve elementos de este tipo. Dos de ellos no incluían polímeros reforzados con fibra de carbono (CFRP, mientras que los siete restantes llevaban láminas externas de CFRP, dispuestas siguiendo distintas configuraciones espaciales. Los resultados indican que la configuración y la disposición geométrica de los CFRP repercuten

  3. Life cycle strain monitoring in glass fibre reinforced polymer laminates using embedded fibre Bragg grating sensors from manufacturing to failure

    DEFF Research Database (Denmark)

    Nielsen, Michael Wenani; Schmidt, Jacob Wittrup; Høgh, Jacob Herold

    2013-01-01

    failure. The internal process-induced strain development is investigated through use of different cure schedules and tool/part interactions. The fibre Bragg grating sensors successfully monitor resin flow front progression during infusion, and strain development during curing, representative...... of the different cure temperatures and tool/part interfaces used. Substantial internal process-induced strains develop in the transverse fibre direction, which should be taken into consideration when designing fibre-reinforced polymer laminates. Flexure tests indicate no significant difference in the mechanical...

  4. TESTS ON STRUCTURALLY DEFICIENT RC SLABS STRENGTHENED WITH FIBRE REINFORCED POLYMER (FRP) COMPOSITES

    Institute of Scientific and Technical Information of China (English)

    S.T. Smith; S.J. Kim

    2004-01-01

    This paper reports the results of a series of tests on fibre reinforced polymer (FRP) strengthened reinforced concrete (RC) slabs, which were recently undertaken at the University of Technology,Sydney. The slabs were reinforced with high-strength low-ductile steel reinforcement and strengthened with either carbon FRP (CFRP) or glass FRP (GFRP) composites. The unstrengthened control slabs failed by fracture of the steel tension reinforcement while the FRP strengthened slabs failed by debonding of the FRP followed by rupture of the tension steel. The FRP-strengthened slabs were stronger than their unstrengthened counterparts and displayed considerable ductility.

  5. Asset management business model for design, realization, and maintenance of fibre reinforced polymer bridges

    NARCIS (Netherlands)

    Sebastian, R.

    2013-01-01

    This paper particularly addresses the market implementation of Fibre Reinforced Polymer (FRP) for bridges. It presents the concept of demand and supply chain innovation as being investigated within two ongoing European collaborative research projects (FP7) titled Trans-IND and PANTURA. FRP has emerg

  6. Asset management business model for design, realization, and maintenance of fibre reinforced polymer bridges

    NARCIS (Netherlands)

    Sebastian, R.

    2013-01-01

    This paper particularly addresses the market implementation of Fibre Reinforced Polymer (FRP) for bridges. It presents the concept of demand and supply chain innovation as being investigated within two ongoing European collaborative research projects (FP7) titled Trans-IND and PANTURA. FRP has

  7. Deflection analysis of reinforced concrete beams strengthened with carbon fibre reinforced polymer under long-term load action

    Institute of Scientific and Technical Information of China (English)

    Mykolas DAUGEVI(C)IUS; Juozas VALIVONIS; Gediminas MAR(C)IUKAITIS

    2012-01-01

    This paper presents the results of an experimental research on reinforced concrete beams strengthened with an external carbon fibre reinforced polymer (CFRP) layer under long-term load action that lasted for 330 d.We describe the characteristics of deflection development of the beams strengthened with different additional anchorages of the external carbon fibre composite layer during the period of interest.The conducted experiments showed that the additional anchorage influences the slip of the extemal layer with respect to the strengthened element.Thus,concrete and carbon fibre composite interface stiffness decreases with a long-term load action.Therefore,the proposed method of analysis based on the built-up-bars theory can be used to estimate concrete and carbon fibre composite interface stiffness in the case of long-term load.

  8. Mechanical property analysis of kenaf–glass fibre reinforced polymer composites using finite element analysis

    Indian Academy of Sciences (India)

    M Ramesh; S Nijanthan

    2016-02-01

    Nowadays, natural fibres are used as a reinforcing material in polymer composites, owing to severe environmental concerns. Among many different types of natural resources, kenaf plants have been extensively exploited over the past few years. In this experimental study, partially eco-friendly hybrid composites were fabricated by using kenaf and glass fibres with two different fibre orientations of 0° and 90°. The mechanical properties such as tensile, flexural and impact strengths of these composites have been evaluated. From the experiment, it was observed that the composites with the 0° fibre orientation can withstand the maximum tensile strength of 49.27 MPa, flexural strength of 164.35 MPa, and impact strength of 6 J. Whereas, the composites with the 90° fibre orientation hold the maximum tensile strength of 69.86 MPa, flexural strength of 162.566 MPa and impact strength of 6.66 J. The finite element analysis was carried out to analyse the elastic behaviour of the composites and to predict the mechanical properties by using NX Nastran 9.0 software. The experimental results were compared with the predicted values and a high correlation between the results was observed. The morphology of the fractured surfaces of the composites was analysed using a scanning electron microscopy analysis. The results indicated that the properties were in the increasing trend and comparable with pure synthetic fibre reinforced composites, which shows the potential for hybridization of kenaf fibre with glass fibre.

  9. A viscoelastic-viscoplastic model for short-fibre reinforced polymers with complex fibre orientations

    Directory of Open Access Journals (Sweden)

    Nciri M.

    2015-01-01

    Full Text Available This paper presents an innovative approach for the modelling of viscous behaviour of short-fibre reinforced composites (SFRC with complex distributions of fibre orientations and for a wide range of strain rates. As an alternative to more complex homogenisation methods, the model is based on an additive decomposition of the state potential for the computation of composite’s macroscopic behaviour. Thus, the composite material is seen as the assembly of a matrix medium and several linear elastic fibre media. The division of short fibres into several families means that complex distributions of orientation or random orientation can be easily modelled. The matrix behaviour is strain-rate sensitive, i.e. viscoelastic and/or viscoplastic. Viscoelastic constitutive laws are based on a generalised linear Maxwell model and the modelling of the viscoplasticity is based on an overstress approach. The model is tested for the case of a polypropylene reinforced with short-glass fibres with distributed orientations and subjected to uniaxial tensile tests, in different loading directions and under different strain rates. Results demonstrate the efficiency of the model over a wide range of strain rates.

  10. The effect of ion implantation on the tribomechanical properties of carbon fibre reinforced polymers

    Energy Technology Data Exchange (ETDEWEB)

    Mistica, R.; Sood, D.K. [Royal Melbourne Inst. of Tech., VIC (Australia); Janardhana, M.N. [Deakin University, Geelong, VIC (Australia). School of Engineering and Technology

    1993-12-31

    Graphite fibre reinforced epoxy composite material (GFRP) is used extensively in the aerospace and other industries for structural application. The trend is to address the 20 to 30 year life endurance of this material in service. Mechanical joints in air crafts are exposed to dynamic loads during service and wear may be experienced by the composite material joint. Generally it has been shown that graphite fibre reinforced polymers have superior wear and friction properties as compared with the unfilled polymers. In the described experiment, ion implantation was used as a novel surface treatment. Wear and friction of a polymer composite material (GFRP) was studied and ion implantation was used in order to observe the effect on the tribomechanical properties of the material. It was found that ion implantation of C on GFRP sliding against Ti changes the tribological properties of the system, and in particular decreases the coefficient of friction and wear. 4 refs., 2 figs.

  11. Coupling of plasticity and damage in glass fibre reinforced polymer composites

    Directory of Open Access Journals (Sweden)

    Osnes H.

    2012-08-01

    Full Text Available This study addresses the nonlinear stress-strain response in glass fibre reinforced polymer composite laminates. Loading and unloading of these laminates indicate that the nonlinear response is caused by both damage and plasticity. A user defined material model is implemented in the finite element code LS-DYNA. The damage evolution is based on the Puck failure criterion [1], and the plastic behaviour is based on the quadratic Hill yield criterion for anisotropic materials [2].

  12. Hybrid filler composition optimization for tensile strength of jute fibre-reinforced polymer composite

    Indian Academy of Sciences (India)

    ANURAG GUPTA; HARI SINGH; R SWALIA

    2016-09-01

    In present research work, pultrusion process is used to develop jute fibre-reinforced polyester (GFRP) composite and experiments have been performed on an indigenously developed pultrusion experimental setup. The developed composite consists of natural jute fibre as reinforcement and unsaturated polyester resin as matrix with hybrid filler containing bagasse fibre, carbon black and calcium carbonate (CaCO$_3$). The effect of weight content of bagasse fibre, carbon black and calcium carbonate on tensile strength of pultruded GFRP composite is evaluated and the optimum hybrid filler composition for maximizing the tensile strength is determined. Different compositions of hybrid filler are prepared by mixing three fillers using Taguchi L$_9$ orthogonal array. Fifteen percent of hybrid filler of different composition by weight was mixed in the unsaturated polyester resin matrix. Taguchi L$_9$ orthogonal array (OA) has been used to plan the experiments and ANOVA is used for analysing tensile strength. A regression model has also been proposed to evaluate the tensile strength of the composite within 7% error by varying the abovefillers weight. A confirmation experiment was performed which gives 73.14 MPa tensile strength of pultruded jute fibre polymer composite at the optimum composition of hybrid filler.

  13. Investigation of Creep Rupture Phenomenon in Glass Fibre Reinforced Polymer (GFRP) Stirrups

    Science.gov (United States)

    Johal, Kanwardeep Singh

    Glass Fibre-Reinforced Polymer (GFRP) bars offer a feasible alternative to typical steel reinforcement in concrete structures where there are concerns of corrosion or magnetic interference. In order to design safe structures for a service life of 50 to 100 years, the long-term material properties of GFRP must be understood. Thirty GFRP stirrups of three types were tested under sustained loading to investigate creep rupture and modulus degradation behaviour. The time to failure under varying sustained loads was used to extrapolate the safe design load for typical service lives. It was found that shear critical beams with shear reinforcement designed in accordance with CSA-S806 and ACI-440 provisions may be at risk of premature failure under sustained design loads. Analysis was based on finite element modelling and previously tested beams. Additionally, no moduli degradation was observed in this study. A cumulative weakening model was developed to potentially take into account fatigue loading.

  14. Life Cycle Assessment of Biobased Fibre-Reinforced Polymer Composites (Levenscyclusanalyse van biogebaseerde, vezelversterkte polymeercomposieten)

    OpenAIRE

    Deng, Yelin

    2014-01-01

    Today, global environmental issues, such as global warming and fossil depletion, drive a paradigm shift in material applications from conventional fossil sources to renewable sources. Following this trend, the topic of this thesis is to analyse the use of biobased resources for fibre reinforced composite fabrication. Currently the most widely used fibre reinforced composites are composed of glass fibre reinforcements and polymeric matrices. In this thesis, the biobased alternative, i.e. flax ...

  15. Effect of Moisture Absorption Behavior on Mechanical Properties of Basalt Fibre Reinforced Polymer Matrix Composites

    OpenAIRE

    Amuthakkannan Pandian; Manikandan Vairavan; Winowlin Jappes Jebbas Thangaiah; Marimuthu Uthayakumar

    2014-01-01

    The study of mechanical properties of fibre reinforced polymeric materials under different environmental conditions is much important. This is because materials with superior ageing resistance can be satisfactorily durable. Moisture effects in fibre reinforced plastic composites have been widely studied. Basalt fibre reinforced unsaturated polyester resin composites were subjected to water immersion tests using both sea and normal water in order to study the effects of water absorption behavi...

  16. Ultrasonic, Molecular and Mechanical Testing Diagnostics in Natural Fibre Reinforced, Polymer-Stabilized Earth Blocks

    Directory of Open Access Journals (Sweden)

    C. Galán-Marín

    2013-01-01

    Full Text Available The aim of this research study was to evaluate the influence of utilising natural polymers as a form of soil stabilization, in order to assess their potential for use in building applications. Mixtures were stabilized with a natural polymer (alginate and reinforced with wool fibres in order to improve the overall compressive and flexural strength of a series of composite materials. Ultrasonic pulse velocity (UPV and mechanical strength testing techniques were then used to measure the porous properties of the manufactured natural polymer-soil composites, which were formed into earth blocks. Mechanical tests were carried out for three different clays which showed that the polymer increased the mechanical resistance of the samples to varying degrees, depending on the plasticity index of each soil. Variation in soil grain size distributions and Atterberg limits were assessed and chemical compositions were studied and compared. X-ray diffraction (XRD, X-ray fluorescence spectroscopy (XRF, and energy dispersive X-ray fluorescence (EDXRF techniques were all used in conjunction with qualitative identification of the aggregates. Ultrasonic wave propagation was found to be a useful technique for assisting in the determination of soil shrinkage characteristics and fibre-soil adherence capacity and UPV results correlated well with the measured mechanical properties.

  17. Strengthening of 230KV wood transmission structures with glass fibre reinforced polymer (GFRP) wraps

    Energy Technology Data Exchange (ETDEWEB)

    Shahi, A.; West, J.S.; Pandey, M.D. [Waterloo Univ., ON (Canada). Dept. of Civil Engineering

    2007-07-01

    In northern Canada, an unexpected structural failure resulting from wood deterioration has been determined to pose a risk to the safety of the 230 kV wood transmission lines. Because of the remote location of the transmission structures and the need to keep the transmission lines in continuous service, replacement of deteriorated elements can be very expensive. One potential alternative is to install a lightweight strengthening system while the old structure is being serviced. One of the most common structural repair systems are fibre reinforced polymer (FRP) materials. Limited research has explored the feasibility of this strengthening system on wood beams. This paper presented a pilot experimental research program to study the feasibility of using Glass Fibre Reinforced Polymer (GFRP) fabrics as a lightweight, reliable, and effective strengthening system for deteriorated circular cross-arms of the Gulfport transmission structures. The paper discussed previous research on FRP materials, the research strategy of this study, the experimental program, and experimental results and analysis. This included measured moisture content, failure mode, relationship between stiffness and failure load, effect of wrapping on strength, and the effect of wrapping on stiffness. The results of the experimental program suggested a strong correlation between the failure load and the stiffness of the specimens and that the proposed strengthening system could result in more consistent strengths. 9 refs., 2 tabs., 8 figs.

  18. Strengthening of reinforced concrete circular columns using glass fibre reinforced polymers

    Directory of Open Access Journals (Sweden)

    Manish kumar Tiwari

    2014-04-01

    Full Text Available Seismic retrofitting of reinforced concrete members vulnerable to strong earthquakes is a great problem. It has long been recognized that confinement to concrete compression members not only increase the strength but improve ductility significantly. The present study focuses on the behavior of reinforced concrete specimens strengthened using glass fiber reinforced polymer (GFRP subjected to axial compressive loading. In this study specimen of circular cross section having length to diameter ratio of 2.0 and 0.96% longitudinal reinforcement were prepared and tested for 28 days compressive strength. The specimens were wrapped with 0,2,4,6 and 8 layers of GFRP outside the surface of the specimens as confinement. The test results showed that there is a significant increase in the strength of specimen with the increase of confinement layers on the specimen. The 28 days compressive strength of specimen wrapped with 8 layers of GRRP was increased by 47% as compared to the strength of specimen without any confinement.

  19. CARBON-FIBRE-REINFORCED POLYMER PARTS EFFECT ON SPACECRAFT OPTOELECTRONIC MODULE LENS SCATTERING

    Directory of Open Access Journals (Sweden)

    S. S. Kolasha

    2016-01-01

    Full Text Available Spacecraft optoelectronic modules traditionally have aluminum alloy or titanium alloy casing which substantial weight increases fuel consumption required to put them into orbit and, consequently, total cost of the project. Carbon fiber reinforced polymer based composite constructive materials is an efficient solution that allows reducing weight and dimensions of large optoelectronic modules 1,5–3 times and the coefficient of linear thermal expansion 15–20 times if compared with metals. Optical characteristic is a crucial feature of carbon-fibre-reinforced polymer that determines composite material interaction with electromagnetic emission within the optical range. This work was intended to develop a method to evaluate Carbon fiber reinforced polymer optoelectronic modules casing effect on lens scattering by computer simulation with Zemax application software package. Degrees of scattered, reflected and absorbed radiant flux effect on imaging quality are described here. The work included experimental study in order to determine bidirectional reflectance distribution function by goniometric method for LUP-0.1 carbon fabric check test pieces of EDT-69U epoxy binder with EPOFLEX-0.4 glue layer and 5056-3.5-23-A aluminium honeycomb filler. The scattered emission was registered within a hemisphere above the check test piece surface. Optical detection direction was determined with zenith (0º < θ < 90º and azimuth (0º < φ < 180º angles with 10° increment. The check test piece surface was proved to scatter emission within a narrow angle range (approximately 20° with clear directivity. Carbon fiber reinforced polymers was found to feature integrated reflectance coefficient 3 to 4 times greater than special coatings do. 

  20. Assessment of microcapsule—catalyst particles healing system in high performance fibre reinforced polymer composite

    Science.gov (United States)

    Bolimowski, P. A.; Wass, D. F.; Bond, I. P.

    2016-08-01

    Autonomous self-healing in carbon fibre reinforced polymer (CFRP) is demonstrated using epoxy resin filled microcapsules and a solid-state catalyst. Microcapsules filled with oligomeric epoxy resin (20-450 μm) and particles of Sc(OTf)3 are embedded in an interleave region of a unidirectional CFRP laminate and tested under mode I loading. Double cantilever beam (DCB) test specimens containing variable concentrations of microcapsules and catalyst were prepared, tested and compared to those healed by manual injection with corresponding healing resin formulation. The healing efficiency was evaluated by comparing the maximum peak load recorded on load-displacement curves for pristine and healed specimens. A 44% maximum recovery was observed for specimens containing 10 wt% of solid phase catalyst and 11 wt% of epoxy microcapsules. However, a significant (80%) decrease in initial strain energy release rate (G IC) was observed for specimens with the embedded healing chemistries.

  1. Repeated self-healing of microvascular carbon fibre reinforced polymer composites

    Science.gov (United States)

    Coope, T. S.; Wass, D. F.; Trask, R. S.; Bond, I. P.

    2014-11-01

    A self-healing, high performance, carbon fibre reinforced polymer (CFRP) composite is demonstrated by embedding a Lewis-acid catalytic curing agent within a laminate, manufactured using out of autoclave (OOA) composite manufacturing methods. Two configurations of healing agent delivery, pre-mixed and autonomous mixing, are investigated via injection of a healing agent through bio-inspired microvascular channels exposed on Mode I fractured crack planes. Healing is effected when an epoxy resin-solvent healing agent mixture reaches the boundary of embedded solid-state scandium(III) triflate (Sc(OTf)3) catalyst, located on the crack plane, to initiate the ring-opening polymerisation (ROP) of epoxides. Tailored self-healing agents confer high healing efficiency values after multiple healing cycles (69-108%) to successfully mitigate against crack propagation within the composite microstructure.

  2. High-power picosecond laser drilling/machining of carbon fibre-reinforced polymer (CFRP) composites

    Science.gov (United States)

    Salama, A.; Li, L.; Mativenga, P.; Sabli, A.

    2016-02-01

    The large differences in physical and thermal properties of the carbon fibre-reinforced polymer (CFRP) composite constituents make laser machining of this material challenging. An extended heat-affected zone (HAZ) often occurs. The availability of ultrashort laser pulse sources such as picosecond lasers makes it possible to improve the laser machining quality of these materials. This paper reports an investigation on the drilling and machining of CFRP composites using a state-of-the-art 400 W picosecond laser system. Small HAZs (drilled on sample of 6 mm thickness, whereas no HAZ was seen below the top surface on the cut surfaces. Multiple ring material removal strategy was used. Furthermore, the effect of laser processing parameters such as laser power, scanning speed and repetition rate on HAZ sizes and ablation depth was investigated.

  3. Strengthening of steel–concrete composite girders using carbon fibre reinforced polymer (CFRP) plates

    Indian Academy of Sciences (India)

    S M Mosavi; A Sadeghi Nik

    2015-02-01

    Applying composites in order to strengthen and renew the infrastructures has globally been accepted. Traditional methods to strengthen the out-of-standard structures are costly, time consuming and requires a lot of labour. Today, new techniques are hired using light and strong substances which also resist against corrosion, known as Carbon Fibre Reinforced Polymer (CFRP) plates. Regarding the high tensile strength and proper module of elasticity, CFRP plates are considered as a suitable alternative to strengthen girders. The behaviour of steel–concrete composite girders being statically loaded and strengthened by CFRP plates in this study. The CFRP plates used in this study have been stuck, with epoxy adhesive, under the tensile sections of three steel girders. The results accompanied with analytical study of moment–curvature and numerical analysis done with ANSYS, show that CFRP plates with epoxy adhesive increases the ultimate loading capacity of steel–concrete composite girder. Plastic stiffness of the girders was also increased.

  4. Effect of Moisture Absorption Behavior on Mechanical Properties of Basalt Fibre Reinforced Polymer Matrix Composites

    Directory of Open Access Journals (Sweden)

    Amuthakkannan Pandian

    2014-01-01

    Full Text Available The study of mechanical properties of fibre reinforced polymeric materials under different environmental conditions is much important. This is because materials with superior ageing resistance can be satisfactorily durable. Moisture effects in fibre reinforced plastic composites have been widely studied. Basalt fibre reinforced unsaturated polyester resin composites were subjected to water immersion tests using both sea and normal water in order to study the effects of water absorption behavior on mechanical properties. Composites specimens containing woven basalt, short basalt, and alkaline and acid treated basalt fibres were prepared. Water absorption tests were conducted by immersing specimens in water at room temperature for different time periods till they reached their saturation state. The tensile, flexural, and impact properties of water immersed specimens were conducted and compared with dry specimens as per the ASTM standard. It is concluded that the water uptake of basalt fibre is considerable loss in the mechanical properties of the composites.

  5. Characterization and analysis of carbon fibre-reinforced polymer composite laminates with embedded circular vasculature.

    Science.gov (United States)

    Huang, C-Y; Trask, R S; Bond, I P

    2010-08-06

    A study of the influence of embedded circular hollow vascules on structural performance of a fibre-reinforced polymer (FRP) composite laminate is presented. Incorporating such vascules will lead to multi-functional composites by bestowing functions such as self-healing and active thermal management. However, the presence of off-axis vascules leads to localized disruption to the fibre architecture, i.e. resin-rich pockets, which are regarded as internal defects and may cause stress concentrations within the structure. Engineering approaches for creating these simple vascule geometries in conventional FRP laminates are proposed and demonstrated. This study includes development of a manufacturing method for forming vascules, microscopic characterization of their effect on the laminate, finite element (FE) analysis of crack initiation and failure under load, and validation of the FE results via mechanical testing observed using high-speed photography. The failure behaviour predicted by FE modelling is in good agreement with experimental results. The reduction in compressive strength owing to the embedding of circular vascules ranges from 13 to 70 per cent, which correlates with vascule dimension.

  6. Design of fibre reinforced PV concepts for building integrated applications

    NARCIS (Netherlands)

    Reinders, Angelina H.M.E.; de Wit, H.; de Boer, Andries; Ossenbrink Sinke, W.; Helm, P.

    2009-01-01

    Fibre reinforced polymers present an interesting encapsulation medium for PV-modules. Glass fibres can provide increased strength and stiffness to thin polymer layers overcoming the brittleness and limited deformability of glass-panes. Glass fibre reinforced polymers allows for transparency over a

  7. Design of fibre reinforced PV concepts for building integrated applications

    NARCIS (Netherlands)

    Reinders, A.H.M.E.; Wit, de H.; Boer, de A.

    2009-01-01

    Fibre reinforced polymers present an interesting encapsulation medium for PV-modules. Glass fibres can provide increased strength and stiffness to thin polymer layers overcoming the brittleness and limited deformability of glass-panes. Glass fibre reinforced polymers allows for transparency over a b

  8. Natural Fibre-Reinforced Biofoams

    Directory of Open Access Journals (Sweden)

    Anne Bergeret

    2011-01-01

    Full Text Available Starches and polylactic acids (PLAs represent the main biobased and biodegradable polymers with potential industrial availability in the next decades for “bio” foams applications. This paper investigates the improvement of their morphology and properties through processing and materials parameters. Starch foams were obtained by melt extrusion in which water is used as blowing agent. The incorporation of natural fibres (hemp, cellulose, cotton linter, sugarcane, coconut in the starch foam induced a density reduction up to 33%, a decrease in water absorption, and an increase in mechanical properties according to the fibre content and nature. PLA foams were obtained through single-screw extrusion using of a chemical blowing agent that decomposed at the PLA melting temperature. A void content of 48% for PLA and 25% for cellulose fibre-reinforced PLA foams and an improvement in mechanical properties were achieved. The influence of a fibre surface treatment was investigated for both foams.

  9. Asset Management Business Model for Design, Realization, and Maintenance of Fibre Reinforced Polymer Bridges

    Directory of Open Access Journals (Sweden)

    Rizal Sebastian

    2013-01-01

    Full Text Available This paper particularly addresses the market implementation of Fibre Reinforced Polymer (FRP for bridges. It presents the concept of demand and supply chain innovation as being investigated within two ongoing European collaborative research projects (FP7 titled Trans-IND and PANTURA. FRP has emerged as a real alternative structural material based on various sustainability considerations, among others the reduced life-cycle cost due to less maintenance needs, longer lifetime, and easiness to repair, replace, or recycle the components. The Trans-IND research project aims to develop and demonstrate new industrialized processes to use FRP for civil infrastructure projects at a large scale. In order to be cost effective, a new value-chain strategy for the design, realization, and maintenance of FRP bridges is required to replace the fragmented supply chain and the one-off approach to a construction project. This paper focuses on the development of new business models based on asset management strategy, which covers the entire demand and supply chains. Research on new business models is supported by the insight into the market and regulatory frameworks in different EU countries. This is based on field surveys across the EU that have been carried out as a part of the Trans-IND and PANTURA collaborative research projects.

  10. Assessment of solvent capsule-based healing for woven E-glass fibre-reinforced polymers

    Science.gov (United States)

    Manfredi, Erica; Cohades, Amaël; Richard, Inès; Michaud, Véronique

    2015-01-01

    Vacuum Assisted Resin Infusion Molding (VARIM) with low vacuum pressure difference was used to manufacture woven glass fibre-reinforced epoxy resin plates, with a fibre volume fraction of approx. 50 vol% and containing ethyl phenylacetate (EPA)-filled capsules for self-healing purposes. Capsules were introduced by functionalising the fabrics through manual dispersion. We investigated the capability of autonomously healing delaminations induced by static loading in Mode I and II. Healing did not take place for composite samples; this was attributed to the presence of bare fibres on the crack plane and to the reduction of EPA diffusion into the matrix in the presence of fibres both of which hinder the swelling mechanism responsible for healing the cracks.

  11. Characterisation of Natural Fibre Reinforcements and Composites

    Directory of Open Access Journals (Sweden)

    Richard K. Cullen

    2013-01-01

    Full Text Available Recent EU directives (e.g., ELV and WEEE have caused some rethinking of the life cycle implications of fibre reinforced polymer matrix composites. Man-made reinforcement fibres have significant ecological implications. One alternative is the use of natural fibres as reinforcements. The principal candidates are bast (plant stem fibres with flax, hemp, and jute as the current front runners. The work presented here will consider the characterisation of jute fibres and their composites. A novel technique is proposed for the measurement of fibre density. The new rule of mixtures, extended for noncircular cross-section natural fibres, is shown to provide a sensible estimate for the experimentally measured elastic modulus of the composite.

  12. Concrete laterally confined with fibre-reinforced polymers (FRP: experimental study and theoretical model

    Directory of Open Access Journals (Sweden)

    Casas, J. R.

    2010-02-01

    Full Text Available This paper presents the findings of an experimental and analytical study of concrete cylinder behaviour when wrapped in fibreglass or carbon fibre-reinforced polymers (FRP. Compression testing was conducted on normal (30 MPa and high (70 MPa strength confined and unconfined concrete cylinders measuring 150 x 300 mm. The stress-strain relationship was evaluated in both cases. The findings showed that strength and ductility rose with FRP confinement. The experimental findings were used to develop an analytical model for predicting the stress-strain behaviour of FRP-confined concrete. A comparison of the experimental and analytical results revealed that the model can satisfactorily predict the stress-strain behaviour and ultimate compressive strength of the concretes studied.

    Este trabajo presenta los resultados de un estudio experimental y analítico del comportamiento de elementos de hormigón confinados con polímeros reforzados con fibras (FRP de vidrio y carbono. El programa experimental consistió en ensayar cilindros de hormigón de 150 x 300 mm (confinados y sin confinar bajo compresión axial en dos niveles de resistencia: normal (30 MPa y alta resistencia (70 MPa. En ambos casos, se evaluó el comportamiento tensión-deformación. Los resultados muestran que la resistencia y ductilidad se incrementan con el confinamiento con FRP. A partir de los resultados experimentales, se desarrolló un modelo analítico para predecir el comportamiento tensión-deformación del hormigón confinado con FRP. La comparación de los resultados experimentales y analíticos muestra que el modelo es aplicable a los hormigones estudiados, proporcionando predicciones satisfactorias del comportamiento tensión-deformación y de la resistencia a compresión última.

  13. Effect of monomer composition of polymer matrix on flexural properties of glass fibre-reinforced orthodontic archwire.

    Science.gov (United States)

    Ohtonen, J; Vallittu, P K; Lassila, L V J

    2013-02-01

    To compare force levels obtained from glass fibre-reinforced composite (FRC) archwires. Specifically, FRC wires were compared with polymer matrices having different dimethacrylate monomer compositions. FRC material (E-glass provided by Stick Tech Ltd, Turku, Finland) with continuous unidirectional glass fibres and four different types of dimethacrylate monomer compositions for the resin matrix were tested. Cross-sectionally round FRC archwires fitting into the 0.3 mm slot of a bracket were divided into 16 groups with six specimens in each group. Glass fibres were impregnated by the manufacturer, and they were initially light-cured by hand light-curing unit or additionally post-cured in light-curing oven. The FRC archwire specimens were tested at 37°C according to a three-point bending test in dry and wet conditions using a span length of 10 mm and a crosshead speed of 1.0 mm/minute. The wires were loaded until final failure. The data were statistically analysed using analysis of variance (ANOVA). The dry FRC archwire specimens revealed higher load values than water stored ones, regardless of the polymer matrix. A majority of the FRC archwires showed higher load values after being post-cured. ANOVA revealed that the polymer matrix, curing method, and water storage had a significant effect (P composition, curing method, and water storage affected the flexural properties and thus, force level and working range which could be obtained from the FRC archwire.

  14. Microstructured polymer optical fibres

    CERN Document Server

    Large, Maryanne; Barton, Geoff; van Eijkelenborg, Martijn A

    2008-01-01

    Microstructured Polymer Optical Fibres describes the optical properties of microstructured fibres, how they are made and modelled, and outlines some potential applications. These applications include areas where polymer fibres are already used, such as high-data rate transmission for Fibre-to-the Home or within cars, as well as completely new areas such as the photonic bandgap transmission of ""difficult"" wavelengths. Emphasising a conceptual understanding of the underlying physics, Microstructured Polymer Optical Fibres is clearly written, and includes numerous illustrations. It provides an

  15. Internal-Notched Flexure Test for Measurement of Mode II Delamination Resistance of Fibre-Reinforced Polymers

    Directory of Open Access Journals (Sweden)

    Chengye Fan

    2013-01-01

    Full Text Available This paper introduces a new test, method, named internal-notched flexure (INF test, that is designed to measure the critical energy release rate of fibre-reinforced polymers for delamination growth in shear mode (mode II. The INF test generates stable delamination growth, with a monotonic increase of load and displacement in a nearly linear fashion. Values of the mode II delamination toughness were deduced using experimental compliance fitting method. Good repeatability of the results was obtained. Compared with the end-notched flexure (ENF test using the same material, the INF test yielded higher delamination resistance, possibly due to the bridging fibres found between fracture surfaces of the INF test specimens.

  16. An experimental study of non-destructive testing on glass fibre reinforced polymer composites after high velocity impact event

    Science.gov (United States)

    Razali, N.; Sultan, M. T. H.; Cardona, F.

    2016-10-01

    A non-destructive testing method on Glass Fibre Reinforced Polymer (GFRP) after high velocity impact event using single stage gas gun (SSGG) is presented. Specimens of C- type and E-type fibreglass reinforcement, which were fabricated with 6mm, 8mm, 10mm and 12mm thicknesses and size 100 mm x 100 mm, were subjected to a high velocity impact with three types of bullets: conical, hemispherical and blunt at various gas gun pressure levels from 6 bar to 60 bar. Visual observation techniques using a lab microscope were used to determine the infringed damage by looking at the crack zone. Dye penetrants were used to inspect the area of damage, and to evaluate internal and external damages on the specimens after impact. The results from visual analysis of the impacted test laminates were discussed and presented. It was found that the impact damage started with induced delamination, fibre cracking and then failure, simultaneously with matrix cracking and breakage, and finally followed by the fibres pulled out. C-type experienced more damaged areas compared to E-type of GFRP.

  17. In Plan Shear Retrofit of Masonry Walls with Fibre Reinforced Polymer Composites Experimental Investigations

    Directory of Open Access Journals (Sweden)

    Tamás Nagy-György

    2006-01-01

    Full Text Available The paper presents the results from tests on clay brick masonry walls strengthened using fiber reinforced polymer (FRP composites. Five 1.50x1.50 m wall specimens have been subjected to pure in plan shear loads up to failure and then retrofitted on one side, with different types, percentages and lay-ups of the fiber sheets. Based on the experi¬mental results, it was proven the effectiveness of using externally bonded composites for retrofitting brick masonry walls, with less disruption during strengthening, and in this way with reduced costs compared with other conventional repairing and strengthening tech¬niques. Performances of the different strengthening configurations were compared in terms of ultimate load, strain in composite and failure mechanism.

  18. Self-healing of damage in fibre-reinforced polymer-matrix composites.

    Science.gov (United States)

    Hayes, S A; Zhang, W; Branthwaite, M; Jones, F R

    2007-04-22

    Self-healing resin systems have been discussed for over a decade and four different technologies had been proposed. However, little work on their application as composite matrices has been published although this was one of the stated aims of the earliest work in the field. This paper reports on the optimization of a solid-state self-healing resin system and its subsequent use as a matrix for high volume fraction glass fibre-reinforced composites. The resin system was optimized using Charpy impact testing and repeated healing, while the efficiency of healing in composites was determined by analysing the growth of delaminations following repeated impacts with or without a healing cycle. To act as a reference, a non-healing resin system was subjected to the same treatments and the results are compared with the healable system. The optimized resin system displays a healing efficiency of 65% after the first healing cycle, dropping to 35 and 30% after the second and third healing cycles, respectively. Correction for any healability due to further curing showed that approximately 50% healing efficiency could be achieved with the bisphenol A-based epoxy resin containing 7.5% of polybisphenol-A-co-epichlorohydrin. The composite, on the other hand, displays a healing efficiency of approximately 30%. It is therefore clear that the solid-state self-healing system is capable of healing transverse cracks and delaminations in a composite, but that more work is needed to optimize matrix healing within a composite and to develop a methodology for assessing recovery in performance.

  19. An Adaptive Neuro-Fuzzy Inference System Based Modeling for Corrosion-Damaged Reinforced HSC Beams Strengthened with External Glass Fibre Reinforced Polymer Laminates

    Directory of Open Access Journals (Sweden)

    P. N. Raghunath

    2012-01-01

    Full Text Available Problem statement: This study presents the results of ANFIS based model proposed for predicting the performance characteristics of reinforced HSC beams subjected to different levels of corrosion damage and strengthened with externally bonded glass fibre reinforced polymer laminates. Approach: A total of 21 beams specimens of size 150, 250×3000 mm were cast and tested. Results: Out of the 21 specimens, 7 specimens were tested without any corrosion damage (R-Series, 7 after inducing 10% corrosion damage (ASeries and another 7 after inducing 25% corrosion damage (B-Series. Out of the seven specimens in each series, one was tested without any laminate, three specimens were tested after applying 3 mm thick CSM, UDC and WR laminates and another three specimens after applying 5mm thick CSM, UDC and WR laminates. Conclusion/Recommendations: The test results show that the beams strengthened with externally bonded GFRP laminates exhibit increased strength, stiffness, ductility and composite action until failure. An Adaptive Neuro-Fuzzy Inference System (ANFIS model is developed for predicting the study parameters for input values lying within the range of this experimental study.

  20. Strengthening of concrete structures using carbon fibre reinforced polymers and cement-based adhesives

    OpenAIRE

    Hashemi, Siavash

    2017-01-01

    The research project conducted in this study concerns the investigation of the application of cement-based adhesives in CFRP strengthening of reinforced concrete members. The results demonstrate that mineral-based adhesives can provide the desired matrices for CFRP reinforcement. The literature review covers the background of CFRP application with conventional techniques. The bond characteristics of CFRP to concrete substrate, the flexural performance of retrofitted RC beams, and the fa...

  1. Assessing the Environmental Impact of Flax Fibre Reinforced Polymer Composite from a Consequential Life Cycle Assessment Perspective

    Directory of Open Access Journals (Sweden)

    Yelin Deng

    2015-08-01

    Full Text Available The study implements the consequential life cycle assessment (CLCA to provide a market based perspective on how overall environmental impact will change when shifting glass fibres to flax fibres as reinforcements in composite fabrication. With certain assumptions, the marginal flax fibre supply is identified to be a combination of Chinese flax fibre (70% and French flax fibre (30%. Due to inferior cultivars and coal-fired electricity in Chinese flax cultivation, the CLCA study reveals that flax mat-PP has 0.8–2 times higher environmental impact values than the glass mat-PP in most environmental impact categories over the production and end-of-life (EoL phases. For purpose of providing potential trajectories of marginal flax fibre supply, additional scenarios: the “all French fibre”, and “all Chinese fibre” are evaluated formulating the lower and upper boundaries in terms of environmental impact change, respectively. A “the attributional fibre supply mix” scenario is supplied as well. All of these scenarios are useful for policy analysis.

  2. Experimental and numerical thermal analysis of a balcony board with integrated glass fibre reinforced polymer GFRP elements

    Energy Technology Data Exchange (ETDEWEB)

    Ghazi Wakili, K.; Simmler, H.; Frank, T. [Swiss Federal Laboratories for Materials Testing and Research (Empa), Duebendorf (Switzerland)

    2007-07-01

    The thermal behaviour of a balcony board with integrated glass fibre reinforced plastic (GFRP) elements replacing the compression reinforcement rods, is investigated by means of measurement as well as numerical analysis. For this reason a specimen consisting of an externally insulated brick wall and a representative part of a balcony is tested under a steady state temperature gradient of 30 K in a guarded hot box. Additionally to the normative requirements, temperature sensors are placed on critical sites within the construction, prior to the pouring of cement, to help the verification of the numerical analysis carried out simultaneously. Measured and calculated results are compared and some numerical parameter studies are carried out to quantify the advantage of glass fibre reinforced plastic elements over conventional balcony boards from a thermal point of view. (author)

  3. An overview of the Oil Palm Empty Fruit Bunch (OPEFB potential as reinforcing fibre in polymer composite for energy absorption applications

    Directory of Open Access Journals (Sweden)

    Faizi M.K.

    2017-01-01

    Full Text Available The oil palm empty fruit bunch (OPEFB natural fibres were comprehensively reviewed to assess their potential as reinforcing materials in polymer composites for energy absorption during low-velocity impact. The typical oil palm wastes include trunks, fronds, kernel shells, and empty fruit bunches. This has a tendency to burden the industry players with disposal difficulties and escalates the operating cost. Thus, there are several initiatives have been employed to convert these wastes into value added products. The objective of this study is to review the potential of oil palm empty fruit bunch (OPEFB as natural fibre polymer composite reinforcement to absorb the energy during low-velocity impact as another option for value added products. Initially, this paper reviewed the local oil palm waste issues. Previous research works on OPEFB polymer composite, and their mechanical characterization is appraised. Their potential for energy absorption in low-velocity impact application was also elaborated. The review suggests high potential applications of OPEFB as reinforcing materials in composite structures. Furthermore, it is wisely to utilize the oil palm biomass waste into a beneficial composite, hence, promotes the green environment.

  4. Ductility Performance of Hybrid Fibre Reinforced Concrete

    OpenAIRE

    S. Eswari; P.N. Raghunath; Suguna, K

    2008-01-01

    This study presents a study on the ductility performance of hybrid fibre reinforced concrete. The influence of fibre content on the ductility performance of hybrid fibre reinforced concrete specimens having different fibre volume fractions was investigated. The parameters of investigation included modulus of rupture, ultimate load, service load, ultimate and service load deflection, crack width, energy ductility and deflection ductility. A total of 27 specimens, 100×100×500 mm, were tested to...

  5. Alginate fibres containing discrete liquid filled vacuoles for controlled delivery of healing agents in fibre reinforced composites

    NARCIS (Netherlands)

    Mookhoek, S.D.; Fischer, H.R.; Zwaag, S. van der

    2012-01-01

    The work addressed involves the preparation and application of a compartmented polymer fibre, containing multiple separated domains with liquid agent for controlled release. The created fibre is a design for improvement to the existing liquid encapsulated self-healing systems such as fibre reinforce

  6. The use of an interphase to improve the transverse properties of unidirectional glass fibre reinforced polymer composites

    Science.gov (United States)

    Ellis, Keith

    The aim of the project was to improve the transverse mechanical properties of unidirectional glass fibre reinforced plastics (G.R.P.)* In addition it was intended that the longitudinal mechanical properties should not be Significantly a result of the transverse improvement The scientific and commercial literature were consulted to determine the most feasible means of improving the transverse properties. Four possible methods were identified, the most promising of which was interfacial modification. Interfacial modification involves the introduction of a third material ("the interphase" ) at the interface between the fibre and the matrix. For this project the interphase material was selected to be compliant or rubbery in nature. The Kies model for predicting the magnification of strain in the resin between fibres was extended to include an interphase. The model was developed for two modes of applied stress. The first was pure tension acting transverse to the fibre axis. The second was shear in the plane transverse to the fibre axis. A novel apparatus was constructed to manufacture composites with a compliant interphase. The apparatus combined a self-regulating coating technique with filament winding to give a continuous production facility. A range of mechanical tests were performed on composites both with and without an interphase. Presence of an interphase improved the following properties: transverse flexural strength, interlaminar and intralaminar shear strength , and transverse fiexural fracture energy. No improvement was noted for pure transverse tension. These results indicated that the interphase acted beneficially only when the composite was stressed in a predominantly shear mode. Conclusions from mechanical test results were supported by S.E.M. fractography. Considerable deformation of the interphase was found in composite tested in shear. This deformation was absent in composite tested in tension. It was postulated that these differences between behaviour

  7. Continuous jute fibre reinforced laminated paper composite and reinforcement-fibre free paper laminate

    Indian Academy of Sciences (India)

    B B Verma

    2009-12-01

    Plastic bags create a serious environmental problem. The proposed jute fibre reinforced laminated paper composite and reinforcement-fibre free paper laminate may help to combat the war against this pollutant to certain extent. The paper laminate, without reinforcement fibre, exhibited a few fold superiority in tensile properties than single paper strip. The studies further show that an appreciable improvement in tensile properties can be achieved by introducing continuous jute fibre in paper laminates.

  8. Nonlinear microstructured polymer optical fibres

    DEFF Research Database (Denmark)

    Frosz, Michael Henoch

    is potentially the case for microstructured polymer optical fibres (mPOFs). Another advantage is that polymer materials have a higher biocompatibility than silica, meaning that it is easier to bond certain types of biosensor materials to a polymer surface than to silica. As with silica PCFs, it is difficult...

  9. ELASTICITY of SHORT FIBRE REINFORCED POLYAMIDE: MORPHOLOGICAL AND NUMERICAl ANALYSIS OF FIBRE ORIENTATION EFFECTS

    Directory of Open Access Journals (Sweden)

    Francesca Cosmi

    2010-10-01

    Full Text Available The fatigue behaviour of injection moulded short fibre reinforced polymers depends upon fibre orientation, as shown in experiments conducted with notched specimens injected through different injection gates. The different fatigue behaviour is mainly related to the different local elastic properties, as determined by the different fibre orientation patterns, resulting into different strain distributions. In order to quantify the relationship between fibre orientation and elastic constants, the Cell Method was applied to volumes extracted from the specimens, reconstructed by micro-tomography.

  10. EVITA Project: Comparison Between Traditional Non-Destructive Techniques and Phase Contrast X-Ray Imaging Applied to Aerospace Carbon Fibre Reinforced Polymer

    Science.gov (United States)

    Gresil, Matthieu; Revol, Vincent; Kitsianos, Konstantinos; Kanderakis, Georges; Koulalis, Ilias; Sauer, Marc-Olivier; Trétout, Hervé; Madrigal, Ana-Maria

    2017-04-01

    The EU-project EVITA (Non-Destructive EValuation, Inspection and Testing of Primary Aeronautical Composite Structures Using Phase Contrast X-Ray Imaging) aims at bringing Grating-based Phase Contrast X-ray imaging technology to Non-Destructive Evaluation and Inspection of advanced primary and/or complex aerospace composite structures. Grating-based Phase Contrast X-Ray Imaging is based on the so-called Talbot-Lau interferometer, which is made of the combination of a standard X-ray apparatus with three transmission gratings as documented in the literature. This paper presents a comparison of two traditional non-destructive techniques (NDT): ultrasonic through transmission (immersed and water jet) and ultrasonic phased-array pulse echo, with the developed phase contrast X-Ray Imaging applied to advanced aerospace carbon fibre reinforced polymer. Typical defects produced during manufacture is examined as part of the testing and validation procedure. The following defects have been identified as being those most likely to be detected more effectively by the Grating-based Phase Contrast X-Ray Imaging process than other state of the art industrial NDT techniques: porosity, foreign objects, cracks, resin rich, cut fibres, and wavy fibres. The introduction of this innovative methodology is expected to provide the aeronautical industry with a reliable and detailed insight of the integrity of thin and thick composite structures as well as of complex geometry ones, such as integrated closed boxes and sandwiches.

  11. EVITA Project: Comparison Between Traditional Non-Destructive Techniques and Phase Contrast X-Ray Imaging Applied to Aerospace Carbon Fibre Reinforced Polymer

    Science.gov (United States)

    Gresil, Matthieu; Revol, Vincent; Kitsianos, Konstantinos; Kanderakis, Georges; Koulalis, Ilias; Sauer, Marc-Olivier; Trétout, Hervé; Madrigal, Ana-Maria

    2016-10-01

    The EU-project EVITA (Non-Destructive EValuation, Inspection and Testing of Primary Aeronautical Composite Structures Using Phase Contrast X-Ray Imaging) aims at bringing Grating-based Phase Contrast X-ray imaging technology to Non-Destructive Evaluation and Inspection of advanced primary and/or complex aerospace composite structures. Grating-based Phase Contrast X-Ray Imaging is based on the so-called Talbot-Lau interferometer, which is made of the combination of a standard X-ray apparatus with three transmission gratings as documented in the literature. This paper presents a comparison of two traditional non-destructive techniques (NDT): ultrasonic through transmission (immersed and water jet) and ultrasonic phased-array pulse echo, with the developed phase contrast X-Ray Imaging applied to advanced aerospace carbon fibre reinforced polymer. Typical defects produced during manufacture is examined as part of the testing and validation procedure. The following defects have been identified as being those most likely to be detected more effectively by the Grating-based Phase Contrast X-Ray Imaging process than other state of the art industrial NDT techniques: porosity, foreign objects, cracks, resin rich, cut fibres, and wavy fibres. The introduction of this innovative methodology is expected to provide the aeronautical industry with a reliable and detailed insight of the integrity of thin and thick composite structures as well as of complex geometry ones, such as integrated closed boxes and sandwiches.

  12. Fundamentals of fibre-reinforced soil engineering

    CERN Document Server

    Shukla, Sanjay Kumar

    2017-01-01

    This book is intended to serve as a one-stop reference on fibre-reinforced soils. Over the past 30-35 years, the engineering behaviour of randomly distributed/oriented fibre-reinforced soil, also called simply fibre-reinforced soil, has been investigated in detail by researchers and engineers worldwide. Waste fibres (plastic waste fibres, old tyre fibres, etc.) create disposal and environmental problems. Utilization of such fibres in construction can help resolve these concerns. Research studies and some field applications have shown that the fibres can be utilized in large quantities in geotechnical and civil engineering applications in a cost-effective and environmentally friendly manner. This book covers a complete description of fibres, their effects when included within a soil or other similar materials such as the fly ash, and their field applications. It gives a detailed view of fibre-reinforced soil engineering. The book will be useful to students, professional, and researchers alike, and can also ser...

  13. GLASS-FIBRE REINFORCED COMPOSITES: THE EFFECT OF ...

    African Journals Online (AJOL)

    HOD

    reported the impact of orientation on the manufacturing of polymer composite. ... strength when compared with the neat resin and other oriented (G10E30) fibre reinforced composite. ..... curing process on the properties of carbon fiber/epoxy composite fabricated using vacuum assisted resin infusion molding," Materials &.

  14. Effects of hybrid composition of LCP and glass fibres on abrasive wear of reinforced LLDPE

    Indian Academy of Sciences (India)

    S A R Hashmi; Ajay Naik; Navin Chand

    2006-02-01

    The hybrid of liquid crystalline polymer (LCP) fibres and glass fibres (GF) provide a combination of modulus and toughness to semi-crystalline linear-low-density-polyethylene (LLDPE). LCP and GF fibres reinforced composites were studied using two-body abrasion tester under different applied loads. Two sets of fibre reinforced LLDPE, 10 and 20 vol%, were investigated. The contents of LCP and glass fibres were varied as 25, 50, 75 and 100 vol% of overall volume of fibres in LLDPE. The effect of replacing glass fibre with LCP fibre on wear is reported. Wear loss increased with the applied loads and glass fibre contents in LLDPE. The replacements of glass fibres with LCP fibres improved abrasive wear resistance of composite. The composite containing 20 vol% of glass fibres in LLDPE showed the specific wear rate nearly double to that of LCP fibre reinforced LLDPE. Incorporation of LCP fibre improved wear resistance of glass fibre reinforced LLDPE. Worn surfaces were studied using SEM. Glass fibres were broken in small debris and removed easily whereas LCP fibres yielded to fibrillation during abrasive action. The overall wear rate was governed by the composition and test conditions.

  15. Design Methods for Fibre Reinforced Concrete

    DEFF Research Database (Denmark)

    Stang, Henrik

    1996-01-01

    The present paper describes the outline of a research project on Fibre Reinforced Concrete (FRC) currently being carried out in Denmark under the supervision of Danish Council of Technology, Danish Technical Research Council and Danish Natural Science Research Counsil....

  16. Mechanical properties of pineapple leaf fibre reinforced polypropylene composites

    Energy Technology Data Exchange (ETDEWEB)

    Arib, R.M.N. [Department of Mechanical and Manufacturing Engineering, Universiti Putra Malaysia, 43400 Serdang, Selangor (Malaysia); Sapuan, S.M. [Department of Mechanical and Manufacturing Engineering, Universiti Putra Malaysia, 43400 Serdang, Selangor (Malaysia)]. E-mail: sapuan@eng.upm.edu.my; Ahmad, M.M.H.M. [Department of Mechanical and Manufacturing Engineering, Universiti Putra Malaysia, 43400 Serdang, Selangor (Malaysia); Paridah, M.T. [Faculty of Forestry, Universiti Putra Malaysia, 43400 Serdang, Selangor (Malaysia); Zaman, H.M.D. Khairul [Radiation Processing Technology Division, Malaysian Institute for Nuclear Technology Research (MINT), Bangi 43000 Kajang, Selangor (Malaysia)

    2006-07-01

    Pineapple leaf fibre, which is rich in cellulose, relative inexpensive and abundantly available has the potential for polymer-reinforced composite. The present study investigates the tensile and flexural behaviours of pineapple leaf fibre-polypropylene composites as a function of volume fraction. The tensile modulus and tensile strength of the composites were found to be increasing with fibre content in accordance with the rule of mixtures. The tensile modulus and tensile strength with a volume fraction 10.8% are 687.02 and 37.28 MPa, respectively. The flexural modulus gives higher value at 2.7% volume fraction. The flexural strength of the composites containing 5.4% volume fraction was found to be higher than that of pure polypropylene resin by 5.1%. Scanning electron microscopic studies were carried out to understand the fibre-matrix adhesion and fibre breakage.

  17. Frost resistance of fibre reinforced concrete structures

    DEFF Research Database (Denmark)

    Hansen, Ernst Jan De Place

    1999-01-01

    Frost resistance of fibre reinforced concrete with 2.5-4.2% air and 6-9% air (% by volume in fresh concrete) casted in the laboratory and in-situ is compared. Steel fibres with hooked ends (ZP, length 30 mm) and polypropylene fibres (PP, CS, length 12 mm) are applied. It is shown that· addition...... of 0.4-1% by volume of fibres cannot replace air entrainment in order to secure a frost resistant concrete; the minimum amount of air needed to make the concrete frost resistant is not changed when adding fibres· the amount of air entrainment must be increased when fibres are added to establish...... the same amount of air pores as in the corresponding concrete without fibres...

  18. Interfacial Adhesion Characteristics of Kenaf Fibres Subjected to Different Polymer Matrices and Fibre Treatments

    Directory of Open Access Journals (Sweden)

    Umar Nirmal

    2014-01-01

    Full Text Available This study is aimed at determining the interfacial adhesion strength (IAS of kenaf fibres using different chemical treatments in hydrochloric (HCl and sodium hydroxide (NaOH with different concentrations. Single fibre pullout tests (SFPT were carried out for both untreated and treated fibres partially embedded into three different polymer matrices; polyester, epoxy, and polyurethane (PU as reinforcement blocks and tested under dry loading conditions. The study revealed that kenaf fibres treated with 6% NaOH subjected to polyester, epoxy, and PU matrices exhibits excellent IAS while poor in acidic treatment. The effect of SFPT results was mainly attributed to chemical composition of the fibres, types of fibre treatments, and variation in resin viscosities. By scanning electron microscopy examination of the material failure morphology, the fibres experienced brittle and ductile fibre breakage mechanisms after treatment with acidic and alkaline solutions.

  19. FOAM CONCRETE REINFORCEMENT BY BASALT FIBRES

    Directory of Open Access Journals (Sweden)

    Zhukov Aleksey Dmitrievich

    2012-10-01

    Full Text Available The authors demonstrate that the foam concrete performance can be improved by dispersed reinforcement, including methods that involve basalt fibres. They address the results of the foam concrete modeling technology and assess the importance of technology-related parameters. Reinforcement efficiency criteria are also provided in the article. Dispersed reinforcement improves the plasticity of the concrete mix and reduces the settlement crack formation rate. Conventional reinforcement that involves metal laths and rods demonstrates its limited application in the production of concrete used for thermal insulation and structural purposes. Dispersed reinforcement is preferable. This technology contemplates the infusion of fibres into porous mixes. Metal, polymeric, basalt and glass fibres are used as reinforcing components. It has been identified that products reinforced by polypropylene fibres demonstrate substantial abradability and deformability rates even under the influence of minor tensile stresses due to the low adhesion strength of polypropylene in the cement matrix. The objective of the research was to develop the type of polypropylene of D500 grade that would demonstrate the operating properties similar to those of Hebel and Ytong polypropylenes. Dispersed reinforcement was performed by the basalt fibre. This project contemplates an autoclave-free technology to optimize the consumption of electricity. Dispersed reinforcement is aimed at the reduction of the block settlement in the course of hardening at early stages of their operation, the improvement of their strength and other operating properties. Reduction in the humidity rate of the mix is based on the plasticizing properties of fibres, as well as the application of the dry mineralization method. Selection of optimal parameters of the process-related technology was performed with the help of G-BAT-2011 Software, developed at Moscow State University of Civil Engineering. The authors also

  20. Frost resistance of fibre reinforced concrete structures

    DEFF Research Database (Denmark)

    Hansen, Ernst Jan De Place

    1999-01-01

    of 0.4-1% by volume of fibres cannot replace air entrainment in order to secure a frost resistant concrete; the minimum amount of air needed to make the concrete frost resistant is not changed when adding fibres· the amount of air entrainment must be increased when fibres are added to establish......Frost resistance of fibre reinforced concrete with 2.5-4.2% air and 6-9% air (% by volume in fresh concrete) casted in the laboratory and in-situ is compared. Steel fibres with hooked ends (ZP, length 30 mm) and polypropylene fibres (PP, CS, length 12 mm) are applied. It is shown that· addition...

  1. Ductility Performance of Hybrid Fibre Reinforced Concrete

    Directory of Open Access Journals (Sweden)

    S. Eswari

    2008-01-01

    Full Text Available This study presents a study on the ductility performance of hybrid fibre reinforced concrete. The influence of fibre content on the ductility performance of hybrid fibre reinforced concrete specimens having different fibre volume fractions was investigated. The parameters of investigation included modulus of rupture, ultimate load, service load, ultimate and service load deflection, crack width, energy ductility and deflection ductility. A total of 27 specimens, 100×100×500 mm, were tested to study the above parameters. The specimens incorporated 0.0 to 2.0% volume fraction of polyolefin and steel fibres in different proportions. The ductility performance of hybrid fibre reinforced concrete specimens was compared with that of plain concrete. The test results show that addition of 2.0% by volume of hybrid fibres improves the ductility performance appreciably. An adaptive Neuro-Fuzzy based model has been proposed to predict the ductility performance characteristics. A reasonably close agreement has been obtained between the experimental and predicted results.

  2. THERMOMECHANICAL PROPERTIES OF JUTE/BAGASSE HYBRID FIBRE REINFORCED EPOXY THERMOSET COMPOSITES

    Directory of Open Access Journals (Sweden)

    Sudhir Kumar Saw

    2009-11-01

    Full Text Available Natural fibres are partly replacing currently used synthetic fibres as reinforcement for polymer composites. Jute fibre bundles were high-cellulose-content modified by alkali treatment, while the bagasse fibre bundles were modified by creating quinones in the lignin portions of fibre surfaces and reacting them with furfuryl alcohol (FA to increase their adhesiveness. The effects of different fibre bundle loading and modification of bagasse fibre surfaces in hybrid fibre reinforced epoxy composites have been studied. The role of fibre/matrix interactions in chemically modified hybrid composites were investigated using Differential Scanning Calorimeter, Differential Thermo Gravimetry, and a Universal Tensile Machine and compared with those of unmodified bagasse fibre bundles incorporated with modified jute fibre bundles reinforced hybrid composites. Fibre surface modification reduced the hydrophilicity of fibre bundles, and significantly increased mechanical properties of hybrid composites were observed in conjunction with SEM images. The SEM analysis of the fibre and the composite fractured surfaces have confirmed the FA grafting and shown a better compatibility at the interface between chemically modified fibre bundles and epoxy resin. This paper incorporates interesting results of thermomechanical properties and evaluation of fibre/matrix interactions.

  3. UV radiation effect towards mechanical properties of Natural Fibre Reinforced Composite material: A Review

    Science.gov (United States)

    Mahzan, Shahruddin; Fitri, Muhamad; Zaleha, M.

    2017-01-01

    The use of natural fibres as reinforcement material have become common in human applications. Many of them are used in composite materials especially in the polymer matrix composites. The use of natural fibres as reinforcement also provide alternative solution of usage instead of being a waste materials. In some applications, these natural reinforced polymer composites were used as the outer layer, making them exposed to ultra violet exposure, hence prone to UV radiation. This paper reviews the effect of UV radiation towards the mechanical properties of natural fibre reinforced polymer matrix composite material. The effect of chemical treatment towards the natural fibre is also investigated. One of the important features that was critically explored was the degradation of the composite materials. The influence of UV radiation on the degradation rate involve several parameters such as wavelength, intensity and exposure time. This review highlights the influence of these parameters in order to provide better solution for polymer matrix composite’s development.

  4. Prediction of process induced shape distortions and residual stresses in large fibre reinforced composite laminates

    DEFF Research Database (Denmark)

    Nielsen, Michael Wenani

    The present thesis is devoted to numerical modelling of thermomechanical phenomena occurring during curing in the manufacture of large fibre reinforced polymer matrix composites with thick laminate sections using vacuum assisted resin transfer moulding (VARTM). The main application of interest...

  5. STRAIN HARDENING PROPERTIES OF STEEL FIBRE REINFORCED LATEX CONCRETE COMPOSITE

    Directory of Open Access Journals (Sweden)

    V.M. Sounthararajan

    2013-04-01

    Full Text Available Steel fibre addition in concrete possesses high merits in terms of achieving homogeneity and tensile strength properties. Polymeric addition in concrete has high advantages in terms of pore fillingeffect and subsequent increase in durability index. The combined addition of steel and polymeric latex additions in concrete leads to increased strength, durability, toughness, resistance to cracking and crack propagation. Studies were conducted in the present study to analyse the properties of concrete that can be further improved with the addition of polymer styrene butadiene rubber emulsion (SBR along with steel fibres. In this research analysis, styrene-butadiene rubber (SBR latex as a polymeric admixture was used in steel fibre reinforced concrete. The effect of curing conditions on the strength gain properties of composite steel fibre latex matrix on the compressive, flexural strength, and split tensile test of polymermodified steel fibre reinforced concrete (PSFC concrete was examined. Including SBR latex at a certain % of binder in the PSFC concrete improves the bonds within the cement matrix and steel fibres (SF. This is due to the SBR films formed in the matrix. By the comparison of properties of SFC and PSFC, it can be shown that a tremendous increase in compressive strength when 4% and 8% SBR is added along with 0.75% and 1.5% SF. The increase in flexural strength was noticed and post cracking ductility is imparted to concrete.

  6. Evaluation on mechanical properties of woven aloevera and sisal fibre hybrid reinforced epoxy composites

    Indian Academy of Sciences (India)

    A Shadrach Jeya Sekaran; K Palani Kumar; K Pitchandi

    2015-09-01

    Natural fibres as reinforcement in polymer composite for making low-cost materials are growing day by day. Researcher’s main attention is to apply appropriate technology to utilize these natural fibres as effectively and economically as possible to produce good quality fibre-reinforced polymer composites for various engineering applications. In this research, the experiments of tensile, flexural and impact tests were carried out for woven aloevera and sisal fibre hybrid-reinforced epoxy composites. The hand layup method of fabrication was employed in preparing the composites. The surface morphology of the composites was examined through scanning electron microscope. Due to the low-density and high-specific properties of sisal fibre composites, it offer cost savings when compared with synthetic fibres. Hence it has very good implications in the automotive and transportation industry.

  7. Short and long term behaviour of externally bonded fibre reinforced polymer laminates with bio-based resins for flexural strengthening of concrete beams

    Science.gov (United States)

    McSwiggan, Ciaran

    The use of bio-based resins in composites for construction is emerging as a way to reduce of embodied energy produced by a structural system. In this study, two types of bio-based resins were explored: an epoxidized pine oil resin blend (EP) and a furfuryl alcohol resin (FA) derived from corn cobs and sugar cane. Nine large-scale reinforced concrete beams strengthened using externally bonded carbon and glass fibre reinforced bio-based polymer (CFRP and GFRP) sheets were tested. The EP resin resulted in a comparable bond strength to conventional epoxy (E) when used in wet layup, with a 7% higher strength for CFRP. The FA resin, on the other hand, resulted in a very weak bond, likely due to concrete alkalinity affecting curing. However, when FA resin was used to produce prefabricated cured CFRP plates which were then bonded to concrete using conventional epoxy paste, it showed an excellent bond strength. The beams achieved an increase in peak load ranging from 18-54% and a 9-46% increase in yielding load, depending on the number of FRP layers and type of fibres and resin. Additionally, 137 concrete prisms with a mid-span half-depth saw cut were used to test CFRP bond durability, and 195 CFRP coupons were used to examine tensile strength durability. Specimens were conditioned in a 3.5% saline solution at 23, 40 or 50°C, for up to 240 days. Reductions in bond strength did not exceed 15%. Bond failure of EP was adhesive with traces of cement paste on CFRP, whereas that of FA was cohesive with a thicker layer of concrete on CFRP, suggesting that the bond between FA and epoxy paste is excellent. EP tension coupons had similar strength and modulus to E resin, whereas FA coupons had a 9% lower strength and 14% higher modulus. After 240 days of exposure, maximum reductions in tensile strength were 8, 19 and 10% for EP, FA and E resins, respectively. Analysis of Variance (ANOVA) was also performed to assess the significance of the reductions observed. High degrees of

  8. The effect of fibre content, fibre size and alkali treatment to Charpy impact resistance of Oil Palm fibre reinforced composite material

    Science.gov (United States)

    Fitri, Muhamad; Mahzan, Shahruddin

    2016-11-01

    In this research, the effect of fibre content, fibre size and alkali treatment to the impact resistance of the composite material have been investigated, The composite material employs oil palm fibre as the reinforcement material whereas the matrix used for the composite materials are polypropylene. The Oil Palm fibres are prepared for two conditions: alkali treated fibres and untreated fibres. The fibre sizes are varied in three sizes: 5mm, 7mm and 10mm. During the composite material preparation, the fibre contents also have been varied into 3 different percentages: 5%, 7% and 10%. The statistical approach is used to optimise the variation of specimen determined by using Taguchi method. The results were analyzed also by the Taguchi method and shows that the Oil Palm fibre content is significantly affect the impact resistance of the polymer matrix composite. However, the fibre size is moderately affecting the impact resistance, whereas the fibre treatment is insignificant to the impact resistance of the oil palm fibre reinforced polymer matrix composite.

  9. Self-compacting fibre-reinforced concrete

    NARCIS (Netherlands)

    Grunewald, S.; Walraven, J.C.

    2001-01-01

    The project 'self-compacting fibre-reinforced concrete (SCFRC)' is part of the Dutch STW/PPM program - 'cement-bonded materials' - DCT.4010. Subproject III to which the project ,SCFRC' belongs deals with the development of new high performance concretes. The project 'SCFRC' aims at investigating the

  10. Strength Evaluation of Steel-Nylon Hybrid Fibre Reinforced Concrete

    OpenAIRE

    Maniram Kumar; Er. Ankush Khadwal

    2014-01-01

    When fibres like steel, glass, polypropylene, nylon, carbon, aramid, polyester, jute, etc are mixed with concrete known as fibre reinforced concrete. To overcome the deficiencies of concrete; fibres are added to improve the performance of concrete. In this research hybrid reinforced concrete is made by using steel and nylon 6 fibres. The inclusion of both steel and nylon 6 fibres are used in order to combine the benefits of both fibers; structural improvements provided by stee...

  11. Durability of cracked fibre reinforced concrete structures

    DEFF Research Database (Denmark)

    Hansen, Ernst Jan De Place

    1998-01-01

    Durability studies are carried out at BKM as part of the research project "Design Methods for Fibre Reinforced Concrete" (FRC) involving BKM, The Concrete Research Center at DTI, Building Technology at Aalborg University, Rambøll, 4K-Beton and Rasmussen & Schiøtz. Concrete beams with or without...... structure are made on specimens drilled or sawed from beams after unloading (mechanical load). The pore structure of the concretes will be studied by microscopy, sorption and suction curves. The test programme involves three different concrete qualities (water-cement ratios). Both steel fibres (ZP...

  12. Cellulose Fibre-Reinforced Biofoam for Structural Applications

    Directory of Open Access Journals (Sweden)

    Jasmina Obradovic

    2017-06-01

    Full Text Available Traditionally, polymers and macromolecular components used in the foam industry are mostly derived from petroleum. The current transition to a bio-economy creates demand for the use of more renewable feedstocks. Soybean oil is a vegetable oil, composed mainly of triglycerides, that is suitable material for foam production. In this study, acrylated epoxidized soybean oil and variable amounts of cellulose fibres were used in the production of bio-based foam. The developed macroporous bio-based architectures were characterised by several techniques, including porosity measurements, nanoindentation testing, scanning electron microscopy, and thermogravimetric analysis. It was found that the introduction of cellulose fibres during the foaming process was necessary to create the three-dimensional polymer foams. Using cellulose fibres has potential as a foam stabiliser because it obstructs the drainage of liquid from the film region in these gas-oil interfaces while simultaneously acting as a reinforcing agent in the polymer foam. The resulting foams possessed a porosity of approximately 56%, and the incorporation of cellulose fibres did not affect thermal behaviour. Scanning electron micrographs showed randomly oriented pores with irregular shapes and non-uniform pore size throughout the samples.

  13. Applications and Properties of Fibre Reinforced Concrete

    Directory of Open Access Journals (Sweden)

    Amit Rai1 ,

    2014-05-01

    Full Text Available In conventional concrete, micro-cracks develop before structure is loaded because of drying shrinkage and other causes of volume change. When the structure is loaded, the micro cracks open up and propagate because of development of such micro-cracks, results in inelastic deformation in concrete. Fibre reinforced concrete (FRC is cementing concrete reinforced mixture with more or less randomly distributed small fibres. In the FRC, a numbers of small fibres are dispersed and distributed randomly in the concrete at the time of mixing, and thus improve concrete properties in all directions. The fibers help to transfer load to the internal micro cracks. FRC is cement based composite material that has been developed in recent years. It has been successfully used in construction with its excellent flexural-tensile strength, resistance to spitting, impact resistance and excellent permeability and frost resistance. It is an effective way to increase toughness, shock resistance and resistance to plastic shrinkage cracking of the mortar. These fibers have many benefits. Steel fibers can improve the structural strength to reduce in the heavy steel reinforcement requirement. Freeze thaw resistance of the concrete is improved. Durability of the concrete is improved to reduce in the crack widths. Polypropylene and Nylon fibers are used to improve the impact resistance. Many developments have been made in the fiber reinforced concrete.

  14. Roughness and fibre reinforcement effect onto wettability of composite surfaces

    Science.gov (United States)

    Bénard, Quentin; Fois, Magali; Grisel, Michel

    2007-03-01

    Wettability of glass/epoxy and carbon/epoxy composites materials has been determined via sessile drop technique. Good-Van Oss approach has been used to evaluate surface free energy parameters of smooth and rough surfaces. Results obtained point out the influence of fibre reinforcement on surface free energy of composite materials. In addition, the interest of surface treatment to increase surface roughness has been discussed in terms of wettability. To sum up, results obtained clearly demonstrate the necessity of considering properties of a given composite surface not only as a polymer but a fibre/polymer couple. The drawn conclusions are of great interest as it may have numerous consequences in applications such as adhesion.

  15. Surface treated polypropylene (PP) fibres for reinforced concrete

    Energy Technology Data Exchange (ETDEWEB)

    López-Buendía, Angel M., E-mail: buendia@uv.es [AIDICO Technological Institute of Construction, Benjamin Franklin 17, 46380 Paterna, Valencia (Spain); Romero-Sánchez, María Dolores [AIDICO Technological Institute of Construction, Marble Technical Unit, Camí de Castella 4, 03660 Novelda. Alicante (Spain); Climent, Verónica [Lafarge Cementos, Polígono Sepes, Isaac Newton s/n, 46500 Sagunto, Valencia (Spain); Guillem, Celia [AIDICO Technological Institute of Construction, Marble Technical Unit, Camí de Castella 4, 03660 Novelda. Alicante (Spain)

    2013-12-15

    Surface treatments on a polypropylene (PP) fibre have contributed to the improvement of fibre/concrete adhesion in fibre-reinforced concrete. The treatments to the PP fibre were characterized by contact angle measurements, ATR-IR and XPS to analyse chemical alterations. The surface topography and fibre/concrete interaction were analysed by several microscopic techniques, namely optical petrographic, and scanning electron microscopy. Treatment modified the surface chemistry and topography of the fibre by introducing sodium moieties and created additional fibre surface roughness. Modifications in the fibre surface led to an increase in the adhesion properties between the treated fibres and concrete and an improvement in the mechanical properties of the fibre-reinforced concrete composite as compared to the concrete containing untreated PP fibres. Compatibility with the concrete and increased roughness and mineral surface was also improved by nucleated portlandite and ettringite mineral association anchored on the alkaline PP fibre surface, which is induced during treatment.

  16. THE INVESTIGATION OF FRACTURE PROPERTIES OF SISAL TEXTILE REINFORCED POLYMERS

    Institute of Scientific and Technical Information of China (English)

    LiYan

    2004-01-01

    Sisal fibre is a kind of natural fibre which possesses high specific strength and modulus, low price, recycalability, easy availability in some countries. Using sisal fibre as reinforcement to make sisal fibre reinforced polymer composites has aroused great interest of materials scientists and engineers all over the world. Many researches have been done in recent years which include the study of mechanical properties of the composites, finding an efficient way to improve the interfacial bonding properties between sisal fibre and polymeric matrices and fibre surface treatment on the mechanical performance of the composites. Though many researches on sisal fibre reinforced composites have been done so far, none deals with the fracture properties of this novel composite which is crucial for the actual application of this material. In this research, Charpy impact test and compact tension test were employed to study the fracture toughness of sisal fibre reinforced vinyl ester and epoxy composites. The effect of fibre surface treatment on the fracture properties of these composites by permanganate and silane was evaluated. The initiation and propagation of the crack were observed with optical microscopy (OM). The fracture morphologies revealed by OM explains the fracture phenomenon of sisal fibre reinforced composites.

  17. Applications for fibre-reinforced plastic

    Energy Technology Data Exchange (ETDEWEB)

    Teuschler, V. [Fiberdur-Vanck (Germany)

    1999-07-01

    The outstanding mechanical properties of fibre-reinforced plastic are extolled. It has strength comparable with that of steel, and other physical properties that give it advantages over ferrous materials for use in pipelines, shipbuilding and offshore conduits. It has well established uses in aircraft, automobiles and boats and is probably more resistant to weathering and corrosion than any other material. The electricity-conducting Navicon pipe, the Fiberdur-vinyl ester/epoxy system and the Fiberdur-DOS system are described.

  18. Comparison of two novel approaches to model fibre reinforced concrete

    NARCIS (Netherlands)

    Radtke, F.K.F.; Simone, A.; Sluys, L.J.

    2009-01-01

    We present two approaches to model fibre reinforced concrete. In both approaches, discrete fibre distributions and the behaviour of the fibre-matrix interface are explicitly considered. One approach employs the reaction forces from fibre to matrix while the other is based on the partition of unity f

  19. Mechanical properties of thermoplastic composites reinforced with Entada Mannii fibre

    Directory of Open Access Journals (Sweden)

    Oluwayomi BALOGUN

    2017-06-01

    Full Text Available The mechanical properties and fracture mechanisms of thermoplastic composites reinforced with Entada mannii fibres was investigated. Polypropylene reinforced with 1, 3, 5, and 7 wt% KOH treated and untreated Entada mannii fibres were processed using a compression moulding machine. The tensile properties, impact strength, and flexural properties of the composites were evaluated while the tensile fracture surface morphology was examined using scanning electron microscopy. The results show that reinforcing polypropylene with Entada mannii fibres resulted in improvement of the tensile strength and elastic modulus. This improvement is remarkable for 5 wt% KOH treated Entada mannii fibre reinforced composites by 28 % increase as compared with the unreinforced polypropylene. The composites reinforced with Entada mannii fibres also had impact strength values of 70 % higher than the unreinforced polypropylene. However, the polypropylene reinforced with 5 and 7wt% KOH treated fibres exhibited significantly higher flexural strength and Young’s modulus by 53% and 52% increase as compared with the unreinforced polypropylene. The fracture surface of the polypropylene composites reinforced with untreated Entada mannii fibres were characterized by fibre debonding, fibre pull-out and matrix yielding while less voids and fibre pull-outs are observed in the composites reinforced with KOH treated Entada mannii fibres. v

  20. Characterisation of natural fibre reinforced PLA foams prepared by supercritical CO2 assisted extrusion

    Directory of Open Access Journals (Sweden)

    K. Bocz

    2016-09-01

    Full Text Available Natural fibre reinforced polylactic acid (PLA foams, as potential green replacements for petroleum-based polymer foams, were investigated. Highly porous (ε > 95% microcellular PLA foams were manufactured by supercritical CO2 assisted extrusion process. To overcome the inherently low melt strength of PLA, epoxy-functionalized chain extender was applied, while talc was added to improve its crystallization kinetics. The combined application of chain extender and talc effectively promoted the formation of uniform cell structures. The effect of cellulose and basalt fibre reinforcement on the foamability, morphology, structure and mechanical properties of the PLA foams were investigated as well. The addition of 5 wt% natural fibres promoted the cell nucleation, but caused non-uniform distribution of cell size due to the microholes induced by local fibre-matrix debonding. The compression strength of the manufactured basalt fibre reinforced PLA foams reached 40 kPa.

  1. Fibre-reinforced calcium phosphate cements: a review.

    Science.gov (United States)

    Canal, C; Ginebra, M P

    2011-11-01

    Calcium phosphate cements (CPC) consist of one or more calcium orthophosphate powders, which upon mixing with water or an aqueous solution, form a paste that is able to set and harden after being implanted within the body. Different issues remain still to be improved in CPC, such as their mechanical properties to more closely mimic those of natural bone, or their macroporosity to favour osteointegration of the artificial grafts. To this end, blends of CPC with polymer and ceramic fibres in different forms have been investigated. The present work aims at providing an overview of the different approaches taken and identifying the most significant achievements in the field of fibre-reinforced calcium phosphate cements for clinical applications, with special focus on their mechanical properties.

  2. Experimental Investigation and Analysis of Mechanical Properties of Palm fibre reinforced Epoxy composites and Sisal fibre reinforced Polyester composites

    Directory of Open Access Journals (Sweden)

    B. Muthu Chozha Rajan

    2015-12-01

    Full Text Available The objective of this paper was investigated to evaluate tensile, flexural and Impact properties of Palm fibre reinforced Epoxy composites (PFRP and compared with Sisal fibre reinforced Polyester composites (SFRP. Untreated chopped Palmyra Palm fruit fibre was used as reinforcement in Epoxy resin matrix and chopped sisal fibre was used as reinforcement in Polyester resin matrix. The chopped palm fibrereinforced composite were prepared in volume fractions (Vf such as 10 %, 20 % and 30 % of specimens by using Epoxy and the chopped sisalfibre reinforced composite were prepared in volume fractions (Vf such as 10 %, 20 % and 30 % of specimens by using Polyester. The specimens are tested for their mechanical Properties strictly as per ASTM procedures. Static analysis is performed by FEA based software ANSYS R15 with design constraints as Equivalent stress, Shear stress and deflection.The experimental result and analysis shows that the fibre volume fraction increases the tensile, flexural, Impact strength and modulus of the fibre reinforced composites

  3. Crack Detection in Fibre Reinforced Plastic Structures Using Embedded Fibre Bragg Grating Sensors: Theory, Model Development and Experimental Validation

    DEFF Research Database (Denmark)

    Pereira, Gilmar Ferreira; Mikkelsen, Lars Pilgaard; McGugan, Malcolm

    2015-01-01

    properties. When applying this concept to different structures, sensor systems and damage types, a combination of damage mechanics, monitoring technology, and modelling is required. The primary objective of this article is to demonstrate such a combination. This article is divided in three main topics......In a fibre-reinforced polymer (FRP) structure designed using the emerging damage tolerance and structural health monitoring philosophy, sensors and models that describe crack propagation will enable a structure to operate despite the presence of damage by fully exploiting the material’s mechanical...... a crack growth/damage event in fibre-reinforced polymer or structural adhesive-bonded structures using embedded fibre Bragg grating (FBG) sensors is presented by combining conventional measured parameters, such as wavelength shift, with parameters associated with measurement errors, typically ignored...

  4. Strength Evaluation of Steel-Nylon Hybrid Fibre Reinforced Concrete

    Directory of Open Access Journals (Sweden)

    Maniram Kumar

    2014-07-01

    Full Text Available When fibres like steel, glass, polypropylene, nylon, carbon, aramid, polyester, jute, etc are mixed with concrete known as fibre reinforced concrete. To overcome the deficiencies of concrete; fibres are added to improve the performance of concrete. In this research hybrid reinforced concrete is made by using steel and nylon 6 fibres. The inclusion of both steel and nylon 6 fibres are used in order to combine the benefits of both fibers; structural improvements provided by steel fibers and the resistance to plastic shrinkage improvements provided by nylon fibers. So the aim of this project is to investigate the mechanical properties (compressive strength, flexure strength and split tensile strength of hybrid fiber reinforced concrete under compression, flexure & tension. The total volume of fibre was taken 0.75 % of total volume of concrete. In this experimental work, four different concrete mix proportions were casted with fibres and one mix without fibres. Four different mix combinations of steel- nylon 6 fibres were 100-00%, 75-25%, 50-50% and 25-75%. Superplasticizer was used in all mixes to make concrete more workable. The results shown that compressive, split tensile and flexural strength of hybrid fibre reinforced concrete increase by increasing quantity of steel and nylon 6 fibres. The increase in compressive and tensile strength due to incorporation of steel fibre is greater than that of using nylon fibre. For the nylon 6 fibres, adding more fibres into the concrete has a limited improvement on splitting tensile strength. Inclusion of nylon 6 fibres along with steel fibres results in considerable improvement in flexural strength as compared to solo steel fibre.

  5. Fatigue damage propagation in unidirectional glass fibre reinforced composites

    DEFF Research Database (Denmark)

    Hansen, Jens Zangenberg; Alzamora Guzman, Vladimir Joel; Østergaard, R.C.

    2012-01-01

    Damage progression in unidirectional glass fibre reinforced composites exposed to tension fatigue is investigated, and a quantitative explanation is given for the observed stiffness loss. The stiffness degradation during fatigue is directly related to fibre breaks in the load-carrying axial fibre...... needs further attention and understanding in order to improve the fatigue life-time of glass fibre reinforced composites....... bundles. The underlying mechanisms are examined using digital microscopy, and it is postulated that fatigue damage initiates due to stress concentrations between the backing (transverse) layer and the unidirectional layer, followed by a cyclic fretting and axial fibre debonding. This fretting mechanism...

  6. Effects of fibre orientation on mechanical properties of hybrid bamboo/glass fibre polymer composites

    Indian Academy of Sciences (India)

    B Stanly Jones Retnam; M Sivapragash; P Pradeep

    2014-08-01

    The usage of natural fibre as reinforcement in polymer composites have widely increased because of its enhanced properties. The usage of plant fibre cannot alone satisfy all the needs of the composites. Hence, introduction of hybrid plays a vital role in enhancing the mechanical properties of the FRP composites. Fibre orientation contributes significant role in improving the mechanical properties of the FRP composites. In this proposal, hybrid bamboo/glass fibre woven in different orientations such as 0°/90° and ± 45° was used and its effect on mechanical properties were studied. Composites containing hybrid fibres found to possess better mechanical properties, when compared to pure bamboo. In order to justify this, the following mechanical properties such as tensile, flexural, impact and hardness were investigated. SEM analysis shows the bonding between the matrix and reinforcement. All the above test results indicate that the introduction of natural bamboo fibre in glass reduces the overall cost of the composites with no compromise in strength and also attracted several studies covering green technologies.

  7. Energy Absorption of Monolithic and Fibre Reinforced Aluminium Cylinders

    NARCIS (Netherlands)

    De Kanter, J.L.C.G.

    2006-01-01

    Summary accompanying the thesis: Energy Absorption of Monolithic and Fibre Reinforced Aluminium Cylinders by Jens de Kanter This thesis presents the investigation of the crush behaviour of both monolithic aluminium cylinders and externally fibre reinforced aluminium cylinders. The research is based

  8. Energy Absorption of Monolithic and Fibre Reinforced Aluminium Cylinders

    NARCIS (Netherlands)

    De Kanter, J.L.C.G.

    2006-01-01

    Summary accompanying the thesis: Energy Absorption of Monolithic and Fibre Reinforced Aluminium Cylinders by Jens de Kanter This thesis presents the investigation of the crush behaviour of both monolithic aluminium cylinders and externally fibre reinforced aluminium cylinders. The research is based

  9. Comparison of impact strength of acrylic resin reinforced with kevlar and polyethylene fibres.

    Science.gov (United States)

    Kamath, G; Bhargava, K

    2002-01-01

    The present study was done to evaluate the impact strengths of heat-activated acrylic resins reinforced with Kevlar fibres, polyethylene fibres and unreinforced heat activated acrylic resin. Each of three groups had 25 specimens. Brass rods of uniform length of 40 mm and diameter of 8 mm were used to prepare the moulds. A combination of long fibres (40 mm length) and short fibres (6 mm length) were used. The total amount of fibres incorporated was limited to 2% by weight of the resin matrix. Short and long fibres of equal weight were incorporated. The short fibres were mixed with polymer and monomer and packed into the mould, while, the long axis of the specimen, perpendicular to the applied force. The specimens were then processed. Impact strength testing was done on Hounsfield's impact testing machine. Kevlar fibre reinforced heat activated acrylic resin specimens recorded higher mean impact strength of 0.8464 Joules, while polyethylene fibres reinforced heat activated acrylic resin recorded mean impact strength of 0.7596 joules. The unreinforced heat activated acrylic resin recorded mean impact strength of 0.3440 Joules.

  10. Design of macro-synthetic fibre reinforced concrete pipes

    OpenAIRE

    Fuente, Albert de la; Escariz, Renata Campos; Figueiredo,Antonio Domingues de; Aguado, Antonio

    2013-01-01

    This paper presents an experimental campaign in which concrete pipes were manufactured using plastic fibres as the sole reinforcement material. In this regard, it has been demonstrated that the use of plastic fibres is compatible with pipe production systems, and that, when subjected to the crushing test (CT), plastic fibre reinforced pipes yield strength classes that are attractive in terms of the growth of this material in the concrete pipe industry. Moreover, the results obtained from b...

  11. Microanalytical investigation of fibre-reinforced ceramic materials

    Energy Technology Data Exchange (ETDEWEB)

    Meier, B.; Grathwohl, G.

    1989-03-01

    Microanalytical investigations have been made on samples of ceramic fibres (SiC fibres, (Nicalon) C fibre coated with TiN) and fibre-reinforced ceramics (SiC-and glass-matrices). High resolution Auger electron spectroscopy (HRAES), electron probe microanalysis (EPMA) and scanning electron microscopy were employed for these examinations. Analysis was best performed with HRAES on account of its lateral and depth resolution. Some of the problems involved in this technique are discussed e.g. electron beam effects. AES depth profiles of ceramic fibres are reported and compared with the surface analysis of fibres in the composites after being broken in situ.

  12. Processing, structure and flexural strength of CNT and carbon fibre reinforced, epoxy-matrix hybrid composite

    Indian Academy of Sciences (India)

    K Chandra Shekar; M Sai Priya; P K Subramanian; Anil Kumar; B Anjaneya Prasad; N Eswara Prasad

    2014-05-01

    Advanced materials such as continuous fibre-reinforced polymer matrix composites offer significant enhancements in variety of properties, as compared to their bulk, monolithic counterparts. These properties include primarily the tensile stress, flexural stress and fracture parameters. However, till date, there are hardly any scientific studies reported on carbon fibre (Cf) and carbon nanotube (CNT) reinforced hybrid epoxy matrix composites (unidirectional). The present work is an attempt to bring out the flexural strength properties along with a detailed investigation in the synthesis of reinforced hybrid composite. In this present study, the importance of alignment of fibre is comprehensively evaluated and reported. The results obtained are discussed in terms of material characteristics, microstructure and mode of failure under flexural (3-point bend) loading. The study reveals the material exhibiting exceptionally high strength values and declaring itself as a material with high strength to weight ratio when compared to other competing polymer matrix composites (PMCs); as a novel structural material for aeronautical and aerospace applications.

  13. Effect of discrete fibre reinforcement on soil tensile strength

    Directory of Open Access Journals (Sweden)

    Jian Li

    2014-04-01

    Full Text Available The tensile behaviour of soil plays a significantly important role in various engineering applications. Compacted soils used in geotechnical constructions such as dams and clayey liners in waste containment facilities can suffer from cracking due to tensile failure. In order to increase soil tensile strength, discrete fibre reinforcement technique was proposed. An innovative tensile apparatus was developed to determine the tensile strength characteristics of fibre reinforced soil. The effects of fibre content, dry density and water content on the tensile strength were studied. The results indicate that the developed test apparatus was applicable in determining tensile strength of soils. Fibre inclusion can significantly increase soil tensile strength and soil tensile failure ductility. The tensile strength basically increases with increasing fibre content. As the fibre content increases from 0% to 0.2%, the tensile strength increases by 65.7%. The tensile strength of fibre reinforced soil increases with increasing dry density and decreases with decreasing water content. For instance, the tensile strength at a dry density of 1.7 Mg/m3 is 2.8 times higher than that at 1.4 Mg/m3. It decreases by 30% as the water content increases from 14.5% to 20.5%. Furthermore, it is observed that the tensile strength of fibre reinforced soil is dominated by fibre pull-out resistance, depending on the interfacial mechanical interaction between fibre surface and soil matrix.

  14. Effect of discrete fibre reinforcement on soil tensile strength

    Institute of Scientific and Technical Information of China (English)

    Jian Li; Chaosheng Tang; Deying Wang; Xiangjun Pei; Bin Shi

    2014-01-01

    The tensile behaviour of soil plays a significantly important role in various engineering applications. Compacted soils used in geotechnical constructions such as dams and clayey liners in waste containment facilities can suffer from cracking due to tensile failure. In order to increase soil tensile strength, discrete fibre reinforcement technique was proposed. An innovative tensile apparatus was developed to deter-mine the tensile strength characteristics of fibre reinforced soil. The effects of fibre content, dry density and water content on the tensile strength were studied. The results indicate that the developed test apparatus was applicable in determining tensile strength of soils. Fibre inclusion can significantly in-crease soil tensile strength and soil tensile failure ductility. The tensile strength basically increases with increasing fibre content. As the fibre content increases from 0%to 0.2%, the tensile strength increases by 65.7%. The tensile strength of fibre reinforced soil increases with increasing dry density and decreases with decreasing water content. For instance, the tensile strength at a dry density of 1.7 Mg/m3 is 2.8 times higher than that at 1.4 Mg/m3. It decreases by 30% as the water content increases from 14.5% to 20.5%. Furthermore, it is observed that the tensile strength of fibre reinforced soil is dominated by fibre pull-out resistance, depending on the interfacial mechanical interaction between fibre surface and soil matrix.

  15. Connectorization of fibre Bragg grating sensors recorded in microstructured polymer optical fibre

    DEFF Research Database (Denmark)

    Abang, A.; Saez-Rodriguez, D.; Nielsen, Kristian

    2013-01-01

    We describe te production and characterization of FC/PC connectorised fibre Bragg grating sensors in polymer fibre. Sensors were recorded in few-moded and single mode microstructured fibre composed of poly (methyl methacrylate).......We describe te production and characterization of FC/PC connectorised fibre Bragg grating sensors in polymer fibre. Sensors were recorded in few-moded and single mode microstructured fibre composed of poly (methyl methacrylate)....

  16. Cellulose kraft pulp reinforced polylactic acid (PLA composites: effect of fibre moisture content

    Directory of Open Access Journals (Sweden)

    Elias Retulainen

    2016-06-01

    Full Text Available PLA offers a competitive and CO2 neutral matrix to commonly used polyolefin polymer based composites. Moreover, the use of PLA reduces dependency on oil when producing composite materials. However, PLA has a tendency of hydrolytic degradation under melt processing conditions in the presence of moisture, which remains a challenge when processing PLA reinforced natural fibre composites. Natural fibres such as cellulose fibres are hygroscopic with 6–10 wt% moisture content at 50–70% relative humidity conditions. These fibres are sensitive to melt processing conditions and fibre breakage (cutting also occur during processing. The degradation of PLA, moisture absorption of natural fibres together with fibre cutting and uneven dispersion of fibres in polymer matrix, deteriorates the overall properties of the composite. In the given research paper, bleached softwood kraft pulp (BSKP reinforced PLA compounds were successfully melt processed using BSKP with relatively high moisture contents. The effect of moist BSKP on the molecular weight of PLA, fibre length and the mechanical properties of the composites were investigated. By using moist never-dried kraft pulp fibres for feeding, the fibre cutting was decreased during the melt compounding. Even though PLA degradation occurred during the melt processing, the final damage to the PLA was moderate and thus did not deteriorate the mechanical properties of the composites. However, comprehensive moisture removal is required during the compounding in order to achieve optimal overall performance of the PLA/BSKP composites. The economic benefit gained from using moist BSKP is that the expensive and time consuming drying process steps of the kraft pulp fibres prior to processing can be minimized.

  17. Experimental study of bamboo using banana and linen fibre reinforced polymeric composites

    Directory of Open Access Journals (Sweden)

    Ramachandran M.

    2016-09-01

    Full Text Available The application of natural fibres such as bamboo, jute, banana, coir, linen and the like in Fibre Reinforced Polymeric (FRP composites have become so vital due to their high effective stiffness and strength, availability, low cost, specific strength, better dimensional stability and mechanical properties, eco-friendly and biodegradable as compared with synthetic fibres. The interest in natural fibre reinforced polymeric composites is rapidly springing up in terms of research and industrial applications. The increased applications of these natural fibres in such composites are a proof to this claim. The paper deals with the detailed study of bamboo fibre, banana fibre and linen fibre cut into 2−4 mm of length with epoxy resin having random orientations. Various tests like Impact test (IZOD and CHARPY test, Fourier Transform Infra-Red (FTIR test and Rockwell Hardness test were conducted on 10 specimens of bamboo epoxy resin composite, bamboo−banana epoxy resin composite and bamboo−linen epoxy resin composite. It is analysed and proved that bamboo−banana epoxy resin composite shows better results in Impact test with values of 4 Joules for Izod test and 5 Joules for Charpy test and in FTIR test, compatibility of fibres with polymers in bamboo−banana epoxy resin composite are the best while bamboo−linen epoxy resin composite shows better result in Rockwell hardness test with value of 40 RHN.

  18. Recent Development of Flax Fibres and Their Reinforced Composites Based on Different Polymeric Matrices

    Directory of Open Access Journals (Sweden)

    Hrushikesh Abhyankar

    2013-11-01

    Full Text Available This work describes flax fibre reinforced polymeric composites with recent developments. The properties of flax fibres, as well as advanced fibre treatments such as mercerization, silane treatment, acylation, peroxide treatment and coatings for the enhancement of flax/matrix incompatibility are presented. The characteristic properties and characterizations of flax composites on various polymers including polypropylene (PP and polylactic acid, epoxy, bio-epoxy and bio-phenolic resin are discussed. A brief overview is also given on the recent nanotechnology applied in flax composites.

  19. Special Polymer Optical Fibres and Devices for Photonic Applications

    Institute of Scientific and Technical Information of China (English)

    Gang-Ding Peng

    2003-01-01

    Remarkable progresses have been made in developing special polymer optical fibres and devices for photonic applications in recent years. This presentation will mainly report on the development of electro-optic, photosensitive and photorefractive polymer optical fibres and related devices.

  20. Thermoforming of Continuous Fibre Reinforced Thermoplastic Composites

    Science.gov (United States)

    McCool, Raurí; Murphy, Adrian; Wilson, Ryan; Jiang, Zhenyu; Price, Mark

    2011-05-01

    The introduction of new materials, particularly for aerospace products, is not a simple, quick or cheap task. New materials require extensive and expensive qualification and must meet challenging strength, stiffness, durability, manufacturing, inspection and maintenance requirements. Growth in industry acceptance for fibre reinforced thermoplastic composite systems requires the determination of whole life attributes including both part processing and processed part performance data. For thermoplastic composite materials the interactions between the processing parameters, in-service structural performance and end of life recyclability are potentially interrelated. Given the large number and range of parameters and the complexity of the potential relationships, understanding for whole life design must be developed in a systematic building block approach. To assess and demonstrate such an approach this article documents initial coupon level thermoforming trials for a commercially available fibre reinforced thermoplastic laminate, identifying the key interactions between processing and whole life performance characteristics. To examine the role of the thermoforming process parameters on the whole life performance characteristics of the formed part requires a series of manufacturing trials combined with a series of characterisation tests on the manufacturing trial output. Using a full factorial test programme and considering all possible process parameters over a range of potential magnitudes would result in a very large number of manufacturing trials and accompanying characterisation tests. Such an approach would clearly be expensive and require significant time to complete, therefore failing to address the key requirement for a future design methodology capable of rapidly generating design knowledge for new materials and processes. In this work the role of mould tool temperature and blank forming temperature on the thermoforming of a commercially available

  1. Abaca fibre reinforced PP composites and comparison with jute and flax fibre PP composites

    Directory of Open Access Journals (Sweden)

    2007-11-01

    Full Text Available Abaca fibre reinforced PP composites were fabricated with different fibre loadings (20, 30, 40, 50wt% and in some cases 35 and 45 wt%. Flax and jute fibre reinforced PP composites were also fabricated with 30 wt% fibre loading. The mechanical properties, odour emission and structure properties were investigated for those composites. Tensile, flexural and Charpy impact strengths were found to increase for fibre loadings up to 40 wt% and then decreased. Falling weight impact tests were also carried out and the same tendency was observed. Owing to the addition of coupling agent (maleated polypropylene -MAH-PP, the tensile, flexural and falling weight impact properties were found to increase in between 30 to 80% for different fibre loadings. When comparing jute and flax fibre composites with abaca fibre composites, jute fibre composites provided best tensile properties but abaca fibre polypropylene composites were shown to provide best notch Charpy and falling weight impact properties. Odours released by flax fibre composites were smaller than jute and abaca fibre composites.

  2. An application of asymmetrical glass fibre-reinforced plastics for the manufacture of curved fibre reinforced concrete

    OpenAIRE

    Funke, Henrik; Gelbrich, Sandra; Ulke-Winter , Lars; Kroll, Lothar; Petzoldt, Carolin

    2015-01-01

    There was developed a novel technological and constructive approach for the low-cost production of curved freeform formworks, which allow the production of single and double-curved fibre reinforced concrete. The scheduled approach was based on a flexible, asymmetrical multi-layered formwork system, which consists of glass-fibre reinforced plastic (GFRP). By using of the unusual anisotropic structural behavior, these GFRP formwork elements permitted a specific adjustment of defined curvature. ...

  3. Compressive behaviour at High Temperatures of Fibre Reinforced Concretes

    Directory of Open Access Journals (Sweden)

    S. O. Santos

    2009-01-01

    Full Text Available This paper summarizes the research that is being carried out at the Universities of Coimbra and Rio de Janeiro, on fibre reinforced concretes at high temperatures. Several high strength concrete compositions reinforced with fibres (polypropylene, steel and glass fibres were developed. The results of compressive tests at high temperatures (300 °C, 500 °C and 600 °C and after heating and cooling down of the concrete are presented in the paper. In both research studies, the results indicated that polypropylene fibers prevent concrete spalling. 

  4. Service life prediction and fibre reinforced cementitious composites

    DEFF Research Database (Denmark)

    Stoklund Larsen, E.

    The present Ph.D.thesis addresses the service life concept on the fibre reinforced cementitious composites. The advantages and problems of adding fibre to a cementitious matrix and the influence on service life are described. In SBI Report 221, Service life prediction and cementitious somposites......, the factors affecting the pure cementitious composite are described. Different sizes and types of fibre reinforced crmentitious composites have been chosen to illustrate different ageing and deterioration mechanisms. Some ageing mechanisms can be accelerated and others cannot which is demonstrated in a test...

  5. A validation of the fibre orientation and fibre length attrition prediction for long fibre-reinforced thermoplastics

    Science.gov (United States)

    Hopmann, Ch.; Weber, M.; van Haag, J.; Schöngart, M.

    2015-05-01

    To improve the mechanical performance of polymeric parts, fibre reinforcement has established in industrial applications during the last decades. Next to the widely used Short Fibre-reinforced Thermoplastics (SFT) the use of Long Fibre-reinforced Thermoplastics (LFT) is increasingly growing. Especially for non-polar polymeric matrices like polypropylene (PP), longer fibres can significantly improve the mechanical performance. As with every kind of discontinuous fibre reinforcement the fibre orientations (FO) show a high impact on the mechanical properties. On the contrary to SFT where the local fibre length distribution (FLD) can be often neglected, for LFT the FLD show a high impact on the material's properties and has to be taken into account in equal measure to the FOD. Recently numerical models are available in commercial filling simulation software and allow predicting both the local FOD and FLD in LFT parts. The aim of this paper is to compare i.) the FOD results and ii) the FLD results from available orientation- and fibre length attrition-models to those obtained from experimental data. The investigations are conducted by the use of different injection moulded specimens made from long glass fibre reinforced PP. In order to determine the FOD, selected part sections are examined by means of Computed Tomographic (CT) analyses. The fully three dimensional measurement of the FOD is then performed by digital image processing using grey scale correlation. The FLD results are also obtained by using digital image processing after a thermal pyrolytic separation of the polymeric matrix from the fibres. Further the FOD and the FLD are predicted by using a reduced strain closure (RSC) as well as an anisotropic rotary diffusion - reduced strain closure model (ARD-RSC) and Phelps-Tucker fibre length attrition model implemented in the commercial filling software Moldflow, Autodesk Inc., San Rafael, CA, USA.

  6. A validation of the fibre orientation and fibre length attrition prediction for long fibre-reinforced thermoplastics

    Energy Technology Data Exchange (ETDEWEB)

    Hopmann, Ch.; Weber, M.; Haag, J. van; Schöngart, M. [Institute of Plastics Processing (IKV) at RWTH Aachen University, Pontstr. 49, 52062 Aachen (Germany)

    2015-05-22

    To improve the mechanical performance of polymeric parts, fibre reinforcement has established in industrial applications during the last decades. Next to the widely used Short Fibre-reinforced Thermoplastics (SFT) the use of Long Fibre-reinforced Thermoplastics (LFT) is increasingly growing. Especially for non-polar polymeric matrices like polypropylene (PP), longer fibres can significantly improve the mechanical performance. As with every kind of discontinuous fibre reinforcement the fibre orientations (FO) show a high impact on the mechanical properties. On the contrary to SFT where the local fibre length distribution (FLD) can be often neglected, for LFT the FLD show a high impact on the material’s properties and has to be taken into account in equal measure to the FOD. Recently numerical models are available in commercial filling simulation software and allow predicting both the local FOD and FLD in LFT parts. The aim of this paper is to compare i.) the FOD results and ii) the FLD results from available orientation- and fibre length attrition-models to those obtained from experimental data. The investigations are conducted by the use of different injection moulded specimens made from long glass fibre reinforced PP. In order to determine the FOD, selected part sections are examined by means of Computed Tomographic (CT) analyses. The fully three dimensional measurement of the FOD is then performed by digital image processing using grey scale correlation. The FLD results are also obtained by using digital image processing after a thermal pyrolytic separation of the polymeric matrix from the fibres. Further the FOD and the FLD are predicted by using a reduced strain closure (RSC) as well as an anisotropic rotary diffusion - reduced strain closure model (ARD-RSC) and Phelps-Tucker fibre length attrition model implemented in the commercial filling software Moldflow, Autodesk Inc., San Rafael, CA, USA.

  7. Crack Growth Monitoring by Embedded Optical Fibre Bragg Grating Sensors: Fibre Reinforced Plastic Crack Growing Detection

    DEFF Research Database (Denmark)

    Pereira, Gilmar Ferreira; Mikkelsen, Lars Pilgaard; McGugan, Malcolm

    2015-01-01

    This article presents a novel method to asses a crack growing/damage event in fibre reinforced plastic, or adhesive using Fibre Bragg Grating (FBG) sensors embedded in a host material. Different features of the crack mechanism that induce a change in the FBG response were identified. Double Canti...

  8. Analytical Evaluation of Fibre-Reinforced Plastic Corrugated Sheet

    Directory of Open Access Journals (Sweden)

    C. K. Gautam

    1998-01-01

    Full Text Available Fibre-reinforced' composites playa lead role as advanced materials in modem day structures.This paper reports fabrication and testing offibre-reinforced corrugated sheet employing 4-point bend loading. An in-depth analysis has been carried out using ANSYS, a finite element method package.The theoretical results obtained are compared with the experimental values. The values ofboth inputsshowed similar results. conforming at a particular boundary condition. However, more similarexperiments "on such fibre-reinforced plastic corrugated sheets have been suggested for -better comparison.

  9. Influence of fibre volume fraction and temperature on fatigue life of glass fibre reinforced plastics

    Directory of Open Access Journals (Sweden)

    Konrad Wegener

    2016-07-01

    Full Text Available The influence of fibre volume fraction and temperature on fatigue life of continuous glass fibre reinforced plastics is investigated in detail. The physical causes of the two effects on the slope of the S-N-curve in fibre direction at R = 0.1 are researched and can be explained with help of micrographs. A new phenomenological approach is presented to model both effects in fibre dominated laminates with different stacking sequences using only the static ultimate strength as an input. Static and fatigue tests of different layups and fibre volume fractions are performed at different temperatures to validate the fatigue life predictions. Additionally it is derived that there is an optimal fibre volume fraction regarding a minimum damage sum. This fibre volume fraction is dependent on a given loading spectra and can be calculated using the phenomenological model.

  10. Flow modelling of steel fibre reinforced self-compacting concrete

    DEFF Research Database (Denmark)

    Svec, Oldrich

    Concrete is one of the most widely used materials in the world. Ordinary concrete composition makes the material strong in compression yet weak and brittle in tension. Steel reinforced concrete successfully eliminates the weak tensile properties of the ordinary concrete. Steel fibres dispersed...... in concrete can efficiently substitute or supplement conventional steel reinforcement, such as reinforcement bars. Ordinary concrete composition further makes the material stiff and non-flowable. Self-compacting concrete is an alternative material of low yield stress and plastic viscosity that does flow...... and fills the formwork with a little or no effort. Steel fibre reinforced self-compacting concrete is a logical combination of the two types of concrete. The combination nevertheless creates several challenges. It has been observed by many authors that steel fibres orient and distribute according...

  11. Blast impact behaviour of concrete with different fibre reinforcement

    Directory of Open Access Journals (Sweden)

    Drdlová Martina

    2015-01-01

    Full Text Available The paper summarizes the results of the development of special concrete intended for the explosion resistance applications, with the emphasis on minimal secondary fragments formation at the explosion. The fine-grained concrete matrix has been reinforced by various types of short dispersed fibers (metallic, mineral and polymer of different sizes and by their combination and the effect of the fibre reinforcement on the physico-mechanical properties and blast resistance was observed. The concrete prism specimens have been subjected to the determination of mechanical parameters (compressive and flexural strength at quasi-static load. The blast tests were conducted on the slab specimens prepared from selected mixtures. The material characteristics and explosion test data have been used for numerical investigation, which defined the optimal wall composition and dimensions of the concrete element which should resist the explosion defined by type, size, weight and placement of the blast. In the next step the test elements resistance was verified by real explosion test.

  12. Durability of cracked fibre reinforced concrete structures

    DEFF Research Database (Denmark)

    Hansen, Ernst Jan De Place; Nielsen, Laila

    1997-01-01

    (capillary water uptake) is used, involving an in-situ method and a laboratory method. Three different concrete qualities as well as steel fibres (ZP) and polypropylene fibres (PP) are used. Results of the durability tests on cracked FRC-beams are compared to results for uncracked FRC-beams and beams without...

  13. INFLUENCE OF FIBRE VOLUME REINFORCEMENT IN DRILLING GFRP LAMINATES

    Directory of Open Access Journals (Sweden)

    D. ABDUL BUDAN

    2011-12-01

    Full Text Available This paper presents an investigation on the influence of fiber volume reinforcement on various aspects of machining. Drilling experiments were conducted to study the tool wear, surface finish, delamination factor and hole quality on GFRP composites. The work reports the variation of tool wear, surface roughness, hole quality, chip characteristics, delamination factor with the variation of fibre volume reinforcement. Results revealed that the increase in fiber percentage increased the tool wear, delamination factor, surface roughness value and decreased hole quality. Minimum surface roughness, tool wear and better hole quality was obtained for 30% fibre content composites. 70% Fibre content composites produced hazardous surface roughness. Pull out of fibres and fibril formation are significant in decreasing the hole quality and increased surface roughness. Increased tool – fibre interaction and thermal softening of the tool causes increased tool wear. In higher fibre content composites, extensive plasticity was absent consequently brittle ceramic fibres were fractured easily. Hence small segment type chips were obtained. The fibre pull out and fibrils present near the hole exit forms the remainder of the laminate causes increased damage zone near the hole exit. Hence high delamination factor was obtained.

  14. Effect of nanoparticles on tensile, impact and fatigue properties of fibre reinforced plastics

    Indian Academy of Sciences (India)

    R Nagalingam; S Sundaram; B Stanly Jones Retnam

    2010-10-01

    Advanced composite, fibre-reinforced polymer (FRP), has been favoured for certain aerospace, military, marine and automotive applications. Polymer nanocomposites containing layered silicates have attracted much attention. These exhibit increased modulus, decreased thermal expansion coefficient, increased solvent resistance and enhanced ionic conductivity when compared to the polymer alone. Here we have developed eight different combinations of composites FRP with nanoclay (montmorillonite) by layered manufacturing techniques (LM) and measured the mechanical properties. The measurement showed that the tensile strength, impact strength and fatigue life are greatly increased. A plausible explanation for high increase of properties has also been discussed.

  15. Nonlinear microstructured polymer optical fibres

    DEFF Research Database (Denmark)

    Frosz, Michael Henoch

    . The combination of a small core size and zero-dispersion wavelength at the operating wavelength of widely available femtosecond Ti:sapphire lasers led to an extensive research in supercontinuum generation and other nonlinear effects in PCFs. It is crucial for the efficiency of many nonlinear mechanisms...... that the pump laser wavelength is close to the zero-dispersion wavelength and that the core size is small. Recently, work in fabricating PCFs from materials other than silica has intensified. One of the advantages of using alternative materials can be a higher inherent material nonlinearity, which...... to accurately obtain a small core size while maintaining small structural variations during fibre drawing. This talk will give a presentation of how the mPOFs are fabricated and the route to obtaining nonlinear effects in them....

  16. Dynamic fracture behaviour in fibre-reinforced cementitious composites

    Science.gov (United States)

    Yu, Rena C.; Cifuentes, Héctor; Rivero, Ignacio; Ruiz, Gonzalo; Zhang, Xiaoxin

    2016-08-01

    The object of this work is to simulate the dynamic fracture propagation in fibre-reinforced cementitious composites, in particular, in steel fibre reinforced concrete (SFRC). Beams loaded in a three-point bend configuration through a drop-weight impact device are considered. A single cohesive crack is assumed to propagate at the middle section; the opening of this crack is governed by a rate-dependent cohesive law; the fibres around the fracture plane are explicitly represented through truss elements. The fibre pull-out behaviour is depicted by an equivalent constitutive law, which is obtained from an analytical load-slip curve. The obtained load-displacement curves and crack propagation velocities are compared with their experimental counterparts. The good agreement with experimental data testifies to the feasibility of the proposed methodology and paves the way to its application in a multi-scale framework.

  17. Fabrication of Polymer Optical Fibre (POF Gratings

    Directory of Open Access Journals (Sweden)

    Yanhua Luo

    2017-03-01

    Full Text Available Gratings inscribed in polymer optical fibre (POF have attracted remarkable interest for many potential applications due to their distinctive properties. This paper overviews the current state of fabrication of POF gratings since their first demonstration in 1999. In particular we summarize and discuss POF materials, POF photosensitivity, techniques and issues of fabricating POF gratings, as well as various types of POF gratings.

  18. Zeonex Microstructured Polymer Optical Fibre Bragg Grating Sensor

    DEFF Research Database (Denmark)

    Woyessa, Getinet; Fasano, Andrea; Markos, Christos

    2016-01-01

    We fabricated an endlessly single mode and humidity insensitive Zeonex microstructured polymer optical fibre (mPOF) for fibre Bragg grating (FBG) temperature and strain sensors. We inscribed and characterise FBGs in Zeonex mPOF for the first time.......We fabricated an endlessly single mode and humidity insensitive Zeonex microstructured polymer optical fibre (mPOF) for fibre Bragg grating (FBG) temperature and strain sensors. We inscribed and characterise FBGs in Zeonex mPOF for the first time....

  19. Woven Structures from Natural Fibres for Reinforcing Composites

    OpenAIRE

    Maniņš, M; Bernava, A; Strazds, G.

    2015-01-01

    The increase of production of woven structures from natural fibres for reinforced composites can be noticed in different sectors of economy. This can be explained by limited sources of raw materials and different environmental issues, as well as European Union guidelines for car manufacture [4]. This research produced 2D textile structures of hemp yarn and polypropylene yarn and tested the impact of added glass fibre yarn on the mechanical properties of the woven structures and the composites...

  20. Durability of cracked fibre reinforced concrete structures exposed to chlorides

    DEFF Research Database (Denmark)

    Hansen, Ernst Jan De Place; Ekman, Tom; Hansen, Kurt Kielsgaard

    1999-01-01

    is used as environmental load. The chloride penetration is characterized both qualitatively (UV-test) and quantitatively (chloride profile) and by microscopy. The test programme involves three different concrete qualities. Both steel fibres and polypropylene fibres are used in the concrete beams as well......Durability studies are carried out by subjecting FRC-beams to combined mechanical and environmental load. Mechanical load is obtained by exposing beams to 4-point bending until a predefined crack width is reached, using a newly developed test setup. Exposure to a concentrated chloride solution...... as main reinforcement. The effect of the cracks, the fibres and the concrete quality on the chloride penetration is studied....

  1. Mechanical properties and fabrication of small boat using woven glass/sugar palm fibres reinforced unsaturated polyester hybrid composite

    Science.gov (United States)

    Misri, S.; Leman, Z.; Sapuan, S. M.; Ishak, M. R.

    2010-05-01

    In recent years, sugar palm fibre has been found to have great potential to be used as fibre reinforcement in polymer matrix composites. This research investigates the mechanical properties of woven glass/sugar palm fibres reinforced unsaturated polyester hybrid composite. The composite specimens made of different layer of fibres such as strand mat, natural and hand woven of sugar palm fibres. The composites were fabricated using a compression moulding technique. The tensile and impact test was carried out in accordance to ASTM 5083 and ASTM D256 standard. The fibre glass boat is a familiar material used in boat industry. A lot of research on fabrication process such as lay-up, vacuum infusion mould and resin transfer mould has been conducted. Hybrid material of sugar palm fibre and fibre glass was used in fabricating the boat. This research investigates the method selection for fabrication of small boat application of natural fibre composites. The composite specimens made of different layer of fibres; woven glass fibre, strand mat, natural and hand woven of woven sugar palm fibres were prepared. The small boat were fabricated using a compression moulding and lay up technique. The results of the experiment showed that the tensile strength, tensile modulus, elongation at break value and impact strength were higher than the natural woven sugar palm fibre. The best method for fabricating the small boat was compression moulding technique. As a general conclusion, the usage of glass fibre had improved the tensile properties sugar palm fibre composites and compression moulding technique is suitable to be used in making a small boat application of natural fibre composites.

  2. Water Absorption Behaviour and Its Effect on the Mechanical Properties of Flax Fibre Reinforced Bioepoxy Composites

    Directory of Open Access Journals (Sweden)

    E. Muñoz

    2015-01-01

    Full Text Available In the context of sustainable development, considerable interest is being shown in the use of natural fibres like as reinforcement in polymer composites and in the development of resins from renewable resources. This paper focuses on eco-friendly and sustainable green composites manufacturing using resin transfer moulding (RTM process. Flax fibre reinforced bioepoxy composites at different weight fractions (40 and 55 wt% were prepared in order to study the effect of water absorption on their mechanical properties. Water absorption test was carried out by immersion specimens in water bath at room temperature for a time duration. The process of water absorption of these composites was found to approach Fickian diffusion behavior. Diffusion coefficients and maximum water uptake values were evaluated; the results showed that both increased with an increase in fibre content. Tensile and flexural properties of water immersed specimens were evaluated and compared to dry composite specimens. The results suggest that swelling of flax fibres due to water absorption can have positive effects on mechanical properties of the composite material. The results of this study showed that RTM process could be used to manufacture natural fibre reinforced composites with good mechanical properties even for potential applications in a humid environment.

  3. Crack Detection in Fibre Reinforced Plastic Structures Using Embedded Fibre Bragg Grating Sensors: Theory, Model Development and Experimental Validation.

    Science.gov (United States)

    Pereira, G F; Mikkelsen, L P; McGugan, M

    2015-01-01

    In a fibre-reinforced polymer (FRP) structure designed using the emerging damage tolerance and structural health monitoring philosophy, sensors and models that describe crack propagation will enable a structure to operate despite the presence of damage by fully exploiting the material's mechanical properties. When applying this concept to different structures, sensor systems and damage types, a combination of damage mechanics, monitoring technology, and modelling is required. The primary objective of this article is to demonstrate such a combination. This article is divided in three main topics: the damage mechanism (delamination of FRP), the structural health monitoring technology (fibre Bragg gratings to detect delamination), and the finite element method model of the structure that incorporates these concepts into a final and integrated damage-monitoring concept. A novel method for assessing a crack growth/damage event in fibre-reinforced polymer or structural adhesive-bonded structures using embedded fibre Bragg grating (FBG) sensors is presented by combining conventional measured parameters, such as wavelength shift, with parameters associated with measurement errors, typically ignored by the end-user. Conjointly, a novel model for sensor output prediction (virtual sensor) was developed using this FBG sensor crack monitoring concept and implemented in a finite element method code. The monitoring method was demonstrated and validated using glass fibre double cantilever beam specimens instrumented with an array of FBG sensors embedded in the material and tested using an experimental fracture procedure. The digital image correlation technique was used to validate the model prediction by correlating the specific sensor response caused by the crack with the developed model.

  4. Crack Detection in Fibre Reinforced Plastic Structures Using Embedded Fibre Bragg Grating Sensors: Theory, Model Development and Experimental Validation.

    Directory of Open Access Journals (Sweden)

    G F Pereira

    Full Text Available In a fibre-reinforced polymer (FRP structure designed using the emerging damage tolerance and structural health monitoring philosophy, sensors and models that describe crack propagation will enable a structure to operate despite the presence of damage by fully exploiting the material's mechanical properties. When applying this concept to different structures, sensor systems and damage types, a combination of damage mechanics, monitoring technology, and modelling is required. The primary objective of this article is to demonstrate such a combination. This article is divided in three main topics: the damage mechanism (delamination of FRP, the structural health monitoring technology (fibre Bragg gratings to detect delamination, and the finite element method model of the structure that incorporates these concepts into a final and integrated damage-monitoring concept. A novel method for assessing a crack growth/damage event in fibre-reinforced polymer or structural adhesive-bonded structures using embedded fibre Bragg grating (FBG sensors is presented by combining conventional measured parameters, such as wavelength shift, with parameters associated with measurement errors, typically ignored by the end-user. Conjointly, a novel model for sensor output prediction (virtual sensor was developed using this FBG sensor crack monitoring concept and implemented in a finite element method code. The monitoring method was demonstrated and validated using glass fibre double cantilever beam specimens instrumented with an array of FBG sensors embedded in the material and tested using an experimental fracture procedure. The digital image correlation technique was used to validate the model prediction by correlating the specific sensor response caused by the crack with the developed model.

  5. Investigation of crack paths in natural fibre-reinforced composites

    Directory of Open Access Journals (Sweden)

    S. Keck

    2015-10-01

    Full Text Available Nowadays, fibre-reinforced composite materials are widely used in many fields, e.g. automotive and aerospace. Natural fibres such as flax and hemp provide good density specific mechanical properties. Additionally, the embodied production energy in natural fibres is much smaller than in synthetic ones. Within this paper the fracture mechanical behaviour of flax fibre-reinforced composites is discussed. Especially, this paper focuses on the determination and investigation of crack paths in compact tension specimens with three different fibre directions under a static as well as fatigue load. Differences and similarities in the obtained crack paths under different loading conditions are presented. Due to the pronounced orthotropic behaviour of those materials the crack path is not only governed by the stress state, but practically determined by the fibre direction and fibre volume fraction. Therefore, the well-known stress intensity factor solutions for the standard specimens are not applicable. It is necessary to carry out extensive numerical simulations to evaluate the stress intensity factor evolution along the growing crack in order to be able to determine fatigue crack growth rate curves. Those numerical crack growth simulations are performed with the three-dimensional crack simulation program ADAPCRACK3D to gain energy release rates and in addition stress intensity factors

  6. FTIR and Thermal Studies on Nylon-66 and 30% Glass Fibre Reinforced Nylon-66

    OpenAIRE

    Julie Charles; Ramkumaar, G. R.; Azhagiri, S.; Gunasekaran, S.

    2009-01-01

    The present study deals with the characterization of the polymeric materials viz., nylon-66 and 30% glass fibre reinforced nylon-66 (GF Nylon-66) by employing FTIR and thermal measurements. The complete vibrational band assignment made available for nylon-66 and GF nylon-66 using FTIR spectra confirm their chemical structure. FTIR spectroscopy provides detailed information on polymer structure through the characteristic vibrational energies of the various groups present in the molecule. The t...

  7. Design Basis for Fibre Reinforced Concrete (FRC) Pavements

    DEFF Research Database (Denmark)

    Bendixen, Søren; Stang, Henrik

    1996-01-01

    -crack opening relationship can beused to descibe the properties of fibre reinforced concrete (FRC) intension and how the stress-crack opening relationship can beapplied in a simple design scheme for pavements. The projectincludes development of design tools, experiments to determine thestress-crack opening......The paper summarises a Ph.D. project on development of a new design basis for fibre reinforced concrete ground slabs. The stress-crack openingrelationship is a well know basic material property of theso-called fictitious crack model for concrete. In the presentstudy it is shown how the stress...

  8. Observations on the electrical resistivity of steel fibre reinforced concrete

    DEFF Research Database (Denmark)

    Solgaard, Anders Ole Stubbe; Geiker, Mette Rica; Edvardsen, Carola;

    2014-01-01

    Steel fibre reinforced concrete (SFRC) is in many ways a well-known construction material, and its use has gradually increased over the last decades. The mechanical properties of SFRC are well described based on the theories of fracture mechanics. However, knowledge on other material properties......, including the electrical resistivity, is sparse. Among others, the electrical resistivity of concrete has an effect on the corrosion process of possible embedded bar reinforcement and transfer of stray current. The present paper provides experimental results concerning the influence of the fibre volume...

  9. Fatigue behaviour of infrared welded joints in fibre reinforced thermoplastics

    OpenAIRE

    De Baere, Ives; Allaer, Klaas; Van Paepegem, Wim; Degrieck, Joris

    2012-01-01

    Due to the increasing interest in fibre reinforced thermoplastics, there is also a need for a reliable means of bonding them. As thermoplastics have a high chemical inertness, adhesive bonding is not always an option and thus, fusion bonding might prove an interesting solution. This manuscript presents an infrared welding process for a carbon fabric reinforced polyphenylene sulphide. A one sided and a two sided welding process is described and the welding parameters are optimised by performin...

  10. Analytical Evaluation of Fibre-Reinforced Plastic Corrugated Sheet

    OpenAIRE

    C. K. Gautam; R. C. Pathak

    1998-01-01

    Fibre-reinforced' composites playa lead role as advanced materials in modem day structures.This paper reports fabrication and testing offibre-reinforced corrugated sheet employing 4-point bend loading. An in-depth analysis has been carried out using ANSYS, a finite element method package.The theoretical results obtained are compared with the experimental values. The values ofboth inputsshowed similar results. conforming at a particular boundary condition. However, more similarexperiments "on ...

  11. Mechanical and dielectric characterization of hemp fibre reinforced polypropylene (HFRPP by dry impregnation process

    Directory of Open Access Journals (Sweden)

    2010-03-01

    Full Text Available Natural fibres such as jute, coir, sisal, bamboo and pineapple are known to have high specific strength and can be effectively used in composites in various applications. The use of hemp fibres to reinforce the polymer aroused great interest and expectations amongst scientists and materials engineers. In this paper, composites with isotactic polypropylene (iPP matrix and hemp fibres were studied. These materials were manufactured via the patented FIBROLINE process based on the principle of the dry impregnation of a fibre assembly with a thermoplastic powder (iPP, using an alternating electric field. The aim of this paper is to show the influence of fibre/matrix interfaces on dielectric properties coupled with mechanical behaviours. Fibres or more probably the fibre/matrix interfaces allow the diffusion of electric charges and delocalise the polarisation energy. In this way, damages are limited during mechanical loading and the mechanical properties of the composites increase. The structure of composite samples was investigated by X-ray and FTIR analysis. The mechanical properties were analysed by quasistatic and dynamic tests. The dielectric investigations were carried out using the SEMME (Scanning Electron Microscope Mirror Effect method coupled with the measurement of the induced current (ICM.

  12. Compressive Failure of Fibre Reinforced Materials

    DEFF Research Database (Denmark)

    Jensen, Henrik Myhre

    2003-01-01

    Compressive failure of uni-directional fibre composites by the kink band mechanism is analysed taking into account effects of residual stresses. Two criteria for determining the strength of the composite material have been investigated: Kink band formation at a bifurcation stress in a composite...

  13. Crack Growth Monitoring by Embedded Optical Fibre Bragg Grating Sensors: Fibre Reinforced Plastic Crack Growing Detection

    DEFF Research Database (Denmark)

    Pereira, Gilmar Ferreira; Mikkelsen, Lars Pilgaard; McGugan, Malcolm

    2015-01-01

    This article presents a novel method to asses a crack growing/damage event in fibre reinforced plastic, or adhesive using Fibre Bragg Grating (FBG) sensors embedded in a host material. Different features of the crack mechanism that induce a change in the FBG response were identified. Double...... Cantilever Beams specimens made with glass fibre glued with structural adhesive, were instrumented with an array of FBG sensors embedded in the material and tested using an experimental fracture procedure. A digital image correlation technique was used to determine the presence of the specific phenomena...

  14. Sensored fiber reinforced polymer grate

    Energy Technology Data Exchange (ETDEWEB)

    Ross, Michael P.; Mack, Thomas Kimball

    2017-08-01

    Various technologies described herein pertain to a sensored grate that can be utilized for various security fencing applications. The sensored grate includes a grate framework and an embedded optical fiber. The grate framework is formed of a molded polymer such as, for instance, molded fiber reinforced polymer. Further, the grate framework includes a set of elongated elements, where the elongated elements are spaced to define apertures through the grate framework. The optical fiber is embedded in the elongated elements of the grate framework. Moreover, bending or breaking of one or more of the elongated elements can be detected based on a change in a characteristic of input light provided to the optical fiber compared to output light received from the optical fiber.

  15. Micromechanics of the Interface in Fibre-Reinforced Cement Materials

    DEFF Research Database (Denmark)

    Stang, Henrik; Shah, S.P.

    1996-01-01

    the strength and ductility of the brittlematrix material rather than changing the overall stiffness,the ability of the fibres to interact with cracking processes in thematrix material is essential. Furthermore, since matrix cracking in afibre reinforced material can only take place with simultaneousinterfacial...

  16. Transporting fibres as reinforcement in self-compacting concrete

    NARCIS (Netherlands)

    Grünewald, S.; Walraven, J.C.

    2009-01-01

    The development of self-compacting concrete (SCC) was an important step towards efficiency at building sites, rationally producing prefabricated concrete elements, better working conditions and improved quality and appearance of concrete structures. By adding fibres to SCC bar reinforcement can be

  17. Finite element modelling of fibre-reinforced brittle materials

    NARCIS (Netherlands)

    Kullaa, J.

    1997-01-01

    The tensile constitutive behaviour of fibre-reinforced brittle materials can be extended to two or three dimensions by using the finite element method with crack models. The three approaches in this study include the smeared and discrete crack concepts and a multi-surface plasticity model. The tensi

  18. The Compressive Strength of Carbon Fibre Reinforced Plastics.

    Science.gov (United States)

    1982-08-01

    and resin properties . Therefore, throughout this Report the term compressive failure will imply a microbuckling failure mode. A microbuckling failure...Compressive strength of fibre reinforced composite materials. ASTM STP 580, pp 364-377 (1975) 16 D.B.S. Berry Handbook of resin properties . Part A - cast

  19. Understanding and Improving the Elastic Compressive Modulus of Fibre Reinforced Soy-Based Polyurethane Foams

    Science.gov (United States)

    Hussain, Sadakat

    Soy-based polyurethane foams (PUFs) were reinforced with fibres of different aspect ratios to improve the compressive modulus. Each of the three fibre types reinforced PUF differently. Shorter micro-crystalline cellulose fibres were found embedded inside the cell struts of PUF and reinforced them. The reinforcement was attributed to be stress transfer from the matrix to the fibre by comparing the experimental results to those predicted by micro-mechanical models for short fibre reinforced composites. The reinforced cell struts increased the overall compressive modulus of the foam. Longer glass fibres (470 microns, length) provided the best reinforcement. These fibres were found to be larger than the cell diameters. The micro-mechanical models could not predict the reinforcement provided by the longer glass fibres. The models predicted negligible reinforcement because the very low modulus PUF should not transfer load to the higher modulus fibres. However, using a finite element model, it was determined that the fibres were providing reinforcement through direct fibre interaction with each other. Intermediate length glass fibres (260 microns, length) were found to poorly reinforce the PUF and should be avoided. These fibres were too short to interact with each other and were on average too large to embed and reinforce cell struts. In order to produce natural fibre reinforced PUFs in the future, a novel device was invented. The purpose of the device is to deliver natural fibres at a constant mass flow rate. The device was found to consistently meter individual loose natural fibre tufts at a mass flow rate of 2 grams per second. However, the device is not robust and requires further development to deliver a fine stream of natural fibre that can mix and interact with the curing polymeric components of PUF. A design plan was proposed to address the remaining issues with the device.

  20. Development of Flax Fibre based Textile Reinforcements for Composite Applications

    Science.gov (United States)

    Goutianos, S.; Peijs, T.; Nystrom, B.; Skrifvars, M.

    2006-07-01

    Most developments in the area of natural fibre reinforced composites have focused on random discontinuous fibre composite systems. The development of continuous fibre reinforced composites is, however, essential for manufacturing materials, which can be used in load-bearing/structural applications. The current work aims to develop high-performance natural fibre composite systems for structural applications using continuous textile reinforcements like UD-tapes or woven fabrics. One of the main problems in this case is the optimisation of the yarn to be used to manufacture the textile reinforcement. Low twisted yarns display a very low strength when tested dry in air and therefore they cannot be used in processes such as pultrusion or textile manufacturing routes. On the other hand, by increasing the level of twist, a degradation of the mechanical properties is observed in impregnated yarns (e.g., unidirectional composites) similar to off-axis composites. Therefore, an optimum twist should be used to balance processability and mechanical properties. Subsequently, different types of fabrics (i.e., biaxial plain weaves, unidirectional fabrics and non-crimp fabrics) were produced and evaluated as reinforcement in composites manufactured by well established manufacturing techniques such as hand lay-up, vacuum infusion, pultrusion and resin transfer moulding (RTM). Clearly, as expected, the developed materials cannot directly compete in terms of strength with glass fibre composites. However, they are clearly able to compete with these materials in terms of stiffness, especially if the low density of flax is taken into account. Their properties are however very favourable when compared with non-woven glass composites.

  1. Effects of fibre content on mechanical properties and fracture behaviour of short carbon fibre reinforced geopolymer matrix composites

    Indian Academy of Sciences (India)

    Tiesong Lin; Dechang Jia; Meirong Wang; Peigang He; Defu Liang

    2009-02-01

    Geopolymer matrix composites reinforced with different volume fractions of short carbon fibres (Cf/geopolymer composites) were prepared and the mechanical properties, fracture behaviour and microstructure of as-prepared composites were studied and correlated with fibre content. The results show that short carbon fibres have a great strengthening and toughening effect at low volume percentages of fibres (3.5 and 4.5 vol.%). With the increase of fibre content, the strengthening and toughening effect of short carbon fibres reduce, possibly due to fibre damage, formation of high shear stresses at intersect between fibres and strong interface cohesion of fibre/matrix under higher forming pressure. The property improvements are primarily based on the network structure of short carbon fibre preform and the predominant strengthening and toughening mechanisms are attributed to the apparent fibre bridging and pulling-out effect.

  2. Simple Room Temperature Method for Polymer Optical Fibre Cleaving

    DEFF Research Database (Denmark)

    Saez-Rodriguez, David; Nielsen, Kristian; Bang, Ole

    2015-01-01

    . In this paper, we make use of the temperature-time equivalence in polymers to replace the use of heating by an increase of the cleaving time and use a sawing motion to reduce fibre end face damage. In this way, the polymer fibre can be cleaved at room temperature in seconds with the resulting end face being...

  3. Finite element investigations on the microstructure of fibre-reinforced composites

    Directory of Open Access Journals (Sweden)

    2008-09-01

    Full Text Available The effect of residual stress due to the curing process on damage evolution in unidirectional (UD fibre-reinforced polymer-matrix composites under longitudinal and transverse loading has been investigated using a three-dimensional micromechanical representative volume element (RVE model with a hexagonal packing geometry and the finite element method. Residual stress has been determined by considering two contributions: volume shrinkage of matrix resin from the crosslink polymerization during isothermal curing and thermal contraction of both resin and fibre as a result of cooling from the curing temperature to room temperature. To examine the effect of residual stress on failure, a study based on different failure criteria and a stiffness degradation technique has been used for damage analysis of the RVE subjected to mechanical loading after curing for a range of fibre volume fractions. Predicted damage initiation and evolution are clearly influenced by the presence of residual stress.

  4. Plastic Fibre Reinforced Soil Blocks as a Sustainable Building Material

    Science.gov (United States)

    Prasad, C. K. Subramania; Nambiar, E. K. Kunhanandan; Abraham, Benny Mathews

    2012-10-01

    Solid waste management, especially the huge quantity of waste plastics, is one of the major environmental concerns nowadays. Their employability in block making in the form of fibres, as one of the methods of waste management, can be investigated through a fundamental research. This paper highlights the salient observations from a systematic investigation on the effect of embedded fibre from plastic waste on the performance of stabilised mud blocks. Stabilisation of the soil was done by adding cement, lime and their combination. Plastic fibre in chopped form from carry bags and mineral water bottles were added (0.1% & 0.2% by weight of soil) as reinforcement. The blocks were tested for density, and compressive strength, and observed failure patterns were analysed. Blocks with 0.1% of plastic fibres showed an increase in strength of about 3 to 10%. From the observations of failure pattern it can be concluded that benefits of fibre reinforcement includes both improved ductility in comparison with raw blocks and inhibition of crack propogation after its initial formation.

  5. Mechanical characterization of fiber reinforced Polymer Concrete

    Directory of Open Access Journals (Sweden)

    João Marciano Laredo dos Reis

    2005-09-01

    Full Text Available A comparative study between epoxy Polymer Concrete plain, reinforced with carbon and glass fibers and commercial concrete mixes was made. The fibers are 6 mm long and the fiber content was 2% and 1%, respectively, in mass. Compressive tests were performed at room temperature and load vs. displacement curves were plotted up to failure. The carbon and glass fibers reinforcement were randomly dispersed into the matrix of polymer concrete. An increase in compressive properties was observed as function of reinforcement. The comparison also showed that Polymer Concrete, plain and reinforced, has a better performance than regular market concrete, suggesting that PC is a reliable alternative for construction industry.

  6. A multi-purpose optical fibre sensor design for fibre reinforced composite materials

    Science.gov (United States)

    Fernando, G. F.; Liu, T.; Crosby, P.; Doyle, C.; Martin, A.; Brooks, D.; Ralph, B.; Badcock, R.

    1997-10-01

    This paper reports on the evaluation of a multi-functional extrinsic Fabry - Pérot optical fibre-based sensor design. The sensor was constructed using multimode and single mode optical fibres and a precision bore capillary tube. Fusion joints were used to secure the optical fibres into the capillary tube. The separation between the cleaved end-faces of the optical fibres defined the cavity length for the Fabry - Pérot sensor and the distance between the fusion joints defined the gauge length for this strain and temperature sensor. The sensor design was modified to: (i) monitor the progress of cure in an epoxy/amine resin system; (ii) detect the ingress of moisture in a cured epoxy/amine resin system; (iii) monitor the vibration characteristics of a pre- and post-impact damaged carbon fibre reinforced epoxy panel; and (iv) discriminate between strain and temperature measurements. The feasibility of using this type of sensor for cure monitoring, strain, temperature, residual stress measurements and damage detection in advanced fibre reinforced composites is demonstrated.

  7. Waste Plastic Fibre Reinforced Self Compacting Concrete

    Directory of Open Access Journals (Sweden)

    Mrs. Vijaya G.S Assistant Professor

    2016-05-01

    Full Text Available Self-compacting concrete is high performance concrete which is highly flowable, non-segregating, spread on its own weight and doesn‟t need any compaction. This paper deals with flow and strength characteristics such as compressive strength, split tensile strength, flexural strength and impact strength of Self-compacting concrete with various percentages of waste plastic fibres like 0%, 0.25%, 0.5%, 0.75%, 1.0%, 1.1%, 1.20%, 1.3% and 1.4% is added by weight of cement. The mix proportion for M40 grade of concrete was done by using Nan Su method (Cement: GGBS: Fine aggregate: Course aggregate 1: 0.705: 3.34: 2.62. Water powder (W/P ratio 0.36, cement content 280kg/m3 , GGBS 220 kg/m3 was calculated and maintained as constant throughout the experimental work for all eight mixes, only the superplastizers dosage was varied for different percentage of fibres. In this experimental investigation one control mix and eight (8 different mixes were considered. Totally 81 Cube, beam, Cylindrical specimens and square plates were casted, cured and tested as per IS specifications. For determining impact strength drop weight method was used. The results obtained indicate that fresh (workability characteristics satisfy the lower and upper limit as suggested by EFNARC. The tests on hardened properties indicate that the compressive strength, split tensile strength, flexural strength was improved proportionally with the addition of waste plastic fibers upto 1.0% by weight of cement and then decreases. The impact strength improved proportionally with addition of fibres upto 1.2% by weight of cement and then decreases.

  8. Toughened carbon fibre fabric-reinforced thermoplastic composites

    OpenAIRE

    Abt, Tobias Martin; Sánchez Soto, Miguel; Maspoch Rulduà, Mª Lluïsa; Velasco Perero, José Ignacio

    2014-01-01

    Toughened carbon fibre fabric-reinforced composites were obtained by compression moulding of powder prepregs, using a modified cyclic butylene terephthalate (pCBT) matrix and a bi-directional [0°/90°] carbon fibre fabric. Modification of the pCBT matrix was done by adding small amounts of epoxy resin or isocyanates, acting as toughening agents. Homogeneous CBT/epoxy and CBT/isocyanate blends were obtained by melt blending in a lab-scale batch mixer by applying low temperatures and short proce...

  9. FASEP ultra-automated analysis of fibre length distribution in glass-fibre-reinforced products

    Science.gov (United States)

    Hartwich, Mark R.; Höhn, Norbert; Mayr, Helga; Sandau, Konrad; Stengler, Ralph

    2009-06-01

    Reinforced plastic materials are widely used in high sophisticated applications. The length distribution of the fibres influences the mechanical properties of the final product. A method for automatic determination of this length distribution was developed. After separating the fibres out of the composite material without any damage, and preparing them for microscopical analysis, a mosaic of microscope pictures is taken. After image processing and analysis with mathematical methods, a complete statistic of the fibre length distribution could be determined. A correlation between fibre length distribution and mechanical properties, measured e.g. with material test methods, like tensile and impact tests, was found. This is a method to optimize the process and selection of material for the plastic parts. In result this enhances customer satisfaction and, maybe much more important, reduces costs for the manufacturer.

  10. ESTIMATING FIBRE DIRECTION DISTRIBUTIONS OF REINFORCED COMPOSITES FROM TOMOGRAPHIC IMAGES

    Directory of Open Access Journals (Sweden)

    Oliver Wirjadi

    2016-12-01

    Full Text Available Fibre reinforced composites constitute a relevant class of materials used chiefly in lightweight constructions for example in fuselages or car bodies. The spatial arrangement of the fibres and in particular their direction distribution have huge impact on macroscopic properties and, thus, its determination is an important topic of material characterisation. The fibre direction distribution is defined on the unit sphere, and it is therefore preferable to work with fully three-dimensional images of the microstructure as obtained, e.g., by computed micro-tomography. A number of recent image analysis algorithms exploit local grey value variations to estimate a preferred direction in each fibre point. Averaging these local results leads estimates of the volume-weighted fibre direction distribution. We show how the thus derived fibre direction distribution is related to quantities commonly used in engineering applications. Furthermore, we discuss four algorithms for local orientation analysis, namely those based on the response of anisotropic Gaussian filters, moments and axes of inertia derived from directed distance transforms, the structure tensor, or the Hessian matrix. Finally, the feasibility of these algorithms is demonstrated for application examples and some advantages and disadvantages of the underlying methods are pointed out.

  11. Multi-Functional Carbon Fibre Composites using Carbon Nanotubes as an Alternative to Polymer Sizing

    Science.gov (United States)

    Pozegic, T. R.; Anguita, J. V.; Hamerton, I.; Jayawardena, K. D. G. I.; Chen, J.-S.; Stolojan, V.; Ballocchi, P.; Walsh, R.; Silva, S. R. P.

    2016-11-01

    Carbon fibre reinforced polymers (CFRP) were introduced to the aerospace, automobile and civil engineering industries for their high strength and low weight. A key feature of CFRP is the polymer sizing - a coating applied to the surface of the carbon fibres to assist handling, improve the interfacial adhesion between fibre and polymer matrix and allow this matrix to wet-out the carbon fibres. In this paper, we introduce an alternative material to the polymer sizing, namely carbon nanotubes (CNTs) on the carbon fibres, which in addition imparts electrical and thermal functionality. High quality CNTs are grown at a high density as a result of a 35 nm aluminium interlayer which has previously been shown to minimise diffusion of the catalyst in the carbon fibre substrate. A CNT modified-CFRP show 300%, 450% and 230% improvements in the electrical conductivity on the ‘surface’, ‘through-thickness’ and ‘volume’ directions, respectively. Furthermore, through-thickness thermal conductivity calculations reveal a 107% increase. These improvements suggest the potential of a direct replacement for lightning strike solutions and to enhance the efficiency of current de-icing solutions employed in the aerospace industry.

  12. In-plane shear test of fibre reinforced concrete panels

    DEFF Research Database (Denmark)

    Solgaard, Anders Ole Stubbe; Stang, Henrik; Goltermann, Per

    2008-01-01

    contributes to the investigation of fibers as reinforcement in panels with experimental results and a consistent approach to material characterization and modeling. The proposed model draws on elements from the classical yield line theory of rigid, perfectly plastic materials and the theory of fracture......The present paper concerns the investigation of polymer Fiber Reinforced Concrete (FRC) panels subjected to in-plane shear. The use of fibers as primary reinforcement in panels is a new application of fiber reinforcement, hence test methods, design bases and models are lacking. This paper...

  13. STUDIES OF DURABILITY ASPECTS OF FIBRE REINFORCED CONCRETE

    Directory of Open Access Journals (Sweden)

    D. MARUTHACHALAM

    2012-02-01

    Full Text Available This paper presents a detailed experimental study on sulphate attack, depth of carbonation, alkalinity measurement on fibre reinforced concrete at ages 28 days, 56 days, and 90 days. The main variable investigated in this study is variation of fibre dosage of 0.1%, 0.2%, and 0.3%. The concrete produced by the addition of fly ash and metakaolin as a partial replacement of cement. The compressive strength, weight loss and hardness of concrete were studied. Test results indicate that use of fibre in concrete has improved performance of concrete. A simple regression equation has been proposed to study the behaviour of concrete under sulphate attack, depth of carbonation.

  14. Recycling solid residues recovered from glass fibre-reinforced composites – A review applied to wind turbine blade materials

    DEFF Research Database (Denmark)

    Beauson, Justine; Lilholt, Hans; Brøndsted, Povl

    2014-01-01

    to face large amount of future wind turbine (WT) blades coming to EoL. Among the EoL solutions available for WT blades, i.e. reuse, remanufacturing, recycling, incineration or disposal, this literature review focuses on recycling and particularly the recycling of shredded composite (SC) materials...... and recovered glass fibre (GF) into new polymer composite. WT blades are mainly made of glass fibre reinforced polymer (GFRP) using thermosetting resins. Shredding this material and recovering GF are possible recycling solutions for WT blade. Based on a detailed literature review, the formulations of new...

  15. Characterization of fibre-reinforced light metals; Charakterisierung faserverstaerker Leichtmetalle

    Energy Technology Data Exchange (ETDEWEB)

    Tietz, H.-D. [Hochschule fuer Technik und Wirtschaft Zwickau (Germany); Behrends, A. [Hochschule fuer Technik und Wirtschaft Zwickau (Germany); Palm, T. [Hochschule fuer Technik und Wirtschaft Zwickau (Germany)

    1996-10-01

    Metal-matrix composites combine the properties of metals with those of ceramic fibres. Pistons of highly stressed Diesel engines are reinforced in their bottom zones by the implantation of a preform of fibres. Investigations concentrate on the nondestructive detection of inclusions and defects of fibre distribution. Due to the very small dimensions of the defects test methods capable of responding sensitively to such small defect dimensions have to be applied. Good prerequisites to solve the task of defect detection are provided in first line by ultrasonic inspection within the high-frequency range in connection with scanning methods. Natural defects up to a size of 120 {mu}m could be detected by ultrasonics. With artificial test defects, the limit was reached at 100 {mu}m. Eddy-current inspection, another test procedure, was applied for the detection of fibreless zones, as there exist differences of conductivity between fibreless and fibre-reinforced zones. The use of scanning methods with special probes allows to depict fibreless zones up to a size of 100 {mu}m on the specimen surface. (orig.)

  16. Advanced Fibre Reinforced Methyl Nadicimide Resins .

    Directory of Open Access Journals (Sweden)

    Sarfaraz Alam

    1996-07-01

    Full Text Available Glass/carbon/kevlar-reinforced composites were fabricated using two structurally different methl nadicimide resins. The resin content of the laminates was in the range of 32-39 per cent. Interlaminar shear strength (ILSSand flexual strength (FS depended on the structure of the methyl nadicimide resins. A significant decrease in the ILSS was observed on treatment with boiling water for 500 h and on isothermal ageing at 300 degree celsius for 100,250 and 500 h. The limiting oxygen index (LOI was the lowest for laminates based on Kevlar fabrics (i.e.54 whereas the laminates based on glass/carbon showed very high LOI(>90.

  17. Fibre Reinforced Plastic Concepts for Structural Chassis Parts

    OpenAIRE

    Deißer, Oliver; Friedrich, Horst E.; Kopp, Gundolf

    2014-01-01

    Abstract Fibre reinforced plastics (FRP) have a high potential for reducing masses of automotive parts, but are seldom used for structural parts in the chassis. If the whole chassis concept is adapted to the new material, then a high weight saving potential can be gained and new body concepts can result. DLR Institute of Vehicle Concepts designed and dimensioned a highly stressed structural part in FRP. A topology optimisation of a defined working space with the estimated loads was perform...

  18. Isotropic Compression Behaviour of Fibre Reinforced Cemented Sand

    Directory of Open Access Journals (Sweden)

    Salahuddin

    2013-07-01

    Full Text Available Fibre-reinforced cemented sands have many applications in improving the response of soils. In this paper, an experimental investigation for the analysis of fiber-reinforced cemented sand in the framework of isotropic compression is presented. The experimental investigations were carried out using a high pressure triaxial apparatus having the capacity of 64 MPa of confining pressure. Tests have been conducted on Portaway sand specimens reinforced with randomly oriented discrete polypropylene fibers with different percentages of fiber and cement contents. Results are presented in the form of e-logp` curves as well as SEM (Scanning Electron Microscopy micrographs. The effects of the addition of fibre in sand and cemented sand for different initial void ratios were investigated. The results demonstrate that the influence of fibre is not significant in both cemented and uncemented sand during the isotropic compression stage. Moreover, from the SEM micrographs it could be seen that there is breakage of sand particles and cement bonds. The fiber threads were seen pinched and found rarely broken in the specimen exhumed after isotropic compression.

  19. Analysis of mechanical properties anisotropy of nanomodified carbon fibre-reinforced woven composites

    Science.gov (United States)

    Ruslantsev, A. N.; Portnova, Ya M.; Tairova, L. P.; Dumansky, A. M.

    2016-10-01

    The polymer binder cracking problem arises while designing and maintaining polymer composite-based aircraft load-bearing members. Some technological methods are used to solve this problem. In particular the injection of nanoagents can block the initiation and growth of microscopic cracks. Crack propagation can also be blocked if the strain energy release is not related with fracturing. One of the possible ways for such energy release is creep. Testing of the anisotropy of the woven carbon fibre reinforced plastic elastic characteristics and creep have been conducted. The samples with different layouts have been made of woven carbon fibre laminate BMI-3/3692 with nanomodified bismaleimide matrix. This matrix has a higher glass transition temperature and improved mechanical properties. The deformation regularities have been analyzed, layer elastic characteristics have been determined. The constitutive equations describing composite material creep have been obtained and its parameters have been defined. Experimental and calculated creep curves have been plotted. It was found that the effects of rheology arise as the direction of load does not match the direction of reinforcing fibres of the material.

  20. Further development of the tungsten-fibre reinforced tungsten composite

    Energy Technology Data Exchange (ETDEWEB)

    Gietl, Hanns; Hoeschen, Till; Riesch, Johann [Max-Planck-Institut fuer Plasmaphysik, 85748 Garching (Germany); Aumann, Martin; Coenen, Jan [Forschungszentrum Juelich, IEK4, 52425 Juelich (Germany); Huber, Philipp [Lehrstuhl fuer Textilmaschinenbau und Institut fuer Textiltechnik (ITA), 52062 Aachen (Germany); Neu, Rudolf [Max-Planck-Institut fuer Plasmaphysik, 85748 Garching (Germany); Technische Universitaet Muenchen, 85748 Garching (Germany)

    2016-07-01

    For the use in a fusion device tungsten has a unique property combination. The brittleness below the ductile-to-brittle transition temperature and the embrittlement during operation e.g. by overheating, neutron irradiation are the main drawbacks for the use of pure tungsten. Tungsten fibre-reinforced tungsten composites utilize extrinsic mechanisms to improve the toughness. After proofing that this idea works in principle the next step is the conceptual proof for the applicability in fusion reactors. This will be done by producing mock-ups and testing them in cyclic high heat load tests. For this step all constituents of the composite, which are fibre, matrix and interface, and all process steps need to be investigated. Tungsten fibres are investigated by means of tension tests to find the optimum diameter and pretreatment. New interface concepts are investigated to meet the requirements in a fusion reactor, e.g. high thermal conductivity, low activation. In addition weaving processes are evaluated for their use in the fibre preform production. This development is accompanied by an extensive investigation of the materials properties e.g. single fibre tension tests.

  1. Improving Impact Strength Recovery of Fractured and Healed Rice Husks Fibre Reinforced Polypropylene Composites.

    Directory of Open Access Journals (Sweden)

    Odhong, O.V.E

    2016-10-01

    Full Text Available Rice husks fibre reinforced polypropylene composite (rhfrpc is a natural plant fibre reinforced polymer composite having advantages of high strength, light weight and affordability. They are commonly used for light load structural and non structural applications. They are mainly used as particle boards, for fencing post, roofing tiles, for interiors of car and aircrafts among other usages. This material once cracked by impact forces cannot be repaired using traditional repair methods for engineering materials such as metals or other composites that can be repaired by welding or by patch repair methods respectively, thus a method of repair of rice husks fibre reinforced polypropylene composites by refilling the damaged volume by injection of various healing agents has been investigated. The composite coupons were produced by injection moulding, cooled sufficiently and prepared for charpy impact tests. Test results for pristine coupons were a maximum of 48 J/mm2 . The destroyed coupons were then subjected to healing in a fabricated healing fixture. Healing agents such as epoxy resin, ethyl cyanoacrylate, and tannin gum have been investigated for their use as possible healing agents to fill the damaged volume and perform healing action at the fractured surfaces. The impact test results were recorded and compared with those of unhealed pristine coupons. The recovered strengths were a maximum of 60 J/mm2 translating into a 125% impact strength recovery, and this is good enough for the healed composites to be recommended for reuse in their second lives of their respective original functions.

  2. Mechanical Property Analysis on Sandwich Structured Hybrid Composite Made from Natural Fibre, Glass Fibre and Ceramic Fibre Wool Reinforced with Epoxy Resin

    Science.gov (United States)

    Bharat, K. R.; Abhishek, S.; Palanikumar, K.

    2017-06-01

    Natural fibre composites find wide range of applications and usage in the automobile and manufacturing industries. They find lack in desired properties, which are required for present applications. In current scenario, many developments in composite materials involve the synthesis of Hybrid composite materials to overcome some of the lacking properties. In this present investigation, two sandwich structured hybrid composite materials have been made by reinforcing Aloe Vera-Ceramic Fibre Wool-Glass fibre with Epoxy resin matrix and Sisal fibre-Ceramic Fibre Wool-Glass fibre with Epoxy resin matrix and its mechanical properties such as Tensile, Flexural and Impact are tested and analyzed. The test results from the two samples are compared and the results show that sisal fibre reinforced hybrid composite has better mechanical properties than aloe vera reinforced hybrid composite.

  3. Polymer Optical Fibre Sensors for Endoscopic Opto-Acoustic Imaging

    DEFF Research Database (Denmark)

    Broadway, Christian; Gallego, Daniel; Woyessa, Getinet

    2015-01-01

    is the physical size of the device, allowing compatibility with current technology, while governing flexibility of the distal end of the endoscope based on the needs of the sensor. Polymer optical fibre (POF) presents a novel approach for endoscopic applications and has been positively discussed and compared...... in existing publications. A great advantage can be obtained for endoscopy due to a small size and array potential to provide discrete imaging speed improvements. Optical fibre exhibits numerous advantages over conventional piezo-electric transducers, such as immunity from electromagnetic interference...... and a higher resolution at small sizes. Furthermore, micro structured polymer optical fibres offer over 12 times the sensitivity of silica fibre. We present a polymer fibre Bragg grating ultrasound detector with a core diameter of 125 microns. We discuss the ultrasonic signals received and draw conclusions...

  4. Sisal fibre pull-out behaviour as a guide to matrix selection for the production of sisal fibre reinforced cement matrix composites

    CSIR Research Space (South Africa)

    Mapiravana, Joe

    2011-12-01

    Full Text Available Natural fibre reinforced cement composites are promising potential materials for use in panelised construction. The structural properties of these composite materials are yet to be fully understood. As the role of the natural fibre is to reinforce...

  5. Study of the shear behaviour of fibre reinforced concrete beams

    Directory of Open Access Journals (Sweden)

    Barragán, B.

    2008-12-01

    Full Text Available This study presents a series of tests for characterizing the structural behaviour of fibre reinforced concrete beams subjected to shear loading. The experimental program involves three types of fibres; two steel fibres and a polypropylene fibre. As a reference, plain concrete and conventionally reinforced concrete specimens have also been tested. The ultimate shear capacity of the beams is calculated and these values compared with those predicted by existing formulations. The study confirms that the toughness and shear crack resistance of the material is greatly enhanced by the fibres. However, the incorporation of 1% of fibres yielded lower shear strength than conventionally reinforced beams with the same amount of steel in the form of transversal stirrups. Existing design methods seem sufficiently robust to estimate the maximum shear load, even when using material properties (toughness, tensile strength extrapolated from code formulae.Este trabajo presenta una serie de ensayos para caracterizar el comportamiento estructural de vigas realizadas con hormigón reforzado con fibras sometidas a cortante. El programa de ensayos incluía tres tipos de fibras, dos de acero y una de polipropileno. Asimismo, se realizó una serie de ensayos con una viga confeccionada con hormigón armado convencional. La resistencia a cortante de las vigas es comparada con los valores que la formulación existente predice. El estudio confirma que la tenacidad y la resistencia a cortante son incrementadas tras la adición de fibras al hormigón. Sin embargo, la incorporación de un 1% en volumen de fibras conduce a valores de resistencia última a cortante inferiores a los obtenidos con vigas de hormigón convencional con la misma cantidad de acero dispuesta en forma de cercos de cortante. Los actuales métodos de cálculo parecen lo suficientemente precisos para evaluar la carga de cortante último, incluso cuando los parámetros mecánicos utilizados en las f

  6. Creep behavior of abaca fibre reinforced composite material

    Energy Technology Data Exchange (ETDEWEB)

    Tobias, B.C.; Lieng, V.T. [Victoria Univ. of Technology, Victoria (Australia)

    1996-12-31

    This study investigates the creep behavior of abaca fibre reinforced composite lamina. The optimum proportions of constituents and loading conditions, temperature and stresses, are investigated in terms of creep properties. Lamina with abaca fibre volume fractions of 60, 70 and 80 percent, embedded in polyester resin were fabricated. Creep tests in tension at three temperature levels 20{degrees}C, 100{degrees}C and 120{degrees}C and three constant stress levels of 0. 1 MPa, 0. 13 Mpa and 0. 198 MPa using a Dynamic Mechanical Analyzer (DMA) were performed. The creep curves show standard regions of an ideal creep curve such as primary and secondary creep stage. The results also show that the minimum creep rate of abaca fibre reinforced composite increases with the increase of temperature and applied stress. Plotting the minimum creep rate against stress, depicts the variations of stress exponents which vary from 1.6194 at 20{degrees}C to 0.4576 at 120{degrees}C.

  7. Advanced Laser Transmission Welding Strategies for Fibre Reinforced Thermoplastics

    Science.gov (United States)

    Wippo, V.; Jaeschke, P.; Brueggmann, M.; Suttmann, O.; Overmeyer, L.

    Laser transmission welding can be used to join endless fibre reinforced thermoplastics. The welding temperature is affected by the heat conduction along carbon fibresand depends on the local orientation of the fibres in the weld seam and the laser welding technique itself. In these investigations the heat development during the welding with quasi-static temperature fields, which is a combination of two laser welding techniques, is evaluated and compared to welding with a homogenized intensity distribution. In order to optimize the temperature distribution over the weld seam width for both linear and curved weld seams, different scanning structures have beenadapted. The experiments were conducted with a diode laser emitting at a wavelength of 940 nm and the process was monitored by aninfrared camera. The used thermoplastics consist of laminates based on unidirectional carbon fibre reinforced polyphenylenesulfide. With the developed scanning structures, a near-homogeneous temperature distribution was generated over the width of the weld seam for curved weld seams, which is not possible by welding with a homogenized laser radiation intensity distribution.

  8. Constructive applications of composite gypsum reinforced with Typha Latifolia fibres

    Directory of Open Access Journals (Sweden)

    Garcia Santos, A.

    2004-03-01

    Full Text Available The present research analyses the possibility to reinforce gypsum using enea fibres (Typha Latifolia creating a compound material in wich the fibres contribute to increase mechanical resistance, producing as well a reduction of the weight and a possible regulation of the set time.

    La investigación presente analiza la posibilidad de reforzar los morteros de escayola mediante la utilización dé fibras de Typha Latifolia, creando un material compuesto en el que las fibras contribuyen al aumento de resistencia mecánica, a la vez que se produce una reducción del peso y una regulación de los tiempos de fraguado. Las propiedades de estos materiales hacen que, en determinadas aplicaciones, su utilización resulte ventajosa con respecto a materiales tradicionales.

  9. Drilling analysis of coir–fibre-reinforced polyester composites

    Indian Academy of Sciences (India)

    S Jayabal; U Natarajan

    2011-12-01

    An investigation has been carried out to make use of coir, a natural fibre abundantly available in India. Coir–polyester composites were prepared and their mechanical and machinability characteristics were studied. The short coir–fibre-reinforced composites exhibited the tensile, flexural and impact strength of 16.1709 MPa, 29.2611 MPa and 46.1740 J/m, respectively. The regression equations were developed and optimized for studying drilling characteristics of coir–polyester composites using the Taguchi approach. A drill bit diameter of 6 mm, spindle speed of 600 rpm and feed rate of 0.3 mm/rev gave the minimum value of thrust force, torque and tool wear in drilling analysis.

  10. Machining analysis of natural fibre reinforced composites using fuzzy logic

    Science.gov (United States)

    Balasubramanian, K.; Sultan, M. T. H.; Cardona, F.; Rajeswari, N.

    2016-10-01

    In this work, a new composite plate with natural jute fibre as the reinforcement fibres and isophthalic polyester as the resin was manufactured and subjected to a series of end milling operation by changing three input factors namely speed, feed rate and depth of cut. During each operation, the output responses namely thrust force and torque were measured. The responses were analyzed using Taguchi method to examine the relation between the input factors and output responses, and also to know the most influencing factors on the responses. The data was also analyzed using fuzzy rule model for prediction of responses for a range of input factors. The results showed that all three factors chosen have significant effect on the responses. The fuzzy model data in comparison with the experimental values shows only a marginal error and hence the prediction was highly satisfactory.

  11. Fatigue behaviour of carbon fibre reinforced plastic under spectrum loading

    Energy Technology Data Exchange (ETDEWEB)

    Sudha, J. [Department of Materials Engineering, Indian Institute of Science, Bangalore 560012 (India)], E-mail: sudhaj@platinum.materials.iisc.ernet.in; Kumar, Subodh [Department of Materials Engineering, Indian Institute of Science, Bangalore 560012 (India); Srinivasan, Prabha; Vijayaraju, K. [Aeronautical Development Agency, Bangalore (India)

    2009-02-15

    In the present investigation the fatigue behaviour of carbon fibre reinforced plastic laminates under realistic service loading conditions has been examined. Laminates with different lay-up sequences have been tested for fatigue under spectrum loading with three different peak load levels. The damage in the laminates was characterized by using ultrasonic C-Scan as well as dynamic mechanical analysis and the damage mechanism was analyzed using scanning electron microscope. A similar investigation was also conducted on laminates with a hole. The results indicate that the spectrum loading did affect the modulus and fibre/matrix interfacial properties of all type of laminates investigated and also caused delamination in the laminate with a hole due to stress concentration around the hole.

  12. Electron processing of fibre-reinforced advanced composites

    Science.gov (United States)

    Singh, Ajit; Saunders, Chris B.; Barnard, John W.; Lopata, Vince J.; Kremers, Walter; McDougall, Tom E.; Chung, Minda; Tateishi, Miyoko

    1996-08-01

    Advanced composites, such as carbon-fibre-reinforced epoxies, are used in the aircraft, aerospace, sporting goods, and transportation industries. Though thermal curing is the dominant industrial process for advanced composites, electron curing of similar composites containing acrylated epoxy matrices has been demonstrated by our work. The main attraction of electron processing technology over thermal technology is the advantages it offers which include ambient temperature curing, reduced curing times, reduced volatile emissions, better material handling, and reduced costs. Electron curing technology allows for the curing of many types of products, such as complex shaped, those containing different types of fibres, and up to 15 cm thick. Our work has been done principally with the AECL's 10 MeV, 1 kW electron accelerator; we have also done some comparative work with an AECL Gammacell 220. In this paper we briefly review our work on the various aspects of electron curing of advanced composites and their properties.

  13. Strength Modeling of High-Strength Concrete with Hybrid Fibre Reinforcement

    Directory of Open Access Journals (Sweden)

    A. Ravichandran

    2009-01-01

    Full Text Available The low tensile strength and limited ductility, the unavoidable deficiency, of concrete can be overcome by the addition of fibres. High strength concrete (HSC of 60 MPa containing hybrid fibres, combination of steel and polyolefin fibres, at different volume fraction of 0.5, 1.0, 1.5 and 2.0% were compared in terms of compressive, splitting tensile strength and flexural properties with HSC containing no fibres. Test results showed that the fibres when used in hybrid form could result in enhanced flexural toughness compared to steel fibre reinforced concrete [HSFRC]. The compressive strength of the fibre-reinforced concrete reached maximum at 1.5% volume fractions and the splitting tensile strength and modulus of rupture improved with increasing volume fraction. Strength models were established to predict the compressive and splitting tensile strength and modulus of rupture of the fibre-reinforced concrete. The models give prediction matching the measurements.

  14. The new structure of fibre glass reinforced plastics bolt

    Institute of Scientific and Technical Information of China (English)

    马念杰; 刘社育

    2003-01-01

    The develop actuality and direction of FRP(fibre glass reinforced plastics) bolt in the world are analyzed. The new type structure of FRP bolt was designed. Trial data indicate that, all kinds of capability target of this FRP bolt all achieve and exceed the country standard, substitute present metal bolt,wood bolt and bamboo bolt and other side bolt, it can gain magnitude technology and economy benefit. FRP bolt mechanization product line produce efficiency is high, its throughput a day are 750 base, this can meet demand of hit-small mining company.

  15. The fracture of boron fibre-reinforced 6061 aluminium alloy

    Science.gov (United States)

    Wright, M. A.; Welch, D.; Jollay, J.

    1979-01-01

    The fracture of 6061 aluminium alloy reinforced with unidirectional and cross-plied 0/90 deg, 0/90/+ or - 45 deg boron fibres has been investigated. The results have been described in terms of a critical stress intensity, K(Q). Critical stress intensity factors were obtained by substituting the failure stress and the initial crack length into the appropriate expression for K(Q). Values were obtained that depended on the dimensions of the specimens. It was therefore concluded that, for the size of specimen tested, the values of K(Q) did not reflect any basic materials property.

  16. Glass fibre reinforced cement based composite: fatigue and fracture parameters

    Directory of Open Access Journals (Sweden)

    Seitl S.

    2009-12-01

    Full Text Available This paper introduces the basic fracture mechanics parameters of advanced building material – glass fibres reinforced cement based composite and its fracture and fatigue behaviour is investigated. To this aim three-point bend (3PB specimens with starting notch were prepared and tested under static (l–d diagram and cyclic loading (Paris law and Ẅöhler curve. To evaluate the results, the finite element method was used for estimation of the corresponding values of stress intensity factor for the 3PB specimen used. The results obtained are compared with literature data.

  17. Fabrication and tribological properties of Al reinforced with carbon fibres

    Energy Technology Data Exchange (ETDEWEB)

    Estrems Amestoy, M.; Faura Mateu, F. [Universidad Politecnica de Cartagena (Spain); Froyen, L. [Department of Metallurgy and Materials Engineering. Katholieke Universiteit Lewen. Heverlee. Belgium (Belgium)

    2000-07-01

    The present work studies the manufacturing process of Al reinforced with Carbon Fibres (CF) by Squeeze Casting, establishing the variables for obtaining and acceptable product with little Al{sub 4}C{sub 3} at the interface. Friction and wear tests are performed and the necessary conditions for the formation of a tribofilm are established. The tests how an increasing resistance to abrasion due to their own wear mechanism. Certain design criteria for those components subjected to friction are recommended in order to maximize the mechanical performance of the tribological system. (Author ) 16 refs.

  18. STUDIES ON STRESS TRANSFERENCE MECHANISM OF STEEL FIBRE REINFORCED CONCRETE

    Institute of Scientific and Technical Information of China (English)

    杨佑发; 许绍乾; 钟正华

    2001-01-01

    The stress transfer mechanism of steel fibre reinforced concrete is studied. The solutions for the stress and displacement were regarded as the superposition of "the elementary solutions" and "the improved solutions". The elementary solutions were found by using two-dimensional elastic theory and the improved solutions were found by using the Love displacement function method. The calculated results indicate that the solutions possess good convergence. By comparing the three-dimensional solutions with the shear-lag solutions, evident difference may be found.

  19. Study of injection moulded long glass fibre-reinforced polypropylene and the effect on the fibre length and orientation distribution

    Science.gov (United States)

    Parveeen, B.; Caton-Rose, P.; Costa, F.; Jin, X.; Hine, P.

    2014-05-01

    Long glass fibre (LGF) composites are extensively used in manufacturing to produce components with enhanced mechanical properties. Long fibres with length 12 to 25mm are added to a thermoplastic matrix. However severe fibre breakage can occur in the injection moulding process resulting in shorter fibre length distribution (FLD). The majority of this breakage occurs due to the melt experiencing extreme shear stress during the preparation and injection stage. Care should be taken to ensure that the longer fibres make it through the injection moulding process without their length being significantly degraded. This study is based on commercial 12 mm long glass-fibre reinforced polypropylene (PP) and short glass fibre Nylon. Due to the semi-flexiable behaviour of long glass fibres, the fibre orientation distribution (FOD) will differ from the orientation distribution of short glass fibre in an injection molded part. In order to investigate the effect the change in fibre length has on the fibre orientation distribution or vice versa, FOD data was measured using the 2D section image analyser. The overall purpose of the research is to show how the orientation distribution chnages in an injection moulded centre gated disc and end gated plaque geometry and to compare this data against fibre orientation predictions obtained from Autodesk Moldflow Simulation Insight.

  20. Bioresorbable screws reinforced with phosphate glass fibre: manufacturing and mechanical property characterisation.

    Science.gov (United States)

    Felfel, R M; Ahmed, I; Parsons, A J; Rudd, C D

    2013-01-01

    Use of bioresorbable screws could eliminate disadvantages associated with metals such as removal operations, corrosion, MRI interference and stress shielding. Mechanical properties of bioresorbable polymers alone are insufficient for load bearing applications application as screws. Thus, reinforcement is necessary to try and match or surpass the mechanical properties of cortical bone. Phosphate based glass fibres were used to reinforce polylactic acid (PLA) in order to produce unidirectionally aligned (UD) and unidirectionally plus randomly distributed (UD/RM) composite screws (P40 UD and P40 UD/RM). The maximum flexural and push-out properties for the composite screws (P40 UD and P40 UD/RM) increased by almost 100% in comparison with the PLA screws. While the pull-out strength and stiffness of the headless composite screws were ∼80% (strength) and ∼130% (stiffness) higher than for PLA, those with heads exhibited properties lower than those for PLA alone as a result of failure at the heads. An increase in the maximum shear load and stiffness for the composite screws (∼30% and ∼40%) in comparison to the PLA screws was also seen. Maximum torque for the PLA screws was ∼1000 mN m, while that for the composite screws were slightly lower. The SEM micrographs for P40 UD and P40 UD/RM screws revealed small gaps around the fibres, which were suggested to be due to buckling of the UD fibres during the manufacturing process.

  1. Toughening and healing of continuous fibre reinforced composites with bis-maleimide based pre-pregs

    Science.gov (United States)

    Kostopoulos, V.; Kotrotsos, A.; Tsantzalis, S.; Tsokanas, P.; Christopoulos, A. C.; Loutas, T.

    2016-08-01

    Unidirectional (UD) pre-pregs containing self-healing materials based on Diels-Alder reaction bis-maleimide (BMI) polymers were successfully incorporated on the mid-plane of UD carbon fibre reinforced polymers. The fracture toughness of these composites and the introduced healing capability were measured under mode I loading. The interlaminar fracture toughness was enhanced considerably, since the maximum load (P max) of the modified composite increased approximately 1.5 times and the mode I fracture energy (G IC) displayed a significant increase of almost 3.5 times when compared to the reference composites. Furthermore the modified composites displayed a healing efficiency (HE) value of about 30% for P max and 20% for G IC after the first healing, appearing to be an almost stable behaviour after the third healing cycle. The HE displayed a decrease of 20% and 15% for P max and G IC values, respectively, after the fifth healing cycle. During the tests, the monitored acoustic emission (AE) activity of the samples showed that there is no significant difference due to the presence of BMI polymer in terms of AE hits. Moreover, optical microscopy not only showed that the epoxy matrix at the interface is partly infiltrated by the BMI polymer, but it also revealed the presence of pulled out fibres at the fractured surface, indicating ductile behaviour.

  2. The effects of steel fibre reinforced concrete on system ductility

    Directory of Open Access Journals (Sweden)

    Yilmaz, U. S.

    2007-03-01

    Full Text Available Steel fibre-reinforced concrete is being used extensively today in both field applications and experimental studies on concrete strength and ductility. The state of passive confinement generated by the fibre delays cracking and enhances ductility. The present paper reports on both experimental and analytical studies. In the former, a series of 16 steel-fibre reinforced concrete prismatic specimens were subjected to axial loads and the respective axial load-unit strain diagrams were subsequently plotted to determine the effect of steel fibres on reinforced concrete column ductility. Secondly, an analytical study was run to determine the additional ductility accruing to a frame system when steel fibres are included in the concrete. Analytical models were generated for 16 two-storey, single-span reinforced concrete frames. The columns in these frames were designed to the same characteristics as the specimens used in the experimental tests. Non-linear static (pushover analyses were performed for each frame to obtain load-displacement curves and determine the effect of steel fibres on reinforced concrete column ductility.El hormigón reforzado con fibra de acero se emplea actualmente tanto en obra como en los trabajos experimentales para estudiar la resistencia mecánica y ductilidad del hormigón. El estado de confinamiento pasivo producido por la fibra retrasa la fisuración y aumenta la ductilidad. El presente trabajo es de índole tanto experimental como analítica. En primer lugar, en la parte experimental se aplica una fuerza axial a 16 probetas prismáticas (160 x 160 x 840 mm de hormigón reforzado con fibra de acero para determinar su comportamiento, obteniéndose las curvas de fuerza axial-deformación unitaria correspondientes a partir de los resultados observados. A partir de una evaluación de dichos resultados experimentales, se determina el efecto que ejercen las fibras de acero sobre la ductilidad de las probetas de hormigón armado

  3. Plasma treatment of carbon fibres and glass-fibre-reinforced polyesters at atmospheric pressure for adhesion improvement

    DEFF Research Database (Denmark)

    Kusano, Yukihiro; Løgstrup Andersen, Tom; Toftegaard, Helmuth Langmaack

    2014-01-01

    composites before assembling them to build wind turbine blades. In the present work, unsized carbon fibres are continuously treated using a dielectric barrier discharge plasma in helium at atmospheric pressure, and carbon fibre reinforced epoxy composite plates are manufactured for the mechanical test...

  4. Drying Shrinkage Behaviour of Fibre Reinforced Concrete Incorporating Polyvinyl Alcohol Fibres and Fly Ash

    Directory of Open Access Journals (Sweden)

    Amin Noushini

    2014-01-01

    Full Text Available The current study assesses the drying shrinkage behaviour of polyvinyl alcohol fibre reinforced concrete (PVA-FRC containing short-length (6 mm and long-length (12 mm uncoated monofilament PVA fibres at 0.125%, 0.25%, 0.375%, and 0.5% volumetric fractions. Fly ash is also used as a partial replacement of Portland cement in all mixes. PVA-FRC mixes have been compared to length change of control concrete (devoid of fibres at 3 storage intervals: early-age (0–7 days, short-term (0–28 days, and long-term (28–112 days intervals. The shrinkage results of FRC and control concrete up to 112 days indicated that all PVA-FRC mixes exhibited higher drying shrinkage than control. The shrinkage exhibited by PVA-FRC mixes ranged from 449 to 480 microstrain, where this value was only 427 microstrain in the case of control. In addition, the longer fibres exhibited higher mass loss, thus potentially contributing to higher shrinkage.

  5. THE USE OF SISAL FIBRE AS REINFORCEMENT IN CEMENT BASED COMPOSITES

    Directory of Open Access Journals (Sweden)

    Romildo Dias Tolêdo Filho

    1999-08-01

    Full Text Available ABSTRACT The inclusion of fibre reinforcement in concrete, mortar and cement paste can enhance many of the engineering properties of the basic materials, such as fracture toughness, flexural strength and resistance to fatigue, impact, thermal shock and spalling. In recent years, a great deal of interest has been created worldwide on the potential applications of natural fibre reinforced, cement based composites. Investigations have been carried out in many countries on various mechanical properties, physical performance and durability of cement based matrices reinforced with naturally occurring fibres including sisal, coconut, jute, bamboo and wood fibres. These fibres have always been considered promising as reinforcement of cement based matrices because of their availability, low cost and low consumption of energy. In this review, the general properties of the composites are described in relation to fibre content, length, strength and stiffness. A chronological development of sisal fibre reinforced, cement based matrices is reported and experimental data are provided to illustrate the performance of sisal fibre reinforced cement composites. A brief description on the use of these composite materials as building products has been included. The influence of sisal fibres on the development of plastic shrinkage in the pre-hardened state, on tensile, compressive and bending strength in the hardened state of mortar mixes is discussed. Creep and drying shrinkage of the composites and the durability of natural fibres in cement based matrices are of particular interest and are also highlighted. The results show that the composites reinforced with sisal fibres are reliable materials to be used in practice for the production of structural elements to be used in rural and civil construction. This material could be a substitute asbestos-cement composite, which is a serious hazard to human and animal health and is prohibited in industrialized countries. The

  6. Performance of polymer gears reinforced with sisal woven rovings

    Directory of Open Access Journals (Sweden)

    A. Faizur Rahman

    2014-12-01

    Full Text Available Polymer gears find a common place in many industries and applications. In general, carbon fibre and glass fibres are used as reinforcement in polymer gears. This current research focuses on developing and testing the temperature and wear performance of Polyester spur gears reinforced with Sisal Woven Rovings (SWRP . Volume fractions (Vf such as 5% (SWRP/A, 10% (SWRP/B, 15% (SWRP/C and 20% (SWRP/D of gear specimens were prepared and tested for temperature and wear effects. Gears were tested up to 1.4 x 106 cycles. Gear tooth damages are recorded through optical photographs. The result reveals that the temperature and wear performance of SWRP/A and SWRP/B gears were low compared to SWRP/D gears.A small amount of wear damages were observed in SWRP/C gears. No damages were occurred in SWRP/D gears upto 1.4 x 106 cycles and also it was observed that the temperature and wear rate were found to be 15 % and 36 % lesser in SWRP/D gears when compared to SWRP/A gears.

  7. Glass fibres reinforced polyester composites degradation monitoring by surface analysis

    Energy Technology Data Exchange (ETDEWEB)

    Croitoru, Catalin [“Transilvania” University of Brasov, Materials Engineering and Welding Department, Eroilor 29 Str., 500036 Brasov (Romania); Patachia, Silvia, E-mail: st.patachia@unitbv.ro [“Transilvania” University of Brasov, Product Design Environment and Mechatronics Department, Eroilor 29 Str., 500036 Brasov (Romania); Papancea, Adina [“Transilvania” University of Brasov, Product Design Environment and Mechatronics Department, Eroilor 29 Str., 500036 Brasov (Romania); Baltes, Liana; Tierean, Mircea [“Transilvania” University of Brasov, Materials Engineering and Welding Department, Eroilor 29 Str., 500036 Brasov (Romania)

    2015-12-15

    Highlights: • Glass fibre-reinforced polyester composites surface analysis by photographic method. • The composites are submitted to accelerated ageing by UV irradiation at 254 nm. • The UV irradiation promotes differences in the surface chemistry of the composites. • MB dye is differently adsorbed on surfaces with different degradation degrees. • Good correlation between the colouring degree and surface chemistry. - Abstract: The paper presents a novel method for quantification of the modifications that occur on the surface of different types of gel-coated glass fibre-reinforced polyester composites under artificial UV-ageing at 254 nm. The method implies the adsorption of an ionic dye, namely methylene blue, on the UV-aged composite, and computing the CIELab colour space parameters from the photographic image of the coloured composite's surface. The method significantly enhances the colour differences between the irradiated composites and the reference, in contrast with the non-coloured ones. The colour modifications that occur represent a good indicative of the surface degradation, alteration of surface hydrophily and roughness of the composite and are in good correlation with the ATR-FTIR spectroscopy and optical microscopy results. The proposed method is easier, faster and cheaper than the traditional ones.

  8. Application of fibre reinforced metals in internal combustion engines. Anwendung faserverstaerkter Metalle in Verbrennungsmotoren

    Energy Technology Data Exchange (ETDEWEB)

    Essig, G.; Mielke, S.; Bloschies, G. (Kolbenschmidt AG, Neckarsulm (Germany, F.R.))

    1990-05-01

    Completely using the many advantages of aluminium silicon alloys presupposes technical pregnant methods to counteract the decrease in hot strength at temperatures above 300deg C. Reinforcing the metallic alloy by ceramic fibres presents itself for strength increase. Therefore the qualities of fibres and fibre preforms being used are of great importance. (orig.).

  9. Connections in Precast Buildings using Ultra High-Strength Fibre Reinforced Concrete

    DEFF Research Database (Denmark)

    Hansen, Lars Pilegaard

    1995-01-01

    Ultra high-strength concrete adds new dimensions to the design of concrete structures. It is a brittle material but introducing fibres into the matrix changes the material into a highly ductile material. Furthermore, the fibre reinforcement increases the anchorage of traditional reinforcement bars...

  10. The High-Frequency Dielectric Properties of Glass Fibre Reinforced Plastic and Honeycomb Layers

    Science.gov (United States)

    1989-06-29

    The dielectric constant and the dielectric loss angle tangent of glass fibre reinforced plastic are both relatively small; it is a good wave...practical value. This paper introduces the work we have done in this area. The dielectric properties of glass fibre reinforced plastic have a close

  11. Cytocompatibility and Mechanical Properties of Short Phosphate Glass Fibre Reinforced Polylactic Acid (PLA Composites: Effect of Coupling Agent Mediated Interface

    Directory of Open Access Journals (Sweden)

    Gavin Walker

    2012-10-01

    Full Text Available In this study three chemical agents Amino-propyl-triethoxy-silane (APS, sorbitol ended PLA oligomer (SPLA and Hexamethylene diisocyanate (HDI were identified to be used as coupling agents to react with the phosphate glass fibre (PGF reinforcement and the polylactic acid (PLA polymer matrix of the composite. Composites were prepared with short chopped strand fibres (l = 20 mm, ϕ = 20 µm in a random arrangement within PLA matrix. Improved, initial composite flexural strength (~20 MPa was observed for APS treated fibres, which was suggested to be due to enhanced bonding between the fibres and polymer matrix. Both APS and HDI treated fibres were suggested to be covalently linked with the PLA matrix. The hydrophobicity induced by these coupling agents (HDI, APS helped to resist hydrolysis of the interface and thus retained their mechanical properties for an extended period of time as compared to non-treated control. Approximately 70% of initial strength and 65% of initial modulus was retained by HDI treated fibre composites in contrast to the control, where only ~50% of strength and modulus was retained after 28 days of immersion in PBS at 37 °C. All coupling agent treated and control composites demonstrated good cytocompatibility which was comparable to the tissue culture polystyrene (TCP control, supporting the use of these materials as coupling agent’s within medical implant devices.

  12. Corrosion Effects on the Strength Properties of Steel Fibre Reinforced Concrete Containing Slag and Corrosion Inhibitor

    OpenAIRE

    Sivakumar Anandan; Sounthararajan Vallarasu Manoharan; Thirumurugan Sengottian

    2014-01-01

    Corrosion in steel can be detrimental in any steel rebar reinforced concrete as well as in the case of steel fibre reinforced concrete. The process of corrosion occurring in steel fibre incorporated concrete subjected to corrosive environment was systematically evaluated in this study. Concrete specimens were prepared with steel fibre inclusions at 1.5% Vf (volume fraction) of concrete and were added in slag based concrete (containing manufactured sand) and replaced with cement at 20%, 40%, ...

  13. Effect of degumming time on silkworm silk fibre for biodegradable polymer composites

    Science.gov (United States)

    Ho, Mei-po; Wang, Hao; Lau, Kin-tak

    2012-02-01

    Recently, many studies have been conducted on exploitation of natural materials for modern product development and bioengineering applications. Apart from plant-based materials (such as sisal, hemp, jute, bamboo and palm fibre), animal-based fibre is a kind of sustainable natural materials for making novel composites. Silkworm silk fibre extracted from cocoon has been well recognized as a promising material for bio-medical engineering applications because of its superior mechanical and bioresorbable properties. However, when producing silk fibre reinforced biodegradable/bioresorbable polymer composites, hydrophilic sericin has been found to cause poor interfacial bonding with most polymers and thus, it results in affecting the resultant properties of the composites. Besides, sericin layers on fibroin surface may also cause an adverse effect towards biocompatibility and hypersensitivity to silk for implant applications. Therefore, a proper pre-treatment should be done for sericin removal. Degumming is a surface modification process which allows a wide control of the silk fibre's properties, making the silk fibre possible to be used for the development and production of novel bio-composites with unique/specific mechanical and biodegradable properties. In this paper, a cleaner and environmentally friendly surface modification technique for tussah silk in polymer based composites is proposed. The effectiveness of different degumming parameters including degumming time and temperature on tussah silk is discussed through the analyses of their mechanical and morphological properties. Based on results obtained, it was found that the mechanical properties of tussah silk are affected by the degumming time due to the change of the fibre structure and fibroin alignment.

  14. Fibre Bragg Grating and Long Period Grating Sensors in Polymer Optical Fibres

    DEFF Research Database (Denmark)

    Bundalo, Ivan-Lazar

    of applications and pushing the limits. The first part of the work focuses on the fabrication of FBGs in polymer optical fibres. FBGs are a periodic perturbation of the refractive index of the optical fibre core which act as a wavelength specific reflector. The fibres used are made of Polymethyl methacrylate......, strain duration, increasing number of cycles, and it decreases with relaxation duration. For strains up to 0.9%, fast relaxing ΔΛfast range takes no less than 65% of the total strain range. Increase in ΔΛslow due to cyclic straining and relaxing seems to reach an equilibrium value, suggesting that ΔΛslow...... which translates the outside pressure into strain on the fibre. The transducer consisted of a 3Dprinted skeleton through which the fibre is pulled. A latex material is then wrapped around it and all the holes were sealed in order to prevent the air from leaking out. The pod transducer was tested...

  15. Feasibility of Using High-Performance Steel Fibre Reinforced Concrete for Simplifying Reinforcement Details of Critical Members

    Directory of Open Access Journals (Sweden)

    Seok-Joon Jang

    2015-01-01

    Full Text Available This paper addresses the effects of hooked-end steel fibre contents on the mechanical properties of high-performance concrete (HPC and investigates the feasibility of utilizing steel fibres to simplify the complicated reinforcement detailing of critical HPC members under high shear stress. Mechanical properties of HPCs with specified compressive strength of 60 and 100 MPa include the flow, air content, compressive strength, and flexural strength. The effectiveness of 1.50% steel fibre content on the shear behaviour of diagonally reinforced concrete coupling beam without additional transverse reinforcement was investigated to alleviate complex reinforcing details for the full section confinement of diagonal bar groups. The test results revealed the incorporation of steel fibres significantly affected the mechanical properties of the HPCs. For diagonally reinforced coupling beam (SFRCCB without additional transverse reinforcement, the addition of 1.5% steel fibre content into 60 MPa HPC coupling beam provides similar cracking and structural behaviours compared to those of diagonally reinforced coupling beam (CCB with full section confinement details. However, the ductility of SFRCCB was less than that of CCB. It is recommended that both stirrups and steel fibre should be used for fully confining the diagonal bar groups of coupling beams to achieve the ductile behaviour.

  16. Feasibility of Using High-Performance Steel Fibre Reinforced Concrete for Simplifying Reinforcement Details of Critical Members

    OpenAIRE

    Seok-Joon Jang; Dae-Hyun Kang; Kyung-Lim Ahn; Wan-Shin Park; Sun-Woong Kim; Hyun-Do Yun

    2015-01-01

    This paper addresses the effects of hooked-end steel fibre contents on the mechanical properties of high-performance concrete (HPC) and investigates the feasibility of utilizing steel fibres to simplify the complicated reinforcement detailing of critical HPC members under high shear stress. Mechanical properties of HPCs with specified compressive strength of 60 and 100 MPa include the flow, air content, compressive strength, and flexural strength. The effectiveness of 1.50% steel fibre conten...

  17. REPAIR AND STRENGTHENING OF REINFORCED CONCRETE BEAMS USING FIBRE REINFORCED POLIMER (FRP MATERIALS

    Directory of Open Access Journals (Sweden)

    Nihat ÇETİNKAYA

    2004-03-01

    Full Text Available The use of Fibre Reinforced Polimer (FRP materials for the repair and strengthening of Reinforced Concrete structures has become widespread recently. FRP materials are being prefered because they have very high tensile strength, resistance to corrosion and they do not affect the use of the building during the repair and strengthening process. Four reinfoced concrete beams repaired and strengthened with FRP materials have been used in this study which were performed at Pamukkale University-Faculty of Engineering- Civil Engineering Department- Structural Engineering Laboratuary. The behaviour of the beams before and after repair and strengthening was compared by obtaining the load- displacement curves under static loading. In this study, it was observed that the repair and strengthening of reinforced concrete beams by using FRP materials had increased the load carrying capacity significantly.

  18. Carbon fibre-reinforced, alkali-activated slag mortars

    Directory of Open Access Journals (Sweden)

    Garcés, P.

    2007-12-01

    Full Text Available The paper describes the effect of carbon fibre on alkaliactivated slag mortar (AAS mechanical strength, volume stability and reinforcing steel corrosion, compared to its effect on the same properties in Portland cement (PC properties. Mechanical strength and volume stability tests were performed as set out in the respective Spanish UNE standards. The corrosion rate of steel embedded in the specimens studied was determined from polarization resistance analysis. One of the findings of the study performed was that carbon fibre failed to improve AAS or CP mortar strength. As far as volume stability is concerned, the inclusion of carbon fibres in AAS with a liquid/solid ratio of 0.5 reduced drying shrinkage by about 50%. The effect of carbon fibre on PC mortars differed from its effect on AAS mortars. Studies showed that in the presence of carbonation, steel corrosion reached higher levels in carbon-fibre reinforced AAS mortars; the inclusion of 1% carbon fibre improved corrosion resistance perceptibly in these same mortars, however, when exposed to chloride attack.Se ha estudiado el efecto de la incorporación de fibras de carbón en el comportamiento mecánico, estabilidad de volumen y nivel de corrosión de la armadura en morteros de escorias activadas alcalinamente (AAS. Se evalúa la influencia de las fibras de carbón en el comportamiento de morteros alcalinos en comparación con el efecto que producen en morteros de Portland (CP. Los ensayos mecánicos y de estabilidad de volumen se han realizado según lo establecido en la norma UNE que los regula. Se ha utilizado la técnica de la Resistencia a la Polarización para determinar la velocidad de corrosión del acero embebido en las muestras estudiadas. Como consecuencia del estudio realizado, se ha podido concluir que la adición de fibras de carbón a morteros de AAS y CP no mejora las características resistentes de los mismos. En relación con la estabilidad de volumen, la incorporación de

  19. Glass fibres reinforced polyester composites degradation monitoring by surface analysis

    Science.gov (United States)

    Croitoru, Catalin; Patachia, Silvia; Papancea, Adina; Baltes, Liana; Tierean, Mircea

    2015-12-01

    The paper presents a novel method for quantification of the modifications that occur on the surface of different types of gel-coated glass fibre-reinforced polyester composites under artificial UV-ageing at 254 nm. The method implies the adsorption of an ionic dye, namely methylene blue, on the UV-aged composite, and computing the CIELab colour space parameters from the photographic image of the coloured composite's surface. The method significantly enhances the colour differences between the irradiated composites and the reference, in contrast with the non-coloured ones. The colour modifications that occur represent a good indicative of the surface degradation, alteration of surface hydrophily and roughness of the composite and are in good correlation with the ATR-FTIR spectroscopy and optical microscopy results. The proposed method is easier, faster and cheaper than the traditional ones.

  20. Impact Resistance of Short Fibre/Particle Reinforced Epoxy

    Science.gov (United States)

    Chang, L.; Zhang, Z.; Breidt, C.

    2004-01-01

    The influence of temperature on the fracture behaviour of epoxy-based composites was studied using an instrumented Charpy impact approach. A series of epoxy reinforced with short carbon fibres (SCF) and additionally filled with various amounts of PTFE and graphite particles was considered in this study. Unnotched specimens were tested at -196°C, 20°C, and 70°C, respectively. It was found that, for specimens with the same matrix content, a proper hybridisation of composites was possible to achieve a better impact performance compared to single-filler/epoxy. For example, 10 vol.%PTFE+10 vol.%SCF/epoxy exhibited a higher impact resistance than that of 20 vol.%SCF/epoxy at all measured temperatures. Failure mechanisms at different temperatures were discussed with SEM fractography.

  1. Unidirectional Cordenka Fibre-Reinforced Furan Resin Full Biocomposite: Properties and Influence of High Fibre Mass Fraction

    Directory of Open Access Journals (Sweden)

    Talent Malaba

    2015-01-01

    Full Text Available A full biocomposite was fabricated from Cordenka CR fibre and furan resin. High fibre mass fractions (FMF were achieved by pressing the CR fibres into unidirectional sheets prior to incorporation into the resin. Results of testing indicated that the tensile properties of the biocomposite were improved by the initial increase of FMF from 51 to 64%, with a subsequent increase of FMF to 75% resulting in a deterioration of those properties. Examination of the tensile fracture surfaces with a scanning electron microscope (SEM revealed moderate deterioration in fibre-matrix adhesion after the initial increase of FMF. Further increase of the FMF to 75% was shown by SEM to result in worse fibre-matrix adhesion. On the other hand, the flexural, interlaminar-shear, and dynamic mechanical properties were adversely affected by the increase in fibre-mass fraction from 51 through 75%. These effects were mainly attributed to reduced fibre wetting that resulted in weakened fibre-matrix interfacial bonding and subsequent poor stress exchange at the fibre-matrix interface. Observations made with a digital microscope revealed normal crack behaviour in the laminated composite, and the shear fracture modes were I and II. This biocomposite has mechanical properties comparable to those of flax and glass fibre-reinforced furan resin biocomposites.

  2. Tribological behaviour of unidirectional carbon fibre-reinforced epoxy composites

    Science.gov (United States)

    Şahin, Y.; De Baets, P.

    2017-02-01

    Tribological behaviour of unidirectional carbon fibre-reinforced epoxy composites containing 42wt.% (CU42) and 52wt.% (CU52) carbon fibres fabricated by moulding technique was investigated on a pin-on-flat plate configuration. It is the first time to measure static and dynamic coefficient of frictions and wear rates of epoxy composites under heavy loading conditions. Microstructures of composites were examined by scanning electron microscopy (SEM). The experimental results indicated the carbon fiber improved the tribological properties of thermoset epoxy by reducing wear rate, but increased the coefficient of friction. At higher load, average wear rates were about 10.8x10-5 mm3/N.m for composites while it was about 38.20x10-5 mm3/N.m for epoxy resin. The wear rate decreased with decreasing load while friction coefficient increased with decreasing load. Moreover, friction coefficient of composites of CU42 tested at 90 N load was measured to be in the range 0.35 and 0.13 for static and dynamic component, respectively.

  3. 浅述玻璃钢制品质量控制%Research on the Quality Control of Fibre Reinforced Plastic Product

    Institute of Scientific and Technical Information of China (English)

    陈瑛卿

    2012-01-01

      Fibre-reinforced plastic (FRP) (also fibre-reinforced polymer) is a composite material made of a polymer matrix reinforced with fibres, which with light quality and high intensity. At present, the integrated quality control system of fibre reinforced plastic technics still not been established in China, to insure the product quality of fibre reinforced plastic, some measures must be taken from the technical training of perspnnel, quality control of raw materials, process control of manufacturing and quality control of final product.%  玻璃钢是一种高性能的纤维增强树脂基复合材料,轻质高强。目前我国的玻璃钢工业尚未建立起完整的质量控制体系,为了确保玻璃钢产品的质量,必须从人员的技术培训、原材料的质量把关,制造过程的工艺控制和成品控制等几方面入手。

  4. Mechanical Characterization and Water Absorption Behaviour of Interwoven Kenaf/PET Fibre Reinforced Epoxy Hybrid Composite

    Directory of Open Access Journals (Sweden)

    Yakubu Dan-mallam

    2015-01-01

    Full Text Available The development of interwoven fabric for composite production is a novel approach that can be adopted to address the challenges of balanced mechanical properties and water absorption behaviour of polymer composites. In this paper, kenaf and PET (polyethylene terephthalate fibre were selected as reinforcing materials to develop the woven fabric, and low viscosity epoxy resin was chosen as the matrix. Vacuum infusion process was adopted to produce the hybrid composite due to its superior advantages over hand lay-up technique. The weight percentage composition of the Epoxy/kenaf/PET hybrid composite was maintained at 70/15/15 and 60/20/20, respectively. A significant increase in tensile strength and elastic modulus of approximately 73% and 53% was recorded in relation to neat epoxy. Similarly, a substantial increase in flexural, impact, and interlaminar properties was also realized in relation to neat epoxy. This enhancement in mechanical properties may be attributed to the interlocking structure of the interwoven fabric, individual properties of kenaf and PET fibres, strong interfacial bonding, and resistance of the fibres to impact loading. The water absorption of the composites was studied by prolonged exposure in distilled water, and the moisture absorption pattern was found to follow Fickian behaviour.

  5. Mechanical and electrical performance of Roystonea regia/glass fibre reinforced epoxy hybrid composites

    Indian Academy of Sciences (India)

    Govardhan Goud; R N Rao

    2012-08-01

    The present paper investigates mechanical and electrical properties of Roystonea regia/glass fibre reinforced epoxy hybrid composites. Five varieties of hybrid composites have been prepared by varying the glass fibre loading. Roystonea regia (royal palm), a natural fibre was collected from the foliage of locally available royal palm tree through the process of water retting and mechanical extraction. Roystonea regia, -glass short fibres were used together as reinforcement in epoxy matrix to form hybrid composites. It has been observed that tensile, flexural, impact and hardness properties of hybrid composites considerably increased with increase in glass fibre loading. But electrical conductivity and dielectric constant values decreased with increase in glass fibre content in the hybrid composites at all frequencies. Scanning electron microscopy of fractured hybrid composites has been carried out to study the fibre matrix adhesion.

  6. CRAG (Composite Research Advisory Group) Test Methods for the Measurement of the Engineering Properties of Fibre Reinforced Plastics

    Science.gov (United States)

    1988-02-01

    coefficients in fibre reinforced plastic laminates. RAE Technical Report 81105, August 1981. UNLIMITED fig 900.1 00 Z a r40 N 6)l I...through- thickness moisture distribution and diffusion coefficients in fibre reinforced plastic laminates. RAE Technical Report 81105, August 1981. 4 C...procedures to be used to determine the fibre volume fraction (Vf) and the resin volume fraction (Vr) of cured fibre reinforced plastic laminates. It is not

  7. A combined corrosion protection system for reinforced concrete structures using a carbon fibre mesh

    Energy Technology Data Exchange (ETDEWEB)

    Bruns, M.; Raupach, M. [Institut fuer Bauforschung der RWTH Aachen, IBAC, Institute of Building Materials Research of the Technical University of Aachen, Schinkelstrasse 3 Aachen (Germany)

    2004-07-01

    Cathodic Protection (CP) has become a world-wide used method to protect reinforced concrete structures against reinforcement corrosion. Another method to stop or reduce reinforcement corrosion, at least in case of lower chloride contents is the reduction of the water content of the concrete by applying sealing coatings on the concrete surface. At the Institute of Building Materials Research of Aachen University (IBAC) actually a surface protection system is investigated based on the combination of both methods mentioned above. The idea is to protect the reinforcement within the first years after system installation by cathodic protection until the water content of the concrete has decreased to a level due to the surface coating where the corrosion rate of the reinforcement is uncritical and does not lead to any damage. The system investigated, consists of a carbon fibre net embedded in a special mortar layer as impressed current anode for cathodic protection, covered by a 'dense' cement based polymer modified surface coating. In order to investigate the system, it has been installed on a test area on the weathered upper deck of a parking garage in Aachen, Germany. To investigate the effectiveness regarding the reduction of the water content of the concrete the test area was equipped with so called Multiring-Electrodes (MRE) for depth depended measurement of the concrete resistivity. Reference electrodes for potential and depolarization measurements as well a device for automatic measurement of the protection current were installed to investigate the effectiveness of the impressed current cathodic protection. Additionally 3 re bars were embedded into the concrete of the test area using mortar containing 1, 2 or 3 M.-% chloride by weight of cement respectively, to investigate the influence of the chloride content. First results of the MRE-measurements showing already within the first months after system installation a distinct drying of the concrete cover

  8. Solution electrospinning of particle-polymer composite fibres

    DEFF Research Database (Denmark)

    Christiansen, Lasse; Fojan, Peter

    2016-01-01

    into scaffolds. The formation of a particle/polymer composite results in improved mechanical stability, without compromising the porosity. In the presented study, aerogel and poly(ethylene oxide) are mixed into a solution, and spun to thin fibres. Thereby a porous membrane, on the micro- and nano...

  9. Mechanical properties of kenaf bast and core fibre reinforced unsaturated polyester composites

    Energy Technology Data Exchange (ETDEWEB)

    Ishak, M R; Leman, Z; Sapuan, S M [Department of Mechanical and Manufacturing Engineering, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor (Malaysia); Edeerozey, A M M; Othman, I S, E-mail: zleman@eng.upm.edu.my [Faculty of Manufacturing Engineering, Universiti Teknikal Malaysia Melaka, 76109 Durian Tunggal, Melaka (Malaysia)

    2010-05-15

    Kenaf fibre has high potential to be used for composite reinforcement in biocomposite material. It is made up of an inner woody core and an outer fibrous bark surrounding the core. The aim of this study was to compare the mechanical properties of short kenaf bast and core fibre reinforced unsaturated polyester composites with varying fibre weight fraction i.e. 0%, 5%, 10%, 20%, 30% and 40%. The compression moulding technique was used to prepare the composite specimens for tensile, flexural and impact tests in accordance to the ASTM D5083, ASTM D790 and ASTM D256 respectively. The overall results showed that the composites reinforced with kenaf bast fibre had higher mechanical properties than kenaf core fibre composites. The results also showed that the optimum fibre content for achieving highest tensile strength for both bast and core fibre composites was 20%wt. It was also observed that the elongation at break for both composites decreased as the fibre content increased. For the flexural strength, the optimum fibre content for both composites was 10%wt while for impact strength, it was at 10%wt and 5%wt for bast and core fibre composites respectively.

  10. Mechanical behaviour of glass fibre reinforced composite at varying strain rates

    Science.gov (United States)

    Acharya, Saikat; Mondal, D. K.; Ghosh, K. S.; Mukhopadhyay, A. K.

    2017-03-01

    Here we report the results of compressive split Hopkinson pressure bar experiments (SHPB) conducted on unidirectional glass fibre reinforced polymer (GFRP) in the strain rate regime 5  ×  102–1.3  ×  103 s‑1. The maximum compressive strength of GFRP was found to increase by as much as 55% with increase in strain rate. However, the corresponding relative strain to failure response was measured to increase only marginally with increase in strain rates. Based on the experimental results and photomicrographs obtained from FE-SEM based post mortem examinations, the failure phenomena are suggested to be associated with increase in absorption of energy from low to high strain rates. Attempts have been made to explain these observations in terms of changes in deformation mechanisms primarily as a function of strain rates.

  11. Effects of fibre reinforcement on the mechanical properties of brushite cement.

    Science.gov (United States)

    Gorst, N J S; Perrie, Y; Gbureck, U; Hutton, A L; Hofmann, M P; Grover, L M; Barralet, J E

    2006-01-01

    In this study the effect of structure and amount of polyglactin fibre incorporation into a brushite forming calcium phosphate cement system and the effect of mechanical compaction on the fibre modified system were investigated. In comparison the effect of resorbable polycaprolactone surface coating of cement specimens was investigated. The results showed that, apart from the mechanical properties of the reinforcing material, the structure of the incorporated fibres, regular or random, is crucial for the resulting flexural strength and modulus of elasticity. Fibre reinforcement could also be combined with mechanical compaction of the cement/fibre composite paste leading to a possible 7-fold increase in flexural strength or an almost 5-fold increase in modulus of elasticity. Reinforcement of the tensile surface of cement grafts may ultimately improve strength where required, especially in conjunction with bone fixation devices.

  12. Nano polypeptide particles reinforced polymer composite fibers.

    Science.gov (United States)

    Li, Jiashen; Li, Yi; Zhang, Jing; Li, Gang; Liu, Xuan; Li, Zhi; Liu, Xuqing; Han, Yanxia; Zhao, Zheng

    2015-02-25

    Because of the intensified competition of land resources for growing food and natural textile fibers, there is an urgent need to reuse and recycle the consumed/wasted natural fibers as regenerated green materials. Although polypeptide was extracted from wool by alkaline hydrolysis, the size of the polypeptide fragments could be reduced to nanoscale. The wool polypeptide particles were fragile and could be crushed down to nano size again and dispersed evenly among polymer matrix under melt extrusion condition. The nano polypeptide particles could reinforce antiultraviolet capability, moisture regain, and mechanical properties of the polymer-polypeptide composite fibers.

  13. Jute fibre reinforced plastic: evaluation of application based properties

    Directory of Open Access Journals (Sweden)

    J. B. Sajin

    2015-01-01

    Full Text Available A fibre extracted from jute is a budding component identified for its potential application in composites. It is imperative to evaluate the parametric and property based features to determine its suitability. In this research study, considering the possible application of the fibre composites, the aptness of these fibres are examined with respect to their physical, mechanical [by layered manufacturing technique(LM] and thermal properties. This study focuses on evaluating the properties and behaviour of raw Jute fibres and NaOH surface treated fibres. Subsequently, the fibres are subjected to thermo-gravimetry tests. The outcome of the thermal analysis clearly indicates that the temperature peak shifts to a higher region in the treated fibre compared to raw fibre. The overall observation strongly emphasize that the physical properties and the thermal behaviour of jute fibre are enhanced after surface treatments which makes it more feasible for its application in composite structures.

  14. FLEXURAL PROPERTIES OF ALKALINE TREATED SUGAR PALM FIBRE REINFORCED EPOXY COMPOSITES

    Directory of Open Access Journals (Sweden)

    D. Bachtiar

    2010-06-01

    Full Text Available A study of the effect of alkaline treatment on the flexural properties of sugar palm fibre reinforced epoxy composites is presented in this paper. The composites were reinforced with 10% weight fraction of the fibres. The fibres were treated using sodium hydroxide (NaOH with 0.25 M and 0.5 M concentration solution for 1 hour, 4 hours and 8 hours soaking time. The purpose of treating fibres with alkali was to enhance the interfacial bonding between matrix and fibre surfaces. The maximum flexural strength occurred at 0.25 M NaOH solution with 1 hour of soaking time, i.e 96.71 MPa, improving by 24.41% from untreated fibre composite. But, the maximum flexural modulus took place at 0.5 M NaOH solution with 4 hours soaking time, i.e. 6948 MPa, improving by 148% from untreated composite.

  15. Use of coconut fibre reinforced concrete and coconut-fibre ropes for seismic-resistant construction

    Directory of Open Access Journals (Sweden)

    Ali, Majid

    2016-03-01

    Full Text Available Earthquake-resistant and economical housing is the most desirable need in rural areas of developing countries. These regions often suffer significant loss of life during a seismic event. To enable an efficient and cost-effective solution, a new concept of construction, i.e. a wallette of interlocking blocks with movability at the interface and rope reinforcement, is investigated. The novel interlocking block is made of coconut fibre reinforced concrete (CFRC. The reason for using coconut fibre is their highest toughness amongst natural fibres. This paper describes the in-plane behaviour of the interlocking wallette under earthquake loadings. The wallette response is measured in terms of induced acceleration, block uplift, top maximum relative displacement and rope tension. The applied earthquake loadings cannot produce any damage in the structure, i.e. blocks and/or ropes. The response of the wallette is explained in detail along with correlation of materials aspect with structural behaviour.En las zonas rurales de los países en desarrollo, entre las características principales que deben reunir las viviendas es que sean tanto económicas como sismoresistentes, ya que en estas zonas la pérdida de vidas humanas debido a los terremotos es aun elevada. A fin de hallar una solución que cumple con estos requisitos de manera técnica y económicamente efectiva, se ha investigado un nuevo concepto constructivo: un murete de bloques conjugados con movilidad en el interfaz y reforzado con cuerda. Este novedoso bloque conjugable está realizado en hormigón reforzado con fibra de coco (CFRC, elegida por su alta tenacidad, la mayor de entre las fibras naturales. El artículo describe el comportamiento dentro del plano del murete conjugado frente a las cargas sísmicas. La respuesta de esta estructura se ha medido en función de la aceleración inducida, el levantamiento de los bloques, el desplazamiento relativo máximo y la tensión de las cuerdas

  16. In vitro degradation of porous nano-hydroxyapatite/collagen/PLLA scaffold reinforced by chitin fibres

    Energy Technology Data Exchange (ETDEWEB)

    Li Xiaoming [Biomaterials Laboratory, Department of Materials Science and Engineering, Tsinghua University, Beijing, 100084 (China); Feng Qingling [Biomaterials Laboratory, Department of Materials Science and Engineering, Tsinghua University, Beijing, 100084 (China)]. E-mail: biomater@mail.tsinghua.edu.cn; Cui Fuzhai [Biomaterials Laboratory, Department of Materials Science and Engineering, Tsinghua University, Beijing, 100084 (China)

    2006-05-15

    In this paper, a novel porous scaffold for bone tissue engineering was prepared with nano-hydroxyapatite/collagen/Poly-L-lactic acid (PLLA) composite reinforced by chitin fibres. To enhance the strength of the scaffold further, PLLA was linked with chitin fibres by Dicyclohexylcarbodimide (DCC). The structures of the reinforced scaffold with and without linking were characterized by Scanning Electron Microscopy (SEM). The chemical characteristics of the chitin fibres with and without linking were evaluated by Fourier-transformed infrared (FTIR) spectroscopy. The mechanical performance during degradation in vitro was investigated. The results indicated that the nano-hydroxyapatite/collagen/PLLA composite reinforced by chitin fibres with linking kept better mechanical properties than that of the composite without linking. These results denoted that the stronger interfacial bonding strength of the scaffold with linking could decrease the degradation rate in vitro. The reinforced composite with the link-treatment can be severed as a scaffold for bone tissue engineering.

  17. Enhancement of mechanical properties and interfacial adhesion by chemical odification of natural fibre reinforced polypropylene composites

    CSIR Research Space (South Africa)

    Erasmus, E

    2008-11-01

    Full Text Available Natural fibres are often used for reinforcing thermoplastics, like polypropylene, to manufacture composite materials exhibiting numerous advantages such as high mechanical properties, low density and biodegradability. The mechanical properties of a...

  18. Foundation Design for a High Bay Warehouse with a Steel Fibre Reinforced Concrete Slab

    DEFF Research Database (Denmark)

    Kasper, T.; Sørensen, Carsten Steen; Nielsen, J. B.

    2008-01-01

    concrete slabs, while a 69 x 77 m and 40 cm thick steel fibre reinforced concrete (SFRC) slab forms the inner part of the foundation. Steel fibre reinforcement has been chosen mainly due to approximately 15 % lower construction costs than a comparable solution with conventional rebar reinforcement......The high bay warehouse at the Carlsberg brewery in Fredericia, Denmark, is 40 m high and is founded with a 83 x 116 m foundation slab on clay till and sand layers. Due to the wind loads on the tall building, the edges of the foundation require 80 cm and 60 cm thick conventionally reinforced...

  19. Fiber reinforced polymer composites for bridge structures

    Directory of Open Access Journals (Sweden)

    Alexandra CANTORIU

    2013-12-01

    Full Text Available Rapid advances in construction materials technology have led to the emergence of new materials with special properties, aiming at safety, economy and functionality of bridges structures. A class of structural materials which was originally developed many years ago, but recently caught the attention of engineers involved in the construction of bridges is fiber reinforced polymer composites. This paper provides an overview of fiber reinforced polymer composites used in bridge structures including types, properties, applications and future trends. The results of this study have revealed that this class of materials presents outstanding properties such as high specific strength, high fatigue and environmental resistance, lightweight, stiffness, magnetic transparency, highly cost-effective, and quick assembly, but in the same time high initial costs, lack of data on long-term field performance, low fire resistance. Fiber reinforced polymer composites were widely used in construction of different bridge structures such as: deck and tower, I-beams, tendons, cable stands and proved to be materials for future in this field.

  20. Static and dynamic testing of concrete beams reinforced with fibres and continuous bars

    NARCIS (Netherlands)

    Körmeling, H.A.; Reinhardt, H.W.; Shah, S.P.

    1979-01-01

    The main purpose of the testing program was to get an idea about the influence of steel fibres on the fatigue performance of conventionally reinforced concrete beams. The influence of three types of steel fibres with three various percentages on the failure load, the cycles to failure, the crack wid

  1. Application of the fluid dynamics model to the field of fibre reinforced self-compacting concrete

    DEFF Research Database (Denmark)

    Svec, Oldrich; Skocek, Jan; Stang, Henrik;

    Ability to properly simulate a form filling process with steel fibre reinforced self-compacting concrete is a challenging task. Such simulations may clarify the evolution of fibre orientation and distribution which in turn significantly influences final mechanical properties of the cast body. We ...

  2. Hardening in Two-Phase Materials. I. Strength Contributions in Fibre-Reinforced Copper-Tungsten

    DEFF Research Database (Denmark)

    Lilholt, Hans

    1977-01-01

    Cyclic tests (Bauschinger tests) were conducted at 77 K and at room temperature on the fibre-reinforced material of single crystal Cu with long W-fibres of diameter 20 mum and volume fractions up to 4%. These tests enabled two important contributions to the total strength of the unrelaxed materia...

  3. A microring multimode laser using hollow polymer optical fibre

    Indian Academy of Sciences (India)

    M Kailasnath; V P N Nampoori; P Radhakrishnan

    2010-11-01

    We report the observation of multimode laser operation at wavelengths corresponding to whispering-gallery modes from a freestanding microring cavity based on rhodamine B dye-doped PMMA hollow optical fibre. Cylindrical microcavities with diameters 155, 340 and 615 m were fabricated from a dye-doped hollow polymer optical fibre preform. An average mode spacing of 0.17 nm was observed for the 340 m cavity. This shows that the laser mode intensity distribution is concentrated on the outer edge of the cavity.

  4. Influence of steady shear flow on dynamic viscoelastic properties of un-reinforced and Kevlar, glass fibre reinforced LLDPE

    Indian Academy of Sciences (India)

    Takeshi Kitano; S A R Hashmi; Navin Chand

    2004-10-01

    An experimental study was conducted to observe the effects of parallel-superposed flow condition on viscoelastic properties of LLDPE, Kevlar fibre reinforced LLDPE and hybrid of short glass fibre and Kevlar fibre reinforced LLDPE. Parallel-plate rheometer was employed for these tests. Rheological parameters such as loss modulus (″) and dynamic viscosity (′) do not vary significantly on superposing steady state shear with oscillatory shear in the studied range of experiment at 185°C in un-reinforced LLDPE. Kevlar fibre reinforced LLDPE and Kevlar/glass fibre reinforced LLDPE showed significant changes in the flow behaviour under various sets of superposed conditions. Storage modulus (′), and ″ become highly sensitive to low oscillatory angular frequencies () under superposed conditions. These curves show two different regions with increased value. At low values, parameters ′ and ″ change sharply reaching a certain value, thereafter, changes are moderate with increased . In case of ′ a maxima is observed, position of which, depends upon the value of steady shear rate. Maxima shifts towards higher frequencies with the increased steady shear rate.

  5. Computational modelling of fibre-reinforced cementitious composites: An analysis of discrete and mesh-independent techniques

    NARCIS (Netherlands)

    Radtke, F.K.F.

    2012-01-01

    Failure patterns and mechanical behaviour of high performance fibre-reinforced cementitious composites depend to a large extent on the distribution of fibres within a specimen. A discrete treatment of fibres enables us to study the influence of various fibre distributions on the mechanical propertie

  6. Mechanical properties of short-flax-fibre reinforced compounds

    NARCIS (Netherlands)

    Bos, H.L.; Müssig, J.; Oever, van den M.J.A.

    2006-01-01

    The mechanical properties of flax/polypropylene compounds, manufactured both with a batch kneading and an extrusion process were determined and compared with the properties of Natural fibre Mat Thermoplastic (NMT) composites. The fibre length and width distributions of the fibres from the compounds

  7. REINFORCING FIBRES AS PART OF TECHNOLOGY OF CONCRETES

    Directory of Open Access Journals (Sweden)

    Zhukov Aleksey Dmitrievich

    2012-07-01

    It was identified that the basalt fibre consumption rate influences both the strength and the density of products made of cellular concrete. The length of the basalt fibre impacts the strength of products. A nomogram was developed to identify the consumption rate of the basalt fibre driven by the strength of products and the Portland cement consumption rate. The authors also studied the influence of the consumption rate of Portland cement and basalt fibre onto the structural quality ratio of the foamed fibre concrete.

  8. Fibres reinforced dentures investigated with en-face optical coherence tomography

    Science.gov (United States)

    Negrutiu, Meda L.; Sinescu, Cosmin; Hughes, Michael; Bradu, Adrian; Goguta, Luciana; Rominu, Mihai; Negru, Radu; Podoleanu, Adrian Gh.

    2008-04-01

    The complete dentures are currently made using different technologies. In order to avoid deficiencies of the prostheses made using the classical technique, several alternative procedures have been devised. In order to enhance the mechanical strength, complete denture bases are reinforced with fibres. Their material and structure vary wildly, which makes the investigation difficult. In this study, optical coherence tomography (OCT) is evaluated as a possible non-invasive technique to assess the biomechanical behaviour of the reinforcing fibres. OCT images demonstrate structural defects between fibres and the acrylic material in all dentures bases investigated. We conclude that OCT can successfully be used as a noninvasive analysis method.

  9. Expansive cement couplers: A means of pre-tensioning fibre-reinforced plastic tendons

    OpenAIRE

    1995-01-01

    This is the peer reviewed version of: Lees J.M., Gruffydd-Jones, B. and Burgoyne C.J. (1995) "Expansive Cement Couplers - A Means of Pre-tensioning Fibre-Reinforced Plastic Tendons", published in 'Construction and Building Materials', v. 9, is. 6, pp. 413-423 December 1995. The published version is at http://dx.doi.org/10.1016/0950-0618(95)00070-4 Fibre reinforced plastics describes a group of materials composed of inorganic or organic fibres embedded in a resin matrix. frps are strong, n...

  10. Mechanical and thermal characterisation of poly (l-lactide) composites reinforced with hemp fibres

    Science.gov (United States)

    Shakoor, A.; Muhammad, R.; Thomas, N. L.; Silberschmidt, V. V.

    2013-07-01

    Polylactic acid (PLA) is the most promising in the bio-derived polymer's family. But its use can be constrained by its poor mechanical properties, poor thermal stability and processing difficulties. The objective of this research is to investigate and improve mechanical and dynamic thermal properties of PLA by developing PLA composites reinforced with natural fibres (hemp). Composites were prepared by melt blending of PLA with hemp fibres. Their properties were investigated using mechanical and dynamic thermal analysis. The elastic modulus increased significantly - from 4.1 ± 0.74 to 9.32 ± 0.86 (GPA) - when the weight fraction of hemp increased from 0 to 30(wt %). The storage modulus obtained by dynamic mechanical analysis increased from 2.20 to 4.58 (GPA) for the same change in the volume fraction of hemp. FE simulation of tensile testing and DMA were carried out to investigate the effect of strain rate and temperature on the observed properties respectively. The model was developed in the commercially available code MSC Marc mentate. The model validated all experimental results.

  11. Effects of moisture on the mechanical properties of glass fibre reinforced vinylester resin composites

    Indian Academy of Sciences (India)

    Rita Roy; B K Sarkar; N R Bose

    2001-02-01

    Glass fibre reinforced vinylester resin composites incorporating varying amounts of fibres (63.5, 55.75, 48.48, 38.63 and 27.48 wt%) were characterized for their mechanical properties both as prepared and after treatment with boiling water for 2, 4, 6, 8 and 24 h. Weights of the samples were found to increase to a saturation at about 8 h with boiling water treatment. In keeping with the composite principle, the mechanical properties improved with fibre loading. However, the properties were relatively inferior when treated with boiling water for longer hours attributing to ingress of moisture by capillary action through the interface between the fibre and the resin matrix. Considering the rates of moisture absorption and correlating with the mechanical properties, it was observed that the deteriorating effects were predominant up to 4 h treatment with boiling water. Estimation of defect concentrations for 63.5 wt% of nascent fibre reinforced composites as well as those composites treated with boiling water for 24 h were 56.93% and 64.16% respectively. Similarly, 27.48 wt% nascent fibre reinforced composites and those composites with boiling water treatment showed the estimation of defect concentrations of 39.94% and 50.55% respectively. SEM study of the fractured surfaces showed heavy fibre pull-out in the tensile zone whilst shear fracture of the fibre bundles was predominant at the compressive zone of the samples tested for flexural strength properties.

  12. Dimensional change of acrylic resin plate after the reinforcement of glass fibre

    Directory of Open Access Journals (Sweden)

    Dwiyanti Feriana Ratwita

    2007-06-01

    Full Text Available The effect of fibre reinforcement of polymethyl methacrylate was investigated. Glass fibres have been studied as strengthening material added to polymethyl methacrylate. The purpose of this study was to evaluate dimensional change of acrylic resin plate after glass fibre reinforcement. As a research subject is an acrylic resin plate of 65 × 10 × 2.5 mm with the number of 32 samples were distributed randomly in 4 experimental groups. Each group consisted of 8 samples and control groups. Group 1: acrylic resin plate and 1 sheet glass fibre; group 2: acrylic resin plate and 2 sheet glass fibre; group 3: acrylic resin plate and 3 sheet glass fibre. Control group which was not given treatment. Dimensional change was measured by profile projector. The data was analyzed by One-Way ANOVA and LSD test showed that there was significant difference in dimensional change (p < 0.005. The conclusion suggested that dimensional change of the acrylic resin plates after glass fibre reinforcement minimally done 1 sheet glass fibre.

  13. Fatigue damage propagation in unidirectional glass fibre reinforced composites made of a non-crimp fabric

    DEFF Research Database (Denmark)

    Hansen, Jens Zangenberg; Brøndsted, Povl; Gillespie Jr., John W.

    2014-01-01

    Damage progression in unidirectional glass fibre reinforced composites manufactured of a non-crimp fabric subjected to tension-tension fatigue is investigated, and a quantitative explanation is given for the experimentally observed stiffness degradation. The underlying damage-mechanisms are exami......Damage progression in unidirectional glass fibre reinforced composites manufactured of a non-crimp fabric subjected to tension-tension fatigue is investigated, and a quantitative explanation is given for the experimentally observed stiffness degradation. The underlying damage...... fatigue, gives rise to axial fibre fractures and a loss of stiffness, eventually leading to final failure. The uniqueness of the present work is identification of the mechanisms associated with tension fatigue failure of unidirectional non-crimp fabrics used for wind turbine blades. The observed damage...... mechanisms need further attention and understanding in order to improve the fatigue life-time of unidirectional glass fibre reinforced non-crimp fabrics....

  14. Strength and toughness of structural fibres for composite material reinforcement.

    Science.gov (United States)

    Herráez, M; Fernández, A; Lopes, C S; González, C

    2016-07-13

    The characterization of the strength and fracture toughness of three common structural fibres, E-glass, AS4 carbon and Kevlar KM2, is presented in this work. The notched specimens were prepared by means of selective carving of individual fibres by means of the focused ion beam. A straight-fronted edge notch was introduced in a plane perpendicular to the fibre axis, with the relative notch depth being a0/D≈0.1 and the notch radius at the tip approximately 50 nm. The selection of the appropriate beam current during milling operations was performed to avoid to as much as possible any microstructural changes owing to ion impingement. Both notched and un-notched fibres were submitted to uniaxial tensile tests up to failure. The strength of the un-notched fibres was characterized in terms of the Weibull statistics, whereas the residual strength of the notched fibres was used to determine their apparent toughness. To this end, the stress intensity factor of a fronted edge crack was computed by means of the finite-element method for different crack lengths. The experimental results agreed with those reported in the literature for polyacrylonitrile-based carbon fibres obtained by using similar techniques. After mechanical testing, the fracture surface of the fibres was analysed to ascertain the failure mechanisms. It was found that AS4 carbon and E-glass fibres presented the lower toughness with fracture surfaces perpendicular to the fibre axis, emanating from the notch tip. The fractured region of Kevlar KM2 fibres extended along the fibre and showed large permanent deformation, which explains their higher degree of toughness when compared with carbon and glass fibres. This article is part of the themed issue 'Multiscale modelling of the structural integrity of composite materials'.

  15. Assessment of L/D Ratio of Eco Fibre - Bamboo as a Reinforcement Material in Concrete

    Directory of Open Access Journals (Sweden)

    Kavitha.s

    2016-10-01

    Full Text Available Fibres are commonly used in concrete to control the cracks, shrinkage and to improve the strength and performance of the concrete. Generally various types of fibres are used like natural and artificial fibres in the concrete mix to produce the expected strength and crack resistance. an attempt is made to innovate a natural, eco friendly fibre which is available to the common man. In this paper, tests are carryout on bamboo fibre reinforced concrete to evaluate aspect ratio (l/d of bamboo fibres. Different ages of bamboo is collected, the extraction of fibres is done by mechanical method. Once the bamboo fibres are extracted the various lengths and diameters are selected and SEM analysis is carried out to find out the microstructure of bamboo fibres to know the failure analysis .these selected bamboo fibres add at the fixed rate of 0.1% to 1.5%(0.5,0.75,1,1.25,1.5 by the cement weight to the concrete mix. Then the samples of cubes, beams and cylinders are casted from the concrete mix and curing will be done for required period. Experimental investigations are carried out using most commonly used tests in laboratory, which includes concrete workability test, compressive test, split tensile test, and test for flexure from the various test results the aspect ratio (l/d ratio and also the effectiveness of bamboo fibres usage in concrete has been evaluated.

  16. Electrospinning of polymer-aerogel composite fibres

    DEFF Research Database (Denmark)

    Christiansen, Lasse; Fojan, Peter

    2016-01-01

    En poster om produktion af polymer-aerogel kompositfibre ved hjælp af elektrospinning. Fiberne er produceret fra en opløsning af aerogel og polyethylene oxide i vand, som er elektrospundet gennem en enkeltnålsprocess....

  17. Effect of Grinding Process Parameters on Surface Area Roughness of Glass fibre Reinforced Composite Laminate under Dry and Coolant Environment

    Directory of Open Access Journals (Sweden)

    P. Chockalingam

    2016-04-01

    Full Text Available This paper presents a comparative study on dry and wet grinding of chopped strand mat glass fibre reinforced polymer laminates using an alumina wheel. Investigations were performed to study the impact of the grinding parameters, namely feed, speed, and depth of cut on grinding force ratio and surface area roughness. Effective grinding parameters were sought in this study to maximize grinding force ratio and minimize surface area roughness. Test results show that coolant helped to decrease surface area roughness, but inevitably reduced the grinding force ratio in some cases. These findings lead to economic machining solution for optimum grinding conditions in grinding composite laminates.

  18. Solution electrospinning of particle-polymer composite fibres

    DEFF Research Database (Denmark)

    Christiansen, Lasse; Fojan, Peter

    2016-01-01

    Electrospinning is a fast, simple way to produce nano/microfibers, resulting in porous mats with a high surface to volume ratio. Another material with high surface to volume ratio is aerogel. A drawback of aerogels is its inherent mechanical weakness. To counteract this, aerogels can be embedded......-supporting abilities of these fibres are discussed. It is concluded that selfsupporting polymer/aerogel composites can be made by electrospinning....

  19. Life cycle assessment of biofibres replacing glass fibres as reinforcement in plastics

    Energy Technology Data Exchange (ETDEWEB)

    Corbiere-Nicollier, T.; Gfeller Laban, B.; Jolliet, O. [Laboratory of Ecosystem Management GECOS-EPFL, Swiss Federal Institute of Technology, CH-1015 Lausanne (Switzerland); Lundquist, L.; Leterrier, Y.; Manson, J.A.E. [Composite and Polymer Technology Laboratory, LTC-EPFL, Swiss Federal Institute of Technology Lausanne, EPFL, CH-1015 Lausanne (Switzerland)

    2001-11-01

    This article aims to determine the environmental performance of China reed fibre used as a substitute for glass fibre as reinforcement in plastics and to identify key environmental parameters. A life cycle assessment (LCA) is performed on these two materials for an application to plastic transport pallets. Transport pallets reinforced with China reed fibre prove to be ecologically advantageous if they have a minimal lifetime of 3 years compared with the 5-year lifetime of the conventional pallet. The energy consumption and other environmental impacts are strongly reduced by the use of raw renewable fibres, due to three important factors: (a) the substitution of glass fibre production by the natural fibre production; (b) the indirect reduction in the use of polypropylene linked to the higher proportion of China reed fibre used and (c) the reduced pallet weight, which reduces fuel consumption during transport. Considering the whole life cycle, the polypropylene production process and the transport cause the strongest environmental impacts during the use phase of the life cycle. Since thermoplastic composites are hardly biodegradable, incineration has to be preferred to discharge on landfills at the end of its useful life cycle. The potential advantages of the renewable fibres will be effective only if a purer fibre extraction is obtained to ensure an optimal material stiffness, a topic for further research. China reed biofibres are finally compared with other usages of biomass, biomaterials, in general, can enable a three to ten times more efficient valorisation of biomass than mere heat production or biofuels for transport.

  20. Determination of material properties for short fibre reinforced C/C-SiC

    Directory of Open Access Journals (Sweden)

    Hausherr J.-M.

    2015-01-01

    Full Text Available Determining the mechanical properties of short fibre reinforced CMC using standard sized coupons has always been a challenge due to a high statistical scattering of the measured values. Although the random orientation of short fibres results in a quasi-isotropic material behavior of 2D-structures with a sufficiently large volume, the small volume typical for test coupons usually results in a non-isotropic fibre orientation in the tested volume. This paper describes a method for manufacturing unidirectional oriented short fibre reinforced CMC materials and presents material properties of UD-C/C-SiC. After verifying the fibre orientation of the CMC using micro-computed tomography, coupons were extracted to determine the orthotropic material properties. These orthotropic material properties were then used to predict the properties of C/C-SiC with randomly distributed short fibres. To validate the method, micro-computed tomography is used to quantitatively determine the fibre orientation within coupons extracted from randomly distributed short fibre C/C-SiC. After mechanical three-point-bending tests, the measured stiffness and bending strength is compared with the predicted properties. Finally, the data are used to devise a method suited for reducing the inherent large spread of material properties associated with the measurement of CMC materials with randomly distributed short fibres.

  1. Recycling and Fibre Reinforcement of Thermoplastic Wastes to Produce Composites for Construction Works

    Directory of Open Access Journals (Sweden)

    P.M. Wambua

    2012-04-01

    Full Text Available Thermoplastics are among polymers that biodegrades very slowly over a very long period and can be regarded as nonbiodegradable despite their rapid accumulation in the environment. The use of plant natural fibres as reinforcement for thermoplastics to produce composites is an important area for research. In this study, composites of high density polyethylene wastes reinforced with wood flour, rice husks and bagasse fibers were prepared. The fibers were heated to reduce their moisture content and improve their compatibilities with heated high density polyethylene wastes so as to increase adhesion at the interface. Binders were used to improve interfacial strength of the composite. Composites were prepared by extrusion. From preliminary laboratory test results based on Fratios using ANOVA, optimal coupon was found to be wood flour mixed with high density polyethylene and polyurethane resin (X 17 heated to 210ºC and extruded at 140ºC. The final test results for mechanical properties for optimal wood flour, rice husks and bagasse composites respectively were: Tensile strength; 83.87, 74, and 62.73 MPa. Flexural strength; 26.73, 39and 15.22 MPa. Compressive; 225, 190.5 and 140 MPa and Impact; 78, 81 and 66 J/mm2. The use of binders significantly improved impact strengths and widely expanded the usage of such product to include light load structural applications thus offering alternative source of construction materials to supplement timber and hence save forests. The technology can create employment to thermoplastic waste collectors, fibre collectors and composite producers.

  2. A new method of making metal matrix fibre reinforced materials

    Energy Technology Data Exchange (ETDEWEB)

    Schaupp, J. (Inst. fuer Werkzeugmaschinen und Betriebstechnik, Univ. Karlsruhe (Germany)); Pruemmer, R. (Inst. fuer Werkzeugmaschinen und Betriebstechnik, Univ. Karlsruhe (Germany) Ernst-Mach-Inst., Freiburg (Germany))

    1993-11-01

    MMC (metal matrix composites) made of ceramic fibres and metal matrix are suitable for high strength and high temperature applications. New types of ceramic fibres usually are incorporated into a metal matrix by means of liquid infiltration or by hot pressing techniques. The disadvantage of these methods is the chemical reaction sometimes occurring between fibre and matrix, resulting in an interlayer which is degrading the mechanical properties of the MMC. A new method is described starting with an arrangement of metal powder or metal foils with ceramic fibres. Dynamic pressures, released by detonation of proper explosives, are used for consolidation. At very high strain rates during plastic deformation of the powder or metal foils hydrodynamic flow of the matrix around the ceramic fibres allows a complete consolidation and to prevent cracking. Fibres made of SiC are embedded into a metal matrix of aluminum. (orig.).

  3. Femtosecond laser induced refractive index structures in polymer optical fibre (POF) for sensing

    Science.gov (United States)

    Liang, S. J.; Scully, P. J.; Schille, J.; Vaughan, J.; Perrie, W.

    2009-10-01

    Techniques to directly write localised refractive index structures in polymer optical fibres (POF) are presented, using UV (400nm) ultrafast laser with pulse lengths of 100 fs to create in-fibre gratings for sensing. No doping is necessary for photosensitisation so commercially available POF is used. An in-fibre grating consisting of a 1.8 μm wide refractive index structure with a periodicity of 189 nm was demonstrated in single mode polymer fibre with optimised laser processing parameters.

  4. Determination of dominant fibre orientations in fibre-reinforced high-strength concrete elements based on computed tomography scans

    Science.gov (United States)

    Vicente, Miguel A.; González, Dorys C.; Mínguez, Jesús

    2014-04-01

    Computed tomography (CT) is a nondestructive technique, based on absorbing X-rays, that permits the visualisation of the internal structure of materials in micron-range resolution. In this paper, the CT scan is used to determine the position and orientation of the fibres in steel fibre-reinforced high-strength concrete elements. The aim of this paper was to present a numerical procedure, automated through a MATLAB routine specially developed by the authors, which enables, fast and reliable, to obtain the orientation of each and every one of the fibres and their centre of gravity. The procedure shown is directly extrapolated to any type of fibre-reinforced material, only if there is a wide difference between density of fibres and density of matrix. The mathematical basis of this procedure is very simple and robust. The result is a fast algorithm and a routine easy to use. In addition, the validation tests show that the error is almost zero. This algorithm can help the industry to implement the technology of CT in the protocols of product quality control.

  5. Properties of drawn W wire used as high performance fibre in tungsten fibre-reinforced tungsten composite

    Science.gov (United States)

    Riesch, J.; Almanstötter, J.; Coenen, J. W.; Fuhr, M.; Gietl, H.; Han, Y.; Höschen, T.; Linsmeier, Ch; Travitzky, N.; Zhao, P.; Neu, R.

    2016-07-01

    High strength and creep resistance also at high temperature, combined with a high thermal conductivity and high melting point make tungsten (W) an ideal material for highly loaded areas in future fusion reactors. However, as a typical bcc metal tungsten features an intrinsic brittleness up to very high temperature and is prone to operational embrittlement. Tungsten fibre-reinforced tungsten composite (Wf/W) utilizes extrinsic toughening mechanisms similar to ceramic fibre-reinforced ceramics and therefore overcomes the brittleness problem. The properties of the composite are to a large extend determined by the properties of the drawn tungsten wire used as reinforcement fibres. W wire exhibits a superior strength and shows ductile behaviour with exceptional local plasticity. Beside the typical mechanisms observed for ceramic composites the ductile deformation of the fibres is therefore an additional very effective toughening mechanism. Tension tests were used to investigate this phenomenon in more detail. Results show that there is a region of enhanced localized plastic deformation. The specific energy consumption in this region was estimated and used to suggest optimisation options for Wf/W composites.

  6. Effects of chemical-physical pre-treatment processes on hemp fibres for reinforcement of composites and textiles

    DEFF Research Database (Denmark)

    Thomsen, Anne Belinda; Thygesen, Anders; Bohn, Vibeke

    2006-01-01

    of base and oxidant. These treatments were performed to make fibres that are useful as reinforcement in composite materials and for textiles. All pre-treatments tested increased the content of cellulose in the fibres by degrading and dissolving non-cell wall material (NCWM, e.g., pectin and waxes), lignin......, the pre-treatments gave fibre colours ranging from white to dark brown. Alkaline wet oxidation produced the brightest fibres with potential for use in textiles. Use of retted fibres in the pre-treatment resulted in fibres with high cellulose content (86-90%) of potential as reinforcement in composite...

  7. Inorganic-whisker-reinforced polymer composites synthesis, properties and applications

    CERN Document Server

    Sun, Qiuju

    2015-01-01

    Inorganic-Whisker-Reinforced Polymer Composites: Synthesis, Properties and Applications gives a comprehensive presentation of inorganic microcrystalline fibers, or whiskers, a polymer composite filler. It covers whisker synthesis, surface modification, applications for reinforcing polymer-matrix composites, and analysis of resulting filled polymer composites. It focuses on calcium carbonate whiskers as a primary case study, introducing surface treatment methods for calcium carbonate whiskers and factors that influence them.Along with calcium carbonate, the book discusses potassium titanate and

  8. Development of textile-reinforced carbon fibre aluminium composites manufactured with gas pressure infiltration methods

    Directory of Open Access Journals (Sweden)

    W. Hufenbach

    2009-08-01

    Full Text Available Purpose: The aim of his paper is to show potential of textile-reinforced carbon fibre aluminium composite with advantage of the lightweight construction of structural components subjected to thermo-mechanical stress.Design/methodology/approach: The manufacture of specimens of the carbon fibre-reinforced aluminium was realised with the aid of an advanced differential gas pressure infiltration technique, which was developed at ILK, TU Dresden.Findings: The gas pressure infiltration technology enables to fabricate complex carbon aluminium composites with fibre or textile reinforcement using moulds of graphite, but in future development the optimization of infiltration process is required. The load-adapted combination of 3D reinforced semi-finished fibre products (textile preforms made from carbon fibres (CF with aluminium light metal alloys (Al offers a considerable lightweight construction potential, which up to now has not been exploited.Research limitations/implications: Gas pressure infiltration technology enables to fabricate complex carbon aluminium composites with fibre or textile reinforcement using precision moulds of graphite, but in future development the optimization of infiltration process is required.Practical implications: Load-adapted CF/Al-MMC, due to the relatively high stiffness and strength of the metal matrix, allow the introduction of extremely high forces, thereby enabling a much better exploitation of the existing lightweight construction potential of this material in comparison to other composite materials.Originality/value: Constantly rising demands on extremely stressed lightweight structures, particularly in traffic engineering as well as in machine building and plant engineering, increasingly require the use of endless fibre-reinforced composite materials which, due to their selectively adaptable characteristics profiles, are clearly superior to conventional monolithic materials.

  9. Nanoscale Reinforced, Polymer Derived Ceramic Matrix Coatings

    Energy Technology Data Exchange (ETDEWEB)

    Rajendra Bordia

    2009-07-31

    The goal of this project was to explore and develop a novel class of nanoscale reinforced ceramic coatings for high temperature (600-1000 C) corrosion protection of metallic components in a coal-fired environment. It was focused on developing coatings that are easy to process and low cost. The approach was to use high-yield preceramic polymers loaded with nano-size fillers. The complex interplay of the particles in the polymer, their role in controlling shrinkage and phase evolution during thermal treatment, resulting densification and microstructural evolution, mechanical properties and effectiveness as corrosion protection coatings were investigated. Fe-and Ni-based alloys currently used in coal-fired environments do not possess the requisite corrosion and oxidation resistance for next generation of advanced power systems. One example of this is the power plants that use ultra supercritical steam as the working fluid. The increase in thermal efficiency of the plant and decrease in pollutant emissions are only possible by changing the properties of steam from supercritical to ultra supercritical. However, the conditions, 650 C and 34.5 MPa, are too severe and result in higher rate of corrosion due to higher metal temperatures. Coating the metallic components with ceramics that are resistant to corrosion, oxidation and erosion, is an economical and immediate solution to this problem. Good high temperature corrosion protection ceramic coatings for metallic structures must have a set of properties that are difficult to achieve using established processing techniques. The required properties include ease of coating complex shapes, low processing temperatures, thermal expansion match with metallic structures and good mechanical and chemical properties. Nanoscale reinforced composite coatings in which the matrix is derived from preceramic polymers have the potential to meet these requirements. The research was focused on developing suitable material systems and

  10. Investigation of nanoscale reinforcement into textile polymers

    Science.gov (United States)

    Khan, Mujibur Rahman

    A dual inclusion strategy for textile polymers has been investigated to increase elastic energy storage capacity of fibers used in high velocity impact applications. Commercial fibers such as Spectra and Dyneema are made from ultra high molecular weight polyethylene (UHMWPE). Dynamic elastic energy of these fibers is still low therefore limiting their wholesale application without a secondary metallic or ceramic component. The idea in this investigation is to develop methodologies so that the elastic energy of polyethylene based fibers can be increased by several folds. This would allow manufacturing of an all-fabric system for high impact applications. The dual inclusion consists of a polymer phase and a nanoscale inorganic phase to polyethylene. The polymer phase was nylon-6 and the inorganic phase was carbon nanotubes (CNTs). Nylon-6 was blended as a minor phase into UHMWPE and was chosen because of its large fracture strain -- almost one order higher than that of UHMWPE. On the other hand, CNTs with their very high strength, modulus, and aspect ratio, contributed to sharing of load and sliding of polymer interfaces as they aligned during extrusion and strain hardening processes. A solution spinning process was developed to produce UHMWPE filaments reinforced with CNTs and nylon-6. The procedure involved dispersing of CNTs into paraffin oil through sonication followed by dissolving polymers into paraffin-CNT solution using a homogenizer. The admixture was fed into a single screw extruder for melt mixing and extrusion through an orifice. The extrudate was rinsed via a hexane bath, stabilized through a heater, and then drawn into a filament winder with controlled stretching. In the next step, the as produced filaments were strain-hardened through repeated loading unloading cycles under tension. Neat and reinforced filaments were characterized through DSC (Differential Scanning Calorimetry), XRD (X-ray Diffraction), Raman Spectroscopy, SEM (Scanning Electron

  11. Behaviour of fibre-reinforced high-performance concrete in exterior beam-column joint

    Science.gov (United States)

    Muthupriya, P.; Boobalan, S. C.; Vishnuram, B. G.

    2014-09-01

    This paper presents the effect of reinforced high performance concrete (HPC) in exterior beam-column joint with and without fibre under monotonic loading. In this experimental investigation, cross-diagonal bars have been provided at the joint for reducing the congestion of reinforcement in joints, and also M75 grade of concrete with optimum mix proportion of 10 % silica fume and 0.3 % glass fibre was used. Four exterior beam-column joint sub-assemblages were tested. The specimens were divided into two types based on the reinforcement detailing. Type A comprises two joint sub-assemblages with joint detailing as per construction code of practice in India (IS 456-2000), and Type B comprises two joint sub-assemblages with joint detailing as per ductile detailing code of practice in India (IS 13920-1993). In each group there was one specimen of control mix and the remaining one specimen of fibre-reinforced mix. All the test specimens were designed to satisfy the strong column-weak beam concept. The performances of specimens were compared with the control mix and the fibre-reinforced mix. The results show that exterior beam-column joint specimens with silica fume and glass fibre in the HPC mix showed better performance.

  12. Effects of Hybrid Fibre Reinforcement on Fire Resistance Performance and Char Morphology of Intumescent Coating

    Directory of Open Access Journals (Sweden)

    Amir N.

    2016-01-01

    Full Text Available Recent researches of fire retardant intumescent coatings reinforced by single Rockwool and single glass wool fibre at various weight percentages and lengths showed some improvements to the mechanical properties of the coatings and the char produced. Therefore, in this research the fibres were combined together in intumescent coating formulation at several weight percentages and fibre lengths to study their effects towards fire resistance performance and char morphology. The hybrid fibre reinforced intumescent coatings were subjected to two types of fire tests; Bunsen burner at 1000°C and the electric furnace at 800°C for 1 hour, respectively. Steel temperature of the coated samples during Bunsen burner test was recorded to determine the fire resistance performance. Thermal stability of the intumescent coatings and chars was determined by Thermogravimetric Analysis (TGA. The morphology of the coatings and char was then examined by using Scanning Electron Microscopy (SEM and Energy Dispersive Spectrometry (EDS was conducted to obtain elemental composition of the samples. This research concluded that long-hybrid fibre at 12-mm length and 0.6% fibre-weight produced the top performing hybrid fibre intumescent formulation. The hybrid fibres form survived at elevated temperature, hence helped to provide structure and strengthen the char with the highest fire resistance was recorded at steel temperature of 197°C.

  13. Microstructured polymer optical fibre sensors for opto-acoustic endoscopy

    Science.gov (United States)

    Broadway, Christian; Gallego, Daniel; Pospori, Andreas; Zubel, Michal; Webb, David J.; Sugden, Kate; Carpintero, Guillermo; Lamela, Horacio

    2016-04-01

    Opto-acoustic imaging is a growing field of research in recent years, providing functional imaging of physiological biomarkers, such as the oxygenation of haemoglobin. Piezo electric transducers are the industry standard detector for ultrasonics, but their limited bandwidth, susceptibility to electromagnetic interference and their inversely proportional sensitivity to size all affect the detector performance. Sensors based on polymer optical fibres (POF) are immune to electromagnetic interference, have lower acoustic impedance and a reduced Young's Modulus compared to silica fibres. Furthermore, POF enables the possibility of a wideband sensor and a size appropriate to endoscopy. Micro-structured POF (mPOF) used in an interferometric detector has been shown to be an order of magnitude more sensitive than silica fibre at 1 MHz and 3 times more sensitive at 10 MHz. We present the first opto-acoustic measurements obtained using a 4.7mm PMMA mPOF Bragg grating with a fibre diameter of 130 μm and present the lateral directivity pattern of a PMMA mPOF FBG ultrasound sensor over a frequency range of 1-50 MHz. We discuss the impact of the pattern with respect to the targeted application and draw conclusions on how to mitigate the problems encountered.

  14. Influence of reprocessing on fibre length distribution, tensile strength and impact strength of injection moulded cellulose fibre-reinforced polylactide (PLA composites

    Directory of Open Access Journals (Sweden)

    N. Graupner

    2016-08-01

    Full Text Available The present study focuses on the reprocessing behaviour of recycled injection moulded polylactide (PLA composites. The composites are reinforced with regenerated cellulose fibres (lyocell of variable fineness and a fibre mass content of 30%. They were reprocessed up to three times. The influence of reprocessing on the fibre length distribution and the resulting composite mechanical properties (tensile and impact strength was analysed. While the first reprocessing cycle does not affect the mechanical characteristics of the neat PLA matrix, the strength of the composites decreases significantly due to a decreasing fibre aspect ratio. It was shown that fibres having a larger cross-sectional area display a lower aspect ratio than finer fibres, after reprocessing. This phenomenon leads to a larger decrease in tensile strength of composites reinforced with coarser fibres when compared to composites reinforced with finer fibres. A comparison of virgin composites and threefold reprocessed composites with a similar fibre length distribution resulted in a significantly higher tensile strength compared to the virgin sample. This result leads to the conclusion that not only the fibre length is drastically reduced by reprocessing but also that the fibres and the matrix were damaged.

  15. Comparative Environmental Sustainability Assessment of Bio-Based Fibre Reinforcement Materials for Wind Turbine Blades

    DEFF Research Database (Denmark)

    Corona, Andrea; Markussen, Christen Malte; Birkved, Morten;

    2015-01-01

    impact categories, than the conventional materials. This observation may seem contra-intuitive (i.e. most people would expect the bio-based to be most sustainable), but is primarily caused by the fact that the resin demand of biobased reinforcement materials is by far larger than that of conventional...... reinforcement materials. Since the environmental burden of the resin in addition is comparable to that of the fibres (especially in terms human health related impacts), the higher resin demand counterbalances the environmental sustainability improvements, obtained with the application of natural fibres....... turbines have therefore partially been focused on substitution of conventional fibre materials with bio-fibres assuming that this substitution was in the better for the environment and human health. The major question is if this material substitution, taking into account a multitude of environmental impact...

  16. Synthesis of Reinforced Polyacrylate and Polyepoxide Polymers

    Science.gov (United States)

    Salmi, Aicha; Meziani, Amina; Zahouily, Khalid; Benfarhi, Said

    Nanocomposite polymers have drawn increased attention over the two last decades because of their distinct characteristics in particular superior mechanical and barrier properties. In this paper we present our results on the synthesis and the biodegradability of nanocomposite materials, made of silicate platelets (montmorillonite and beidellite) dispersed in a crosslinked polyurethane -acrylate and polyepoxide matrix. The compatibility polymer-clay has been optimized by surface modification of clay. The treatment of clay was confirmed by FTIR spectroscopy and X-ray diffraction. The nanocomposite materials were synthetized by photoinduced polymerization (UV lamp and solar UV). The study of curing kinetics obtained show that the addition of organophilic clay has little effect on the conversion of acrylates while in the epoxyde, the effect is more pronounced because a some of the protons generated by the photo-initiator is neutralized by the negative charges dispersed onto clay surface. The polymer nanocomposites obtained are transparent, slightly or insoluble in organic solvents. Moreover we have demonstrated that the polyurethane -acrylate is biodegradable and the intimate association of the reinforcement and the organic matrix at the molecular level decrease this biodegradability.

  17. Modelling the influence of age of steel fibre reinforced self : compacting concrete on its compressive behaviour

    OpenAIRE

    Cunha, Vitor M. C. F.; Barros, Joaquim A.O.; Sena-Cruz, José

    2008-01-01

    Documento submetido para revisão pelos pares. A publicar na revista "Materials and Structures Journal". ISSN 1359-5997. Steel fibre reinforced self-compacting concrete (SFRSCC) can combine the benefits of self-consolidating concrete technology with those derived from adding steel fibres to quasi-brittle cement based materials. In a recent applied research project joining pre-casting industry, private and public research institutions, a method was developed to design cost-...

  18. Experimental data on the properties of natural fiber particle reinforced polymer composite material

    Directory of Open Access Journals (Sweden)

    D. Chandramohan

    2017-08-01

    Full Text Available This paper presents an experimental study on the development of polymer bio-composites. The powdered coconut shell, walnut shells and Rice husk are used as reinforcements with bio epoxy resin to form hybrid composite specimens. The fiber compositions in each specimen are 1:1 while the resin and hardener composition 10:1 respectively. The fabricated composites were tested as per ASTM standards to evaluate mechanical properties such as tensile strength, flexural strength, shear strength and impact strength are evaluated in both with moisture and without moisture. The result of test shows that hybrid composite has far better properties than single fibre glass reinforced composite under mechanical loads. However it is found that the incorporation of walnut shell and coconut shell fibre can improve the properties.

  19. Regenerated thermosetting styrene-co-acrylonitrile sandwich composite panels reinforced by jute fibre: structures and properties

    Indian Academy of Sciences (India)

    Jinglong Li; Qin Peng; Anrong Zeng; Junlin Li; Xiaole Wu; Xiaofei Liu

    2016-02-01

    Jute fibres-reinforced sandwich regenerated composite panels were fabricated using industrial waste thermosetting styrene-co-acrylonitrile (SAN) foam scraps via compression moulding for the purpose of recycling waste SAN foam and obtaining high physical performance. The jute fibres were, respectively, treated by heat, sodium hydroxide (NaOH) solution (5.0 wt%), and N,N-dimethylacetamide (DMAc) in order to improve the mechanical properties of the composites. The structures and mechanical properties of the composites were studied. The SAN matrix got compact and some crystalline region formed in SAN matrix via compression moulding. The composite reinforced by DMAc-treated jute fibres performed optimum mechanical properties among the regenerated panels whose impact strength, flexural strength, and compressive strength were 19.9 kJ m−2, 41.7 MPa, and 61.0 MPa, respectively. Good interfacial bonding between DMAc-treated fibres and SAN matrix was verified by peel test and exhibited in SEM photographs. Besides, the water absorption of DMAc-treated fibres composite was lower than other SAN/jute fibre-reinforced sandwich composite panels.

  20. Kenaf Fibre Reinforced Polypropylene Composites: Effect of Cyclic Immersion on Tensile Properties

    Directory of Open Access Journals (Sweden)

    W. H. Haniffah

    2015-01-01

    Full Text Available This research studied the degradation of tensile properties of kenaf fibre reinforced polypropylene composites due to cyclic immersion into two different solutions, as well as comparison of the developed composites’ tensile properties under continuous and cyclic immersion. Composites with 40% and 60% fibre loadings were immersed in tap water and bleach for 4 cycles. Each cycle consisted of 3 days of immersion and 4 days of conditioning in room temperature (28°C and 55% humidity. The tensile strength and modulus of composites were affected by fibre composition, type of liquid of immersion, and number of cycles. The number of immersion cycles and conditioning caused degradation to tensile strength and modulus of kenaf fibre reinforced polypropylene composites. Continuous and cyclic immersion in bleach caused tensile strength of the composites to differ significantly whereas, for tensile modulus, the difference was insignificant in any immersion and fibre loadings. However, continuous immersion in the bleach reduced the tensile strength of composites more compared to cyclic immersion. These preliminary results suggest further evaluation of the suitability of kenaf fibre reinforced polypropylene composites for potential bathroom application where the composites will be exposed to water/liquid in cyclic manner due to discontinuous usage of bathroom.

  1. Treatments of non-wood plant fibres used as reinforcement in composite materials

    Directory of Open Access Journals (Sweden)

    Marie-Ange Arsène

    2013-01-01

    Full Text Available This paper presents a summary of the knowledge on fibres and pulps of non wood tropical plants used as reinforcement in cementitious composites accumulated during the recent years by Guadeloupean and Brazilian teams participating in collaborative work. Vegetable fibres represent a good alternative as non-conventional materials for the construction of ecological and sustainable buildings. The use of such renewable resources contributes to the development of sustainable technologies. The main objective of the paper is to emphasize the use of agricultural wastes in the production of cement based composites. The botanical, chemical, physical, morphological and mechanical properties of fibres from various plants are described. The effects of different treatments on physical, chemical and mechanical properties of fibres are presented. The most effective treatments in influencing the mechanical and physical properties are pyrolysis and alkaline ones, according to the type of plant. The final choice will have to consider fibre availability, and treatment costs.

  2. Post-cracking Behaviour and Fracture Energy of Synthetic Fibre Reinforced Concrete

    Directory of Open Access Journals (Sweden)

    Marta KOSIOR-KAZBERUK

    2016-11-01

    Full Text Available The paper reports the results of experimental programme focused on the effect of various synthetic fibres on fracture properties and ductility of concrete. The fracture energy was assessed on beams with initial notches in three-point bend test. The incorporation of synthetic fibres had a slight effect on mechanical properties of concrete but, at the same time, it had a significant influence on the fracture energy by modification of post-cracking behaviour of concrete. It was found that the modern synthetic fibres might be able to impart significant toughness and ductility to concrete. However, the beneficial effect of fibres depends on their length and flexibility. The analysis of load-deflection curves obtained made it possible to fit the simple function, describing the post-peak behaviour of fibre reinforced concrete, which can be useful for the calculation of GF value.DOI: http://dx.doi.org/10.5755/j01.ms.22.4.13246

  3. Experimental investigation of fibre reinforced plastics with hybrid layups under high-velocity impact loads

    Directory of Open Access Journals (Sweden)

    Marco Romano

    2014-07-01

    Full Text Available This paper deals with experimental investigations concerning energy dissipation capacity of different kinds of reinforcement fibres in monolithic and hybrid layups under high-velocity impact loads. The investigated kinds of fibres are carbon, glass and basalt fibres. Therefore test panels, using the same thermoset resin, were built up and cured by autoclave processing. The fibre volume content of the test panels has been determined. Furthermore the influence of a separating layer at selected positions in the hybrid stacked panels was investigated. The results show the influence and the energy dissipation capacity of each single kind of fibre and the enhanced properties for the hybrid layups by hybrid stacking sequences and the use of a separating core material.

  4. Numerical modelling of elastic behaviour of concrete reinforced with steel short fibres in plane stress conditions

    Directory of Open Access Journals (Sweden)

    Fabian Lamus

    2011-01-01

    Full Text Available This work describes a numerical model of fibre reinforced concrete elastic behaviour implemented using the finite elements method (Hughes, 2000. In structures made of this material, each point is formed by steel fibres embedded into a simple concrete matrix. The reinforced concrete is represented inside a finite element as an orthotropic material having random material direction based on the vanishing diameter fibre model (Dvorak and Bahei-el-Din, 1982 and the mixing theory modified for short length reinforcement (Oller, 2003. Statistical analysis consisted of repeating the problem’s numerical simulation where the direction of fibres was modified by a random function to set up a sampling database from the results and measure their variability. A sensitivity study of finite element size and the number of sampling data was then carried out in terms of total strain energy. Finite element size and sampling data are recommended. The average structural response of a reinforced concrete beam with different quantities of steel fibres where minimum data dispersion was observed is given as an example of applying the above.

  5. Low-weight Impact Behaviour of Carbon Fibre Reinforced Methyl Methacrylate Nanocomposites

    Directory of Open Access Journals (Sweden)

    Virginija Jankauskaitė

    2015-06-01

    Full Text Available Inthis study, the carbon fibre reinforced methyl methacrylate (CF/MMA compositetoecap for safety shoes was manufactured to increase the energy absorptioncapacity during impact. Different types of nanofillers such as organic andinorganic nanotubes, unmodified and organically modified nanoclays were appliedto modify matrix impact properties. The drop-weight impact tests of thenanocomposite toecap were performed with respect to nanofiller nature andcarbon fibre stacking sequence. It was found that the most influence on thestiffness and impact damage of the carbon fibre methyl methacrylatenanocomposite toecaps besides stacking sequence show organic and inorganic nanotubesor unmodified nanoclay.DOI: http://dx.doi.org/10.5755/j01.ms.21.2.7075

  6. Fibre reinforced self-compacting concrete flow simulations in comparison with l-box experiments using carbopol

    DEFF Research Database (Denmark)

    Svec, Oldrich; Skocek, Jan; Olesen, John Forbes

    An evolution of distribution and orientation of fibres in the fibre reinforced self-compacting concrete during the casting process is an important matter as the final orientation and distribution of fibres can significantly influence mechanical properties of the structural elements. A two-way cou...

  7. Continuous fibre reinforced thermoplastic pipes for transport and distribution of fluids for the oil and gas industries

    Energy Technology Data Exchange (ETDEWEB)

    Fisher, E.H.; Gibson, A.G. [Newcastle upon Tyne Univ., Centre for Composite Materials Engineering, Newcastle upon Tyne (United Kingdom)

    1998-07-01

    This paper discusses the fabrication and properties of continuous fibre reinforced thermoplastic pipe systems. Such products can be manufactured by various winding processes involving reinforcing fibres or prepreg tape and have the potential to form the basis of a new range of high added value pipe products. (Author)

  8. Influence of different glass fiber reinforcements on denture base polymer strength (Fiber reinforcements of dental polymer)

    OpenAIRE

    Ketij Mehulić,; Asja Čelebić,; Zdravko Schauperl,; Dragutin Komar,; Denis Vojvodić,; Domagoj Žabarović

    2009-01-01

    Aim Assessment of flexural strength values of dental base polymersreinforced with different glass fibers (“dental” and “industrial”origin) after performed artificial ageing procedures.Methods Three hundred specimens (dimensions 18 x 10 x 3 mm)were produced of denture base polymers reinforced with differentglass fibers. The “short beam” testing method was used to determinethe flexural strength of the specimens after polymerization,immersion in water of temperature 37oC for 28 days, and thermoc...

  9. Fatigue mechanisms in unidirectional glass-fibre-reinforced polypropylene

    DEFF Research Database (Denmark)

    Gamstedt, E.K.; Berglund, L.A.; Peijs, T.

    1999-01-01

    of interfacial strength on fatigue performance and on the underlying micromechanisms have been studied for these composite systems. Tension-tension fatigue tests (R = 0.1) were carried out on 0 degrees glass-fibre/PP and glass-fibre/ MA-PP coupons. The macroscopic fatigue behaviour was characterized in terms...... of stiffness reduction and fatigue-life curves. The results showed that the longitudinal Young's modulus degraded more rapidly for glass-fibre/PP, which was caused by a higher degree of damage growth and accumulation. The improvement in monotonic strength was negligible, but the fatigue life was prolonged...... by about one decade for the composite with the stronger interface by use of the maleic-anhydride grafted polypropylene matrix. During the fatigue testing, the microscopic mechanisms were monitored intermittently by a surface replication technique. From microscopic observations, it could be concluded...

  10. Humidity insensitive step-index polymer optical fibre Bragg grating sensors

    DEFF Research Database (Denmark)

    Woyessa, Getinet; Fasano, Andrea; Stefani, Alessio

    2015-01-01

    We have fabricated and characterised a humidity insensitive step index(SI) polymer optical fibre(POF) Bragg grating sensors. The fibre was made based on the injection molding technique, which is an efficient method for fast, flexible and cost effective preparation of the fibre preform...... poly-methyl-methacrylate (PMMA) based SIPOFs. The fibre has a minimum loss of similar to 6dB/m at 770nm....

  11. Injection moulding of long glass fibre reinforced polyamide 6-6: guidelines to improve flexural properties

    Directory of Open Access Journals (Sweden)

    2007-07-01

    Full Text Available Based on a previous optimisation of set-up parameters for injection moulding of polyamide 6-6 (PA 6-6 reinforced with 40-wt% of 10 mm long glass fibre, the aim of this paper is to define suitable guidelines to further improve the mechanical performances of PA 6-6/glass long fibre thermoplastic (LFT injection mouldings. Different solutions have been considered: screw and non-return valve design modification so as to adapt them to LFT processing, increase of the initial fibre content (up to 50 wt% and length (up to 25 mm in the LFT pellets. Using a LFT dedicated plasticating unit has allowed decreasing the fibre breakage amount by about 80% at the nozzle exit, however without improving the flexural properties. Increasing the initial fibre content has logically permitted to improve the flexural properties. Increasing the initial fibre length has not brought any improvement of the properties and has even amplified the structural heterogeneities and anisotropy of the parts. These trends have been explained on the basis of cavity pressure records highlighting significantly different rheological behaviours, and of resulting residual fibre lengths and through-the-thickness fibre orientation profiles modifications.

  12. Mullite-zirconium composites reinforced with ceramic fibres resistant to 1450 C; obtaining and properties

    Energy Technology Data Exchange (ETDEWEB)

    Cerchez, L.; Constantinescu, S. [PROCEMA S.A. Bucharest - Research, Design and Experimental Production, Bucharest (Romania). Inst. for Construction and Construction Materials; Muntean, M. [Universitatea Politehnica, Bucharest (Romania). Faculty of Industrial Chemistry

    2002-07-01

    The purpose of this paper was the obtaining of some mullite-zirconium matrix composites, reinforced with ceramic fibres resistant to 1450 C. In order to establish the compositions, the raw materials were ground, depending on their nature, in many ways, and there were established the characteristics of ground resulted powders. On the obtained materials it was followed the evolution of the ceramic, mechanical and structural characteristics, depending on the heat treatment temperature, for various reinforcing coefficients. (orig.)

  13. Polymer Optical Fibre Bragg Grating Humidity Sensor at 100ºC

    DEFF Research Database (Denmark)

    Woyessa, Getinet; Fasano, Andrea; Markos, Christos

    2016-01-01

    We have demonstrated a polymer optical fibre Bragg grating humidity sensor that can be operated up to 100ºC. The sensor has been fabricated from a polycarbonate (PC) microstructured polymer optical fibre Bragg grating (mPOFBG). PC mPOFBG gave a relative humidity (RH) sensitivity of 6.95±0.83 pm...

  14. Multimode laser emission from dye-doped hollow polymer optical fibre

    Indian Academy of Sciences (India)

    C L Linslal; Jaison Peter; S Mathew; M Kailasnath

    2014-02-01

    Well-resolved multimode laser emission was observed for the first time from a freestanding microring cavity based on Rhodamine B dye-doped hollow polymer optical fibre by transverse pumping. Fibres with different diameters such as 180, 460, 640 and 800 m were fabricated from a dye-doped hollow polymer preform. A blueshift in the mode structure was observed with decrease in fibre diameter leading to wide range tunability of the laser emission.

  15. Thermo-Mechanical Behaviour of Flax-Fibre Reinforced Epoxy Laminates for Industrial Applications

    Directory of Open Access Journals (Sweden)

    Giuseppe Pitarresi

    2015-11-01

    Full Text Available The present work describes the experimental mechanical characterisation of a natural flax fibre reinforced epoxy polymer composite. A commercial plain woven quasi-unidirectional flax fabric with spun-twisted yarns is employed in particular, as well as unidirectional composite panels manufactured with three techniques: hand-lay-up, vacuum bagging and resin infusion. The stiffness and strength behaviours are investigated under both monotonic and low-cycle fatigue loadings. The analysed material has, in particular, shown a typical bilinear behaviour under pure traction, with a knee yield point occurring at a rather low stress value, after which the material tensile stiffness is significantly reduced. In the present work, such a mechanism is investigated by a phenomenological approach, performing periodical loading/unloading cycles, and repeating tensile tests on previously “yielded” samples to assess the evolution of stiffness behaviour. Infrared thermography is also employed to measure the temperature of specimens during monotonic and cyclic loading. In the first case, the thermal signal is monitored to correlate departures from the thermoelastic behaviour with the onset of energy loss mechanisms. In the case of cyclic loading, the thermoelastic signal and the second harmonic component are both determined in order to investigate the extent of elastic behaviour of the material.

  16. Les polymères auto-renforcés à cristaux liquides Self-Reinforcing Liquid-Crystal Polymers

    Directory of Open Access Journals (Sweden)

    Dorbon M.

    2006-11-01

    Full Text Available Les polymères auto-renforcés à cristaux liquides (PARCL sont des matériaux dont les molécules, des polymères organiques, sont susceptibles de s'auto-orienter les unes par rapport aux autres. Cette propriété leur confère des caractéristiques mécaniques proches de celles des acier: pour des poids plus faibles sans qu'il soit nécessaire d'avoir recours à des fibres renforçantes. Il existe deux types de PARCL: ceux pouvant s'orienter en solution, qualifiés de lyotropiques, et ceux pouvant s'orienter à l'état fondu, appelés thermotropiques. Des fibres en poly (p-phénylène térephtalamide PPT, PARCL de type lyotropique, sont disponibles commercialement et connaissent déjà de nombreuses applications. Les PARCL thermotropiques n'existent pas encore sur le marché mais sont porteurs de nombreux espoirs car ils sont susceptibles d'être moulés et donc de prendre les formes les plus diverses, ce qui n'est pas le cas de ceux de type lyotropique. Self-reinforcing liquid-crystal polymers are materials in which the molecules, i. e. organic polymers, are capable of orienting themselves in relation to one another. This property gives them mechanical characteristics close to those of steels yet of much less weight without having to use reinforcing fibers. There are two types of self-reinforcing liquid-crystal polymers: (i those capable of orienting themselves in solution, called Iyotropic, and (ii those capable of orienting themselves in a molten state, called thermotropic. Poly (p-phenylene terephthalamide fibers, self-reinforcing liquid-crystal polymers of the Iyotropic type, are commercially available and have already found numerous applications. Thermotropic self-reinforcing liquid-crystal polymers are not yet on the market but seem to be very promising because they are capable of being molded and hence of taking on a wide variety of shapes, which is not the case of those of the lyotropic type.

  17. Viscoelastic properties of short aramid fibres-reinforced rubbers

    NARCIS (Netherlands)

    Sadatshirazi, S.; Talma, Auke; Noordermeer, Jacobus W.M.

    2013-01-01

    Among short fiber-reinforced composites, those with rubber matrices have gained great importance due to the advantages they have in processing and low cost, coupled with high strength. These composites combine the elastic behavior of rubbers with strength and stiffness of fibers. Reinforcement with

  18. Viscoelastic properties of short aramid fibres-reinforced rubbers

    NARCIS (Netherlands)

    Shirazi, S.; Talma, A.G.; Noordermeer, J.W.M.

    2013-01-01

    Among short fiber-reinforced composites, those with rubber matrices have gained great importance due to the advantages they have in processing and low cost, coupled with high strength. These composites combine the elastic behavior of rubbers with strength and stiffness of fibers. Reinforcement with

  19. Corn gluten meal as a biodegradable matrix material in wood fibre reinforced composites

    Energy Technology Data Exchange (ETDEWEB)

    Beg, M.D.H. [Department of Materials and Process Engineering, University of Waikato, Private Bag 3105, Hamilton (New Zealand); Pickering, K.L. [Department of Materials and Process Engineering, University of Waikato, Private Bag 3105, Hamilton (New Zealand)]. E-mail: klp@waikato.ac.nz; Weal, S.J. [Department of Materials and Process Engineering, University of Waikato, Private Bag 3105, Hamilton (New Zealand)

    2005-12-05

    This study was undertaken to investigate corn gluten meal (CGM) as a biodegradable matrix material for wood fibre reinforced composites. CGM was used alone, as well as hybridized with polypropylene, and reinforced with radiata pine (Pinus Radiata) fibre using a twin-screw extruder followed by injection moulding. Tensile testing, scanning electron microscopy and differential scanning calorimetry were carried out to assess the composites. For composites from CGM and wood fibres, extrusion was carried out with the aid of the following plasticizers: octanoic acid, glycerol, polyethylene glycol and water. Windows of processability for the different plasticizers were obtained for all plasticizers. These were found to lie between 20 and 50 wt.% of plasticizer with a maximum of approximately 20% wood fibre reinforcement. The best mechanical properties were obtained with a matrix containing 10 wt.% octanoic acid and 30 wt.% water, which gave a tensile strength and Young's modulus of 18.7 MPa and 4 GPa, respectively. Hybrid matrix composites were compounded with a maleated polypropylene coupling agent and benzoyl peroxide as a cross-linking agent. The highest tensile strength and Young's modulus obtained from hybrid matrix composites were 36.9 MPa and 5.8 GPa with 50 wt.% fibre.

  20. Healable thermoset polymer composite embedded with stimuli-responsive fibres.

    Science.gov (United States)

    Li, Guoqiang; Meng, Harper; Hu, Jinlian

    2012-12-07

    Severe wounds in biological systems such as human skin cannot heal themselves, unless they are first stitched together. Healing of macroscopic damage in thermoset polymer composites faces a similar challenge. Stimuli-responsive shape-changing polymeric fibres with outstanding mechanical properties embedded in polymers may be able to close macro-cracks automatically upon stimulation such as heating. Here, a stimuli-responsive fibre (SRF) with outstanding mechanical properties and supercontraction capability was fabricated for the purpose of healing macroscopic damage. The SRFs and thermoplastic particles (TPs) were incorporated into regular thermosetting epoxy for repeatedly healing macroscopic damages. The system works by mimicking self-healing of biological systems such as human skin, close (stitch) then heal, i.e. close the macroscopic crack through the thermal-induced supercontraction of the SRFs, and bond the closed crack through melting and diffusing of TPs at the crack interface. The healing efficiency determined using tapered double-cantilever beam specimens was 94 per cent. The self-healing process was reasonably repeatable.

  1. Development of hemp fibre reinforced polypropylene composite - Journal Article

    CSIR Research Space (South Africa)

    Hargitai, H

    2005-06-01

    Full Text Available , Vol. 2, 1998, pp 133-140. 3. Young, R. A., “Utilization of Natural Fibres: Characterization, Modification and Application”, Lignocellulosic-Plastic Composites (Rowell, R. M., Schultz, T. P., Narayan, R. eds.), VSP, Sao Paulo, Brazil, 1997, pp. 1...

  2. The study of mechanical properties of pineapple leaf fibre reinforced tapioca based bioplastic resin composite

    Directory of Open Access Journals (Sweden)

    Mathivanan D.

    2016-01-01

    Full Text Available Natural fibre reinforced composite has brought the material engineering to a high new level of research. Natural fibres are compatible with matrices like polypropylene and can be used as reinforcement material to reduce the composition of plastic in a material. Natural fibres such as kenaf, pineapple leaf, and coir already found its importance in reducing the dependence of petroleum based products. However the biodegradability of the product at the end of the intended lifespan is still questionable. This has led many researches to look for a suitable replacement for synthetic fibres and achieve better adhesion between fibre and matrix. In this study, fiber and matrix which are hydrophilic in nature was used and the mixture was extruded and hot compressed to acquire better mechanical properties. The specimens were fabricated and tested according to ASTM D638. The 30% composition illustrates the best average modulus value among other composition and from this result it can be concluded that the increase of PALF fibre in TBR composite increases the modulus strength of the composite.

  3. GROWTH OF CARBON NANOTUBES ON CARBON FIBRES AND THE TENSILE PROPERTIES OF RESULTING CARBON FIBRE REINFORCED POLYPROPYLENE COMPOSITES

    Directory of Open Access Journals (Sweden)

    A.R. SURAYA

    2009-12-01

    Full Text Available Carbon nanotubes were grown directly on carbon fibres using the chemical vapor deposition technique. The effects of reaction temperature (800-900oC and hydrogen gas flowrate (100-300 ml/min on the morphology of the carbon nanotube coating were investigated. Carbon nanotubes produced were characterized using scanning electron microscope and transmission electron microscope. The resulting fibres were compounded with polypropylene to produce carbon fibre reinforced polypropylene composites. The tensile properties of these composites were determined to investigate the effects of the carbon nanotubes on the overall performance of the composites. The optimum treatment condition that produced the thickest coating of carbon nanotubes was obtained at 800oC and 300 ml/min hydrogen gas flowrate. The composite sample obtained under these conditions demonstrated remarkable enhancement in tensile properties compared to composites made from as-received carbon fibres, whereby an increment of up to 52% and 133% was observed for the tensile strength and modulus respectively.

  4. A bio-based fibre-reinforced plastic pedestrian bridge for Schiphol

    NARCIS (Netherlands)

    Smits, J.E.P.; Gkaidatzis, R.

    2015-01-01

    The present paper investigates Bio-based fibre-reinforced plastics, used as a load-bearing element of a bridge. We aim to increase the renewable content and decreasing the embodied energy of FRP. To achieve that, the consisting raw materials of these plastics which are based on non-renewable resourc

  5. Long-fibre reinforced thermoplastics. Applications and limitations of a new type of material

    Energy Technology Data Exchange (ETDEWEB)

    Neise, E.

    1986-06-01

    New processing possibilities are offered by long-fibre reinforced thermoplastics, because - contrary to thermoset processing - no chemical reaction occurs and thermoforming and welding of prepregs is possible. Processing techniques like filament winding, tape laying or pultrusion are in development at different institutes.

  6. A bio-based fibre-reinforced plastic pedestrian bridge for Schiphol

    NARCIS (Netherlands)

    Smits, J.E.P.; Gkaidatzis, R.

    2015-01-01

    The present paper investigates Bio-based fibre-reinforced plastics, used as a load-bearing element of a bridge. We aim to increase the renewable content and decreasing the embodied energy of FRP. To achieve that, the consisting raw materials of these plastics which are based on non-renewable resourc

  7. Gliding arc discharge — Application for adhesion improvement of fibre reinforced polyester composites

    DEFF Research Database (Denmark)

    Kusano, Yukihiro; Teodoru, Steluta; Leipold, Frank;

    2008-01-01

    production, and surface treatment. However, the application for adhesion improvement of structural materials has been rarely reported. In the present work, glass fibre reinforced polyester plates were treated using atmospheric pressure gliding arcs with high speed air flow for adhesion improvement...

  8. Static And Dynamic Characteristics Of Waste Ceramic Aggregate Fibre Reinforced Concrete

    Directory of Open Access Journals (Sweden)

    Cichocki Krzysztof

    2015-12-01

    Full Text Available There are multiple obstacles associated both with technology and properties of waste ceramic aggregate concrete preventing its wide production and application. In the research programme these limitations were addressed through utilizing steel fibre reinforcement and the phenomenon of internal curing. After laboratory tests of mechanical properties a numerical analysis of composites in question was conducted.

  9. Recycling of Glass Fibre Reinforced Aluminium Laminates and Silicon Removal from Aerospace Al Alloy

    NARCIS (Netherlands)

    Zhu, G.

    2012-01-01

    Aerospace aluminium alloys (7xxx and 2xxx series Al alloy) is one of the important Al alloys in our life. The recycling of aerospace Al alloy plays a significant role in sustainable development of Al industry. The fibre reinforced metal laminates GLARE including 67 wt.% 2024 Al alloy was used as upp

  10. Prediction of thermal strains in fibre reinforced plastic matrix by discretisation of the temperature exposure history

    Science.gov (United States)

    Ngoy, E. K.

    2016-07-01

    Prediction of environmental effects on fibre reinforced plastics habitually is made difficult due to the complex variability of the natural service environment. This paper suggests a method to predict thermal strain distribution over the material lifetime by discretisation of the exposure history. Laboratory results show a high correlation between predicted and experimentally measured strain distribution

  11. A bio-based fibre-reinforced plastic pedestrian bridge for Schiphol

    NARCIS (Netherlands)

    Smits, J.E.P.; Gkaidatzis, R.

    2015-01-01

    The present paper investigates Bio-based fibre-reinforced plastics, used as a load-bearing element of a bridge. We aim to increase the renewable content and decreasing the embodied energy of FRP. To achieve that, the consisting raw materials of these plastics which are based on non-renewable

  12. Mechanical spectroscopy of thermal stress relaxation in aluminium alloys reinforced with short alumina fibres

    Energy Technology Data Exchange (ETDEWEB)

    Carreno-Morelli, E.; Schaller, R. [Ecole Polytechnique Federale, Lausanne (Switzerland). Inst. de Genie Atomique; Urreta, S.E.

    1998-05-01

    The mechanical behaviour under low temperature thermal cycling of aluminium-based composites reinforced with short Al{sub 2}O{sub 3} SAFFIL fibres has been investigated by mechanical spectroscopy (mechanical loss and elastic shear modulus measurements). A mechanical loss maximum has been observed during cooling which originates in the relaxation of thermal stresses at the interfaces due to the differential thermal expansion between matrix and reinforcement. The maximum height increases with the volumetric fibre content. In addition, if the matrix strength is increased by the appropriated choice of alloy and thermal treatment, the maximum diminishes and shifts to lower temperatures. No damage accumulation at the interfaces has been detected during long period thermal cycling in the range 100 to 500 K. A description of the damping behaviour is made in terms of the development of microplastic zones which surround the fibres. (orig.) 9 refs.

  13. ANALYTIC INVESTIGATIONS OF CARBON FIBER REINFORCED POLYMER STIFFENED CYLINDRICAL SUBMARINE HULL

    Directory of Open Access Journals (Sweden)

    ALICE MATHAI

    2013-07-01

    Full Text Available A submarine is any naval vessel that is capable of propelling itself beneath the water as well as on the water surface. Submersibles are capable of operating for extended period of time underwater and are subjected to heavy hydrostatic pressure. The conventional submarines made up of high strength steel and concrete prevents them from going to greater depth owing to its large dead weight. In the present work, the pressure hull of submarine is considered both in isotropic and composite material. Materials that have high strength to weight ratio include carbon fibre composites. Carbon-fibre reinforced polymer (CFRP is a very strong and light weight fibre reinforced polymer containing carbon fibers on various orientations. It has many applications in aerospace and automotive fields. A parametric study is conducted to find the optimum ply orientation by employing FiniteElement Analysis Software package, ANSYS. Also linear and nonlinear buckling analysis is used to predict the feasibility of CFRP submarine at the deep waters. From the studies conducted regarding the weight reduction, it is estimated that by replacing steel by CFRP results in saving of 67% in the structural weight.

  14. The influence of self-compacting steel fibre reinforced concrete infill on the flexure strength and ductility of masonry walls

    OpenAIRE

    Oliveira, Luiz António Pereira de; Bernardo, Luís Filipe Almeida

    2010-01-01

    This paper presents an experimental study on the influence of longitudinal reinforcement ratio and steel fibre volume in self-compacting concrete infill on the strength and ductility of reinforced masonry walls subjected to flexure. Flexure tests were performed as four-point bending tests on twelve walls. The analysis of the concrete infill contribution to the walls capacity is made considering recent recommendations for steel fibre reinforced concrete design. A ductility...

  15. Properties of hemp fibre polymer composites - An optimisation of fibre properties using novel defibration methods and fibre characterisation

    DEFF Research Database (Denmark)

    Thygesen, Anders

    2006-01-01

    Characterization of hemp fibres was carried out with fibres obtained with low handling damage and defibration damage to get an indication of how strong cellulose based fibres that can be produced from hemp. Comparison was made with hemp yarn producedunder traditional conditions where damage...... obtained by steam explosion of hemp fibres prior defibrated with pectin degrading enzymes. The S2 layer in the fibre wall of the hemp fibres consisted of1-4 cellulose rich and lignin poor concentric layers constructed of ca. 100 nm thick lamellae. The microfibril angle showed values in the range 0......-10° for the main part of the S2-layer and 70-90° for the S1-layer. The microfibrils that are mainly parallelwith the fibre axis explain the high fibre stiffness, which in defibrated hemp fibres reached 94 GPa. The defibrated hemp fibres had higher fibre stiffness (88-94 GPa) than hemp yarn (60 GPa), which...

  16. Corrosion resistance of steel fibre reinforced concrete – a literature review

    DEFF Research Database (Denmark)

    Marcos Meson, Victor; Michel, Alexander; Solgaard, Anders

    2016-01-01

    the existence of a critical crack width, below 0.20 mm, where corrosion of carbon-steel fibres is not critical and the structural integrity of the exposed SFRC can be ensured over the long-term. A doctoral project investigating chloride-induced corrosion of steel fibres on cracked SFRC has been initiated......Steel fibre reinforced concrete (SFRC) is increasingly being used in the construction of prefabricated segmental linings for bored tunnels, since it entails simplified production processes and higher quality standards. However, international standards and guidelines are not consistent regarding...... the consideration of steel fibres for the structural verification of SFRC elements exposed to corrosive environments, hampering the development of civil infrastructure built of SFRC. In particular, the long-term effect of exposure to chlorides is in focus and under discussion. This paper reviews the existing...

  17. Numerical and Experimental Investigation of the Hydrostatic Performance of Fibre Reinforced Tubes

    Science.gov (United States)

    Pavlopoulou, S.; Roy, S. S.; Gautam, M.; Bradshaw, L.; Potluri, P.

    2017-04-01

    The increasing demands in subsea industry such as oil and gas, led to a rapidly growing need for the use of advanced, high performance, lightweight materials such as composite materials. E-glass fibre laminated pre-preg, filament wound and braided tubes were tested to destruction under hydrostatic external pressure in order to study their buckling and crushing behaviour. Different fibre architectures and wind angles were tested at a range of wall thicknesses highlighting the advantage that hoop reinforcement offers. The experimental results were compared with theoretical predictions obtained from classic laminate theory and finite element analysis (ABAQUS) based on the principal that the predominant failure mode was buckling. SEM analysis was further performed to investigate the resulting failure mechanisms, indicating that the failure mechanisms can be more complex with a variety of observed modes taking place such as fibre fracture, delamination and fibre-matrix interface failure.

  18. Numerical and Experimental Investigation of the Hydrostatic Performance of Fibre Reinforced Tubes

    Science.gov (United States)

    Pavlopoulou, S.; Roy, S. S.; Gautam, M.; Bradshaw, L.; Potluri, P.

    2016-12-01

    The increasing demands in subsea industry such as oil and gas, led to a rapidly growing need for the use of advanced, high performance, lightweight materials such as composite materials. E-glass fibre laminated pre-preg, filament wound and braided tubes were tested to destruction under hydrostatic external pressure in order to study their buckling and crushing behaviour. Different fibre architectures and wind angles were tested at a range of wall thicknesses highlighting the advantage that hoop reinforcement offers. The experimental results were compared with theoretical predictions obtained from classic laminate theory and finite element analysis (ABAQUS) based on the principal that the predominant failure mode was buckling. SEM analysis was further performed to investigate the resulting failure mechanisms, indicating that the failure mechanisms can be more complex with a variety of observed modes taking place such as fibre fracture, delamination and fibre-matrix interface failure.

  19. Strength and durability of mixed glass-fibre-reinforced laminates

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, Ya.; Limonov, V.A.; Mikel`son, M.; Tamuzh, V. [Inst. Mekhaniki Polimerov AN Latvii, Riga (Russian Federation)

    1994-01-01

    For unidirectional fabric-reinforced and mixed fiber glass plastics the results of static and fatigue tests are presented. Elastic and strength properties have been determined using plain and tubular specimens. Combination of unidirectional and glass fabric reinforcing layers is found to increase considerably torsional strength at inconsiderable decrease of tensile and compression strength. Results of layer-by-layer failure analysis agree well with experimental data. 12 refs.

  20. Properties of Recycled Aggregate Concrete Reinforced with Polypropylene Fibre

    Directory of Open Access Journals (Sweden)

    Wan Mohammad Wan Nur Syazwani

    2016-01-01

    Full Text Available This research work is aimed to investigate how the addition of various proportion of polypropylene fibre affects the mechanical strength and permeability characteristics of recycled aggregate concrete (RAC which has been produced with treated coarse recycled concrete aggregate (RCA. Further research on RAC properties and their applications is of great importance as the scarcity of virgin aggregate sources in close proximity to major urban centers is becoming a worldwide problem. In this study, the hardened RAC properties at the curing age of 7 and 28 days such as compressive strength, flexural strength, ultrasonic pulse velocity (UPV, water absorption and total porosity were evaluated and compare with control specimens. Experimental result indicates that although the inclusion of the treated coarse RCA can enhance the mechanical strength and permeability properties of RAC, Further modification by addition of polypropylene fibre can optimize the results.

  1. Finite element analysis of Polymer reinforced CRC columns under close-in detonation

    DEFF Research Database (Denmark)

    Riisgaard, Benjamin

    2007-01-01

    Polymer reinforced Compact Reinforced Composite, PCRC, is a Fiber reinforced Densified Small Particle system, FDSP, combined with a high strength longitudinal flexural rebar arrangement laced together with polymer lacing to avoid shock initiated disintegration of the structural element under blast...

  2. Structural Behavior of Concrete Beams Reinforced with Basalt Fiber Reinforced Polymer (BFRP) Bars

    Science.gov (United States)

    Ovitigala, Thilan

    The main challenge for civil engineers is to provide sustainable, environmentally friendly and financially feasible structures to the society. Finding new materials such as fiber reinforced polymer (FRP) material that can fulfill the above requirements is a must. FRP material was expensive and it was limited to niche markets such as space shuttles and air industry in the 1960s. Over the time, it became cheaper and spread to other industries such as sporting goods in the 1980-1990, and then towards the infrastructure industry. Design and construction guidelines are available for carbon fiber reinforced polymer (CFRP), aramid fiber reinforced polymer (AFRP) and glass fiber reinforced polymer (GFRP) and they are currently used in structural applications. Since FRP is linear elastic brittle material, design guidelines for the steel reinforcement are not valid for FRP materials. Corrosion of steel reinforcement affects the durability of the concrete structures. FRP reinforcement is identified as an alternative to steel reinforcement in corrosive environments. Although basalt fiber reinforced polymer (BFRP) has many advantages over other FRP materials, but limited studies have been done. These studies didn't include larger BFRP bar diameters that are mostly used in practice. Therefore, larger beam sizes with larger BFRP reinforcement bar diameters are needed to investigate the flexural and shear behavior of BFRP reinforced concrete beams. Also, shear behavior of BFRP reinforced concrete beams was not yet studied. Experimental testing of mechanical properties and bond strength of BFRP bars and flexural and shear behavior of BFRP reinforced concrete beams are needed to include BFRP reinforcement bars in the design codes. This study mainly focuses on the use of BFRP bars as internal reinforcement. The test results of the mechanical properties of BFRP reinforcement bars, the bond strength of BFRP reinforcement bars, and the flexural and shear behavior of concrete beams

  3. Properties of hemp fibre polymer composites - An optimisation of fibre properties using novel defibration methods and fibre characterisation

    OpenAIRE

    Thygesen, Anders

    2006-01-01

    Characterization of hemp fibres was carried out with fibres obtained with low handling damage and defibration damage to get an indication of how strong cellulose based fibres that can be produced from hemp. Comparison was made with hemp yarn producedunder traditional conditions where damage is unavoidable. The mild defibration was performed by degradation of the pectin and lignin rich middle lamellae around the fibres by cultivation of the mutated white rot fungus Phlebia radiata Cel 26. Fibr...

  4. Annealing effects on strain and stress sensitivity of polymer optical fibre based sensors

    DEFF Research Database (Denmark)

    Pospori, A.; Marques, C. A. F.; Zubel, M. G.

    2016-01-01

    The annealing effects on strain and stress sensitivity of polymer optical fibre Bragg grating sensors after their photoinscription are investigated. PMMA optical fibre based Bragg grating sensors are first photo-inscribed and then they were placed into hot water for annealing. Strain, stress...... and force sensitivity measurements are taken before and after annealing. Parameters such as annealing time and annealing temperature are investigated. The change of the fibre diameter due to water absorption and the annealing process is also considered. The results show that annealing the polymer optical...... fibre tends to increase the strain, stress and force sensitivity of the photo-inscribed sensor....

  5. Investigations on d.c. conductivity behaviour of milled carbon fibre reinforced epoxy graded composites

    Indian Academy of Sciences (India)

    Navin Chand; Archana Nigrawal

    2008-08-01

    This paper reports the d.c. conductivity behaviour of milled carbon fibre reinforced polysulphide modified epoxy gradient composites. Milled carbon fibre reinforced composites having 3 vol. % of milled carbon fibre and poly sulphide modified epoxy resin have been developed. D.C. conductivity measurements are conducted on the graded composites by using an Electrometer in the temperature range from 26°C to 150°C. D.C. conductivity increases with the increase of distance in the direction of centrifugal force, which shows the formation of graded structure with the composites. D.C. conductivity increases on increase of milled carbon fibre content from 0.45 to 1.66 vol.%. At 50°C, d.c. conductivity values were 1.85 × 10-11, 1.08 × 10-11 and 2.16 × 10-12 for samples 1, 2 and 3, respectively. The activation energy values for different composite samples 1, 2 and 3 are 0.489, 0.565 and 0.654 eV, respectively which shows decrease in activation energy with increase of fibre content.

  6. The Influence of Nanofillers on the Mechanical Properties of Carbon Fibre Reinforced Methyl Methacrylate Composite

    Directory of Open Access Journals (Sweden)

    Tomas ŽUKAS

    2012-09-01

    Full Text Available The influence of different types of nanofillers – carbon nanotubes (CNT and organically modified nanoclay – on the flexural properties and nail penetration resistance of carbon fiber reinforced methyl methacrylate (MMA composite have been investigated. An ultrasonic mixing was used to distribute various content of nanofillers (0.7 wt.% – 3.0 wt.% in MMA resin. Scanning electron microscopy and X-ray diffraction analyses confirmed formation of intercalated MMA clay nanocomposites. Two different stacking sequences, [0/90]3 or [0/90/45]2, and two types of carbon fibre, with or without epoxy binder, were used for composites preparation. The composites with stacking sequence of [0/90]3 show higher resistance to the mechanical loading. Epoxy binder increases fibre adhesion interaction with MMA resin, however, almost does not influences on the fibre reinforced composite strength properties. The results demonstrated that only low content (up to 1 wt.% of organically modified nanoclay Cloisite 10A increases the carbon fibre reinforced composites resistance to flexure and nail penetration. The low content of CNT also increases flexural stress and modulus, but decreases resistance to the nail penetration.DOI: http://dx.doi.org/10.5755/j01.ms.18.3.2434

  7. Synthesis, characterization and antibacterial activity of biodegradable starch/PVA composite films reinforced with cellulosic fibre.

    Science.gov (United States)

    Priya, Bhanu; Gupta, Vinod Kumar; Pathania, Deepak; Singha, Amar Singh

    2014-08-30

    Cellulosic fibres reinforced composite blend films of starch/poly(vinyl alcohol) (PVA) were prepared by using citric acid as plasticizer and glutaraldehyde as the cross-linker. The mechanical properties of cellulosic fibres reinforced composite blend were compared with starch/PVA crossed linked blend films. The increase in the tensile strength, elongation percentage, degree of swelling and biodegradability of blend films was evaluated as compared to starch/PVA crosslinked blend films. The value of different evaluated parameters such as citric acid, glutaraldehyde and reinforced fibre to starch/PVA (5:5) was found to be 25 wt.%, 0.100 wt.% and 20 wt.%, respectively. The blend films were characterized using Fourier transform-infrared spectrophotometry (FTIR), scanning electron microscopy (SEM) and thermogravimetric analysis (TGA/DTA/DTG). Scanning electron microscopy illustrated a good adhesion between starch/PVA blend and fibres. The blend films were also explored for antimicrobial activities against pathogenic bacteria like Staphylococcus aureus and Escherichia coli. The results confirmed that the blended films may be used as exceptional material for food packaging. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Fibre reinforcement in a structurally compromised endodontically treated molar: a case report

    Science.gov (United States)

    de Ataide, Ida de Noronha; Fernandes, Marina; Lambor, Rajan

    2016-01-01

    The reconstruction of structurally compromised posterior teeth is a rather challenging procedure. The tendency of endodontically treated teeth (ETT) to fracture is considerably higher than vital teeth. Although posts and core build-ups followed by conventional crowns have been generally employed for the purpose of reconstruction, this procedure entails sacrificing a considerable amount of residual sound enamel and dentin. This has drawn the attention of researchers to fibre reinforcement. Fibre-reinforced composite (FRC), designed to replace dentin, enables the biomimetic restoration of teeth. Besides improving the strength of the restoration, the incorporation of glass fibres into composite resins leads to favorable fracture patterns because the fibre layer acts as a stress breaker and stops crack propagation. The following case report presents a technique for reinforcing a badly broken-down ETT with biomimetic materials and FRC. The proper utilization of FRC in structurally compromised teeth can be considered to be an economical and practical measure that may obviate the use of extensive prosthetic treatment. PMID:27200283

  9. Embedded Fibre Bragg Grating Sensor Response Model: Crack Growing Detection in Fibre Reinforced Plastic Materials

    DEFF Research Database (Denmark)

    Pereira, Gilmar Ferreira; Mikkelsen, Lars Pilgaard; McGugan, Malcolm

    2015-01-01

    This article presents a novel method to simulate the sensor output response of a Fibre Bragg Grating (FBG) sensor when embedded in a host material (Composite material or adhesive), during a crack growing/damage event. A finite element model of the crack growth mechanisms was developed, and differ...

  10. Interferometry of binary stars using polymer optical fibres

    Science.gov (United States)

    Arregui, L.; Illarramendi, M. A.; Zubia, J.; Hueso, R.; Sánchez-Lavega, A.

    2017-07-01

    We show a laboratory experiment in which students can learn the use of interferometry as a valuable tool in astronomy. We detail experiments based on the use of the classic Michelson stellar interferometer able to reproduce the size of single stars and to characterize double star systems. Stellar sources, single and double, are reproduced by a laser light emerging from the circular end faces of one or two step-index polymer optical fibres. Light coming from the fibre end faces passes through two identical pinholes located on a lid covering the objective of a small telescope, thus producing interference fringes. The measurement of the fringe visibilities allows us to estimate both the diameters of the simulated stars and the separation between them, with errors lower than 18% for a range of light sources that can recreate the apparent size of the outer Solar System planets Uranus and Neptune and the binary properties of the Alpha Centauri system. The exercises here described illustrate the optical principles of spatial interferometry and can be integrated into courses on astronomy, optics or space science, with close interaction between theory and experiment.

  11. Short Fibre and Particulate-reinforced Rubber Composites

    Directory of Open Access Journals (Sweden)

    Kavita Agarwal

    2002-07-01

    Full Text Available Particulate fillers (carbon black and silica and short fibre (aromatic polyamide, Kevlar have been utilised to produce rubber composites based on acrylonitrile-co-butadiene rubber (NBR. Mechanical properties of these composites have been determined and compared with unfilled rubber vulcanisate. The effect of surface treatment on the improvement of strength, in case of Kevlar, has also been considered. The influence of elevated temperature on tear strength, an important failure criterion, has been evaluated. Scanning electron microscopy has been used as a tool to correlate the topographical features associated with changes in the tear strength of the composites.

  12. Effect of fibre content and alkali treatment on mechanical properties of Roystonea regia-reinforced epoxy partially biodegradable composites

    Indian Academy of Sciences (India)

    Govardhan Goud; R N Rao

    2011-12-01

    The present paper investigates the effect of fibre content and alkali treatment on tensile, flexural and impact properties of unidirectional Roystonea regia natural-fibre-reinforced epoxy composites which are partially biodegradable. The reinforcement Roystonea regia (royal palm) fibre was collected from the foliage of locally available royal palm tree through the process of water retting and mechanical extraction. The poor adhesion between fibre and matrix is commonly encountered problem in natural-fibre-reinforced composites. To overcome this problem, specific physical and chemical treatments were suggested for surface modification of fibres by investigators. Alkali treatment is one of the simple and effective surface modification techniques which is widely used in natural fibre composites. In the present study both untreated and alkali-treated fibres were used as reinforcement in Roystonea regia epoxy composites and the tensile, flexural and impact properties were determined at different fibre contents. The alkali treatment found to be effective in improving the tensile and flexural properties while the impact strength decreased.

  13. The Dependance of Damage Accumulation in Carbon Fibre Reinforced Epoxy Composites on Matrix Properties.

    Science.gov (United States)

    1985-12-01

    Diguuibutiofl Unlimited 0- Contract U.S. AIR FORCE/ARMINES- Centre des Matdriaux No A.F.O.S.R. 84-0397 - Final Report December 1985 THE DEPENDANCE OF DAMAGE...61102F 2301 D1 185 11 TITLE (include Security Classification) THE DEPENDANCE OF DAMAGE ACCUMULATION IN CARBON FIBRE REINFORCED EPOXY COMPOSITES ON...ATN OF: LTS/Autovon 235-4299 26 March 1986 SUBJECT: EOARD-TR-86-04, Final Scientific Report, "The Dependance of Damage Accumu- lation in Carbon Fibre

  14. Single Fibre Pullout from Hybrid Fiber Reinforced Concrete

    NARCIS (Netherlands)

    Markovich, I.; Van Mier, J.G.M.; Walraven, J.C.

    2001-01-01

    Hybrid fiber reinforcement can be very efficient for improving the tensile response of the composite. In such materials, fibers of different geometries can act as bridging mechanisms over cracks of different widths. The fiber bridging efficiency depends on the interface properties, which makes inter

  15. Simultaneous strain and temperature measurement with enhanced intrinsic sensitivity using etched polymer fibre Bragg gratings

    Science.gov (United States)

    Bhowmik, Kishore; Peng, Gang-Ding; Luo, Yanhua; Ambikairajah, Eliathamby; Rajan, Ginu

    2015-09-01

    A PMMA based single-mode polymer optical fibre is etched to different diameter and it is observed that etching can lead to change in the material properties of the fibre such as Young's modulus and thermal expansion coefficient. This can play a vital role in improving the intrinsic sensing capabilities based on etched polymer optical fibre. Thus, exploiting the different strain and temperature sensitivities exhibited by the etched and un-etched polymer FBGs and by using an FBG array, strain and temperature can be measured simultaneously and also with very high sensitivity.

  16. Mechanical performance of oil palm empty fruit bunches/jute fibres reinforced epoxy hybrid composites

    Energy Technology Data Exchange (ETDEWEB)

    Jawaid, M. [School of Industrial Technology, Universiti Sains Malaysia, 11800 Penang (Malaysia); Abdul Khalil, H.P.S., E-mail: akhalilhps@gmail.com [School of Industrial Technology, Universiti Sains Malaysia, 11800 Penang (Malaysia); Abu Bakar, A. [School of Materials and Mineral Resources Engineering, Universiti Sains Malaysia, 14300 Nibong Tebal, Penang (Malaysia)

    2010-11-15

    Research highlights: {yields} Hybrid composites constituents of natural fibres show good mechanical performances. {yields} Hybridization with 20% jute fibre gives rise to sufficient modulus to composites. {yields} Outer or core material affect mechanical performance of hybrid composites. {yields} Impact strength of pure EFB composite is higher than hybrid composites. - Abstract: Oil palm empty fruit bunches (EFB)/jute fibre reinforced epoxy hybrid composites with different sequence of fibre mat arrangement such as EFB/jute/EFB and jute/EFB/jute were fabricated by hand lay-up method. The effect of layering patterns on the mechanical performance of the composites was studied. The hybrid composites are intended for engineering applications as an alternative to synthetic fibre composites. Mechanical performance of hybrid composites were evaluated and compared with the pure EFB, pure jute composites and neat epoxy using flexural and impact testing. The flexural properties of hybrid composite is higher than that of pure EFB composite with respect to the weight fraction of fibre, where as the impact strength of pure EFB composite is much higher than those of hybrid composites. The flexural results were interpreted using sandwich theory. The fracture surface morphology of the impact testing samples of the hybrid composites was performed by scanning electron microscopy (SEM).

  17. Roughness Influence On Macro- And Micro-Tribology Of Multi-Layered Hard Coatings On Carbon Fibre Polymer Composite

    Directory of Open Access Journals (Sweden)

    Lackner J.M.

    2015-09-01

    Full Text Available Goal of this work is the investigation of roughness influences on the abrasive wear behaviour of magnetron sputtered multi-layered, low-friction coatings on carbon-fibre reinforced polymers (CFRP. Higher coating roughness at similar CFRP quality was realized by higher deposition rates, leading to increased heat flux to the substrates during deposition. Thermal expansion of the epoxy matrix on the micro scale results in a wavy, wrinkled surface topography. Both in scratch and reciprocal sliding testing against alumina, the friction coefficients are lower for the smooth coatings, but their wear rate is higher due to low-cycle fatigue caused abrasion.

  18. Flows in polymers, reinforced polymers and composites a multi-scale approach

    CERN Document Server

    Binetruy, Christophe; Keunings, Roland

    2015-01-01

    This book gives a detailed and practical introduction to complex flows of polymers and reinforced polymers as well as the flow of simple fluids in complex microstructures. Over the last decades, an increasing number of functional and structural parts, made so far with metals, has been progressively reengineered by replacing metallic materials by polymers, reinforced polymers and composites. The motivation for this substitution may be the weight reduction, the simpler, cheaper or faster forming process, or the ability to exploit additional functionalities. The present Brief surveys modern developments related to the multi-scale modeling and simulation of polymers, reinforced polymers, that involve a flowing microstructure and continuous fiber-reinforced composites, wherein the fluid flows inside a nearly stationary multi-scale microstructure. These developments concern both multi-scale modeling, defining bridges between the micro and macro scales - with special emphasis on the mesoscopic scale at which kinetic...

  19. Experimentation and numerical simulation of steel fibre reinforced concrete pipes

    Directory of Open Access Journals (Sweden)

    de la Fuente, Albert

    2011-06-01

    Full Text Available The results concerning on an experimental and a numerical study related to SFRCP are presented. Eighteen pipes with an internal diameter of 600 mm and fibre dosages of 10, 20 and 40 kg/m3 were manufactured and tested. Some technological aspects were concluded. Likewise, a numerical parameterized model was implemented. With this model, the simulation of the resistant behaviour of SFRCP can be performed. In this sense, the results experimentally obtained were contrasted with those suggested by means MAP reaching very satisfactory correlations. Taking it into account, it could be said that the numerical model is a useful tool for the optimal design of the SFRCP fibre dosages, avoiding the need of the systematic employment of the test as an indirect design method. Consequently, the use of this model would reduce the overall cost of the pipes and would give fibres a boost as a solution for this structural typology.

    En este artículo se presentan los resultados principales de un estudio experimental y numérico del comportamiento de tubos hormigón reforzado con fibras de acero (THFA. Se fabricaron y ensayaron 18 tubos de 600 mm de diámetro con cuantías de 10, 20 y 40 kg/m3 de fibras, concluyéndose varios aspectos tecnológicos relacionados con la fabricación y el ensayo así como del comportamiento resistente. Por otra parte, se ha desarrollado el modelo numérico MAP que permite la simulación del comportamiento resistente de THFA sometidos al ensayo de aplastamiento. Los resultados han sido satisfactorios para cualquier régimen de carga, permitiendo concluir que el modelo es una herramienta útil para el diseño óptimo de este tipo de tubos. Se concluye que el uso del modelo conduce a una reducción del coste del armado y da un impulso al uso de fibras como elemento de refuerzo en esta tipología estructural.

  20. Humidity insensitive step-index polymer optical fibre Bragg grating sensors

    DEFF Research Database (Denmark)

    Woyessa, Getinet; Fasano, Andrea; Stefani, Alessio;

    2015-01-01

    We have fabricated and characterised a humidity insensitive step index(SI) polymer optical fibre(POF) Bragg grating sensors. The fibre was made based on the injection molding technique, which is an efficient method for fast, flexible and cost effective preparation of the fibre preform. The fabric......We have fabricated and characterised a humidity insensitive step index(SI) polymer optical fibre(POF) Bragg grating sensors. The fibre was made based on the injection molding technique, which is an efficient method for fast, flexible and cost effective preparation of the fibre preform....... The fabricated SIPOF has a core made from TOPAS with a glass transition temperature of 134 degrees C and a cladding from ZEONEX with a glass transition temperature of 138 degrees C. The main advantages of the proposed SIPOF are the low water absorption and good chemical resistance compared to the conventional...

  1. Experimental investigation of the relation between damage at the concrete-steel interface and initiation of reinforcement corrosion in plain and fibre reinforced concrete

    DEFF Research Database (Denmark)

    Michel, Alexander; Solgaard, Anders Ole Stubbe; Pease, Bradley Justin;

    2013-01-01

    Cracks in covering concrete are known to hasten initiation of steel corrosion in reinforced concrete structures. To minimise the impact of cracks on the deterioration of reinforced concrete structures, current approaches in (inter)national design codes often limit the concrete surface crack width....... Recent investigations however, indicate that the concrete-reinforcement interfacial condition is a more fundamental criterion related to reinforcement corrosion. This work investigates the relation between macroscopic damage at the concrete-steel interface and corrosion initiation of reinforcement...... embedded in plain and fibre reinforced concrete. Comparisons of experimental and numerical results indicate a strong correlation between corrosion initiation and interfacial condition....

  2. Behaviour of -glass fibre reinforced vinylester resin composites under impact fatigue

    Indian Academy of Sciences (India)

    Rita Roy; B K Sarkar; N R Bose

    2001-04-01

    An impact fatigue study has been made for the first time on 63.5% glass fibre reinforced vinylester resin notched composites. The study was conducted in a pendulum type repeated impact apparatus especially designed and fabricated for determining single and repeated impact strengths. A well-defined impact fatigue (S–N) behaviour, having a progressive endurance below the threshold single cycle impact fracture stress with decreasing applied stress has been demonstrated. Fractographic analysis revealed fracture by primary debonding having fibre breakage and pullout at the tensile zone, but a shear fracture of fibre bundles at the compressive zone of the specimen. The residual strength, modulus and toughness showed retention of the properties at high impact stress levels up to 1000 impacts followed by a sharp drop. Cumulative residual stresses with each number of impacts not withstanding the static fatigue failure at long endurances have been ascribed for the composite failures under the repeated impact stresses.

  3. Characterization of short-fibre reinforced thermoplastics for fracture fixation devices.

    Science.gov (United States)

    Brown, S A; Hastings, R S; Mason, J J; Moet, A

    1990-10-01

    This study focuses on determining the effects of clinically relevant procedures on the flexural and fracture toughness properties of three short-fibre thermoplastic composites for potential application as fracture fixation devices. The procedures included sterilization, heat contouring and saline soaking. The three materials tested were polysulphone, polybutylene terephthalate and polyetheretherketone, all reinforced with 30% short carbon fibres. The polysulphone composite showed significant degradation in mechanical properties due to saline soaking. The polybutylene terephthalate exhibited significant degradation of mechanical properties following both contouring and saline soaking. The polyetheretherketone composite, however, exhibited no degradation in mechanical properties. The results demonstrated that flexion and fracture toughness testing were effective for determining the response of the composites to different applied conditions and demonstrated the stability of polyetheretherketone subjected to these treatments. Scanning electron microscopy demonstrated the most effective fibre-matrix bonding to be in the polyetheretherketone.

  4. Nonlocal plasticity effects on fibre debonding in a whisker-reinforced metal

    DEFF Research Database (Denmark)

    Niordson, Christian Frithiof; Tvergaard, Viggo

    2002-01-01

    , in the form of fibre sizes and the length associated with the debonding process, so the nonlocal plasticity model brings in an additional material length. The analyses for metal reinforced by aligned short fibres are used to obtain an understanding of the interaction of the different length scales......Numerical cell-model analyses for the matrix-fibre debonding in a metal matrix composite are used to study the effect of a characteristic material length in the plasticity description of the matrix material deformations. Characteristic material lengths are already present in the model problem...... in the problem. The nonlocal plasticity effect tends to increase the stress level at a given overall strain, which clearly tends to promote the onset of debonding....

  5. Modelling the nonlinear response of fibre-reinforced bending fluidic actuators

    Science.gov (United States)

    Cacucciolo, Vito; Renda, Federico; Poccia, Ernesto; Laschi, Cecilia; Cianchetti, Matteo

    2016-10-01

    Soft actuators are receiving increasing attention from the engineering community, not only in research but even for industrial applications. Among soft actuators, fibre-reinforced bending fluidic actuators (BFAs) became very popular thanks to features such as robustness and easy design and fabrication. However, an accurate modelling of these smart structures, taking into account all the nonlinearities involved, is a challenging task. In this effort, we propose an analytical mechanical model to capture the quasi-static response of fibre-reinforced BFAs. The model is fully 3D and for the first time includes the effect of the pressure on the lateral surface of the chamber as well as the non-constant torque produced by the pressure at the tip. The presented model can be used for design and control, while providing information about the mechanics of these complex actuators.

  6. Surface topography of machined fibre reinforced plastics obtained by stylus instruments and optical profilometers

    DEFF Research Database (Denmark)

    Eriksen, Else; Hansen, Hans Nørgaard

    1998-01-01

    introduced. They use another working principle to obtain the same parameters, but the settings of most of the measuring variables are not standardized. The present study has investigated aspects that have to be taken into account when the roughness of short fibre reinforced thermoplastics is measured...... identical values, whereas significantly higher roughnesses were measured with one of the two optical instruments. The optical instruments were identical but with different settings of the control parameters, which resulted in large deviations between the values measured. Some of the differences between...... by stylus instruments and by optical profilometers. The measurements were performed on machined surfaces with three distinct different roughness levels. The materials were two thermoplastics, polyoxymethylene and polypropylene, reinforced with short glass fibres. The two stylus instruments gave almost...

  7. Fibre-reinforced composite (FRC) bridge--a minimally destructive approach.

    Science.gov (United States)

    Van Rensburg, J J Jansen

    2015-05-01

    Replacing missing teeth is an integral part of the clinical services of the dental practitioner. The fibre-reinforced composite (FRC) bridge is a relatively new method for replacing missing teeth. This article will explain and discuss this alternative treatment option. Practical instructions on how to construct a FRC bridge will be given, by means of a clinical case. Different technique options will be illustrated to provide the reader with a good understanding of the most practical way to use the FRC strips. The fibre-reinforced composite provides a non-destructive, aesthetically pleasing and cost-effective way to restore missing teeth. Clinical Relevance: Minimally invasive options should always be considered and destruction of healthy enamel and dentine during the preparation phase of a replacement treatment should be avoided as much as possible.

  8. Study of doping non-PMMA polymer fibre canes with UV photosensitive compounds

    DEFF Research Database (Denmark)

    Hassan, Hafeez Ul; Fasano, Andrea; Janting, Jakob;

    2016-01-01

    We propose a solution doping method for polycarbonate (PC) and TOPAS polymer optical fibre (POF) canes using different UV photosensitive dopants aiming to reduce the fibre Bragg grating inscription time at the typical Bragg grating inscription wavelength (325nm). Three-ring solid-core PC mPOF canes...

  9. Embedding silica and polymer fibre Bragg gratings (FBG) in plastic 3D-printed sensing patches

    DEFF Research Database (Denmark)

    Zubel, Michal G.; Sugden, Kate; Webb, David J.

    2016-01-01

    This paper reports the first demonstration of a silica fibre Bragg grating (SOFBG) embedded in an FDM 3-D printed housing to yield a dual grating temperature-compensated strain sensor. We also report the first ever integration of polymer fibre Bragg grating (POFBG) within a 3-D printed sensing...

  10. Annealing effects on strain and stress sensitivity of polymer optical fibre based sensors

    DEFF Research Database (Denmark)

    Pospori, A.; Marques, C. A. F.; Zubel, M. G.;

    2016-01-01

    The annealing effects on strain and stress sensitivity of polymer optical fibre Bragg grating sensors after their photoinscription are investigated. PMMA optical fibre based Bragg grating sensors are first photo-inscribed and then they were placed into hot water for annealing. Strain, stress and ...

  11. DUCTILITY BEHAVIOR FIBER REINFORCED CONCRETE BEAMS STRENGTHENED WITH EXTERNALLY BONDED GLASS FIBER REINFORCED POLYMER LAMINATES

    Directory of Open Access Journals (Sweden)

    Mariappan Mahalingam

    2013-01-01

    Full Text Available The study presents the results of an experimental investigation conducted on Steel Fiber Reinforced Concrete (SFRC beams with externally bonded Glass Fiber Reinforced Polymer (GFRP laminates with a view to study their strength and ductility. A total of ten beams, 150×250 mm in cross-section were tested in the laboratory over an effective span of 2800 mm. Three fiber reinforced concrete beams were used as reference beams. Six fiber reinforced concrete beams were provided with externally bonded GFRP laminates. One concrete beam was left virgin without any fiber reinforcement and external GFRP laminates. All the beams were tested until failure. The variables considered included volume fraction of fiber reinforcement and stiffness of GFRP laminates. The static responses of all the beams were evaluated in terms of strength, stiffness and ductility. The test results show that the beams provided with externally bonded GFRP laminates exhibit improved performance over the beams with internal fiber reinforcement.

  12. Modelling of ultrasound tomography technique for Glass Fibre Reinforced Epoxy (GFRE) composites liquid transportation pipeline

    Science.gov (United States)

    Siow, L. T.; Rahiman, M. H. F.; Majid, M. S. Abdul; Rahim, R. A.; Zakaria, Z.; Thomas W. K., T.; Ang, Vernoon

    2017-03-01

    The purpose of this paper is to model the ultrasonic tomography on the E-glass fibre reinforced epoxy composite pipe for process monitoring and control. Finite element software and mathematical estimation were applied to model and study the ultrasound wave propagation, especially the reflection and transmission coefficient. While there is a significant result achieved between mathematical estimation and finite element analysis with maximum percentage distinctly in 2.33.

  13. Hypodontia, ankylosis and infraocclusion: report of a case restored with a fibre-reinforced ceromeric bridge.

    Science.gov (United States)

    Sidhu, H K; Ali, A

    2001-12-08

    Retained primary molars without permanent successors often undergo progressive infra-occlusion, without predictable exfoliation. Early prophylactic removal, after assessment of root resorption and adjacent periodontal support loss as well as age of onset, is often indicated. This article describes the joint orthodontic-restorative care of such a case and describes an alternative method of restoration using a fibre-reinforced ceromeric bridge. As well as a conservative preparation and good aesthetics, an overlay restoration provided a fully functional occlusion.

  14. Application of steel fibre reinforced sprayed concrete to a deep tunnel in weak rocks

    Institute of Scientific and Technical Information of China (English)

    周宏伟; 彭瑞东; 李振东; 董正亮; 陈文伟; 王健

    2002-01-01

    Based on an engineering background of a deep tunneling in weak rocks, the numerical modeling is used to compare different support schemes of tunnel at great depth in this paper. Focused on the general behaviors of weak rocks at great depth, a tunneling scheme with rock bolting and steel fibre reinforced sprayed concrete is proposed. This scheme is practiced successfully at a deep tunnel in weak rocks in Coal Mine No.10 of Hebi Coal Mining Administration.

  15. Morphology and Properties of Geopolymer Coatings on Glass Fibre-Reinforced Epoxy (GRE) pipe

    OpenAIRE

    2016-01-01

    Geopolymer coatings were coated on glass fibre-reinforced epoxy (GRE) pipe by using kaolin, white clay and silica sand as source materials and sodium hydroxide (NaOH) and sodium silicate (Na2SiO3) as alkaline solution. The microstructure and mechanical property of geopolymer coating on GRE pipe were methodically investigated through morphology analysis, and flexural strength test. The result indicates the microstructure and interfacial layer between geopolymer coating and GRE pipe significant...

  16. Pore pressure development in hybrid fibre-reinforced high strength concrete at elevated temperatures

    OpenAIRE

    Bangi, Mugume Rodgers; HORIGUCHI, Takashi

    2011-01-01

    The present experimental work investigates the build-up of pore pressure at different depths of High Strength Concrete (HSC) and Hybrid-Fibre-Reinforced High Strength Concrete (HFRHSC) when exposed to different heating rates. First, the effect of the measurement technique on maximum pore pressures measured was evaluated. The pressure measurement technique which utilized a sintered metal and silicon oil was found to be the most effective technique for pore pressure measurement. Pore pressure m...

  17. Embedded Fibre Bragg Grating Sensor Response Model: Crack Growing Detection in Fibre Reinforced Plastic Materials

    DEFF Research Database (Denmark)

    Pereira, Gilmar Ferreira; Mikkelsen, Lars Pilgaard; McGugan, Malcolm

    2015-01-01

    This article presents a novel method to simulate the sensor output response of a Fibre Bragg Grating (FBG) sensor when embedded in a host material (Composite material or adhesive), during a crack growing/damage event. A finite element model of the crack growth mechanisms was developed...... the crack or non-uniform strain, and then identify the presence of such damage in the structure. Experimental tests were conducted in order to validate this concept and support the model. The FBG sensor response model was applied in a delamination of a Wind Turbine trailing edge, to demonstrate...

  18. Electrospun cerium nitrate/polymer composite fibres:synthesis, characterization and fibre-division model

    Institute of Scientific and Technical Information of China (English)

    Li Meng-Meng; Long Yun-Ze; Yin Hong-Xing; Zhang Zhi-Ming

    2011-01-01

    Cerium (III)nitrate/poly(vinylpyrrolidone)(Ce(NO3)3/PVP)composite fibres have been prepared by electrospinning. After calcining the composite fibres in air at 500℃, CeO2 nanowires were obtained. The characterizations of the as-spun composite fibres and resultant nanowires have been carried out by a scanning electron microscope (SEM),an infrared spectrometer, an x-ray diffractometer and a fluorescence spectrophotometer. Interestingly, some unusual ribbon-like or twin fibres were observed besides the common fibres with circular or elliptic cross sections. We developed a fibre-division model resulting from Coulomb repulsion and solvent vaporization to interpret the formation of the ribbona or twin fibres, which has been confirmed by the SEM studies. Our results also indicate that the formation of the ribbons or twin fibres is less dependent on operation voltage and work distance.

  19. Tensile & impact behaviour of natural fibre-reinforced composite materials

    Energy Technology Data Exchange (ETDEWEB)

    Tobias, B.C. [Victoria Univ. of Technology, Footscray (Australia). Dept. of Mechanical Engineering

    1993-12-31

    Short abaca fiber reinforced composite materials are fabricated and investigated for short term performance. Abaca plants which grow in abundance in Asia contain fibers that are inexpensive but underutilized. This study attempts to utilize the abaca fibers for composite material structure as a possible alternative to timber products in building applications. The composite material is fabricated using the hand lay-up method under varying fiber length and fiber volume fraction. The fibers are impregnated with a mixture of resins which cures at room temperature. A fabricating facility is designed to accommodate fabrication of lamina. Tensile and impact properties are determined in relation to the length and volume fraction of the fiber. For a given fiber length, the tensile and impact strength increase as the volume fraction increases up to a limiting value. And for a given fiber volume fraction, the tensile strength increases but the impact strength decreases as the fiber length increases. This behavior of abaca fiber-reinforced composite lamina will help in optimizing the design parameter in random composite panels.

  20. es on Strength Characteristics of Pond Ash Replaced Fibre Reinforced Pavement Quality Concrete

    Directory of Open Access Journals (Sweden)

    Anand G Patil

    2015-08-01

    Full Text Available Energy consumption and generation is increasing day by day due to rapid industrialization & urbanization. A major portion of the energy is generated by Thermal Power Plants. Pond ash (PA and other by-products from these plants are disposed in large quantities. Pond ash utilization helps to reduce the consumption of natural resources. Hence there is scope for using Pond ash as Fine Aggregate (FA. Use of alternative material in concrete such as industrial by-products like Coal Ash (Fly Ash and Pond Ash is eco-friendly. This study reports the results of experimental studies carried out on the use of Pond ash as Fine Aggregate (FA in concrete with and without fibre reinforcement. The properties of Pond Ash were compared to the standard sand. The pond ash added by weight is 10%,20%,30%,40%,50% and 60% respectively as replacement of FA in concrete and 2% low tensile steel fibre was used for reinforcement. Experiments carried out indicate that Pond ash as partial replacement of sand has beneficial effect on the mechanical properties. The strength properties are determined for various percentages (10-60% of replacement of Fine Aggregate with Pond ash with and without fibre reinforcement. The test results indicate that the optimum PA replacement is 20% for both the cases.

  1. Processing of microencapsulated dyes for the visual inspection of fibre reinforced plastics

    Energy Technology Data Exchange (ETDEWEB)

    Hopmann, Ch., E-mail: kerschbaum@ikv.rwth-aachen.de; Kerschbaum, M., E-mail: kerschbaum@ikv.rwth-aachen.de; Küsters, K., E-mail: kerschbaum@ikv.rwth-aachen.de [Institute of Plastics Processing at RWTH Aachen University (IKV), Pontstrasse 49, 52064 Aachen (Germany)

    2014-05-15

    The evaluation of damages caused during processing, assembly or usage of fibre reinforced plastics is still a challenge. The use of inspection technology like ultrasonic scanning enables a detailed damage analysis but requires high investments and trained staff. Therefore, the visual inspection method is widely used. A drawback of this method is the difficult identification of barely visible damages, which can already be detrimental for the structural integrity. Therefore an approach is undertaken to integrate microencapsulated dyes into the laminates of fibre reinforced plastic parts to highlight damages on the surface. In case of a damage, the microcapsules rupture which leads to a release of the dye and a visible bruise on the part surface. To enable a wide application spectrum for this technology the microcapsules must be processable without rupturing with established manufacturing processes for fibre reinforced plastics. Therefore the incorporation of microcapsules in the filament winding, prepreg autoclave and resin transfer moulding (RTM) process is investigated. The results show that the use of a carrier medium is a feasible way to incorporate the microcapsules into the laminate for all investigated manufacturing processes. Impact testing of these laminates shows a bruise formation on the specimen surface which correlates with the impact energy level. This indicates a microcapsule survival during processing and shows the potential of this technology for damage detection and characterization.

  2. Processing of microencapsulated dyes for the visual inspection of fibre reinforced plastics

    Science.gov (United States)

    Hopmann, Ch.; Kerschbaum, M.; Küsters, K.

    2014-05-01

    The evaluation of damages caused during processing, assembly or usage of fibre reinforced plastics is still a challenge. The use of inspection technology like ultrasonic scanning enables a detailed damage analysis but requires high investments and trained staff. Therefore, the visual inspection method is widely used. A drawback of this method is the difficult identification of barely visible damages, which can already be detrimental for the structural integrity. Therefore an approach is undertaken to integrate microencapsulated dyes into the laminates of fibre reinforced plastic parts to highlight damages on the surface. In case of a damage, the microcapsules rupture which leads to a release of the dye and a visible bruise on the part surface. To enable a wide application spectrum for this technology the microcapsules must be processable without rupturing with established manufacturing processes for fibre reinforced plastics. Therefore the incorporation of microcapsules in the filament winding, prepreg autoclave and resin transfer moulding (RTM) process is investigated. The results show that the use of a carrier medium is a feasible way to incorporate the microcapsules into the laminate for all investigated manufacturing processes. Impact testing of these laminates shows a bruise formation on the specimen surface which correlates with the impact energy level. This indicates a microcapsule survival during processing and shows the potential of this technology for damage detection and characterization.

  3. Evaluating the mechanical properties of E-Glass fiber/carbon fiber reinforced interpenetrating polymer networks

    Directory of Open Access Journals (Sweden)

    G. Suresh

    2015-02-01

    Full Text Available A series of vinyl ester and polyurethane interpenetrating polymer networks were prepared by changing the component ratios of VER (Vinyl ester and PU (Polyurethane and the polymerization process was confirmed with Fourier Transform infrared spectroscopy. IPN (Inter Penetrating Polymer Network - VER/PU reinforced Glass and carbon fiber composite laminates were made using the Hand lay up technique. The Mechanical properties of the E-glass and carbon fiber specimens were compared from tests including Tensile, Compressive, Flexural, ILSS (Inter Laminar Shear Strength, Impact & Head Deflection Test (HDT. The IPN Reinforced Carbon fiber specimen showed better results in all the tests than E-Glass fibre reinforced IPN laminate with same thickness of the specimen, according to ASTM standards. It was found that the combination of 60%VER and 40%PU IPN exhibits better impact strength and maximum elongation at break, but at the slight expense of mechanical properties such as tensile, compressive, flexural, ILSS properties. The morphology of the unreinforced and reinforced composites was analyzed with help of scanning electron microscopy.

  4. Polymer Composites Reinforced by Nanotubes as Scaffolds for Tissue Engineering

    Directory of Open Access Journals (Sweden)

    Wei Wang

    2014-01-01

    Full Text Available The interest in polymer based composites for tissue engineering applications has been increasing in recent years. Nanotubes materials, including carbon nanotubes (CNTs and noncarbonic nanotubes, with unique electrical, mechanical, and surface properties, such as high aspect ratio, have long been recognized as effective reinforced materials for enhancing the mechanical properties of polymer matrix. This review paper is an attempt to present a coherent yet concise review on the mechanical and biocompatibility properties of CNTs and noncarbonic nanotubes/polymer composites, such as Boron nitride nanotubes (BNNTs and Tungsten disulfide nanotubes (WSNTs reinforced polymer composites which are used as scaffolds for tissue engineering. We also introduced different preparation methods of CNTs/polymer composites, such as in situ polymerization, solution mixing, melt blending, and latex technology, each of them has its own advantages.

  5. Experimental analysis of reinforced concrete beams strengthened in bending with carbon fiber reinforced polymer

    Directory of Open Access Journals (Sweden)

    M. M. VIEIRA

    Full Text Available The use of carbon fiber reinforced polymer (CFRP has been widely used for the reinforcement of concrete structures due to its practicality and versatility in application, low weight, high tensile strength and corrosion resistance. Some construction companies use CFRP in flexural strengthening of reinforced concrete beams, but without anchor systems. Therefore, the aim of this study is analyze, through an experimental program, the structural behavior of reinforced concrete beams flexural strengthened by CFRP without anchor fibers, varying steel reinforcement and the amount of carbon fibers reinforcement layers. Thus, two groups of reinforced concrete beams were produced with the same geometric feature but with different steel reinforcement. Each group had five beams: one that is not reinforced with CFRP (reference and other reinforced with two, three, four and five layers of carbon fibers. Beams were designed using a computational routine developed in MAPLE software and subsequently tested in 4-point points flexural test up to collapse. Experimental tests have confirmed the effectiveness of the reinforcement, ratifying that beams collapse at higher loads and lower deformation as the amount of fibers in the reinforcing layers increased. However, the increase in the number of layers did not provide a significant increase in the performance of strengthened beams, indicating that it was not possible to take full advantage of strengthening applied due to the occurrence of premature failure mode in the strengthened beams for pullout of the cover that could have been avoided through the use of a suitable anchoring system for CFRP.

  6. Periodic refractive index modifications inscribed in polymer optical fibre by focussed IR femtosecond pulses

    DEFF Research Database (Denmark)

    Stecher, Matthias; Williams, Robert J.; Bang, Ole

    Focussed femtosecond laser pulses were used to inscribe a periodic array of modifications in the core of a polymer optical fibre. Structural and refractive-index modifications have been observed at different pulse energies using DIC microscopy.......Focussed femtosecond laser pulses were used to inscribe a periodic array of modifications in the core of a polymer optical fibre. Structural and refractive-index modifications have been observed at different pulse energies using DIC microscopy....

  7. Impact fatigue behaviour of carbon fibre-reinforced vinylester resin composites

    Indian Academy of Sciences (India)

    Rita Roy; B K Sarkar; A K Rana; N R Bose

    2001-02-01

    Two types of unidirectional carbon fibre, one of high strength (DHMS) and another of medium strength (VLMS) reinforced vinylester resin composites have been examined for their impact fatigue behaviour over 104 impact cycles for the first time. The study was conducted using a pendulum type repeated impact apparatus specially designed and constructed for the purpose. A well-defined impact fatigue behaviour (S–N type curve) curve has been demonstrated. It showed a plateau region of 10–102 cycles immediately below the single cycle impact strength, followed by progressive endurance with decreasing impact loads, culminating in an endurance limit at about 71% and 85% of the single impact strength for DHMS-48 and VLMS-48, respectively. Analysis of the fractured surfaces revealed primary debonding, fibre breakage and pull-out at the tensile zone of the samples and a shear mode of fracture with breakage of fibre bundles at the compressive zone of the samples. The occurrence of a few major macrocracks in the matrix with fibre breakage at the high load–low endurance region and development of multiple microcracks in the matrix, coalescing and fibre breakage at the low-load–high endurance region have been inferred to explain the fatigue behaviour of the composites examined.

  8. Mechanical properties of sisal fibre reinforced urea-formaldehyde resin composites

    Directory of Open Access Journals (Sweden)

    2007-10-01

    Full Text Available Alkali-treated sisal fibres were used as novel reinforcement to obtain composites with self-synthesized ureaformaldehyde resin as matrix phase. The composites were prepared by means of compression molding, and then the effects of sisal loading on mechanical properties such as impact strength, flexural strength, and wear resistance were investigated. In addition, water uptake was studied and structural features were revealed by the scanning electron microscopy (SEM. The composite with 30 wt% sisal fibres gives excellent flexural strength, water absorption, and especially the wear resistance showing that it has the most superior bonding and adhesion of all the composites. In particular, the highest value 9.42 kJ/m2 of charpy impact strength is observed in the composite with 50 wt% sisal fibre. SEM micrographs of impact fractured and worn surfaces clearly demonstrate the interfacial adhesion between fibre and matrix. This work shows the potential of sisal fibre (SF to improve the composite wear resistance and to be used in fibreboard.

  9. A Study on the Mechanical Properties of Oil Palm Mesocarp Fibre-Reinforced Thermoplastic

    Directory of Open Access Journals (Sweden)

    Olusola Femi Olusunmade

    2016-01-01

    Full Text Available Oil palm mesocarp fibre obtained from a palm oil processing mill was washed with detergent and water to remove the oil and sun-dried to enhance good adhesion to Linear Low Density Polyethylene (LLDPE. The fibre was pulverized and filtered through a sieve of pore size 300 microns. The Oil Palm Mesocarp Fibre Reinforced Thermoplastic (OPMFRT was produced with a form of hand lay-up method and varying fibres weight ratio in the matrix from 5 wt% to 25 wt% in steps of 5 wt%. Tensile test was carried out to determine the tensile strength, tensile modulus, and elongation at break of the material. The hardness and impact strength of the composite were also determined. The results showed that tensile modulus and hardness of the OPMFRT increased by 50% and 24.56%, respectively, while tensile strength, impact strength, and percentage elongation of the OPMFRT decreased by 36.78%, 39.07%, and 95.98%, respectively, as fibre loading increased from 5 wt% to 25 wt%. The study concluded that the application of the OPMFRT developed should be restricted to areas demanding high rigidity and wear resistance.

  10. Recovery of carbon fibres and production of high quality fuel gas from the chemical recycling of carbon fibre reinforced plastic wastes

    OpenAIRE

    Yildirir, E; Onwudili, JA; Williams, PT

    2014-01-01

    A solvolysis process to depolymerize the resin fraction of carbon fibre reinforced plastic waste to recover carbon fibre, followed by hydrothermal gasification of the liquid residual product to produce fuel gas was investigated using batch reactors. The depolymerisation reactions were carried out in ethylene glycol and ethylene glycol/water mixtures at near-critical conditions of the two solvents. With ethylene glycol alone the highest resin removal of 92.1% was achieved at 400 °C. The additi...

  11. Injection moulding of long glass fibre reinforced poly(ethylene terephtalate: Influence of carbon black and nucleating agents on impact properties

    Directory of Open Access Journals (Sweden)

    E. Lafranche

    2012-09-01

    Full Text Available This paper aims at highlighting the influence of different additives (carbon black and nucleating agents on both the notched and unnotched Charpy impact properties of long glass fibre reinforced poly(ethylene terephtalate injection mouldings. The relationship with the polymer matrix and composite microstructure modifications (variations of crystalline morphology and local fibre content was investigated. Adding carbon black alone decreases the impact performances. This highly conductive additive actually increases the cooling rate, and therefore the fibre ‘frettage’ effect (higher internal stresses. It also acts as filler, which increases the material brittleness. The nucleating agents allow reducing the mould temperature, but their effect on the impact strength may be favourable or not depending on the processing temperatures. The addition of such additives induces perturbations of the polymer melt rheology in the mould cavity and of the cooling kinetics of the part, which both act on the fibre distribution during mould filling and on the degree of crystallinity of the composite parts.

  12. Properties of Fiber Reinforced Polymer Concrete

    Directory of Open Access Journals (Sweden)

    Marinela Bărbuţă

    2008-01-01

    Full Text Available Polymer concrete is a composite material realized with resin and aggregates. In the present study the epoxy resin was used for binding the aggregates. In the composition were introduced near the fly ash, used as filler, the cellulose fibers. The mechanical characteristics such as compressive strength, flexural strength and split tensile strength of polymer concrete with fibers were investigated. The fiber percentage was constant, the epoxy resin and the filler dosages were varied. The cellulose fiber had not improved the mechanical characteristics of the polymer concrete in comparison to that of polymer concrete without cellulose fibers.

  13. Investigation of the in-solution relaxation of polymer optical fibre Bragg gratings

    DEFF Research Database (Denmark)

    Fasano, Andrea; Woyessa, Getinet; Janting, Jakob

    2016-01-01

    We investigate the response of PMMA microstructured polymer optical fibre Bragg gratings whenimmersed in methanol/water solutions. Overall we observe a permanent blue-shift in Bragg gratingwavelength after solvent evaporation. The main contribution in the resonance wavelength shift probably...... arisesfrom a permanent change in the size of the fibre, as already reported for high-temperature annealing ofpolymer optical fibres. As a consequence of the solution concentration dependence of the glass transitiontemperature of polymers, different methanol/water solutions lead to various degrees of frozen...

  14. FATIGUE PROPERTIES OF SPRING REINFORCES POLYMER GEARS

    Directory of Open Access Journals (Sweden)

    Hilal CAN

    2005-03-01

    Full Text Available Failure of gears, occur surface pressure stress and fracture at base of teeth. For steel gears, it is known that process of carburizing increases fatigue strength. Internal stress on the surface increases of fracture fatigue strength. In this study fatigue properties of polypropylene gear reinforced with 1.2 mm wire diameter metallic springs was investigated. Extension springs were used as reinforcement element and placed into the mould and stretched before injection of polypropylene material into the mould. After injection of polypropylene, stretched springs were loosened in order to obtain pre-stressing. Fatigue tests were performed on the produced gear. Reinforcement increased the strength of gears. At result of experiments, pre-stressing increase in service life 12 times more than that of specimens without reinforcement.

  15. Shape memory performance of asymmetrically reinforced epoxy/carbon fibre fabric composites in flexure

    Directory of Open Access Journals (Sweden)

    M. Fejos

    2013-06-01

    Full Text Available In this study asymmetrically reinforced epoxy (EP/carbon fibre (CF fabric composites were prepared and their shape memory properties were quantified in both unconstrained and fully constrained flexural tests performed in a dynamic mechanical analyser (DMA. Asymmetric layering was achieved by incorporating two and four CF fabric layers whereby setting a resin- and reinforcement-rich layer ratio of 1/4 and 1/2, respectively. The recovery stress was markedly increased with increasing CF content. The related stress was always higher when the CF-rich layer experienced tension load locally. Specimens with CF-rich layers on the tension side yielded better shape fixity ratio, than those with reinforcement layering on the compression side. Cyclic unconstrained shape memory tests were also run up to five cycles on specimens having the CF-rich layer under local tension. This resulted in marginal changes in the shape fixity and recovery ratios.

  16. Prestressing effect of cold-drawn short NiTi SMA fibres in steel reinforced mortar beams

    Science.gov (United States)

    Choi, Eunsoo; Kim, Dong Joo; Hwang, Jin-Ha; Kim, Woo Jin

    2016-08-01

    This study investigated the prestressing effect of cold-drawn short NiTi shape memory alloy (SMA) fibres in steel reinforced mortar beams. The SMA fibres were mixed with 1.5% volume content in a mortar matrix with the compressive strength of 50 MPa. The SMA fibres had an average length of 34 mm, and they were manufactured with a dog-bone shape: the diameters of the end- and middle-parts were 1.024 and 1.0 mm, respectively. Twenty mortar beams with the dimensions of 40 mm × 40 mm × 160 mm (B × H × L) were prepared. Two types of tests were conducted. One was to investigate the prestressing effect of the SMA fibres, and the beams with the SMA fibres were heated at the bottom. The other was to assess the bending behaviour of the beams prestressed by the SMA fibres. The SMA fibres induced upward deflection and cracking at the top surface by heating at the bottom; thus, they achieved an obvious prestressing effect. The beams that were prestressed by the SMA fibres did not show a significant difference in bending behaviour from that of the SMA fibre reinforced beams that were not subjected to heating. Stress analysis of the beams indicated that the prestressing effect decreased in relation to the cooling temperature.

  17. Tannin-based flax fibre reinforced composites for structural applications in vehicles

    Science.gov (United States)

    Zhu, J.; Abhyankar, H.; Nassiopoulos, E.; Njuguna, J.

    2012-09-01

    Innovation is often driven by changes in government policies regulating the industries, especially true in case of the automotive. Except weight savings, the strict EU regulation of 95% recyclable material-made vehicles drives the manufactures and scientists to seek new 'green materials' for structural applications. With handing at two major drawbacks (production cost and safety), ECHOSHELL is supported by EU to develop and optimise structural solutions for superlight electric vehicles by using bio-composites made of high-performance natural fibres and resins, providing enhanced strength and bio-degradability characteristics. Flax reinforced tannin-based composite is selected as one of the candidates and were firstly investigated with different fabric lay-up angles (non-woven flax mat, UD, [0, 90°]4 and [0, +45°, 90°, -45°]2) through authors' work. Some of the obtained results, such as tensile properties and SEM micrographs were shown in this conference paper. The UD flax reinforced composite exhibits the best tensile performance, with tensile strength and modulus of 150 MPa and 9.6 MPa, respectively. It was observed that during tension the oriented-fabric composites showed some delamination process, which are expected to be eliminated through surface treatment (alkali treatment etc.) and nanotechnology, such as the use of nano-fibrils. Failure mechanism of the tested samples were identified through SEM results, indicating that the combination of fibre pull-out, fibre breakage and brittle resins failure mainly contribute to the fracture failure of composites.

  18. Reinforcement and degradation mechanisms in polymer/inorganic nanocomposites

    Science.gov (United States)

    Bogdanova, Irina Rifkatovna

    This project accomplished the following goals: preparation of polymer/alumina nanocomposites using a single-screw extrusion approach, a systematic investigation of interfacial interactions, the mechanisms for reinforcement, and the thermal degradation and flame retardant mechanisms in polymer nanocomposites. In this work it was found that the stereochemistry of polymer macromolecules and the shapes of nanoparticles are extremely important in determining the interfacial interactions between them. Understanding of the nature of these interactions can result in a comprehensive understanding of reinforcement mechanisms in polymer nanocomposites. It was found that aromatic polymers such as polycarbonate and polystyrene have stronger interfacial interactions with needle or whisker-shaped nanoparticles than with spherical-shaped nanoparticles, while linear aliphatic polymers such as polymethylmethacrylate showed strong interactions with spherical nanoparticles. Other factors affecting the strength of interfacial interactions such as size, surface modification and concentration of nanoparticles were also studied. The thermal stability of polymer nanocomposites was studied to unravel the thermal degradation mechanisms. It was found that the chemical nature of nanoparticles plays a significant role in the thermal decomposition of polymer nanocomposites. For instance, SEM studies of polymer nanocomposites chars revealed that alumina nanoparticles moved to the surface of nanocomposites, while silica nanoparticles stayed in the body of the material, which enhances char formation. The mechanisms for the flammability in polymer/alumina nanocomposites were found to depend on the viscosity of the melt flow of nanocomposites. FT-IR, MS, and surface free energy characterization for modified alumina surfaces were done. The compatibility of polymer molecules and nanoparticles was studied on the basis of surface free energy. It was shown that modification of the alumina surface with

  19. Entanglement network in nanoparticle reinforced polymers.

    Science.gov (United States)

    Riggleman, Robert A; Toepperwein, Gregory; Papakonstantopoulos, George J; Barrat, Jean-Louis; de Pablo, Juan J

    2009-06-28

    Polymer nanocomposites have been widely studied in efforts to engineer materials with mechanical properties superior to those of the pure polymer, but the molecular origins of the sought-after improved properties have remained elusive. An ideal polymer nanocomposite model has been conceived in which the nanoparticles are dispersed throughout the polymeric matrix. A detailed examination of topological constraints (or entanglements) in a nanocomposite glass provides new insights into the molecular origin of the improved properties in polymer nanocomposites by revealing that the nanoparticles impart significant enhancements to the entanglement network. Nanoparticles are found to serve as entanglement attractors, particularly at large deformations, altering the topological constraint network that arises in the composite material.

  20. Durability of cracked fibre reinforced concrete exposed to freeze-thaw and deicing salt

    DEFF Research Database (Denmark)

    Hansen, Ernst Jan De Place

    1998-01-01

    -thaw and deicing salt. The concrete has a water-powder ratio of 0.38 including both fly ash and silica fume. Both steel fibres (ZP, 0.4 vol%) and polypropylene fibres (PP, 1 vol%) are used as well as main reinforcement. The freeze-thaw test emphasizes the need for a critical evaluation of the mix design and mixing......Durability studies are carried out by subjecting FRC-beams to combined mechanical and environmental load. Mechanical load is obtained by subjecting beams to 4-point bending until a predefined crack width is reached. Specimens sawn from the beams after unloading are exposed to freeze...... methods when designing FRC-structures. The scaling is increased by a factor 5 to 10 when adding fibres to the concrete while the air content is below 4% by volume. The variation of the scaling increases when adding fibres. Capillary water uptake in uncracked specimens of FRC was 20-30% higher at 1°C than...

  1. Comparative Investigation of Tungsten Fibre Nets Reinforced Tungsten Composite Fabricated by Three Different Methods

    Directory of Open Access Journals (Sweden)

    Linhui Zhang

    2017-07-01

    Full Text Available Tungsten fibre nets reinforced tungsten composites (Wf/W containing four net layers were fabricated by spark plasma sintering (SPS, hot pressing (HP and cold rolling after HP (HPCR, with the weight fraction of fibres being 17.4%, 10.5% and 10.5%, respectively. The relative density of the HPCRed samples is the highest (99.8% while that of the HPed composites is the lowest (95.1%. Optical and scanning electron microscopy and electron back scattering diffraction were exploited to characterize the microstructure, while tensile and hardness tests were used to evaluate the mechanical properties of the samples. It was found that partial recrystallization of fibres occurred after the sintering at 1800 °C. The SPSed and HPed Wf/W composites begin to exhibit plastic deformation at 600 °C with tensile strength (TS of 536 and 425 MPa and total elongation at break (TE of 11.6% and 23.0%, respectively, while the HPCRed Wf/W composites exhibit plastic deformation at around 400 °C. The TS and TE of the HPCRed Wf/W composites at 400 °C are 784 MPa and 8.4%, respectively. The enhanced mechanical performance of the Wf/W composites over the pure tungsten can be attributed to the necking, cracking, and debonding of the tungsten fibres.

  2. In-plane mechanics of soft architectured fibre-reinforced silicone rubber membranes.

    Science.gov (United States)

    Bailly, L; Toungara, M; Orgéas, L; Bertrand, E; Deplano, V; Geindreau, C

    2014-12-01

    Silicone rubber membranes reinforced with architectured fibre networks were processed with a dedicated apparatus, allowing a control of the fibre content and orientation. The membranes were subjected to tensile loadings combined with continuous and discrete kinematical field measurements (DIC and particle tracking). These tests show that the mechanical behaviour of the membranes is hyperelastic at the first order. They highlight the influence of the fibre content and orientation on both the membrane in-plane deformation and stress levels. They also prove that for the considered fibrous architectures and mechanical loadings, the motion and deformation of fibres is an affine function of the macroscale transformation. These trends are fairly well described by the micromechanical model proposed recently in Bailly et al. (JMBBM, 2012). This result proves that these materials are very good candidates for new biomimetic membranes, e.g. to improve aortic analogues used for in vitro experiments, or existing textiles used for vascular (endo)prostheses. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Bio-based and recycled polymers for cleaner production : an assessment of plastics and fibres

    NARCIS (Netherlands)

    Shen, L.|info:eu-repo/dai/nl/310872022

    2011-01-01

    Today, almost all man-made plastics and fibres are produced from synthetic polymers. Synthetic polymers, made from petroleum which took millions of years to form, have three sustainability challenges: (i) the limited fossil fuel resources, (ii) the environmental impacts caused by non-degradable

  4. Bio-based and recycled polymers for cleaner production : an assessment of plastics and fibres

    NARCIS (Netherlands)

    Shen, L.

    2011-01-01

    Today, almost all man-made plastics and fibres are produced from synthetic polymers. Synthetic polymers, made from petroleum which took millions of years to form, have three sustainability challenges: (i) the limited fossil fuel resources, (ii) the environmental impacts caused by non-degradable plas

  5. Microwave absorbing properties of activated carbon fibre polymer composites

    Indian Academy of Sciences (India)

    Tianchun Zou; Naiqin Zhao; Chunsheng Shi; Jiajun Li

    2011-02-01

    Microwave absorption of composites containing activated carbon fibres (ACFs) was investigated. The results show that the absorptivity greatly depends on increasing ACF content in the absorbing layer, first increasing and then decreasing. When the content is 0.76 wt.%, the bandwidth below −10dB is 12.2 GHz. Comparing the absorption characteristics of the ACF composite with one containing unactivated fibres, it is found that carbon fibre activation increases the absorption of the composite.

  6. Mechanical response of a fibre reinforced earthen material under static and impact loadings

    Science.gov (United States)

    Aymerich, Francesco; Fenu, Luigi; Francesconi, Luca; Meloni, Paola

    2015-09-01

    This study examines the improvements provided by the insertion of hemp fibres with different weight fractions and lengths in an earthen material. The structural response of the materials was investigated by means of static and impact bending tests carried out on notched samples. The main focus of the analyses was in the characterization of the structural properties of the materials in terms of fracture resistance, post-cracking performance and energy absorption capability. The results of the study show that hemp fibres improve significantly the mechanical and fracture properties of the earthen material under both static and dynamic bending. It was also found that the structural properties of unreinforced and reinforced earthen materials are highly sensitive to the stress-rate, with higher strength and fracture resistance under impact loading than under static loading.

  7. Assessment of the exit defects in carbon fibre-reinforced plastic plates caused by drilling

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Houjiang; Zhang Liangchi [Sydney Univ. (Australia). Dept. of Mechanical and Mechatronic Engineering; Chen Wuyi; Chen Dingchang [Beijing Univ. of Aeronautics and Astronautics, BJ (China). Dept. of Manufacturing Engineering

    2001-07-01

    This paper investigates the formation of the exit defects in carbon fibre-reinforced plates and characterizes their features in terms of drilling conditions. It was found that spalling and fuzzing are the major mechanisms of exit defects. The spalling, consisting of a main region and a secondary region, is caused by chisel and cutting edge actions, in which the former plays a key role. The fuzzing, however, exists in the cutting region where the included angle between the fibre direction of the surface layer and that of the cutting speed is acute. A severer spalling damage corresponds to a high spindle speed, a large feed rate and a great thrust force. Some empirical relationships, including a dimensionless formula, were developed for assessing the characteristic dimension of the spalling damage based on the known drilling conditions. (orig.)

  8. Stiffness Characteristics of Fibre-reinforced Composite Shaft Embedded with Shape Memory Alloy Wires

    Directory of Open Access Journals (Sweden)

    K. Gupta

    2003-04-01

    Full Text Available Frequent coast up/coast down operations of rotating shafts in the power and aerospace industry expose the flexible rotors to the risk of fatigue failures. Resonant vibrations during passage through critical speeds induce large stresses that may lead to failures. In this paper, the use of nitinol [shape memory alloy (SMA] wires in the fibre-reinforced composite shaft, for the purpose ofmodifying shaft stiffness properties to avoid such failures, is discussed. A setup has been developed to fabricate the composite shaft (made of fibre glass and epoxy resin embedded with pre-stressed SMA wires. Experiments have been carried out on the shaft to estimate the changes in the natural frequency of the composite shaft due to activation and deactivation ofSMA wires. The comparisonofthe experimental results with the established analytical results indicates feasibility ofvibration control using the special properties of SMA wires.

  9. Optimization of woven jute/glass fibre-reinforced polyester hybrid composite solar parabolic trough collector

    Science.gov (United States)

    Reddy, K. S.; Singla, Hitesh

    2017-07-01

    In the present work, structural analysis of 5.77m × 4m woven jute (J)/glass (G) fibre-reinforced polyester hybrid composite solar parabolic trough is carried out based on trough parameters to obtain the minimum RMS local slope deviation, termed as SDx value under gravity loading. The optimization is done by varying parameters viz. direction and size of reinforced conduits, stacking number and sequence of hybrid trough laminate at fibre orientation of Δθ=45° and Δθ=60° amongst the layers at 0° collector angle. The analysis revealed that the configuration in which the conduits are placed in both X and Y directions is preferred over other configurations to scale down the effect of wind loads. Furthermore it has been observed that laminate of the order [0°G/45°G/-45°J/90°J]s undergoes minimum surface deformation amongst all the other configurations at conduit reinforcement in both X and Y directions for a conduit thickness of 0.75 mm and radius of 10 mm and obtains the overall SDx value of 1.3492 mrad. The results shows that proposed trough model is very promising and evolves a cost effective system.

  10. Influence of Fabric Parameters on Microstructure, Mechanical Properties and Failure Mechanisms in Carbon-Fibre Reinforced Composites

    Institute of Scientific and Technical Information of China (English)

    B.Wielage; D.Richter; H.Mucha; Th.Lampke

    2008-01-01

    The effects of fibre/matrix bonding,fabric density,fibre volume fraction and bundle size on microstructure,mechanical properties and failure mechanisms in carbon fibre reinforced composites (plastic and carbon matrix) have been investigated.The microstructure of unloaded and cracked samples was studied by optical microscopy and scanning electron microscopy (SEM),respectively whereas the mechanical behaviour was examined by 3-point bending experiments.Exclusively one type of experimental resole type phenolic resin was applied.A strong fibre/matrix bonding,which is needed for high strength of carbon fibre reinforced plastic (CFRP) materials leads to severe composite damages during the pyrolysis resulting in low strength,brittle failure and a very low utilisation of the fibres strain to failure in C/C composites.Inherent fabric parameters such as an increasing fabric density or bundle size or a reduced fibre volume fraction introduce inhomogenities to the CFRP's microstructure.Results are lower strength and stiffness whereas the strain to failure increases or remains unchanged.Toughness is almost not affected.In C/C composites inhomogenities due to a reduced bundle size reduce strain to failure,strength,stiffness and toughness.Vice versa a declining fibre volume fraction leads to exactly the opposite behaviour.Increasing the fabric density (weight per unit area) causes similar effects as in CFRPs.

  11. optimisation of thickness of fibre reinforced polymer sheets for ...

    African Journals Online (AJOL)

    user

    2017-01-01

    Jan 1, 2017 ... Optimum design charts for the considered problem were presented. The results showed that .... accurate method for solving non-linear programming problems. ... and non-basic variable and the concept of implicit variable ...

  12. Finite strain formulation of viscoelastic damage model for simulation of fabric reinforced polymers under dynamic loading

    Directory of Open Access Journals (Sweden)

    Treutenaere S.

    2015-01-01

    Full Text Available The use of fabric reinforced polymers in the automotive industry is growing significantly. The high specific stiffness and strength, the ease of shaping as well as the great impact performance of these materials widely encourage their diffusion. The present model increases the predictability of explicit finite element analysis and push the boundaries of the ongoing phenomenological model. Carbon fibre composites made up various preforms were tested by applying different mechanical load up to dynamic loading. This experimental campaign highlighted the physical mechanisms affecting the initial mechanical properties, namely intra- and interlaminar matrix damage, viscoelasticty and fibre failure. The intralaminar behaviour model is based on the explicit formulation of the matrix damage model developed by the ONERA as the given damage formulation correlates with the experimental observation. Coupling with a Maxwell-Wiechert model, the viscoelasticity is included without losing the direct explicit formulation. Additionally, the model is formulated under a total Lagrangian scheme in order to maintain consistency for finite strain. Thus, the material frame-indifference as well as anisotropy are ensured. This allows reorientation of fibres to be taken into account particularly for in-plane shear loading. Moreover, fall within the framework of the total Lagrangian scheme greatly makes the parameter identification easier, as based on the initial configuration. This intralaminar model thus relies upon a physical description of the behaviour of fabric composites and the numerical simulations show a good correlation with the experimental results.

  13. Bio-based and recycled polymers for cleaner production : an assessment of plastics and fibres

    OpenAIRE

    L. Shen

    2011-01-01

    Today, almost all man-made plastics and fibres are produced from synthetic polymers. Synthetic polymers, made from petroleum which took millions of years to form, have three sustainability challenges: (i) the limited fossil fuel resources, (ii) the environmental impacts caused by non-degradable plastics waste, and (iii) greenhouse gas emissions caused by combusting fossil fuels. To tackle these sustainability challenges, two strategies have been proposed. First, use bio-based polymers to repl...

  14. Bio-based and recycled polymers for cleaner production : an assessment of plastics and fibres

    OpenAIRE

    Shen, L.

    2011-01-01

    Today, almost all man-made plastics and fibres are produced from synthetic polymers. Synthetic polymers, made from petroleum which took millions of years to form, have three sustainability challenges: (i) the limited fossil fuel resources, (ii) the environmental impacts caused by non-degradable plastics waste, and (iii) greenhouse gas emissions caused by combusting fossil fuels. To tackle these sustainability challenges, two strategies have been proposed. First, use bio-based polymers to repl...

  15. Morphology and Properties of Geopolymer Coatings on Glass Fibre-Reinforced Epoxy (GRE pipe

    Directory of Open Access Journals (Sweden)

    Shahedan Noor Fifinatasha

    2016-01-01

    Full Text Available Geopolymer coatings were coated on glass fibre-reinforced epoxy (GRE pipe by using kaolin, white clay and silica sand as source materials and sodium hydroxide (NaOH and sodium silicate (Na2SiO3 as alkaline solution. The microstructure and mechanical property of geopolymer coating on GRE pipe were methodically investigated through morphology analysis, and flexural strength test. The result indicates the microstructure and interfacial layer between geopolymer coating and GRE pipe significantly influence the mechanical property of geopolymer coating. However, different source materials gave different microstructure and property in geopolymer coating.

  16. 50-Hz plasma treatment of glass fibre reinforced polyester at atmospheric pressure enhanced by ultrasonic irradiation

    DEFF Research Database (Denmark)

    Kusano, Yukihiro; Norrman, Kion; Singh, Shailendra Vikram

    2011-01-01

    Glass fibre reinforced polyester (GFRP) plates are treated using a 50-Hz dielectric barrier discharge at peak-to-peak voltage of 30 kV in helium at atmospheric pressure with and without ultrasonic irradiation to study adhesion improvement. The ultrasonic waves at the fundamental frequency of around...... approximately from 20 mJ m-2 up to 80 mJ m-2 with ultrasonic irradiation. The plasma treatment with ultrasonic irradiation also introduced oxygen and nitrogen containing functional groups at the GFRP surface. These changes would improve the adhesion properties of the GFRP plates....

  17. 50-Hz plasma treatment of glass fibre reinforced polyester at atmospheric pressure enhanced by ultrasonic irradiation

    OpenAIRE

    Kusano, Yukihiro; Norrman, Kion; Singh, Shailendra Vikram; Leipold, Frank; Morgen, P.; Bardenshtein, A.; Krebs, N.

    2011-01-01

    Glass fibre reinforced polyester (GFRP) plates are treated using a 50-Hz dielectric barrier discharge at peak-to-peak voltage of 30 kV in helium at atmospheric pressure with and without ultrasonicirradiation to study adhesion improvement. The ultrasonic waves at the fundamental frequency of around 30 kHz with the sound pressure level of approximately 155 dB were introduced vertically to the GFRP surface through a cylindrical waveguide. The polar component of the surface energy was almost unch...

  18. Adhesion improvement of glass-fibre-reinforced polyester composites by gliding arc discharge treatment

    DEFF Research Database (Denmark)

    Kusano, Yukihiro; Sørensen, Bent F.; Løgstrup Andersen, Tom

    2013-01-01

    A gliding arc is a plasma that can be operated at atmospheric pressure and applied for plasma surface treatment for adhesion improvement. In the present work, glass-fibre-reinforced polyester plates were treated using an atmospheric pressure gliding arc discharge with an air flow to improve...... adhesion with a vinylester adhesive. The treatment improved wettability and increased the polar component of the surface energy and the density of oxygen-containing polar functional groups at the surfaces. Double cantilever beam specimens were prepared for fracture mechanics characterisation (fracture...

  19. Application of WST-method fore fracture testing of fibre-reinforced concrete

    DEFF Research Database (Denmark)

    Löfgren, Ingemar; Olesen, John Forbes; Flansbjer, Mathias

    ). The test results from each lab were analysed and a study of the variation was performed. From the study of the intra-lab variations, it is evident that the variations of the steel fibre-reinforced concrete properties are significant. The coefficient of variance for the splitting load was found to vary...... between 20 to 40%. The investigation of the inter-lab variation, based on an analysis of variance (ANOVA) indicated that there is no inter-lab variation. The test result can be said to be independent of the testing location and the equipment used (with or without CMOD-control). The conclusions that can...

  20. An engineering analysis of penetration of metal ball into fibre-reinforced composite targets

    Institute of Scientific and Technical Information of China (English)

    Yong-chi LI; Zhi-hai WANG; Xiao-jun WANG; Xiu-zhang HU

    2009-01-01

    An engineering analysis of computing the penetration problem of a steel ball penetrating into fibre-reinforced composite targets is presented. Assume the metal ball is a rigid body, and the composite target is a transversely isotropic elasto-plastic material. In the analysis, a spherical cavity dilatation model is incorporated in the cylindrical cavity penetration method. Simulation results based on the modified model are in good agreement with the results for 3-D Kevlar woven (3DKW) composite anti-penetration experiments. Effects of the target material parameters and impact parameters on the penetration problem are also studied.

  1. Application of WST-method fore fracture testing of fibre-reinforced concrete

    DEFF Research Database (Denmark)

    Löfgren, Ingemar; Olesen, John Forbes; Flansbjer, Mathias

    be drawn from this study are that: § the wedge-splitting test method is a suitable test method for assessment of fracture properties of steel fibre-reinforced concrete; § the test method is easy to handle and relatively fast to execute § the test can be run with CMOD-control or without, in a machine......To evaluate the reproducibility of the wedge-splitting test method and to provide guidelines, a round robin study was conducted in which three labs participated. The participating labs were: § DTU – the Technical University of Denmark, Department of Civil Engineering; § CTH – Chalmers University...

  2. Shape recovery in a thermoset shape memory polymer and its fabric-reinforced composites

    Directory of Open Access Journals (Sweden)

    2011-03-01

    Full Text Available A shape memory polymer (SMP can be deformed from a permanent to a temporary shape above their transformation temperature. Upon reheating, the SMP spontaneously returns to the permanent shape. SMP’s show high deformability, but the recovery stresses are very low, thus limiting the size of the components. This paper presents the first results of an ongoing research to develop large sized components based on SMP. To achieve higher recovery stresses, asymmetric fibre reinforced shape memory composites were produced (SMPC using resin transfer moulding. The results show a 30-fold increase in recovery stress, compared to the neat SMP resin. The recovery stress is independent of the deformation temperature, but is strongly affected by the degree of deformation. At higher deformation levels, crazing occurs. Even though the visible effects of the crazing disappear during reheating, it does influence the recovery stress. This indicates that the ability to recover the permanent shape might change in cyclic loading. All composites tested show complete recovery upon reheating. The rate of shape recovery is higher when the fibre reinforcement is loaded in compression.

  3. Optimization of mechanical properties of non-woven short sisal fibre-reinforced vinyl ester composite using factorial design and GA method

    Indian Academy of Sciences (India)

    S Velumani; P Navaneethakrishnan; S Jayabal; D S Robinson Smart

    2013-08-01

    This work presents a systematic approach to evaluate and study the effect of process parameters on tensile, flexural and impact strength of untreated short sisal fibre-reinforced vinyl ester polymer-based composites and predicts the optimum properties of random natural fibre-reinforced composites. The natural fibre of sisal at lengths of 10, 30 and 50 mm and vinyl ester resin at loadings of 15, 30 and 45 (wt%) were prepared. The composite panel was then fabricated using hand lay method in cold process of size 180 × 160 mm2. Samples were then cut from the panel and subjected to mechanical properties testing such as tensile, flexural and impact strengths. The average tensile strength ranges between 27.1 and 43.9 MPa. The flexural strength ranged between 26.9 and 49.5 MPa and the impact strength ranged between 16 and 93 J/m. The strength values were optimized using factorial design and genetic algorithm (GA) method. The predicted optimum process parameter values are in good agreement with the experimental results.

  4. Impact of chemical treatments on the mechanical and water absorption properties of coconut fibre (Cocos nucifera reinforced polypropylene composites

    Directory of Open Access Journals (Sweden)

    Isiaka O. OLADELE

    2016-07-01

    Full Text Available In this work, chemically treated coconut fibres were used to reinforce Homopolymer Polypropylene in order to ascertain the effect of the treatments on the mechanical and water absorption properties of the composites produced. Coconut fibre was first extracted from its husk by soaking it in water and was dried before it was cut into 10 mm lengths. It was then chemically treated in alkali solution of sodium hydroxide (NaOH and potassium hydroxide (KOH in a shaker water bath. The treated coconut fibres were used as reinforcements in polypropylene matrix to produce composites of varied fibre weight contents; 2, 4, 6, 8 and 10 wt.%. Tensile and flexural properties were investigated using universal testing machine while water absorption test was carried out on the samples for 7 days. It was observed from the results that, NaOH treated samples gave the best tensile properties while KOH treated samples gave the best flexural and water repellent properties.

  5. Flexural retrofitting of reinforced concrete structures using Green Natural Fiber Reinforced Polymer plates

    Science.gov (United States)

    Cervantes, Ignacio

    An experimental study will be carried out to determine the suitability of Green Natural Fiber Reinforced Polymer plates (GNFRP) manufactured with hemp fibers, with the purpose of using them as structural materials for the flexural strengthening of reinforced concrete (RC) beams. Four identical RC beams, 96 inches long, are tested for the investigation, three control beams and one test beam. The first three beams are used as references; one unreinforced, one with one layer of Carbon Fiber Reinforced Polymer (CFRP), one with two layers of CFRP, and one with n layers of the proposed, environmental-friendly, GNFRP plates. The goal is to determine the number of GNFRP layers needed to match the strength reached with one layer of CFRP and once matched, assess if the system is less expensive than CFRP strengthening, if this is the case, this strengthening system could be an alternative to the currently used, expensive CFRP systems.

  6. Cytocompatibility, mechanical and dissolution properties of high strength boron and iron oxide phosphate glass fibre reinforced bioresorbable composites.

    Science.gov (United States)

    Sharmin, Nusrat; Hasan, Muhammad S; Parsons, Andrew J; Rudd, Chris D; Ahmed, Ifty

    2016-06-01

    In this study, Polylactic acid (PLA)/phosphate glass fibres (PGF) composites were prepared by compression moulding. Fibres produced from phosphate based glasses P2O5-CaO-MgO-Na2O (P45B0), P2O5-CaO-MgO-Na2O-B2O3 (P45B5), P2O5-CaO-MgO-Na2O-Fe2O3 (P45Fe3) and P2O5-CaO-MgO-Na2O-B2O3-Fe2O3 (P45B5Fe3) were used to reinforce the bioresorbable polymer PLA. Fibre mechanical properties and degradation rate were investigated, along with the mechanical properties, degradation and cytocompatibility of the composites. Retention of the mechanical properties of the composites was evaluated during degradation in PBS at 37°C for four weeks. The fibre volume fraction in the composite varied from 19 to 23%. The flexural strength values (ranging from 131 to 184MPa) and modulus values (ranging from 9.95 to 12.29GPa) obtained for the composites matched those of cortical bone. The highest flexural strength (184MPa) and modulus (12.29GPa) were observed for the P45B5Fe3 composite. After 28 days of immersion in PBS at 37°C, ~35% of the strength profile was maintained for P45B0 and P45B5 composites, while for P45Fe3 and P45B5Fe3 composites ~40% of the initial strength was maintained. However, the overall wet mass change of P45Fe3 and P45B5Fe3 remained significantly lower than that of the P45B0 and P45B5 composites. The pH profile also revealed that the P45B0 and P45B5 composites degraded quicker, correlating well with the degradation profile. From SEM analysis, it could be seen that after 28 days of degradation, the fibres in the fractured surface of P45B5Fe3 composites remain fairly intact as compared to the other formulations. The in vitro cell culture studies using MG63 cell lines revealed both P45Fe3 and P45B5Fe3 composites maintained and showed higher cell viability as compared to the P45B0 and P45B5 composites. This was attributed to the slower degradation rate of the fibres in P45Fe3 and P45B5Fe3 composites as compared with the fibres in P45B0 and P45B5 composites.

  7. Use of steel fibres recovered from waste tyres as reinforcement in concrete: pull-out behaviour, compressive and flexural strength.

    Science.gov (United States)

    Aiello, M A; Leuzzi, F; Centonze, G; Maffezzoli, A

    2009-06-01

    The increasing amount of waste tyres worldwide makes the disposition of tyres a relevant problem to be solved. In the last years over three million tons of waste tyres were generated in the EU states [ETRA, 2006. Tyre Technology International - Trends in Tyre Recycling. http://www.etra-eu.org]; most of them were disposed into landfills. Since the European Union Landfill Directive (EU Landfill, 1999) aims to significantly reduce the landfill disposal of waste tyres, the development of new markets for the tyres becomes fundamental. Recently some research has been devoted to the use of granulated rubber and steel fibres recovered from waste tyres in concrete. In particular, the concrete obtained by adding recycled steel fibres evidenced a satisfactory improvement of the fragile matrix, mostly in terms of toughness and post-cracking behaviour. As a consequence RSFRC (recycled steel fibres reinforced concrete) appears a promising candidate for both structural and non-structural applications. Within this context a research project was undertaken at the University of Salento (Italy) aiming to investigate the mechanical behaviour of concrete reinforced with RSF (recycled steel fibres) recovered from waste tyres by a mechanical process. In the present paper results obtained by the experimental work performed up to now are reported. In order to evaluate the concrete-fibres bond characteristics and to determine the critical fibre length, pull-out tests were initially carried out. Furthermore compressive strength of concrete was evaluated for different volume ratios of added RSF and flexural tests were performed to analyze the post-cracking behaviour of RSFRC. For comparison purposes, samples reinforced with industrial steel fibres (ISF) were also considered. Satisfactory results were obtained regarding the bond between recycled steel fibres and concrete; on the other hand compressive strength of concrete seems unaffected by the presence of fibres despite their irregular

  8. Hollow-core polymer fibres with a kagome lattice: potential for transmission in the infrared

    Science.gov (United States)

    Argyros, Alexander; Pla, Jarryd

    2007-06-01

    Hollow-core microstructured polymer optical fibres with a kagome lattice cladding are reported. These fibres do not have photonic bandgaps, instead, leakage from the core is suppressed by a low density of states in the cladding, a low overlap of the core mode and the cladding modes and a reduced susceptibility to perturbations. The latter two are the result of a low overlap between the core mode and the solid parts of the microstructure, which also reduces the absorption by the polymer. Losses two orders of magnitude below the material loss were observed and the potential of hollow-core polymer fibres to guide light in the infrared, where the material absorption is high, will be discussed.

  9. Influence of the physical structure of flax fibres on the mechanical properties of flax fibre reinforced polypropylene composites

    NARCIS (Netherlands)

    Oever, van den M.J.A.; Bos, H.L.; Kemenade, van M.J.J.M.

    2000-01-01

    This study investigates the influence of the physical structure of flax fibres on the mechanical properties of polypropylene (PP) composites. Due to their composite-like structure, flax fibres have relatively weak lateral bonds which are in particular present in flax fibres that are often used in na

  10. Design and evaluation of carbon fibre-reinforced launch packages with segmented, copper and molybdenum fibre armatures

    NARCIS (Netherlands)

    Koops, M.; Huijser, T.; Karthaus, W.

    1997-01-01

    Fibre armatures have been studied both dynamically and statically to gain insight in their electrothermal and mechanical behaviour. In the first part of this paper, the results of launch experiments with single and multi-segment copper and molybdenum fibre armatures integrated in carbon-fibre reinfo

  11. Development of Genetic Algorithm Based Macro Mechanical Model for Steel Fibre Reinforced Concrete

    Directory of Open Access Journals (Sweden)

    Gopala Krishna Sastry, K, V.S ,

    2014-01-01

    Full Text Available This paper presents the applicability of hybrid networks that combine Artificial Neural Network (ANN and Genetic Algorithm (GA for predicting the strength properties of Steel Fibre Reinforced concrete (SFRC with different water-cement ratio (0.4,0.45,0.5,0.55, aggregate-cement ratio (3,4,5, % of fibres (0.75,1.0,1.5 and aspect ratio of fibres (40,50,60 as input vectors. Strength properties of SFRC such as compressive strength, flexural strength, split tensile strength and compaction factor are considered as output vector. The network has been trained with data obtained from experimental work. The hybrid neural network model learned the relation between input and output vectors in 1900 iterations. After successful learning GA based BPN model predicted the strength characteristics satisfying all the constrains with an accuracy of about 95%.The various stages involved in the development of genetic algorithm based neural network model are addressed at length in this paper.

  12. Strength and Toughness of Steel Fibre Reinforced Reactive Powder Concrete Under Blast Loading

    Institute of Scientific and Technical Information of China (English)

    KUZNETSOV Valerian A; REBENTROST Mark; WASCHL John

    2006-01-01

    The blast resistance of structures used in buildings needs to be investigated due to the increased threat of a terrorist attack.The damage done by Composition B or Powergel to steel fibre reinforced reactive powder concrete (SFRPC) panels and ordinary reinforced concrete (RC) panels of equivalent static flexural strength is compared.A 0.5 kg charge was detonated at a distance of 0.1 m from the 1.3 m × 1.0 m × 0.1 m (thick) panels,which were simply supported and spaning 1.3 m.Dynamic displacement measurements,high-speed video recording and visual examination of the panels for spall and breach were undertaken.The SFRPC panels withstood the bare charge blast better than the reinforced ordinary concrete panels.Neither type of panel was breached using a 0.5 kg charge.The RC panel exhibited more spalling when Composition B was used.Under successive Composition B loading conditions,the RC panel was breached.In comparison the SFRPC panel was not breached.Exposure to fragmenting charge loading conditions confirmed these performance differences between the SFRPC panel and the reinforced ordinary concrete panel.

  13. Mechanical behaviour of steel fibre-reinforced alkali activated slag concrete

    Directory of Open Access Journals (Sweden)

    Puertas, F.

    2009-03-01

    Full Text Available This study addressed the mechanical behaviour of a steel fibre-reinforced alternative concrete made from waterglass (Na2SiO3.nH2O+NaOH- activated Colombian blast furnace slag. The mixes studied were prepared with 400 kg of cement and the fibres were added in proportions of 40 and 120 kg per cubic metre of concrete. 7-, 14- and 28-day concrete was tested for compressive, splitting tensile and flexural strength. The results obtained showed that adding steel fibre to alkaline concrete lowered early age compressive strength, and that this decline was more intense with rising volumes of steel. Flexural and splitting tensile strength grew, however, enhancing the toughness of the material. As a general rule, the mechanical strength of the plain and fibre-reinforced alkaline concretes studied was higher than exhibited by conventional ordinary Portland cement concrete prepared with similar proportions of cement and fibre.En este estudio se investigó el comportamiento mecánico de hormigones alternativos reforzados con fibras de acero, basados en una escoria siderúrgica colombiana activada alcalinamente con waterglass (Na2SiO3.nH2O+NaOH. Las mezclas en estudio fueron preparadas con 400 kg de cemento y las fibras fueron incorporadas en proporciones de 40 kg y 120 kg por metro cúbico de hormigón, respectivamente. Se evaluó el comportamiento mecánico de los hormigones frente a esfuerzos de compresión, tracción indirecta y flexión a edades de curado de 7, 14 y 28 días. Los resultados obtenidos indican que la incorporación de fibras de acero en los hormigones alcalinos reduce la resistencia a la compresión a edades tempranas siendo superior la pérdida de resistencia a mayores volúmenes de fibra incorporados, mientras que la resistencia a la flexión y tracción indirecta se incrementan significativamente, mejorando la tenacidad del material. En términos generales, es posible concluir que el comportamiento mecánico exhibido por los hormigones

  14. Synthesis and Characterization of Fibre Reinforced Silica Aerogel Blankets for Thermal Protection

    Directory of Open Access Journals (Sweden)

    S. Chakraborty

    2016-01-01

    Full Text Available Using tetraethoxysilane (TEOS as the source of silica, fibre reinforced silica aerogels were synthesized via fast ambient pressure drying using methanol (MeOH, trimethylchlorosilane (TMCS, ammonium fluoride (NH4F, and hexane. The molar ratio of TEOS/MeOH/(COOH2/NH4F was kept constant at 1 : 38 : 3.73 × 10−5 : 0.023 and the gel was allowed to form inside the highly porous meta-aramid fibrous batting. The wet gel surface was chemically modified (silylation process using various concentrations of TMCS in hexane in the range of 1 to 20% by volume. The fibre reinforced silica aerogel blanket was obtained subsequently through atmospheric pressure drying. The aerogel blanket samples were characterized by density, thermal conductivity, hydrophobicity (contact angle, and Scanning Electron Microscopy. The radiant heat resistance of the aerogel blankets was examined and compared with nonaerogel blankets. It has been observed that, compared to the ordinary nonaerogel blankets, the aerogel blankets showed a 58% increase in the estimated burn injury time and thus ensure a much better protection from heat and fire hazards. The effect of varying the concentration of TMCS on the estimated protection time has been examined. The improved thermal stability and the superior thermal insulation of the flexible aerogel blankets lead to applications being used for occupations that involve exposure to hazards of thermal radiation.

  15. Fibre-reinforced ceramics for industrial applications; Faserverstaerkte Keramik in industriellen Anwendungen

    Energy Technology Data Exchange (ETDEWEB)

    Leuchs, M.; Spoerer, J.; Zechmeister, H. [MAN Technologie AG, Karlsfeld (Germany)

    1998-05-01

    High-performance composites now include also materials with a ceramic matrix. By means of the long-fibre reinforcement of ceramics, using carbon (C) or silicium carbide (SiC) fibres embedded in SiC matrix material, a breakthrough has been achieved regarding enhanced embrittlement behaviour of ceramics. The basic mechanism of the reinforcement, as well as different fabrication methods which are now ready for transfer to market, are described. Exemplary results of applications are reported, which demonstrate the high fracture toughness, thermo-shock resistance and tribological stress tolerance of the ceramic composite. (orig.) [Deutsch] Zu den Hochleistungsverbundwerkstoffen gehoeren inzwischen auch die Werkstoffe mit keramischer Matrix. Mit der Langfaserverstaerkung von Keramik ist unter Verwendung von Kohlenstoff (C)- oder Siliciumcarbid (SiC)-Fasern, die in SiC-Matrixmaterial eingebettet werden, ein Durchbruch bei der Verbesserung des Sproedbruchverhaltens keramischer Werkstoffe gelungen. Der Grundmechanismus der Verstaerkung und verschiedene, inzwischen anwendungsreife Herstellverfahren werden beschrieben. Beispielhafte Ergebnisse von Anwendungsentwicklungen werden vorgestellt, in denen die hohe Bruchzaehigkeit, Thermoschockbestaendigkeit und tribologische Belastbarkeit von Verbundkeramik demonstriert wird. (orig.)

  16. Machinability Study of Hybrid Nanoclay-Glass Fibre Reinforced Polyester Composites

    Directory of Open Access Journals (Sweden)

    P. Prabhu

    2013-01-01

    Full Text Available Glass fibre reinforced polyester composites (GRP and hybrid nanoclay and glass fibre reinforced polyester nanocomposites (CGRP are fabricated by vacuum assisted resin infusion technique. The optimum mechanical properties are obtained for CGRP with 3 wt.% nanoclay. Three types of drills (carbide twist drill D 5407060, HSS twist drill BS-328, and HSS end mill (4 flutes “N”-type end mill RH-helical flute of 6 mm diameters are used to drill holes on GRP and CGRP. Three different speeds (600, 852, and 1260 rpm and two different feeds (0.045, 0.1 mm/rev are selected as process parameters. The effect of process parameter on thrust force and delamination during drilling CGRP is analyzed for optimizing the machining parameters. The delamination factor is low for the optimum process parameter (feed = 0.1 mm/rev and speed 852 rpm. Microstructural analysis confirms that at higher feeds, delamination is low for CGRP drilled with carbide tools. In order to analyze the effect of nanoclay in CGRP on tool wear, 200 holes were drilled on CGRP samples with 3 wt.% nanoclay, and the tool wear is analyzed under optimized parametric condition. Tool wear is high in HSS twist drill compared with carbide drill. The presence of nanoclay also accelerates the tool wear.

  17. Particulate Filled Composite Plastic Materials from Recycled Glass Fibre Reinforced Plastics

    Directory of Open Access Journals (Sweden)

    Aare ARUNIIT

    2011-09-01

    Full Text Available Glass fibre reinforced plastic (GFRP scrap consisted of acrylic plastic with glass fibre reinforcement in polyester resin matrix was used in our experiments. The multi-functional DS-series disintegrator mills were used for mechanical processing of GFRP scrap. Preceding from the results characterization of the milled powder particles size, shape and other properties the numerical algorithm for modelling of the density of the new filler material was developed. The main goal of the current study is to develop new particulate filled composite plastic material from recycled GFRP scrap. With recovered plastic powder material the higher filler content in polyester resin matrix can be achieved. The new composite is modelled on basis of the properties of new material. Such an approach requires tests of the new material. The considered target characteristics of the new material are the tensile strength, elongation at break and the cost. The multicriteria optimization problem has been formulated and solved by use of physical programming techniques and Pareto optimality concept. The designed new composites were manufactured in different mixing ratios of powder and binder agent. The strength and stiffness properties of new composite material were tested. http://dx.doi.org/10.5755/j01.ms.17.3.593

  18. Preparation And Properties Of Bionanocomposite Films Reinforced With Nanocellulose Isolated From Moroccan Alfa Fibres

    Directory of Open Access Journals (Sweden)

    Youssef Benyoussif

    2015-09-01

    Full Text Available Nanocellulose (NC were extracted from the Moroccan Alfa plant (Stipa tenacissima L. and characterised. These Alfa cellulosic nanoparticles were used as reinforcing phase to prepare bionanocomposite films using carboxymethyl cellulose as matrix. These films were obtained by the casting/evaporation method. The crystallinity of NC was analysed by X-ray diffraction, the dimension of NC by atomic force microscopy, molecular interactions due to incorporation of NC in carboxymethyl cellulose (CMC matrix were supported by Fourier transforms infrared (FTIR spectroscopy. The properties of the ensuing bionanocomposite films were investigated using tensile tests, water vapour permeability (WVP study and thermogravimetric analysis. With the progress of purification treatment of cellulose, the crystallinity is improved compared to the untreated fibres; this can be explained by the disappearance of the amorphous areas in cellulose chain of the plant. Consequently, the tensile modulus and tensile strength of CMC film increased by 60 and 47%, respectively, in the bionanocomposite films with 10 wt% of NC, and decrease by 8.6% for WVP with the same content of NC. The NC obtained from the Moroccan Alfa fibres can be used as a reinforcing agent for the preparation of bionanocomposites, and they have a high potential for the development of completely biodegradable food packaging materials.

  19. Winding of fibre composites; Vikling af fiberkompositter

    Energy Technology Data Exchange (ETDEWEB)

    Lystrup, Aage

    2006-01-01

    Within the project 'Storage of hydrogen in advanced high pressure vessels' under the PSO-R AND D 2005 program one of the tasks is to describe the technology, which is used for manufacturing of fibre reinforced pressure vessels. Fibre reinforced pressure vessels for high pressures are manufactured by winding structural load bearing fibres around a mandrel or an internal liner. There are two different types of cylindrical pressure vessels: 1) Cylinders with thick metal liner, where only the cylindrical part is over wrapped with hoop windings, and 2) cylinders with a thin metal or polymer liner, where both the cylindrical part and the end domes are over wrapped with more layers with different fibre orientations (helical and hoop windings). This report describes the fundamental principles for filament winding of fibre reinforced polymer composites. After a short introduction to the advanced fibre composites, their properties and semi-raw materials used for fibre composites, the focus is on the process parameters, which have influence on the material quality of filament wound components. The report is both covering winding of fibre reinforced thermo-setting polymers as well as thermoplastic polymers, and there are references to vendors of filament winding machines, accessory equipment and computer software for design and manufacturing of filament wound components. (au)

  20. Winding of fibre composites; Vikling af fiberkompositter

    Energy Technology Data Exchange (ETDEWEB)

    Lystrup, Aage

    2006-01-01

    Within the project 'Storage of hydrogen in advanced high pressure vessels' under the PSO-R AND D 2005 program one of the tasks is to describe the technology, which is used for manufacturing of fibre reinforced pressure vessels. Fibre reinforced pressure vessels for high pressures are manufactured by winding structural load bearing fibres around a mandrel or an internal liner. There are two different types of cylindrical pressure vessels: 1) Cylinders with thick metal liner, where only the cylindrical part is over wrapped with hoop windings, and 2) cylinders with a thin metal or polymer liner, where both the cylindrical part and the end domes are over wrapped with more layers with different fibre orientations (helical and hoop windings). This report describes the fundamental principles for filament winding of fibre reinforced polymer composites. After a short introduction to the advanced fibre composites, their properties and semi-raw materials used for fibre composites, the focus is on the process parameters, which have influence on the material quality of filament wound components. The report is both covering winding of fibre reinforced thermo-setting polymers as well as thermoplastic polymers, and there are references to vendors of filament winding machines, accessory equipment and computer software for design and manufacturing of filament wound components. (au)

  1. Behaviour of alkaline cement mortars reinforced with acrylic and polypropylene fibres

    Directory of Open Access Journals (Sweden)

    Puertas, P.

    2000-09-01

    Full Text Available In the present work, the behaviour of alkaline cement mortars reinforced with fibres of different nature (acrylic and polypropylene fibres is studied. Also the chemical stability of those fibres in strong alkaline medium has been investigated. Three different matrixes have been used: glass blast furnace slag activated with NaOH 2M (room temperature, 22 ºC; fly ash activated with NaOH 8M, cured at 85ºC during 24 hours and 50% fly ash / 50% slag activated with NaOH 8M, room temperature. The fibre content was 0,2 and 1% in mortar volume. The tests carried out were: tenacity and tenacity index, impact resistance and drying shrinkage. On the specimens tested, a microstructural study by SEM/EDX was carried out. The results obtained have demonstrated the following: a The acrylic and polypropylene fibres are stable in strong basic media, although the first undergo hydrolysis/ hydration processes showed by the alteration of the surface texture, b with low fibre contents (0,2% in volume, tenacity and tenacity index of these mortars remain unaffected. With higher contents (1%, an increase of the corresponding values is produced. This increment is higher in mortars with alkaline activated slag, c For the three matrixes studied, the polypropylene fibres increase the impact strength in higher degree than the acrylic ones. The reinforcement effect is more significative in matrix A and when the fibre content is 1% in volume, d the shrinkage of these mortars is modified depending on the matrix and fibre type. In mortars of activated slag, fibres do not reduce the shrinkage. In mortars of activated fly ash reinforced with acrylic fibres, shrinkage is lower than those containing polypropylene fibres are. Finally, in mortars of fly ash/ activated slag, the two fibres decrease the drying shrinkage.

    En el presente trabajo se estudia el comportamiento de morteros de cementos alcalinos reforzados con fibras de distinta naturaleza (acrílica y de polipropileno

  2. CO2 Laser Cutting of Glass Fiber Reinforce Polymer Composite

    Science.gov (United States)

    Fatimah, S.; Ishak, M.; Aqida, S. N.

    2012-09-01

    The lamination, matrix properties, fiber orientation, and relative volume fraction of matrix of polymer structure make this polymer hard to process. The cutting of polymer composite using CO2 laser could involve in producing penetration energy in the process. Identification of the dominant factors that significantly affect the cut quality is important. The objective of this experiment is to evaluate the CO2 spot size of beam cutting for Glass Fiber Reinforce Polymer Composite (GFRP). The focal length selected 9.5mm which gave smallest focus spot size according to the cutting requirements. The effect of the focal length on the cut quality was investigated by monitoring the surface profile and focus spot size. The beam parameter has great effect on both the focused spot size and surface quality.

  3. Exposure Assessment of Particulate Matter from Abrasive Treatment of Carbon and Glass Fibre-Reinforced Epoxy-Composites

    DEFF Research Database (Denmark)

    Jensen, Alexander C. Ø.; Levin, Marcus; Koivisto, Antti J.

    2015-01-01

    The use of composites is ever increasing due to their important structural and chemical features. The composite component production often involves high energy grinding and sanding processes to which emissions workers are potentially exposed. In this study we investigated the machining of carbon...... and glass fibre-reinforced epoxy composite materials at two facilities. We measured particle number concentrations and size distributions of the released material in near field and far field during sanding of glass-and carbon fibre-reinforced composites. We assessed the means of reducing exposure during...

  4. Effect of fibre-reinforced composite on the fracture resistance of endodontically treated teeth.

    Science.gov (United States)

    Ozsevik, Abdul Semih; Yildirim, Cihan; Aydin, Ugur; Culha, Emre; Surmelioglu, Derya

    2016-08-01

    The aim of this study is to evaluate the fracture resistance of root-filled teeth restored with fibre-reinforced composite (everX posterior). Fifty mandibular molars were divided into five groups (n = 10). Group 1: no treatment was applied (intact teeth). Group 2-5: canals were prepared and root filled. Group 2: no coronal restoration was placed. Group 3: teeth were coronally restored with composite. Group 4: composite restorations were performed following polyethylene fibre insertion at the cavity base. Group 5: composite resin placed over everX posterior. After thermocycling (5-55°C, 5000×), fracture resistance was measured. Mean force load for each sample was recorded in Newtons (N). Results were statistically analysed with one-way analysis of variance and post hoc Tukey's tests. The mean force required to fracture samples and standard deviations are as follows: group 1: 2859.5 ± 551.27 N, group 2: 318.97 ± 108.67 N, group 3: 1489.5 ± 505.04 N, group 4: 1958.3 ± 362.94 N, group 5: 2550.7 ± 586.1 N. everX posterior (group 5) was higher than groups 2, 3 and 4 (P  0.05). Placing fibre-reinforced composite under composite increased the fracture strength of root-filled teeth to the level of intact teeth.

  5. Glucose optical fibre sensor based on a luminescent molecularly imprinted polymer

    Science.gov (United States)

    Elosua, C.; Wren, S. P.; Sun, T.; Arregui, F. J.; Grattan, Kenneth T. V.

    2015-09-01

    An optrode able to detect glucose dissolved in water has been implemented. The device is based on the luminescence emission of a Molecularly Imprinted Polymer synthesized specifically for glucose detection, therefore its intensity changes in presence of glucose. This sensing material is attached onto a cleaved ended polymer-clad optical fibre and it is excited by light via 1x2 fibre coupler. The reflected fluorescence signal increases when it is immersed into glucose solutions and recovers to the baseline when it is dipped in ultrapure water. This reversible behaviour indicates the measurement repeatability of using such a glucose sensor.

  6. Carbon-Nanotube-Reinforced Polymer-Derived Ceramic Composites

    Energy Technology Data Exchange (ETDEWEB)

    An, Linan; Xu, Weixing; Rajagopalan, Sudhir; Wang, Chong M.; Wang, Hsin; Fan, Yi; Zhang, Ligong; Jiang, Dapeng; Kapat, Jay; Chow, Louis; Guo, Baohua; Liang, Ji; Vaidyanathan, Raj

    2004-12-09

    Carbon nanotube reinforced ceramic composites were synthesized by using recently developed polymer-derived ceramics as matrices. Multi-wall carbon nanotubes, treated with a surfactant, were first dispersed in a liquid polymer precursor by sonication and mechanical stirring. The solution was then converted to fully dense ceramic composites with pressure-assist pyrolysis technique. Microstructural observation revealed that nanotubes were homogeneously dispersed throughout the ceramic matrix. Significant increases in mechanical and thermal properties were observed by adding only {approx}6vol% nanotubes. Strong nanotube pullout revealed by SEM observation suggested that the composites could possess high fracture toughness.

  7. Comparison of traditional field retting and Phlebia radiata Cel 26 retting of hemp fibres for fibre-reinforced composites.

    Science.gov (United States)

    Liu, Ming; Ale, Marcel T; Kołaczkowski, Bartłomiej; Fernando, Dinesh; Daniel, Geoffrey; Meyer, Anne S; Thygesen, Anders

    2017-12-01

    Classical field retting and controlled fungal retting of hemp using Phlebia radiata Cel 26 (a mutant with low cellulose degrading ability) were compared with pure pectinase treatment with regard to mechanical properties of the produced fibre/epoxy composites. For field retting a classification of the microbial evolution (by gene sequencing) and enzyme profiles were conducted. By phylogenetic frequency mapping, different types of fungi, many belonging to the Ascomycota phylum were found on the fibres during the first 2 weeks of field retting, and thereafter, different types of bacteria, notably Proteobacteria, also proliferated on the field retted fibres. Extracts from field retted fibres exhibited high glucanase activities, while extracts from P. radiata Cel 26 retted fibres showed high polygalacturonase and laccase activities. As a result, fungal retting gave a significantly higher glucan content in the fibres than field retting (77 vs. 67%) and caused a higher removal of pectin as indicated by lower galacturonan content of fibres (1.6%) after fibres were retted for 20 days with P. radiata Cel 26 compared to a galacturonan content of 3.6% for field retted fibres. Effective fibre stiffness increased slightly after retting with P. radiata Cel 26 from 65 to 67 GPa, while it decreased after field retting to 52 GPa. Effective fibre strength could not be determined similarly due to variations in fibre fracture strain and fibre-matrix adhesion. A maximum composite strength with 50 vol% fibres of 307 MPa was obtained using P. radiata Cel 26 compared to 248 MPa with field retting.

  8. Experimental study on fire protection methods of reinforced concrete beams strengthened with carbon fiber reinforced polymer

    Institute of Scientific and Technical Information of China (English)

    HU Kexu; HE Guisheng; LU Fan

    2007-01-01

    In this paper,two reinforced concrete (RC) beams strengthened with carbon fiber reinforced polymer (CFRP)and attached with thick-painted fire resistant coating were tested for fire resistance following the standard fire testing procedures.The experimental results show that the specimen pasted with the insulated layer of 50 mm in thickness could resist fire for 2.5 h.It is also demonstrated that the steel wire mesh embedded in the insulated layer can effectively prevent it from cracking and eroding under firing.

  9. Vegetable fibres from agricultural residues as thermo-mechanical reinforcement in recycled polypropylene-based green foams.

    Science.gov (United States)

    Ardanuy, Mònica; Antunes, Marcelo; Velasco, José Ignacio

    2012-02-01

    Novel lightweight composite foams based on recycled polypropylene reinforced with cellulosic fibres obtained from agricultural residues were prepared and characterized. These composites, initially prepared by melt-mixing recycled polypropylene with variable fibre concentrations (10-25 wt.%), were foamed by high-pressure CO(2) dissolution, a clean process which avoids the use of chemical blowing agents. With the aim of studying the influence of the fibre characteristics on the resultant foams, two chemical treatments were applied to the barley straw in order to increase the α-cellulose content of the fibres. The chemical composition, morphology and thermal stability of the fibres and composites were analyzed. Results indicate that fibre chemical treatment and later foaming of the composites resulted in foams with characteristic closed-cell microcellular structures, their specific storage modulus significantly increasing due to the higher stiffness of the fibres. The addition of the fibres also resulted in an increase in the glass transition temperature of PP in both the solid composites and more significantly in the foams.

  10. Microscopic mechanism of reinforcement and conductivity in polymer nanocomposite materials

    Science.gov (United States)

    Chang, Tae-Eun

    Modification of polymers by adding various nano-particles is an important method to obtain effective enhancement of materials properties. Within this class of materials, carbon nanotubes (CNT) are among the most studied materials for polymer reinforcement due to their extraordinary mechanical properties, superior thermal and electronic properties, and high aspect ratio. However, to unlock the potential of CNTs for applications, CNTs must be well dispersed in a polymer matrix and the microscopic mechanism of polymer reinforcement by CNTs must be understood. In this study, single-wall carbon nanotube (SWNT) composites with polypropylene (PP)-SWNT and polystyrene (PS)-SWNT were prepared and analyzed. Microscopic study of the mechanism of reinforcement and conductivity by SWNT included Raman spectroscopy, wide-angle X-ray diffraction (WAXD) and dielectric measurement. For PP-SWNT composites, tensile tests show a three times increase in the Young's modulus with addition of only 1 wt% SWNT, and much diminished increase of modulus with further increase in SWNT concentration. For PS-SWNT composites, well-dispersed SWNT/PS composite has been produced, using initial annealing of SWNT and optimum sonication conditions. The studies on the tangential mode in the Raman spectra and TEM indicated well-dispersed SWNTs in a PS matrix. We show that conductivity appears in composites already at very low concentrations, hinting at the formation of a 'percolative' network even below 0.5% of SWNT. The Raman studies for both composites show good transfer of the applied stress from the polymer matrices to SWNTs. However, no significant improvement of mechanical property is observed for PS-SWNT composites. The reason for only a slight increase of mechanical property remains unknown.

  11. Transport properties of polymer-vapour grown carbon fibre composites

    Science.gov (United States)

    Gordeyev, S. A.; Macedo, F. J.; Ferreira, J. A.; van Hattum, F. W. J.; Bernardo, C. A.

    2000-04-01

    DC electrical resistivity and thermal conductivity of polypropylene (PP) filled with vapour grown carbon fibre (VGCF) was studied. This was done for a wide range of fibre content and compared to systems produced under the same conditions in which a conventional carbon fibre was used as filler. The composites studied exhibit characteristic percolating behaviour. Because of the low degree of graphite perfection in the VGCF used in this work, the fraction of VGCF required to achieve percolation was higher than expected. Non-linear I- V characteristics and time dependent electrical resistivity effects are only observed in PP filled with VGCF. Several mechanisms must be called upon to explain the observed electrical behaviour of the PP/VGCF composite. The thermal conductivity of the composites is in agreement with the effective medium theories.

  12. Combined semi-analytical and numerical vibro-acoustic design approach for anisotropic fibre-reinforced composite structures

    Science.gov (United States)

    Dannemann, Martin; Täger, Olaf; Modler, Niels

    2017-09-01

    In many applications, lightweight structures need to combine outstanding component properties and low weight. Here, fibre-reinforced polymers offer particular advantages, as their material-inherent anisotropic material damping behaviour facilitates the design of lightweight structures with both low sound radiation levels and low mass. At the same time, composite structures often have to fulfil a high level of stiffness and strength. These manifold requirements result in a complex design process with optimisation scenarios often involving contrary objectives in terms of weight, stiffness and sound radiation. Those objectives are in turn accompanied by many different design variables. The aim of the work presented in this paper was therefore to develop a material-specific design strategy for scenarios of this type. The authors developed semi-analytical models for the calculation of structural dynamics and sound radiation in composite structures before combining them with optimisation algorithms in order to perform effective sensitivity analyses. Parametric studies were used to define material-specific input parameters for physical characteristics, which in turn provided a basis for the detailed numerical simulation of the vibro-acoustic behaviour of complex geometries. This paper uses a trough-shaped structure as an application-oriented example of the optimisation of vibro-acoustic behaviour with the aid of the numerical model developed by the authors.

  13. Proportioning of Steel Fibre Reinforced Concrete Mixes for Pavement Construction and Their Impact on Environment and Cost

    Directory of Open Access Journals (Sweden)

    Stelios Kallis

    2011-07-01

    Full Text Available Steel fibre reinforced concrete (SFRC is a construction material investigated for more than 40 years including for pavement applications. A number of studies have demonstrated the technical merits of SFRC pavements over conventional concrete pavements; however little work has been carried out on the environmental and economical impact of SFRC during the pavement’s life cycle. Therefore, extended research was undertaken within the framework of the EU funded project “EcoLanes” to estimate the environmental and economical loadings of SFRC pavements. The innovative concept of the project is the use of recycled steel tyre-cord wire as concrete fibre reinforcement, which provides additional environmental benefits for tyre recycling over landfilling. Within the project framework a demonstration of a steel-fibre-reinforced roller-compacted concrete (SFR-RCC pavement was constructed in a rural area in Cyprus. In order to assess the economical and environmental picture of the demonstration pavement, life cycle cost analysis (LCCA and life cycle assessment (LCA studies were undertaken, which also compared the under study pavement design with four conventional alternatives. The main output of the studies is that SFR-RCC is more environmentally and economically sustainable than others. In addition, various concrete mix designs were investigated by considering parameters such as fibre type and dosage, cement type, and transportation distances to the construction site. Fibre dosage has been highlighted as a crucial factor compared with economical and environmental loadings in SFR-RCC pavement construction.

  14. Fabrication of luminescent hybrid fibres based on the encapsulation of polyoxometalate into polymer matrices

    Energy Technology Data Exchange (ETDEWEB)

    Lu Xiaofeng; Liu Xincai; Wang Lifeng; Zhang Wanjin; Wang Ce [Alan G MacDiarmid Institute, Jilin University, Changchun (China)

    2006-06-28

    Polyvinyl alcohol (PVA)/polyoxotungstoeuropate composite fibres were successfully prepared by a facile method called the electrospinning technique. Scanning electron microscopy (SEM) analysis revealed the fibre morphology of the composite. Transmission electron microscopy (TEM) showed spherical nanoparticles of the polyoxotungstoeuropate component with an average particle size of several nanometres to tens of nanometres and good dispersion. The electrospinning process prevented the polyoxometalate (POM) turning to an inhomogeneous microphase and large aggregation, so it is an effective and facile method for avoiding the phase separation of POM in the polymer matrices. X-ray photoelectron spectroscopy (XPS), Fourier transform infrared spectroscopy (FTIR) and ultraviolet-visible (UV-vis) spectra were used to characterize the structure of PVA/polyoxotungstoeuropate composite fibres. The fluorescence properties of the composite fibres were also investigated.

  15. Fiber-reinforced polymer concrete: Property improvement by gamma irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Martinez B, G. [Laboratorio de Investigacion y Desarrollo de Materiales Avanzados, Facultad de Quimica, Universidad Autonoma del Estado de Mexico, Km. 12 Carretera Toluca-Atlacomulco, San Cayetano 50200, Estado de Mexico (Mexico); Brostow, W. [Laboratory of Advanced Polymers and Optimized Materials, Department of Materials Science and Engineering, University of North Texas, Denton TX 76203-5310 (United States)], e-mail: gonzomartinez02@yahoo.com.mx

    2009-07-01

    Polymer concrete (PC) is a particulate composite in which a thermoset resin forms a polymeric matrix and binds inorganic aggregates (dispersed particles of strengthening phases). This in contrast to Portland cement concrete (PCC) in which the binding is a result of interaction of cement with water. Adding polymeric materials to the concrete one can obtain high compressive and flexural strength, high impact and abrasion resistance, lower weight and lower costs. Moreover, PC is a very good repair material for structure elements damaged by trapping water inside the structure and by acid attacks which take place in the PCC. In the present chapter we discuss uses of polymer concrete and the importance of using gamma radiation as a novel technology for manufacturing fiber-reinforced polymer concrete. Our technology is different from the costly and time consuming current procedures such as chemical attack or thermal treatment. (Author)

  16. A Fibre-Reinforced Poroviscoelastic Model Accurately Describes the Biomechanical Behaviour of the Rat Achilles Tendon

    Science.gov (United States)

    Heuijerjans, Ashley; Matikainen, Marko K.; Julkunen, Petro; Eliasson, Pernilla; Aspenberg, Per; Isaksson, Hanna

    2015-01-01

    Background Computational models of Achilles tendons can help understanding how healthy tendons are affected by repetitive loading and how the different tissue constituents contribute to the tendon’s biomechanical response. However, available models of Achilles tendon are limited in their description of the hierarchical multi-structural composition of the tissue. This study hypothesised that a poroviscoelastic fibre-reinforced model, previously successful in capturing cartilage biomechanical behaviour, can depict the biomechanical behaviour of the rat Achilles tendon found experimentally. Materials and Methods We developed a new material model of the Achilles tendon, which considers the tendon’s main constituents namely: water, proteoglycan matrix and collagen fibres. A hyperelastic formulation of the proteoglycan matrix enabled computations of large deformations of the tendon, and collagen fibres were modelled as viscoelastic. Specimen-specific finite element models were created of 9 rat Achilles tendons from an animal experiment and simulations were carried out following a repetitive tensile loading protocol. The material model parameters were calibrated against data from the rats by minimising the root mean squared error (RMS) between experimental force data and model output. Results and Conclusions All specimen models were successfully fitted to experimental data with high accuracy (RMS 0.42-1.02). Additional simulations predicted more compliant and soft tendon behaviour at reduced strain-rates compared to higher strain-rates that produce a stiff and brittle tendon response. Stress-relaxation simulations exhibited strain-dependent stress-relaxation behaviour where larger strains produced slower relaxation rates compared to smaller strain levels. Our simulations showed that the collagen fibres in the Achilles tendon are the main load-bearing component during tensile loading, where the orientation of the collagen fibres plays an important role for the tendon

  17. Water-cooled non-thermal gliding arc for adhesion improvement of glass-fibre-reinforced polyester

    DEFF Research Database (Denmark)

    Kusano, Yukihiro; Sørensen, Bent F.; Løgstrup Andersen, Tom;

    2013-01-01

    -fibre-reinforced polyester plates were treated using an atmospheric pressure gliding-arc discharge with air flow to improve adhesion with a vinylester adhesive. The electrodes were water-cooled so as to operate the gliding arc continually. The treatment improved wettability and increased the density of oxygen...

  18. Go with the flow: conservation of a floating sculpture from 1961 made from glass fibre-reinforced polyester resin

    NARCIS (Netherlands)

    Beerkens, L.; Stigter, S.; van Oosten, T.; van Keulen, H.; Keneghan, B.; Egan, L.

    2008-01-01

    Marta Pan’s Sculpture flottante, Otterlo was commissioned by the Kröller-Müller Museum for a pond at the entrance of the new sculpture garden that opened in June 1961. The floating sculpture is made from glass fibre-reinforced polyester resin and is now coated with white paint layers. The top is c

  19. Go with the flow: conservation of a floating sculpture from 1961 made from glass fibre-reinforced polyester resin

    NARCIS (Netherlands)

    Beerkens, L.; Stigter, S.; van Oosten, T.; van Keulen, H.; Keneghan, B.; Egan, L.

    2008-01-01

    Marta Pan’s Sculpture flottante, Otterlo was commissioned by the Kröller-Müller Museum for a pond at the entrance of the new sculpture garden that opened in June 1961. The floating sculpture is made from glass fibre-reinforced polyester resin and is now coated with white paint layers. The top is

  20. 3-D printed sensing patches with embedded polymer optical fibre Bragg gratings

    DEFF Research Database (Denmark)

    Zubel, Michal G.; Sugden, Kate; Saez-Rodriguez, D.

    2016-01-01

    The first demonstration of a polymer optical fibre Bragg grating (POFBG) embedded in a 3-D printed structure is reported. Its cyclic strain performance and temperature characteristics are examined and discussed. The sensing patch has a repeatable strain sensitivity of 0.38 pm/mu epsilon. Its...

  1. 3-D printed sensing patches with embedded polymer optical fibre Bragg gratings

    DEFF Research Database (Denmark)

    Zubel, Michal G.; Sugden, Kate; Saez-Rodriguez, D.;

    2016-01-01

    The first demonstration of a polymer optical fibre Bragg grating (POFBG) embedded in a 3-D printed structure is reported. Its cyclic strain performance and temperature characteristics are examined and discussed. The sensing patch has a repeatable strain sensitivity of 0.38 pm/mu epsilon. Its temp...

  2. Effect of water absorption on the mechanical properties of nanoclay filled recycled cellulose fibre reinforced epoxy hybrid nanocomposites

    KAUST Repository

    Alamri, H.

    2013-01-01

    Recycled cellulose fibre (RCF) reinforced epoxy/clay nanocomposites were successfully synthesized with different weight percentages (0%, 1%, 3% and 5%) of organoclay platelets (30B). The objective of this study was to investigate the effect of water absorption on the physical and mechanical properties of the RCF reinforced epoxy/clay nanocomposites. TEM images indicated a well-intercalated structure of nanoclay/epoxy matrix with some exfoliated regions. Water absorption was found to decrease as the clay content increased. The flexural strength, flexural modulus and fracture toughness significantly decreased as a result of water absorption. However, the properties of impact strength and impact toughness were found to increase after exposing to water. The addition of nanoclay slightly minimized the effect of moisture on the mechanical properties. SEM images showed that water absorption severely damaged the cellulose fibres and the bonding at fibres-matrix interfaces in wet composites. © 2012 Elsevier Ltd. All rights reserved.

  3. Polymer Optical Fibre Sensors for Endoscopic Opto-Acoustic Imaging

    DEFF Research Database (Denmark)

    Broadway, Christian; Gallego, Daniel; Woyessa, Getinet;

    2015-01-01

    in existing publications. A great advantage can be obtained for endoscopy due to a small size and array potential to provide discrete imaging speed improvements. Optical fibre exhibits numerous advantages over conventional piezo-electric transducers, such as immunity from electromagnetic interference...

  4. Fabrication of metallic reinforcement fibres for metal matrix composites by in-rotating-liquid spinning. Herstellung metallischer Verstaerkungsfasern fuer Metallmatrixverbundwerkstoffe durch Schmelzspinnen in eine rotierende Fluessigkeit

    Energy Technology Data Exchange (ETDEWEB)

    Heyder, B.; Frommeyer, G. (Max-Planck-Institut fuer Eisenforschung GmbH, Duesseldorf (Germany). Abt. Werkstofftechnik)

    1992-02-01

    The application of reinforced metal matrix composites reinforced by continuous fibres are in particular limited by the lack of inexpensive and high-strength reinforcement fibres. Starting-points for a solution offer new methods of rapid solidification technology such as the in-rotating-liquid spinning that is suitable for a broad acceptance by industry. Fundamental investigations of the influence factors and the process parameters showed the aptitude of this method. (orig.).

  5. Moment redistribution in continuous reinforced concrete beams strengthened with carbon-fiber-reinforced polymer laminates

    Science.gov (United States)

    Aiello, M. A.; Valente, L.; Rizzo, A.

    2007-09-01

    The results of tests on continuous steel-fiber-reinforced concrete (RC) beams, with and without an external strengthening, are presented. The internal flexural steel reinforcement was designed so that to allow steel yielding before the collapse of the beams. To prevent the shear failure, steel stirrups were used. The tests also included two nonstrengthened control beams; the other specimens were strengthened with different configurations of externally bonded carbon-fiber-reinforced polymer (CFRP) laminates. In order to prevent the premature failure from delamination of the CFRP strengthening, a wrapping was also applied. The experimental results obtained show that it is possible to achieve a sufficient degree of moment redistribution if the strengthening configuration is chosen properly, confirming the results provided by two simple numerical models.

  6. Flexural strengthening of Reinforced Concrete (RC) Beams Retrofitted with Corrugated Glass Fiber Reinforced Polymer (GFRP) Laminates

    Science.gov (United States)

    Aravind, N.; Samanta, Amiya K.; Roy, Dilip Kr. Singha; Thanikal, Joseph V.

    2015-01-01

    Strengthening the structural members of old buildings using advanced materials is a contemporary research in the field of repairs and rehabilitation. Many researchers used plain Glass Fiber Reinforced Polymer (GFRP) sheets for strengthening Reinforced Concrete (RC) beams. In this research work, rectangular corrugated GFRP laminates were used for strengthening RC beams to achieve higher flexural strength and load carrying capacity. Type and dimensions of corrugated profile were selected based on preliminary study using ANSYS software. A total of twenty one beams were tested to study the load carrying capacity of control specimens and beams strengthened with plain sheets and corrugated laminates using epoxy resin. This paper presents the experimental and theoretical study on flexural strengthening of Reinforced Concrete (RC) beams using corrugated GFRP laminates and the results are compared. Mathematical models were developed based on the experimental data and then the models were validated.

  7. Basalt fiber reinforced polymer composites: Processing and properties

    Science.gov (United States)

    Liu, Qiang

    A high efficiency rig was designed and built for in-plane permeability measurement of fabric materials. A new data derivation procedure to acquire the flow fluid pattern in the experiment was developed. The measurement results of the in-plane permeability for basalt twill 31 fabric material showed that a high correlation exists between the two principal permeability values for this fabric at 35% fiber volume fraction. This may be the most important scientific contribution made in this thesis. The results from radial measurements corresponded quite well with those from Unidirectional (UD) measurements, which is a well-established technique. No significant differences in mechanical properties were found between basalt fabric reinforced polymer composites and glass composites reinforced by a fabric of similar weave pattern. Aging results indicate that the interfacial region in basalt composites may be more vulnerable to environmental damage than that in glass composites. However, the basalt/epoxy interface may have been more durable than the glass/epoxy interface in tension-tension fatigue because the basalt composites have significantly longer fatigue life. In this thesis, chapter I reviews the literature on fiber reinforced polymer composites, with concentration on permeability measurement, mechanical properties and durability. Chapter II discusses the design of the new rig for in-plane permeability measurement, the new derivation procedure for monitoring of the fluid flow pattern, and the permeability measurement results. Chapter III compares the mechanical properties and durability between basalt fiber and glass fiber reinforced polymer composites. Lastly, chapter IV gives some suggestions and recommendations for future work.

  8. Strengthening reinforced concrete beams using prestressed glass fiber-reinforced polymer-Part Ⅱ: Analytical study

    Institute of Scientific and Technical Information of China (English)

    HUANG Yue-lin; HUNG Chien-hsing; YEN Tsong; WU Jong-hwei; LIN Yiching

    2005-01-01

    Strengthening reinforced concrete (R. C.) beams using prestressed glass fiber-reinforced polymer (PGFRP) was studied experimentally as described in Part Ⅰ of this paper (Huang et al., 2005). In that paper, R. C. beams, R. C. beams with GFRP(glass fiber-reinforced polymer) sheets, and R. C. beams with PGFRP sheets were tested in both under-strengthened and over-strengthened cases. The test results showed that the load-carrying capacities (ultimate loads) of the beams with GFRP sheets were greater than those of the beams without polymer sheets. The load-carrying capacities of beams with PGFRP sheets were greater than those of beams with GFRP sheets. The objective of this work is to develop an analytical method to compute all of these load-carrying capacities. This analytical method is independent of the experiments and based only on the traditional R. C.and P. C. (prestressed concrete) theory. The analytical results accorded with the test results. It is suggested that this analytical method be used for analyzing and designing R. C. beams strengthened using GFRP or PGFRP sheets.

  9. Study on Sound Absorption Properties of Coconut Coir Fibre Reinforced Composite with Added Recycled Rubber

    Directory of Open Access Journals (Sweden)

    S. Mahzan

    2010-06-01

    Full Text Available Sound pollutions have become worsen and creating concerns for many peoples. Conventionally, expensive sound absorption materials are employed to control noise disturbances. However, recent developments on natural fibres have created interest for researchers especially for acoustics application purposes. This paper investigates the viability of coconut coir added with recycled rubber to be implemented as sound absorption panel. The composite is constructed at prescribed percentages of fillers and polyurethane as resin. The two-microphone method was applied to obtain the acoustic properties of the samples. The samples were also tested for physical properties such as density and porosity, as well as the microstructures. The results demonstrate good acoustics performances and highlight the potential of the coconut coir reinforced with recycled rubber as the sound absorption panel.

  10. Theoretical & Experimental Studies on Vibration & Damping of Fibre-Reinforced Cantilever Laminates.

    Directory of Open Access Journals (Sweden)

    M. Ganapathi

    2000-07-01

    Full Text Available In this paper, vibration and damping analyses  of glass fibre-reinforced laminated composite cantilever beams and plates are studied using C1 finite element using shear deformation theory and alsothrough experiments. The formulation in the theoretical model includes in-plane and rotary inertiaterms. The governing equations for the complex eigenvalue problem based on complex elastic moduliare formulated. The solutions are obtained using QR algorithm. Parametric study is carried out tohighlight; the effects of lay-up and ply-angle of the laminates. A limited number of experimentalinvestigafions on cantilever laminates are conducted for obtaining the natural frequenciqs, dampingfactor and frequency responses. The comparison between the theoretical and the experimfntal resultsshows good agreement.

  11. Dual energy CT inspection of a carbon fibre reinforced plastic composite combined with metal components

    Directory of Open Access Journals (Sweden)

    Daniel Vavrik

    2016-11-01

    Full Text Available This work is focused on the inspection of carbon fibre reinforced plastic composites (CFRP combined with metal components. It is well known that the high absorption of metallic parts degrades the quality of radiographic measurements (contrast and causes typical metal artefacts in X-ray computed tomography (CT reconstruction. It will be shown that these problems can be successfully solved utilizing the dual energy CT method (DECT, which is typically used for the material decomposition of complex objects. In other words, DECT can help differentiate object components with a similar overall attenuation or visualise low attenuation components that are next to high attenuation ones. The application of DECT to analyse honeycomb sandwich panels and CFRP parts joined with metal fasteners will be presented in the article.

  12. Development of a slim window frame made of glass fibre reinforced polyester

    DEFF Research Database (Denmark)

    Appelfeld, David; Hansen, Christian Skodborg; Svendsen, Svend

    2010-01-01

    This paper presents the development of an energy efficient window frame made of a glass fibre reinforced polyester (GFRP) material. Three frame proposals were considered. The energy and structural performances of the frames were calculated and compared with wooden and aluminium reference frames....... In order to estimate performances, detailed thermal calculations were performed in four successive steps including solar energy and light transmittance in addition to heat loss and supplemented with a simplified structural calculation of frame load capacity and deflection. Based on these calculations, we...... carried out an analysis of the potential energy savings of the frame. The calculations for a reference office building showed that the heating demand was considerably lower with a window made of GFRP than with the reference frames. It was found that GFRP is suitable for window frames, and windows made...

  13. Gliding arc surface treatment of glass fibre reinforced polyester enhanced by ultrasonic irradiation

    DEFF Research Database (Denmark)

    Kusano, Yukihiro; Singh, Shailendra Vikram; Bardenshtein, Alexander

    2010-01-01

    of approximately 150 dB were introduced vertically to the GFRP surface through a cylindrical waveguide. The water contact angle of the GFRP surface dropped markedly with no ultrasonic irradiation, and tended to decrease furthermore at higher power. Ultrasonic irradiation during the plasma treatment consistently...... onto the surface. In the present work glass fibre reinforced polyester (GFRP) plates are treated using an atmospheric pressure gliding arc discharge with and without ultrasonic irradiation to study adhesion improvement. The gliding arc was generated between divergent electrodes by utilizing...... improved the wettability. The polar component of the surface energy changed from 12 mJ m-2 to approximately 66 - 74 mJ m-2 after the gliding arc treatment, and increased by up to approximately 10 mJ m-2 with ultrasonic irradiation, but showed no significant change at different arc powers. It is seen...

  14. Effect of filler addition on the compressive and impact properties of glass fibre reinforced epoxy

    Indian Academy of Sciences (India)

    Nikhil Gupta; Balraj Singh Brar; Eyassu Woldesenbet

    2001-04-01

    Flyash is incorporated in glass fibre reinforced epoxies to study their response to the filler addition. Low cost of flyash can reduce the overall cost of the component. Only very low volume fractions of filler are investigated in the present study. To obtain further clarification of the observed phenomenon, another abundantly available low cost material, calcium carbonate is incorporated in one set of the specimens. Compressive strength of the material is found to decrease, whereas steep increase in impact strength is observed by introduction of very small quantity of fillers. Specimens containing calcium carbonate are tested for impact properties only. Effect of specimen aspect ratio on the compressive strength values is also studied by testing specimens of three different aspect ratios. Scanning electron microscopic observations are taken to develop a better understanding of the phenomena taking place in the material system at microscopic level.

  15. International RILEM Workshop on Creep Behaviour in Cracked Sections of Fibre Reinforced Concrete

    CERN Document Server

    Llano-Torre, Aitor; Cavalaro, Sergio

    2017-01-01

    This is the first publication ever focusing strictly on the creep behaviour in cracked sections of Fibre Reinforced Concrete (FRC). These proceedings contain the latest scientific papers about new testing methodologies, results and conclusions of multiple experimental campaigns and recommendations about significant factors of long-term behaviour, experiences from more than ten years of creep testing and some reflections about future perspectives on this topic. This book is an essential reference for all researchers of creep behaviour on FRC. This volume is the result of the efforts of the RILEM TC 261-CCF, that has been working since 2014 to develop standardized methodologies and guidelines to compare results from different laboratories and get a better understanding of the significant parameters related to creep of FRC.

  16. Resistance welding of carbon fibre reinforced polyetheretherketone composites using metal mesh and PEI film

    Institute of Scientific and Technical Information of China (English)

    闫久春; 王晓林; 秦明; 赵新英; 杨士勤

    2004-01-01

    Weldability of polyetheretherketone(PEEK) with polyetherimide(PEI) is tested. And carbon fiber reinforced PEEK laminates are resistance welded using stainless steel mesh heating element. The effects of the welding time and welding pressure on the lap shear strength of joints are investigated. Results show that PEEK can heal with PEI well in welding condition and the lap shear strength of PEEK/CF(carbon fibre) joint increases linearly with welding time, but reaches a maximum value when welding pressure ranging from 0.3MPa to 0.5MPa with constant welding time. The fracture characteristics of surface are analyzed by SEM techniques, and four types of fracture modes of lap shear joints are suggested.

  17. Effect of High Velocity Ballistic Impact on Pretensioned Carbon Fibre Reinforced Plastic (CFRP) Plates

    Science.gov (United States)

    Azhar KAMARUDIN, Kamarul; HAMID, Iskandar ABDUL

    2017-01-01

    This work describes an experimental investigation of the pretensioned thin plates made of Carbon Fibre Reinforced Plastic (CFRP) struck by hemispherical and blunt projectiles at various impact velocities. The experiments were done using a gas gun with combination of pretension equipment positioned at the end of gun barrel near the nozzle. Measurements of the initial and residual velocities were taken, and the ballistic limit velocity were calculated for each procedures. The pretension target results in reduction of ballistic limit compared to non-pretension target for both flat and hemispherical projectiles. Target impacted by hemispherical projectile experience split at earlier impact velocity compared to target by flat projectile. C-Scan images analysis technique was used to show target impact damaged by hemispherical and flat projectiles. The damage area was shown biggest at ballistic limit velocity and target splitting occurred most for pretention plate.

  18. Linear and Non-linear Analysis of Fibre Reinforced Plastic Bridge Deck due to Vehicle Loads

    Science.gov (United States)

    Ray, Chaitali; Mandal, Bibekananda

    2015-06-01

    The present work deals with linear and nonlinear static analysis of fibre reinforced plastics composite bridge deck structures using the finite element method. The nonlinear static analysis has been carried out considering geometric nonlinearity. The analysis of bridge deck has been carried out under vehicle load as specified by IRC Class B wheel load classification. The formulation has been carried out using the finite element software package ANSYS 14.0 and the SHELL281 element is used to model the bridge deck. The bridge deck has also been modeled as a plate stiffened with closely spaced hollow box sections and a computer code is developed based on this formulation. The results obtained from the present formulation are compared with those available in the published literature. A parametric study on the stiffened bridge deck has also been carried out with varying dimensions of the stiffeners under vehicle loads.

  19. Mechanical, thermal and microstructural characteristics of cellulose fibre reinforced epoxy/organoclay nanocomposites

    KAUST Repository

    Alamri, H.

    2012-10-01

    Epoxy nanocomposites reinforced with recycled cellulose fibres (RCFs) and organoclay platelets (30B) have been fabricated and investigated in terms of WAXS, TEM, mechanical properties and TGA. Results indicated that mechanical properties generally increased as a result of the addition of nanoclay into the epoxy matrix. The presence of RCF significantly enhanced flexural strength, fracture toughness, impact strength and impact toughness of the composites. However, the inclusion of 1 wt.% clay into RCF/epoxy composites considerably increased the impact strength and toughness. The presence of either nanoclay or RCF accelerated the thermal degradation of neat epoxy, but at high temperature, thermal stability was enhanced with increased char residue over neat resin. The failure micromechanisms and energy dissipative processes in these nanocomposites were discussed in terms of microstructural observations. © 2012 Published by Elsevier Ltd. All rights reserved.

  20. Monitoring of the production quality of fibre-reinforced pressure vessels using acoustic emission testing; Ueberwachung der Fertigungsqualitaet von Faserverbund-Druckbehaeltern mittels Schallemissionspruefung

    Energy Technology Data Exchange (ETDEWEB)

    Duffner, Eric; Gregor, Christian; Bohse, Juergen [BAM Bundesanstalt fuer Materialforschung und -pruefung, Berlin (Germany)

    2011-07-01

    The investigation aimed at the validation of a test method for ensuring the production quality of reinforced-fibre pressure vessels in real fabrication conditions. The method is based on characteristics and permissible limiting values derived from acoustic emission curves during the first pressure test. The method had already been tested successfully on reinforced-fibre pressure vessels with metal liners and had been patented. With the current investigations, the possibility of detection fabrication defects in carbon fibre / glass fibre hybrid pressure vessels with polymer liners was evaluated. For this, fibre-reinforced pressure vessels were monitored by acoustic emission measurement during the first hydraulic pressure test; this test is commonly used for quality assurance of this type of pressure vessel, although without acoustic emission testing. Acoustic emission curves were registered for pressure vessels of a serial production, and the mean characteristics and their scatter were determined as reference values. These were compared with the acoustic emission curves of selectively induced fabrication defects. Fabrication defects are defects that may occur in serial production and are difficult or impossible to detect by conventional quality assurance methods. All investigated pressure vessel were then subject to stress until failure (leakage, bursting). This made it possible to verify the real influence of fabrication defects on the burst pressure and/or the fatigue characteristics of the pressure vessels and to assess the validity of acoustic emission testing. [German] Ziel der Untersuchung ist die Validierung einer Pruefmethodik zur Sicherung der Fertigungsqualitaet von Faserverbund - Druckbehaeltern unter realen Fertigungsbedingungen. Das Verfahren basiert auf Merkmalen und zulaessigen Grenzwerten, die aus Schallemissionsverlaeufen bei der Erstdruckpruefung abgeleitet werden [1]. Die Methodik konnte zuvor bereits erfolgreich an Faserverbund - Druckbehaeltern

  1. Aligned short-fibre reinforced thermosets - Experiments and analysis lend little support for established theory

    Science.gov (United States)

    Piggott, M. R.; Ko, M.; Chuang, H. Y.

    Experiments with epoxy resins reinforced with aligned short carbon fibers give results which disagree sharply with traditional fiber reinforcement theory based on interface yielding and slip and the concept of the critical fiber aspect ratio. Earlier results and evidence from interface studies are therefore reviewed, and it is shown that, as the carbon/polymer interface is brittle, the progressive interface failure process previously envisaged almost certainly does not take place. Furthermore, a careful reading of the sources of data relating to the yielding and slip theory indicates that the evidence in support of it is very weak. Thus, the idea of the critical fiber aspect ratio, borrowed from the metallurgists, may not be appropriate for short-fiber reinforced plastics. Instead, a process involving brittle fiber debonds should be considered. These debonds could trigger matrix cracking and hence explain the anomalously low composite breaking strains observed when the breaking strain of the fiber is greater than that of the polymer, and other properties of aligned short-fiber composites.

  2. Investigating the particle to fibre transition threshold during electrohydrodynamic atomization of a polymer solution

    Energy Technology Data Exchange (ETDEWEB)

    Husain, O.; Lau, W.; Edirisinghe, M.; Parhizkar, M., E-mail: maryam.parhizkar.09@ucl.ac.uk

    2016-08-01

    Electrohydrodynamic atomization (EHDA) is a key research area for producing micro and nano-sized structures. This process can be categorized into two main operating regimes: electrospraying for particle generation and electrospinning for fibre production. Producing particles/fibres of the desired size or morphology depends on two main factors; properties of the polymeric solution used and the processing conditions including flow rate, applied voltage and collection distance. In this work the particle-fibre transition region was analyzed by changing the polymer concentration of PLGA poly (lactic-co-glycolic acid) in acetone between 2 and 25 wt%. Subsequently the processing conditions were adjusted to study the optimum transition parameters. Additionally the EHDA configuration was also modified by adding a metallic plate to observe the deposition area. The diameter and the distance of the plate from the capillary tip were adjusted to investigate variations in particle and fibre morphologies as well. It was found that complete transition from particles to fibres occurs at 20 wt% indicating concentration to be the dominant criterion. Low flow rates yielded fibres without beads. However the applied voltage and distance between the tip of the nozzle jetting the polymer solution and collector (working distance) did not yield definitive results. Reducing the collector distance and increasing applied voltages produces smooth as well as beaded fibres. Addition of a metal plate reduces particle size by ~ 1 μm; the fibre size increases especially with increasing plate diameter while bead density and size reduces when the disc is fixed closer to the capillary tip. Additionally, the deposition area is reduced by 70% and 57% with the addition of metal plates of 30 mm and 60 mm, respectively. The results indicate that a metal plate can be utilized further to tune the particle/fibre size and morphology and this also significantly increases the yield of EHDA process which is

  3. Fatigue fracture of fiber reinforced polymer honeycomb composite sandwich structures for gas turbine engines

    Science.gov (United States)

    Nikhamkin, Mikhail; Sazhenkov, Nikolai; Samodurov, Danil

    2017-05-01

    Fiber reinforced polymer honeycomb composite sandwich structures are commonly used in different industries. In particular, they are used in the manufacture of gas turbine engines. However, fiber reinforced polymer honeycomb composite sandwich structures often have a manufacturing flaw. In theory, such flaws due to their rapid propagation reduce the durability of fiber reinforced polymer honeycomb composite sandwich structures. In this paper, bending fatigue tests of fiber reinforced polymer honeycomb composite sandwich structures with manufacturing flaws were conducted. Comparative analysis of fatigue fracture of fiber reinforced polymer honeycomb composite sandwich specimens was conducted before and after their bending fatigue tests. The analysis was based on the internal damage X-ray observation of fiber reinforced polymer honeycomb composite sandwich specimens.

  4. New generation fiber reinforced polymer composites incorporating carbon nanotubes

    Science.gov (United States)

    Soliman, Eslam

    The last five decades observed an increasing use of fiber reinforced polymer (FRP) composites as alternative construction materials for aerospace and infrastructure. The high specific strength of FRP attracted its use as non-corrosive reinforcement. However, FRP materials were characterized with a relatively low ductility and low shear strength compared with steel reinforcement. On the other hand, carbon nanotubes (CNTs) have been introduced in the last decade as a material with minimal defect that is capable of increasing the mechanical properties of polymer matrices. This dissertation reports experimental investigations on the use of multi-walled carbon nanotubes (MWCNTs) to produce a new generation of FRP composites. The experiments showed significant improvements in the flexure properties of the nanocomposite when functionalized MWCNTs were used. In addition, MWCNTs were used to produce FRP composites in order to examine static, dynamic, and creep behavior. The MWCNTs improved the off-axis tension, off-axis flexure, FRP lap shear joint responses. In addition, they reduced the creep of FRP-concrete interface, enhanced the fracture toughness, and altered the impact resistance significantly. In general, the MWCNTs are found to affect the behaviour of the FRP composites when matrix failure dominates the behaviour. The improvement in the mechanical response with the addition of low contents of MWCNTs would benefit many industrial and military applications such as strengthening structures using FRP composites, composite pipelines, aircrafts, and armoured vehicles.

  5. Tungsten disulfide nanotubes reinforced biodegradable polymers for bone tissue engineering.

    Science.gov (United States)

    Lalwani, Gaurav; Henslee, Allan M; Farshid, Behzad; Parmar, Priyanka; Lin, Liangjun; Qin, Yi-Xian; Kasper, F Kurtis; Mikos, Antonios G; Sitharaman, Balaji

    2013-09-01

    In this study, we have investigated the efficacy of inorganic nanotubes as reinforcing agents to improve the mechanical properties of poly(propylene fumarate) (PPF) composites as a function of nanomaterial loading concentration (0.01-0.2 wt.%). Tungsten disulfide nanotubes (WSNTs) were used as reinforcing agents in the experimental group. Single- and multi-walled carbon nanotubes (SWCNTs and MWCNTs) were used as positive controls, and crosslinked PPF composites were used as the baseline control. Mechanical testing (compression and three-point bending) shows a significant enhancement (up to 28-190%) in the mechanical properties (compressive modulus, compressive yield strength, flexural modulus and flexural yield strength) of WSNT-reinforced PPF nanocomposites compared to the baseline control. In comparison to the positive controls, significant improvements in the mechanical properties of WSNT nanocomposites were also observed at various concentrations. In general, the inorganic nanotubes (WSNTs) showed mechanical reinforcement better than (up to 127%) or equivalent to that of carbon nanotubes (SWCNTs and MWCNTs). Sol fraction analysis showed significant increases in the crosslinking density of PPF in the presence of WSNTs (0.01-0.2 wt.%). Transmission electron microscopy (TEM) analysis on thin sections of crosslinked nanocomposites showed the presence of WSNTs as individual nanotubes in the PPF matrix, whereas SWCNTs and MWCNTs existed as micron-sized aggregates. The trend in the surface area of nanostructures obtained by Brunauer-Emmett-Teller (BET) surface area analysis was SWCNTs>MWCNTs>WSNTs. The BET surface area analysis, TEM analysis and sol fraction analysis results taken together suggest that chemical composition (inorganic vs. carbon nanomaterials), the presence of functional groups (such as sulfide and oxysulfide) and individual dispersion of the nanomaterials in the polymer matrix (absence of aggregation of the reinforcing agent) are the key parameters

  6. The reinforcement effect of polyethylene fibre and composite impregnated glass fibre on fracture resistance of endodontically treated teeth: An in vitro study

    Directory of Open Access Journals (Sweden)

    Archana Luthria

    2012-01-01

    Full Text Available Aim: The aim of this study was to evaluate the fracture resistance of endodontically treated maxillary premolars with wide mesio-occluso-distal (MOD cavities restored with either composite resin, or composite resin reinforced with different types of fibres. Materials and Methods: Fifty human maxillary premolars were selected. Five intact teeth served as positive controls. Endodontic therapy was carried out in the remaining forty-five teeth. Standardized MOD cavities were prepared in all the teeth. The teeth were restored with a nanocomposite using an incremental technique. These forty five teeth were randomly divided into three experimental groups (Group A, B and C (n = 15. The teeth in Group A did not undergo any further procedures. The teeth in Group B and C were reinforced with composite impregnated glass fibre and polyethylene fibre, respectively. Fracture resistance was measured in Newtons (N. Results: The positive controls showed the highest mean fracture resistance (811.90 N, followed by Group B (600.49N, Group A (516.96N and Group C (514.64N, respectively. One Way analysis of variance (ANOVA test revealed a statistically significant difference between all the groups (P = 0.001. Post-hoc Tukey test revealed a moderately significant difference (P = 0.034 between Control and Group B, and a strongly significant difference between Control and Group A (P = 0.002, and Control and Group C (P = 0.001. Conclusions: Endodontic therapy and MOD cavity preparation significantly reduced the fracture resistance of endodontically treated maxillary premolars (P = 0.001. No statistically significant difference was found between the experimental groups (Group A, B and C (P > 0.1. However, the fracture resistance of the composite impregnated glass fibre reinforced group was much higher than the others.

  7. Strengthening reinforced concrete beams using prestressed glass fiber-reinforced polymer-Part Ⅰ: Experimental study

    Institute of Scientific and Technical Information of China (English)

    HUANG Yue-lin; WU Jong-hwei; YEN Tsong; HUNG Chien-hsing; LIN Yiching

    2005-01-01

    This work is aimed at studying the strengthening of reinforced concrete (R. C.) beams using prestressed glass fiber-reinforced polymer (PGFRP). Carbon fiber-reinforced polymer (CFRP) has recently become popular for use as repair or rehabilitation material for deteriorated R. C. structures, but because CFRP material is very stiff, the difference in CFRP sheet and concrete material properties is not favorable for transferring the prestress from CFRP sheets to R. C. members. Glass fiber-reinforced polymer (GFRP) sheets with Modulus of Elasticity quite close to that of concrete was chosen in this study. The load-carrying capacities (ultimate loads) and the deflections of strengthened R. C. beams using GFRP and PGFRP sheets were tested and compared. T- and ⊥-shaped beams were used as the under-strengthened and over-strengthened beams. The GFRP sheets were prestressed to one-half their tensile capacities before being bonded to the T- and l-shaped R. C. beams. The prestressed tension in the PGFRP sheets caused cambers in the R. C. beams without cracks on the tensile faces. The PGFRP sheets also enhanced the load-carrying capacity. The test results indicated that T-shaped beams with GFRP sheets increased in load-carrying capacity by 55% while the same beams with PGFRP sheets could increase load-carrying capacity by 100%. The ⊥-shaped beams with GFRP sheets could increase load-carrying capacity by 97% while the same beams with PGFRP sheets could increase the loading-carrying capacity by 117%. Under the same external loads, beams with GFRP sheets underwent larger deflections than beams with PGFRP sheets. While GFRP sheets strengthen R. C. beams, PGFRP sheets decrease the beams' ductility, especially for the over-strengthened beams (⊥-shaped beams).

  8. Studies on natural fiber reinforced polymer matrix composites

    Science.gov (United States)

    Patel, R. H.; Kapatel, P. M.; Machchhar, A. D.; Kapatel, Y. A.

    2016-05-01

    Natural fiber reinforced composites show increasing importance in day to days applications because of their low cost, lightweight, easy availability, non-toxicity, biodegradability and environment friendly nature. But these fibers are hydrophilic in nature. Thus they have very low reactivity and poor compatibility with polymers. To overcome these limitations chemical modifications of the fibers have been carried out. Therefore, in the present work jute fibers have chemically modified by treating with sodium hydroxide (NaOH) solutions. These treated jute fibers have been used to fabricate jute fiber reinforced epoxy composites. Mechanical properties like tensile strength, flexural strength and impact strength have been found out. Alkali treated composites show better properties compare to untreated composites.

  9. Mechanical and thermal properties of polylactic acid composites reinforced with cellulose nanoparticles extracted from kenaf fibre

    Science.gov (United States)

    Ketabchi, Mohammad Reza; Khalid, Mohammad; Thevy Ratnam, Chantara; Walvekar, Rashmi

    2016-12-01

    Different approaches have been attempted to use biomass as filler for production of biodegradable polymer composites. In this study, cellulose nanoparticles (CNP) extracted from kenaf fibres were used to produce polylactic acid (PLA) based biodegradable nanocomposites. CNP concentration was varied from 1-5 wt. % and blended with PLA using Brabender twin-screw compounder. Effects of CNP loading on the mechanical, thermal and dynamic properties of PLA were investigated. Studies on the morphological properties and influence of CNP loading on the properties of CNP/PLA nanocomposite were also conducted. The results show an adequate compatibility between CNP and PLA matrix. Moreover, addition of 3 wt. % of CNP improved the PLA tensile strength by 25%.

  10. Composite Strain Hardening Properties of High Performance Hybrid Fibre Reinforced Concrete

    Directory of Open Access Journals (Sweden)

    Vikram Jothi Jayakumar

    2014-01-01

    Full Text Available Hybrid fibres addition in concrete proved to be a promising method to improve the composite mechanical properties of the cementitious system. Fibre combinations involving different fibre lengths and moduli were added in high strength slag based concrete to evaluate the strain hardening properties. Influence of hybrid fibres consisting of steel and polypropylene fibres added in slag based cementitious system (50% CRL was explored. Effects of hybrid fibre addition at optimum volume fraction of 2% of steel fibres and 0.5% of PP fibres (long and short steel fibre combinations were observed in improving the postcrack strength properties of concrete. Test results also indicated that the hybrid steel fibre additions in slag based concrete consisting of short steel and polypropylene (PP fibres exhibited a the highest compressive strength of 48.56 MPa. Comparative analysis on the performance of monofibre concrete consisting of steel and PP fibres had shown lower residual strength compared to hybrid fibre combinations. Hybrid fibres consisting of long steel-PP fibres potentially improved the absolute and residual toughness properties of concrete composite up to a maximum of 94.38% compared to monofibre concrete. In addition, the relative performance levels of different hybrid fibres in improving the matrix strain hardening, postcrack toughness, and residual strength capacity of slag based concretes were evaluated systematically.

  11. Effects of moisture on glass fiber-reinforced polymer composites

    DEFF Research Database (Denmark)

    Alzamora Guzman, Vladimir Joel; Brøndsted, Povl

    2015-01-01

    performance of wind turbine blades over their lifetime. Here, environmental moisture conditions were simulated by immersing glass fiber-reinforced polymer specimens in salt water for a period of up to 8 years. The mechanical properties of specimens were analyzed before and after immersion to evaluate...... the degradation mechanisms. Single-fiber tensile testing was also performed at different moisture conditions. The water-diffusion mechanism was studied to quantify the diffusion coefficients as a function of salt concentration, sample geometry, and fiber direction. Three degradation mechanisms were observed...

  12. Shear strengthening of pre-damaged reinforced concrete beams with carbon fiber reinforced polymer sheet strips

    Institute of Scientific and Technical Information of China (English)

    Feras ALZOUBI; ZHANG Qi; LI Zheng-liang

    2007-01-01

    This paper presents the results of an experimental investigation on the response of pre-damaged reinforced concrete (RC) beam strengthened in shear using applied-epoxy unidirectional carbon fiber reinforced polymer (CFRP) sheet. The reasearch included four test rectangular simply supported RC beams in shear capacity. One is the control beam, two RC beams are damaged to a predetermined degree from ultimate shear capacity of the control beam, and the last beam is left without pre-damaged and then strengthened with using externally bonded carbon fiber reinforced polymer to upgrade their shear capacity. We focused on the damage degree to beams during strengthening, therefore, only the beams with side-bonded CFRPs strips and horizontal anchored strips were used. The results show the feasibility of using CFRPs to restore or increase the load-carrying capacity in the shear of damaged RC beams. The failure mode of all the CFRP-strengthened beams is debonding of CFRP vertical strips. Two prediction available models in ACI-440 and fib European code were compared with the experimental results.

  13. Reinfiltration processes for polymer derived fiber reinforced ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Duran, A. [CSIC, Madrid (Spain). Inst. de Ceramica y Vidrio; Aparicio, M. [CSIC, Madrid (Spain). Inst. de Ceramica y Vidrio; Rebstock, K. [Daimler-Benz Aerospace AG, Friedrichshafen (Germany). Dornier Forschung; Vogel, W.D. [Daimler-Benz Aerospace AG, Friedrichshafen (Germany). Dornier Forschung

    1997-06-01

    Ceramic matrix composites (CMCs) are candidate materials for applications like reentry heat-shields for spacecrafts or turbine parts for aircrafts. Taylored mechanical properties, improved oxidation resistance and environmental stability are very important for these materials. To improve the performance of liquid polymer derived ceramic matrix composites (LPI-CMCs), different techniques for reducing porosity by reinfiltration are discussed. Reinfiltration processes have been performed on a carbon fiber reinforced SiC ceramic, using injection of suitable polymers and sol-gel sols. It has been demonstrated that both methods can reduce the porosity and increase the mechanical properties. Different parameters have been controlled including impregnation pressures and times, heat curing and initial porosity of the substrates as well as composition, viscosity and concentration of the infiltrating solution. The infiltrated samples were characterized by Hg porosimetry, interlaminar shear strength and SEM as well as by oxidation tests. (orig.)

  14. Enhanced toughness and stable crack propagation in a novel tungsten fibre-reinforced tungsten composite produced by chemical vapour infiltration

    Science.gov (United States)

    Riesch, J.; Höschen, T.; Linsmeier, Ch; Wurster, S.; You, J.-H.

    2014-04-01

    Tungsten is a promising candidate for the plasma-facing components of a future fusion reactor, but its use is strongly restricted by its inherent brittleness. An innovative concept to overcome this problem is tungsten fibre-reinforced tungsten composite. In this paper we present the first mechanical test of such a composite material using a sample containing multiple fibres. The in situ fracture experiment was performed in a scanning electron microscope for close observation of the propagating crack. Stable crack propagation accompanied with rising load bearing capacity is observed. The fracture toughness is estimated using the test results and the surface observation.

  15. Effect of inter-laminar fibre orientation on the tensile properties of sisal fibre reinforced polyester composites

    Science.gov (United States)

    Senthilkumar, K.; Siva, I.; Winowlin Jappes, J. T.; Amico, S. C.; Cardona, F.; Sultan, M. T. H.

    2016-10-01

    In this present work, effects of interlamina fibre orientation on the tensile properties of composites were studied and the results were discussed. The varying types of fibre oriented composites were prepared using the compression moulding technique at a pressure of 17 MPa. The different types of oriented composites investigated were 90°/0 ° /90 °, 0 ° /90 ° /0 °, 90 ° /0 ° /0 ° /90 °, 0 ° /45 ° /0 °, 0 ° /90 ° /45 ° /45 ° /90 ° /0 °, 0 ° /45 ° /90 ° /90 ° /45 ° /0 ° and these composites were subjected to tensile testing according to ASTM: D3039-08. The sisal fibres were arranged in various angles with the help of specially designed mould. It was found that the tensile strength of sisal fibre composites improved when 0 ° oriented fibres were positioned at the extreme layers of the composites compared to 90 ° oriented fibres. The highest tensile strength among the types of composites was observed for 0 ° /90 ° /0 °. The scanning electron microscopy (SEM) analysis was performed to understand the interphase adhesion mechanism.

  16. Analysis of glass fibre sizing

    DEFF Research Database (Denmark)

    Petersen, Helga Nørgaard; Kusano, Yukihiro; Brøndsted, Povl

    2014-01-01

    Glass fibre reinforced polymer composites are widely used for industrial and engineering applications which include construction, aerospace, automotive and wind energy industry. During the manufacturing glass fibres, they are surface-treated with an aqueous solution. This process and the treated...... surfaces are called sizing. The sizing influences the properties of the interface between fibres and a matrix, and subsequently affects mechanical properties of composites. In this work the sizing of commercially available glass fibres was analysed so as to study the composition and chemical structures....... Soxhlet extraction was used to extract components of the sizing from the glass fibres. The glass fibres, their extracts and coated glass plates were analysed by Thermo-Gravimetric Analysis combined with a mass spectrometer (TGA-MS), and Attenuated Total Reflectance Fourier Transform Infrared (ATR...

  17. Chopped basalt fibres: A new perspective in reinforcing poly(lactic acid to produce injection moulded engineering composites from renewable and natural resources

    Directory of Open Access Journals (Sweden)

    P. Tamas

    2013-02-01

    Full Text Available This paper focuses on the reinforcing of Poly(lactic acid with chopped basalt fibres by using silane treated and untreated basalt fibres. Composite materials with 5–10–15–20–30–40 wt% basalt fibre contents were prepared from silane sized basalt fibres using extrusion, and injection moulding, while composites with 5–10–15 wt% basalt fibre contents were also prepared by using untreated basalt fibres as control. The properties of the injection moulded composites were extensively examined by using quasi-static (tensile, three-point bending and dynamic mechanical tests (notched and unnotched Charpy impact tests, dynamic mechanical analysis (DMA, differential scanning calorimetry (DSC, heat deflection temperature (HDT analysis, dimensional stability test, as well as melt flow index (MFI analysis and scanning electron microscopic (SEM observations. It was found that silane treated chopped basalt fibres are much more effective in reinforcing Poly(lactic acid than natural fibres; although basalt fibres are not biodegradable but they are still considered as natural (can be found in nature in the form of volcanic rocks and biologically inert. It is demonstrated in this paper that by using basalt fibre reinforcement, a renewable and natural resource based composite can be produced by injection moulding with excellent mechanical properties suitable even for engineering applications. Finally it was shown that by using adequate drying of the materials, composites with higher mechanical properties can be achieved compared to literature data.

  18. Reinforcement of bacterial cellulose aerogels with biocompatible polymers.

    Science.gov (United States)

    Pircher, N; Veigel, S; Aigner, N; Nedelec, J M; Rosenau, T; Liebner, F

    2014-10-13

    Bacterial cellulose (BC) aerogels, which are fragile, ultra-lightweight, open-porous and transversally isotropic materials, have been reinforced with the biocompatible polymers polylactic acid (PLA), polycaprolactone (PCL), cellulose acetate (CA), and poly(methyl methacrylate) (PMMA), respectively, at varying BC/polymer ratios. Supercritical carbon dioxide anti-solvent precipitation and simultaneous extraction of the anti-solvent using scCO2 have been used as core techniques for incorporating the secondary polymer into the BC matrix and to convert the formed composite organogels into aerogels. Uniaxial compression tests revealed a considerable enhancement of the mechanical properties as compared to BC aerogels. Nitrogen sorption experiments at 77K and scanning electron micrographs confirmed the preservation (or even enhancement) of the surface-area-to-volume ratio for most of the samples. The formation of an open-porous, interpenetrating network of the second polymer has been demonstrated by treatment of BC/PMMA hybrid aerogels with EMIM acetate, which exclusively extracted cellulose, leaving behind self-supporting organogels.

  19. Reinforcement of bacterial cellulose aerogels with biocompatible polymers

    Science.gov (United States)

    Pircher, N.; Veigel, S.; Aigner, N.; Nedelec, J.M.; Rosenau, T.; Liebner, F.

    2014-01-01

    Bacterial cellulose (BC) aerogels, which are fragile, ultra-lightweight, open-porous and transversally isotropic materials, have been reinforced with the biocompatible polymers polylactic acid (PLA), polycaprolactone (PCL), cellulose acetate (CA), and poly(methyl methacrylate) (PMMA), respectively, at varying BC/polymer ratios. Supercritical carbon dioxide anti-solvent precipitation and simultaneous extraction of the anti-solvent using scCO2 have been used as core techniques for incorporating the secondary polymer into the BC matrix and to convert the formed composite organogels into aerogels. Uniaxial compression tests revealed a considerable enhancement of the mechanical properties as compared to BC aerogels. Nitrogen sorption experiments at 77 K and scanning electron micrographs confirmed the preservation (or even enhancement) of the surface-area-to-volume ratio for most of the samples. The formation of an open-porous, interpenetrating network of the second polymer has been demonstrated by treatment of BC/PMMA hybrid aerogels with EMIM acetate, which exclusively extracted cellulose, leaving behind self-supporting organogels. PMID:25037381

  20. Spatially confined polymer chains: implications of chromatin fibre flexibility and peripheral anchoring on telomere telomere interaction

    Science.gov (United States)

    Gehlen, L. R.; Rosa, A.; Klenin, K.; Langowski, J.; Gasser, S. M.; Bystricky, K.

    2006-04-01

    We simulate the extension of spatially confined chromatin fibres modelled as polymer chains and examine the effect of the flexibility of the fibre and its degree of freedom. The developed formalism was used to analyse experimental data of telomere-telomere distances in living yeast cells in the absence of confining factors as identified by the proteins Sir4 and yKu70. Our analysis indicates that intrinsic properties of the chromatin fibre, in particular its elastic properties and flexibility, can influence the juxtaposition of the telomeric ends of chromosomes. However, measurements in intact yeast cells showed that the telomeres of chromosomes 3 and 6 come even closer together than the parameters of constraint imposed on the simulations would predict. This juxtaposition was specific to telomeres on one contiguous chromosome and overrode a tendency for separation that is imposed by anchoring.

  1. Individual fibre segmentation from 3D X-ray computed tomography for characterising the fibre orientation in unidirectional composite materials

    DEFF Research Database (Denmark)

    Emerson, Monica Jane; Jespersen, Kristine Munk; Dahl, Anders Bjorholm

    2017-01-01

    The aim of this paper is to characterise the fibre orientation in unidirectional fibre reinforced polymers, namely glass and carbon fibre composites. The compression strength of the composite is related to the orientation of the fibres. Thus the orientation is essential when designing materials...... for wind turbine blades. The calculation of the fibre orientation distribution is based on segmenting the individual fibres from volumes that have been acquired through X-ray tomography. The segmentation method presented in this study can accurately extract individual fibres from low contrast X-ray scans...... of composites with high fibre volume fraction. From the individual fibre orientations, it is possible to obtain results which are independent of the scanning quality. The compression strength for both composites is estimated from the average fibre orientations and is found to be of the same order of magnitude...

  2. POLYMER COMPOSITES MODIFIED BY WASTE MATERIALS CONTAINING WOOD FIBRES

    Directory of Open Access Journals (Sweden)

    Bernardeta Dębska

    2016-11-01

    Full Text Available In recent years, the idea of sustainable development has become one of the most important require-ments of civilization. Development of sustainable construction involves the need for the introduction of innovative technologies and solutions that will combine beneficial economic effects with taking care of the health and comfort of users, reducing the negative impact of the materials on the environment. Composites obtained from the use of waste materials are part of these assumptions. These include modified epoxy mortar containing waste wood fibres, described in this article. The modification consists in the substitution of sand by crushed waste boards, previously used as underlays for panels, in quantities of 0%, 10%, 20%, 35% and 50% by weight, respectively. Composites containing up to 20% of the modifier which were characterized by low water absorption, and good mechanical properties, also retained them after the process of cyclic freezing and thawing.

  3. 3D printed sensing patches with embedded polymer optical fibre Bragg gratings

    Science.gov (United States)

    Zubel, Michal G.; Sugden, Kate; Saez-Rodriguez, D.; Nielsen, K.; Bang, O.

    2016-05-01

    The first demonstration of a polymer optical fibre Bragg grating (POFBG) embedded in a 3-D printed structure is reported. Its cyclic strain performance and temperature characteristics are examined and discussed. The sensing patch has a repeatable strain sensitivity of 0.38 pm/μepsilon. Its temperature behaviour is unstable, with temperature sensitivity values varying between 30-40 pm/°C.

  4. Vibration strength of squeeze cast aluminium components with and without fibre reinforcement. Pt. 1. Schwingfestigkeit von fluessiggepressten Aluminiumbauteilen mit und ohne Faserverstaerkung. T. 1

    Energy Technology Data Exchange (ETDEWEB)

    Heuler, P. (Industrieanlagen-Betriebsgesellschaft mbH (IABG), Ottobrunn (Germany))

    1992-05-01

    The essentials of squeeze casting and spects of light metal reinforcement with ceramic fibres are described. A vehicle chassis component and disks cast separately for material sampling are used to discuss strength properties of squeeze cast components with and without fibre reinforcement. It was shown that for technological reasons it is not possible to assume that strength properties of a material sample apply to the component as well. (orig.).

  5. A Dual Sensor for pH and Hydrogen Peroxide Using Polymer-Coated Optical Fibre Tips

    Directory of Open Access Journals (Sweden)

    Malcolm S. Purdey

    2015-12-01

    Full Text Available This paper demonstrates the first single optical fibre tip probe for concurrent detection of both hydrogen peroxide (H2O2 concentration and pH of a solution. The sensor is constructed by embedding two fluorophores: carboxyperoxyfluor-1 (CPF1 and seminaphtharhodafluor-2 (SNARF2 within a polymer matrix located on the tip of the optical fibre. The functionalised fibre probe reproducibly measures pH, and is able to accurately detect H2O2 over a biologically relevant concentration range. This sensor offers potential for non-invasive detection of pH and H2O2 in biological environments using a single optical fibre.

  6. SH-Wave at a Plane Interface between Homogeneous and Inhomogeneous Fibre-Reinforced Elastic Half-Spaces

    Directory of Open Access Journals (Sweden)

    C. Zorammuana

    2015-01-01

    Full Text Available The problem of reflection and refraction of SH-waves at a plane interface between the homogeneous and inhomogeneous fibre-reinforced elastic half-spaces has been investigated. Amplitude and energy ratios corresponding to the reflected and refracted SH-waves are derived using appropriate boundary conditions. These ratios are computed numerically for a particular model and the results are depicted graphically.

  7. Effect of pMDI isocyanate additive on mechanical and thermal properties of Kenaf fibre reinforced thermoplastic polyurethane composites

    Indian Academy of Sciences (India)

    Y A El-Shekeil; S M Sapuan; K Abdan; E S Zainudin; O M Al-Shuja’a

    2012-12-01

    The effect of polymeric methylene diphenyl diisocyanate (pMDI) on mechanical and thermal properties of Kenaf fibre (KF) reinforced thermoplastic polyurethane (TPU) composites was studied. Various percentages viz. 2%, 4% and 6%, were studied. The composites were characterized by using tensile testing, thermogravimetric analysis (TG), differential scanning calorimetry (DSC) and fourier transform infrared spectroscopy (FTIR). It was noticed that the addition of pMDI 2%, 4%and 6% did not induce a better tensile nor thermal properties.

  8. Adsorption of dyes by ACs prepared from waste tyre reinforcing fibre. Effect of texture, surface chemistry and pH.

    Science.gov (United States)

    Acevedo, Beatriz; Rocha, Raquel P; Pereira, Manuel F R; Figueiredo, José L; Barriocanal, Carmen

    2015-12-01

    This paper compares the importance of the texture and surface chemistry of waste tyre activated carbons in the adsorption of commercial dyes. The adsorption of two commercial dyes, Basic Astrazon Yellow 7GLL and Reactive Rifafix Red 3BN on activated carbons made up of reinforcing fibres from tyre waste and low-rank bituminous coal was studied. The surface chemistry of activated carbons was modified by means of HCl-HNO3 treatment in order to increase the number of functional groups. Moreover, the influence of the pH on the process was also studied, this factor being of great importance due to the amphoteric characteristics of activated carbons. The activated carbons made with reinforcing fibre and coal had the highest SBET, but the reinforcing fibre activated carbon samples had the highest mesopore volume. The texture of the activated carbons was not modified upon acid oxidation treatment, unlike their surface chemistry which underwent considerable modification. The activated carbons made with a mixture of reinforcing fibre and coal experienced the largest degree of oxidation, and so had more acid surface groups. The adsorption of reactive dye was governed by the mesoporous volume, whilst surface chemistry played only a secondary role. However, the surface chemistry of the activated carbons and dispersive interactions played a key role in the adsorption of the basic dye. The adsorption of the reactive dye was more favored in a solution of pH 2, whereas the basic dye was adsorbed more easily in a solution of pH 12. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. Effects of Rotation and Gravity Field on Surface Waves in Fibre-Reinforced Thermoelastic Media under Four Theories

    Directory of Open Access Journals (Sweden)

    A. M. Abd-Alla

    2013-01-01

    Full Text Available Estimation is done to investigate the gravitational and rotational parameters effects on surface waves in fibre-reinforced thermoelastic media. The theory of generalized surface waves has been firstly developed and then it has been employed to investigate particular cases of waves, namely, Stoneley waves, Rayleigh waves, and Love waves. The analytical expressions for surface waves velocity and attenuation coefficient are obtained in the physical domain by using the harmonic vibrations and four thermoelastic theories. The wave velocity equations have been obtained in different cases. The numerical results are given for equation of coupled thermoelastic theory (C-T, Lord-Shulman theory (L-S, Green-Lindsay theory (G-L, and the linearized (G-N theory of type II. Comparison was made with the results obtained in the presence and absence of gravity, rotation, and parameters for fibre-reinforced of the material media. The results obtained are displayed by graphs to clear the phenomena physical meaning. The results indicate that the effect of gravity, rotation, relaxation times, and parameters of fibre-reinforced of the material medium is very pronounced.

  10. Mechanical properties and fire retardancy of bidirectional reinforced composite based on biodegradable starch resin and basalt fibres

    Directory of Open Access Journals (Sweden)

    2008-11-01

    Full Text Available Environmental problems caused by extensive use of polymeric materials arise mainly due to lack of landfill space and depletion of finite natural resources of fossil raw materials, such as petroleum or natural gas. The substitution of synthetic petroleum-based resins with natural biodegradable resins appears to be one appropriate measure to remedy the above-mentioned situation. This study presents the development of a composite that uses environmentally degradable starch-based resin as matrix and basalt fibre plain fabric as reinforcement. Prepreg sheets were manufactured by means of a modified doctor blade system and a hot power press. The sheets were used to manufacture bidirectional-reinforced specimens with fibre volume contents ranging from 33 to 61%. Specimens were tested for tensile and flexural strength, and exhibited values of up to 373 and 122 MPa, respectively. Through application of silane coupling agents to the reinforcement fibres, the flexural composite properties were subsequently improved by as much as 38%. Finally, in order to enhance the fire retardancy and hence the applicability of the composite, fire retardants were applied to the resin, and their effectiveness was tested by means of flame rating (according to UL 94 and thermogravimetric analysis (TGA, respectively.

  11. Comparison of traditional field retting and Phlebia radiata Cel 26 retting of hemp fibres for fibre-reinforced composites

    DEFF Research Database (Denmark)

    Liu, Ming; Ale, Marcel Tutor; Kołaczkowski, Bartłomiej

    2017-01-01

    Classical field retting and controlled fungal retting of hemp using Phlebia radiata Cel 26 (a mutant with low cellulose degrading ability) were compared with pure pectinase treatment with regard to mechanical properties of the produced fibre/epoxy composites. For field retting a classification...... was obtained using P. radiata Cel 26 compared to 248 MPa with field retting....

  12. Nondestructive testing of externally reinforced structures for seismic retrofitting using flax fiber reinforced polymer (FFRP) composites

    Science.gov (United States)

    Ibarra-Castanedo, C.; Sfarra, S.; Paoletti, D.; Bendada, A.; Maldague, X.

    2013-05-01

    Natural fibers constitute an interesting alternative to synthetic fibers, e.g. glass and carbon, for the production of composites due to their environmental and economic advantages. The strength of natural fiber composites is on average lower compared to their synthetic counterparts. Nevertheless, natural fibers such as flax, among other bast fibers (jute, kenaf, ramie and hemp), are serious candidates for seismic retrofitting applications given that their mechanical properties are more suitable for dynamic loads. Strengthening of structures is performed by impregnating flax fiber reinforced polymers (FFRP) fabrics with epoxy resin and applying them to the component of interest, increasing in this way the load and deformation capacities of the building, while preserving its stiffness and dynamic properties. The reinforced areas are however prompt to debonding if the fabrics are not mounted properly. Nondestructive testing is therefore required to verify that the fabric is uniformly installed and that there are no air gaps or foreign materials that could instigate debonding. In this work, the use of active infrared thermography was investigated for the assessment of (1) a laboratory specimen reinforced with FFRP and containing several artificial defects; and (2) an actual FFRP retrofitted masonry wall in the Faculty of Engineering of the University of L'Aquila (Italy) that was seriously affected by the 2009 earthquake. Thermographic data was processed by advanced signal processing techniques, and post-processed by computing the watershed lines to locate suspected areas. Results coming from the academic specimen were compared to digital speckle photography and holographic interferometry images.

  13. Strengthening of Corrosion-Damaged Reinforced Concrete Beams with Glass Fiber Reinforced Polymer Laminates

    Directory of Open Access Journals (Sweden)

    A. L. Rose

    2009-01-01

    Full Text Available Problem statement: This study showed the results of an experimental investigation on the strengthening of corrosion damaged reinforced concrete beams with unidirectional cloth glass fiber reinforced polymer (UDCGFRP laminates. Approach: All the beam specimens 150×250×3000 mm were cast and tested for the present investigation. One beam specimen was neither corroded nor strengthened to serve as a reference. Two beams were corroded to serve as a corroded control. A reinforcement mass loss of approximately 10 and 25% were used to define medium and severe degrees of corrosion. The remaining two beams corroded and strengthened with GFRP. Results: The test parameters included first crack load, first crack deflection, yield load, yield deflection, service load, service deflection, ultimate load and ultimate deflection. Based on the results it was found that GFRP Laminates had beneficial effects even at the corrosion-damaged stage. Conclusion/Recommendations: The UDCGFRP laminated beams showed distinct enhancement in ultimate strength and ductility by 72.37 and 49.49% respectively.

  14. Average Frequency – RA Value for Reinforced Concrete Beam Strengthened with Carbon Fibre Sheet

    Directory of Open Access Journals (Sweden)

    Mohamad M. Z.

    2016-01-01

    Full Text Available Acoustic Emission (AE is one of the tools that can be used to detect the crack and to classify the type of the crack of reinforced concrete (RC structure. Dislocation or movement of the material inside the RC may release the transient elastic wave. In this situation, AE plays important role whereby it can be used to capture the transient elastic wave and convert it into AE parameters such as amplitude, count, rise time and duration. Certain parameter can be used directly to evaluate the crack behavior. But in certain cases, the AE parameter needs to add and calculate by using related formula in order to observe the behavior of the crack. Using analysis of average frequency and RA value, the crack can be classified into tensile or shear cracks. In this study, seven phases of increasing static load were used to observe the crack behavior. The beams were tested in two conditions. For the first condition, the beams were tested in original stated without strengthened with carbon fibre sheet (CFS at the bottom of the beam or called as tension part of the beam. For the second condition, the beams were strengthened with CFS at the tension part of the beam. It was found that, beam wrapped with CFS enhanced the strength of the beams in term of maximum ultimate load. Based on the relationship between average frequency (AF and RA value, the cracks of the beams can be classified.

  15. Flame Retardancy of Carbon Fibre Reinforced Sorbitol Based Bioepoxy Composites with Phosphorus-Containing Additives

    Directory of Open Access Journals (Sweden)

    Andrea Toldy

    2017-04-01

    Full Text Available Carbon fibre reinforced flame-retarded bioepoxy composites were prepared from commercially available sorbitol polyglycidyl ether (SPE cured with cycloaliphatic amine hardener. Samples containing 1, 2, and 3% phosphorus (P were prepared using additive type flame retardants (FRs resorcinol bis(diphenyl phosphate (RDP, ammonium polyphosphate (APP, and their combinations. The fire performance of the composites was investigated by limiting oxygen index (LOI, UL-94 tests, and mass loss calorimetry. The effect of FRs on the glass transition temperature, and storage modulus was evaluated by dynamic mechanical analysis (DMA, while the mechanical performance was investigated by tensile, bending, and interlaminar shear measurements, as well as by Charpy impact test. In formulations containing both FRs, the presence of RDP, acting mainly in gas phase, ensured balanced gas and solid-phase mechanism leading to best overall fire performance. APP advantageously compensated the plasticizing (storage modulus and glass transition temperature decreasing effect of RDP in combined formulations; furthermore, it led to increased tensile strength and Charpy impact energy.

  16. A composite-appropriate integration method of thick functional components in fibre-reinforced plastics

    Science.gov (United States)

    Filippatos, A.; Höhne, R.; Kliem, M.; Gude, M.

    2016-03-01

    The use of integrated structural health monitoring systems for critical composite parts, such as wind turbine blades, fuselage and wing parts, is an promising approach to guarantee a safe and efficient operational lifetime of such components. Therefore, the integration of thick functional components like sensors, actuators and electronic components is often necessary. An optimal integration of such components should be ensured without material imperfections in the composite structure, i.e. voids and resin rich areas, and failure of the functional components. In this paper, first investigations were undertaken for a basic understanding of the mechanical performance of a fibre reinforced plastic component with integrated functional elements. The influence of different materials and treatment methods for the encapsulation of electronic components was experimentally investigated under static and dynamic loading tests. By means of a parametric finite element model, the effects of an encapsulation and various parameters such as the shape and orientation of the electronic components were examined. Several encapsulation variants were investigated in order to minimise the chance of failure initiations. Based both on experimental and numerical results, a preferred composite integration concept was selected for an electronic board and some first recommendations for an optimal integration were derived.

  17. Graphite Nanoplatelet Modified Epoxy Resin for Carbon Fibre Reinforced Plastics with Enhanced Properties

    Directory of Open Access Journals (Sweden)

    Yan Li

    2017-01-01

    Full Text Available A simple approach to deliver graphene or graphite nanoplatelets (GNPs into carbon fibre reinforced plastic (CFRPs to enhance the multifunctional properties of carbon/epoxy laminates was demonstrated. GNPs improved the typically low interlaminar mechanical, thermal, and electrical properties of CFRPs after direct vacuum infusion of GNP doped resin obtained via in situ exfoliation by three-roll milling (TRM. Compared to high shear mixing or probe ultrasonication, TRM produces higher shear rates and stresses to exfoliate and finely disperse GNP particles within an epoxy matrix. This environmentally friendly and industrial scalable process does not require the use of solvents, additives, or chemical treatments. The flexural modulus and interlaminar shear strength (ILSS of CFRPs was increased by 15% and by 18%, respectively, with the addition of 5 wt.% in situ exfoliated GNP in the doped epoxy resin. Out-of-plane electrical and thermal conductivity, at the same filler content, were, respectively, improved by nearly two orders of magnitude and 50%.

  18. In situ reinforced polymers using low molecular weight compounds

    Science.gov (United States)

    Yordem, Onur Sinan

    2011-12-01

    The primary objective of this research is to generate reinforcing domains in situ during the processing of polymers by using phase separation techniques. Low molecular weight compounds were mixed with polymers where the process viscosity is reduced at process temperatures and mechanical properties are improved once the material system is cooled or reacted. Thermally induced phase separation and thermotropic phase transformation of low molar mass compounds were used in isotactic polypropylene (iPP) and poly(ether ether ketone) (PEEK) resins. Reaction induced phase separation was utilized in thermosets to generate anisotropic reinforcements. A new strategy to increase fracture toughness of materials was introduced. Simultaneously, enhancement in stiffness and reduction in process viscosity were also attained. Materials with improved rheological and mechanical properties were prepared by using thermotropic phase transformations of metal soaps in polymers (calcium stearate/iPP). Morphology and thermal properties were studied using WAXS, DSC and SEM. Mechanical and rheological investigation showed significant reduction in process viscosity and substantial improvement in fracture toughness were attained. Effects of molecular architecture of metal soaps were investigated in PEEK (calcium stearate/PEEK and sodium stearate/PEEK). The selected compounds reduced the process viscosity due to the high temperature co-continuous morphology of metal soaps. Unlike the iPP system that incorporates spherical particles, interaction between PEEK and metal soaps resulted in two discrete and co-continuous phases of PEEK and the metal stearates. DMA and melt rheology exhibited that sodium stearate/PEEK composites are stiffer. Effective moduli of secondary metal stearate phase were calculated using different composite theories, which suggested bicontinuous morphology to the metal soaps in PEEK. Use of low molecular weight crystallizable solvents was investigated in reactive systems

  19. FLOAT - development of new flexible UHPC. Final report. [Ultra High Performance Fibre Reinforced Concrete

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-11-01

    The current project is a preliminary study intended to clarify the background and give a better basis for an evaluation of the risks and possible rewards of funding a full project with the overall purpose of developing and testing a new concept for wave energy floaters, made of Ultra High Performance Fibre Reinforced Concrete (UHPC), as an enabling technology for the establishment of competitive wave energy production (FLOAT). As an initial step for this preliminary study of FLOAT an investigation has been undertaken in relation to preliminary design of 2 types of floaters, essential properties of UHPFRC - and identification of necessary developments, compilation of existing data from off shore applications and analysis of effect on Cost Of Energy. Preliminary float design and economical considerations - is a theoretical and numerical study including preliminary float designs and cost estimates. It aims at making a first comparison between the different materials options for DEXA and Wave Star floats and giving a first judgement about the suitability of CRC concrete. This is done through a qualitative assessment of pros and cons of different materials for both types of floats and a design study of the Dexa Wave float. It is concluded that the requirements for the Dexa Wave float are so that CRC is not able to compete with conventional concrete for the best and most cost effective solution. The good durability (leading to low maintenance costs), the mechanical properties and the ductility of CRC are not important enough to offset the increased cost for this float. For Wave Star on the other hand, there are significant advantages in using CRC as the only other option in this case is fibre glass, which is a much more expensive product. An investigation was made of methods of optimizing the properties of CRC - customizing them for particular applications in WEC's. The method of optimization has been to change the types of fibres in the mix, and it is demonstrated

  20. Assessment of thermal shock induced damage in silicon carbide fibre reinforced glass matrix composites

    Directory of Open Access Journals (Sweden)

    Boccaccini, A. R.

    1998-09-01

    Full Text Available The development of microstructural damage in silicon carbide fibre (Nicalon™ reinforced glass matrix composite samples subjected to thermal shock was investigated by using a nondestructive forced resonance technique and fibre push out indentation tests. Thermal shock testing involved quenching samples in a water bath maintained at room temperature from a high temperature (650ºC. Changes in the Young's modulus and internal friction of the samples with increasing number of shocks were measured accurately by the forced resonance technique. Fibre push-out tests showed no significant changes in the properties of the fibre-matrix interface, indicating that damage in the composite was concentrated mainly in the development of matrix microcracking. It was also shown that the internal friction is a very sensitive parameter by which to detect the onset and development of such microcracking. A simple semi-empirical model is proposed to correlate the internal friction level with the microcracking density in the glass matrix. Finally, the relevance of detecting nondestructively the existence of microcracks in the glass matrix, before any significant interfacial degradation occurs, is emphasized, in conextion with the possibility of inducing a crack healing process by a thermal treatment (annealing, taking advantage of the viscous flow properties of the glass.

    El desarrollo de daño microestructural en materiales compuestos de matriz de vidrio reforzados con fibras de carburo de silicio (Nicalon™ sometidos a choque térmico fue investigado mediante la técnica no-destructiva de resonancia forzada y por mediciones de indentación "push-out" de fibras. Los ensayos de choque térmico involucraron el enfriamiento brusco en un baño de agua a temperatura ambiente de las piezas previamente calentadas a una temperatura elevada (650ºC. La técnica de resonancia forzada permitió medir cambios en el módulo de Young de elasticidad y en la fricci