WorldWideScience

Sample records for fiber-reinforced ceramic matrix

  1. Ceramic fiber reinforced glass-ceramic matrix composite

    Science.gov (United States)

    Bansal, Narottam P. (Inventor)

    1993-01-01

    A slurry of BSAS glass powders is cast into tapes which are cut to predetermined sizes. Mats of continuous chemical vapor deposition (CVD)-SiC fibers are alternately stacked with these matrix tapes. This tape-mat stack is warm-pressed to produce a 'green' composite which is heated to burn out organic constituents. The remaining interim material is then hot-pressed to form a BSAS glass-ceramic fiber-reinforced composite.

  2. Ceramic fiber-reinforced monoclinic celsian phase glass-ceramic matrix composite material

    Science.gov (United States)

    Bansal, Narottam P. (Inventor); Dicarlo, James A. (Inventor)

    1994-01-01

    A hyridopolysilazane-derived ceramic fiber reinforced monoclinic celsian phase barium aluminum silicate glass-ceramic matrix composite material is prepared by ball-milling an aqueous slurry of BAS glass powder and fine monoclinic celsian seeds. The fibers improve the mechanical strength and fracture toughness and with the matrix provide superior dielectric properties.

  3. Application of ceramic short fiber reinforced Al alloy matrix composite on piston for internal combustion engines

    Directory of Open Access Journals (Sweden)

    Wu Shenqing

    2010-11-01

    Full Text Available The preparation and properties of ceramic short fiber reinforced Al-Si alloy matrix composite and it’s application on the piston for internal combustion engines are presented. Alumina or aluminosilicate fibers reinforced Al-Si alloy matrix composite has more excellent synthetical properties at elevated temperature than the matrix alloys. A partially reinforced Al-Si alloy matrix composite piston produced by squeeze casting technique has a firm interface between reinforced and unreinforced areas, low reject rate and good technical tolerance. As a new kind of piston material, it has been used for mass production of about 400,000 pieces of automobile engines piston. China has become one of a few countries in which aluminum alloy matrix composite materials have been used in automobile industry and attained industrialization.

  4. Processing and Material Characterization of Continuous Basalt Fiber Reinforced Ceramic Matrix Composites Using Polymer Derived Ceramics.

    Science.gov (United States)

    Cox, Sarah B.

    2014-01-01

    The need for high performance vehicles in the aerospace industry requires materials which can withstand high loads and high temperatures. New developments in launch pads and infrastructure must also be made to handle this intense environment with lightweight, reusable, structural materials. By using more functional materials, better performance can be seen in the launch environment, and launch vehicle designs which have not been previously used can be considered. The development of high temperature structural composite materials has been very limited due to the high cost of the materials and the processing needed. Polymer matrix composites can be used for temperatures up to 260C. Ceramics can take much higher temperatures, but they are difficult to produce and form in bulk volumes. Polymer Derived Ceramics (PDCs) begin as a polymer matrix, allowing a shape to be formed and cured and then to be pyrolized in order to obtain a ceramic with the associated thermal and mechanical properties. The use of basalt in structural and high temperature applications has been under development for over 50 years, yet there has been little published research on the incorporation of basalt fibers as a reinforcement in the composites. In this study, continuous basalt fiber reinforced PDCs have been fabricated and tested for the applicability of this composite system as a high temperature structural composite material. The oxyacetylene torch testing and three point bend testing have been performed on test panels and the test results are presented.

  5. Porosity characterization of fiber-reinforced ceramic matrix composite using synchrotron X-ray computed tomography

    Science.gov (United States)

    Zou, C.; Marrow, T. J.; Reinhard, C.; Li, B.; Zhang, C.; Wang, S.

    2016-03-01

    The pore structure and porosity of a continuous fiber reinforced ceramic matrix composite has been characterized using high-resolution synchrotron X-ray computed tomography (XCT). Segmentation of the reconstructed tomograph images reveals different types of pores within the composite, the inter-fiber bundle open pores displaying a "node-bond" geometry, and the intra-fiber bundle isolated micropores showing a piping shape. The 3D morphology of the pores is resolved and each pore is labeled. The quantitative filtering of the pores measures a total porosity 8.9% for the composite, amid which there is about 7.1~ 9.3% closed micropores.

  6. Modeling the Tensile Strength of Carbon Fiber - Reinforced Ceramic - Matrix Composites Under Multiple Fatigue Loading

    Science.gov (United States)

    Li, Longbiao

    2016-06-01

    An analytical method has been developed to investigate the effect of interface wear on the tensile strength of carbon fiber - reinforced ceramic - matrix composites (CMCs) under multiple fatigue loading. The Budiansky - Hutchinson - Evans shear - lag model was used to describe the micro stress field of the damaged composite considering fibers failure and the difference existed in the new and original interface debonded region. The statistical matrix multicracking model and fracture mechanics interface debonding criterion were used to determine the matrix crack spacing and interface debonded length. The interface shear stress degradation model and fibers strength degradation model have been adopted to analyze the interface wear effect on the tensile strength of the composite subjected to multiple fatigue loading. Under tensile loading, the fibers failure probabilities were determined by combining the interface wear model and fibers failure model based on the assumption that the fiber strength is subjected to two - parameter Weibull distribution and the loads carried by broken and intact fibers satisfy the Global Load Sharing criterion. The composite can no longer support the applied load when the total loads supported by broken and intact fibers approach its maximum value. The conditions of a single matrix crack and matrix multicrackings for tensile strength corresponding to multiple fatigue peak stress levels and different cycle number have been analyzed.

  7. Field assisted sintering of refractory carbide ceramics and fiber reinforced ceramic matrix composites

    Science.gov (United States)

    Gephart, Sean

    materials. While FAST sintered materials showed higher average values, in general they also showed consistently larger variation in the scattered data and consequently larger standard deviation for the resulting material properties. In addition, dynamic impact testing (V50 test) was conducted on the resulting materials and it was determined that there was no discernable correlation between observed mechanical properties of the ceramic materials and the resulting dynamic testing. Another study was conducted on the sintering of SiC and carbon fiber reinforced SiC ceramic matrix composites (CMC) using FAST. There has been much interest recently in fabricating high strength, low porosity SiC CMC.s for high temperature structural applications, but the current methods of production, namely chemical vapor infiltration (CVI), melt infiltration (MI), and polymer infiltration and pyrolysis (PIP), are considered time consuming and involve material related shortcomings associated with their respective methodologies. In this study, SiC CMC.s were produced using the 25 ton laboratory unit with a target sample size of 40 mm diameter and 3 mm thickness, as well as on the larger 250 ton industrial FAST system targeting a sample size of 101.6 x 101.6 x 3 mm3 to investigate issues associated with scaling. Several sintering conditions were explored including: pressure of 35-65 MPa, temperature of 1700-1900°C, and heating rates between 50-400°C/min. The SiC fibers used in this study were coated using chemical vapor deposition (CVD) with boron nitride (BN) and pyrolytic carbon to act as a barrier layer and preserve the integrity of the fibers during sintering. Then the barrier coating was coated by an outer layer of SiC to enhance the bonding between the fibers and the SiC matrix. Microstructures of the sintered samples were examined by FE-SEM. Mechanical properties including flexural strength-deflection and stress-strain were characterized using 4-point bend testing. Tensile testing was

  8. Ceramic fiber reinforced filter

    Science.gov (United States)

    Stinton, David P.; McLaughlin, Jerry C.; Lowden, Richard A.

    1991-01-01

    A filter for removing particulate matter from high temperature flowing fluids, and in particular gases, that is reinforced with ceramic fibers. The filter has a ceramic base fiber material in the form of a fabric, felt, paper of the like, with the refractory fibers thereof coated with a thin layer of a protective and bonding refractory applied by chemical vapor deposition techniques. This coating causes each fiber to be physically joined to adjoining fibers so as to prevent movement of the fibers during use and to increase the strength and toughness of the composite filter. Further, the coating can be selected to minimize any reactions between the constituents of the fluids and the fibers. A description is given of the formation of a composite filter using a felt preform of commercial silicon carbide fibers together with the coating of these fibers with pure silicon carbide. Filter efficiency approaching 100% has been demonstrated with these filters. The fiber base material is alternately made from aluminosilicate fibers, zirconia fibers and alumina fibers. Coating with Al.sub.2 O.sub.3 is also described. Advanced configurations for the composite filter are suggested.

  9. Characteristics of hot-pressed fiber-reinforced ceramics with SiC matrix

    Science.gov (United States)

    Miyoshi, Tadahiko; Kodama, Hironori; Sakamoto, Hiroshi; Goto, Akihiro; Iijima, Shiroo

    1989-11-01

    Silicon carbide ceramics’ matrix composites with SiC or C filaments were fabricated through hot pressing, and the effects of the filament pullout on their fracture toughness were experimentally investigated. The C-rich coating layers on the SiC filaments were found to have a significant effect on the frictional stress at the filament/matrix interfaces, through assising the filamet pullout from the matrix. Although the coating layers were apt to burn out in the sintering process of SiC matrix compposites, a small addition of carbon to the raw materials was found to be effective for the retention of the layers on the fibers, thus increasing the fracture toughness of the composites. The fracture toughness of the C filament/SiC matrix composite increased with temperature due to the larger interfacial frictional stress at higher temperatures, because of the higher thermal expansion of the filament in the radial direction than that of the matrix.

  10. Modeling Strength Degradation of Fiber-Reinforced Ceramic-Matrix Composites Subjected to Cyclic Loading at Elevated Temperatures in Oxidative Environments

    Science.gov (United States)

    Longbiao, Li

    2018-02-01

    In this paper, the strength degradation of non-oxide and oxide/oxide fiber-reinforced ceramic-matrix composites (CMCs) subjected to cyclic loading at elevated temperatures in oxidative environments has been investigated. Considering damage mechanisms of matrix cracking, interface debonding, interface wear, interface oxidation and fibers fracture, the composite residual strength model has been established by combining the micro stress field of the damaged composites, the damage models, and the fracture criterion. The relationships between the composite residual strength, fatigue peak stress, interface debonding, fibers failure and cycle number have been established. The effects of peak stress level, initial and steady-state interface shear stress, fiber Weibull modulus and fiber strength, and testing temperature on the degradation of composite strength and fibers failure have been investigated. The evolution of residual strength versus cycle number curves of non-oxide and oxide/oxide CMCs under cyclic loading at elevated temperatures in oxidative environments have been predicted.

  11. Effect of fiber coatings on room and elevated temperature mechanical properties of Nicalon trademark fiber reinforced Blackglas trademark ceramic matrix composites (CMCs)

    International Nuclear Information System (INIS)

    Aly, E.I.; Freitag, D.W.; Littlefield, J.E.

    1993-01-01

    With the development of silicon organometallic preceramic polymers as precursors for producing oxidation resistant ceramic matrices, through the polymer pyrolysis route, the fabrication of lightweight, complex advanced aircraft and missile structures from fiber reinforced composites is increasingly becoming more feasible. Besides refinement of processing techniques, the potential for achieving this objective depends upon identifying and developing the proper debond barrier coating layer, between the fiber and the matrix, for optimization of strength, toughness, and durability properties. Blackglas trademark based CMC's reinforced with Nicalon trademark SiC fibers with different types of coatings were fabricated. Coating schemes evaluated include CVD applied single layer boron nitride (BN) composition, dual-layer coatings of BN/SiC, and triple-layer coatings of SiC BN/SiC. Results of tensile and flexural property tests, scanning electron microscopy (SEM) of fracture surfaces, and auger electron spectroscopy (AES) microanalysis of the fiber/matrix interface have been discussed

  12. Synergistic Effects of Stress-Rupture and Cyclic Loading on Strain Response of Fiber-Reinforced Ceramic-Matrix Composites at Elevated Temperature in Oxidizing Atmosphere

    Directory of Open Access Journals (Sweden)

    Longbiao Li

    2017-02-01

    Full Text Available In this paper, the synergistic effects of stress rupture and cyclic loading on the strain response of fiber-reinforced ceramic-matrix composites (CMCs at elevated temperature in air have been investigated. The stress-strain relationships considering interface wear and interface oxidation in the interface debonded region under stress rupture and cyclic loading have been developed to establish the relationship between the peak strain, the interface debonded length, the interface oxidation length and the interface slip lengths. The effects of the stress rupture time, stress levels, matrix crack spacing, fiber volume fraction and oxidation temperature on the peak strain and the interface slip lengths have been investigated. The experimental fatigue hysteresis loops, interface slip lengths, peak strain and interface oxidation length of cross-ply SiC/MAS (magnesium alumino-silicate, MAS composite under cyclic fatigue and stress rupture at 566 and 1093 °C in air have been predicted.

  13. Use of the Materials Genome Initiative (MGI approach in the design of improved-performance fiber-reinforced SiC/SiC ceramic-matrix composites (CMCs

    Directory of Open Access Journals (Sweden)

    Jennifer S. Snipes

    2016-07-01

    Full Text Available New materials are traditionally developed using costly and time-consuming trial-and-error experimental efforts. This is followed by an even lengthier material-certification process. Consequently, it takes 10 to 20 years before a newly-discovered material is commercially employed. An alternative approach to the development of new materials is the so-called materials-by-design approach within which a material is treated as a complex hierarchical system, and its design and optimization is carried out by employing computer-aided engineering analyses, predictive tools and available material databases. In the present work, the materials-by-design approach is utilized to design a grade of fiber-reinforced (FR SiC/SiC ceramic matrix composites (CMCs, the type of materials which are currently being used in stationary components, and are considered for use in rotating components, of the hot sections of gas-turbine engines. Towards that end, a number of mathematical functions and numerical models are developed which relate CMC constituents’ (fibers, fiber coating and matrix microstructure and their properties to the properties and performance of the CMC as a whole. To validate the newly-developed materials-by-design approach, comparisons are made between experimentally measured and computationally predicted selected CMC mechanical properties. Then an optimization procedure is employed to determine the chemical makeup and processing routes for the CMC constituents so that the selected mechanical properties of the CMCs are increased to a preset target level.

  14. Thermomechanical Fatigue Behavior of a Silicon Carbide Fiber-Reinforced Calcium Aluminosilicate Glass-Ceramic Matrix Composite.

    Science.gov (United States)

    1992-08-01

    The impact of these factors complicating hysteresis analysis may be reduced if the effects of imperfect thermomechanical cycles on material behavior...Temperature," in Fracture Mechanics of Ceramics. Vol. 7: ComPosites. Impact Statistics and High-Temperature Phenomena, Bradt, R.C., Evans, A.G., Hasselman...r), and hoop (0) directions for conditions of applied thermal and mechanical loads may be computed as Ogm A[1 + (b)21] -t, applied(•) (33) armn A 1

  15. Natural fiber reinforced composites with moringa and vnyl ester matrix

    OpenAIRE

    Sundara, Babu Jagannathan

    2015-01-01

    In this research work an attempt is carried out for producing a Natural Plant Based fiber Reinforced Composites using the Moringa Resins and Vinyl Ester by utilizing the wastage of natural plant based fiber as Reinforcement material and Matrix material as Natural Resin and Vinyl Ester. The objective of the work is Utilization of Natural Plant Based Bio- degardable wastage into an alternative materials in the industrial applications by analyzing, Various Manufacturing and testing. Initially th...

  16. Low Cost Fabrication of Silicon Carbide Based Ceramics and Fiber Reinforced Composites

    Science.gov (United States)

    Singh, M.; Levine, S. R.

    1995-01-01

    A low cost processing technique called reaction forming for the fabrication of near-net and complex shaped components of silicon carbide based ceramics and composites is presented. This process consists of the production of a microporous carbon preform and subsequent infiltration with liquid silicon or silicon-refractory metal alloys. The microporous preforms are made by the pyrolysis of a polymerized resin mixture with very good control of pore volume and pore size thereby yielding materials with tailorable microstructure and composition. Mechanical properties (elastic modulus, flexural strength, and fracture toughness) of reaction-formed silicon carbide ceramics are presented. This processing approach is suitable for various kinds of reinforcements such as whiskers, particulates, fibers (tows, weaves, and filaments), and 3-D architectures. This approach has also been used to fabricate continuous silicon carbide fiber reinforced ceramic composites (CFCC's) with silicon carbide based matrices. Strong and tough composites with tailorable matrix microstructure and composition have been obtained. Microstructure and thermomechanical properties of a silicon carbide (SCS-6) fiber reinforced reaction-formed silicon carbide matrix composites are discussed.

  17. Effect of Environment on Stress-Rupture Behavior of a Carbon Fiber-Reinforced Silicon Carbide (C/SiC) Ceramic Matrix Composite

    Science.gov (United States)

    Verrilli, Michael J.; Opila, Elizabeth J.; Calomino, Anthony; Kiser, J. Douglas

    2002-01-01

    Stress-rupture tests were conducted in air, vacuum, and steam-containing environments to identify the failure modes and degradation mechanisms of a carbon fiber-reinforced silicon carbide (C/SiC) composite at two temperatures, 600 and 1200 C. Stress-rupture lives in air and steam containing environments (50 - 80% steam with argon) are similar for a composite stress of 69 MPa at 1200 C. Lives of specimens tested in a 20% steam/argon environment were about twice as long. For tests conducted at 600 C, composite life in 20% steam/argon was 20 times longer than life in air. Thermogravimetric analysis of the carbon fibers was conducted under similar conditions to the stress-rupture tests. The oxidation rate of the fibers in the various environments correlated with the composite stress-rupture lives. Examination of the failed specimens indicated that oxidation of the carbon fibers was the primary damage mode for specimens tested in air and steam environments at both temperatures.

  18. Fiber-reinforced ceramic composites for Earth-to-orbit rocket engine turbines

    Science.gov (United States)

    Brockmeyer, Jerry W.; Schnittgrund, Gary D.

    1990-01-01

    Fiber reinforced ceramic matrix composites (FRCMC) are emerging materials systems that offer potential for use in liquid rocket engines. Advantages of these materials in rocket engine turbomachinery include performance gain due to higher turbine inlet temperature, reduced launch costs, reduced maintenance with associated cost benefits, and reduced weight. This program was initiated to assess the state of FRCMC development and to propose a plan for their implementation into liquid rocket engine turbomachinery. A complete range of FRCMC materials was investigated relative to their development status and feasibility for use in the hot gas path of earth-to-orbit rocket engine turbomachinery. Of the candidate systems, carbon fiber-reinforced silicon carbide (C/SiC) offers the greatest near-term potential. Critical hot gas path components were identified, and the first stage inlet nozzle and turbine rotor of the fuel turbopump for the liquid oxygen/hydrogen Space Transportation Main Engine (STME) were selected for conceptual design and analysis. The critical issues associated with the use of FRCMC were identified. Turbine blades were designed, analyzed and fabricated. The Technology Development Plan, completed as Task 5 of this program, provides a course of action for resolution of these issues.

  19. Affordable Fiber-Reinforced Ceramic Composites Win 1995 R and D 100 Award

    Science.gov (United States)

    1995-01-01

    Affordable fiber-reinforced ceramic matrix composites (AFReCC) with high strength and toughness, good thermal conductivity, thermal shock resistance, and oxidation resistance are needed for high-temperature structural applications. AFReCC materials will have various applications in advanced high-efficiency and high-performance engines: that is, the High Speed Civil Transport (HSCT), space propulsion components, and land-based systems. For example, silicon-carbide-fiber-reinforced silicon carbide matrix composites show promise for meeting the criteria of high strength, thermal conductivity, and toughness required for the HSCT combustor liner. AFReCC received R&D Magazine's prestigious R&D 100 Award in 1995. The fabrication process for these composites has three steps. In the first step, fiber preforms are made and chemical vapor infiltration is used to apply the desired interface coating on the fibers. This step also rigidizes the preform. The second step consists of resin infiltration, which after pyrolysis, yields an interconnected network of porous carbon as the matrix. In the final step of the process, the carbon-containing preform is infiltrated with molten silicon or silicon alloys in a furnace. This converts the carbon to silicon carbide leaving as little as 5 percent residual free silicon or refractory disilicide phase. This process is suitable for any type of small-diameter fiber (e.g., carbon, alumina, or silicon carbide) woven into a two- or three-dimensional architecture. This processing approach leads to dense composites where matrix microstructure and composition can be tailored for optimum properties. It has much lower processing cost (less than 50 percent) in comparison to other approaches to fabricating silicon-carbide-based composites. The photograph shows the various AFReCC components. Thermomechanical and thermochemical characterization of these composites under the hostile environments that will be encountered in engine applications is underway.

  20. Processing and Characterization of Basalt Fiber Reinforced Ceramic Composites for High Temperature Applications Using Polymer Precursors

    Science.gov (United States)

    Cox, Sarah B.; Lui, Donovan; Gou, Jihua

    2014-01-01

    The development of high temperature structural composite materials has been very limited due to the high cost of the materials and the processing needed. Ceramics can take much higher temperatures, but they are difficult to produce and form in bulk volumes. Polymer Derived Ceramics (PDCs) begin as a polymer matrix, allowing a shape to be formed and cured and then to be pyrolized in order to obtain a ceramic with the associated thermal and mechanical properties. The two PDCs used in this development are polysiloxane and polycarbosilane. Polysiloxanes contain a silicon oxycarbide backbone when pyrolized up to 1000C. Polycarbosilane, an organosilicon polymer, contain a silicon-carbon backbone; around 1200C, beta-SiC begins to crystallize. The use of basalt in structural and high temperature applications has been under development for over 50 years, yet there has been little published research on the incorporation of basalt fibers as a reinforcement in composites. Basalt is a naturally occurring material found in volcanic rock. Continuous basalt fiber reinforced PDCs have been fabricated and tested for the applicability of this composite system as a high temperature structural composite material. Thermal and mechanical testing includes oxyacetylene torch testing and three point bend testing.

  1. Processing and Characterization of Basalt Fiber Reinforced Ceramic Composites for High Temperature Applications Using Polymer Precursors

    Science.gov (United States)

    Cox, Sarah B.; Lui, Donovan; Wang, Xin; Gou, Jihua

    2014-01-01

    The development of high temperature structural composite materials has been very limited due to the high cost of the materials and the processing needed. Ceramics can take much higher temperatures, but they are difficult to produce and form in bulk volumes. Polymer Derived Ceramics (PDCs) begin as a polymer matrix, allowing a shape to be formed and cured and then to be pyrolized in order to obtain a ceramic with the associated thermal and mechanical properties. The two PDCs used in this development are polysiloxane and polycarbosilane. Polysiloxanes contain a silicon oxycarbide backbone when pyrolized up to 1000 deg C. Polycarbosilane, an organosilicon polymer, contain a silicon-carbon backbone; around 1200 deg C, Beta-SiC begins to crystallize. The use of basalt in structural and high temperature applications has been under development for over 50 years, yet there has been little published research on the incorporation of basalt fibers as a reinforcement in composites. Basalt is a naturally occurring material found in volcanic rock. Continuous basalt fiber reinforced PDCs have been fabricated and tested for the applicability of this composite system as a high temperature structural composite material. Thermal and mechanical testing includes oxyacetylene torch testing and three point bend testing.

  2. Mechanics and Durability of Fiber Reinforced Porous Ceramic Composites

    OpenAIRE

    Huang, Xinyu

    2001-01-01

    Porous ceramics and porous ceramic composites are emerging functional materials that have found numerous industrial applications, especially in energy conversion processes. They are characterized by random microstructure and high porosity. Examples are ceramic candle filters used in coal-fired power plants, gas-fired infrared burners, anode and cathode materials of solid oxide fuel cells, etc. In this research, both experimental and theoretical work have been conducted t...

  3. Flexural creep of coated SiC-fiber-reinforced glass-ceramic composites

    International Nuclear Information System (INIS)

    Sun, E.Y.

    1995-01-01

    This study reports the flexural creep behavior of a fiber-reinforced glass-ceramic and associated changes in microstructure. SiC fibers were coated with a dual layer of SiC/BN to provide a weak interface that was stable at high temperatures. Flexural creep, creep-rupture, and creep-strain recovery experiments were conducted on composite material and barium-magnesium aluminosilicate matrix from 1,000 to 1,200 C. Below 1,130 C, creep rates were extremely low (∼10 -9 s -1 ), preventing accurate measurement of the stress dependence. Above 1,130 C, creep rates were in the 10 -8 s -1 range. The creep-rupture strength of the composite at 1,100 C was about 75--80% of the fast fracture strength. Creep-strain recovery experiments showed recovery of up to 90% under prolonged unloading. Experimental creep results from the composite and the matrix were compared, and microstructural observations by TEM were employed to assess the effectiveness of the fiber coatings and to determine the mechanism(s) of creep deformation and damage

  4. Ceramic matrix and resin matrix composites - A comparison

    Science.gov (United States)

    Hurwitz, Frances I.

    1987-01-01

    The underlying theory of continuous fiber reinforcement of ceramic matrix and resin matrix composites, their fabrication, microstructure, physical and mechanical properties are contrasted. The growing use of organometallic polymers as precursors to ceramic matrices is discussed as a means of providing low temperature processing capability without the fiber degradation encountered with more conventional ceramic processing techniques. Examples of ceramic matrix composites derived from particulate-filled, high char yield polymers and silsesquioxane precursors are provided.

  5. Ceramic matrix and resin matrix composites: A comparison

    Science.gov (United States)

    Hurwitz, Frances I.

    1987-01-01

    The underlying theory of continuous fiber reinforcement of ceramic matrix and resin matrix composites, their fabrication, microstructure, physical and mechanical properties are contrasted. The growing use of organometallic polymers as precursors to ceramic matrices is discussed as a means of providing low temperature processing capability without the fiber degradation encountered with more conventional ceramic processing techniques. Examples of ceramic matrix composites derived from particulate-filled, high char yield polymers and silsesquioxane precursors are provided.

  6. Matrix damage helaing in fiber reinforced composite materials containing embedded active and passive wires

    NARCIS (Netherlands)

    Bor, T.C.; Warnet, L.L.; Akkerman, R.; van der Zwaag, Sybrand; Brinkman, E.

    2015-01-01

    Continuous fiber reinforced composite materials are susceptible to matrix cracking and delamination upon impact. Active and passive wires can be embedded within the composite material to support the healing behavior. Upon a local heating stimulus the wires, oriented mostly in the out-of-plane

  7. An historical mullite fiber-reinforced ceramic composite

    International Nuclear Information System (INIS)

    Lowe, T.L.; Merk, N.; Thomas, G.

    1991-01-01

    Since at least the sixteenth century, the wootz ultra-high carbon white cast-iron ingot was produced in India by melting or carburizing iron in a crucible. This ingot was forged into sword blades of so-called Damascus steel. The charged crucible was fired in a long (24 hour) single cycle at high temperature (1150-1250 degrees C) in a strongly reducing atmosphere. Raw materials for the refractory vessel are clay and coked rice husks. At high temperatures, two phases reinforce the glassy matrix cristobalite relics of rice husks and a network of mullite crystals. This paper characterizes the microstructure and chemistry of the mullite network in the glassy matrix by means of a combination of technique: optical microscopy, XRD, SEM, TEM with EDS, and HREM

  8. Fire resistance properties of ceramic wool fiber reinforced intumescent coatings

    Energy Technology Data Exchange (ETDEWEB)

    Amir, N., E-mail: norlailiamir@petronas.com.my; Othman, W. M. S. W., E-mail: wamosa@gmail.com; Ahmad, F., E-mail: faizahmad@petronas.com.my [Mechanical Engineering Department, Universiti Teknologi PETRONAS Bandar Seri Iskandar, 31750 Tronoh, Perak (Malaysia)

    2015-07-22

    This research studied the effects of varied weight percentage and length of ceramic wool fiber (CWF) reinforcement to fire retardant performance of epoxy-based intumescent coating. Ten formulations were developed using ammonium polyphosphate (APP), expandable graphite (EG), melamine (MEL) and boric acid (BA). The mixing was conducted in two stages; powdered materials were grinded in Rocklabs mortar grinder and epoxy-mixed using Caframo mixer at low speed mixing. The samples were applied on mild steel substrate and exposed to 500°C heat inside Carbolite electric furnace. The char expansion and its physical properties were observed. Scanning electron microscopy (SEM) analyses were conducted to inspect the fiber dispersion, fiber condition and the cell structure of both coatings and chars produced. Thermogravimetric analyses (TGA) were conducted to study the thermal properties of the coating such as degradation temperature and residual weight. Fire retardant performance was determined by measuring backside temperature of substrate in 1-hour, 1000°C Bunsen burner test according to UL 1709 fire regime. The results showed that intumescent coating reinforced with CWF produced better fire resistance performance. When compared to unreinforced coating, formulation S6-15 significantly reduced steel temperature at approximately 34.7% to around 175°C. However, higher fiber weight percentage had slightly decreased fire retardant performance of the coating.

  9. Fire resistance properties of ceramic wool fiber reinforced intumescent coatings

    Science.gov (United States)

    Amir, N.; Othman, W. M. S. W.; Ahmad, F.

    2015-07-01

    This research studied the effects of varied weight percentage and length of ceramic wool fiber (CWF) reinforcement to fire retardant performance of epoxy-based intumescent coating. Ten formulations were developed using ammonium polyphosphate (APP), expandable graphite (EG), melamine (MEL) and boric acid (BA). The mixing was conducted in two stages; powdered materials were grinded in Rocklabs mortar grinder and epoxy-mixed using Caframo mixer at low speed mixing. The samples were applied on mild steel substrate and exposed to 500°C heat inside Carbolite electric furnace. The char expansion and its physical properties were observed. Scanning electron microscopy (SEM) analyses were conducted to inspect the fiber dispersion, fiber condition and the cell structure of both coatings and chars produced. Thermogravimetric analyses (TGA) were conducted to study the thermal properties of the coating such as degradation temperature and residual weight. Fire retardant performance was determined by measuring backside temperature of substrate in 1-hour, 1000°C Bunsen burner test according to UL 1709 fire regime. The results showed that intumescent coating reinforced with CWF produced better fire resistance performance. When compared to unreinforced coating, formulation S6-15 significantly reduced steel temperature at approximately 34.7% to around 175°C. However, higher fiber weight percentage had slightly decreased fire retardant performance of the coating.

  10. Designing the fiber volume ratio in SiC fiber-reinforced SiC ceramic composites under Hertzian stress

    International Nuclear Information System (INIS)

    Lee, Kee Sung; Jang, Kyung Soon; Park, Jae Hong; Kim, Tae Woo; Han, In Sub; Woo, Sang Kuk

    2011-01-01

    Highlights: → Optimum fiber volume ratios in the SiC/SiC composite layers were designed under Hertzian stress. → FEM analysis and spherical indentation experiments were undertaken. → Boron nitride-pyrocarbon double coatings on the SiC fiber were effective. → Fiber volume ratio should be designed against flexural stress. -- Abstract: Finite element method (FEM) analysis and experimental studies are undertaken on the design of the fiber volume ratio in silicon carbide (SiC) fiber-reinforced SiC composites under indentation contact stresses. Boron nitride (BN)/Pyrocarbon (PyC) are selected as the coating materials for the SiC fiber. Various SiC matrix/coating/fiber/coating/matrix structures are modeled by introducing a woven fiber layer in the SiC matrix. Especially, this study attempts to find the optimum fiber volume ratio in SiC fiber-reinforced SiC ceramics under Hertzian stress. The analysis is performed by changing the fiber type, fiber volume ratio, coating material, number of coating layers, and stacking sequence of the coating layers. The variation in the stress for composites in relation to the fiber volume ratio in the contact axial or radial direction is also analyzed. The same structures are fabricated experimentally by a hot process, and the mechanical behaviors regarding the load-displacement are evaluated using the Hertzian indentation method. Various SiC matrix/coating/fiber/coating/matrix structures are fabricated, and mechanical characterization is performed by changing the coating layer, according to the introduction (or omission) of the coating layer, and the number of woven fiber mats. The results show that the damage mode changes from Hertzian stress to flexural stress as the fiber volume ratio increases in composites because of the decreased matrix volume fraction, which intensifies the radial crack damage. The result significantly indicates that the optimum fiber volume ratio in SiC fiber-reinforced SiC ceramics should be designed for

  11. Fracture strength and bending of all-ceramic and fiber-reinforced composites in inlay-retained fixed partial dentures

    Directory of Open Access Journals (Sweden)

    Serkan Saridag

    2012-06-01

    Conclusions: Zirconia-based ceramic inlay-retained fixed partial dentures demonstrated the highest fracture strength. The fiber-reinforced composite inlay-retained fixed partial dentures demonstrated higher bending values than did the all-ceramic inlay-retained fixed partial dentures.

  12. Seamless metal-clad fiber-reinforced organic matrix composite structures and process for their manufacture

    Science.gov (United States)

    Bluck, Raymond M. (Inventor); Bush, Harold G. (Inventor); Johnson, Robert R. (Inventor)

    1990-01-01

    A metallic outer sleeve is provided which is capable of enveloping a hollow metallic inner member having continuous reinforcing fibers attached to the distal end thereof. The inner member is then introduced into outer sleeve until inner member is completely enveloped by outer sleeve. A liquid matrix member is then injected into space between inner member and outer sleeve. A pressurized heat transfer medium is flowed through the inside of inner member, thereby forming a fiber reinforced matrix composite material. The wall thicknesses of both inner member and outer sleeve are then reduced to the appropriate size by chemical etching, to adjust the thermal expansion coefficient of the metal-clad composite structure to the desired value. thereby forming a fiber reinforced matrix composite material. The wall thicknesses of both inner member and outer sleeve are then reduced to the appropriate size by chemical etching, to adjust the thermal expansion coefficient of the metal-clad composite structure to the desired value. The novelty of this invention resides in the development of a efficient method of producing seamless metal clad fiber reinforced organic matrix composite structures.

  13. Shear testing of fiber reinforced metal matrix composites

    Science.gov (United States)

    Pindera, Marek-Jerzy

    1989-01-01

    This paper outlines the elements of a combined experimental/analytical methodology for accurate shear characterization of unidirectional composites in the linear and nonlinear range, with particular attention devoted to metal matrix composites. It is illustrated that consistent results can be obtained for a large class of composites from two commonly employed shear test methods currently in use by composites researchers when the influence of various factors that affect the determination of the actual shear response is properly analyzed. These factors include the effects of material anisotropy, specimen geometry, manner of load introduction, and test fixture design on the stress and deformation fields in the test section of off-axis and Iosipescu specimens. Common errors associated with the measurement of deformation fields and calculation of stress fields are discussed and quantified. Particular problems in the determination of the shear response of unidirectional boron/aluminum using the Iosipescu test are illustrated and discussed.

  14. Fatigue testing and damage development in continuous fiber reinforced metal matrix composites

    Science.gov (United States)

    Johnson, W. S.

    1989-01-01

    A general overview of the fatigue behavior of metal matrix composites (MMC) is presented. The first objective is to present experimental procedures and techniques for conducting a meaningful fatigue test to detect and quantify fatigue damage in MMC. These techniques include interpretation of stress-strain responses, acid etching of the matrix, edge replicas of the specimen under load, radiography, and micrographs of the failure surfaces. In addition, the paper will show how stiffness loss in continuous fiber reinforced metal matrix composites can be a useful parameter for detecting fatigue damage initiation and accumulation. Second, numerous examples of how fatigue damage can initiate and grow in various MMC are given. Depending on the relative fatigue behavior of the fiber and matrix, and the interface properties, the failure modes of MMC can be grouped into four categories: (1) matrix dominated, (2) fiber dominated, (3) self-similar damage growth, and (4) fiber/matrix interfacial failures. These four types of damage will be discussed and illustrated by examples with the emphasis on the fatigue of unnotched laminates.

  15. Ultra High Temperature and Multifunctional Ceramic Matrix Composite – Coating Systems for Light-Weight Space and Aero Systems

    Data.gov (United States)

    National Aeronautics and Space Administration — Revolutionary ultra-high temperature, high mechanical loading capable, oxidation resistant, durable ceramic coatings and light-weight fiber-reinforced Ceramic Matrix...

  16. Damage analysis of fiber reinforced resin matrix composites irradiated by CW laser

    International Nuclear Information System (INIS)

    Wan Hong; Hu Kaiwei; Mu Jingyang; Bai Shuxin

    2008-01-01

    In this paper, the damage modes of the carbon fiber and the glass fiber reinforced epoxy or bakelite resin matrix composites irradiated by CW laser under different power densities were analyzed, and the changes of the microstructure and the tensile strength of the composites were also researched. When the resin matrix composites were radiated at a power density more than 0.1 kW/cm 2 , the matrix would be decomposed and the tensile properties of the radiated samples were lost over 30% while the carbon fiber hardly damaged and the glass fiber melted. When the power density of the laser was raised to 1 kW/cm 2 , the matrix burned violently and the carbon fiber cloth began to split with some carbon fiber being fractured, therefore, the fracture strength of the radiated sample lost over 80%. The higher the power density of radiation was, the more serious the damage of the sample was. It was also found that the difference of the matrixes had little effect on the damage extent of the composites. The influence of the radiation density on the temperature of the radiated surface of the carbon/resin composite was numerically calculated by ANSYS finite element software and the calculation results coincided with the damage mode of the radiated composites. (authors)

  17. Effects of Interface Modification on Mechanical Behavior of Hi-Nicalon Fiber-Reinforced Celsian Matrix Composites

    Science.gov (United States)

    Bansal, Narottam P.; Eldridge, Jeffrey I.

    1997-01-01

    Unidirectional celsian matrix composites having approx. 42 volume percent of uncoated or BN/SiC-coated Hi-Nicalon fibers were tested in three-point bend at room temperature. The uncoated fiber-reinforced composites showed catastrophic failure with strength of 210 +/- 35 MPa and a flat fracture surface. In contrast, composites reinforced with BN/SiC-coated fibers exhibited graceful failure with extensive fiber pullout. Values of first matrix cracking stress and strain were 435 +/- 35 MPa and 0.27 +/- 0.01 %, respectively, with ultimate strength as high as 960 MPa. The elastic Young's modulus of the uncoated and BN/SiC-coated fiber-reinforced composites were measured as 184 q 4 GPa and 165 +/- 5 GPa, respectively. Fiber push-through tests and microscopic examination indicated no chemical reaction at the uncoated or coated fiber-matrix interface. The low strength of the uncoated fiber-reinforced composite is probably due to degradation of the fibers from mechanical surface damage during processing. Because both the coated and uncoated fiber reinforced composites exhibited weak interfaces, the beneficial effect of the BN-SiC dual layer is primarily the protection of fibers from mechanical damage during processing.

  18. Low Cost Resin for Self-Healing High Temperature Fiber Reinforced Polymer Matrix Composites, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Over the past few decades, the manufacturing processes and our knowledge base for predicting the bulk mechanical response of fiber reinforced composite materials has...

  19. CVD apparatus and process for the preparation of fiber-reinforced ceramic composites

    Science.gov (United States)

    Caputo, A.J.; Devore, C.E.; Lowden, R.A.; Moeller, H.H.

    1990-01-23

    An apparatus and process for the chemical vapor deposition of a matrix into a preform having circumferentially wound ceramic fibers, comprises heating one surface of the preform while cooling the other surface thereof. The resulting product may have fibers that are wound on radial planes or at an angle from the radial planes. The fibers can also be precoated with pyrolytic carbon before application of the matrix. The matrix is applied by passing reactant gas through the preform thereof to the other side thereof for the initial deposition of matrix near such other surface of the preform. The matrix fills in the preform from the other side surface thereof to the surface of the side of application thereof until a desired amount of matrix has been deposited. 6 figs.

  20. Effect of thermal-mechanical cycling on thermal expansion behavior of boron fiber-reinforced aluminum matrix composite

    International Nuclear Information System (INIS)

    Qin, Y.C.; He, S.Y.; Yang, D.Z.

    2004-01-01

    The thermal expansion behavior of boron fiber-reinforced aluminum matrix composite subjected to thermal-mechanical cycling (TMC) was studied. Experimental results showed that TMC affected greatly the thermal expansion behavior of the composite. Using a simple analysis model of internal stress in the fibers, the stress change during the thermal expansion coefficient measurements of the composite subjected to TMC was calculated. The results indicated that TMC could induce the interfacial degradation of the composite, and the more the numbers of TMC cycles, or the higher the applied stress level of TMC, the more serious the interfacial degradation of the composite became. The proposed one-dimensional analysis model was proved to be a simple and qualitative approach to probing the interfacial degradation of unidirectional fiber-reinforced metal matrix composites during TMC

  1. Flight-vehicle materials, structures, and dynamics - Assessment and future directions. Vol. 3 - Ceramics and ceramic-matrix composites

    Science.gov (United States)

    Levine, Stanley R. (Editor)

    1992-01-01

    The present volume discusses ceramics and ceramic-matrix composites in prospective aerospace systems, monolithic ceramics, transformation-toughened and whisker-reinforced ceramic composites, glass-ceramic matrix composites, reaction-bonded Si3N4 and SiC composites, and chemical vapor-infiltrated composites. Also discussed are the sol-gel-processing of ceramic composites, the fabrication and properties of fiber-reinforced ceramic composites with directed metal oxidation, the fracture behavior of ceramic-matrix composites (CMCs), the fatigue of fiber-reinforced CMCs, creep and rupture of CMCs, structural design methodologies for ceramic-based materials systems, the joining of ceramics and CMCs, and carbon-carbon composites.

  2. Strain redistribution around holes and notches in fiber-reinforced cross-woven brittle matrix composites

    DEFF Research Database (Denmark)

    Jacobsen, Torben Krogsdal; Brøndsted, Povl

    1997-01-01

    A study of the strain redistribution around holes in two different cross-woven ceramic matrix composites is presented. The strain redistribution around holes in C-f/SiCm and SiCf/SiCm has been measured experimentally under plane stress conditions. Using micro-mechanics and Continuum Damage...... Mechanics, and an identification procedure based on a uni-axial tensile test and a shear test the strain redistribution around a hole or a notch due to matrix cracking can be predicted. Damage due to fiber breakage is not included in the model. Initial matrix damage in the C-f/SiCm material has...

  3. Effects of Fiber Content on Mechanical Properties of CVD SiC Fiber-Reinforced Strontium Aluminosilicate Glass-Ceramic Composites

    Science.gov (United States)

    Bansal, Narottam P.

    1996-01-01

    Unidirectional CVD SiC(f)(SCS-6) fiber-reinforced strontium aluminosilicate (SAS) glass-ceramic matrix composites containing various volume fractions, approximately 16 to 40 volume %, of fibers were fabricated by hot pressing at 1400 C for 2 h under 27.6 MPa. Monoclinic celsian, SrAl2Si2O8, was the only crystalline phase formed, with complete absence of the undesired hexacelsian phase, in the matrix. Room temperature mechanical properties were measured in 3-point flexure. The matrix microcracking stress and the ultimate strength increased with increase in fiber volume fraction, reached maximum values for V(sub f) approximately equal to 0.35, and degraded at higher fiber loadings. This degradation in mechanical properties is related to the change in failure mode, from tensile at lower V(sub f) to interlaminar shear at higher fiber contents. The extent of fiber loading did not have noticeable effect on either fiber-matrix debonding stress, or frictional sliding stress at the interface. The applicability of micromechanical models in predicting the mechanical properties of the composites was also examined. The currently available theoretical models do not appear to be useful in predicting the values of the first matrix cracking stress, and the ultimate strength of the SCS-6/SAS composites.

  4. A new system for posterior restorations: a combination of ceramic optimized polymer and fiber-reinforced composite.

    Science.gov (United States)

    Rosenthal, L; Trinkner, T; Pescatore, C

    1997-01-01

    Due to the need for increased strength characteristics and enhanced aesthetic expectations of the patients, metal-free, aesthetic restorative systems for the anterior and posterior dentition are currently available. A new "space-age" restorative material has been developed that is a combination of a ceramic optimized polymer (Ceromer) (Targis/Vectris, Ivoclar Williams, Amherst, NY) and a fiber-reinforced composite framework material. The purpose of this article is to discuss the qualities that render this material particularly suitable for a variety of indications, including laboratory-fabricated restorations for the stress-bearing posterior regions. The material lends itself to diversification. Its indication for inlays, onlays, full-coverage crown restorations, and conservative single pontic inlay bridges is presented.

  5. The correlation of low-velocity impact resistance of graphite-fiber-reinforced composites with matrix properties

    Science.gov (United States)

    Bowles, Kenneth J.

    1988-01-01

    Summarized are basic studies that were conducted to correlate the impact resistance of graphite-fiber-reinforced composites with polymer matrix properties. Three crosslinked epoxy resins and a linear polysulfone were selected as composite matrices. As a group, these resins possess a significantly large range of mechanical properties. The mechanical properties of the resins and their respective composites were measured. Neat resin specimens and unidirectional and crossply composite specimens were impact tested with an instrumented dropweight tester. Impact resistances of the specimens were assesseed on the basis of loading capability, energy absorption, and extent of damage.

  6. Matrix density effects on the mechanical properties of SiC fiber-reinforced silicon nitride matrix properties

    Science.gov (United States)

    Bhatt, Ramakrishna T.; Kiser, Lames D.

    1990-01-01

    The room temperature mechanical properties were measured for SiC fiber reinforced reaction-bonded silicon nitride composites (SiC/RBSN) of different densities. The composites consisted of approx. 30 vol percent uniaxially aligned 142 micron diameter SiC fibers (Textron SCS-6) in a reaction-bonded Si3N4 matrix. The composite density was varied by changing the consolidation pressure during RBSN processing and by hot isostatically pressing the SiC/RBSN composites. Results indicate that as the consolidation pressure was increased from 27 to 138 MPa, the average pore size of the nitrided composites decreased from 0.04 to 0.02 microns and the composite density increased from 2.07 to 2.45 gm/cc. Nonetheless, these improvements resulted in only small increases in the first matrix cracking stress, primary elastic modulus, and ultimate tensile strength values of the composites. In contrast, HIP consolidation of SiC/RBSN resulted in a fully dense material whose first matrix cracking stress and elastic modulus were approx. 15 and 50 percent higher, respectively, and ultimate tensile strength values were approx. 40 percent lower than those for unHIPed SiC/RBSN composites. The modulus behavior for all specimens can be explained by simple rule-of-mixture theory. Also, the loss in ultimate strength for the HIPed composites appears to be related to a degradation in fiber strength at the HIP temperature. However, the density effect on matrix fracture strength was much less than would be expected based on typical monolithic Si3N4 behavior, suggesting that composite theory is indeed operating. Possible practical implications of these observations are discussed.

  7. Steel fiber reinforced concrete

    International Nuclear Information System (INIS)

    Baloch, S.U.

    2005-01-01

    Steel-Fiber Reinforced Concrete is constructed by adding short fibers of small cross-sectional size .to the fresh concrete. These fibers reinforce the concrete in all directions, as they are randomly oriented. The improved mechanical properties of concrete include ductility, impact-resistance, compressive, tensile and flexural strength and abrasion-resistance. These uniqlte properties of the fiber- reinforcement can be exploited to great advantage in concrete structural members containing both conventional bar-reinforcement and steel fibers. The improvements in mechanical properties of cementitious materials resulting from steel-fiber reinforcement depend on the type, geometry, volume fraction and material-properties of fibers, the matrix mix proportions and the fiber-matrix interfacial bond characteristics. Effects of steel fibers on the mechanical properties of concrete have been investigated in this paper through a comprehensive testing-programme, by varying the fiber volume fraction and the aspect-ratio (Lid) of fibers. Significant improvements are observed in compressive, tensile, flexural strength and impact-resistance of concrete, accompanied by marked improvement in ductility. optimum fiber-volume fraction and aspect-ratio of steel fibers is identified. Test results are analyzed in details and relevant conclusions drawn. The research is finally concluded with future research needs. (author)

  8. Standard Guide for Identification of Fiber-Reinforced Polymer-Matrix Composite Materials in Databases

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2000-01-01

    1.1 This guide establishes essential and desirable data elements for fiber-reinforced composite materials for two purposes: to establish the material identification component of data-reporting requirements for test reporting and to provide information for the design of material property databases. 1.1.1 This guide is the first part of a two-part modular approach. The first part serves to identify the material and the second part serves to describe testing procedures and variables and to record results. 1.1.2 For mechanical testing, the related document is Guide E 1434. The interaction of this guide with Guide E 1434 is emphasized by the common numbering of data elements. Data Elements A1 through G13 are included in this guide, and numbering of data elements in Guide E 1434 begins with H1 for the next data element block. This guide is most commonly used in combination with a guide for reporting the test procedures and results such as Guide E 1434. 1.2 These guidelines are specific to fiber-reinforced polyme...

  9. Numerical Modeling of Fiber-Reinforced Metal Matrix Composite Processing by the Liquid Route: Literature Contribution

    Science.gov (United States)

    Lacoste, Eric; Arvieu, Corinne; Mantaux, Olivier

    2018-01-01

    One of the technologies used to produce metal matrix composites (MMCs) is liquid route processing. One solution is to inject a liquid metal under pressure or at constant rate through a fibrous preform. This foundry technique overcomes the problem of the wettability of ceramic fibers by liquid metal. The liquid route can also be used to produce semiproducts by coating a filament with a molten metal. These processes involve physical phenomena combined with mass and heat transfer and phase change. The phase change phenomena related to solidification and also to the melting of the metal during the process notably result in modifications to the permeability of porous media, in gaps in impregnation, in the appearance of defects (porosities), and in segregation in the final product. In this article, we provide a state-of-the-art review of numerical models and simulation developed to study these physical phenomena involved in MMC processing by the liquid route.

  10. Numerical Modeling of Fiber-Reinforced Metal Matrix Composite Processing by the Liquid Route: Literature Contribution

    Science.gov (United States)

    Lacoste, Eric; Arvieu, Corinne; Mantaux, Olivier

    2018-04-01

    One of the technologies used to produce metal matrix composites (MMCs) is liquid route processing. One solution is to inject a liquid metal under pressure or at constant rate through a fibrous preform. This foundry technique overcomes the problem of the wettability of ceramic fibers by liquid metal. The liquid route can also be used to produce semiproducts by coating a filament with a molten metal. These processes involve physical phenomena combined with mass and heat transfer and phase change. The phase change phenomena related to solidification and also to the melting of the metal during the process notably result in modifications to the permeability of porous media, in gaps in impregnation, in the appearance of defects (porosities), and in segregation in the final product. In this article, we provide a state-of-the-art review of numerical models and simulation developed to study these physical phenomena involved in MMC processing by the liquid route.

  11. Fiber-reinforced ceramics for thermostructural applications, produced by polymer impregnation pyrolysis

    OpenAIRE

    Mingazzini, Claudio

    2014-01-01

    Several CFCC (Continuous Fiber Composite Ceramics) production processes were tested, concluding that PIP (Polymer Impregnation, or Infiltration, Pyrolysis) and CBC (Chemically Bonded Ceramics) based procedures have interesting potential applications in the construction and transportation fields, thanks to low costs to get potentially useful thermomechanical performances. Among the different processes considered during the Doctorate (from the synthesis of new preceramic polymers, to the PIP...

  12. Mechanical properties of neat polymer matrix materials and their unidirectional carbon fiber-reinforced composites

    Science.gov (United States)

    Zimmerman, Richard S.; Adams, Donald F.

    1988-01-01

    The mechanical properties of two neat resin systems for use in carbon fiber epoxy composites were characterized. This included tensile and shear stiffness and strengths, coefficients of thermal and moisture expansion, and fracture toughness. Tests were conducted on specimens in the dry and moisture-saturated states, at temperatures of 23, 82 and 121 C. The neat resins tested were American Cyanamid 1806 and Union Carbide ERX-4901B(MPDA). Results were compared to previously tested neat resins. Four unidirectional carbon fiber reinforced composites were mechanically characterized. Axial and transverse tension and in-plane shear strengths and stiffness were measured, as well as transverse coefficients of thermal and moisture expansion. Tests were conducted on dry specimens only at 23 and 100 C. The materials tested were AS4/3502, AS6/5245-C, T300/BP907, and C6000/1806 unidirectional composites. Scanning electron microscopic examination of fracture surfaces was performed to permit the correlation of observed failure modes with the environmental test conditions.

  13. Development of high thermal conductive SiC fiber reinforced SiC matrix composites for fusion reactors (Thesis)

    International Nuclear Information System (INIS)

    Taguchi, Tomitsugu

    2006-07-01

    A 3 dimensional model (after cubic model) was developed to quantitatively predict the thermal conductivity of SiC fiber-reinforced SiC matrix (SiC/SiC) composites. The cubic model showed that thermal conductivity of the composites increased by decreasing the porosity and ensphering the shape of pore. The SiC/SiC composites were fabricated by chemical vapor infiltration (CVI) and reaction bonding (RB) processes. The thermal conductivity of the composites by RB process was higher than that by CVI process. The reason is that the porosity of the composites by RB process was lower than that by CVI process and the shape of pore in the composites by RB process was almost sphere. The thermal conductivity of the SiC/SiC composite by RB process was consistent with the estimated value by the cubic model. The cubic model also showed that the thermal conductivity of the composites increased by introducing a high thermal conductive new phase parallel to the direction of heat flow. To verify the prediction, a SiC/SiC composite with carbon nano-fiber (CNF) were fabricated by RB process. The thermal conductivity of the SiC/SiC composite with CNF was approximately 90 W/mK at room temperature. The thermal conductivity of the SiC/SiC composite was coincided with the estimated value by the cubic model. They concluded that the cubic model was useful for predicting the thermal conductivity of fiber-reinforced composites. (author)

  14. Thermal Protection of Carbon Fiber-Reinforced Composites by Ceramic Particles

    Directory of Open Access Journals (Sweden)

    Baljinder Kandola

    2016-06-01

    Full Text Available The thermal barrier efficiency of two types of ceramic particle, glass flakes and aluminum titanate, dispersed on the surface of carbon-fiber epoxy composites, has been evaluated using a cone calorimeter at 35 and 50 kW/m2, in addition to temperature gradients through the samples’ thicknesses, measured by inserting thermocouples on the exposed and back surfaces during the cone tests. Two techniques of dispersing ceramic particles on the surface have been employed, one where particles were dispersed on semi-cured laminate and the other where their dispersion in a phenolic resin was applied on the laminate surface, using the same method as used previously for glass fiber composites. The morphology and durability of the coatings to water absorption, peeling, impact and flexural tension were also studied and compared with those previously reported for glass-fiber epoxy composites. With both methods, uniform coatings could be achieved, which were durable to peeling or water absorption with a minimal adverse effect on the mechanical properties of composites. While all these properties were comparable to those previously observed for glass fiber composites, the ceramic particles have seen to be more effective on this less flammable, carbon fiber composite substrate.

  15. Microstructure and mechanical properties of boron-fiber-reinforced titanium-matrix composites produced by pulsed current hot pressing (PCHP)

    International Nuclear Information System (INIS)

    Mizuuchi, Kiyoshi; Inoue, Kanryu; Sugioka, Masami; Itami, Masao; Kawahara, Masakazu; Yamauchi, Isamu

    2006-01-01

    Boron-fiber-reinforced Ti-matrix composites were fabricated by a pulsed current hot pressing (PCHP) process at various holding temperatures between 973 and 1273 K at a pressure of 32 MPa for 600 s. It was found that the boron fiber and the Ti-matrix were well bonded when the PCHP process was carried out at 1073 K. When a holding temperature of the PCHP process was higher than 1173 K, a TiB 2 compound layer was formed along the interface between the boron fiber and the matrix, and crystallization of amorphous boron occurred in the vicinity of the tungsten core in the fiber. The thickness of TiB 2 layer and the amount of crystallized boron increased with increasing holding temperature. The composite produced by the PCHP process at 1073 K with 17.2 vol.% boron fiber presented a tensile yield stress of 706 MPa when deformed at room temperature. This value was about 80% of the yield stress estimated by a force-equilibrium equation of a composite taking into account the direction of fiber axis

  16. Electrical Resistance Based Damage Modeling of Multifunctional Carbon Fiber Reinforced Polymer Matrix Composites

    Science.gov (United States)

    Hart, Robert James

    In the current thesis, the 4-probe electrical resistance of carbon fiber-reinforced polymer (CFRP) composites is utilized as a metric for sensing low-velocity impact damage. A robust method has been developed for recovering the directionally dependent electrical resistivities using an experimental line-type 4-probe resistance method. Next, the concept of effective conducting thickness was uniquely applied in the development of a brand new point-type 4-probe method for applications with electrically anisotropic materials. An extensive experimental study was completed to characterize the 4-probe electrical resistance of CFRP specimens using both the traditional line-type and new point-type methods. Leveraging the concept of effective conducting thickness, a novel method was developed for building 4-probe electrical finite element (FE) models in COMSOL. The electrical models were validated against experimental resistance measurements and the FE models demonstrated predictive capabilities when applied to CFRP specimens with varying thickness and layup. These new models demonstrated a significant improvement in accuracy compared to previous literature and could provide a framework for future advancements in FE modeling of electrically anisotropic materials. FE models were then developed in ABAQUS for evaluating the influence of prescribed localized damage on the 4-probe resistance. Experimental data was compiled on the impact response of various CFRP laminates, and was used in the development of quasi- static FE models for predicting presence of impact-induced delamination. The simulation-based delamination predictions were then integrated into the electrical FE models for the purpose of studying the influence of realistic damage patterns on electrical resistance. When the size of the delamination damage was moderate compared to the electrode spacing, the electrical resistance increased by less than 1% due to the delamination damage. However, for a specimen with large

  17. Oxidation effects on the mechanical properties of SiC fiber-reinforced reaction-bonded silicon nitride matrix composites

    Science.gov (United States)

    Bhatt, Ramakrishna T.

    1989-01-01

    The room temperature mechanical properties of SiC fiber reinforced reaction bonded silicon nitride composites were measured after 100 hrs exposure at temperatures to 1400 C in nitrogen and oxygen environments. The composites consisted of approx. 30 vol percent uniaxially aligned 142 micron diameter SiC fibers in a reaction bonded Si3N4 matrix. The results indicate that composites heat treated in a nitrogen environment at temperatures to 1400 C showed deformation and fracture behavior equivalent to that of the as-fabricated composites. Also, the composites heat treated in an oxidizing environment beyond 400 C yielded significantly lower tensile strength values. Specifically in the temperature range from 600 to 1000 C, composites retained approx. 40 percent of their as-fabricated strength, and those heat treated in the temperatures from 1200 to 1400 C retained 70 percent. Nonetheless, for all oxygen heat treatment conditions, composite specimens displayed strain capability beyond the matrix fracture stress; a typical behavior of a tough composite.

  18. Part I. Corrosion studies of continuous alumina fiber reinforced aluminum-matrix composites. Part II. Galvanic corrosion between continuous alumina fiber reinforced aluminum-matrix composites and 4340 steel

    Science.gov (United States)

    Zhu, Jun

    Part I. The corrosion performance of continuous alumina fiber reinforced aluminum-matrix composites (CF-AMCs) was investigated in both the laboratory and field environments by comparing them with their respective monolithic matrix alloys, i.e., pure Al, A1-2wt%Cu T6, and Al 6061 T6. The corrosion initiation sites were identified by monitoring the changes in the surface morphology. Corrosion current densities and pH profiles at localized corrosion sites were measured using the scanning-vibrating electrode technique and the scanning ion-selective electrode technique, respectively. The corrosion damage of the materials immersed in various electrolytes, as well as those exposed in a humidity chamber and outdoor environments, was evaluated. Potentiodynamic polarization behavior was also studied. The corrosion initiation for the composites in 3.15 wt% NaCl occurred primarily around the Fe-rich intermetallic particles, which preferentially existed around the fiber/matrix interface on the composites. The corrosion initiation sites were also caused by physical damage (e.g., localized deformation) to the composite surface. At localized corrosion sites, the buildup of acidity was enhanced by the formation of micro-crevices resulting from fibers left in relief as the matrix corroded. The composites that were tested in exposure experiments exhibited higher corrosion rates than their monolithic alloys. The composites and their monolithic alloys were subjected to pitting corrosion when anodically polarized in the 3.15 wt% NaCl, while they passivated when anodically polarized in 0.5 M Na2SO4. The experimental results indicated that the composites exhibited inferior corrosion resistance compared to their monolithic matrix alloys. Part II. Galvanic corrosion studies were conducted on CF-AMCs coupled to 4340 steel since CF-AMCs have low density and excellent mechanical properties and are being considered as potential jacketing materials for reinforcing steel gun barrels. Coupled and

  19. Effect of finish line variants on marginal accuracy and fracture strength of ceramic optimized polymer/fiber-reinforced composite crowns.

    Science.gov (United States)

    Cho, LeeRa; Choi, JongMi; Yi, Yang Jin; Park, Chan Jin

    2004-06-01

    Ceramic optimized polymer (Ceromer)/fiber-reinforced composite (FRC) crowns have been promoted as alternatives to conventional crowns. However, little is known regarding the ideal tooth preparation for this type of crown. This in vitro study evaluated the marginal adaptation and fracture strength of ceromer/FRC crowns with respect to the various types of finish lines. Four metal dies with different finish lines (0.9-mm chamfer, 1.2-mm chamfer, 1.2-mm rounded shoulder, and 1.2-mm shoulder) were prepared. Forty (10 for each finish line) Targis/Vectris crowns were fabricated on duplicated base metal alloy dies. The restorations were stereoscopically evaluated at 56 points along the entire circumferential margin for measuring the margin adaptation before and after cementation with a resin luting agent. The specimens were then compressively loaded to failure using a universal testing machine. The marginal adaptation (microm) was analyzed with the Kruskal-Wallis test and post-hoc Dunnett test (alpha=.05). The fracture load (N) was analyzed with a 1-way analysis of the variance and the Scheffe adjustment (alpha=.05). The fractured surfaces of the crowns were examined with a scanning electron microscope to determine the mode of fracture. The marginal adaptation of crowns with a shoulder finish line was significantly better than crowns with a chamfer finish line before and after cementation (P<.001). The increased marginal gap after cementation was the lowest in the 1.2-mm rounded shoulder group. The fracture strength of the crowns with the 0.9-mm chamfer and crowns with 1.2-mm chamfer was significantly greater than those of the crowns with the 1.2-mm shoulder or rounded shoulder (P=.011, P=.049, respectively). The mean fracture load of all crowns, regardless of the finish line design, was 1646 N. The fractured surface of the crown revealed adhesive failure and 3 types of cohesive failure (fracture of the Targis and Vectris, Targis fracture with a crack in the Vectris layer

  20. A review on the advances in 3D printing and additive manufacturing of ceramics and ceramic matrix composites for optical applications

    Science.gov (United States)

    Goodman, William A.

    2017-09-01

    This paper provides a review of advances in 3D printing and additive manufacturing of ceramic and ceramic matrix composites for optical applications. Dr. Goodman has been pioneering additive manufacturing of ceramic matrix composites since 2008. He is the inventor of HoneySiC material, a zero-CTE additively manufactured carbon fiber reinforced silicon carbide ceramic matrix composite, briefly mentioned here. More recently Dr. Goodman has turned his attention to the direct printing of ceramics for optical applications via various techniques including slurry and laser sintering of silicon carbide and other ceramic materials.

  1. Analysis of Damage in a Ceramic Matrix Composite

    DEFF Research Database (Denmark)

    Sørensen, Bent F.; Talreja, Ramesh

    1993-01-01

    Mechanisms of damage and the associated mechanical response are stud ied for a unidirectionally fiber-reinforced ceramic matrix composite subjected to uniaxial tensile loading parallel to fibers. A multi-stage development of damage is identified, and for each stage the governing mechanisms...... are discussed. For distributed matrix micro cracking a continuum damage model is used as the basis for describing the associated stress-strain behavior. A simplified analysis of frictional sliding at the fiber/matrix inter face is made to elucidate its effect on the stress-strain response....

  2. Thermal conductivity and thermal expansion of graphite fiber-reinforced copper matrix composites

    Science.gov (United States)

    Ellis, David L.; Mcdanels, David L.

    1993-01-01

    The high specific conductivity of graphite fiber/copper matrix (Gr/Cu) composites offers great potential for high heat flux structures operating at elevated temperatures. To determine the feasibility of applying Gr/Cu composites to high heat flux structures, composite plates were fabricated using unidirectional and cross-plied pitch-based P100 graphite fibers in a pure copper matrix. Thermal conductivity of the composites was measured from room temperature to 1073 K, and thermal expansion was measured from room temperature to 1050 K. The longitudinal thermal conductivity, parallel to the fiber direction, was comparable to pure copper. The transverse thermal conductivity, normal to the fiber direction, was less than that of pure copper and decreased with increasing fiber content. The longitudinal thermal expansion decreased with increasing fiber content. The transverse thermal expansion was greater than pure copper and nearly independent of fiber content.

  3. Macro-mechanical material model for fiber reinforced metal matrix composites

    CERN Document Server

    Banks-Sills, L

    1999-01-01

    The stress-strain behavior of a metal matrix composite reinforced with unidirectional, continuous and periodic fibers is investigated. Three-dimensional micro-mechanical analyses of a unit cell by means of the finite element method $9 and homogenization-localization are carried out. These calculations allow the determination of material behavior of the in-plane, as well as the fiber directions. The fibers are assumed to be elastic and the matrix elasto-plastic. $9 The matrix material is governed by a von Mises yield surface, isotropic hardening and an associated flow rule. With the aid of these analyses, the foundation to a macro-mechanical material model is presented which is employed to $9 consider an elementary problem. The model includes an anisotropic yield surface with isotropic hardening and an associated flow rule. A beam in bending containing square fibers under plane strain conditions is analyzed by means of $9 the model. Two cases are considered: one in which the fibers are symmetric with respect t...

  4. Change in the structure and properties of carbon fiber-reinforced plastic with a polysulfone matrix under the effect of gamma irradiation

    International Nuclear Information System (INIS)

    Arkhipov, A.A.; Korkhov, V.P.; Pudnik, V.V.; Rodin, Yu.P.

    1993-01-01

    This article presents the results of studying the change in the structure and properties of carbon fiber-reinforced plastic with a thermoplastic matrix -- aromatic polysulfone -- as a function of the absorbed dose of gamma radiation. In view of the presence in the polysulfone macromolecules and in carbon fibers of a large number of aromatic rings and double bonds providing high radiation resistance of the composite, irradiation was carried out up to large values of absorbed doses (10 9 rad). Specimens of orthogonally reinforced composite KTMU-1 with a thickness of 1.3 mm made from aromatic polysulfone PSF-150 and carbon ribbon that absorbed various gamma radiation dosages were used. It was found that structural transformations under the effect of gamma radiation did not have a substantial effect on the mechanical properties of carbon fiber-reinforced plastic. 2 refs., 3 figs., 3 tabs

  5. Process for the manufacture of seamless metal-clad fiber-reinforced organic matrix composite structures

    Science.gov (United States)

    Bluck, Raymond M. (Inventor); Bush, Harold G. (Inventor); Johnson, Robert R. (Inventor)

    1991-01-01

    A process for producing seamless metal-clad composite structures includes providing a hollow, metallic inner member and an outer sleeve to surround the inner member and define an inner space therebetween. A plurality of continuous reinforcing fibers is attached to the distal end of the outside diameter of the inner member, and the inner member is then introduced, distal end first, into one end of the outer sleeve. The inner member is then moved, distal end first, into the outer sleeve until the inner member is completely enveloped by the outer sleeve. A liquid matrix material is then injected into the space containing the reinforcing fibers between the inner member and the outer sleeve. Next a pressurized heat transfer medium is passed through the inner member to cure the liquid matrix material. Finally, the wall thickness of both the inner member and the outer sleeve are reduced to desired dimensions by chemical etching, which adjusts the thermal expansion coefficient of the metal-clad composite structure to a desired value.

  6. Damage Tolerance Enhancement of Carbon Fiber Reinforced Polymer Composites by Nanoreinforcement of Matrix

    Science.gov (United States)

    Fenner, Joel Stewart

    Nanocomposites are a relatively new class of materials which incorporate exotic, engineered nanoparticles to achieve superior material properties. Because of their extremely small size and well-ordered structure, many nanoparticles possess properties that exceed those offered by a wide range of other known materials, making them attractive candidates for novel materials engineering development. Their small size is also an impediment to their practical use, as they typically cannot be employed by themselves to realize those properties in large structures. Furthermore, nanoparticles typically possess strong self-affinity, rendering them difficult to disperse uniformly into a composite. However, contemporary research has shown that, if well-dispersed, nanoparticles have great capacity to improve the mechanical properties of composites, especially damage tolerance, in the form of fracture toughness, fatigue life, and impact damage mitigation. This research focuses on the development, manufacturing, and testing of hybrid micro/nanocomposites comprised of woven carbon fibers with a carbon nanotube reinforced epoxy matrix. Material processing consisted of dispersant-and-sonication based methods to disperse nanotubes into the matrix, and a vacuum-assisted wet lay-up process to prepare the hybrid composite laminates. Various damage tolerance properties of the hybrid composite were examined, including static strength, fracture toughness, fatigue life, fatigue crack growth rate, and impact damage behavior, and compared with similarly-processed reference material produced without nanoreinforcement. Significant improvements were obtained in interlaminar shear strength (15%), Mode-I fracture toughness (180%), shear fatigue life (order of magnitude), Mode-I fatigue crack growth rate (factor of 2), and effective impact damage toughness (40%). Observations by optical microscopy, scanning electron microscopy, and ultrasonic imaging showed significant differences in failure behavior

  7. Interface coatings for Carbon and Silicon Carbide Fibers in Silicon Carbide Matrixes, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Interface coatings for fiber-reinforced composites are an enabling technology for high temperature ceramic matrix composites. Because of their availability and...

  8. Fiber reinforced engineering plastics

    Science.gov (United States)

    Daniel F. Caulfield; Rodney E. Jacobson; Karl D. Sears; John H. Underwood

    2001-01-01

    Although natural fiber reinforced commodity thermoplastics have a wide range of nonstructural applications in the automotive and decking industries, there have been few reports of cellulosic fiber-reinforced engineering thermoplastics. The commonly held belief has been that the only thermoplastics amenable to natural-fibre reinforcement are limited to low-melting (...

  9. Modeling the Stress Strain Behavior of Woven Ceramic Matrix Composites

    Science.gov (United States)

    Morscher, Gregory N.

    2006-01-01

    Woven SiC fiber reinforced SiC matrix composites represent one of the most mature composite systems to date. Future components fabricated out of these woven ceramic matrix composites are expected to vary in shape, curvature, architecture, and thickness. The design of future components using woven ceramic matrix composites necessitates a modeling approach that can account for these variations which are physically controlled by local constituent contents and architecture. Research over the years supported primarily by NASA Glenn Research Center has led to the development of simple mechanistic-based models that can describe the entire stress-strain curve for composite systems fabricated with chemical vapor infiltrated matrices and melt-infiltrated matrices for a wide range of constituent content and architecture. Several examples will be presented that demonstrate the approach to modeling which incorporates a thorough understanding of the stress-dependent matrix cracking properties of the composite system.

  10. Synthesis of Y2O3-ZrO2-SiO2 composite coatings on carbon fiber reinforced resin matrix composite by an electro-plasma process

    Science.gov (United States)

    Zhang, Yuping; Lin, Xiang; Chen, Weiwei; Cheng, Huanwu; Wang, Lu

    2016-05-01

    In the present paper the Y2O3-ZrO2-SiO2 composite coating was successfully synthesized on carbon fiber reinforced resin matrix composite by an electro-plasma process. The deposition process, microstructures and oxidation resistance of the coatings with different SiO2 concentrations were systematically investigated. A relatively dense microstructure was observed for the Y2O3-ZrO2-SiO2 composite coating with the SiO2 concentration above 5 g/L. The coating exhibited very good oxidation resistance at 1273 K with the mass loss rate as low as ∼30 wt.%, compared to 100 wt.% of the substrate. The formation of the ceramic composites was discussed in detail based on the electrochemical mechanism and the deposition dynamics in order to explain the effect of the plasma discharge. We believe that the electro-plasma process will find wide applications in preparing ceramics and coatings in industries.

  11. Effects of electron beam irradiation on mechanical properties at low and high temperature of fiber reinforced composites using PEEK as matrix material

    International Nuclear Information System (INIS)

    Sasuga, Tsuneo; Seguchi, Tadao; Sakai, Hideo; Odajima, Toshikazu; Nakakura, Toshiyuki; Masutani, Masahiro.

    1987-11-01

    Carbon fiber reinforced composite (PEEK-CF) using polyarylether-ether-ketone (PEEK) as a matrix material was prepared and the electron beam radiation effects on the mechanical properties at low and high temperature and the effects of annealing after irradiation were studied. Cooling down to 77 K, the flexural strength of PEEK-CF increased to about 20 % than that at room temperature. The data of flexural strength for the irradiated specimens showed some scattering, but the strength and modulus at 77 K were changed scarcely up to 120 MGy. The flexural strength and modulus in the unirradiated specimen decreased with increasing of measurement temperature, and the strength at 140 deg C, which is the just below temperature of the glass transition of PEEK, was to 70 % of the value at room temperature. For the irradiated specimens, the strength and modulus increased with dose and the values at 140 deg C for the specimen irradiated with 120 MGy were nearly the same with the unirradiated specimen measured at room temperature. The improvement of mechanical properties at high temperature by irradiation was supported by a viscoelastic measurement in which the glass transition shifted to the higher temperature by the radiation-induced crosslinking. A glass fiber reinforced PEEK composite (PEEK-GF) was prepared and its irradiation effects by electron beam was studied. Unirradiated PEEK-GF showed the same performance with that for GFRP of epoxide resin as matrix material, but by irradiation the flexual strength and modulus decreased with dose. It was revealed that this composite was destroyed by delamination because inter laminar shear strength (ILSS) decreased with dose and analysis of the profile of S-S curve showed typical delamination. Fractoglaphy by electron microscopy supported the delamination which is caused by the lowering of adhesion on interface between the fiber and matrix with increase of dose. (author)

  12. Characterizing the influence of matrix ductility on damage phenomenology in continuous fiber-reinforced thermoplastic laminates undergoing quasi-static indentation

    KAUST Repository

    Yudhanto, Arief

    2017-12-12

    The use of thermoplastic matrix was known to improve the impact properties of laminated composites. However, different ductility levels can exist in a single family of thermoplastic matrix, and this may consequently modify the damage phenomenology of thermoplastic composites. This paper focuses on the effect of matrix ductility on the out-of-plane properties of thermoplastic composites, which was studied through quasi-static indentation (QSI) test that may represent impact problem albeit the speed difference. We evaluated continuous glass-fiber reinforced polypropylene thermoplastic composites (GFPP), and selected homopolymer PP and copolymer PP that represent ductile and less ductile matrices, respectively. Several cross-ply laminates were selected to study the influence of ply thicknesses and relative orientation of interfaces on QSI properties of GFPP. It is expected that GFPP with ductile matrix improves energy absorption of GFPP. However, the damage mechanism is completely different between GFPP with ductile and GFPP with less ductile matrices. GFPP with ductile matrix exhibits smaller damage zone in comparison to the one with less ductile matrix. Higher matrix ductility inhibits the growth of ply cracking along the fiber, and this causes the limited size of delamination. The stacking sequence poses more influence on less ductile composites rather than the ductile one.

  13. Influence of Thin-Film Adhesives in Pullout Tests Between Nickel-Titanium Shape Memory Alloy and Carbon Fiber-Reinforced Polymer Matrix Composites

    Science.gov (United States)

    Quade, Derek J.; Jana, Sadhan; McCorkle, Linda S.

    2018-01-01

    Strips of nickel-titanium (NiTi) shape memory alloy (SMA) and carbon fiber-reinforced polymer matrix composite (PMC) were bonded together using multiple thin film adhesives and their mechanical strengths were evaluated under pullout test configuration. Tensile and lap shear tests were conducted to confirm the deformation of SMAs at room temperature and to evaluate the adhesive strength between the NiTi strips and the PMC. Optical and scanning electron microscopy techniques were used to examine the interfacial bonding after failure. Simple equations on composite tensile elongation were used to fit the experimental data on tensile properties. ABAQUS models were generated to show the effects of enhanced bond strength and the distribution of stress in SMA and PMC. The results revealed that the addition of thin film adhesives increased the average adhesive strength between SMA and PMC while halting the room temperature shape memory effect within the pullout specimen.

  14. Internal friction and microplasticity of carbon-fiber-reinforced SiC ceramics; Tanso sen`i kyoka SiC ceramics no hakai zenku katei ni okeru naibu masatsu

    Energy Technology Data Exchange (ETDEWEB)

    Ogawa, H.; Nishino, Y.; Asano, S. [Nagoya Institute of Technology, Nagoya (Japan)

    1995-08-20

    Mechanical responses of carbon-fiber-reinforced SiC ceramics before fracture were measured in the strain range below 2 {times} 10{sup {minus}3} by two experimental methods: mechanical hysteresis and internal friction. Load-deflection curves were obtained by the three-point bending deformation in loading-unloading cycles. A little permanent strain was found after the first cycle even in the range where fracture never occurred. A closed hysteresis loop was observed after several cycles and stabilized with a symmetrical shape after more than twenty cycles. Such a stabilized hysteresis loop is attributed to the steady-state microplastic deformation and may cause the amplitude-dependent internal friction. Internal friction was measured in the fundamental mode of free-free resonant vibration as a function of strain amplitude. With increasing the amount of prestrain in the bending deformation, internal friction increased and became sensitive to the strain amplitude. The amplitude-dependent internal friction in the composites is considered to originate from fiber pull-out or microcrack propagation. The internal friction data were analyzed on the basis of the microplasticity theory and converted into the plastic strain expressed as a function of stress. Therefore, it becomes possible to non-destructively study the forerunning process of fracture of the fiber-reinforced ceramics. 23 refs., 6 figs.

  15. Microstructure and mechanical properties of carbon fiber reinforced ...

    Indian Academy of Sciences (India)

    68

    Microstructure and mechanical properties of carbon fiber reinforced alumina composites fabricated from sol. CHAOYANG FAN, QINGSONG MA* and KUANHONG ZENG. Science and Technology on Advanced Ceramic Fibers &Composites Laboratory, National University of Defense Technology,. Changsha 410073, PR ...

  16. Fatigue Performance of Fiber Reinforced Concrete

    DEFF Research Database (Denmark)

    Jun, Zhang; Stang, Henrik

    1996-01-01

    The objective of the present study is to obtain basic data of fibre reinforced concrete under fatigue load and to set up a theoretical model based on micromechanics. In this study, the bridging stress in fiber reinforced concrete under cyclic tensile load was investigted in details. The damage...... mechanism of the interface between fiber and matrix was proposed and a rational model given. Finally, the response of a steel fiber reinforced concrete beam under fatigue loading was predicted based on this model and compared with experimental results....

  17. Ceramic matrix composites -- Advanced high-temperature structural materials

    International Nuclear Information System (INIS)

    Lowden, R.A.; Ferber, M.K.; DiPietro, S.G.

    1995-01-01

    This symposium on Ceramic Matrix Composites: Advanced High-Temperature Structural Materials was held at the 1994 MRS Fall Meeting in Boston, Massachusetts on November 28--December 2. The symposium was sponsored by the Department of Energy's Office of Industrial Technology's Continuous Fiber Ceramic Composites Program, the Air Force Office of Scientific Research, and NASA Lewis Research Center. Among the competing materials for advanced, high-temperature applications, ceramic matrix composites are leading candidates. The symposium was organized such that papers concerning constituents--fibers and matrices--were presented first, followed by composite processing, modeling of mechanical behavior, and thermomechanical testing. More stable reinforcements are necessary to enhance the performance and life of fiber-reinforced ceramic composites, and to ensure final acceptance of these materials for high-temperature applications. Encouraging results in the areas of polymer-derived SiC fibers and single crystal oxide filaments were given, suggesting composites with improved thermomechanical properties and stability will be realized in the near future. The significance of the fiber-matrix interface in the design and performance of these materials is evident. Numerous mechanical models to relate interface properties to composite behavior, and interpret test methods and data, were enthusiastically discussed. One issue of great concern for any advanced material for use in extreme environments is stability. This theme arose frequently throughout the symposium and was the topic of focus on the final day. Fifty nine papers have been processed separately for inclusion on the data base

  18. Cure Cycle Design Methodology for Fabricating Reactive Resin Matrix Fiber Reinforced Composites: A Protocol for Producing Void-free Quality Laminates

    Science.gov (United States)

    Hou, Tan-Hung

    2014-01-01

    For the fabrication of resin matrix fiber reinforced composite laminates, a workable cure cycle (i.e., temperature and pressure profiles as a function of processing time) is needed and is critical for achieving void-free laminate consolidation. Design of such a cure cycle is not trivial, especially when dealing with reactive matrix resins. An empirical "trial and error" approach has been used as common practice in the composite industry. Such an approach is not only costly, but also ineffective at establishing the optimal processing conditions for a specific resin/fiber composite system. In this report, a rational "processing science" based approach is established, and a universal cure cycle design protocol is proposed. Following this protocol, a workable and optimal cure cycle can be readily and rationally designed for most reactive resin systems in a cost effective way. This design protocol has been validated through experimental studies of several reactive polyimide composites for a wide spectrum of usage that has been documented in the previous publications.

  19. Elastic-plastic finite element analyses of an unidirectional, 9 vol percent tungsten fiber reinforced copper matrix composite

    Science.gov (United States)

    Sanfeliz, Jose G.

    1993-01-01

    Micromechanical modeling via elastic-plastic finite element analyses were performed to investigate the effects that the residual stresses and the degree of matrix work hardening (i.e., cold-worked, annealed) have upon the behavior of a 9 vol percent, unidirectional W/Cu composite, undergoing tensile loading. The inclusion of the residual stress-containing state as well as the simulated matrix material conditions proved to be significant since the Cu matrix material exhibited plastic deformation, which affected the subsequent tensile response of the composite system. The stresses generated during cooldown to room temperature from the manufacturing temperature were more of a factor on the annealed-matrix composite, since they induced the softened matrix to plastically flow. This event limited the total load-carrying capacity of this matrix-dominated, ductile-ductile type material system. Plastic deformation of the hardened-matrix composite during the thermal cooldown stage was not considerable, therefore, the composite was able to sustain a higher stress before showing any appreciable matrix plasticity. The predicted room temperature, stress-strain response, and deformation stages under both material conditions represented upper and lower bounds characteristic of the composite's tensile behavior. The initial deformation stage for the hardened material condition showed negligible matrix plastic deformation while for the annealed state, its initial deformation stage showed extensive matrix plasticity. Both material conditions exhibited a final deformation stage where the fiber and matrix were straining plastically. The predicted stress-strain results were compared to the experimental, room temperature, tensile stress-strain curve generated from this particular composite system. The analyses indicated that the actual thermal-mechanical state of the composite's Cu matrix, represented by the experimental data, followed the annealed material condition.

  20. The Effects of Fiber Orientation and Adhesives on Tensile Properties of Carbon Fiber Reinforced Polymer Matrix Composite with Embedded Nickel-Titanium Shape Memory Alloys

    Science.gov (United States)

    Quade, Derek J.; Jana, Sadhan C.; Morscher, Gregory N.; Kannan, Manigandan; McCorkle, Linda S.

    2017-01-01

    Nickel-titanium (NiTi) shape memory alloy (SMA) sections were embedded within carbon fiber reinforced polymer matrix composite (CFRPPMC) laminates and their tensile properties were evaluated with simultaneous monitoring of modal acoustic emissions. The test specimens were fabricated in three different layup configurations and two different thin film adhesives were applied to bond the SMA with the PMC. A trio of acoustic sensors were attached to the specimens during tensile testing to monitor the modal acoustic emission (AE) as the materials experienced mechanical failure. The values of ultimate tensile strengths, strains, and moduli were obtained. Cumulative AE energy of events and specimen failure location were determined. In conjunction, optical and scanning electron microscopy techniques were used to examine the break areas of the specimens. The analysis of AE data revealed failure locations within the specimens which were validated from the microscopic images. The placement of 90 deg plies in the outer ply gave the strongest acoustic signals during break as well as the cleanest break of the samples tested. Overlapping 0 deg ply layers surrounding the SMA was found to be the best scenario to prevent failure of the specimen itself.

  1. Nondestructive Damage Evaluation in Ceramic Matrix Composites for Aerospace Applications

    Directory of Open Access Journals (Sweden)

    Konstantinos G. Dassios

    2013-01-01

    Full Text Available Infrared thermography (IRT and acoustic emission (AE are the two major nondestructive methodologies for evaluating damage in ceramic matrix composites (CMCs for aerospace applications. The two techniques are applied herein to assess and monitor damage formation and evolution in a SiC-fiber reinforced CMC loaded under cyclic and fatigue loading. The paper explains how IRT and AE can be used for the assessment of the material’s performance under fatigue. IRT and AE parameters are specifically used for the characterization of the complex damage mechanisms that occur during CMC fracture, and they enable the identification of the micromechanical processes that control material failure, mainly crack formation and propagation. Additionally, these nondestructive parameters help in early prediction of the residual life of the material and in establishing the fatigue limit of materials rapidly and accurately.

  2. Use of Single-Tow Ceramic Matrix Minicomposites to Determine Fundamental Room and Elevated Temperature Properties

    Science.gov (United States)

    Almansour, Amjad S.

    The room and high temperature mechanical properties of continuous ceramic fiber reinforced matrix composites makes them attractive for implementation in aerospace and nuclear applications. However, the effect of fiber content has not been addressed in previous work. Therefore, single tow composites with fiber content ranging from 3 to 47 % was studied. Single fiber tow minicomposite is the basic architectural feature of woven and laminate ceramic matrix composites (CMCs). An in depth understanding of the initiation and evolution of damage in various ceramic fiber reinforced minicomposites with different fiber volume fractions and interphases was investigated employing several non-destructive evaluation techniques. A new technique is used to determine matrix crack content based on a damage parameter derived from speed of sound measurements which is compared with the established method using cumulative energy of Acoustic Emission (AE) events. Also, a modified theoretical model was implemented to obtain matrix stress at the onset of matrix cracking. Room temperature tensile, high temperature creep rupture and high temperature oxidation degradation loading conditions were all considered and composites' constituents were characterized. Moreover, fibers/matrix load sharing was modeled in creep and fiber volume fraction effect on load transfer was investigated using derived theoretical models. Fibers and matrix creep parameters, load transfer model results and numerical model methodology were used to construct minicomposites' creep strain model to predict creep damage of the different fiber type and content minicomposites. Furthermore, different fiber volume fractions ceramic matrix minicomposites' electrical resistivity temperature dependence isn't well understood. Therefore, the influence of fiber content, heat treatment cycles and creep on electrical resistivity measurements of SiC/SiC minicomposites were also studied here. Next, minicomposites' testing and

  3. Effects of fiber length on mechanical properties and fracture behavior of short carbon fiber reinforced geopolymer matrix composites

    International Nuclear Information System (INIS)

    Lin Tiesong; Jia Dechang; He Peigang; Wang Meirong; Liang Defu

    2008-01-01

    A kind of sheet-like carbon fiber preform was developed using short fibers (2, 7 and 12 mm, respectively) as starting materials and used to strengthen a geopolymer. Mechanical properties, fracture behavior, microstructure and toughening mechanisms of the as-prepared composites were investigated by three-point bending test, optical microscope and scanning electron microscopy. The results show that the short carbon fibers disperse uniformly in geopolymer matrix. The C f /geopolymer composites exhibit apparently improved mechanical properties and an obvious noncatastrophic failure behavior. The composite reinforced by the carbon fibers of 7 mm in length shows a maximum flexural strength as well as the highest work of facture, which are nearly 5 times and more than 2 orders higher than that of the geopolymer matrix, respectively. The predominant strengthening and toughening mechanisms are attributed to the apparent fiber bridging and pulling-out effect based on the weak fiber/matrix interface as well as the sheet-like carbon fiber preform

  4. Ceramic matrix composite article and process of fabricating a ceramic matrix composite article

    Science.gov (United States)

    Cairo, Ronald Robert; DiMascio, Paul Stephen; Parolini, Jason Robert

    2016-01-12

    A ceramic matrix composite article and a process of fabricating a ceramic matrix composite are disclosed. The ceramic matrix composite article includes a matrix distribution pattern formed by a manifold and ceramic matrix composite plies laid up on the matrix distribution pattern, includes the manifold, or a combination thereof. The manifold includes one or more matrix distribution channels operably connected to a delivery interface, the delivery interface configured for providing matrix material to one or more of the ceramic matrix composite plies. The process includes providing the manifold, forming the matrix distribution pattern by transporting the matrix material through the manifold, and contacting the ceramic matrix composite plies with the matrix material.

  5. Radiation resistant ceramic matrix composites

    International Nuclear Information System (INIS)

    Jones, R.H.; Steiner, D.; Heinisch, H.L.; Newsome, G.A.; Kerch, H.M.

    1997-01-01

    Ceramic matrix composites are of interest for nuclear applications because of their high-temperature properties, corrosion resistance, fracture toughness relative to monolithic ceramics, and low neutron activation and after heat. Evaluations of the radiation resistance of commercially available SiC/SiC composites have revealed their promise for this application, but also the need for further development to achieve the desired performance. This paper summarizes the results of a workshop cosponsored by the Offices of Fusion Energy and Basic Energy Sciences of the US Department of Energy and Lockheed-Martin Corporation with forty attendees from national laboratories, universities and industry. A number of promising routes for optimizing the radiation stability of ceramic matrix composites were identified at this workshop. These routes included the newer, more stoichiometric fibers and alternate fiber/matrix interfaces and matrix processing routes. (orig.)

  6. Influence of the Processing Parameters on the Fiber-Matrix-Interphase in Short Glass Fiber-Reinforced Thermoplastics

    Directory of Open Access Journals (Sweden)

    Anna Katharina Sambale

    2017-06-01

    Full Text Available The interphase in short fiber thermoplastic composites is defined as a three-dimensional, several hundred nanometers-wide boundary region at the interface of fibers and the polymer matrix, exhibiting altered mechanical properties. This region is of key importance in the context of fiber-matrix adhesion and the associated mechanical strength of the composite material. An interphase formation is caused by morphological, as well as thermomechanical processes during cooling of the plastic melt close to the glass fibers. In this study, significant injection molding processing parameters are varied in order to investigate the influence on the formation of an interphase and the resulting mechanical properties of the composite. The geometry of the interphase is determined using nano-tribological techniques. In addition, the influence of the glass fiber sizing on the geometry of the interphase is examined. Tensile tests are used in order to determine the resulting mechanical properties of the produced short fiber composites. It is shown that the interphase width depends on the processing conditions and can be linked to the mechanical properties of the short fiber composite.

  7. Fiber-reinforced composites in fixed partial dentures | Garoushi ...

    African Journals Online (AJOL)

    ... to whether FRC prostheses will replace metal-ceramic or full-ceramic prostheses, attention should be focused on the additional treatment options brought by the use of fibers. However, more clinical experience is needed. Keywords: fiber-reinforced composite, fixed partial dentures, particulate resin composite, framework

  8. Cyclic Fiber Push-In Test Monitors Evolution of Interfacial Behavior in Ceramic Matrix Composites

    Science.gov (United States)

    Eldridge, Jeffrey I.

    1998-01-01

    SiC fiber-reinforced ceramic matrix composites are being developed for high-temperature advanced jet engine applications. Obtaining a strong, tough composite material depends critically on optimizing the mechanical coupling between the reinforcing fibers and the surrounding matrix material. This has usually been accomplished by applying a thin C or BN coating onto the surface of the reinforcing fibers. The performance of these fiber coatings, however, may degrade under cyclic loading conditions or exposure to different environments. Degradation of the coating-controlled interfacial behavior will strongly affect the useful service lifetime of the composite material. Cyclic fiber push-in testing was applied to monitor the evolution of fiber sliding behavior in both C- and BN-coated small-diameter (15-mm) SiC-fiber-reinforced ceramic matrix composites. The cyclic fiber push-in tests were performed using a desktop fiber push-out apparatus. At the beginning of each test, the fiber to be tested was aligned underneath a 10- mm-diameter diamond punch; then, the applied load was cycled between selected maximum and minimum loads. From the measured response, the fiber sliding distance and frictional sliding stresses were determined for each cycle. Tests were performed in both room air and nitrogen. Cyclic fiber push-in tests of C-coated, SiC-fiber-reinforced SiC showed progressive increases in fiber sliding distances along with decreases in frictional sliding stresses for continued cycling in room air. This rapid degradation in interfacial response was not observed for cycling in nitrogen, indicating that moisture exposure had a large effect in immediately lowering the frictional sliding stresses of C-coated fibers. These results indicate that matrix cracks bridged by C-coated fibers will not be stable, but will rapidly grow in moisture-containing environments. In contrast, cyclic fiber push-in tests of both BN-coated, SiC-fiber-reinforced SiC and BNcoated, SiC-fiber-reinforced

  9. Economical Fabrication of Thick-Section Ceramic Matrix Composites

    Science.gov (United States)

    Babcock, Jason; Ramachandran, Gautham; Williams, Brian; Benander, Robert

    2010-01-01

    A method was developed for producing thick-section [>2 in. (approx.5 cm)], continuous fiber-reinforced ceramic matrix composites (CMCs). Ultramet-modified fiber interface coating and melt infiltration processing, developed previously for thin-section components, were used for the fabrication of CMCs that were an order of magnitude greater in thickness [up to 2.5 in. (approx.6.4 cm)]. Melt processing first involves infiltration of a fiber preform with the desired interface coating, and then with carbon to partially densify the preform. A molten refractory metal is then infiltrated and reacts with the excess carbon to form the carbide matrix without damaging the fiber reinforcement. Infiltration occurs from the inside out as the molten metal fills virtually all the available void space. Densification to coatings to the fiber preform was also required to accommodate the high preform thickness. The thick-section CMC processing developed in this work proved to be invaluable for component development, fabrication, and testing in two complementary efforts. In a project for the Army, involving SiC/SiC blisk development, nominally 0.8 in. thick x 8 in. diameter (approx. 2 cm thick x 20 cm diameter) components were successfully infiltrated. Blisk hubs were machined using diamond-embedded cutting tools and successfully spin-tested. Good ply uniformity and extremely low residual porosity (matrix composites fabricated via CVI or PIP. The pyrolytic carbon/zirconium nitride interface coating optimized in this work for use on carbon fibers was incorporated in the SiC/SiC composites and yielded a >41 ksi (approx. 283 MPa) flexural strength.

  10. Effect of hybrid fiber reinforcement on the cracking process in fiber reinforced cementitious composites

    DEFF Research Database (Denmark)

    Pereira, Eduardo B.; Fischer, Gregor; Barros, Joaquim A.O.

    2012-01-01

    tensile deformations in the composite, the fibers with different geometrical and mechanical properties restrain the propagation and further development of cracking at different scales from the micro- to the macro-scale. The optimized design of the fiber reinforcing systems requires the objective......The simultaneous use of different types of fibers as reinforcement in cementitious matrix composites is typically motivated by the underlying principle of a multi-scale nature of the cracking processes in fiber reinforced cementitious composites. It has been hypothesized that while undergoing...... assessment of the contribution of each type of fiber to the overall tensile response. Possible synergistic effects resulting from particular combinations of fibers need to be clearly identified. In the present study, the evaluation of the response of different fiber reinforced cementitious composite...

  11. Additive Manufacturing of SiC Based Ceramics and Ceramic Matrix Composites

    Science.gov (United States)

    Halbig, Michael Charles; Singh, Mrityunjay

    2015-01-01

    Silicon carbide (SiC) ceramics and SiC fiber reinforcedSiC ceramic matrix composites (SiCSiC CMCs) offer high payoff as replacements for metals in turbine engine applications due to their lighter weight, higher temperature capability, and lower cooling requirements. Additive manufacturing approaches can offer game changing technologies for the quick and low cost fabrication of parts with much greater design freedom and geometric complexity. Four approaches for developing these materials are presented. The first two utilize low cost 3D printers. The first uses pre-ceramic pastes developed as feed materials which are converted to SiC after firing. The second uses wood containing filament to print a carbonaceous preform which is infiltrated with a pre-ceramic polymer and converted to SiC. The other two approaches pursue the AM of CMCs. The first is binder jet SiC powder processing in collaboration with rp+m (Rapid Prototyping+Manufacturing). Processing optimization was pursued through SiC powder blending, infiltration with and without SiC nano powder loading, and integration of nanofibers into the powder bed. The second approach was laminated object manufacturing (LOM) in which fiber prepregs and laminates are cut to shape by a laser and stacked to form the desired part. Scanning electron microscopy was conducted on materials from all approaches with select approaches also characterized with XRD, TGA, and bend testing.

  12. ANL-1(A) - Development of nondestructive evaluation methods for structural ceramics

    International Nuclear Information System (INIS)

    Ellingson, W.A.; Roberts, R.A.; Gopalsami, N.; Dieckman, S.; Hentea, T.; Vaitekunas, J.J.

    1989-01-01

    This section includes the following papers: Development of Nondestructive Evaluation Methods for Structural Ceramics; Effects of Flaws on the Fracture Behavior of Structural Ceramics; Design, Fabrication, and Interface Characterization of Ceramic Fiber-Ceramic Matrix Composites; Development of Advanced Fiber-Reinforced Ceramics; Modeling of Fibrous Preforms for CVD Infiltration; NDT of Advanced Ceramic Composite Materials; Joining of Silicon Carbide Reinforced Ceramics; Superconducting Film Fabrication Research; Short Fiber Reinforced Structural Ceramics; Structural Reliability and Damage Tolerance of Ceramic Composites for High-Temperature Applications; Fabrication of Ceramic Fiber-Ceramic Matrix Composites by Chemical Vapor Infiltration; Characterization of Fiber-CVD Matrix interfacial Bonds; Microwave Sintering of Superconducting Ceramics; Improved Ceramic Composites Through Controlled Fiber-Matrix Interactions; Evaluation of Candidate Materials for Solid Oxide Fuel Cells; Ceramic Catalyst Materials: Hydrous Metal Oxide Ion-Exchange Supports for Coal Liquefaction; and Investigation of Properties and Performance of Ceramic Composite Components

  13. Method of forming a ceramic matrix composite and a ceramic matrix component

    Science.gov (United States)

    de Diego, Peter; Zhang, James

    2017-05-30

    A method of forming a ceramic matrix composite component includes providing a formed ceramic member having a cavity, filling at least a portion of the cavity with a ceramic foam. The ceramic foam is deposited on a barrier layer covering at least one internal passage of the cavity. The method includes processing the formed ceramic member and ceramic foam to obtain a ceramic matrix composite component. Also provided is a method of forming a ceramic matrix composite blade and a ceramic matrix composite component.

  14. Fiber-reinforced composites in fixed partial dentures

    Directory of Open Access Journals (Sweden)

    Vallittu P

    2006-08-01

    Full Text Available Fiber-reinforced composite resin (FRC prostheses offer the advantages of good esthetics, minimal invasive treatment, and an ability to bond to the abutment teeth, thereby compensating for less-than-optimal abutment tooth retention and resistance form. These prostheses are composed of two types of composite materials: fiber composites to build the framework and hybrid or microfill particulate composites to create the external veneer surface. This review concentrates on the use of fiber reinforcement in the fabrication of laboratory or chairside-made composite-fixed partial dentures of conventional preparation. Other applications of FRC in dentistry are briefly mentioned. The possibilities fiber reinforcement technology offers must be emphasized to the dental community. Rather than limiting discussion to whether FRC prostheses will replace metal-ceramic or full-ceramic prostheses, attention should be focused on the additional treatment options brought by the use of fibers. However, more clinical experience is needed.

  15. The Effect of Tow Shearing on Reinforcement Positional Fidelity in the Manufacture of a Continuous Fiber Reinforced Thermoplastic Matrix Composite via Pultrusion-Like Processing of Commingled Feedstock

    Science.gov (United States)

    Warlick, Kent M.

    While the addition of short fiber to 3D printed articles has increased structural performance, ultimate gains will only be realized through the introduction of continuous reinforcement placed along pre-planned load paths. Most additive manufacturing research focusing on the addition of continuous reinforcement has revolved around utilization of a prefrabricated composite filament or a fiber and matrix mixed within a hot end prior to deposition on a printing surface such that conventional extrusion based FDM can be applied. Although stronger 3D printed parts can be made in this manner, high quality homogenous composites are not possible due to fiber dominated regions, matrix dominated regions, and voids present between adjacent filaments. Conventional composite manufacturing processes are much better at creating homogeneous composites; however, the layer by layer approach in which they are made is inhibiting the alignment of reinforcement with loads. Automated Fiber Placement techniques utilize in plane bending deformation of the tow to facilitate tow steering. Due to buckling fibers on the inner radius of curves, manufacturers recommend a minimum curvature for path placement with this technique. A method called continuous tow shearing has shown promise to enable the placement of tows in complex patterns without tow buckling, spreading, and separation inherent in conventional forms of automated reinforcement positioning. The current work employs fused deposition modeling hardware and the continuous tow shearing technique to manufacture high quality fiber reinforced composites with high positional fidelity, varying continuous reinforcement orientations within a layer, and plastic elements incorporated enabling the ultimate gains in structural performance possible. A mechanical system combining concepts of additive manufacturing with fiber placement via filament winding was developed. Paths with and without tension inherent in filament winding were analyzed through

  16. Micromechanical failure in fiber-reinforced composites

    DEFF Research Database (Denmark)

    Ashouri Vajari, Danial

    Micromechanical failure mechanisms occurring in unidirectional fiber-reinforced composites are studied by means of the finite element method as well as experimental testing. This study highlights the effect of micro-scale features such as fiber/matrix interfacial debonding, matrix cracking......, the failure locus of the composite lamina under different loading conditions is obtained by means of computational micromechanics and compared with the predictions of Puck’s model. The results are in very good agreement with the predictions of Puck’s model under different interfiber failure modes. In order...

  17. Determining thermal diffusivity and defect attributes in ceramic matrix composites by infrared imaging

    Science.gov (United States)

    Ahuja, Sanjay; Ellingson, William A.; Stuckey, J. B.; Koehl, E. R.

    1996-03-01

    Ceramic matrix composites are being developed for numerous high temperature applications, including rotors and combustors for advanced turbine engines, heat exchanger and hot-gas filters for coal gasification plants. Among the materials of interest are silicon-carbide-fiber- reinforced-silicon-carbide (SiC(f)/SiC), silicon-carbide-fiber-reinforced-silicon-nitride (SiC(f)/Si3N4), aluminum-oxide-reinforced-alumina (Al2O3(f)/Al2O3, etc. In the manufacturing of these ceramic composites, the conditions of the fiber/matrix interface are critical to the mechanical and thermal behavior of the component. Defects such as delaminations and non-uniform porosity can directly affect the performance. A nondestructive evaluation (NDE) method, developed at Argonne National Laboratory has proved beneficial in analyzing as-processed conditions and defect detection created during manufacturing. This NDE method uses infrared thermal imaging for full-field quantitative measurement of the distribution of thermal diffusivity in large components. Intensity transform algorithms have been used for contrast enhancement of the output image. Nonuniformity correction and automatic gain control are used to dynamically optimize video contrast and brightness, providing additional resolution in the acquired images. Digital filtering, interpolation, and least-squares-estimation techniques have been incorporated for noise reduction and data acquisition. The Argonne NDE system has been utilized to determine thermal shock damage, density variations, and variations in fiber coating in a full array of test specimens.

  18. Fiber-reinforced syntactic foams

    Science.gov (United States)

    Huang, Yi-Jen

    Long fibers are generally preferred for reinforcing foams for performance reasons. However, uniform dispersion is difficult to achieve because they must be mixed with liquid resin prior to foam expansion. New approaches aiming to overcome such problem have been developed at USC's Composites Center. Fiber-reinforced syntactic foams with long fibers (over 6 mm in length) manufactured at USC's Composites Center have achieved promising mechanical properties and demonstrated lower density relative to conventional composite foams. Fiber-reinforced syntactic foams were synthesized from thermosetting polymeric microspheres (amino and phenolic microspheres), as well as thermoplastic PVC heat expandable microspheres (HEMs). Carbon and/or aramid fibers were used to reinforce the syntactic foams. Basic mechanical properties, including shear, tensile, and compression, were measured in syntactic foams and fiber-reinforced syntactic foams. Microstructure and crack propagation behavior were investigated by scanning electron microscope and light microscopy. Failure mechanisms and reinforcing mechanisms of fiber-reinforced syntactic foams were also analyzed. As expected, additions of fiber reinforcements to foams enhanced both tensile and shear properties. However, only limited enhancement in compression properties was observed, and fiber reinforcement was of limited benefit in this regard. Therefore, a hybrid foam design was explored and evaluated in an attempt to enhance compression properties. HEMs were blended with glass microspheres to produce hybrid foams, and hybrid foams were subsequently reinforced with continuous aramid fibers to produce fiber-reinforced hybrid foams. Mechanical properties of these foams were evaluated. Findings indicated that the production of hybrid foams was an effective way to enhance the compressive properties of syntactic foams, while the addition of fiber reinforcements enhanced the shear and tensile performance of syntactic foams. Another approach

  19. Fabrication of Ceramic Matrix Composite Tubes Using a Porous Mullite/Alumina Matrix and Alumina/Mullite Fiber

    National Research Council Canada - National Science Library

    Radsick, Timothy

    2001-01-01

    ... or from inadequate oxide-based ones. A porous mullite/alumina matrix combined with alumina/mullite fiber reinforcement eliminates the need for an interface coating while producing a strong, tough and oxidation resistant composite...

  20. Thermal effects on the mechanical properties of SiC fiber reinforced reaction bonded silicon nitride matrix (SiC/RBSN) composites

    Science.gov (United States)

    Bhatt, R. T.; Phillips, R. E.

    1988-01-01

    The elevated temperature four-point flexural strength and the room temperature tensile and flexural strength properties after thermal shock were measured for ceramic composites consisting of 30 vol pct uniaxially aligned 142 micron diameter SiC fibers in a reaction bonded Si3N4 matrix. The elevated temperature strengths were measured after 15 min of exposure in air at temperatures to 1400 C. Thermal shock treatment was accomplished by heating the composite in air for 15 min at temperatures to 1200 C and then quenching in water at 25 C. The results indicate no significant loss in strength properties either at temperature or after thermal shock when compared with the strength data for composites in the as-fabricated condition.

  1. Wear resistance of poly(2-methacryloyloxyethyl phosphorylcholine)-grafted carbon fiber reinforced poly(ether ether ketone) liners against metal and ceramic femoral heads.

    Science.gov (United States)

    Yamane, Shihori; Kyomoto, Masayuki; Moro, Toru; Hashimoto, Masami; Takatori, Yoshio; Tanaka, Sakae; Ishihara, Kazuhiko

    2018-04-01

    Younger, active patients who undergo total hip arthroplasty (THA) have increasing needs for wider range of motion and improved stability of the joint. Therefore, bearing materials having not only higher wear resistance but also mechanical strength are required. Carbon fiber-reinforced poly(ether ether ketone) (CFR-PEEK) is known as a super engineering plastic that has great mechanical strength. In this study, we focused on poly(2-methacryloyloxyethyl phosphorylcholine) (PMPC)-grafted CFR-PEEK and investigated the effects of PMPC grafting and the femoral heads materials on the wear properties of CFR-PEEK liners. Compared with untreated CFR-PEEK, the PMPC-grafted CFR-PEEK surface revealed higher wettability and lower friction properties under aqueous circumstances. In the hip simulator wear test, wear particles generated from the PMPC-grafted CFR-PEEK liners were fewer than those of the untreated CFR-PEEK liners. There were no significant differences in the size and the morphology of the wear particles between the differences of PMPC-grafting and the counter femoral heads. Zirconia-toughened alumina (ZTA) femoral heads had significantly smoother surfaces compared to cobalt-chromium-molybdenum alloy femoral heads after the hip simulator test. Thus, we conclude that the bearing combination of the PMPC-grafted CFR-PEEK liner and ZTA head is expected to be a lifelong bearing interface in THA. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 106B: 1028-1037, 2018. © 2017 Wiley Periodicals, Inc.

  2. Radiation processing for carbon fiber-reinforced polytetrafluoroethylene composite materials

    International Nuclear Information System (INIS)

    Oshima, Akihiro; Udagawa, Akira; Morita, Yousuke

    2001-01-01

    The present work is an attempt to evaluate the performance of the fiber composites with crosslinked polytetrafluoroethylene (PTFE) as a polymer matrix by radiation. The uni-directional carbon fiber-reinforced composites were fabricated with PTFE fine powder impregnation method and then crosslinked by electron beams irradiation under selective conditions. The carbon fiber-reinforced crosslinked PTFE composites show good mechanical properties compared with crosslinked PTFE. The radiation resistance of crosslinked PTFE composites is improved more than that of crosslinked resin without fiber. (author)

  3. Characterization on C/SiC Ceramic Matrix Composites with Novel Fiber Coatings

    Science.gov (United States)

    Petko, Jeanne; Kiser, J. Douglas; McCue, Terry; Verrilli, Michael

    2002-01-01

    Ceramic Matrix Composites (CMCs) are attractive candidate materials in the aerospace industry due to their high specific strength, low density and higher temperature capabilities. The National Aeronautics and Space Administration (NASA) is pursuing the use of CMC components in advanced Reusable Launch Vehicle (RLV) propulsion applications. Carbon fiber-reinforced silicon carbide (C/SiC) is the primary material of interest for a variety of RLV propulsion applications. These composites offer high- strength carbon fibers and a high modulus, oxidation-resistant matrix. For comparison, two types of carbon fibers were processed with novel types of interface coatings (multilayer and pseudoporous). For RLV propulsion applications, environmental durability will be critical. The coatings show promise of protecting the carbon fibers from the oxidizing environment. The strengths and microstructures of these composite materials are presented.

  4. Fiber-reinforced Composite Resin Prosthesis to Restore Missing ...

    African Journals Online (AJOL)

    A fiber-reinforced composite inlay-onlay FPD was used for a single posterior tooth replacement in a patient refusing implant for psychological reasons. The FRC-FPD was made of pre-impregnated E-glass fibers (everStick, StickTeck, Turku, Finland) embedded in a resin matrix (Stick Resin, StickTeck, Turku, Finland).

  5. Lignocellulosic fiber reinforced rubber composites

    CSIR Research Space (South Africa)

    Jacob John, Maya

    2009-04-01

    Full Text Available polymerization reaction using Zieglar-Natta- hetergenous catalyst. The important components of NR are given in Table I. Lignocellulosic Fiber Reinforced Rubber Composites -253- Figure 1. Structure of natural rubber NR has a very uniform.... Grafting a second polymer onto the NR backbone Grafting is mostly carried out using vinyl monomers like methyl methacrylate (MMA) and styrene. The commercial available grafted copolymer of NR with poly (methyl methacrylate) (PMMA) is Heveaplus MG...

  6. Carbon fiber-reinforced cyanate ester/nano-ZrW2O8 composites with tailored thermal expansion.

    Science.gov (United States)

    Badrinarayanan, Prashanth; Rogalski, Mark K; Kessler, Michael R

    2012-02-01

    Fiber-reinforced composites are widely used in the design and fabrication of a variety of high performance aerospace components. The mismatch in coefficient of thermal expansion (CTE) between the high CTE polymer matrix and low CTE fiber reinforcements in such composite systems can lead to dimensional instability and deterioration of material lifetimes due to development of residual thermal stresses. The magnitude of thermally induced residual stresses in fiber-reinforced composite systems can be minimized by replacement of conventional polymer matrices with a low CTE, polymer nanocomposite matrix. Zirconium tungstate (ZrW(2)O(8)) is a unique ceramic material that exhibits isotropic negative thermal expansion and has excellent potential as a filler for development of low CTE polymer nanocomposites. In this paper, we report the fabrication and thermal characterization of novel, multiscale, macro-nano hybrid composite laminates comprising bisphenol E cyanate ester (BECy)/ZrW(2)O(8) nanocomposite matrices reinforced with unidirectional carbon fibers. The results reveal that incorporation of nanoparticles facilitates a reduction in CTE of the composite systems, which in turn results in a reduction in panel warpage and curvature after the cure because of mitigation of thermally induced residual stresses.

  7. Fiber-reinforced bioactive and bioabsorbable hybrid composites

    Energy Technology Data Exchange (ETDEWEB)

    Huttunen, Mikko; Godinho, Pedro; Kellomaeki, Minna [Tampere University of Technology, Institute of Biomaterials, Hermiankatu 12, PO Box 589, FIN-33101 Tampere (Finland); Toermaelae, Pertti [Bioretec Ltd, Hermiankatu 22, PO Box 135, FI-33721 Tampere (Finland)], E-mail: mikko.huttunen@tut.fi

    2008-09-01

    Bioabsorbable polymeric bone fracture fixation devices have been developed and used clinically in recent decades to replace metallic implants. An advantage of bioabsorbable polymeric devices is that these materials degrade in the body and the degradation products exit via metabolic routes. Additionally, the strength properties of the bioabsorbable polymeric devices decrease as the device degrades, which promotes bone regeneration (according to Wolff's law) as the remodeling bone tissue is progressively loaded. The most extensively studied bioabsorbable polymers are poly-{alpha}-hydroxy acids. The major limitation of the first generation of bioabsorbable materials and devices was their relatively low mechanical properties and brittle behavior. Therefore, several reinforcing techniques have been used to improve the mechanical properties. These include polymer chain orientation techniques and the use of fiber reinforcements. The latest innovation for bioactive and fiber-reinforced bioabsorbable composites is to use both bioactive and bioresorbable ceramic and bioabsorbable polymeric fiber reinforcement in the same composite structure. This solution of using bioactive and fiber-reinforced bioabsorbable hybrid composites is examined in this study.

  8. Adherence of Streptococcus mutans to Fiber-Reinforced Filling Composite and Conventional Restorative Materials

    Science.gov (United States)

    Lassila, Lippo V.J; Garoushi, Sufyan; Tanner, Johanna; Vallittu, Pekka K; Söderling, Eva

    2009-01-01

    Objectives. The aim was to investigate the adhesion of Streptococcus mutans (S. mutans) to a short glass fibers reinforced semi-IPN polymer matrix composite resin. The effect of surface roughness on adhesion was also studied. For comparison, different commercial restorative materials were also evaluated. Materials and Methods. Experimental composite FC resin was prepared by mixing 22.5 wt% of short E-glass fibers, 22.5 wt% of IPN-resin and 55 wt% of silane treated silica fillers using high speed mixing machine. Three direct composite resins (Z250, Grandio and Nulite), resin-modified glass ionomers (Fuji II LC), amalgam (ANA 2000), fiber-reinforced composite (FRC) (everStick and Ribbond), and pre-fabricated ceramic filling insert (Cerana class 1) were tested in this study. Enamel and dentin were used as controls. The specimens (n=3/group) with or without saliva were incubated in a suspension of S. mutans allowing initial adhesion to occur. For the enumeration of cells on the disc surfaces as colony forming units (CFU) the vials with the microbe samples were thoroughly Vortex-treated and after serial dilutions grown anaerobically for 2 days at +37°C on Mitis salivarius agars (Difco) containing bacitracin. Bacterial adhesion was also evaluated by using scanning electron microscopy. Surface roughness (Ra) of the materials was also determined using a surface profilometer. All results were statistically analyzed with one-way analysis of variance (ANOVA). Results. Composite FC resin and other commercial restorative materials showed similar adhesion of S. mutans, while adhesion to dentin and enamel was significantly higher (p<0.05). Surface roughness had no effect on bacterial adhesion. Saliva coating significantly decreased the adhesion for all materials (p<0.05). Composite FC resin had a significantly higher Ra value than control groups (p<0.05). Conclusions. Short fiber-reinforced composite with semi-IPN polymer matrix revealed similar S. mutans adhesion than

  9. State-of-the-art of fiber-reinforced polymers in additive manufacturing technologies

    DEFF Research Database (Denmark)

    Hofstätter, Thomas; Pedersen, David Bue; Tosello, Guido

    2017-01-01

    Additive manufacturing technologies have received a lot of attention in recent years for their use in multiple materials such as metals, ceramics, and polymers. The aim of this review article is to analyze the technology of fiber-reinforced polymers and its implementation with additive...... manufacturing. This article reviews recent developments, ideas, and state-of-the-art technologies in this field. Moreover, it gives an overview of the materials currently available for fiber-reinforced material technology....

  10. Anomaly detection of microstructural defects in continuous fiber reinforced composites

    Science.gov (United States)

    Bricker, Stephen; Simmons, J. P.; Przybyla, Craig; Hardie, Russell

    2015-03-01

    Ceramic matrix composites (CMC) with continuous fiber reinforcements have the potential to enable the next generation of high speed hypersonic vehicles and/or significant improvements in gas turbine engine performance due to their exhibited toughness when subjected to high mechanical loads at extreme temperatures (2200F+). Reinforced fiber composites (RFC) provide increased fracture toughness, crack growth resistance, and strength, though little is known about how stochastic variation and imperfections in the material effect material properties. In this work, tools are developed for quantifying anomalies within the microstructure at several scales. The detection and characterization of anomalous microstructure is a critical step in linking production techniques to properties, as well as in accurate material simulation and property prediction for the integrated computation materials engineering (ICME) of RFC based components. It is desired to find statistical outliers for any number of material characteristics such as fibers, fiber coatings, and pores. Here, fiber orientation, or `velocity', and `velocity' gradient are developed and examined for anomalous behavior. Categorizing anomalous behavior in the CMC is approached by multivariate Gaussian mixture modeling. A Gaussian mixture is employed to estimate the probability density function (PDF) of the features in question, and anomalies are classified by their likelihood of belonging to the statistical normal behavior for that feature.

  11. Celsian Glass-Ceramic Matrix Composites

    Science.gov (United States)

    Bansal, Narottam P.; Dicarlo, James A.

    1996-01-01

    Glass-ceramic matrix reinforced fiber composite materials developed for use in low dielectric applications, such as radomes. Materials strong and tough, exhibit low dielectric properties, and endure high temperatures.

  12. Carbon fiber reinforced asphalt concrete

    International Nuclear Information System (INIS)

    Jahromi, Saeed G.

    2008-01-01

    Fibers are often used in the manufacture of other materials. For many years, they have been utilized extensively in numerous applications in civil engineering. Fiber-reinforcement refers to incorporating materials with desired properties within some other materials lacking those properties. Use of fibers is not a new phenomenon, as the technique of fiber-reinforced bitumen began early as 1950. In all industrialized countries today, nearly all concretes used in construction are reinforced. A multitude of fibers and fiber materials are being introduced in the market regularly. The present paper presents characteristics and properties of carbon fiber-reinforced asphalt mixtures, which improve the performance of pavements. To evaluate the effect of fiber contents on bituminous mixtures, laboratory investigations were carried out on the samples with and without fibers. During the course of this study, various tests were undertaken, applying Marshall Test indirect tensile test, creep test and resistance to fatigue cracking by using repeated load indirect tensile test. Carbon fiber exhibited consistency in results and as such it was observed that the addition of fiber does affect the properties of bituminous mixtures, i.e. an increase in its stability and decrease in the flow value as well as an increase in voids in the mix. Results indicate that fibers have the potential to resist structural distress in pavement, in the wake of growing traffic loads and thus improve fatigue by increasing resistance to cracks or permanent deformation. On the whole, the results show that the addition of carbon fiber will improve some of the mechanical properties like fatigue and deformation in the flexible pavement. (author)

  13. Hybrid Ceramic Matrix Fibrous Composites: an Overview

    Science.gov (United States)

    Naslain, R.

    2011-10-01

    Ceramic-Matrix Composites (CMCs) consist of a ceramic fiber architecture in a ceramic matrix, bonded together through a thin interphase. The present contribution is limited to non-oxide CMCs. Their constituents being oxidation-prone, they are protected by external coatings. We state here that CMCs display a hybrid feature, when at least one of their components is not homogeneous from a chemical or microstructural standpoint. Hybrid fiber architectures are used to tailor the mechanical or thermal CMC-properties whereas hybrid interphases, matrices and coatings to improve CMC resistance to aggressive environments.

  14. Hybrid Ceramic Matrix Fibrous Composites: an Overview

    Energy Technology Data Exchange (ETDEWEB)

    Naslain, R, E-mail: naslain@lcts.u-bordeaux1.fr [University of Bordeaux 3, Allee de La Boetie, 33600 Pessac (France)

    2011-10-29

    Ceramic-Matrix Composites (CMCs) consist of a ceramic fiber architecture in a ceramic matrix, bonded together through a thin interphase. The present contribution is limited to non-oxide CMCs. Their constituents being oxidation-prone, they are protected by external coatings. We state here that CMCs display a hybrid feature, when at least one of their components is not homogeneous from a chemical or microstructural standpoint. Hybrid fiber architectures are used to tailor the mechanical or thermal CMC-properties whereas hybrid interphases, matrices and coatings to improve CMC resistance to aggressive environments.

  15. Hybrid Ceramic Matrix Fibrous Composites: an Overview

    International Nuclear Information System (INIS)

    Naslain, R

    2011-01-01

    Ceramic-Matrix Composites (CMCs) consist of a ceramic fiber architecture in a ceramic matrix, bonded together through a thin interphase. The present contribution is limited to non-oxide CMCs. Their constituents being oxidation-prone, they are protected by external coatings. We state here that CMCs display a hybrid feature, when at least one of their components is not homogeneous from a chemical or microstructural standpoint. Hybrid fiber architectures are used to tailor the mechanical or thermal CMC-properties whereas hybrid interphases, matrices and coatings to improve CMC resistance to aggressive environments.

  16. Long-Term Durability of Basalt Fiber-Reinforced Polymer (BFRP Sheets and the Epoxy Resin Matrix under a Wet–Dry Cyclic Condition in a Chloride-Containing Environment

    Directory of Open Access Journals (Sweden)

    Zhongyu Lu

    2017-11-01

    Full Text Available Basalt fiber-reinforced polymer (BFRP composites are receiving increasing attention as they represent a low-cost green source of raw materials. FRP composites have to face harsh environments, such as chloride ions in coastal marine environments or cold regions with salt deicing. The resistance of FRPs subjected to the above environments is critical for the safe design and application of BFRP composites. In the present paper, the long-term durability of BFRP sheets and the epoxy resin matrix in a wet–dry cyclic environment containing chloride ions was studied. The specimens of the BFRP sheet and epoxy resin matrix were exposed to alternative conditions of 8-h immersion in 3.5% NaCl solution at 40 °C and 16-h drying at 25 °C and 60% relative humidity (RH. The specimens were removed from the exposure chamber at the end of the 180th, 270th and 360th cycles of exposure and were analyzed for degradation with tensile tests, scanning electron microscopy (SEM and void volume fractions. It was found that the tensile modulus of the BFRP sheet increased by 3.4%, and the tensile strength and ultimate strain decreased by 45% and 65%, respectively, after the 360th cycle of exposure. For the epoxy resin matrix, the tensile strength, tensile modulus and ultimate strain decreased by 27.8%, 3.2% and 64.8% after the 360th cycle of exposure, respectively. The results indicated that the degradation of the BFRP sheet was dominated by the damage of the interface between the basalt fiber and epoxy resin matrix. In addition, salt precipitate accelerated the fiber–matrix interfacial debonding, and hydrolysis of the epoxy resin matrix resulted in many voids, which accelerated the degradation of the BFRP sheet.

  17. The characterization of an oxide interfacial coating for ceramic matrix composites

    International Nuclear Information System (INIS)

    Coons, Timothy P.; Reutenauer, Justin W.; Mercado, Andrew; Kmetz, Michael A.; Suib, Steven L.

    2013-01-01

    This work focused on the use of metal organic chemical vapor deposition (MOCVD) to deposit a zinc oxide (ZnO) coating on ceramic fibers as an interfacial system for continuous fiber reinforced ceramic matrix composites (CFR-CMCs). ZnO coatings were deposited on ceramic grade (CG) Nicalon ™ , Hi-Nicalon ™ , and Hi-Nicalon ™ Type S fabric by the thermal decomposition of zinc acetate dihydrate in a low pressure hot wall CVD reactor. A duplex SiO 2 coating was also deposited in order to protect the ZnO layer from the reducing conditions during composite fabrication. Tow testing was used to evaluate the effect of the ZnO coating on the strength retention of the ceramic fabrics. Single strand unidirectional mini composites were fabricated by infiltrating SiC into the ZnO/SiO 2 duplex coated tows in order to understand the interfacial properties of the ZnO coating. The mini composite utilizing Hi-Nicalon ™ Type S produced the highest ultimate tensile strength (UTS) of 330 MPa. The coated fabrics and the mini composites were characterized using field emission scanning electron microscopy (FE-SEM), X-ray diffraction (XRD) and scanning Auger microscopy (SAM)

  18. Improvement of the piezoelectric properties of glass fiber-reinforced epoxy composites by poling treatment

    International Nuclear Information System (INIS)

    Oh, S M; Hwang, H Y

    2013-01-01

    Recently, a new non-destructive method has been proposed for damage monitoring of glass fiber-reinforced polymer composite materials using the piezoelectric characteristics of a polymeric matrix. Several studies of the piezoelectric properties of unidirectional glass fiber epoxy composites and damage monitoring of double-cantilever beams have supported the claim that the piezoelectric method is feasible and powerful enough to monitor the damage of glass fiber epoxy composites. Generally, conventional piezoelectric materials have higher piezoelectric characteristics through poling treatment. In this work, we investigated the change of the piezoelectric properties of glass fiber-reinforced epoxy composites before and after poling treatment. The piezoelectric constants (d 33 ) of glass fiber-reinforced epoxy composites increased by more than 400%. Also, x-ray diffraction tests revealed that poling treatment changed the degree of crystallinity of the epoxy matrix, and this led to the improvement of the piezoelectric characteristics of glass fiber-reinforced epoxy composites. (paper)

  19. Tribological dry sliding behavior of chopped carbon fiber reinforced polyetheretherketone

    Science.gov (United States)

    Chumaevskii, A. V.; Ivanov, A. N.; Filippov, A. V.; Rubtsov, V. E.; Kolubaev, E. A.

    2017-12-01

    Tribological tests on 3D printed pure polyetheretherketone and carbon fiber reinforced polyetheretherketone samples were carried out. The negative effect of carbon fiber sticking out of the matrix on wear and sliding process stability was revealed. These fibers may be too long and oriented to the worn surface in a manner that prevents their removal by wear so that the worn surface becomes irregular and the sliding process instable.

  20. Multi-scale simulation of viscoelastic fiber-reinforced composites

    OpenAIRE

    Staub, S.; Andrä, H.; Kabel, M.; Zangmeister, T.

    2012-01-01

    This paper presents an effective algorithm to simulate the anisotropic viscoelastic wbehavior of a fiber-reinforced composite including the influence of the local geometric properties, like fiber-orientation and volume fraction. The considered composites consist of a viscoelastic matrix which is reinforced by elastic fibers. The viscoelastic composite behavior results anisotropic due to the local anisotropic fiber-orientations. The influence of the local time-dependent viscoelastic properties...

  1. Fiber reinforced polymer bridge decks : [technical summary].

    Science.gov (United States)

    2011-01-01

    A number of researchers have addressed the use of Fiber Reinforced Polymer (FRP) deck as a replacement solution for deteriorated bridge decks made of traditional materials. The use of new, advanced materials such as FRP is advantageous when the bridg...

  2. Fiber-reinforced framework and Ceromer restorations: a technical review.

    Science.gov (United States)

    Zanghellini, G

    1997-01-01

    The utilization of synthetic resins and ceramics in combination with metal frameworks continues to be the mainstay of crown and bridge prosthetics. Although most of these systems have resulted in years of clinical success, each material when used in combination has inherent properties that induce stresses to the system. The combination of ceramic technology and polymer research, in addition to fiber integration, has resulted in the development and introduction of a new category of crown and bridge materials--a ceromer and fiber-reinforced restorative system. This article examines the history of polymer and ceramic technology, and reports the clinical and research data currently available on one indirect ceromer system (Targis System, Ivoclar Williams, Amherst, NY).

  3. Ceramic matrix composites by microwave assisted CVI

    International Nuclear Information System (INIS)

    Currier, R.P.; Devlin, D.J.

    1993-01-01

    Chemical vapor infiltration (CVI) processes for producing continuously reinforced ceramic composites are reviewed. Potential advantages of microwave assisted CVI are noted and numerical studies of microwave assisted CVI are reviewed. The models predict inverted thermal gradients in fibrous ceramic preforms subjected to microwave radiation and suggest processing strategies for achieving uniformly dense composites. Comparisons are made to experimental results on silicon-based composite systems. The role played by the relative ability of fiber and matrix to dissipate microwave energy is noted. Results suggest that microwave induced inverted gradients can be exploited to promote inside-out densification. 10 refs., 2 figs

  4. Matrix structure evolution and thermo-mechanical properties of carbon fiber-reinforced Al{sub 2}O{sub 3}-SiC-C castable composites

    Energy Technology Data Exchange (ETDEWEB)

    Li, Xiangcheng, E-mail: lixiangcheng@wust.edu.cn; Li, Yaxiong; Chen, Liufang; Zhu, Boquan, E-mail: zbqref@263.net

    2015-01-15

    Highlights: • Carbon fibers are formed in Al{sub 2}O{sub 3}-SiC-C castable composites under the action of nano Ni. • Starting growth temperature is 900 °C and growth mechanism agrees with V–S model. • The high temperature strength of composites can be increased by above 40%. • The thermal shock resistance can be enhanced by above 20%. - Abstract: The spalling and corrosion during the thermal cycles are the main causes of the damages observed in Al{sub 2}O{sub 3}-SiC-C castable composites that are used in molten-iron system. Using the catalyst of nano Ni and ball pitch in the matrix, Al{sub 2}O{sub 3}-SiC-C castable composites were prepared with the anti-oxidant addition of silicon. The results indicate that the high temperature of the Al{sub 2}O{sub 3}-SiC-C castable composites can be increased by above 42%, and the thermal shock resistance can be enhanced by above 20% because the ball pitch is carbonized and releases C{sub x}H{sub y} vapor, which can be pyrolized to carbon atoms and subsequently deposited into carbon fibers under the catalyst action. The starting temperature of carbon fiber growth is approximately 900 °C, and their diameter and aspect ratio can increase with the rising temperature. The in-situ generation of carbon fibers in Al{sub 2}O{sub 3}-SiC-C castable composites can significantly improve the fibers’ thermo-mechanical properties.

  5. Experimental study on mix proportion of fiber reinforced cementitious composites

    Science.gov (United States)

    Jia, Yi; Zhao, Renda; Liao, Ping; Li, Fuhai; Yuan, Yuan; Zhou, Shuang

    2017-10-01

    To study the mechanical property of fiber reinforced cementations composites influenced by the fiber length, quartz sand diameter, matrix of water cement ratio, volume fraction of fiber and magnesium acrylate solution. Several 40×40×160 mm standard test specimens, "8" specimens and long "8" specimens and 21 groups of fiber concrete specimens were fabricated. The flexural, compressive and uniaxial tensile strength were tested by using the bending resistance, compression resistance and electronic universal testing machine. The results show that flexural and compressive strength of fiber reinforced cementations composites increases along with the increase of quartz sand diameter, with the growth of the PVA fiber length increases; When the water-binder ratio is 0.25 and powder-binder ratio is 0.3, the PVA fiber content is 1.5% of the mass of cementations materials, there is a phenomenon of strain hardening; The addition of magnesium acrylate solution reduces the tensile strength of PVA fiber reinforced cementations composites, the tensile strength of the specimens in the curing age of 7d is decreased by about 21% and the specimens in curing age of 28d is decreased by more than 50%.

  6. Laser transmission welding of long glass fiber reinforced thermoplastics

    Science.gov (United States)

    van der Straeten, Kira; Engelmann, Christoph; Olowinsky, Alexander; Gillner, Arnold

    2015-03-01

    Joining fiber reinforced polymers is an important topic for lightweight construction. Since classical laser transmission welding techniques for polymers have been studied and established in industry for many years joint-strengths within the range of the base material can be achieved. Until now these processes are only used for unfilled and short glass fiber-reinforced thermoplastics using laser absorbing and laser transparent matrices. This knowledge is now transferred to joining long glass fiber reinforced PA6 with high fiber contents without any adhesive additives. As the polymer matrix and glass fibers increase the scattering of the laser beam inside the material, their optical properties, changing with material thickness and fiber content, influence the welding process and require high power lasers. In this article the influence of these material properties (fiber content, material thickness) and the welding parameters like joining speed, laser power and clamping pressure are researched and discussed in detail. The process is also investigated regarding its limitations. Additionally the gap bridging ability of the process is shown in relation to material properties and joining speed.

  7. Stochastic-Strength-Based Damage Simulation of Ceramic Matrix Composite Laminates

    Science.gov (United States)

    Nemeth, Noel N.; Mital, Subodh K.; Murthy, Pappu L. N.; Bednarcyk, Brett A.; Pineda, Evan J.; Bhatt, Ramakrishna T.; Arnold, Steven M.

    2016-01-01

    The Finite Element Analysis-Micromechanics Analysis Code/Ceramics Analysis and Reliability Evaluation of Structures (FEAMAC/CARES) program was used to characterize and predict the progressive damage response of silicon-carbide-fiber-reinforced reaction-bonded silicon nitride matrix (SiC/RBSN) composite laminate tensile specimens. Studied were unidirectional laminates [0] (sub 8), [10] (sub 8), [45] (sub 8), and [90] (sub 8); cross-ply laminates [0 (sub 2) divided by 90 (sub 2),]s; angled-ply laminates [plus 45 (sub 2) divided by -45 (sub 2), ]s; doubled-edge-notched [0] (sub 8), laminates; and central-hole laminates. Results correlated well with the experimental data. This work was performed as a validation and benchmarking exercise of the FEAMAC/CARES program. FEAMAC/CARES simulates stochastic-based discrete-event progressive damage of ceramic matrix composite and polymer matrix composite material structures. It couples three software programs: (1) the Micromechanics Analysis Code with Generalized Method of Cells (MAC/GMC), (2) the Ceramics Analysis and Reliability Evaluation of Structures Life Prediction Program (CARES/Life), and (3) the Abaqus finite element analysis program. MAC/GMC contributes multiscale modeling capabilities and micromechanics relations to determine stresses and deformations at the microscale of the composite material repeating-unit-cell (RUC). CARES/Life contributes statistical multiaxial failure criteria that can be applied to the individual brittle-material constituents of the RUC, and Abaqus is used to model the overall composite structure. For each FEAMAC/CARES simulation trial, the stochastic nature of brittle material strength results in random, discrete damage events that incrementally progress until ultimate structural failure.

  8. CMH-17 Volume 5 Ceramic Matrix Composites

    Science.gov (United States)

    Andrulonis, Rachael; Kiser, J. Douglas; David, Kaia E.; Davies, Curtis; Ashforth, Cindy

    2017-01-01

    A wide range of issues must be addressed during the process of certifying CMC (ceramic matrix composite) components for use in commercial aircraft. The Composite Materials Handbook-17, Volume 5, Revision A on ceramic matrix composites has just been revised to help support FAA certification of CMCs for elevated temperature applications. The handbook supports the development and use of CMCs through publishing and maintaining proven, reliable engineering information and standards that have been thoroughly reviewed. Volume 5 contains detailed sections describing CMC materials processing, design analysis guidelines, testing procedures, and data analysis and acceptance. A review of the content of this latest revision will be presented along with a description of how CMH-17, Volume 5 could be used by the FAA (Federal Aviation Administration) and others in the future.

  9. Ceramic Matrix Composite (CMC) Materials Characterization

    Science.gov (United States)

    Calomino, Anthony

    2001-01-01

    Under the former NASA EPM Program, much initial progress was made in identifying constituent materials and processes for SiC/SiC ceramic composite hot-section components. This presentation discusses the performance benefits of these approaches and elaborates on further constituent and property improvements made under NASA UEET. These include specific treatments at NASA that significantly improve the creep and environmental resistance of the Sylramic(TM) SiC fiber as well as the thermal conductivity and creep resistance of the CVI Sic matrix. Also discussed are recent findings concerning the beneficial effects of certain 2D-fabric architectures and carbon between the BN interphase coating and Sic matrix.

  10. Ceramic Matrix Composite (CMC) Materials Development

    Science.gov (United States)

    DiCarlo, James

    2001-01-01

    Under the former NASA EPM Program, much initial progress was made in identifying constituent materials and processes for SiC/SiC ceramic composite hot-section components. This presentation discusses the performance benefits of these approaches and elaborates on further constituent and property improvements made under NASA UEET. These include specific treatments at NASA that significantly improve the creep and environmental resistance of the Sylramic(TM) Sic fiber as well as the thermal conductivity and creep resistance of the CVI Sic matrix. Also discussed are recent findings concerning the beneficial effects of certain 2D-fabric architectures and carbon between the BN interphase coating and Sic matrix.

  11. Effect of Sisal Fiber Surface Treatment on Properties of Sisal Fiber Reinforced Polylactide Composites

    Directory of Open Access Journals (Sweden)

    Zhaoqian Li

    2011-01-01

    Full Text Available Mechanical properties of composites are strongly influenced by the quality of the fiber/matrix interface. The objective of this study was to evaluate the mechanical properties of polylactide (PLA composites as a function of modification of sisal fiber with two different macromolecular coupling agents. Sisal fiber reinforced polylactide composites were prepared by injection molding, and the properties of composites were studied by static/dynamic mechanical analysis (DMA. The results from mechanical testing revealed that surface-treated sisal fiber reinforced composite offered superior mechanical properties compared to untreated fiber reinforced polylactide composite, which indicated that better adhesion between sisal fiber and PLA matrix was achieved. Scanning electron microscopy (SEM investigations also showed that surface modifications improved the adhesion of the sisal fiber/polylactide matrix.

  12. The usage of carbon fiber reinforcement polymer and glass fiber reinforcement polymer for retrofit technology building

    Science.gov (United States)

    Tarigan, Johannes; Meka, Randi; Nursyamsi

    2018-03-01

    Fiber Reinforcement Polymer has been used as a material technology since the 1970s in Europe. Fiber Reinforcement Polymer can reinforce the structure externally, and used in many types of buildings like beams, columns, and slabs. It has high tensile strength. Fiber Reinforcement Polymer also has high rigidity and strength. The profile of Fiber Reinforcement Polymer is thin and light, installation is simple to conduct. One of Fiber Reinforcement Polymer material is Carbon Fiber Reinforcement Polymer and Glass Fiber Reinforcement Polymer. These materials is tested when it is installed on concrete cylinders, to obtain the comparison of compressive strength CFRP and GFRP. The dimension of concrete is diameter of 15 cm and height of 30 cm. It is amounted to 15 and divided into three groups. The test is performed until it collapsed to obtain maximum load. The results of research using CFRP and GFRP have shown the significant enhancement in compressive strength. CFRP can increase the compressive strength of 26.89%, and GFRP of 14.89%. For the comparison of two materials, CFRP is more strengthening than GFRP regarding increasing compressive strength. The usage of CFRP and GFRP can increase the loading capacity.

  13. The Effect of Stochastically Varying Creep Parameters on Residual Stresses in Ceramic Matrix Composites

    Science.gov (United States)

    Pineda, Evan J.; Mital, Subodh K.; Bednarcyk, Brett A.; Arnold, Steven M.

    2015-01-01

    Constituent properties, along with volume fraction, have a first order effect on the microscale fields within a composite material and influence the macroscopic response. Therefore, there is a need to assess the significance of stochastic variation in the constituent properties of composites at the higher scales. The effect of variability in the parameters controlling the time-dependent behavior, in a unidirectional SCS-6 SiC fiber-reinforced RBSN matrix composite lamina, on the residual stresses induced during processing is investigated numerically. The generalized method of cells micromechanics theory is utilized to model the ceramic matrix composite lamina using a repeating unit cell. The primary creep phases of the constituents are approximated using a Norton-Bailey, steady state, power law creep model. The effect of residual stresses on the proportional limit stress and strain to failure of the composite is demonstrated. Monte Carlo simulations were conducted using a normal distribution for the power law parameters and the resulting residual stress distributions were predicted.

  14. Characterization of C/SiC Ceramic Matrix Composites (CMCs) with Novel Interface Fiber Coatings

    Science.gov (United States)

    Petko, Jeanne F.; Kiser, J. Douglas; Gray, Hugh R. (Technical Monitor)

    2002-01-01

    Ceramic Matrix Composites (CMCs) are attractive candidate aerospace materials due to their high specific strength, low density and high temperature capabilities. The National Aeronautics and Space Administration (NASA) is pursuing the use of CMC components in advanced Reusable Launch Vehicle (RLV) propulsion applications. Carbon fiber-reinforced silicon carbide (C/SiC) is the primary material of interest for a variety of RLV propulsion applications. These composites consist of high-strength carbon fibers and a high modulus, oxidation resistant matrix. For RLV propulsion applications, environmental durability will be critical. Two types of carbon fibers were processed with both standard (pyrolytic carbon) and novel (multilayer and pseudoporous) types of interface coatings as part of a study investigating various combinations of constituents. The benefit of protecting the composites with a surface sealant was also investigated. The strengths, durability in oxidizing environments, and microstructures of these developmental composite materials are presented. The novel interface coatings and the surface sealant show promise for protecting the carbon fibers from the oxidizing environment.

  15. Micromechanics Fatigue Damage Analysis Modeling for Fabric Reinforced Ceramic Matrix Composites

    Science.gov (United States)

    Min, J. B.; Xue, D.; Shi, Y.

    2013-01-01

    A micromechanics analysis modeling method was developed to analyze the damage progression and fatigue failure of fabric reinforced composite structures, especially for the brittle ceramic matrix material composites. A repeating unit cell concept of fabric reinforced composites was used to represent the global composite structure. The thermal and mechanical properties of the repeating unit cell were considered as the same as those of the global composite structure. The three-phase micromechanics, the shear-lag, and the continuum fracture mechanics models were integrated with a statistical model in the repeating unit cell to predict the progressive damages and fatigue life of the composite structures. The global structure failure was defined as the loss of loading capability of the repeating unit cell, which depends on the stiffness reduction due to material slice failures and nonlinear material properties in the repeating unit cell. The present methodology is demonstrated with the analysis results evaluated through the experimental test performed with carbon fiber reinforced silicon carbide matrix plain weave composite specimens.

  16. Micro-Mechanical Modeling of Fiber Reinforced Concrete

    DEFF Research Database (Denmark)

    Stang, Henrik

    1999-01-01

    The paper is a contribution to the course Cement-Based Composites for the Building Industry, organized by POA Foundation for Postgraduate Studies in Civil Engineering in cooperation with Priority Programme Material Research (PPM) in the Netherlands. The text deals with mechanical modeling aspects...... of Fiber Reinforced Concrete (FRC) on the micro- the meso- as well as the macro-level, i.e. modeling aspects of fiber-matrix interaction, overall constitutive modeling and structural modeling. Emphasis is placed on the micro- and meso-aspects, however, some basic results on the macro-level are also...

  17. Glass Fiber Reinforced Polymer Dowel Bar Evaluation

    Science.gov (United States)

    2012-09-01

    Glass Fiber Reinforced Polymer (GFRP) dowel bars were installed on one new construction project and two dowel bar : retrofit projects to evaluate the performance of this type of dowel bar in comparison to steel dowel bars installed on the same : cont...

  18. Use of Fiber-Reinforced Cements in Masonry Construction and Structural Rehabilitation

    Directory of Open Access Journals (Sweden)

    Ece Erdogmus

    2015-02-01

    Full Text Available The use of fiber reinforcement in traditional concrete mixes has been extensively studied and has been slowly finding its regular use in practice. In contrast, opportunities for the use of fibers in masonry applications and structural rehabilitation projects (masonry and concrete structures have not been as deeply investigated, where the base matrix may be a weaker cementitious mixture. This paper will summarize the findings of the author’s research over the past 10 years in these particular applications of fiber reinforced cements (FRC. For masonry, considering both mortar and mortar-unit bond characteristics, a 0.5% volume fraction of micro fibers in type N Portland cement lime mortar appear to be a viable recipe for most masonry joint applications both for clay and concrete units. In general, clay units perform better with high water content fiber reinforced mortar (FRM while concrete masonry units (CMUs perform better with drier mixtures, so 130% and 110% flow rates should be targeted, respectively. For earth block masonry applications, fibers’ benefits are observed in improving local damage and water pressure resistance. The FRC retrofit technique proposed for the rehabilitation of reinforced concrete two-way slabs has exceeded expectations in terms of capacity increase for a relatively low cost in comparison to the common but expensive fiber reinforced polymer applications. For all of these applications of fiber-reinforced cements, further research with larger data pools would lead to further optimization of fiber type, size, and amount.

  19. Primary Manufacturing Processes for Fiber Reinforced Composites: History, Development & Future Research Trends

    Science.gov (United States)

    Tapan Bhatt, Alpa; Gohil, Piyush P.; Chaudhary, Vijaykumar

    2018-03-01

    Composite Materials are becoming more popular gradually replacing traditional material with extra strength, lighter weight and superior property. The world is exploring use of fiber reinforced composites in all application which includes air, land and water transport, construction industry, toys, instrumentation, medicine and the list is endless. Based on application and reinforcement used, there are many ways to manufactures parts with fiber reinforced composites. In this paper various manufacturing processes have been discussed at length, to make fiber reinforced composites components. The authors have endeavored to include all the processes available recently in composite industry. Paper first highlights history of fiber reinforced composites manufacturing, and then the comparison of different manufacturing process to build composites have been discussed, to give clear understanding on, which process should be selected, based on reinforcement, matrix and application. All though, there are several advantages to use such fiber reinforcement composites, still industries have not grown at par and there is a lot of scope to improve these industries. At last, where India stands today, what are the challenges in market has been highlighted and future market and research trend of exploring such composite industries have been discussed. This work is carried out as a part of research project sanctioned by GUJCOST, Gandhinagar.

  20. Puncture-Healing Thermoplastic Resin Carbon-Fiber Reinforced Composites

    Science.gov (United States)

    Gordon, Keith L. (Inventor); Siochi, Emilie J. (Inventor); Grimsley, Brian W. (Inventor); Cano, Roberto J. (Inventor); Czabaj, Michael W. (Inventor)

    2017-01-01

    A composite comprising a combination of a self-healing polymer matrix and a carbon fiber reinforcement is described. In one embodiment, the matrix is a polybutadiene graft copolymer matrix, such as polybutadiene graft copolymer comprising poly(butadiene)-graft-poly(methyl acrylate-co-acrylonitrile). A method of fabricating the composite is also described, comprising the steps of manufacturing a pre-impregnated unidirectional carbon fiber preform by wetting a plurality of carbon fibers with a solution, the solution comprising a self-healing polymer and a solvent, and curing the preform. A method of repairing a structure made from the composite of the invention is described. A novel prepreg material used to manufacture the composite of the invention is described.

  1. Puncture-Healing Thermoplastic Resin Carbon-Fiber-Reinforced Composites

    Science.gov (United States)

    Gordon, Keith L. (Inventor); Siochi, Emilie J. (Inventor); Grimsley, Brian W. (Inventor); Cano, Roberto J. (Inventor); Czabaj, Michael W. (Inventor)

    2015-01-01

    A composite comprising a combination of a self-healing polymer matrix and a carbon fiber reinforcement is described. In one embodiment, the matrix is a polybutadiene graft copolymer matrix, such as polybutadiene graft copolymer comprising poly(butadiene)-graft-poly(methyl acrylate-co-acrylonitrile). A method of fabricating the composite is also described, comprising the steps of manufacturing a pre-impregnated unidirectional carbon fiber preform by wetting a plurality of carbon fibers with a solution, the solution comprising a self-healing polymer and a solvent, and curing the preform. A method of repairing a structure made from the composite of the invention is described. A novel prepreg material used to manufacture the composite of the invention is described.

  2. Placement protocol for an anterior fiber-reinforced composite restoration.

    Science.gov (United States)

    Hornbrook, D S

    1997-01-01

    The new classification of metal-free restorative materials provides the clinician with a durable, flexible, and aesthetic laboratory-fabricated alternative to conventional porcelain-fused-to-metal (PFM) full-coverage crowns, inlay and onlay restorations, and single pontic bridges. With exceptional physical and optical characteristics, restorations fabricated utilizing the new ceramic optimized polymer (Ceromer) (Targis, Ivoclar Williams, Amherst, NY) and fiber-reinforced composite (FRC) framework (Vectris, Ivoclar Williams, Amherst, NY) materials can also be utilized predictably in the anterior segment. The success of metal-free restorations can be achieved by following conventional prosthodontic principles for preparation, cementation, and finishing. This article demonstrates the appropriate treatment protocol in order to achieve aesthetically acceptable and durable anterior results utilizing a metal-free restorative system for "Maryland-like" bridge restorations.

  3. Development and characterization of powder metallurgically produced discontinuous tungsten fiber reinforced tungsten composites

    Science.gov (United States)

    Mao, Y.; Coenen, J. W.; Riesch, J.; Sistla, S.; Almanstötter, J.; Jasper, B.; Terra, A.; Höschen, T.; Gietl, H.; Bram, M.; Gonzalez-Julian, J.; Linsmeier, Ch; Broeckmann, C.

    2017-12-01

    In future fusion reactors, tungsten is the prime candidate material for the plasma facing components. Nevertheless, tungsten is prone to develop cracks due to its intrinsic brittleness—a major concern under the extreme conditions of fusion environment. To overcome this drawback, tungsten fiber reinforced tungsten (Wf/W) composites are being developed. These composite materials rely on an extrinsic toughing principle, similar to those in ceramic matrix composite, using internal energy dissipation mechanisms, such as crack bridging and fiber pull-out, during crack propagation. This can help Wf/W to facilitate a pseudo-ductile behavior and allows an elevated damage resilience compared to pure W. For pseudo-ductility mechanisms to occur, the interface between the fiber and matrix is crucial. Recent developments in the area of powder-metallurgical Wf/W are presented. Two consolidation methods are compared. Field assisted sintering technology and hot isostatic pressing are chosen to manufacture the Wf/W composites. Initial mechanical tests and microstructural analyses are performed on the Wf/W composites with a 30% fiber volume fraction. The samples produced by both processes can give pseudo-ductile behavior at room temperature.

  4. 4TH International Conference on High-Temperature Ceramic Matrix Composites

    National Research Council Canada - National Science Library

    2001-01-01

    .... Topic to be covered include fibers, interfaces, interphases, non-oxide ceramic matrix composites, oxide/oxide ceramic matrix composites, coatings, and applications of high-temperature ceramic matrix...

  5. Temperature Dependence of Electrical Resistance of Woven Melt-Infiltrated SiCf/SiC Ceramic Matrix Composites

    Science.gov (United States)

    Appleby, Matthew P.; Morscher, Gregory N.; Zhu, Dongming

    2016-01-01

    Recent studies have successfully shown the use of electrical resistance (ER)measurements to monitor room temperature damage accumulation in SiC fiber reinforced SiC matrix composites (SiCf/SiC) Ceramic Matrix Composites (CMCs). In order to determine the feasibility of resistance monitoring at elevated temperatures, the present work investigates the temperature dependent electrical response of various MI (Melt Infiltrated)-CVI (Chemical Vapor Infiltrated) SiC/SiC composites containing Hi-Nicalon Type S, Tyranno ZMI and SA reinforcing fibers. Test were conducted using a commercially available isothermal testing apparatus as well as a novel, laser-based heating approach developed to more accurately simulate thermomechanical testing of CMCs. Secondly, a post-test inspection technique is demonstrated to show the effect of high-temperature exposure on electrical properties. Analysis was performed to determine the respective contribution of the fiber and matrix to the overall composite conductivity at elevated temperatures. It was concluded that because the silicon-rich matrix material dominates the electrical response at high temperature, ER monitoring would continue to be a feasible method for monitoring stress dependent matrix cracking of melt-infiltrated SiC/SiC composites under high temperature mechanical testing conditions. Finally, the effect of thermal gradients generated during localized heating of tensile coupons on overall electrical response of the composite is determined.

  6. Fiber reinforced polymer composites for bridge structures

    Directory of Open Access Journals (Sweden)

    Alexandra CANTORIU

    2013-12-01

    Full Text Available Rapid advances in construction materials technology have led to the emergence of new materials with special properties, aiming at safety, economy and functionality of bridges structures. A class of structural materials which was originally developed many years ago, but recently caught the attention of engineers involved in the construction of bridges is fiber reinforced polymer composites. This paper provides an overview of fiber reinforced polymer composites used in bridge structures including types, properties, applications and future trends. The results of this study have revealed that this class of materials presents outstanding properties such as high specific strength, high fatigue and environmental resistance, lightweight, stiffness, magnetic transparency, highly cost-effective, and quick assembly, but in the same time high initial costs, lack of data on long-term field performance, low fire resistance. Fiber reinforced polymer composites were widely used in construction of different bridge structures such as: deck and tower, I-beams, tendons, cable stands and proved to be materials for future in this field.

  7. Time-Dependent Stress Rupture Strength Degradation of Hi-Nicalon Fiber-Reinforced Silicon Carbide Composites at Intermediate Temperatures

    Science.gov (United States)

    Sullivan, Roy M.

    2016-01-01

    The stress rupture strength of silicon carbide fiber-reinforced silicon carbide composites with a boron nitride fiber coating decreases with time within the intermediate temperature range of 700 to 950 degree Celsius. Various theories have been proposed to explain the cause of the time-dependent stress rupture strength. The objective of this paper is to investigate the relative significance of the various theories for the time-dependent strength of silicon carbide fiber-reinforced silicon carbide composites. This is achieved through the development of a numerically based progressive failure analysis routine and through the application of the routine to simulate the composite stress rupture tests. The progressive failure routine is a time-marching routine with an iterative loop between a probability of fiber survival equation and a force equilibrium equation within each time step. Failure of the composite is assumed to initiate near a matrix crack and the progression of fiber failures occurs by global load sharing. The probability of survival equation is derived from consideration of the strength of ceramic fibers with randomly occurring and slow growing flaws as well as the mechanical interaction between the fibers and matrix near a matrix crack. The force equilibrium equation follows from the global load sharing presumption. The results of progressive failure analyses of the composite tests suggest that the relationship between time and stress-rupture strength is attributed almost entirely to the slow flaw growth within the fibers. Although other mechanisms may be present, they appear to have only a minor influence on the observed time-dependent behavior.

  8. Nanoscale Reinforced, Polymer Derived Ceramic Matrix Coatings

    Energy Technology Data Exchange (ETDEWEB)

    Rajendra Bordia

    2009-07-31

    The goal of this project was to explore and develop a novel class of nanoscale reinforced ceramic coatings for high temperature (600-1000 C) corrosion protection of metallic components in a coal-fired environment. It was focused on developing coatings that are easy to process and low cost. The approach was to use high-yield preceramic polymers loaded with nano-size fillers. The complex interplay of the particles in the polymer, their role in controlling shrinkage and phase evolution during thermal treatment, resulting densification and microstructural evolution, mechanical properties and effectiveness as corrosion protection coatings were investigated. Fe-and Ni-based alloys currently used in coal-fired environments do not possess the requisite corrosion and oxidation resistance for next generation of advanced power systems. One example of this is the power plants that use ultra supercritical steam as the working fluid. The increase in thermal efficiency of the plant and decrease in pollutant emissions are only possible by changing the properties of steam from supercritical to ultra supercritical. However, the conditions, 650 C and 34.5 MPa, are too severe and result in higher rate of corrosion due to higher metal temperatures. Coating the metallic components with ceramics that are resistant to corrosion, oxidation and erosion, is an economical and immediate solution to this problem. Good high temperature corrosion protection ceramic coatings for metallic structures must have a set of properties that are difficult to achieve using established processing techniques. The required properties include ease of coating complex shapes, low processing temperatures, thermal expansion match with metallic structures and good mechanical and chemical properties. Nanoscale reinforced composite coatings in which the matrix is derived from preceramic polymers have the potential to meet these requirements. The research was focused on developing suitable material systems and

  9. Micromechanisms of damage in unidirectional fiber reinforced composites

    DEFF Research Database (Denmark)

    Mishnaevsky, Leon; Brøndsted, Povl

    2009-01-01

    strength of a composite at the pre-critical load, while the fibers with randomly distributed strengths lead to the higher strength of the composite at post-critical loads. In the case of randomly distributed fiber strengths, the damage growth in fibers seems to be almost independent from the crack length...... in the numerical experiments. The effect of the statistical variability of fiber strengths, viscosity of the polymer matrix as well as the interaction between the damage processes in matrix, fibers and interface are investigated numerically. It is demonstrated that fibers with constant strength ensure higher......Numerical micromechanical investigations of the mechanical behavior and damage evolution of glass fiber reinforced composites are presented. A program code for the automatic generation of 3D micromechanical unit cell models of composites with damageable elements is developed, and used...

  10. Homogenization of long fiber reinforced composites including fiber bending effects

    DEFF Research Database (Denmark)

    Poulios, Konstantinos; Niordson, Christian Frithiof

    2016-01-01

    of the reinforcing fibers is captured by higher order strain terms, resulting in an accurate representation of the micro-mechanical behavior of the composite. Numerical examples show that the accuracy of the proposed model is very close to a non-homogenized finite-element model with an explicit discretization......This paper presents a homogenization method, which accounts for intrinsic size effects related to the fiber diameter in long fiber reinforced composite materials with two independent constitutive models for the matrix and fiber materials. A new choice of internal kinematic variables allows...... to maintain the kinematics of the two material phases independent from the assumed constitutive models, so that stress-deformation relationships, can be expressed in the framework of hyper-elasticity and hyper-elastoplasticity for the fiber and the matrix materials respectively. The bending stiffness...

  11. Energy Absorption Capacity in Natural Fiber Reinforcement Composites Structures

    Science.gov (United States)

    López-Alba, Elías; Díaz, Francisco

    2018-01-01

    The study of natural fiber reinforcement composite structures has focused the attention of the automobile industry due to the new regulation in relation to the recyclability and the reusability of the materials preserving and/or improving the mechanical characteristics. The influence of different parameters on the material behavior of natural fiber reinforced plastic structures has been investigated, showing the potential for transport application in energy absorbing structures. Two different woven fabrics (twill and hopsack) made of flax fibers as well as a non-woven mat made of a mixture of hemp and kenaf fibers were employed as reinforcing materials. These reinforcing textiles were impregnated with both HD-PE (high-density polyethylen) and PLA (polylactic acid) matrix, using a continuous compression molding press. The impregnated semi-finished laminates (so-called organic sheets) were thermoformed in a second step to half-tubes that were assembled through vibration-welding process to cylindric crash absorbers. The specimens were loaded by compression to determine the specific energy absorption capacity. Quasi-static test results were compared to dynamic test data obtained on a catapult arrangement. The differences on the specific energies absorption (SEA) as a function of different parameters, such as the wall thickness, the weave material type, the reinforced textiles, and the matrix used, depending on the velocity rate application were quantified. In the case of quasi-static analysis it is observed a 20% increment in the SEA value when wove Hopsack fabric reinforcement is employed. No velocity rate influence from the material was observed on the SEA evaluation at higher speeds used to perform the experiments. The influence of the weave configuration (Hopsack) seems to be more stable against buckling effects at low loading rates with 10% higher SEA values. An increase of SEA level of up to 72% for PLA matrix was observed when compared with HD-PE matrix. PMID

  12. Energy Absorption Capacity in Natural Fiber Reinforcement Composites Structures.

    Science.gov (United States)

    López-Alba, Elías; Schmeer, Sebastian; Díaz, Francisco

    2018-03-13

    The study of natural fiber reinforcement composite structures has focused the attention of the automobile industry due to the new regulation in relation to the recyclability and the reusability of the materials preserving and/or improving the mechanical characteristics. The influence of different parameters on the material behavior of natural fiber reinforced plastic structures has been investigated, showing the potential for transport application in energy absorbing structures. Two different woven fabrics (twill and hopsack) made of flax fibers as well as a non-woven mat made of a mixture of hemp and kenaf fibers were employed as reinforcing materials. These reinforcing textiles were impregnated with both HD-PE (high-density polyethylen) and PLA (polylactic acid) matrix, using a continuous compression molding press. The impregnated semi-finished laminates (so-called organic sheets) were thermoformed in a second step to half-tubes that were assembled through vibration-welding process to cylindric crash absorbers. The specimens were loaded by compression to determine the specific energy absorption capacity. Quasi-static test results were compared to dynamic test data obtained on a catapult arrangement. The differences on the specific energies absorption (SEA) as a function of different parameters, such as the wall thickness, the weave material type, the reinforced textiles, and the matrix used, depending on the velocity rate application were quantified. In the case of quasi-static analysis it is observed a 20% increment in the SEA value when wove Hopsack fabric reinforcement is employed. No velocity rate influence from the material was observed on the SEA evaluation at higher speeds used to perform the experiments. The influence of the weave configuration (Hopsack) seems to be more stable against buckling effects at low loading rates with 10% higher SEA values. An increase of SEA level of up to 72% for PLA matrix was observed when compared with HD-PE matrix.

  13. Energy Absorption Capacity in Natural Fiber Reinforcement Composites Structures

    Directory of Open Access Journals (Sweden)

    Elías López-Alba

    2018-03-01

    Full Text Available The study of natural fiber reinforcement composite structures has focused the attention of the automobile industry due to the new regulation in relation to the recyclability and the reusability of the materials preserving and/or improving the mechanical characteristics. The influence of different parameters on the material behavior of natural fiber reinforced plastic structures has been investigated, showing the potential for transport application in energy absorbing structures. Two different woven fabrics (twill and hopsack made of flax fibers as well as a non-woven mat made of a mixture of hemp and kenaf fibers were employed as reinforcing materials. These reinforcing textiles were impregnated with both HD-PE (high-density polyethylen and PLA (polylactic acid matrix, using a continuous compression molding press. The impregnated semi-finished laminates (so-called organic sheets were thermoformed in a second step to half-tubes that were assembled through vibration-welding process to cylindric crash absorbers. The specimens were loaded by compression to determine the specific energy absorption capacity. Quasi-static test results were compared to dynamic test data obtained on a catapult arrangement. The differences on the specific energies absorption (SEA as a function of different parameters, such as the wall thickness, the weave material type, the reinforced textiles, and the matrix used, depending on the velocity rate application were quantified. In the case of quasi-static analysis it is observed a 20% increment in the SEA value when wove Hopsack fabric reinforcement is employed. No velocity rate influence from the material was observed on the SEA evaluation at higher speeds used to perform the experiments. The influence of the weave configuration (Hopsack seems to be more stable against buckling effects at low loading rates with 10% higher SEA values. An increase of SEA level of up to 72% for PLA matrix was observed when compared with HD

  14. Mechanical and abrasive wear characterization of bidirectional and chopped E-glass fiber reinforced composite materials

    International Nuclear Information System (INIS)

    Siddhartha,; Gupta, Kuldeep

    2012-01-01

    Highlights: ► Bi-directional and chopped E-glass fiber reinforced epoxy composites are fabricated. ► Three body abrasive wear behavior of fabricated composites has been assessed. ► Results are validated against existing microscopic models of Lancaster and Wang. ► Tensile strength of bi-directional E-glass fiber reinforced composites increases. ► Chopped glass fiber composites are found better in abrasive wear situations. -- Abstract: Bi-directional and chopped E-glass fiber reinforced epoxy composites are fabricated in five different (15, 20, 25, 30 and 35) wt% in an epoxy resin matrix. The mechanical characterization of these composites is performed. The three body abrasive wear behavior of fabricated composites has been assessed under different operating conditions. Abrasive wear characteristics of these composites are successfully analysed using Taguchi’s experimental design scheme and analysis of variance (ANOVA). The results obtained from these experiments are also validated against existing microscopic models of Ratner-Lancaster and Wang. It is observed that quite good linear relationships is held between specific wear rate and reciprocal of ultimate strength and strain at tensile fracture of these composites which is an indicative that the experimental results are in fair agreement with these existing models. Out of all composites fabricated it is found that tensile strength of bi-directional E-glass fiber reinforced composites increases because of interface strength enhancement. Chopped glass fiber reinforced composites are observed to perform better than bi-directional glass fiber reinforced composites under abrasive wear situations. The morphology of worn composite specimens has been examined by scanning electron microscopy (SEM) to understand about dominant wear mechanisms.

  15. Acoustic emission as a screening tool for ceramic matrix composites

    Science.gov (United States)

    Ojard, Greg; Goberman, Dan; Holowczak, John

    2017-02-01

    Ceramic matrix composites are composite materials with ceramic fibers in a high temperature matrix of ceramic or glass-ceramic. This emerging class of materials is viewed as enabling for efficiency improvements in many energy conversion systems. The key controlling property of ceramic matrix composites is a relatively weak interface between the matrix and the fiber that aids crack deflection and fiber pullout resulting in greatly increased toughness over monolithic ceramics. United Technologies Research Center has been investigating glass-ceramic composite systems as a tool to understand processing effects on material performance related to the performance of the weak interface. Changes in the interface have been shown to affect the mechanical performance observed in flexural testing and subsequent microstructural investigations have confirmed the performance (or lack thereof) of the interface coating. Recently, the addition of acoustic emission testing during flexural testing has aided the understanding of the characteristics of the interface and its performance. The acoustic emission onset stress changes with strength and toughness and this could be a quality tool in screening the material before further development and use. The results of testing and analysis will be shown and additional material from other ceramic matrix composite systems may be included to show trends.

  16. Effect of short fiber reinforcement on the properties of recycled poly(ethylene terephthalate)/poly(ethylene naphthalate) blends

    International Nuclear Information System (INIS)

    Karsli, Nevin Gamze; Yesil, Sertan; Aytac, Ayse

    2013-01-01

    Highlights: ► Short fiber reinforcement to the r-PET/PEN blend improved to the tensile strength. ► Fiber reinforcement increased the storage modulus of r-PET/PEN blend. ► CF reinforced composite has the highest storage modulus value. - Abstract: In this study, short carbon (CF), glass (GF) and hybrid carbon/glass fiber reinforced recycled poly(ethylene terephthalate)/poly(ethylene 2,6-naphthalate) (r-PET/PEN) blends were prepared by melt mixing method. The mechanical, thermal and morphological properties of composites were investigated by using tensile tests, differential scanning calorimeter, dynamic mechanical analyzer and scanning electron microscopy. The microscopic analysis showed that there is a better interfacial interaction between fiber and polymer matrix for CF reinforced composite. It was found that addition of short fiber reinforcement to the r-PET/PEN blend improved the tensile strength and Young’s modulus values more than the addition of PEN into r-PET. According to DMA analysis, fiber reinforcement increased the storage modulus of composites when compared with r-PET/PEN blend and among them storage modulus of CF reinforced composite was the highest. It was concluded that mechanical properties of r-PET can be enhanced with addition of PEN and more efficiently with short fiber reinforcement

  17. Nondestructive Evaluation (NDE) of Advanced Fiber Reinforced Polymer Composites

    National Research Council Canada - National Science Library

    Yolken, H

    2001-01-01

    .... The high stiffness-to-weight ratio, low electromagnetic reflectance, and the ability to embed sensors and actuators have made fiber reinforced composites an attractive alternative construction...

  18. Neutron stress measurement of W-fiber reinforced Cu composite

    CERN Document Server

    Nishida, M; Ikeuchi, Y; Minakawa, N

    2003-01-01

    Stress measurement methods using neutron and X-ray diffraction were examined by comparing the surface stresses with internal stresses in the continuous tungsten-fiber reinforced copper-matrix composite. Surface stresses were measured by X-ray stress measurement with the sin sup 2 psi method. Furthermore, the sin sup 2 psi method and the most common triaxal measurement method using Hooke's equation were employed for internal stress measurement by neutron diffraction. On the other hand, microstress distributions developed by the difference in the thermal expansion coefficients between these two phases were calculated by FEM. The weighted average strains and stresses were compared with the experimental results. The FEM results agreed with the experimental results qualitatively and confirmed the importance of the triaxial stress analysis in the neutron stress measurement. (Abstract Copyright [2003], Wiley Periodicals, Inc.)

  19. Neutron stress measurement of W-fiber reinforced Cu composite

    International Nuclear Information System (INIS)

    Nishida, M.; Hanabusa, T.; Ikeuchi, Y.; Minakawa, N.

    2003-01-01

    Stress measurement methods using neutron and X-ray diffraction were examined by comparing the surface stresses with internal stresses in the continuous tungsten-fiber reinforced copper-matrix composite. Surface stresses were measured by X-ray stress measurement with the sin 2 ψ method. Furthermore, the sin 2 ψ method and the most common triaxal measurement method using Hooke's equation were employed for internal stress measurement by neutron diffraction. On the other hand, microstress distributions developed by the difference in the thermal expansion coefficients between these two phases were calculated by FEM. The weighted average strains and stresses were compared with the experimental results. The FEM results agreed with the experimental results qualitatively and confirmed the importance of the triaxial stress analysis in the neutron stress measurement. (Abstract Copyright [2003], Wiley Periodicals, Inc.)

  20. Problems encountered with conventional fiber-reinforced composites

    Science.gov (United States)

    Landel, R. F.

    1981-01-01

    Preparational, computational, and operational problems associated with fiber-reinforced composites (FRC) are reviewed. Initial preparation of FRCs is shown to involve consideration of the type of prepreg, the setting time, cure conditions and cycles, and cure temperatures. The effects of the choice of bonding agents, the fiber transfer length, and individual fiber responses to bonding agents are noted to have an impact on fiber strength, moisture uptake, and fatigue resistance. The deformation prior to failure and the failure region are modeled through models of mini-, micro- and macro mechanics formulations employing a stiffness matrix, failure criterion, or fracture mechanics. The detection, evaluation, and repair of defects comprises the operational domain, and it is stressed that no good repair techniques exist for FRCs.

  1. Ceramic Matrix Composite Environmental Barrier Coating Durability Model, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — As the power density of advanced engines increases, the need for new materials that are capable of higher operating temperatures, such as ceramic matrix composites...

  2. Ceramic Matrix Composite Environmental Barrier Coating Durability Model, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — As the power density of advanced engines increases, the need for new materials that are capable of higher operating temperatures, such as ceramic matrix composites...

  3. Modern Nondestructive Test Methods for Army Ceramic Matrix Composites

    National Research Council Canada - National Science Library

    Strand, Douglas J

    2008-01-01

    .... Ceramic matrix composites (CMC) are potentially good high-temperature structural materials because of their low density, high elastic moduli, high strength, and for those with weak interfaces, surprisingly good damage tolerance...

  4. Modeling the Mechanical Behavior of Ceramic Matrix Composite Materials

    Science.gov (United States)

    Jordan, William

    1998-01-01

    Ceramic matrix composites are ceramic materials, such as SiC, that have been reinforced by high strength fibers, such as carbon. Designers are interested in using ceramic matrix composites because they have the capability of withstanding significant loads while at relatively high temperatures (in excess of 1,000 C). Ceramic matrix composites retain the ceramic materials ability to withstand high temperatures, but also possess a much greater ductility and toughness. Their high strength and medium toughness is what makes them of so much interest to the aerospace community. This work concentrated on two different tasks. The first task was to do an extensive literature search into the mechanical behavior of ceramic matrix composite materials. This report contains the results of this task. The second task was to use this understanding to help interpret the ceramic matrix composite mechanical test results that had already been obtained by NASA. Since the specific details of these test results are subject to the International Traffic in Arms Regulations (ITAR), they are reported in a separate document (Jordan, 1997).

  5. FLEXURAL TOUGHNESS OF STEEL FIBER REINFORCED CONCRETE

    Directory of Open Access Journals (Sweden)

    Fehmi ÇİVİCİ

    2006-02-01

    Full Text Available Fiber concrete is a composite material which has mechanical and physical characteristics unlike plain concrete. One of the important mechanical characteristics of fiber concrete is its energy absorbing capability. This characteristics which is also called toughness, is defined as the total area under the load-deflection curve. A number of composite characteristics such as crack resistance, ductility and impact resistance are related to the energy absorbtion capacity. According to ASTM C 1018 and JSCE SF-4 the calculation of toughness is determined by uniaxial flexural testing. Fiber concrete is often used in plates such as bridge decks, airport pavements, parking areas, subjected to cavitation and erosion. In this paper, toughness has been determined according to ASTM C 1018 and JSCE SF-4 methods by testing beam specimens. Energy absorbing capacities of plain and steel fiber reinforced concrete has been compared by evaluating the results of two methods. Also plain and steel fiber reinforced plate specimens behaviors subjected to biaxial flexure are compared by the loaddeflection curves of each specimen.

  6. Mechanical properties of ramie fiber reinforced epoxy lamina composite for socket prosthesis

    Directory of Open Access Journals (Sweden)

    Tresna Soemardi

    2010-10-01

    Full Text Available This paper presents an investigation into the application of natural fiber composite especially ramie fiber reinforced epoxy lamina composite for socket prosthesis. The research focuses on the tensile and shear strength from ramie fiber reinforced epoxy lamina composite which will be applied as alternative material for socket prosthesis. The research based on American Society for Testing Material (ASTM standard D 3039/D 3039M for tensile strength and ASTM D 4255/D 4255M-83 for shear strength. The ramie fiber applied is a fiber continue 100 % Ne14'S with Epoxy Resin Bakelite EPR 174 as matrix and Epoxy Hardener V-140 as hardener. The sample composite test made by hand lay up method. Multiaxial characteristic from ramie fiber reinforced epoxy composite will be compared with ISO standard for plastic/polymer for health application and refers strength of material application at Prosthetics and Orthotics. The analysis was completed with the mode of the failure and the failure criterion observation by using Scanning Electron Microscope (SEM. Based on results of the research could be concluded that ramie fiber reinforced epoxy composite could be developed further as the alternative material for socket prosthesis on Vf 40-50%. Results of the research will be discussed in more detail in this paper.

  7. Influence of fiber upon the radiation degradation of fiber-reinforced plastics

    International Nuclear Information System (INIS)

    Udagawa, Akira

    1992-01-01

    Influences of fiber upon the radiation degradation of fiber-reinforced plastics were investigated by using 2 MeV electrons. Radiation resistances were evaluated from the three-point bending strength of the fiber laminates which used bisphenol A-type epoxy resin as a matrix. Carbon fiber laminates had higher radiation resistance values than the laminates made of glass fiber. Model laminates using polyethylene as a matrix were prepared in order to examine the differences between carbon fiber and glass fiber filler, the relation between gel fraction and absorbed dose was established. When the polyethylene was filled in the carbon fiber, forming the gel was strikingly delayed. This result suggests that radiation protective action existing in carbon fiber to matrix resin is the main cause of the higher radiation resistance of carbon fiber reinforced plastics. (author)

  8. On the simulation of kink bands in fiber reinforced composites

    DEFF Research Database (Denmark)

    Sørensen, K.D.; Mikkelsen, Lars Pilgaard; Jensen, H.M.

    2007-01-01

    Simulations of kink band formation in fiber reinforced composites are carried out using the commercial finite element program ABAQUS. A smeared-out, plane constitutive model for fiber reinforced materials is implemented as a user subroutine, and effects of fiber misalignment on elastic and plastic...

  9. On the Simulation of Kink Bands in Fiber Reinforced Composites

    DEFF Research Database (Denmark)

    Sørensen, Kim Dalsten; Mikkelsen, Lars P.; Jensen, Henrik Myhre

    2007-01-01

    Simulations of kink band formation in fiber reinforced composites are carried out using the commercial finite element program ABAQUS. A smeared-out, plane constitutive model for fiber reinforced materials is implemented as a user subroutine, and effects of fiber misalignment on elastic and plastic...

  10. Identification of a Critical Time with Acoustic Emission Monitoring during Static Fatigue Tests on Ceramic Matrix Composites: Towards Lifetime Prediction

    Directory of Open Access Journals (Sweden)

    Nathalie Godin

    2016-02-01

    Full Text Available Non-oxide fiber-reinforced ceramic-matrix composites are promising candidates for some aeronautic applications that require good thermomechanical behavior over long periods of time. This study focuses on the behavior of a SiCf/[Si-B-C] composite with a self-healing matrix at intermediate temperature under air. Static fatigue experiments were performed below 600 °C and a lifetime diagram is presented. Damage is monitored both by strain measurement and acoustic emission during the static fatigue experiments. Two methods of real-time analysis of associated energy release have been developed. They allow for the identification of a characteristic time that was found to be close to 55% of the measured rupture time. This critical time reflects a critical local energy release assessed by the applicability of the Benioff law. This critical aspect is linked to a damage phase where slow crack growth in fibers is prevailing leading to ultimate fracture of the composite.

  11. Characterization and control of the fiber-matrix interface in ceramic matrix composites

    Energy Technology Data Exchange (ETDEWEB)

    Lowden, R.A.

    1989-03-01

    Fiber-reinforced SiC composites fabricated by thermal-gradient forced-flow chemical-vapor infiltration (FCVI) have exhibited both composite (toughened) and brittle behavior during mechanical property evaluation. Detailed analysis of the fiber-matrix interface revealed that a silica layer on the surface of Nicalon Si-C-O fibers tightly bonds the fiber to the matrix. The strongly bonded fiber and matrix, combined with the reduction in the strength of the fibers that occurs during processing, resulted in the observed brittle behavior. The mechanical behavior of Nicalon/SiC composites has been improved by applying thin coatings (silicon carbide, boron, boron nitride, molybdenum, carbon) to the fibers, prior to densification, to control the interfacial bond. Varying degrees of bonding have been achieved with different coating materials and film thicknesses. Fiber-matrix bond strengths have been quantitatively evaluated using an indentation method and a simple tensile test. The effects of bonding and friction on the mechanical behavior of this composite system have been investigated. 167 refs., 59 figs., 18 tabs.

  12. Inorganic Polymer Matrix Composite Strength Related to Interface Condition

    Directory of Open Access Journals (Sweden)

    John Bridge

    2009-12-01

    Full Text Available Resin transfer molding of an inorganic polymer binder was successfully demonstrated in the preparation of ceramic fiber reinforced engine exhaust valves. Unfortunately, in the preliminary processing trials, the resulting composite valves were too brittle for in-engine evaluation. To address this limited toughness, the effectiveness of a modified fiber-matrix interface is investigated through the use of carbon as a model material fiber coating. After sequential heat treatments composites molded from uncoated and carbon coated fibers are compared using room temperature 3-point bend testing. Carbon coated Nextel fiber reinforced geopolymer composites demonstrated a 50% improvement in strength, versus that of the uncoated fiber reinforced composites, after the 250 °C postcure.

  13. Method of making molten carbonate fuel cell ceramic matrix tape

    Science.gov (United States)

    Maricle, Donald L.; Putnam, Gary C.; Stewart, Jr., Robert C.

    1984-10-23

    A method of making a thin, flexible, pliable matrix material for a molten carbonate fuel cell is described. The method comprises admixing particles inert in the molten carbonate environment with an organic polymer binder and ceramic particle. The composition is applied to a mold surface and dried, and the formed compliant matrix material removed.

  14. Continuous Fiber Ceramic Composites

    Energy Technology Data Exchange (ETDEWEB)

    Fareed, Ali [Honeywell Advanced Composites Inc. (HACI), Newark, DE (United States); Craig, Phillip A. [Honeywell Advanced Composites Inc. (HACI), Newark, DE (United States)

    2002-09-01

    Fiber-reinforced ceramic composites demonstrate the high-temperature stability of ceramics--with an increased fracture toughness resulting from the fiber reinforcement of the composite. The material optimization performed under the continuous fiber ceramic composites (CFCC) included a series of systematic optimizations. The overall goals were to define the processing window, to increase the robustinous of the process, to increase process yield while reducing costs, and to define the complexity of parts that could be fabricated.

  15. Processing of thermo-structural carbon-fiber reinforced carbon composites

    Directory of Open Access Journals (Sweden)

    Luiz Cláudio Pardini

    2009-06-01

    Full Text Available The present work describes the processes used to obtain thermostructural Carbon/Carbon composites. The processing of these materials begins with the definition of the architecture of the carbon fiber reinforcement, in the form of stacked plies or in the form of fabrics or multidirectional reinforcement. Incorporating fiber reinforcement into the carbon matrix, by filling the voids and interstices, leads to the densification of the material and a continuous increase in density. There are two principal processing routes for obtaining these materials: liquid phase processing and gas phase processing. In both cases, thermal processes lead to the formation of a carbon matrix with specific properties related to their precursor. These processes also differ in terms of yield. With liquid phase impregnation the yield is around 45 per cent, while gas phase processing yields around 15 per cent.

  16. Carbon Fiber Reinforced Carbon Composite Valve for an Internal Combustion Engine

    Science.gov (United States)

    Rivers, H. Kevin (Inventor); Ransone, Philip O. (Inventor); Northam, G. Burton (Inventor)

    1999-01-01

    A carbon fiber reinforced carbon composite valve for internal combustion engines and the like formed of continuous carbon fibers throughout the valve's stem and head is disclosed. The valve includes braided carbon fiber material over axially aligned unidirectional carbon fibers forming a valve stem; the braided and unidirectional carbon fibers being broomed out at one end of the valve stem forming the shape of the valve head; the valve-shaped structure being densified and rigidized with a matrix of carbon containing discontinuous carbon fibers: and the finished valve being treated to resist oxidation. Also disclosed is a carbon matrix plug containing continuous and discontinuous carbon fibers and forming a net-shape valve head acting as a mandrel over which the unidirectional and braided carbon fibers are formed according to textile processes. Also disclosed are various preform valves and processes for making finished and preform carbon fiber reinforced carbon composite valves.

  17. Young modulus and internal friction of a fiber-reinforced composite

    International Nuclear Information System (INIS)

    Ledbetter, H.M.; Lei, M.; Austin, M.W.

    1986-01-01

    By a kilohertz-frequency resonance method we determined the Young modulus and internal friction of a uniaxially fiber-reinforced composite. The composite comprised glass fibers in an epoxy-resin matrix. We studied three fiber contents: 0, 41, and 49 vol %. The Young modulus fit a linear rule of mixture. The internal friction fit a classical free-damped-oscillator model where one assumes a linear rule of mixture for three quantities: mass, force constant, and mechanical-resistance constant

  18. A Damage-Dependent Finite Element Analysis for Fiber-Reinforced Composite Laminates

    Science.gov (United States)

    Coats, Timothy W.; Harris, Charles E.

    1998-01-01

    A progressive damage methodology has been developed to predict damage growth and residual strength of fiber-reinforced composite structure with through penetrations such as a slit. The methodology consists of a damage-dependent constitutive relationship based on continuum damage mechanics. Damage is modeled using volume averaged strain-like quantities known as internal state variables and is represented in the equilibrium equations as damage induced force vectors instead of the usual degradation and modification of the global stiffness matrix.

  19. Thermoforming Finite Element Analysis of Continuum Fiber Reinforced Plastics using ABAQUS

    OpenAIRE

    Piera Höppner, Sergi

    2013-01-01

    Thermoforming simulations are an essential part in engineering design of components made of Continuous Fiber Reinforced Plastics (CFRP) with thermoplastic matrix known as Organic Sheets (OS). Through the simulations, the post-deformed fiber orientation can be calculated, which is essential for the determination of the mechanical properties of the component. Furthermore, draping problems can be detected, which may be corrected by adjusting the geometry of the tools or reinforcin...

  20. Solidification of alpha-bearing wastes in a ceramic matrix

    International Nuclear Information System (INIS)

    Dippel, T.; Kartes, H.; Riege, U.

    1981-02-01

    At the Karlsruher Nuclear Resaerch Center ceramic materials are evaluated as a matrix for alpha.bearing wastes, i.e. dissolver residues from reprocessing, liqiud alpha-cencentrates, ashes and residues from the acid digestion process. Included in these experiments were α-containing sudgles as they are generated by the separation of the active species from MLW-concentrates. Caoline, clay, feldspar and quartz are selected as teh raw materials as in the ceramic industry. (orig./RB) [de

  1. Metallic-fibre-reinforced ceramic-matrix composite

    International Nuclear Information System (INIS)

    Prevost, F.; Schnedecker, G.; Boncoeur, M.

    1994-01-01

    A refractory metal wire cloth is embedded in an oxide ceramic matrix, using a plasma spraying technology, in order to elaborate composite plates. When mechanically tested, the composite fails with a pseudo-ductile fracture mode whereas the ceramic alone is originally brittle. It exhibits a higher fracture strength, and remains in the form of a single piece even when straining is important. No further heat treatment is needed after the original processing to reach these characteristics. (authors). 2 figs., 2 refs

  2. Probability of failure of veneered glass fiber-reinforced composites and glass-infiltrated alumina with or without zirconia reinforcement.

    Science.gov (United States)

    Chong, Kok-Heng; Chai, John

    2003-01-01

    The probability of failure under flexural load of veneered specimens of a unidirectional glass fiber-reinforced composite (FibreKor/Sculpture), a bidirectional glass fiber-reinforced composite (Vectris/Targis), a glass-infiltrated alumina (In-Ceram Alumina/Vita alpha), and a zirconia-reinforced glass-infiltrated alumina (In-Ceram Zirconia/Vita alpha) was investigated; a metal-ceramic (PG200/Vita omega) system served as a control. Ten uniform beams of the veneered core materials were fabricated for each system and subjected to a three-point bending test. The data were analyzed using the Weibull method. The failure load of specimens at a 10% probability of failure (B10 load) was compared. The mode of failure was analyzed. The B10 load of the systems investigated was not significantly different from that of the metal-ceramic system. FibreKor possessed significantly higher B10 load than Vectris, In-Ceram Alumina, and In-Ceram Zirconia. The B10 strength loads of Vectris, In-Ceram Alumina, and In-Ceram Zirconia were not significantly different from one another. The probability of FibreKor to fracture under a flexural load was significantly lower than that of Vectris, In-Ceram Alumina, or In-Ceram Zirconia.

  3. Recycling and Utilization of Waste Glass Fiber Reinforced Plastics

    Directory of Open Access Journals (Sweden)

    Feng Yan-chao

    2016-01-01

    Full Text Available This paper mainly introduced the recovery method, classification and comprehensive utilization process of waste glass fiber reinforced plastics (GFRP. Among the current methods of utilization, the physical method is most promising. After pre-processing of waste GFRP, the short glass fiber can be used in gypsum block to improve the anti-cracking and operation performance of the material; waste GFRP powder can be used in plastic fiber reinforced manhole covers to increase the mechanical strength, and the products conformed to JC 1009-2006. Based on these studies, we also point out some problems concerning the utilization of waste glass fiber reinforced plastics.

  4. Fatigue and frictional heating in ceramic matrix composites

    DEFF Research Database (Denmark)

    Jacobsen, T.K.; Sørensen, B.F.; Brøndsted, P.

    1997-01-01

    This paper describes an experimental technique for monitoring the damage evolution in ceramic matrix composites during cyclic testing. The damage is related to heat dissipation, which may be measured as radiated heat from the surface of the test specimen. In the present experimental set...... with a high spatial and temperature resolution and changes in the heat dissipation can be measured almost instantaneously. The technique has been tested on uni-directional ceramic matrix composites. Experimental results are shown and the possibilities and the limitations of the technique are discussed....

  5. Modeling of Stress Development During Thermal Damage Healing in Fiber-reinforced Composite Materials Containing Embedded Shape Memory Alloy Wires

    NARCIS (Netherlands)

    Bor, Teunis Cornelis; Warnet, Laurent; Akkerman, Remko; de Boer, Andries

    2010-01-01

    Fiber-reinforced composite materials are susceptible to damage development through matrix cracking and delamination. This article concerns the use of shape memory alloy (SMA) wires embedded in a composite material to support healing of damage through a local heat treatment. The composite material

  6. Self-healing in single and multiple fiber(s reinforced polymer composites

    Directory of Open Access Journals (Sweden)

    Woldesenbet E.

    2010-06-01

    Full Text Available You Polymer composites have been attractive medium to introduce the autonomic healing concept into modern day engineering materials. To date, there has been significant research in self-healing polymeric materials including several studies specifically in fiber reinforced polymers. Even though several methods have been suggested in autonomic healing materials, the concept of repair by bleeding of enclosed functional agents has garnered wide attention by the scientific community. A self-healing fiber reinforced polymer composite has been developed. Tensile tests are carried out on specimens that are fabricated by using the following components: hollow and solid glass fibers, healing agent, catalysts, multi-walled carbon nanotubes, and a polymer resin matrix. The test results have demonstrated that single fiber polymer composites and multiple fiber reinforced polymer matrix composites with healing agents and catalysts have provided 90.7% and 76.55% restoration of the original tensile strength, respectively. Incorporation of functionalized multi-walled carbon nanotubes in the healing medium of the single fiber polymer composite has provided additional efficiency. Healing is found to be localized, allowing multiple healing in the presence of several cracks.

  7. CREATION OF MUSIC WITH FIBER REINFORCED CONCRETE

    Science.gov (United States)

    Kato, Hayato; Takeuchi, Masaki; Ogura, Naoyuki; Kitahara, Yukiko; Okamoto, Takahisa

    This research focuses on the Fiber Reinforcement Concrete(FRC) and its performance on musical tones. Thepossibility of future musical instruments made of this concrete is discussed. Recently, the technical properties of FRC had been improved and the different production styles, such as unit weight of binding material and volume of fiber in the structure, hardly affects the results of the acoustics. However, the board thickness in the FRC instruments is directly related with the variety of musical tone. The FRC musical effects were compared with those produced with wood on wind instruments. The sounds were compared with those produced with woodwind instruments. The sound pressure level was affected by the material and it becomes remarkably notorious in the high frequency levels. These differences had great influence on the spectrum analysis of the tone in the wind instruments and the sensory test. The results from the sensory test show dominant performances of brightness, beauty and power in the FRC instruments compared with those made of wood.

  8. CODIFICATION OF FIBER REINFORCED COMPOSITE PIPING

    Energy Technology Data Exchange (ETDEWEB)

    Rawls, G.

    2012-10-10

    The goal of the overall project is to successfully adapt spoolable FRP currently used in the oil industry for use in hydrogen pipelines. The use of FRP materials for hydrogen service will rely on the demonstrated compatibility of these materials for pipeline service environments and operating conditions. The ability of the polymer piping to withstand degradation while in service, and development of the tools and data required for life management are imperative for successful implementation of these materials for hydrogen pipeline. The information and data provided in this report provides the technical basis for the codification for fiber reinforced piping (FRP) for hydrogen service. The DOE has invested in the evaluation of FRP for the delivery for gaseous hydrogen to support the development of a hydrogen infrastructure. The codification plan calls for detailed investigation of the following areas: System design and applicable codes and standards; Service degradation of FRP; Flaw tolerance and flaw detection; Integrity management plan; Leak detection and operational controls evaluation; Repair evaluation. The FRP codification process started with commercially available products that had extensive use in the oil and gas industry. These products have been evaluated to assure that sufficient structural integrity is available for a gaseous hydrogen environment.

  9. Natural fiber-reinforced polymer composites

    International Nuclear Information System (INIS)

    Taj, S.; Khan, S.; Munawar, M.A.

    2007-01-01

    Natural fibers have been used to reinforce materials for over 3,000 years. More recently they have been employed in combination with plastics. Many types of natural fi fibers have been investigated for use in plastics including Flax, hemp, jute, straw, wood fiber, rice husks, wheat, barley, oats, rye, cane (sugar and bamboo), grass reeds, kenaf, ramie, oil palm empty fruit bunch, sisal, coir, water hyacinth, pennywort, kapok, paper-mulberry, raphia, banana fiber, pineapple leaf fiber and papyrus. Natural fibers have the advantage that they are renewable resources and have marketing appeal. The Asian markets have been using natural fibers for many years e.g., jute is a common reinforcement in India. Natural fibers are increasingly used in automotive and packaging materials. Pakistan is an agricultural country and it is the main stay of Pakistan's economy. Thousands of tons of different crops are produced but most of their wastes do not have any useful utilization. Agricultural wastes include wheat husk, rice husk, and their straw, hemp fiber and shells of various dry fruits. These agricultural wastes can be used to prepare fiber reinforced polymer composites for commercial use. This report examines the different types of fibers available and the current status of research. Many references to the latest work on properties, processing and application have been cited in this review. (author)

  10. Machining of glass fiber reinforced polyamide

    Directory of Open Access Journals (Sweden)

    2007-12-01

    Full Text Available The machinability of a 30 wt% glass fiber reinforced polyamide (PA was investigated by means of drilling tests. A disk was cut from an extruded rod and drilled on the flat surface: thrust was acquired during drilling at different drilling speed, feed rate and drill diameter. Differential scanning calorimetry (DSC and indentation were used to characterize PA so as to evaluate the intrinsic lack of homogeneity of the extruded material. In conclusion, it was observed that the chip formation mechanism affects the thrust dependence on the machining parameters. A traditional modeling approach is able to predict thrust only in presence of a continuous chip. In some conditions, thrust increases as drilling speed increases and feed rate decreases; this evidence suggests not to consider the general scientific approach which deals the machining of plastics in analogy with metals. Moreover, the thrust can be significantly affected by the workpiece fabrication effect, as well as by the machining parameters; therefore, the fabrication effect is not negligible in the definition of an optimum for the machining process.

  11. Drastic Improvements in Bonding of Fiber Reinforced Multifunctional Composites Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Achievement of a dramatic increase in the bond strength in the adhesive and composite/adhesive interfaces of existing fiber reinforced composite material joints and...

  12. Development and performance evaluation of fiber reinforced polymer bridge.

    Science.gov (United States)

    2014-03-01

    Fiber reinforced polymers (FRP) have become more popular construction materials in the last decade due to the reduction of : material costs. The installation and performance evaluation of the first FRP-wrapped balsa wood bridge in Louisiana is descri...

  13. Pre-form ceramic matrix composite cavity and method of forming and method of forming a ceramic matrix composite component

    Science.gov (United States)

    Monaghan, Philip Harold; Delvaux, John McConnell; Taxacher, Glenn Curtis

    2015-06-09

    A pre-form CMC cavity and method of forming pre-form CMC cavity for a ceramic matrix component includes providing a mandrel, applying a base ply to the mandrel, laying-up at least one CMC ply on the base ply, removing the mandrel, and densifying the base ply and the at least one CMC ply. The remaining densified base ply and at least one CMC ply form a ceramic matrix component having a desired geometry and a cavity formed therein. Also provided is a method of forming a CMC component.

  14. Micromechanical modeling of strength and damage of fiber reinforced composites

    Energy Technology Data Exchange (ETDEWEB)

    Mishnaevsky, L. Jr.; Broendsted, P.

    2007-03-15

    The report for the first year of the EU UpWind project includes three parts: overview of concepts and methods of modelling of mechanical behavior, deformation and damage of unidirectional fiber reinforced composites, development of computational tools for the automatic generation of 3D micromechanical models of fiber reinforced composites, and micromechanical modelling of damage in FRC, and phenomenological analysis of the effect of frequency of cyclic loading on the lifetime and damage evolution in materials. (au)

  15. STUDY THE CREEP OF TUBULAR SHAPED FIBER REINFORCED COMPOSITES

    Directory of Open Access Journals (Sweden)

    Najat J. Saleh

    2013-05-01

    Full Text Available Inpresent work tubular –shaped fiber reinforced composites were manufactured byusing two types of resins ( Epoxy and unsaturated polyester and separatelyreinforced with glass, carbon and kevlar-49 fibers (filament and woven roving,hybrid reinforcement composites of these fibers were also prepared. The fiberswere wet wound on a mandrel using a purposely designed winding machine,developed by modifying an ordinary lathe, in winding angle of 55° for filament. A creep test was made of either the fulltube or specimens taken from it. Creep was found to increase upon reinforcementin accordance to the rule of mixture and mainly decided by the type of singleor hybridized fibers. The creep behavior, showed that the observed strain tendsto appear much faster at higher temperature as compared with that exhibited atroom temperate. The creep rate also found to be depending on fiber type, matrixtype, and the fiber /matrix bonding. The creep energy calculated fromexperimental observations was found to exhibit highest value for hybridizedreinforcement.

  16. New generation fiber reinforced polymer composites incorporating carbon nanotubes

    Science.gov (United States)

    Soliman, Eslam

    The last five decades observed an increasing use of fiber reinforced polymer (FRP) composites as alternative construction materials for aerospace and infrastructure. The high specific strength of FRP attracted its use as non-corrosive reinforcement. However, FRP materials were characterized with a relatively low ductility and low shear strength compared with steel reinforcement. On the other hand, carbon nanotubes (CNTs) have been introduced in the last decade as a material with minimal defect that is capable of increasing the mechanical properties of polymer matrices. This dissertation reports experimental investigations on the use of multi-walled carbon nanotubes (MWCNTs) to produce a new generation of FRP composites. The experiments showed significant improvements in the flexure properties of the nanocomposite when functionalized MWCNTs were used. In addition, MWCNTs were used to produce FRP composites in order to examine static, dynamic, and creep behavior. The MWCNTs improved the off-axis tension, off-axis flexure, FRP lap shear joint responses. In addition, they reduced the creep of FRP-concrete interface, enhanced the fracture toughness, and altered the impact resistance significantly. In general, the MWCNTs are found to affect the behaviour of the FRP composites when matrix failure dominates the behaviour. The improvement in the mechanical response with the addition of low contents of MWCNTs would benefit many industrial and military applications such as strengthening structures using FRP composites, composite pipelines, aircrafts, and armoured vehicles.

  17. Solidification of TRU wastes in a ceramic matrix

    International Nuclear Information System (INIS)

    Loida, A.; Schubert, G.

    1991-01-01

    Aluminumsilicate based ceramic materials have been evaluated as an alternative waste form for the incorporation of TRU wastes. These waste forms are free of water and - cannot generate hydrogen radiolyticly, - they show good compatibility between the compounds of the waste and the matrix, - they are resistent against aqueous solutions, heat and radiation. R and D-work has been performed to demonstrate the suitability of this waste form for the immobilization of TRU-wastes. Four kinds of original TRU-waste streams and a mixture of all of them have been immobilized by ceramization, using glove box and remote operation technique as well. Clay minerals, (kaolinite, bentonite) and reactive corundum were selected as ceramic raw materials (KAB 78) in an appropriate ratio yielding 78 wt% Al 2 O 3 and 22 wt%SiO 2 . The main process steps are (i) pretreatment of the liquid waste (concentration, denitration, neutralization, solid- liquid separation), (ii) mixing with ceramic raw materials and forming, (iii) heat treatment with T max. of 1300 0 C for 15 minutes. The waste load of the ceramic matrix has been increased gradually from 20 to 50, in some cases to 60 wt.%

  18. Tensile strength and durability characteristics of high-performance fiber reinforced concrete

    International Nuclear Information System (INIS)

    Ramadoss, P.; Nagamani, K.

    2008-01-01

    This paper presents investigations towards developing a better understanding of the contribution of steel fibers to the tensile strength of high-performance fiber reinforced concrete (HPFRC). For 32 series of mixes, flexural and splitting tensile strengths were determined at 28 days. The variables investigated were fiber volume fraction (0%, 0.5%, 1% and 1.5% with an aspect of 80), silica fume replacement level (SF/CM=0.05 and 0.10) and matrix composition (w/cm ratios ranging from 0.25 t 0.40). The influence of fiber content in terms of fiber reinforcing index on the flexural and splitting tensile strengths of HPFRC is presented. Comparative studies were performed on the tensile behavior of SFRC measured by two different loading tests: flexural test and splitting test. Based on the test results, using the least square method, empirical expressions were developed to predict 28-day tensile strength of HPFRC in terms of fiber reinforcing index. Durability tests were carried out to examine the performance of the SFRC. Relationship between flexural and splitting tensile strengths has been developed using regression analysis. The experimental values of previous researchers were compared with the values predicted by the empirical equations and the absolute variation obtained was within 6% and 5% for flexural and splitting tensile strengths respectively. (author)

  19. Support Services for Ceramic Fiber-Ceramic Matrix Composites

    Energy Technology Data Exchange (ETDEWEB)

    Hurley, JP

    2001-08-16

    products of coal combustion found on the coupons exposed during those tests are reported. Finally, a relative comparison of ceramic and alloy material performance based on the SEM results is presented.

  20. Support Services for Ceramic Fiber-Ceramic Matrix Composites

    Energy Technology Data Exchange (ETDEWEB)

    Hurley, J.P.

    2000-06-06

    built to simulate the Kellogg entrained-bed gasifier in use at the Southern Company Services Wilsonville facility, but at 1/10 of the firing rate. At the exit of the unit is a large candle filter vessel typically operated at approximately 1000 F (540 C) in which coupons of materials can be inserted to test their resistance to gasifier ash and gas corrosion. The system also has ports for testing of hydrogen separation membranes that are suitably contained in a pressure housing. In addition, NETL is operating the combustion and environmental research facility (CERF). In recent years, the 0.5 MMBtu/hr (0.5 x 10{sup 6} kJ/hr) CERF has served as a host for exposure of over 60 ceramic and alloy samples at ambient pressure as well as at 200 psig (for tubes). Samples have been inserted in five locations covering 1700-2600 F (930-1430 C), with exposures exceeding 1000 hours. In the present program, the higher priority metals are to be tested at 1500-1600 F (820-870 C) in one CERF location and near 1800-2000 F (980-1090 C) at other locations to compare results with those from the EERC tests.

  1. Fracture Toughness of Carbon Nanotube-Reinforced Metal- and Ceramic-Matrix Composites

    Directory of Open Access Journals (Sweden)

    Y. L. Chen

    2011-01-01

    Full Text Available Hierarchical analysis of the fracture toughness enhancement of carbon nanotube- (CNT- reinforced hard matrix composites is carried out on the basis of shear-lag theory and facture mechanics. It is found that stronger CNT/matrix interfaces cannot definitely lead to the better fracture toughness of these composites, and the optimal interfacial chemical bond density is that making the failure mode just in the transition from CNT pull-out to CNT break. For hard matrix composites, the fracture toughness of composites with weak interfaces can be improved effectively by increasing the CNT length. However, for soft matrix composite, the fracture toughness improvement due to the reinforcing CNTs quickly becomes saturated with an increase in CNT length. The proposed theoretical model is also applicable to short fiber-reinforced composites.

  2. Natural fiber reinforced polystyrene composites: Effect of fiber loading, fiber dimensions and surface modification on mechanical properties

    International Nuclear Information System (INIS)

    Singha, A.S.; Rana, Raj K.

    2012-01-01

    Highlights: ► Preparation of Agave fiber reinforced polystyrene composites. ► Effect of fiber content, fiber dimensions and surface treatment on the mechanical properties of composites. ► Composites with 20% by weight fiber content exhibited optimum mechanical properties. ► Composites reinforced with MMA grafted fibers exhibited better mechanical strength as compared to raw fibers. ► SEM of fractured surfaces of samples showed better interface in particle reinforced composites. -- Abstract: Natural fibers have been found to be excellent reinforcing materials for preparing polymer matrix based composites. In the present study both raw and surface modified Agave fiber reinforced polystyrene matrix based composites were prepared in order to explore the effect of reinforcement on the mechanical properties of the matrix. The surface modification of Agave fiber was carried out by graft copolymerization of methyl methacrylate (MMA) onto it in the presence of ceric ammonium nitrate (CAN) as initiator. For preparing these composites different fiber contents of both raw and grafted fibers (10–30% by weight) have been used. It has been found that 20% fiber content gives optimum mechanical properties. The effect of different fiber dimensions (particle, short and long fibers) on the mechanical properties of the composites has also been investigated. It has been found that particle reinforcement gives better mechanical properties than short and long fiber reinforcement. The composites thus prepared have been characterized by Fourier transform infra red (FT-IR) spectroscopy, Scanning electron microscopy (SEM) and TGA/DTA techniques. Further the surface modified fiber reinforced composites have been found to be thermally more stable than that of raw fiber reinforced composites.

  3. Improving Turbine Performance with Ceramic Matrix Composites

    Science.gov (United States)

    DiCarlo, James A.

    2007-01-01

    Under the new NASA Fundamental Aeronautics Program, efforts are on-going within the Supersonics Project aimed at the implementation of advanced SiC/SiC ceramic composites into hot section components of future gas turbine engines. Due to recent NASA advancements in SiC-based fibers and matrices, these composites are lighter and capable of much higher service temperatures than current metallic superalloys, which in turn will allow the engines to operate at higher efficiencies and reduced emissions. This presentation briefly reviews studies within Task 6.3.3 that are primarily aimed at developing physics-based concepts, tools, and process/property models for micro- and macro-structural design, fabrication, and lifing of SiC/SiC turbine components in general and airfoils in particular. Particular emphasis is currently being placed on understanding and modeling (1) creep effects on residual stress development within the component, (2) fiber architecture effects on key composite properties such as design strength, and (3) preform formation processes so that the optimum architectures can be implemented into complex-shaped components, such as turbine vanes and blades.

  4. Hybrid Fiber Reinforced Concrete Containing Pumice and Metakaolin

    Directory of Open Access Journals (Sweden)

    Pantea Rashid Dadash

    2014-12-01

    Full Text Available Fiber reinforced concrete (FRC has been widely used due to its advantages over plain concrete such as high energy absorption, post cracking behaviour, flexural and impact strength and arresting shrinkage cracks. But there is a weak zone between fibers and paste in fiber reinforced concretes and this weak zone is full of porosity, especially in hybrid fiber reinforced concretes. So it is necessary to apply a material that reduces porosity and consolidates this transition zone. In this research first, the flexural and impact resistance tests were carried out on hybrid fiber reinforced concretes to choose the optimum percentage of steel and polypropylene fibers based on flexural toughness, modulus of rupture and impact resistance. Finally, compressive strength tests were conducted on selected hybrid fiber reinforced concretes containing pumice and metakaolin to choose the better pozzolan and replacement level based on compressive strength test. Results showed that, metakaolin with 15% substitution for cement had a significant role in increasing compressive strength. However, pumice did not act on the same basis.

  5. Update on CMH-17 Volume 5 Ceramic Matrix Composites

    Science.gov (United States)

    Andrulonis, Rachael; Kiser, J. Douglas; David, Kaia E.; Davies, Curtis R.; Ashforth, Cindy

    2017-01-01

    A wide range of issues must be addressed during the process of certifying CMC (ceramic matrix composite) components for use in commercial aircraft. The Composite Materials Handbook-17, Volume 5, Revision A on ceramic matrix composites has just been revised to help support FAA certification of CMCs for elevated temperature applications. The handbook supports the development and use of CMCs through publishing and maintaining proven, reliable engineering information and standards that have been thoroughly reviewed. Volume 5 contains detailed sections describing CMC materialsprocessing design, analysisguidelines, testing procedures, and data analysis and acceptance. A review of the content of this latest revision will be presented along with a description of how CMH-17, Volume 5 could be used by the FAA (Federal Aviation Administration) and others in the future.

  6. High Performance Fiber Reinforced Cement Composites 6 HPFRCC 6

    CERN Document Server

    Reinhardt, Hans; Naaman, A

    2012-01-01

    High Performance Fiber Reinforced Cement Composites (HPFRCC) represent a class of cement composites whose stress-strain response in tension undergoes strain hardening behaviour accompanied by multiple cracking, leading to a high strain prior to failure. The primary objective of this International Workshop was to provide a compendium of up-to-date information on the most recent developments and research advances in the field of High Performance Fiber Reinforced Cement Composites. Approximately 65 contributions from leading world experts are assembled in these proceedings and provide an authoritative perspective on the subject. Special topics include fresh and hardening state properties; self-compacting mixtures; mechanical behavior under compressive, tensile, and shear loading; structural applications; impact, earthquake and fire resistance; durability issues; ultra-high performance fiber reinforced concrete; and textile reinforced concrete. Target readers: graduate students, researchers, fiber producers, desi...

  7. The Evolution of Interfacial Sliding Stresses During Cyclic Push-in Testing of C- and BN-Coated Hi-Nicalon Fiber-Reinforced CMCs

    Science.gov (United States)

    Eldridge, J. I.; Bansal, N. P.; Bhatt, R. T.

    1998-01-01

    Interfacial debond cracks and fiber/matrix sliding stresses in ceramic matrix composites (CMCs) can evolve under cyclic fatigue conditions as well as with changes in the environment, strongly affecting the crack growth behavior, and therefore, the useful service lifetime of the composite. In this study, room temperature cyclic fiber push-in testing was applied to monitor the evolution of frictional sliding stresses and fiber sliding distances with continued cycling in both C- and BN-coated Hi-Nicalon SiC fiber-reinforced CMCs. A SiC matrix composite reinforced with C-coated Hi-Nical on fibers as well as barium strontium aluminosilicate (BSAS) matrix composites reinforced with BN-coated (four different deposition processes compared) Hi-Nicalon fibers were examined. For failure at a C interface, test results indicated progressive increases in fiber sliding distances during cycling in room air but not in nitrogen. These results suggest the presence of moisture will promote crack growth when interfacial failure occurs at a C interface. While short-term testing environmental effects were not apparent for failure at the BN interfaces, long-term exposure of partially debonded BN-coated fibers to humid air resulted in large increases in fiber sliding distances and decreases in interfacial sliding stresses for all the BN coatings, presumably due to moisture attack. A wide variation was observed in debond and frictional sliding stresses among the different BN coatings.

  8. Automobile materials competition: energy implications of fiber-reinforced plastics

    Energy Technology Data Exchange (ETDEWEB)

    Cummings-Saxton, J.

    1981-10-01

    The embodied energy, structural weight, and transportation energy (fuel requirement) characteristics of steel, fiber-reinforced plastics, and aluminum were assessed to determine the overall energy savings of materials substitution in automobiles. In body panels, a 1.0-lb steel component with an associated 0.5 lb in secondary weight is structurally equivalent to a 0.6-lb fiber-reinforced plastic component with 0.3 lb in associated secondary weight or a 0.5-lb aluminum component with 0.25 lb of secondary weight. (Secondary weight refers to the combined weight of the vehicle's support structure, engine, braking system, and drive train, all of which can be reduced in response to a decrease in total vehicle weight.) The life cycle transportation energy requirements of structurally equivalent body panels (including their associated secondary weights) are 174.4 x 10/sup 3/ Btu for steel, 104.6 x 10/sup 3/ Btu for fiber-reinforced plastics, and 87.2 x 10/sup 3/ Btu for aluminum. The embodied energy requirements are 37.2 x 10/sup 3/ Btu for steel, 22.1 x 10/sup 3/ Btu for fiber-reinforced plastics, and 87.1 x 10/sup 3/ Btu for aluminum. These results can be combined to yield total energy requirements of 211.6 x 10/sup 3/ Btu for steel, 126.7 x 10/sup 3/ Btu for fiber-reinforced plastics, and 174.3 x 10/sup 3/ Btu for aluminum. Fiber-reinforced plastics offer the greatest improvements over steel in both embodied and total energy requirements. Aluminum achieves the greatest savings in transportation energy.

  9. Studies on mechanical, thermal and dynamic mechanical properties of untreated (raw) and treated coconut sheath fiber reinforced epoxy composites

    International Nuclear Information System (INIS)

    Suresh Kumar, S.M.; Duraibabu, D.; Subramanian, K.

    2014-01-01

    Highlights: • UTCSE and TCSE composites have been fabricated by compression molding technique. • The prepared specimens were characterized by FTIR, DMA, TGA and SEM techniques. • TCSE composite showed higher mechanical properties compared to UTCSE composite. • DMA showed that TCSE composite exhibited higher storage modulus than UTCSE composite. • TCSE composite showed higher thermal stability than UTCSE composite. - Abstract: The untreated (raw) coconut sheath fiber reinforced epoxy (UTCSE) composite and treated coconut sheath fiber reinforced epoxy (TCSE) composite have been fabricated using hand layup followed by compression molding technique. The prepared specimens were characterized by Fourier transform infrared spectroscopy (FTIR), dynamic mechanical analysis (DMA), thermo gravimetric analysis (TGA) and scanning electron microscopy (SEM) techniques. The prepared specimens are cut as per ASTM Standards to measure tensile, flexural and impact strengths by using universal testing machine and izod impact tester respectively. The treated coconut sheath fiber reinforced epoxy composite (TCSE) posses higher mechanical strength and thermal stability compared to untreated (raw) coconut sheath fiber reinforced epoxy composite (UTCSE). In the SEM fracture analysis, TCSE composite showed better fiber–matrix bonding and absence of voids compared to UTCSE composite

  10. The effect of Co alloying content on the kinetics of reaction zone growth in tungsten fiber reinforced superalloy composites

    Science.gov (United States)

    Rodriguez, A.; Tien, J. K.; Caulfield, T.; Petrasek, D. W.

    1988-01-01

    A Co-free modified superalloy similar in composition to Waspaloy is investigated in an effort to understand the effect of Co on reaction zone growth kinetics and verify the chemistry dependence of reaction zone growth in the matrix of tungsten fiber reinforced superalloy composites. The values of the parabolic rate constant, characterizing the kinetics of reaction zone growth, for the Waspaloy matrix and the C-free alloy as well as five other alloys from a previous study confirm the dependence of reaction zone growth kinetics on cobalt content of the matrix. The Co-free alloy composite exhibits the slowest reaction zone growth among all tungsten fiber reinforced composites studied to date.

  11. Fused Deposition Technique for Continuous Fiber Reinforced Thermoplastic

    Science.gov (United States)

    Bettini, Paolo; Alitta, Gianluca; Sala, Giuseppe; Di Landro, Luca

    2017-02-01

    A simple technique for the production of continuous fiber reinforced thermoplastic by fused deposition modeling, which involves a common 3D printer with quite limited modifications, is presented. An adequate setting of processing parameters and deposition path allows to obtain components with well-enhanced mechanical characteristics compared to conventional 3D printed items. The most relevant problems related to the simultaneous feeding of fibers and polymer are discussed. The properties of obtained aramid fiber reinforced polylactic acid (PLA) in terms of impregnation quality and of mechanical response are measured.

  12. Evaluation of Fiber Reinforced Cement Using Digital Image Correlation

    Science.gov (United States)

    Melenka, Garrett W.; Carey, Jason P.

    2015-01-01

    The effect of short fiber reinforcements on the mechanical properties of cement has been examined using a splitting tensile – digital image correlation (DIC) measurement method. Three short fiber reinforcement materials have been used in this study: fiberglass, nylon, and polypropylene. The method outlined provides a simple experimental setup that can be used to evaluate the ultimate tensile strength of brittle materials as well as measure the full field strain across the surface of the splitting tensile test cylindrical specimen. Since the DIC measurement technique is a contact free measurement this method can be used to assess sample failure. PMID:26039590

  13. Micromechanical modeling of strength and damage of fiber reinforced composites

    DEFF Research Database (Denmark)

    Mishnaevsky, Leon; Brøndsted, P.

    The report for the first year of the EU UpWind project includes three parts: overview of concepts and methods of modelling of mechanical behavior, deformation and damage of unidirectional fiber reinforced composites, development of computational tools for the automatic generation of 3D micromecha......The report for the first year of the EU UpWind project includes three parts: overview of concepts and methods of modelling of mechanical behavior, deformation and damage of unidirectional fiber reinforced composites, development of computational tools for the automatic generation of 3D...

  14. Effect of Fiber Reinforcement on the Response of Structural Members

    DEFF Research Database (Denmark)

    Fischer, Gregor; Li, Victor

    2007-01-01

    This paper describes a series of investigations on the effect of fiber reinforcement on the response of structural members in direct tension and flexure under reversed cyclic loading conditions. The design approach of the fiber reinforced cementitious composite is based on fracture mechanics...... and an ultimate tensile strain capacity on the order of several percent. Subsequently, the synergistic effects of composite deformation mechanisms in the ECC and structural members subjected to large shear reversals are identified. Beneficial effects observed in the reinforced ECC structural members as compared...... to conventional reinforced concrete include improved composite integrity, energy dissipation, ductility, and damage tolerance....

  15. Hybrid fiber reinforcement and crack formation in Cementitious Composite Materials

    DEFF Research Database (Denmark)

    Pereira, E.B.; Fischer, Gregor; Barros, J.A.O.

    2011-01-01

    reinforcement systems. The research described in this paper shows that the multi-scale conception of cracking and the use of hybrid fiber reinforcements do not necessarily result in an improved tensile behavior of the composite. Particular material design requirements may nevertheless justify the use of hybrid......- to the macroscale. In this study, the performance of different fiber reinforced cementitious composites is assessed in terms of their tensile stress-crack opening behavior. The results obtained from this investigation allow a direct quantitative comparison of the behavior obtained from the different fiber...

  16. Fiber-reinforced Composite Resin Prosthesis to Restore Missing Posterior Teeth: A Case Report

    Directory of Open Access Journals (Sweden)

    Pekka Vallittu

    2007-01-01

    Full Text Available A fiber-reinforced composite inlay-onlay FPD was used for a single posterior tooth replacement in a patient refusing implant for psychological reasons. The FRC-FPD was made of pre-impregnated E-glass fibers (everStick, StickTeck, Turku, Finland embedded in a resin matrix (Stick Resin, StickTeck, Turku, Finland. The unidirectional glass fibers were used to make a framework structure with high volume design placed in the pontic (edentulous region. To reproduce the morphology of natural teeth, the framework structure was then veneered with Gradia (GC, Tokyo, Japan.

  17. THE INFLUENCE OF NANO-ADDITIVES ON THE PHYSICO-MECHANICAL PROPERTIES FIBER REINFORCED CONCRETE

    Directory of Open Access Journals (Sweden)

    Евгений Петрович Матус

    2018-02-01

    Full Text Available The paper discusses the current state of research of the effect of nanodispersed additives on the properties of fiber reinforced portland cement composites. The results of tests on the strength and viscosity of solutions and samples of fine-grained concrete based on cement binder and cement steel and basalt fiber, carbon nanotubes, silicates, nanosized powder of CaО and degidrol. The effect of methods of introduction of the mixture of nano-additives on the clutch fibers with the matrix. Analysis of experimental data showed the absence of a systematic positive effect of increasing the mechanical strength of the composites due to the introduction of carbon nanotubes.

  18. Carbon Fiber Reinforced Carbon Composite Rotary Valve for an Internal Combustion Engine

    Science.gov (United States)

    Northam, G.Burton (Inventor); Ransone, Philip O. (Inventor); Rivers, H. Kevin (Inventor)

    2000-01-01

    Carbon fiber reinforced carbon composite rotary sleeve, and disc valves for internal combustion engines and the like are disclosed. The valves are formed from knitted or braided or wrap-locked carbon fiber shapes. Also disclosed are valves fabricated from woven carbon fibers and from molded carbon matrix material. The valves of the present invention with their very low coefficient of thermal expansion and excellent thermal and self-lubrication properties do not present the sealing and lubrication problems that have prevented rotary sleeve and disc valves from operating efficiently and reliably in the past. Also disclosed are a sealing tang to further improve sealing capabilities and anti-oxidation treatments.

  19. Carbon Fiber Reinforced Carbon Composites Rotary Valves for Internal Combustion Engines

    Science.gov (United States)

    Northam, G. Burton (Inventor); Ransone, Philip O. (Inventor); Rivers, H. Kevin (Inventor)

    1999-01-01

    Carbon fiber reinforced carbon composite rotary, sleeve, and disc valves for internal combustion engines and the like are disclosed. The valves are formed from knitted or braided or warp-locked carbon fiber shapes. Also disclosed are valves fabricated from woven carbon fibers and from molded carbon matrix material. The valves of the present invention with their very low coefficient of thermal expansion and excellent thermal and self-lubrication properties, do not present the sealing and lubrication problems that have prevented rotary, sleeve, and disc valves from operating efficiently and reliably in the past. Also disclosed are a sealing tang to further improve sealing capabilities and anti-oxidation treatments.

  20. Compression specific toughness of normal strength steel fiber reinforced concrete (NSSFRC) and high strength steel fiber reinforced concrete (HSSFRC)

    OpenAIRE

    Marara,Khaled; Erenb,Özgür; Yitmena,İbrahim

    2011-01-01

    Compression toughness tests were carried out on concrete cylinders reinforced with three different aspect ratios of hooked-end steel fibers 60, 75, and 83 and six different percentages of steel fibers 0.5, 1.0, 1.25, 1.5, 1.75, and 2.0% by volume of concrete. The w/c ratio used for the normal strength steel fiber reinforced concrete mixes (NSSFRC) was 0.55, and the water-cementitious ratio (w/c+s) for the high strength fiber reinforced concrete mixes (HSSFRC) was 0.31. For each mix, three tes...

  1. Evaluation of long carbon fiber reinforced concrete to mitigate earthquake damage of infrastructure components.

    Science.gov (United States)

    2013-06-01

    The proposed study involves investigating long carbon fiber reinforced concrete as a method of mitigating earthquake damage to : bridges and other infrastructure components. Long carbon fiber reinforced concrete has demonstrated significant resistanc...

  2. Environmental Degradation of Fiber-Reinforced Polymer Fasteners in Wood

    Science.gov (United States)

    Samuel L. Zelinka; Douglas R. Rammer

    2013-01-01

    This paper examines the durability of fiber-reinforced polymer (FRP) nails in treated wood. The FRP nails were exposed to four conditions: (1) accelerated weathering, consisting of exposure to ultraviolet light and condensation; (2) 100% relative humidity (RH); (3) being driven into untreated wood and exposed to 100% RH; and (4) being driven into wood treated with...

  3. Recent development in blast performance of fiber-reinforced concrete

    Science.gov (United States)

    Hajek, R.; Foglar, M.; Kohoutkova, A.

    2017-09-01

    The paper presents an overview of the recent development in blast performance of fiber reinforced concrete. The paper builds on more than ten years’ history of the research in this field by the team of the Department of Concrete and Masonry Structures of the Faculty of Civil Engineering of the Czech Technical University in Prague.

  4. Coir fiber reinforced polypropylene composite panel for automotive interior applications

    Science.gov (United States)

    Nadir Ayrilmis; Songklod Jarusombuti; Vallayuth Fueangvivat; Piyawade Bauchongkol; Robert H. White

    2011-01-01

    In this study, physical, mechanical, and flammability properties of coconut fiber reinforced polypropylene (PP) composite panels were evaluated. Four levels of the coir fiber content (40, 50, 60, and 70 % based on the composition by weight) were mixed with the PP powder and a coupling agent, 3 wt % maleic anhydride grafted PP (MAPP) powder. The water resistance and the...

  5. Fiber-reinforced Composite for Chairside Replacement of Anterior ...

    African Journals Online (AJOL)

    ... option for replacing missing teeth. However, further and long-term clinical investigation will be required to provide additional information on the survival of directly-bonded anterior fixed prosthesis made with FRC systems. Keywords: Case report, composite resin, fiber-reinforced composite. Libyan Journal of Medicine Vol.

  6. Methodology of modeling fiber reinforcement in concrete elements

    NARCIS (Netherlands)

    Stroeven, P.

    2010-01-01

    This paper’s focus is on the modeling methodology of (steel) fiber reinforcement in concrete. The orthogonal values of fiber efficiency are presented. Bulk as well as boundary situations are covered. Fiber structure is assumed due to external compaction by vibration to display a partially linear

  7. Rotation capacity of self-compacting steel fiber reinforced concrete

    NARCIS (Netherlands)

    Schumacher, P.

    2006-01-01

    Steel fiber reinforced concrete (SFRC) has been used in segmental tunnel linings in the past years. In order to investigate the effect of steel fibers on the rotation capacity of plastic hinges in self-compacting concrete (SCC) the effect of the addition of fibers to SCC in compression, tension and

  8. Stress-Strain Curves for High-Performance Fiber Reinforced ...

    African Journals Online (AJOL)

    Steel fiber reinforced concrete (SFRC) is increasingly being used day by day as a structural material for various applications. The complete stress-strain curve of this material in compression is needed for the analysis and design of structural elements. An experimental investigation was carried out to generate the complete ...

  9. Fiber-reinforced Composite Resin Prosthesis to Restore Missing ...

    African Journals Online (AJOL)

    The unidirectional glass fibers were used to make a framework structure with high volume design placed in the pontic (edentulous) region. To reproduce the morphology of natural teeth, the framework structure was then veneered with Gradia (GC, Tokyo, Japan). Keywords: Fiber-reinforced composite; FRC; Posterior ...

  10. Wear and Reactivity Studies of Melt infiltrated Ceramic Matrix Composite

    Science.gov (United States)

    Jarmon, David C.; Ojard, Greg; Brewer, David N.

    2013-01-01

    As interest grows in the use of ceramic matrix composites (CMCs) for critical gas turbine engine components, the effects of the CMCs interaction with the adjoining structure needs to be understood. A series of CMC/material couples were wear tested in a custom elevated temperature test rig and tested as diffusion couples, to identify interactions. Specifically, melt infiltrated silicon carbide/silicon carbide (MI SiC/SiC) CMC was tested in combination with a nickel-based super alloy, Waspaloy, a thermal barrier coating, Yttria Stabilized Zirconia (YSZ), and a monolithic ceramic, silicon nitride (Si3N4). To make the tests more representative of actual hardware, the surface of the CMC was kept in the as-received state (not machined) with the full surface features/roughness present. Test results include: scanning electron microscope characterization of the surfaces, micro-structural characterization, and microprobe analysis.

  11. Compression specific toughness of normal strength steel fiber reinforced concrete (NSSFRC and high strength steel fiber reinforced concrete (HSSFRC

    Directory of Open Access Journals (Sweden)

    Khaled Marara

    2011-01-01

    Full Text Available Compression toughness tests were carried out on concrete cylinders reinforced with three different aspect ratios of hooked-end steel fibers 60, 75, and 83 and six different percentages of steel fibers 0.5, 1.0, 1.25, 1.5, 1.75, and 2.0% by volume of concrete. The w/c ratio used for the normal strength steel fiber reinforced concrete mixes (NSSFRC was 0.55, and the water-cementitious ratio (w/c+s for the high strength fiber reinforced concrete mixes (HSSFRC was 0.31. For each mix, three test cylinders were tested for compression specific toughness. The effect of fiber reinforcement index: volume of fibers × length/diameter ratio on compression specific toughness and also on the relationship between these two properties is presented in this paper. As a result, (a equations are proposed to quantify the effect of fibers on compression toughness ratio of concrete in terms of FRI, (b equations obtained in terms of FRI and compression specific toughness of plain concrete to estimate both compression specific toughness of NSSFRC and HSSFRC (N.m, (c equations obtained which represent the relationship between compression toughness index and FRI for NSSFRC and HSSFRC, respectively, and (d equations obtained to quantify the relationship between compression specific toughness index and fiber reinforcement index for NSSFRC and HSSFRC, respectively. The proposed equations give good correlation with the experimental values.

  12. Ceramic Matrix Composite Turbine Disk for Rocket Engines

    Science.gov (United States)

    Effinger, Mike; Genge, Gary; Kiser, Doug

    2000-01-01

    NASA has recently completed testing of a ceramic matrix composite (CMC), integrally bladed disk (blisk) for rocket engine turbopumps. The turbopump's main function is to bring propellants from the tank to the combustion chamber at optimal pressures, temperatures, and flow rates. Advantages realized by using CMC blisks are increases in safety by increasing temperature margins and decreasing costs by increasing turbopump performance. A multidisciplinary team, involving materials, design, structural analysis, nondestructive inspection government, academia, and industry experts, was formed to accomplish the 4.5 year effort. This article will review some of the background and accomplishments of the CMC Blisk Program relative to the benefits of this technology.

  13. Characteristics and applications of high-performance fiber reinforced asphalt concrete

    Science.gov (United States)

    Park, Philip

    Steel fiber reinforced asphalt concrete (SFRAC) is suggested in this research as a multifunctional high performance material that can potentially lead to a breakthrough in developing a sustainable transportation system. The innovative use of steel fibers in asphalt concrete is expected to improve mechanical performance and electrical conductivity of asphalt concrete that is used for paving 94% of U. S. roadways. In an effort to understand the fiber reinforcing mechanisms in SFRAC, the interaction between a single straight steel fiber and the surrounding asphalt matrix is investigated through single fiber pull-out tests and detailed numerical simulations. It is shown that pull-out failure modes can be classified into three types: matrix, interface, and mixed failure modes and that there is a critical shear stress, independent of temperature and loading rate, beyond which interfacial debonding will occur. The reinforcing effects of SFRAC with various fiber sizes and shapes are investigated through indirect tension tests at low temperature. Compared to unreinforced specimens, fiber reinforced specimens exhibit up to 62.5% increase in indirect tensile strength and 895% improvements in toughness. The documented improvements are the highest attributed to fiber reinforcement in asphalt concrete to date. The use of steel fibers and other conductive additives provides an opportunity to make asphalt pavement electrically conductive, which opens up the possibility for multifunctional applications. Various asphalt mixtures and mastics are tested and the results indicate that the electrical resistivity of asphaltic materials can be manipulated over a wide range by replacing a part of traditional fillers with a specific type of graphite powder. Another important achievement of this study is development and validation of a three dimensional nonlinear viscoelastic constitutive model that is capable of simulating both linear and nonlinear viscoelasticity of asphaltic materials. The

  14. Ultimate Tensile Strength as a Function of Test Rate for Various Ceramic Matrix Composites at Elevated Temperatures

    Science.gov (United States)

    Choi, Sung R.; Bansal, Narottam P.; Gyekenyesi, John P.

    2002-01-01

    Ultimate tensile strength of five different continuous fiber-reinforced ceramic composites, including SiC/BSAS (2D 2 types), SiC/MAS-5 (2D), SiC/SiC (2D enhanced), and C/SiC(2D) was determined as a function of test rate at I 100 to 1200 'C in air. All five composite materials exhibited a significant dependency of ultimate strength on test rate such that the ultimate strength decreased with decreasing test rate, similar to the behavior observed in many advanced monolithic ceramics at elevated temperatures. The application of the preloading technique as well as the prediction of life from one loading configuration (constant stress rate) to another (constant stress loading) for SiC/BSAS suggested that the overall macroscopic failure mechanism of the composites would be the one governed by a power-law type of damage evolution/accumulation, analogous to slow crack growth commonly observed in advanced monolithic ceramics.

  15. Titanium Matrix Composite Pressure Vessel, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — For over 15 years, FMW Composite Systems has developed Metal Matrix Composite manufacturing methodologies for fabricating silicon-carbide-fiber-reinforced titanium...

  16. Titanium Matrix Composite Pressure Vessel Project

    Data.gov (United States)

    National Aeronautics and Space Administration — For over 15 years, FMW Composite Systems has developed Metal Matrix Composite manufacturing methodologies for fabricating silicon-carbide-fiber-reinforced titanium...

  17. Mechanical and thermal properties of date palm leaf fiber reinforced recycled poly (ethylene terephthalate) composites

    International Nuclear Information System (INIS)

    Dehghani, Alireza; Madadi Ardekani, Sara; Al-Maadeed, Mariam A.; Hassan, Azman; Wahit, Mat Uzir

    2013-01-01

    Highlights: • A novel natural fiber reinforced recycled poly (ethylene terephthalate) composite was prepared. • Mechanical performance and thermal behavior of the composites were investigated. • Composites with improved toughness and strength were achieved. - Abstract: Development of a recycled poly (ethylene terephthalate) (PETr) reinforced with surface treated date palm leaf fiber (DPLF) composites with enhanced mechanical properties have been studied. Surface modified date palm leaf fiber reinforced PETr composites were prepared using twin-screw extruder followed by injection molding and the influence of the DPLF content on the mechanical and thermal behavior of the PETr matrix was evaluated. Upon the addition of fibers, remarkable enhancements in the mechanical properties of the composites were observed. Scanning electron microscopy (SEM) images taken from DPLF fibers showed significant enhancements in the fiber’s surface topography after the surface treatment process. Dynamic mechanical analysis (DMA) indicated that the addition of DPLF to PETr matrix increased the composites toughness. The crystallization behavior of the samples, analyzed by differential scanning calorimetry (DSC) indicated an increase in the onset crystallization temperature and showed a higher degree of crystallinity of the composites as compared to PETr, demonstrating that DPLF particles could act as nucleating agents. The results point to the composite’s potential in wider indoor applications

  18. Hoop Tensile Properties of Ceramic Matrix Composite Cylinders

    Science.gov (United States)

    Verrilli, Michael J.; DiCarlo, James A.; Yun, HeeMan; Barnett, Terry

    2004-01-01

    Tensile stress-strain properties in the hoop direction were obtained for 100-mm diameter SiC/SiC ceramic matrix composite cylinders using ring specimens machined form the cylinder ends. The cylinders were fabricated from 2D balanced SiC fabric with several material variants, including wall thickness (6,8, and 12 plies), SiC fiber type (Sylramic, Sylramic-iBN, Hi-Nicalon, and Hi-Nicalon S), fiber sizing type, and matrix type (full CVI SiC, and partial CVI SiC plus slurry cast + melt-infiltrated SiC-Si). Fiber ply splices existed in all the hoops. Tensile hoop measurements are made at room temperature and 1200 C using hydrostatic ring test facilities. The failure mode of the hoops, determined through microstructural examination, is presented. The hoop properties are compared with in-plane data measured on flat panels using same material variants, but containing no splices.

  19. Carbon fiber reinforced thermoplastic composites from acrylic polymer matrices: Interfacial adhesion and physical properties

    Directory of Open Access Journals (Sweden)

    H. Kishi

    2017-04-01

    Full Text Available Acrylic polymers have high potential as matrix polymers for carbon fiber reinforced thermoplastic polymers (CFRTP due to their superior mechanical properties and the fact that they can be fabricated at relatively low temperatures. We focused on improving the interfacial adhesion between carbon fibers (CFs and acrylic polymers using several functional monomers for co-polymerization with methyl methacrylate (MMA. The copolymerized acrylic matrices showed good adhesion to the CF surfaces. In particular, an acrylic copolymer with acrylamide (AAm showed high interfacial adhesive strength with CFs compared to pure PMMA, and a hydroxyethyl acrylamide (HEAA copolymer containing both amide and hydroxyl groups showed high flexural strength of the CFRTP. A 3 mol% HEAA-copolymerized CFRTP achieved a flexural strength almost twice that of pure PMMA matrix CFRTP, and equivalent to that of an epoxy matrix CFRP.

  20. Stochastic-Strength-Based Damage Simulation Tool for Ceramic Matrix and Polymer Matrix Composite Structures

    Science.gov (United States)

    Nemeth, Noel N.; Bednarcyk, Brett A.; Pineda, Evan J.; Walton, Owen J.; Arnold, Steven M.

    2016-01-01

    Stochastic-based, discrete-event progressive damage simulations of ceramic-matrix composite and polymer matrix composite material structures have been enabled through the development of a unique multiscale modeling tool. This effort involves coupling three independently developed software programs: (1) the Micromechanics Analysis Code with Generalized Method of Cells (MAC/GMC), (2) the Ceramics Analysis and Reliability Evaluation of Structures Life Prediction Program (CARES/ Life), and (3) the Abaqus finite element analysis (FEA) program. MAC/GMC contributes multiscale modeling capabilities and micromechanics relations to determine stresses and deformations at the microscale of the composite material repeating unit cell (RUC). CARES/Life contributes statistical multiaxial failure criteria that can be applied to the individual brittle-material constituents of the RUC. Abaqus is used at the global scale to model the overall composite structure. An Abaqus user-defined material (UMAT) interface, referred to here as "FEAMAC/CARES," was developed that enables MAC/GMC and CARES/Life to operate seamlessly with the Abaqus FEA code. For each FEAMAC/CARES simulation trial, the stochastic nature of brittle material strength results in random, discrete damage events, which incrementally progress and lead to ultimate structural failure. This report describes the FEAMAC/CARES methodology and discusses examples that illustrate the performance of the tool. A comprehensive example problem, simulating the progressive damage of laminated ceramic matrix composites under various off-axis loading conditions and including a double notched tensile specimen geometry, is described in a separate report.

  1. Interface study of fiber reinforced concrete

    Directory of Open Access Journals (Sweden)

    Pacios, A.

    1997-12-01

    Full Text Available In a composite material that uses fibers as reinforcement, the breakage of the matrix is produced jointly with the separation of the fiber from the matrix. The mechanical behavior of the interface describes how fibers can work stabilizing the cracking process. The interface is the medium that puts the fiber on load, being the mechanical behavior of the interface and the strength of the fiber two important parameters to consider to characterize the general behavior of the composite. The present work studies the effect of several parameters on the behavior of the interface. Those parameters are the type of fiber, its geometry and dimension and the modified matrix and loading rate. An experimental technique was designed to allow testing the same set-up for pull-out tests in a quasistatic machine and Charpy pendulum. Modifications of the matrix by adding a mineral admixture improve the behavior of the interface as much as a 100%. It has been observed that combining the two actions, an improved matrix with crimped fibers, the type of failure can be modified. In this new type of failure, the fiber breaks consequently toughness decreases. Other parameters, as the loading rate and inclination of the fiber also affect the behavior of the interface.

    En un material compuesto que utiliza fibras como refuerzo, la rotura de la matriz se produce conjuntamente con la separación de la fibra de la matriz, por lo que el comportamiento mecánico de la interfase describe hasta que punto las fibras pueden trabajar como estabilizadores en el proceso defisuración. La interfase es el medio que pone en carga a la fibra y, por ello, la resistencia mecánica de la interfase y de la fibra son dos parámetros importantes a considerar para caracterizar el comportamiento general del composite. Este trabajo investiga el efecto de la variación del tipo de fibra, geometría y dimensión de las mismas y las modificaciones de la matriz y la velocidad de desplazamiento

  2. Electromagnetic configurable architectures for assessment of Carbon Fiber Reinforced Plastics

    Directory of Open Access Journals (Sweden)

    Steigmann Rozina

    2017-01-01

    Full Text Available Carbon Fiber Reinforced Plastics are used in most wide domains due their low density, lack of mechanical fatigue phenomena and high strength–to weight ratio. From electromagnetic point of view, Carbon Fiber Reinforced Plastics structure represents an inhomogeneous structure of electric conductive fibers embedded into a dielectric material, thus an electromagnetic configurable architecture can be used to evaluate above mentioned defects. The paper proposes a special sensor, send receiver type and the obtaining of electromagnetic image by post-processing each coil signals in each point of scanning, using a sub-encoding image reconstruction algorithm and super-resolution procedures. The layout of fibers can be detected interrogating only diagonal reception coils.

  3. Shear strength of steel fiber-reinforced concrete beams

    Directory of Open Access Journals (Sweden)

    Daniel de Lima Araújo

    2014-02-01

    Full Text Available This study analyzed the mechanical behavior of shear strength of steel fiber-reinforced concrete beams. Six beams subjected to shear loading were tested until failure. Additionally, prisms were tested to evaluate fiber contribution to the concrete shear strength. Steel fibers were straight, hook-ended,35 mmlong and aspect ratio equal to 65. Volumetric fractions used were 1.0 and 2.0%. The results demonstrated a great contribution from steel fibers to shear strength of reinforced concrete beams and to reduce crack width, which can reduce the amount of stirrups in reinforced concrete structures. Beam capacity was also evaluated by empirical equations, and it was found that these equations provided a high variability, while some of them have not properly predicted the ultimate shear strength of the steel fiber-reinforced concrete beams.

  4. A Study of Array Direction HDPE Fiber Reinforced Mortar

    Science.gov (United States)

    Kamsuwan, Trithos

    2018-02-01

    This paper presents the effect of array direction HDPE fiber using as the reinforced material in cement mortar. The experimental data were created reference to the efficiency of using HDPE fiber reinforced on the tensile properties of cement mortar with different high drawn ratio of HDPE fibers. The fiber with the different drawn ratio 25x (d25 with E xx), and 35x (d35 with E xx) fiber volume fraction (0%, 1.0%, 1.5%) and fiber length 20 mm. were used to compare between random direction and array direction of HDPE fibers and the stress – strain displacement relationship behavior of HDPE short fiber reinforced cement mortar were investigated. It was found that the array direction with HDPE fibers show more improved in tensile strength and toughness when reinforced in cement mortar.

  5. Fiber-Reinforced Concrete For Hardened Shelter Construction

    Science.gov (United States)

    1993-02-01

    centuries. Mud bricks reinforced with straw and mortar reinforced with horse hair are but two examples. Engineering properties of natural fibers are...used to reinforce concrete. c. Coir Fibers Coir fibers come from coconut husks. They are easily extracted using water to decompose the soft material...DATES COVERED SFebruary 1993 Final I Oct 91 - 30 Nov 92 4. TITLE AND SUBTITLE S. FUNDING NUMBERS Fiber -Reinforced Concrete for Hardened Shelter

  6. Elastic constants and internal friction of fiber-reinforced composites

    International Nuclear Information System (INIS)

    Ledbetter, H.M.

    1982-01-01

    We review recent experimental studies at NBS on the anisotropic elastic constants and internal friction of fiber-reinforced composites. Materials that were studied include: boron-aluminum, boron-epoxy, graphite-epoxy, glass-epoxy, and aramid-epoxy. In all cases, elastic-constant direction dependence could be described by relationships developed for single crystals of homogeneous materials. Elastic stiffness and internal friction were found to vary inversely

  7. Performance of Lightweight Natural-Fiber Reinforced Concrete

    OpenAIRE

    Hardjasaputra Harianto; Ng Gino; Urgessa Girum; Lesmana Gabriella; Sidharta Steven

    2017-01-01

    Concrete, the most common construction material, has negligible tension capacity. However, a reinforcement material such as natural fibers, can be used to improve the tensile properties of concrete. This paper presents experiments conducted on Super Lightweight Concrete mixed with coconut fibers (SLNFRC). Coconut fibers are regarded as one of the toughest natural fibers to strengthen concrete. Coconut fiber reinforced composites have been considered as a sustainable construction material beca...

  8. Hybrid Fiber Reinforced Concrete Incorporated With Phase Change Material

    OpenAIRE

    Chuang, Chia-So

    2015-01-01

    To further efforts toward improvement, an innovative and durable High Performance Fiber Reinforced Cementitious Composites (HPFRCC) was developed, using hybrid steel macro-fibers with designed hook-ends, and polyvinyl alcohol micro-fibers for optimal fiber synergistic effects, crack width control, durability, and reduced maintenance and life-cycle costs for bridges. For functional performance improvements, an off-the-shelf phase change material (PCM) was utilized, optimized and incorporated i...

  9. PREDICTION OF BASALT FIBER REINFORCED CONCRETE PAVEMENT BENDING STRENGTH VALUES

    OpenAIRE

    Hidayet BAYRAKTAR; Ayhan SAMANDAR; Suat SARIDEMİR

    2017-01-01

    This paper proposes the potential of artificial neural network (ANN) system for estimating the bending strength values of the basalt fiber reinforced concrete pavements. Three main influential parameters; namely basalt fiber ratio, density and slump value of the fresh concrete were selected as input data. The model was trained, tested using 400 data sets which were the results of on-site experiment tests. ANN system results were also compared with the experimental test results. The research r...

  10. Engineering Properties of Treated Natural Hemp Fiber-Reinforced Concrete

    Directory of Open Access Journals (Sweden)

    Xiangming Zhou

    2017-06-01

    Full Text Available In recent years, the construction industry has seen a significant rise in the use of natural fibers, for producing building materials. Research has shown that treated hemp fiber-reinforced concrete (THFRC can provide a low-cost building material for residential and low-rise buildings, while achieving sustainable construction and meeting future environmental targets. This study involved enhancing the mechanical properties of hemp fiber-reinforced concrete through the Ca(OH2 solution pretreatment of fibers. Both untreated (UHFRC and treated (THFRC hemp fiber-reinforced concrete were tested containing 15-mm length fiber, at a volume fraction of 1%. From the mechanical strength tests, it was observed that the 28-day tensile and compressive strength of THFRC was 16.9 and 10% higher, respectively, than UHFRC. Based on the critical stress intensity factor (KICs and critical strain energy release rate (GICs, the fracture toughness of THFRC at 28 days was also found to be 7–13% higher than UHFRC. Additionally, based on the determined brittleness number (Q and modulus of elasticity, the THFRC was found to be 11% less brittle and 10.8% more ductile. Furthermore, qualitative analysis supported many of the mechanical strength findings through favorable surface roughness observed on treated fibers and resistance to fiber pull-out.

  11. Advance study of fiber-reinforced self-compacting concrete

    Science.gov (United States)

    Mironova, M.; Ivanova, M.; Naidenov, V.; Georgiev, I.; Stary, J.

    2015-10-01

    Incorporation in concrete composition of steel macro- and micro - fiber reinforcement with structural function increases the degree of ductility of typically brittle cement-containing composites, which in some cases can replace completely or partially conventional steel reinforcement in the form of rods and meshes. Thus, that can reduce manufacturing, detailing and placement of conventional reinforcement, which enhances productivity and economic efficiency of the building process. In this paper, six fiber-reinforced with different amounts of steel fiber cement-containing self-compacting compositions are investigated. The results of some of their main strength-deformation characteristics are presented. Advance approach for the study of structural and material properties of these type composites is proposed by using the methods of industrial computed tomography. The obtained original tomography results about the microstructure and characteristics of individual structural components make it possible to analyze the effective macro-characteristics of the studied composites. The resulting analytical data are relevant for the purposes of multi-dimensional modeling of these systems. Multifactor structure-mechanical analysis of the obtained with different methods original scientific results is proposed. It is presented a conclusion of the capabilities and effectiveness of complex analysis in the studies to characterize the properties of self-compacting fiber-reinforced concrete.

  12. A Review on Natural Fiber Reinforced Polymer Composite and Its Applications

    Directory of Open Access Journals (Sweden)

    Layth Mohammed

    2015-01-01

    Full Text Available Natural fibers are getting attention from researchers and academician to utilize in polymer composites due to their ecofriendly nature and sustainability. The aim of this review article is to provide a comprehensive review of the foremost appropriate as well as widely used natural fiber reinforced polymer composites (NFPCs and their applications. In addition, it presents summary of various surface treatments applied to natural fibers and their effect on NFPCs properties. The properties of NFPCs vary with fiber type and fiber source as well as fiber structure. The effects of various chemical treatments on the mechanical and thermal properties of natural fibers reinforcements thermosetting and thermoplastics composites were studied. A number of drawbacks of NFPCs like higher water absorption, inferior fire resistance, and lower mechanical properties limited its applications. Impacts of chemical treatment on the water absorption, tribology, viscoelastic behavior, relaxation behavior, energy absorption flames retardancy, and biodegradability properties of NFPCs were also highlighted. The applications of NFPCs in automobile and construction industry and other applications are demonstrated. It concluded that chemical treatment of the natural fiber improved adhesion between the fiber surface and the polymer matrix which ultimately enhanced physicomechanical and thermochemical properties of the NFPCs.

  13. Effect of Different Fillers on Adhesive Wear Properties of Glass Fiber Reinforced Polyester Composites

    Directory of Open Access Journals (Sweden)

    E. Feyzullahoğlu

    2017-12-01

    Full Text Available Polymeric composites are used for different aims as substitute of traditional materials such as metals; due to their improved strength at small specific weight. The fiber reinforced polymer (FRP composite material consists of polymeric matrix and reinforcing material. Polymeric materials are commonly reinforced with synthetic fibers such as glass and carbon. The glass fiber reinforced polyester (GFRP composites are used with different filler materials. The aim of this study is to investigate the effects of different filler materials on adhesive wear behavior of GFRP. In this experimental study; polymetilmetacrilat (PMMA, Glass beads (GB and Glass sand (GS were used as filling material in GFRP composite samples. The adhesive wear behaviors of samples were carried out using ball on disc type tribometer. The friction force and coefficient of friction were measured during the test. The volume loss and wear rate values of samples were calculated according to test results. Barcol hardness values of samples were measured. The densities of samples were measured. Results show that the wear resistance of GB filled GFRP composite samples was much more than non-filled and PMMA filled GFRP composite samples.

  14. Multifunctional fiber reinforced polymer composites using carbon and boron nitride nanotubes

    Science.gov (United States)

    Ashrafi, Behnam; Jakubinek, Michael B.; Martinez-Rubi, Yadienka; Rahmat, Meysam; Djokic, Drazen; Laqua, Kurtis; Park, Daesun; Kim, Keun-Su; Simard, Benoit; Yousefpour, Ali

    2017-12-01

    Recent progress in nanotechnology has made several nano-based materials available with the potential to address limitations of conventional fiber reinforced polymer composites, particularly in reference to multifunctional structures. Carbon nanotubes (CNTs) are the most prevalent case and offer amazing properties at the individual nanotube level. There are already a few high-profile examples of the use of CNTs in space structures to provide added electrical conductivity for static dissipation and electromagnetic shielding. Boron nitride nanotubes (BNNTs), which are structurally analogous to CNTs, also present a range of attractive properties. Like the more widely explored CNTs, individual BNNTs display remarkable mechanical properties and high thermal conductivity but with contrasting functional attributes including substantially higher thermal stability, high electrical insulation, polarizability, high neutron absorption and transparency to visible light. This presents the potential of employing either or both BNNTs and CNTs to achieve a range of lightweight, functional composites for space structures. Here we present the case for application of BNNTs, in addition to CNTs, in space structures and describe recent advances in BNNT production at the National Research Council Canada (NRC) that have, for the first time, provided sufficiently large quantities to enable commercialization of high-quality BNNTs and accelerate development of chemistry, composites and applications based on BNNTs. Early demonstrations showing the fabrication and limited structural testing of polymer matrix composites, including glass fiber-reinforced composite panels containing BNNTs will be discussed.

  15. Considerations regarding the volume fraction influence on the wear behavior of the fiber reinforced composite systems

    Science.gov (United States)

    Caliman, R.

    2017-08-01

    This paper contains an analysis of the factors that have an influence on the tribological characteristics of the composite material sintered with metal matrix reinforced with carbon fibers. These composites are used generally if it’s needed the wear resistant materials, whereas these composites have high specific strength in conjunction with a good corrosion resistance at low densities and some self-lubricating properties. Through the knowledge of the better tribological properties of the materials and their behavior to wear, can be generated by dry and the wet friction. Thus, where necessary the use of high temperature resistant material with low friction between the elements, carbon fiber composite materials are very suitable because they have: mechanical strength and good ductility, melting temperature on the higher values, higher electrical and thermal conductivity, lower wear speed and lower friction forces. For this purpose, this paper also contains an experimental program based on the evidence of formaldehyde resin made from fiber reinforced Cu-carbon with the aim to specifically determine the volume of fibers fraction for the consolidation of the composite material. In order to determine the friction coefficient and the wear rates of the various fiber reinforced polymer mixtures of carbon have been used special devices with needle-type with steel disc. These tests were conducted in the atmosphere at the room temperature without external lubrication study taking into consideration the sliding different speeds with constant loading task.

  16. Behavior of Fiber-Reinforced Smart Soft Composite Actuators According to Material Composition

    Energy Technology Data Exchange (ETDEWEB)

    Han, Min-Woo; Kim, Hyung-Il; Song, Sung-Hyuk; Ahn, Sung-Hoon [Seoul Nat’l Univ., Seoul (Korea, Republic of)

    2017-02-15

    Fiber-reinforced polymer composites, which are made by combining a continuous fiber that acts as reinforcement and a homogeneous polymeric material that acts as a host, are engineering materials with high strength and stiffness and a lightweight structure. In this study, a shape memory alloy(SMA) reinforced composite actuator is presented. This actuator is used to generate large deformations in single lightweight structures and can be used in applications requiring a high degree of adaptability to various external conditions. The proposed actuator consists of numerous individual laminas of the glass-fiber fabric that are embedded in a polymeric matrix. To characterize its deformation behavior, the composition of the actuator was changed by changing the matrix material and the number of the glass-fiber fabric layers. In addition, current of various magnitudes were applied to each actuator to study the effect of the heating of SMA wires on applying current.

  17. Physicochemical properties of discontinuous S2-glass fiber reinforced resin composite.

    Science.gov (United States)

    Huang, Qiting; Qin, Wei; Garoushi, Sufyan; He, Jingwei; Lin, Zhengmei; Liu, Fang; Vallittu, Pekka K; Lassila, Lippo V J

    2018-01-30

    The objective of this study was to investigate several physicochemical properties of an experimental discontinuous S2-glass fiber-reinforced resin composite. The experimental composite was prepared by mixing 10 wt% of discontinuous S2-glass fibers with 27.5 wt% of resin matrix and 62.5 wt% of particulate fillers. Flexural strength (FS) and modulus (FM), fracture toughness (FT), work of fracture (WOF), double bond conversion (DC), Vickers hardness, volume shrinkage (VS) and fiber length distribution were determined. These were compared with two commercial resin composites. The experimental composite showed the highest FS, WOF and FT compared with two control composites. The DC of the experimental composite was comparable with controls. No significant difference was observed in VS between the three tested composites. The use of discontinuous glass fiber fillers with polymer matrix and particulate fillers yielded improved physical properties and substantial improvement was associated with the use of S2-glass fiber.

  18. The effect of exfoliated graphite on carbon fiber reinforced composites for cryogenic applications

    Science.gov (United States)

    McLaughlin, Adam Michael

    It is desirable to lighten cryogenic fuel tanks through the use of composites for the development of a reusable single stage launch vehicle. Conventional composites fall victim to microcracking due to the cyclic loading and temperature change experienced during launch and re-entry conditions. Also, the strength of a composite is generally limited by the properties of the matrix. The introduction of the nanoplatelet, exfoliated graphite or graphene, to the matrix shows promise of increasing both the microcracking resistivity and the mechanical characteristics. Several carbon fiber composite plates were manufactured with varying concentrations of graphene and tested under both room and cryogenic conditions to characterize graphene's effect on the composite. Results from tensile and fracture testing indicate that the ideal concentration of graphene in our carbon fiber reinforced polymer composites for cryogenic applications is 0.08% mass graphene.

  19. Life Modeling and Design Analysis for Ceramic Matrix Composite Materials

    Science.gov (United States)

    2005-01-01

    The primary research efforts focused on characterizing and modeling static failure, environmental durability, and creep-rupture behavior of two classes of ceramic matrix composites (CMC), silicon carbide fibers in a silicon carbide matrix (SiC/SiC) and carbon fibers in a silicon carbide matrix (C/SiC). An engineering life prediction model (Probabilistic Residual Strength model) has been developed specifically for CMCs. The model uses residual strength as the damage metric for evaluating remaining life and is posed probabilistically in order to account for the stochastic nature of the material s response. In support of the modeling effort, extensive testing of C/SiC in partial pressures of oxygen has been performed. This includes creep testing, tensile testing, half life and residual tensile strength testing. C/SiC is proposed for airframe and propulsion applications in advanced reusable launch vehicles. Figures 1 and 2 illustrate the models predictive capabilities as well as the manner in which experimental tests are being selected in such a manner as to ensure sufficient data is available to aid in model validation.

  20. Laser Machining of Melt Infiltrated Ceramic Matrix Composite

    Science.gov (United States)

    Jarmon, D. C.; Ojard, G.; Brewer, D.

    2012-01-01

    As interest grows in considering the use of ceramic matrix composites for critical components, the effects of different machining techniques, and the resulting machined surfaces, on strength need to be understood. This work presents the characterization of a Melt Infiltrated SiC/SiC composite material system machined by different methods. While a range of machining approaches were initially considered, only diamond grinding and laser machining were investigated on a series of tensile coupons. The coupons were tested for residual tensile strength, after a stressed steam exposure cycle. The data clearly differentiated the laser machined coupons as having better capability for the samples tested. These results, along with micro-structural characterization, will be presented.

  1. Update on CMH-17 Volume 5: Ceramic Matrix Composites

    Science.gov (United States)

    David, Kaia; Pierce, Jennifer; Kiser, James; Keith, William P.; Wilson, Gregory S.

    2015-01-01

    CMC components are projected to enter service in commercial aircraft in 2016. A wide range of issues must be addressed prior to certification of this hardware. The Composite Materials Handbook-17, Volume 5 on ceramic matrix composites is being revised to support FAA certification of CMCs for hot structure and other elevated temperature applications. The handbook supports the development and use of CMCs through publishing and maintaining proven, reliable engineering information and standards that have been thoroughly reviewed. Volume 5 will contain detailed sections describing CMC materials processing, design analysis guidelines, testing procedures, and data analysis and acceptance. A review of the status of and plans for two of these areas, which are being addressed by the M and P Working Group and the Testing Working Group, will be presented along with a timeline for the preparation of CMH-17, Volume 5.

  2. Review of Japanese recommendations on design and construction of different classes of fiber reinforced concrete and application examples

    DEFF Research Database (Denmark)

    Uchida, Yuichi; Fischer, Gregor; Hishiki, Yoshihiro

    2008-01-01

    The development of concrete and cementitious composites with fiber reinforcement to improve the tensile load-deformation behavior has resulted in three distinct classes of materials. These include conventional Fiber Reinforced Concrete (FRC) with tension softening response, High Performance Fiber...... Reinforced Cement Composites (HPFRCC) with strain hardening and multiple cracking behavior, and Ultra High-strength Fiber Reinforced concrete (UFC) with increased tensile strength. The recommendations on the design, production, and application of these classes of fiber reinforced concrete have been...

  3. Performance Assessment of Discontinuous Fibers in Fiber Reinforced Concrete: Current State-of-the-Art

    Science.gov (United States)

    2017-07-01

    ER D C/ G SL T R- 17 -1 9 Performance Assessment of Discontinuous Fibers in Fiber-Reinforced Concrete : Current State-of-the-Art G eo te...Discontinuous Fibers in Ultra-High Performance Fiber-Reinforced Concrete : Current State-of-the-Art Charles A. Burchfield Geotechnical and...Modeling for Force Protection” ERDC/GSL TR-17-19 ii Abstract Fiber-reinforced concretes have been developed and tested for years. During this

  4. Suppression of electromechanical instability in fiber-reinforced dielectric elastomers

    Directory of Open Access Journals (Sweden)

    Rui Xiao

    2016-03-01

    Full Text Available The electromechanical instability of dielectric elastomers has been a major challenge for the application of this class of active materials. In this work, we demonstrate that dielectric elastomers filled with soft fiber can suppress the electromechanical instability and achieve large deformation. Specifically, we developed a constitutive model to describe the dielectric and mechanical behaviors of fiber-reinforced elastomers. The model was applied to study the influence of stiffness, nonlinearity properties and the distribution of fiber on the instability of dielectric membrane under an electric field. The results show that there exists an optimal fiber distribution condition to achieve the maximum deformation before failure.

  5. Effects of moisture on glass fiber-reinforced polymer composites

    DEFF Research Database (Denmark)

    Alzamora Guzman, Vladimir Joel; Brøndsted, Povl

    2015-01-01

    performance of wind turbine blades over their lifetime. Here, environmental moisture conditions were simulated by immersing glass fiber-reinforced polymer specimens in salt water for a period of up to 8 years. The mechanical properties of specimens were analyzed before and after immersion to evaluate...... the degradation mechanisms. Single-fiber tensile testing was also performed at different moisture conditions. The water-diffusion mechanism was studied to quantify the diffusion coefficients as a function of salt concentration, sample geometry, and fiber direction. Three degradation mechanisms were observed...

  6. Graphite fiber reinforced structure for supporting machine tools

    Science.gov (United States)

    Knight, Jr., Charles E.; Kovach, Louis; Hurst, John S.

    1978-01-01

    Machine tools utilized in precision machine operations require tool support structures which exhibit minimal deflection, thermal expansion and vibration characteristics. The tool support structure of the present invention is a graphite fiber reinforced composite in which layers of the graphite fibers or yarn are disposed in a 0/90.degree. pattern and bonded together with an epoxy resin. The finished composite possesses a low coefficient of thermal expansion and a substantially greater elastic modulus, stiffness-to-weight ratio, and damping factor than a conventional steel tool support utilized in similar machining operations.

  7. Design of Ultra High Performance Fiber Reinforced Concrete Shells

    DEFF Research Database (Denmark)

    Jepsen, Michael S.; Lambertsen, Søren Heide; Damkilde, Lars

    2013-01-01

    The paper treats the redesign of the float structure of the Wavestar wave energy converter. Previously it was designed as a glass fiber structure, but due to cost reduction requirements a redesign has been initiated. The new float structure will be designed as a double curved Ultra High Performance...... Fiber Reinforced Concrete shell. The major challenge in the design phase has been securing sufficient stiffness of the structure while keeping the weight at a minimum. The weight/stiffness issue has been investigated by means of the finite element method, to optimize the structure regarding overall...

  8. MECHANICAL CHARACTERIZATION AND ANALYSIS OF RANDOMLY DISTRIBUTED SHORT BANANA FIBER REINFORCED EPOXY COMPOSITES

    Directory of Open Access Journals (Sweden)

    R. K. Misra

    2014-03-01

    Full Text Available Short banana fiber reinforced composites have been prepared in laboratory to determine mechanical properties. It has been observed that as soon as the percentage of the banana fiber increases slightly there is a tremendous increase in ultimate tensile strength, % of strain and young modulus of elasticity. Reinforcement of banana fibers in epoxy resin increases stiffness and decreases damping properties of the composites. Therefore, 2.468% banana fiber reinforced composite plate stabilizes early as compared to 7.7135 % banana fiber reinforced composite plate but less stiff as compared to 7.7135 % banana fiber reinforced composite plate

  9. Ultrasonic measurement of elastic constants in fiber-reinforced polymer composites under influence of absorbed moisture

    DEFF Research Database (Denmark)

    Nielsen, S.A.; Toftegaard, H.

    2000-01-01

    This paper presents an attempt to quantify hygral aging in fiber-reinforced polymer composites by the elastic constants C-11 and C-33. Quantitative ultrasonic measurements of the elastic constants for three different unidirectional as well as three different cross-ply specimens were compared. The......, and typically moisture expansion coefficients are reported. Moreover, as the ultrasonic pulse form changed in the anisotropic materials, different broadband methods were used to calculate the elastic constants. (C) 2000 Published by Elsevier Science B.V. All rights reserved........ The specimens were manufactured with different moisture resistant surfaces and immersed in water for 24 h. By calculating the elastic constants, it was taken into account that hygral aging was accompanied by absorption of moisture in the polymer matrix. Moisture changed the laminate dimensions significantly...

  10. Interfacial studies on the O3 modified carbon fiber-reinforced polyamide 6 composites

    International Nuclear Information System (INIS)

    Li, J.

    2008-01-01

    In this work, O 3 modification method was used for the surface treatment of polyacrylonitrile (PAN)-based carbon fiber. The surface characteristics of carbon fibers were characterized by X-ray photoelectron spectroscopy (XPS). The interfacial properties of carbon fiber-reinforced polyamide 6 (CF/PA6) composites were investigated by means of the single fiber pull-out tests. As a result, it was found that IFSS values of the composites with O 3 treated carbon fiber are increased by 60% compared to that without treatment. XPS results show that O 3 treatment increases the amount of carboxyl groups on carbon fiber surface, thus the interfacial adhesion between carbon fiber and PA6 matrix is effectively promoted

  11. Laser Cutting of Carbon Fiber Reinforced Plastics - Investigation of Hazardous Process Emissions

    Science.gov (United States)

    Walter, Juergen; Hustedt, Michael; Staehr, Richard; Kaierle, Stefan; Jaeschke, Peter; Suttmann, Oliver; Overmeyer, Ludger

    Carbon fiber reinforced plastics (CFRP) show high potential for use in lightweight applications not only in aircraft design, but also in the automotive or wind energy industry. However, processing of CFRP is complex and expensive due to their outstanding mechanical properties. One possibility to manufacture CFRP structures flexibly at acceptable process speeds is high-power laser cutting. Though showing various advantages such as contactless energy transfer, this process is connected to potentially hazardous emission of respirable dust and organic gases. Moreover, the emitted particles may be fibrous, thus requiring particular attention. Here, a systematic analysis of the hazardous substances emitted during laser cutting of CFRP with thermoplastic and thermosetting matrix is presented. The objective is to evaluate emission rates for the total particulate and gaseous fractions as well as for different organic key components. Furthermore, the influence of the laser process conditions shall be assessed, and first proposals to handle the emissions adequately are made.

  12. Multiscale carbon nanotube-carbon fiber reinforcement for advanced epoxy composites.

    Science.gov (United States)

    Bekyarova, E; Thostenson, E T; Yu, A; Kim, H; Gao, J; Tang, J; Hahn, H T; Chou, T-W; Itkis, M E; Haddon, R C

    2007-03-27

    We report an approach to the development of advanced structural composites based on engineered multiscale carbon nanotube-carbon fiber reinforcement. Electrophoresis was utilized for the selective deposition of multi- and single-walled carbon nanotubes (CNTs) on woven carbon fabric. The CNT-coated carbon fabric panels were subsequently infiltrated with epoxy resin using vacuum-assisted resin transfer molding (VARTM) to fabricate multiscale hybrid composites in which the nanotubes were completely integrated into the fiber bundles and reinforced the matrix-rich regions. The carbon nanotube/carbon fabric/epoxy composites showed approximately 30% enhancement of the interlaminar shear strength as compared to that of carbon fiber/epoxy composites without carbon nanotubes and demonstrate significantly improved out-of-plane electrical conductivity.

  13. Dynamic mechanical analysis and crystalline analysis of hemp fiber reinforced cellulose filled epoxy composite

    Directory of Open Access Journals (Sweden)

    Anand Palanivel

    Full Text Available Abstract The Dynamic mechanical behavior of chemically treated and untreated hemp fiber reinforced composites was investigated. The morphology of the composites was studied to understand the interaction between the filler and polymer. A series of dynamic mechanical tests were performed by varying the fiber loading and test frequencies over a range of testing temperatures. It was found that the storage modulus (E’ recorded above the glass transition temperature (Tg decrease with increasing temperature. The loss modulus (E” and damping peaks (Tan δ values were found to be reduced with increasing matrix loading and temperature. Morphological changes and crystallinity of Composites were investigated using scanning electron microscope (SEM and XRD techniques. The composites with Alkali and Benzoyl treated fibers has attributed enhanced DMA Results. In case of XRD studies, the composites with treated fibers with higher filler content show enhanced crystallinity.

  14. Dynamic mechanical analysis and crystalline analysis of hemp fiber reinforced cellulose filled epoxy composite

    Energy Technology Data Exchange (ETDEWEB)

    Palanivel, Anand; Duruvasalu, Rajesh; Iyyanar, Saranraj; Velumayil, Ramesh, E-mail: p.anand@ymail.com [Mechanical Engineering, Vel Tech Dr RR. & Dr. SR University, Avadi, Chennai, Tamilnadu (India); Veerabathiran, Anbumalar [Mechanical Engineering, Velammal College of Engineering & Technology, Madurai, TN (India)

    2017-07-01

    The Dynamic mechanical behavior of chemically treated and untreated hemp fiber reinforced composites was investigated. The morphology of the composites was studied to understand the interaction between the filler and polymer. A series of dynamic mechanical tests were performed by varying the fiber loading and test frequencies over a range of testing temperatures. It was found that the storage modulus (E') recorded above the glass transition temperature (Tg) decrease with increasing temperature. The loss modulus (E”) and damping peaks (Tan δ) values were found to be reduced with increasing matrix loading and temperature. Morphological changes and crystallinity of Composites were investigated using scanning electron microscope (SEM) and XRD techniques. The composites with Alkali and Benzoyl treated fibers has attributed enhanced DMA Results. In case of XRD studies, the composites with treated fibers with higher filler content show enhanced crystallinity. (author)

  15. Solidification microstructures in a short fiber reinforced alloy composite containing different fiber fractions

    Directory of Open Access Journals (Sweden)

    JING Qing-xiu

    2006-02-01

    Full Text Available The solidification microstructures and micro-segregation of a fiber reinforced Al-9 Cu alloy, containing different volume fractions of Al2O3 short fibers about 6 μm diameter and made by squeeze casting have been studied. The results indicate that as volume fraction of fiber Vf increases, the size of final grains becomes finer in the matrix. If λf /λ>1, the fibers have almost no influence on the solidification behavior of the matrix, so the final grains grow coarse, where λf is the average inter-fiber spacing and λ is the secondary dendrite arm spacing. While if λf /λ<1, the growth of crystals in the matrix is affected significantly by the fibers and the grain size is reduced to the value of the inter-fiber spacing. The fibers influence the average length of a solidification volume element L of the matrix and also influence the solidification time θt of the matrix. As a result of fibers influencing L and θt, the micro-segregation in the matrix is improved when the composite contains more fibers, although the level of the improvement is slight. The Clyne-Kurz model can be used to semi-quantitatively analyze the relationship between Vf and the volume fraction fe of the micro-segregation eutectic structure.

  16. Liquid composite molding-processing and characterization of fiber-reinforced composites modified with carbon nanotubes

    Science.gov (United States)

    Zeiler, R.; Khalid, U.; Kuttner, C.; Kothmann, M.; Dijkstra, D. J.; Fery, A.; Altstädt, V.

    2014-05-01

    The increasing demand in fiber-reinforced plastics (FRPs) necessitates economic processing of high quality, like the vacuum-assisted resin transfer molding (VARTM) process. FRPs exhibit excellent in-plane properties but weaknesses in off-plane direction. The addition of nanofillers into the resinous matrix phase embodies a promising approach due to benefits of the nano-scaled size of the filler, especially its high surface and interface areas. Carbon nanotubes (CNTs) are preferable candidates for resin modification in regard of their excellent mechanical properties and high aspect ratios. However, especially the high aspect ratios give rise to withholding or filtering by fibrous fabrics during the impregnation process, i.e. length dependent withholding of tubes (short tubes pass through the fabric, while long tubes are restrained) and a decrease in the local CNT content in the laminate along the flow path can occur. In this study, hybrid composites containing endless glass fiber reinforcement and surface functionalized CNTs dispersed in the matrix phase were produced by VARTM. New methodologies for the quantification of the filtering of CNTs were developed and applied to test laminates. As a first step, a method to analyze the CNT length distribution before and after injection was established for thermosetting composites to characterize length dependent withholding of nanotubes. The used glass fiber fabric showed no perceptible length dependent retaining of CNTs. Afterward, the resulting test laminates were examined by Raman spectroscopy and compared to reference samples of known CNT content. This Raman based technique was developed further to assess the quality of the impregnation process and to quantitatively follow the local CNT content along the injection flow in cured composites. A local decline in CNT content of approx. 20% was observed. These methodologies allow for the quality control of the filler content and size-distribution in CNT based hybrid

  17. Effect of oxidation at elevated temperature on elastic and interface properties of ceramic matrix composites

    Czech Academy of Sciences Publication Activity Database

    Brandstetter, J.; Glogar, Petr; Loidl, D.; Kromp, K.

    2005-01-01

    Roč. 290, - (2005), s. 340-343 ISSN 1013-9826. [International conference on fractography of advanced ceramics /2./. Stará Lesná, 03.10.2005-06.10.2005] R&D Projects: GA AV ČR(CZ) KSK2067107 Institutional research plan: CEZ:AV0Z30460519 Keywords : polysiloxane * ceramic matrix composite * shear modulus Subject RIV: JH - Ceramics, Fire-Resistant Materials and Glass Impact factor: 0.224, year: 2005

  18. Modeling & processing of ceramic and polymer precursor ceramic matrix composite materials

    Science.gov (United States)

    Wang, Xiaolin

    of filler particle reaction, microstructure evolution, at the microscale as well as transient fluid flow, heat transfer, and species transport at the macroscale. The model comprises of (i) a microscale model and (ii) a macroscale transport model, and aims to provide optimal conditions for the fabrication process of the ceramics. The porous media macroscale model for SiC-based metal-ceramic materials processing will be developed to understand the thermal polymer pyrolysis, chemical reaction of active fillers and transport phenomena in the porous media. The macroscale model will include heat and mass transfer, curing, pyrolysis, chemical reaction and crystallization in a mixture of preceramic polymers and submicron/nano-sized metal particles of uranium, zirconium, niobium, or hafnium. The effects of heating rate, sample size, size and volume ratio of the metal particles on the reaction rate and product uniformity will be studied. The microscale model will be developed for modeling the synthesis of SiC matrix and metal particles. The macroscale model provides thermal boundary conditions to the microscale model. The microscale model applies to repetitive units in the porous structure and describes mass transport, composition changes and motion of metal particles. The unit-cell is the representation unit of the source material, and it consists of several metal particles, SiC matrix and other components produced from the synthesis process. The reactions between different components, the microstructure evolution of the product will be considered. The effects of heating rate and metal particle size on species uniformity and microstructure are investigated.

  19. Biodegradation of flax fiber reinforced poly lactic acid

    Directory of Open Access Journals (Sweden)

    2010-07-01

    Full Text Available Woven and nonwoven flax fiber reinforced poly lactic acid (PLA biocomposites were prepared with amphiphilic additives as accelerator for biodegradation. The prepared composites were buried in farmland soil for biodegradability studies. Loss in weight of the biodegraded composite samples was determined at different time intervals. The surface morphology of the biodegraded composites was studied with scanning electron microscope (SEM. Results indicated that in presence of mandelic acid, the composites showed accelerated biodegradation with 20–25% loss in weight after 50–60 days. On the other hand, in presence of dicumyl peroxide (as additive, biodegradation of the composites was relatively slow as confirmed by only 5–10% loss in weight even after 80–90 days. This was further confirmed by surface morphology of the biodegraded composites. We have attempted to show that depending on the end uses, we can add different amphiphilic additives for delayed or accelerated biodegradability. This work gives us the idea of biodegradation of materials from natural fiber reinforced PLA composites when discarded carelessly in the environment instead of proper waste disposal site.

  20. Electromechanical behavior of fiber-reinforced dielectric elastomer membrane

    Directory of Open Access Journals (Sweden)

    Chi Li

    2015-04-01

    Full Text Available Based on its large deformation, light weight, and high energy density, dielectric elastomer (DE has been used as driven muscle in many areas. We design the fiber-reinforced DE membrane by adding fibers in the membrane. The deformation and driven force direction of the membrane can be tuned by changing the fiber arrangements. The actuation in the perpendicular direction of the DE membrane with long fibers first increases and then decreases by the increasing of the fiber spacing in the perpendicular direction. The horizontal actuation of the membrane decreases by decreasing the spacing of short fibers. In the membrane-inflating structure, the radially arranged fibers will break the axisymmetric behavior of the structure. The top area of the inflated balloon without fiber will buckle up when the voltage reaches a certain level. Finite element simulations based on nonlinear field theory are conducted to investigate the effects of fiber arrangement and verify the experimental results. This work can guide the design of fiber-reinforced DE.

  1. Mechanical Properties of Fiber Reinforced Lightweight Concrete Containing Surfactant

    Directory of Open Access Journals (Sweden)

    Yoo-Jae Kim

    2010-01-01

    Full Text Available Fiber reinforced aerated lightweight concrete (FALC was developed to reduce concrete's density and to improve its fire resistance, thermal conductivity, and energy absorption. Compression tests were performed to determine basic properties of FALC. The primary independent variables were the types and volume fraction of fibers, and the amount of air in the concrete. Polypropylene and carbon fibers were investigated at 0, 1, 2, 3, and 4% volume ratios. The lightweight aggregate used was made of expanded clay. A self-compaction agent was used to reduce the water-cement ratio and keep good workability. A surfactant was also added to introduce air into the concrete. This study provides basic information regarding the mechanical properties of FALC and compares FALC with fiber reinforced lightweight concrete. The properties investigated include the unit weight, uniaxial compressive strength, modulus of elasticity, and toughness index. Based on the properties, a stress-strain prediction model was proposed. It was demonstrated that the proposed model accurately predicts the stress-strain behavior of FALC.

  2. Electron beam curing of aramid fiber-reinforced composites

    International Nuclear Information System (INIS)

    Saunders, C.B.; Singh, A.; Lopata, V.J.; Boyer, G.D.; Kremers, W.; Mason, V.A.

    1990-01-01

    High strength- and stiffness-to-weight ratios have allowed fiber-reinforced composites to be used for many applications, including aircraft and aerospace products, sporting goods and automotive components. Electron beam (EB) processing involves using electrons to initiate polymerization and/or crosslinking reactions in suitable polymer substrates to enhance specific physical and chemical properties. The advantages of using EB processing rather than thermal curing techniques for composites, include reduced internal stresses, a result of curing at ambient temperature, greatly reduced curing times, and better control of energy absorption. The penetration limit for a 10-MeV electron beam is about 4 cm for one-sided treatment of unit-density material, making EB processing suitable for many applications. The penetration limit is inversely proportional to the density of the material. This paper reports on the authors' research program to study EB-curable aramid fiber-reinforced composites. The program objective is to design and manufacture EB-curable composites that meet mechanical and physical property specifications for selected applications. The suitability of standard fabrication methods, such as filament winding and hand lay-up, to EB processing is also discussed

  3. Properties of Fiber-Reinforced Mortars Incorporating Nano-Silica

    Directory of Open Access Journals (Sweden)

    Ahmed Ghazy

    2016-02-01

    Full Text Available Repair and rehabilitation of deteriorating concrete elements are of significant concern in many infrastructural facilities and remain a challenging task. Concerted research efforts are needed to develop repair materials that are sustainable, durable, and cost-effective. Research data show that fiber-reinforced mortars/concretes have superior performance in terms of volume stability and toughness. In addition, it has been recently reported that nano-silica particles can generally improve the mechanical and durability properties of cement-based systems. Thus, there has been a growing interest in the use of nano-modified fiber-reinforced cementitious composites/mortars (NFRM in repair and rehabilitation applications of concrete structures. The current study investigates various mechanical and durability properties of nano-modified mortar containing different types of fibers (steel, basalt, and hybrid (basalt and polypropylene, in terms of compressive and flexural strengths, toughness, drying shrinkage, penetrability, and resistance to salt-frost scaling. The results highlight the overall effectiveness of the NFRM owing to the synergistic effects of nano-silica and fibers.

  4. Stochastic Virtual Tests for High-Temperature Ceramic Matrix Composites

    Science.gov (United States)

    Cox, Brian N.; Bale, Hrishikesh A.; Begley, Matthew; Blacklock, Matthew; Do, Bao-Chan; Fast, Tony; Naderi, Mehdi; Novak, Mark; Rajan, Varun P.; Rinaldi, Renaud G.; Ritchie, Robert O.; Rossol, Michael N.; Shaw, John H.; Sudre, Olivier; Yang, Qingda; Zok, Frank W.; Marshall, David B.

    2014-07-01

    We review the development of virtual tests for high-temperature ceramic matrix composites with textile reinforcement. Success hinges on understanding the relationship between the microstructure of continuous-fiber composites, including its stochastic variability, and the evolution of damage events leading to failure. The virtual tests combine advanced experiments and theories to address physical, mathematical, and engineering aspects of material definition and failure prediction. Key new experiments include surface image correlation methods and synchrotron-based, micrometer-resolution 3D imaging, both executed at temperatures exceeding 1,500°C. Computational methods include new probabilistic algorithms for generating stochastic virtual specimens, as well as a new augmented finite element method that deals efficiently with arbitrary systems of crack initiation, bifurcation, and coalescence in heterogeneous materials. Conceptual advances include the use of topology to characterize stochastic microstructures. We discuss the challenge of predicting the probability of an extreme failure event in a computationally tractable manner while retaining the necessary physical detail.

  5. Environmental Barrier Coatings for Ceramic Matrix Composites - An Overview

    Science.gov (United States)

    Lee, Kang; van Roode, Mark; Kashyap, Tania; Zhu, Dongming; Wiesner, Valerie

    2017-01-01

    SiC/SiC Ceramic Matrix Composites (CMCs) are increasingly being considered as structural materials for advanced power generation equipment because of their light weight, higher temperature capability, and oxidation resistance. Limitations of SiC/SiC CMCs include surface recession and component cracking and associated chemical changes in the CMC. The solutions pursued to improve the life of SiC/SiC CMCs include the incorporation of coating systems that provide surface protection, which has become known as an Environmental Barrier Coating (EBC). The development of EBCs for the protection of gas turbine hot section CMC components was a continuation of coating development work for corrosion protection of silicon-based monolithics. Work on EBC development for SiC/SiC CMCs has been ongoing at several national laboratories and the original gas turbine equipment manufacturers. The work includes extensive laboratory, rig and engine testing, including testing of EBC coated SiC/SiC CMCs in actual field applications. Another EBC degradation issue which is especially critical for CMC components used in aircraft engines is the degradation from glassy deposits of calcium-magnesium-aluminosilicate (CMAS) with other minor oxides. This paper addresses the need for and properties of external coatings on SiC/SiC CMCs to extend their useful life in service and the retention of their properties.

  6. Advanced ceramic materials and their potential impact on the future

    International Nuclear Information System (INIS)

    Laren, M.G.M.

    1989-01-01

    This article reviews the types of advanced ceramic materials that are being used today and their potential for even greater utilization in the future. Market analysis and projections have been developed from a number of sources both foreign and domestic are referenced and given in the text. Projection on the future use of advanced ceramics to the year 2000 indicate a potential growth of the total world market approaching 187 billion dollars. This paper describes advanced ceramic materials by their functionality, i.e. structural, electronic, chemical, thermal, biological, nuclear, etc. It also refers to specific engineering uses of advanced ceramics and include automotive ceramic materials with physical data for the most likely ceramic materials to be used for engine parts. This family of materials includes silicon carbides, silicon nitride, partially stabilized zirconia and alumina. Fiber reinforced ceramic composites are discussed with recognition of the research on fiber coating chemistry and the compatibility of the coating with the fiber and the matrix. Another class of advanced ceramics is toughened ceramics. The transformation toughened alumina is recognized as an example of this technology. The data indicate that electronic ceramic materials will always have the largest portion of the advanced ceramic market and the critical concepts of a wide range of uses is reviewed. (Auth.)

  7. Design Concepts for Cooled Ceramic Matrix Composite Turbine Vanes, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — The work proposed herein is to demonstrate that the higher temperature capabilities of Ceramic Matrix Composites (CMC) can be fully utilized to reduce emissions and...

  8. Improved Foreign Object Damage Performance for 2D Woven Ceramic Matrix Composites, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — As the power density of advanced engines increases, the need for new materials that are capable of higher operating temperatures, such as ceramic matrix composites...

  9. Improved Foreign Object Damage Performance for 3D Woven Ceramic Matrix Composites, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — As the power density of advanced engines increases, the need for new materials that are capable of higher operating temperatures, such as ceramic matrix composites...

  10. Physical and Mechanical Characteristics of Kevlar Fiber-Reinforced PC/ABS Composites

    Directory of Open Access Journals (Sweden)

    Kuljira Sujirote

    2012-01-01

    Full Text Available In this research, the composites between polycarbonate (PC and acrylonitrile-butadiene-styrene (ABS alloy and Kevlar fiber were prepared. The flexural and tensile properties of PC/ABS alloy and its composites were determined using a universal testing machine. The synergistic behavior of flexural modulus was observed for all regions of PC contents, while the synergism of flexural strength and tensile strength were found in some PC contents. It was found that the optimum weight ratio of PC:ABS was 60:40. In the Kevlar Fiber-reinforced PC/ABS composite system at PC:ABS of 60:40, both flexural modulus and strength were increased with matrix contents. Additionally, the flexural strength drastically increased with the matrix content and then reached the maximum value of 167 MPa at the matrix content of 33.4 wt%. The results from peel test, water contact measurement, and scanning electron microscopy (SEM reveal that the interfacial adhesion between the Kevlar fiber and the polymer matrix could be improved by increasing the PC content in the matrix.

  11. Characterization of a New Fully Recycled Carbon Fiber Reinforced Composite Subjected to High Strain Rate Tension

    Science.gov (United States)

    Meftah, H.; Tamboura, S.; Fitoussi, J.; BenDaly, H.; Tcharkhtchi, A.

    2017-08-01

    The aim of this study is the complete physicochemical characterization and strain rate effect multi-scale analysis of a new fully recycled carbon fiber reinforced composites for automotive crash application. Two composites made of 20% wt short recycled carbon fibers (CF) are obtained by injection molding. The morphology and the degree of dispersion of CF in the matrixes were examined using a new ultrasonic method and SEM. High strain tensile behavior up to 100 s-1 is investigated. In order to avoid perturbation due to inertial effect and wave propagation, the specimen geometry was optimized. The elastic properties appear to be insensitive to the strain rate. However, a high strain rate effect on the local visco-plasticity of the matrix and fiber/matrix interface visco-damageable behavior is emphasized. The predominant damage mechanisms evolve from generalized matrix local ductility at low strain rate regime to fiber/matrix interface debonding and fibers pull-out at high strain rate regime.

  12. STUDY ON ANTI-CRACKING PERFORMANCE EVALUATION METHOD OF STEEL FIBER REINFORCED CERAMSITE CONCRETE (SFRCC BASED ON PARTLY-RESTRAINED SHRINKAGE RING

    Directory of Open Access Journals (Sweden)

    Zhang Yi-fan

    2017-12-01

    Full Text Available In the study of crack resistance of steel fiber reinforced concrete in steel fiber on concrete deformation ability and prevent the Angle of the micro cracks, and the lack of overall evaluation on the performance of steel fiber reinforced concrete crack. By tinder barrier-free restrain some experimental research on steel fiber ceramsite concrete shrinkage ring crack resistance, and use the test results within the definition of steel ring strain from expansion to contraction cut-off age for early and late ages, and the ages of the cut-off point for the early and the late steel fiber ceramsite concrete anti-cracking performance evaluation. The results show that the anti-cracking properties of the steel fiber ceramic concrete are improved with the increase of steel fiber content.

  13. Mechanical interaction of Engineered Cementitious Composite (ECC) reinforced with Fiber Reinforced Polymer (FRP) rebar in tensile loading

    DEFF Research Database (Denmark)

    Lárusson, Lárus Helgi; Fischer, Gregor; Jönsson, Jeppe

    2010-01-01

    This paper introduces a preliminary study of the composite interaction of Engineered Cementitious Composite (ECC), reinforced with Glass Fiber Reinforced Polymer (GFRP) rebar. The main topic of this paper will focus on the interaction of the two materials (ECC and GFRP) during axial loading......, particularly in post cracking phase of the concrete matrix. The experimental program carried out in this study examined composite behavior under monotonic and cyclic loading of the specimens in the elastic and inelastic deformation phases. The stiffness development of the composite during loading was evaluated...... distribution which in terms results in less mechanical deterioration during loading....

  14. Flax fiber reinforced PLA composites: studies on types of PLA and different methods of fabrication

    CSIR Research Space (South Africa)

    Kumar, R

    2011-05-01

    Full Text Available in the last decade. It is well known that natural fiber reinforced PLA composites can be prepared by solution casting cum compression molding and injection molding methods. The authors have prepared flax fiber reinforced PLA (procured from Cereplast Ltd...

  15. Titanium Implant Osseointegration Problems with Alternate Solutions Using Epoxy/Carbon-Fiber-Reinforced Composite

    Directory of Open Access Journals (Sweden)

    Richard C. Petersen

    2014-12-01

    Full Text Available The aim of the article is to present recent developments in material research with bisphenyl-polymer/carbon-fiber-reinforced composite that have produced highly influential results toward improving upon current titanium bone implant clinical osseointegration success. Titanium is now the standard intra-oral tooth root/bone implant material with biocompatible interface relationships that confer potential osseointegration. Titanium produces a TiO2 oxide surface layer reactively that can provide chemical bonding through various electron interactions as a possible explanation for biocompatibility. Nevertheless, titanium alloy implants produce corrosion particles and fail by mechanisms generally related to surface interaction on bone to promote an inflammation with fibrous aseptic loosening or infection that can require implant removal. Further, lowered oxygen concentrations from poor vasculature at a foreign metal surface interface promote a build-up of host-cell-related electrons as free radicals and proton acid that can encourage infection and inflammation to greatly influence implant failure. To provide improved osseointegration many different coating processes and alternate polymer matrix composite (PMC solutions have been considered that supply new designing potential to possibly overcome problems with titanium bone implants. Now for important consideration, PMCs have decisive biofunctional fabrication possibilities while maintaining mechanical properties from addition of high-strengthening varied fiber-reinforcement and complex fillers/additives to include hydroxyapatite or antimicrobial incorporation through thermoset polymers that cure at low temperatures. Topics/issues reviewed in this manuscript include titanium corrosion, implant infection, coatings and the new epoxy/carbon-fiber implant results discussing osseointegration with biocompatibility related to nonpolar molecular attractions with secondary bonding, carbon fiber in vivo

  16. Titanium Implant Osseointegration Problems with Alternate Solutions Using Epoxy/Carbon-Fiber-Reinforced Composite.

    Science.gov (United States)

    Petersen, Richard C

    2014-12-01

    The aim of the article is to present recent developments in material research with bisphenyl-polymer/carbon-fiber-reinforced composite that have produced highly influential results toward improving upon current titanium bone implant clinical osseointegration success. Titanium is now the standard intra-oral tooth root/bone implant material with biocompatible interface relationships that confer potential osseointegration. Titanium produces a TiO 2 oxide surface layer reactively that can provide chemical bonding through various electron interactions as a possible explanation for biocompatibility. Nevertheless, titanium alloy implants produce corrosion particles and fail by mechanisms generally related to surface interaction on bone to promote an inflammation with fibrous aseptic loosening or infection that can require implant removal. Further, lowered oxygen concentrations from poor vasculature at a foreign metal surface interface promote a build-up of host-cell-related electrons as free radicals and proton acid that can encourage infection and inflammation to greatly influence implant failure. To provide improved osseointegration many different coating processes and alternate polymer matrix composite (PMC) solutions have been considered that supply new designing potential to possibly overcome problems with titanium bone implants. Now for important consideration, PMCs have decisive biofunctional fabrication possibilities while maintaining mechanical properties from addition of high-strengthening varied fiber-reinforcement and complex fillers/additives to include hydroxyapatite or antimicrobial incorporation through thermoset polymers that cure at low temperatures. Topics/issues reviewed in this manuscript include titanium corrosion, implant infection, coatings and the new epoxy/carbon-fiber implant results discussing osseointegration with biocompatibility related to nonpolar molecular attractions with secondary bonding, carbon fiber in vivo properties, electrical

  17. Osseointegration of fiber-reinforced composite implants: histological and ultrastructural observations.

    Science.gov (United States)

    Ballo, A M; Cekic-Nagas, I; Ergun, G; Lassila, L; Palmquist, A; Borchardt, P; Lausmaa, J; Thomsen, P; Vallittu, P K; Närhi, T O

    2014-12-01

    The aim of this study was to evaluate the bone tissue response to fiber-reinforced composite (FRC) in comparison with titanium (Ti) implants after 12 weeks of implantation in cancellous bone using histomorphometric and ultrastructural analysis. Thirty grit-blasted cylindrical FRC implants with BisGMA-TEGDMA polymer matrix were fabricated and divided into three groups: (1) 60s light-cured FRC (FRC-L group), (2) 24h polymerized FRC (FRC group), and (3) bioactive glass FRC (FRC-BAG group). Titanium implants were used as a control group. The surface analyses were performed with scanning electron microscopy and 3D SEM. The bone-implant contact (BIC) and bone area (BA) were determined using histomorphometry and SEM. Transmission electron microscopy (TEM) was performed on Focused Ion Beam prepared samples of the intact bone-implant interface. The FRC, FRC-BAG and Ti implants were integrated into host bone. In contrast, FRC-L implants had a consistent fibrous capsule around the circumference of the entire implant separating the implant from direct bone contact. The highest values of BIC were obtained with FRC-BAG (58±11%) and Ti implants (54±13%), followed by FRC implants (48±10%), but no significant differences in BIC or BA were observed (p=0.07, p=0.06, respectively). TEM images showed a direct contact between nanocrystalline hydroxyapatite of bone and both FRC and FRC-BAG surfaces. Fiber-reinforced composite implants are capable of establishing a close bone contact comparable with the osseointegration of titanium implants having similar surface roughness. Copyright © 2014 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  18. Fabrication of fiber composites with a MAX phase matrix by reactive melt infiltration

    International Nuclear Information System (INIS)

    Lenz, F; Krenkel, W

    2011-01-01

    Due to the inherent brittleness of ceramics it is very desirable to increase the damage tolerance of ceramics. The ternary MAX phases are a promising group of materials with high fracture toughness. The topic of this study is the development of ceramic matrix composites (CMCs) with a matrix containing MAX phases, to achieve a damage tolerant structural composite material. For this purpose carbon fiber reinforced preforms with a carbon-titanium carbide matrix (C/C-TiC) were developed and infiltrated with silicon by a pressureless reactive melt infiltration. Finally liquid silicon caused the formation of SiC, TiSi 2 and Ti 3 SiC 2 in the matrix of the composite.

  19. Mechanical Properties of Carbon Fiber-Reinforced Aluminum Manufactured by High-Pressure Die Casting

    Science.gov (United States)

    Kachold, Franziska; Singer, Robert

    2016-08-01

    Carbon fiber reinforced aluminum was produced by a specially adapted high-pressure die casting process. The MMC has a fiber volume fraction of 27%. Complete infiltration was achieved by preheating the bidirectional, PAN-based carbon fiber body with IR-emitters to temperatures of around 750 °C. The degradation of the fibers, due to attack of atmospheric oxygen at temperatures above 600 °C, was limited by heating them in argon-rich atmosphere. Additionally, the optimization of heating time and temperature prevented fiber degradation. Only the strength of the outer fibers is reduced by 40% at the most. The fibers in core of fiber body are nearly undamaged. In spite of successful manufacturing, the tensile strength of the MMC is below strength of the matrix material. Also unidirectional MMCs with a fiber volume fraction of 8% produced under the same conditions, lack of the reinforcing effect. Two main reasons for the unsatisfactory mechanical properties were identified: First, the fiber-free matrix, which covers the reinforced core, prevents effective load transfer from the matrix to the fibers. And second, the residual stresses in the fiber-free zones are as high as 100 MPa. This causes premature failure in the matrix. From this, it follows that the local reinforcement of an actual part is limited. The stress distribution caused by residual stresses and by loading needs to be known. In this way, the reinforcing phase can be placed and aligned accordingly. Otherwise delamination and premature failure might occur.

  20. The influence of clay fineness upon sludge recycling in a ceramic matrix

    Science.gov (United States)

    Szőke, A. M.; Muntean, M.; Sándor, M.; Brotea, L.

    2016-04-01

    The feasibility of sludge recycling in the ceramic manufacture was evaluated through laboratory testing. Such residues have similar chemical and mineralogical composition with the raw mixture of the green ceramic body used in construction. Several ceramic masses with clay and various proportion of sludge have been synthesized and then characterized by their physical-mechanical properties. The fineness of the clay, the main component of the green ceramic body, has been considered for every raw mixture. The proportion of the sludge waste addition depends on the clay fineness and the sintering capacity also, increases with the clay fineness. The ceramic properties, particularly, the open porosity, and mechanical properties, in presence of small sludge proportion (7, 20%) shows small modification. The introduction of such waste into building ceramic matrix (bricks, tiles, and plates) has a very good perspective.

  1. Preliminary Study on Impact Resistances of Fiber Reinforced Concrete Applied Nuclear Power Plants

    International Nuclear Information System (INIS)

    Jin, Byeong Moo; Kim, Young Jin; Jeon, Se Jin

    2013-01-01

    Studies to improve the impact resistance depending upon design parameters for fiber reinforced concrete, such as type of fibers and application ratio, are in progress. Authors assessed first the impact resistance of concrete walls depending upon fiber types and missile impact velocities. The safety assessment of nuclear power plants against large civil aircraft crashes have been accomplished for normal concrete and fiber reinforced concretes in this study. Studies on the safety assessments on the nuclear power plants against large civil aircraft crashes are ongoing actively. As a step of evaluating the applicability of fiber reinforced concrete in means of ensuring more structural safety of the nuclear power plants against impact, the impact resistance for the 1% steel and 2% polyamide fiber reinforced concretes have been evaluated. For reactor containment building structures, it seem there is no impact resistance enhancement of fiber reinforced concrete applied to reactor containment building in the cases of impact velocity 150 m/sec considered in this study. However this results from the pre-stressing forces which introduce compressive stresses in concrete wall and dome section of reactor containment building. Nonetheless there may be benefits to apply fiber reinforced concrete to nuclear power plants. For double containment type reactor containment building, the outer structure is a reinforced concrete structure. The impact resistances for non pre-stressed cylindrical reactor containment buildings are enhanced by 23 to 47 % for 2 % polyamide fiber reinforced concretes and 1 % steel fiber reinforced concretes respectively. For other buildings such as auxiliary building, compound building and fuel storage building surrounding the reactor containment building, there are so many reinforced concrete walls which are anticipated some enhancements of impact resistance by using fiber reinforced concretes. And heavier or faster large civil aircraft impacts produce higher

  2. Chairside fabricated fiber-reinforced composite fixed partial denture

    Directory of Open Access Journals (Sweden)

    Sufyan Garoushi

    2007-01-01

    Full Text Available The advances in the materials and techniques for adhesive dentistry have allowed the development of non-invasive or minimally invasive approaches for replacing a missing tooth in those clinical situations when conservation of adjacent teeth is needed. Good mechanical and cosmetic/aesthetic properties of fiber-reinforced composite (FRC, with good bonding properties with composite resin cement and veneering composite are needed in FRC devices. Some recent studies have shown that adhesives of composite resins and luting cements allow diffusion of the adhesives to the FRC framework of the bridges. By this so-called interdiffusion bonding is formed [1]. FRC bridges can be made in dental laboratories or chairside. This article describes a clinical case of chairside (directly made FRC Bridge, which was used according to the principles of minimal invasive approach. Treatment was performed by Professor Vallittu from the University of Turku, Finland.

  3. Carbon fiber reinforced hierarchical orthogrid stiffened cylinder: Fabrication and testing

    Science.gov (United States)

    Wu, Hao; Lai, Changlian; Sun, Fangfang; Li, Ming; Ji, Bin; Wei, Weiyi; Liu, Debo; Zhang, Xi; Fan, Hualin

    2018-04-01

    To get strong, stiff and light cylindrical shell, carbon fiber reinforced hierarchical orthogrid stiffened cylinders are designed and fabricated. The cylinder is stiffened by two-scale orthogrid. The primary orthogrid has thick and high ribs and contains several sub-orthogrid cells whose rib is much thinner and lower. The primary orthogrid stiffens the bending rigidity of the cylinder to resist the global instability while the sub-orthogrid stiffens the bending rigidity of the skin enclosed by the primary orthogrid to resist local buckling. The cylinder is fabricated by filament winding method based on a silicone rubber mandrel with hierarchical grooves. Axial compression tests are performed to reveal the failure modes. With hierarchical stiffeners, the cylinder fails at skin fracture and has high specific strength. The cylinder will fail at end crushing if the end of the cylinder is not thickened. Global instability and local buckling are well restricted by the hierarchical stiffeners.

  4. Fiber-reinforced composites materials, manufacturing, and design

    CERN Document Server

    Mallick, P K

    2007-01-01

    The newly expanded and revised edition of Fiber-Reinforced Composites: Materials, Manufacturing, and Design presents the most up-to-date resource available on state-of-the-art composite materials. This book is unique in that it not only offers a current analysis of mechanics and properties, but also examines the latest advances in test methods, applications, manufacturing processes, and design aspects involving composites. This third edition presents thorough coverage of newly developed materials including nanocomposites. It also adds more emphasis on underlying theories, practical methods, and problem-solving skills employed in real-world applications of composite materials. Each chapter contains new examples drawn from diverse applications and additional problems to reinforce the practical relevance of key concepts. New in The Third Edition: Contains new sections on material substitution, cost analysis, nano- and natural fibers, fiber architecture, and carbon-carbon composites Provides a new chapter on poly...

  5. Fracture morphology of carbon fiber reinforced plastic composite laminates

    Directory of Open Access Journals (Sweden)

    Vinod Srinivasa

    2010-09-01

    Full Text Available Carbon fiber reinforced plastic (CFRP composites have been extensively used in fabrication of primary structures for aerospace, automobile and other engineering applications. With continuous and widespread use of these composites in several advanced technology, the frequency of failures is likely to increase. Therefore, to establish the reasons for failures, the fracture modes should be understood thoroughly and unambiguously. In this paper, CFRP composite have been tested in tension, compression and flexural loadings; and microscopic study with the aid of Scanning Electron Microscope (SEM has been performed on failed (fractured composite surfaces to identify the principle features of failure. Efforts have been made in correlating the fracture surface characteristics to the failure mode. The micro-mechanics analysis of failure serves as a useful guide in selecting constituent materials and designing composites from the failure behavior point of view. Also, the local failure initiation results obtained here has been reliably extended to global failure prediction.

  6. Steel fiber reinforced concrete behavior, modelling and design

    CERN Document Server

    Singh, Harvinder

    2017-01-01

    This book discusses design aspects of steel fiber-reinforced concrete (SFRC) members, including the behavior of the SFRC and its modeling. It also examines the effect of various parameters governing the response of SFRC members in detail. Unlike other publications available in the form of guidelines, which mainly describe design methods based on experimental results, it describes the basic concepts and principles of designing structural members using SFRC as a structural material, predominantly subjected to flexure and shear. Although applications to special structures, such as bridges, retaining walls, tanks and silos are not specifically covered, the fundamental design concepts remain the same and can easily be extended to these elements. It introduces the principles and related theories for predicting the role of steel fibers in reinforcing concrete members concisely and logically, and presents various material models to predict the response of SFRC members in detail. These are then gradually extended to d...

  7. Study on Mechanical Properties of Hybrid Fiber Reinforced Concrete

    Science.gov (United States)

    He, Dongqing; Wu, Min; Jie, Pengyu

    2017-12-01

    Several common high elastic modulus fibers (steel fibers, basalt fibers, polyvinyl alcohol fibers) and low elastic modulus fibers (polypropylene fiber) are incorporated into the concrete, and its cube compressive strength, splitting tensile strength and flexural strength are studied. The test result and analysis demonstrate that single fiber and hybrid fiber will improve the integrity of the concrete at failure. The mechanical properties of hybrid steel fiber-polypropylene fiber reinforced concrete are excellent, and the cube compressive strength, splitting tensile strength and flexural strength respectively increase than plain concrete by 6.4%, 3.7%, 11.4%. Doped single basalt fiber or polypropylene fiber and basalt fibers hybrid has little effect on the mechanical properties of concrete. Polyvinyl alcohol fiber and polypropylene fiber hybrid exhibit ‘negative confounding effect’ on concrete, its splitting tensile and flexural strength respectively are reduced by 17.8% and 12.9% than the single-doped polyvinyl alcohol fiber concrete.

  8. An inelastic constitutive equation of fiber reinforced plastic laminates

    Energy Technology Data Exchange (ETDEWEB)

    Kanagawa, Y.; Murakami, S.; Mizobe, T. [Univ. of Nagoya (Japan). Dept. of Mechanical Engineering

    1998-01-01

    A constitutive model for describing the time-dependent inelastic deformation of unidirectional and symmetric angle-ply CFRP (carbon Fiber Reinforced Plastics) laminates is developed. The kinematic hardening creep law of Malinin and Khadjinsky and the evolution equation of Armstrong and Frederick are extended to describe the creep deformation of initially anisotropic materials. In particular, the evolution equations of the back stresses of the anisotropic material were formulated by introducing a transformed strain tensor, by which the expression of the equivalent strain rate of the anisotropic material has the identical form as that of the isotropic materials. The resulting model is applied to analyze the time-dependent inelastic deformation of symmetric angle-ply laminates. Comparison between the predictions and the experimental observations shows that the present model can describe well the time-dependent inelastic behavior under different loadings.

  9. Performance of Sprayed Fiber Reinforced Polymer Strengthened Timber Beams

    Directory of Open Access Journals (Sweden)

    S. Talukdar

    2010-01-01

    Full Text Available A study was carried out to investigate the use of Sprayed Fiber Reinforced Polymer (SFRP for retrofit of timber beams. A total of 10-full scale specimens were tested. Two different timber preservatives and two different bonding agents were investigated. Strengthening was characterized using load deflection diagrams. Results indicate that it is possible to enhance load-carrying capacity and energy absorption characteristics using the technique of SFRP. Of the two types of preservatives investigated, the technique appears to be more effective for the case of creosote-treated specimens, where up to a 51% improvement in load-carrying capacity and a 460% increase in the energy absorption capacity were noted. Effectiveness of the bonding agent used was dependent on the type of preservative the specimen had been treated with.

  10. Evaluation of opacity in polyethylene fiber reinforced composites

    Directory of Open Access Journals (Sweden)

    Hasani Tabatabaie M

    2010-06-01

    Full Text Available "nBackground and Aims: The main objective of this study was to determine the effect of polyethylene fibers and veneering composites in fiber-reinforced resin systems on the opacity (contrast ratio. "nMaterials and Methods: The specimens were divided into four groups. Two groups were used as the control groups, with no reinforcement. The fibers of polyethylene (Fibre-Braid with special basement composites were used as the reinforced framework materials. Filtek Z250 and GRADIA (shade A2 were used as veneering materials. The total thickness of samples was 3 mm with 13 mm diameter. Specimens were prepared in disk shaped metal mold. The composite materials were light-cured according to their manufacturers' instructions. The contrast ratio (CR of each specimen was determined on black and white backgrounds using reflection spectrophotometer. Reflectance was measured at intervals of 10 nm between 400 nm and 750 nm. Data were analyzed by two-way ANOVA and Tukey HSD test. "nResults: When contrast ratio were compared among the different types of materials statistically significant differences were observed in both veneering composites (P<0.05. The Z250 resin composite had the lowest CR. It was shown that CR tended to decrease as the wavelength of incident light increased from 400 nm to 750 nm. On the other hand, the most differences in CR between groups were found in longer wavelengths. "nConclusion: It was found that polyethylene fibers reduced the amount of the translucency in FRC samples. The results of this study indicate that light reflectance characteristics, including the wavelength dependence, play an important role for the CR of a fiber-reinforced composite.

  11. Tensile Stress Rupture Behavior of a Woven Ceramic Matrix Composite in Humid Environments at Intermediate Temperature

    National Research Council Canada - National Science Library

    LaRochelle, Kevin J

    2005-01-01

    Stress rupture tests on the Sylramic(TM) fiber with an in-situ layer of boron nitride, boron nitride interphase, and SiC matrix ceramic matrix composite were performed at 550 degrees C and 750 degrees C with 0.0, 0.2...

  12. Actively Cooled Ceramic Composite Nozzle Material, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — The Phase I Project demonstrated the capability of the Pyrowave? manufacturing process to produce fiber-reinforced ceramics (FRCs) with integral metal features, such...

  13. Effect of fiber surface conditioning on the acoustic emission behavior of steel fiber reinforced concrete

    Science.gov (United States)

    Aggelis, D. G.; Soulioti, D. V.; Gatselou, E.; Barkoula, N. M.; Paipetis, A.; Matikas, T. E.

    2011-04-01

    The role of coating in preserving the bonding between steel fibers and concrete is investigated in this paper. Straight types of fibers with and without chemical coating are used in steel fiber reinforced concrete mixes. The specimens are tested in bending with concurrent monitoring of their acoustic emission activity throughout the failure process using two broadband sensors. The different stages of fracture (before, during and after main crack formation) exhibit different acoustic fingerprints, depending on the mechanisms that are active during failure (concrete matrix micro-cracking, macro-cracking and fiber pull out). Additionally, it was seen that the acoustic emission behaviour exhibits distinct characteristics between coated and uncoated fiber specimens. Specifically, the frequency of the emitted waves is much lower for uncoated fiber specimens, especially after the main fracture incident, during the fiber pull out stage of failure. Additionally, the duration and the rise time of the acquired waveforms are much higher for uncoated specimens. These indices are used to distinguish between tensile and shear fracture in concrete and suggest that friction is much stronger for the uncoated fibers. On the other hand, specimens with coated fibers exhibit more tensile characteristics, more likely due to the fact that the bond between fibers and concrete matrix is stronger. The fibers therefore, are not simply pulled out but also detach a small volume of the brittle concrete matrix surrounding them. It seems that the effect of chemical coating can be assessed by acoustic emission parameters additionally to the macroscopic measurements of ultimate toughness.

  14. Effect of thermal cycling on flexural properties of carbon-graphite fiber-reinforced polymers.

    Science.gov (United States)

    Segerström, Susanna; Ruyter, I Eystein

    2009-07-01

    To determine flexural strength and modulus after water storage and thermal cycling of carbon-graphite fiber-reinforced (CGFR) polymers based on poly(methyl methacrylate) and a copolymer matrix, and to examine adhesion between fiber and matrix by scanning electron microscopy (SEM). Solvent cleaned carbon-graphite (CG) braided tubes of fibers were treated with a sizing resin. The resin mixture of the matrix was reinforced with 24, 36, 47 and 58wt% (20, 29, 38 and 47vol.%) CG-fibers. After heat polymerization the specimens were kept for 90 days in water and thereafter hydrothermally cycled (12,000 cycles, 5/55 degrees C). Mechanical properties were evaluated by three-point bend testing. After thermal cycling, the adhesion between fibers and matrix was evaluated by SEM. Hydrothermal cycling did not decrease flexural strength of the CGFR polymers with 24 and 36wt% fiber loadings; flexural strength values after thermocycling were 244.8 (+/-32.33)MPa for 24wt% and 441.3 (+/-68.96)MPa for 36wt%. Flexural strength values after thermal cycling were not further increased after increasing the fiber load to 47 (459.2 (+/-45.32)MPa) and 58wt% (310.4 (+/-52.79)MPa). SEM revealed good adhesion between fibers and matrix for all fiber loadings examined. The combination of the fiber treatment and resin matrix described resulted in good adhesion between CG-fibers and matrix. The flexural values for fiber loadings up to 36wt% appear promising for prosthodontic applications such as implant-retained prostheses.

  15. Toughening of carbon fiber-reinforced epoxy polymer composites via copolymers and graphene nano-platelets

    Science.gov (United States)

    Downey, Markus A.

    Carbon fiber-reinforced epoxy composites currently play a significant role in many different industries. Due to their high cross-link density, aromatic epoxy polymers used as the matrix in composite materials are very strong and stiff however they lack toughness. This dissertation investigates three areas of the carbon fiber-reinforced composite, which have the potential to increase toughness: the carbon fiber surface; the fiber/matrix interphase; and the matrix material. Approaches to improving each area are presented which lead to enhancing the overall composite toughness without reducing other composite mechanical properties. The toughening of the base matrix material, DGEBA/mPDA, was accomplished by two methods: first, using low concentrations of aliphatic copolymers to enhance energy absorption and second by adding graphene nano-platelets (GnP) to act as crack deflection agents. 1wt% copolymer concentration was determined to substantially increase the notched Izod impact strength without reducing other static-mechanical properties. Toughening of DGEBA/mPDA using 3wt% GnP was found to be dependent on the aspect ratio of GnP and treatment of GnP with tetraethylenepentamine (TEPA). GnP C750 enhanced flexural properties but not fracture toughness because the small aspect ratio cannot effectively deflect cracks. TEPA-grafting enhanced GnP/matrix bonding. Larger aspect ratio GnP M5 and M25 showed significant increases in fracture toughness due to better crack deflection but also decreased flexural strength based on limited GnP/matrix bonding. TEPA-grafting mitigated some of the flexural strength reductions for GnP M5, due to enhanced GnP/matrix adhesion. In the high-fiber volume fraction composite, the fiber/matrix bonding was enhanced with UV-ozone surface treatment by reducing a weak fiber surface boundary layer and increasing the concentration of reactive oxygen groups on the fiber surface. Further increases in Mode I fracture toughness were seen with the

  16. Mechanical Properties and Durability of Latex-Modified Fiber-Reinforced Concrete: A Tunnel Liner Application

    Directory of Open Access Journals (Sweden)

    Joo-Ha Lee

    2018-01-01

    Full Text Available This study assessed the mechanical properties and durability of latex-modified fiber-reinforced segment concrete (polyolefin-based macrosynthetic fibers and hybrid fiber-macrosynthetic fiber and polypropylene fiber for a tunnel liner application. The tested macrosynthetic fiber-reinforced concrete has a better strength than steel fiber-reinforced concrete. The tested concrete with blast furnace slag has a higher chloride ion penetration resistance (less permeable, but its compressive and flexural strengths can be reduced with blast furnace slag content increase. Also, the hybrid fiber-reinforced concrete has higher compressive strength, flexural strength, chloride ion water permeability resistance, impact resistance, and abrasion resistance than the macrosynthetic fiber-reinforced concrete. The modified fiber improved the performance of concrete, and the hybrid fiber was found to control the formation of micro- and macrocracks more effectively. Therefore, overall performance of the hybrid fiber-reinforced concrete was found superior to the other fiber-reinforced concrete mixes tested for this study. The test results also indicated that macrosynthetic fiber could replace the steel fiber as a concrete reinforcement.

  17. A comprehensive study of woven carbon fiber-reinforced nylon 6 composites

    Science.gov (United States)

    Pillay, Selvum

    Liquid molding of thermoset composites has become very popular in all industry sectors, including aerospace, automotive, mass transit, and sporting goods, but the cost of materials and processing has limited the use to high-end applications. Thermoplastic composites are relatively cheap; however, the use has been limited to components with short fiber reinforcing. The high melt viscosity and short processing window precludes their use in the liquid molding of large structures and applications with continuous fiber reinforcement. The current research addresses the processing parameters, methodology, and limitations of vacuum assisted resin transfer molding (VARTM) of carbon fabric-reinforced, thermoplastic polyamide 6 (PA6). The material used is casting grade PA6. The process developed for using VARTM to produce carbon fabric-reinforced PA6 composites is explained in detail. The effects of infusion temperature and flow distance on the fiber weight fraction and crystallinity of the PA6 resin are presented. The degree of conversion from monomer to polymer was determined. Microscopic studies to show the wet-out of the fibers at the filament level are also presented. Tensile, flexural, short beam shear strength (SBSS), and low-velocity impact test results are presented and compared to a equivalent thermoset matrix composite. The rubber toughened epoxy system (SC-15) was chosen for the comparative study because the system has been especially developed to overcome the brittle nature of epoxy composites. The environmental effects of moisture and ultraviolet (UV) radiation on the carbon/nylon 6 composite were investigated. The samples were immersed in boiling water for 100 hr, and mechanical tests were conducted. Results showed that moisture causes plasticization of the matrix and attacks the fiber matrix interface. This leads to deterioration of the mechanical properties. The samples were also exposed to UV for up to 600 hr, and post exposure tests were conducted. The

  18. Powder addition assessment of manganese residue ceramic matrix coating

    International Nuclear Information System (INIS)

    Conceicao, A.C.R. da; Santos, O.C.; Leao, M.A.

    2016-01-01

    The use of recycled materials in the composition of new products follows the production's worldwide trending, meeting new technological requirements and environmental concerns. This work aims to utilize the residue of manganese dust on ceramic mass for the production of ceramic coating. The raw materials were characterized by both x-ray fluorescence and diffraction. The powder residue added to clay in the percentage of 0%, 5%, 10% and 15% (measured in weight) was compressed by a uniaxial pressing of 30MPa and the sintering temperatures were 900°, 1000° and 1100°. The samples were analysed in relation to flexural strength, bulk density, water absorption and linear shrinkage. The microstructural variation was also analysed by x-ray diffraction and electron microscopy. The results showed that there is a viability for the production of porcelain ceramic coating (A3 and A4 formulations) and stoneware (A2 formulation) according to the specification of technical standards. author)

  19. Heat accumulation between scans during multi-pass cutting of carbon fiber reinforced plastics

    Science.gov (United States)

    Kononenko, T. V.; Freitag, C.; Komlenok, M. S.; Weber, R.; Graf, T.; Konov, V. I.

    2018-02-01

    Matrix evaporation caused by heat accumulation between scans (HAS) was studied in the case of multi-pass scanning of a laser beam over the surface of carbon fiber reinforced plastic (CFRP). The experiments were performed in two regimes, namely, in the process of CFRP cutting and in the regime of low-fluence irradiation avoiding ablation of carbon fibers. The feature of the ablation-free regime is that all absorbed energy remains in the material as heat, while in the cutting regime the fraction of residual heat is unknown. An analytical model based on two-dimensional (2D) heat flow was applied to predict the critical number of scans, after which the HAS effect causes a distinct growth of the matrix evaporation zone (MEZ). According to the model, the critical number of scans decreases exponentially with increasing laser power, while no dependence on the feed rate is expected. It was found that the model fits well to the experimental data obtained in the ablation-free regime where the heat input is well defined and known. In the cutting regime the measured significant reduction of the critical number of scans observed in deep grooves may be attributed to transformation of the heat flow geometry and to an expected increase of the residual heat fraction.

  20. Mechanical properties of fiber reinforced restorative composite with two distinguished fiber length distribution.

    Science.gov (United States)

    Lassila, Lippo; Garoushi, Sufyan; Vallittu, Pekka K; Säilynoja, Eija

    2016-07-01

    The purpose of this study was to investigate the reinforcing effect of discontinuous glass fiber fillers with different length scales on fracture toughness and flexural properties of dental composite. Experimental fiber reinforced composite (Exp-FRC) was prepared by mixing 27wt% of discontinuous E-glass fibers having two different length scales (micrometer and millimeter) with various weight ratios (1:1, 2:1, 1:0 respectively) to the 23wt% of dimethacrylate based resin matrix and then 50wt% of silane treated silica filler were added gradually using high speed mixing machine. As control, commercial FRC and conventional posterior composites were used (everX Posterior, Alert, and Filtek Superme). Fracture toughness, work of fracture, flexural strength, and flexural modulus were determined for each composite material following ISO standards. The specimens (n=6) were dry stored (37°C for 2 days) before they were tested. Scanning electron microscopy was used to evaluate the microstructure of the experimental FRC composites. The results were statistically analyzed using ANOVA followed by post-hoc Tukey׳s test. Level of significance was set at 0.05. ANOVA revealed that experimental composites reinforced with different fiber length scales (hybrid Exp-FRC) had statistically significantly higher mechanical performance of fracture toughness (4.7MPam(1/2)) and flexural strength (155MPa) (plength scales of discontinues fiber fillers (hybrid) with polymer matrix yielded improved mechanical performance compared to commercial FRC and conventional posterior composites. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Carbon nanotube-based structural health monitoring for fiber reinforced composite materials

    Science.gov (United States)

    Liu, Hao; Liu, Kan; Mardirossian, Aris; Heider, Dirk; Thostenson, Erik

    2017-04-01

    In fiber reinforced composite materials, the modes of damage accumulation, ranging from microlevel to macro-level (matrix cracks development, fiber breakage, fiber-matrix de-bonding, delamination, etc.), are complex and hard to be detected through conventional non-destructive evaluation methods. Therefore, in order to assure the outstanding structural performance and high durability of the composites, there has been an urgent need for the design and fabrication smart composites with self-damage sensing capabilities. In recent years, the macroscopic forms of carbon nanotube materials have been maturely investigated, which provides the opportunity for structural health monitoring based on the carbon nanotubes that are integrated in the inter-laminar areas of advanced fiber composites. Here in this research, advanced fiber composites embedded with laminated carbon nanotube layers are manufactured for damage detection due to the relevant spatial electrical property changes once damage occurs. The mechanical-electrical coupling response is recorded and analyzed during impact test. The design and manufacturing of integrating the carbon nanotubes intensely affect the detecting sensitivity and repeatability of the integrated multifunctional sensors. The ultimate goal of the reported work is to develop a novel structural health monitoring method with the capability of reporting information on the damage state in a real-time way.

  2. Mechanical, Thermal Degradation, and Flammability Studies on Surface Modified Sisal Fiber Reinforced Recycled Polypropylene Composites

    Directory of Open Access Journals (Sweden)

    Arun Kumar Gupta

    2012-01-01

    Full Text Available The effect of surface treated sisal fiber on the mechanical, thermal, flammability, and morphological properties of sisal fiber (SF reinforced recycled polypropylene (RPP composites was investigated. The surface of sisal fiber was modified with different chemical reagent such as silane, glycidyl methacrylate (GMA, and O-hydroxybenzene diazonium chloride (OBDC to improve the compatibility with the matrix polymer. The experimental results revealed an improvement in the tensile strength to 11%, 20%, and 31.36% and impact strength to 78.72%, 77%, and 81% for silane, GMA, and OBDC treated sisal fiber reinforced recycled Polypropylene (RPP/SF composites, respectively, as compared to RPP. The thermogravimetric analysis (TGA, differential scanning calorimeter (DSC, and heat deflection temperature (HDT results revealed improved thermal stability as compared with RPP. The flammability behaviour of silane, GMA, and OBDC treated SF/RPP composites was studied by the horizontal burning rate by UL-94. The morphological analysis through scanning electron micrograph (SEM supports improves surface interaction between fiber surface and polymer matrix.

  3. Fatigue damage and fracture behavior of tungsten fiber reinforced Zr-based metallic glassy composite

    International Nuclear Information System (INIS)

    Zhang, H.; Zhang, Z.F.; Wang, Z.G.; Qiu, K.Q.; Zhang, H.F.; Zang, Q.S.; Hu, Z.Q.

    2006-01-01

    The fatigue life, damage and fracture behavior of tungsten fiber reinforced metallic glass Zr 41.25 Ti 13.75 Ni 10 Cu 12.5 Be 22.5 composites are investigated under cyclic push-pull loading. It is found that the fatigue life of the composite increases with increasing the volume fraction of tungsten fibers. Similar to crystalline metals, the regions of crack initiation, propagation and overload fracture can be discerned on the fracture surface of the specimen. Fatigue crack normally initiates in the metallic glass matrix at the outer surface of the composite specimen and propagates predominantly in the matrix. Different crack front profile around the tungsten fibers and fiber pullout demonstrate that fatigue crack may propagate around the fiber, leading to bridging of the crack faces by the unbroken fiber and hence improved fatigue crack-growth resistance. Locally decreased effective stiffness in the region where fiber distribution is sparse may provide preferential crack path in the composite. A proposed model was exercised to elucidate different tungsten fiber fracture morphologies in the fatigue crack propagation and overload fracture regions in the light of Poisson's ratio effect during fatigue loading

  4. Curaua fiber reinforced high-density polyethylene composites: effect of impact modifier and fiber loading

    Directory of Open Access Journals (Sweden)

    Jaqueline Albano de Morais

    Full Text Available Abstract Short fibers are used in thermoplastic composites to increase their tensile and flexural resistance; however, it often decreases impact resistance. Composites with short vegetal fibers are not an exception to this behavior. The purpose of this work is to produce a vegetal fiber reinforced composite with improved tensile and impact resistance in relation to the polymer matrix. We used poly(ethylene-co-vinyl acetate, EVA, to recover the impact resistance of high density polyethylene, HDPE, reinforced with Curauá fibers, CF. Blends and composites were processed in a corotating twin screw extruder. The pure polymers, blends and composites were characterized by differential scanning calorimetry, thermogravimetry, infrared spectroscopy, scanning electron microscopy, tensile mechanical properties and Izod impact resistance. EVA used as impact modifier in the HDPE matrix exhibited a co-continuous phase and in the composites the fibers were homogeneously dispersed. The best combination of mechanical properties, tensile, flexural and impact, were obtained for the formulations of composites with 20 wt. % of CF and 20 to 40 wt. % of EVA. The composite prepared with 20 wt. % EVA and containing 30 wt. % of CF showed impact resistance comparable to pure HDPE and improved tensile and flexural mechanical properties.

  5. Process of producing a ceramic matrix composite article and article formed thereby

    Science.gov (United States)

    Corman, Gregory Scot [Ballston Lake, NY; McGuigan, Henry Charles [Duanesburg, NY; Brun, Milivoj Konstantin [Ballston Lake, NY

    2011-10-25

    A CMC article and process for producing the article to have a layer on its surface that protects a reinforcement material within the article from damage. The method entails providing a body containing a ceramic reinforcement material in a matrix material that contains a precursor of a ceramic matrix material. A fraction of the reinforcement material is present and possibly exposed at a surface of the body. The body surface is then provided with a surface layer formed of a slurry containing a particulate material but lacking the reinforcement material of the body. The body and surface layer are heated to form the article by converting the precursor within the body to form the ceramic matrix material in which the reinforcement material is contained, and by converting the surface layer to form the protective layer that covers any fraction of the reinforcement material exposed at the body surface.

  6. Fabrication of silicon-carbide continuous fiber reinforced carbon (SiC/C) composites using hot press process and the effects of fiber forms on the strength

    International Nuclear Information System (INIS)

    Chang, Tong-Shik; Okura, Akimitsu

    1988-01-01

    Silicon-carbide continuous fiber reinforced carbon (SiC/C) composites was fabricated using a simple hot press process. Three forms of SiC fiber reinforcement, that is, cloth, mat and unidirectional long fibers (UD fibers) were employed. Fine pulverized coke mixed with carbonaceous bulk mesophase (BM) was used as matrix. In this process, SiC fibers were laminated alternately with the matrix admixture in a die, and then heated to 600deg C under a pressure of 49 MPa. The results were as follows: (1) The maximum strengths of the composites were the greatest for the UD fiber reinforcements at 121.5 MPa while the cloth and mat reinforcements showed appreciably lower strengths. (2) After secondary heat treatments at 800deg C to 1500deg C, the composite reinforced with UD fibers showed excellent strengths above 106 MPa which were greater than that of an as-fabricated commercial C/C composite. The strengths of the composites reinforced with cloth and mat, however, were significantly reduced by the heat treatments. (author)

  7. Development of Abaca Fiber-reinforced Foamed Fly Ash Geopolymer

    Directory of Open Access Journals (Sweden)

    Janne Pauline S. Ngo

    2018-01-01

    Full Text Available The growing environmental and economic concerns have led to the need for more sustainable construction materials. The development of foamed geopolymer combines the benefit of reduced environmental footprint and attractive properties of geopolymer technology with foam concrete’s advantages of being lightweight, insulating and energy-saving. In this study, alkali-treated abaca fiber-reinforced geopolymer composites foamed with H2O2 were developed using fly ash as the geopolymer precursor. The effects of abaca fiber loading, foaming agent dosage, and curing temperature on mechanical strength were evaluated using Box-Behken design of experiment with three points replicated. Volumetric weight of samples ranged from 1966 kg/m3 to 2249 kg/m3. Measured compressive strength and flexural ranged from 19.56 MPa to 36.84 MPa, and 2.41 MPa to 6.25 MPa, respectively. Results suggest enhancement of compressive strength by abaca reinforcement and elevated temperature curing. Results, however, indicate a strong interaction between curing temperature and foaming agent dosage, which observably caused the composite’s compressive strength to decline when simultaneously set at high levels. Foaming agent dosage was the only factor detected to significantly affect flexural strength.

  8. Carbon Fiber Reinforced Polymer for Cable Structures—A Review

    Directory of Open Access Journals (Sweden)

    Yue Liu

    2015-10-01

    Full Text Available Carbon Fiber Reinforced Polymer (CFRP is an advanced composite material with the advantages of high strength, lightweight, no corrosion and excellent fatigue resistance. Therefore, unidirectional CFRP has great potential for cables and to replace steel cables in cable structures. However, CFRP is a typical orthotropic material and its strength and modulus perpendicular to the fiber direction are much lower than those in the fiber direction, which brings a challenge for anchoring CFRP cables. This paper presents an overview of application of CFRP cables in cable structures, including historical review, state of the art and prospects for the future. After introducing properties of carbon fibers, mechanical characteristics and structural forms of CFRP cables, existing CFRP cable structures in the world (all of them are cable bridges are reviewed. Especially, their CFRP cable anchorages are presented in detail. New applications for CFRP cables, i.e., cable roofs and cable facades, are also presented, including the introduction of a prototype CFRP cable roof and the conceptual design of a novel structure—CFRP Continuous Band Winding System. In addition, other challenges that impede widespread application of CFRP cable structures are briefly introduced.

  9. Fiber reinforced silicon-containing arylacetylene resin composites

    Directory of Open Access Journals (Sweden)

    2007-12-01

    Full Text Available A silicon-containing arylacetylene resin (SAR, a poly(dimethylsilyleneethynylene phenyleneethynylene (PMSEPE, was synthesized. The PMSEPE is a solid resin at ambient temperature with a softening temperature about 60°C and soluble in some solvents like tetrahydrofuran. The melt viscosity of the PMSEPE resin is less than 1 Pa•s. The resin could cure at the temperature of lower than 200°C. Fiber reinforced PMSEPE composites were prepared from prepregs which were made by the impregnation of fibers in PMSEPE resin solution. The composites exhibit good mechanical properties at room temperature and 250°C. The observation on fracture surfaces of the composites reinforced by glass fibers and carbon fibers demonstrates that the adhesion between the fibers and resin is good. The results from an oxyacetylene flame test show that the composites have good ablation performance and XRD analyses indicate that SiC forms in the residues during the ablation of the composites.

  10. Mechanical Properties of Fiber-Reinforced Concrete Using Composite Binders

    Directory of Open Access Journals (Sweden)

    Roman Fediuk

    2017-01-01

    Full Text Available This paper investigates the creation of high-density impermeable concrete. The effect of the “cement, fly ash, and limestone” composite binders obtained by joint grinding with superplasticizer in the varioplanetary mill on the process of structure formation was studied. Compaction of structure on micro- and nanoscale levels was characterized by different techniques: X-ray diffraction, DTA-TGA, and electron microscopy. Results showed that the grinding of active mineral supplements allows crystallization centers to be created by ash particles as a result of the binding of Ca(OH2 during hardening alite, which intensifies the clinker minerals hydration process; the presence of fine grains limestone also leads to the hydrocarboaluminates calcium formation. The relation between cement stone neoplasms composition as well as fibrous concrete porosity and permeability of composite at nanoscale level for use of composite binders with polydispersed mineral supplements was revealed. The results are of potential importance in developing the wide range of fine-grained fiber-reinforced concrete with a compressive strength more than 100 MPa, with low permeability under actual operating conditions.

  11. Design and analysis of coiled fiber reinforced soft pneumatic actuator.

    Science.gov (United States)

    Singh, Gaurav; Xiao, Chenzhang; Hsiao-Wecksler, Elizabeth T; Krishnan, Girish

    2018-04-18

    Fiber reinforced elastomeric enclosures (FREEs) are soft pneumatic actuators that can contract and generate forces upon pressurization. Typical engineering applications utilize FREEs in their straight cylindrical configuration and derive actuation displacement and forces from their ends. However, there are several instances in nature, such as an elephant trunk, snakes and grapevine tendrils, where a spiral configuration of muscle systems is used for gripping, thereby establishing a mechanical connection with uniform force distribution. Inspired by these examples, this paper investigates the constricting behavior of a contracting FREE actuator deployed in a spiral or coiled configuration around a cylindrical object. Force balance is used to model the blocked force of the FREE, which is then related to the constriction force using a string model. The modeling and experimental findings reveal an attenuation in the blocked force, and thus the constriction force caused by the coupling of peripheral contact forces acting in the spiral configuration. The usefulness of the coiled FREE configuration is demonstrated in a soft arm orthosis for crutch users that provides a constriction force around the forearm. This design minimizes injury risk by reducing wrist load and improving wrist posture.

  12. Performance of Lightweight Natural-Fiber Reinforced Concrete

    Directory of Open Access Journals (Sweden)

    Hardjasaputra Harianto

    2017-01-01

    Full Text Available Concrete, the most common construction material, has negligible tension capacity. However, a reinforcement material such as natural fibers, can be used to improve the tensile properties of concrete. This paper presents experiments conducted on Super Lightweight Concrete mixed with coconut fibers (SLNFRC. Coconut fibers are regarded as one of the toughest natural fibers to strengthen concrete. Coconut fiber reinforced composites have been considered as a sustainable construction material because the fibers are derived from waste. These wastes, which are available in large quantities in Asia, have to be extracted from the husk of coconut fruits and must pass a mechanical process before being added to a concrete mixture. The Super Lightweight Concrete was made by mixing concrete paste with foam agent that can reduce the overall weight of concrete up to 60% with compressive strength up to 6 MPa. The Super Lightweight Concrete is intended to be used for non-structural walls, as alternative conventional construction materials such as brick walls. The influence of coconut fibers content in increasing the flexural tensile strength of Super Lightweight Concrete was studied in this research. The fiber content studied include 0%, 0.1%, 0.175%, and 0.25% by weight of cement content. Sixteen specimens of SLNFRC mini beams of 60 mm x 60 mm x 300 mm were tested to failure to investigate their flexural strengths. The optimum percent fibers yielding higher tensile strength was found to be 0.175%

  13. Load-bearing capacity of fiber reinforced fixed composite bridges.

    Science.gov (United States)

    Göncü Başaran, Emine; Ayna, Emrah; Üçtaşli, Sadullah; Vallittu, Pekka K; Lassila, Lippo V J

    2013-01-01

    The aim of this study was to evaluate the reinforcing effect of differently oriented fibers on the load-bearing capacity of three-unit fixed dental prostheses (FDPs). Forty-eight composite FDPs were fabricated. Specimens were divided into eight groups (n = 6/group; codes 1-8). Groups 1 and 5 were plain restorative composites (Grandio and Z100) without fiber reinforcement, groups 2 and 6 were reinforced with a continuous unidirectional fiber substructure, groups 3 and 7 were reinforced with a continuous bidirectional fiber and groups 4 and 8 were reinforced with a continuous bidirectional fiber substructure and continuous unidirectional fiber. FDPs were polymerized incrementally with a handheld light curing unit for 40 s and statically loaded until final fracture. Kruskal-Wallis analysis revealed that all groups had significantly different load-bearing capacities. Group 4 showed the highest mean load-bearing capacity and Group 7 the lowest. The results of this study suggest that continuous unidirectional fiber increased the mechanical properties of composite FDPs and bidirectional reinforcement slowed crack propagation on abutments.

  14. Measurement of defects in carbon fiber reinforced polymer drilled

    Directory of Open Access Journals (Sweden)

    Pascual Víctor

    2017-01-01

    Full Text Available Increasingly, fiber-reinforced materials are more widely used because of their good mechanical properties. It is usual to join pieces of these materials through screws and rivets, for which it is necessary to make a hole in the piece, usually by drilling. One of the problems of use CFRP resides in the appearance of defects due to the machining. The main defect to be taken into account is the delamination. Delamination implies poor tolerance when assembling parts, reducing the structural integrity of the part, and areas with high wear, as a series of stresses arise when mounting the screws. Much has been published about delamination and the factors that influence its appearance, so we are not going to focus on it. The present study aims to quantify and measure the defects associated with the drilling of compounds reinforced with carbon fibers, in relation to the cutting parameters used in each case. For this purpose, an optical measurement system and a posterior digital image processing will be used through Deltec Vision software.

  15. Impact properties of aluminium - glass fiber reinforced plastics sandwich panels

    Directory of Open Access Journals (Sweden)

    Mathivanan Periasamy

    2012-06-01

    Full Text Available Aluminium - glass fiber reinforced plastics (GFRP sandwich panels are hybrid laminates consisting of GFRP bonded with thin aluminum sheets on either side. Such sandwich materials are increasingly used in airplane and automobile structures. Laminates with varying aluminium thickness fractions, fiber volume fractions and orientation in the layers of GFRP were fabricated by hand lay up method and evaluated for their impact performance by conducting drop weight tests under low velocity impacts. The impact energy required for initiating a crack in the outer aluminium layer as well as the energy required for perforation was recorded. The impact load-time history was also recorded to understand the failure behavior. The damage depth and the damage area were measured to evaluate the impact resistance. Optical photography and scanning electron micrographs were taken to visualize the crack and the damage zone. The bidirectional cross-ply hybrid laminate (CPHL has been found to exhibit better impact performance and damage resistance than the unidirectional hybrid laminate (UDHL. Increase in aluminium thickness fraction (Al tf and fiber volume fraction (Vf resulted in an increase in the impact energy required for cracking and perforation. On an overall basis, the sandwich panels exhibited better impact performance than the monolithic aluminium.

  16. Repair of reinforced concrete beams using carbon fiber reinforced polymer

    Directory of Open Access Journals (Sweden)

    Karzad Abdul Saboor

    2017-01-01

    Full Text Available This research paper is part of an ongoing research on the behaviour of Reinforced Concrete (RC beams retrofitted with Externally Bonded Carbon Fiber Reinforced Polymer (EB-CFRP. A total of 5 large-scale rectangular beams, previously damaged due to shear loading, were repaired and strengthened with EB-CFRP and tested in this study. The major cracks of the damaged beams were injected with epoxy and the beams were wrapped with 2 layers of EB-CFRP discrete strips with 100mm width and 150mm center to center spacing. The beams were instrumented and tested to failure under three points loading in simply supported configuration. The measured test parameters were the beams deflection, maximum load, and the strain in the FRP strips. The failure mode was also observed. The results showed that applying EB-FRP strips increased the shear strength significantly relative to the original shear capacity of the beam. The results demonstrate that the application of EB-FRP strips used in this study is an effective repair method that can be used to repair and strengthen damaged beams.

  17. Correlations Between Mechanical Properties of Steel Fiber Reinforced Concrete

    Directory of Open Access Journals (Sweden)

    Carrillo Julián

    2013-06-01

    Full Text Available Tension strength and post-cracking deformation capacities that exhibits steel fiber reinforced concrete (SFRC stimulate its use in elements governed by shear deformations. Aimed at developing design aids that promote the use of SFRC as web shear reinforcement of concrete walls for low-rise economic housing (LEH, an experimental study for describing the mechanical properties of SFRC was carried out. The experimental program included testing of 128 cylinder- and beam-type specimens. According to requirements specified by ACI-318, to thickness of walls used in LEH, and to results of previous studies, three Dramix fibers with length-diameter ratios of 55, 64 and 80 were selected. Fiber dosage was expressed in terms of the minimum fiber dosage specified by ACI-318 for replacing the minimum area of conventional shear reinforcement in beams (60 kg/m3. Therefore, five dosages were used: 0, 40, 45, 60 and 75 kg/m3. Mechanical properties of SFRC under compressive, tensile and flexural stresses were evaluated in this study. Based on trends of experimental results, numerical correlations for estimating both basic mechanical properties and properties that describe flexural performance of SFRC are proposed.

  18. Flexural Cracking Behavior Of Steel Fiber Reinforced Concrete Beams

    Directory of Open Access Journals (Sweden)

    Ashraf Abdalkader

    2017-08-01

    Full Text Available Steel fibers are added to concrete due to its ability to improve the tensile strength and control propagation of cracks in reinforced concrete members. Steel fiber reinforced concrete is made of cement fine water and coarse aggregate in addition to steel fibers. In this experimental work flexural cracking behavior of reinforced concrete beams contains different percentage of hooked-end steel fibers with length of 50 mm and equivalent diameter of 0.5 mm was studied. The beams were tested under third-point loading test at 28 days. First cracking load maximum crack width cracks number and load-deflection relations were investigated to evaluate the flexural cracking behavior of concrete beams with 34 MPa target mean strength. Workability wet density compressive and splitting tensile strength were also investigated. The results showed that the flexural crack width is significantly reduced with the addition of steel fibers. Fiber contents of 1.0 resulted in 81 reduction in maximum crack width compared to control concrete without fiber. The results also showed that the first cracking load and maximum load are increased with the addition of steel fibers.

  19. Acoustic emission of fire damaged fiber reinforced concrete

    Science.gov (United States)

    Mpalaskas, A. C.; Matikas, T. E.; Aggelis, D. G.

    2016-04-01

    The mechanical behavior of a fiber-reinforced concrete after extensive thermal damage is studied in this paper. Undulated steel fibers have been used for reinforcement. After being exposed to direct fire action at the temperature of 850°C, specimens were subjected to bending and compression in order to determine the loss of strength and stiffness in comparison to intact specimens and between the two types. The fire damage was assessed using nondestructive evaluation techniques, specifically ultrasonic pulse velocity (UPV) and acoustic emission (AE). Apart from the strong, well known, correlation of UPV to strength (both bending and compressive), AE parameters based mainly on the frequency and duration of the emitted signals after cracking events showed a similar or, in certain cases, better correlation with the mechanical parameters and temperature. This demonstrates the sensitivity of AE to the fracture incidents which eventually lead to failure of the material and it is encouraging for potential in-situ use of the technique, where it could provide indices with additional characterization capability concerning the mechanical performance of concrete after it subjected to fire.

  20. Abrasive waterjet machining of fiber reinforced composites: A review

    Science.gov (United States)

    Kalla, D. K.; Dhanasekaran, P. S.; Zhang, B.; Asmatulu, R.

    2012-04-01

    Machining of fiber reinforced polymer (FRP) composites is a major secondary manufacturing activity in the aircraft and automotive industries. Traditional machining of these composites is difficult due to the high abrasiveness nature of their reinforcing constituents. Almost all the traditional machining processes involve in the dissipation of heat into the workpiece which can be resulted in damage to workpiece and rapid wear of the cutting tool. This serious issue has been overcome by water jetting technologies. Abrasive waterjet machining (AWJM) is a nontraditional method and one of the best options for machining FRPs. This paper presents a review of the ongoing research and development in AWJM of FRPs, with a critical review of the physics of the machining process, surface characterization, modeling and the newer application to the basic research. Variable cutting parameters, limitations and safety aspects of AWJM and the noise related issues due to high flow rate of water jet will be addressed. Further challenges and scope of the future development in AWJM are also presented in detail.

  1. Thermomechanical and Environmental Durability of Environmental Barrier Coated Ceramic Matrix Composites Under Thermal Gradients

    Science.gov (United States)

    Zhu, Dongming; Bhatt, Ramakrishna T.; Harder, Bryan

    2016-01-01

    This paper presents the developments of thermo-mechanical testing approaches and durability performance of environmental barrier coatings (EBCs) and EBC coated SiCSiC ceramic matrix composites (CMCs). Critical testing aspects of the CMCs will be described, including state of the art instrumentations such as temperature, thermal gradient, and full field strain measurements; materials thermal conductivity evolutions and thermal stress resistance; NDE methods; thermo-mechanical stress and environment interactions associated damage accumulations. Examples are also given for testing ceramic matrix composite sub-elements and small airfoils to help better understand the critical and complex CMC and EBC properties in engine relevant testing environments.

  2. Use of fiber reinforced polymer composite cable for post-tensioning application.

    Science.gov (United States)

    2015-08-01

    The primary objective of this research project was to assess the feasibility of the use of innovative carbon fiber reinforced : polymer (CFRP) tendons and to develop guidelines for CFRP in post-tensioned bridge applications, including segmental : bri...

  3. Recycled Glass Fiber Reinforced Polymer Composites Incorporated in Mortar for Improved Mechanical Performance

    Science.gov (United States)

    2017-12-11

    Glass fiber reinforced polymer (GFRP) recycled from retired wind turbines was implemented in mortar as a volumetric replacement of sand during the two phases of this study. In Phase I, the mechanically refined GFRP particle sizes were sieved for four...

  4. Carbon Nanotube (CNT) and Carbon Fiber Reinforced SiC Optical Components, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — M Cubed has developed and patented technology to make carbon fiber reinforced SiC composites and components. In addition, the feasibility of doubling the toughness...

  5. Rapid replacement of Tangier Island bridges including lightweight and durable fiber-reinforced polymer deck systems.

    Science.gov (United States)

    2009-01-01

    Fiber-reinforced polymer (FRP) composite cellular deck systems were used as new bridge decks on two replacement bridges on Tangier Island, Virginia. The most important characteristics of this application were reduced self-weight and increased durabil...

  6. ON SHEAR BEHAVIOR OF STRUCTURAL ELEMENTS MADE OF STEEL FIBER REINFORCED CONCRETE

    OpenAIRE

    Cuenca Asensio, Estefanía

    2013-01-01

    Cuenca Asensio, E. (2012). ON SHEAR BEHAVIOR OF STRUCTURAL ELEMENTS MADE OF STEEL FIBER REINFORCED CONCRETE [Tesis doctoral no publicada]. Universitat Politècnica de València. doi:10.4995/Thesis/10251/18326. Palancia

  7. Assessment of the mechanical properties of sisal fiber-reinforced silty clay using triaxial shear tests.

    Science.gov (United States)

    Wu, Yankai; Li, Yanbin; Niu, Bin

    2014-01-01

    Fiber reinforcement is widely used in construction engineering to improve the mechanical properties of soil because it increases the soil's strength and improves the soil's mechanical properties. However, the mechanical properties of fiber-reinforced soils remain controversial. The present study investigated the mechanical properties of silty clay reinforced with discrete, randomly distributed sisal fibers using triaxial shear tests. The sisal fibers were cut to different lengths, randomly mixed with silty clay in varying percentages, and compacted to the maximum dry density at the optimum moisture content. The results indicate that with a fiber length of 10 mm and content of 1.0%, sisal fiber-reinforced silty clay is 20% stronger than nonreinforced silty clay. The fiber-reinforced silty clay exhibited crack fracture and surface shear fracture failure modes, implying that sisal fiber is a good earth reinforcement material with potential applications in civil engineering, dam foundation, roadbed engineering, and ground treatment.

  8. Drastic Improvements in Bonding of Fiber Reinforced Multifunctional Composites, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Achievement of a dramatic increase in the bond strength in the composite/adhesive interfaces of existing fiber reinforced polymer (FRP) composite material joints and...

  9. Health monitoring of precast bridge deck panels reinforced with glass fiber reinforced polymer (GFRP) bars.

    Science.gov (United States)

    2012-03-01

    The present research project investigates monitoring concrete precast panels for bridge decks that are reinforced with Glass Fiber Reinforced Polymer (GFRP) bars. Due to the lack of long term research on concrete members reinforced with GFRP bars, lo...

  10. Cracking and debonding of a thin fiber reinforced concrete overlay : research brief.

    Science.gov (United States)

    2017-03-01

    Experimental tests found that the tensile interfacial energy : increased with fiber-reinforcement. Also bond tests indicated : that interfacial fracture occurred through the overlay mixture and : was proportional to the number of fibers which interse...

  11. Polyurethane foam infill for fiber-reinforced polymer (FRP) bridge deck panels.

    Science.gov (United States)

    2014-05-01

    Although still in their infancy, fiber-reinforced polymer (FRP) bridges have shown great promise in eliminating corrosion : concerns and meeting (or exceeding) FHWAs goal of 100-year life spans for bridges. While FRP bridges are cost-effective in ...

  12. Effect of polyester fiber reinforcement on the mechanical properties of interim fixed partial dentures

    Directory of Open Access Journals (Sweden)

    N. Gopichander

    2015-10-01

    Conclusion: Within the limitations of this study, polyester fiber reinforcements improved the mechanical properties of heat-polymerized PMMA, cold-polymerized PMMA, and bis-acrylic provisional FPD materials.

  13. PVA fiber reinforced shotcrete for rehabilitation and preventative maintenance of aging culverts.

    Science.gov (United States)

    2009-12-01

    The goal of this project was to investigate the potential for using PVA (polyvinyl alcohol) fiber : reinforced mortar for the rehabilitation and preventative maintenance of aging metal highway : drainage culverts using a spray-on liner application ap...

  14. Repair of impact damaged utility poles with fiber reinforced polymers (FRP), phase II.

    Science.gov (United States)

    2015-06-01

    Vehicle collisions with steel or aluminum utility poles are common occurrences that yield substantial but often repairable : damage. This project investigates the use of a fiber-reinforced polymer (FRP) composite system for in situ repair that : mini...

  15. Fiber reinforced materials in the first wall of thermonuclear fusion reactor

    International Nuclear Information System (INIS)

    Linke, J.; Hoven, H.; Koizlik, K.; Nickel, H.; Wallura, E.

    1989-01-01

    Laboratory tests on fiber reinforced materials (carbon-carbon- and SiC-SiC-composites, resp.) are described. The erosion and the thermomechanical behaviour during the exposure to high heat fluxes and the thermal stability of these materials are investigated. Neutron irradiation tests are performed in materials test reactors to evaluate the applicability of fiber reinforced material candidates in a fusion reactor environment. 15 refs., 9 figs., 1 tab. (Author)

  16. State-of-Practice on the Dynamic Response of Structures Strengthened with Fiber Reinforced Polymers (FRPs)

    Science.gov (United States)

    2015-07-01

    depending on the amount and type of fiber and the fiber architecture. These failure modes were crushing of the concrete on the compression side, shear ...entitled “Design guidelines for blast strengthening of concrete and masonry structures using Fiber -Reinforced Polymer (FRP).” Seismic provision...2 Reinforced Concrete Fiber Reinforced Polymers are frequently used to retrofit and repair reinforced concrete structures. Most of the work

  17. Engineering on the straight and narrow: the mechanics of nanofibrous assemblies for fiber-reinforced tissue regeneration.

    Science.gov (United States)

    Mauck, Robert L; Baker, Brendon M; Nerurkar, Nandan L; Burdick, Jason A; Li, Wan-Ju; Tuan, Rocky S; Elliott, Dawn M

    2009-06-01

    Tissue engineering of fibrous tissues of the musculoskeletal system represents a considerable challenge because of the complex architecture and mechanical properties of the component structures. Natural healing processes in these dense tissues are limited as a result of the mechanically challenging environment of the damaged tissue and the hypocellularity and avascular nature of the extracellular matrix. When healing does occur, the ordered structure of the native tissue is replaced with a disorganized fibrous scar with inferior mechanical properties, engendering sites that are prone to re-injury. To address the engineering of such tissues, we and others have adopted a structurally motivated approach based on organized nanofibrous assemblies. These scaffolds are composed of ultrafine polymeric fibers that can be fabricated in such a way to recreate the structural anisotropy typical of fiber-reinforced tissues. This straight-and-narrow topography not only provides tailored mechanical properties, but also serves as a 3D biomimetic micropattern for directed tissue formation. This review describes the underlying technology of nanofiber production and focuses specifically on the mechanical evaluation and theoretical modeling of these structures as it relates to native tissue structure and function. Applying the same mechanical framework for understanding native and engineered fiber-reinforced tissues provides a functional method for evaluating the utility and maturation of these unique engineered constructs. We further describe several case examples where these principles have been put to test, and discuss the remaining challenges and opportunities in forwarding this technology toward clinical implementation.

  18. Engineering on the Straight and Narrow: The Mechanics of Nanofibrous Assemblies for Fiber-Reinforced Tissue Regeneration

    Science.gov (United States)

    Baker, Brendon M.; Nerurkar, Nandan L.; Burdick, Jason A.; Li, Wan-Ju; Tuan, Rocky S.; Elliott, Dawn M.

    2009-01-01

    Tissue engineering of fibrous tissues of the musculoskeletal system represents a considerable challenge because of the complex architecture and mechanical properties of the component structures. Natural healing processes in these dense tissues are limited as a result of the mechanically challenging environment of the damaged tissue and the hypocellularity and avascular nature of the extracellular matrix. When healing does occur, the ordered structure of the native tissue is replaced with a disorganized fibrous scar with inferior mechanical properties, engendering sites that are prone to re-injury. To address the engineering of such tissues, we and others have adopted a structurally motivated approach based on organized nanofibrous assemblies. These scaffolds are composed of ultrafine polymeric fibers that can be fabricated in such a way to recreate the structural anisotropy typical of fiber-reinforced tissues. This straight-and-narrow topography not only provides tailored mechanical properties, but also serves as a 3D biomimetic micropattern for directed tissue formation. This review describes the underlying technology of nanofiber production and focuses specifically on the mechanical evaluation and theoretical modeling of these structures as it relates to native tissue structure and function. Applying the same mechanical framework for understanding native and engineered fiber-reinforced tissues provides a functional method for evaluating the utility and maturation of these unique engineered constructs. We further describe several case examples where these principles have been put to test, and discuss the remaining challenges and opportunities in forwarding this technology toward clinical implementation. PMID:19207040

  19. UV-Assisted 3D Printing of Glass and Carbon Fiber-Reinforced Dual-Cure Polymer Composites.

    Science.gov (United States)

    Invernizzi, Marta; Natale, Gabriele; Levi, Marinella; Turri, Stefano; Griffini, Gianmarco

    2016-07-16

    Glass (GFR) and carbon fiber-reinforced (CFR) dual-cure polymer composites fabricated by UV-assisted three-dimensional (UV-3D) printing are presented. The resin material combines an acrylic-based photocurable resin with a low temperature (140 °C) thermally-curable resin system based on bisphenol A diglycidyl ether as base component, an aliphatic anhydride (hexahydro-4-methylphthalic anhydride) as hardener and (2,4,6,-tris(dimethylaminomethyl)phenol) as catalyst. A thorough rheological characterization of these formulations allowed us to define their 3D printability window. UV-3D printed macrostructures were successfully demonstrated, giving a clear indication of their potential use in real-life structural applications. Differential scanning calorimetry and dynamic mechanical analysis highlighted the good thermal stability and mechanical properties of the printed parts. In addition, uniaxial tensile tests were used to assess the fiber reinforcing effect on the UV-3D printed objects. Finally, an initial study was conducted on the use of a sizing treatment on carbon fibers to improve the fiber/matrix interfacial adhesion, giving preliminary indications on the potential of this approach to improve the mechanical properties of the 3D printed CFR components.

  20. UV-Assisted 3D Printing of Glass and Carbon Fiber-Reinforced Dual-Cure Polymer Composites

    Directory of Open Access Journals (Sweden)

    Marta Invernizzi

    2016-07-01

    Full Text Available Glass (GFR and carbon fiber-reinforced (CFR dual-cure polymer composites fabricated by UV-assisted three-dimensional (UV-3D printing are presented. The resin material combines an acrylic-based photocurable resin with a low temperature (140 °C thermally-curable resin system based on bisphenol A diglycidyl ether as base component, an aliphatic anhydride (hexahydro-4-methylphthalic anhydride as hardener and (2,4,6,-tris(dimethylaminomethylphenol as catalyst. A thorough rheological characterization of these formulations allowed us to define their 3D printability window. UV-3D printed macrostructures were successfully demonstrated, giving a clear indication of their potential use in real-life structural applications. Differential scanning calorimetry and dynamic mechanical analysis highlighted the good thermal stability and mechanical properties of the printed parts. In addition, uniaxial tensile tests were used to assess the fiber reinforcing effect on the UV-3D printed objects. Finally, an initial study was conducted on the use of a sizing treatment on carbon fibers to improve the fiber/matrix interfacial adhesion, giving preliminary indications on the potential of this approach to improve the mechanical properties of the 3D printed CFR components.

  1. Evaluation of Ultimate Pressure Capacity of a Prestressed Concrete Containment Building with Steel or Polyamide Fiber Reinforcement

    Energy Technology Data Exchange (ETDEWEB)

    Choun, Youngsun; Hahm, Daegi [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2014-05-15

    Fiber reinforced concrete (FRC) includes thousands of small fibers that are distributed randomly in the concrete. Fibers resist the growth of cracks in concrete through their bridging at the cracks. Therefore, FRC fails in tension only when the fibers break or are pulled out of the cement matrix. For this reason, the addition of fibers in concrete mixing increases the tensile toughness of concrete and enhances the post-cracking behavior. A prevention of through-wall cracks and an increase of the post-cracking ductility will improve the ultimate internal pressure capacity of a prestressed concrete containment building (PCCB). In this study, the effects of steel or polyamide fiber reinforcement on the ultimate pressure capacity of a PCCB are evaluated. When R-SFRC contains hooked steel fibers in a volume fraction of 1.0%, the ultimate pressure capacity of a PCCB can be improved by 17%. When R-PFRC contains polyamide fibers in a volume fraction of 1.5%, the ultimate pressure capacity of a PCCB can be enhanced by 10%. Further studies are needed to determine the strain limits acceptable for PCCBs reinforced with fibers.

  2. Effect of preceramic and Zr coating on impregnation behaviors of SiC ceramic composite

    Science.gov (United States)

    Jung, Yang-Il; Kim, Sun-Han; Kim, Hyun-Gil; Park, Jeong-Yong; Koo, Yang-Hyun

    2015-01-01

    SiC fiber-reinforced ceramic composites were fabricated using a polymer impregnation and pyrolysis process. To develop the low temperature process, the pyrolysis was conducted at 600 °C in air. Both a microstructural observation and a mechanical test were utilized for the evaluation of the impregnation. For the impregnation, two kinds of polycarbosilane having a different degree of cross-linking were used. The level of cross-linking affected the ceramic yield of the composites. The cross-linking under oxygen containing atmosphere resulted in a dense matrix and high density of filling. However, tight bonding between the matrix and fibers in the fully dense composite samples, which was obtained using a cross-linking agent of divinylbenzene, turned out to be deteriorative on the mechanical properties. The physical isolation of fibers from matrix phase in the composites was very important to attain a mechanical ductility. The brittle fracture was alleviated by introducing an interphase coating with metallic Zr. The combination of forming the dense matrix and interphase coating should be a necessary condition for the SiCf/SiC fiber-reinforce composite, and it is practicable by controlling the process parameters.

  3. Consideration on punching shear strength of steel-fiber-reinforced concrete slabs

    Directory of Open Access Journals (Sweden)

    Hyunjin Ju

    2015-05-01

    Full Text Available The flat plate slab system is widely used in construction fields due to its excellent constructability and savings in story height compared to the conventional beam-column moment-resisting system. Many researchers are, however, concerned about the punching shear failure that can happen in a two-way flat plate slab system, for which many shear-strength-enhancement techniques have been suggested. One of the effective alternatives is the application of steel-fiber-reinforced concrete. However, most previous studies on the punching shear strength of steel-fiber-reinforced concrete flat slabs had presented empirical formulas based on experimental results. On the other hand, theoretical models proposed in previous studies are difficult to be applied to practical situations. Therefore, in this study, a punching shear strength model of the steel-fiber-reinforced concrete two-way flat slab is proposed. In this model, the total shear resistance of the steel-fiber-reinforced concrete flat slab is expressed by sum of the shear contribution of steel fibers in the cracked tension region and that of intact concrete in the compression zone. A total of 91 shear test data on steel-fiber-reinforced concrete slab–column connection were compared to the analysis results, and the proposed model provided a good accuracy on estimating the punching shear strength of the steel-fiber-reinforced concrete flat slabs.

  4. Mechanical and physical properties of carbon-graphite fiber-reinforced polymers intended for implant suprastructures.

    Science.gov (United States)

    Segerström, Susanna; Ruyter, I Eystein

    2007-09-01

    Mechanical properties and quality of fiber/matrix adhesion of poly(methyl methacrylate) (PMMA)-based materials, reinforced with carbon-graphite (CG) fibers that are able to remain in a plastic state until polymerization, were examined. Tubes of cleaned braided CG fibers were treated with a sizing resin. Two resin mixtures, resin A and resin B, stable in the fluid state and containing different cross-linking agents, were reinforced with CG fiber loadings of 24, 36, and 47 wt% (20, 29, and 38 vol.%). In addition, resin B was reinforced with 58 wt% (47 vol.%). After heat-polymerization, flexural strength and modulus were evaluated, both dry and after water storage. Coefficient of thermal expansion, longitudinally and in the transverse direction of the specimens, was determined. Adhesion between fibers and matrix was evaluated with scanning electron microscopy (SEM). Flexural properties and linear coefficient of thermal expansion were similar for both fiber composites. With increased fiber loading, flexural properties increased. For 47 wt% fibers in polymer A the flexural strength was 547.7 (28.12) MPa and for polymer B 563.3 (89.24) MPa when water saturated. Linear coefficient of thermal expansion was for 47 wt% CG fiber-reinforced polymers; -2.5 x 10(-6) degrees C-1 longitudinally and 62.4 x 10(-6) degrees C-1 in the transverse direction of the specimens. SEM revealed good adhesion between fibers and matrix. More porosity was observed with fiber loading of 58 wt%. The fiber treatment and the developed resin matrices resulted in good adhesion between CG fibers and matrix. The properties observed indicate a potential for implant-retained prostheses.

  5. Oil palm empty fruit bunch (OPEFB) fiber reinforced PVC/ENR blend-electron beam irradiation

    International Nuclear Information System (INIS)

    Ratnam, Chantara Thevy; Raju, Gunasunderi; Wan Md Zin Wan Yunus

    2007-01-01

    The effect of irradiation on the tensile properties of oil palm empty fruit bunch (OPEFB) fiber reinforced poly(vinyl chloride)/epoxidized natural rubber (PVC/ENR) blends were studied. The composites were prepared by mixing the fiber and the PVC/ENR blend using HAAKE Rheomixer at 150 deg. C. The composites were then irradiated by using a 3.0 MeV electron beam machine at doses ranging from 0 to 100 kGy in air and room temperature. The tensile strength, Young's modulus, elongation at break and gel fraction of the composites were measured. Comparative studies were also made by using poly(methyl acrylate) grafted OPEFB fiber in the similar blend system. An increase in tensile strength, Young's modulus and gel fraction, with a concurrent reduction in the elongation at break (Eb) of the PVC/ENR/OPEFB composites were observed upon electron beam irradiation. Studies revealed that grafting of the OPEFB fiber with methyl acrylate did not cause appreciable effect to the tensile properties and gel fraction of the composites upon irradiation. The morphology of fractured surfaces of the composites, examined by a scanning electron microscope showed an improvement in the adhesion between the fiber and the matrix was achieved upon grafting of the fiber with methyl acrylate

  6. High-Temperature Performance and Multiscale Damage Mechanisms of Hollow Cellulose Fiber-Reinforced Concrete

    Directory of Open Access Journals (Sweden)

    Liping Guo

    2016-01-01

    Full Text Available Spalling resistance properties and their damage mechanisms under high temperatures are studied in hollow cellulose fiber-reinforced concrete (CFRC used in tunnel structures. Measurements of mass loss, relative dynamic elastic modulus, compressive strength, and splitting tensile strength of CFRC held under high temperatures (300, 600, 800, and 1050°C for periods of 2.5, 4, and 5.5 h were carried out. The damage mechanism was analyzed using scanning electron microscopy, mercury intrusion porosimetry, thermal analysis, and X-ray diffraction phase analysis. The results demonstrate that cellulose fiber can reduce the performance loss of concrete at high temperatures; the effect of holding time on the performance is more noticeable below 600°C. After exposure to high temperatures, the performance of ordinary concrete deteriorates faster and spalls at 700–800°C; in contrast, cellulose fiber melts at a higher temperature, leaving a series of channels in the matrix that facilitate the release of the steam pressure inside the CFRC. Hollow cellulose fibers can thereby slow the damage caused by internal stress and improve the spalling resistance of concrete under high temperatures.

  7. Fabrication and evaluation of mechanical properties of alkaline treated sisal/hemp fiber reinforced hybrid composite

    Science.gov (United States)

    Venkatesha Gupta, N. S.; Akash; Sreenivasa Rao, K. V.; kumar, D. S. Arun

    2016-09-01

    Fiber reinforced polymer composite have acquired a dominant place in variety of applications because of higher specific strength and modulus, the plant based natural fiber are partially replacing currently used synthetic fiber as reinforcement for polymer composites. In this research work going to develop a new material which posses a strength to weight ratio that for exceed any of the present material. The hybrid composite sisal/hemp reinforced with epoxy matrix has been developed by compression moulding technique according to ASTM standards. Sodium hydroxide (NAOH) was used as alkali for treating the fibers. The amount of reinforcement was varied from 10% to 50% in steps of 10%. Prepared specimens were examined for mechanical properties such as tensile strength, flexural strength, and hardness. Hybrid composite with 40wt% sisal/hemp fiber were found to posses higher strength (tensile strength = 53.13Mpa and flexural strength = 82.07Mpa) among the fabricated hybrid composite specimens. Hardness value increases with increasing the fiber volume. Morphological examinations are carried out to analyze the interfacial characteristics, internal structure and fractured surfaces by using scanning electron microscope.

  8. Double-Sided Terahertz Imaging of Multilayered Glass Fiber-Reinforced Polymer

    Directory of Open Access Journals (Sweden)

    Przemyslaw Lopato

    2017-06-01

    Full Text Available Polymer matrix composites (PMC play important roles in modern industry. Increasing the number of such structures in aerospace, construction, and automotive applications enforces continuous monitoring of their condition. Nondestructive inspection of layered composite materials is much more complicated process than evaluation of homogenous, (mostly metallic structures. Several nondestructive methods are utilized in this case (ultrasonics, shearography, tap testing, acoustic emission, digital radiography, infrared imaging but none of them gives full description of evaluated structures. Thus, further development of NDT techniques should be studied. A pulsed terahertz method seems to be a good candidate for layered PMC inspection. It is based on picosecond electromagnetic pulses interacting with the evaluated structure. Differences of dielectric parameters enables detection of a particular layer in a layered material. In the case of multilayered structures, only layers close to surface can be detected. The response of deeper ones is averaged because of multiple reflections. In this paper a novel inspection procedure with a data processing algorithm is introduced. It is based on a double-sided measurement, acquired signal deconvolution, and data combining. In order to verify the application of the algorithm stress-subjected glass fiber-reinforced polymer (GFRP was evaluated. The obtained results enabled detection and detailed analysis of delaminations introduced by stress treatment and proved the applicability of the proposed algorithm.

  9. Dynamic Fracture Behavior of Steel Fiber Reinforced Self-Compacting Concretes (SFRSCCs)

    Science.gov (United States)

    Tarifa, Manuel; Cendón, David; Gálvez, Francisco; Alhazmi, Waleed H.

    2017-01-01

    Three-point bending tests on notched beams of three types of steel fiber-reinforced self-compacting concrete (SFRSCC) have been performed by using both a servo-hydraulic machine and a drop-weight impact instrument. The lo ading rates had a range of six orders of magnitude from 2.20 × 10−3 mm/s (quasi-static) to 2.66 × 103 mm/s. These SFRSCCs had the same matrix, but various types of steel fiber (straight and hooked-end) and contents (volume ratios), 0.51%, 0.77% and 1.23%, respectively. The results demonstrate that the fracture energy and the flexural strength increase as the loading rate increases. Moreover, such tendency is relatively moderate at low rates. However, at high rates it is accentuated. For the 0.51% fiber content, the dynamic increase factors of the flexural strength and the fracture energy are approximately 6 and 3, while for the 1.23% fiber content, they are around 4 and 2, respectively. Thus, the higher the fiber content the less rate sensitivity there is. PMID:29113095

  10. Surface free energy analysis of oil palm empty fruit bunches fiber reinforced biocomposites

    Science.gov (United States)

    Suryadi, G. S.; Nikmatin, S.; Sudaryanto; Irmansyah; Sukaryo, S. G.

    2017-05-01

    Study of the size effect of natural fiber from oil palm empty fruit bunches (OPEFB) as filler, onto the contact angle and surface free energy of fiber reinforced biocomposites has been done. The OPEFB fibers were prepared by mechanical milling and sieving to obtain various sizes of fiber (long-fiber, medium-fiber, short-fiber, and microparticle). The biocomposites has been produced by extrusion using single-screw extruder with EFB fiber as filler, recycled Acrylonitrile Butadiene Styrene (ABS) polymer as matrix, and primary antioxidant, acid scavanger, and coupling agent as additives. The obtained biocomposites in form of granular, were made into test piece by injection molding method. Contact angles of water, methanol, and hexane on the surface of biocomposites at room temperature were measured using Phoenix 300 Contact Angle Analyzer. The surface free energy (SFE) and their components were calculated using three previous known methods (Girifalco-Good-Fowkes-Young (GGFY), Owens-Wendt, and van Oss-Chaudhury-Good (vOCG)). The results showed that total SFE of Recycled ABS as control was about 24.38 mJ/m2, and SFE of biocomposites was lower than control, decreased with decreasing of EFB fiber size as biocomposites filler. The statistical analysis proved that there are no statistically significant differences in the value of the SFE calculated with the three different methods.

  11. Stress-temperature-lifetime response of nicalon fiber-reinforced SiC composites in air

    International Nuclear Information System (INIS)

    Lin, Hua-Tay; Becher, P.F.

    1996-01-01

    Time-to-failure tests were conducted in four-point flexure and in air as a function of stress levels and temperatures to study the lifetime response of various Nicalon fiber-reinforced SiC (designated as Nic/SiC) composites with a graphitic interfacial coating. The results indicated that all of the Nic/SiC composites exhibit a similar stress-dependent failure at applied stress greater than a threshold value. In this case, the lifetimes of the composites increased with decrease in both stress level and test temperature. The lifetime of the composites appeared to be relatively insensitive to the thickness of graphitic interface layer and was enhanced somewhat by the addition of oxidation inhibitors. Electron microscopy and oxidation studies indicated that the life of the Nic/SiC composites was governed by the oxidation of the graphitic interfaces and the on of glass(es) in composites due to the oxidation of the fiber and matrix, inhibitor phases

  12. A Constitutive Formulation for the Linear Thermoelastic Behavior of Arbitrary Fiber-Reinforced Composites

    Directory of Open Access Journals (Sweden)

    Melek Usal

    2010-01-01

    Full Text Available The linear thermoelastic behavior of a composite material reinforced by two independent and inextensible fiber families has been analyzed theoretically. The composite material is assumed to be anisotropic, compressible, dependent on temperature gradient, and showing linear elastic behavior. Basic principles and axioms of modern continuum mechanics and equations belonging to kinematics and deformation geometries of fibers have provided guidance and have been determining in the process of this study. The matrix material is supposed to be made of elastic material involving an artificial anisotropy due to fibers reinforcing by arbitrary distributions. As a result of thermodynamic constraints, it has been determined that the free energy function is dependent on a symmetric tensor and two vectors whereas the heat flux vector function is dependent on a symmetric tensor and three vectors. The free energy and heat flux vector functions have been represented by a power series expansion, and the type and the number of terms taken into consideration in this series expansion have determined the linearity of the medium. The linear constitutive equations of the stress and heat flux vector are substituted in the Cauchy equation of motion and in the equation of conservation of energy to obtain the field equations.

  13. Flexural Properties of E Glass and TR50S Carbon Fiber Reinforced Epoxy Hybrid Composites

    Science.gov (United States)

    Dong, Chensong; Sudarisman; Davies, Ian J.

    2013-01-01

    A study on the flexural properties of E glass and TR50S carbon fiber reinforced hybrid composites is presented in this paper. Specimens were made by the hand lay-up process in an intra-ply configuration with varying degrees of glass fibers added to the surface of a carbon laminate. These specimens were then tested in the three-point bend configuration in accordance with ASTM D790-07 at three span-to-depth ratios: 16, 32, and 64. The failure modes were examined under an optical microscope. The flexural behavior was also simulated by finite element analysis, and the flexural modulus, flexural strength, and strain to failure were calculated. It is shown that although span-to-depth ratio shows an influence on the stress-strain relationship, it has no effect on the failure mode. The majority of specimens failed by either in-plane or out-of-plane local buckling followed by kinking and splitting at the compressive GFRP side and matrix cracking combined with fiber breakage at the CFRP tensile face. It is shown that positive hybrid effects exist for the flexural strengths of most of the hybrid configurations. The hybrid effect is noted to be more obvious when the hybrid ratio is small, which may be attributed to the relative position of the GFRP layer(s) with respect to the neutral plane. In contrast to this, flexural modulus seems to obey the rule of mixtures equation.

  14. Dynamic Fracture Behavior of Steel Fiber Reinforced Self-Compacting Concretes (SFRSCCs

    Directory of Open Access Journals (Sweden)

    Xiaoxin Zhang

    2017-11-01

    Full Text Available Three-point bending tests on notched beams of three types of steel fiber-reinforced self-compacting concrete (SFRSCC have been performed by using both a servo-hydraulic machine and a drop-weight impact instrument. The lo ading rates had a range of six orders of magnitude from 2.20 × 10−3 mm/s (quasi-static to 2.66 × 103 mm/s. These SFRSCCs had the same matrix, but various types of steel fiber (straight and hooked-end and contents (volume ratios, 0.51%, 0.77% and 1.23%, respectively. The results demonstrate that the fracture energy and the flexural strength increase as the loading rate increases. Moreover, such tendency is relatively moderate at low rates. However, at high rates it is accentuated. For the 0.51% fiber content, the dynamic increase factors of the flexural strength and the fracture energy are approximately 6 and 3, while for the 1.23% fiber content, they are around 4 and 2, respectively. Thus, the higher the fiber content the less rate sensitivity there is.

  15. Dynamic Fracture Behavior of Steel Fiber Reinforced Self-Compacting Concretes (SFRSCCs).

    Science.gov (United States)

    Zhang, Xiaoxin; Ruiz, Gonzalo; Tarifa, Manuel; Cendón, David; Gálvez, Francisco; Alhazmi, Waleed H

    2017-11-05

    Three-point bending tests on notched beams of three types of steel fiber-reinforced self-compacting concrete (SFRSCC) have been performed by using both a servo-hydraulic machine and a drop-weight impact instrument. The lo ading rates had a range of six orders of magnitude from 2.20 × 10 -3 mm/s (quasi-static) to 2.66 × 10³ mm/s. These SFRSCCs had the same matrix, but various types of steel fiber (straight and hooked-end) and contents (volume ratios), 0.51%, 0.77% and 1.23%, respectively. The results demonstrate that the fracture energy and the flexural strength increase as the loading rate increases. Moreover, such tendency is relatively moderate at low rates. However, at high rates it is accentuated. For the 0.51% fiber content, the dynamic increase factors of the flexural strength and the fracture energy are approximately 6 and 3, while for the 1.23% fiber content, they are around 4 and 2, respectively. Thus, the higher the fiber content the less rate sensitivity there is.

  16. Research of ceramic matrix for a safe immobilization of radioactive sludge waste

    Science.gov (United States)

    Dorofeeva, Ludmila; Orekhov, Dmitry

    2018-03-01

    The research and improvement of the existing method for radioactive waste hardening by fixation in a ceramic matrix was carried out. For the samples covered with the sodium silicate and tested after the storage on the air the speed of a radionuclides leaching was determined. The properties of a clay ceramics and the optimum conditions of sintering were defined. The experimental data about the influence of a temperature mode sintering, water quantities, sludge and additives in the samples on their mechanical durability and a water resistance were obtained. The comparative analysis of the conducted research is aimed at improvement of the existing method of the hardening radioactive waste by inclusion in a ceramic matrix and reveals the advantages of the received results over analogs.

  17. In Vitro Study of Transverse Strength of Fiber Reinforced Composites

    Directory of Open Access Journals (Sweden)

    Z. Hashemi

    2011-09-01

    Full Text Available Objective: Reinforcement with fiber is an effective method for considerable improvement in flexural properties of indirect composite resin restorations. The aim of this in-vitrostudy was to compare the transverse strength of composite resin bars reinforced with preimpregnated and non-impregnated fibers.Materials and Methods: Thirty six bar type composite resin specimens (3×2×25 mmwere constructed in three groups. The first group was the control group (C without any fiber reinforcement. The specimens in the second group (P were reinforced with preimpregnatedfibers and the third group (N with non-impregnated fibers. These specimens were tested by the three-point bending method to measure primary transverse strength.Data were statistically analyzed with one way ANOVA and Tukey's tests.Results: There was a significant difference among the mean primary transverse strength in the three groups (P<0.001. The post-hoc (Tukey test showed that there was a significant difference between the pre-impregnated and control groups in their primary transversestrength (P<0.001. Regarding deflection, there was also a significant difference among the three groups (P=0.001. There were significant differences among the mean deflection of the control group and two other groups (PC&N<.001 and PC&P=.004, but there was no significant difference between the non- and pre-impregnated groups (PN&P=.813.Conclusion: Within the limitations of this study, it was concluded that reinforcement with fiber considerably increased the transverse strength of composite resin specimens, but impregnationof the fiber used implemented no significant difference in the transverse strength of composite resin samples.

  18. Development and optimization of manufacture process for heat resistant fibre reinforced ceramic matrix composites

    Czech Academy of Sciences Publication Activity Database

    Glogar, Petr; Hron, P.; Burian, M.; Balík, Karel; Černý, Martin; Sucharda, Zbyněk; Vymazalová, Z.; Červencl, J.; Pivoňka, M.

    -, č. 14 (2005), 25-32 ISSN 1214-9691 R&D Projects: GA ČR(CZ) GA106/02/0177 Institutional research plan: CEZ:AV0Z30460519 Keywords : polysiloxane resin * pyrolysis * ceramic matrix composite Subject RIV: JI - Composite Materials

  19. Properties of porous FeAlOy/FeAlx ceramic matrix composite ...

    Indian Academy of Sciences (India)

    Abstract. Porous ceramic matrix composites FeAlOy/FeAlx with incorporated metal inclusions (cermets) were synthesized by pressureless method, which includes hydrothermal treatment of mechanically alloyed FeAl powder followed by calcination. Their main structural, textural and mechanical features are described.

  20. Properties of porous FeAlOy/FeAlx ceramic matrix composite ...

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science; Volume 36; Issue 7. Properties of porous FeAlO/FeAl ceramic matrix composite influenced by mechanical activation of FeAl powder. V Usoltsev S Tikhov A Salanov V Sadykov G Golubkova O Lomovskii. Volume 36 Issue 7 December 2013 pp 1195-1200 ...

  1. Flexural strength using Steel Plate, Carbon Fiber Reinforced Polymer (CFRP) and Glass Fiber Reinforced Polymer (GFRP) on reinforced concrete beam in building technology

    Science.gov (United States)

    Tarigan, Johannes; Patra, Fadel Muhammad; Sitorus, Torang

    2018-03-01

    Reinforced concrete structures are very commonly used in buildings because they are cheaper than the steel structures. But in reality, many concrete structures are damaged, so there are several ways to overcome this problem, by providing reinforcement with Fiber Reinforced Polymer (FRP) and reinforcement with steel plates. Each type of reinforcements has its advantages and disadvantages. In this study, researchers discuss the comparison between flexural strength of reinforced concrete beam using steel plates and Fiber Reinforced Polymer (FRP). In this case, the researchers use Carbon Fiber Reinforced Polymer (CFRP) and Glass Fiber Reinforced Polymer (GFRP) as external reinforcements. The dimension of the beams is 15 x 25 cm with the length of 320 cm. Based on the analytical results, the strength of the beam with CFRP is 1.991 times its initial, GFRP is 1.877 times while with the steel plate is 1.646 times. Based on test results, the strength of the beam with CFRP is 1.444 times its initial, GFRP is 1.333 times while the steel plate is 1.167 times. Based on these test results, the authors conclude that beam with CFRP is the best choice for external reinforcement in building technology than the others.

  2. Effect of tool wear on quality of carbon fiber reinforced polymer laminate during edge trimming

    Science.gov (United States)

    Hamedanianpour, Hossein

    Polymer matrix composites, especially carbon fiber reinforced polymers (CFRPs) are vastly used in different high technology industries, including aerospace, automotive and wind energy. Normally, when CFRPs are cured to near net shape, finishing operations such as trimming, milling or drilling are used to remove excess materials. The quality of these finishing operations is highly essential at the level of final assembly. The present study aims to study the effect of cutting tool wear on the resulting quality for the trimming process of high performance CFRP laminates, in the aerospace field. In terms of quality parameters, the study focuses on surface roughness and material integrity damages (uncut fibers, fiber pullout, delamination or thermal damage of the matrix), which could jeopardize the mechanical performance of the components. In this study, a 3/8 inch diameter CVD diamond coated carbide tool with six flutes was used to trim 24-ply carbon fiber laminates. Cutting speeds ranging from 200 m/min to 400 m/min and feed rates ranging from 0.3048 mm/rev to 0.4064 mm/rev were used in the experiments. The results obtained using a scanning electron microscope (SEM) showed increasing defect rates with an increase in tool wear. The worst surface integrity, including matrix cracking, fiber pull-out and empty holes, was also observed for plies oriented at -45° degrees. For the surface finish, it was observed that an increase in tool wear resulted in a decrease in surface roughness. Regarding tool wear, a lower rate was observed at lower feed rates and higher cutting speeds, while a higher tool wear rate was observed at intermediate values of our feed rate and cutting speed ranges.

  3. Recent advances in understanding the reinforcing ability and mechanism of carbon nanotubes in ceramic matrix composites

    International Nuclear Information System (INIS)

    Estili, Mehdi; Sakka, Yoshio

    2014-01-01

    Since the discovery of carbon nanotubes (CNTs), commonly referred to as ultimate reinforcement, the main purpose for fabricating CNT–ceramic matrix composites has been mainly to improve the fracture toughness and strength of the ceramic matrix materials. However, there have been many studies reporting marginal improvements or even the degradation of mechanical properties. On the other hand, those studies claiming noticeable toughening measured using indentation, which is an indirect/unreliable characterization method, have not demonstrated the responsible mechanisms applicable to the nanoscale, flexible CNTs; instead, those studies proposed those classical methods applicable to microscale fiber/whisker reinforced ceramics without showing any convincing evidence of load transfer to the CNTs. Therefore, the ability of CNTs to directly improve the macroscopic mechanical properties of structural ceramics has been strongly questioned and debated in the last ten years. In order to properly discuss the reinforcing ability (and possible mechanisms) of CNTs in a ceramic host material, there are three fundamental questions to our knowledge at both the nanoscale and macroscale levels that need to be addressed: (1) does the intrinsic load-bearing ability of CNTs change when embedded in a ceramic host matrix?; (2) when there is an intimate atomic-level interface without any chemical reaction with the matrix, could one expect any load transfer to the CNTs along with effective load bearing by them during crack propagation?; and (3) considering their nanometer-scale dimensions, flexibility and radial softness, are the CNTs able to improve the mechanical properties of the host ceramic matrix at the macroscale when individually, intimately and uniformly dispersed? If so, how? Also, what is the effect of CNT concentration in such a defect-free composite system? Here, we briefly review the recent studies addressing the above fundamental questions. In particular, we discuss the new

  4. Sol-gel coatings of ceramic fibres for composites with ceramic matrix

    International Nuclear Information System (INIS)

    Maier, B.; Grathwohl, G.; Spallek, M.; Pannhorst, W.

    1992-01-01

    The aim of this work was to show the feasibility in principle of sol-gel coating of ceramic reinforcement components for composites from technical aspects as well. The complexity of the coating task rises with the transition from individual fibres to bundles of fibres of different thickness to weaves, and finally to composites. (orig.) [de

  5. Fiber-Reinforced Epoxy Composites and Methods of Making Same Without the Use of Oven or Autoclave

    Science.gov (United States)

    Barnell, Thomas J. (Inventor); Rauscher, Michael D. (Inventor); Stienecker, Rick D. (Inventor); Nickerson, David M. (Inventor); Tong, Tat H. (Inventor)

    2016-01-01

    Method embodiments for producing a fiber-reinforced epoxy composite comprise providing a mold defining a shape for a composite, applying a fiber reinforcement over the mold, covering the mold and fiber reinforcement thereon in a vacuum enclosure, performing a vacuum on the vacuum enclosure to produce a pressure gradient, insulating at least a portion of the vacuum enclosure with thermal insulation, infusing the fiber reinforcement with a reactive mixture of uncured epoxy resin and curing agent under vacuum conditions, wherein the reactive mixture of uncured epoxy resin and curing agent generates exothermic heat, and producing the fiber-reinforced epoxy composite having a glass transition temperature of at least about 100.degree. C. by curing the fiber reinforcement infused with the reactive mixture of uncured epoxy resin and curing agent by utilizing the exothermically generated heat, wherein the curing is conducted inside the thermally insulated vacuum enclosure without utilization of an external heat source or an external radiation source.

  6. Evaluation of ceramic materials as a matrix for solidification of alpha-bearing wastes

    International Nuclear Information System (INIS)

    Riege, U.; Dippel, Th.; Kartes, H.

    1981-01-01

    At the Karlsruhe Nuclear Research Center ceramic materials are evaluated as a matrix for alpha-bearing wastes, i.e. dissolver residues from reprocessing, liquid alpha-concentrates, ash and residues from the acid-digestion process. Kaolin, clay, feldspar and quartz are selected as the raw materials as in the ceramic industry. Incorporation of radioactive wastes in a ceramic matrix requires mixing of the powdered matrix material with the waste, forming pellets, which are then dried and sintered. Standard machines and equipment are used for these operations. After several inactive runs the following radioactive products were prepared which contained 20 wt% of waste: 2 kg ceramic product containing ash from incineration with a plutonium content of 15 wt%; 15 kg ceramic product with concentrates of liquid alpha-bearing wastes containing uranium, plutonium and americium; (total plutonium content: 11 g); and alpha-doped simulates of dissolver sludges and residues from the acid-digestion process. The density of the product was 1.7-2.3 g/cm 3 . The compression strength of the low-porosity samples was similar to that of standard ceramic ware. Microprobe investigations and α-autoradiographs showed a homogeneous distribution of the actinides in the product. The leaching experiments were performed at room temperature in distilled water and salt brine according to the ISO draft conditions. The leaching rates for plutonium ranged from 10 -6 to 10 -8 g.cm -2 .d -1 . To study the long-term radiation stability, samples containing 241 AmO 2 were prepared. After two years the samples had received a dose of about 2x10 11 rad. Other samples containing 238 PuO 2 had received a dose of 1x10 11 rad within nine months. Compared with unirradiated samples no significant changes were observed in the leach-rates and in the compression strength

  7. Thermal Conductivity Measurement and Analysis of Fully Ceramic Microencapsulated fuel

    International Nuclear Information System (INIS)

    Lee, H. G.; Kim, D. J.; Park, J. Y.; Kim, W. J.; Lee, S. J.

    2015-01-01

    FCM nuclear fuel is composed of tristructural isotropic(TRISO) fuel particle and SiC ceramic matrix. SiC ceramic matrix play an essential part in protecting fission product. In the FCM fuel concept, fission product is doubly protected by TRISO coating layer and SiC ceramic matrix in comparison with the current commercial UO2 fuel system of LWR. In addition to a safety enhancement of FCM fuel, thermal conductivity of SiC ceramic matrix is better than that of UO2 fuel. Because the centerline temperature of FCM fuel is lower than that of the current UO2 fuel due to the difference of thermal conductivity of fuel, an operational release of fission products from the fuel can be reduced. SiC ceramic has attracted for nuclear fuel application due to its high thermal conductivity properties with good radiation tolerant properties, a low neutron absorption cross-section and a high corrosion resistance. Thermal conductivity of ceramic matrix composite depends on the thermal conductivity of each component and the morphology of reinforcement materials such as fibers and particles. There are many results about thermal conductivity of fiber-reinforced composite like as SiCf/SiC composite. Thermal conductivity of SiC ceramics and FCM pellets with the volume fraction of TRISO particles were measured and analyzed by analytical models. Polycrystalline SiC ceramics and FCM pellets with TRISO particles were fabricated by hot press sintering with sintering additives. Thermal conductivity of the FCM pellets with TRISO particles of 0 vol.%, 10 vol.%, 20 vol.%, 30 vol.% and 40 vol.% show 68.4, 52.3, 46.8, 43.0 and 34.5 W/mK, respectively. As the volume fraction of TRISO particles increased, the measured thermal conductivity values closely followed the prediction of Maxwell's equation

  8. Additive Manufacturing of Silicon Carbide-Based Ceramic Matrix Composites: Technical Challenges and Opportunities

    Science.gov (United States)

    Singh, Mrityunjay; Halbig, Michael C.; Grady, Joseph E.

    2016-01-01

    Advanced SiC-based ceramic matrix composites offer significant contributions toward reducing fuel burn and emissions by enabling high overall pressure ratio (OPR) of gas turbine engines and reducing or eliminating cooling air in the hot-section components, such as shrouds, combustor liners, vanes, and blades. Additive manufacturing (AM), which allows high value, custom designed parts layer by layer, has been demonstrated for metals and polymer matrix composites. However, there has been limited activity on additive manufacturing of ceramic matrix composites (CMCs). In this presentation, laminated object manufacturing (LOM), binder jet process, and 3-D printing approaches for developing ceramic composite materials are presented. For the laminated object manufacturing (LOM), fiber prepreg laminates were cut into shape with a laser and stacked to form the desired part followed by high temperature heat treatments. For the binder jet, processing optimization was pursued through silicon carbide powder blending, infiltration with and without SiC nano powder loading, and integration of fibers into the powder bed. Scanning electron microscopy was conducted along with XRD, TGA, and mechanical testing. Various technical challenges and opportunities for additive manufacturing of ceramics and CMCs will be presented.

  9. One-Year Outcomes of Total Meniscus Reconstruction Using a Novel Fiber-Reinforced Scaffold in an Ovine Model.

    Science.gov (United States)

    Patel, Jay M; Merriam, Aaron R; Culp, Brian M; Gatt, Charles J; Dunn, Michael G

    2016-04-01

    Meniscus injuries and resulting meniscectomies lead to joint deterioration, causing pain, discomfort, and instability. Tissue-engineered devices to replace the meniscus have not shown consistent success with regard to function, mechanical integrity, or protection of cartilage. To evaluate a novel resorbable polymer fiber-reinforced meniscus reconstruction scaffold in an ovine model for 52 weeks and assess its integrity, tensile and compressive mechanics, cell phenotypes, matrix organization and content, and protection of the articular cartilage surfaces. Controlled laboratory study. Eight skeletally mature ewes were implanted with the fiber-reinforced scaffold after total meniscectomy, and 2 additional animals had untreated total meniscectomies. Animals were sacrificed at 52 weeks, and the explants and articular surfaces were analyzed macroscopically. Explants were characterized by ultimate tensile testing, confined compression creep testing, and biochemical, histological, and immunohistochemical analyses. Cartilage damage was characterized using the Mankin score on histologic slides from both the femur and tibia. One sheep was removed from the study because of a torn extensor tendon; the remaining 7 explants remained fully intact and incorporated into the bone tunnels. All explants exhibited functional tensile loads, tensile stiffnesses, and compressive moduli. Fibrocartilagenous repair with both types 1 and 2 collagen were observed, with areas of matrix organization and biochemical content similar to native tissue. Narrowing in the body region was observed in 5 of 7 explants. Mankin scores showed less cartilage damage in the explant group (femoral condyle: 3.43 ± 0.79, tibial plateau: 3.50 ± 1.63) than in the meniscectomy group (femoral condyle: 8.50 ± 3.54, tibial plateau: 6.75 ± 2.47) and were comparable with Mankin scores at the previously reported 16- and 32-week time points. A resorbable fiber-reinforced meniscus scaffold supports formation of functional

  10. Bibliography on Ceramic Matrix Composites and Reinforcing Whiskers, Platelets, and Fibers, 1970-1990

    Science.gov (United States)

    1993-08-01

    Ceram. Soc. Bull. Interface Structure and Matrix Crystallization 68 (2), 429-442, 1989 in SiC (Nicalon)- Pyrex Composites (AD D143 179) Murthy, V. S. R...Int. SAMPE Tech. Conf, 21st 1989 7.1.0.76 21, 903-14, Sep 1989 Iosipescu In-Plane Shear Tests of SiC- Pyrex (AD D250 284 Composites Seerat-Un-Nabi, A...Mechanical Properties of Particle Composites 5 (1), 1-4, 1989 Haber, R. A. Wachtman Jr., J. B.(1AD D142 6958) Bol. Soc. Esp. Ceram. Vidrio 29 (2), 69-72

  11. Development of wind turbine towers using fiber reinforced polymers

    Science.gov (United States)

    Ungkurapinan, Nibong

    With an ongoing trend in the wind turbine market, the size of wind turbines has been increasing continuously. Larger wind turbines imply an increase in size, weight, and loads acting on the wind turbine tower. This requires towers to be stronger and stiffer, and consequently leads to bigger tower diameters. Because of their size and weight, transportation and erection require heavy equipment that makes the use of such towers prohibitive in remote communities. To tackle this problem, a research program was initiated at the University of Manitoba to develop the technology required for the fabrication of wind turbine towers constructed of fiber reinforced polymers (FRP) for use in remote communities in Canada. The research program was carried out in stages. During the first stage, a feasibility study and an analytical investigation on various shapes of FRP towers were conducted. The concept of a multi-cellular composite tower was examined in great detail and the finite element results showed that such a tower could result in almost 45 percent reduction in weight. In the second stage of this research program, a robotic filament winding machine was designed and constructed in the Composites Laboratory of the University of Manitoba. It was used to fabricate the multi-cell tower specimens for testing. The third stage of the research program involved the experimental investigation, which was carried out in three phases. In the first phase, two single cell specimens were tested to failure under lateral loading. The specimens were 8 ft (2.44 m) long. The second phase involved the testing of two single cells loaded in compression. The third phase of the experimental investigation involved the testing of two eight-cell jointed tower specimens. The specimens were octagonal and tapered, with a diameter of 21.4 in (543 mm) at the base and 17.4 in (441 mm) at the top. They were 16 ft (4.88 m) in height and tested as cantilever under static loading. Local buckling was the dominant

  12. "A New Class of Creep Resistant Oxide/Oxide Ceramic Matrix Composites"

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Mohit Jain, Dr. Ganesh Skandan, Prof. Roger Cannon, Rutgers University

    2007-03-30

    Despite recent progress in the development of SiC-SiC ceramic matrix composites (CMCs), their application in industrial gas turbines for distributed energy (DE) systems has been limited. The poor oxidation resistance of the non-oxide ceramics warrants the use of envrionmental barrier coatings (EBCs), which in turn lead to issues pertaining to life expectancy of the coatings. On the other hand, oxide/oxide CMCs are potential replacements, but their use has been limited until now due to the poor creep resistance at high temperatures, particularly above 1200 oC: the lack of a creep resistant matrix has been a major limiting factor. Using yttrium aluminum garnet (YAG) as the matrix material system, we have advanced the state-of-the-art in oxide/oxide CMCs by introducing innovations in both the structure and composition of the matrix material, thereby leading to high temperature matrix creep properties not achieved until now. An array of YAG-based powders with a unique set of particle characteristics were produced in-house and sintered to full density and compressive creep data was obtained. Aided in part by the composition and the microstructure, the creep rates were found to be two orders of magnitude smaller than the most creep resistant oxide fiber available commercially. Even after accounting for porosity and a smaller matrix grain size in a practical CMC component, the YAG-based matrix material was found to creep slower than the most creep resistant oxide fiber available commercially.

  13. Mesoscale Characterization of Fracture Properties of Steel Fiber-Reinforced Concrete Using a Lattice–Particle Model

    Directory of Open Access Journals (Sweden)

    Francisco Montero-Chacón

    2017-02-01

    Full Text Available This work presents a lattice–particle model for the analysis of steel fiber-reinforced concrete (SFRC. In this approach, fibers are explicitly modeled and connected to the concrete matrix lattice via interface elements. The interface behavior was calibrated by means of pullout tests and a range for the bond properties is proposed. The model was validated with analytical and experimental results under uniaxial tension and compression, demonstrating the ability of the model to correctly describe the effect of fiber volume fraction and distribution on fracture properties of SFRC. The lattice–particle model was integrated into a hierarchical homogenization-based scheme in which macroscopic material parameters are obtained from mesoscale simulations. Moreover, a representative volume element (RVE analysis was carried out and the results shows that such an RVE does exist in the post-peak regime and until localization takes place. Finally, the multiscale upscaling strategy was successfully validated with three-point bending tests.

  14. Mesoscale Characterization of Fracture Properties of Steel Fiber-Reinforced Concrete Using a Lattice–Particle Model

    Science.gov (United States)

    Montero-Chacón, Francisco; Cifuentes, Héctor; Medina, Fernando

    2017-01-01

    This work presents a lattice–particle model for the analysis of steel fiber-reinforced concrete (SFRC). In this approach, fibers are explicitly modeled and connected to the concrete matrix lattice via interface elements. The interface behavior was calibrated by means of pullout tests and a range for the bond properties is proposed. The model was validated with analytical and experimental results under uniaxial tension and compression, demonstrating the ability of the model to correctly describe the effect of fiber volume fraction and distribution on fracture properties of SFRC. The lattice–particle model was integrated into a hierarchical homogenization-based scheme in which macroscopic material parameters are obtained from mesoscale simulations. Moreover, a representative volume element (RVE) analysis was carried out and the results shows that such an RVE does exist in the post-peak regime and until localization takes place. Finally, the multiscale upscaling strategy was successfully validated with three-point bending tests. PMID:28772568

  15. Tribological properties of solid lubricants filled glass fiber reinforced polyamide 6 composites

    International Nuclear Information System (INIS)

    Li, Du-Xin; You, Yi-Lan; Deng, Xin; Li, Wen-Juan; Xie, Ying

    2013-01-01

    Highlights: ► The tribological properties of GF/PA6 improved by the incorporation of PTFE. ► PTFE and UHMWPE exhibited a synergism effect on reducing friction coefficient. ► Solid lubricants enlarged the range of applied velocity for GF/PA6 composite. - Abstract: The main purpose of this paper is to further optimize the tribological properties of the glass fiber reinforced PA6 (GF/PA6,15/85 by weight) for high performance friction materials using single or combinative solid lubricants such as Polytetrafluroethylene (PTFE), ultra-high molecular weight polyethylene (UHMWPE) and the combination of both of them. Various polymer blends, where GF/PA6 acts as the polymer matrix and solid lubricants as the dispersed phase were prepared by injection molding. The tribological properties of these materials and the synergism as a result of the incorporation of both PTFE and UHMWPE were investigated. The results showed that, at a load of 40 N and a velocity of 200 rpm, PTFE was effective in improving the tribological capabilities of matrix material. On the contrary, UHMWPE was not conductive to maintain the structure integrity of GF/PA6 composite and harmful to the friction and wear properties. The combination of PTFE and UHMWPE showed synergism on further reducing the friction coefficient of the composites filled with either PTFE or UHMWPE only. Effects of load and velocity on tribological behavior were also discussed. To further understand the wear mechanism, the worn surfaces were examined by scanning electron microscopy

  16. Effectiveness of Fiber Reinforcement on the Mechanical Properties and Shrinkage Cracking of Recycled Fine Aggregate Concrete.

    Science.gov (United States)

    Nam, Jeongsoo; Kim, Gyuyong; Yoo, Jaechul; Choe, Gyeongcheol; Kim, Hongseop; Choi, Hyeonggil; Kim, Youngduck

    2016-02-26

    This paper presents an experimental study conducted to investigate the effect of fiber reinforcement on the mechanical properties and shrinkage cracking of recycled fine aggregate concrete (RFAC) with two types of fiber-polyvinyl alcohol (PVA) and nylon. A small fiber volume fraction, such as 0.05% or 0.1%, in RFAC with polyvinyl alcohol or nylon fibers was used for optimum efficiency in minimum quantity. Additionally, to make a comparative evaluation of the mechanical properties and shrinkage cracking, we examined natural fine aggregate concrete as well. The test results revealed that the addition of fibers and fine aggregates plays an important role in improving the mechanical performance of the investigated concrete specimens as well as controlling their cracking behavior. The mechanical properties such as compressive strength, splitting tensile strength, and flexural strength of fiber-reinforced RFAC were slightly better than those of non-fiber-reinforced RFAC. The shrinkage cracking behavior was examined using plat-ring-type and slab-type tests. The fiber-reinforced RFAC showed a greater reduction in the surface cracks than non-fiber-reinforced concrete. The addition of fibers at a small volume fraction in RFAC is more effective for drying shrinkage cracks than for improving mechanical performance.

  17. Effectiveness of Fiber Reinforcement on the Mechanical Properties and Shrinkage Cracking of Recycled Fine Aggregate Concrete

    Science.gov (United States)

    Nam, Jeongsoo; Kim, Gyuyong; Yoo, Jaechul; Choe, Gyeongcheol; Kim, Hongseop; Choi, Hyeonggil; Kim, Youngduck

    2016-01-01

    This paper presents an experimental study conducted to investigate the effect of fiber reinforcement on the mechanical properties and shrinkage cracking of recycled fine aggregate concrete (RFAC) with two types of fiber—polyvinyl alcohol (PVA) and nylon. A small fiber volume fraction, such as 0.05% or 0.1%, in RFAC with polyvinyl alcohol or nylon fibers was used for optimum efficiency in minimum quantity. Additionally, to make a comparative evaluation of the mechanical properties and shrinkage cracking, we examined natural fine aggregate concrete as well. The test results revealed that the addition of fibers and fine aggregates plays an important role in improving the mechanical performance of the investigated concrete specimens as well as controlling their cracking behavior. The mechanical properties such as compressive strength, splitting tensile strength, and flexural strength of fiber-reinforced RFAC were slightly better than those of non-fiber-reinforced RFAC. The shrinkage cracking behavior was examined using plat-ring-type and slab-type tests. The fiber-reinforced RFAC showed a greater reduction in the surface cracks than non-fiber-reinforced concrete. The addition of fibers at a small volume fraction in RFAC is more effective for drying shrinkage cracks than for improving mechanical performance. PMID:28773256

  18. Seismic Behavior of Substandard RC Columns Retrofitted with Embedded Aramid Fiber Reinforced Polymer (AFRP Reinforcement

    Directory of Open Access Journals (Sweden)

    Engin C. Seyhan

    2015-12-01

    Full Text Available Many existing reinforced concrete structures were constructed with substandard characteristics. Low quality concrete, poor transverse reinforcement details and insufficient flexural strength are among the most common deficiencies. While substandard structures are in need of retrofitting, particularly in seismic areas, problems such as high costs and disturbance to occupants are major obstacles for retrofit interventions. Fiber reinforced polymers can provide feasible retrofit solutions with minimum disturbance to occupants. In this study, the basic aim is to investigate the flexural seismic performance of substandard reinforced concrete columns retrofitted with embedded longitudinal fiber reinforced polymer reinforcement without increasing the original dimensions of the columns. In the experimental study, the reference and retrofitted columns were tested under constant vertical and reversed cyclic lateral loads. Three different connection methods of aramid fiber reinforced polymer reinforcement to the footing were investigated experimentally. A significant enhancement was obtained in lateral flexural strength through the proposed retrofitting method. Furthermore, it was observed that the cyclic lateral drift capacities of the retrofitted columns were as high as 3%, which can be deemed as quite satisfactory against seismic actions. The comparison of the experimental data with analytical calculations revealed that a conventional design approach assuming composite action between concrete and fiber reinforced polymer reinforcement can be used for flexural retrofit design. Experimental results also demonstrated that strain limit for longitudinal fiber reinforced polymer (FRP reinforcement should be remarkably lower in case of reversed cyclic loading conditions.

  19. The recycling of comminuted glass-fiber-reinforced resin from electronic waste.

    Science.gov (United States)

    Duan, Huabo; Jia, Weifeng; Li, Jinhui

    2010-05-01

    The reuse of comminuted glass-fiber-reinforced resin with various granularities gathered from printed circuit manufacturing residues was investigated. As fillers, these residues were converted into polymeric composite board by an extrusion and injection process using polypropylene as a bonding agent. The mechanical properties of the reproduced composite board were examined by considering the effects of mass fraction and glass-fiber distribution. Interfacial-layer micrograph analysis of the composite material fracture surface was used to study the fiber reinforcement mechanism. Results showed that using comminuted glass-fiber-reinforced resin as a filler material greatly enhanced the performance properties of the composite board. Although the length and diameter of filler varied, these variations had no appreciable effect on the mechanical properties of the processed board. Maximum values of 48.30 MPa for flexural strength, 31.34 MPa for tensile strength, and 31.34 J/m for impact strength were achieved from a composite board containing mass fractions of 30, 10, and 20% glass-fiber-reinforced resin waste, respectively. It was found that the maximum amount of recyclate that could be added to a composite board was 30% of weight. Beyond these percentages, the materials blend became unmanageable and the mixture less amenable to impregnation with fiber. Presented studies indicated that comminuted glass-fiber-reinforced resin waste-filled polypropylene composites are promising candidates for structural applications where high stiffness and fracture resistance are required.

  20. Effect of net fiber reinforcement surface treatment on soft denture liner retention and longevity.

    Science.gov (United States)

    Hatamleh, Muhanad M; Maryan, Christopher J; Silikas, Nick; Watts, David C

    2010-06-01

    To evaluate shear bond strength of Molloplast-B soft liner attached to different acrylic surfaces (smooth, rough, and Sticktech net fiber-reinforced interfaces) after 3000 thermal cycles. Sixty-nine specimens were fabricated by attaching Molloplast-B soft liner to acrylic bases of three interfaces (n= 23); smooth (Group 1, control), rough (Group 2), and Sticktech net fiber-reinforced interface (Group 3). The specimens underwent 3000 thermocycles (5 and 55 degrees C) before being subject to a shear bond test at 2 mm/min crosshead speed. Debonding sites were investigated using an optical microscope at 40x magnification. Bond failures were categorized as adhesive, cohesive, or mixed. Mean (SD) bond strength values (MPa) were: 0.71 (0.15); 0.63 (0.07); and 0.83 (0.12) for smooth, rough, and fiber-reinforced acrylic interfaces, respectively. The mean values were analyzed using one-way ANOVA and Bonferroni post hoc test for pairwise comparisons (p< or = 0.05). The net fiber-reinforced acrylic interface exhibited a statistically significantly higher bond strength value when compared to smooth and rough acrylic interfaces (P= 0.003 and P= 0.000, respectively). Modes of failure were mainly cohesive (91%), followed by mixed failures (9%). Molloplast-B exhibited a stronger bond to StickTech Net fiber-reinforced surfaces when compared to smooth and rough acrylic interfaces after thermocycling. This may enhance prosthesis serviceability during clinical use.

  1. Inspeção termográfica de danos por impacto em laminados de matriz polimérica reforçados por fibras de carbono Thermographic inspection of impact damage in carbon fiber-reinforcing polymer matrix laminates

    Directory of Open Access Journals (Sweden)

    José R. Tarpani

    2009-01-01

    Full Text Available Laminados compósitos com matrizes poliméricas, respectivamente termorrígida e termoplástica, fortalecidas com fibras contínuas de carbono foram submetidos a impacto único transversal com diferentes níveis de energia. Os danos impingidos aos materiais estruturais foram avaliados por termografia ativa infravermelha na modalidade transmissão. Em geral, os termogramas do laminado termoplástico apresentaram indicações mais claras e bem definidas dos danos causados por impacto, se comparados aos do compósito termorrígido. O aquecimento convectivo das amostras por fluxo controlado de ar quente se mostrou mais eficaz que o realizado por irradiação, empregando-se lâmpada de filamento. Observou-se também que tempos mais longos de aquecimento favoreceram a visualização dos danos. O posicionamento da face impactada do espécime, relativamente à câmera infravermelha e à fonte de calor, não afetou a qualidade dos termogramas no caso do laminado termorrígido, enquanto que influenciou significativamente os termogramas do compósito termoplástico. Os resultados permitiram concluir que a termografia infravermelha é um método de ensaio não-destrutivo simples, robusto e confiável para a detecção de danos por impacto tão leve quanto 5 J em laminados compósitos poliméricos reforçados com fibras de carbono.Continuous carbon fiber reinforced thermoset and thermoplastic composite laminates were exposed to single transversal impact with different energy levels. The damages impinged to the structural materials were evaluated by active infrared thermography in the transmission mode. In general, the thermoplastic laminate thermograms showed clearer damage indications than those from the thermosetting composite. The convective heating of the samples by controlled hot air flow was more efficient than via irradiation using a filament lamp. It was also observed that longer heating times improved the damage visualization. The positioning of the

  2. Strengthening of porous matrix materials with evaporation/condensation sintering for composite materials applications

    Science.gov (United States)

    Haslam, Jeffery John

    1998-12-01

    The need for improved fuel economy and reduced environmental emissions from power turbines has prompted the development of high temperature fiber composite materials. One use of these materials is for liners of the hot combustion regions of jet engines and land based power turbines. Stability of the composite materials against oxidative damage during long term use at high temperatures has motivated recent research into fiber composite materials composed entirely of oxide ceramics. All-oxide fiber reinforced composites containing porous, strongly bonded matrices have become of interest. The porosity provides for crack deflection along the fibers to prevent catastrophic failure of the fiber reinforcements. A new application of a processing method that produces evaporation/condensation sintering was employed to prevent shrinkage of the matrix. This processing method and the properties of the matrix, fibers, and composite were evaluated in this work. Producing a matrix without shrinkage is important to prevent undesirable crack-like voids from forming in the matrix. These voids are caused by constraint against shrinkage by the fiber reinforcements. Dry hydrogen chloride gas produced a reactive gas atmosphere that was used to sinter the zirconia particles with minimal shrinkage because the gas promotes evaporation/condensation sintering with zirconia. Sintering of samples that did not contain fiber reinforcements was studied to evaluate the properties of the matrix material. The sintering of monoclinic, tetragonal, and cubic zirconias in the reactive gas atmosphere was compared. Additions of mullite (which did not sinter significantly at processing temperatures) further reduced the shrinkage. The effects of the processing conditions on the sintering shrinkage, microstructure development, and mechanical properties were studied. Cubic and monoclinic zirconia coarsened significantly in the HCl gas sintering atmosphere. The coarsening of the particles during the sintering

  3. Effects of Interface Coating and Nitride Enhancing Additive on Properties of Hi-Nicalon SiC Fiber Reinforced Reaction-Bonded Silicon Nitride Composites

    Science.gov (United States)

    Bhatt, Ramakrishana T.; Hull, David R.; Eldridge, Jeffrey I.; Babuder, Raymond

    2000-01-01

    Strong and tough Hi-Nicalon SiC fiber reinforced reaction-bonded silicon nitride matrix composites (SiC/ RBSN) have been fabricated by the fiber lay-up approach. Commercially available uncoated and PBN, PBN/Si-rich PBN, and BN/SiC coated SiC Hi-Nicalon fiber tows were used as reinforcement. The composites contained approximately 24 vol % of aligned 14 micron diameter SiC fibers in a porous RBSN matrix. Both one- and two-dimensional composites were characterized. The effects of interface coating composition, and the nitridation enhancing additive, NiO, on the room temperature physical, tensile, and interfacial shear strength properties of SiC/RBSN matrix composites were evaluated. Results indicate that for all three coated fibers, the thickness of the coatings decreased from the outer periphery to the interior of the tows, and that from 10 to 30 percent of the fibers were not covered with the interface coating. In the uncoated regions, chemical reaction between the NiO additive and the SiC fiber occurs causing degradation of tensile properties of the composites. Among the three interface coating combinations investigated, the BN/SiC coated Hi-Nicalon SiC fiber reinforced RBSN matrix composite showed the least amount of uncoated regions and reasonably uniform interface coating thickness. The matrix cracking stress in SiC/RBSN composites was predicted using a fracture mechanics based crack bridging model.

  4. Prediction of fracture strength in Al2O3/SiCp ceramic matrix nanocomposites

    Directory of Open Access Journals (Sweden)

    Z. Zhang and D.L. Chen

    2007-01-01

    Full Text Available Based primarily on a recent publication [S.M. Choi, H. Awaji, Sci. Tech. Adv. Mater. 6 (2005 2–10.], where the dislocations around the nano-sized particles in the intra-granular type of ceramic matrix nanocomposites (CMNCs were modeled, dislocation activities in Al2O3/SiCp CMNCs were discussed in relation to the processing conditions. The dislocations around the nano-sized particles, caused by the thermal mismatch between the ceramic matrix and nano-sized particles, were assumed to hold out the effect of Orowan-like strengthening, although the conventional Owowan loops induced by the movement of dislocations were unlikely in the ceramic matrix at room temperature. A model involving the yield strength of metal matrix nanocomposites (MMNCs, where the Owowan strengthening effect was taken into consideration, was thus modified and extended to predict the fracture strength of the intra-granular type of CMNCs without and with annealing. On the basis of the characteristics of dislocations in the CMNCs, the load-bearing effect and Orowan-like strengthening were considered before annealing, while the load-bearing effect and enhanced dislocation density strengthening were taken into account after annealing. The model prediction was found to be in agreement with the experimental data of Al2O3/SiCp nanocomposites reported in the literature.

  5. Performance of carbon fiber reinforced rubber composite armour against shaped charge jet penetration

    Directory of Open Access Journals (Sweden)

    Yue Lian-yong

    2016-01-01

    Full Text Available Natural rubber is reinforced with carbon fiber; the protective performances of the carbonfiber reinforced rubber composite armour to shaped charge jet have been studied based on the depth of penetration experiments. The craters on the witness blocks, the nature rubber based composite plates’ deformation and the Scanning Electron Microscopy for the hybrid fiber reinforced rubber plate also is analyzed. The results showed that the composite armour can affect the stability of the jet and made part of the jet fracture. The carbon fiber reinforced rubber composite armour has good defence ablity especially when the nature rubber plate hybrid 15% volume percentage carbonfiber and the obliquity angle is 68°. The hybrid fiber reinforced rubber composite armour can be used as a new kind of light protective armour.

  6. Characterization and modeling of fiber reinforced concrete for structural applications in beams and plates

    DEFF Research Database (Denmark)

    Paegle, Ieva

    concrete and reinforced FRC with a strain hardening behavior in tension are proposed. For reinforced concrete, forces are transferred over the shear crack only by stirrups, aggregate interlock and dowel effect of longitudinal reinforcement. The crack development mechanism for reinforced FRC with strain......Fiber reinforced concrete (FRC) with discrete, short and randomly distributed fibers can be specified and designed for structural applications in flexural members. In certain cases, fibers are used as the only reinforcement, while in other cases fibers are used in combination with a reduced amount...... are considered in structural design, the work presented in this thesis analyzes in detail many commonly used test methods on three types of FRC, including Polypropylene Fiber Reinforced Concrete (PP-FRC), Polyvinyl Alcohol Fiber Reinforced Concrete called Engineered Cementitious Composite (ECC) and Steel Fiber...

  7. Application of BCN test for controlling fiber reinforced shotcrete in tunnelling works in Chile

    Science.gov (United States)

    Carmona, S.; Molins, C.

    2017-09-01

    In many tunnelling projects currently under construction in Chile, the quality of fiber reinforced shotcretes (FRS) is controlled by means of its energy absorption capacity determined by testing squared panel following the EFNARC recommendation. Nevertheless, this test requires large and heavy specimens, which have to be filled when concrete is sprayed into the tunnel and does not allow testing the concrete actually placed onto the support. Due to these difficulties, the quality of fiber reinforced shotcretes used in some projects has been controlled by means of the Barcelona (BCN) test, which is an indirect tension test, using cores drilled from the hardened tunnel support. To apply the BCN test, the dissipated energy measured by means of this test has been correlated with the energy absorption capacity of the fiber reinforced shotcretes using experimental data obtained from works. The aim of this paper is presenting this correlation and it application.

  8. EXPERIMENTAL STUDY ON THE APPLICATION OF HIGH STRENGTH FIBER REINFORCED MORTAR TO PRESTRESSED CONCRETE STRUCTURES

    Science.gov (United States)

    Sakurada, Michihiro; Mori, Takuya; Ohyama, Hiroaki; Seki, Hiroshi

    In order to study the application of high strength fiber reinforced mortar which has design compressive strength 120N/mm2 to prestressed concrete structures, the authors carried out material tests, bending tests and shear tests of prestressed concrete beam specimens. From the material tests, we obtained material properties for the design of prestressed concrete structures such as compressive strength, tensile strength, Young's modulus, coefficient of creep, dry shrinkage and so on. The results of the bending tests and the shear tests of prestressed concrete beam specimen shows that experimental flexural strength and shear strength of prestressed concrete beam using high strength fiber reinforced mortar exceeds strength calculated by traditional design method. It is confirmed that high strength fiber reinforced mortar can be applied to prestressed concrete structures.

  9. Nondestructive Evaluation of Ceramic Matrix Composite Combustor Components

    Science.gov (United States)

    Sun, Jiangang G.; Verrilli, Michael J.; Stephan, Robert R.; Barnett, Terry R.; Ojard, Greg C.

    2003-01-01

    Combustor liners fabricated from a SiC/SiC composite (silicon carbide fibers in a silicon carbide matrix) were nondestructively interrogated before and after combustion rig testing by x-ray, ultrasonic, and thermographic techniques. In addition, mechanical test results were obtained from witness coupons, representing the as-manufactured liners, and from coupons machined from the components after combustion exposure. Thermography indications correlated with reduced material properties obtained after rig testing. The thermography indications in the SiC/SiC liners were delaminations and damaged fiber tows, as determined through microstructural examinations.

  10. Flexural strength of self compacting fiber reinforced concrete beams using polypropylene fiber: An experimental study

    Science.gov (United States)

    Lisantono, Ade; Praja, Baskoro Abdi; Hermawan, Billy Nouwen

    2017-11-01

    One of the methods to increase the tensile strength of concrete is adding a fiber material into the concrete. While to reduce a noise in a construction project, a self compacting concrete was a good choices in the project. This paper presents an experimental study of flexural behavior and strength of self compacting fiber reinforced concrete (RC) beams using polypropylene fiber. The micro monofilament polypropylene fibers with the proportion 0.9 kg/m3 of concrete weight were used in this study. Four beam specimens were cast and tested in this study. Two beams were cast of self compacting reinforced concrete without fiber, and two beams were cast of self compacting fiber reinforced concrete using polypropylene. The beams specimen had the section of (180×260) mm and the length was 2000 mm. The beams had simple supported with the span of 1800 mm. The longitudinal reinforcements were using diameter of 10 mm. Two reinforcements of Ø10 mm were put for compressive reinforcement and three reinforcements of Ø10 mm were put for tensile reinforcement. The shear reinforcement was using diameter of 8 mm. The shear reinforcements with spacing of 100 mm were put in the one fourth near to the support and the spacing of 150 mm were put in the middle span. Two points loading were used in the testing. The result shows that the load-carrying capacity of the self compacting reinforced concrete beam using polypropylene was a little bit higher than the self compacting reinforced concrete beam without polypropylene. The increment of load-carrying capacity of self compacting polypropylene fiber reinforced concrete was not so significant because the increment was only 2.80 % compare to self compacting non fiber reinforced concrete. And from the load-carrying capacity-deflection relationship curves show that both the self compacting polypropylene fiber reinforced concrete beam and the self compacting non fiber reinforced concrete beam were ductile beams.

  11. Evaluation of seismic shear capacity of prestressed concrete containment vessels with fiber reinforcement

    International Nuclear Information System (INIS)

    Choun, Young Sun; Park, Jun Hee

    2015-01-01

    Fibers have been used in cement mixture to improve its toughness, ductility, and tensile strength, and to enhance the cracking and deformation characteristics of concrete structural members. The addition of fibers into conventional reinforced concrete can enhance the structural and functional performances of safety-related concrete structures in nuclear power plants. The effects of steel and polyamide fibers on the shear resisting capacity of a prestressed concrete containment vessel (PCCV) were investigated in this study. For a comparative evaluation between the shear performances of structural walls constructed with conventional concrete, steel fiber reinforced concrete, and polyamide fiber reinforced concrete, cyclic tests for wall specimens were conducted and hysteretic models were derived. The shear resisting capacity of a PCCV constructed with fiber reinforced concrete can be improved considerably. When steel fiber reinforced concrete contains hooked steel fibers in a volume fraction of 1.0%, the maximum lateral displacement of a PCCV can be improved by > 50%, in comparison with that of a conventional PCCV. When polyamide fiber reinforced concrete contains polyamide fibers in a volume fraction of 1.5%, the maximum lateral displacement of a PCCV can be enhanced by ∼40%. In particular, the energy dissipation capacity in a fiber reinforced PCCV can be enhanced by > 200%. The addition of fibers into conventional concrete increases the ductility and energy dissipation of wall structures significantly. Fibers can be effectively used to improve the structural performance of a PCCV subjected to strong ground motions. Steel fibers are more effective in enhancing the shear performance of a PCCV than polyamide fibers

  12. Evaluation of seismic shear capacity of prestressed concrete containment vessels with fiber reinforcement

    Energy Technology Data Exchange (ETDEWEB)

    Choun, Young Sun; Park, Jun Hee [Integrated Safety Assessment Division, Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-10-15

    Fibers have been used in cement mixture to improve its toughness, ductility, and tensile strength, and to enhance the cracking and deformation characteristics of concrete structural members. The addition of fibers into conventional reinforced concrete can enhance the structural and functional performances of safety-related concrete structures in nuclear power plants. The effects of steel and polyamide fibers on the shear resisting capacity of a prestressed concrete containment vessel (PCCV) were investigated in this study. For a comparative evaluation between the shear performances of structural walls constructed with conventional concrete, steel fiber reinforced concrete, and polyamide fiber reinforced concrete, cyclic tests for wall specimens were conducted and hysteretic models were derived. The shear resisting capacity of a PCCV constructed with fiber reinforced concrete can be improved considerably. When steel fiber reinforced concrete contains hooked steel fibers in a volume fraction of 1.0%, the maximum lateral displacement of a PCCV can be improved by > 50%, in comparison with that of a conventional PCCV. When polyamide fiber reinforced concrete contains polyamide fibers in a volume fraction of 1.5%, the maximum lateral displacement of a PCCV can be enhanced by ∼40%. In particular, the energy dissipation capacity in a fiber reinforced PCCV can be enhanced by > 200%. The addition of fibers into conventional concrete increases the ductility and energy dissipation of wall structures significantly. Fibers can be effectively used to improve the structural performance of a PCCV subjected to strong ground motions. Steel fibers are more effective in enhancing the shear performance of a PCCV than polyamide fibers.

  13. A numerical investigation on the size effect of fiber-reinforced concrete specimens in crack propagation

    Science.gov (United States)

    Bruggi, Matteo; Venini, Paolo

    2012-07-01

    The paper addresses a numerical investigation on the size effect in fiber-reinforced concrete specimens that is based on an alternative approach for cohesive crack propagation. A discrete version of the Hellinger-Reissner variational principle manages mode I crack growth in the case of piece-wise linear cohesive softening equations. A three-point bending test is investigated according to the mechanical properties of fiber-reinforced mixtures that have been characterized in the experimental literature. The achieved results point out that each segment of the considered cohesive laws plays an important role in the control of the size effect, depending on the dimension of the specimen.

  14. Evaluation of test methods used to characterize fiber reinforced cementitious composites

    DEFF Research Database (Denmark)

    Paegle, Ieva; Fischer, Gregor

    2013-01-01

    This paper describes an investigation of fiber reinforced cementitious composites in terms of their behavior under tensile and flexural loading. Flexural testing and subsequent derivation of the tensile stress-deformation response from the flexural test data are preferred in the assessment...... of the tensile properties of Fiber Reinforced Cement Composites (FRCC) over the direct measurement of the tensile behavior because of the more convenient test setup and ease of specimen preparation. Three and four-point bending tests and round determinate panel test were carried out to evaluate the flexural...

  15. Micro-mechanical Analysis of Fiber Reinforced Cementitious Composites using Cohesive Crack Modeling

    DEFF Research Database (Denmark)

    Dick-Nielsen, Lars; Stang, Henrik; Poulsen, Peter Noe

    2006-01-01

    This paper discusses the mechanism appearing during fiber debonding in fiber reinforced cementitious composite. The investigation is performed on the micro scale by use of a Finite Element Model. The model is 3 dimensional and the fictitious crack model and a mixed mode stress formulation...... are implemented. It is shown that the cohesive law for a unidirectional fiber reinforced cementitious composite can be found through superposition of the cohesive law for mortar and the fiber bridging curve. A comparison between the numerical and an analytical model for fiber pull-out is performed....

  16. Numerical simulation of progressive debonding in fiber reinforced composite under transverse loading

    DEFF Research Database (Denmark)

    Kushch, V.; Shmegera, S.V.; Brøndsted, Povl

    2011-01-01

    The finite element model of progressive debonding in fiber reinforced composite is developed based on the cohesive-zone model of interface. An interface crack nucleation, onset and growth have been studied in detail for a single fiber and comparison is made with the linear fracture mechanics model....... Then, the effect on debonding progress of local stress redistribution due to interaction between the fibers was studied in the framework of two-inclusion model. Simulation of progressive debonding in fiber reinforced composite using the many-fiber models of composite has been performed. It has been...

  17. Prediction of Skid Resistance Value of Glass Fiber-Reinforced Tiling Materials

    Directory of Open Access Journals (Sweden)

    Sadik Alper Yildizel

    2017-01-01

    Full Text Available This research focuses on the use of adaptive artificial neural network system for evaluating the skid resistance value (British Pendulum Number; BPN of the glass fiber-reinforced tiling materials. During the creation of the neural model, four main factors were considered: fiber, calcium carbonate content, sand blasting, and polishing properties of the specimens. The model was trained, tested, and compared with the on-site test results. As per the comparison of the outcomes of the study, the analysis and on-site test results showed that there is a great potential for the prediction of BPN of glass fiber-reinforced tiling materials by using developed neural system.

  18. Numerical analysis of steel-fiber-reinforced concrete beams using damage mechanics

    Directory of Open Access Journals (Sweden)

    W. M. Pereira Junior

    Full Text Available ABSTRACT This work deals with numerical modeling of the mechanical behavior of steel-fiber-reinforced concrete beams using a constitutive model based on damage mechanics. Initially, the formulation of the damage model is presented. The concrete is assumed to be an initial elastic isotropic medium presenting anisotropy, permanent strains, and bimodularity induced by damage evolution. In order to take into account the contribution of the steel fiber to the mechanical behavior of the media, a homogenization procedure is employed. Finally, numerical analyses of steel-fiber-reinforced concrete beams submitted to bending loading are performed in order to show the good performance of the model and its potential.

  19. Flow simulation of fiber reinforced self compacting concrete using Lattice Boltzmann method

    DEFF Research Database (Denmark)

    Svec, Oldrich; Skocek, Jan; Stang, Henrik

    2011-01-01

    to the compression strength and, therefore, it needs to be reinforced. Fiber reinforced concrete is an alternative to traditional stirrups reinforcement leading to lowered labor costs. To be able to access mechanical properties of the fiber reinforced concrete, knowledge of final spread and directions of fibers......Self compacting concrete (SCC) is a promising material in the civil engineering industry. One of the benefits of the SCC is a fast and simplified casting followed by decreased labor costs. The SCC as any other type of concrete has a significantly lower tensile and shear strength in comparison...

  20. Influence of the curing cycles on the fatigue performance of unidirectional glass fiber reinforced epoxy composites

    DEFF Research Database (Denmark)

    Hüther, Jonas; Brøndsted, Povl

    2016-01-01

    During the manufacturing process of fiber reinforced polymers the curing reaction of the resin results in shrinkage of the resin and introduces internal stresses in the composites. When curing at higher temperatures in order to shorten up the processing time, higher curing stresses and thermal...... stresses are built up and frozen, as residual stresses occur. In the present work, a glass fiber reinforced epoxy composite laminate with an unidirectional architecture based on non-crimp fabrics with backing fibers is investigated. Three different curing cycles (time-temperature cycles) are used, leading...

  1. Low-Cost Innovative Hi-Temp Fiber Coating Process for Advanced Ceramic Matrix Composites, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — MATECH GSM (MG) proposes 1) to demonstrate a low-cost innovative Hi-Temp Si-doped in-situ BN fiber coating process for advanced ceramic matrix composites in order to...

  2. Local-global analysis of crack growth in continuously reinfoced ceramic matrix composites

    Science.gov (United States)

    Ballarini, Roberto; Ahmed, Shamim

    1989-01-01

    This paper describes the development of a mathematical model for predicting the strength and micromechanical failure characteristics of continuously reinforced ceramic matrix composites. The local-global analysis models the vicinity of a propagating crack tip as a local heterogeneous region (LHR) consisting of spring-like representation of the matrix, fibers and interfaces. Parametric studies are conducted to investigate the effects of LHR size, component properties, and interface conditions on the strength and sequence of the failure processes in the unidirectional composite system.

  3. Wet-laid soy fiber reinforced hydrogel scaffold: Fabrication, mechano-morphological and cell studies.

    Science.gov (United States)

    Wood, Andrew T; Everett, Dominique; Budhwani, Karim I; Dickinson, Brenna; Thomas, Vinoy

    2016-06-01

    Among materials used in biomedical applications, hydrogels have received consistent linear growth in interest over the past decade due to their large water volume and saliency to the natural extracellular matrix. These materials are often limited due to their sub-optimal mechanical properties which are typically improved via chemical or physical crosslinking. Chemical crosslinking forms strong inter-polymer bonds but typically uses reagents that are cytotoxic while physical crosslinking is more temperamental to environmental changes but can be formed without these toxic reagents. In this study, we added a fiber-reinforcement phase to a poly(vinyl alcohol) (PVA) hydrogel formed through successive freezing-thawing cycles by incorporating a non-woven microfiber mat formed by the wet-lay process. By reinforcing the hydrogel with a wet-laid fibrous mat, the ultimate tensile strength and modulus increased from 0.11 ± 0.01 MPa and 0.17 ± 0.02 kPa to 0.24 ± 0.02 MPa and 5.76 ± 1.12 kPa, respectively. An increase in toughness and elongation was also found increasing from 2.52 ± 0.37 MPa to 25.6 ± 3.84 and 51.89 ± 5.16% to 111.16 ± 9.68%, respectively. The soy fibers were also found to induce minimal cytotoxicity with endothelial cell viability showing 96.51% ± 1.91 living cells after a 48 h incubation. This approach to hydrogel-reinforcement presents a rapid, tunable method by which hydrogels can attain increased mechanical properties without sacrificing their inherent biologically favorable properties. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Direct restoration of severely damaged incisors using short fiber-reinforced composite resin.

    Science.gov (United States)

    Garoushi, Sufyan; Vallittu, Pekka K; Lassila, Lippo V J

    2007-09-01

    The aim of this in vitro study was to evaluate the static load-bearing capacity and the failure mode of endodontically treated maxillary incisors restored with complete crowns made of experimental composite resin (FC) with short fiber fillers, with and without root canal posts. Further aim was to evaluate the effect of fiber-reinforced composite resin (FRC) on the failure mode of the restoration. The experimental composite resin (FC) was prepared by mixing 22.5 wt.% of short E-glass fibers (3mm in length) and 22.5 wt.% of semi-interpenetrating polymer network (IPN) resin with 55 wt.% of silane treated silica fillers. The clinical crowns of 30 human extracted maxillary incisors were sectioned at the cemento-enamel junction. Five groups of direct complete crowns were fabricated (n=6); Group A: made from particulate filler composite resin (PFC) (Grandio Caps, VOCO, control), Group B: PFC with fiber post (everStick, StickTeck), Group C: made from PFC with everStick fiber post and FRC-substructure, Group D: made from FC, Group E: made from FC with FRC-substructure. The root canals were prepared and posts were cemented with resin cement (ParaCem Universal). All restored teeth were stored in water at room temperature for 24h before they were statically loaded with speed of 1.0 mm/min until fracture. Data were analyzed using ANOVA (p=0.05). Failure modes were visually examined. ANOVA revealed that restorations made from experimental fiber composite resin had higher load-bearing capacity (349N) (p0.05). Restorations made from short glass fiber containing composite resin with IPN-polymer matrix showed better load-bearing capacity than those made with either plain PFC or PFC reinforced with fiber post.

  5. Shear Performance of Fiber-Reinforced Cementitious Composites Beam-Column Joint Using Various Fibers

    Directory of Open Access Journals (Sweden)

    Faizal Hanif

    2017-09-01

    Full Text Available Increasing demands of reinforcement in the joint panel are now requiring more effective system to reduce the complicated fabrication by widely used precast system. The joint panel is responsible to keep the load transfer through beam and column as a crucial part in a structural frame that ensures the main feature of the whole structure during earthquake. Since precast system might reduce the joint panel monolithic integrity and stiffness, an innovation by adding fiber into the grouting system will give a breakthrough. The loading test of precast concrete beam-column joints using FRCC (Fiber-Reinforced Cementitious Composites in joint panel was conducted to evaluate the influences of fiber towards shear performance. The experimental factor is fiber types with same volume fraction in mortar matrix of joint panel. Two specimens with Aramid-fiber and PP-fiber by two percent of volume fraction are designed to fail by shear failure in joint panel by reversed cyclic testing method. The comparison amongst those experiment results by various parameters for the shear performance of FRCC beam-column joints using various fibers are discussed. Preceding specimens was using no fiber, PVA fiber, and steel fiber has been carried out. Through the current experimental results and the comparison with previous experiment results, it can be recognized that by using fibers in joint panel was observed qualitatively could prevent crack widening with equitable and smaller crack width, improved the shear capacity by widening the hysteretic area, increased maximum load in positive loading and negative loading, and decreased the deformation rate. Elastic modulus properties of fiber are observed to give the most impact towards shear performance.

  6. Surface characterization of carbon fiber reinforced polymers by picosecond laser induced breakdown spectroscopy

    Science.gov (United States)

    Ledesma, Rodolfo; Palmieri, Frank; Connell, John; Yost, William; Fitz-Gerald, James

    2018-02-01

    Adhesive bonding of composite materials requires reliable monitoring and detection of surface contaminants as part of a vigorous quality control process to assure robust and durable bonded structures. Surface treatment and effective monitoring prior to bonding are essential in order to obtain a surface which is free from contaminants that may lead to inferior bond quality. In this study, the focus is to advance the laser induced breakdown spectroscopy (LIBS) technique by using pulse energies below 100 μJ (μLIBS) for the detection of low levels of silicone contaminants in carbon fiber reinforced polymer (CFRP) composites. Various CFRP surface conditions were investigated by LIBS using ∼10 ps, 355 nm laser pulses with pulse energies below 30 μJ. Time-resolved analysis was conducted to optimize the gate delay and gate width for the detection of the C I emission line at 247.9 nm to monitor the epoxy resin matrix of CFRP composites and the Si I emission line at 288.2 nm for detection of silicone contaminants in CFRP. To study the surface sensitivity to silicone contamination, CFRP surfaces were coated with polydimethylsiloxane (PDMS), the active ingredient in many mold release agents. The presence of PDMS was studied by inspecting the Si I emission lines at 251.6 nm and 288.2 nm. The measured PDMS areal densities ranged from 0.15 to 2 μg/cm2. LIBS measurements were performed before and after laser surface ablation. The results demonstrate the successful detection of PDMS thin layers on CFRP using picosecond μLIBS.

  7. Numerical Investigation of Delamination in Drilling of Carbon Fiber Reinforced Polymer Composites

    Science.gov (United States)

    Tang, Wenliang; Chen, Yan; Yang, Haojun; Wang, Hua; Yao, Qiwei

    2018-03-01

    Drilling of carbon fiber reinforced polymer (CFRP) is a challenging task in modern manufacturing sector and machining induced delamination is one of the major problems affecting assembly precision. In this work, a new three-dimensional (3D) finite element model is developed to study the chip formation and entrance delamination in drilling of CFRP composites on the microscopic level. Fiber phase, matrix phase and equivalent homogeneous phase in the multi-phase model have different constitutive behaviors, respectively. A comparative drilling test, in which the cement carbide drill and unidirectional CFRP laminate are employed, is conducted to validate the proposedmodel in terms of the delamination and the similar changing trend is obtained. Microscopic mechanism of entrance delamination together with the chip formation process at four special fiber cutting angles (0°, 45°, 90° and 135°) is investigated. Moreover, the peeling force is also predicted. The results show that the delamination occurrence and the chip formation are both strongly dependent on the fiber cutting angle. The length of entrance delamination rises with increasing fiber cutting angles. Negligible delamination at 0° is attributed to the compression by the minor flank face. For 45° and 90°, the delamination resulted from the mode III fracture. At 135°, serious delamination which is driven by the mode I and III fractures is more inclined to occur and the peeling force reaches its maximum. Such numerical models can help understand the mechanism of hole entrance delamination further and provide guidance for the damage-free drilling of CFRP.

  8. Advanced ceramic matrix composites for high energy x-ray generation

    International Nuclear Information System (INIS)

    Khan, Amir Azam; Labbe, Jean Claude

    2011-01-01

    High energy x-ray targets are the anodes used in high performance tubes, designed to work for long operating times and at high power. Such tubes are used in computed tomography (CT) scan machines. Usually the tubes used in CT scanners have to continuously work at high temperatures and for longer scan durations in order to get maximum information during a single scan. These anodes are composed of a refractory substrate which supports a refractory metallic coating. The present work is a review of the development of a ceramic metal composite based on aluminium nitride (AlN) and molybdenum for potential application as the substrate. This composite is surface engineered by coating with tungsten, the most popular material for high energy x-ray targets. To spray metallic coatings on the surface of ceramic matrix composites dc blown arc plasma is employed. The objective is to increase the performance and the life of an x-ray tube. Aluminium nitride-molybdenum ceramic matrix composites were produced by uniaxial hotpressing mixtures of AlN and Mo powders. These composites were characterized for their mechanical, thermal, electrical and micro-structural properties. An optimized composition was selected which contained 25 vol.% of metallic phase dispersed in the AlN matrix. These composites were produced in the actual size of an anode and coated with tungsten through dc blown arc plasma spraying. The results have shown that sintering of large size anodes is possible through uniaxial pressing, using a modified sintering cycle

  9. Enhanced Schapery Theory Software Development for Modeling Failure of Fiber-Reinforced Laminates

    Science.gov (United States)

    Pineda, Evan J.; Waas, Anthony M.

    2013-01-01

    Progressive damage and failure analysis (PDFA) tools are needed to predict the nonlinear response of advanced fiber-reinforced composite structures. Predictive tools should incorporate the underlying physics of the damage and failure mechanisms observed in the composite, and should utilize as few input parameters as possible. The purpose of the Enhanced Schapery Theory (EST) was to create a PDFA tool that operates in conjunction with a commercially available finite element (FE) code (Abaqus). The tool captures the physics of the damage and failure mechanisms that result in the nonlinear behavior of the material, and the failure methodology employed yields numerical results that are relatively insensitive to changes in the FE mesh. The EST code is written in Fortran and compiled into a static library that is linked to Abaqus. A Fortran Abaqus UMAT material subroutine is used to facilitate the communication between Abaqus and EST. A clear distinction between damage and failure is imposed. Damage mechanisms result in pre-peak nonlinearity in the stress strain curve. Four internal state variables (ISVs) are utilized to control the damage and failure degradation. All damage is said to result from matrix microdamage, and a single ISV marks the micro-damage evolution as it is used to degrade the transverse and shear moduli of the lamina using a set of experimentally obtainable matrix microdamage functions. Three separate failure ISVs are used to incorporate failure due to fiber breakage, mode I matrix cracking, and mode II matrix cracking. Failure initiation is determined using a failure criterion, and the evolution of these ISVs is controlled by a set of traction-separation laws. The traction separation laws are postulated such that the area under the curves is equal to the fracture toughness of the material associated with the corresponding failure mechanism. A characteristic finite element length is used to transform the traction-separation laws into stress-strain laws

  10. Progress on matrix SiC processing and properties for fully ceramic microencapsulated fuel form

    International Nuclear Information System (INIS)

    Terrani, K.A.; Kiggans, J.O.; Silva, C.M.; Shih, C.; Katoh, Y.; Snead, L.L.

    2015-01-01

    The consolidation mechanism and resulting properties of the silicon carbide (SiC) matrix of fully ceramic microencapsulated (FCM) fuel form are discussed. The matrix is produced via the nano-infiltration transient eutectic-forming (NITE) process. Coefficient of thermal expansion, thermal conductivity, and strength characteristics of this SiC matrix have been characterized in the unirradiated state. An ad hoc methodology for estimation of thermal conductivity of the neutron-irradiated NITE–SiC matrix is also provided to aid fuel performance modeling efforts specific to this concept. Finally, specific processing methods developed for production of an optimal and reliable fuel form using this process are summarized. These various sections collectively report the progress made to date on production of optimal FCM fuel form to enable its application in light water and advanced reactors

  11. Impact toughness of cellulose-fiber reinforced polypropylene : influence of microstructure in laminates and injection molded composites

    Science.gov (United States)

    Craig Clemons; Daniel Caulfield; A. Jeffrey Giacomin

    2003-01-01

    Unlike their glass reinforced counterparts, microstructure and dynamic fracture behavior of natural fiber-reinforced thermoplastics have hardly been investigated. Here, we characterize the microstructure of cellulose fiber-reinforced polypropylene and determined its effect on impact toughness. Fiber lengths were reduced by one-half when compounded in a high-intensity...

  12. XPS Investigation of ceramic matrixes for disposal of long-living radioactive waste products

    Directory of Open Access Journals (Sweden)

    Teterin Yury A.

    2004-01-01

    Full Text Available The synthesis of ceramic matrixes for the long-term storage of highly active radionuclide wastes and determination of physical and chemical forms of radionuclides in them is one of the important problems in radioecology. It enables to create purpose fully materials for the long-term storage of radionuclides. In the present work the samples of ceramics [CaCe0.9Ti2O6.8(I and CaCeTi2O7(II}] formed under various conditions were investigated with the X-ray photo electron spectroscopy. It is necessary for synthesis of ceramic matrixes, for the disposal of the plutonium and others tetravalent actinides. A technique was developed for the determination of cerium oxidation state (Ce3+ and Ce4+ on the basis of the X-ray photo electron spectroscopy spectral structure characteristics. It was established that the sample (I formed at 300 MPa and T = 1400 °C in the air atmosphere contained on the surface two types of cerium ions in the ratio – 63 atomic % of Ce3+ and 37 atomic % of Ce4+, and the sample (II formed at 300 MPa and T= 1300 °C in the oxygen atmosphere contained on its surface two types of cerium ions also, but in the ratio – 36 atomic % of Ce3+ and 64 atomic % of Ce4+. It was established that on the surface of the studied ceramics carbonates of calcium and/or cerium could be formed under influence of the environment that leads to the destruction of ceramics.

  13. The Effect of an Active Diluent on the Properties of Epoxy Resin and Unidirectional Carbon-Fiber-Reinforced Plastics

    Science.gov (United States)

    Solodilov, V. I.; Gorbatkina, Y. A.; Kuperman, A. M.

    2003-11-01

    The influence of an active diluent on the properties of an epoxy matrix and carbon-fiber-reinforced plastics (CFRP) is investigated. The physicomechanical properties of an ED-20 epoxy resin modified with diglycidyl ether of diethylene glycol (DEG-1), the adhesion strength at the epoxy matrix-steel wire interface, and the mechanical properties of unidirectional CFRP are determined. The concentration of DEG-1 was varied from 0 to 50 wt.%. The properties of the matrix, the interface, and the composites are compared. It is stated that the matrix strength affects the strength of unidirectional CFRP in bending and not their strength in tension, compression, and shear. The latter fact seems somewhat unexpected. The interlaminar fracture toughness of the composites investigated correlates with the ultimate elongation of the binder. A comparison between the concentration dependences of adhesion strength and the strength of CFRP shows that the matrices utilized provide such a high interfacial strength that the strength of CFRP no longer depends on the adhesion of its constituents.

  14. Instrumented impact testing of kenaf fiber reinforced polypropylene composites: effects of temperature and composition

    Science.gov (United States)

    Craig Merrill Clemons; Anand R. Sanadi

    2007-01-01

    An instrumented Izod test was used to investigate the effects of fiber content, coupling agent, and temperature on the impact performance of kenaf fiber reinforced polypropylene (PP). Composites containing 0-60% (by weight) kenaf fiber and 0 or 2% maleated polypropylene (MAPP) and PP/wood flour composites were tested at room temperature and between -50 °C and +...

  15. Microstructural changes and residual properties of fiber reinforced cement composites exposed to elevated temperatures

    Czech Academy of Sciences Publication Activity Database

    Keppert, M.; Vejmelková, E.; Švarcová, Silvie; Bezdička, Petr; Černý, R.

    2012-01-01

    Roč. 17, č. 2 (2012), s. 77-89 ISSN 1425-8129 Institutional research plan: CEZ:AV0Z40320502 Keywords : fiber reinforced cementcomposites * high temperatures * mineralodical composition * microstructure * residual strength * apparent moisture diffusivity Subject RIV: JI - Composite Materials Impact factor: 0.385, year: 2012

  16. Assessment of the Mechanical Properties of Sisal Fiber-Reinforced Silty Clay Using Triaxial Shear Tests

    Directory of Open Access Journals (Sweden)

    Yankai Wu

    2014-01-01

    Full Text Available Fiber reinforcement is widely used in construction engineering to improve the mechanical properties of soil because it increases the soil’s strength and improves the soil’s mechanical properties. However, the mechanical properties of fiber-reinforced soils remain controversial. The present study investigated the mechanical properties of silty clay reinforced with discrete, randomly distributed sisal fibers using triaxial shear tests. The sisal fibers were cut to different lengths, randomly mixed with silty clay in varying percentages, and compacted to the maximum dry density at the optimum moisture content. The results indicate that with a fiber length of 10 mm and content of 1.0%, sisal fiber-reinforced silty clay is 20% stronger than nonreinforced silty clay. The fiber-reinforced silty clay exhibited crack fracture and surface shear fracture failure modes, implying that sisal fiber is a good earth reinforcement material with potential applications in civil engineering, dam foundation, roadbed engineering, and ground treatment.

  17. Natural tooth pontic with splinting of periodontally weakened teeth using fiber-reinforced composite resin

    Directory of Open Access Journals (Sweden)

    Gauri Srinidhi

    2014-01-01

    Full Text Available Replacement of missing anterior teeth due to periodontal reasons is challenging due to the poor support of abutment teeth. This prevents the use of fixed partial dentures (FPDs. Fiber-reinforced splinting provides a viable alternative to the dentist while choosing a treatment plan in replacing missing anterior teeth in periodontally compromised patients as opposed to conventional modalities like FPDs or removable partial dentures. Replacing missing teeth using either patient′s own tooth or a denture tooth as pontic can be done by splinting adjacent teeth with fiber reinforced composite. The splinting has an additional advantage of stabilizing adjacent mobile teeth. This case report details the case selection, procedure with follow-up of a case where the natural extracted tooth of the patient was used as pontic to replace a missing anterior tooth. The splinting was done with fiber reinforced composite resin. Fiber-reinforced composite resin splinting of patient′s extracted natural tooth is economical, fast, and easy to use chairside technique with the added benefit of periodontal stabilization.

  18. Laser surface treatment for enhanced titanium to carbon fiber-reinforced polymer adhesion

    NARCIS (Netherlands)

    Palavra, Armin; Coelho, Bruno N.; de Hosson, Jeff Th. M.; Lima, Milton S. F.; Carvalho, Sheila M.; Costa, Adilson R.

    The adhesion between carbon fiber-reinforced polymer (CFRP) and titanium parts can be improved by laser surface texturing before gluing them together. Here, a pulsed Nd:YAG laser was employed before bonding of the textured surfaces using an epoxy paste adhesive. To investigate the influence of the

  19. Adhesive Properties of Bonded Orthodontic Retainers to Enamel : Stainless Steel Wire vs Fiber-reinforced Composites

    NARCIS (Netherlands)

    Foek, Dave Lie Sam; Krebs, Eliza; Sandham, John; Ozcan, Mutlu

    2009-01-01

    Purpose: The objectives of this study were to compare the bond strength of a stainless steel orthodontic wire vs various fiber-reinforced composites (FRC) used as orthodontic retainers on enamel, analyze the failure types after debonding, and investigate the influence of different application

  20. Three dimensional finite element analysis of layered fiber-reinforced composite materials

    Science.gov (United States)

    Lee, J. D.

    1980-01-01

    A three-dimensional finite element analysis was performed for a biaxially loaded composite laminate (with a centered hole) consisting of several fiber-reinforced composite layers each with a specified fiber orientation. The detailed stress distribution around the hole was determined. Also, the locations of initial damage zones due to different failure mechanisms were indicated.

  1. Effect of Fiber Layers on the Fracture Resistance of Fiber Reinforced Composite Bridges

    Directory of Open Access Journals (Sweden)

    A Fazel

    2011-08-01

    Full Text Available Introduction: The purpose of this in vitro study was to introduce the fiber reinforced composite bridges and evaluate the most suitable site and position for placement of fibers in order to get maximum strength. Methods: The study included 20 second premolars and 20 second molars selected for fabricating twenty fiber reinforced composite bridges. Twenty specimens were selected for one fiber layer and the remaining teeth for two fiber layers. In the first group, fibers were placed in the inferior third and in the second group, fibers were placed in both the middle and inferior third region. After tooth preparation, the restorations were fabricated, thermocycled and then loaded with universal testing machine in the middle of the pontics with crosshead speed of 1mm/min. Data was analyzed by Kolmogorov-Smirnov test, Independent sample t test and Kaplan-Meier test. Mode of failure was evaluated using stereomicroscope. Results: Mean fracture resistance for the first and second groups was 1416±467N and 1349±397N, respectively. No significant differences were observed between the groups (P>0.05.In the first group, 5 specimens had delamintation and 5 specimens had detachment between fibers and resin composite. In the second group, there were 4 and 6 delaminations and detachments, respectively. There was no fracture within the fiber. Conclusion: In the fiber reinforced fixed partial dentures, fibers reinforce the tensile side of the connectors but placement of additional fibers at other sites does not increase the fracture resistance of the restoration.

  2. In vitro fracture resistance of fiber reinforced cusp-replacing composite restorations.

    NARCIS (Netherlands)

    Fennis, W.M.M.; Tezvergil, A.; Kuijs, R.H.; Lassila, L.V.; Kreulen, C.M.; Creugers, N.H.J.; Vallittu, P.K.

    2005-01-01

    OBJECTIVES: To assess the fracture resistance and failure mode of fiber reinforced composite (FRC) cusp-replacing restorations in premolars. METHODS: Forty-five extracted sound upper premolars were randomly divided into three groups. Identical MOD cavities with simulated buccal cusp fracture and

  3. Clinical studies of fiber-reinforced resin-bonded fixed partial dentures: a systematic review.

    NARCIS (Netherlands)

    Heumen, C.C.M. van; Kreulen, C.M.; Creugers, N.H.J.

    2009-01-01

    In the past decade, follow-up studies on fiber-reinforced composite fixed partial dentures (FRC FPDs) have been described. Combining the results of these studies to draw conclusions about the effectiveness of FRC FPDs is challenging. The objective of this systematic review was to obtain survival

  4. Fracture Behavior and Properties of Functionally Graded Fiber-Reinforced Concrete

    International Nuclear Information System (INIS)

    Roesler, Jeffery; Bordelon, Amanda; Gaedicke, Cristian; Park, Kyoungsoo; Paulino, Glaucio

    2008-01-01

    In concrete pavements, a single concrete mixture design is selected to resist mechanical loading without attempting to adversely affect the concrete pavement shrinkage, ride quality, or noise attenuation. An alternative approach is to design distinct layers within the concrete pavement surface which have specific functions thus achieving higher performance at a lower cost. The objective of this research was to address the structural benefits of functionally graded concrete materials (FGCM) for rigid pavements by testing and modeling the fracture behavior of different combinations of layered plain and synthetic fiber-reinforced concrete materials. Fracture parameters and the post-peak softening behavior were obtained for each FGCM beam configuration by the three point bending beam test. The peak loads and initial fracture energy between the plain, fiber-reinforced, and FGCM signified similar crack initiation. The total fracture energy indicated improvements in fracture behavior of FGCM relative to full-depth plain concrete. The fracture behavior of FGCM depended on the position of the fiber-reinforced layer relative to the starter notch. The fracture parameters of both fiber-reinforced and plain concrete were embedded into a finite element-based cohesive zone model. The model successfully captured the experimental behavior of the FGCMs and predicted the fracture behavior of proposed FGCM configurations and structures. This integrated approach (testing and modeling) demonstrates the viability of FGCM for designing layered concrete pavements system

  5. Jute fiber reinforced polypropylene produced by continuous extrusion compounding. Part 1. Processing and ageing properties

    NARCIS (Netherlands)

    Oever, van den M.J.A.; Snijder, M.H.B.

    2008-01-01

    This article addresses the processing and ageing properties of jute fiber reinforced polypropylene (PP) composites. The composite has been manufactured by a continuous extrusion process and results in free flowing composite granules, comprising up to 50 weight percent (wt %) jute fiber in PP. These

  6. Damage Precursor Investigation of Fiber-Reinforced Composite Materials Under Fatigue Loads

    Science.gov (United States)

    2013-09-01

    capability, needs Maintenance Action Damage Detection by NDE and/or in-situ sensors (Ultrasonic, Thermography , Acoustic Emission, etc.) Incipient... Damage Prognosis for Materials and Structures in Complex Systems, AFOSR Discovery Challenge Thrust (DCT) Workshop on Prognosis of Aircraft and Space... Damage Precursor Investigation of Fiber-Reinforced Composite Materials Under Fatigue Loads by Asha J. Hall, Raymond E. Brennan IV, Anindya

  7. Microhardness of resin composite materials light-cured through fiber reinforced composite.

    NARCIS (Netherlands)

    Fennis, W.M.M.; Ray, N.J.; Creugers, N.H.J.; Kreulen, C.M.

    2009-01-01

    OBJECTIVES: To compare polymerization efficiency of resin composite basing materials when light-cured through resin composite and fiber reinforced composite (FRC) by testing microhardness. METHODS: Simulated indirect restorations were prepared by application of resin composite (Clearfil AP-X) or FRC

  8. Characterization of mechanical damage mechanisms in ceramic composite materials. Technical report, 23 May 1987-24 May 1988

    Energy Technology Data Exchange (ETDEWEB)

    Lankford, J.

    1988-09-01

    High-strain-rate compressive failure mechanisms in fiber-reinforced ceramic-matrix composite materials were characterized. These are contrasted with composite damage development at low-strain rates, and with the dynamic failure of monolithic ceramics. It is shown that it is possible to derive major strain-rate strengthening benefits if a major fraction of the fiber reinforcement is aligned with the load axis. This effect considerably exceeds the inertial microfracture strengthening observed in monolithic ceramics, and non-aligned composites. Its basis is shown to be the trans-specimen propagation time period for heterogeneously-nucleated, high-strain kink bands. A brief study on zirconia focused on the remarkable inverse strength-strain rate result previously observed for both fully and partially-stabilized zirconia single crystals, whereby the strength decreased with increasing strain rate. Based on the hypothesis that the suppression of microplastic flow, hence, local stress relaxation, might be responsible for this behavior, fully stabilized (i.e., non-transformable) specimens were strain-gaged and subjected to compressive microstrain. The rather stunning observation was that the crystals are highly microplastic, exhibiting plastic yield on loading and anelasticity and reverse plasticity upon unloading. These results clearly support the hypothesis that with increasing strain rate, microcracking is favored at the expense of microplasticity.

  9. In situ observation of mechanical damage within a SiC-SiC ceramic matrix composite

    International Nuclear Information System (INIS)

    Saucedo-Mora, L.; Lowe, T.; Zhao, S.; Lee, P.D.; Mummery, P.M.; Marrow, T.J.

    2016-01-01

    SiC-SiC ceramic matrix composites are candidate materials for fuel cladding in Generation IV nuclear fission reactors and as accident tolerant fuel clad in current generation plant. Experimental methods are needed that can detect and quantify the development of mechanical damage, to support modelling and qualification tests for these critical components. In situ observations of damage development have been obtained of tensile and C-ring mechanical test specimens of a braided nuclear grade SiC-SiC ceramic composite tube, using a combination of ex situ and in situ computed X-ray tomography observation and digital volume correlation analysis. The gradual development of damage by matrix cracking and also the influence of non-uniform loading are examined. - Highlights: • X-ray tomography with digital volume correlation measures 3D deformation in situ. • Cracking and damage in the microstructure can be detected using the strain field. • Fracture can initiate from the monolithic coating of a SiC-SiC ceramic composite.

  10. Poly(borosiloxanes as precursors for carbon fiber ceramic matrix composites

    Directory of Open Access Journals (Sweden)

    Renato Luiz Siqueira

    2007-06-01

    Full Text Available Ceramic matrix composites (CMCs, constituted of a silicon boron oxycarbide (SiBCO matrix and unidirectional carbon fiber rods as a reinforcement phase, were prepared by pyrolysis of carbon fiber rods wrapped in polysiloxane (PS or poly(borosiloxane (PBS matrices. The preparation of the polymeric precursors involved hydrolysis/condensation reactions of alkoxysilanes in the presence and absence of boric acid, with B/Si atomic ratios of 0.2 and 0.5. Infrared spectra of PBS showed evidence of Si-O-B bonds at 880 cm-1, due to the incorporation of the crosslinker trigonal units of BO3 in the polymeric network. X ray diffraction analyses exhibited an amorphous character of the resulting polymer-derived ceramics obtained by pyrolysis up to 1000 °C under inert atmosphere. The C/SiBCO composites showed better thermal stability than the C/SiOC materials. In addition, good adhesion between the carbon fiber and the ceramic phase was observed by SEM microscopy

  11. Full-field characterization of thermal diffusivity in continuous-fiber ceramic composite materials and components

    Science.gov (United States)

    Steckenrider, J. Scott; Ellingson, William A.; Rothermel, Scott A.

    1995-03-01

    Continuous-fiber ceramic matrix composites (CFCCs) are currently being developed for various high-temperature applications, including use in advanced heat engines. Among the material classes of interest for such applications are silicon carbide (SiC)-fiber-reinforced SiC (SiC(f)/SiC), SiC-fiber-reinforced silicon nitride (SiC(f)/Si3N4), aluminum oxide (Al2O3)-fiber-reinforced Al2O3 (Al2O3(f)/Al2O3), and others. In such composites, the condition of the interfaces (between the fibers and matrix) are critical to the mechanical and thermal behavior of the component (as are conventional mechanical defects such as cracks, porosity, etc.). For example, oxidation of this interface (especially on carbon coated fibers) can seriously degrade both mechanical and thermal properties. Furthermore, thermal shock damage can degrade the matrix through extensive crack generation. A nondestructive evaluation method that could be used to assess interface condition, thermal shock damage, and to detect other `defects' would thus be very beneficial, especially if applicable to full-scale components. One method under development uses infrared thermal imaging to provide `single-shot' full-field assessment of the distribution of thermal properties in large components by measuring thermal diffusivity. By applying digital image filtering, interpolation, and least-squares-estimation techniques for noise reduction, we can achieve acquisition and analysis times of minutes or less with submillimeter spatial resolution. The system developed at Argonne National Laboratory has been used to examine the effects of thermal shock, oxidation treatment, density variations, and variations in oxidation resistance coatings in a full array of test specimens. Subscale CFCC components with nonplanar geometries have also been studied for manufacturing-induced variations in thermal properties.

  12. Boron-bearing species in ceramic matrix composites for long-term aerospace applications

    International Nuclear Information System (INIS)

    Naslain, R.; Guette, A.; Rebillat, F.; Pailler, R.; Langlais, F.; Bourrat, X.

    2004-01-01

    Boron-bearing refractory species are introduced in non-oxide ceramic matrix fibrous composites (such as SiC/SiC composites) to improve their oxidation resistance under load at high temperatures with a view to applications in the aerospace field. B-doped pyrocarbon and hex-BN have been successfully used as interphase (instead of pure pyrocarbon) either as homogeneous or multilayered fiber coatings, to arrest and deflect matrix cracks formed under load (mechanical fuse function) and to give toughness to the materials. A self-healing multilayered matrix is designed and used in a model composite, which combines B-doped pyrocarbon mechanical fuse layers and B- and Si-bearing compound (namely B 4 C and SiC) layers forming B 2 O 3 -based fluid healing phases when exposed to an oxidizing atmosphere. All the materials are deposited by chemical vapor infiltration. Lifetimes under tensile loading of several hundreds hours at high temperatures are reported

  13. Fabrication and properties of ceramic composites with a boron nitride matrix

    International Nuclear Information System (INIS)

    Kim, D.P.; Cofer, C.G.; Economy, J.

    1995-01-01

    Boron nitride (BN) matrix composites reinforced by a number of different ceramic fibers have been prepared using a low-viscosity, borazine oligomer which converts in very high yield to a stable BN matrix when heated to 1,200 C. Fibers including Nicalon (SiC), FP (Al 2 O 3 ), Sumica and Nextel 440 (Al 2 O 3 -SiO 2 ) were evaluated. The Nicalon/BN and Sumica/BN composites displayed good flexural strengths of 380 and 420 MPa, respectively, and modulus values in both cases of 80 GPa. On the other hand, FP/BN and Nextel/BN composites exhibited very brittle behavior. Nicalon fiber with a carbon coating as a buffer barrier improved the strength by 30%, with a large amount of fiber pullout from the BN matrix. In all cases except for Nicalon, the composites showed low dielectric constant and loss

  14. Nondestructive evaluation of ceramic and metal matrix composites for NASA's HITEMP and enabling propulsion materials programs

    Science.gov (United States)

    Generazio, Edward R.

    1992-01-01

    In a preliminary study, ultrasonic, x-ray opaque, and fluorescent dye penetrants techniques were used to evaluate and characterize ceramic and metal matrix composites. Techniques are highlighted for identifying porosity, fiber alignment, fiber uniformity, matrix cracks, fiber fractures, unbonds or disbonds between laminae, and fiber-to-matrix bond variations. The nondestructive evaluations (NDE) were performed during processing and after thermomechanical testing. Specific examples are given for Si3N4/SiC (SCS-6 fiber), FeCrAlY/Al2O3 fibers, Ti-15-3/SiC (SCS-6 fiber) materials, and Si3N4/SiC (SCS-6 fiber) actively cooled panel components. Results of this study indicate that the choice of the NDE tools to be used can be optimized to yield a faithful and accurate evaluation of advanced composites.

  15. Effect of sintering temperatures on titanium matrix composites reinforced by ceramic particles

    Energy Technology Data Exchange (ETDEWEB)

    Romero, F.; Amigo, V.; Busquets, D.; Klyatskina, E. [Mechanical and Materials Engineering Department. Polytechnical University of Valencia, Valencia (Spain)

    2005-07-01

    Titanium and titanium composites have a potential use in aerospace and biotechnology industries, and nowadays in others like sports and fashion ones. In this work composite materials, based on titanium matrix reinforced with ceramic particles, have been developed. PM route is used to obtain compact and sintered samples. TiN and TiAl powders, are milled with Ti powder in different volumetric percentages in a ball mill. These mixtures are pressed in a uniaxial press and sintered in a vacuum furnace at different temperatures between 1180 to 1220 deg. C. Porosity of samples is analysed, before and after the sintering process, by Archimedes technique and by image analysis. Mechanical properties and the reinforcement particles influence in the titanium matrix are studied by flexion test in green and sintered states, and by hardness and microhardness tests. Complimentarily, a microstructural analysis is carried out by optical and electron microscopy, and the reactivity between the reinforce particles and titanium matrix are studied. (authors)

  16. Carbon and glass hierarchical fibers: Influence of carbon nanotubes on tensile, flexural and impact properties of short fiber reinforced composites

    International Nuclear Information System (INIS)

    Rahmanian, S.; Thean, K.S.; Suraya, A.R.; Shazed, M.A.; Mohd Salleh, M.A.; Yusoff, H.M.

    2013-01-01

    Highlights: ► Dense CNT were grown on carbon fiber and glass fiber by use of floating catalyst CVD method. ► CNT showed different growing mechanism on carbon and glass fiber. ► Short fiber-CNT-composites showed enhanced mechanical properties. ► CNT coating enhanced fiber–matrix interaction and acted as additional reinforcement. -- Abstract: Dense carbon nanotubes (CNTs) were grown uniformly on the surface of carbon fibers and glass fibers to create hierarchical fibers by use of floating catalyst chemical vapor deposition. Morphologies of the CNTs were investigated using scanning electronic microscope (SEM) and transmission electron microscope (TEM). Larger diameter dimension and distinct growing mechanism of nanotubes on glass fiber were revealed. Short carbon and glass fiber reinforced polypropylene composites were fabricated using the hierarchical fibers and compared with composites made using neat fibers. Tensile, flexural and impact properties of the composites were measured, which showed evident enhancement in all mechanical properties compared to neat short fiber composites. SEM micrographs of composite fracture surface demonstrated improved adhesion between CNT-coated fiber and the matrix. The enhanced mechanical properties of short fiber composites was attributed to the synergistic effects of CNTs in improving fiber–matrix interfacial properties as well as the CNTs acting as supplemental reinforcement in short fiber-composites.

  17. Nano-Fiber Reinforced Enhancements in Composite Polymer Matrices

    Science.gov (United States)

    Chamis, Christos C.

    2009-01-01

    Nano-fibers are used to reinforce polymer matrices to enhance the matrix dependent properties that are subsequently used in conventional structural composites. A quasi isotropic configuration is used in arranging like nano-fibers through the thickness to ascertain equiaxial enhanced matrix behavior. The nano-fiber volume ratios are used to obtain the enhanced matrix strength properties for 0.01,0.03, and 0.05 nano-fiber volume rates. These enhanced nano-fiber matrices are used with conventional fiber volume ratios of 0.3 and 0.5 to obtain the composite properties. Results show that nano-fiber enhanced matrices of higher than 0.3 nano-fiber volume ratio are degrading the composite properties.

  18. Buckling of Fiber Reinforced Composite Plates with Nanofiber Reinforced Matrices

    Science.gov (United States)

    Chamis, Christos C.; Murthy, Pappu L. N.

    2010-01-01

    Anisotropic composite plates were evaluated with nanofiber reinforced matrices (NFRM). The nanofiber reinforcement volumes ratio in the matrix was 0.01. The plate dimensions were 20 by 10 by 1.0 in. (508 by 254 by 25.4 mm). Seven different loading condition cases were evaluated: three for uniaxial loading, three for pairs of combined loading, and one with three combined loadings. The anisotropy arose from the unidirectional plates having been at 30 from the structural axis. The anisotropy had a full 6 by 6 rigidities matrix which were satisfied and solved by a Galerkin buckling algorithm. The buckling results showed that the NFRM plates buckled at about twice those with conventional matrix.

  19. Preparation and mechanical properties of carbon nanotube-silicon nitride nano-ceramic matrix composites

    Science.gov (United States)

    Tian, C. Y.; Jiang, H.

    2018-01-01

    Carbon nanotube–silicon nitride nano-ceramic matrix composites were fabricated by hot-pressing nano-sized Si3N4 powders and carbon nanotubes. The effect of CNTs on the mechanical properties of silicon nitride was researched. The phase compositions and the microstructure characteristics of the samples as well as the distribution of carbon nanotube in the silicon nitride ceramic were analyzed by X-ray diffraction and scanning electron microscope. The results show that the microstructure of composites consists mainly of α-Si3N4, β-Si3N4, Si2N2O and carbon natubes. The addition of proper amount of carbon nanotubes can improve the fracture toughness and the flexural strength, and the optimal amount of carbon nanotube are both 3wt.%. However the Vickers hardness values decrease with the increase of carbon nanotubes content.

  20. Influence of Cutting Temperature on the Tensile Strength of a Carbon Fiber-Reinforced Polymer

    Directory of Open Access Journals (Sweden)

    Jérémy Delahaigue

    2017-12-01

    Full Text Available Carbon fiber-reinforced plastics (CFRP have seen a significant increase in use over the years thanks to their specific properties. Despite continuous improvements in the production methods of laminated parts, a trimming operation is still necessary to achieve the functional dimensions required by engineering specifications. Laminates made of carbon fibers are very abrasive and cause rapid tool wear, and require high cutting temperatures. This creates damage to the epoxy matrix, whose glass-transition temperature is often recognized to be about 180 °C. This study aims to highlight the influence of the cutting temperature generated by tool wear on the surface finish and mechanical properties obtained from tensile tests. Trimming operations were performed on a quasi-isotropic 24-ply carbon/epoxy laminate, of 3.6 mm thickness, with a 6 flutes diamond-coated (CVD cutter. The test specimens of 6 mm and 12 mm wide were obtained by trimming. The reduced width of the coupons allowed amplification of the effect of defects on the measured properties by increasing the proportion of coupon cross-section occupied by the defects. A new tool and a tool in an advanced state of wear were used to generate different cutting temperatures. Results showed a cutting temperature of 300 °C for the new tool and 475 °C for the worn tool. The analysis revealed that the specimens machined with the new tool have no thermal damage and the cut is clean. The plies oriented at −45° presented the worst surface finish according to the failure mode of the fiber. For the worn tool, the surface was degraded and the matrix was carbonized. After cutting, observations showed a degraded resin spread on the machined surface, which reduced the surface roughness and hid the cutting defects. In support of these observations, the tensile tests showed no variation of the mechanical properties for the 12 mm-wide specimens, but did show a 10% loss in mechanical properties for the 6 mm

  1. Advanced ceramic matrix composite materials for current and future propulsion technology applications

    Science.gov (United States)

    Schmidt, S.; Beyer, S.; Knabe, H.; Immich, H.; Meistring, R.; Gessler, A.

    2004-08-01

    Current rocket engines, due to their method of construction, the materials used and the extreme loads to which they are subjected, feature a limited number of load cycles. Various technology programmes in Europe are concerned, besides developing reliable and rugged, low cost, throwaway equipment, with preparing for future reusable propulsion technologies. One of the key roles for realizing reusable engine components is the use of modern and innovative materials. One of the key technologies which concern various engine manufacturers worldwide is the development of fibre-reinforced ceramics—ceramic matrix composites. The advantages for the developers are obvious—the low specific weight, the high specific strength over a large temperature range, and their great damage tolerance compared to monolithic ceramics make this material class extremely interesting as a construction material. Over the past years, the Astrium company (formerly DASA) has, together with various partners, worked intensively on developing components for hypersonic engines and liquid rocket propulsion systems. In the year 2000, various hot-firing tests with subscale (scale 1:5) and full-scale nozzle extensions were conducted. In this year, a further decisive milestone was achieved in the sector of small thrusters, and long-term tests served to demonstrate the extraordinary stability of the C/SiC material. Besides developing and testing radiation-cooled nozzle components and small-thruster combustion chambers, Astrium worked on the preliminary development of actively cooled structures for future reusable propulsion systems. In order to get one step nearer to this objective, the development of a new fibre composite was commenced within the framework of a regionally sponsored programme. The objective here is to create multidirectional (3D) textile structures combined with a cost-effective infiltration process. Besides material and process development, the project also encompasses the development of

  2. Hybrid welding of carbon-fiber reinforced epoxy based composites

    NARCIS (Netherlands)

    Lionetto, Francesca; De Nicolas Morillas, M.; Pappadà, Silvio; Buccoliero, Giuseppe; Fernandez Villegas, I.; Maffezzoli, Alfonso

    2018-01-01

    The approach for joining thermosetting matrix composites (TSCs) proposed in this study is based on the use of a low melting co-cured thermoplastic film, added as a last ply in the stacking sequence of the composite laminate. During curing, the thermoplastic film partially penetrates in the first

  3. Direct observation of toughening mechanisms in carbon nanotube ceramic matrix composites

    International Nuclear Information System (INIS)

    Xia, Z.; Riester, L.; Curtin, W.A.; Li, H.; Sheldon, B.W.; Liang, J.; Chang, B.; Xu, J.M.

    2004-01-01

    The excellent mechanical properties of carbon nanotubes (CNTS) are driving research into the creation of new strong, tough nanocomposite systems. Here, the first evidence of toughening mechanisms operating in carbon-nanotube-reinforced ceramic composites is presented. A highly ordered array of parallel multiwall CNTs in an alumina matrix was fabricated. Nanoindentation introduced controlled cracks and the damage was examined by scanning electron microscopy. These nanocomposites exhibit the three hallmarks of toughening found in micron-scale fiber composites: crack deflection at the CNT/matrix interface; crack bridging by CNTs; and CNT pullout on the fracture surfaces. Interface debonding and sliding can thus occur in materials with microstructures approaching the atomic scale. Furthermore, for certain geometries a new mechanism of nanotube collapse in 'shear bands' occurs, rather than crack formation, suggesting that these materials can have multiaxial damage tolerance. The quantitative indentation data and computational models are used to determine the multiwall CNT axial Young's modulus as 200-570 GPa, depending on the nanotube geometry and quality. Three-dimensional FEM analysis indicates that matrix residual stresses on the order of 300 MPa are sustained in these materials without spontaneous cracking, suggesting that residual stress can be used to engineer enhanced performance. These nanoscale ceramic composites thus have potential for toughening and damage tolerance at submicron scales, and so are excellent candidates for wear-resistant coatings

  4. Federal Aviation Administration (FAA airworthiness certification for ceramic matrix composite components in civil aircraft systems

    Directory of Open Access Journals (Sweden)

    Gonczy Stephen T.

    2015-01-01

    Full Text Available Ceramic matrix composites (CMCs are being designed and developed for engine and exhaust components in commercial aviation, because they offer higher temperature capabilities, weight savings, and improved durability compared to metals. The United States Federal Aviation Administration (FAA issues and enforces regulations and minimum standards covering the safe manufacture, operation, and maintenance of civil aircraft. As new materials, these ceramic composite components will have to meet the certification regulations of the FAA for “airworthiness”. The FAA certification process is defined in the Federal Aviation Regulations (Title 14 of the Code of Federal Regulations, FAA policy statements, orders, advisory circulars, technical standard orders, and FAA airworthiness directives. These regulations and documents provide the fundamental requirements and guidelines for design, testing, manufacture, quality assurance, registration, operation, inspection, maintenance, and repair of aircraft systems and parts. For metallic parts in aircraft, the FAA certification and compliance process is well-established for type and airworthiness certification, using ASTM and SAE standards, the MMPDS data handbook, and FAA advisory circulars. In a similar manner for polymer matrix composites (PMC, the PMC industry and the FAA have jointly developed and are refining parallel guidelines for polymer matrix composites (PMCs, using guidance in FAA circulars and the CMH-17 PMC handbook. These documents discuss design methods and codes, material testing, property data development, life/durability assessment, production processes, QA procedures, inspection methods, operational limits, and repairs for PMCs. For ceramic composites, the FAA and the CMC and aerospace community are working together (primarily through the CMH-17 CMC handbook to define and codify key design, production, and regulatory issues that have to be addressed in the certification of CMC components in

  5. Damage Accumulation in Cyclically-Loaded Glass-Ceramic Matrix Composites Monitored by Acoustic Emission

    Directory of Open Access Journals (Sweden)

    D. G. Aggelis

    2013-01-01

    Full Text Available Barium osumilite (BMAS ceramic matrix composites reinforced with SiC-Tyranno fibers are tested in a cyclic loading protocol. Broadband acoustic emission (AE sensors are used for monitoring the occurrence of different possible damage mechanisms. Improved use of AE indices is proposed by excluding low-severity signals based on waveform parameters, rather than only threshold criteria. The application of such improvements enhances the accuracy of the indices as accumulated damage descriptors. RA-value, duration, and signal energy follow the extension cycles indicating moments of maximum or minimum strain, while the frequency content of the AE signals proves very sensitive to the pull-out mechanism.

  6. The influence of sintering on the dispersion of carbon nanotubes in ceramic matrix composites

    Science.gov (United States)

    Tapasztó, Orsolya; Lemmel, Hartmut; Markó, Márton; Balázsi, Katalin; Balázsi, Csaba; Tapasztó, Levente

    2014-10-01

    Optimizing the dispersion of carbon nanostructures in ceramic matrix composites is a fundamental technological challenge. So far most efforts have been focused on improving the dispersion of nanostructures during the powder phase processing, due to the limited information and control on their possible redistribution during the sintering. Here, we address this issue by comparing multi-walled carbon nanotubes reinforced Si3N4 composites prepared from the same starting powder dispersion but sintered using two different techniques. We employ ultra-small angle neutron scattering measurements to gain reliable information on the dispersion of nanostructures allowing a direct comparison of their redistribution during the sintering.

  7. Alumina matrix ceramic-nickel composites formed by centrifugal slip casting

    Directory of Open Access Journals (Sweden)

    Justyna Zygmuntowicz

    2015-12-01

    Full Text Available The paper is focused on the possibility of fabricating the alumina matrix ceramic-nickel composites with gradient concentration of metal particles. Centrifugal slip casting method was chosen for the composite fabrication. This method allows fabrication of the graded distribution of nickel particles in the hollow cylinder composites. The horizontal rotation axis was applied. The samples were characterized by XRD, SEM and quantitative description of the microstructure. The macroscopic as well as SEM observations of the prepared composites confirmed the gradient concentration of Ni particles in the composite materials. The application of the centrifugal slip casting method allows for the graded distribution of metal particles in the samples.

  8. Performance and Durability of Environmental Barrier Coatings on SiC/SiC Ceramic Matrix Composites

    Science.gov (United States)

    Zhu, Dongming; Harder, Bryan; Bhatt, Ramakrishna

    2016-01-01

    This presentation highlights advanced environmental barrier coating (EBC) and SiC-SiC Ceramic Matrix Composites (CMC) systems for next generation turbine engines. The emphasis will be placed on fundamental coating and CMC property evaluations; and the integrated system performance and degradation mechanisms in simulated laboratory turbine engine testing environments. Long term durability tests in laser rig simulated high heat flux the rmomechanical creep and fatigue loading conditions will also be presented. The results can help improve the future EBC-CMC system designs, validating the advanced EBC-CMC technologies for hot section turbine engine applications.

  9. Electron beam irradiation effects on carbon fiber reinforced PEEK composite

    International Nuclear Information System (INIS)

    Sasuga, Tsuneo; Hagiwara, Miyuki; Odajima, Tosikazu; Sakai, Hideo; Nakakura, Toshiyuki; Masutani, Masahiro.

    1987-03-01

    Carbon fiber(CF) reinforced composites, using polyarylether-sulfone (PES) or polyarylether-ether-ketone (PEEK) as matrix material, were prepared and their electron beam irradiation effects were studied on the basis of changes in mechanical and dynamic viscoelastic properties and observation of fracture surfaces. The flexural strength of PES-CF composite decreased to 70 % of the initial strength after the irradiation of 3 MGy and 40 % after 15 MGy. The change in the profile of stress-strain (S-S) curves and fractographic observation by electron microscopy indicated that this composite irradiated with over 3 MGy was fractured by delamination caused by to the degradation of matrix polymer. The mechanical properties of PEEK-CF composite were scarcely decreased even after irradiated up to 180 MGy and this composite showed very high radiation resistance. The change in the profile of S-S curves and fractographic observation showed that this composite fractured due to destruction of fiber in the dose range less than 180 MGy, indicating that PEEK was excellent matrix material used in high radiation field. PEEK-PES-CF composite which was composed of the carbon fibers coated with PES solution showed less radiation resistance compared with PEEK-CF composite; the flexural strength decreased to 85 % of the initial value after the irradiation with 90 MGy. It was revealed from the changes in the profile of S-S curve that the specimen irradiated over 120 MGy was fractured due to not only fiber destruction but delamination. Deterioration mechanism of PEEK-PES-CF composite was studied by dynamic viscoelastic measurements in connection with the damage on matrix-fiber interface. It was suggested that the deterioration in mechanical properties of this composite was caused by the degradation of PES that coated on the surface of the carbon fibers. (author)

  10. Fatigue resistance and stiffness of glass fiber-reinforced urethane dimethacrylate composite.

    Science.gov (United States)

    Narva, Katja K; Lassila, Lippo V J; Vallittu, Pekka K

    2004-02-01

    Retentive properties of cast metal clasps decrease over time because of metal fatigue. Novel fiber-reinforced composite materials are purported to have increased fatigue resistance compared with metals and may offer a solution to the problem of metal fatigue. The aim of this study was to investigate the fatigue resistance and stiffness of E-glass fiber-reinforced composite. Twelve cylindrical fiber-reinforced composite test cylinders (2 mm in diameter and 60 mm in length) were made from light-polymerized urethane dimethacrylate monomer with unidirectional, single-stranded, polymer preimpregnated E-glass fiber reinforcement. Six cylinders were stored in dry conditions and 6 in distilled water for 30 days before testing. Fatigue resistance was measured by a constant-deflection fatigue test with 1 mm of deflection across a specimen span of 11 mm for a maximum of 150,000 loading cycles. The resistance of the cylinder against deflection was measured (N) and the mean values of the force were compared by 1-way analysis of variance (alpha = .05). The flexural modulus (GPa) was calculated for the dry and water-stored cylinders for the first loading cycle. Scanning electron microscopy was used to assess the distribution of the fibers, and the volume percent of fibers and polymer were assessed by combustion analysis. The test cylinders did not fracture due to fatigue following 150,000 loading cycles. Flexural modulus at the first loading cycle was 18.9 (+/- 2.9) GPa and 17.5 (+/- 1.7) GPa for the dry and water-stored cylinders, respectively. The mean force required to cause the first 1-mm deflection was 33.5 (+/- 5.2) N and 37.7 (+/- 3.6) N for the dry and water stored cylinders, respectively; however, the differences were not significant. After 150,000 cycles the mean force to cause 1-mm deflection was significantly reduced to 23.4 (+/- 8.5) N and 13.1 (+/- 3.5) N, respectively (P fiber- and polymer-rich areas within the specimens and indicated that individual fibers were

  11. Effect of fiber loading on mechanical and morphological properties of cocoa pod husk fibers reinforced thermoplastic polyurethane composites

    International Nuclear Information System (INIS)

    El-Shekeil, Y.A.; Sapuan, S.M.; Algrafi, M.W.

    2014-01-01

    Highlights: • Increase in fiber loading increased tensile strength and modulus of the composites. • Tensile strain was decreasing with increase in fiber loading. • Flexural strength and modulus increased with increase in fiber content. • Impact strength was deteriorated with increasing fiber loading. • Morphology observations shown a good adhesion between fibers and matrix. - Abstract: In this study, cocoa (Theobroma cacao) pod husk (CPH) fiber reinforced thermoplastic polyurethane (TPU) was prepared by melt compounding method using Haake Polydrive R600 internal mixer. The composites were prepared with different fiber loading: 20%, 30% and 40% (by weight), with the optimum processing parameters: 190 °C, 11 min, and 40 rpm for temperature, time and speed, respectively. Five samples were cut from the composite sheet. Mean value was taken for each composite according to ASTM standards. Effect of fiber loading on mechanical (i.e. tensile, flexural properties and impact strength) and morphological properties was studied. TPU/CPH composites showed increase in tensile strength and modulus with increase in fiber loading, while tensile strain was decreasing with increase in fiber loading. The composite also showed increase in flexural strength and modulus with increase in fiber content. Impact strength was deteriorated with increase in fiber loading. Morphology observations using Scanning Electron Microscope (SEM) showed fiber/matrix good adhesion

  12. Negative Outcomes of Poly(l-Lactic Acid) Fiber-Reinforced Scaffolds in an Ovine Total Meniscus Replacement Model.

    Science.gov (United States)

    Patel, Jay M; Merriam, Aaron R; Kohn, Joachim; Gatt, Charles J; Dunn, Michael G

    2016-09-01

    Our objective was to test the efficacy of collagen-hyaluronan scaffolds reinforced with poly(l-lactic acid) (PLLA) fibers in an ovine total meniscus replacement model. Scaffolds were implanted into 9 sheep (n = 1 at 8 weeks, n = 2 at 16 weeks, n = 3 at both 24, 32 weeks) following total medial meniscectomy. From 16 weeks on, explants were characterized by confined compression creep, histological, and biochemical analyses. Articular surfaces were observed macroscopically and damage was ranked histologically using the Mankin score. At sacrifice, three of the nine PLLA scaffolds had completely ruptured, and the intact scaffolds experienced progressive shape changes and severe narrowing in the body region at 16, 24, and 32 weeks. Aggregate compressive modulus and permeability did not improve with time. Histological and biochemical analyses showed significantly less extracellular matrix and less matrix organization compared to native tissue. Osteophytes, bone erosion, and cartilage damage were observed, increasing with time postimplantation. A buildup of lactic acid and/or the rapid loss of scaffold mechanical integrity due to PLLA degradation are probable causes for the joint abnormalities observed in this study. These results are in sharp contrast to those of our previous successful total meniscus replacement studies using polyarylate [p(DTD DD)] fiber-reinforced scaffolds. This suggests that PLLA fiber as produced in this study cannot be used as reinforcement for a meniscus replacement scaffold.

  13. SERIAL SECTIONS THROUGH A CONTINUOUS FIBER-REINFORCED POLYMER COMPOSITE

    Directory of Open Access Journals (Sweden)

    Laurent Bizet

    2011-05-01

    Full Text Available The microstructure of a unidirectional glass-fiber composite material is described seeking especially for the influence of the stitching perpendicular to the reinforcement. Serial cuts are performed through the composite and the microstructure is quantified using global parameters and linear morphological analysis. A key result is that the stitching induces variations in fibers spacing within the yarns and in the matrix volume between the yarns. This can affect noticeably the flow of the resin during the manufacturing process and also the mechanical properties of the composite.

  14. Progress in the characterisation of structural oxide/oxide ceramic matrix composites fabricated by electrophoretic deposition (EPD)

    Czech Academy of Sciences Publication Activity Database

    Stoll, E.; Mahr, P.; Kruger, H. G.; Kern, H.; Dlouhý, Ivo; Boccaccini, A. R.

    2006-01-01

    Roč. 8, č. 4 (2006), s. 282-285 ISSN 1438-1656 R&D Projects: GA ČR(CZ) GA106/05/0495 Institutional research plan: CEZ:AV0Z20410507 Keywords : electorphoretic deposition * oxid/oxid ceramic matrix composites * flexural strength Subject RIV: JH - Ceramics, Fire-Resistant Materials and Glass Impact factor: 1.402, year: 2006 http://www3.interscience.wiley.com/cgi-bin/jissue/112579545

  15. Development and Characterization of UHMWPE Fiber-Reinforced Hydrogels For Meniscal Replacement

    Science.gov (United States)

    Holloway, Julianne Leigh

    Meniscal tears are the most common orthopedic injuries to the human body. The current treatment of choice, however, is a partial meniscectomy that leads to osteoarthritis proportional to the amount of tissue removed. As a result, there is a significant clinical need to develop materials capable of restoring the biomechanical contact stress distribution to the knee after meniscectomy and preventing the onset of osteoarthritis. In this work, a fiber-reinforced hydrogel-based synthetic meniscus was developed that allows for tailoring of the mechanical properties and molding of the implant to match the size, shape, and property distribution of the native tissue. Physically cross-linked poly(vinyl alcohol) (PVA) hydrogels were reinforced with ultrahigh molecular weight polyethylene (UHMWPE) fibers and characterized in compression (0.1-0.8 MPa) and tension (0.1-250 MPa) showing fine control over mechanical properties within the range of the human meniscus. Morphology and crystallinity analysis of PVA hydrogels showed increases in crystallinity and PVA densification, or phase separation, with freeze-thaw cycles. A comparison of freeze-thawed and aged, physically cross-linked hydrogels provided insight on both crystallinity and phase separation as mechanisms for PVA gelation. Results indicated both mechanisms independently contributed to hydrogel modulus for freeze-thawed hydrogels. In vitro swelling studies were performed using osmotic solutions to replicate the swelling pressure present in the knee. Minimal swelling was observed for hydrogels with a PVA concentration of 30-35 wt%, independently of hydrogel freeze-thaw cycles. This allows for independent tailoring of hydrogel modulus and pore structure using freeze-thaw cycles and swelling behavior using polymer concentration to match a wide range of properties needed for various soft tissue applications. The UHMWPE-PVA interface was identified as a significant weakness. To improve interfacial adhesion, a novel

  16. Characterization of a carbon fiber reinforced polymer repair system for structurally deficient steel piping

    Science.gov (United States)

    Wilson, Jeffrey M.

    This Dissertation investigates a carbon fiber reinforced polymer repair system for structurally deficient steel piping. Numerous techniques exist for the repair of high-pressure steel piping. One repair technology that is widely gaining acceptance is composite over-wraps. Thermal analytical evaluations of the epoxy matrix material produced glass transition temperature results, a cure kinetic model, and a workability chart. These results indicate a maximum glass transition temperature of 80°C (176°F) when cured in ambient conditions. Post-curing the epoxy, however, resulted in higher glass-transition temperatures. The accuracy of cure kinetic model presented is temperature dependent; its accuracy improves with increased cure temperatures. Cathodic disbondment evaluations of the composite over-wrap show the epoxy does not breakdown when subjected to a constant voltage of -1.5V and the epoxy does not allow corrosion to form under the wrap from permeation. Combustion analysis of the composite over-wrap system revealed the epoxy is flammable when in direct contact with fire. To prevent combustion, an intumescent coating was developed to be applied on the composite over-wrap. Results indicate that damaged pipes repaired with the carbon fiber composite over-wrap withstand substantially higher static pressures and exhibit better fatigue characteristics than pipes lacking repair. For loss up to 80 percent of the original pipe wall thickness, the composite over-wrap achieved failure pressures above the pipe's specified minimum yield stress during monotonic evaluations and reached the pipe's practical fatigue limit during cyclical pressure testing. Numerous repairs were made to circular, thru-wall defects and monotonic pressure tests revealed containment up to the pipe's specified minimum yield strength for small diameter defects. The energy release rate of the composite over-wrap/steel interface was obtained from these full-scale, leaking pipe evaluations and results

  17. Local-global analysis of crack growth in continuously reinforced ceramic matrix composites

    Science.gov (United States)

    Ballarini, Roberto; Ahmed, Shamin

    1988-01-01

    The development is described of a mathematical model for predicting the strength and micromechanical failure characteristics of continuously reinforced ceramic matrix composites. The local-globe analysis models the vicinity of a propagating crack tip as a local heterogeneous region (LHR) consisting of spring like representation of the matrix, fibers and interfaces. This region is embedded in an anisotropic continuum (representing the bulk composite) which is modeled by conventional finite elements. Parametric studies are conducted to investigate the effects of LHR size, component properties, interface conditions, etc. on the strength and sequence of the failure processes in the unidirectional composite system. The results are compared with those predicted by the models developed by Marshall et al. (1985) and by Budiansky et al. (1986).

  18. Composite Coatings with Ceramic Matrix Including Nanomaterials as Solid Lubricants for Oil-Less Automotive Applications

    Directory of Open Access Journals (Sweden)

    Posmyk A.

    2016-06-01

    Full Text Available The paper presents the theoretical basis of manufacturing and chosen applications of composite coatings with ceramic matrix containing nanomaterials as a solid lubricant (AHC+NL. From a theoretical point of view, in order to reduce the friction coefficient of sliding contacts, two materials are required, i.e. one with a high hardness and the other with low shear strength. In case of composite coatings AHC+NL the matrix is a very hard and wear resistant anodic oxide coating (AHC whereas the solid lubricant used is the nanomaterial (NL featuring a low shear strength such as glassy carbon nanotubes (GC. Friction coefficient of cast iron GJL-350 sliding against the coating itself is much higher (0.18-0.22 than when it slides against a composite coating (0.08-0.14. It is possible to reduce the friction due to the presence of carbon nanotubes, or metal nanowires.

  19. EVALUATION OF EFFECTIVE PROPERTIES OF BASALT TEXTILE REINFORCED CERAMIC MATRIX COMPOSITES

    Directory of Open Access Journals (Sweden)

    Soňa Valentová

    2017-11-01

    Full Text Available The present paper is concerned with the analysis of a ceramic matrix composite, more specifically the plain weave textile fabric composite made of basalt fibers embedded into the pyrolyzed polysiloxane matrix. Attention is paid to the determination of effective elastic properties of the yarn via homogenization based on the Mori-Tanaka averaging scheme and the 1st order numerical homogenization method adopting a suitable representative computational model. The latter approach is then employed to simulate the response of the yarn when loaded beyond the elastic limits. The required mechanical properties of individual material phases are directly measured using nanoindentation with in-build scanning probe microscopy. Applicability of the proposed computational methodology is supported by the analysis of a unidirectional fibrous composite, representing the yarn, subjected to a macroscopically uniform strain.

  20. High-Temperature, Lightweight, Self-Healing Ceramic Composites for Aircraft Engine Applications

    Science.gov (United States)

    Raj, Sai V.; Bhatt, Ramkrishna

    2013-01-01

    The use of reliable, high-temperature, lightweight materials in the manufacture of aircraft engines is expected to result in lower fossil and biofuel consumption, thereby leading to cost savings and lower carbon emissions due to air travel. Although nickel-based superalloy blades and vanes have been successfully used in aircraft engines for several decades, there has been an increased effort to develop high-temperature, lightweight, creep-resistant substitute materials under various NASA programs over the last two decades. As a result, there has been a great deal of interest in developing SiC/SiC ceramic matrix composites (CMCs) due to their higher damage tolerance compared to monolithic ceramics. Current-generation SiC/SiC ceramic matrix composites rely almost entirely on the SiC fibers to carry the load, owing to the premature cracking of the matrix during loading. Thus, the high-temperature usefulness of these CMCs falls well below their theoretical capabilities. The objective of this work is to develop a new class of high-temperature, lightweight, self-healing, SiC fiber-reinforced, engineered matrix ceramic composites.

  1. Cellulose fiber reinforced nylon 6 or nylon 66 composites

    Science.gov (United States)

    Xu, Xiaolin

    Cellulose fiber was used to reinforce higher melting temperature engineering thermoplastics, such as nylon 6 and nylon 66. The continuous extrusion - direct compression molding processing and extrusion-injection molding were chosen to make cellulose fiber/nylon 6 or 66 composites. Tensile, flexural and Izod impact tests were used to demonstrate the mechanical properties of the composites. The continuous extrusion-compression molding processing can decrease the thermal degradation of cellulose fiber, but fiber doesn't disperse well with this procedure. Injection molding gave samples with better fiber dispersion and less void content, and thus gave better mechanical properties than compression molding. Low temperature compounding was used to extrude cellulose fiber/nylon composites. Plasticizer and a ceramic powder were used to decrease the processing temperature. Low temperature extrusion gave better mechanical properties than high temperature extrusion. The tensile modulus of nylon 6 composite with 30% fiber can reach 5GPa; with a tensile strength of 68MPa; a flexural modulus of 4GPa, and a flexural strength of 100MPa. The tensile modulus of nylon 66 composites with 30% fiber can reach 5GPa; with a flexural modulus of 5GPa; a tensile strength of 70MPa; and a flexural strength of 147MPa. The effect of thermal degradation on fiber properties was estimated. The Halpin-Tsai model and the Cox model were used to estimate the composite modulus. The Kelly-Tyson model was used to estimate the composite strength. The result indicates that the change of fiber properties determines the final properties of composites. Fiber length has a minor affect on both modulus and strength as long as the fiber length is above the critical length.

  2. Fiber-Reinforced Reactive Nano-Epoxy Composites

    Science.gov (United States)

    Zhong, Wei-Hong

    2011-01-01

    An ultra-high-molecular-weight polyethylene/ matrix interface based on the fabrication of a reactive nano-epoxy matrix with lower surface energy has been improved. Enhanced mechanical properties versus pure epoxy on a three-point bend test include: strength (25 percent), modulus (20 percent), and toughness (30 percent). Increased thermal properties include higher Tg (glass transition temperature) and stable CTE (coefficient of thermal expansion). Improved processability for manufacturing composites includes faster wetting rates on macro-fiber surfaces, lower viscosity, better resin infusion rates, and improved rheological properties. Improved interfacial adhesion properties with Spectra fibers by pullout tests include initial debonding force of 35 percent, a maximum pullout force of 25 percent, and energy to debond at 65 percent. Improved mechanical properties of Spectra fiber composites (tensile) aging resistance properties include hygrothermal effects. With this innovation, high-performance composites have been created, including carbon fibers/nano-epoxy, glass fibers/nano-epoxy, aramid fibers/ nano-epoxy, and ultra-high-molecularweight polyethylene fiber (UHMWPE).

  3. Evaluation of standardized test methods to characterize fiber reinforced cement composites

    DEFF Research Database (Denmark)

    Paegle, Ieva; Fischer, Gregor

    2011-01-01

    This paper describes an investigation of standardized test methods to characterize fiber reinforced cementitious composites in terms of their behavior under flexural loading and its relation to their tensile stress-deformation response. Flexural testing and derivation of the tensile stress......-deformation response are preferred in standardized testing of Fiber Reinforced Cement Composites (FRCC) over the direct assessment of the tensile behavior because of the more convenient test setup and ease of specimen preparation. Four-point bending tests were carried out to evaluate the flexural response of FRCC...... and their results are compared to data obtained from direct tensile testing. The details of the formation of cracking are an important underlying assumption in the standardized evaluation procedures as well as in the established correlation models between flexural and tensile behavior. This detail has been...

  4. Glass fiber -reinforced plastic tapered poles for transmission and distribution lines: development and experimental study

    International Nuclear Information System (INIS)

    Ibrahim, S.; Burachysnsky, V.; Polyzois, D.

    1999-01-01

    A research project to develop lightweight poles for use in power transmission and distribution lines and involving the use of glass fiber-reinforced plastic using the filament winding process is described. Twelve full scale specimen poles were designed, fabricated and subjected to cantilever bending to test failure modes. The test parameters included fiber orientation, ratio of longitudinal-to-circumferential fiber, and the number of layers. Results showed that local buckling was the most dominant failure mode, attributable to the high radius-to-thickness ratio of the specimen poles. Overall, however, these fiber-reinforced plastic poles compared favourably to wooden poles in carrying capacity with significant weight reduction. Lateral displacement at ultimate loads did not exceed the acceptable limit of 10 per cent of the specimen free length. 7 refs., 3 tabs., 2 figs

  5. Adaptive Crack Modeling with Interface Solid Elements for Plain and Fiber Reinforced Concrete Structures.

    Science.gov (United States)

    Zhan, Yijian; Meschke, Günther

    2017-07-08

    The effective analysis of the nonlinear behavior of cement-based engineering structures not only demands physically-reliable models, but also computationally-efficient algorithms. Based on a continuum interface element formulation that is suitable to capture complex cracking phenomena in concrete materials and structures, an adaptive mesh processing technique is proposed for computational simulations of plain and fiber-reinforced concrete structures to progressively disintegrate the initial finite element mesh and to add degenerated solid elements into the interfacial gaps. In comparison with the implementation where the entire mesh is processed prior to the computation, the proposed adaptive cracking model allows simulating the failure behavior of plain and fiber-reinforced concrete structures with remarkably reduced computational expense.

  6. Analysis of the Behaviour of Composite Steel and Steel Fiber Reinforced Concrete Slabs

    Directory of Open Access Journals (Sweden)

    Mindaugas Petkevičius

    2011-04-01

    Full Text Available There was a pending influence of steel fiber on the strength and stiffness of composite steel–concrete slabs under statical short–time load. Steel profiled sheeting and steel fiber reinforced concrete were used for specimens. Four composite slabs were made. Experimental investigations into the behaviour and influence of steel fiber reinforced concrete in composite slabs were conducted. Transverse, longitudinal, shear deformation and deflection of the slab were measured. The results indicated that the use of steel fiber in composite slabs was effective: strength was 20–24 % higher and the meanings of deflections under the action of the bending moment were 0,6MR (where MR is the bending moment at failure of the slabs and were 16–18 % lower for slabs with usual concrete. Article in Lithuanian

  7. Alkali-resistant glass fiber reinforced high strength concrete in simulated aggressive environment

    Directory of Open Access Journals (Sweden)

    W. H. Kwan

    2018-02-01

    Full Text Available The durability of the alkali-resistant (AR glass fiber reinforced concrete (GFRC in three simulated aggresive environments, namely tropical climate, cyclic air and seawater and seawater immersion was investigated. Durability examinations include chloride diffusion, gas permeability, X-ray diffraction (XRD and scanning electron microscopy examination (SEM. The fiber content is in the range of 0.6 % to 2.4 %. Results reveal that the specimen containing highest AR glass fiber content suffered severe strength loss in seawater environment and relatively milder strength loss under cyclic conditions. The permeability property was found to be more inferior with the increase in the fiber content of the concrete. This suggests that the AR glass fiber is not suitable for use as the fiber reinforcement in concrete is exposed to seawater. However, in both the tropical climate and cyclic wetting and drying, the incorporation of AR glass fiber prevents a drastic increase in permeability.

  8. Fracture mechanics in fiber reinforced composite materials, taking as examples B/A1 and CRFP

    Science.gov (United States)

    Peters, P. W. M.

    1982-01-01

    The validity of linear elastic fracture mechanics and other fracture criteria was investigated with laminates of boron fiber reinforced aluminum (R/A1) and of carbon fiber reinforced epoxide (CFRP). Cracks are assessed by fracture strength Kc or Kmax (critical or maximum value of the stress intensity factor). The Whitney and Nuismer point stress criterion and average stress criterion often show that Kmax of fiber composite materials increases with increasing crack length; however, for R/A1 and CFRP the curve showing fracture strength as a function of crack length is only applicable in a small domain. For R/A1, the reason is clearly the extension of the plastic zone (or the damage zone n the case of CFRP) which cannot be described with a stress intensity factor.

  9. Tensile Capacity of U-bar Loop Connections with Precast Fiber Reinforced Dowels

    DEFF Research Database (Denmark)

    Sørensen, Jesper Harrild; Hoang, Linh Cao; Olesen, John Forbes

    2016-01-01

    This paper describes an investigation of the tensile capacity of in-situ cast U-bar loop connections between precast concrete elements. The basic idea is to introduce a small precast cylindrical dowel of fiber reinforced mortar that fits into the bend diameter of the overlapping U-bars. The remai......This paper describes an investigation of the tensile capacity of in-situ cast U-bar loop connections between precast concrete elements. The basic idea is to introduce a small precast cylindrical dowel of fiber reinforced mortar that fits into the bend diameter of the overlapping U...... to ideal ductile behavior than that of the specimens grouted with regular mortar. The experimental results of the tensile tests are compared with calculations based on an upper bound plasticity model and satisfactory agreement has been obtained....

  10. Development of a technical process concerning the immobilisation of nuclear waste by embedding into ceramic matrix

    International Nuclear Information System (INIS)

    Schubert, G.; Krause, H.

    1993-12-01

    Ceramic is considered a highly qualified matrix for the embedding of all radioactive waste concentrates arising from reprocessing and fabricating UO 2 /PuO 2 -mixed oxide fuel elements and it may take up all long-lived or highly active radionuclides. Parallel to product development a technically feasible process has been started. The wastes are mixed with the ceramics-forming agents in a wet medium. A double-shaft extruder may be used. Backfitting of the extruder for use in a hot cell may be carried out easily. Experiments are presented and conceptions developed as to how the facility may be designed under aggravated boundary conditions of irradiation and remote handling. The process consists of the following stages: Preliminary treatment of the four waste suspensions, without dehydration; continuous dosage into a double-shaft extruder, where preliminary drying and then addition of the fifth waste type (dry ash) as well as of the mixture of ceramics-forming agents takes place; mixing and preferably extrusion. Heat treatment from the drying and calcination temperatures up to the sintering temperature of 1250-1300 C in a stationary heated electric furnace, filling of the hot material into canisters, filling of the cavities with liquid glas, and sealing of the cansiters. Except for an experiment with dissolver residues, all experiments were inactive. Conventional devices were applied with the aim of investigated their suitability for the process as well as for the conditions of remote handling and inrradiation. A facility, which was to be located downstream of a 350 t/a reprocessing plant, would have to have a throughput of about 40 kg/h ceramic product or 6 canisters per day. (orig./HP) [de

  11. A Brief Research Review for Improvement Methods the Wettability between Ceramic Reinforcement Particulate and Aluminium Matrix Composites

    Science.gov (United States)

    Razzaq, Alaa Mohammed; Majid, Dayang Laila Abang Abdul; Ishak, M. R.; B, Uday M.

    2017-05-01

    The development of new methods for addition fine ceramic powders to Al aluminium alloy melts, which would lead to more uniform distribution and effective incorporation of the reinforcement particles into the aluminium matrix alloy. Recently the materials engineering research has moved to composite materials from monolithic, adapting to the global need for lightweight, low cost, quality, and high performance advanced materials. Among the different methods, stir casting is one of the simplest ways of making aluminium matrix composites. However, it suffers from poor distribution and combination of the reinforcement ceramic particles in the metal matrix. These problems become significantly effect to reduce reinforcement size, more agglomeration and tendency with less wettability for the ceramic particles in the melt process. Many researchers have carried out different studies on the wettability between the metal matrix and dispersion phase, which includes added wettability agents, fluxes, preheating the reinforcement particles, coating the reinforcement particles, and use composting techniques. The enhancement of wettability of ceramic particles by the molten matrix alloy and the reinforcement particles distribution improvement in the solidified matrix is the main objective for many studies that will be discussed in this paper.

  12. Acoustic emission monitoring of damage in ceramic matrix composites: Effects of weaves and feature

    Science.gov (United States)

    Ojard, Greg; Mordasky, Matt; Kumar, Rajesh

    2018-04-01

    Ceramic matrix composites (CMCs) are a class of high temperature materials with better damage tolerance properties compared to monolithic ceramics. The improved toughness is attributed to weak interface coating between the fiber and the matrix that allows for crack deflection and fiber pull-out. Thus, CMCs have gained consideration over monolithic materials for high temperature applications such as in gas turbines. The current standard fiber architecture for CMCs is a harness satin (HS) balanced weave (5HS and 8HS); however, other architectures such as uni-weave materials (tape layup) are now being considered due to fiber placement control and higher fiber volume fraction in the tensile loading direction. Engineering components require additional features in the CMC laminates, such as holes for attachments. Past work has shown that acoustic emission could differentiate the effect of changing interface conditions due to heat treatment effects. The focus of the present work is to investigate the effects of different weaves and the presence of a feature on damage behavior of CMCs as observed via acoustic emission technique. The results of the tensile testing with acoustic emission monitoring will be presented and discussed.

  13. Advanced Environmental Barrier Coating Development for SiC/SiC Ceramic Matrix Composites: NASA's Perspectives

    Science.gov (United States)

    Zhu, Dongming

    2016-01-01

    This presentation reviews NASA environmental barrier coating (EBC) system development programs and the coating materials evolutions for protecting the SiC/SiC Ceramic Matrix Composites in order to meet the next generation engine performance requirements. The presentation focuses on several generations of NASA EBC systems, EBC-CMC component system technologies for SiC/SiC ceramic matrix composite combustors and turbine airfoils, highlighting the temperature capability and durability improvements in simulated engine high heat flux, high pressure, high velocity, and with mechanical creep and fatigue loading conditions. The current EBC development emphasis is placed on advanced NASA 2700F candidate environmental barrier coating systems for SiC/SiC CMCs, their performance benefits and design limitations in long-term operation and combustion environments. Major technical barriers in developing environmental barrier coating systems, the coating integrations with next generation CMCs having the improved environmental stability, erosion-impact resistance, and long-term fatigue-environment system durability performance are described. The research and development opportunities for advanced turbine airfoil environmental barrier coating systems by utilizing improved compositions, state-of-the-art processing methods, and simulated environment testing and durability modeling are discussed.

  14. Microstructure and mechanical properties of low-activation glass-ceramic joining and coating for SiC/SiC composites

    International Nuclear Information System (INIS)

    Katoh, Yutai; Kotani, M.; Kohyama, A.; Montorsi, M.; Salvo, M.; Ferraris, M.

    2000-01-01

    Calcia-alumina (CA) glass-ceramic was studied as a candidate low-activation joining and sealing material for SiC/SiC components for fusion blanket and diverter structures, in terms of microstructural stability and mechanical properties. The CA glass-ceramic joining and seal coating were applied to the Hi-Nicalon TM SiC fiber-reinforced SiC matrix composites in which the matrix had been formed through chemical vapor infiltration and polymer impregnation and pyrolysis methods. Microstructural characterization was carried out for the joined and coated materials by optical and scanning electron microscopy (SEM). The mechanical property of the joint was evaluated through a shear test on sandwich joints. The average shear strength of the joined structures was 28 MPa at room temperature. Fractography revealed that the fracture occurred in the glass phase and the shear strength may be improved by reduction of the glass fraction

  15. Short Jute Fiber Reinforced Polypropylene Composites: Effect of Nonhalogenated Fire Retardants

    OpenAIRE

    Chestee, Sk. Sharfuddin; Poddar, Pinku; Sheel, Tushar Kumar; Mamunur Rashid, Md.; Khan, Ruhul A.; Chowdhury, A. M. Sarwaruddin

    2017-01-01

    Short jute fiber reinforced polypropylene (PP) composites were prepared using a single screw extrusion moulding. Jute fiber content in the composites is optimized with the extent of mechanical properties, and composites with 20% jute show higher mechanical properties. Dissimilar concentrations of several fire retardants (FRs), such as magnesium oxide (MO), aluminum oxide (AO), and phosphoric acid (PA), were used in the composites. The addition of MO, AO, and PA improved the fire retardancy pr...

  16. Analysis of glass fiber reinforced cement composites and their thermal and hydric material parameters

    Czech Academy of Sciences Publication Activity Database

    Poděbradská, J.; Černý, R.; Drchalová, J.; Rovnaníková, P.; Šesták, Jaroslav

    2004-01-01

    Roč. 77, - (2004), s. 85-97 ISSN 1388-6150 R&D Projects: GA ČR GA103/03/1350; GA ČR GA103/04/0139; GA ČR GA401/02/0579 Institutional research plan: CEZ:AV0Z1010914 Keywords : glass fiber reinforced cement composites -hydric properties * mercury porosimetry * scanning electron microscopy * thermal analysis * thermal properties Subject RIV: BJ - Thermodynamics Impact factor: 1.478, year: 2004

  17. An emerging alternative to thermal curing: Electron curing of fiber-reinforced composites

    International Nuclear Information System (INIS)

    Singh, A.; Saunders, C.B.; Lopata, V.J.; Kremers, W.; Chung, M.

    1995-01-01

    Electron curing of fiber-reinforced composites to produce materials with good mechanical properties has been demonstrated by the authors' work, and by Aerospatiale. The attractions of this technology are the technical and processing advantages offered over thermal curing, and the projected cost benefits. Though the work so far has focused on the higher value composites for the aircraft and aerospace industries, the technology can also be used to produce composites for the higher volume industries, such as transportation and automotive

  18. Cold surface treatments on fiber-reinforced plastics by pulsed laser

    OpenAIRE

    Gebauer, Jana; Franke, Volker; Klotzbach, Udo; Beyer, Eckhard

    2017-01-01

    The importance of lightweight materials increases in all aspects of manufacturing, e.g. automotive, sports equipment and aerospace [1]. Making fiber reinforced plastics suitable for use in mass production new technologies have to be developed to overcome existing challenges e.g. shorter cycle times or more efficient resource usage. Innovative laser systems are used for a full range of treatments for all materials, like structuring, drilling, joining and cutting [2] - [4]. This paper presents ...

  19. Behavior of Low Grade Steel Fiber Reinforced Concrete Made with Fresh and Recycled Brick Aggregates

    Directory of Open Access Journals (Sweden)

    Md. Shariful Islam

    2017-01-01

    Full Text Available In recent years, recycled aggregates from construction and demolition waste (CDW have been widely accepted in construction sectors as the replacement of coarse aggregate in order to minimize the excessive use of natural resources. In this paper, an experimental investigation is carried out to observe the influence of low grade steel fiber reinforcements on the stress-strain behavior of concrete made with recycled and fresh brick aggregates. In addition, compressive strength by destructive and nondestructive tests, splitting tensile strength, and Young’s modulus are determined. Hooked end steel wires with 50 mm of length and an aspect ratio of 55.6 are used as fiber reinforcements in a volume fraction of 0% (control case, 0.50%, and 1.00% in concrete mixes. The same gradation of aggregates and water-cement ratio (w/c=0.44 were used to assess the effect of steel fiber in all these concrete mixes. All tests were conducted at 7, 14, and 28 days to perceive the effect of age on different mechanical properties. The experimental results show that around 10%~15% and 40%~60% increase in 28 days compressive strength and tensile strength of steel fiber reinforced concrete, respectively, compared to those of the control case. It is observed that the effect of addition of 1% fiber on the concrete compressive strength is little compared to that of 0.5% steel fiber addition. On the other hand, strain of concrete at failure of steel fiber reinforced concrete has increased almost twice compared to the control case. A simple analytical model is also proposed to generate the ascending portions of the stress-strain curve of concrete. There exists a good correlation between the experimental results and the analytical model. A relatively ductile failure is observed for the concrete made with low grade steel fibers.

  20. Penggunaan Fiber Reinforced Composite Sebagai Resin Bonded Prosthesis Pada Gigi Anterior

    OpenAIRE

    Pintadi, Hastoro

    2007-01-01

    Resin bonded prosthesis is a fixed bridge which replace a space where one or two teeth have been lost or extracted, by using acid etched technique and resin bonding. The main goals in selecting a Resin bonded prosthesis were to preserve tooth structure, maintain esthetics and lower patient fees while providing restorations that had the potential for long-term service. This case report discuss about fiber reinforced composite used as a main material for resin bondedprosthesis to replace incivu...