WorldWideScience

Sample records for fiber surface treatment

  1. The morphology of coconut fiber surface under chemical treatment

    OpenAIRE

    Arsyad, Muhammad; Wardana, I Nyoman Gede; Pratikto,; Irawan, Yudy Surya

    2015-01-01

    The objective of this study was to determine the effect of chemical treatment on the coconut fiber surface morphology. This study is divided into three stages, preparation of materials, treatment and testing of coconut fiber. The first treatment is coconut fiber soaked in a solution of NaOH for 3 hours with concentration, respectively 5%, 10%, 15%, and 20%. The second treatment is coconut fiber soaked in KMnO4 solution with a concentration of 0.25%, 0.5%, 0.75%, and 1% for 3 hours. The third ...

  2. Evaluation of Mechanical Property of Carbon Fiber/Polypropylene Composite According to Carbon Fiber Surface Treatment

    International Nuclear Information System (INIS)

    Han, Song Hee; Oh, Hyun Ju; Kim, Seong Su

    2013-01-01

    In this study, the mechanical properties of a carbon fiber/polypropylene composite were evaluated according to the carbon fiber surface treatment. Carbon fiber surface treatments such as silane coupling agents and plasma treatment were performed to enhance the interfacial strength between carbon fibers and polypropylene. The treated carbon fiber surface was characterized by XP S, Sem, and single-filament tensile test. The interlaminar shear strength (Ilks) of the composite with respect to the surface treatment was determined by a short beam shear test. The test results showed that the Ilks of the plasma-treated specimen increased with the treatment time. The Ilks of the specimen treated with a silane coupling agent after plasma treatment increased by 48.7% compared to that of the untreated specimen

  3. Effect of heat treatment on carbon fiber surface properties and fibers/epoxy interfacial adhesion

    International Nuclear Information System (INIS)

    Dai Zhishuang; Zhang Baoyan; Shi Fenghui; Li Min; Zhang Zuoguang; Gu Yizhuo

    2011-01-01

    Carbon fiber surface properties are likely to change during the molding process of carbon fiber reinforced matrix composite, and these changes could affect the infiltration and adhesion between carbon fiber and resin. T300B fiber was heat treated referring to the curing process of high-performance carbon fiber reinforced epoxy matrix composites. By means of X-ray photoelectron spectroscopy (XPS), activated carbon atoms can be detected, which are defined as the carbon atoms conjunction with oxygen and nitrogen. Surface chemistry analysis shows that the content of activated carbon atoms on treated carbon fiber surface, especially those connect with the hydroxyl decreases with the increasing heat treatment temperature. Inverse gas chromatography (IGC) analysis reveals that the dispersive surface energy γ S d increases and the polar surface energy γ S sp decreases as the heat treatment temperature increases to 200. Contact angle between carbon fiber and epoxy E51 resin, which is studied by dynamic contact angle test (DCAT) increases with the increasing heat treatment temperature, indicating the worse wettability comparing with the untreated fiber. Moreover, micro-droplet test shows that the interfacial shear strength (IFSS) of the treated carbon fiber/epoxy is lower than that of the untreated T300B fiber which is attributed to the decrement of the content of reactive functional groups including hydrogen group and epoxy group.

  4. Improving degradation resistance of sisal fiber in concrete through fiber surface treatment

    Science.gov (United States)

    Wei, Jianqiang; Meyer, Christian

    2014-01-01

    As part of an ongoing effort to improve the sustainability of reinforced concrete, recycled concrete aggregate is being considered together with natural fibers such as sisal fiber as replacement of synthetic reinforcement. Since natural fibers are known to undergo potential deterioration in the alkaline cement matrix especially in outdoor erosive environment, they need to be treated to improve their durability. This paper describes two such methods (thermal and Na2CO3 treatment) and evaluates their effects on the degradation resistance of sisal fiber and durability of sisal fiber-reinforced concrete with recycled concrete aggregate. Concrete specimens were subjected to cycles of wetting and drying to accelerate aging. The microstructure, tensile strength and Young's modulus of sisal fiber as well as the weight loss of the composite were evaluated. Of primary interest were the effects on compressive and splitting tensile strength of sisal fiber-reinforced concrete. Thermal treatment and Na2CO3 surface treatment were shown to improve the durability of the composite as measured by splitting tensile strength by 36.5% and 46.2% and the compressive strength by 31.1% and 45.4%, respectively. The mechanisms of these two treatment methods were also analyzed. The thermal treatment achieved improvement of cellulose's crystallization, which ensured the initial strength and improved durability of sisal fiber. A layer consisting of calcium carbonate sediments, which protects the internals of a fiber from the strong alkali solution formed in the cement hydration process, was formed and filled in pits and cavities on the Na2CO3 treated sisal fiber's surface to improve their corrosion resistance and durability and reduced the detrimental effects of Na+ ions on concrete.

  5. Apparatus and method for carbon fiber surface treatment

    Science.gov (United States)

    Paulauskas, Felix L; Sherman, Daniel M

    2014-06-03

    An apparatus and method for enhancing the surface energy and/or surface chemistry of carbon fibers involves exposing the fibers to direct or indirect contact with atmospheric pressure plasma generated using a background gas containing at least some oxygen or other reactive species. The fiber may be exposed directly to the plasma, provided that the plasma is nonfilamentary, or the fiber may be exposed indirectly through contact with gases exhausting from a plasma discharge maintained in a separate volume. In either case, the process is carried out at or near atmospheric pressure, thereby eliminating the need for vacuum equipment. The process may be further modified by moistening the fibers with selected oxygen-containing liquids before exposure to the plasma.

  6. Plasma treatments of wool fiber surface for microfluidic applications

    Energy Technology Data Exchange (ETDEWEB)

    Jeon, So-Hyoun; Hwang, Ki-Hwan; Lee, Jin Su [Department of Chemistry, Sungkyunkwan University, 440-746 Suwon (Korea, Republic of); Boo, Jin-Hyo, E-mail: jhboo@skku.edu [Department of Chemistry, Sungkyunkwan University, 440-746 Suwon (Korea, Republic of); Yun, Sang H., E-mail: shy@kth.se [Institute of Basic Science, Sungkyunkwan University, 440-746 Suwon (Korea, Republic of)

    2015-09-15

    Highlights: • We used atmospheric plasma for tuning the wettability of wool fibers. • The wicking rates of the wool fibers increased with increasing treatment time. • The increasing of wettability results in removement of fatty acid on the wool surface. - Abstract: Recent progress in health diagnostics has led to the development of simple and inexpensive systems. Thread-based microfluidic devices allow for portable and inexpensive field-based technologies enabling medical diagnostics, environmental monitoring, and food safety analysis. However, controlling the flow rate of wool thread, which is a very important part of thread-based microfluidic devices, is quite difficult. For this reason, we focused on thread-based microfluidics in the study. We developed a method of changing the wettability of hydrophobic thread, including wool thread. Thus, using natural wool thread as a channel, we demonstrate herein that the manipulation of the liquid flow, such as micro selecting and micro mixing, can be achieved by applying plasma treatment to wool thread. In addition to enabling the flow control of the treated wool channels consisting of all natural substances, this procedure will also be beneficial for biological sensing devices. We found that wools treated with various gases have different flow rates. We used an atmospheric plasma with O{sub 2}, N{sub 2} and Ar gases.

  7. Influence of atmospheric pressure plasma treatment on surface properties of PBO fiber

    International Nuclear Information System (INIS)

    Zhang Ruiyun; Pan Xianlin; Jiang Muwen; Peng Shujing; Qiu Yiping

    2012-01-01

    Highlights: ► PBO fibers were treated with atmospheric pressure plasmas. ► When 1% of oxygen was added to the plasma, IFSS increased 130%. ► Increased moisture regain could enhance plasma treatment effect on improving IFSS with long treatment time. - Abstract: In order to improve the interfacial adhesion property between PBO fiber and epoxy, the surface modification effects of PBO fiber treated by atmospheric pressure plasma jet (APPJ) in different time, atmosphere and moisture regain (MR) were investigated. The fiber surface morphology, functional groups, surface wettability for control and plasma treated samples were analyzed by scanning electron microscope (SEM), X-ray photoelectron spectroscopy (XPS) and water contact angle measurements, respectively. Meanwhile, the fiber interfacial shear strength (IFSS), representing adhesion property in epoxy, was tested using micro-bond pull-out test, and single fiber tensile strength was also tested to evaluate the mechanical performance loss of fibers caused by plasma treatment. The results indicated that the fiber surface was etched during the plasma treatments, the fiber surface wettability and the IFSS between fiber and epoxy had much improvement due to the increasing of surface energy after plasma treatment, the contact angle decreased with the treatment time increasing, and the IFSS was improved by about 130%. The processing atmosphere could influence IFSS significantly, and moisture regains (MR) of fibers also played a positive role on improving IFSS but not so markedly. XPS analysis showed that the oxygen content on fiber surface increased after treatment, and C=O, O-C=O groups were introduced on fiber surface. On the other hand, the observed loss of fiber tensile strength caused by plasma treatment was not so remarkable to affect the overall performance of composite materials.

  8. Effects of air dielectric barrier discharge plasma treatment time on surface properties of PBO fiber

    International Nuclear Information System (INIS)

    Wang Qian; Chen Ping; Jia Caixia; Chen, Mingxin; Li Bin

    2011-01-01

    In this paper, the effects of air dielectric barrier discharge (DBD) plasma treatment time on surface properties of poly(p-phenylene benzobisoxazole) (PBO) fiber were investigated. The surface characteristics of PBO fiber before and after the plasma treatments were analyzed by dynamic contact angle (DCA) analysis, scanning electron microscopy (SEM), atomic force microscopy (AFM) and X-ray photoelectron spectroscopy (XPS). DCA measurements indicated that the surface wettability of PBO fiber was improved significantly by increasing the fiber surface free energy via air DBD plasma treatments. The results were confirmed by the improvement of adhesion of a kind of thermoplastic resin to PBO fiber which was observed by SEM, showing that more resin was adhering evenly to the fiber surface. AFM measurement revealed that the surface topography of PBO fiber became more complicated and the surface roughness was greatly enhanced after the plasma treatments, and XPS analysis showed that some new polar groups (e.g. -O-C=O) were introduced on plasma treated PBO fiber surface. The results of this study also showed that the surface properties of PBO fiber changed with the elongation of plasma treatment time.

  9. Surface treatment of aramid fiber by air dielectric barrier discharge plasma at atmospheric pressure

    International Nuclear Information System (INIS)

    Jia Caixia; Chen Ping; Liu Wei; Li Bin; Wang Qian

    2011-01-01

    Aramid fiber samples are treated by air dielectric barrier discharge (DBD) plasma at atmospheric pressure; the plasma treatment time is investigated as the major parameter. The effects of this treatment on the fiber surface physical and chemical properties are studied by using surface characterization techniques. Scanning electron microscopy (SEM) is performed to determine the surface morphology changes, X-ray photoelectron spectroscopy (XPS) is analyzed to reveal the surface chemical composition variations and dynamic contact angle analysis (DCAA) is used to examine the changes of the fiber surface wettability. In addition, the wetting behavior of a kind of thermoplastic resin, poly(phthalazinone ether sulfone ketone) (PPESK), on aramid fiber surface is also observed by SEM photos. The study shows that there seems to be an optimum treatment condition for surface modification of aramid fiber by the air DBD plasma. In this paper, after the 12 s, 27.6 W/cm 3 plasma treatment the aramid fiber surface roughness is significantly improved, some new oxygen-containing groups such as C-O, C=O and O=C-O are generated on the fiber surface and the fiber surface wettability is greatly enhanced, which results in the better wetting behavior of PPESK resin on the plasma-treated aramid fiber.

  10. Effects of aqueous ammonia treatment on fiber's surface morphology and enzymatic digestibility of empty fruit bunch fiber (EFBF)

    Science.gov (United States)

    Ling, Tang Pei; Hassan, Osman

    2013-11-01

    This study was conducted to investigate the effects of aqueous ammonia reflux and soaked treatment on the fiber's surface morphology and enzymatic digestibility of empty fruit bunch fiber (EFBF). The surface morphological changes of the fiber after aqueous ammonia treatment was linked to the sugars yield by enzymatic hydrolysis. The effectiveness of 6.25% aqueous ammonia treatment in improving enzymatic digestibility of EFBF was initially studied in reflux system and by soaking. The results showed that soaked treatment was more effective than reflux system. Further study on soaked treatment of EFBF was carried out by increasing the ammonia concentration to 12.50%. Soaking in aqueous ammonia was conducted at 30°C and 50°C for 24 hours. The results of enzymatic hydrolysis showed that sugar yield from EFBF soaked in 12.50% aqueous ammonia at 50°C was the highest. Approximately 242.91±15.50 mg/g EFBF of xylose and 320.49±28.31 mg/g EFBF of glucose were produced by the action of enzyme Cellic Ctec 2. Results of scanning electron microscopic showed that aqueous ammonia treatment by soaking had caused a more severe structural distortion on the fiber's surface and higher removal of silica bodies that embedded on the fiber than those in reflux system. The changes on the fiber's surface morphology were believed is the contributing factor that improved the enzymatic digestibility of EFBF after aqueous ammonia treatment.

  11. A Study of Atmospheric Plasma Treatment on Surface Energetics of Carbon Fibers

    International Nuclear Information System (INIS)

    Park, Soo Jin; Chang, Yong Hwan; Moon, Cheol Whan; Suh, Dong Hack; Im, Seung Soon; Kim, Yeong Cheol

    2010-01-01

    In this study, the atmospheric plasma treatment with He/O 2 was conducted to modify the surface chemistry of carbon fibers. The effects of plasma treatment parameters on the surface energetics of carbon fibers were experimentally investigated with respect to gas flow ratio, power intensity, and treatment time. Surface characteristics of the carbon fibers were determined by X-ray photoelectron spectroscopy (XPS), scanning electron microscope (SEM), Fourier transform infrared (FT-IR), Zeta-potential, and contact angle measurements. The results indicated that oxygen plasma treatment led to a large amount of reactive functional groups onto the fiber surface, and these groups can form together as physical intermolecular bonding to improve the surface wettability with a hydrophilic polymer matrix

  12. Enzymatic Treatments to Improve Mechanical Properties and Surface Hydrophobicity of Jute Fiber Membranes

    Directory of Open Access Journals (Sweden)

    Aixue Dong

    2016-02-01

    Full Text Available Fiber membranes prepared from jute fragments can be valuable, low cost, and renewable. They have broad application prospects in packing bags, geotextiles, filters, and composite reinforcements. Traditionally, chemical adhesives have been used to improve the properties of jute fiber membranes. A series of new laccase, laccase/mediator systems, and multi-enzyme synergisms were attempted. After the laccase treatment of jute fragments, the mechanical properties and surface hydrophobicity of the produced fiber membranes increased because of the cross-coupling of lignins with ether bonds mediated by laccase. The optimum conditions were a buffer pH of 4.5 and an incubation temperature of 60 °C with 0.92 U/mL laccase for 3 h. Laccase/guaiacol and laccase/alkali lignin treatments resulted in remarkable increases in the mechanical properties; in contrast, the laccase/2,2’-azino-bis-(3-ethylthiazoline-6-sulfonate (ABTS and laccase/2,6-dimethoxyphenol treatments led to a decrease. The laccase/ guaiacol system was favorable to the surface hydrophobicity of jute fiber membranes. However, the laccase/alkali lignin system had the opposite effect. Xylanase/laccase and cellulase/laccase combined treatments were able to enhance both the mechanical properties and the surface hydrophobicity of jute fiber membranes. Among these, cellulase/laccase treatment performed better; compared to mechanical properties, the surface hydrophobicity of the jute fiber membranes showed only a slight increase after the enzymatic multi-step processes.

  13. Adhesion of pineapple-leaf fiber to epoxy matrix: The role of surface treatments

    Directory of Open Access Journals (Sweden)

    Yusran Payae

    2009-07-01

    Full Text Available Natural fibers are considered to have potential use as reinforcing agents in polymer composite materials because of their principle benefits: moderate strength and stiffness, low cost, and be an environmental friendly, degradable, and renewablematerial. Due to their inherently hydrophilic nature, they are prone to absorb moisture, which can plasticise or weaken theadhesion of fibers to the surrounding matrix and by this affect the performance of composites used in atmospheric humidity,particularly at elevated temperatures. The surface treatments are often applied to the fiber to improve the bond strengthbetween the fibers and matrix. This work discussed the effect of sodium hydroxide (NaOH treatment and epoxy resin as acompatibilizing agent on interface properties of pineapple leaf fiber (PALF-epoxy composites. A single-fiber fragmentationtest coupled with data reduction technique was employed to assess interface quality in terms of apparent interfacial shearstrength (IFSS or a of untreated, NaOH, and epoxy resin treated PALFs-epoxy composites. Tensile properties of untreatedand treated PALFs were also examined. It was found that both treatments substantially increase a, corresponding to animproved level of adhesion. The improvement in the level of adhesion for the alkali and epoxy treated fiber composites wasdue to an increase in the physical bonding between the alkali treated fibers and the matrix, and due to a promoted compatibilitybetween the epoxy treated fibers and matrix, respectively.

  14. Effect of anodic surface treatment on PAN-based carbon fiber and its relationship to the fracture toughness of the carbon fiber-reinforced polymer composites

    DEFF Research Database (Denmark)

    Sarraf, Hamid; Skarpova, Ludmila

    2008-01-01

    The effect of anodic surface treatment on the polyacrylonitrile (PAN)-based carbon fibers surface properties and the mechanical behavior of the resulting carbon fiber-polymer composites has been studied in terms of the contact angle measurements of fibers and the fracture toughness of composites...... in the fiber surface nature and the mechanical interfacial properties between the carbon fiber and epoxy resin matrix of the resulting composites, i.e., the fracture toughness. We suggest that good wetting plays an important role in improving the degree of adhesion at interfaces between fibers and matrices...

  15. Gliding arc surface treatment of glass-fiber-reinforced polyester enhanced by ultrasonic irradiation

    DEFF Research Database (Denmark)

    Kusano, Yukihiro; Norrman, Kion; Drews, Joanna Maria

    2011-01-01

    . The efficiency of such a plasma treatment at atmospheric pressure can be further improved by ultrasonic irradiation onto the surface during the treatment. In the present work glass fiber reinforced polyester (GFRP) plates are treated using an atmospheric pressure gliding arc with and without ultrasonic...

  16. Effect of Surface Treatment on Performance of Electrode Material Based on Carbon Fiber Cloth

    Directory of Open Access Journals (Sweden)

    XU Jian

    2018-01-01

    Full Text Available The carbon fiber cloth was treated by surface treatment, and then it was used as the electrode substrate. The electrode material based on carbon fibers was synthesized by a galvanostatic electrodeposition method. The interface resistivity, electrochemical property and corrosion resistance of the CF/β-PbO2 electrode were characterized by four-probe method and electrochemical workstation, respectively. The results show that the surface roughness and chemical activity of the carbon fibers can be significantly improved through surface treatment. The carbon fibers possess the best chemical activity on the surface at the hot-air oxidation temperature of 400℃. Joint hot-air and liquid-phase oxidations show that the chemical activity of the carbon fibers on the surface is further improved, the grooves and pits on the surface of the carbon fibers are more obvious, after this treatment, the interface resistivity of the CF/β-PbO2 electrode reaches the minimum value of 6.19×10-5Ω·m, meanwhile, the conductivity and the electrochemical property of the CF/β-PbO2 electrode reaches the best, and with the best corrosion resistance, the corrosion rate is only 1.44×10-3g·cm-2·h-1.Thus, the interface resistivity, electrochemical property and corrosion resistance of the CF/β-PbO2 electrode depend on the the interface structure of the CF/β-PbO2 electrode obtained under different surface treatments.

  17. Apparatus and process for the surface treatment of carbon fibers

    Science.gov (United States)

    Paulauskas, Felix Leonard; Ozcan, Soydan; Naskar, Amit K.

    2016-05-17

    A method for surface treating a carbon-containing material in which carbon-containing material is reacted with decomposing ozone in a reactor (e.g., a hollow tube reactor), wherein a concentration of ozone is maintained throughout the reactor by appropriate selection of at least processing temperature, gas stream flow rate, reactor dimensions, ozone concentration entering the reactor, and position of one or more ozone inlets (ports) in the reactor, wherein the method produces a surface-oxidized carbon or carbon-containing material, preferably having a surface atomic oxygen content of at least 15%. The resulting surface-oxidized carbon material and solid composites made therefrom are also described.

  18. Improvement of Surface Wettability and Hydrophilization of Poly-paraphenylene benzobisoxazole Fiber with Fibrillation Combined Oxygen Plasma Treatment

    Directory of Open Access Journals (Sweden)

    Xiwen Wang

    2012-01-01

    Full Text Available A new surface modification method fibrillation combined with oxygen plasma treatment to improve the wettability and hydrophily of PBO fiber was studied in this paper. The surface chemical structure and morphology of PBO fiber were characterized by the methods of FTIR, XPS and SEM. The wettability and hydrophlic characters changes on the surface were evaluated by the dynamic contact angle system and image analysis. The results show that the increase surface roughness by fibrillation could improve the wettability. Fibrillation combined oxygen plasma treatment has a better effect than oxygen plasma treatment to improve the wettability and hdyrophlization of PBO fiber. The specific area of PBO fiber increased to 10.7 m2/g from 0.7 m2/g, contact angle decreased to 43.2° from 84.4° and WRV increased to 208.4% from 13.7%. The modified fibers have a good dispersion in water for hydrophilization improvement.

  19. Surface chemistry of polyacrylonitrile- and rayon-based activated carbon fibers after post-heat treatment

    International Nuclear Information System (INIS)

    Chiang Yuchun; Lee, C.-Y.; Lee, H.-C.

    2007-01-01

    Polyacrylonitrile- and rayon-based activated carbon fibers (ACFs) subject to heat treatment were investigated by means of elemental analyzer, and X-ray photoelectron spectroscopy (XPS). The total ash content of all ACFs was also analyzed. The adsorption of benzene, carbon tetrachloride and water vapor on ACFs was determined to shed light on the role of surface chemistry on gas adsorption. Results show that different precursors resulted in various elemental compositions and imposed diverse influence upon surface functionalities after heat treatment. The surface of heat-treated ACFs became more graphitic and hydrophobic. Three distinct peaks due to C, N, and O atoms were identified by XPS, and the high-resolution revealed the existence of several surface functionalities. The presence of nitride-like species, aromatic N-imines, or chemisorbed nitrogen oxides was found to be of great advantage to adsorption of water vapor or benzene, but the pyridine-N was not. Unstable complexes on the surface would hinder the fibers from adsorption of carbon tetrachloride. The rise in total ash content or hydrogen composition was of benefit to the access of water vapor. Modifications of ACFs by heat treatment have effectively improved adsorption performance

  20. Effect of alkali treatment on the physical and surface properties of Indian hemp fibers

    Science.gov (United States)

    Sangappa, Rao, B. Lakshmeesha; Asha, S.; Somashekar, R.

    2013-02-01

    The Plant fibers are rich in cellulose and they are a cheap, easily renewable source of fibers with the potential for polymer reinforcement. The presence of surface impurities and the large amount of hydroxyl groups make plant fibers less attractive for reinforcement of polymeric materials. Hemp (Cannabis Sativa L.) fibers were subjected to alkalization using 1N sodium hydroxide (NaOH). The structural properties and surface morphology of untreated and chemically modified fibers have been studied using X-ray diffraction (WAXS) and Scanning electron microscopy (SEM) respectively.

  1. Evaluation of Mechanical Properties of Glass Fiber Posts Subjected to Laser Surface Treatments.

    Science.gov (United States)

    Barbosa Siqueira, Carolina; Spadini de Faria, Natália; Raucci-Neto, Walter; Colucci, Vivian; Alves Gomes, Erica

    2016-10-01

    The aim of this study was to evaluate the influence of laser irradiation on flexural strength, elastic modulus, and surface roughness and morphology of glass fiber posts (GFPs). Laser treatment of GFPs has been introduced to improve its adhesion properties. A total of 40 GFPs were divided into 4 groups according to the irradiation protocol: GC-no irradiation, GYAG-irradiation with erbium:yttrium-aluminum-garnet [Er:YAG], GCR-irradiation with erbium, chromium:yttrium-scandium-gallium-garnet (Er,Cr:YSGG), and GDI-irradiation with diode laser. The GFP roughness and morphology were evaluated through laser confocal microscopy before and after surface treatment. Three-point bending flexural test measured flexural strength and elastic modulus. Data about elastic modulus and flexural strength were subjected to one-way ANOVA and Bonferroni test (p properties of GFPs.

  2. Continuous Natural Fiber Reinforced Thermoplastic Composites by Fiber Surface Modification

    Directory of Open Access Journals (Sweden)

    Patcharat Wongsriraksa

    2013-01-01

    Full Text Available Continuous natural fiber reinforced thermoplastic materials are expected to replace inorganic fiber reinforced thermosetting materials. However, in the process of fabricating the composite, it is difficult to impregnate the thermoplastic resin into reinforcement fiber because of the high melt viscosity. Therefore, intermediate material, which allows high impregnation during molding, has been investigated for fabricating continuous fiber reinforced thermoplastic composite by aligning resin fiber alongside reinforcing fiber with braiding technique. This intermediate material has been called “microbraid yarn (MBY.” Moreover, it is well known that the interfacial properties between natural fiber and resin are low; therefore, surface treatment on continuous natural fiber was performed by using polyurethane (PU and flexible epoxy (FLEX to improve the interfacial properties. The effect of surface treatment on the mechanical properties of continuous natural fiber reinforced thermoplastic composites was examined. From these results, it was suggested that surface treatment by PU with low content could produce composites with better mechanical properties.

  3. Surface monofunctionalized polymethyl pentene hollow fiber membranes by plasma treatment and hemocompatibility modification for membrane oxygenators

    Science.gov (United States)

    Huang, Xin; Wang, Weiping; Zheng, Zhi; Fan, Wenling; Mao, Chun; Shi, Jialiang; Li, Lei

    2016-01-01

    The hemocompatibility of polymethyl pentene (PMP) hollow fiber membranes (HFMs) was improved through surface modification for membrane oxygenator applications. The modification was performed stepwise with the following: (1) oxygen plasma treatment, (2) functionalization of monosort hydroxyl groups through NaBH4 reduction, and (3) grafting 2-methacryloyloxyethyl phosphorylcholine (MPC) or heparin. SEM, ATR-FTIR, and XPS analyses were conducted to confirm successful grafting during the modification. The hemocompatibility of PMP HFMs was analyzed and compared through protein adsorption, platelet adhesion, and coagulation tests. Pure CO2 and O2 permeation rates, as well as in vitro gas exchange rates, were determined to evaluate the mass transfer properties of PMP HFMs. SEM results showed that different nanofibril topographies were introduced on the HFM surface. ATR-FTIR and XPS spectra indicated the presence of functionalization of monosort hydroxyl group and the grafting of MPC and heparin. Hemocompatibility evaluation results showed that the modified PMP HFMs presented optimal hemocompatibility compared with pristine HFMs. Gas permeation results revealed that gas permeation flux increased in the modified HFMs because of dense surface etching during the plasma treatment. The results of in vitro gas exchange rates showed that all modified PMP HFMs presented decreased gas exchange rates because of potential surface fluid wetting. The proposed strategy exhibits a potential for fabricating membrane oxygenators for biomedical applications to prevent coagulation formation and alter plasma-induced surface topology and composition.

  4. Innovative multifunctional siloxane treatment of jute fiber surface and its effect on the mechanical properties of jute/thermoset composites

    Energy Technology Data Exchange (ETDEWEB)

    Seki, Yoldas, E-mail: yoldas.seki@deu.edu.tr [Dokuz Eyluel University, Faculty of Arts and Sciences, Department of Chemistry, Tinaztepe Campus, Buca, Izmir (Turkey)

    2009-05-20

    Natural fiber reinforced polymer composites have many applications because of their ease of fabrication, relatively low cost, low density and renewable resource. In spite of the various desirable properties of natural fiber to act as a reinforcing material, poor adhesion characteristics between natural fiber and polymer resin result in low mechanical properties. In this study, jute-thermoset composites were fabricated by using unsaturated polyester and epoxy resins. To improve the adhesion between jute fabric and thermoset, alkali treated jute fibers were treated with oligomeric siloxane. FTIR analysis was used to confirm the surface treatment. The effects of fiber surface treatment on the mechanical properties of jute reinforced thermoset composites were determined by using tensile test, flexure test and short beam shear test. The fractured surfaces of composites were investigated by scanning electron microscopic (SEM) technique. Once jute fabrics were treated 1% siloxane concentration, the tensile and flexure properties of silane treated jute thermoset composites increased. Surface treatment of jute fiber caused a significant increase in the interlaminar shear strength (ILSS) of the thermoset composites. From SEM observations, better adhesion was observed for the jute/thermoset composites in the presence of oligomeric siloxane.

  5. Innovative multifunctional siloxane treatment of jute fiber surface and its effect on the mechanical properties of jute/thermoset composites

    International Nuclear Information System (INIS)

    Seki, Yoldas

    2009-01-01

    Natural fiber reinforced polymer composites have many applications because of their ease of fabrication, relatively low cost, low density and renewable resource. In spite of the various desirable properties of natural fiber to act as a reinforcing material, poor adhesion characteristics between natural fiber and polymer resin result in low mechanical properties. In this study, jute-thermoset composites were fabricated by using unsaturated polyester and epoxy resins. To improve the adhesion between jute fabric and thermoset, alkali treated jute fibers were treated with oligomeric siloxane. FTIR analysis was used to confirm the surface treatment. The effects of fiber surface treatment on the mechanical properties of jute reinforced thermoset composites were determined by using tensile test, flexure test and short beam shear test. The fractured surfaces of composites were investigated by scanning electron microscopic (SEM) technique. Once jute fabrics were treated 1% siloxane concentration, the tensile and flexure properties of silane treated jute thermoset composites increased. Surface treatment of jute fiber caused a significant increase in the interlaminar shear strength (ILSS) of the thermoset composites. From SEM observations, better adhesion was observed for the jute/thermoset composites in the presence of oligomeric siloxane.

  6. Effect of surface treatment on mechanical properties of glass fiber/stainless steel wire mesh reinforced epoxy hybrid composites

    Energy Technology Data Exchange (ETDEWEB)

    N, Karunagaran [S.K.P Engineering College, Tiruvannamalai (India); A, Rajadurai [Anna University, Chennai (India)

    2016-06-15

    This paper investigates the effect of surface treatment for glass fiber, stainless steel wire mesh on tensile, flexural, inter-laminar shear and impact properties of glass fiber/stainless steel wire mesh reinforced epoxy hybrid composites. The glass fiber fabric is surface treated either by 1 N solution of sulfuric acid or 1 N solution of sodium hydroxide. The stainless steel wire mesh is also surface treated by either electro dissolution or sand blasting. The hybrid composites are fabricated using epoxy resin reinforced with glass fiber and fine stainless steel wire mesh by hand lay-up technique at room temperature. The hybrid composite consisting of acid treated glass fiber and sand blasted stainless steel wire mesh exhibits a good combination of tensile, flexural, inter-laminar shear and impact behavior in comparison with the composites made without any surface treatment. The fine morphological modifications made on the surface of the glass fiber and stainless steel wire mesh enhances the bonding between the resin and reinforcement which inturn improved the tensile, flexural, inter-laminar shear and impact properties.

  7. Influence of aramid fiber moisture regain during atmospheric plasma treatment on aging of treatment effects on surface wettability and bonding strength to epoxy

    International Nuclear Information System (INIS)

    Ren Yu; Wang Chunxia; Qiu Yiping

    2007-01-01

    One of the main differences between a low-pressure plasma treatment and an atmospheric pressure plasma treatment is that in atmosphere, the substrate material may absorb significant amount of water which may potentially influence the plasma treatment effects. This paper investigates how the moisture absorbed by aramid fibers during the atmospheric pressure plasma treatment influences the aging behavior of the modified surfaces. Kevlar 49 fibers with different moisture regains (MR) (0.5, 3.5 and 5.5%, respectively) are treated with atmospheric pressure plasma jet (APPJ) with helium as the carrier gas and oxygen as the treatment gas. Surface wettability and chemical compositions, and interfacial shear strengths (IFSS) to epoxy for the aramid fibers in all groups are determined using water contact angle measurements, X-ray photoelectron spectroscopy (XPS), and micro-bond pull out tests, respectively. Immediately after the plasma treatment, the treated fibers have substantially lower water contact angles, higher surface oxygen and nitrogen contents, and larger IFSS to epoxy than those of the control group. At the end of 30 day aging period, the fibers treated with 5.5% moisture regain had a lower water contact angle and more polar groups on the fiber surface, leading to 75% improvement of IFSS over the control fibers, while those for the 0.5 and 3.5% moisture regain groups were only 30%

  8. Laser surface treatment for enhanced titanium to carbon fiber-reinforced polymer adhesion

    NARCIS (Netherlands)

    Palavra, Armin; Coelho, Bruno N.; de Hosson, Jeff Th. M.; Lima, Milton S. F.; Carvalho, Sheila M.; Costa, Adilson R.

    The adhesion between carbon fiber-reinforced polymer (CFRP) and titanium parts can be improved by laser surface texturing before gluing them together. Here, a pulsed Nd:YAG laser was employed before bonding of the textured surfaces using an epoxy paste adhesive. To investigate the influence of the

  9. Effects of aqueous ammonia treatment on fiber’s surface morphology and enzymatic digestibility of empty fruit bunch fiber (EFBF)

    International Nuclear Information System (INIS)

    Ling, Tang Pei; Hassan, Osman

    2013-01-01

    This study was conducted to investigate the effects of aqueous ammonia reflux and soaked treatment on the fiber’s surface morphology and enzymatic digestibility of empty fruit bunch fiber (EFBF). The surface morphological changes of the fiber after aqueous ammonia treatment was linked to the sugars yield by enzymatic hydrolysis. The effectiveness of 6.25% aqueous ammonia treatment in improving enzymatic digestibility of EFBF was initially studied in reflux system and by soaking. The results showed that soaked treatment was more effective than reflux system. Further study on soaked treatment of EFBF was carried out by increasing the ammonia concentration to 12.50%. Soaking in aqueous ammonia was conducted at 30°C and 50°C for 24 hours. The results of enzymatic hydrolysis showed that sugar yield from EFBF soaked in 12.50% aqueous ammonia at 50°C was the highest. Approximately 242.91±15.50 mg/g EFBF of xylose and 320.49±28.31 mg/g EFBF of glucose were produced by the action of enzyme Cellic Ctec 2. Results of scanning electron microscopic showed that aqueous ammonia treatment by soaking had caused a more severe structural distortion on the fiber’s surface and higher removal of silica bodies that embedded on the fiber than those in reflux system. The changes on the fiber’s surface morphology were believed is the contributing factor that improved the enzymatic digestibility of EFBF after aqueous ammonia treatment

  10. Effects of aqueous ammonia treatment on fiber’s surface morphology and enzymatic digestibility of empty fruit bunch fiber (EFBF)

    Energy Technology Data Exchange (ETDEWEB)

    Ling, Tang Pei; Hassan, Osman [Department of Food Science, School of Chemical Science and Food Technology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi UKM, Selangor (Malaysia)

    2013-11-27

    This study was conducted to investigate the effects of aqueous ammonia reflux and soaked treatment on the fiber’s surface morphology and enzymatic digestibility of empty fruit bunch fiber (EFBF). The surface morphological changes of the fiber after aqueous ammonia treatment was linked to the sugars yield by enzymatic hydrolysis. The effectiveness of 6.25% aqueous ammonia treatment in improving enzymatic digestibility of EFBF was initially studied in reflux system and by soaking. The results showed that soaked treatment was more effective than reflux system. Further study on soaked treatment of EFBF was carried out by increasing the ammonia concentration to 12.50%. Soaking in aqueous ammonia was conducted at 30°C and 50°C for 24 hours. The results of enzymatic hydrolysis showed that sugar yield from EFBF soaked in 12.50% aqueous ammonia at 50°C was the highest. Approximately 242.91±15.50 mg/g EFBF of xylose and 320.49±28.31 mg/g EFBF of glucose were produced by the action of enzyme Cellic Ctec 2. Results of scanning electron microscopic showed that aqueous ammonia treatment by soaking had caused a more severe structural distortion on the fiber’s surface and higher removal of silica bodies that embedded on the fiber than those in reflux system. The changes on the fiber’s surface morphology were believed is the contributing factor that improved the enzymatic digestibility of EFBF after aqueous ammonia treatment.

  11. Influence of fiber surface-treatment on interfacial property of poly(L-lactic acid)/ramie fabric biocomposites under UV-irradiation hydrothermal aging

    Energy Technology Data Exchange (ETDEWEB)

    Chen Dakai; Li Jing [Institute of Nano- and Bio-polymeric Materials, School of Material Science and Engineering, Tongji University, Shanghai 200092 (China); Ren Jie, E-mail: renjie6598@163.com [Institute of Nano- and Bio-polymeric Materials, School of Material Science and Engineering, Tongji University, Shanghai 200092 (China) and Key Laboratory of Advanced Civil Engineering Materials, Ministry of Education, Tongji University, Shanghai 200092 (China)

    2011-04-15

    Research highlights: {yields} Ramie fiber is used as reinforced material because it's lowest water absorption among sisal, jute, kenaf and ramie fiber. {yields} Fiber surface-treatment can cause an accelerated decline in mechanical properties of PLLA biocomposites after UV-irradiation hydrothermal aging. {yields} The swelling of ramie fibers reduce the interfacial adhesive strength in critical area of PLLA matrix-ramie fabric interface. - Abstract: The present study is devoted to the effect of fiber surface-treatment on the interfacial property of biocomposites based on poly(L-lactic acid) (PLLA) and ramie fabric. Ramie fiber is used as reinforced material because it's lowest water absorption among sisal, jute, kenaf and ramie fiber. Fiber surface-treatment can increase the water absorption of natural fibers. SEM images show that PLLA biocomposites with treated ramie fabric exhibit better interfacial adhesion character. DMA results show that the storage modulus of PLLA biocomposites with treated ramie increase compared to neat PLLA and PLLA biocomposites with untreated ramie. Unexpectedly, fiber surface-treatment can cause an accelerated decline in mechanical properties of PLLA biocomposites after UV-irradiation hydrothermal aging. Finally, GPC results show that there is no obvious decline in the molecular weight of PLLA. The main reason for this decline is the interfacial destructive effect induced by the water absorption of ramie fiber.

  12. In Vitro Evaluation of Various Surface Treatments of Fiber Posts on the Bond Strength to Composite Core

    Directory of Open Access Journals (Sweden)

    Sareh Nadalizadeh

    Full Text Available Introduction: The reliable bond at the root-post-core interface is critical for the clinical success of post-retained restorations. To decrease the risk of fracture, it is important to optimize the adhesion. Therefore, various post surface treatments have been proposed. The purpose of this study was to investigate the influence of various surface treatments of fiber posts on the bond strength to composite core. Materials & Methods: In this study, 40 fiber reinforced posts were used. After preparing and sectioning them, resulting specimens were divided into four groups (N=28. The posts received different surface treatments such as no surface treatment (control group, preparing with hydrogen peroxide 10%, preparing with silane, preparing with HF and silane. Then, posts were tested in micro tensile testing machine. The results were analyzed by One-Way ANOVA and Dunnett T3 test. Results: The greatest bond strength observed was in treatment with hydrogen peroxide 10% (19.84±8.95 MPa, and the lowest strength was related to the control group (12.44±3.40 MPa. The comparison of the groups with Dunnett T3 test showed that the differences between the groups was statistically significant (α=0.05.Conclusion: Based on the results of this study, preparing with H2O2 -10 % and silane increases the bond strength of FRC posts to the composite core more than the other methods. Generally, the bond strength of posts to the composite core increases by surface treatment.

  13. Cold surface treatments on fiber-reinforced plastics by pulsed laser

    OpenAIRE

    Gebauer, Jana; Franke, Volker; Klotzbach, Udo; Beyer, Eckhard

    2017-01-01

    The importance of lightweight materials increases in all aspects of manufacturing, e.g. automotive, sports equipment and aerospace [1]. Making fiber reinforced plastics suitable for use in mass production new technologies have to be developed to overcome existing challenges e.g. shorter cycle times or more efficient resource usage. Innovative laser systems are used for a full range of treatments for all materials, like structuring, drilling, joining and cutting [2] - [4]. This paper presents ...

  14. Development of a High Performance PES Ultrafiltration Hollow Fiber Membrane for Oily Wastewater Treatment Using Response Surface Methodology

    Directory of Open Access Journals (Sweden)

    Noor Adila Aluwi Shakir

    2015-12-01

    Full Text Available This study attempts to optimize the spinning process used for fabricating hollow fiber membranes using the response surface methodology (RSM. The spinning factors considered for the experimental design are the dope extrusion rate (DER, air gap length (AGL, coagulation bath temperature (CBT, bore fluid ratio (BFR, and post-treatment time (PT whilst the response investigated is rejection. The optimal spinning conditions promising the high rejection performance of polyethersulfone (PES ultrafiltration hollow fiber membranes for oily wastewater treatment are at the dope extrusion rate of 2.13 cm3/min, air gap length of 0 cm, coagulation bath temperature of 30 °C, and bore fluid ratio (NMP/H2O of 0.01/99.99 wt %. This study will ultimately enable the membrane fabricators to produce high-performance membranes that contribute towards the availability of a more sustainable water supply system.

  15. Effect of surface treatments on the flexural properties and adhesion of glass fiber-reinforced composite post to self-adhesive luting agent and radicular dentin.

    Science.gov (United States)

    Elnaghy, Amr M; Elsaka, Shaymaa E

    2016-01-01

    This study evaluated the effect of different surface treatments on the flexural properties and adhesion of glass fiber post to self-adhesive luting agent and radicular dentin. Seventy-five single-rooted human teeth were prepared to receive a glass fiber post (Reblida). The posts were divided into five groups according to the surface treatment: Gr C (control; no treatment), Gr S (silanization for 60 s), Gr AP (airborne-particle abrasion), Gr HF (etching with 9 % hydrofluoric acid for 1 min), and Gr M10 (etching with CH2Cl2 for 10 min). Dual-cure self-adhesive luting agent (Rely X Unicem) was applied to each group for testing the adhesion using micropush-out test. Failure types were examined with stereomicroscope and surface morphology of the posts was characterized using a scanning electron microscopy (SEM). Flexural properties of posts were assessed using a three-point bending test. Data were analyzed using ANOVA and Tukey's HSD test. Statistical significance was set at the 0.05 probability level. Groups treated with M10 showed significantly higher bond strength than those obtained with other surface treatments (P C > S > AP > HF. Most failure modes were adhesive type of failures between dentin and luting agent (48.2%). SEM analysis revealed that the fiber post surfaces were modified after surface treatments. The surface treatments did not compromise the flexural properties of fiber posts. Application of M10 to the fiber post surfaces enhanced the adhesion to self-adhesive luting agent and radicular dentin.

  16. Influence of Er,Cr:YSGG Laser Surface Treatments on Micro Push-Out Bond Strength of Fiber Posts to Composite Resin Core Materials

    Directory of Open Access Journals (Sweden)

    Mehrsima Ghavami-Lahiji

    2018-03-01

    Full Text Available Statement of problem: The bonding of fiber post to resin core or root dentin is challenged by limited penetration of resin material to the polymeric matrix of fiber posts. Objectives: The purpose of this study was to investigate the effect of Er,Cr:YSGG on micro push-out bond strength of glass fiber posts to resin core material. Materials and Methods: We used 2 commercially available fiber posts, Exacto (Angelus and White Post DC (FGM, which had similar coronal diameters. Specimens of each fiber post (n=36 were randomly divided into three subgroups (n=12 posts per group according to different surface treatment methods: control (no surface treatment, irradiation by 1W Er,Cr:YSGG, and irradiation by 1.5W Er,Cr:YSGG. A cylindrical plastic tube was placed around the post. Resin core material was filled into the tube and cured. Coronal portions of the posts were sectioned into 1-mm-thick slices. Then, the specimens were subjected to a thermocyling device for 3000 cycles. The micro push-out test was carried out using a Universal Testing Machine. Data were analyzed using one-way ANOVA followed by Tukey’s HSD post hoc test to investigate the effect of different surface treatments on each type of fiber post. Results: The 1.5W Er,Cr:YSGG laser statistically reduced micro push-out bond strength values in the Exacto groups (P0.05. Mode of failure analysis showed that mixed failure was the predominant failure type for all surface treatment groups. Conclusions: The beneficial effect of Er,Cr:YSGG laser application could not be confirmed based on the results of this in vitro study. Er,Cr:YSGG laser could not significantly enhance the bond strength values. However, the 1.5W laser statistically decreased micro push-out bond strength in the Exacto fiber posts.

  17. Interaction between carbon fibers and polymer sizing: Influence of fiber surface chemistry and sizing reactivity

    Science.gov (United States)

    Moosburger-Will, Judith; Bauer, Matthias; Laukmanis, Eva; Horny, Robert; Wetjen, Denise; Manske, Tamara; Schmidt-Stein, Felix; Töpker, Jochen; Horn, Siegfried

    2018-05-01

    Different aspects of the interaction of carbon fibers and epoxy-based polymer sizings are investigated, e.g. the wetting behavior, the strength of adhesion between fiber and sizing, and the thermal stability of the sizing layer. The influence of carbon fiber surface chemistry and sizing reactivity is investigated using fibers of different degree of anodic oxidation and sizings with different number of reactive epoxy groups per molecule. Wetting of the carbon fibers by the sizing dispersion is found to be specified by both, the degree of fiber activation and the sizing reactivity. In contrast, adhesion strength between fibers and sizing is dominated by the surface chemistry of the carbon fibers. Here, the number of surface oxygen groups seems to be the limiting factor. We also find that the sizing and the additional functionalities induced by anodic oxidation are removed by thermal treatment at 600 °C, leaving the carbon fiber in its original state after carbonization.

  18. Assessment of Tensile Bond Strength of Fiber-Reinforced Composite Resin to Enamel Using Two Types of Resin Cements and Three Surface Treatment Methods

    Directory of Open Access Journals (Sweden)

    Tahereh Ghaffari

    2015-10-01

    Full Text Available Background: Resin-bonded bridgework with a metal framework is one of the most conservative ways to replace a tooth with intact abutments. Visibility of metal substructure and debonding are the complications of these bridgeworks. Today, with the introduction of fiber-reinforced composite resins, it is possible to overcome these complications. The aim of this study was to evaluate the bond strength of fiber-reinforced composite resin materials (FRC to enamel. Methods: Seventy-two labial cross-sections were prepared from intact extracted teeth. Seventy-two rectangular samples of cured Vectris were prepared and their thickness was increased by adding Targis. The samples were divided into 3 groups for three different surface treatments: sandblasting, etching with 9% hydrofluoric acid, and roughening with a round tapered diamond bur. Each group was then divided into two subgroups for bonding to etched enamel by Enforce and Variolink II resin cements. Instron universal testing machine was used to apply a tensile force. The fracture force was recorded and the mode of failure was identified under a reflective microscope. Results: There were no significant differences in bond strength between the three surface treatment groups (P=0.53. The mean bond strength of Variolink II cement was greater than that of Enforce (P=0.04. There was no relationship between the failure modes (cohesive and adhesive and the two cement types. There was some association between surface treatment and failure mode. There were adhesive failures in sandblasted and diamond-roughened groups and the cohesive failure was dominant in the etched group. Conclusion: It is recommended that restorations made of fiber-reinforced composite resin be cemented with VariolinkII and surface-treated by hydrofluoric acid.   Keywords: Tensile bond strength; surface treatment methods; fiber-reinforced composite resin

  19. To evaluate and compare the effect of different Post Surface treatments on the Tensile Bond Strength between Fiber Posts and Composite Resin.

    OpenAIRE

    Shori, Deepa; Pandey, Swapnil; Kubde, Rajesh; Rathod, Yogesh; Atara, Rahul; Rathi, Shravan

    2013-01-01

    Background: Fiber posts are widely used for restoration of mutilated teeth that lack adequate coronal tooth structure to retain a core for definitive restoration, bond between the fiber post and composite material depends upon the chemical reaction between the post surface and the resin material used for building up the core. In attempt to maximize the resin bonding with fiber post, different post surface conditioning is advocated. Therefore the purpose of the study is to examine the interfac...

  20. Effects of endodontic post surface treatment, dentin conditioning, and artificial aging on the retention of glass fiber-reinforced composite resin posts.

    Science.gov (United States)

    Albashaireh, Zakereyya S; Ghazal, Muhamad; Kern, Matthias

    2010-01-01

    Several post surface treatments with or without the application of a bonding agent have been recommended to improve the bond strength of resin cements to posts. A regimen that produces the maximum bond strength of glass fiber-reinforced composite resin posts has not been verified. The purpose of this study was to evaluate the influence of post surface conditioning methods and artificial aging on the retention and microleakage of adhesively luted glass fiber-reinforced composite resin posts. Seventy-two endodontically treated single-rooted teeth were prepared for glass fiber-reinforced composite resin posts. The posts were submitted to 3 different surface treatments (n=24), including no treatment, etching with phosphoric acid, and airborne-particle abrasion. Subgroups of the posts (n=8) were then allocated for 3 different experimental conditions: no artificial aging, no bonding agent; no artificial aging, bonding agent; or artificial aging, bonding agent. The posts were luted with resin cement (Calibra). Post retention was measured in tension at a crosshead speed of 2 mm/min. The posts assigned for microleakage investigation were placed in fuchsin dye for 72 hours. The dislodged posts and the post spaces were examined microscopically to evaluate the mode of failure and explore the microleakage. Data were analyzed by 2-way ANOVA followed by Tukey HSD test (alpha=.05). The mean (SD) retention values for test groups ranged from 269 (63.8) to 349 (52.2) N. The retention values of the airborne-particle-abrasion group were significantly higher than those of the acidic-treatment and no-treatment groups. The application of bonding agent on the post surface produced no significant influence on retention. The mean retention values after artificial aging were significantly higher than without artificial aging. Microscopic evaluation demonstrated that the failure mode was primarily mixed. Treating the surface of the posts with phosphoric acid for 15 seconds before cementation

  1. Submicron Surface-Patterned Fibers and Textiles

    Science.gov (United States)

    2016-11-04

    www.statista.com/ statistics /263154/ worldwide -production-volume-of-textile-fibers- since-1975/ (accessed October 26, 2016). [2] W. S. Perkins, Textile coloration...Engineering. Submitted to 2 Presently, the worldwide annual production volume of textile fibers is nearly one hundred million metric tons... stress where viscous forces dominate and surface energy- driven deformations are kinetically restrained. A specific example of a surface-patterned

  2. Effect of surface modification on carbon fiber and its reinforced phenolic matrix composite

    Energy Technology Data Exchange (ETDEWEB)

    Yuan Hua [Key Laboratory for Liquid phase chemical oxidation Evolution and Processing of Materials (Ministry of Education), Shandong University, Jinan 250061 (China); Carbon Fibre Engineering Research Center, Faculty of Materials Science, Shandong University, Jinan 250061 (China); Wang Chengguo, E-mail: sduwangchg@gmail.com [Carbon Fibre Engineering Research Center, Faculty of Materials Science, Shandong University, Jinan 250061 (China); Zhang Shan; Lin Xue [Carbon Fibre Engineering Research Center, Faculty of Materials Science, Shandong University, Jinan 250061 (China)

    2012-10-15

    Highlights: Black-Right-Pointing-Pointer We used very simple and effective modification method to treat PAN-based carbon fiber by liquid oxidation and coupling agent. Black-Right-Pointing-Pointer Carbon fiber surface functional groups were analyzed by LRS and XPS. Black-Right-Pointing-Pointer Proper treatment of carbon fiber can prove an effective way to increase composite's performance. Black-Right-Pointing-Pointer Carbon fiber surface modifications by oxidation and APS could strengthen fiber activity and enlarge surface area as well as its roughness. - Abstract: In this work, polyacrylonitrile (PAN)-based carbon fiber were chemically modified with H{sub 2}SO{sub 4}, KClO{sub 3} and silane coupling agent ({gamma}-aminopropyltriethoxysilane, APS), and carbon fiber reinforced phenolic matrix composites were prepared. The structural and surface characteristics of the carbon fiber were investigated by scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), laser Raman scattering (LRS) and Fourier transform infrared spectroscopy (FTIR). Single fiber mechanical properties, specific surface area, composite impact properties and interfacial shear strength (ILSS) were researched to indicate the effects of surface modification on fibers and the interaction between modified fiber surface and phenolic matrix. The results showed that carbon fiber surface modification by oxidation and APS can strengthen fiber surface chemical activity and enlarge the fiber surface area as well as its roughness. When carbon fiber (CF) is oxidized treatment, the oxygen content as well as the O/C ratio will be obviously increased. Oxygen functional groups increase with oxidation time increasing. Carbon fiber treated with APS will make C-O-R content increase and O-C=O content decrease due to surface reaction. Proper treatment of carbon fiber with acid and silane coupling agent prove an effective way to increase the interfacial adhesion and improve the mechanical and outdoor

  3. Effect of surface modification on carbon fiber and its reinforced phenolic matrix composite

    International Nuclear Information System (INIS)

    Yuan Hua; Wang Chengguo; Zhang Shan; Lin Xue

    2012-01-01

    Highlights: ► We used very simple and effective modification method to treat PAN-based carbon fiber by liquid oxidation and coupling agent. ► Carbon fiber surface functional groups were analyzed by LRS and XPS. ► Proper treatment of carbon fiber can prove an effective way to increase composite's performance. ► Carbon fiber surface modifications by oxidation and APS could strengthen fiber activity and enlarge surface area as well as its roughness. - Abstract: In this work, polyacrylonitrile (PAN)-based carbon fiber were chemically modified with H 2 SO 4 , KClO 3 and silane coupling agent (γ-aminopropyltriethoxysilane, APS), and carbon fiber reinforced phenolic matrix composites were prepared. The structural and surface characteristics of the carbon fiber were investigated by scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), laser Raman scattering (LRS) and Fourier transform infrared spectroscopy (FTIR). Single fiber mechanical properties, specific surface area, composite impact properties and interfacial shear strength (ILSS) were researched to indicate the effects of surface modification on fibers and the interaction between modified fiber surface and phenolic matrix. The results showed that carbon fiber surface modification by oxidation and APS can strengthen fiber surface chemical activity and enlarge the fiber surface area as well as its roughness. When carbon fiber (CF) is oxidized treatment, the oxygen content as well as the O/C ratio will be obviously increased. Oxygen functional groups increase with oxidation time increasing. Carbon fiber treated with APS will make C-O-R content increase and O-C=O content decrease due to surface reaction. Proper treatment of carbon fiber with acid and silane coupling agent prove an effective way to increase the interfacial adhesion and improve the mechanical and outdoor performance of the resulting fiber/resin composites.

  4. Experimental Investigation and Analysis of Mercerized and Citric Acid Surface Treated Bamboo Fiber Reinforced Composite

    Science.gov (United States)

    De, Jyotiraman; Baxi, R. N., Dr.

    2017-08-01

    Mercerization or NaOH fiber surface treatment is one of the most popular surface treatment processes to make the natural fibers such as bamboo fibers compatible for use as reinforcing material in composites. But NaOH being a chemical is hazardous and polluting to the nature. This paper explores the possibility of use of naturally derived citric acid for bamboo fiber surface treatment and its comparison with NaOH treated Bamboo Fiber Composites. Untreated, 2.5 wt% NaOH treated and 5 wt% citric acid treated Bamboo Fiber Composites with 5 wt% fiber content were developed by Hand Lay process. Bamboo mats made of bamboo slivers were used as reinforcing material. Mechanical and physical characterization was done to compare the effects of NaOH and citric acid bamboo fiber surface treatment on mechanical and physical properties of Bamboo Fiber Composite. The experiment data reveals that the tensile and flexural strength was found to be highest for citric acid and NaOH treated Bamboo Fiber Composite respectively. Water absorption tendency was found more than the NaOH treated Bamboo Fiber Composites. SEM micrographs used to analyze the morphology of fracture surface of tensile test specimens confirm improvement in fiber-matrix interface bonding due to surface treatment of bamboo fibers.

  5. Assessment of effect of chemical treatment to carnauba's fibers straw

    International Nuclear Information System (INIS)

    Carvalho, T.M.P. de; Carvalho, L.F.M.; Oliveira, R.R. de; Sousa, F.M.S. de; Sousa, R.C. de; Marques, J.R.

    2016-01-01

    The use of natural fibers in composite materials has been highlighted in the scientific field. However, its application in polymer matrices usually requires surface modifications. The objective of this work was to treat carnauba's straw fibers with NaOH 1 % and NaOH 5% solutions and measure the water absorption. We used the X-ray diffraction (XRD configuration “Bragg- Brentano) for verification of the crystalline phases and Fourier Transform Infrared Spectroscopy (FTIR) to identify functional groups. The alkali treatment allowed the solubilization of the hemicellulose and lignin without causing changes to cellulose, as indicated by FTIR spectrophotometry and by the increase in crystallinity content. The samples showed the typical peaks of constituents of the fiber. The natural fiber showed an average water absorption of 256 %; fiber treated with NaOH 1%, 315 %; and treated with NaOH 5%, 405 %. Therefore, it is evident improvement in hydrophilicity, fundamental aspect in the interaction fiber / matrix. (author)

  6. Treatments of jute fibers aiming at improvement of fiber-phenolic matrix adhesion

    Directory of Open Access Journals (Sweden)

    Ilce Aiko Tanaka Razera

    2014-08-01

    Full Text Available Composites based on a thermoset phenolic matrix and jute fibers were prepared and characterized. The fibers were alternatively treated with ionized air or aqueous alkaline solution (mercerization with the aim of introducing changes in the morphology, dispersive component of surface free energy, γS D (estimated by Inverse Gas Chromatography, IGC and the acid/base character of their surfaces, shown by their ANs/DNs ratio (estimated by IGC, and their degree of crystallinity. The final objective was to investigate the influence of these modifications on the adhesion at the jute fiber/phenolic matrix interface in the composites. The untreated jute fiber showed 50% crystallinity, γS D=18 mJ m- 2 and ANs/DNs= 0.9 (amphoteric surface, tensile strength = 460 MPa and maximum elongation = 0.7%, while the respective composite had an impact strength of 72.6 J m- 1. The treatments positively modified the fibers and the adhesion at the interface was better in the composites reinforced with treated fibers than with untreated fibers. The best set of results was exhibited by the fiber treated with 10% NaOH [46% crystallinity, γS D = 26 J m- 2 (phenolic matrix γS D = 32 J m- 2, ANs/DNs = 1.8 (surface predominantly acidic, similar to phenolic matrix, ANs/DNs = 1.4, tensile strength approximately 900 MPa, maximum elongation = 2%, impact strength of respective composite approximately 95 J m- 1]. The fibers treated for 5 h with ionized air exhibited favorable properties [(45% crystallinity, γS D = 27 J m- 2, ANs/DNs = 2.1 (acidic surface] for further use as reinforcement of a phenolic matrix, but their partial degradation during the treatment decreased their tensile properties (395 MPa and 0.5% for tensile strength and maximum elongation, respectively and their action as reinforcement (impact strength of the respective composite approximately 73 J m- 1.

  7. The effect of fiber treatment on abrasive wear properties of palm fiber reinforced epoxy composite

    Science.gov (United States)

    Razak, Muhammad Firdaus Abdul; Bakar, Mimi Azlina Abu; Kasolang, Salmiah; Ahmad, Mohamad Ali

    2017-12-01

    Oil palm industries generate at least 30 million tons of lignocellulosic biomass annually in the form of oil palm trunks (OPT), empty fruit bunches (EFB), oil palm fronds (OPF) and palm pressed fibres (PPF). The palm fiber is one of the natural fibers used as reinforcement in composite materials in order to decrease environmental issues and promotes utilization of renewable resources. This paper presents a study on the effect of alkaline treatment on wear properties of palm fiber reinforced epoxy resin composite. Abrasive wear testing was deployed to investigate the wear profile of the composite surfaces. Testing was carried out which focused on the effect of alkaline treatment to the palm fiber under different amounts of fiber loading i.e. 1 wt%, 3 wt%, 5 wt% and 7 wt%. The palm fibers were soaked into 6 % of alkaline solution or natrium hydroxide (NaOH) for 12 hours. The fiber was treated in order to remove amorphous materials such as hemicelluloses, lignins and pectins of the fiber. The wear test samples were fabricated using hand lay-up technique and cured at room temperature for 24 hours. Surface roughness of the composite material was also measured using the surface measuring instrument. Dry sliding wear test was performed at room temperature at a constant velocity of 1.4 m/s with a constant load of 10 N by using the Abrasion Test Machine. Result shows that 5 wt% and 7 wt% treated palm fiber loadings have better specific wear rate compared to lower fiber loadings. The finding of this study contributes towards material development and utilization in promoting `waste into wealth' which is in line with national aspiration.

  8. Interfacial enhancement of carbon fiber/nylon 12 composites by grafting nylon 6 to the surface of carbon fiber

    Science.gov (United States)

    Hui, Chen; Qingyu, Cai; Jing, Wu; Xiaohong, Xia; Hongbo, Liu; Zhanjun, Luo

    2018-05-01

    Nylon 6 (PA6) grafted onto carbon fiber (CF) after chemical oxidation treatment was in an attempt to reinforce the mechanical properties of carbon fiber composites. Scanning electronic microscopy (SEM), Fourier transform infrared analysis (FT-IR), X-ray photoelectron spectroscope (XPS) and thermogravimetric analysis (TG) were selected to characterize carbon fibers with different surface treated. Experimental results showed that PA6 was grafted uniformly on the fiber surface through the anionic polymerization. A large number of functional groups were introduced to the fiber surface and the surface roughness was increased. After grafting PA6 on the oxidized carbon fibers, it played an important role on improving the interfacial adhesion between the fibers and the matrix by improving PA12 wettability, increasing chemical bonding and mechanical interlocking. Compared with the desized CF composites, the tensile strength of PA6-CF/PA12 composites was increased by 30.8% from 53.9 MPa to 70.2 MPa. All results indicated that grafting PA6 onto carbon fiber surface was an effective method to enhance the mechanical strength of carbon fiber/nylon 12 composites.

  9. Alkaline treatment on piassava (Attalea funifera martius) fiber

    International Nuclear Information System (INIS)

    Santos, E.B.C.; Moreno, C.G.; Barros, J.J.P.; Moura, D.A.; Fim, F.C.; Wellen, R.M.R.; Silva, L.B.

    2016-01-01

    Alkaline treatment on piassava fiber with size inferior to 270 mesh was performed to remove impurities. The treatments took place under magnetic stirring and Sodium Hydroxide (NaOH) solution with 2, 4, 6 and 8% of concentration; processing time ranged between 100 and 400 minutes, with intervals of 25 minutes; the main object was to reach the optimum concentration and time. The concentration 2% was used to remove efficiently the impurities without damaging excessively the fiber. The fibers were characterized by means of X-ray diffraction (XRD) and optical microscopy (OM). Fibers presented XRD diffraction peak around 22 deg, due to the crystalline structure of cellulose. By optical microscopy was observed the treatment efficacy of the 2% NaOH solution in removing surface impurities. (author)

  10. The research on the interfacial compatibility of polypropylene composite filled with surface treated carbon fiber

    International Nuclear Information System (INIS)

    Li, J.

    2009-01-01

    Dielectric barrier discharges (DBD) in ambient air are used on carbon fiber to improve the fiber surface activity. Carbon fibers with length of 75 μm are placed into the plasma configuration. The interaction between modified carbon fibers and polypropylene (PP) was studied by three-point bending (TPB) test. The chemical changes induced by the treatments on carbon fiber surface are examined using X-ray photoelectron spectroscopy (XPS). XPS results reveal that the carbon fiber modified with the DBD at atmospheric pressure show a significant increase in oxygen and nitrogen concentration. These results demonstrate that the surface of the carbon fiber is more active and hydrophilic after plasma treatments using a DBD operating in ambient air.

  11. Surface modification and characterization of aramid fibers with hybrid coating

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Jianrui; Zhu, Yaofeng; Ni, Qingqing; Fu, Yaqin, E-mail: fyq01@zstu.edu.cn; Fu, Xiang

    2014-12-01

    Graphical abstract: - Highlights: • Aramid fibers modification sizing synthesized by sol–gel in the absence of water. • The strength and interfacial adhesion property of modified fibers were improved. • Modified fibers show a special surface structure. • The mechanism explains the function of structure. - Abstract: Aramid fibers were modified through solution dip-coating and interfacial in situ polymerization using a newly synthesized SiO{sub 2}/shape memory polyurethane (SiO{sub 2}/SMPU) hybrid. Fourier transform infrared and X-ray photoelectron spectroscopy indicated that the synthesized SiO{sub 2}/SMPU hybrid successfully coated the fiber surface. The surface morphology of the aramid fibers and the single fiber tensile strength and interfacial shear strength (IFSS) of the composites were determined. The IFSS of the fiber coated with the hybrid improved by 45%, which benefited from a special “pizza-like” structure on the fiber surface.

  12. Surface modification and characterization of aramid fibers with hybrid coating

    International Nuclear Information System (INIS)

    Chen, Jianrui; Zhu, Yaofeng; Ni, Qingqing; Fu, Yaqin; Fu, Xiang

    2014-01-01

    Graphical abstract: - Highlights: • Aramid fibers modification sizing synthesized by sol–gel in the absence of water. • The strength and interfacial adhesion property of modified fibers were improved. • Modified fibers show a special surface structure. • The mechanism explains the function of structure. - Abstract: Aramid fibers were modified through solution dip-coating and interfacial in situ polymerization using a newly synthesized SiO 2 /shape memory polyurethane (SiO 2 /SMPU) hybrid. Fourier transform infrared and X-ray photoelectron spectroscopy indicated that the synthesized SiO 2 /SMPU hybrid successfully coated the fiber surface. The surface morphology of the aramid fibers and the single fiber tensile strength and interfacial shear strength (IFSS) of the composites were determined. The IFSS of the fiber coated with the hybrid improved by 45%, which benefited from a special “pizza-like” structure on the fiber surface

  13. A new fiber optic sensor for inner surface roughness measurement

    Science.gov (United States)

    Xu, Xiaomei; Liu, Shoubin; Hu, Hong

    2009-11-01

    In order to measure inner surface roughness of small holes nondestructively, a new fiber optic sensor is researched and developed. Firstly, a new model for surface roughness measurement is proposed, which is based on intensity-modulated fiber optic sensors and scattering modeling of rough surfaces. Secondly, a fiber optical measurement system is designed and set up. Under the help of new techniques, the fiber optic sensor can be miniaturized. Furthermore, the use of micro prism makes the light turn 90 degree, so the inner side surface roughness of small holes can be measured. Thirdly, the fiber optic sensor is gauged by standard surface roughness specimens, and a series of measurement experiments have been done. The measurement results are compared with those obtained by TR220 Surface Roughness Instrument and Form Talysurf Laser 635, and validity of the developed fiber optic sensor is verified. Finally, precision and influence factors of the fiber optic sensor are analyzed.

  14. The Influence of Chemical Surface Modification of Kenaf Fiber using Hydrogen Peroxide on the Mechanical Properties of Biodegradable Kenaf Fiber/Poly(Lactic Acid Composites

    Directory of Open Access Journals (Sweden)

    Nur Inani Abdul Razak

    2014-03-01

    Full Text Available Bleaching treatment of kenaf fiber was performed in alkaline medium containing hydrogen peroxide solution maintained at pH 11 and 80 °C for 60 min. The bleached kenaf fiber was analyzed using Fourier Transform Infrared (FTIR and X-ray Diffraction (XRD analysis. The bleached kenaf fiber was then compounded with poly-(lactic acid (PLA via a melt blending method. The mechanical (tensile, flexural and impact performance of the product was tested. The fiber treatment improved the mechanical properties of PLA/bleached kenaf fiber composites. Scanning electron micrograph (SEM morphological analysis showed improvement of the interfacial adhesion between the fiber surface and polymer matrix.

  15. Reinforcement of a porous collagen scaffold with surface-activated PLA fibers.

    Science.gov (United States)

    Liu, Xi; Huang, Changbin; Feng, Yujie; Liang, Jie; Fan, Yujiang; Gu, Zhongwei; Zhang, Xingdong

    2010-01-01

    A hybrid porous collagen scaffold mechanically reinforced with surface-activated poly(lactic acid) (PLA) fiber was prepared. PLA fibers, 20 mum in diameter and 1 mm in length, were aminolyzed with hexanediamine to introduce free amino groups on the surfaces. After the amino groups were transferred to aldehyde groups by treatment with glutaraldehyde, different amounts (1.5, 3, 5 and 8 mg) of surface-activated PLA fibers were homogeneously mixed with 2 ml type-I collagen solution (pH 2.8, 0.6 wt%). This mixture solution was then freeze-dried and cross-linked to obtain collagen sponges with surface-activated PLA fiber. Scanning electron microscopy observation indicated that the collagen sponges had a highly interconnected porous structure with an average pore size of 170 mum, irrespective of PLA fiber incorporation. The dispersion of surface-activated PLA fibers was homogeneous in collagen sponge, in contrast to unactivated PLA fibers. The compression modulus test results showed that, compared with unactivated PLA fibers, the surface-activated PLA fibers enhanced the resistance of collagen sponge to compression more significantly. Cytotoxicity assay by MTT test showed no cytotoxicity of these collagen sponges. L929 mouse fibroblast cell-culture studies in vitro revealed that the number of L929 cells attached to the collagen sponge with surface-activated PLA fibers, both 6 h and 24 h after seeding, was higher than that in pure collagen sponge and sponge with unactivated PLA fibers. In addition, a better distribution of cells infiltrated in collagen sponge with surface-activated PLA fibers was observed by histological staining. These results indicated that the collagen sponge reinforced with surface-activated PLA fibers is a promising biocompatible scaffold for tissue engineering.

  16. Improvement of carbon fiber surface properties using electron beam irradiation

    International Nuclear Information System (INIS)

    Pino, E.S.; Machado, L.D.B.; Giovedi, C.

    2007-01-01

    Carbon fiber-reinforced advance composites have been used for structural applications, mainly on account of their mechanical properties. The main factor for a good mechanical performance of carbon fiber-reinforced composite is the interfacial interaction between its components, which are carbon fiber and polymeric matrix. The aim of this study is to improve the surface properties of the carbon fiber using ionizing radiation from an electron beam to obtain better adhesion properties in the resultant composite. EB radiation was applied on the carbon fiber itself before preparing test specimens for the mechanical tests. Experimental results showed that EB irradiation improved the tensile strength of carbon fiber samples. The maximum value in tensile strength was reached using doses of about 250 kGy. After breakage, the morphology aspect of the tensile specimens prepared with irradiated and non-irradiated car- bon fibers were evaluated. SEM micrographs showed modifications on the carbon fiber surface. (authors)

  17. Surface modification of lignocellulosic fibers using high-frequency ultrasound

    Science.gov (United States)

    Jayant B. Gadhe; Ram B. Gupta; Thomas Elder

    2005-01-01

    Enzymatic and chemical oxidation of fiber surfaces has been reported in the literature as a method for producing medium density fiberboards without using synthetic adhesives. This work focuses on modifying the surface properties of wood fibers by the generation of free radicals using high-frequency ultrasound. A sonochemical reactor operating at 610 kHz is used to...

  18. High efficient and continuous surface modification of carbon fibers with improved tensile strength and interfacial adhesion

    Science.gov (United States)

    Sun, Jingfeng; Zhao, Feng; Yao, Yue; Jin, Zhen; Liu, Xu; Huang, Yudong

    2017-08-01

    Most of the surface modification technologies for carbon fibers, no matter in laboratory scale or for commercial manufacture, are accompanied by a simultaneous decrease in tensile strength. In this paper, a feasible and high efficient strategy for carbon fiber treatment which could obviously improve both tensile strength and interfacial adhesion was proposed. Continuously moving carbon fibers were treated with atmospheric helium plasma for 1 min, followed by a 5 min pyrolytic carbon deposition using ethanol as precursor at 800 °C. The effects of the new approach were characterized by SEM, AFM, nanoindentation, XPS, Raman, wettability analysis, single fiber tensile strength testing and single fiber pull-out testing. After modification, pyrolytic carbon coating was deposited on the fiber surface uniformly, and the roughness and surface energy increased significantly. The single fiber tensile testing results indicate that the resulting fiber strength increased 15.7%, rising from 3.13 to 3.62 GPa. Meanwhile, the interfacial shear strength of its epoxy composites increased from 65.3 to 83.5 MPa. The comparative studies of carbon fibers modified with commercial anodic oxidation and sizing were also carried out. The results demonstrate that the new method can be utilized in the carbon fiber manufacture process and is more efficient than the traditional approaches.

  19. Surface modification of carbon fibers and its effect on the fiber–matrix interaction of UHMWPE based composites

    International Nuclear Information System (INIS)

    Chukov, D.I.; Stepashkin, A.A.; Gorshenkov, M.V.; Tcherdyntsev, V.V.; Kaloshkin, S.D.

    2014-01-01

    Highlights: • Both chemical and thermal treatments of UKN 5000 carbon fibers allow one to obtain well-developed surface. • The changes of structure and properties of VMN-4 fibers after both thermal and chemical oxidation are insignificant due to more perfect initial structure of these fibers. • The oxidative treatment of carbon fibers allows one to improve the interfacial interaction in the UHMWPE-based composites. • The oxidative treatment of the fibers allows one to a triple increase of Young’s modulus of the modified fibers reinforced UHMWPE composites. -- Abstract: The PAN-based carbon fibers (CF) were subjected to thermal and chemical oxidation under various conditions. The variation in the surface morphology of carbon fibers after surface treatment was analyzed by scanning electron microscopy (SEM). It was found that the tensile strength of carbon fibers changed after surface modification. The interaction between the fibers and the matrix OF ultra-high molecular weight polyethylene (UHMWPE) was characterized by the Young modulus of produced composites. It was shown that the Young modulus of composites reinforced with modified carbon fibers was significantly higher than that of composites reinforced with non-modified fibers

  20. Influence of ethylene glycol pretreatment on effectiveness of atmospheric pressure plasma treatment of polyethylene fibers

    International Nuclear Information System (INIS)

    Wen Ying; Li Ranxing; Cai Fang; Fu Kun; Peng Shujing; Jiang Qiuran; Yao Lan; Qiu Yiping

    2010-01-01

    For atmospheric pressure plasma treatments, the results of plasma treatments may be influenced by liquids adsorbed into the substrate. This paper studies the influence of ethylene glycol (EG) pretreatment on the effectiveness of atmospheric plasma jet (APPJ) treatment of ultrahigh molecular weight polyethylene (UHMWPE) fibers with 0.31% and 0.42% weight gain after soaked in EG/water solution with concentration of 0.15 and 0.3 mol/l for 24 h, respectively. Scanning electron microscopy (SEM) shows that the surface of fibers pretreated with EG/water solution does not have observable difference from that of the control group. The X-ray photoelectron spectroscopy (XPS) results show that the oxygen concentration on the surface of EG-pretreated fibers is increased less than the plasma directly treated fibers. The interfacial shear strength (IFSS) of plasma directly treated fibers to epoxy is increased almost 3 times compared with the control group while that of EG-pretreated fibers to epoxy does not change except for the fibers pretreated with lower EG concentration and longer plasma treatment time. EG pretreatment reduces the water contact angle of UHMWPE fibers. In conclusion, EG pretreatment can hamper the effect of plasma treatment of UHMWPE fibers and therefore longer plasma treatment duration is required for fibers pretreated with EG.

  1. Surface decoration of polyimide fiber with carbon nanotubes and its application for mechanical enhancement of phosphoric acid-based geopolymers

    Science.gov (United States)

    Yang, Tao; Han, Enlin; Wang, Xiaodong; Wu, Dezhen

    2017-09-01

    A new methodology to decorate the surface of polyimide (PI) fiber with carbon nanotubes (CNTs) has been developed in this study. This surface decoration was carried out through a surface alkali treatment, a carboxylation modification, surface functionalization with acyl chloride groups and then with amino groups, and a surface graft of CNTs onto PI fiber. Fourier-transform infrared and X-ray photoelectron spectroscopic characterizations confirmed that CNTs were chemically grafted onto the surface of PI fiber, and scanning electron microscopic observation demonstrated the fiber surface was uniformly and densely covered with CNTs. The surface energy and wettability of PI fiber were improved in the presence of CNTs on the fiber surface, which made a contribution to enhance the interfacial adhesion of PI fiber with other inorganic matrices when used as a reinforcing fiber. The application of CNTs-decorated PI fiber for the reinforcement of phosphoric acid-based geopolymers was investigated, and the results indicated that the geopolymeric composites gained a noticeable reinforcement. Compared to unreinforced geopolymer, the geopolymeric composites achieved a remarkable increase in compressive strength by 120% and in flexural strength by 283%. Fractography investigation demonstrated that the interaction adhesion between the fibers and matrix was enhanced due to the surface decoration of PI fiber with CNTs, which contributed to an improvement in fracture-energy dissipation by fiber pullout and fiber debonding from the matrix. As a result, a significant reinforcement effect on geopolymeric composites was achieved through a fiber-bridging mechanism. This study provided an effective methodology to improve the interracial bonding force for PI fiber and also proves a highly efficient application of CNTs-decorated PI fiber for the mechanical enhancement of geopolymeric composites.

  2. Effect of fiber surface state on mechanical properties of Cf/Si-O-C composites

    International Nuclear Information System (INIS)

    Wang Song; Chen Zhaohui; Ma Qingsong; Hu Haifeng; Zheng Wenwei

    2005-01-01

    Three-dimensional braided carbon fiber reinforced silicon oxycarbide composites (3D-B C f /Si-O-C) were fabricated via a polysiloxane infiltration and pyrolysis route. The effects of fiber surface state on microstructure and mechanical properties of C f /Si-O-C composites were investigated. The change of carbon fiber surface state was achieved via heat treatment in vacuum. The results showed that heat treatment decreased carbon fiber surface activity due to the decrease of the amount of oxygen and nitrogen atoms. The C f /Si-O-C composites fabricated from the carbon fiber with low surface activity had excellent mechanical properties, which resulted from perfect interfacial bonding and good in situ fiber strength. The flexural strength and fracture toughness of the C f /Si-O-C composites from the treated fiber were 534 MPa and 23.4 MPa m 1/2 , respectively, which were about 7 and 11 times more than those of the composites from the as-received carbon fiber, respectively

  3. Effects of oxygen plasma treatment on domestic aramid fiber III reinforced bismaleimide composite interfacial properties

    Science.gov (United States)

    Shi, Chen; Wang, Jing; Chen, Ping; Feng, Jiayue; Cui, Jinyuan; Yang, Faze

    2017-12-01

    Domestic Aramid Fiber III (DAF III) was modified by oxygen plasma treatment. The fiber surface characteristics was observed by Scanning Electron Microscopy. The results showed that oxygen plasma treatment changed surface morphologies. The effects of oxygen plasma treatment on DAF III reinforced bismaleimides (BMI) composite bending and interfacial properties were investigated, respectively. The ILSS value increased from 49.3 MPa to 56.0 MPa (by 13.5%) after oxygen plasma treatment. The bending strength changed a little. Furthermore, the composite rupture mode changed from interfacial rupture to fiber or resin bulk rupture.

  4. Modification of carbon fiber surfaces via grafting with Meldrum's acid

    Science.gov (United States)

    Cuiqin, Fang; Jinxian, Wu; Julin, Wang; Tao, Zhang

    2015-11-01

    The mechanism of Meldrum's acid modifying carbon fiber surfaces was investigated in this work. The existing carbonyl groups of carbon fibers were grafted with Meldrum's acid to create carboxylic functionalized surfaces. The surface functionalization effect was detected with X-ray photoelectron spectroscopy (XPS), scanning electron microscope (SEM), atomic force microscopy (AFM), and thermogravimetric analysis (TGA). The XPS results showed that the relative content of carboxylic groups on carbon fiber surfaces was increased from initial 1.41% to 7.84%, however, that of carbonyl groups was decreased from 23.11% to 13.28% after grafting reaction. The SEM, AFM and TGA results indicated that the surfaces of carbon fibers neither etched nor generated coating. The tensile strength of carbon fibers was preserved after grafting reaction according to single fiber tensile strength tests. The fibers were well combined with matrix and the maximal interlaminar shear strength (ILSS) of carbon fiber/epoxy resin composites was sharply increased approximately 74% after functionalization. The effects of acetic acid and sonication on the degree of the surface functionalization were also studied.

  5. Electrospun fiber surface nanotopography influences astrocyte-mediated neurite outgrowth.

    Science.gov (United States)

    Johnson, Christopher D; D'Amato, Anthony R; Puhl, Devan L; Wich, Douglas M; Vespermann, Amanda; Gilbert, Ryan J

    2018-05-15

    Aligned, electrospun fiber scaffolds provide topographical guidance for regenerating neurons and glia after central nervous system injury. To date, no study has explored how fiber surface nanotopography affects astrocyte response to fibrous scaffolds. Astrocytes play important roles in the glial scar, the blood brain barrier, and in maintaining homeostasis in the central nervous system. In this study, electrospun poly L-lactic acid fibers were engineered with smooth, pitted, or divoted surface nanotopography. Cortical or spinal cord primary rat astrocytes were cultured on the surfaces for either 1 or 3 days to examine the astrocyte response over time. The results showed that cortical astrocytes were significantly shorter and broader on the pitted and divoted fibers compared to those on smooth fibers. However, spinal cord astrocyte morphology was not significantly altered by the surface features. These findings indicate that astrocytes from unique anatomical locations respond differently to the presence of nanotopography. Western Blot results show that the differences in morphology were not associated with significant changes in GFAP or vinculin in either astrocyte population, suggesting that surface pits and divots do not induce a reactive phenotype in either cortical or spinal cord astrocytes. Finally, astrocytes were co-cultured with dorsal root ganglia to determine how the surfaces affected astrocyte-mediated neurite outgrowth. Astrocytes cultured on the fibers for shorter periods of time (1 day) generally supported longer neurite outgrowth. Pitted and divoted fibers restricted spinal cord astrocyte-mediated neurite outgrowth, while smooth fibers increased 3 day spinal cord astrocyte-mediated neurite outgrowth. In total, fiber surface nanotopography can influence astrocyte elongation and influence the capability of astrocytes to direct neurites. Therefore, fiber surface characteristics should be carefully controlled to optimize astrocyte-mediated axonal

  6. Effect of sizing on carbon fiber surface properties and fibers/epoxy interfacial adhesion

    International Nuclear Information System (INIS)

    Dai Zhishuang; Shi Fenghui; Zhang Baoyan; Li Min; Zhang Zuoguang

    2011-01-01

    This paper aims to study effect of sizing on surface properties of carbon fiber and the fiber/epoxy interfacial adhesion by comparing sized and desized T300B and T700SC carbon fibers. By means of X-ray photoelectron spectroscopy (XPS), activated carbon atoms can be detected, which are defined as the carbon atoms conjunction with oxygen and nitrogen. Surface chemistry analysis shows that the desized carbon fibers present less concentration of activated carbon, especially those connect with the hydroxyl and epoxy groups. Inverse gas chromatography (IGC) analysis reveals that the desized carbon fibers have larger dispersive surface energy γ S D and smaller polar component γ S SP than the commercial sized ones. Moreover, micro-droplet test shows that the interfacial shear strength (IFSS) of the desized carbon fiber/epoxy is higher than those of the T300B and T700SC. Variations of the IFSS for both the sized and desized carbon fibers correspond to γ S D /γ S tendency of the fiber surface, however the work of adhesion does not reveal close correlation with IFSS trend for different fiber/epoxy systems.

  7. Roles of acidic functional groups of carbon fiber surfaces in enhancing interfacial adhesion behavior

    International Nuclear Information System (INIS)

    Park, Soo-Jin; Kim, Byung-Joo

    2005-01-01

    The gas phase ozone treatment was used as a method to bind acidic oxygen functional groups on carbon fiber surfaces. The ozone treatment on carbon fibers was varied with the ozone concentration and treatment time. Surface analyses of the carbon fibers before and after treatments were performed by FT-IR, X-ray photoelectron spectrometer (XPS), and dynamic contact angle measurements. Mechanical interfacial properties of the fibers/polymer composites were investigated by using critical stress intensity factor (K IC ) and critical energy release rate (G IC ) measurements. From the results of FT-IR and XPS, it was observed that the oxygen functional groups, such as -OH, O-C=O, C=O, and C-O, were attached on the carbon fiber surfaces after the ozone treatment. The mechanical interfacial properties of the composites also showed higher values than those of untreated composites. Ozone treatment is attributed to the increase of both the acidic functional groups and the degree of adhesion at interfaces between the fibers and polymeric resin in composites

  8. Effects of atmospheric air plasma treatment on interfacial properties of PBO fiber reinforced composites

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Chengshuang, E-mail: cszhang83@163.com; Li, Cuiyun; Wang, Baiya; Wang, Bin; Cui, Hong

    2013-07-01

    Poly(p-phenylene benzobisoxazole) (PBO) fiber was modified by atmospheric air plasma treatment. The effects of plasma treatment power and speed on both surface properties of PBO fibers and interfacial properties of PBO/epoxy composites were investigated. Surface chemical composition of PBO fibers were analyzed by X-ray photoelectron spectroscopy (XPS). Surface morphologies of the fibers and interface structures of the composites were examined using scanning electron microscopy (SEM). Interfacial adhesion property of the composites was evaluated by interlaminar shear strength (ILSS). Mechanical properties of PBO multifilament were measured by universal testing machine. The results indicate that atmospheric air plasma treatment introduced some polar or oxygen-containing groups to PBO fiber surfaces, enhanced surface roughness and changed surface morphologies of PBO fibers by plasma etching and oxidative reactions. The plasma treatment also improved interfacial adhesion of PBO/epoxy composites but has little effect on tensile properties of PBO multifilament. The ILSS of PBO/epoxy composites increased to 40.0 MPa after atmospheric air plasma treatment with plasma treatment power of 300 W and treatment speed of 6 m/min.

  9. Influence of carbon nanotubes coatings onto carbon fiber by oxidative treatments combined with electrophoretic deposition on interfacial properties of carbon fiber composite

    International Nuclear Information System (INIS)

    Deng, Chao; Jiang, Jianjun; Liu, Fa; Fang, Liangchao; Wang, Junbiao; Li, Dejia; Wu, Jianjun

    2015-01-01

    Graphical abstract: Carbon nanotube/carbon fiber hybrid fiber was proposed by the treatment with hydrogen peroxide and concentrated nitric acid combined with electrophoretic deposition process. - Highlights: • Carbon nanotube coated carbon fiber was prepared by two methods. • Uniform and dense CNTs network formed by oxidative treatments combined with EPD. • Pretreatment of the CF is beneficial to EPD of CNTs on carbon fiber surface. • CNTs enhanced the surface activity and wettability of carbon fibers. • CNTs have contributed to the interfacial properties of composite. - Abstract: To improve the interfacial performance of carbon fiber (CF) and epoxy resin, carbon nanotubes (CNTs) coatings were utilized to achieve this purpose through coating onto CF by the treatment with hydrogen peroxide and concentrated nitric acid combined with electrophoretic deposition (EPD) process. The influence of electrophoretically deposited CNTs coatings on the surface properties of CFs were investigated by Fourier transform infrared spectrometer, atomic force microscopy, scanning electron microscopy and dynamic contact angle analysis. The results indicated that the deposition of carbon nanotubes introduced some polar groups to carbon fiber surfaces, enhanced surface roughness and changed surface morphologies of carbon fibers. Surface wettability of carbon fibers may be significantly improved by increasing surface free energy of the fibers due to the deposition of CNTs. The thickness and density of the coatings increases with the introduction of pretreatment of the CF during the EPD process. Short beam shear test was performed to examine the effect of carbon fiber functionalization on mechanical properties of the carbon fiber/epoxy resin composites. The interfacial adhesion of CNTs/CF reinforced epoxy composites showed obvious enhancement of interlaminar shear strength by 60.2% and scanning electron microscope photographs showed that the failure mode of composites was changed

  10. Influence of surface modified basalt fiber on strength of cinder lightweight aggregate concrete

    Science.gov (United States)

    Xiao, Liguang; Li, Jiheng; Liu, Qingshun

    2017-12-01

    In order to improve the bonding and bridging effect between volcanic slag lightweight aggregate concrete cement and basalt fiber, The basalt fiber was subjected to etching and roughening treatment by NaOH solution, and the surface of the basalt fiber was treated with a mixture of sodium silicate and micro-silica powder. The influence of modified basalt fiber on the strength of volcanic slag lightweight aggregate concrete was systematically studied. The experimental results show that the modified basalt fiber volcanic slag lightweight aggregate concrete has a flexural strength increased by 47%, the compressive strength is improved by 16% and the toughness is increased by 27% compared with that of the non-fiber.

  11. Effect of atmospheric pressure plasma treatment condition on adhesion of ramie fibers to polypropylene for composite

    Energy Technology Data Exchange (ETDEWEB)

    Li, Ying [College of Material and Textile Engineering, Jiaxing University, Jiaxing 314033 (China); Center for Plasma-Aided Manufacturing, Madison, WI 53706 (United States); School of Human Ecology, University of Wisconsin-Madison, Madison, WI 53706 (United States); Manolache, Sorin [Center for Plasma-Aided Manufacturing, Madison, WI 53706 (United States); US Forest Products Laboratory, Madison, WI 53726 (United States); Qiu, Yiping, E-mail: ypqiu@dhu.edu.cn [College of Textiles, Donghua University, Shanghai 201620 (China); Sarmadi, Majid, E-mail: majidsar@wisc.edu [Center for Plasma-Aided Manufacturing, Madison, WI 53706 (United States); School of Human Ecology, University of Wisconsin-Madison, Madison, WI 53706 (United States); Materials Science Program, University of Wisconsin-Madison, Madison, WI 53706 (United States)

    2016-02-28

    Graphical abstract: - Highlights: • The continuous ethanol flow technique can successfully modify ramie fiber surface with an increase in IFSS value up to 50%. • Response surface methodology was applied to design the plasma treatment parameters for ramie fiber modification. • The ethanol flow rate was the most influential treatment parameter in plasma modification process. - Abstract: In order to improve the interfacial adhesion between hydrophilic ramie fibers and hydrophobic polypropylene (PP) matrices, ramie fibers are modified by atmospheric pressure dielectric barrier discharge (DBD) plasma with our continuous ethanol flow technique in helium environment. A central composite design of experiments with different plasma processing parameter combinations (treatment current, treatment time and ethanol flow rate) is applied to find the most influential parameter and to obtain the best modification effect. Field emission scanning electron microscope (SEM) shows the roughened surfaces of ramie fibers from the treated groups due to plasma etching effect. Dynamic contact angle analysis (DCAA) demonstrates that the wettability of the treated fibers drastically decreases. Microbond pullout test shows that the interfacial shear strength (IFSS) between treated ramie fibers and PP matrices increases significantly. Residual gas analysis (RGA) confirms the creation of ethyl groups during plasma treatment. This study shows that our continuous ethanol flow technique is effective in the plasma modification process, during which the ethanol flow rate is the most influential parameter but all parameters have simultaneous influence on plasma modification effect of ramie fibers.

  12. Surface Properties of PAN-based Carbon Fibers Modified by Electrochemical Oxidization in Organic Electrolyte Systems

    Directory of Open Access Journals (Sweden)

    WU Bo

    2016-09-01

    Full Text Available PAN-based carbon fibers were modified by electrochemical oxidization using fatty alcohol polyoxyethylene ether phosphate (O3P, triethanolamine (TEOA and fatty alcohol polyoxyethylene ether ammonium phosphate (O3PNH4 as organic electrolyte respectively. Titration analysis, single fiber fracture strength measurement and field emission scanning electron microscopy (FE-SEM were used to evaluate the content of acidic functional group on the surface, mechanical properties and surface morphology of carbon fiber. The optimum process of electrochemical treatment obtained is at 50℃ for 2min and O3PNH4 (5%, mass fraction as the electrolyte with current density of 2A/g. In addition, the surface properties of modified carbon fibers were characterized by X-ray photoelectron spectroscopy (XPS and single fiber contact angle test. The results show that the hydrophilic acidic functional groups on the surface of carbon fiber which can enhance the surface energy are increased by the electrochemical oxidation using O3PNH4 as electrolyte, almost without any weakening to the mechanical properties of carbon fiber.

  13. Influence of surface defects on the tensile strength of carbon fibers

    Science.gov (United States)

    Vautard, F.; Dentzer, J.; Nardin, M.; Schultz, J.; Defoort, B.

    2014-12-01

    The mechanical properties of carbon fibers, especially their tensile properties, are affected by internal and surface defects. In order to asses in what extent the generation of surface defects can result in a loss of the mechanical properties, non-surface treated carbon fibers were oxidized with three different surface treatment processes: electro-chemical oxidation, oxidation in nitric acid, and oxidation in oxygen plasma. Different surface topographies and surface chemistries were obtained, as well as different types and densities of surface defects. The density of surface defects was measured with both a physical approach (Raman spectroscopy) and a chemical approach (Active Surface Area). The tensile properties were evaluated by determining the Weibull modulus and the scale parameter of each reference, after measuring the tensile strength for four different gauge lengths. A relationship between the tensile properties and the nature and density of surface defects was noticed, as large defects largely control the value of the tensile strength. When optimized, some oxidation surface treatment processes can generate surface functional groups as well as an increase of the mechanical properties of the fibers, because of the removal of the contamination layer of pyrolytic carbon generated during the carbonization of the polyacrylonitrile precursor. Oxidation in oxygen plasma revealed to be a promising technology for alternative surface treatment processes, as high levels of functionalization were achieved and a slight improvement of the mechanical properties was obtained too.

  14. Treatment and characterization of fiber licuri for synthesis of polymeric composites

    International Nuclear Information System (INIS)

    Oliveira, J.C.; Miranda, C.S.; Carvalho, R.F.; Jose, N.M.; Boaventura, J.S.

    2010-01-01

    Natural fibers are materials of increasing use of polymeric composites, due to several advantageous properties compared to synthetic fibers: low cost, density, toxicity and excellent biodegradability. Licuri fiber is widely used in the manufacture of handicrafts, with a wide range of possible applications. Before this, characterize the properties of the fiber is of great interest economic, technological and social. This study characterized the fibers in nature, which were washed with water, treated with 5% H 2 SO 4 or 5% NaOH. Techniques were used FTIR, DSC, TGA and XRD, as well as analysis of surface reactivity of the acid and base. All treatments altered the surface of licuri, exposing reactive sites. It was observed that sodium hydroxide licuri changed significantly, as expected. These results are very significant for the recovery of a natural fiber (licuri), abundant in poor regions of the country. (author)

  15. Fast and Exact Fiber Surfaces for Tetrahedral Meshes.

    Science.gov (United States)

    Klacansky, Pavol; Tierny, Julien; Carr, Hamish; Zhao Geng

    2017-07-01

    Isosurfaces are fundamental geometrical objects for the analysis and visualization of volumetric scalar fields. Recent work has generalized them to bivariate volumetric fields with fiber surfaces, the pre-image of polygons in range space. However, the existing algorithm for their computation is approximate, and is limited to closed polygons. Moreover, its runtime performance does not allow instantaneous updates of the fiber surfaces upon user edits of the polygons. Overall, these limitations prevent a reliable and interactive exploration of the space of fiber surfaces. This paper introduces the first algorithm for the exact computation of fiber surfaces in tetrahedral meshes. It assumes no restriction on the topology of the input polygon, handles degenerate cases and better captures sharp features induced by polygon bends. The algorithm also allows visualization of individual fibers on the output surface, better illustrating their relationship with data features in range space. To enable truly interactive exploration sessions, we further improve the runtime performance of this algorithm. In particular, we show that it is trivially parallelizable and that it scales nearly linearly with the number of cores. Further, we study acceleration data-structures both in geometrical domain and range space and we show how to generalize interval trees used in isosurface extraction to fiber surface extraction. Experiments demonstrate the superiority of our algorithm over previous work, both in terms of accuracy and running time, with up to two orders of magnitude speedups. This improvement enables interactive edits of range polygons with instantaneous updates of the fiber surface for exploration purpose. A VTK-based reference implementation is provided as additional material to reproduce our results.

  16. Modification of Oil Palm Mesocarp Fiber Characteristics Using Superheated Steam Treatment

    Directory of Open Access Journals (Sweden)

    Subbian Karuppuchamy

    2013-07-01

    Full Text Available In this study, oil palm mesocarp fiber (OPMF was treated with superheated steam (SHS in order to modify its characteristics for biocomposite applications. Treatment was conducted at temperatures 190–230 °C for 1, 2 and 3 h. SHS-treated OPMF was evaluated for its chemical composition, thermal stability, morphology and crystallinity. OPMF treated at 230 °C exhibited lower hemicellulose content (9% compared to the untreated OPMF (33%. Improved thermal stability of OPMF was found after the SHS treatment. Moreover, SEM and ICP analyses of SHS-treated OPMF showed that silica bodies were removed from OPMF after the SHS treatment. XRD results exhibited that OPMF crystallinity increased after SHS treatment, indicating tougher fiber properties. Hemicellulose removal makes the fiber surface more hydrophobic, whereby silica removal increases the surface roughness of the fiber. Overall, the results obtained herewith suggested that SHS is an effective treatment method for surface modification and subsequently improving the characteristics of the natural fiber. Most importantly, the use of novel, eco-friendly SHS may contribute to the green and sustainable treatment for surface modification of natural fiber.

  17. Surface modification and characterization of basalt fibers as potential reinforcement of concretes

    Science.gov (United States)

    Iorio, M.; Santarelli, M. L.; González-Gaitano, G.; González-Benito, J.

    2018-01-01

    Basalt fibers were surface treated with silane coupling agents as a method to enhance the adhesion and durability of fiber-matrix interfaces in concrete based composite materials. In particular, this work has been focused on the study of basalt fibers chemical coatings with aminosilanes and their subsequent characterization. Surface treatments were carried out after removing the original sizing applied by manufacturer and pretreating them with an activation process of surface silanol regeneration. Different samples were considered to make convenient comparisons: as received fibers (commercial), calcinated fibers (without commercial sizing), activated samples (calcinated fibers subjected to an acid process for hydroxyl regeneration), and silanized fibers with γ-aminopropiltriethoxysilane, γ-aminopropilmethyldiethoxysilane and a mixture of 50% by weight of both silanes. A deep characterization was carried out in terms of structure using X-ray diffraction, XRD, and Fourier transform infrared spectroscopy, FTIR, thermal properties by thermogravimetric analysis, TGA, coupled with single differential thermal analysis, SDTA, and morphology by scanning electron microscopy, SEM, and atomic force microscopy, AFM.

  18. Characterization and reactivity of sodium aluminoborosilicate glass fiber surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Ortiz Rivera, Lymaris, E-mail: luo105@psu.edu [Materials Research Institute, Pennsylvania State University, University Park, PA 16802 (United States); Bakaev, Victor A.; Banerjee, Joy [Materials Research Institute, Pennsylvania State University, University Park, PA 16802 (United States); Mueller, Karl T. [Department of Chemistry, Pennsylvania State University, University Park, PA 16802 (United States); Pantano, Carlo G. [Materials Research Institute, Pennsylvania State University, University Park, PA 16802 (United States); Department of Materials Science and Engineering, Pennsylvania State University, University Park, PA 16802 (United States)

    2016-05-01

    Highlights: • XPS revealed that these fiber surfaces contain sodium carbonate weathering products. • IGC–MS data confirms the products of acetic acid reaction with sodium carbonate. • NMR data shows two closely spaced, but distinct sodium carboxylate peaks. • Acetic acid reacts with both sodium in the glass and sodium in the sodium carbonate. - Abstract: Multicomponent complex oxides, such as sodium aluminoborosilicate glass fibers, are important materials used for thermal insulation in buildings and homes. Although the surface properties of single oxides, such as silica, have been extensively studied, less is known about the distribution of reactive sites at the surface of multicomponent oxides. Here, we investigated the reactivity of sodium aluminoborosilicate glass fiber surfaces for better understanding of their interface chemistry and bonding with acrylic polymers. Acetic acid (with and without a {sup 13}C enrichment) was used as a probe representative of the carboxylic functional groups in many acrylic polymers and adhesives. Inverse gas chromatography coupled to a mass spectrometer (IGC–MS), and solid state nuclear magnetic resonance (NMR), were used to characterize the fiber surface reactions and surface chemical structure. In this way, we discovered that both sodium ions in the glass surface, as well as sodium carbonate salts that formed on the surface due to the intrinsic reactivity of this glass in humid air, are primary sites of interaction with the carboxylic acid. Surface analysis by X-ray photoelectron spectroscopy (XPS) confirmed the presence of sodium carbonates on these surfaces. Computer simulations of the interactions between the reactive sites on the glass fiber surface with acetic acid were performed to evaluate energetically favorable reactions. The adsorption reactions with sodium in the glass structure provide adhesive bonding sites, whereas the reaction with the sodium carbonate consumes the acid to form sodium-carboxylate, H

  19. Surface treatment of reinforced cement concrete mixtures of hpcm type

    OpenAIRE

    Vyrozhemsky, V.; Krayushkina, K.

    2006-01-01

    One of the most perspective ways of pavement roughness and durability improvement is the arrangement of thin cement concrete layer surface treatment reinforced with different types of fiber. The name of this material is known abroad as HPCM (High Performance Cementious Materials) durable thin layer concrete pavement in a thickness of 1 cm, dispersion-like reinforced with metal or polymer fibers. To enhance bind properties the stone material grade 3 7mm is applied on the top of concrete surfac...

  20. Surface modification and micromechanical properties of jute fiber mat reinforced polypropylene composites

    Directory of Open Access Journals (Sweden)

    2007-05-01

    Full Text Available A new treating method using sodium hydroxide (NaOH and Maleic anhydride-grafted polypropylene (MPP emulsion was introduced to treat jute fiber mat in order to enhance the performance of jute/polypropylene (PP composite prepared by film stacking method. The surface modifications of jute fiber mat have been found to be very effective in improving the fiber-matrix adhesion. It was shown that treatments changed not only the surface topography but also the distribution of diameter and strength for the jute fibers, which was analyzed by using a two-parameter Weibull distribution model. Consequently, the interfacial shear strength, flexural and tensile strength of the composites all increased, but the impact strength decreased slightly. These results have demonstrated a new approach to use natural materials to enhance the mechanical performances of composites.

  1. Review on effect of chemical, thermal, additive treatment on mechanical properties of basalt fiber and their composites

    Science.gov (United States)

    Jain, Naman; Singh, Vinay Kumar; Chauhan, Sakshi

    2017-12-01

    Basalt fiber is emerging out the new reinforcing material for composites. To overcome some of the disadvantages of fibers such as poor bonding to polymers, low thermal stability and high moisture absorption fiber characteristics are modified with chemical, thermal and additive treatments. Chemical treatment corrosive resistance to alkali and acid were investigated which were used to clean and modify the surface of fiber for higher bonding with resins. To improve the thermal stability and reduce moisture uptake thermal treatment such as plasma and non thermal plasma were used which increased the surface roughness and change the chemical composition of surface of basalt fiber. Additive treatment is used to improve the mechanical properties of fibers, in basalt fiber additive treatment was done with SiO2 additive because of its chemical composition which contains major content of SiO2. In present investigation review on the effect of different treatment such as chemical, thermal and additive were studied. Effect of these treatment on chemical composition of the surface of basalt fiber and corrosion to acidic and alkali solution were studied with their effect on mechanical properties of basalt fiber and their composite.

  2. Effects of Elevated Temperature Treatment on Compositions and Tensile Properties of Several Kinds of Basalt Fibers

    Directory of Open Access Journals (Sweden)

    CHEN Jing

    2017-06-01

    Full Text Available Five kinds of domestic basalt fibers were studied for the changes of chemical compositions, physical properties and tensile properties of these fibers before and after 200-800℃ treatment in air atmosphere and in nitrogen atmosphere. These works were done mainly by means of X-ray fluorescence spectrometry and fiber monofilament tensile testing methods in order to understand the elevated temperature resistance of basalt fiber. The experimental results show that the surface of basalt fibers becomes smoother with slightly smaller in diameter and mass reduction at the same time, due to the removal of fiber surface treatment agent after elevated temperature treatment in air atmosphere. Mass fractions of SiO2 and Al2O3 decrease while mass fractions of FeO+Fe2O3, CaO and MgO increase, among which the mass fraction of FeO+Fe2O3 increase the most with the maximum increase of 21%. The monofilament tensile strength of basalt fiber is reduced after 200℃ treatment and the maximum strength retention percentage is 98.3%. The monofilament tensile strength reduces evidently after 400℃ treatment and the maximum strength retention percentage is 64.6%. Moreover, the strength retention percentages of five kinds of basalt fibers are all less than 20% after 800℃ treatment. In addition, the fiber elongation at break decreases with the increase of treating temperature and the elastic modulus increases. Compared with that in air atmosphere, strength retention rate of basalt fiber is higher and tensile properties are more stable in nitrogen atmosphere.

  3. Effect of sonication treatment on fibrilating snake fruit (Sallaca) frond fiber

    Science.gov (United States)

    Darmanto, Seno; Rochardjo, Heru S. B.; Jamasri, Widyorini, Ragil

    2018-02-01

    Aim of this research is to investigate influence of chemical and sonication treatment on fibrillating and mechanical properties of snake fruit frond fiber. The presence of surface impurities and the large amount of hydroxyl groups in natural fibers make less attractive for polymeric materials reinforcement. Effort to remove the impurities can be done by few treatments that consist of physical, chemical and mechanical treatment. Snake fruit frond bundle fiber were firstly subjected to chemical treatments with alkali solution, steaming at 2 bar and steam explosion at 6 bar by 40 times releasing of steam. Advanced treatment is done by flowing ultrasonic wave at 20 kHz by 90 - 210 watt. The output of fibrillation can reach fiber in range 10 - 25 nm compared with 10.72 µm in diameter for sonication and 6 bar in pressure of steam with 40x of rapidly steam release respectively.

  4. Engineering surface plasmon based fiber-optic sensors

    International Nuclear Information System (INIS)

    Dhawan, Anuj; Muth, John F.

    2008-01-01

    Ordered arrays of nanoholes with subwavelength diameters, and submicron array periodicity were fabricated on the tips of gold-coated optical fibers using focused ion beam (FIB) milling. This provided a convenient platform for evaluating extraordinary transmission of light through subwavelength apertures and allowed the implementation of nanostructures for surface plasmon engineered sensors. The fabrication procedure was straightforward and implemented on single mode and multimode optical fibers as well as etched and tapered fiber tips. Control of the periodicity and spacing of the nanoholes allowed the wavelength of operation to be tailored. Large changes in optical transmission were observed at the designed wavelengths, depending on the surrounding refractive index, allowing the devices to be used as fiber-optic sensors

  5. Engineering surface plasmon based fiber-optic sensors

    Energy Technology Data Exchange (ETDEWEB)

    Dhawan, Anuj [Department of Electrical and Computer Engineering, NC State University, Raleigh, NC 27606 (United States); Muth, John F. [Department of Electrical and Computer Engineering, NC State University, Raleigh, NC 27606 (United States)], E-mail: muth@unity.ncsu.edu

    2008-04-15

    Ordered arrays of nanoholes with subwavelength diameters, and submicron array periodicity were fabricated on the tips of gold-coated optical fibers using focused ion beam (FIB) milling. This provided a convenient platform for evaluating extraordinary transmission of light through subwavelength apertures and allowed the implementation of nanostructures for surface plasmon engineered sensors. The fabrication procedure was straightforward and implemented on single mode and multimode optical fibers as well as etched and tapered fiber tips. Control of the periodicity and spacing of the nanoholes allowed the wavelength of operation to be tailored. Large changes in optical transmission were observed at the designed wavelengths, depending on the surrounding refractive index, allowing the devices to be used as fiber-optic sensors.

  6. Plasma treatment of fiber facets for increased (de)mating endurance in physical contact fiber connectors

    Science.gov (United States)

    Van Erps, Jürgen; Voss, Kevin; De Witte, Martijn; Radulescu, Radu; Beri, Stefano; Watté, Jan; Thienpont, Hugo

    2016-04-01

    It is known that cleaving an optical fiber introduces a number of irregularities and defects to the fiber's end-face, such as hackles and shockwaves. These defects can act as failure initiators when stress is applied to the end-face. Given the fiber's small diameter of 125 ffm, a large amount of mechanical stress can be expected to be applied on its end-face during the mating-demating cycle. In addition, a connector in a fiber-to-the-home (FTTH) network can be expected to be mated and demated more than 30 times during its lifetime for purposes such as testing, churning, or provisioning. For this reason, the performance of a connector that displays low optical loss when first installed can dramatically degrade after few mating-demating cycles and catastrophic connector failure due to end-face breakage is likely. We present plasma discharge shaping of cleaved fiber tips to strongly improve the endurance of the fibers to repeated mating-demating cycles. We quantify the dependency of the plasma-induced surface curvature of the fiber tip on the plasma duration and on the position of the fiber tip within the plasma cloud. Finally we present data showing the improved endurance of fibers that are exposed to plasma compared to conventional as-cleaved fibers.

  7. Effect of Chemical Treatment on Physical, Mechanical and Thermal Properties of Ladies Finger Natural Fiber

    Directory of Open Access Journals (Sweden)

    S. I. Hossain

    2013-01-01

    Full Text Available In present research, natural fiber obtained from ladies finger plant was chemically treated separately using alkali (2% NaOH, chromium sulfate (4% , and chromium sulfate and sodium bicarbonate (4% . Both raw and chemically treated fibers were subsequently characterized using mechanical (tensile, structural (Fourier transform infrared spectroscopy and scanning electron microscopy, and thermal (thermogravimetric analysis. Fourier analysis showed the presence of (−OH group in the ladies plant fiber. Scanning electron micrographs revealed rougher surface in case of alkali treated fiber, while thin coating layer was formed on the fiber surface during other two treatments. Tensile test on ladies finger single fiber was carried out by varying span length. The tensile strength and Young's modulus values were found to be increased after chemical treatment. For both raw and chemically treated fibers, Young's modulus increased and tensile strength decreased with increase in span length. Thermogravimetric analysis indicated the same level of thermal stability for both raw and treated ladies finger fibers.

  8. Effect of Chemical Treatment on Mechanical and Water-Sorption Properties Coconut Fiber-Unsaturated Polyester from Recycled PET

    OpenAIRE

    Munirah Abdullah, Nurul; Ahmad, Ishak

    2012-01-01

    Coconut fibers were used as reinforcement for unsaturated polyester resin from recycled PET that has been prepared using glycolysis and polyesterification reaction. Various concentrations of alkali, silane, and silane on alkalized fiber were applied and the optimum concentration of treatments was determined. Morphological and mechanical properties of the composite have also been investigated to study the effect of fiber surface treatment. The influence of water uptake on the sorption characte...

  9. Building 107 for surface treatment

    CERN Multimedia

    Brice, Maximilien

    2018-01-01

    A brand new state-of-the-art building hosting laboratories for the surface treatment of vacuum equipment and workshops for the manufacturing and treatment of printed circuit boards was completed in 2017.

  10. Study on surface adhesion of Plasma modified Polytetrafluoroethylene hollow fiber membrane

    Science.gov (United States)

    Chen, Jiangrong; Zhang, Huifeng; Liu, Guochang; Guo, Chungang; Lv, Jinglie; Zhangb, Yushan

    2018-01-01

    Polytetrafluoroethylene (PTFE) is popular membrane material because of its excellent thermal stability, chemical stability and mechanical stability. However, the low surface energy and non-sticky property of PTFE present challenges for modification. In the present study, plasma treatment was performed to improve the surface adhesion of PTFE hollow fiber membrane. The effect of discharge voltage, treatment time on the adhesion of PTFE hollow fiber membrane was symmetrically evaluated. Results showed that the plasma treatment method contributed to improve the surface activity and roughness of PTFE hollow fiber membrane, and the adhesion strength depend significantly on discharge voltage, which was beneficial to seepage pressure of PTFE hollow fiber membrane module. The adhesion strength of PTFE membrane by plasma treated at 220V for 3min reached as high as 86.2 N, far surpassing the adhesion strength 12.7 N of pristine membrane. Furthermore, improvement of content of free radical and composition analysis changes of the plasma modified PTFE membrane were investigated. The seepage pressure of PTFE membrane by plasma treated at 220V for 3min was 0.375 MPa, which means that the plasma treatment is an effective technique to improve the adhesion strength of membrane.

  11. Avaliação dos efeitos da acetilação nas propriedades das fibras de caroá Evaluation of the effects of acetylation surface treatments on ‘caroá’ fiber

    Directory of Open Access Journals (Sweden)

    Fernanda F. M. Lopes

    2011-01-01

    , chemical, mechanical and thermal properties. The acetylation at 120 °C and/or 3 h showed reductions of 42 to 47% in hydrophilicity. In the acetylation at 120 °C for 1 h, the increase in mechanical properties was more than 110%. The treatment also changed the composition of the fibers with the introduction of acetyl groups, increased the thermal stability and reduced the crystallinity of cellulose, without degradation in its surface of adhesion.

  12. [Surface grafting modification and stabilization of Kevlar fiber].

    Science.gov (United States)

    Zheng, Yu-ying; Fu, Ming-lian; Wang, Can-yao; Wang, Liang-en

    2005-11-01

    Chemical disposal was used to bring the activity group onto the surface of Kevlar fiber for the purpose of surface grafting modification. The interfacial constitution of the grafting of toluene-2,4-diisocyanate (TDI) onto Kevlar fiber was determined by Fourier transform infrared spectroscopy. In the mean time, hexyl-lactam stabilization and poly-glycol (400, PEG) stabilization on the grafted product were also studied. The effects of different nTDI:nPEG ratios on the production's interfacial constitution was analysed. It is concluded that the stabilization took place on the surface. The intensity of the bands relented at about 3300 cm(-1) and was reinforced at about 1700-1720 cm(-1) when the ratio of nTDI:nPEG = 1:3, but when the ratio is 1:1 and 1:2, the bands at about 3 300 and 1700-1720 cm(-1) are almost the same.

  13. Influence of DBD plasma pretreatment on the deposition of chitosan onto UHMWPE fiber surfaces for improvement of adhesion and dyeing properties

    Energy Technology Data Exchange (ETDEWEB)

    Ren, Yu, E-mail: ren.y@ntu.edu.cn [School of Textile and Clothing, Nantong University, Jiangsu 226019 (China); College of Textile and Clothing Engineering, Soochow University, Jiangsu 215021 (China); Kuangda Fibre Technology Co., Ltd., Jiangsu 213161 (China); Ding, Zhirong [School of Textile and Clothing, Nantong University, Jiangsu 226019 (China); Wang, Chunxia [School of Textile and Clothing, Nantong University, Jiangsu 226019 (China); College of Textiles and Clothing, Yancheng Institute of Technology, Jiangsu 224051 (China); Zang, Chuanfeng; Zhang, Yin; Xu, Lin [School of Textile and Clothing, Nantong University, Jiangsu 226019 (China)

    2017-02-28

    Highlights: • The DBD plasma and chitosan combined treatment were performed on UHMWPE fibers. • The SEM and XPS analysis confirmed that chitosan was adsorbed on the UHMWPE fiber surfaces after the combined treatment. • The IFSS between the UHMWPE fiber and the epoxy resin reached 2.25 MPa with 100 s plasma pretreatment. • The dyeability of the UHMWPE fibers after the combined treatment was significantly improved. - Abstract: The combination treatment of dielectric barrier discharge (DBD) plasma and chitosan coatings was performed on ultrahigh molecular weight polyethylene (UHMWPE) fibers in order to improve the wettability, dyeability and adhesion properties. The properties of UHMWPE fibers coated with chitosan, after being pretreated by DBD plasma, were evaluated through scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS). The interfacial shear strength (IFSS) between the fiber and the epoxy resin was determined using the single fiber pull-out test technique. The modified UHMWPE fibers were dyed with reactive dyes after the combined treatment. Surface wettability and dyeability were investigated by water contact angle and K/S measurement, respectively. SEM images confirmed that the chitosan was induced onto the surfaces of the UHMWPE fibers after the combined treatment. The XPS analysis showed that the oxygen and nitrogen contents of the UHMWPE fiber surfaces after the combined treatment were higher than that of the fiber modified by chitosan without DBD plasma pretreatment. Meanwhile, the UHMWPE fibers treated with combination of DBD plasma and chitosan treatment had better wettability, dyeability and adhesion property than those of the non-plasma pretreated surfaces, indicating that DBD plasma pretreatment facilitated the deposition of chitosan onto the UHMWPE surfaces.

  14. Effects of Environmental Surface Modification Methods on Physical Properties of Hemp Fibers

    Directory of Open Access Journals (Sweden)

    Nigar MERDAN

    2017-11-01

    Full Text Available In this study, hemp fibers have been pre-treated with laccase enzyme in different concentrations (1%, 2% and 3% w/v for different durations using conventional, ultrasonic energy and microwave energy methods. Weight loss (%, tensile strength, elongation (%, whiteness (%, and surface topography (SEM properties of pre-treated hemp fibers were investigated. After processing with laccase enzyme, the energy consumptions of these three methods were compared. Best results have been obtained in 20 minutes with the conventional method, 5 minutes with the ultrasonic energy method, and 1 minute with the microwave energy method. With laccase enzyme, microwave treated hemp fibers were improved after 3 minutes treatment. SEM results have also proved the improved physical properties and color changes due to the rough surface structure. DOI: http://dx.doi.org/10.5755/j01.ms.23.4.17469

  15. Influence of Alkaline-Peroxide Treatment of Fiber on the Mechanical Properties of Oil Palm Mesocarp Fiber/Poly(butylene succinate Biocomposite

    Directory of Open Access Journals (Sweden)

    Yoon Yee Then

    2015-01-01

    Full Text Available In this work, the surface of oil palm mesocarp fiber (OPMF was modified via alkaline-peroxide treatment with hydrogen peroxide under alkaline conditions. The effect of the treatment on the chemical composition and microstructure of the fiber was examined using chemical analysis, Fourier transform infrared (FTIR spectroscopy, scanning electron microscopy (SEM, and X-ray diffraction (XRD analysis. The treatment resulted in the removal of lignin, hemicellulose, and waxy substances from the fiber and increased its surface roughness and crystallinity. The eco-friendly biocomposite was made from poly(butylene succinate (PBS and chemically treated fiber at a weight ratio of 30:70, and was fabricated via a melt-blending technique followed by hot-pressed moulding. The results indicated that alkaline-peroxide treatment of the fiber improved the tensile strength, tensile modulus, and elongation at break of the OPMF/PBS biocomposite by 54, 830, and 43%, respectively. The SEM analysis revealed improvement of the interfacial adhesion between the chemically treated fiber and the PBS. This work demonstrates that alkaline-peroxide treatment of fiber is beneficial prior to its use in fabricating biocomposites.

  16. Influence of absorbed moisture on surface hydrophobization of ethanol pretreated and plasma treated ramie fibers

    International Nuclear Information System (INIS)

    Zhou Zhou; Wang Jilong; Huang Xiao; Zhang Liwen; Moyo, Senelisile; Sun Shiyuan; Qiu Yiping

    2012-01-01

    The existence of moisture in the substrate material may influence the effect of atmospheric pressure plasma treatment. Our previous study has found that the employment of ethanol pretreatment and plasma treatment can effectively induce hydrophobic surface modification of cellulose fiber to enhance the compatibility to polypropylene (PP) matrix, and this study aims to investigate the influence of fiber moisture regain on the treatment effect of this technique. Ramie fibers with three different moisture regains (MR) (2.5, 6.1 and 23.5%) are pretreated with ethanol followed by atmospheric pressure plasma treatment. Scanning electron microscope (SEM) shows that the 2.5% MR group has the most significant plasma etching effect. X-ray photoelectron spectroscopy (XPS) analysis indicates an increase of C-C and a decrease of C-O bond in the plasma treated groups, and the largest raise of C-C bond for the 2.5% MR group. The water contact angles of the 2.5 and 6.1% MR groups increase, whereas no significant change is showed in the 23.5% MR group. The interfacial shear strengths (IFSS) measured by microbond pull-out test are raised by 44 and 25% when moisture regains are 2.5 and 6.1%, while presented no apparent improvement at high moisture regain of 23.5%. Therefore, it can be concluded that moisture regain has negative influence on the surface hydrophobization of ramie fibers in the improvement of adhesion property to PP matrix.

  17. Influence of absorbed moisture on surface hydrophobization of ethanol pretreated and plasma treated ramie fibers

    Energy Technology Data Exchange (ETDEWEB)

    Zhou Zhou; Wang Jilong; Huang Xiao; Zhang Liwen; Moyo, Senelisile; Sun Shiyuan [Key Laboratory of Textile Science and Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai 201620 (China); Qiu Yiping, E-mail: ypqiu@dhu.edu.cn [Key Laboratory of Textile Science and Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai 201620 (China)

    2012-03-01

    The existence of moisture in the substrate material may influence the effect of atmospheric pressure plasma treatment. Our previous study has found that the employment of ethanol pretreatment and plasma treatment can effectively induce hydrophobic surface modification of cellulose fiber to enhance the compatibility to polypropylene (PP) matrix, and this study aims to investigate the influence of fiber moisture regain on the treatment effect of this technique. Ramie fibers with three different moisture regains (MR) (2.5, 6.1 and 23.5%) are pretreated with ethanol followed by atmospheric pressure plasma treatment. Scanning electron microscope (SEM) shows that the 2.5% MR group has the most significant plasma etching effect. X-ray photoelectron spectroscopy (XPS) analysis indicates an increase of C-C and a decrease of C-O bond in the plasma treated groups, and the largest raise of C-C bond for the 2.5% MR group. The water contact angles of the 2.5 and 6.1% MR groups increase, whereas no significant change is showed in the 23.5% MR group. The interfacial shear strengths (IFSS) measured by microbond pull-out test are raised by 44 and 25% when moisture regains are 2.5 and 6.1%, while presented no apparent improvement at high moisture regain of 23.5%. Therefore, it can be concluded that moisture regain has negative influence on the surface hydrophobization of ramie fibers in the improvement of adhesion property to PP matrix.

  18. Surface analysis of graphite fiber reinforced polyimide composites

    Science.gov (United States)

    Messick, D. L.; Progar, D. J.; Wightman, J. P.

    1983-01-01

    Several techniques have been used to establish the effect of different surface pretreatments on graphite-polyimide composites. Composites were prepared from Celion 6000 graphite fibers and the polyimide LARC-160. Pretreatments included mechanical abrasion, chemical etching and light irradiation. Scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS) were used in the analysis. Contact angle of five different liquids of varying surface tensions were measured on the composites. SEM results showed polymer-rich peaks and polymer-poor valleys conforming to the pattern of the release cloth used durng fabrication. Mechanically treated and light irradiated samples showed varying degrees of polymer peak removal, with some degradation down to the graphite fibers. Minimal changes in surface topography were observed on concentrations of surface fluorine even after pretreatment. The light irradiation pretreatment was most effective at reducing surface fluorine concentrations whereas chemical pretreatment was the least effective. Critical surface tensions correlated directly with the surface fluorine to carbon ratios as calculated from XPS.

  19. Polypropylene fibers modified by plasma treatment for preparation of Ag nanoparticles.

    Science.gov (United States)

    Tseng, Chun-Hao; Wang, Cheng-Chien; Chen, Chuh-Yung

    2006-03-09

    A novel method for preparing poly(propylene-graft-2-methacrylic acid 3-(bis-carboxymethylamino)-2-hydroxy-propyl ester)-silver fibers (PPG-IAg fibers) by plasma-induced grafting polymerization is presented in this study. The chelating groups, -N(CH2COO-)2 (GMA-IDA), on the surface of the PPG-I fibers are the coordination sites for chelating silver ions. At these sites, Ag nanoparticles were grown first by reduction with UV light with a wavelength of 366 nm, and second, through immersion in a 24% formaldehyde solution with pH values set variously at 2, 5, 8, and 11. The characteristics of the PPG-I fibers with differing durations of plasma treatment were monitored by using a Fourier transform infrared (FT-IR) spectroscope. Scanning electronic microscopy (SEM) and elemental analysis show that the percentage of GMA-IDA grafted onto PP fiber reaches a maximum when the plasma treatment time is 3 min. Plasma treatment time beyond a certain length of time results in an abundance of free radicals and causes considerable cross-linking on the fiber surface which thus decreases the extent of grafting. Moreover, the crystalline phase of Ag nanoparticles is identified by using X-ray diffraction (XRD). When the PPG-I fibers are reduced by the UV light method, SEM and TEM microscopes reveal that the size of the Ag nanoparticles on the fiber surface decreases significantly with the increase of pH values in aqueous solutions. Notably, in the reduction of formaldehyde solution, the particle size of Ag nanoparticles reaches a minimum at the lowest pH value. The TEM observations show that Ag nanoparticles are distributed both in the exterior and interior of the grafting layer. In addition, under high pH values the distribution of the Ag nanoparticles permeate more deeply in the GMA-IDA grafting layer due to the swelling effect of the GMA-IDA polymer.

  20. Bond strength of resin cement to dentin and to surface-treated posts of titanium alloy, glass fiber, and zirconia

    DEFF Research Database (Denmark)

    Sahafi, Alireza; Peutzfeldt, Anne; Asmussen, Erik

    2003-01-01

    PURPOSE: To determine the effect of surface treatments on bond strength of two resin cements (ParaPost Cement and Panavia F) to posts of titanium alloy (ParaPost XH), glass fiber (ParaPost Fiber White), and zirconia (Cerapost), and to dentin. MATERIALS AND METHODS: After embedding, planar surfaces...... of posts (n = 9 to 14) and human dentin (n = 10) were obtained by grinding. The posts received one of three surface treatments: 1. roughening (sandblasting, hydrofluoric acid etching), 2. application of primer (Alloy Primer, Metalprimer II, silane), or 3. roughening followed by application of primer...

  1. Effect of ammonium-salt solutions on the surface properties of carbon fibers in electrochemical anodic oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Qian Xin, E-mail: qx3023@nimte.ac.cn [National Engineering Laboratory of Carbon Fiber Preparation Technology, Ningbo Institute of Material Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201 (China); Wang Xuefei; Ouyang Qin; Chen Yousi; Yan Qing [National Engineering Laboratory of Carbon Fiber Preparation Technology, Ningbo Institute of Material Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201 (China)

    2012-10-15

    Highlights: Black-Right-Pointing-Pointer Longitudinal grooves on the fiber surface became more well-defined and much deeper after surface treatment. Black-Right-Pointing-Pointer The concentration of oxygen and nitrogen on the fiber surface increased after surface treatment. Black-Right-Pointing-Pointer The intensity of oxidative reaction varied with the change of ammonium-salt solutions. Black-Right-Pointing-Pointer The higher the concentration of OH{sup -} ions in the electrolytes, the violent the oxidative reaction happened. - Abstract: The surfaces of polyacrylonitrile-based carbon fibers were treated by an electrochemical anodic method. Three different kinds of ammonium-salt solutions namely NH{sub 4}HCO{sub 3}, (NH{sub 4}){sub 2}CO{sub 3} and (NH{sub 4}){sub 3}PO{sub 4} were respectively chosen as the electrolytes. The effect of these electrolytes on the surface structure was studied by scanning electron microscopy (SEM), atomic force microscopy (AFM), and X-ray photoelectron spectroscopy (XPS). The results showed that longitudinal grooves on the fiber surface became more well-defined and much deeper after surface treatment, and the root mean square roughness (RMS) of carbon fiber surface increased from 4.6 nm for untreated fibers to 13.5 nm for treated fibers in (NH{sub 4}){sub 3}PO{sub 4} electrolytes. The concentration of oxygen and nitrogen atomic on the fiber surface increased after surface treatment. The tensile strength of oxidized fibers had an obvious decrease, whereas the interlaminar shear strength (ILSS) value of corresponding carbon fiber reinforced polymers (CFRPs) increased in a large extent. The intensity of oxidative reaction varied with the change of ammonium-salt solutions and electrochemical oxidation in (NH{sub 4}){sub 3}PO{sub 4} electrolyte was of the most violence. The corresponding mechanism was also discussed and the result showed that the higher the concentration of OH{sup -} ions in the electrolytes, the violent the oxidative

  2. Functional electrospun fibers for the treatment of human skin wounds.

    Science.gov (United States)

    Wang, Jing; Windbergs, Maike

    2017-10-01

    Wounds are trauma induced defects of the human skin involving a multitude of endogenous biochemical events and cellular reactions of the immune system. The healing process is extremely complex and affected by the patient's physiological conditions, potential implications like infectious pathogens and inflammation as well as external factors. Due to increasing incidence of chronic wounds and proceeding resistance of infection pathogens, there is a strong need for effective therapeutic wound care. In this context, electrospun fibers with diameters in the nano- to micrometer range gain increasing interest. While resembling the structure of the native human extracellular matrix, such fiber mats provide physical and mechanical protection (including protection against bacterial invasion). At the same time, the fibers allow for gas exchange and prevent occlusion of the wound bed, thus facilitating wound healing. In addition, drugs can be incorporated within such fiber mats and their release can be adjusted by the material and dimensions of the individual fibers. The review gives a comprehensive overview about the current state of electrospun fibers for therapeutic application on skin wounds. Different materials as well as fabrication techniques are introduced including approaches for incorporation of drugs into or drug attachment onto the fiber surface. Against the background of wound pathophysiology and established therapy approaches, the therapeutic potential of electrospun fiber systems is discussed. A specific focus is set on interactions of fibers with skin cells/tissues as well as wound pathogens and strategies to modify and control them as key aspects for developing effective wound therapeutics. Further, advantages and limitations of controlled drug delivery from fiber mats to skin wounds are discussed and a future perspective is provided. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Effects of various etching protocols on the flexural properties and surface topography of fiber-reinforced composite dental posts.

    Science.gov (United States)

    Aksornmuang, Juthatip; Chuenarrom, Chanya; Chittithaworn, Natjira

    2017-09-26

    The purpose of this study was to evaluate the flexural properties and surface topography of fiber posts surface-treated with various etching protocols. Seventy each of three types of fiber posts: RelyX Fiber Post, Tenax Fiber Trans, and D.T. Light-Post Illusion X-Ro, were randomly divided into 7 groups: no surface treatment, surface treated with hydrofluoric acid (HF) 4.5% for 60 s, HF 4.5% for 120 s, HF 9.6% for 15 s, HF 9.6% for 60 s, HF 9.6% for 120 s, and treated with H 2 O 2 24% for 10 min. The specimens were then subjected to a three-point bending test. Surface topographies of the posts were observed using a SEM. The results indicate that fiber post surface pretreatments had no adverse effects on the flexural properties. However, the fiber posts treated with high HF concentrations or long etching times seemed to have more surface irregularities.

  4. Disilicate Dental Ceramic Surface Preparation by 1070 nm Fiber Laser: Thermal and Ultrastructural Analysis

    Directory of Open Access Journals (Sweden)

    Carlo Fornaini

    2018-01-01

    Full Text Available Lithium disilicate dental ceramic bonding, realized by using different resins, is strictly dependent on micro-mechanical retention and chemical adhesion. The aim of this in vitro study was to investigate the capability of a 1070 nm fiber laser for their surface treatment. Samples were irradiated by a pulsed fiber laser at 1070 nm with different parameters (peak power of 5, 7.5 and 10 kW, repetition rate (RR 20 kHz, speed of 10 and 50 mm/s, and total energy density from 1.3 to 27 kW/cm2 and the thermal elevation during the experiment was recorded by a fiber Bragg grating (FBG temperature sensor. Subsequently, the surface modifications were analyzed by optical microscope, scanning electron microscope (SEM, and energy dispersive X-ray spectroscopy (EDS. With a peak power of 5 kW, RR of 20 kHz, and speed of 50 mm/s, the microscopic observation of the irradiated surface showed increased roughness with small areas of melting and carbonization. EDS analysis revealed that, with these parameters, there are no evident differences between laser-processed samples and controls. Thermal elevation during laser irradiation ranged between 5 °C and 9 °C. A 1070 nm fiber laser can be considered as a good device to increase the adhesion of lithium disilicate ceramics when optimum parameters are considered.

  5. Improving the bonding between henequen fibers and high density polyethylene using atmospheric pressure ethylene-plasma treatments

    Directory of Open Access Journals (Sweden)

    A. Aguilar-Rios

    2014-07-01

    Full Text Available In order to improve the bonding between henequen fibers (Agave fourcroydes and High Density Polyethylene (HDPE, they were treated in an ethylene-dielectric barrier discharge (DBD plasma operating at atmospheric pressure. A 23 factorial experimental design was used to study the effects of the plasma operational parameters, namely, frequency, flow rate and exposure time, over the fiber tensile mechanical properties and its adhesion to HDPE. The fiber-matrix Interfacial Shear Strength (IFSS was evaluated by means of the single fiber pull-out test. The fiber surface chemical changes were assessed by photoacoustic Fourier transform infrared spectroscopy (PAS-FTIR and the changes in surface morphology with scanning electron microscopy (SEM. The results indicate that individual operational parameters in the DBD plasma treatment have different effects on the tensile properties of the henequen fibers and on its bonding to HDPE. The SEM results show that the plasma treatment increased the roughness of the fiber surface. The FTIR result seems to indicate the presence of a hydrocarbon-like polymer film, bearing some vinyl groups deposited onto the fibers. These suggests that the improvement in the henequen-HDPE bonding could be the result of the enhancement of the mechanical interlocking, due the increment in roughness, and the possible reaction of the vinyl groups on the film deposited onto the fiber with the HDPE.

  6. Plasma Surface Modification of Polyaramid Fibers for Protective Clothing

    Science.gov (United States)

    Widodo, Mohamad

    2011-12-01

    The purpose of this research was to develop a novel process that would achieve biocidal properties on Kevlar fabric via atmospheric pressure plasma jet (APPJ) induced-graft polymerization of monomers. In the course of the study, experiments were carried out to understand plasma-monomer-substrate interactions, particularly, how each of the main parameters in the plasma processing affects the formation of surface radicals and eventually the degree of graft polymerization of monomers. The study also served to explore the possibility of developing plasma-initiated and plasma-controlled graft polymerization for continuous operation. In this regards, three methods of processing were studied, which included two-step plasma graft-polymerization with immersion, two-step and one-step plasma graft-polymerization with pad-dry. In general, plasma treatment did not cause visible damage to the surface of Kevlar fibers, except for the appearance of tiny globules distributed almost uniformly indicating a minor effect of plasma treatment to the surface morphology of the polymer. From the examination of SEM images, however, it was found that a very localized surface etching seemed to have taken place, especially at high RF power (800 W) and long time of exposure (60 s), even in plasma downstream mode of operation. It was suggested that a small amount of charged particles might have escaped and reached the substrate surface. High density of surface radicals, which is the prerequisite for high graft density and high antimicrobial activity, was achieved by the combination of high RF power and short exposure time or low RF power and long time of exposure. This was a clear indication that the formation of surface radicals is a function of amount of the dissipated energy, which also explained the two-factor interaction between the two process parameters. XPS results showed that hydrolysis of the anilide bond of PPTA chains took place to some extent on the surface of Kevlar, leading to the

  7. Landfill Leachate Treatment by Electrocoagulation and Fiber Filtration.

    Science.gov (United States)

    Li, Runwei; Wang, Boya; Owete, Owete; Dertien, Joe; Lin, Chen; Ahmad, Hafiz; Chen, Gang

    2017-11-01

      Landfilling is widely adopted as one of the most economical processes for solid waste disposal. At the same time, landfill leachate is also a great environmental concern owing to its complex composition and high concentrations of contaminants. This research investigated electrocoagulation and fiber filtration for the treatment of landfill leachate. Besides electrical current (i.e., current density) and reaction time, pH played a very important role in arsenic and phosphorus removal by electrocoagulation. The combination of electrocoagulation with fiber filtration achieved a 94% chemical oxygen demand (COD), 87% arsenic, 96% iron, and 86% phosphorus removal. During electrocoagulation, the micro-particles that could not be settled by gravity were removed by the first stage of fiber filtration. Organic contaminants in the leachate were further removed by biodegradation in the second stage of fiber biofiltration.

  8. Infrared fibers for radiometer thermometry in hypothermia and hyperthermia treatment

    International Nuclear Information System (INIS)

    Katzir, A.; Bowman, H.F.; Asfour, Y.; Zur, A.; Valeri, C.R.

    1989-01-01

    Hypothermia is a condition which results from prolonged exposure to a cold environment. Rapid and efficient heating is needed to rewarm the patient from 32-35 degrees C to normal body temperature. Hyperthermia in cancer treatment involves heating malignant tumors to 42.5-43.0 degrees C for an extended period (e.g., 30 min) in an attempt to obtain remission. Microwave or radio frequency heating is often used for rewarming in hypothermia or for temperature elevation in hyperthermia treatment. One severe problem with such heating is the accurate measurement and control of temperature in the presence of a strong electromagnetic field. For this purpose, we have developed a fiberoptic radiometer system which is based on a nonmetallic, infrared fiber probe, which can operate either in contact or noncontact mode. In preliminary investigations, the radiometer worked well in a strong microwave or radiofrequency field, with an accuracy of +/- 0.5 degrees C. This fiberoptic thermometer was used to control the surface temperature of objects within +/- 2 degrees C

  9. The Design and Testing of a Dual Fiber Textile Matrix for Accelerating Surface Hemostasis

    Science.gov (United States)

    Fischer, Thomas H.; Vournakis, John N.; Manning, James E.; McCurdy, Shane L.; Rich, Preston B.; Nichols, Timothy C.; Scull, Christopher M.; McCord, Marian G.; Decorta, Joseph A.; Johnson, Peter C.; Smith, Carr J.

    2011-01-01

    The standard treatment for severe traumatic injury is frequently compression and application of gauze dressing to the site of hemorrhage. However, while able to rapidly absorb pools of shed blood, gauze fails to provide strong surface (topical) hemostasis. The result can be excess hemorrhage-related morbidity and mortality. We hypothesized that cost-effective materials (based on widespread availability of bulk fibers for other commercial uses) could be designed based on fundamental hemostatic principles to partially emulate the wicking properties of gauze while concurrently stimulating superior hemostasis. A panel of readily available textile fibers was screened for the ability to activate platelets and the intrinsic coagulation cascade in vitro. Type E continuous filament glass and a specialty rayon fiber were identified from the material panel as accelerators of hemostatic reactions and were custom woven to produce a dual fiber textile bandage. The glass component strongly activated platelets while the specialty rayon agglutinated red blood cells. In comparison with gauze in vitro, the dual fiber textile significantly enhanced the rate of thrombin generation, clot generation as measured by thromboelastography, adhesive protein adsorption and cellular attachment and activation. These results indicate that hemostatic textiles can be designed that mimic gauze in form but surpass gauze in ability to accelerate hemostatic reactions. PMID:19489008

  10. Effects of wood fiber surface chemistry on strength of wood–plastic composites

    Energy Technology Data Exchange (ETDEWEB)

    Migneault, Sébastien, E-mail: sebastien.migneault@uqat.ca [University of Quebec in Abitibi-Temiscamingue (UQAT), 445 boulevard de l’Université, Rouyn-Noranda, Québec J9X 5E4 (Canada); Koubaa, Ahmed, E-mail: ahmed.koubaa@uqat.ca [UQAT (Canada); Perré, Patrick, E-mail: patrick.perre@ecp.fr [École centrale de Paris, Grande Voie des Vignes, F-92 295 Chatenay-Malabry Cedex (France); Riedl, Bernard, E-mail: Bernard.Riedl@sbf.ulaval.ca [Université Laval, 2425 rue de la Terrasse, Québec City, Québec G1V 0A6 (Canada)

    2015-07-15

    Highlights: • Infrared spectroscopy and X-ray photoelectron spectroscopy analyses showed variations of surface chemical characteristics according to fiber origin. • Surface chemical characteristics of fibers could partly explain the differences in mechanical properties of the wood–plastic composites. • Fibers with carbohydrate rich surface led to stronger wood–plastic composites because the coupling between the matrix and fibers using coupling agent is achieved with polar sites mostly available on carbohydrates. • Conversely, lignin or extractives rich surface do not have oxidized functions for the esterification reaction with coupling agent and thus led to wood–plastic composites with lower mechanical properties. • Other factors such as mechanical interlocking and fiber morphology interfere with the effects of fiber surface chemistry. - Abstract: Because wood–plastic composites (WPC) strength relies on fiber-matrix interaction at fiber surface, it is likely that fiber surface chemistry plays an important role in WPC strength development. The objective of the present study is to investigate the relationships between fiber surface chemical characteristics and WPC mechanical properties. Different fibers were selected and characterized for surface chemical characteristics using X-ray photoelectron spectroscopy (XPS) and infrared spectroscopy (FTIR). WPC samples were manufactured at 40% fiber content and with six different fibers. High density polyethylene was used as matrix and maleated polyethylene (MAPE) was used as compatibility agent. WPC samples were tested for mechanical properties and fiber-matrix interface was observed with scanning electron microscope. It was found WPC strength decreases as the amount of unoxidized carbon (assigned to lignin and extractives) measured with XPS on fiber surface increases. In the opposite case, WPC strength increases with increasing level of oxidized carbon (assigned to carbohydrates) on fiber surface. The same

  11. Effects of wood fiber surface chemistry on strength of wood–plastic composites

    International Nuclear Information System (INIS)

    Migneault, Sébastien; Koubaa, Ahmed; Perré, Patrick; Riedl, Bernard

    2015-01-01

    Highlights: • Infrared spectroscopy and X-ray photoelectron spectroscopy analyses showed variations of surface chemical characteristics according to fiber origin. • Surface chemical characteristics of fibers could partly explain the differences in mechanical properties of the wood–plastic composites. • Fibers with carbohydrate rich surface led to stronger wood–plastic composites because the coupling between the matrix and fibers using coupling agent is achieved with polar sites mostly available on carbohydrates. • Conversely, lignin or extractives rich surface do not have oxidized functions for the esterification reaction with coupling agent and thus led to wood–plastic composites with lower mechanical properties. • Other factors such as mechanical interlocking and fiber morphology interfere with the effects of fiber surface chemistry. - Abstract: Because wood–plastic composites (WPC) strength relies on fiber-matrix interaction at fiber surface, it is likely that fiber surface chemistry plays an important role in WPC strength development. The objective of the present study is to investigate the relationships between fiber surface chemical characteristics and WPC mechanical properties. Different fibers were selected and characterized for surface chemical characteristics using X-ray photoelectron spectroscopy (XPS) and infrared spectroscopy (FTIR). WPC samples were manufactured at 40% fiber content and with six different fibers. High density polyethylene was used as matrix and maleated polyethylene (MAPE) was used as compatibility agent. WPC samples were tested for mechanical properties and fiber-matrix interface was observed with scanning electron microscope. It was found WPC strength decreases as the amount of unoxidized carbon (assigned to lignin and extractives) measured with XPS on fiber surface increases. In the opposite case, WPC strength increases with increasing level of oxidized carbon (assigned to carbohydrates) on fiber surface. The same

  12. The effects of low-temperature plasma treatment on the capillary properties of inorganic fibers

    Science.gov (United States)

    Garifullin, A. R.; Abdullin, I. Sh; Skidchenko, E. A.; Krasina, I. V.; Shaekhov, M. F.

    2016-01-01

    Solving the problem of achieving high adhesion between the components in the polymeric composite material (PCM) based on carbon fibers (CF) and basalt fibers (BF) is proposed to use the radio-frequency (RF) plasma under lower pressure by virtue of efficiency, environmental friendliness and rationality of the method. The paper gives the results of studies of the properties of CF and BF after RF capacitive discharge plasma treatment. The plasma modification modes of carbon and basalt fiber were investigated. The efficiency of treatment tool in surface properties modification of carbon and basalt fibers was found, namely capillary properties of CF and BF were researched. The optimal treatment modes were selected. It was found that the method of plasma modification in the radio-frequency capacitive discharge under the lower pressure contributes enhancing the capillary properties of inorganic fibers, in particular carbon and basalt ones. It shows the tendency to increase of the adhesive properties in PCM, and, consequently, the increase of the physical and mechanical properties of the products.

  13. The effects of low-temperature plasma treatment on the capillary properties of inorganic fibers

    International Nuclear Information System (INIS)

    Garifullin, A R; Abdullin, I Sh; Skidchenko, E A; Krasina, I V; Shaekhov, M F

    2016-01-01

    Solving the problem of achieving high adhesion between the components in the polymeric composite material (PCM) based on carbon fibers (CF) and basalt fibers (BF) is proposed to use the radio-frequency (RF) plasma under lower pressure by virtue of efficiency, environmental friendliness and rationality of the method. The paper gives the results of studies of the properties of CF and BF after RF capacitive discharge plasma treatment. The plasma modification modes of carbon and basalt fiber were investigated. The efficiency of treatment tool in surface properties modification of carbon and basalt fibers was found, namely capillary properties of CF and BF were researched. The optimal treatment modes were selected. It was found that the method of plasma modification in the radio-frequency capacitive discharge under the lower pressure contributes enhancing the capillary properties of inorganic fibers, in particular carbon and basalt ones. It shows the tendency to increase of the adhesive properties in PCM, and, consequently, the increase of the physical and mechanical properties of the products. (paper)

  14. Interlaminar and ductile characteristics of carbon fibers-reinforced plastics produced by nanoscaled electroless nickel plating on carbon fiber surfaces.

    Science.gov (United States)

    Park, Soo-Jin; Jang, Yu-Sin; Rhee, Kyong-Yop

    2002-01-15

    In this work, a new method based on nanoscaled Ni-P alloy coating on carbon fiber surfaces is proposed for the improvement of interfacial properties between fibers and epoxy matrix in a composite system. Fiber surfaces and the mechanical interfacial properties of composites were characterized by atomic absorption spectrophotometer (AAS), scanning electron microscopy (SEM), X-ray photoelectron spectrometry (XPS), interlaminar shear strength (ILSS), and impact strength. Experimental results showed that the O(1s)/C(1s) ratio or Ni and P amounts had been increased as the electroless nickel plating proceeded; the ILSS had also been slightly improved. The impact properties were significantly improved in the presence of Ni-P alloy on carbon fiber surfaces, increasing the ductility of the composites. This was probably due to the effect of substituted Ni-P alloy, leading to an increase of the resistance to the deformation and the crack initiation of the epoxy system.

  15. Modification of carbon fiber surfaces via grafting with Meldrum's acid

    International Nuclear Information System (INIS)

    Cuiqin, Fang; Jinxian, Wu; Julin, Wang; Tao, Zhang

    2015-01-01

    Graphical abstract: - Highlights: • The mechanism of Meldrum's acid modifying carbon fiber surfaces was investigated. • The existing carbonyl groups of carbon fibers were grafted with Meldrum's acid. • The relative content of carboxylic groups on carbon fiber surfaces was increased. • The surfaces of carbon fibers neither etched nor generated coating. • Tensile strength of carbon fibers was preserved after grafting reaction. - Abstract: The mechanism of Meldrum's acid modifying carbon fiber surfaces was investigated in this work. The existing carbonyl groups of carbon fibers were grafted with Meldrum's acid to create carboxylic functionalized surfaces. The surface functionalization effect was detected with X-ray photoelectron spectroscopy (XPS), scanning electron microscope (SEM), atomic force microscopy (AFM), and thermogravimetric analysis (TGA). The XPS results showed that the relative content of carboxylic groups on carbon fiber surfaces was increased from initial 1.41% to 7.84%, however, that of carbonyl groups was decreased from 23.11% to 13.28% after grafting reaction. The SEM, AFM and TGA results indicated that the surfaces of carbon fibers neither etched nor generated coating. The tensile strength of carbon fibers was preserved after grafting reaction according to single fiber tensile strength tests. The fibers were well combined with matrix and the maximal interlaminar shear strength (ILSS) of carbon fiber/epoxy resin composites was sharply increased approximately 74% after functionalization. The effects of acetic acid and sonication on the degree of the surface functionalization were also studied.

  16. Modification of carbon fiber surfaces via grafting with Meldrum's acid

    Energy Technology Data Exchange (ETDEWEB)

    Cuiqin, Fang; Jinxian, Wu [Beijing Key Laboratory of Electrochemical Process and Technology for Materials, Beijing University of Chemical Technology, Beijing 100029 (China); Julin, Wang, E-mail: wjl@mail.buct.edu.cn [Beijing Key Laboratory of Electrochemical Process and Technology for Materials, Beijing University of Chemical Technology, Beijing 100029 (China); Tao, Zhang [Beijing Institute of Ancient Architecture, Beijing 100050 (China)

    2015-11-30

    Graphical abstract: - Highlights: • The mechanism of Meldrum's acid modifying carbon fiber surfaces was investigated. • The existing carbonyl groups of carbon fibers were grafted with Meldrum's acid. • The relative content of carboxylic groups on carbon fiber surfaces was increased. • The surfaces of carbon fibers neither etched nor generated coating. • Tensile strength of carbon fibers was preserved after grafting reaction. - Abstract: The mechanism of Meldrum's acid modifying carbon fiber surfaces was investigated in this work. The existing carbonyl groups of carbon fibers were grafted with Meldrum's acid to create carboxylic functionalized surfaces. The surface functionalization effect was detected with X-ray photoelectron spectroscopy (XPS), scanning electron microscope (SEM), atomic force microscopy (AFM), and thermogravimetric analysis (TGA). The XPS results showed that the relative content of carboxylic groups on carbon fiber surfaces was increased from initial 1.41% to 7.84%, however, that of carbonyl groups was decreased from 23.11% to 13.28% after grafting reaction. The SEM, AFM and TGA results indicated that the surfaces of carbon fibers neither etched nor generated coating. The tensile strength of carbon fibers was preserved after grafting reaction according to single fiber tensile strength tests. The fibers were well combined with matrix and the maximal interlaminar shear strength (ILSS) of carbon fiber/epoxy resin composites was sharply increased approximately 74% after functionalization. The effects of acetic acid and sonication on the degree of the surface functionalization were also studied.

  17. Effect of Surface Treatment on the Properties of Wool Fabric

    Science.gov (United States)

    Kan, C. W.; Yuen, C. W. M.; Chan, C. K.; Lau, M. P.

    Wool fiber is commonly used in textile industry, however, it has some technical problems which affect the quality and performance of the finished products such as felting shrinkage, handle, lustre, pilling, and dyeability. These problems may be attributed mainly in the presence of wool scales on the fiber surface. Recently, chemical treatments such as oxidation and reduction are the commonly used descaling methods in the industry. However, as a result of the pollution caused by various chemical treatments, physical treatment such as low temperature plasma (LTP) treatment has been introduced recently because it is similarly capable of achieving a comparable descaling effect. Most of the discussions on the applications of LTP treatment on wool fiber were focused on applying this technique for improving the surface wettability and shrink resistance. Meanwhile, little discussion has been made on the mechanical properties, thermal properties, and the air permeability. In this paper, wool fabric was treated with LTP treatment with the use of a non-polymerizing gas, namely oxygen. After the LTP treatment, the fabrics low-stress mechanical properties, air permeability, and thermal properties were evaluated and discussed.

  18. Fiber-Optic Surface Temperature Sensor Based on Modal Interference

    Directory of Open Access Journals (Sweden)

    Frédéric Musin

    2016-07-01

    Full Text Available Spatially-integrated surface temperature sensing is highly useful when it comes to controlling processes, detecting hazardous conditions or monitoring the health and safety of equipment and people. Fiber-optic sensing based on modal interference has shown great sensitivity to temperature variation, by means of cost-effective image-processing of few-mode interference patterns. New developments in the field of sensor configuration, as described in this paper, include an innovative cooling and heating phase discrimination functionality and more precise measurements, based entirely on the image processing of interference patterns. The proposed technique was applied to the measurement of the integrated surface temperature of a hollow cylinder and compared with a conventional measurement system, consisting of an infrared camera and precision temperature probe. As a result, the optical technique is in line with the reference system. Compared with conventional surface temperature probes, the optical technique has the following advantages: low heat capacity temperature measurement errors, easier spatial deployment, and replacement of multiple angle infrared camera shooting and the continuous monitoring of surfaces that are not visually accessible.

  19. Oxygen plasma treatments of jute fibers in improving the mechanical properties of jute/HDPE composites

    Energy Technology Data Exchange (ETDEWEB)

    Sever, K. [Department of Mechanical Engineering, Dokuz Eylul University, 35100, Izmir (Turkey); Erden, S. [Department of Mechanical Engineering, Ege University, 35100, Izmir (Turkey); Guelec, H.A. [Department of Food Engineering, Yuzuncu Yil University, 65250, Van (Turkey); Seki, Y., E-mail: yoldas.seki@deu.edu.tr [Department of Chemistry, Dokuz Eylul University, 35160, Buca, Izmir (Turkey); Sarikanat, M. [Department of Mechanical Engineering, Ege University, 35100, Izmir (Turkey)

    2011-09-15

    Highlights: {yields} To improve mechanical properties of jute/HDPE composites, jute fabric was subjected to oxygen plasma treatment. {yields} LF and RF plasma systems at different plasma powers were used for treatment. {yields} In LF system, interlaminar shear strength, tensile and flexure strengths showed a tendency to increase at plasma powers of 30 and 60 W. - Abstract: The surfaces of jute fabrics have been oxygen plasma treated using low frequency (LF) and radio frequency (RF) plasma systems at different plasma powers (30, 60, and 90 W) for 15 min to improve the mechanical properties of jute fiber/HDPE (high density polyethylene) composites. The effect of oxygen plasma treatment on the functional groups of jute fibers was examined by X-ray photoelectron spectroscopy (XPS) analysis. Effects of oxygen plasma treatments on the mechanical properties of jute fiber/HDPE composites were investigated by means of tensile, flexure, and short-beam shear tests. Surface morphology of the fractured surfaces of composites was observed by using scanning electron microscopy (SEM). When RF plasma system was used, the interlaminar shear strength (ILSS) values of the composites increased with increasing plasma power. Similarly, in LF plasma system, ILSS values showed a tendency to increase at plasma powers of 30 and 60 W. However, increasing of plasma power to 90 W decreased the ILSS value of jute/HDPE composite. Also, tensile and flexure strengths of the composites showed similar trends.

  20. Oxygen plasma treatments of jute fibers in improving the mechanical properties of jute/HDPE composites

    International Nuclear Information System (INIS)

    Sever, K.; Erden, S.; Guelec, H.A.; Seki, Y.; Sarikanat, M.

    2011-01-01

    Highlights: → To improve mechanical properties of jute/HDPE composites, jute fabric was subjected to oxygen plasma treatment. → LF and RF plasma systems at different plasma powers were used for treatment. → In LF system, interlaminar shear strength, tensile and flexure strengths showed a tendency to increase at plasma powers of 30 and 60 W. - Abstract: The surfaces of jute fabrics have been oxygen plasma treated using low frequency (LF) and radio frequency (RF) plasma systems at different plasma powers (30, 60, and 90 W) for 15 min to improve the mechanical properties of jute fiber/HDPE (high density polyethylene) composites. The effect of oxygen plasma treatment on the functional groups of jute fibers was examined by X-ray photoelectron spectroscopy (XPS) analysis. Effects of oxygen plasma treatments on the mechanical properties of jute fiber/HDPE composites were investigated by means of tensile, flexure, and short-beam shear tests. Surface morphology of the fractured surfaces of composites was observed by using scanning electron microscopy (SEM). When RF plasma system was used, the interlaminar shear strength (ILSS) values of the composites increased with increasing plasma power. Similarly, in LF plasma system, ILSS values showed a tendency to increase at plasma powers of 30 and 60 W. However, increasing of plasma power to 90 W decreased the ILSS value of jute/HDPE composite. Also, tensile and flexure strengths of the composites showed similar trends.

  1. EFFECTS OF PRESSURE AND TEMPERATURE ON ULTRAFILTRATION HOLLOW FIBER MEMBRANE IN MOBILE WATER TREATMENT SYSTEM

    Directory of Open Access Journals (Sweden)

    ROSDIANAH RAMLI

    2016-07-01

    Full Text Available In Sabah, Malaysia, there are still high probability of limited clean water access in rural area and disaster site. Few villages had been affected in Pitas due to improper road access, thus building a water treatment plant there might not be feasible. Recently, Kundasang area had been affected by earthquake that caused water disruption to its people due to the damage in the underground pipes and water tanks. It has been known that membrane technology brought ease in making mobile water treatment system that can be transported to rural or disaster area. In this study, hollow fiber membrane used in a mobile water treatment system due to compact and ease setup. Hollow fiber membrane was fabricated into small module at 15 and 30 fibers to suit the mobile water treatment system for potable water production of at least 80 L/day per operation. The effects of transmembrane pressure (TMP and feed water temperature were investigated. It was found that permeate flux increases by more than 96% for both 15 and 30 fiber bundles with increasing pressure in the range of 0.25 to 3.0 bar but dropped when the pressure reached maximum. Lower temperature of 17 to 18˚C increase the water viscosity by 15% from normal temperature of water at 24˚C, making the permeate flux decreases. The fabricated modules effectively removed 96% turbidity of the surface water sample tested.

  2. Effect of ion irradiation on the structure and the surface topography of carbon fiber

    International Nuclear Information System (INIS)

    Ligacheva, E.A.; Galyaeva, L.V.; Gavrilov, N.V.; Belykh, T.A.; Ligachev, A.E.; Sokhoreva, V.V.

    2006-01-01

    The effect of C + ion irradiation (40 keV, 10 15 - 10 19 cm -2 ) on the structure and surface topography of high-module carbon fibers is investigated. Interplanar distance and internal stress values are found to be minimal at a radiation dose of 10 17 cm -2 , the height of a layer pack being practically unchanged. The relief of ion irradiated carbon fiber surface constitutes regularly repetitive valleys and ridges spaced parallel with the fiber axis [ru

  3. Surface Quality of Staggered PCD End Mill in Milling of Carbon Fiber Reinforced Plastics

    Directory of Open Access Journals (Sweden)

    Guangjun Liu

    2017-02-01

    Full Text Available Machined surface quality determines the reliability, wear resistance and service life of carbon fiber reinforced plastic (CFRP workpieces. In this work, the formation mechanism of the surface topography and the machining defects of CFRPs are proposed, and the influence of milling parameters and fiber cutting angles on the surface quality of CFRPs is obtained, which can provide a reference for extended tool life and good surface quality. Trimming and slot milling tests of unidirectional CFRP laminates are performed. The surface roughness of the machined surface is measured, and the influence of milling parameters on the surface roughness is analyzed. A regression model for the surface roughness of CFRP milling is established. A significance test of the regression model is conducted. The machined surface topography of milling CFRP unidirectional laminates with different fiber orientations is analyzed, and the effect of fiber cutting angle on the surface topography of the machined surface is presented by using a digital super depth-of-field microscope and scanning electron microscope (SEM. To study the influence of fiber cutting angle on machining defects, the machined topography under different fiber orientations is analyzed. The slot milling defects and their formation mechanism under different fiber cutting angles are investigated.

  4. Effect of chemical treatment of Kevlar fibers on mechanical interfacial properties of composites.

    Science.gov (United States)

    Park, Soo-Jin; Seo, Min-Kang; Ma, Tae-Jun; Lee, Douk-Rae

    2002-08-01

    In this work, the effects of chemical treatment on Kevlar 29 fibers have been studied in a composite system. The surface characteristics of Kevlar 29 fibers were characterized by pH, acid-base value, X-ray photoelectron spectroscopy (XPS), and FT-IR. The mechanical interfacial properties of the final composites were studied by interlaminar shear strength (ILSS), critical stress intensity factor (K(IC)), and specific fracture energy (G(IC)). Also, impact properties of the composites were investigated in the context of differentiating between initiation and propagation energies and ductile index (DI) along with maximum force and total energy. As a result, it was found that chemical treatment with phosphoric acid solution significantly affected the degree of adhesion at interfaces between fibers and resin matrix, resulting in improved mechanical interfacial strength in the composites. This was probably due to the presence of chemical polar groups on Kevlar surfaces, leading to an increment of interfacial binding force between fibers and matrix in a composite system.

  5. Microwave and plasma-assisted modification of composite fiber surface topography

    Science.gov (United States)

    Paulauskas, Felix L [Knoxville, TN; White, Terry L [Knoxville, TN; Bigelow, Timothy S [Knoxville, TN

    2003-02-04

    The present invention introduces a novel method for producing an undulated surface on composite fibers using plasma technology and microwave radiation. The undulated surface improves the mechanical interlocking of the fibers to composite resins and enhances the mechanical strength and interfacial sheer strength of the composites in which they are introduced.

  6. Effect of ultraviolet light irradiation on bond strength of fiber post: Evaluation of surface characteristic and bonded area of fiber post with resin cement

    OpenAIRE

    Reza, Fazal; Ibrahim, Nur Sukainah

    2015-01-01

    Objective: Fiber post is cemented to a root canal to restore coronal tooth structure. This research aims to evaluate the effect of ultraviolet (UV) irradiation on bond strength of fiber post with resin cement. Materials and Methods: A total of 40 of the two types of fiber posts, namely, FRC Prostec (FRC) and Fiber KOR (KOR), were used for the experiment. UV irradiation was applied on top of the fiber post surface for 0, 15, 20, and 30 min. The irradiated surface of the fiber posts (n = 5) wer...

  7. Optical Fiber Sensor Based on Localized Surface Plasmon Resonance Using Silver Nanoparticles Photodeposited on the Optical Fiber End

    Directory of Open Access Journals (Sweden)

    J. Gabriel Ortega-Mendoza

    2014-10-01

    Full Text Available This paper reports the implementation of an optical fiber sensor to measure the refractive index in aqueous media based on localized surface plasmon resonance (LSPR. We have used a novel technique known as photodeposition to immobilize silver nanoparticles on the optical fiber end. This technique has a simple instrumentation, involves laser light via an optical fiber and silver nanoparticles suspended in an aqueous medium. The optical sensor was assembled using a tungsten lamp as white light, a spectrometer, and an optical fiber with silver nanoparticles. The response of this sensor is such that the LSPR peak wavelength is linearly shifted to longer wavelengths as the refractive index is increased, showing a sensitivity of 67.6 nm/RIU. Experimental results are presented.

  8. Bending strength and fracture surface topography of natural fiber-reinforced shell for investment casting process

    Directory of Open Access Journals (Sweden)

    Kai Lu

    2016-05-01

    Full Text Available In order to improve the properties of silica sol shell for investment casting process, various contents of cattail fibers were added into the slurry to prepare a fiber-reinforced shell in the present study. The bending strength of fiber-reinforced shell was investigated and the fracture surfaces of shell specimens were observed using SEM. It is found that the bending strength increases with the increase of fiber content, and the bending strength of a green shell with 1.0 wt.% fiber addition increases by 44% compared to the fiber-free shell. The failure of specimens of the fiber-reinforced green shell results from fiber rupture and debonding between the interface of fibers and adhesive under the bending load. The micro-crack propagation in the matrix is inhibited by the micro-holes for ablation of fibers in specimens of the fiber-reinforced shell during the stage of being fired. As a result, the bending strength of specimens of the fired shell had no significant drop. Particularly, the bending strength of specimens of the fired shell reinforced with 0.6wt.% fiber reached the maximum value of 4.6 MPa.

  9. Surface engineering and heat treatment

    International Nuclear Information System (INIS)

    Morton, P.H.

    1991-01-01

    This book is the proceedings of a Conference organised jointly by The Institute of Metals and The Centre for Exploitation of Science and Technology (CEST). It sets out to review this role and point the way to the future by collecting together a series of invited papers written by noted authorities in their fields. The opening review by CEST highlights the economic and industrial importance of Surface Engineering and is followed by a group of four articles devoted to specific branches of industry. Several technical papers then describe various aspects of the development of heat treatment over the last twenty-five years. These are followed by papers describing advances made possible by new technologies such as plasma, laser and ion beam. A separate abstract has been prepared for a paper on materials aspects of ion beam technology. (author)

  10. Surface structure and adsorption properties of ultrafine porous carbon fibers

    International Nuclear Information System (INIS)

    Song Xiaofeng; Wang Ce; Zhang Dejiang

    2009-01-01

    Ultrafine porous carbon fibers (UPCFs) were successfully synthesized by chemical activation of electrospun polyacrylonitrile fibers. In the current approach, potassium hydroxide was adopted as activation reagent. UPCFs were systematically evaluated by scanning electron microscope and nitrogen adsorption. The mass ratio of potassium hydroxide to preoxidized fibers, activation temperature and activation time are crucial for producing high quality UPCFs. The relationships between porous structure and process parameters are explored. UPCFs were applied as adsorbent for nitrogen monoxide to be compared with commercial porous carbon fibers.

  11. Surface modification of polyacrylonitrile-based carbon fiber and its interaction with imide

    International Nuclear Information System (INIS)

    Xu Bing; Wang Xiaoshu; Lu Yun

    2006-01-01

    In this work, sized polyacrylonitrile (PAN)-based carbon fibers were chemically modified with nitric acid and maleic anhydride (MA) in order to improve the interaction between carbon fiber surface and polyimide matrix. Bismaleimide (BMI) was selected as a model compound of polyimide to react with modified carbon fiber. The surface characteristic changing after modification and surface reaction was investigated by element analysis (EA), scanning electron microscopy (SEM), atomic force microscopy (AFM), X-ray photoelectron spectroscopy (XPS) and surface enhanced Raman scattering (SERS). The results indicated that the modification of carbon fiber surface with MA might follow the Diels Alder reaction mechanism. In the surface reaction between modified fibers and BMI, among the various surface functional groups, the hydroxyl group provided from phenolic hydroxyl group and bridged structure on carbon fiber may be the most effective group reacted with imide structure. The results may shed some light on the design of the appropriate surface structure, which could react with polyimide, and the manufacture of the carbon fiber-reinforced polyimide matrix composites

  12. Textile composites based on natural fibers

    CSIR Research Space (South Africa)

    Li, Yan

    2009-04-01

    Full Text Available . The two kinds of fiber surface treatment methods were permanganate treatment and silane treatment. Vinyl ester was used as the matrix. The permeability values of sisal textile before and after fiber surface treatments are listed in Table 3. Comparisons... and more liquid resin flow through inter-bundles. Figure 4. Intra-bundle and inter-bundle flows As reported, permanganate, as an oxidant, can etch sisal fiber surface [20]. Scanning electronic micrograph of a permanganate treated sisal fiber...

  13. Surface Acoustic Waves Grant Superior Spatial Control of Cells Embedded in Hydrogel Fibers.

    Science.gov (United States)

    Lata, James P; Guo, Feng; Guo, Jinshan; Huang, Po-Hsun; Yang, Jian; Huang, Tony Jun

    2016-10-01

    By exploiting surface acoustic waves and a coupling layer technique, cells are patterned within a photosensitive hydrogel fiber to mimic physiological cell arrangement in tissues. The aligned cell-polymer matrix is polymerized with short exposure to UV light and the fiber is extracted. These patterned cell fibers are manipulated into simple and complex architectures, demonstrating feasibility for tissue-engineering applications. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Effect of cellulase treatment of long fiber fraction on strength ...

    African Journals Online (AJOL)

    fiber and unbeaten short-fiber fractions. The obtained test results have indicate that the application of enzyme on appropriate fiber fraction have positive effects on the strength properties of the corrugated medium. The short span compression ...

  15. Regenerated collagen fibers with grooved surface texture: Physicochemical characterization and cytocompatibility

    International Nuclear Information System (INIS)

    Wang, Xiang; Wu, Tong; Wang, Wei; Huang, Chen; Jin, Xiangyu

    2016-01-01

    A novel type of protein fibers, regenerated collagen fibers (RC) from cattle skin, was prepared through wet-spinning. Due to the combined effect of solvent exchange and subsequent drawing process, the fibers were found to have a grooved surface texture. The grooves provided not only ordered topographical cues, but also increased surface area. Protein content of the RC fibers was confirmed by Fourier Transform infrared spectroscopy (FTIR) and ninhydrin color reaction. The fibers could be readily fabricated into nonwovens or other textiles, owning to their comparable physical properties to other commercialized fibers. Cell growth behavior on RC nonwovens suggested both early adhesion and prompt proliferation. The high moisture regain, good processability, along with the excellent cytocompatibility indicated that the RC fibers and nonwovens developed in this study might offer a good candidate for biomedical and healthcare applications. - Highlights: • Wet-spun regenerated collagen fibers having aligned surface grooves • Comparable physiochemical properties to commercialized fibers • Readily processed into nonwovens • Excellent cytocompatibility with prompt cell adhesion and proliferation

  16. Regenerated collagen fibers with grooved surface texture: Physicochemical characterization and cytocompatibility

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xiang [Engineering Research Center of Technical Textiles, Ministry of Education, College of Textiles, Donghua University, Shanghai 201620 (China); Wu, Tong [College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620 (China); Wang, Wei [Engineering Research Center of Technical Textiles, Ministry of Education, College of Textiles, Donghua University, Shanghai 201620 (China); Huang, Chen, E-mail: hc@dhu.edu.cn [Engineering Research Center of Technical Textiles, Ministry of Education, College of Textiles, Donghua University, Shanghai 201620 (China); Jin, Xiangyu [Engineering Research Center of Technical Textiles, Ministry of Education, College of Textiles, Donghua University, Shanghai 201620 (China)

    2016-01-01

    A novel type of protein fibers, regenerated collagen fibers (RC) from cattle skin, was prepared through wet-spinning. Due to the combined effect of solvent exchange and subsequent drawing process, the fibers were found to have a grooved surface texture. The grooves provided not only ordered topographical cues, but also increased surface area. Protein content of the RC fibers was confirmed by Fourier Transform infrared spectroscopy (FTIR) and ninhydrin color reaction. The fibers could be readily fabricated into nonwovens or other textiles, owning to their comparable physical properties to other commercialized fibers. Cell growth behavior on RC nonwovens suggested both early adhesion and prompt proliferation. The high moisture regain, good processability, along with the excellent cytocompatibility indicated that the RC fibers and nonwovens developed in this study might offer a good candidate for biomedical and healthcare applications. - Highlights: • Wet-spun regenerated collagen fibers having aligned surface grooves • Comparable physiochemical properties to commercialized fibers • Readily processed into nonwovens • Excellent cytocompatibility with prompt cell adhesion and proliferation.

  17. 3-D FEM Modeling of fiber/matrix interface debonding in UD composites including surface effects

    International Nuclear Information System (INIS)

    Pupurs, A; Varna, J

    2012-01-01

    Fiber/matrix interface debond growth is one of the main mechanisms of damage evolution in unidirectional (UD) polymer composites. Because for polymer composites the fiber strain to failure is smaller than for the matrix multiple fiber breaks occur at random positions when high mechanical stress is applied to the composite. The energy released due to each fiber break is usually larger than necessary for the creation of a fiber break therefore a partial debonding of fiber/matrix interface is typically observed. Thus the stiffness reduction of UD composite is contributed both from the fiber breaks and from the interface debonds. The aim of this paper is to analyze the debond growth in carbon fiber/epoxy and glass fiber/epoxy UD composites using fracture mechanics principles by calculation of energy release rate G II . A 3-D FEM model is developed for calculation of energy release rate for fiber/matrix interface debonds at different locations in the composite including the composite surface region where the stress state differs from the one in the bulk composite. In the model individual partially debonded fiber is surrounded by matrix region and embedded in a homogenized composite.

  18. Effects of heat treatment on the mechanical properties of kenaf fiber

    Energy Technology Data Exchange (ETDEWEB)

    Carada, Paulo Teodoro D. L. [Master’s student in the Graduate School of Science and Engineering, Mechanical Engineering, Doshisha University, 1-3 Tatara Miyakodani, Kyotanabe City, Kyoto Prefecture, 610-0394 (Japan); Fujii, Toru; Okubo, Kazuya [Professor in the Faculty of Science and Engineering, Department of Mechanical and Systems Engineering, Doshisha University, 1-3 Tatara Miyakodani, Kyotanabe City, Kyoto Prefecture, 610-0394 (Japan)

    2016-05-18

    Natural fibers are utilized in various ways. One specific application of it, is in the field natural fiber composite (NFC). Considerable amount of researches are conducted in this field due to rising concerns in the harmful effects of synthetic materials to the environment. Additionally, these researches are done in order to overcome the drawbacks which limit the wide use of natural fiber. A way to improve NFC is to look into the reinforcing component (natural fiber). Treatments, which are classified as mechanical or chemical in nature, can be done in order to improve the performance of the natural fiber. The aim of this study is to assess the effects of heat treatment in the mechanical properties of kenaf fiber. In addition, the response of mechanical properties after exposure to high moisture environment of heat-treated kenaf fibers was observed. Heat treatment was done for one hour with the following heating temperatures: 140, 160, 180, and 200 °C. X-ray diffraction analysis was done to calculate the crystallinity index of kenaf fibers after heat treatment. The results showed that increase in tensile strength can be attained when kenaf fibers are heat treated at 140 °C. However, the tensile modulus showed inconsistency with respect to heat treatment temperature. The computed crystallinity index of the fiber matched the tensile strength observed in non-treated and heat-treated kenaf fibers. The results obtained in this study can be used for applications where heat treatment on kenaf fibers is needed.

  19. Surface treatment of zirconia ceramics

    International Nuclear Information System (INIS)

    1980-01-01

    A method of chemically micropitting and/or microcratering at least a portion of a smooth surface of an impervious zirconia-base ceramic is described, comprising (a) contacting the smooth surface with a liquid leachant selected from concentrated sulphuric acid, ammonium bisulphate, alkali metal bisulphates and mixtures thereof at a temperature of at least 250 0 C for a period of time sufficient to effect micropitting and/or microcratering generally uniformly distributed throughout the microstructure of the resultant leached surface; (b) removing the leached surface from contact with the leachant; (c) contacting the leached surface with hydrochloric acid to effect removal from the leached surface of a residue thereon comprising sulphate of metal elements including zirconium in the ceramic; (d) removing the leached surface from contact with the hydrochloric acid; and (e) rinsing the leached surface with water to effect removal of acid residue from that surface. (author)

  20. Friction Surface Treatment Selection: Aggregate Properties, Surface Characteristics, Alternative Treatments, and Safety Effects

    Science.gov (United States)

    2017-07-01

    This study aimed to evaluate the long term performance of the selected surface friction treatments, including high friction surface treatment (HFST) using calcined bauxite and steel slag, and conventional friction surfacing, in particular pavement pr...

  1. Effect OF NaOH Treatment on Bending Strength Of The Polyester Composite Reinforce By Sugar Palm Fibers

    Science.gov (United States)

    Arif Irfai, Mochamad; Wulandari, Diah; Sutriyono; Marsyahyo, Eko

    2018-04-01

    The objective of this research is to investigate the effect of NaOH treatment on bending strength of lamina composite reinforced by sugar palm fiber. To know of mechanism fracture can be done with visual inspection of the fracture surface. The Materials used are random sugar palm fibers that have been in the treatment of NaOH, polyester resin and hardener. Sugar palm fibers after washed and dried then soaked NaOH with a long time soaking 0, 2, 4, 6 and 8 hours. The bending test specimens were produced according to ASTM D 790. All specimens were post cured at 62°C for 4 hours. The Bending test was carried out on a universal testing machine. The SEM analysis has conducted to provide the analysis on interface adhesion between the surfaces of fiber with the matrix. The result shows that polyester composite reinforced by sugar palm fiber has highest bending stress 176.77 N/mm2 for 2 hours of a long time soaking NaOH, the highest flexural strain 0.27 mm for 2 hours of a long time soaking NaOH, elongation 24.05% for 2 hours of a long time soaking NaOH and the highest bending modulus 1.267 GPa for 2 hours of a long time soaking NaOH. Based on the results, it can be concluded that the polyester composite reinforced by sugar palm fiber has the optimum bending properties for a long time soaking 2 hours. The fracture surface shows that the polyester composite reinforced by sugar palm fiber pull out that indicate weakens the bond between fiber and matrix.

  2. Hydrogen storage of catalyst-containing activated carbon fibers and effect of surface modification

    International Nuclear Information System (INIS)

    Ikpyo Hong; Seong Young Lee; Kyung Hee Lee; Sei Min Park

    2005-01-01

    Introduction: The hydrogen storage capacities of many kind of carbon nano materials have been reported with possibility and improbability. It is reported that specific surface area of carbon nano material has not a close relation to hydrogen storage capacity. This result shows that there is difference between specific surface area measured by isothermal nitrogen adsorption and direct measurement of adsorption with hydrogen and suggests that the carbon material with relatively low specific surface area can have high hydrogen storage capacity when they have effective nano pore. In this study, petroleum based isotropic pitch was hybridized with several kinds of transitional metal base organometallic compound solved with organic solvent and spun by electro-spinning method. The catalyst-dispersed ACFs were prepared and characterized and hydrogen storage capacity was measured. The effect of surface modification of ACFs by physical and chemical treatment was also investigated. Experimental: The isotropic precursor pitch prepared by nitrogen blowing from naphtha cracking bottom oil was hybridized with transitional metal based acetyl acetonates and spun by solvent electro-spinning. Tetrahydrofuran and quinoline were used as solvent with various mixing ratio. High voltage DC power generator which could adjust in the range of 0-60000 V and 2 mA maximum current was used to supply electrostatic force. At the solvent electro-spinning, solvent mixing ratio and pitch concentration, voltage and spinning distance were varied and their influences were investigated. The catalyst-dispersed electro-spun pitch fibers were thermal stabilized, carbonized and activated by conventional heat treatment for activated carbon fiber. Prepared fibers were observed by high resolution SEM and pore properties were characterized by Micromeritics ASAP2020 model physi-sorption analyzer. Hydrogen storage capacities were measured by equipment modified from Thermo Cahn TherMax 500 model high pressure

  3. Electrostatic chuck consisting of polymeric electrostatic inductive fibers for handling of objects with rough surfaces

    International Nuclear Information System (INIS)

    Dhelika, Radon; Sawai, Kenji; Saito, Shigeki; Takahashi, Kunio; Takarada, Wataru; Kikutani, Takeshi

    2013-01-01

    An electrostatic chuck (ESC) is a type of reversible dry adhesive which clamps objects by means of electrostatic force. Currently an ESC is used only for objects having flat surfaces because the attractive force is reduced for rough surfaces. An ESC that can handle objects with rough surfaces will expand its applications to MEMS (micro electro mechanical system) or optical parts handling. An ESC consisting of compliant electrostatic inductive fibers which conform to the profile of the surface has been proposed for such use. This paper aims at furthering previous research by observing the attractive force/pressure generated, both theoretically and experimentally, through step-by-step fabrication and analysis. Additionally, how the proposed fiber ESC behaves toward rough surfaces is also observed. The attractive force/pressure of the fiber ESC is theoretically investigated using a robust mechano-electrostatic model. Subsequently, a prototype of the fiber ESC consisting of ten fibers arranged at an angle is employed to experimentally observe its attractive force/pressure for objects with rough surfaces. The attractive force of the surface which is modeled as a sinusoidal wave with various amplitudes is observed, through which the feasibility of a fiber ESC is justified. (paper)

  4. Inhibition of Cracks on the Surface of Cement Mortar Using Estabragh Fibers

    Directory of Open Access Journals (Sweden)

    Tahereh Soleimani

    2013-01-01

    Full Text Available The influence of adding Estabragh fibers into the cement composites of mortar on surface cracks and mechanical properties of mortar has been studied at various fiber proportions of 0.25%, 0.5%, and 0.75%. The mortar shrinkage was evaluated by counting the number of cracks and measuring the width of cracks on the surface of mortar specimens. Although the Estabragh fibers loss their strength in an alkali environment of cement composites, the ability of Estabragh fibers to bridge on the microcracks in the mortar matrix causes a decrease in the number of cracks and in their width on the surface of the mortar samples in comparison with the plain mortar. However, considering the mechanical properties of specimens such as bending strength and compressive strength, among all fiber proportions, only the specimens with 0.25% of Estabragh fiber performed better in all respects compared to the physical and mechanical properties of reinforced cement composite of mortar. Consequently, by adding 0.25% of Estabragh fibers to the cement mortar, a remarkable inhibition in crack generation on fiber-containing cement composite of mortar is achieved.

  5. Electrophoretic deposition of carbon nanotubes on a carbon fiber surface with different index graphitization

    International Nuclear Information System (INIS)

    Almeida, E.C.; Baldan, M.R.; Ferreira, N.G.; Edwards, E.R.

    2009-01-01

    Full text: The purpose of this work is to examine the electrophoretic deposition of carbon nanotubes powder on carbon fibers, produced at different heat treatments temperatures. Besides, a systematic study of the effects of graphitization index from substrate on the structure and morphology of CNTs has been available. Carbon fibers were produced from polyacrylonitrile at three different heat treatments temperatures, 1000, 1500 and 2000 deg C. The carbon fibers microstructure or its graphitization index may be controlled by the heat treatments temperatures. The electrophoretic deposition of carbon nanotubes was obtained with the powder of carbon nanotubes dispersed in water by ultrasonication to obtain dispersions of 0.05 mg/mL. The carbon fibers were immersed in the nanotube dispersion, and a positive potential of 10 V/cm was applied. Morphology and microstructure of carbon nanotubes on carbon fibers were obtained by scanning electron microscopy, Raman spectroscopy and X-ray photoelectron spectroscopy. (author)

  6. Method for surface treatment by electron beams

    International Nuclear Information System (INIS)

    Panzer, S.; Doehler, H.; Bartel, R.; Ardenne, T. von.

    1985-01-01

    The invention has been aimed at simplifying the technology and saving energy in modifying surfaces with the aid of electron beams. The described beam-object geometry allows to abandon additional heat treatments. It can be used for surface hardening

  7. A miniaturized oxygen sensor integrated on fiber surface based on evanescent-wave induced fluorescence quenching

    Energy Technology Data Exchange (ETDEWEB)

    Xiong, Yan [School of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu 610500 (China); Oil and Gas Field Applied Chemistry Key Laboratory of Sichuan Province, Southwest Petroleum University, Chengdu, 610500 (China); Tan, Jun; Wang, Chengjie; Zhu, Ying [School of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu 610500 (China); Fang, Shenwen [School of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu 610500 (China); Oil and Gas Field Applied Chemistry Key Laboratory of Sichuan Province, Southwest Petroleum University, Chengdu, 610500 (China); Wu, Jiayi; Wang, Qing [School of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu 610500 (China); Duan, Ming, E-mail: swpua124@126.com [State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu 610500 (China); School of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu 610500 (China); Oil and Gas Field Applied Chemistry Key Laboratory of Sichuan Province, Southwest Petroleum University, Chengdu, 610500 (China)

    2016-11-15

    In this work, a miniaturized sensor was integrated on fiber surface and developed for oxygen determination through evanescent-wave induced fluorescence quenching. The sensor was designed by using light emitting diode (LED) as light source and optical fiber as light transmission element. Tris(2,2′-bipyridyl) ruthenium ([Ru(bpy){sub 3}]{sup 2+}) fluorophore was immobilized in the organically modified silicates (ORMOSILs) film and coated onto the fiber surface. When light propagated by total internal reflection (TIR) in the fiber core, evanescent wave could be produced on the fiber surface and excite [Ru(bpy){sub 3}]{sup 2+} fluorophore to produce fluorescence emission. Then oxygen could be determinated by its quenching effect on the fluorescence and its concentration could be evaluated according to Stern–Volumer model. Through integrating evanescent wave excitation and fluorescence quenching on fiber surface, the sensor was successfully miniaturized and exhibit improved performances of high sensitivity (1.4), excellent repeatability (1.2%) and fast analysis (12 s) for oxygen determination. The sensor provided a newly portable method for in-situ and real-time measurement of oxygen and showed potential for practical oxygen analysis in different application fields. Furthermore, the fabrication of this sensor provides a miniaturized and portable detection platform for species monitoring by simple modular design. - Highlights: • ORMOSILs sensing film immobilized with [Ru(bpy){sub 3}]{sup 2+} fluorophore was coated on fiber surface. • Evanescent wave on the fiber surface was utilized as excitation source to produce fluorescence. • Oxygen was measured based on its quenching effect on evanescent wave-induce fluorescence. • Sensor fabrication was miniaturized by integrating detection and sensing elements on the fiber. • The modular design sensor provides a detection platform for other species monitoring.

  8. Fiber Optic Surface Plasmon Resonance-Based Biosensor Technique: Fabrication, Advancement, and Application.

    Science.gov (United States)

    Liang, Gaoling; Luo, Zewei; Liu, Kunping; Wang, Yimin; Dai, Jianxiong; Duan, Yixiang

    2016-05-03

    Fiber optic-based biosensors with surface plasmon resonance (SPR) technology are advanced label-free optical biosensing methods. They have brought tremendous progress in the sensing of various chemical and biological species. This review summarizes four sensing configurations (prism, grating, waveguide, and fiber optic) with two ways, attenuated total reflection (ATR) and diffraction, to excite the surface plasmons. Meanwhile, the designs of different probes (U-bent, tapered, and other probes) are also described. Finally, four major types of biosensors, immunosensor, DNA biosensor, enzyme biosensor, and living cell biosensor, are discussed in detail for their sensing principles and applications. Future prospects of fiber optic-based SPR sensor technology are discussed.

  9. Influences of chemical aging on the surface morphology and crystallization behavior of basaltic glass fibers

    DEFF Research Database (Denmark)

    Lund, Majbritt Deichgræber; Yue, Yuanzheng

    2008-01-01

    The impact of aging in high humidity and water on the surface morphology and crystallization behavior of basaltic glass fibers has been studied using scanning electron microscopy, transmission electron microscopy, calorimetry and X-ray diffraction. The results show that interaction between...... the fibers and the surrounding media (high humidity or water at 70 C) leads to chemical changes strongly affecting the surface morphology. The crystallization peak temperature of the basaltic glass fibers are increased without changing the onset temperature, this may be caused by a chemical depletion...

  10. Polyaniline electrosynthesis on composite surface carbon fiber-epoxy Aeronautic application

    International Nuclear Information System (INIS)

    Sanches, Richelmy Magi; Batista, Aline Fontana; Gama, Adriana Medeiros; Goncalves, Emerson Sarmento

    2016-01-01

    Full text: This work aims to obtain polyaniline (PAni) by electro synthesis, as thin layers on carbon fiber/epoxy composite surface, to attenuate microwave amplitude and so decrease radar cross section (RCS) on drone surfaces. In order to it, two procedures were used to obtain polyaniline on surface from aniline 0,5 mol L -1 and H 2 SO 4 1,0 mol L -1 , using cyclic voltammetry, from -0,50 up to 1,05 V x Ag/AgCl, using auxiliary electrode of Pt, by potentiostat-galvanostat Autolab PGSTAT 302. The first used 26 cycles to a sample and 53 cycles to another sample, at 25mVs -1 . The second differs to the first in to use 3 beginning cycles at 5mVs -1 and remaining cycles at 100 mVs -1 , obtaining two samples, similar to first treatment, with 26 and 53 cycles, at end. Processes temperature was 0°C. These procedures resulted in two different materials of PAni, evaluated in function of scanning velocity and variation on cycle numbers used. Resulting new composites were characterized scanning electronic microscopy (SEM), X-ray diffraction (XRD), electrochemical impedance spectroscopy (EIS), electromagnetic measures in waveguide of intrinsic properties, scattering parameters and reflectivity on frequency range from 8,0 up to 12,0 GHz To verify applicability on aeronautics electromagnetic shields, computing sources were used, through numeric simulations to determine RCS of objects, overlapping concepts of geometric interactions with material properties applied on their surfaces, added with interception of microwaves emitted by hypothetical radars. To this end, software Computer Simulation Technology-(CST) was used, through which efficacy of composite PAni@carbon fiber@epoxy was indicated to aeronautic application in Stealth technology. (author)

  11. Polyaniline electrosynthesis on composite surface carbon fiber-epoxy Aeronautic application

    Energy Technology Data Exchange (ETDEWEB)

    Sanches, Richelmy Magi; Batista, Aline Fontana; Gama, Adriana Medeiros; Goncalves, Emerson Sarmento, E-mail: rms.aero94@gmail.com [Instituto de Aeronautica e Espaco (IAE), Sao Jose dos Campos, SP (Brazil). Lab. de Caracterizacao Fisico-Quimica; Quirino, Sandro Fonseca; Baldan, Mauricio Ribeiro [Instituto Nacional de Pesquisas Espaciais (INPE), Sao Jose dos Campos, SP (Brazil)

    2016-07-01

    Full text: This work aims to obtain polyaniline (PAni) by electro synthesis, as thin layers on carbon fiber/epoxy composite surface, to attenuate microwave amplitude and so decrease radar cross section (RCS) on drone surfaces. In order to it, two procedures were used to obtain polyaniline on surface from aniline 0,5 mol L{sup -1} and H{sub 2}SO{sub 4} 1,0 mol L{sup -1}, using cyclic voltammetry, from -0,50 up to 1,05 V x Ag/AgCl, using auxiliary electrode of Pt, by potentiostat-galvanostat Autolab PGSTAT 302. The first used 26 cycles to a sample and 53 cycles to another sample, at 25mVs{sup -1}. The second differs to the first in to use 3 beginning cycles at 5mVs{sup -1} and remaining cycles at 100 mVs{sup -1}, obtaining two samples, similar to first treatment, with 26 and 53 cycles, at end. Processes temperature was 0°C. These procedures resulted in two different materials of PAni, evaluated in function of scanning velocity and variation on cycle numbers used. Resulting new composites were characterized scanning electronic microscopy (SEM), X-ray diffraction (XRD), electrochemical impedance spectroscopy (EIS), electromagnetic measures in waveguide of intrinsic properties, scattering parameters and reflectivity on frequency range from 8,0 up to 12,0 GHz To verify applicability on aeronautics electromagnetic shields, computing sources were used, through numeric simulations to determine RCS of objects, overlapping concepts of geometric interactions with material properties applied on their surfaces, added with interception of microwaves emitted by hypothetical radars. To this end, software Computer Simulation Technology-(CST) was used, through which efficacy of composite PAni@carbon fiber@epoxy was indicated to aeronautic application in Stealth technology. (author)

  12. Effects of alkali treatment on the mechanical and thermal properties of Sansevieria trifasciata fiber

    Science.gov (United States)

    Mardiyati, Steven, Rizkiansyah, Raden Reza; Senoaji, A.; Suratman, R.

    2016-04-01

    In this study, Sansevieria trifasciata fibers were treated by NaOH with concentration 1%,3%, and 5wt% at 100°C for 2 hours. Chesson-Datta methods was used to determine the lignocellulose content of raw sansevieria fibers and to investigate effect of alkali treatment on lignin content of the fiber. Mechanical properties and thermal properties of treated and untreated fibers were measured by means of tensile testing machine and thermogravimetric analysis (TGA).The cellulose and lignin contents of raw sansevieria fiber obtained from Chesson-Datta method were 56% and 6% respectively. Mechanical testing of fibers showed the increase of tensile strength from 647 MPa for raw fibers to 902 MPa for 5wt% NaOH treated fibers. TGA result showed the alkali treatment increase the thermal resistance of fibers from 288°C for raw fibers to 307°C for 5% NaOH treated fiber. It was found that alkali treatment affect the mechanical properties and thermal properties of sansevieria fibers.

  13. Effect Of Ethylene Oxide, Autoclave and Ultra Violet Sterilizations On Surface Topography Of Pet Electrospun Fibers

    Directory of Open Access Journals (Sweden)

    Sebnem DUZYER

    2016-11-01

    Full Text Available The aim of this study to investigate the effects of different sterilization methods on electrospun polyester. Ethylene oxide (EO, autoclave (AU and ultraviolet (UV sterilization methods were applied to electrospun fibers produced from polyethylene terephthalate (PET solutions with concentrations of 10, 15 and 20 wt.%. The surface characteristics of the fibers were examined by scanning electron microscope (SEM, atomic force microscope (AFM, surface pore size studies and contact angle measurements. Differential scanning calorimetry (DSC tests were carried out to characterize the thermal properties. Fourier Transform Infrared spectroscopy (FTIR tests were performed to analyze the micro structural properties. SEM studies showed that different sterilization methods made significant changes on the surfaces of the fibers depending on the PET concentration. Although the effects were decreased with the increasing polymer concentration, the fiber structure was damaged especially with the EO sterilization. The contact angle values were decreased with the UV sterilization method the most.

  14. Cladding defects in hollow core fibers for surface mode suppression and improved birefringence

    DEFF Research Database (Denmark)

    Michieletto, Mattia; Lyngso, J. K.; Lægsgaard, Jesper

    2014-01-01

    We demonstrate a novel polarization maintaining hollow-core photonic bandgap fiber geometry that reduces the impact of surface modes on fiber transmission. The cladding structure is modified with a row of partially collapsed holes to strip away unwanted surface modes. A theoretical investigation...... of the surface mode stripping is presented and compared to the measured performance of four 7-cells core fibers that were drawn with different collapse ratio of the defects. The varying pressure along the defect row in the cladding during drawing introduces an ellipticity of the core. This, combined...... with the presence of antiresonant features on the core wall, makes the fibers birefringent, with excellent polarization maintaining properties. (C) 2014 Optical Society of America...

  15. Effect of surface roughness variation on the transmission characteristics of D-shaped fibers with ambient index change

    International Nuclear Information System (INIS)

    Kim, Hyun-Joo; Kwon, Oh-Jang; Han, Young-Geun

    2010-01-01

    The influence of surface roughness on the sensitivity of D-shaped fibers to changes in the ambient index was investigated. In order to obtain D-shaped fibers with different surface roughness, we polished one side of the fibers by using different abrasive grits. The topographies of the surfaces of the polished D-shaped fibers were then observed by using atomic force microscopy (AFM). The light scattered from the rough surfaces of the D-shaped fibers was measured by using optical microscopy. The effect of an ambient index change on the transmission characteristics of D-shaped fibers was measured for various values of the surface roughness. The experimental results indicate that variations in the surface roughness have a considerable influence on the sensitivity of the transmission characteristics of D-shaped fibers to changes in the ambient index.

  16. Surface treatment of ceramic articles

    International Nuclear Information System (INIS)

    Komvopoulos, K.; Brown, I.G.; Wei, B.; Anders, S.; Anders, A.; Bhatia, C.S.

    1998-01-01

    A process is disclosed for producing an article with improved ceramic surface properties including providing an article having a ceramic surface, and placing the article onto a conductive substrate holder in a hermetic enclosure. Thereafter a low pressure ambient is provided in the hermetic enclosure. A plasma including ions of solid materials is produced the ceramic surface of the article being at least partially immersed in a macroparticle free region of the plasma. While the article is immersed in the macroparticle free region, a bias of the substrate holder is biased between a low voltage at which material from the plasma condenses on the surface of the article and a high negative voltage at which ions from the plasma are implanted into the article. 15 figs

  17. Fog Collection on Polyethylene Terephthalate (PET) Fibers: Influence of Cross Section and Surface Structure.

    Science.gov (United States)

    Azad, M A K; Krause, Tobias; Danter, Leon; Baars, Albert; Koch, Kerstin; Barthlott, Wilhelm

    2017-06-06

    Fog-collecting meshes show a great potential in ensuring the availability of a supply of sustainable freshwater in certain arid regions. In most cases, the meshes are made of hydrophilic smooth fibers. Based on the study of plant surfaces, we analyzed the fog collection using various polyethylene terephthalate (PET) fibers with different cross sections and surface structures with the aim of developing optimized biomimetic fog collectors. Water droplet movement and the onset of dripping from fiber samples were compared. Fibers with round, oval, and rectangular cross sections with round edges showed higher fog-collection performance than those with other cross sections. However, other parameters, for example, width, surface structure, wettability, and so forth, also influenced the performance. The directional delivery of the collected fog droplets by wavy/v-shaped microgrooves on the surface of the fibers enhances the formation of a water film and their fog collection. A numerical simulation of the water droplet spreading behavior strongly supports these findings. Therefore, our study suggests the use of fibers with a round cross section, a microgrooved surface, and an optimized width for an efficient fog collection.

  18. Role of surface chemistry in modified ACF (activated carbon fiber)-catalyzed peroxymonosulfate oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Shiying, E-mail: ysy@ouc.edu.cn [Key Laboratory of Marine Environment and Ecology, Ministry of Education, Qingdao 266100 (China); College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100 (China); Shandong Provincial Key Laboratory of Marine Environment and Geological Engineering (MEGE), Qingdao 266100 (China); Li, Lei [College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100 (China); Xiao, Tuo [College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100 (China); China City Environment Protection Engineering Limited Company, Wuhan 430071 (China); Zheng, Di; Zhang, Yitao [College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100 (China)

    2016-10-15

    Highlights: • ACF can efficiently activate peroxymonosulfate to degrade organic pollutants. • Basic functional groups may mainly increase the adsorption capacity of ACF. • C1, N1, N2 have promoting effect on the ACF catalyzed PMS oxidation. • Modification by heat after nitric acid is also a way of ACF regeneration. - Abstract: A commercial activated carbon fiber (ACF-0) was modified by three different methods: nitration treatment (ACF-N), heat treatment (ACF-H) and heat treatment after nitration (ACF-NH), and the effects of textural and chemical properties on the ability of the metal-free ACF-catalyzed peroxymonosulfate (PMS) oxidation of Reactive Black 5 (RB5), an azo dye being difficultly adsorbed onto ACF, in aqueous solution were investigated in this work. Surface density of functional groups, surface area changes, surface morphology and the chemical state inside ACF samples were characterized by Boehm titration, N{sub 2} adsorption, scanning electron microscopy in couple with energy dispersive spectroscopy (SEM-EDS) and X-ray photoelectron spectroscopy (XPS), respectively. XPS spectra deconvolution was applied to figure out the importance of surface nitrogen-containing function groups. We found that π-π, pyridine and amine have promoting effect on the catalytic oxidation while the −NO{sub 2} has inhibitory effect on the ACF/PMS systems for RB5 destroy. Sustainability and renewability of the typical ACF-NH for catalytic oxidation of RB5 were also discussed in detail. Information about our conclusions are useful to control and improve the performance of ACF-catalyzed PMS oxidation for organic pollutants in wastewater treatment.

  19. UV irradiation assisted growth of ZnO nanowires on optical fiber surface

    Energy Technology Data Exchange (ETDEWEB)

    Gong, Bo; Shi, Tielin; Liao, Guanglan; Li, Xiaoping; Huang, Jie; Zhou, Temgyuan; Tang, Zirong, E-mail: zirong@mail.hust.edu.cn

    2017-06-01

    Highlights: • A new fabrication process combined a hydrothermal process with UV irradiation from optical fiber is developed. • The growth of ZnO nanowires is efficient in the utilization of UV light. • A novel hybrid structure which integrates ZnO nanowires on optical fiber surface is synthesized. • The UV assisted growth of ZnO nanowires shows preferred orientation and better quality. • A mechanism of growing ZnO nanowires under UV irradiation is proposed. - Abstract: In this paper, a novel approach was developed for the enhanced growth of ZnO nanowires on optical fiber surface. The method combined a hydrothermal process with the efficient UV irradiation from the fiber core, and the effects of UV irradiation on the growth behavior of ZnO nanowires were investigated. The results show that UV irradiation had great effects on the preferred growth orientation and the quality of the ZnO nanowires. The crystallization velocity along the c-axis would increase rapidly with the increase of the irradiation power, while the growth process in the lateral direction was marginally affected by the irradiation. The structure of ZnO nanowires also shows less oxygen vacancy with UV irradiation of higher power. The developed approach is applicable for the efficient growth of nanowires on the fiber surface, and the ZnO nanowires/optical fiber hybrid structures have great potentials for a wide variety of applications such as optical fiber sensors and probes.

  20. Surface plasmon resonance based fiber optic detection of chlorine utilizing polyvinylpyrolidone supported zinc oxide thin films.

    Science.gov (United States)

    Tabassum, Rana; Gupta, Banshi D

    2015-03-21

    A highly sensitive chlorine sensor for an aqueous medium is fabricated using an optical fiber surface plasmon resonance (OFSPR) system. An OFSPR-based chlorine sensor is designed with a multilayer-type platform by zinc oxide (ZnO) and polyvinylpyrollidone (PVP) film morphology manipulations. Among all the methodologies of transduction reported in the field of solid state chemical and biochemical sensing, our attention is focused on the Kretschmann configuration optical fiber sensing technique using the mechanism of surface plasmon resonance. The optical fiber surface plasmon resonance (SPR) chlorine sensor is developed using a multimode optical fiber with the PVP-supported ZnO film deposited over a silver-coated unclad core of the fiber. A spectral interrogation mode of operation is used to characterize the sensor. In an Ag/ZnO/PVP multilayer system, the absorption of chlorine in the vicinity of the sensing region is performed by the PVP layer and the zinc oxide layer enhances the shift in resonance wavelength. It is, experimentally, demonstrated that the SPR wavelength shifts nonlinearly towards the red side of the visible region with an increase in the chlorine concentration in an aqueous medium while the sensitivity of the sensor decreases linearly with an increase in the chlorine concentration. As the proposed sensor utilizes an optical fiber, it possesses the additional advantages of fiber such as less signal degradation, less susceptibility to electromagnetic interference, possibility of remote sensing, probe miniaturization, probe re-usability, online monitoring, small size, light weight and low cost.

  1. Observation of gliding arc surface treatment

    DEFF Research Database (Denmark)

    Kusano, Yukihiro; Zhu, Jiajian; Ehn, A.

    2015-01-01

    . Water contact angle measurements indicate that the treatment uniformity improves significantly when the AC gliding arc is tilted to the polymer surface. Thickness reduction of the gas boundary layer, explaining the improvement of surface treatment, by the ultrasonic irradiation was directly observed...

  2. High Friction Surface Treatments, Transportation Research Synthesis

    Science.gov (United States)

    2018-03-01

    MnDOT and local transportation agencies in Minnesota are considering the use of a high friction surface treatment (HFST) as a safety strategy. HFST is used as a spot pavement surfacing treatment in locations with high friction demand (for example, cr...

  3. [Influence of different surface treatments on porcelain surface topography].

    Science.gov (United States)

    Tai, Yinxia; Zhu, Xianchun; Sen, Yan; Liu, Chang; Zhang, Xian; Shi, Xueming

    2013-02-01

    To evaluate the influence of different surface treatments on porcelain surface topography. Metal ceramic prostheses in 6 groups were treated according to the different surface treatment methods, and the surface topography was observed through scanning electron microscope (SEM). Group A was the control one (untreated), group B was etched by 9.6% hydrofluoric acid(HF), group C was deglazed by grinding and then etched by 9.6% HF, group D was treated with Nd: YAG laser irradiation(0.75 W) and HF etching, group E was treated with Nd: YAG laser irradiation (1.05 W) and HF etching, and group F was treated with laser irradiation (1.45 W) and HF etching. Surface topography was different in different groups. A lot of inerratic cracks with the shapes of rhombuses and grid, and crater with a shape of circle were observed on the ceramic surface after treatment with energy parameters of 1.05 W Nd: YAG laser irradiation and 9.6% HF etching (group E). Surface topography showed a lot of concaves on the inner wall of the cracks, and the concaves with diameter of 1-5 microm could be observed on the inner wall of the holes, which had a diameter of 20 microm under SEM. The use of Nd: YAG laser irradiation with the energy parameters of 1.05 W and the HF with a concentration of 9.6% can evenly coarsen the porcelain surface, that is an effective surface treatment method.

  4. The Effect of Fiber Bleaching Treatment on the Properties of Poly(lactic acid/Oil Palm Empty Fruit Bunch Fiber Composites

    Directory of Open Access Journals (Sweden)

    Marwah Rayung

    2014-08-01

    Full Text Available In this work, biodegradable composites from poly(lactic acid (PLA and oil palm empty fruit bunch (OPEFB fiber were prepared by melt blending method. Prior to mixing, the fiber was modified through bleaching treatment using hydrogen peroxide. Bleached fiber composite showed an improvement in mechanical properties as compared to untreated fiber composite due to the enhanced fiber/matrix interfacial adhesion. Interestingly, fiber bleaching treatment also improved the physical appearance of the composite. The study was extended by blending the composites with commercially available masterbatch colorant.

  5. The effect of fiber bleaching treatment on the properties of poly(lactic acid)/oil palm empty fruit bunch fiber composites.

    Science.gov (United States)

    Rayung, Marwah; Ibrahim, Nor Azowa; Zainuddin, Norhazlin; Saad, Wan Zuhainis; Razak, Nur Inani Abdul; Chieng, Buong Woei

    2014-08-22

    In this work, biodegradable composites from poly(lactic acid) (PLA) and oil palm empty fruit bunch (OPEFB) fiber were prepared by melt blending method. Prior to mixing, the fiber was modified through bleaching treatment using hydrogen peroxide. Bleached fiber composite showed an improvement in mechanical properties as compared to untreated fiber composite due to the enhanced fiber/matrix interfacial adhesion. Interestingly, fiber bleaching treatment also improved the physical appearance of the composite. The study was extended by blending the composites with commercially available masterbatch colorant.

  6. Modeling of ion beam surface treatment

    Energy Technology Data Exchange (ETDEWEB)

    Stinnett, R W [Quantum Manufacturing Technologies, Inc., Albuquerque, NM (United States); Maenchen, J E; Renk, T J [Sandia National Laboratories, Albuquerque, NM (United States); Struve, K W [Mission Research Corporation, Albuquerque, NM (United States); Campbell, M M [PASTDCO, Albuquerque, NM (United States)

    1997-12-31

    The use of intense pulsed ion beams is providing a new capability for surface engineering based on rapid thermal processing of the top few microns of metal, ceramic, and glass surfaces. The Ion Beam Surface Treatment (IBEST) process has been shown to produce enhancements in the hardness, corrosion, wear, and fatigue properties of surfaces by rapid melt and re-solidification. A new code called IBMOD was created, enabling the modeling of intense ion beam deposition and the resulting rapid thermal cycling of surfaces. This code was used to model the effect of treatment of aluminum, iron, and titanium using different ion species and pulse durations. (author). 3 figs., 4 refs.

  7. Fabrication of Localized Surface Plasmon Resonance Fiber Probes Using Ionic Self-Assembled Gold Nanoparticles

    Directory of Open Access Journals (Sweden)

    Miao Wan

    2010-07-01

    Full Text Available An nm-thickness composite gold thin film consisting of gold nanoparticles and polyelectrolytes is fabricated through ionic self-assembled multilayers (ISAM technique and is deposited on end-faces of optical fibers to construct localized surface plasmon resonance (LSPR fiber probes. We demonstrate that the LSPR spectrum induced by ISAM gold films can be fine-tuned through the ISAM procedure. We investigate variations of reflection spectra of the probe with respect to the layer-by-layer adsorption of ISAMs onto end-faces of fibers, and study the spectral variation mechanism. Finally, we demonstrated using this fiber probe to detect the biotin-streptavidin bioconjugate pair. ISAM adsorbed on optical fibers potentially provides a simple, fast, robust, and low-cost, platform for LSPR biosensing applications.

  8. Plasma enhanced modification of TMP fiber and its effect on tensile strength of wood fiber/PP composite

    Science.gov (United States)

    Sangyeob Lee; Todd F. Shupe; Chung Y. Hse

    2009-01-01

    Plasma-assisted surface treatment on thermomechanical pulp (TMP) fiber and polypropylene (PP) film was investigated to obtain interfacial adhesion at the wood fiber and PP interface. A metal plate between electrodes prevented thermal damage to the TMP fiber handsheets and PP film. Oxygen-plasma treatment provided better surface activation on the TMP fiber and...

  9. Electron-beam-induced post-grafting polymerization of acrylic acid onto the surface of Kevlar fibers

    Science.gov (United States)

    Xu, Lu; Hu, Jiangtao; Ma, Hongjuan; Wu, Guozhong

    2018-04-01

    The surface of Kevlar fibers was successfully modified by electron beam (EB)-induced post-grafting of acrylic acid (AA). The generation of radicals in the fibers was confirmed by electron spin resonance (ESR) measurements, and the concentration of radicals was shown to increase as the absorbed dose increased, but decrease with increasing temperature. The influence of the synthesis conditions on the degree of grafting was also investigated. The surface microstructure and chemical composition of the modified Kevlar fibers were characterized by scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS). The SEM images revealed that the surface of the grafted fibers was rougher than those of the pristine and irradiated fibers. XPS analysis confirmed an increase in C(O)OH groups on the surface of the Kevlar fibers, suggesting successful grafting of AA. These results indicate that EB-induced post-grafting polymerization is effective for modifying the surface properties of Kevlar fibers.

  10. Surface characterization of carbon fiber reinforced polymers by picosecond laser induced breakdown spectroscopy

    Science.gov (United States)

    Ledesma, Rodolfo; Palmieri, Frank; Connell, John; Yost, William; Fitz-Gerald, James

    2018-02-01

    Adhesive bonding of composite materials requires reliable monitoring and detection of surface contaminants as part of a vigorous quality control process to assure robust and durable bonded structures. Surface treatment and effective monitoring prior to bonding are essential in order to obtain a surface which is free from contaminants that may lead to inferior bond quality. In this study, the focus is to advance the laser induced breakdown spectroscopy (LIBS) technique by using pulse energies below 100 μJ (μLIBS) for the detection of low levels of silicone contaminants in carbon fiber reinforced polymer (CFRP) composites. Various CFRP surface conditions were investigated by LIBS using ∼10 ps, 355 nm laser pulses with pulse energies below 30 μJ. Time-resolved analysis was conducted to optimize the gate delay and gate width for the detection of the C I emission line at 247.9 nm to monitor the epoxy resin matrix of CFRP composites and the Si I emission line at 288.2 nm for detection of silicone contaminants in CFRP. To study the surface sensitivity to silicone contamination, CFRP surfaces were coated with polydimethylsiloxane (PDMS), the active ingredient in many mold release agents. The presence of PDMS was studied by inspecting the Si I emission lines at 251.6 nm and 288.2 nm. The measured PDMS areal densities ranged from 0.15 to 2 μg/cm2. LIBS measurements were performed before and after laser surface ablation. The results demonstrate the successful detection of PDMS thin layers on CFRP using picosecond μLIBS.

  11. Improvement of interfacial adhesion and nondestructive damage evaluation for plasma-treated PBO and Kevlar fibers/epoxy composites using micromechanical techniques and surface wettability.

    Science.gov (United States)

    Park, Joung-Man; Kim, Dae-Sik; Kim, Sung-Ryong

    2003-08-15

    Comparison of interfacial properties and microfailure mechanisms of oxygen-plasma treated poly(p-phenylene-2,6-benzobisoxazole (PBO, Zylon) and poly(p-phenylene terephthalamide) (PPTA, Kevlar) fibers/epoxy composites were investigated using a micromechanical technique and nondestructive acoustic emission (AE). The interfacial shear strength (IFSS) and work of adhesion, Wa, of PBO or Kevlar fiber/epoxy composites increased with oxygen-plasma treatment, due to induced hydrogen and covalent bondings at their interface. Plasma-treated Kevlar fiber showed the maximum critical surface tension and polar term, whereas the untreated PBO fiber showed the minimum values. The work of adhesion and the polar term were proportional to the IFSS directly for both PBO and Kevlar fibers. The microfibril fracture pattern of two plasma-treated fibers appeared obviously. Unlike in slow cooling, in rapid cooling, case kink band and kicking in PBO fiber appeared, whereas buckling in the Kevlar fiber was observed mainly due to compressive and residual stresses. Based on the propagation of microfibril failure toward the core region, the number of AE events for plasma-treated PBO and Kevlar fibers increased significantly compared to the untreated case. The results of nondestructive AE were consistent with microfailure modes.

  12. Eco-friendly surface modification on polyester fabrics by esterase treatment

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Jindan; Cai, Guoqiang; Liu, Jinqiang; Ge, Huayun; Wang, Jiping, E-mail: jipingwanghz@gmail.com

    2014-03-01

    Graphical abstract: - Highlights: • We used a simple and easy way to measure the enzyme activity. • We studied the mechanism by characterizing the chemical changes in the surface of fabric. • We studied the advantages in surface wettability, fiber integrity and mechanical performance of cutinase treated fabrics. • Cutinase pretreated fibers exhibited much improved fabric wicking and better fiber integrity comparing to alkali treated ones. • Cutinase pretreatment technology promotes energy conservation and emission reduction. - Abstract: Currently, traditional alkali deweighting technology is widely used to improve the hydrophilicity of polyester fabrics. However, the wastewater and heavy chemicals in the effluent cause enormous damage to the environment. Esterase treatment, which is feasible in mild conditions with high selectivity, can provide a clean and efficient way for polyester modification. Under the optimum conditions, the polyester fabric hydrolysis process of esterase had a linear kinetics. X-ray photoelectron spectrometry (XPS) results showed that hydroxyl and carboxyl groups were produced only on the surface of modified fiber without changing the chemical composition of the bulk. These fibers exhibited much improved fabric wicking, as well as greatly improved oily stain removal performance. Compared to the harsh alkali hydrolysis, the enzyme treatment led to smaller weight loss and better fiber integrity. The esterase treatment technology is promising to produce higher-quality polyester textiles with an environmental friendly approach.

  13. FIQUE FIBER AN ALTERNATIVE FOR REINFORCED PLASTICS. INFLUENCE OF SURFACE MODIFICATION

    Directory of Open Access Journals (Sweden)

    MARIO FERNANDO MUÑOZ VELEZ

    2014-12-01

    Full Text Available In this paper are studied the physicochemical, mechanical and thermal properties of the natural fique fibers, that can be used as reinforcement of polymeric matrices. The fibers were subjected to superficial modifications from chemical treatments which are conventionally used to promote the compatibility of natural fibers (hydrophilics with matrices of polymeric nature (hydrophobics. The superficial modification process of the fibers was carried out by alkalinization treatment with NaOH, followed by grafting of a coupling agent type silane and then a pre-impregnation with polyethylene. By running FTIR tests, it was possible to observe functional typical groups of native fibers and confirmed the proper execution of the superficial modifications proposed; in the same way, the thermal characterization by TGA allowed to demonstrate the loss of hemicellulose and lignin, that were removed with alkaline treatment, and the appearance of a new transition due to the polyethylene deposited subsequently with the pre-impregnate treatment. Finally, it was found that the alkaline treatment conditioned the mechanical properties of the treated fibers, being negligible the influence of silanization and the pre-impregnation in this characterization.

  14. U-Shaped and Surface Functionalized Polymer Optical Fiber Probe for Glucose Detection.

    Science.gov (United States)

    Azkune, Mikel; Ruiz-Rubio, Leire; Aldabaldetreku, Gotzon; Arrospide, Eneko; Pérez-Álvarez, Leyre; Bikandi, Iñaki; Zubia, Joseba; Vilas-Vilela, Jose Luis

    2017-12-25

    In this work we show an optical fiber evanescent wave absorption probe for glucose detection in different physiological media. High selectivity is achieved by functionalizing the surface of an only-core poly(methyl methacrylate) (PMMA) polymer optical fiber with phenilboronic groups, and enhanced sensitivity by using a U-shaped geometry. Employing a supercontinuum light source and a high-resolution spectrometer, absorption measurements are performed in the broadband visible light spectrum. Experimental results suggest the feasibility of such a fiber probe as a low-cost and selective glucose detector.

  15. Surface refractive index of the eye lens determined with an optic fiber sensor

    International Nuclear Information System (INIS)

    Pierscionek, B.K.

    1993-01-01

    The use of a fiber optic sensor for measurement of refractive index on the surface of eye lenses is described. The technique makes use of the fact that the amount of light reflected at the interface of two media (Fresnel reflectance) depends on the refractive-index difference between them. The sample is probed with a single-mode fiber, and the refractive index is calculated from the proportion of light reflected at the probe--sample interface

  16. Improvement of the piezoelectric properties of glass fiber-reinforced epoxy composites by poling treatment

    International Nuclear Information System (INIS)

    Oh, S M; Hwang, H Y

    2013-01-01

    Recently, a new non-destructive method has been proposed for damage monitoring of glass fiber-reinforced polymer composite materials using the piezoelectric characteristics of a polymeric matrix. Several studies of the piezoelectric properties of unidirectional glass fiber epoxy composites and damage monitoring of double-cantilever beams have supported the claim that the piezoelectric method is feasible and powerful enough to monitor the damage of glass fiber epoxy composites. Generally, conventional piezoelectric materials have higher piezoelectric characteristics through poling treatment. In this work, we investigated the change of the piezoelectric properties of glass fiber-reinforced epoxy composites before and after poling treatment. The piezoelectric constants (d 33 ) of glass fiber-reinforced epoxy composites increased by more than 400%. Also, x-ray diffraction tests revealed that poling treatment changed the degree of crystallinity of the epoxy matrix, and this led to the improvement of the piezoelectric characteristics of glass fiber-reinforced epoxy composites. (paper)

  17. Development of Surface-Modified Polyacrylonitrile Fibers and Their Selective Sorption Behavior of Precious Metals

    Directory of Open Access Journals (Sweden)

    Areum Lim

    2016-11-01

    Full Text Available The purpose of this study was to design a powerful fibrous sorbent for recovering precious metals such as Pd(II and Pt(IV, and moreover for identifying its selectivity toward Pd(II or Pt(IV from a binary metal solution. For the development of the sorbent, polyacrylonitrile (PAN was selected as a model textile because its morphological property (i.e., thin fiber form is suitable for fast adsorption processes, and a high amount of PAN has been discharged from industrial textile factories. The PAN fiber was prepared by spinning a PAN–dimethylsulfoxide mixture into distilled water, and then its surface was activated through amidoximation so that the fiber surface could possess binding sites for Pd(II and Pt(IV. Afterwards, by Fourier-transform infrared (FT-IR and scanning electron microscopy (SEM analyses, it was confirmed that the amidoximation reaction successfully occurred. The surface-activated fiber, designated as PAN–oxime fiber, was used to adsorb and recover precious metals. In the experiment results, it was clearly observed that adsorption capacity of PAN–oxime fiber was significantly enhanced compared to the raw material form. Actually, the raw material does not have sorption capacity for the metals. In a comparison study with commercial sorbent (Amberjet™ 4200, it was found that adsorption capacity of PAN–oxime was rather lower than that of Amberjet™ 4200, however, in the aspects of sorption kinetics and metal selectivity, the new sorbent has much faster and better selectivity.

  18. Propagation of PAMAM dendrimers on the carbon fiber surface by in situ polymerization: a novel methodology for fiber/matrix composites

    International Nuclear Information System (INIS)

    Zhang, R.L.; Gao, B.; Zhang, J.; Cui, H.Z.; Li, D.W.

    2015-01-01

    Graphical abstract: - Highlights: • The manuscript has the following obvious new contributions. • A facile strategy to generating dendrimers onto carbon fibers to functionalize conventional carbon fibers was reported. The density and type of the functional groups on the fiber surface can be easily adjusted by changing the reaction conditions. • The hierarchical reinforcement formed using this novel method improved the composite interface bonding through supplying sufficient chemical bonding and strong mechanical interlocking. • We can generate dendrimers with different side groups (unsaturated groups or hydroxyl groups, and others) and chain length to meet the requirements according to different matrices and applications. - Abstract: A facile strategy for generating dendrimers onto carbon fibers, in order to functionalize them, was reported. Dendrimers were propagated on the surface of carbon fibers by in situ polymerization with Michael addition. The changes in morphology, surface composition and surface energy, which were studied by atomic force microscope (AFM), dynamic contact angle analysis test (DCAT) and x-ray photoelectron microscopy (XPS), were related to the interfacial performance of model composites. In addition, the level of fiber-matrix adhesion was determined by the interlaminar shear strength (ILSS) test. Experimental results indicated that some dendritic polymer was successfully grown on the fiber surface through the chemical reaction, and this significantly enhanced the interfacial bonding of the carbon fiber composites.

  19. Surface hydrophilicity of PLGA fibers governs in vitro mineralization and osteogenic differentiation

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, Minnah; Arora, Aditya; Katti, Dhirendra S., E-mail: dsk@iitk.ac.in

    2014-12-01

    Interfacial properties of biomaterials play an important role in governing their interaction with biological microenvironments. This work investigates the role of surface hydrophilicity of electrospun poly(lactide-co-glycolide) (PLGA) fibers in determining their biological response. For this, PLGA is blended with varying amounts of Pluronic®F-108 and electrospun to fabricate microfibers with varying surface hydrophilicity. The results of mineralization study in simulated body fluid (SBF) demonstrate a significant enhancement in mineralization with an increase in surface hydrophilicity. While presence of serum proteins in SBF reduces absolute mineral content, mineralization continues to be higher on samples with higher surface hydrophilicity. The results from in vitro cell culture studies demonstrate a marked improvement in mesenchymal stem cell —adhesion, elongation, proliferation, infiltration, osteogenic differentiation and matrix mineralization on hydrophilized fibers. Therefore, hydrophilized PLGA fibers are advantageous both in terms of mineralization and elicitation of favorable cell response. Since most of the polymeric materials being used in orthopedics are hydrophobic in nature, the results from this study have strong implications in the future design of interfaces of such hydrophobic materials. In addition, the work proposes a facile method for the modification of electrospun fibers of hydrophobic polymers by blending with a poloxamer for improved bone tissue regeneration. - Highlights: • Surface hydrophilicity of PLGA modulated by blending with Pluronic F-108. • Hydrophilized fibers support better in vitro mineralization. • Mineralization trends retained in the presence of adsorbed serum proteins. • Hydrophilized fibers promote better cell adhesion and proliferation. • Hydrophilized fibers also enable better osteogenic differentiation.

  20. Impact of Surface Modification and Nanoparticle on Sisal Fiber Reinforced Polypropylene Nano composites

    International Nuclear Information System (INIS)

    Ibrahim, I. D.; Jamiru, T.; Sadiku, E. R.; Agwuncha, S. Ch.; Kupolati, W. K.

    2016-01-01

    The use of plant fibers, polymer, and nanoparticles for composite has gained global attention, especially in the packaging, automobile, aviation, building, and construction industries. Nano composites materials are currently in use as a replacement for traditional materials due to their superior properties, such as high strength-to-weight ratio, cost effectiveness, and environmental friendliness. Sisal fiber (SF) was treated with 5% NaOH for 2 hours at 70"°C. A mixed blend of sisal fiber and recycled polypropylene (rPP) was produced at four different fiber loadings: 10, 20, 30, and 40 wt.%, while nano clay was added at 1, 3, and 5 wt.%. Maleic anhydride grafted polypropylene (MAPP) was used as the compatibilizer for all composites prepared except the untreated sisal fibers. The characterization results showed that the fiber treatment, addition of MAPP, and nano clay improved the mechanical properties and thermal stability and reduced water absorption of the SF/rPP nano composites. The tensile strength, tensile modulus, and impact strength increased by 32.80, 37.62, and 5.48%, respectively, when compared to the untreated SF/rPP composites. Water absorption was reduced due to the treatment of fiber and the incorporation of MAPP and nano clay.

  1. Dark Fiber and Distributed Acoustic Sensing: Applications to Monitoring Seismicity and Near-Surface Properties

    Science.gov (United States)

    Ajo Franklin, J. B.; Lindsey, N.; Dou, S.; Freifeld, B. M.; Daley, T. M.; Tracy, C.; Monga, I.

    2017-12-01

    "Dark Fiber" refers to the large number of fiber-optic lines installed for telecommunication purposes but not currently utilized. With the advent of distributed acoustic sensing (DAS), these unused fibers have the potential to become a seismic sensing network with unparalleled spatial extent and density with applications to monitoring both natural seismicity as well as near-surface soil properties. While the utility of DAS for seismic monitoring has now been conclusively shown on built-for-purpose networks, dark fiber deployments have been challenged by the heterogeneity of fiber installation procedures in telecommunication as well as access limitations. However, the potential of telecom networks to augment existing broadband monitoring stations provides a strong incentive to explore their utilization. We present preliminary results demonstrating the application of DAS to seismic monitoring on a 20 km run of "dark" telecommunications fiber between West Sacramento, CA and Woodland CA, part of the Dark Fiber Testbed maintained by the DOE's ESnet user facility. We show a small catalog of local and regional earthquakes detected by the array and evaluate fiber coupling by using variations in recorded frequency content. Considering the low density of broadband stations across much of the Sacramento Basin, such DAS recordings could provide a crucial data source to constrain small-magnitude local events. We also demonstrate the application of ambient noise interferometry using DAS-recorded waveforms to estimate soil properties under selected sections of the dark fiber transect; the success of this test suggests that the network could be utilized for environmental monitoring at the basin scale. The combination of these two examples demonstrates the exciting potential for combining DAS with ubiquitous dark fiber to greatly extend the reach of existing seismic monitoring networks.

  2. Laser Surface Treatment of Sintered Alumina

    Science.gov (United States)

    Hagemann, R.; Noelke, C.; Kaierle, S.; Wesling, V.

    Sintered alumina ceramics are used as refractory materials for industrial aluminum furnaces. In this environment the ceramic surface is in permanent contact with molten aluminum resulting in deposition of oxidic material on its surface. Consequently, a lower volume capacity as well as thermal efficiency of the furnaces follows. To reduce oxidic adherence of the ceramic material, two laser-based surface treatment processes were investigated: a powder- based single-step laser cladding and a laser surface remelting. Main objective is to achieve an improved surface quality of the ceramic material considering the industrial requirements as a high process speed.

  3. Surface treatments for aluminium alloys

    Science.gov (United States)

    Ardelean, M.; Lascău, S.; Ardelean, E.; Josan, A.

    2018-01-01

    Typically, in contact with the atmosphere, the aluminium surface is covered with an aluminium oxide layer, with a thickness of less than 1-2μm. Due to its low thickness, high porosity and low mechanical strength, this layer does not protect the metal from corrosion. Anodizing for protective and decorative purposes is the most common method of superficial oxidation processes and is carried out through anodic oxidation. The oxide films, resulted from anodizing, are porous, have a thickness of 20-50μm, and are heat-resistant, stable to water vapour and other corrosion agents. Hard anodizing complies with the same obtains principles as well as decorative and protective anodization. The difference is in that hard anodizing is achieved at low temperatures and high intensity of electric current. In the paper are presented the results of decorative and hard anodization for specimens made from several aluminium alloys in terms of the appearance of the specimens and of the thickness of the anodized.

  4. Preparation and Characterization of Lignocellulosic Oil Sorbent by Hydrothermal Treatment of Populus Fiber

    Directory of Open Access Journals (Sweden)

    Yue Zhang

    2014-09-01

    Full Text Available This study is aimed at achieving the optimum conditions of hydrothermal treatment and acetylation of Populus fiber to improve its oil sorption capacity (OSC in an oil-water mixture. The characteristics of the hydrolyzed and acetylated fibers were comparatively investigated by FT-IR, CP-MAS 13C-NMR, SEM and TGA. The optimum conditions of the hydrothermal treatment and acetylation were obtained at170 °C for 1 h and 120 °C for 2 h, respectively. The maximum OSC of the hydrolyzed fiber (16.78 g/g was slightly lower than that of the acetylated fiber (21.57 g/g, but they were both higher than the maximum OSC of the unmodified fiber (3.94 g/g. In addition, acetylation after hydrothermal treatment for the Populus fiber was unnecessary as the increment of the maximum OSC was only 3.53 g/g. The hydrolyzed and the acetylated Populus fibers both displayed a lumen orifice enabling a high oil entrapment. The thermal stability of the modified fibers was shown to be increased in comparison with that of the raw fiber. The hydrothermal treatment offers a new approach to prepare lignocellulosic oil sorbent.

  5. Mechanical, Thermal Degradation, and Flammability Studies on Surface Modified Sisal Fiber Reinforced Recycled Polypropylene Composites

    Directory of Open Access Journals (Sweden)

    Arun Kumar Gupta

    2012-01-01

    Full Text Available The effect of surface treated sisal fiber on the mechanical, thermal, flammability, and morphological properties of sisal fiber (SF reinforced recycled polypropylene (RPP composites was investigated. The surface of sisal fiber was modified with different chemical reagent such as silane, glycidyl methacrylate (GMA, and O-hydroxybenzene diazonium chloride (OBDC to improve the compatibility with the matrix polymer. The experimental results revealed an improvement in the tensile strength to 11%, 20%, and 31.36% and impact strength to 78.72%, 77%, and 81% for silane, GMA, and OBDC treated sisal fiber reinforced recycled Polypropylene (RPP/SF composites, respectively, as compared to RPP. The thermogravimetric analysis (TGA, differential scanning calorimeter (DSC, and heat deflection temperature (HDT results revealed improved thermal stability as compared with RPP. The flammability behaviour of silane, GMA, and OBDC treated SF/RPP composites was studied by the horizontal burning rate by UL-94. The morphological analysis through scanning electron micrograph (SEM supports improves surface interaction between fiber surface and polymer matrix.

  6. Fiber optic corrosion sensing for bridges and roadway surfaces

    Science.gov (United States)

    Fuhr, Peter L.; Ambrose, Timothy P.; Huston, Dryver R.; McPadden, Adam P.

    1995-04-01

    In this paper we report the development of a fiber optic corrosion sensing system that complements and/or surpasses the capabilities of conventional corrosion sensing techniques. The sensing system is based on evanescent wave phenomena and in the configured sensor allows for the detection of general corrosion on and within materials. Based on the authors' experience installing may kilometers of fiberoptic sensors into large civil structures such as multistory buildings, hydroelectric dams, and railway/roadway bridges, we are (currently) embedding these sensors into bridge test members -- limited structures that are being subjected to accelerated corrosion testing conditions. Three Vermont Agency of Transportation bridges, one in a low salt use region, one in a medium salt use region, and the third in a high salt use region, are being selected and will be instrumented with these embedded fiber optic corrosion sensors. Monitoring of chloride penetration and rebar corrosion status will be measured during the course of a longitudinal study. The specific sensing mechanism and design for robustness (to allow survival of the embedding process during repaving of the bridges) are discussed and laboratory and initial field results are presented.

  7. Compact light-emitting diode optical fiber immobilized TiO2 reactor for photocatalytic water treatment.

    Science.gov (United States)

    O'Neal Tugaoen, Heather; Garcia-Segura, Sergi; Hristovski, Kiril; Westerhoff, Paul

    2018-02-01

    A key barrier to implementing photocatalysis is delivering light to photocatalysts that are in contact with aqueous pollutants. Slurry photocatalyst systems suffer from poor light penetration and require post-treatment to separate the catalyst. The alternative is to deposit photocatalysts on fixed films and deliver light onto the surface or the backside of the attached catalysts. In this study, TiO 2 -coated quartz optical fibers were coupled to light emitting diodes (OF/LED) to improve in situ light delivery. Design factors and mechanisms studied for OF/LEDs in a flow-through reactor included: (i) the influence of number of LED sources coupled to fibers and (ii) the use of multiple optical fibers bundled to a single LED. The light delivery mechanism from the optical fibers into the TiO 2 coatings is thoroughly discussed. To demonstrate influence of design variables, experiments were conducted in the reactor using the chlorinated pollutant para-chlorobenzoic acid (pCBA). From the degradation kinetics of pCBA, the quantum efficiencies (Φ) of oxidation and electrical energies per order (E EO ) were determined. The use of TiO 2 coated optical fiber bundles reduced the energy requirements to deliver photons and increased available surface area, which improved Φ and enhanced oxidative pollutant removal performance (E EO ). Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Combined influence of inertia, gravity, and surface tension on the linear stability of Newtonian fiber spinning

    Science.gov (United States)

    Bechert, M.; Scheid, B.

    2017-11-01

    The draw resonance effect appears in fiber spinning processes if the ratio of take-up to inlet velocity, the so-called draw ratio, exceeds a critical value and manifests itself in steady oscillations of flow velocity and fiber diameter. We study the effect of surface tension on the draw resonance behavior of Newtonian fiber spinning in the presence of inertia and gravity. Utilizing an alternative scaling makes it possible to visualize the results in stability maps of highly practical relevance. The interplay of the destabilizing effect of surface tension and the stabilizing effects of inertia and gravity lead to nonmonotonic stability behavior and local stability maxima with respect to the dimensionless fluidity and the dimensionless inlet velocity. A region of unconditional instability caused by the influence of surface tension is found in addition to the region of unconditional stability caused by inertia, which was described in previous works [M. Bechert, D. W. Schubert, and B. Scheid, Eur. J. Mech B 52, 68 (2015), 10.1016/j.euromechflu.2015.02.005; Phys. Fluids 28, 024109 (2016), 10.1063/1.4941762]. Due to its importance for a particular group of fiber spinning applications, a viscous-gravity-surface-tension regime, i.e., negligible effect of inertia, is analyzed separately. The mechanism underlying the destabilizing effect of surface tension is discussed and established stability criteria are tested for validity in the presence of surface tension.

  9. Influence of chemical agents on the surface area and porosity of active carbon hollow fibers

    Directory of Open Access Journals (Sweden)

    LJILJANA M. KLJAJEVIĆ

    2011-09-01

    Full Text Available Active carbon hollow fibers were prepared from regenerated polysulfone hollow fibers by chemical activation using: disodium hydrogen phosphate 2-hydrate, disodium tetraborate 10-hydrate, hydrogen peroxide, and diammonium hydrogen phosphate. After chemical activation fibers were carbonized in an inert atmosphere. The specific surface area and porosity of obtained carbons were studied by nitrogen adsorption–desorption isotherms at 77 K, while the structures were examined with scanning electron microscopy and X-ray diffraction. The activation process increases these adsorption properties of fibers being more pronounced for active carbon fibers obtained with disodium tetraborate 10-hydrate and hydrogen peroxide as activator. The obtained active hollow carbons are microporous with different pore size distribution. Chemical activation with phosphates produces active carbon material with small surface area but with both mesopores and micropores. X-ray diffraction shows that besides turbostratic structure typical for carbon materials, there are some peaks which indicate some intermediate reaction products when sodium salts were used as activating agent. Based on data from the electrochemical measurements the activity and porosity of the active fibers depend strongly on the oxidizing agent applied.

  10. Surface-Enhanced Raman Scattering Sensor on an Optical Fiber Probe Fabricated with a Femtosecond Laser

    OpenAIRE

    Ma, Xiaodong; Huo, Haibin; Wang, Wenhui; Tian, Ye; Wu, Nan; Guthy, Charles; Shen, Mengyan; Wang, Xingwei

    2010-01-01

    A novel fabrication method for surface-enhanced Raman scattering (SERS) sensors that used a fast femtosecond (fs) laser scanning process to etch uniform patterns and structures on the endface of a fused silica optical fiber, which is then coated with a thin layer of silver through thermal evaporation is presented. A high quality SERS signal was detected on the patterned surface using a Rhodamine 6G (Rh6G) solution. The uniform SERS sensor built on the tip of the optical fiber tip was small, l...

  11. Hollow-Core Photonic Crystal Fibers for Surface-Enhanced Raman Scattering Probes

    Directory of Open Access Journals (Sweden)

    Xuan Yang

    2011-01-01

    Full Text Available Photonic crystal fiber (PCF sensors based on surface-enhanced Raman scattering (SERS have become increasingly attractive in chemical and biological detections due to the molecular specificity, high sensitivity, and flexibility. In this paper, we review the development of PCF SERS sensors with emphasis on our recent work on SERS sensors utilizing hollow-core photonic crystal fibers (HCPCFs. Specifically, we discuss and compare various HCPCF SERS sensors, including the liquid-filled HCPCF and liquid-core photonic crystal fibers (LCPCFs. We experimentally demonstrate and theoretically analyze the high sensitivity of the HCPCF SERS sensors. Various molecules including Rhodamine B, Rhodamine 6G, human insulin, and tryptophan have been tested to show the excellent performance of these fiber sensors.

  12. Distinct positive temperature coefficient effect of polymer-carbon fiber composites evaluated in terms of polymer absorption on fiber surface.

    Science.gov (United States)

    Zhang, Xi; Zheng, Shaodi; Zheng, Xiaofang; Liu, Zhengying; Yang, Wei; Yang, Mingbo

    2016-03-21

    In this article, the positive temperature coefficient (PTC) effect was studied for high-density polyethylene (HDPE)/carbon fiber (CF) composites. All of the samples showed a significant PTC effect during the heating processes without a negative temperature coefficient (NTC) effect, even at a temperature much higher than the melting point of the polymer matrix. An ever-increasing PTC intensity with increasing thermal cycles was observed in our study that had never been reported in previous research. The absence of a NTC effect resulted from the increased binding force between the matrix and fillers that contributed to the very special structure of CF surface. We incorporated thermal expansion theory and quantum tunneling effects to explain PTC effect. From the SEM micrographs for the HDPE/CF composites before and after the different thermal cycles, we found that the surface of CF was covered with a layer of polymer which resulted in a change in the gap length between CF and HDPE and its distribution. We believed that the gap change induced by polymer absorption on the fiber surface had a great effect on the PTC effect.

  13. Laser-Based Surface Modification of Microstructure for Carbon Fiber-Reinforced Plastics

    Science.gov (United States)

    Yang, Wenfeng; Sun, Ting; Cao, Yu; Li, Shaolong; Liu, Chang; Tang, Qingru

    2018-05-01

    Bonding repair is a powerful feature of carbon fiber-reinforced plastics (CFRP). Based on the theory of interface bonding, the interface adhesion strength and reliability of the CFRP structure will be directly affected by the microscopic features of the CFRP surface, including the microstructure, physical, and chemical characteristics. In this paper, laser-based surface modification was compared to Peel-ply, grinding, and polishing to comparatively evaluate the surface microstructure of CFRP. The surface microstructure, morphology, fiber damage, height and space parameters were investigated by scanning electron microscopy (SEM) and laser confocal microscopy (LCM). Relative to the conventional grinding process, laser modification of the CFRP surface can result in more uniform resin removal and better processing control and repeatability. This decreases the adverse impact of surface fiber fractures and secondary damage. The surface properties were significantly optimized, which has been reflected such things as the obvious improvement of surface roughness, microstructure uniformity, and actual area. The improved surface microstructure based on laser modification is more conducive to interface bonding of CFRP structure repair. This can enhance the interfacial adhesion strength and reliability of repair.

  14. Novel multichannel surface plasmon resonance photonic crystal fiber biosensor

    Science.gov (United States)

    Hameed, Mohamed Farhat O.; Alrayk, Yassmin K. A.; Shaalan, A. A.; El Deeb, Walid S.; Obayya, S. S. A.

    2016-04-01

    In this paper, a novel design of highly sensitive biosensor based on photonic crystal fiber is presented and analyzed using full vectorial finite element method. The suggested design depends on using silver layer as a plasmonic active material coated by a gold layer to protect silver oxidation. The reported sensor is based on the detection using the quasi transverse electric (TE) and quasi transverse magnetic (TM) modes which offers the possibility of multi-channel/multi-analyte sensing. The sensor geometrical parameters are optimized to achieve high sensitivity for the two polarized modes. High refractive index sensitivity of about 4750 nm/RIU (refractive index unit) and 4300 nm/RIU with corresponding resolutions of 2.1×10-5 RIU, and 2.33×10-5 RIU can be obtained for the quasi TM and quasi TE modes, respectively.

  15. Surface structural evolvement in the conversion of polyacrylonitrile precursors to carbon fibers

    International Nuclear Information System (INIS)

    Qian, Xin; Zou, Ruifen; OuYang, Qin; Wang, Xuefei; Zhang, Yonggang

    2015-01-01

    Highlights: • The characteristic striated topography of PAN precursors resulted from the wet spinning process could pass down to carbon fibers. • The ridges and grooves monitored became much more well-defined after the thermo-oxidation. • Both the depth and the width of longitudinal grooves decreased after the carbonization. • Carbon, nitrogen, oxygen and silicon were the governing elements on the fiber surface. - Abstract: Surface structural evolvement in the conversion of polyacrylonitrile (PAN) precursors to carbon fibers was investigated through scanning electron microscopy (SEM), atomic force microscopy (AFM) and X-ray photoelectron spectroscopy (XPS). SEM results showed that the characteristic striated topography of PAN precursors resulted from the wet spinning process could pass down to carbon fibers. The fiber diameter gradually decreased from 11.3 μm to 5.5 μm and the corresponding density increased from 1.18 g/cm 3 to 1.80 g/cm 3 in the conversion of PAN precursors to carbon fibers. The ridges and grooves monitored by AFM became much more well-defined after the thermo-oxidation. However, the original longitudinal grooves were destroyed and both the depth and the width of longitudinal grooves decreased after the carbonization. XPS results revealed that carbon, nitrogen, oxygen and silicon were the governing elements on the fiber surface. The −C−C functional groups was the dominant groups and the relative contents of −C=O and −COO groups gradually increased in the process of thermo-oxidation and carbonization

  16. Effect of the surface treatment of plain carbon fiber posts on the retention of the composite core: an in vitro evaluation Efeito do tratamento superficial de pinos de fibra de carbono lisos na retenção da resina de preenchimento: uma avaliação in vitro

    Directory of Open Access Journals (Sweden)

    Adriana Ferreira QUINTAS

    2001-03-01

    Full Text Available This study aims to evaluate the role of surface treatments performed on plain carbon fiber posts, in relation to serrated carbon fiber posts, in the retention of the composite core. Fifty carbon fiber posts received surface treatments in order to verify their influence on the retention of the core material. An acrylic resin mold was developed in order to precisely fit the post, leaving a machined space to accommodate a self-curing composite resin. After the surface treatment, a primer was applied on the coronal portion of all posts, which were then dried. They were fitted to the mold and received a 3 mm composite core. All specimens were thermocycled and then stored in distilled water for a week. Tension test was performed at a speed of 0.5 mm/min until there was lack of adhesion or fracture of the core. The conclusions were: a the values of retention related to aluminum oxide spray (group A, depth cutter diamond burs (group C and posts with machined coronal portion (group D were comparable to those of serrated posts (group E, although no statistically significant difference between these groups was found; b the mean values of core retention in group B (medium grit diamond burs were statistically lower than those of other groups.Foi avaliado o possível efeito de tratamentos superficiais em pinos de fibra de carbono lisos, quando comparados aos pinos serrilhados, na retenção à resina composta empregada na confecção de núcleos de preenchimento. Foram utilizados cinqüenta pinos de fibra de carbono, divididos em cinco grupos: os quatro primeiros grupos eram constituídos por pinos do tipo liso, cujas superfícies foram tratadas, e o último grupo por dez pinos do tipo serrilhado. Foram desenvolvidas matrizes de resina acrílica com um leito ajustado para conter o pino, com um alargamento na porção coronária para posterior preenchimento com resina composta. Após o tratamento superficial, todos os pinos receberam camadas de "primer", foram

  17. Development of laser surface cladding through energy transmission over optical fiber

    International Nuclear Information System (INIS)

    Hirano, Kenji; Morishige, Norio; Irisawa, Toshio

    1990-01-01

    Much attention has recently been paid to laser cladding techniques as an approach in controlling the composition and structure of the metal surface. If YAG laser is used as the cladding method, the flexibility of laser cladding process increases extremely because YAG laser beam is transmitted through an optical fiber, and enabling cladding on pipes installed in actual plants. So experiments on YAG laser cladding through energy transmission over an optical fiber were performed to prevent stress corrosion cracking in austenitic stainless steel pipes. In order to build a cladding layer, mixed metal powder were pre-placed on the inner surface of the pipe using organic binder and the pre-placed powder beds were melted with YAG laser beam transmitted using an optical fiber. This paper introduces the method of building a cladding layer on pipes in actual nuclear plants. (author)

  18. Method for imparting improved surface properties to carbon fibers and composite

    International Nuclear Information System (INIS)

    Ueno, S.; Kamata, H.

    1984-01-01

    The invention provides a means for solving the problem of poor affinity between the surface of carbon fibers and a synthetic resin in a resin-based composite material reinforced with the carbon fibers. The method comprises subjecting the surface of the carbon fibers in advance to exposure to low temperature plasma in a low pressure atomosphere of an inorganic gas generated by applying an electric voltage between electrodes. It was unexpectedly discovered that the discharge voltage between the electrodes is very critical and satisfactory results can be obtained when the peak-to-peak value of the discharge voltage between electrodes is 4000 volts or higher. The composition of the atmospheric inorganic gas is also important and the gas is preferably oxygen gas or a gaseous mixture containing at least 10% by volume of oxygen

  19. Transferability of antibody pairs from ELISA to fiber optic surface plasmon resonance for infliximab detection

    Science.gov (United States)

    Van Stappen, Thomas; Lu, Jiadi; Bloemen, Maarten; Geukens, Nick; Spasic, Dragana; Delport, Filip; Verbiest, Thierry; Lammertyn, Jeroen; Gils, Ann

    2015-03-01

    Tumor necrosis factor (TNF)-alpha is a pleiotropic cytokine up-regulated in inflammatory bowel disease, rheumatoid arthritis and psoriasis. The introduction of anti-TNF drugs such as infliximab has revolutionized the treatment of these diseases. Recently, therapeutic drug monitoring (TDM) of infliximab has been introduced in clinical decision making to increase cost-efficiency. Nowadays, TDM is performed using radio-immunoassays, homogeneous mobility shift assays or ELISA. Unfortunately, these assays do not allow for in situ treatment optimization, because of the required sample transportation to centralized laboratories and the subsequent assay execution time. In this perspective, we evaluated the potential of fiber optic-surface plasmon resonance (FO-SPR). To achieve this goal, a panel of 55 monoclonal anti-infliximab antibodies (MA-IFX) was developed and characterized in-house, leading to the identification of nine different clusters. Based on this high diversity, 22 antibody pairs were selected and tested for their reactivity towards IFX, using one MA-IFX as capture and one MA-IFX for detection, in a sandwich type ELISA and FO-SPR. This study showed that the reactivity towards IFX of each antibody pair in ELISA is highly similar to its reactivity on FO-SPR, indicating that antibody pairs are easily transferable between both platforms. Given the fact that FO-SPR shows the potential for miniaturization and fast assay time, it can be considered a highly promising platform for on-site infliximab monitoring.

  20. Comparison of the chemical properties of wheat straw and beech fibers following alkaline wet oxidation and laccase treatments

    DEFF Research Database (Denmark)

    Schmidt, A. S.; Mallon, S.; Thomsen, Anne Belinda

    2002-01-01

    Wheat straw (Triticum aestivum) and beech (Fagus sylvatica), were used to evaluate the effects of two pre-treatment processes (alkaline wet oxidation and enzyme treatment with laccase) on lignocellulosic materials for applications in particleboards and fiberboards. Wheat straw and beech fibers...... treatment gave a more reactive surface than alkaline wet oxidation for wheat straw, whereas the opposite was observed for beech. Fourier transform infrared (FT-IR) spectroscopy showed an almost complete loss of the ester carbonyl stretching signal and the corresponding C-C-O stretching in wet...

  1. Influence of thermal treatment on porosity formation on carbon fiber from textile PAN

    Directory of Open Access Journals (Sweden)

    Jossano Saldanha Marcuzzo

    2012-01-01

    Full Text Available Activated carbon fibers (ACFs are known as an excellent adsorbent material due to their particular characteristics such as their high speed adsorption rate and for being easy to handle. The ACFs are commercially manufactured from carbon fibers (CF which receive an additional activation process and can be produced from celluloses, phenolic resin, pitch and Polyacrylonitrile (PAN. In the present work, the oxidized 5.0 dtex textile PAN fiber was carbonized to CFs formation. During the carbonization process in different heating rates, the topographic features changes on fibers were monitored in order to determine the best carbonization condition for CFs production to be used as raw material for ACF. Different heating rates and maximum temperature of treatment were tested and the results indicated that it is possible to produce poorly activated carbon fiber, directly from oxidized textile PAN fiber, by one single step production process.

  2. Influence of thermal treatment on porosity formation on carbon fiber from textile PAN

    Directory of Open Access Journals (Sweden)

    Jossano Saldanha Marcuzzo

    2013-02-01

    Full Text Available Activated carbon fibers (ACFs are known as an excellent adsorbent material due to their particular characteristics such as their high speed adsorption rate and for being easy to handle. The ACFs are commercially manufactured from carbon fibers (CF which receive an additional activation process and can be produced from celluloses, phenolic resin, pitch and Polyacrylonitrile (PAN. In the present work, the oxidized 5.0 dtex textile PAN fiber was carbonized to CFs formation. During the carbonization process in different heating rates, the topographic features changes on fibers were monitored in order to determine the best carbonization condition for CFs production to be used as raw material for ACF. Different heating rates and maximum temperature of treatment were tested and the results indicated that it is possible to produce poorly activated carbon fiber, directly from oxidized textile PAN fiber, by one single step production process.

  3. Surface grafting of styrene on polypropylene fibers by argon plasma and its adsorption-regeneration of BTX

    Science.gov (United States)

    Xu, J. J.; Guo, M. L.; Chen, Q. G.; Lian, Z. Y.; Wei, W. J.; Luo, Z. W.; Xie, G.; Chen, H. N.; Dong, K.

    2017-08-01

    Active macromolecular free radicals were generated on polypropylene (PP) fibers surfaces by argon (Ar) plasma irradiation, then, PP surface modified fibers (PP-g-St fibers) were prepared by in-situ grafting reaction of styrene monomers (St). Effects of reaction parameters on grafting percentage were studied and adsorption capacities of PP-g-St fibers for benzene, toluene and xylene (BTX) were evaluated. Afterwards, regeneration adsorption efficiencies after maximum adsorption were explored. The results indicated that the optimum input power, irradiation time and grafting reaction time are 90 W, 3 min and 3 h respectively and the grafting percentage of St reached 5.7 %. The adsorption capacities of PP-g-St fibers towards toluene and xylene emulsions and solutions in water increased by 336.89 % and 344.57 % respectively, compared to pristine PP fibers. In addition, regeneration adsorption efficiencies of modified fibers remained > 90 % after six cycles of regeneration-adsorption experiments, which showed excellent regeneration ability.

  4. Optimization of dyeing wool fibers procedure with Isatis tinctoria by Response Surface Methodology

    NARCIS (Netherlands)

    Barani, H.; Nasiriboroumand, Majid; Haji, A.; Kazemipour, M.

    2012-01-01

    The response surface method (RMS) was used to optimize the color strength (K/S) of the wool fibers dyed with Isatis tinctoria. The eight independent variable terms, in which two of them are categorical and the other six numerical, were selected at two levels (low and high). The ANOVA test results of

  5. Alteration of cartilage surface collagen fibers differs locally after immobilization of knee joints in rats

    Science.gov (United States)

    Nagai, Momoko; Aoyama, Tomoki; Ito, Akira; Tajino, Junichi; Iijima, Hirotaka; Yamaguchi, Shoki; Zhang, Xiangkai; Kuroki, Hiroshi

    2015-01-01

    The purpose of this study was to examine the ultrastructural changes of surface cartilage collagen fibers, which differ by region and the length of the experimental period in an immobilization model of rat. Male Wistar rats were randomly divided into histological or macroscopic and ultrastructural assessment groups. The left knees of all the animals were surgically immobilized by external fixation for 1, 2, 4, 8 or 16 weeks (n = 5/time point). Sagittal histological sections of the medial mid-condylar region of the knee were obtained and assessed in four specific regions (contact and peripheral regions of the femur and tibia) and two zones (superficial and deep). To semi-quantify the staining intensity of the collagen fibers in the cartilage, picrosirius red staining was used. The cartilage surface changes of all the assessed regions were investigated by scanning electron microscopy (SEM). From histological and SEM observations, the fibrillation and irregular changes of the cartilage surface were more severe in the peripheral region than in the contact region. Interestingly, at 16 weeks post-immobilization, we observed non-fibrous structures at both the contact and peripheral regions. The collagen fiber staining intensity decreased in the contact region compared with the peripheral region. In conclusion, the alteration of surface collagen fiber ultrastructure and collagen staining intensity differed by the specific cartilage regions after immobilization. These results demonstrate that the progressive degeneration of cartilage is region specific, and depends on the length of the immobilization period. PMID:25939458

  6. Theoretical analysis of a fiber optic surface plasmon resonance sensor utilizing a Bragg grating

    Czech Academy of Sciences Publication Activity Database

    Špačková, Barbora; Homola, Jiří

    2009-01-01

    Roč. 17, č. 25 (2009), s. 23254-23264 ISSN 1094-4087 Institutional research plan: CEZ:AV0Z20670512 Keywords : Surface plasmon resonance * Fiber optic * Bragg grating * Biosensor * Coupled mode theory Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering Impact factor: 3.278, year: 2009

  7. Novel concept of multi-channel fiber optic surface plasmon resonance sensor

    Czech Academy of Sciences Publication Activity Database

    Špačková, Barbora; Piliarik, Marek; Kvasnička, Pavel; Rajarajan, M.; Homola, Jiří

    2009-01-01

    Roč. 139, č. 1 (2009), s. 199-203 ISSN 0925-4005 R&D Projects: GA AV ČR KAN200670701 Institutional research plan: CEZ:AV0Z20670512 Keywords : . Surface plasmon resonance * Fiber optic * Bragg grating * Biosensor Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering Impact factor: 3.083, year: 2009

  8. Formation of a nanocrystalline layer on the surface of stone wool fibers

    DEFF Research Database (Denmark)

    Yue, Yuanzheng; Korsgaard, Martin; Kirkegaard, Lise Frank

    2009-01-01

    In the present paper, we report a simple approach for creating a nanocrystalline layer on the surface of stone wool fibers (SWFs) with a basalt-like composition. The approach is based on a preoxidation process of the SWFs in atmospheric air at a temperature around the glass transition temperature...

  9. Alpha-fetoprotein detection by using a localized surface plasmon coupled fluorescence fiber-optic biosensor

    Science.gov (United States)

    Chang, Ying-Feng; Chen, Ran-Chou; Li, Ying-Chang; Yu, Chih-Jen; Hsieh, Bao-Yu; Chou, Chien

    2007-11-01

    Alpha-fetoprotein (AFP) detection by using a localized surface plasmon coupled fluorescence (LSPCF) fiber-optic biosensor is setup and experimentally demonstrated. It is based on gold nanoparticle (GNP) and coupled with localized surface plasmon wave on the surface of GNP. In this experiment, the fluorophores are labeled on anti-AFP which are bound to protein A conjugated GNP. Thus, LSPCF is excited with high efficiency in the near field of localized surface plasmon wave. Therefore, not only the sensitivity of LSPCF biosensor is enhanced but also the specific selectivity of AFP is improved. Experimentally, the ability of real time measurement in the range of AFP concentration from 0.1ng/ml to 100ng/ml was detected. To compare with conventional methods such as enzyme-linked immunosorbent assay (ELISA) or radioimmunoassay (RIA), the LSPCF fiber-optic biosensor performs higher or comparable detection sensitivity, respectively.

  10. Surface Plasmon Scattering in Exposed Core Optical Fiber for Enhanced Resolution Refractive Index Sensing.

    Science.gov (United States)

    Klantsataya, Elizaveta; François, Alexandre; Ebendorff-Heidepriem, Heike; Hoffmann, Peter; Monro, Tanya M

    2015-09-29

    Refractometric sensors based on optical excitation of surface plasmons on the side of an optical fiber is an established sensing architecture that has enabled laboratory demonstrations of cost effective portable devices for biological and chemical applications. Here we report a Surface Plasmon Resonance (SPR) configuration realized in an Exposed Core Microstructured Optical Fiber (ECF) capable of optimizing both sensitivity and resolution. To the best of our knowledge, this is the first demonstration of fabrication of a rough metal coating suitable for spectral interrogation of scattered plasmonic wave using chemical electroless plating technique on a 10 μm diameter exposed core of the ECF. Performance of the sensor in terms of its refractive index sensitivity and full width at half maximum (FWHM) of SPR response is compared to that achieved with an unstructured bare core fiber with 140 μm core diameter. The experimental improvement in FWHM, and therefore the detection limit, is found to be a factor of two (75 nm for ECF in comparison to 150 nm for the large core fiber). Refractive index sensitivity of 1800 nm/RIU was achieved for both fibers in the sensing range of aqueous environment (1.33-1.37) suitable for biosensing applications.

  11. Enhanced Microwave Absorption and Surface Wave Attenuation Properties of Co0.5Ni0.5Fe2O4 Fibers/Reduced Graphene Oxide Composites

    Directory of Open Access Journals (Sweden)

    Yinrui Li

    2018-03-01

    Full Text Available Co0.5Ni0.5Fe2O4 fibers with a diameter of about 270 nm and a length of about 10 μm were synthesized by a microemulsion-mediated solvothermal method with subsequent heat treatment. The Co0.5Ni0.5Fe2O4 fibers/reduced graphene oxide (RGO composite was prepared by a facile in-situ chemical reduction method. The crystalline structures and morphologies were investigated based on X-ray diffraction patterns and scanning electron microscopy. Magnetization measurements were carried out using a vibrating sample magnetometer at room temperature. Co0.5Ni0.5Fe2O4 fibers/RGO composites achieve both a wider and stronger absorption and an adjustable surface wave attenuation compared with Co0.5Ni0.5Fe2O4 fibers, indicating the potential for application as advanced microwave absorbers.

  12. Surface chemical analysis and ab initio investigations of CsI coated C fiber cathodes for high power microwave sources

    Science.gov (United States)

    Vlahos, Vasilios; Morgan, Dane; LaCour, Matthew; Golby, Ken; Shiffler, Don; Booske, John H.

    2010-02-01

    CsI coated C fiber cathodes are promising electron emitters utilized in field emission applications. Ab initio calculations, in conjunction with experimental investigations on CsI-spray coated C fiber cathodes, were performed in order to better understand the origin of the low turn-on E-field obtained, as compared to uncoated C fibers. One possible mechanism for lowering the turn-on E-field is surface dipole layers reducing the work function. Ab initio modeling revealed that surface monolayers of Cs, CsI, Cs2O, and CsO are all capable of producing low work function C fiber cathodes (1 eV<Φ<1.5 eV), yielding a reduction in the turn-on E-field by as much as ten times, when compared to the bare fiber. Although a CsI-containing aqueous solution is spray deposited on the C fiber surface, energy dispersive x-ray spectroscopy and scanning auger microscopy measurements show coabsorption of Cs and I into the fiber interior and Cs and O on the fiber surface, with no surface I. It is therefore proposed that a cesium oxide (CsxOy) surface coating is responsible, at least in part, for the low turn E-field and superior emission characteristics of this type of fiber cathode. This CsxOy layer could be formed during preconditioning heating. CsxOy surface layers cannot only lower the fiber work function by the formation of surface dipoles (if they are thin enough) but may also enhance surface emission through their ability to emit secondary electrons due to a process of grazing electron impact. These multiple electron emission processes may explain the reported 10-100 fold reduction in the turn-on E-field of coated C fibers.

  13. Fiber

    Science.gov (United States)

    ... meals instead of white rice. Add beans (kidney, black, navy, and pinto) to rice dishes for even more fiber. Spice up salads with berries and almonds, chickpeas, cooked artichokes, and beans (kidney, black, navy, or pinto). Use whole-grain (corn or ...

  14. Morpho-chemical characterization and surface properties of carcinogenic zeolite fibers

    International Nuclear Information System (INIS)

    Mattioli, Michele; Giordani, Matteo; Dogan, Meral; Cangiotti, Michela; Avella, Giuseppe; Giorgi, Rodorico; Dogan, A. Umran; Ottaviani, Maria Francesca

    2016-01-01

    Highlights: • Differently carcinogenic zeolite fibers were investigated combining physico-chemical methods. • For the first time, zeolite fibers were studied by means of the EPR technique using different spin probes. • The structural properties and the adsorption capability are function of different types and distributions of adsorption sites. • The interacting ability of erionite is higher than that of other fibrous zeolites. • The surface interacting properties may be related with the carcinogenicity of the zeolite fibers. - Abstract: Erionite belonging to the zeolite family is a human health-hazard, since it was demonstrated to be carcinogenic. Conversely, offretite family zeolites were suspected carcinogenic. Mineralogical, morphological, chemical, and surface characterizations were performed on two erionites (GF1, MD8) and one offretite (BV12) fibrous samples and, for comparison, one scolecite (SC1) sample. The specific surface area analysis indicated a larger availability of surface sites for the adsorption onto GF1, while SC1 shows the lowest one and the presence of large pores in the poorly fibrous zeolite aggregates. Selected spin probes revealed a high adsorption capacity of GF1 compared to the other zeolites, but the polar/charged interacting sites were well distributed, intercalated by less polar sites (Si–O–Si). MD8 surface is less homogeneous and the polar/charged sites are more interacting and closer to each other compared to GF1. The interacting ability of BV12 surface is much lower than that found for GF1 and MD8 and the probes are trapped in small pores into the fibrous aggregates. In comparison with the other zeolites, the non-carcinogenic SC1 shows a poor interacting ability and a lower surface polarity. These results helped to clarify the chemical properties and the surface interacting ability of these zeolite fibers which may be related to their carcinogenicity.

  15. Influencing Mechanism of Electrochemical Treatment on Preparation of CNTs-grafted on Carbon Fibers

    Directory of Open Access Journals (Sweden)

    SONG Lei

    2017-11-01

    Full Text Available Based on electrochemical anodic oxidation, an innovative technique was developed to efficiently obtain the uniform catalyst coating on continuous carbon fibers. Through systematic investigation on the effect of electrochemical modified strength on the physical and chemical characteristics of carbon fiber surface, catalyst particles and the morphology of CNTs-grafted carbon fibers, tensile strength of multi-scale reinforcement and the interlaminar shear strength of its reinforced composites, the electrochemical modification process on carbon fibre surface was optimized. The results show that the morphology and distribution of catalyst particles not only affect the morphology of CNTs deposited on the surface of carbon fibres,but also affect the mechanical properties of multi-scale reinforcement and its reinforced composites of CNTs-grafted carbon fibers.

  16. Durable grafting of silkworm pupa protein onto the surface of polyethylene terephthalate fibers

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Jianfeng, E-mail: 584884673@qq.com [College of Textiles & Garments, Southwest University, Chongqing 400716 (China); Chongqing Engineering Research Center of Biomaterial Fiber and Modern Textile, 400716 (China); Zheng, Dandan, E-mail: 183737543@qq.com [College of Textiles & Garments, Southwest University, Chongqing 400716 (China); Chongqing Engineering Research Center of Biomaterial Fiber and Modern Textile, 400716 (China); Zhang, Fengxiu, E-mail: zhangfx656472@sina.com.cn [School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715 (China); Zhang, Guangxian, E-mail: zgx656472@sina.com [College of Textiles & Garments, Southwest University, Chongqing 400716 (China); Chongqing Engineering Research Center of Biomaterial Fiber and Modern Textile, 400716 (China)

    2016-12-01

    In this paper, reactive –NH{sub 2} groups (8.36 × 10{sup −6} mol/g fabric) were introduced to the surface of polyethylene terephthalate (PET) fabrics by a nitration and reduction method, and epoxy groups were introduced to silkworm pupa protein (SPP) by reaction with epoxy chloropropane. PET-SPP composite fabrics were then prepared by reaction of these two precursors. The results showed that the SPP was firmly grafted onto the PET fabric surface and that the hydrophilicity of the fabric was markedly improved by the grafting of SPP. SEM images revealed a layer of substance covering the surface of the PET fibers, and XPS investigation showed that the nitrogen content of the PET-SPP fabric was higher than that of the original PET fabric (2.32% vs 0%). ATR-FTIR adsorption bands at 1653 and 1543 cm{sup −1} suggested the successful grafting of SPP onto the PET fabric surface. The DSC and TG of the PET fibers demonstrated that the thermal stability of the original PET fibers was maintained well by the SPP-grafted PET fibers. The breaking strength, bending rigidity, air permeability, and crease recovery angle of the original PET fabric were also retained by the SPP-grafted PET fabric. - Highlights: • Reactive –NH{sub 2} groups were introduced to PET fibers by nitration and reduction method. • Reactive epoxy groups were introduced to silkworm pupa protein by reacting with epoxy chloropropane. • The silkworm pupa protein could be grafted firmly on the PET fabric surface through covalent bond. • The skin-friendly property and hydrophilicity of PET-SPP fabric were improved greatly. • The wearability of PET-SPP composite fabric kept well.

  17. Characterization of electrical conductivity of carbon fiber reinforced plastic using surface potential distribution

    Science.gov (United States)

    Kikunaga, Kazuya; Terasaki, Nao

    2018-04-01

    A new method of evaluating electrical conductivity in a structural material such as carbon fiber reinforced plastic (CFRP) using surface potential is proposed. After the CFRP was charged by corona discharge, the surface potential distribution was measured by scanning a vibrating linear array sensor along the object surface with a high spatial resolution over a short duration. A correlation between the weave pattern of the CFRP and the surface potential distribution was observed. This result indicates that it is possible to evaluate the electrical conductivity of a material comprising conducting and insulating regions.

  18. Effects of oxygen plasma treatment power on Aramid fiber III/BMI composite humidity resistance properties

    Science.gov (United States)

    Wang, Jing; Shi, Chen; Feng, Jiayue; Long, Xi; Meng, Lingzhi; Ren, Hang

    2018-01-01

    The effects of oxygen plasma treatment power on Aramid Fiber III chemical structure and its reinforced bismaleimides (BMI) composite humidity resistance properties were investigated in this work. The aramid fiber III chemical structure under different plasma treatment power were measured by FTIR. The composite bending strength and interlinear shear strength with different plasma treatment power before and after absorption water were tested respectively. The composite rupture morphology was observed by SEM. The FTIR results showed that oxygen plasma treatment do not change the fiber bulk chemical structure. The composite humidity resistance of bending strength and interlinear shear strength are similar for untreated and plasma treated samples. The retention rate of composite bending strength and interlinear shear strength are about 75% and 94%, respectively. The composite rupture mode turns to be the fiber failure after water absorption.

  19. Electrically controllable twisted-coiled artificial muscle actuators using surface-modified polyester fibers

    Science.gov (United States)

    Park, Jungwoo; Yoo, Ji Wang; Seo, Hee Won; Lee, Youngkwan; Suhr, Jonghwan; Moon, Hyungpil; Koo, Ja Choon; Ryeol Choi, Hyouk; Hunt, Robert; Kim, Kwang Jin; Kim, Soo Hyun; Nam, Jae-Do

    2017-03-01

    As a new class of thermally activated actuators based on polymeric fibers, we investigated polyethylene terephthalate (PET) yarns for the development of a twisted-coiled polymer fiber actuator (TCA). The PET yarn TCA exhibited the maximum linear actuation up to 8.9% by external heating at above the glass transition temperature, 160 °C-180 °C. The payload of the actuator was successfully correlated with the preload and training-load conditions by an empirical equation. Furthermore, the PET-based TCA was electrically driven by Joule heating after the PET surface was metallization with silver. For the fast and precise control of PET yarn TCA, electroless silver plating was conducted to form electrical conductive layers on the PET fiber surface. The silver plated PET-based TCA was tested by Joule heating and the tensile actuation was increased up to 12.1% (6 V) due to the enhanced surface hardness and slippage of PET fibers. Overall, silver plating of the polymeric yarn provided a fast actuation speed and enhanced actuation performance of the TCA actuator by Joule heating, providing a great potential for being used in artificial muscle for biomimetic machines including robots, industrial actuators and powered exoskeletons.

  20. A fiber-coupled displacement measuring interferometer for determination of the posture of a reflective surface

    International Nuclear Information System (INIS)

    Mao, Shuai; Hu, Peng-Cheng; Ding, Xue-Mei; Tan, Jiu-Bin

    2016-01-01

    A fiber-coupled displacement measuring interferometer capable of determining of the posture of a reflective surface of a measuring mirror is proposed. The newly constructed instrument combines fiber-coupled displacement and angular measurement technologies. The proposed interferometer has advantages of both the fiber-coupled and the spatially beam-separated interferometer. A portable dual-position sensitive detector (PSD)-based unit within this proposed interferometer measures the parallelism of the two source beams to guide the fiber-coupling adjustment. The portable dual PSD-based unit measures not only the pitch and yaw of the retro-reflector but also measures the posture of the reflective surface. The experimental results of displacement calibration show that the deviations between the proposed interferometer and a reference one, Agilent 5530, at two different common beam directions are both less than ±35 nm, thus verifying the effectiveness of the beam parallelism measurement. The experimental results of angular calibration show that deviations of pitch and yaw with the auto-collimator (as a reference) are less than ±2 arc sec, thus proving the proposed interferometer’s effectiveness for determination of the posture of a reflective surface.

  1. Statistical characteristics of surface integrity by fiber laser cutting of Nitinol vascular stents

    International Nuclear Information System (INIS)

    Fu, C.H.; Liu, J.F.; Guo, Andrew

    2015-01-01

    Graphical abstract: - Highlights: • Precision kerf with tight tolerance of Nitinol stents can be cut by fiber laser. • No HAZ in the subsurface was detected due to large grain size. • Recast layer has lower hardness than the bulk. • Laser cutting speed has a higher influence on surface integrity than laser power. - Abstract: Nitinol alloys have been widely used in manufacturing of vascular stents due to the outstanding properties such as superelasticity, shape memory, and superior biocompatibility. Laser cutting is the dominant process for manufacturing Nitinol stents. Conventional laser cutting usually produces unsatisfactory surface integrity which has a significant detrimental impact on stent performance. Emerging as a competitive process, fiber laser with high beam quality is expected to produce much less thermal damage such as striation, dross, heat affected zone (HAZ), and recast layer. To understand the process capability of fiber laser cutting of Nitinol alloy, a design-of-experiment based laser cutting experiment was performed. The kerf geometry, roughness, topography, microstructure, and hardness were studied to better understand the nature of the HAZ and recast layer in fiber laser cutting. Moreover, effect size analysis was conducted to investigate the relationship between surface integrity and process parameters.

  2. Statistical characteristics of surface integrity by fiber laser cutting of Nitinol vascular stents

    Energy Technology Data Exchange (ETDEWEB)

    Fu, C.H., E-mail: cfu5@crimson.ua.edu [Dept of Mechanical Engineering, The University of Alabama, Tuscaloosa, AL 35487 (United States); Liu, J.F. [Dept of Mechanical Engineering, The University of Alabama, Tuscaloosa, AL 35487 (United States); Guo, Andrew [Dept of Mechanical Engineering, The University of Alabama, Tuscaloosa, AL 35487 (United States); College of Arts and Science, Vanderbilt University, Nashville, TN 37235 (United States)

    2015-10-30

    Graphical abstract: - Highlights: • Precision kerf with tight tolerance of Nitinol stents can be cut by fiber laser. • No HAZ in the subsurface was detected due to large grain size. • Recast layer has lower hardness than the bulk. • Laser cutting speed has a higher influence on surface integrity than laser power. - Abstract: Nitinol alloys have been widely used in manufacturing of vascular stents due to the outstanding properties such as superelasticity, shape memory, and superior biocompatibility. Laser cutting is the dominant process for manufacturing Nitinol stents. Conventional laser cutting usually produces unsatisfactory surface integrity which has a significant detrimental impact on stent performance. Emerging as a competitive process, fiber laser with high beam quality is expected to produce much less thermal damage such as striation, dross, heat affected zone (HAZ), and recast layer. To understand the process capability of fiber laser cutting of Nitinol alloy, a design-of-experiment based laser cutting experiment was performed. The kerf geometry, roughness, topography, microstructure, and hardness were studied to better understand the nature of the HAZ and recast layer in fiber laser cutting. Moreover, effect size analysis was conducted to investigate the relationship between surface integrity and process parameters.

  3. Physico-mechanical properties of coir fiber/LDPE composites: Effect of chemical treatment and compatibilizer

    Energy Technology Data Exchange (ETDEWEB)

    Prasad, Nirupama; Agarwal, Vijay Kumar; Sihha, Shishir [Indian Institute of Technology Roorkee, Uttrakhand (India)

    2015-12-15

    Coir fiber/low density polyethylene (LDPE) composites were fabricated with different fiber loading (10- 30 wt%) using compression molding technique. A fiber loading of 20 wt% was found optimum, with maximum mechanical properties. Further, the effect of fiber treatment (alkali and acrylic acid) and compatibilizer (MA-g-LDPE) incorporation on the mechanical and water absorption properties of the LDPE composites were studied and compared. The results showed that MA-g-LDPE incorporation into untreated and treated fiber composites led to improved mechanical properties and water resistance compared with the same composite formulation without MA-g-LDPE. However, treated fiber composites with MA-g-LDPE showed lower mechanical properties than untreated fiber without MA-g- LDPE, due to the removal of hydroxyl groups from the hemicellulose and lignin region of the fiber and degradation of fibers by chemical attack. From SEM studies on the tensile fractured composite samples, a good relationship has been observed between the morphological and mechanical properties.

  4. Dietary Fiber Treatment Corrects the Composition of Gut Microbiota, Promotes SCFA Production, and Suppresses Colon Carcinogenesis

    Directory of Open Access Journals (Sweden)

    Faraz Bishehsari

    2018-02-01

    Full Text Available Epidemiological studies propose a protective role for dietary fiber in colon cancer (CRC. One possible mechanism of fiber is its fermentation property in the gut and ability to change microbiota composition and function. Here, we investigate the role of a dietary fiber mixture in polyposis and elucidate potential mechanisms using TS4Cre × cAPCl°x468 mice. Stool microbiota profiling was performed, while functional prediction was done using PICRUSt. Stool short-chain fatty acid (SCFA metabolites were measured. Histone acetylation and expression of SCFA butyrate receptor were assessed. We found that SCFA-producing bacteria were lower in the polyposis mice, suggesting a decline in the fermentation product of dietary fibers with polyposis. Next, a high fiber diet was given to polyposis mice, which significantly increased SCFA-producing bacteria as well as SCFA levels. This was associated with an increase in SCFA butyrate receptor and a significant decrease in polyposis. In conclusion, we found polyposis to be associated with dysbiotic microbiota characterized by a decline in SCFA-producing bacteria, which was targetable by high fiber treatment, leading to an increase in SCFA levels and amelioration of polyposis. The prebiotic activity of fiber, promoting beneficial bacteria, could be the key mechanism for the protective effects of fiber on colon carcinogenesis. SCFA-promoting fermentable fibers are a promising dietary intervention to prevent CRC.

  5. Treatment of carbon fiber brush anodes for improving power generation in air–cathode microbial fuel cells

    KAUST Repository

    Feng, Yujie

    2010-04-02

    Carbon brush electrodes have been used to provide high surface areas for bacterial growth and high power densities in microbial fuel cells (MFCs). A high-temperature ammonia gas treatment has been used to enhance power generation, but less energy-intensive methods are needed for treating these electrodes in practice. Three different treatment methods are examined here for enhancing power generation of carbon fiber brushes: acid soaking (CF-A), heating (CF-H), and a combination of both processes (CF-AH). The combined heat and acid treatment improve power production to 1370 mW m-2, which is 34% larger than the untreated control (CF-C, 1020 mW m-2). This power density is 25% higher than using only acid treatment (1100 mW m-2) and 7% higher than that using only heat treatment (1280 mW m-2). XPS analysis of the treated and untreated anode materials indicates that power increases are related to higher N1s/C1s ratios and a lower C-O composition. These findings demonstrate efficient and simple methods for improving power generation using graphite fiber brushes, and provide insight into reasons for improving performance that may help to further increase power through other graphite fiber modifications. © 2009 Elsevier B.V. All rights reserved.

  6. Novel spectral fiber optic sensor based on surface plasmon resonance

    Czech Academy of Sciences Publication Activity Database

    Slavík, Radan; Homola, Jiří; Čtyroký, Jiří; Brynda, Eduard

    B74, 1/3 (2001), s. 106-111 ISSN 0925-4005. [European Conference on Optical Chemical Sensors and Biosensors EUROPT(R)ODE /5./. Lyon-Villeurbanne, 16.04.2000-19.04.2000] R&D Projects: GA ČR GA102/99/M057; GA ČR GA102/99/0549; GA ČR GA102/00/1536 Institutional research plan: CEZ:AV0Z2067918 Keywords : fibre optic sensors * surface plasmons Subject RIV: JB - Sensors, Measurment, Regulation Impact factor: 1.440, year: 2001

  7. Recovery of tungsten surface with fiber-form nanostructure by the argon plasma irradiation at a high surface temperature

    International Nuclear Information System (INIS)

    Takamura, Shuichi; Miyamoto, Takanori

    2011-01-01

    One of the serious concerns for tungsten materials in fusion devices is the radiation defects caused by helium plasma irradiation, while the helium is one of fusion products. Fiber-formed nanostructure is worried to have a possible weakness against the plasma heat flux and may destroy the reflectivity as an optical mirror. In this communication an interesting method for a recovery of such a tungsten surface is shown. (author)

  8. Effect of internal short fibers, steel reinforcement, and surface layer on impact and penetration resistance of concrete

    Directory of Open Access Journals (Sweden)

    Ali Abd_Elhakam Aliabdo

    2013-09-01

    Full Text Available This paper presents an experimental program to investigate the impact and penetration resistance of concrete. The research work is divided into two approaches. These approaches are effect of concrete constituents and effect of surface layer. Effect of concrete aggregate type, w/c ratio, fiber type, fiber shape, fiber volume fraction, and steel reinforcement is considered in the first approach. The second approach includes using fiber reinforced concrete and glass fiber reinforced polymer as surface layers. The evaluating tests include standard impact test according to ASTM D 1557 and suggested simulated penetration test to measure the impact and penetration resistance of concrete. The test results of plain and fibrous concrete from ASTM D 1557 method indicated that steel fiber with different configurations and using basalt have a great positive effect on impact resistance of concrete. Moreover, the simulated penetration test indicates that steel fibers are more effective than propylene fibers, type of coarse aggregate has negligible effect, and steel fiber volume fraction has a more significant influence than fiber shape for reinforced concrete test panels. Finally, as expectable, surface properties of tested concrete panels have a significant effect on impact and penetration resistance.

  9. Advances in surface treatments: Technology, applications, effects

    International Nuclear Information System (INIS)

    Niku-Lari, A.

    1987-01-01

    An international handbook has been produced to include all aspects of residual stresses, including the theoretical background, effects of residual stresses, measurement and calculation and quantitative assessment of residual stress effects. Techniques for altering residual stresses, particularly surface treatments, are discussed. Up to date information on the state of the art is presented. (UK)

  10. Actively stabilized optical fiber interferometry technique for online/in-process surface measurement

    International Nuclear Information System (INIS)

    Wang Kaiwei; Martin, Haydn; Jiang Xiangqian

    2008-01-01

    In this paper, we report the recent progress in optical-beam scanning fiber interferometry for potential online nanoscale surface measurement based on the previous research. It attempts to generate a robust and miniature measurement device for future development into a multiprobe array measurement system. In this research, both fiber-optic-interferometry and the wavelength-division-multiplexing techniques have been used, so that the optical probe and the optical interferometer are well spaced and fast surface scanning can be carried out, allowing flexibility for online measurement. In addition, this system provides a self-reference signal to stabilize the optical detection with high common-mode noise suppression by adopting an active phase tracking and stabilization technique. Low-frequency noise was significantly reduced compared with unstabilized result. The measurement of a sample surface shows an attained repeatability of 3.3 nm

  11. In-Situ Imaging and Quantification of Tritium Surface Contamination via Coherent Fiber Bundle

    International Nuclear Information System (INIS)

    Gentile, Charles A.; Parker, John J.; Zweben, Stewart J.

    2001-01-01

    Princeton Plasma Physics Laboratory (PPPL) has developed a method of imaging tritium on in-situ surfaces for the purpose of real-time data collection. This method expands upon a previous tritium imaging concept, also developed at PPPL. Enhancements include an objective lens coupled to the entry aperture of a coherent fiber optic (CFO) bundle, and a relay lens connecting the exit aperture of the fiber bundle to an intensifier tube and a charge-coupled device (CCD) camera. The system has been specifically fabricated for use in determining tritium concentrations on first wall materials. One potential complication associated with the development of D-T [deuterium-tritium] fueled fusion reactors is the deposition of tritium (i.e., co-deposited layer) on the surface of the primary wall of the vacuum vessel. It would be advantageous to implement a process to accurately determine tritium distribution on these inner surfaces. This fiber optic imaging device provides a highly practical method for determining the location, concentration, and activity of surface tritium deposition. In addition, it can be employed for detection of tritium ''hot-spots'' and ''hide-out'' regions present on the surfaces being imaged

  12. Surface modification of polyacrylonitrile fiber for immobilization of antibodies and detection of analyte

    Energy Technology Data Exchange (ETDEWEB)

    Jain, Swati, E-mail: swatijain.iitd@gmail.com [Center for Biomedical Engineering, Indian Institute of Technology, New Delhi, 110016 (India); Chattopadhyay, Sruti, E-mail: srutic@hotmail.com [Center for Biomedical Engineering, Indian Institute of Technology, New Delhi, 110016 (India); Jackeray, Richa, E-mail: richajackeray.iitd@gmail.com [Center for Biomedical Engineering, Indian Institute of Technology, New Delhi, 110016 (India); Singh, Harpal, E-mail: harpal2000@yahoo.com [Center for Biomedical Engineering, Indian Institute of Technology, New Delhi, 110016 (India)

    2009-11-10

    Pendent nitrile groups of multifilamentous polyacrylonitrile (PAN) fibers were reduced to amino groups using lithium aluminum hydride for different time of reduction and amine content was estimated by performing acid-base titrations. Attenuated total reflection-fourier transform infrared spectroscopy (ATR-FTIR) and Differential Scanning Calorimetry (DSC) were used for the characterization of the generated amino groups and thermal properties of the reduced fibers, respectively. The surface morphology of the fibers after reduction and immobilization was characterized using Scanning Electron Microscope (SEM). The newly formed amino groups of the fibers were activated by using glutaraldehyde for the covalent linking of Goat anti-Rabbit IgG-HRP (GAR-HRP) antibody enzyme conjugate. Modified PAN fibers were evaluated as a matrix for sandwich ELISA by using Goat anti-Rabbit antibody (GAR-IgG), Rabbit anti-Goat (RAG-IgG) as analyte and enzyme conjugate GAR-HRP. The fibers reduced for 24 h were able to detect the analyte RAG-IgG at a concentration as low as 3.75 ng mL{sup -1} with 12% skimmed milk as blocking reagent for the optimized concentration of primary antibody GAR-IgG 3 {mu}g mL{sup -1} and peroxidase conjugate GAR-HRP dilution of 8000 fold. The sensitivity, specificity and reproducibility of the developed immunoassay was further established with antibodies present in human blood using Rabbit anti-Human (RAH-IgG) antibody and the corresponding HRP enzyme conjugate. As low as 0.1 {mu}L of human blood was sufficient to perform the assay with the modified fibers.

  13. Surface modification of carbon fibers by a polyether sulfone emulsion sizing for increased interfacial adhesion with polyether sulfone

    International Nuclear Information System (INIS)

    Yuan, Haojie; Zhang, Shouchun; Lu, Chunxiang

    2014-01-01

    Highlights: • A polyether sulfone emulsion (PES) sizing was prepared for the first time. • The sizing enhanced the surface activity and wettability of carbon fibers. • Compared to the original sizing, the PES emulsion sizing resulted in an 18.4% increase in the interlaminar shear strength of carbon fiber/PES composites. • Important influences of emulsifier on the fiber surface and composite interface were demonstrated. • The reinforcing mechanisms are the improved fiber surface wettability and interfacial compatibility in composites. - Abstract: Interests on carbon fiber-reinforced thermoplastic composites are growing rapidly, but the challenges with poor interfacial adhesion have slowed their adoption. In this work, a polyether sulfone (PES) emulsion sizing was prepared successfully for increased interfacial adhesion of carbon fiber/PES composites. To obtain a high-quality PES emulsion sizing, the key factor, emulsifier concentration, was studied by dynamic light scattering technique. The results demonstrated that the suitable weight ratio of PES to emulsifier was 8:3, and the resulting PES emulsion sizing had an average particle diameter of 117 nm and Zeta potential of −52.6 mV. After sizing, the surface oxygen-containing functional groups, free energy and wettability of carbon fibers increased significantly, which were advantageous to promote molecular-level contact between carbon fiber and PES. Finally, short beam shear tests were performed to evaluate the interfacial adhesion of carbon fiber/PES composites. The results indicated that PES emulsion sizing played a critical role for the enhanced interfacial adhesion in carbon fiber/PES composites, and a 26% increase of interlaminar shear strength was achieved, because of the improved fiber surface wettability and interfacial compatibility between carbon fiber and PES

  14. Surface modification of carbon fibers by a polyether sulfone emulsion sizing for increased interfacial adhesion with polyether sulfone

    Energy Technology Data Exchange (ETDEWEB)

    Yuan, Haojie [National Engineering Laboratory for Carbon Fiber Technology, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Zhang, Shouchun, E-mail: zschun@sxicc.ac.cn [National Engineering Laboratory for Carbon Fiber Technology, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001 (China); Lu, Chunxiang [National Engineering Laboratory for Carbon Fiber Technology, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001 (China)

    2014-10-30

    Highlights: • A polyether sulfone emulsion (PES) sizing was prepared for the first time. • The sizing enhanced the surface activity and wettability of carbon fibers. • Compared to the original sizing, the PES emulsion sizing resulted in an 18.4% increase in the interlaminar shear strength of carbon fiber/PES composites. • Important influences of emulsifier on the fiber surface and composite interface were demonstrated. • The reinforcing mechanisms are the improved fiber surface wettability and interfacial compatibility in composites. - Abstract: Interests on carbon fiber-reinforced thermoplastic composites are growing rapidly, but the challenges with poor interfacial adhesion have slowed their adoption. In this work, a polyether sulfone (PES) emulsion sizing was prepared successfully for increased interfacial adhesion of carbon fiber/PES composites. To obtain a high-quality PES emulsion sizing, the key factor, emulsifier concentration, was studied by dynamic light scattering technique. The results demonstrated that the suitable weight ratio of PES to emulsifier was 8:3, and the resulting PES emulsion sizing had an average particle diameter of 117 nm and Zeta potential of −52.6 mV. After sizing, the surface oxygen-containing functional groups, free energy and wettability of carbon fibers increased significantly, which were advantageous to promote molecular-level contact between carbon fiber and PES. Finally, short beam shear tests were performed to evaluate the interfacial adhesion of carbon fiber/PES composites. The results indicated that PES emulsion sizing played a critical role for the enhanced interfacial adhesion in carbon fiber/PES composites, and a 26% increase of interlaminar shear strength was achieved, because of the improved fiber surface wettability and interfacial compatibility between carbon fiber and PES.

  15. Theoretical Analysis of the Optical Propagation Characteristics in a Fiber-Optic Surface Plasmon Resonance Sensor

    Directory of Open Access Journals (Sweden)

    Xiaolin Zheng

    2013-06-01

    Full Text Available Surface plasmon resonance (SPR sensor is widely used for its high precision and real-time analysis. Fiber-optic SPR sensor is easy for miniaturization, so it is commonly used in the development of portable detection equipment. It can also be used for remote, real-time, and online detection. In this study, a wavelength modulation fiber-optic SPR sensor is designed, and theoretical analysis of optical propagation in the optical fiber is also done. Compared with existing methods, both the transmission of a skew ray and the influence of the chromatic dispersion are discussed. The resonance wavelength is calculated at two different cases, in which the chromatic dispersion in the fiber core is considered. According to the simulation results, a novel multi-channel fiber-optic SPR sensor is likewise designed to avoid defaults aroused by the complicated computation of the skew ray as well as the chromatic dispersion. Avoiding the impact of skew ray can do much to improve the precision of this kind of sensor.

  16. Deposition of carbon nanotubes onto aramid fibers using as-received and chemically modified fibers

    International Nuclear Information System (INIS)

    Rodríguez-Uicab, O.; Avilés, F.; Gonzalez-Chi, P.I; Canché-Escamilla, G.; Duarte-Aranda, S.; Yazdani-Pedram, M.; Toro, P.; Gamboa, F.; Mazo, M.A.; Nistal, A.; Rubio, J.

    2016-01-01

    Highlights: • The surface of aramid fibers was functionalized by two acid treatments. • The treatment based on HNO_3/H_2SO_4 reduced the mechanical properties of the fibers. • CNTs were deposited on the aramid fibers, reaching electrical conductivity. • Homogeneous CNT distribution was achieved by using pristine fibers or chlorosulfonic acid. - Abstract: Multiwall carbon nanotubes (MWCNTs) oxidized by an acid treatment were deposited on the surface of as-received commercial aramid fibers containing a surface coating (“sizing”), and fibers modified by either a chlorosulfonic treatment or a mixture of nitric and sulfuric acids. The surface of the aramid fiber activated by the chemical treatments presents increasing density of CO, COOH and OH functional groups. However, these chemical treatments reduced the tensile mechanical properties of the fibers, especially when the nitric and sulfuric acid mixture was used. Characterization of the MWCNTs deposited on the fiber surface was conducted by scanning electron microscopy, Raman spectroscopy mapping and X-ray photoelectron spectroscopy. These characterizations showed higher areal concentration and more homogeneous distribution of MWCNTs over the aramid fibers for as-received fibers and for those modified with chlorosulfonic acid, suggesting the existence of interaction between the oxidized MWCNTs and the fiber coating. The electrical resistance of the MWCNT-modified aramid yarns comprising ∼1000 individual fibers was in the order of MΩ/cm, which renders multifunctional properties.

  17. Deposition of carbon nanotubes onto aramid fibers using as-received and chemically modified fibers

    Energy Technology Data Exchange (ETDEWEB)

    Rodríguez-Uicab, O. [Centro de Investigación Científica de Yucatán A.C., Unidad de Materiales, Calle 43 No.130, Col. Chuburna de Hidalgo, C.P. 97200 Mérida, Yucatán (Mexico); Avilés, F., E-mail: faviles@cicy.mx [Centro de Investigación Científica de Yucatán A.C., Unidad de Materiales, Calle 43 No.130, Col. Chuburna de Hidalgo, C.P. 97200 Mérida, Yucatán (Mexico); Gonzalez-Chi, P.I; Canché-Escamilla, G.; Duarte-Aranda, S. [Centro de Investigación Científica de Yucatán A.C., Unidad de Materiales, Calle 43 No.130, Col. Chuburna de Hidalgo, C.P. 97200 Mérida, Yucatán (Mexico); Yazdani-Pedram, M. [Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, S. Livingstone 1007, Independencia, Santiago (Chile); Toro, P. [Facultad de Ciencias Físicas y Matemáticas, Universidad de Chile, Av. Beauchef 850, Santiago (Chile); Gamboa, F. [Centro de Investigacion y de Estudios Avanzados del IPN, Unidad Mérida, Depto. de Física Aplicada, Km. 6 Antigua Carretera a Progreso, 97310 Mérida, Yucatán (Mexico); Mazo, M.A.; Nistal, A.; Rubio, J. [Instituto de Cerámica y Vidrio (ICV-CSIC), Kelsen 5, 28049 Madrid (Spain)

    2016-11-01

    Highlights: • The surface of aramid fibers was functionalized by two acid treatments. • The treatment based on HNO{sub 3}/H{sub 2}SO{sub 4} reduced the mechanical properties of the fibers. • CNTs were deposited on the aramid fibers, reaching electrical conductivity. • Homogeneous CNT distribution was achieved by using pristine fibers or chlorosulfonic acid. - Abstract: Multiwall carbon nanotubes (MWCNTs) oxidized by an acid treatment were deposited on the surface of as-received commercial aramid fibers containing a surface coating (“sizing”), and fibers modified by either a chlorosulfonic treatment or a mixture of nitric and sulfuric acids. The surface of the aramid fiber activated by the chemical treatments presents increasing density of CO, COOH and OH functional groups. However, these chemical treatments reduced the tensile mechanical properties of the fibers, especially when the nitric and sulfuric acid mixture was used. Characterization of the MWCNTs deposited on the fiber surface was conducted by scanning electron microscopy, Raman spectroscopy mapping and X-ray photoelectron spectroscopy. These characterizations showed higher areal concentration and more homogeneous distribution of MWCNTs over the aramid fibers for as-received fibers and for those modified with chlorosulfonic acid, suggesting the existence of interaction between the oxidized MWCNTs and the fiber coating. The electrical resistance of the MWCNT-modified aramid yarns comprising ∼1000 individual fibers was in the order of MΩ/cm, which renders multifunctional properties.

  18. Plasma assisted surface treatments of biomaterials.

    Science.gov (United States)

    Minati, L; Migliaresi, C; Lunelli, L; Viero, G; Dalla Serra, M; Speranza, G

    2017-10-01

    The biocompatibility of an implant depends upon the material it is composed of, in addition to the prosthetic device's morphology, mechanical and surface properties. Properties as porosity and pore size should allow, when required, cells penetration and proliferation. Stiffness and strength, that depend on the bulk characteristics of the material, should match the mechanical requirements of the prosthetic applications. Surface properties should allow integration in the surrounding tissues by activating proper communication pathways with the surrounding cells. Bulk and surface properties are not interconnected, and for instance a bone prosthesis could possess the necessary stiffness and strength for the application omitting out prerequisite surface properties essential for the osteointegration. In this case, surface treatment is mandatory and can be accomplished using various techniques such as applying coatings to the prosthesis, ion beams, chemical grafting or modification, low temperature plasma, or a combination of the aforementioned. Low temperature plasma-based techniques have gained increasing consensus for the surface modification of biomaterials for being effective and competitive compared to other ways to introduce surface functionalities. In this paper we review plasma processing techniques and describe potentialities and applications of plasma to tailor the interface of biomaterials. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Influence of chemical treatment on the tensile properties of kenaf fiber reinforced thermoplastic polyurethane composite

    Directory of Open Access Journals (Sweden)

    Y. A. El-Shekeil

    2012-12-01

    Full Text Available In this study, the effect of polymeric Methylene Diphenyl Diisocyanate (pMDI chemical treatment on kenaf (Hibiscus cannabinus reinforced thermoplastic polyurethane (TPU/KF was examined using two different procedures. The first consisted of treating the fibers with 4% pMDI, and the second involved 2% NaOH + 4% pMDI. The composites were characterized according to their tensile properties, Fourier Transform Infrared Spectroscopy (FTIR and Scanning Electron Microscopy (SEM. The treatment of the composite with 4% pMDI did not significantly affect its tensile properties, but the treatment with 2% NaOH + 4% pMDI significantly increased the tensile properties of the composite (i.e., 30 and 42% increases in the tensile strength and modulus, respectively. FTIR also showed that treatment with 2% NaOH + 4% pMDI led to the strongest H-bonding. Additionally, the surface morphology of specimens after tensile fracture confirmed that the composite treated with 2% NaOH + 4% pMDI had the best adhesion and wettability.

  20. Experimental identification for physical mechanism of fiber-form nanostructure growth on metal surfaces with helium plasma irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Takamura, S., E-mail: takamura@aitech.ac.jp [Faculty of Engineering, Aichi Institute of Technology, Yakusa-cho, Toyota 470-0392 (Japan); Uesugi, Y. [Faculty of Electrical and Computer Engineering, Institute of Science and Engineering, Kanazawa University, Kanazawa 920-1192 (Japan)

    2015-11-30

    Highlights: • Initial growth process of fiber-form nanostructure on metal surfaces under helium ion irradiation is given based on experimental knowledge, where the pitting of original surface and forming nano-walls and/or loop-like nanostructure works as precursors. • The physical mechanism of fiber growth is discussed in terms of shear modulus of metals influenced by helium content as well as surface temperature. • The physical model explains the reason why tantalum does not make sufficiently grown nano-fibers, and the temperature dependence of surface morphology of titanium. - Abstract: The initial stage of fiber-form nanostructure growth on metal surface with helium plasma irradiation is illustrated, taking recent research knowledge using a flux gradient technique, and including loop-like nano-scale structure as precursors. The growth mechanism of fibers is discussed in terms of the shear modulus of various materials that is influenced by the helium content as well as the surface temperature, and the mobility of helium atoms, clusters and/or nano-bubbles in the bulk, loops and fibers. This model may explain the reason why tantalum does not provide fiber-form nanostructure although the loop-like structure was identified. The model also suggests the mechanism of an existence of two kinds of nanostructure of titanium depending on surface temperature. Industrial applications of such nanostructures are suggested in the properties and the possibilities of its growth on other basic materials.

  1. A post-processing study on aluminum surface by fiber laser: Removing face milling patterns

    Science.gov (United States)

    Kayahan, Ersin

    2018-05-01

    The face milling process of the metal surface is a well-known machining process of using rotary cutters to remove material from a workpiece. Flat metal surfaces can be produced by a face milling process. However, in practice, visible, traced marks following the motion of points on the cutter's face are usually apparent. In this study, it was shown that milled patterns can be removed by means of 20 W fiber laser on the aluminum surface (AA7075). Experimental results also showed that roughened and hydrophobic surface can be produced with optimized laser parameters. It is a new approach to remove the patterns from the metal surface and can be explained through roughening by re-melting instead of ablation. The new method is a strong candidate to replace sandblasting the metal surface. It is also cheap and environmentally friendly.

  2. Chitosan surface modified electrospun poly(ε-caprolactone)/carbon nanotube composite fibers with enhanced mechanical, cell proliferation and antibacterial properties.

    Science.gov (United States)

    Wang, Siyu; Li, Yumei; Zhao, Rui; Jin, Toufeng; Zhang, Li; Li, Xiang

    2017-11-01

    The surface modification is one of the most effective methods to improve the bioactivity and cell affinity effect of electrospun poly(ε-caprolactone) (PCL) fibers. In the present study, chitosan (CS), a cationic polysaccharide, was used to modify the surface of electrospun PCL fibers. To obtain strong interaction between CS and PCL fibers, negatively charged PCL fibers were prepared by the incorporation of acid-treated carbon nanotubes (CNTs) into the fibers. In this way, the positively charged chitosan could be immobilized onto the surface of PCL fibers tightly by the electrostatic attraction. Besides, the incorporation of CNTs could significantly improve the mechanical strength of electrospun PCL fibers even after the CS modification, which guaranteed their usability in practical applications. The CS modification could effectively improve the wettability and bioactivity of electrospun PCL fibers. Cultivation of L929 fibroblast cells on the obtained fibers and the antibacterial activity were both evaluated to discuss the influence of chitosan modification. The results indicated that this modification could enhance the cell proliferation and antibacterial ability in comparison to the non-modified groups. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Polymerization by plasma: surface treatment and plasma simulation

    International Nuclear Information System (INIS)

    Morales C, J.

    2001-01-01

    One of the general objectives that are developed by the group of polymers semiconductors in the laboratory of polymers of the UAM-Iztapalapa is to study the surface treatment for plasma of different materials. Framed in this general objective, in this work three lines of investigation have been developed, independent one of other that converge in the general objective. The first one tries about the modeling one and evaluation of the microscopic parameters of operation of the polymerization reactor. The second are continuation of the study of conductive polymers synthesized by plasma and the third are an application of the treatment for plasma on natural fibers. In the first one it lines it is carried out the characterization and simulation of the parameters of operation of the polymerization reactor for plasma. They are determined the microscopic parameters of operation of the reactor experimentally like they are the electronic temperature, the potential of the plasma and the density average of electrons using for it an electrostatic Langmuir probe. In the simulation, starting from the Boltzmann transport equation it thinks about the flowing pattern and the electronic temperature, the ions density is obtained and of electrons. The data are compared obtained experimentally with the results of the simulation. In second line a study is presented about the influence of the temperature on the electric conductivity of thin films doped with iodine, of poly aniline (P An/I) and poly pyrrole (P Py/I). The films underwent heating-cooling cycles. The conductivity of P An/I and P Py/I in function of the temperature it is discussed based on the Arrhenius model, showing that it dominates the model of homogeneous conductivity. It is also synthesized a polymer bi-layer of these two elements and a copolymer random poly aniline-poly pyrrole, of the first one it the behavior of its conductivity discusses with the temperature and of the second, the conductivity is discussed in

  4. Effect of maleic anhydride treatment on the mechanical properties of sansevieria fiber/vinyl ester composites

    Science.gov (United States)

    Pradipta, Rangga; Mardiyati, Steven, Purnomo, Ikhsan

    2017-03-01

    Sanseviera trifasciata commonly called mother-in-law tongue also known as snake plant is native to Indonesia, India and Africa. Sansevieria is a new fiber in composite research and has showed promising properties as reinforcement material in polymer matrix composites. Chemical treatment on reinforcing fiber is crucial to reduce hydrophilic tendency and thus improve compatibility with the matrix. In this study, effect of maleic anhydride as chemical treatment on the mechanical properties of Sansevieria fiber/vinyl ester composite was investigated. Sansevieria fibers were immersed by using NaOH 3% for two hours at 100°C and then treated by using maleic anhydrate for two hours at 120°C. Composites were prepared by solution casting with various volume fractions of fiber; 0%, 2.5%, 5%, 7.5% and 10%. Actual density, volume fraction of void and mechanical properties of composite were conducted according to ASTM standard testing methods D792, D3171 and D3039. It was found that mechanical properties of composites increased as volume fractions of fiber was increased. The highest tensile strength and modulus of elasticity of composites were 57.45 MPa and 3.47 GPa respectively, obtained from composites with volume fraction of fiber 10%.

  5. Effect of surface treatment of prefabricated posts on bonding of resin cement

    DEFF Research Database (Denmark)

    Sahafi, Alireza; Peutzfeld, Anne; Asmussen, Erik

    2004-01-01

    This in vitro study evaluated the effect of various surface treatments of prefabricated posts of titanium alloy (ParaPost XH), glass fiber (ParaPost Fiber White) and zirconia (Cerapost) on the bonding of two resin cements: ParaPost Cement and Panavia F by a diametral tensile strength (DTS) test...... the start of mixing the resin cement, the specimen was freed from the mold and stored in water at 37 degrees C for seven days. Following water storage, the specimen was wet-ground to a final length of approximately 3 mm. The DTS of specimens was determined in a Universal Testing Machine. The bonding...

  6. Laser welding, cutting and surface treatment

    International Nuclear Information System (INIS)

    Crafer, R.C.

    1984-01-01

    Fourteen articles cover a wide range of laser applications in welding, cutting and surface treatment. Future trends are covered as well as specific applications in shipbuilding, the manufacture of heart pacemakers, in the electronics industry, in automobile production and in the aeroengine industry. Safety with industrial lasers and the measurement of laser beam parameters are also included. One article on 'Lasers in the Nuclear Industry' is indexed separately. (U.K.)

  7. Licuri fibers characterization after treatment to produce cellulose nanocrystals

    International Nuclear Information System (INIS)

    Castro, E.G.; Oliveira, J.C.; Miranda, C.S.; Jose, N.M.

    2014-01-01

    Cellulose nanocrystals have been widely studied in the materials area due to their high aspect ratio, which is directly related to a good performance as mechanical reinforcement. Obtaining this nanocrystals from commercial bleached pulps, as eucalyptus, or microcrystalline cellulose is well studied. Trying to find new extraction sources, exploring better the huge variety of Brazil’s natural fibers and giving the opportunity of development to small communities, the present work verifies the influence of two bleaching methodologies, sodium hypochlorite or hydrogen peroxide, on licuri fibers. Previous washing and mercerization steps were performed before bleaching. The product of each step was analysed by: DSC, TGA, XRD, SEM and FTIR. The yield of each step was also calculated. (author)

  8. Preparation, Surface and Pore Structure of High Surface Area Activated Carbon Fibers from Bamboo by Steam Activation

    Directory of Open Access Journals (Sweden)

    Xiaojun Ma

    2014-06-01

    Full Text Available High surface area activated carbon fibers (ACF have been prepared from bamboo by steam activation after liquefaction and curing. The influences of activation temperature on the microstructure, surface area and porosity were investigated. The results showed that ACF from bamboo at 850 °C have the maximum iodine and methylene blue adsorption values. Aside from the graphitic carbon, phenolic and carbonyl groups were the predominant functions on the surface of activated carbon fiber from bamboo. The prepared ACF from bamboo were found to be mainly type I of isotherm, but the mesoporosity presented an increasing trend after 700 °C. The surface area and micropore volume of samples, which were determined by application of the Brunauer-Emmett-Teller (BET and t-plot methods, were as high as 2024 m2/g and 0.569 cm3/g, respectively. It was also found that the higher activation temperature produced the more ordered microcrystalline structure of ACF from bamboo.

  9. Waste water treatment in surface mines

    Energy Technology Data Exchange (ETDEWEB)

    Navasardyants, M A; Esipov, V Z; Ryzhkov, Yu A

    1981-01-01

    This paper evaluates problems associated with waste water from coal surface mines of the Kemerovougol' association in the Kuzbass. Waste water treatment in the Kuzbass is of major importance as the region is supplied with water from only one river, the Tom river. Water influx to Kemerovougol' surface mines in a year amounts to 136 million m/sup 3/. The water is used during technological processes, for fire fighting, and spraying to prevent dusting; the rest, about 82.1 million m/sup 3/, is discharged into surface waters. Of this amount, 25.1 million m/sup 3/ is heavily polluted water, 46.6 million m3 are polluted but within limits, and 10.4 million m/sup 3/ are characterized as relatively clean. Waste water is polluted with: suspended matters, oils and oil products, nitrates, nitrides and chlorides. Suspended matter content sometimes reaches 4,000 and 5,000 mg/l, and oil product content in water amounts to 2.17 mg/l. Water treatment in surface mines is two-staged: sumps and sedimentation tanks are used. Water with suspended matter content of 50 to 100 mg/l in winter and summer, and 200 to 250 mg/l in spring and autumn is reduced in sumps to 25 to 30 mg/l in summer and winter and to 40 to 50 mg/l in autumn and spring. During the first stage water treatment efficiency ranges from 50 to 80%. During the second stage water is collected in sedimentation tanks. It is noted that so-called secondary pollution is one of the causes of the relatively high level of suspended matter in discharged water. Water discharged from sedimentation tanks carries clay and loam particles from the bottom and walls of water tanks and channels.

  10. XPS analysis of the carbon fibers surface modified via HMDSO to carbon nanotube growth

    Energy Technology Data Exchange (ETDEWEB)

    Cardoso, L.D.R.; Gomes, M.C.B.; Trava-Airoldi, V.J.; Corat, E.J.; Lugo, D.C. [Instituto Nacional de Pesquisas Espaciais (INPE), Sao Jose dos Campos, SP (Brazil)

    2016-07-01

    Full text: Carbon fibers (CF) have been widely used to reinforce structural composites. Due to their strength-to-weight properties, CF composites are finding increased structural uses in areas such as aerospace, aeronautical, automobile and others. The strength of the fiber-resin interface bond has been found to be the limiting factor to the mechanical properties of CF-epoxy materials, due to their non-polar nature that limit the affinity of CF to bind chemically to any matrix. The growth of carbon nanotubes (CNTs) on the surface of CF is a promising approach for improving mechanical, electrical and thermal properties of structural composites. However growing CNTs on CF presents some obstacles, such as diffusion of metal catalyst particles on CF, uneven CNT growth and loss of mechanical properties of CF. To avoid the diffusion of catalyst particles we modified the CF surface with hexamethyldisiloxane (HMDSO) at low temperature (400 °C), also preventing the loss of mechanical properties and allowing uniform CNTs growth. We deposited CNTs via floating catalyst method, with ferrocene providing the catalyst particle and the oxidative dehydrogenation reaction of acetylene providing the carbon. The CF surface modification was analyzed via X-ray photoelectron spectroscopy (XPS) and CNTs growth via scanning electron microscopy with field emission gun. The XPS analysis showed that HMDSO promotes the binding of oxygen to carbon and silicon present on CF surface, the chemical modification of the surface of the CF enables the uniform growth of carbon nanotubes. (author)

  11. XPS analysis of the carbon fibers surface modified via HMDSO to carbon nanotube growth

    International Nuclear Information System (INIS)

    Cardoso, L.D.R.; Gomes, M.C.B.; Trava-Airoldi, V.J.; Corat, E.J.; Lugo, D.C.

    2016-01-01

    Full text: Carbon fibers (CF) have been widely used to reinforce structural composites. Due to their strength-to-weight properties, CF composites are finding increased structural uses in areas such as aerospace, aeronautical, automobile and others. The strength of the fiber-resin interface bond has been found to be the limiting factor to the mechanical properties of CF-epoxy materials, due to their non-polar nature that limit the affinity of CF to bind chemically to any matrix. The growth of carbon nanotubes (CNTs) on the surface of CF is a promising approach for improving mechanical, electrical and thermal properties of structural composites. However growing CNTs on CF presents some obstacles, such as diffusion of metal catalyst particles on CF, uneven CNT growth and loss of mechanical properties of CF. To avoid the diffusion of catalyst particles we modified the CF surface with hexamethyldisiloxane (HMDSO) at low temperature (400 °C), also preventing the loss of mechanical properties and allowing uniform CNTs growth. We deposited CNTs via floating catalyst method, with ferrocene providing the catalyst particle and the oxidative dehydrogenation reaction of acetylene providing the carbon. The CF surface modification was analyzed via X-ray photoelectron spectroscopy (XPS) and CNTs growth via scanning electron microscopy with field emission gun. The XPS analysis showed that HMDSO promotes the binding of oxygen to carbon and silicon present on CF surface, the chemical modification of the surface of the CF enables the uniform growth of carbon nanotubes. (author)

  12. Evaluation of Wear on Macro-Surface Textures Generated by ns Fiber Laser

    Science.gov (United States)

    Harish, V.; Soundarapandian, S.; Vijayaraghavan, L.; Bharatish, A.

    2018-03-01

    The demand for improved performance and long term reliability of mechanical systems dictate the use of advanced materials and surface engineering techniques. A small change in the surface topography can lead to substantial improvements in the tribological behaviour of the contact surfaces. One way of altering the surface topography is by surface texturing by introducing dimples or channels on the surfaces. Surface texturing is already a successful technique which finds a wide area of applications ranging from heavy industries to small scale devices. This paper reports the effect of macro texture shapes generated using a nanosecond fiber laser on wear of high carbon chromium steel used in large size bearings having rolling contacts. Circular and square shaped dimples were generated on the surface to assess the effect of sliding velocities on friction coefficient. Graphite was used as solid lubricant to minimise the effect of wear on textured surfaces. The laser parameters such as power, scan speed and passes were optimised to obtain macro circular and square dimples which was characterised using a laser confocal microscope. The friction coefficients of the circular and square dimples were observed to lie in the same range due to minimum wear on the surface. On the contrary, at medium and higher sliding velocities, square dimples exhibited lower friction coefficient values compared to circular dimples. The morphology of textured specimen was characterised using Scanning Electron Microscope.

  13. Optical fiber sensor based on surface plasmon resonance for rapid detection of avian influenza virus subtype H6: Initial studies.

    Science.gov (United States)

    Zhao, Xihong; Tsao, Yu-Chia; Lee, Fu-Jung; Tsai, Woo-Hu; Wang, Ching-Ho; Chuang, Tsung-Liang; Wu, Mu-Shiang; Lin, Chii-Wann

    2016-07-01

    A side-polished fiber optic surface plasmon resonance (SPR) sensor was fabricated to expose the core surface and then deposited with a 40 nm thin gold film for the near surface sensing of effective refractive index changes with surface concentration or thickness of captured avian influenza virus subtype H6. The detection surface of the SPR optical fiber sensor was prepared through the plasma modification method for binding a self-assembled monolayer of isopropanol chemically on the gold surface of the optical fiber. Subsequently, N-(3-dimethylaminopropyl)-N'-ethylcarbodiimide/N-hydroxysuccinimide was activated to enable EB2-B3 monoclonal antibodies to capture A/chicken/Taiwan/2838V/00 (H6N1) through a flow injection system. The detection limit of the fabricated optical fiber sensor for A/chicken/Taiwan/2838V/00 was 5.14 × 10(5) EID50/0.1 mL, and the response time was 10 min on average. Moreover, the fiber optic sensor has the advantages of a compact size and low cost, thus rendering it suitable for online and remote sensing. The results indicated that the optical fiber sensor can be used for epidemiological surveillance and diagnosing of avian influenza subtype H6 rapidly. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. [INVITED] Recent advances in surface plasmon resonance based fiber optic chemical and biosensors utilizing bulk and nanostructures

    Science.gov (United States)

    Gupta, Banshi D.; Kant, Ravi

    2018-05-01

    Surface plasmon resonance has established itself as an immensely acclaimed and influential optical sensing tool with quintessential applications in life sciences, environmental monitoring, clinical diagnostics, pharmaceutical developments and ensuring food safety. The implementation of sensing principle of surface plasmon resonance employing an optical fiber as a substrate has concomitantly resulted in the evolution of fiber optic surface plasmon resonance as an exceptionally lucrative scaffold for chemical and biosensing applications. This perspective article outlines the contemporary studies on fiber optic sensors founded on the sensing architecture of propagating as well as localized surface plasmon resonance. An in-depth review of the prevalent analytical and surface chemical tactics involved in configuring the sensing layer over an optical fiber for the detection of various chemical and biological entities is presented. The involvement of nanomaterials as a strategic approach to enhance the sensor sensitivity is furnished concurrently providing an insight into the diverse geometrical blueprints for designing fiber optic sensing probes. Representative examples from the literature are discussed to appreciate the latest advancements in this potentially valuable research avenue. The article concludes by identifying some of the key challenges and exploring the opportunities for expanding the scope and impact of surface plasmon resonance based fiber optic sensors.

  15. Fiber Bragg grating assisted surface plasmon resonance sensor with graphene oxide sensing layer

    Science.gov (United States)

    Arasu, P. T.; Noor, A. S. M.; Shabaneh, A. A.; Yaacob, M. H.; Lim, H. N.; Mahdi, M. A.

    2016-12-01

    A single mode fiber Bragg grating (FBG) is used to generate Surface Plasmon Resonance (SPR). The uniform gratings of the FBG are used to scatter light from the fiber optic core into the cladding thus enabling the interaction between the light and a thin gold film in order to generate SPR. Applying this technique, the cladding around the FBG is left intact, making this sensor very robust and easy to handle. A thin film of graphene oxide (GO) is deposited over a 45 nm gold film to enhance the sensitivity of the SPR sensor. The gold coated sensor demonstrated high sensitivity of approximately 200 nm/RIU when tested with different concentrations of ethanol in an aqueous medium. A 2.5 times improvement in sensitivity is observed with the GO enhancement compared to the gold coated sensor.

  16. Use of fibers in childhood constipation treatment: systematic review with meta-analysis.

    Science.gov (United States)

    Piccoli de Mello, Patricia; Eifer, Diego Andre; Daniel de Mello, Elza

    2018-02-21

    To gather current evidence on the use of fiber for constipation treatment in pediatric patients. Systematic review with meta-analysis of studies identified through Pubmed, Embase, LILACS and Cochrane databases published up to 2016. Randomized controlled trials; patients aged between 1 and 18 years and diagnosed with functional constipation receiving or not drug treatment for constipation; articles published in Portuguese, English, Spanish, French, and German in journals accessible to the researchers. A total of 2963 articles were retrieved during the search and, after adequate evaluation, nine articles were considered relevant to the study objective. A total of 680 children were included, of whom 45% were boys. No statistical significance was observed for bowel movement frequency, stool consistency, therapeutic success, fecal incontinence, and abdominal pain with fiber intake in patients with childhood constipation. These results should be interpreted with care due to the high clinical heterogeneity between the studies and the methodological limitation of the articles selected for analysis. There is a scarcity of qualified studies to evaluate fiber supplementation in the treatment of childhood constipation, generating a low degree of confidence in estimating the real effect of this intervention on this population. Today, according to the current literature, adequate fiber intake should only be recommended for functional constipation, and fiber supplementation should not be prescribed in the diet of constipated children and adolescents. Copyright © 2018 Sociedade Brasileira de Pediatria. Published by Elsevier Editora Ltda. All rights reserved.

  17. Amino-functionalized surface modification of polyacrylonitrile hollow fiber-supported polydimethylsiloxane membranes

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Leiqing; Cheng, Jun, E-mail: juncheng@zju.edu.cn; Li, Yannan; Liu, Jianzhong; Zhou, Junhu; Cen, Kefa

    2017-08-15

    Highlights: • Amino group was introduced to improve surface polarity of PDMS membrane. • The water contact angle of PDMS membrane decreased after the modification. • The concentration of N atom on surface of PDMS membrane reached up to ∼6%. • The density of PDMS membrane decreased while the swelling degree increased. • CO{sub 2} permeability increased while selectivity decreased after the modification. - Abstract: This study aimed to improve surface polarity of polydimethylsiloxane (PDMS) membranes and provide surface active sites which were easy to react with other chemicals. 3-Aminopropyltriethoxysilane (APTES) containing an amino group was introduced into a PDMS membrane by crosslinking to prepare polyacrylonitrile hollow fiber-supported PDMS membranes with an amino-functionalized surface. Fourier transform infrared and X-ray photoelectron spectroscopic analyses proved the existence of APTES and its amino group in the PDMS membrane. The concentration of N atoms on the PDMS membrane surface reached ∼6% when the mass ratio of APTES/PDMS oligomer in the PDMS coating solution was increased to 4/3. The water contact angle decreased from ∼114° to ∼87.5°, indicating the improved surface polarization of the PDMS membrane. The density and swelling degree of the PDMS membrane decreased and increased, respectively, with increasing APTES content in PDMS. This phenomenon increased CO{sub 2} permeability and decreased CO{sub 2}/H{sub 2} selectivity, CO{sub 2}/CH{sub 4} selectivity, and CO{sub 2}/N{sub 2} selectivity. When the mass ratio of APTES/PDMS oligomer was increased from 0 to 4/3, the CO{sub 2} permeation rate of the hollow fiber-supported PDMS membranes initially decreased from ∼2370 GPU to ∼860 GPU and then increased to ∼2000 GPU due to the change in coating solution viscosity.

  18. Surface modification of carbon fibers by a polyether sulfone emulsion sizing for increased interfacial adhesion with polyether sulfone

    Science.gov (United States)

    Yuan, Haojie; Zhang, Shouchun; Lu, Chunxiang

    2014-10-01

    Interests on carbon fiber-reinforced thermoplastic composites are growing rapidly, but the challenges with poor interfacial adhesion have slowed their adoption. In this work, a polyether sulfone (PES) emulsion sizing was prepared successfully for increased interfacial adhesion of carbon fiber/PES composites. To obtain a high-quality PES emulsion sizing, the key factor, emulsifier concentration, was studied by dynamic light scattering technique. The results demonstrated that the suitable weight ratio of PES to emulsifier was 8:3, and the resulting PES emulsion sizing had an average particle diameter of 117 nm and Zeta potential of -52.6 mV. After sizing, the surface oxygen-containing functional groups, free energy and wettability of carbon fibers increased significantly, which were advantageous to promote molecular-level contact between carbon fiber and PES. Finally, short beam shear tests were performed to evaluate the interfacial adhesion of carbon fiber/PES composites. The results indicated that PES emulsion sizing played a critical role for the enhanced interfacial adhesion in carbon fiber/PES composites, and a 26% increase of interlaminar shear strength was achieved, because of the improved fiber surface wettability and interfacial compatibility between carbon fiber and PES.

  19. Preparation of silica-sustained electrospun polyvinylpyrrolidone fibers with uniform mesopores via oxidative removal of template molecules by H2O2 treatment

    International Nuclear Information System (INIS)

    Kang, Haigang; Zhu, Yihua; Shen, Jianhua; Yang, Xiaoling; Chen, Cheng; Cao, Huimin; Li, Chungzhong

    2010-01-01

    Silica-sustained electrospun PVP fibers with uniform mesopores were synthesized via facile oxidative removal of template molecules by H 2 O 2 extraction. Tetraethyl orthosilicate, polyvinylpyrrolidone (PVP), and triblock poly(ethylene oxide)-b-poly(propylene oxide)-b-poly(ethylene oxide) copolymer pluronic P 123 compose the electrospinning sol to fabricate the silica-sustained PVP hybrid fibers. The effect of different post-treatment methods on the pore size distribution was investigated by calcination and extraction, respectively. Experimental results showed that oxidative removal of structure-directing agent P 123 in the hybrid fibers by H 2 O 2 treatment can easily form narrow pore size distribution, and the incorporation of 3D silica skeleton built by hot steam aging facilitated preserving the original cylindrical morphology of fibers. Scanning electron microscopy (SEM), N 2 adsorption-desorption isotherm, transmission electron microscopy (TEM), X-ray diffraction (XRD), FT-IR spectra and thermogravimetric analysis (TGA) were used to characterize the hybrid fibers. The hybrid fibers can be expected to have potential applications in drug release or tissue engineering because of their suitable pore size, large surface area and good biocompatibility.

  20. Chloride Penetration through Cracks in High-Performance Concrete and Surface Treatment System for Crack Healing

    Directory of Open Access Journals (Sweden)

    In-Seok Yoon

    2012-01-01

    Full Text Available For enhancing the service life of concrete structures, it is very important to minimize crack at surface. Even if these cracks are very small, the problem is to which extend these cracks may jeopardize the durability of these decks. It was proposed that crack depth corresponding with critical crack width from the surface is a crucial factor in view of durability design of concrete structures. It was necessary to deal with chloride penetration through microcracks characterized with the mixing features of concrete. This study is devoted to examine the effect of high strength concrete and reinforcement of steel fiber on chloride penetration through cracks. High strength concrete is regarded as an excellent barrier to resist chloride penetration. However, durability performance of cracked high strength concrete was reduced seriously up to that of ordinary cracked concrete. Steel fiber reinforcement is effective to reduce chloride penetration through cracks because steel fiber reinforcement can lead to reduce crack depth significantly. Meanwhile, surface treatment systems are put on the surface of the concrete in order to seal the concrete. The key-issue is to which extend a sealing is able to ensure that chloride-induced corrosion can be prevented. As a result, penetrant cannot cure cracks, however, coating and combined treatment can prevent chloride from flowing in concrete with maximum crack width of 0.06 mm and 0.08 mm, respectively.

  1. Preparation of robust braid-reinforced poly(vinyl chloride) ultrafiltration hollow fiber membrane with antifouling surface and application to filtration of activated sludge solution.

    Science.gov (United States)

    Zhou, Zhuang; Rajabzadeh, Saeid; Fang, Lifeng; Miyoshi, Taro; Kakihana, Yuriko; Matsuyama, Hideto

    2017-08-01

    Braid-reinforced hollow fiber membranes with high mechanical properties and considerable antifouling surface were prepared by blending poly(vinyl chloride) (PVC) with poly(vinyl chloride-co-poly(ethylene glycol) methyl ether methacrylate) (poly(VC-co-PEGMA)) copolymer via non-solvent induced phase separation (NIPS). The tensile strength of the braid-reinforced PVC hollow fiber membranes were significantly larger than those of previously reported various types of PVC hollow fiber membranes. The high interfacial bonding strength indicated the good compatibility between the coating materials and the surface of polyethylene terephthalate (PET)-braid. Owing to the surface segregation phenomena, the membrane surface PEGMA coverage increased upon increasing the poly(VC-co-PEGMA)/PVC blending ratio, resulting in higher hydrophilicities and bovine serum albumin (BSA) repulsion. To compare the fouling properties, membranes with similar PWPs were prepared by adjusting the dope solution composition to eliminate the effect of hydrodynamic conditions on the membrane fouling performance. The blend membranes surface exhibited considerable fouling resistance to the molecular adsorption from both BSA solution and activated sludge solution. In both cases, the flux recovered to almost 80% of the initial flux using only water backflush. Considering their great mechanical properties and antifouling resistance to activated sludge solution, these novel membranes show good potential for application in wastewater treatment. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Erosion resistance comparison of alternative surface treatments

    Science.gov (United States)

    Česánek, Z.; Schubert, J.; Houdková, Š.

    2017-05-01

    Erosion is a process characterized by the particle separation and the damage of component functional surfaces. Thermal spraying technology HP/HVOF (High Pressure / High Velocity Oxygen Fuel) is commonly used for protection of component surfaces against erosive wear. Alloy as well as cermet based coatings meet the requirements for high erosion resistance. Wear resistance is in many cases the determining property of required component functioning. The application suitability of coating materials is particularly influenced by different hardness. This paper therefore presents an erosion resistance comparison of alloy and cermet based coatings. The coatings were applied on steel substrates and were subjected to the erosive test using the device for evaluation of material erosion resistance working on the principle of centrifugal erodent flow. Abrasive sand Al2O3 with grain size 212-250 μm was selected as an erosive material. For this purpose, the specimens were prepared by thermal spraying technology HP/HVOF using commercially available powders Stellite 6, NiCrBSi, Cr3C2-25%NiCr, Cr3C2-25%CoNiCrAlY, Hastelloy C-276 and experimental coating TiMoCN-29% Ni. Erosion resistance of evaluated coatings was compared with erosive resistance of 1.4923 high alloyed steel without nitridation and in nitrided state and further with surface treatment using technology PVD. According to the evaluation, the resulting erosive resistance depends not only on the selected erodent and surface protection, but also on the erodent impact angle.

  3. Fiber composites as a method of treatment splinting tooth mobility in chronic periodontitis

    Directory of Open Access Journals (Sweden)

    Dewi Lidya Ichwana

    2016-12-01

    Full Text Available Patients with periodontal disease can lead to severe tooth mobility so often complains of pain when eating, decreased chewing ability and functional occlusion. Tooth mobility is a movement in a horizontal or vertical direction and one of the most unpleased effects from periodontal disease. Basically, tooth mobility is not a disease that requires treatment, but it is a symptom of periodontal tissue morphology changes, so it became a challenge for dentists in making decisions to maintain proper care of the teeth. Recent studies improved the use of periodontal splint with fiber reinforced composite (FRC or fiber composite may lead to a long-term prognosis of teeth mobility due to periodontal disase. The case report describes treatment of chronic periodontitis patients with splinting fiber composites as a method for stabilization of the lower anterior teeth providing aesthetics, comfort, improved functionality occlusion, mastication and a good prognosis.

  4. A Novel Fiber Optic Surface Plasmon Resonance Biosensors with Special Boronic Acid Derivative to Detect Glycoprotein

    Directory of Open Access Journals (Sweden)

    Yang Zhang

    2017-10-01

    Full Text Available We proposed and demonstrated a novel tilted fiber Bragg grating (TFBG-based surface plasmon resonance (SPR label-free biosensor via a special boronic acid derivative to detect glycoprotein with high sensitivity and selectivity. TFBG, as an effective sensing element for optical sensing in near-infrared wavelengths, possess the unique capability of easily exciting the SPR effect on fiber surface which coated with a nano-scale metal layer. SPR properties can be accurately detected by measuring the variation of transmitted spectra at optical communication wavelengths. In our experiment, a 10° TFBG coated with a 50 nm gold film was manufactured to stimulate SPR on a sensor surface. To detect glycoprotein selectively, the sensor was immobilized using designed phenylboronic acid as the recognition molecule, which can covalently bond with 1,2- or 1,3-diols to form five- or six-membered cyclic complexes for attaching diol-containing biomolecules and proteins. The phenylboronic acid was synthetized with long alkyl groups offering more flexible space, which was able to improve the capability of binding glycoprotein. The proposed TFBG-SPR sensors exhibit good selectivity and repeatability with a protein concentration sensitivity up to 2.867 dB/ (mg/mL and a limit of detection (LOD of 15.56 nM.

  5. An Exposed-Core Grapefruit Fibers Based Surface Plasmon Resonance Sensor

    Directory of Open Access Journals (Sweden)

    Xianchao Yang

    2015-07-01

    Full Text Available To solve the problem of air hole coating and analyte filling in microstructured optical fiber-based surface plasmon resonance (SPR sensors, we designed an exposed-core grapefruit fiber (EC-GFs-based SPR sensor. The exposed section of the EC-GF is coated with a SPR, supporting thin silver film, which can sense the analyte in the external environment. The asymmetrically coated fiber can support two separate resonance peaks (x- and y-polarized peaks with orthogonal polarizations and x-polarized peak, providing a much higher peak loss than y-polarized, also the x-polarized peak has higher wavelength and amplitude sensitivities. A large analyte refractive index (RI range from 1.33 to 1.42 is calculated to investigate the sensing performance of the sensor, and an extremely high wavelength sensitivity of 13,500 nm/refractive index unit (RIU is obtained. The silver layer thickness, which may affect the sensing performance, is also discussed. This work can provide a reference for developing a high sensitivity, real-time, fast-response, and distributed SPR RI sensor.

  6. High-performance wearable supercapacitors fabricated with surface activated continuous filament graphite fibers

    Science.gov (United States)

    Jia, Dedong; Yu, Xin; Chen, Tinghan; Wang, Shu; Tan, Hua; Liu, Hong; Wang, Zhong Lin; Li, Linlin

    2017-08-01

    Generally, carbon or graphite fibers (GFs) are used as the supporting materials for the preparation of flexible supercapacitors (SCs) by assembling various electrochemically active nanomaterials on them. A facile and rapid electrochemical oxidation method with a voltage of 3 V in a mixed H2SO4-HNO3 solution for 2-15 min is proposed to active continuous filament GFs. Detailed structural characterization, SEM, TEM, XRD, Raman and XPS demonstrate that the GFs-8 (oxidized for 8 min) possessing high specific surface area which provided numerous electrochemical sites and a large number of oxygen-containing functional groups producing pseudocapacitance. Cyclic voltammetric (CV), galvanostatic charge-discharge measurements and electrochemical impedance spectroscopy (EIS) are conducted to test the capacitive of GFs and activated GFs. The capacitance of GFs-8 reaches as high as 570 mF cm-1 at the current density of 1 mA cm-1 in LiCl electrolyte, a 1965-fold enhancement with respect to the pristine GFs (0.29 mF cm-1). The fabricated fiber solid-state supercapacitors (SSCs) provide high energy density of 0.68 mWh cm-3 at the power density 3.3 W cm-3 and have excellent durability with 90% capacitance retention after 10000 cycles. In addition, such fiber SSCs features flexibility and mechanical stability, which may have wide applications in wearable electronic devices.

  7. Analysis of Leaky Modes in Photonic Crystal Fibers Using the Surface Integral Equation Method

    Directory of Open Access Journals (Sweden)

    Jung-Sheng Chiang

    2018-04-01

    Full Text Available A fully vectorial algorithm based on the surface integral equation method for the modelling of leaky modes in photonic crystal fibers (PCFs by solely solving the complex propagation constants of characteristic equations is presented. It can be used for calculations of the complex effective index and confinement losses of photonic crystal fibers. As complex root examination is the key technique in the solution, the new algorithm which possesses this technique can be used to solve the leaky modes of photonic crystal fibers. The leaky modes of solid-core PCFs with a hexagonal lattice of circular air-holes are reported and discussed. The simulation results indicate how the confinement loss by the imaginary part of the effective index changes with air-hole size, the number of rings of air-holes, and wavelength. Confinement loss reductions can be realized by increasing the air-hole size and the number of air-holes. The results show that the confinement loss rises with wavelength, implying that the light leaks more easily for longer wavelengths; meanwhile, the losses are decreased significantly as the air-hole size d/Λ is increased.

  8. Morpho-chemical characterization and surface properties of carcinogenic zeolite fibers.

    Science.gov (United States)

    Mattioli, Michele; Giordani, Matteo; Dogan, Meral; Cangiotti, Michela; Avella, Giuseppe; Giorgi, Rodorico; Dogan, A Umran; Ottaviani, Maria Francesca

    2016-04-05

    Erionite belonging to the zeolite family is a human health-hazard, since it was demonstrated to be carcinogenic. Conversely, offretite family zeolites were suspected carcinogenic. Mineralogical, morphological, chemical, and surface characterizations were performed on two erionites (GF1, MD8) and one offretite (BV12) fibrous samples and, for comparison, one scolecite (SC1) sample. The specific surface area analysis indicated a larger availability of surface sites for the adsorption onto GF1, while SC1 shows the lowest one and the presence of large pores in the poorly fibrous zeolite aggregates. Selected spin probes revealed a high adsorption capacity of GF1 compared to the other zeolites, but the polar/charged interacting sites were well distributed, intercalated by less polar sites (Si-O-Si). MD8 surface is less homogeneous and the polar/charged sites are more interacting and closer to each other compared to GF1. The interacting ability of BV12 surface is much lower than that found for GF1 and MD8 and the probes are trapped in small pores into the fibrous aggregates. In comparison with the other zeolites, the non-carcinogenic SC1 shows a poor interacting ability and a lower surface polarity. These results helped to clarify the chemical properties and the surface interacting ability of these zeolite fibers which may be related to their carcinogenicity. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Fiber-optic surface-enhanced Raman system for field screening of hazardous compounds

    International Nuclear Information System (INIS)

    Ferrell, T.L.; Goudonnet, J.P.; Arakawa, E.T.; Reddick, R.C.; Gammage, R.B.; Haas, J.W.; James, D.R.; Wachter, E.A.

    1988-01-01

    Surface-enhanced Raman scattering permits identification of compounds adsorbed onto a metal microbase that is microlithographically produced with submicron resolution. Less than one percent of a monolayer of a Raman Active target compound offers a high signal-to-noise ratio. By depositing the microbase on the exterior of a fiber optic cable, convenient field screening or monitoring is permitted. By using highly effective microbases, it is possible to reduce laser power requirements sufficiently to allow an economical, but complete, system to be housed in a suitcase. We shall present details of SERS system of this type and shall show data on samples of interest in the screening of hazardous compounds

  10. Recovery of Tungsten Surface with Fiber-Form Nanostructure by Plasmas Exposures

    International Nuclear Information System (INIS)

    Miyamoto, Takanori; Takamura, Shuichi; Kurishita, Hiroaki

    2013-01-01

    One of the serious concerns for tungsten materials in fusion devices is the radiation defects caused by helium plasma irradiation since helium is a fusion product. The fiber-formed nanostructure is thought to have a possible weakness against the plasma heat flux on the plasma-facing component and also may destroy the reflectivity of optical mirrors. In this paper an interesting method for the recovery of such tungsten surfaces is shown. The recovery process depends on the grade and manufacturing process of tungsten materials. (fusion engineering)

  11. Fiber laser cleaning of metal mirror surfaces for optical diagnostic systems of the ITER

    Energy Technology Data Exchange (ETDEWEB)

    Kuznetsov, A. P., E-mail: APKuznetsov@mephi.ru; Alexandrova, A. S. [National Research Nuclear University MEPhI (Russian Federation); Buzhinsky, O. I. [State Research Center of the Russian Federation Troitsk Institute for Innovation and Fusion Research (Russian Federation); Gubskiy, K. L.; Kazieva, T. V.; Savchenkov, A. V. [National Research Nuclear University MEPhI (Russian Federation); Tugarinov, S. N. [State Research Center of the Russian Federation Troitsk Institute for Innovation and Fusion Research (Russian Federation)

    2015-12-15

    The results of experimental studies into efficiency of removal of films with a complex composition from metal mirrors by pulsed fiber laser irradiation are presented. It is shown that the initial reflectivity of optical elements can be restored by the selection of modes of irradiation impacting the surface with the sputtered film. Effective cleaning is performed by radiation with a power density lower than 10{sup 7} W/cm{sup 2}. The removal of contaminations at such a relatively low power density occurs in a solid phase, owing to which the thermal effect on the mirror is insignificant.

  12. Fiber laser cleaning of metal mirror surfaces for optical diagnostic systems of the ITER

    International Nuclear Information System (INIS)

    Kuznetsov, A. P.; Alexandrova, A. S.; Buzhinsky, O. I.; Gubskiy, K. L.; Kazieva, T. V.; Savchenkov, A. V.; Tugarinov, S. N.

    2015-01-01

    The results of experimental studies into efficiency of removal of films with a complex composition from metal mirrors by pulsed fiber laser irradiation are presented. It is shown that the initial reflectivity of optical elements can be restored by the selection of modes of irradiation impacting the surface with the sputtered film. Effective cleaning is performed by radiation with a power density lower than 10 7 W/cm 2 . The removal of contaminations at such a relatively low power density occurs in a solid phase, owing to which the thermal effect on the mirror is insignificant

  13. Extracting Optical Fiber Background from Surface-Enhanced Raman Spectroscopy Spectra Based on Bi-Objective Optimization Modeling.

    Science.gov (United States)

    Huang, Jie; Shi, Tielin; Tang, Zirong; Zhu, Wei; Liao, Guanglan; Li, Xiaoping; Gong, Bo; Zhou, Tengyuan

    2017-08-01

    We propose a bi-objective optimization model for extracting optical fiber background from the measured surface-enhanced Raman spectroscopy (SERS) spectrum of the target sample in the application of fiber optic SERS. The model is built using curve fitting to resolve the SERS spectrum into several individual bands, and simultaneously matching some resolved bands with the measured background spectrum. The Pearson correlation coefficient is selected as the similarity index and its maximum value is pursued during the spectral matching process. An algorithm is proposed, programmed, and demonstrated successfully in extracting optical fiber background or fluorescence background from the measured SERS spectra of rhodamine 6G (R6G) and crystal violet (CV). The proposed model not only can be applied to remove optical fiber background or fluorescence background for SERS spectra, but also can be transferred to conventional Raman spectra recorded using fiber optic instrumentation.

  14. Surface decoration of short-cut polyimide fibers with multi-walled carbon nanotubes and their application for reinforcement of lightweight PC/ABS composites

    Science.gov (United States)

    Zhang, Le; Han, Enlin; Wu, Yulun; Wang, Xiaodong; Wu, Dezhen

    2018-06-01

    The surface decoration of short-cut polyimide (PI) fibers with multi-walled carbon nanotubes (MWCNTs) was performed by fabricating a polydopamine (PDA) coating layer on the fiber surface and then immobilizing MWCNTs onto the coating layer via covalent bonding. This successful surface decoration was confirmed by scanning electron microscopy, X-ray photoelectron spectroscopy, Fourier-transform infrared microscopy and static water contact angle. The application of the surface-decorated PI fibers as reinforcing fibers for reinforcement of polycarbonate (PC)/acrylonitrile-butadiene-styrene copolymer (ABS) alloy was investigated, which indicated that the MWCNTs-decorated PI fibers not only could effectively reinforce the PC/ABS alloy but also generated a significant lightweighting effect on the resulting composites. The maximum mechanical properties were achieved for the composites at a fiber content of 20 wt.% and a fiber length of 3 mm. This significant reinforcement effect is attributed to the enhancement of interaction bonding strength between the fibers and matrix as a result of the surface decoration of PI fibers with MWCNTs. The morphological investigation suggested that fiber rupture was the major energy dissipation mechanism in the tensile and impact failures, whereas fiber debonding and pullout were partly involved in the fracture energy dissipation. In addition, the presence of surface-decorated PI fibers slightly enhanced the thermal stability and load bearing capability of composites. This work can provide a type of high-performance lightweight composite material for automobile and aviation industries.

  15. The effect of alkaline treatment and fiber orientation on impact resistant of bio-composites Sansevieria trifasciata fiber/polypropylene as automotive components material

    Science.gov (United States)

    Shieddieque, Apang Djafar; Mardiyati, Suratman, Rochim; Widyanto, Bambang

    2018-04-01

    The increasing amount of car usage is causing an escalated amount of fuel consumption and CO2 emission. It implicates demand for the automotive industry to increase the efficiency of their products, One of the most effective ways to solve the issue is to find green weight light material for the interior automotive component. The Aim of this research was to investigate the effect of alkaline treatment and fiber orientation on the impact resistant of material bio- composite sansevieiria trifasciata fiber/Polypropylene. In this research, bio-composites sansevieria trifasciata fiber/Polypropylene was prepared with random fiber orientation and unidirectional orientation by using a hot press method with pressure 140 Bar and temperature 240°C. Fiber was taken from Sansevieria trifasciata by using mechanical retting. In this study, Sansevieria fiber was given alkaline treatment (mercerization) with NaOH 3% (w/w) solution at temperature 100°C for an hour. The fraction of fiber volume that were used in this experiment are 0%, 5%, 10%, and 15%. The impact test was conducted based on ASTM D 6110 - 04, and the fracture analysis was investigated by scanning electron microscope (SEM). The best result of impact toughness and fracture analysis were achieved by bio composite untreated and unidirectional sansevieria trifasciata fiber/Polypropylene with fiber volume fraction of 15%, which was 48.092kJ/m2 for impact resistant. As compared to the impact toughness standard, which needed for interior automotive component, the impact toughness of sansevieria trifasciata fiber/Polypropylene has fulfilled the standard of the interior material automotive industry. Therefore, this material can be potentially used as materials on the car exterior component.

  16. Effect of particle size and distribution of the sizing agent on the carbon fibers surface and interfacial shear strength (IFSS) of its composites

    International Nuclear Information System (INIS)

    Zhang, R.L.; Liu, Y.; Huang, Y.D.; Liu, L.

    2013-01-01

    Effect of particle size and distribution of the sizing agent on the performance of carbon fiber and carbon fiber composites has been investigated. Atomic force microscopy (AFM) and scanning electron microscopy (SEM) were used to characterize carbon fiber surface topographies. At the same time, the single fiber strength and Weibull distribution were also studied in order to investigate the effect of coatings on the fibers. The interfacial shear strength and hygrothermal aging of the carbon fiber/epoxy resin composites were also measured. The results indicated that the particle size and distribution is important for improving the surface of carbon fibers and its composites performance. Different particle size and distribution of sizing agent has different contribution to the wetting performance of carbon fibers. The fibers sized with P-2 had higher value of IFSS and better hygrothermal aging resistant properties.

  17. Production of cellulose nanofibrils from bleached eucalyptus fibers by hyperthermostable endoglucanase treatment and subsequent microfluidization

    Science.gov (United States)

    Wangxia Wang; Michael D. Mozuch; Ronald C. Sabo; Phil Kersten; J.Y. Zhu; Yongcan Jin

    2015-01-01

    A GH5 hyperthermostable endoglucanase from the archaeon Pyrococcus honkoshii (ph-GH5) and a commercial endoglucanase FR were used to treat bleached eucalyptus pulp (BEP) fibers to produce cellulose nanofibrils (CNFs) through subsequent microfluidization Enzymatic treatments facilitated CNF production due to the reduced degree of polymerization (DP)...

  18. Fiber Amplifiers

    DEFF Research Database (Denmark)

    Rottwitt, Karsten

    2017-01-01

    The chapter provides a discussion of optical fiber amplifiers and through three sections provides a detailed treatment of three types of optical fiber amplifiers, erbium doped fiber amplifiers (EDFA), Raman amplifiers, and parametric amplifiers. Each section comprises the fundamentals including...... the basic physics and relevant in-depth theoretical modeling, amplifiers characteristics and performance data as a function of specific operation parameters. Typical applications in fiber optic communication systems and the improvement achievable through the use of fiber amplifiers are illustrated....

  19. Relative humidity sensor based on surface plasmon resonance of D-shaped fiber with polyvinyl alcohol embedding Au grating

    Science.gov (United States)

    Yan, Haitao; Han, Daofu; Li, Ming; Lin, Bo

    2017-01-01

    This paper presents the design, fabrication, and characterization of a D-shaped fiber coated with polyvinyl alcohol (PVA) embedding an Au grating-based relative humidity (RH) sensor. The Au grating is fabricated on a D-shaped fiber to match the wave-vector and excite the surface plasmon, and the PVA is embedded in the Au grating as a sensitive cladding film. The refractive index of PVA changes with the ambient humidity. Measurements in a controlled environment show that the RH sensor can achieve a sensitivity of 5.4 nm per relative humidity unit in the RH range from 0% to 70% RH. Moreover, the surface plasmon resonance can be realized and used for RH sensing at the C band of optical fiber communication instead of the visible light band due to the metallic grating microstructure on the D-shaped fiber.

  20. Effect of the surface roughness on interfacial properties of carbon fibers reinforced epoxy resin composites

    International Nuclear Information System (INIS)

    Song Wei; Gu Aijuan; Liang Guozheng; Yuan Li

    2011-01-01

    The effect of the surface roughness on interfacial properties of carbon fibers (CFs) reinforced epoxy (EP) resin composite is studied. Aqueous ammonia was applied to modify the surfaces of CFs. The morphologies and chemical compositions of original CFs and treated CFs (a-CFs) were characterized by Atomic Force Microscopy (AFM), and X-ray Photoelectron Spectroscopy (XPS). Compared with the smooth surface of original CF, the surface of a-CF has bigger roughness; moreover, the roughness increases with the increase of the treating time. On the other hand, no obvious change in chemical composition takes place, indicating that the treating mechanism of CFs by aqueous ammonia is to physically change the morphologies rather than chemical compositions. In order to investigate the effect of surface roughness on the interfacial properties of CF/EP composites, the wettability and Interfacial Shear Strength (IFSS) were measured. Results show that with the increase of the roughness, the wettabilities of CFs against both water and ethylene glycol improves; in addition, the IFSS value of composites also increases. These attractive phenomena prove that the surface roughness of CFs can effectively overcome the poor interfacial adhesions between CFs and organic matrix, and thus make it possible to fabricate advanced composites based on CFs.

  1. Research on Fiber Micro-Surfacing Mixture Design and Pavement Performance in Interchange’s Connections

    Directory of Open Access Journals (Sweden)

    Wu Zhaoyang

    2015-01-01

    Full Text Available In order to use the micro-surfacing which is the existing micro-surfacing technology guide that has some technical defects, the method to determine the optimal dosage of emulsified asphalt and best whetstone is not very reasonable, and it impedes the application and development of micro-surfacing technology to improve the performance of the pavement. In this paper, the “graphical method” is first used to determine the optimal dosage range of emulsified asphalt. Nowadays, a large number of expressways reach the stage of repair and maintenance. Interchange ramp exit and entrance are always the accident-prone sections and, it’s easy to over-look the pavement’s skid resistance of those areas. Micro-surfacing can significantly improve the performance of pavement, especially the skid resistance. Verified with laboratory tests, it recommends that the dosage of emulsified asphalt corresponding to the peak of flexural strain measured with low temperature bending test as OAC of micro-surfacing mixture shows technical superiority. The use of fiber micro-surfacing at the ramp’s exit and entrance can reduce the braking distance.

  2. Finite element simulation of photoacoustic fiber optic sensors for surface corrosion detection on a steel rod

    Science.gov (United States)

    Tang, Qixiang; Owusu Twumasi, Jones; Hu, Jie; Wang, Xingwei; Yu, Tzuyang

    2018-03-01

    Structural steel members have become integral components in the construction of civil engineering infrastructures such as bridges, stadiums, and shopping centers due to versatility of steel. Owing to the uniqueness in the design and construction of steel structures, rigorous non-destructive evaluation techniques are needed during construction and operation processes to prevent the loss of human lives and properties. This research aims at investigating the application of photoacoustic fiber optic transducers (FOT) for detecting surface rust of a steel rod. Surface ultrasonic waves propagation in intact and corroded steel rods was simulated using finite element method (FEM). Radial displacements were collected and short-time Fourier transform (STFT) was applied to obtain the spectrogram. It was found that the presence of surface rust between the FOT and the receiver can be detected in both time and frequency domain. In addition, spectrogram can be used to locate and quantify surface rust. Furthermore, a surface rust detection algorithm utilizing the FOT has been proposed for detection, location and quantification of the surface rust.

  3. Improvement of Haramay Fiber by Pre-treatment of Retting Process withPhosphoric Acid

    International Nuclear Information System (INIS)

    Kuntari-Sasas; Neni-Rustini Eriawati

    2000-01-01

    Haramay as bast fiber contains of cellulose fiber as the main part, mixedwith hemi cellulose, pectin, and lignin as binding material for cellulosefiber to keep it together in the bundle form. For textile material, this bastfiber has to be freed from its binding material, called as retting process,before subjecting to scouring, dyeing and finishing process in textileindustry. In the retting process the dissolve of binding material can be doneeither by using enzyme in bio technology or extraction with strong alkalinecondition in common technology. Using sodium hydroxide for dissolving thebinding material can be carried out easily with good dissolving ability, butcan render the strength retention of the cellulose fiber. Pre-treatment ofthe bast fiber with phosphoric acid (H 3 PO 4 ), is expected to hydrolyze someof the binding materials that can not be dissolved in alkaline condition,including natural pigment that colored the fiber with creamy white. In thisstudy, the pre-treatment process before retting with phosphoric acid wascarried out in various condition, such as concentration of phosphoric acid (5ml/l- 25 ml/l), time and temperature of pre-treatment (1-3 hours at 50 o C or12-24 hours at room temperature), followed by neutralization in dilutealkaline. The retting process was carried out by means of scouring in variousconcentration of sodium hydroxide (NaOH 38 o Be, 10 ml/l-30 m/l), and then wascontinued with bleaching process in hydrogen peroxide solution. Aftercarrying out those experiment, the bast fiber that called haramay wassubjected to testing for weight reduction, strength retention and degree ofwhiteness. From the testing results it is concluded that pre-treatment withphosphoric acid can increase the weight reduction, strength retention ortenacity and degree of whiteness of haramay fiber compared to the oneswithout pre-treatment with phosphoric acid. The best result was obtained bypre-treatment with 5 ml/l H 3 PO 4 at 50 o C for 2 hours, continued by

  4. Response surface methodology to evaluation the recovery of amylases by hollow fiber membrane

    Directory of Open Access Journals (Sweden)

    João Baptista Severo Júnior

    2007-07-01

    Full Text Available This work aimed to study the pH and the transmembrane pressure effects during the recovery of alpha and beta amylases enzymes from corn malt (Zea mays by hollow fiber membrane. The optimal condition was obtained for a statistical model, established by response surface methodology (RSM. The response surface analysis showed that the best operation condition for amylolitics enzymes recovery by hollow fiber membrane was 0.05 bar and pH 5.00, while the enzymes were purified about of 26 times.Este trabalho objetivou estudar o efeito do pH e da pressão trans-membrana durante a recuperação das enzimas alfa e beta amilases do malte de milho (Zea mays por membranas de fibras ocas, a obtenção das condições ótimas foi feita por um modelo estatístico, estabelecido pela metodologia de superfície de resposta (RSM. A análise da superfície de resposta mostrou que as melhores condições operacionais para a recuperação das enzimas amiloliticas por membranas de fibras ocas foi 0,05 bar e pH 5,00; onde as enzimas foram purificadas cerca de 26 vezes.

  5. Bioactive carbon-PEEK composites prepared by chemical surface treatment.

    Science.gov (United States)

    Miyazaki, Toshiki; Matsunami, Chisato; Shirosaki, Yuki

    2017-01-01

    Polyetheretherketone (PEEK) has attracted much attention as an artificial intervertebral spacer for spinal reconstruction. Furthermore, PEEK plastic reinforced with carbon fiber has twice the bending strength of pure PEEK. However, the PEEK-based materials do not show ability for direct bone bonding, i.e., bioactivity. Although several trials have been conducted for enabling PEEK with bioactivity, few studies have reported on bioactive surface modification of carbon-PEEK composites. In the present study, we attempted the preparation of bioactive carbon-PEEK composites by chemical treatments with H 2 SO 4 and CaCl 2 . Bioactivity was evaluated by in vitro apatite formation in simulated body fluid (SBF). The apatite formation on the carbon-PEEK composite was compared with that of pure PEEK. Both pure PEEK and carbon-PEEK composite formed the apatite in SBF when they were treated with H 2 SO 4 and CaCl 2 ; the latter showed higher apatite-forming ability than the former. It is conjectured that many functional groups able to induce the apatite nucleation, such as sulfo and carboxyl groups, are incorporated into the dispersed carbon phase in the carbon-PEEK composites. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Surface Modified Long Period Fiber Grating Sensor for Rapid Detection of Aspergillus Niger Fungal Spores

    Science.gov (United States)

    Gambhir, Monika; Gupta, Shilpi; John, Priya; Mahakud, Ramakanta; Kumar, Jitendra; Prakash, Om

    2018-03-01

    We present development of a compact and label-free sensor based on the surface modification of copper vapor laser fabricated long period fiber gratings for detection of airborne Aspergillus niger (A. niger) fungal spores. Surface of sensors were functionalized with monoclonal glucose oxidases IgG1 for target-specific covalent binding. In process of functionalization and binding of 103 cfu/ml of pathogenic A. niger fungal spores, notable shorter wave transition in resonance wavelength from 1562.93 nm to 1555.97 nm, and significant reduction in peak loss from 61.72 dB to 57.48 dB were recorded. The implementation was cost effective and yielded instantaneous results.

  7. Assessment of effect of chemical treatment to carnauba's fibers straw; Avaliacao do efeito de tratamento quimico as fibras da palha de carnauba

    Energy Technology Data Exchange (ETDEWEB)

    Carvalho, T.M.P. de; Carvalho, L.F.M.; Oliveira, R.R. de; Sousa, F.M.S. de; Sousa, R.C. de; Marques, J.R., E-mail: thaismarjore.pc@gmail.com [Instituto Federal de Educacao, Ciencia e Tecnologia do Piaui (IFPI), Teresina, PI (Brazil)

    2016-07-01

    The use of natural fibers in composite materials has been highlighted in the scientific field. However, its application in polymer matrices usually requires surface modifications. The objective of this work was to treat carnauba's straw fibers with NaOH 1 % and NaOH 5% solutions and measure the water absorption. We used the X-ray diffraction (XRD configuration “Bragg- Brentano) for verification of the crystalline phases and Fourier Transform Infrared Spectroscopy (FTIR) to identify functional groups. The alkali treatment allowed the solubilization of the hemicellulose and lignin without causing changes to cellulose, as indicated by FTIR spectrophotometry and by the increase in crystallinity content. The samples showed the typical peaks of constituents of the fiber. The natural fiber showed an average water absorption of 256 %; fiber treated with NaOH 1%, 315 %; and treated with NaOH 5%, 405 %. Therefore, it is evident improvement in hydrophilicity, fundamental aspect in the interaction fiber / matrix. (author)

  8. Laser surface treatment of grey cast iron for automotive applications

    NARCIS (Netherlands)

    Ocelik, V.; Tang, P.N.; de Boer, M.C.; de Oliveira, U.; de Hosson, J.T.M.; DeHosson, JTM; Brebbia, CA; Nishida, SI

    2005-01-01

    The surface of pearlitic grey cast iron was treated using a 2 kW Nd:YAG laser beam with the final aim to improve its surface properties, mainly for automotive applications. Two kinds of laser surface treatments were experimentally applied. In the laser surface hardening approach the surface of cast

  9. Dose attenuation by a carbon fiber linac couch and modeling with a treatment planning system

    International Nuclear Information System (INIS)

    Sanchez Galiano, P.; Garcia Sancho, J.M.; Crelgo, D.; Pamos, M.; Fernandez, J.; Vivanco, J.

    2010-01-01

    The purpose of this work is to investigate the attenuation caused by a carbon fiber linac treatment couch and the ability of a commercial radiotherapy treatment planning system to simulate it. The attenuation caused by an Exact treatment couch in a Varian Clinac 2100 C/D was characterized in detail. Both 6 MV and 18 MV photon beams were studied. The treatment couch was modeled and incorporated to Elekta XiO treatment planning system. Measured and computed attenuation values were compared. As a result we found that the attenuation caused by this complex treatment couch is strongly dependent on the incidence angle of the beam. The measured attenuation values reach 16% for 6 MV and 10% for 18 MV. The model incorporated to the treatment planning software allows reducing the differences between measured and calculated data below 2.5% and 2.0% for 6 MV and 18 MV respectively. In conclusion, it is strongly recommended accounting for the perturbation caused by this carbon fiber treatment couch when the beam intersects it. The treatment planning system studied can simulate this treatment couch accurately. Clinical implementation of the described method requires a reliable procedure to reproduce the same patient geometry in the treatment delivery and planning. (Author).

  10. Development and characterization of nano-fiber patch for the treatment of glaucoma.

    Science.gov (United States)

    Gagandeep; Garg, Tarun; Malik, Basant; Rath, Goutam; Goyal, Amit K

    2014-03-12

    In the present work polymeric nano-fiber patches was developed for the effective treatment of glaucoma using timolol maleate and dorzolamide hydrochloride as model drugs. The nano-fibers were prepared by electrospinning technique and were characterized on the basis of fiber diameter, morphology, entrapment efficiency, mucoadhesive strength, and drug release behavior, etc. Final formulations were inserted in the cul-de-sac of glaucoma induced rabbits and the efficacy of the formulation was evaluated. The results clearly indicated the potential of the developed formulation for occur drug delivery. There was a significant fall in the intraocular pressure compared to commercial eye drops. Copyright © 2013 Elsevier B.V. All rights reserved.

  11. Functional anatomy of the equine temporomandibular joint: Collagen fiber texture of the articular surfaces.

    Science.gov (United States)

    Adams, K; Schulz-Kornas, E; Arzi, B; Failing, K; Vogelsberg, J; Staszyk, C

    2016-11-01

    In the last decade, the equine masticatory apparatus has received much attention. Numerous studies have emphasized the importance of the temporomandibular joint (TMJ) in the functional process of mastication. However, ultrastructural and histological data providing a basis for biomechanical and histopathological considerations are not available. The aim of the present study was to analyze the architecture of the collagen fiber apparatus in the articular surfaces of the equine TMJ to reveal typical morphological features indicating biomechanical adaptions. Therefore, the collagen fiber alignment was visualized using the split-line technique in 16 adult warmblood horses without any history of TMJ disorders. Within the central two-thirds of the articular surfaces of the articular tubercle, the articular disc and the mandibular head, split-lines ran in a correspondent rostrocaudal direction. In the lateral and medial aspects of these articular surfaces, the split-line pattern varied, displaying curved arrangements in the articular disc and punctual split-lines in the bony components. Mediolateral orientated split-lines were found in the rostral and caudal border of the articular disc and in the mandibular fossa. The complex movements during the equine chewing cycle are likely assigned to different areas of the TMJ. The split-line pattern of the equine TMJ is indicative of a relative movement of the joint components in a preferential rostrocaudal direction which is consigned to the central aspects of the TMJ. The lateral and medial aspects of the articular surfaces provide split-line patterns that indicate movements particularly around a dorsoventral axis. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Formation mechanism of a silane-PVA/PVAc complex film on a glass fiber surface.

    Science.gov (United States)

    Repovsky, Daniel; Jane, Eduard; Palszegi, Tibor; Slobodnik, Marek; Velic, Dusan

    2013-10-21

    Mechanical properties of glass fiber reinforced composite materials are affected by fiber sizing. A complex film formation, based on a silane film and PVA/PVAc (polyvinyl alcohol/polyvinyl acetate) microspheres on a glass fiber surface is determined at 1) the nanoscale by using atomic force microscopy (AFM), and 2) the macroscale by using the zeta potential. Silane groups strongly bind through the Si-O-Si bond to the glass surface, which provides the attachment mechanism as a coupling agent. The silane groups form islands, a homogeneous film, as well as empty sites. The average roughness of the silanized surface is 6.5 nm, whereas it is only 0.6 nm for the non-silanized surface. The silane film vertically penetrates in a honeycomb fashion from the glass surface through the deposited PVA/PVAc microspheres to form a hexagonal close pack structure. The silane film not only penetrates, but also deforms the PVA/PVAc microspheres from the spherical shape in a dispersion to a ellipsoidal shape on the surface with average dimensions of 300/600 nm. The surface area value Sa represents an area of PVA/PVAc microspheres that are not affected by the silane penetration. The areas are found to be 0.2, 0.08, and 0.03 μm(2) if the ellipsoid sizes are 320/570, 300/610, and 270/620 nm for silane concentrations of 0, 3.8, and 7.2 μg mL(-1), respectively. The silane film also moves PVA/PVAc microspheres in the process of complex film formation, from the low silane concentration areas to the complex film area providing enough silane groups to stabilize the structure. The values for the residual silane honeycomb structure heights (Ha ) are 6.5, 7, and 12 nm for silane concentrations of 3.8, 7.2, and 14.3 μg mL(-1), respectively. The pH-dependent zeta-potential results suggest a specific role of the silane groups with effects on the glass fiber surface and also on the PVA/PVAc microspheres. The non-silanized glass fiber surface and the silane film have similar zeta potentials ranging

  13. High-Performance Stretchable Conductive Composite Fibers from Surface-Modified Silver Nanowires and Thermoplastic Polyurethane by Wet Spinning.

    Science.gov (United States)

    Lu, Ying; Jiang, Jianwei; Yoon, Sungho; Kim, Kyung-Shik; Kim, Jae-Hyun; Park, Sanghyuk; Kim, Sang-Ho; Piao, Longhai

    2018-01-17

    Highly stretchable and conductive fibers have attracted great interest as a fundamental building block for the next generation of textile-based electronics. Because of its high conductivity and high aspect ratio, the Ag nanowire (AgNW) has been considered one of the most promising conducting materials for the percolation network-based conductive films and composites. However, the poor dispersibility of AgNWs in hydrophobic polymers has hindered their application to stretchable conductive composite fibers. In this paper, we present a highly stretchable and conductive composite fiber from the co-spinning of surface-modified AgNWs and thermoplastic polyurethane (PU). The surface modification of AgNWs with a polyethylene glycol derivative improved the compatibility of PU and AgNWs, which allowed the NWs to disperse homogeneously in the elastomeric matrix, forming effective percolation networks and causing the composite fiber to show enhanced electrical and mechanical performance. The maximum AgNW mass fraction in the composite fiber was 75.9 wt %, and its initial electrical conductivity was as high as 14 205 S/cm. The composite fibers also exhibited superior stretchability: the maximum rupture strain of the composite fiber with 14.6 wt % AgNW was 786%, and the composite fiber was also conductive even when it was stretched up to 200%. In addition, 2-dimensional (2-D) Ag nanoplates were added to the AgNW/PU composite fibers to increase the stability of the conductive network under repeated stretching and releasing. The Ag nanoplates acted as a bridge to effectively prevent the AgNWs from slippage and greatly improved the stability of the conductive network.

  14. The Influence of Green Surface Modification of Oil Palm Mesocarp Fiber by Superheated Steam on the Mechanical Properties and Dimensional Stability of Oil Palm Mesocarp Fiber/Poly(butylene succinate Biocomposite

    Directory of Open Access Journals (Sweden)

    Yoon Yee Then

    2014-08-01

    Full Text Available In this paper, superheated steam (SHS was used as cost effective and green processing technique to modify oil palm mesocarp fiber (OPMF for biocomposite applications. The purpose of this modification was to promote the adhesion between fiber and thermoplastic. The modification was carried out in a SHS oven at various temperature (200–230 °C and time (30–120 min under normal atmospheric pressure. The biocomposites from SHS-treated OPMFs and poly(butylene succinate (PBS at a weight ratio of 70:30 were prepared by melt blending technique. The mechanical properties and dimensional stability of the biocomposites were evaluated. This study showed that the SHS treatment increased the roughness of the fiber surface due to the removal of surface impurities and hemicellulose. The tensile, flexural and impact properties, as well as dimensional stability of the biocomposites were markedly enhanced by the presence of SHS-treated OPMF. Scanning electron microscopy analysis showed improvement of interfacial adhesion between PBS and SHS-treated OPMF. This work demonstrated that SHS could be used as an eco-friendly and sustainable processing method for modification of OPMF in biocomposite fabrication.

  15. Treatment of dilated pores with 1410-nm fractional erbium-doped fiber laser.

    Science.gov (United States)

    Suh, Dong-Hye; Chang, Ka-Yeun; Lee, Sang-Jun; Song, Kye-Yong; Choi, Jeong Hwee; Shin, Min Kyung; Jeong, Ki-Heon

    2015-04-01

    Dilated pores can be an early sign of skin aging and are a significant cosmetic concern. The 1410-nm wavelength is optimal for superficial dermal treatments up to 650 μm deep. The aim of the present study was to evaluate the clinical effectiveness and safety of the fractional erbium-doped fiber 1410-nm laser in the treatment of dilated pores. Fifteen patients with dilated facial pores underwent three laser treatments at 3-week intervals. Posttreatment skin responses and side effects were assessed at treatment and follow-up visits by study physicians. Clinical effectiveness of treatment was assessed by both study physicians and patients 3 months after the final laser treatment using a quartile grading scale. Histological examination was performed using biopsy samples taken at baseline (pretreatment) and 3 months after the last treatment. This study showed that greater than 51 % improvement in dilated pores was demonstrated in 14 of 15 patients after three sessions of laser treatments. Improvements in skin texture, tone, and smoothness were reported in all patients. Treatment was well tolerated in all patients, with no unanticipated side effects. This study demonstrates that the 1410-nm fractional erbium fiber laser is effective and safe for treatment of dilated facial pores in Fitzpatrick skin types III-IV.

  16. Alkaline Treatment of Oil Palm Frond Fibers by Using Extract of Oil Palm EFB Ash for Better Adhesion toward Polymeric Matrix

    Directory of Open Access Journals (Sweden)

    Warman Fatra

    2015-10-01

    Full Text Available In Indonesia, 187 million tons of biomass were produced from 8.11 million ha of oil palm plantation in 2009. This massive amount of biomass mainly consists of oil palm fronds (OPF and oil palm empty fruit bunches (EFB, which are normally categorized as waste. The properties of OPF fibers compared to those of synthetic fibers, such as low density, low cost, less abrasion of equipment, and safer production, makes them an attractive reinforcement for composite materials. In this work, the utilization of oil palm empty fruit bunch ash for OPF fiber-polyester resin composite and the effect of process conditions were studied. Water absorption, tensile and flexural strength were used to characterize the effects of alkaline treatment on modified OPF fibers in polyester resin. The investigation focused on the effect of alkaline treatment time. Treatment temperature and liquid to solid ratio were analyzed using Response Surface Method-Central Composite Design (RSM-CCD. The highest tensile strength (44.87 MPa was achieved at 12 hours soaking time, at 40°C treatment temperature and 5:1 water to ash ratio. The highest flexural strength (120.50 MPa was obtained at 1.3 hours soaking time, 4 dissolving ratio and 35°C treatment temperature. The lowest water absorption of composite (3.00% was achieved at the longest soaking time (14.7 hours, 4 dissolving ratio and 35°C treatment temperature. Variance of soaking time, dissolving ratio and temperature in the alkaline treatment process using extract of oil palm empty fruit bunch ash significantly affected the mechanical and physical properties of the oil palm frond fibers reinforced composite.

  17. Aluminum surface corrosion and the mechanism of inhibitors using pH and metal ion selective imaging fiber bundles.

    Science.gov (United States)

    Szunerits, Sabine; Walt, David R

    2002-02-15

    The localized corrosion behavior of a galvanic aluminum copper couple was investigated by in situ fluorescence imaging with a fiber-optic imaging sensor. Three different, but complementary methods were used for visualizing remote corrosion sites, mapping the topography of the metal surface, and measuring local chemical concentrations of H+, OH-, and Al3+. The first method is based on a pH-sensitive imaging fiber, where the fluorescent dye SNAFL was covalently attached to the fiber's distal end. Fluorescence images were acquired as a function of time at different areas of the galvanic couple. In a second method, the fluorescent dye morin was immobilized on the fiber-optic imaging sensor, which allowed the in situ localization of corrosion processes on pure aluminum to be visualized over time by monitoring the release of Al3+. The development of fluorescence on the aluminum surface defined the areas associated with the anodic dissolution of aluminum. We also investigated the inhibition of corrosion of pure aluminum by CeCl3 and 8-hydroxyquinoline. The decrease in current, the decrease in the number of active sites on the aluminum surface, and the faster surface passivation are all consistent indications that cerium chloride and 8-hydroxyquinoline inhibit corrosion effectively. From the number and extent of corrosion sites and the release of aluminum ions monitored with the fiber, it was shown that 8-hydroxyquinoline is a more effective inhibitor than cerium chloride.

  18. Superhydrophobic surfaces of electrospun block copolymer fibers with low content of fluorosilicones

    International Nuclear Information System (INIS)

    Tian, Xiaoping; Yi, Lingmin; Meng, Xiaomei; Xu, Kai; Jiang, Tengteng; Lai, Dongzhi

    2014-01-01

    A series of well-defined poly[methyl(3,3,3-trifluoropropyl)siloxane]-b-poly(methyl methacrylate) (PMTFPS-b-PMMA) diblock copolymers with low content of PMTFPS were synthesized by atom transfer radical polymerization (ATRP) of MMA from PMTFPS macroinitiators (PMTFPS-Br). The polymerization result reveals that the ATRP of MMA from PMTFPS-Br is fist-order with respect to MMA under different polymerization conditions, demonstrating a typical characteristic of living polymerization. The results also show that PMTFPS-b-PMMA diblock copolymers can exhibit a total surface tension (γ S ) varying from 25.28 mN/m to 21.87 mN/m with the change of PMTFPS contents from 2.6 wt% to 22.2 wt%. Moreover, the water contact angles of electrospun PMTFPS-b-PMMA surfaces could be higher than 150° with water roll-off angles less than 10°, which denotes a superhydrophobic property. However, the electronspinning conditions, especially the concentration of spinning solution, would have important effect on the surface morphology, surface composition and wetting behavior of electrospun films. It was found that bead-free fibers with uniform diameter as well as good superhydrophobic property could be prepared on condition that the polymer concentration of spinning solution was as high as 32 wt% in the mixed solvent of DMF and THF.

  19. Superhydrophobic surfaces of electrospun block copolymer fibers with low content of fluorosilicones

    Energy Technology Data Exchange (ETDEWEB)

    Tian, Xiaoping [Key Laboratory of Advanced Textile Materials and Manufacturing Technology, Ministry of Education, Zhejiang Sci-Tech University, Hangzhou 310018 (China); Engineering Research Center for Eco-Dyeing and Finishing of Textiles, Ministry of Education, Zhejiang Sci-Tech University, Hangzhou 310018 (China); Yi, Lingmin, E-mail: lmyi@zstu.edu.cn [Key Laboratory of Advanced Textile Materials and Manufacturing Technology, Ministry of Education, Zhejiang Sci-Tech University, Hangzhou 310018 (China); Engineering Research Center for Eco-Dyeing and Finishing of Textiles, Ministry of Education, Zhejiang Sci-Tech University, Hangzhou 310018 (China); Department of Chemical Engineering and Materials Science, Stevens Institute of Technology, Hoboken, NJ 07030 (United States); Meng, Xiaomei; Xu, Kai [Key Laboratory of Advanced Textile Materials and Manufacturing Technology, Ministry of Education, Zhejiang Sci-Tech University, Hangzhou 310018 (China); Engineering Research Center for Eco-Dyeing and Finishing of Textiles, Ministry of Education, Zhejiang Sci-Tech University, Hangzhou 310018 (China); Jiang, Tengteng; Lai, Dongzhi [Key Laboratory of Advanced Textile Materials and Manufacturing Technology, Ministry of Education, Zhejiang Sci-Tech University, Hangzhou 310018 (China)

    2014-07-01

    A series of well-defined poly[methyl(3,3,3-trifluoropropyl)siloxane]-b-poly(methyl methacrylate) (PMTFPS-b-PMMA) diblock copolymers with low content of PMTFPS were synthesized by atom transfer radical polymerization (ATRP) of MMA from PMTFPS macroinitiators (PMTFPS-Br). The polymerization result reveals that the ATRP of MMA from PMTFPS-Br is fist-order with respect to MMA under different polymerization conditions, demonstrating a typical characteristic of living polymerization. The results also show that PMTFPS-b-PMMA diblock copolymers can exhibit a total surface tension (γ{sub S}) varying from 25.28 mN/m to 21.87 mN/m with the change of PMTFPS contents from 2.6 wt% to 22.2 wt%. Moreover, the water contact angles of electrospun PMTFPS-b-PMMA surfaces could be higher than 150° with water roll-off angles less than 10°, which denotes a superhydrophobic property. However, the electronspinning conditions, especially the concentration of spinning solution, would have important effect on the surface morphology, surface composition and wetting behavior of electrospun films. It was found that bead-free fibers with uniform diameter as well as good superhydrophobic property could be prepared on condition that the polymer concentration of spinning solution was as high as 32 wt% in the mixed solvent of DMF and THF.

  20. Spectrally enhanced imaging of occlusal surfaces and artificial shallow enamel erosions with a scanning fiber endoscope

    Science.gov (United States)

    Zhang, Liang; Nelson, Leonard Y.; Seibel, Eric J.

    2012-07-01

    An ultrathin scanning fiber endoscope, originally developed for cancer diagnosis, was used to image dental occlusal surfaces as well as shallow artificially induced enamel erosions from human extracted teeth (n=40). Enhanced image resolution of occlusal surfaces was obtained using a short-wavelength 405-nm illumination laser. In addition, artificial erosions of varying depths were also imaged with 405-, 404-, 532-, and 635-nm illumination lasers. Laser-induced autofluorescence images of the teeth using 405-nm illumination were also obtained. Contrast between sound and eroded enamel was quantitatively computed for each imaging modality. For shallow erosions, the image contrast with respect to sound enamel was greatest for the 405-nm reflected image. It was also determined that the increased contrast was in large part due to volume scattering with a smaller component from surface scattering. Furthermore, images obtained with a shallow penetration depth illumination laser (405 nm) provided the greatest detail of surface enamel topography since the reflected light does not contain contributions from light reflected from greater depths within the enamel tissue. Multilayered Monte Carlo simulations were also performed to confirm the experimental results.

  1. Slit-surface electrospinning: a novel process developed for high-throughput fabrication of core-sheath fibers.

    Directory of Open Access Journals (Sweden)

    Xuri Yan

    Full Text Available In this work, we report on the development of slit-surface electrospinning--a process that co-localizes two solutions along a slit surface to spontaneously emit multiple core-sheath cone-jets at rates of up to 1 L/h. To the best of our knowledge, this is the first time that production of electrospun core-sheath fibers has been scaled to this magnitude. Fibers produced in this study were defect-free (i.e. non-beaded and core-sheath geometry was visually confirmed under scanning electron microscopy. The versatility of our system was demonstrated by fabrication of (1 fibers encapsulating a drug, (2 bicomponent fibers, (3 hollow fibers, and (4 fibers from a polymer that is not normally electrospinnable. Additionally, we demonstrate control of the process by modulating parameters such as flow rate, solution viscosity, and fixture design. The technological achievements demonstrated in this work significantly advance core-sheath electrospinning towards commercial and manufacturing viability.

  2. [INVITED] Surface plasmon cavities on optical fiber end-facets for biomolecule and ultrasound detection

    Science.gov (United States)

    Yang, Tian; He, Xiaolong; Zhou, Xin; Lei, Zeyu; Wang, Yalin; Yang, Jie; Cai, De; Chen, Sung-Liang; Wang, Xueding

    2018-05-01

    Integrating surface plasmon resonance (SPR) devices upon single-mode fiber (SMF) end facets renders label-free sensing systems that have a simple dip-and-read configuration, a small form factor, high compatibility with fiber-optic techniques, and invasive testing capability. Such devices are not only low cost replacement of current equipments in centralized laboratories, but also highly desirable for opening paths to new applications of label-free optical sensing technologies, such as point-of-care immunological tests and intravascular ultrasound imaging. In this paper, we explain the requirements and challenges for such devices from the perspectives of biomolecule and ultrasound detection applications. In such a context, we review our recent work on SMF end-facet SPR cavities. This include a glue-and-strip fabrication method to transfer a nano-patterned thin gold film to the SMF end-facet with high yield, high quality and high alignment precision, the designs of distributed Bragg reflector (DBR) and distributed feedback (DFB) SPR cavities that couple efficiently with the SMF guided mode and reach quality factors of over 100, and the preliminary results for biomolecule interaction sensing and ultrasound detection. The particular advantages and potential values of these devices have been discussed, in terms of sensitivity, data reliability, reproducibility, bandwidth, etc.

  3. Thermal effect of laser ablation on the surface of carbon fiber reinforced plastic during laser processing

    Science.gov (United States)

    Ohkubo, Tomomasa; Sato, Yuji; Matsunaga, Ei-ichi; Tsukamoto, Masahiro

    2018-02-01

    Although laser processing is widely used for many applications, the cutting quality of carbon fiber reinforced plastic (CFRP) decreases around the heat-affected zone (HAZ) during laser processing. Carbon fibers are exposed around the HAZ, and tensile strength decreases with increasing length of the HAZ. Some theoretical studies of thermal conductions that do not consider fluid dynamics have been performed; however, theoretical considerations that include the dynamics of laser ablation are scarce. Using removed mass and depth observed from experiments, the dynamics of laser ablation of CFRP with high-temperature and high-pressure of compressive gas is simulated herein. In this calculation, the mushroom-like shape of laser ablation is qualitatively simulated compared with experiments using a high-speed camera. Considering the removal temperature of the resin and the temperature distribution at each point on the surface, the simulation results suggest that a wide area of the resin is removed when the processing depth is shallow, and a rounded kerf is generated as the processing depth increases.

  4. Surface Crack Detection for Carbon Fiber Reinforced Plastic Materials Using Pulsed Eddy Current Based on Rectangular Differential Probe

    Directory of Open Access Journals (Sweden)

    Jialong Wu

    2014-01-01

    Full Text Available Aiming at the surface defect inspection of carbon fiber reinforced composite, the differential and the direct measurement finite element simulation models of pulsed eddy current flaw detection were built. The principle of differential pulsed eddy current detection was analyzed and the sensitivity of defect detection was compared through two kinds of measurements. The validity of simulation results was demonstrated by experiments. The simulation and experimental results show that the pulsed eddy current detection method based on rectangular differential probe can effectively improve the sensitivity of surface defect detection of carbon fiber reinforced composite material.

  5. Study of Fiber Treatment and Water Absorption toward Tensile Stength of Coconut Filtrate/Polyester Composite

    Directory of Open Access Journals (Sweden)

    Putu Lokantara

    2012-11-01

    Full Text Available Tapis Kelapa (coconut filter as natural fiber, in this time it resourches very copius but no longer be exploited off hand andwaste though in fact it used for alternative to be composite. The objective of this research is to investigated tensile strength ofcomposite tapis kelapa as reinforcement and epoxy 7120 and hardener versamid 140 as matrix. The fiber is treated with thechemical NaOH with percentage 0,5%, 1% dan 2% in weight, respectively. This research used coconut-tapis fibre which cutas long as 1cm with 0%,5%,7,5%,10% fiber volume fraction, respectively. Soaking time on the water are 24 hour, 48 hour,98 hour and 196 hour, respectively. For testing of speciment in tensile test with ASTM D3039. The result of this researchshown that the composite with no treatment with NaOH have soak the water better than the composite with treatment NaOH.The average of tensile strength with no treatment NaOH less than with treatment NaOH. The highest strength are reached bycomposite with 10% fraction volume on 48 hour soaking time equal to 52 MPa. While the lowest tensile strength are reachedby composite with 0% fraction volume fibre equal to 16,667 MPa. The average of tensile strength that soak in mineral waterbetter than sea water.

  6. Influence of pre-treatment on enzymatic degumming of apocynum venetum bast fibers in supercritical carbon dioxide

    Directory of Open Access Journals (Sweden)

    Gao Shi-Hui

    2015-01-01

    Full Text Available Pre-treatment of apocynum venetum bast fibers in supercritical carbon dioxide can improve the efficiency of enzymatic degumming of apocynum venetum bast fiber. This paper studies experimentally effect of pressure and degumming time on degradation rate, the results can be used for optimal design of degumming.

  7. Ion implantation as an efficient surface treatment

    International Nuclear Information System (INIS)

    Straede, C.A.

    1992-01-01

    Ion beam processing has for several years been well established in the semiconductor industry. In recent years ion implantation of tool steels, ceramics and even plastics has gained increasing industrial awareness. The development of ion implantation to a commercially viable surface treatment of tools and spare parts working in production type environments is very dependent on technical merits, economic considerations, competing processes and highly individual barriers to acceptance for each particular application. Some examples of this will be discussed. The development of the process is very closely linked with the development of high current accelerators and their ability to efficiently manipulate the samples being treated, or to make sample manipulation superfluous by using special beam systems like the PSII. Furthermore, the ability to produce high beam currents (mA) of a wide variety of ions is crucial. Previously, it was broadly accepted that ion implantation of tools on a commercial basis generally had to be limited to nitrogen implantation. The development of implanters which can produce high beam currents of ions like B + , C + , Ti + , Cr + and others is rapidly changing this situation, and today an increasing number of commercial implantations are performed with these ions although nitrogen is still successfully used in the majority of commercial implantation. All in all, the recent development of equipment makes it possible to a higher extent than before to tailor the implantation to a specific situation. The emerging new possibilities in this direction will be discussed, and a broad selection of practical examples of ion implantation at standard low temperatures of tools and spare parts will be given. Furthermore, very interesting results have been obtained recently by implanting nitrogen at elevated temperatures, which yields a relatively deep penetration of the implanted ions. (orig./WL)

  8. Building unique surface structure on aramid fibers through a green layer-by-layer self-assembly technique to develop new high performance fibers with greatly improved surface activity, thermal resistance, mechanical properties and UV resistance

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Lifang; Yuan, Li; Guan, Qingbao; Gu, Aijuan, E-mail: ajgu@suda.edu.cn; Liang, Guozheng, E-mail: lgzheng@suda.edu.cn

    2017-07-31

    Highlights: • A green technology is setup to build unique surface structure on aramid fiber (AF). • The method is layer-by-layer self-assembling SiO{sub 2} and layered double hydroxide. • The surface of AF is adjustable by controlling the self-assembly cycle number. • New AF has excellent surface activity, anti-UV, thermal and mechanical properties. • The origin behind attractive performances of new AFs was intensively studied. - Abstract: Combining green preparation and high performance is becoming the direction of sustainable development of materials. How to simultaneously overcome the two bottlenecks (poor surface activity and UV resistance) of aramid fibers (AFs) while improving thermal and mechanical properties through a green process is still an interesting issue with big challenge. Herein, new AFs (BL-AFs) were prepared by alternately self-assembling SiO{sub 2} and MgAlFe layered double hydroxide (LDH) on surfaces of AFs, successively, through a green layer-by-layer (LBL) self-assembly technique without using high temperature and organic solvent. The structures and properties of BL-AFs were systematically studied, which are controllable by adjusting the number of self-assembly cycle. The new fibers with three or more self-assembly cycles have remarkably improved surface activity, thermal resistance, mechanical properties and UV resistance compared with AFs. Typically, with three self-assembly cycles, the initial degradation temperature and char yield of the new fiber (3BL-AF) are as high as 552.9 °C and 81.2%, about 92 °C and 25.2% higher than those of AF, respectively; after 168 h-UV irradiation, the retention of tensile performances of 3BL-AF fiber is as high as 91–95%, about 29–14% higher than that of AF, showing the best overall performances among all modified AFs prepared using a green technique reported so far. The origin behind the attractive performances of BL-AFs is revealed through correlating with structures of original and

  9. Surface plasmon resonance based optical fiber riboflavin sensor by using molecularly imprinted gel

    Science.gov (United States)

    Verma, Roli; Gupta, Banshi D.

    2013-05-01

    We report the fabrication and characterization of surface plasmon resonance (SPR) based optical fiber riboflavin/vitamin B2 sensor using combination of colloidal crystal templating and molecularly imprinted gel. The sensor works on spectral interrogation method. The operating range of the sensor lies from 0 μg/ml to 320 μg/ml, the suitable amount of intakes of riboflavin recommended for different age group. The SPR spectra show blue shift with increasing concentration of riboflavin, which is due to the interaction of riboflavin molecule over specific binding sites caused by molecular imprinting. The present sensor has many advantageous features such as fast response, small probe size, low cost and can be used for remote/online monitoring.

  10. Bioinspired Surface Treatments for Improved Decontamination: Icephobic Surfaces

    Science.gov (United States)

    2017-06-26

    5 TABLES Table 1 — Contact angles ...fluorosilane to produce both texture and hydrophobic properties. [1, 2] The coating technology is reported to produce a water contact angle of greater than...160° with sliding angles ᝺° classifying the surface as superhydrophobic (water contact angles >150°). The durability of the material was previously

  11. Fracture strength of fiber-reinforced surface-retained anterior cantilever restorations

    NARCIS (Netherlands)

    Oezcan, Mutlu; Kumbuloglu, Ovul; User, Atilla

    2008-01-01

    Purpose: This study compared the fracture strength of direct anterior cantilever fiber-reinforced composite (FRC) fixed partial dentures (FPD) reinforced with 3 types of E-glass fibers preimpregnated with either urethane tetramethacrylate, bisphenol glycidylmethacrylate/polymethyl methacrylate, or

  12. Compliment Graphene Oxide Coating on Silk Fiber Surface via Electrostatic Force for Capacitive Humidity Sensor Applications.

    Science.gov (United States)

    Han, Kook In; Kim, Seungdu; Lee, In Gyu; Kim, Jong Pil; Kim, Jung-Ha; Hong, Suck Won; Cho, Byung Jin; Hwang, Wan Sik

    2017-02-19

    Cylindrical silk fiber (SF) was coated with Graphene oxide (GO) for capacitive humidity sensor applications. Negatively charged GO in the solution was attracted to the positively charged SF surface via electrostatic force without any help from adhesive intermediates. The magnitude of the positively charged SF surface was controlled through the static electricity charges created on the SF surface. The GO coating ability on the SF improved as the SF's positive charge increased. The GO-coated SFs at various conditions were characterized using an optical microscope, scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS), Raman spectroscopy, and LCR meter. Unlike the intact SF, the GO-coated SF showed clear response-recovery behavior and well-behaved repeatability when it was exposed to 20% relative humidity (RH) and 90% RH alternatively in a capacitive mode. This approach allows humidity sensors to take advantage of GO's excellent sensing properties and SF's flexibility, expediting the production of flexible, low power consumption devices at relatively low costs.

  13. Compliment Graphene Oxide Coating on Silk Fiber Surface via Electrostatic Force for Capacitive Humidity Sensor Applications

    Directory of Open Access Journals (Sweden)

    Kook In Han

    2017-02-01

    Full Text Available Cylindrical silk fiber (SF was coated with Graphene oxide (GO for capacitive humidity sensor applications. Negatively charged GO in the solution was attracted to the positively charged SF surface via electrostatic force without any help from adhesive intermediates. The magnitude of the positively charged SF surface was controlled through the static electricity charges created on the SF surface. The GO coating ability on the SF improved as the SF’s positive charge increased. The GO-coated SFs at various conditions were characterized using an optical microscope, scanning electron microscopy (SEM, energy-dispersive X-ray spectroscopy (EDS, Raman spectroscopy, and LCR meter. Unlike the intact SF, the GO-coated SF showed clear response-recovery behavior and well-behaved repeatability when it was exposed to 20% relative humidity (RH and 90% RH alternatively in a capacitive mode. This approach allows humidity sensors to take advantage of GO’s excellent sensing properties and SF’s flexibility, expediting the production of flexible, low power consumption devices at relatively low costs.

  14. Influence of homogenization treatment on physicochemical properties and enzymatic hydrolysis rate of pure cellulose fibers.

    Science.gov (United States)

    Jacquet, N; Vanderghem, C; Danthine, S; Blecker, C; Paquot, M

    2013-02-01

    The aim of this study is to compare the effect of different homogenization treatments on the physicochemical properties and the hydrolysis rate of a pure bleached cellulose. Results obtained show that homogenization treatments improve the enzymatic hydrolysis rate of the cellulose fibers by 25 to 100 %, depending of the homogenization treatment applied. Characterization of the samples showed also that homogenization had an impact on some physicochemical properties of the cellulose. For moderate treatment intensities (pressure below 500 b and degree of homogenization below 25), an increase of water retention values (WRV) that correlated to the increase of the hydrolysis rate was highlighted. Result also showed that the overall crystallinity of the cellulose properties appeared not to be impacted by the homogenization treatment. For higher treatment intensities, homogenized cellulose samples developed a stable tridimentional network that contributes to decrease cellulase mobility and slowdown the hydrolysis process.

  15. The dietary fiber profile of fruit peels and functionality modifications induced by high hydrostatic pressure treatments.

    Science.gov (United States)

    Tejada-Ortigoza, Viridiana; García-Amezquita, Luis Eduardo; Serna-Saldívar, Sergio O; Welti-Chanes, Jorge

    2017-07-01

    The effect of high hydrostatic pressure (HHP) and temperature on composition of non-conventional dietary fiber (DF) sources and functional properties were evaluated. Mango, orange, or prickly pear peels were processed at 600 MPa during 10 min at 22 ℃ and 55 ℃. Total (TDF), soluble (SDF), and insoluble (IDF) dietary fiber, water/oil holding, and retention capacity, solubility, swelling capacity, and bulk density were assayed. An increment in the SDF content was observed due to the effect of pressure with the greatest changes noticed in mango peel, increasing from 37.4% (control) to 45.7% (SDF/TDF) in the HHP-treated (55 ℃) sample. Constant values of TDF after the treatments suggest a conversion of IDF to SDF in mango (38.9%-40.5% dw) and orange (49.0%-50.8% dw) peels. The highest fiber solubility values were observed for mango peel ranging between 80.3% and 83.9%, but the highest increase, from 55.1% to 62.3%, due to treatment was displayed in orange peel processed at 22 ℃. A relationship between DF modifications induced by HHP treatment and changes in the functional properties of the materials was established. Application of HHP opens up the opportunity to modify non-conventional sources of DF and to obtain novel functional properties for different food applications.

  16. Coating applications to natural fiber composites to improve their physical, surface and water absorption characters

    Science.gov (United States)

    Natural (organic) fibers are used in reinforced composites and natural fiber composites (NFCs). These fibers have advantages over synthetic composites such as high mechanical properties, lower densities and biodegradablity. However, one major disadvantage of NFCs is their hydrophilicity. In this stu...

  17. Short vegetal-fiber reinforced HDPE—A study of electron-beam radiation treatment effects on mechanical and morphological properties

    International Nuclear Information System (INIS)

    Ferreira, Maiara S.; Sartori, Mariana N.; Oliveira, Rene R.; Guven, Olgun; Moura, Esperidiana A.B.

    2014-01-01

    Graphical abstract: - Highlights: • HDPE reinforced with short piassava fiber composites were prepared by melt-mixing processing. • Glycidyl methacrylate (GMA) was tested as a radiation cross-linking agent. • The materials were irradiated with 100 and 200 kGy using a 1.5 MeV electron beam accelerator, at room temperature in presence of air. • The better interfacial adhesion between fiber and HDPE matrix was observed for composites with GMA addition irradiated with radiation dose of 200 kGy. - Abstract: The effects of electron-beam radiation treatment on fiber-matrix adhesion and mechanical properties of short piassava fibers reinforced high density polyethylene (HDPE) matrix were studied. Glycidyl methacrylate (GMA) was added at 2.5% and 5.0% (on piassava fiber wt) as a cross-linking agent and the effects upon the properties of the resulting composites treated by electron-beam radiation were also examined. HDPE reinforced with short piassava fiber composites was prepared by melt-mixing processing, using a twin screw extruder machine. The materials were irradiated with 100 and 200 kGy using a 1.5 MeV electron beam accelerator, at room temperature in presence of air. Material samples were submitted to mechanical and thermo-mechanical tests and SEM analyses. Correlation between properties was discussed. The comparison of mechanical and thermo-mechanical properties of the composites showed that electron-beam radiation treatment produced a significant improvement in mechanical properties, when compared with the non-irradiated composite sample and neat HDPE. Scanning electron microscopy (SEM) studies of the composite failure surfaces indicated that there was an improved adhesion between fiber and matrix. Examination of the failure surfaces indicated dependence of the interfacial adhesion upon the radiation dose and GMA content. Better interfacial adhesion between fiber and HDPE matrix was observed for composites with 5.0% GMA addition and treated with electron

  18. Short vegetal-fiber reinforced HDPE—A study of electron-beam radiation treatment effects on mechanical and morphological properties

    Energy Technology Data Exchange (ETDEWEB)

    Ferreira, Maiara S.; Sartori, Mariana N.; Oliveira, Rene R. [Nuclear and Energy Research Institute, IPEN-CNEN/SP, Av. Prof. Lineu Prestes 2242, zip code 05508-000 São Paulo, SP (Brazil); Guven, Olgun [Hacettepe University, Department of Chemistry, Polymer Chemistry Division, Beytepe, zip code 06800 Ankara (Turkey); Moura, Esperidiana A.B., E-mail: eabmoura@ipen.br [Nuclear and Energy Research Institute, IPEN-CNEN/SP, Av. Prof. Lineu Prestes 2242, zip code 05508-000 São Paulo, SP (Brazil)

    2014-08-15

    Graphical abstract: - Highlights: • HDPE reinforced with short piassava fiber composites were prepared by melt-mixing processing. • Glycidyl methacrylate (GMA) was tested as a radiation cross-linking agent. • The materials were irradiated with 100 and 200 kGy using a 1.5 MeV electron beam accelerator, at room temperature in presence of air. • The better interfacial adhesion between fiber and HDPE matrix was observed for composites with GMA addition irradiated with radiation dose of 200 kGy. - Abstract: The effects of electron-beam radiation treatment on fiber-matrix adhesion and mechanical properties of short piassava fibers reinforced high density polyethylene (HDPE) matrix were studied. Glycidyl methacrylate (GMA) was added at 2.5% and 5.0% (on piassava fiber wt) as a cross-linking agent and the effects upon the properties of the resulting composites treated by electron-beam radiation were also examined. HDPE reinforced with short piassava fiber composites was prepared by melt-mixing processing, using a twin screw extruder machine. The materials were irradiated with 100 and 200 kGy using a 1.5 MeV electron beam accelerator, at room temperature in presence of air. Material samples were submitted to mechanical and thermo-mechanical tests and SEM analyses. Correlation between properties was discussed. The comparison of mechanical and thermo-mechanical properties of the composites showed that electron-beam radiation treatment produced a significant improvement in mechanical properties, when compared with the non-irradiated composite sample and neat HDPE. Scanning electron microscopy (SEM) studies of the composite failure surfaces indicated that there was an improved adhesion between fiber and matrix. Examination of the failure surfaces indicated dependence of the interfacial adhesion upon the radiation dose and GMA content. Better interfacial adhesion between fiber and HDPE matrix was observed for composites with 5.0% GMA addition and treated with electron

  19. The effect of surface modification of glass fiber on the performance of poly(lactic acid) composites: Graphene oxide vs. silane coupling agents

    Science.gov (United States)

    Jing, Mengfan; Che, Junjin; Xu, Shuman; Liu, Zhenwei; Fu, Qiang

    2018-03-01

    In this work, a comparison study was carried out to investigate the efficacy of glass fiber (GF) in reinforcing poly(lactic acid) (PLA) by using traditional silane coupling agents (GF-S) and novel graphene oxide (GF-GO) as surface modifiers. The crystallization behavior of the PLA matrix was investigated by differential scanning calorimetry. The mechanical performances and the thermomechanical properties of the composites were evaluated by uniaxial tensile testing and dynamic mechanical analysis, respectively. For neat GF without any treatment, the poor interfacial adhesion and the sharp shortening of the GF length result in the relatively poor mechanical performances of PLA/GF composites. However, the incorporation of GF-S significantly improves the mechanical strength and keeps relatively good toughness of the composites, while GF-GO exhibits excellent nucleation ability for PLA and could moderately increase the modulus of the composites. The thermomechanical properties of the composites are improved markedly resulting from the crystallinity increase. The different surface modification of glass fiber influences the crystallinity of matrix, the interfacial interaction and the length of fiber, which altogether affect the mechanical performances of the prepared PLA/GF composites.

  20. Fiber Optic Sensors for Temperature Monitoring during Thermal Treatments: An Overview

    Science.gov (United States)

    Schena, Emiliano; Tosi, Daniele; Saccomandi, Paola; Lewis, Elfed; Kim, Taesung

    2016-01-01

    During recent decades, minimally invasive thermal treatments (i.e., Radiofrequency ablation, Laser ablation, Microwave ablation, High Intensity Focused Ultrasound ablation, and Cryo-ablation) have gained widespread recognition in the field of tumor removal. These techniques induce a localized temperature increase or decrease to remove the tumor while the surrounding healthy tissue remains intact. An accurate measurement of tissue temperature may be particularly beneficial to improve treatment outcomes, because it can be used as a clear end-point to achieve complete tumor ablation and minimize recurrence. Among the several thermometric techniques used in this field, fiber optic sensors (FOSs) have several attractive features: high flexibility and small size of both sensor and cabling, allowing insertion of FOSs within deep-seated tissue; metrological characteristics, such as accuracy (better than 1 °C), sensitivity (e.g., 10 pm·°C−1 for Fiber Bragg Gratings), and frequency response (hundreds of kHz), are adequate for this application; immunity to electromagnetic interference allows the use of FOSs during Magnetic Resonance- or Computed Tomography-guided thermal procedures. In this review the current status of the most used FOSs for temperature monitoring during thermal procedure (e.g., fiber Bragg Grating sensors; fluoroptic sensors) is presented, with emphasis placed on their working principles and metrological characteristics. The essential physics of the common ablation techniques are included to explain the advantages of using FOSs during these procedures. PMID:27455273

  1. Enhancing Electrochemical Performance of Graphene Fiber-Based Supercapacitors by Plasma Treatment.

    Science.gov (United States)

    Meng, Jie; Nie, Wenqi; Zhang, Kun; Xu, Fujun; Ding, Xin; Wang, Shiren; Qiu, Yiping

    2018-04-25

    Graphene fiber-based supercapacitors (GFSCs) hold high power density, fast charge-discharge rate, ultralong cycling life, exceptional mechanical/electrical properties, and safe operation conditions, making them very promising to power small wearable electronics. However, the electrochemical performance is still limited by the severe stacking of graphene sheets, hydrophobicity of graphene fibers, and complex preparation process. In this work, we develop a facile but robust strategy to easily enhance electrochemical properties of all-solid-state GFSCs by simple plasma treatment. We find that 1 min plasma treatment under an ambient condition results in 33.1% enhancement of areal specific capacitance (36.25 mF/cm 2 ) in comparison to the as-prepared GFSC. The energy density reaches 0.80 μW h/cm 2 in polyvinyl alcohol/H 2 SO 4 gel electrolyte and 18.12 μW h/cm 2 in poly(vinylidene difluoride)/ethyl-3-methylimidazolium tetrafluoroborate electrolyte, which are 22 times of that of as-prepared ones. The plasma-treated GFSCs also exhibit ultrahigh rate capability (69.13% for 40 s plasma-treated ones) and superior cycle stability (96.14% capacitance retention after 20 000 cycles for 1 min plasma-treated ones). This plasma strategy can be extended to mass-manufacture high-performance carbonaceous fiber-based supercapacitors, such as graphene and carbon nanotube-based ones.

  2. Fiber Optic Sensors for Temperature Monitoring during Thermal Treatments: An Overview

    Directory of Open Access Journals (Sweden)

    Emiliano Schena

    2016-07-01

    Full Text Available During recent decades, minimally invasive thermal treatments (i.e., Radiofrequency ablation, Laser ablation, Microwave ablation, High Intensity Focused Ultrasound ablation, and Cryo-ablation have gained widespread recognition in the field of tumor removal. These techniques induce a localized temperature increase or decrease to remove the tumor while the surrounding healthy tissue remains intact. An accurate measurement of tissue temperature may be particularly beneficial to improve treatment outcomes, because it can be used as a clear end-point to achieve complete tumor ablation and minimize recurrence. Among the several thermometric techniques used in this field, fiber optic sensors (FOSs have several attractive features: high flexibility and small size of both sensor and cabling, allowing insertion of FOSs within deep-seated tissue; metrological characteristics, such as accuracy (better than 1 °C, sensitivity (e.g., 10 pm·°C−1 for Fiber Bragg Gratings, and frequency response (hundreds of kHz, are adequate for this application; immunity to electromagnetic interference allows the use of FOSs during Magnetic Resonance- or Computed Tomography-guided thermal procedures. In this review the current status of the most used FOSs for temperature monitoring during thermal procedure (e.g., fiber Bragg Grating sensors; fluoroptic sensors is presented, with emphasis placed on their working principles and metrological characteristics. The essential physics of the common ablation techniques are included to explain the advantages of using FOSs during these procedures.

  3. A Low-Cost and Portable Dual-Channel Fiber Optic Surface Plasmon Resonance System.

    Science.gov (United States)

    Liu, Qiang; Liu, Yun; Chen, Shimeng; Wang, Fang; Peng, Wei

    2017-12-04

    A miniaturization and integration dual-channel fiber optic surface plasmon resonance (SPR) system was proposed and demonstrated in this paper. We used a yellow light-emitting diode (LED, peak wavelength 595 nm) and built-in web camera as a light source and detector, respectively. Except for the detection channel, one of the sensors was used as a reference channel to compensate nonspecific binding and physical absorption. We packaged the LED and surface plasmon resonance (SPR) sensors together, which are flexible enough to be applied to mobile devices as a compact and portable system. Experimental results show that the normalized intensity shift and refractive index (RI) of the sample have a good linear relationship in the RI range from 1.328 to 1.348. We used this sensor to monitor the reversible, specific interaction between lectin concanavalin A (Con A) and glycoprotein ribonuclease B (RNase B), which demonstrate its capabilities of specific identification and biochemical samples concentration detection. This sensor system has potential applications in various fields, such as medical diagnosis, public health, food safety, and environment monitoring.

  4. Stability of opiates in hair fibers after exposure to cosmetic treatment.

    Science.gov (United States)

    Pötsch, L; Skopp, G

    1996-08-15

    The stability of opiates in clipped natural human hair was investigated. Hair fibers were incubated with defined solutions of morphine, codeine and dihydrocodeine (pH 7.4) until saturated. Original opiate-positive hair samples collected from drug addicts also were examined. Commercially available bleaching as well as perming formulas (Poly Blonde Ultra, Poly Lock; Henkel, Düsseldorf, Germany) were applied in vitro to the hair strands of both groups under investigation. After these treatments, the drug concentration had decreased for both bleaching and permanent waving. In the spiked hair, only 2-18% of the starting solution could be found after bleaching. About 20-30% of the drug substances could still be detected after perming. In the authentic hair samples, the drug levels of the formerly opiate positive hair fibers had also been reduced but distinct tendencies could not be observed.

  5. [INVITED] Laser treatment of Inconel 718 alloy and surface characteristics

    Science.gov (United States)

    Yilbas, B. S.; Ali, H.; Al-Aqeeli, N.; Karatas, C.

    2016-04-01

    Laser surface texturing of Inconel 718 alloy is carried out under the high pressure nitrogen assisting gas. The combination of evaporation and melting at the irradiated surface is achieved by controlling the laser scanning speed and the laser output power. Morphological and metallurgical changes in the treated surface are analyzed using the analytical tools including optical, electron scanning, and atomic force microscopes, energy dispersive spectroscopy, and X-ray diffraction. Microhardnes and friction coefficient of the laser treated surface are measured. Residual stress formed in the surface region is determined from the X-ray diffraction data. Surface hydrophobicity of the laser treated layer is assessed incorporating the sessile drop method. It is found that laser treated surface is free from large size asperities including cracks and the voids. Surface microhardness increases significantly after the laser treatment process, which is attributed to the dense layer formation at the surface under the high cooling rates, dissolution of Laves phase in the surface region, and formation of nitride species at the surface. Residual stress formed is compressive in the laser treated surface and friction coefficient reduces at the surface after the laser treatment process. The combination of evaporation and melting at the irradiated surface results in surface texture composes of micro/nano-poles and pillars, which enhance the surface hydrophobicity.

  6. Alkali treatment of microrough titanium surfaces affects macrophage/monocyte adhesion, platelet activation and architecture of blood clot formation

    Directory of Open Access Journals (Sweden)

    V Milleret

    2011-05-01

    Full Text Available Titanium implants are most commonly used for bone augmentation and replacement due to their favorable osseointegration properties. Here, hyperhydrophilic sand-blasted and acid-etched (SBA titanium surfaces were produced by alkali treatment and their responses to partially heparinized whole human blood were analyzed. Blood clot formation, platelet activation and activation of the complement system was analyzed revealing that exposure time between blood and the material surface is crucial as increasing exposure time results in higher amount of activated platelets, more blood clots formed and stronger complement activation. In contrast, the number of macrophages/monocytes found on alkali-treated surfaces was significantly reduced as compared to untreated SBA Ti surfaces. Interestingly, when comparing untreated to modified SBA Ti surfaces very different blood clots formed on their surfaces. On untreated Ti surfaces blood clots remain thin (below 15 mm, patchy and non-structured lacking large fibrin fiber networks whereas blood clots on differentiated surfaces assemble in an organized and layered architecture of more than 30 mm thickness. Close to the material surface most nucleated cells adhere, above large amounts of non-nucleated platelets remain entrapped within a dense fibrin fiber network providing a continuous cover of the entire surface. These findings might indicate that, combined with findings of previous in vivo studies demonstrating that alkali-treated SBA Ti surfaces perform better in terms of osseointegration, a continuous and structured layer of blood components on the blood-facing surface supports later tissue integration of an endosseous implant.

  7. Photochemical properties and sensor applications of modified yellow fluorescent protein (YFP) covalently attached to the surfaces of etched optical fibers (EOFs).

    Science.gov (United States)

    Veselov, Alexey A; Abraham, Bobin George; Lemmetyinen, Helge; Karp, Matti T; Tkachenko, Nikolai V

    2012-01-01

    Fluorescent proteins have the inherent ability to act as sensing components which function both in vitro and inside living cells. We describe here a novel study on a covalent site-specific bonding of fluorescent proteins to form self-assembled monolayers (SAMs) on the surface of etched optical fibers (EOFs). Deposition of fluorescent proteins on EOFs gives the opportunity to increase the interaction of guided light with deposited molecules relative to plane glass surfaces. The EOF modification is carried out by surface activation using 3-aminopropylthrimethoxysilane (APTMS) and bifunctional crosslinker sulfosuccinimidyl 4-[N-maleimidomethyl]cyclohexane-1-carboxylate (sulfo-SMCC) which exposes sulfhydryl-reactive maleimide groups followed by covalent site-specific coupling of modified yellow fluorescent protein (YFP). Steady-state and fluorescence lifetime measurements confirm the formation of SAM. The sensor applications of YPF SAMs on EOF are demonstrated by the gradual increase of emission intensity upon addition of Ca(2+) ions in the concentration range from a few tens of micromolars up to a few tens of millimolars. The studies on the effect of pH, divalent cations, denaturing agents, and proteases reveal the stability of YFP on EOFs at normal physiological conditions. However, treatments with 0.5% SDS at pH 8.5 and protease trypsin are found to denaturate or cleave the YFP from fiber surfaces.

  8. Micro-deformation measurement on the concrete roadway surface slabs using Fiber Bragg Grating and analysis by computational simulation

    Energy Technology Data Exchange (ETDEWEB)

    Serpa, C M; Gomez, N D [Instituto Tecnologico Metropolitano Institucion Universitaria (ITM), Medellin A. A. 54954 (Colombia); Velez, F J, E-mail: claudiaserpa@itm.edu.co [Universidad EAFIT, Medellin (Colombia)

    2011-01-01

    This work shows a non-invasive method for micro-deformation measurements on concrete structures using Bragg grating sensors in optical fibers adhered to the surface. We present the measurements on roadway slabs under a load of 10 kN, and we find an approximated ratio of 2:1 between the deformation registered by the sensors and the values from a computational simulation with the finite element method. We propose the use of these sensors for structural monitoring of the slabs and this installation shape for avoiding bends that can damage the edges in the optical fiber in embebed sensors in vertical shape.

  9. Effect of surface treatment of FRC-Post on bonding strength to resin cements

    Directory of Open Access Journals (Sweden)

    Chan-Hyun Park,

    2011-03-01

    Full Text Available Objectives The purpose of this study was to evaluate the effect of surface treatment of FRC-Post on bonding strength to resin cements. Materials and Methods Pre-surface treated LuxaPost (DMG, Rely-X Fiber Post (3M ESPE and self adhesive resin cement Rely-X Unicem (3M ESPE, conventional resin cement Rely-X ARC (3M ESPE, and Rely-X Ceramic Primer (3M ESPE were used. After completing the surface treatments of the posts, posts and resin cement were placed in clear molds and photo-activation was performed. The specimens were sectioned perpendicular to the FRC-Post into 2 mm-thick segments, and push-out strength were measured. The results of bond strength value were statistically analyzed using independent samples t-test and one-way ANOVA with multiple comparisons using Scheffe's test. Results Silanization of posts affect to the bond strength in LuxaPost, and did not affect in Rely-X Fiber Post. Rely-X ARC showed higher value than Rely-X Unicem. Conclusions Silanization is needed to enhance the bond strength between LuxaPost and resin cements.

  10. Influence on proliferation and adhesion of human gingival fibroblasts from different titanium surface decontamination treatments: An in vitro study.

    Science.gov (United States)

    Cao, Jie; Wang, Tong; Pu, Yinfei; Tang, Zhihui; Meng, Huanxin

    2018-03-01

    To investigate the effects of different decontamination treatments on microstructure of titanium (Ti) surface as well as proliferation and adhesion of human gingival fibroblasts (HGFs). Ti discs with machined (M) and sand blasted, acid etched (SAE) surfaces were treated with five different decontamination treatments: (1) stainless steel curette (SSC), ultrasonic system with (2) straight carbon fiber tip (UCF) or (3) metal tip (UM), (4) rotating Ti brush (RTB), and (5) Er:YAG laser (30 mJ/pulse at 30 Hz). Surface roughness was analyzed under optical interferometry. HGFs were cultured on each disc. Proliferation and adhesive strength were analyzed. qRT-PCR and ELISA were performed to detect the RNA and protein expression of FAK, ITGB1, COL1A1, and FN1 respectively from different Ti surfaces. Surface roughness increased on M surface. Proliferation, adhesive strength and gene expression were higher on M surface than SAE surface. Decontamination treatments affected surface parameters significantly (P < 0.001), making M surface less smooth while SAE surface became less rough. SSC, UCF, UM and RTB decreased proliferation on M surfaces significantly (P < 0.05). UCF, RTB and laser increased proliferation on SAE surface significantly (P < 0.05). UM decreased adhesive strength on M surface significantly and laser increased adhesive strength on SAE surface significantly (P < 0.05). Gene expression increased with time and was altered by decontamination treatments significantly (P < 0.001). Decontamination treatments influence surface roughness and cell behavior of HGFs. Laser might be an optimal decontamination treatment which has the least negative effect on M surface and the most positive effect on SAE surface. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Recovery of phosphonate surface contaminants from glass using a simple vacuum extractor with a solid-phase microextraction fiber

    International Nuclear Information System (INIS)

    Groenewold, Gary S.; Scott, Jill R.; Rae, Catherine

    2011-01-01

    Graphical abstract: Highlights: → A field vacuum extractor (FVE) nondestructively samples surface-adsorbed organics. → The FVE creates a modest vacuum over the surface, volatilizing surface organics. → A solid phase microextraction fiber (SPME) collects volatilized organics. → The SPME is easily analyzed using GC/MS. → The FVE enables collection chemical signatures from hard-to-sample surfaces. - Abstract: Recovery of chemical contaminants from fixed surfaces for analysis can be challenging, particularly if it is not possible to acquire a solid sample to be taken to the laboratory. A simple device is described that collects semi-volatile organic compounds from fixed surfaces by creating an enclosed volume over the surface, then generating a modest vacuum. A solid-phase microextraction (SPME) fiber is then inserted into the evacuated volume where it functions to sorb volatilized organic contaminants. The device is based on a syringe modified with a seal that is used to create the vacuum, with a perforable plunger through which the SPME fiber is inserted. The reduced pressure speeds partitioning of the semi-volatile compounds into the gas phase and reduces the boundary layer around the SPME fiber, which enables a fraction of the volatilized organics to partition into the SPME fiber. After sample collection, the SPME fiber is analyzed using conventional gas chromatography/mass spectrometry. The methodology has been used to collect organophosphorus compounds from glass surfaces, to provide a simple test for the functionality of the devices. Thirty minute sampling times (ΔT vac ) resulted in fractional recovery efficiencies that ranged from 10 -3 to >10 -2 , and in absolute terms, collection of low nanograms was demonstrated. Fractional recovery values were positively correlated to the vapor pressure of the compounds being sampled. Fractional recovery also increased with increasing ΔT vac and displayed a roughly logarithmic profile, indicating that an

  12. Effects of surface treatments on microstructure in stainless steel

    International Nuclear Information System (INIS)

    Mabuchi, Yasuhiro; Tamako, Hiroaki; Kaneda, Junya; Yamashita, Norimichi; Miyakawa, Masahiko

    2009-01-01

    It is revealed that Stress Corrosion Cracking (SCC) on the surface of the L-grade stainless steels in Nuclear Power Plants is caused by heavily cold work of the materials. The microstructure, hardness and residual stress on the surface of the material are factors for SCC initiation. There are surface treatment methods that is effective reduction on SCC such as Flap Wheel (FW) polishing, Clean N Strip (CNS) polishing, Water Jet Peening (WJP) and Shot Peening (SP). In this paper, the characteristics of the surface cold worked layer of the L-grade stainless steels conducted by above-mentioned surface treatments are analyzed, and effects of the surface treatments on the surface layer are discussed. (author)

  13. Surface modification of polymer nanofibres by plasma treatment

    International Nuclear Information System (INIS)

    Wei, Q.F.; Gao, W.D.; Hou, D.Y.; Wang, X.Q.

    2005-01-01

    Polymer nanofibres have great potential for technical applications in biomaterials, filtration, composites and electronics. The surface properties of nanofibres are of importance in these applications. In this study, cold gas plasma treatment was used to modify the surface of polyamide 6 nanofibres prepared by electrospinning. The chemical nature of the nanofibre surfaces was examined by X-ray photoelectron spectroscopy (XPS). Atomic force microscopy (AFM) was employed to study the surface characteristics of the fibres. The AFM results indicate a significant change in the morphology of the fibre surface before and after plasma treatment. A Philips Environmental Scanning Electron Microscopy (ESEM) was also used to study the wetting behaviour of the fibres. In the ESEM, relative humidity was raised to 100% to facilitate the water condensation onto fibre surfaces for wetting observation. The ESEM observation revealed that the plasma treatment significantly altered the surface wettability of the polyamide 6 nanofibres

  14. Ultrasonic Surface Treatment of Titanium Alloys. The Submicrocrystalline State

    Science.gov (United States)

    Klimenov, V. A.; Vlasov, V. A.; Borozna, V. Y.; Klopotov, A. A.

    2015-09-01

    The paper presents the results of the research on improvement of physical-and- mechanical properties of titanium alloys VT1-0 and VT6 by modification of surfaces using ultrasonic treatment, and a comprehensive study of the microstructure and mechanical properties of modified surface layers. It has been established that exposure to ultrasonic treatment leads to formation in the surface layer of a structure with an average size of elements 50 - 100 nm, depending on the brand of titanium alloy.

  15. Effect of Surface Treatment on the Surface Characteristics of AISI 316L Stainless Steel

    Science.gov (United States)

    Trigwell, Steve; Selvaduray, Guna

    2005-01-01

    The ability of 316L stainless steel to maintain biocompatibility, which is dependent upon the surface characteristics, is critical to its effectiveness as an implant material. The surfaces of mechanically polished (MP), electropolished (EP) and plasma treated 316L stainless steel coupons were characterized by X-ray Photoelectron Spectroscopy (XPS) and Auger Electron Spectroscopy (AES) for chemical composition, Atomic Force Microscopy for surface roughness, and contact angle measurements for critical surface tension. All surfaces had a Ni concentration that was significantly lower than the bulk concentration of -43%. The Cr content of the surface was increased significantly by electropolishing. The surface roughness was also improved significantly by electropolishing. Plasma treatment had the reverse effect - the surface Cr content was decreased. It was also found that the Cr and Fe in the surface exist in both the oxide and hydroxide states, with the ratios varying according to surface treatment.

  16. Atomic force microscopy analysis of different surface treatments of Ti dental implant surfaces

    International Nuclear Information System (INIS)

    Bathomarco, R.V.; Solorzano, G.; Elias, C.N.; Prioli, R.

    2004-01-01

    The surface of commercial unalloyed titanium, used in dental implants, was analyzed by atomic force microscopy. The morphology, roughness, and surface area of the samples, submitted to mechanically-induced erosion, chemical etching and a combination of both, were compared. The results show that surface treatments strongly influence the dental implant physical and chemical properties. An analysis of the length dependence of the implant surface roughness shows that, for scan sizes larger than 50 μm, the average surface roughness is independent of the scanning length and that the surface treatments lead to average surface roughness in the range of 0.37 up to 0.48 μm. It is shown that the implant surface energy is sensitive to the titanium surface area. As the area increases there is a decrease in the surface contact angle

  17. Atomic force microscopy analysis of different surface treatments of Ti dental implant surfaces

    Science.gov (United States)

    Bathomarco, Ti R. V.; Solorzano, G.; Elias, C. N.; Prioli, R.

    2004-06-01

    The surface of commercial unalloyed titanium, used in dental implants, was analyzed by atomic force microscopy. The morphology, roughness, and surface area of the samples, submitted to mechanically-induced erosion, chemical etching and a combination of both, were compared. The results show that surface treatments strongly influence the dental implant physical and chemical properties. An analysis of the length dependence of the implant surface roughness shows that, for scan sizes larger than 50 μm, the average surface roughness is independent of the scanning length and that the surface treatments lead to average surface roughness in the range of 0.37 up to 0.48 μm. It is shown that the implant surface energy is sensitive to the titanium surface area. As the area increases there is a decrease in the surface contact angle.

  18. Fiber optic probe enabled by surface-enhanced Raman scattering for early diagnosis of potential acute rejection of kidney transplant

    Science.gov (United States)

    Chi, Jingmao; Chen, Hui; Tolias, Peter; Du, Henry

    2014-06-01

    We have explored the use of a fiber-optic probe with surface-enhanced Raman scattering (SERS) sensing modality for early, noninvasive and, rapid diagnosis of potential renal acute rejection (AR) and other renal graft dysfunction of kidney transplant patients. Multimode silica optical fiber immobilized with colloidal Ag nanoparticles at the distal end was used for SERS measurements of as-collected urine samples at 632.8 nm excitation wavelength. All patients with abnormal renal graft function (3 AR episodes and 2 graft failure episodes) who were clinically diagnosed independently show common unique SERS spectral features in the urines collected just one day after transplant. SERS-based fiber-optic probe has excellent potential to be a bedside tool for early diagnosis of kidney transplant patients for timely medical intervention of patients at high risk of transplant dysfunction.

  19. Au-coated ZnO nanorods on stainless steel fiber for self-cleaning solid phase microextraction-surface enhanced Raman spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Li, Bo; Shi, Yu-e; Cui, Jingcheng; Liu, Zhen; Zhang, Xiaoli; Zhan, Jinhua, E-mail: jhzhan@sdu.edu.cn

    2016-06-07

    Solid phase microextraction-surface enhanced Raman spectroscopy (SPME–SERS), combining the pretreatment and determination functions, has been successfully used in environmental analysis. In this work, Au-coated ZnO nanorods were fabricated on stainless steel fiber as a self-cleaning SERS-active SPME fiber. The ZnO nanorods grown on stainless steel fiber were prepared via a simple hydrothermal approach. Then the obtained nanostructures were decorated with Au nanoparticles through ion-sputtering at room temperature. The obtained SERS-active SPME fiber is a reproducible sensitivity sensor. Taking p-aminothiophenol as the probe molecule, the RSD value of the SERS-active SPME fiber was 8.9%, indicating the fiber owned good uniformity. The qualitative and quantitative detection of crystal violet and malachite green was also achieved. The log–log plot of SERS intensity to crystal violet and malachite green concentration showed a good linear relationship. Meanwhile, this SERS-active SPME fiber can achieve self-cleaning owning to the excellent photocatalytic performance of ZnO nanorods. Crystal violet was still successfully detected even after five cycles, which indicated the high reproducibility of this SERS-active SPME fiber. - Graphical abstract: Au-coated ZnO NRs on stainless steel fiber were used as SERS-active SPME fiber with good extraction effect, high SERS sensitivity. Self-cleaning function of the fiber was achieved based on the photocatalytic degradation property of ZnO nanorods by UV irradiation. - Highlights: • Au-coated ZnO nanorods on stainless steel fiber as a SERS-active SPME fiber was fabricated. • The SERS-active SPME fiber can directly extract and detect the crystal violet and malachite green. • The SERS-active SPME fiber owns good extraction effect, and high SERS sensitivity. • Self-cleaning property of the fiber were achieved based on the photocatalytic degradation property of ZnO.

  20. Au-coated ZnO nanorods on stainless steel fiber for self-cleaning solid phase microextraction-surface enhanced Raman spectroscopy

    International Nuclear Information System (INIS)

    Li, Bo; Shi, Yu-e; Cui, Jingcheng; Liu, Zhen; Zhang, Xiaoli; Zhan, Jinhua

    2016-01-01

    Solid phase microextraction-surface enhanced Raman spectroscopy (SPME–SERS), combining the pretreatment and determination functions, has been successfully used in environmental analysis. In this work, Au-coated ZnO nanorods were fabricated on stainless steel fiber as a self-cleaning SERS-active SPME fiber. The ZnO nanorods grown on stainless steel fiber were prepared via a simple hydrothermal approach. Then the obtained nanostructures were decorated with Au nanoparticles through ion-sputtering at room temperature. The obtained SERS-active SPME fiber is a reproducible sensitivity sensor. Taking p-aminothiophenol as the probe molecule, the RSD value of the SERS-active SPME fiber was 8.9%, indicating the fiber owned good uniformity. The qualitative and quantitative detection of crystal violet and malachite green was also achieved. The log–log plot of SERS intensity to crystal violet and malachite green concentration showed a good linear relationship. Meanwhile, this SERS-active SPME fiber can achieve self-cleaning owning to the excellent photocatalytic performance of ZnO nanorods. Crystal violet was still successfully detected even after five cycles, which indicated the high reproducibility of this SERS-active SPME fiber. - Graphical abstract: Au-coated ZnO NRs on stainless steel fiber were used as SERS-active SPME fiber with good extraction effect, high SERS sensitivity. Self-cleaning function of the fiber was achieved based on the photocatalytic degradation property of ZnO nanorods by UV irradiation. - Highlights: • Au-coated ZnO nanorods on stainless steel fiber as a SERS-active SPME fiber was fabricated. • The SERS-active SPME fiber can directly extract and detect the crystal violet and malachite green. • The SERS-active SPME fiber owns good extraction effect, and high SERS sensitivity. • Self-cleaning property of the fiber were achieved based on the photocatalytic degradation property of ZnO.

  1. In vivo photothermal treatment with real-time monitoring by optical fiber-needle array.

    Science.gov (United States)

    Yang, Taeseok Daniel; Park, Kwanjun; Kim, Hyung-Jin; Im, Nu-Ri; Kim, Byoungjae; Kim, TaeHoon; Seo, Sohyun; Lee, Jae-Seung; Kim, Beop-Min; Choi, Youngwoon; Baek, Seung-Kuk

    2017-07-01

    Photothermal treatment (PTT) using gold nanoshells (gold-NSs) is accepted as a method for treating cancer. However, owing to restrictions in therapeutic depth and skin damage caused by excessive light exposure, its application has been limited to lesions close to the epidermis. Here, we demonstrate an in vivo PTT method that uses gold-NSs with a flexible optical fiber-needle array (OFNA), which is an array of multiple needles in which multimode optical fibers are inserted, one in each, for light delivery. The light for PTT was directly administrated to subcutaneous tissues through the OFNA, causing negligible thermal damage to the skin. Enhancement of light energy delivery assisted by the OFNA in a target area was confirmed by investigation using artificial tissues. The ability of OFNA to treat cancer without causing cutaneous thermal damage was also verified by hematoxylin and eosin (H&E) staining and optical coherence tomography in cancer models in mice. In addition, the OFNA allowed for observation of the target site through an imaging fiber bundle. By imaging the activation of the injected gold-NSs, we were able to obtain information on the PTT process in real-time.

  2. High alkali-resistant basalt fiber for reinforcing concrete

    International Nuclear Information System (INIS)

    Lipatov, Ya.V.; Gutnikov, S.I.; Manylov, M.S.; Zhukovskaya, E.S.; Lazoryak, B.I.

    2015-01-01

    Highlights: • Doping of basalt fiber with ZrSiO 4 increased its alkali resistance. • Alkali treatment results in formation of protective surface layer on fibers. • Morphology and chemical composition of surface layer were investigated. • Mechanical properties of fibers were analyzed by a Weibull distribution. • Zirconia doped basalt fibers demonstrate high performance in concrete. - Abstract: Basalt glasses and fibers with zirconia content in the range from 0 to 7 wt% were obtained using ZrSiO 4 as a zirconium source. Weight loss and tensile strength loss of fibers after refluxing in alkali solution were determined. Basalt fiber with 5.7 wt% ZrO 2 had the best alkali resistance properties. Alkali treatment results in formation of protective surface layer on fibers. Morphology and chemical composition of surface layer were investigated. It was shown that alkali resistance of zirconia doped basalt fibers is caused by insoluble compounds of Zr 4+ , Fe 3+ and Mg 2+ in corrosion layer. Mechanical properties of initial and leached fibers were evaluated by a Weibull distribution. The properties of basalt fibers with ZrSiO 4 were compared with AR-glass fibers. The performance of concrete with obtained fibers was investigated

  3. Bioinspired Surface Treatments for Improved Decontamination: Fluoro-Plasma Treatment

    Science.gov (United States)

    2017-07-21

    were baked at 100°C or equilibrated to a specific relative humidity prior to collection of contact angles (Table 2). The impact of surface...No significant changes in the appearance or wetting characteristics were noted during this period. When the soapy water process was employed

  4. Surface modification of steels by electrical discharge treatment in electrolyte

    International Nuclear Information System (INIS)

    Krastev, D.; Paunov, V.; Yordanov, B.; Lazarova, V.

    2013-01-01

    Full text: In this work are discussed some experimental data about the influence of applied electrical discharge treatment in electrolyte on the surface structure of steels. The electrical discharge treatment of steel surface in electrolyte gives a modified structure with specific combination of characteristics in result of nonequilibrium transformations. The modification goes by a high energy thermal process in a very small volume on the metallic surface involving melting, vaporisation, activation and alloying in electrical discharges, and after that cooling of this surface with high rate in the electrolyte. The surface layers obtain a different structure in comparison with the metal matrix and are with higher hardness, wear resistance and corrosion resistance. key words: surface modification, electrical discharge treatment in electrolyte, steels

  5. Surface microstructures on planar substrates and textile fibers guide neurite outgrowth: a scaffold solution to push limits of critical nerve defect regeneration?

    Directory of Open Access Journals (Sweden)

    Stefan Weigel

    Full Text Available The treatment of critical size peripheral nerve defects represents one of the most serious problems in neurosurgery. If the gap size exceeds a certain limit, healing can't be achieved. Connection mismatching may further reduce the clinical success. The present study investigates how far specific surface structures support neurite outgrowth and by that may represent one possibility to push distance limits that can be bridged. For this purpose, growth cone displacement of fluorescent embryonic chicken spinal cord neurons was monitored using time-lapse video. In a first series of experiments, parallel patterns of polyimide ridges of different geometry were created on planar silicon oxide surfaces. These channel-like structures were evaluated with and without amorphous hydrogenated carbon (a-C:H coating. In a next step, structured and unstructured textile fibers were investigated. All planar surface materials (polyimide, silicon oxide and a-C:H proved to be biocompatible, i.e. had no adverse effect on nerve cultures and supported neurite outgrowth. Mean growth cone migration velocity measured on 5 minute base was marginally affected by surface structuring. However, surface structure variability, i.e. ridge height, width and inter-ridge spacing, significantly enhanced the resulting net velocity by guiding the growth cone movement. Ridge height and inter-ridge distance affected the frequency of neurites crossing over ridges. Of the evaluated dimensions ridge height, width, and inter-ridge distance of respectively 3, 10, and 10 µm maximally supported net axon growth. Comparable artificial grooves, fabricated onto the surface of PET fibers by using an excimer laser, showed similar positive effects. Our data may help to further optimize surface characteristics of artificial nerve conduits and bioelectronic interfaces.

  6. Improving cytoactive of endothelial cell by introducing fibronectin to the surface of poly L-Lactic acid fiber mats via dopamine

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Wufeng; Zhang, Xiazhi; Wu, Keke; Liu, Xiaoyan; Jiao, Yanpeng, E-mail: tjiaoyp@jnu.edu.cn; Zhou, Changren

    2016-12-01

    A simple but straightforward approach was reported to prepare fiber mats modified with fibronectin (Fn) protein for endothelial cells activity study. Based on the self-polymerization and strong adhesion feature of dopamine, poly L-Lactic acid (PLLA) fibers mat was modified via simply immersing them into dopamine solution for 16 h. Subsequently, Fn was immobilized onto the fiber mats surface by the coupling reactive polydopamine (PDA) layer and Fn. Attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy and X-ray photoelectron spectroscopy (XPS) were used to determine the chemical compositions of fiber mats surface, which confirmed the successful immobilization of PDA and Fn molecules on the fiber surface. Scanning electronic microscopy (SEM) was used to observe the surface morphology changes after modification with PDA and Fn. The data of water contact angle showed that the hydrophilicity of the fiber mats was improved after surface modification. The data of in vitro cell culture proved that the PDA and Fn modified surface significantly enhanced the adhesion, proliferation and cell activity of endothelial cells on the fiber mats. And the release of tumor necrosis factor-α (TNF-α) by endothelial cells on the modified surface was suppressed compared to that on culture plate and PLLA film at 2 and 4 days, while the secretion of interleukin-1β (IL-1β) was increased compared to that on culture plate and PLLA film at 2 days. - Highlights: • Fibronectin (Fn) was grafted on PLLA fiber surface mediated by polydopamine coating. • Fn modified PLLA fiber enhanced the adhesion, proliferation of endothelial cells. • Fn and polydopamine modified PLLA fiber could adjust the release of inflammatory factor.

  7. Mechanical, Microstructure and Surface Characterizations of Carbon Fibers Prepared from Cellulose after Liquefying and Curing

    Directory of Open Access Journals (Sweden)

    Xiaojun Ma

    2013-12-01

    Full Text Available In this study, Cellulose-based carbon fibers (CBCFs were prepared from cellulose after phenol liquefaction and curing. The characteristics and properties of CBCFs were examined by scanning electron microscopy (SEM, Fourier transform infrared spectroscopy (FTIR, X-ray diffraction (XRD, Raman spectroscopy and X-ray photoelectron spectroscopy (XPS. The results showed that, with increasing carbonization temperature, the La, Lc, and Lc/d(002 of CBCFs increased gradually, whereas the degree of disorder R decreased. The –OH, –CH2–, –O–C– and phenyl group characteristic absorption peaks of CBCFs reduced gradually. The cross-linked structure of CBCFs was converted into a graphite structure with a six-ring carbon network during carbonization. The surface of CBCFs were mainly comprised of C–C, C–O, and C=O. The tensile strength, carbonization yield and carbon content of CBCFs obtained at 1000 °C were 1015 MPa, 52%, and 95.04%, respectively.

  8. Detection of amino acid neurotransmitters by surface enhanced Raman scattering and hollow core photonic crystal fiber

    Science.gov (United States)

    Tiwari, Vidhu S.; Khetani, Altaf; Monfared, Ali Momenpour T.; Smith, Brett; Anis, Hanan; Trudeau, Vance L.

    2012-03-01

    The present work explores the feasibility of using surface enhanced Raman scattering (SERS) for detecting the neurotransmitters such as glutamate (GLU) and gamma-amino butyric acid (GABA). These amino acid neurotransmitters that respectively mediate fast excitatory and inhibitory neurotransmission in the brain, are important for neuroendocrine control, and upsets in their synthesis are also linked to epilepsy. Our SERS-based detection scheme enabled the detection of low amounts of GLU (10-7 M) and GABA (10-4 M). It may complement existing techniques for characterizing such kinds of neurotransmitters that include high-performance liquid chromatography (HPLC) or mass spectrography (MS). This is mainly because SERS has other advantages such as ease of sample preparation, molecular specificity and sensitivity, thus making it potentially applicable to characterization of experimental brain extracts or clinical diagnostic samples of cerebrospinal fluid and saliva. Using hollow core photonic crystal fiber (HC-PCF) further enhanced the Raman signal relative to that in a standard cuvette providing sensitive detection of GLU and GABA in micro-litre volume of aqueous solutions.

  9. Identification and Quantification of Celery Allergens Using Fiber Optic Surface Plasmon Resonance PCR.

    Science.gov (United States)

    Daems, Devin; Peeters, Bernd; Delport, Filip; Remans, Tony; Lammertyn, Jeroen; Spasic, Dragana

    2017-07-31

    Abstract : Accurate identification and quantification of allergens is key in healthcare, biotechnology and food quality and safety. Celery ( Apium graveolens ) is one of the most important elicitors of food allergic reactions in Europe. Currently, the golden standards to identify, quantify and discriminate celery in a biological sample are immunoassays and two-step molecular detection assays in which quantitative PCR (qPCR) is followed by a high-resolution melting analysis (HRM). In order to provide a DNA-based, rapid and simple detection method suitable for one-step quantification, a fiber optic PCR melting assay (FO-PCR-MA) was developed to determine different concentrations of celery DNA (1 pM-0.1 fM). The presented method is based on the hybridization and melting of DNA-coated gold nanoparticles to the FO sensor surface in the presence of the target gene (mannitol dehydrogenase, Mtd ). The concept was not only able to reveal the presence of celery DNA, but also allowed for the cycle-to-cycle quantification of the target sequence through melting analysis. Furthermore, the developed bioassay was benchmarked against qPCR followed by HRM, showing excellent agreement ( R ² = 0.96). In conclusion, this innovative and sensitive diagnostic test could further improve food quality control and thus have a large impact on allergen induced healthcare problems.

  10. Identification and Quantification of Celery Allergens Using Fiber Optic Surface Plasmon Resonance PCR

    Directory of Open Access Journals (Sweden)

    Devin Daems

    2017-07-01

    Full Text Available Abstract: Accurate identification and quantification of allergens is key in healthcare, biotechnology and food quality and safety. Celery (Apium graveolens is one of the most important elicitors of food allergic reactions in Europe. Currently, the golden standards to identify, quantify and discriminate celery in a biological sample are immunoassays and two-step molecular detection assays in which quantitative PCR (qPCR is followed by a high-resolution melting analysis (HRM. In order to provide a DNA-based, rapid and simple detection method suitable for one-step quantification, a fiber optic PCR melting assay (FO-PCR-MA was developed to determine different concentrations of celery DNA (1 pM–0.1 fM. The presented method is based on the hybridization and melting of DNA-coated gold nanoparticles to the FO sensor surface in the presence of the target gene (mannitol dehydrogenase, Mtd. The concept was not only able to reveal the presence of celery DNA, but also allowed for the cycle-to-cycle quantification of the target sequence through melting analysis. Furthermore, the developed bioassay was benchmarked against qPCR followed by HRM, showing excellent agreement (R2 = 0.96. In conclusion, this innovative and sensitive diagnostic test could further improve food quality control and thus have a large impact on allergen induced healthcare problems.

  11. In vivo evaluation of the biocompatibility of surface modified hemodialysis polysulfone hollow fibers in rat.

    Directory of Open Access Journals (Sweden)

    Ganpat J Dahe

    Full Text Available Polysulfone (Psf hollow fiber membranes (HFMs have been widely used in blood purification but their biocompatibility remains a concern. To enhance their biocompatibility, Psf/TPGS (d-α-tocopheryl polyethylene glycol 1000 succinate composite HFMs and 2-methacryloyloxyethyl phosphorylcholine (MPC coated Psf HFMs have been prepared. They have been evaluated for in vivo biocompatibility and graft acceptance and compared with sham and commercial membranes by intra-peritoneal implantation in rats at day 7 and 21. Normal body weights, tissue formation and angiogenesis indicate acceptance of implants by the animals. Hematological observations show presence of post-surgical stress which subsides over time. Serum biochemistry results reveal normal organ function and elevated liver ALP levels at day 21. Histological studies exhibit fibroblast recruitment cells, angiogenesis and collagen deposition at the implant surface indicating new tissue formation. Immuno-histochemistry studies show non-activation of MHC molecules signifying biocompatibilty. Additionally, Psf/TPGS exhibit most favorable tissue response as compared with other HFMs making them the material of choice for HFM preparation for hemodialysis applications.

  12. Mechanism and Characteristics of Humidity Sensing with Polyvinyl Alcohol-Coated Fiber Surface Plasmon Resonance Sensor.

    Science.gov (United States)

    Shao, Yu; Wang, Ying; Cao, Shaoqing; Huang, Yijian; Zhang, Longfei; Zhang, Feng; Liao, Changrui; Wang, Yiping

    2018-06-25

    A surface plasmon resonance (SPR) sensor based on a side-polished single mode fiber coated with polyvinyl alcohol (PVA) is demonstrated for relative humidity (RH) sensing. The SPR sensor exhibits a resonant dip in the transmission spectrum in ambient air after PVA film coating, and the resonant wavelength shifts to longer wavelengths as the thickness of the PVA film increases. When RH changes, the resonant dip of the sensor with different film-thicknesses exhibits interesting characteristics for optical spectrum evolution. For sensors with initial wavelengths between 550 nm and 750 nm, the resonant dip shifts to longer wavelengths with increasing RH. The averaged sensitivity increases firstly and then drops, and shows a maximal sensitivity of 1.01 nm/RH%. Once the initial wavelength of the SPR sensor exceeds 850 nm, an inflection point of the resonant wavelength shift can be observed with RH increasing, and the resonant dip shifts to shorter wavelengths for RH values exceeding this point, and sensitivity as high as −4.97 nm/RH% can be obtained in the experiment. The sensor is expected to have potential applications in highly sensitive and cost effective humidity sensing.

  13. Mechanism and Characteristics of Humidity Sensing with Polyvinyl Alcohol-Coated Fiber Surface Plasmon Resonance Sensor

    Directory of Open Access Journals (Sweden)

    Yu Shao

    2018-06-01

    Full Text Available A surface plasmon resonance (SPR sensor based on a side-polished single mode fiber coated with polyvinyl alcohol (PVA is demonstrated for relative humidity (RH sensing. The SPR sensor exhibits a resonant dip in the transmission spectrum in ambient air after PVA film coating, and the resonant wavelength shifts to longer wavelengths as the thickness of the PVA film increases. When RH changes, the resonant dip of the sensor with different film-thicknesses exhibits interesting characteristics for optical spectrum evolution. For sensors with initial wavelengths between 550 nm and 750 nm, the resonant dip shifts to longer wavelengths with increasing RH. The averaged sensitivity increases firstly and then drops, and shows a maximal sensitivity of 1.01 nm/RH%. Once the initial wavelength of the SPR sensor exceeds 850 nm, an inflection point of the resonant wavelength shift can be observed with RH increasing, and the resonant dip shifts to shorter wavelengths for RH values exceeding this point, and sensitivity as high as −4.97 nm/RH% can be obtained in the experiment. The sensor is expected to have potential applications in highly sensitive and cost effective humidity sensing.

  14. Optical fiber biocompatible sensors for monitoring selective treatment of tumors via thermal ablation

    Science.gov (United States)

    Tosi, Daniele; Poeggel, Sven; Dinesh, Duraibabu B.; Macchi, Edoardo G.; Gallati, Mario; Braschi, Giovanni; Leen, Gabriel; Lewis, Elfed

    2015-09-01

    Thermal ablation (TA) is an interventional procedure for selective treatment of tumors, that results in low-invasive outpatient care. The lack of real-time control of TA is one of its main weaknesses. Miniature and biocompatible optical fiber sensors are applied to achieve a dense, multi-parameter monitoring, that can substantially improve the control of TA. Ex vivo measurements are reported performed on porcine liver tissue, to reproduce radiofrequency ablation of hepatocellular carcinoma. Our measurement campaign has a two-fold focus: (1) dual pressure-temperature measurement with a single probe; (2) distributed thermal measurement to estimate point-by-point cells mortality.

  15. Advanced treatment of acrylic fiber manufacturing wastewater with a combined microbubble-ozonation/ultraviolet irradiation process

    KAUST Repository

    Zheng, Tianlong; Zhang, Tao; Wang, Qunhui; Tian, Yanli; Shi, Zhining; Smale, Nicholas; Xu, Banghua

    2015-01-01

    This work investigated the effectiveness of a combination of microbubble-ozonation and ultraviolet (UV) irradiation for the treatment of secondary wastewater effluent of a wet-spun acrylic fiber manufacturing plant. Under reactor condition (ozone dosage of 48 mg L-1, UV fluence rate of 90 mW cm-2, initial pH of 8.0, and reaction time of 120 min), the biodegradability (represented as BOD5/CODcr) of the wastewater improved from 0.18 to 0.47. This improvement in biodegradability is related to the degradation of alkanes, aromatic compounds, and other bio-refractory organic compounds. The combination of microbubble-ozonation and UV irradiation synergistically improved treatment efficiencies by 228%, 29%, and 142% for CODcr, UV254 removal and BOD5/CODcr respectively after 120 min reaction time, as compared with the sum efficiency of microbubble-ozonation alone and UV irradiation alone. Hydroxyl radical production in the microbubble-ozonation/UV process was about 1.8 times higher than the sum production in microbubble-ozonation alone and UV irradiation alone. The ozone decomposition rate in the combined process was about 4.1 times higher than that in microbubble-ozonation alone. The microbubble-ozonation/UV process could be a promising technique for the treatment of bio-refractory organics in the acrylic fiber manufacturing industry. © 2015 Royal Society of Chemistry.

  16. Polyoxadiazole hollow fibers for produced water treatment by direct contact membrane distillation

    KAUST Repository

    Xu, Jingli

    2018-01-08

    Treatment of produced water in the petroleum industry has been a challenge worldwide. In this study, we evaluated the use of direct contact membrane distillation (DCMD) for this purpose, removing oil and dissolved elements and supplying clean water from waste. We synthesized fluorinated polyoxadiazole, a highly hydrophobic polymer, to fabricate hollow fiber membranes, which were optimized and tested for simulated produced water and real produced water treatment. The process performance was investigated under different operating parameters, such as feed temperature, feed flow velocity and length of the membrane module for 4 days. The results indicate that by increasing feed temperature and feed flow rate the vapor flux increases. The flux decreased with increasing the length of the module due to the decrease of the driving force along the module. The fouling behavior, which corresponds to flux decline and cleaning efficiency of the membrane, was studied. The performance of the fabricated hollow fiber membranes was demonstrated for the treatment of produced water, complying with the industrial reuse and discharge limits.

  17. Effects of surface treatments on the translucency, opalescence, and surface texture of dental monolithic zirconia ceramics.

    Science.gov (United States)

    Kim, Hee-Kyung; Kim, Sung-Hun; Lee, Jai-Bong; Ha, Seung-Ryong

    2016-06-01

    Surface polishing or glazing may increase the appearance of depth of monolithic zirconia restorations. The purpose of this in vitro study was to investigate the effects of surface treatments on the translucency, opalescence, and surface texture of dental monolithic zirconia ceramics. Forty-five monolithic zirconia specimens (16.3×16.4×2.0 mm) were divided into groups I to V, according to the number of colorings each received. Each group was then divided into 3 subgroups (n=3) according to the surface treatment: N=no treatment; P=polished; and G=glazed. CIElab color coordinates were obtained relative to D65 on a reflection spectrophotometer. The translucency parameter (TP) and opalescence parameter (OP) were calculated. One specimen per subgroups I and V was selected for evaluation of surface roughness (Ra) and was examined with scanning electron microscopy (SEM). Data were analyzed with 2-way ANOVA and pairwise comparisons (α=.05). Statistical powers were verified to evaluate results (α=.05). The interaction effects of surface treatments combined with the number of colorings were significant for TP, OP, and Ra (P.05), whereas glazing significantly decreased OP and Ra in most groups. SEM images demonstrated that surface treatments affected the surface texture of monolithic zirconia ceramics. Surface treatments combined with coloring strongly affect the surface texture of dental monolithic zirconia ceramics. Copyright © 2016 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  18. Performance test and analysis to the prototype of fiber-based portable large area surface contamination monitor

    International Nuclear Information System (INIS)

    Qu Yantao; Liu Yang; Wang Wei; Wang Ying; Hou Jie

    2013-01-01

    The feasibility was studied of using large area plastic scintillation (sensitive area up to 1200 cm 2 ) and wavelength-shifting fiber (WLS) to measure β surface contamination that led to a tentative adoption of direct coupling method of wavelength-shifting fiber array and plastic scintillator. Based on above, a calculation program was established, by which the optical transmission was simulated enabling optimizations to the design of the system such as the size of the plastic scintillator, the quantity of the wavelength-shifting fiber and the configuration mode of the wavelength-shifting fiber. As a result, a special experimental prototype was developed and tested. Results prove that the sensitive detection area is up to 1200 cm 2 , the detection efficiency is about 15.4%, the inconsistency of the different sensitive area is about 9.7%, and the minimum detectable limit is about 0.05 Bq/cm 2 , all of which indicate that the experimental prototype could satisfy requirements of surface pollution monitoring for both normal and accident conditions. (authors)

  19. Nanocomposite fibers and film containing polyolefin and surface-modified carbon nanotubes

    Science.gov (United States)

    Chu,Benjamin; Hsiao, Benjamin S.

    2010-01-26

    Methods for modifying carbon nanotubes with organic compounds are disclosed. The modified carbon nanotubes have enhanced compatibility with polyolefins. Nanocomposites of the organo-modified carbon nanotubes and polyolefins can be used to produce both fibers and films having enhanced mechanical and electrical properties, especially the elongation-to-break ratio and the toughness of the fibers and/or films.

  20. Structure fits the purpose: photonic crystal fibers for evanescent-field surface-enhanced Raman spectroscopy

    Czech Academy of Sciences Publication Activity Database

    Oo, M. K .K.; Han, Y.; Kaňka, Jiří; Sukhishvili, S.; Du, H.

    2010-01-01

    Roč. 35, č. 4 (2010), s. 466-468 ISSN 0146-9592 R&D Projects: GA ČR GA102/08/1719 Institutional research plan: CEZ:AV0Z20670512 Keywords : Photonic crystal fiber * Raman spectroscopy * Fiber-optic evanescent sensor Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering Impact factor: 3.316, year: 2010

  1. A titanium surface with nano-ordered spikes and pores enhances human dermal fibroblastic extracellular matrix production and integration of collagen fibers

    International Nuclear Information System (INIS)

    Yamada, Masahiro; Kato, Eiji; Sakurai, Kaoru; Yamamoto, Akiko

    2016-01-01

    The acquisition of substantial dermal sealing determines the prognosis of percutaneous titanium-based medical devices or prostheses. A nano-topographic titanium surface with ordered nano-spikes and pores has been shown to induce periodontal-like connective tissue attachment and activate gingival fibroblastic functions. This in vitro study aimed to determine whether an alkali-heat (AH) treatment-created nano-topographic titanium surface could enhance human dermal fibroblastic functions and binding strength to the deposited collagen on the titanium surface. The surface topographies of commercially pure titanium machined discs exposed to two different AH treatments were evaluated. Human dermal fibroblastic cultures grown on the discs were evaluated in terms of cellular morphology, proliferation, extracellular matrix (ECM) and proinflammatory cytokine synthesis, and physicochemical binding strength of surface-deposited collagen. An isotropically-patterned, shaggy nano-topography with a sponge-like inner network and numerous well-organized, anisotropically-patterned fine nano-spikes and pores were observed on each nano-topographic surface type via scanning electron microscopy. In contrast to the typical spindle-shaped cells on the machined surfaces, the isotropically- and anisotropically-patterned nano-topographic titanium surfaces had small circular/angular cells containing contractile ring-like structures and elongated, multi-shaped cells with a developed cytoskeletal network and multiple filopodia and lamellipodia, respectively. These nano-topographic surfaces enhanced dermal-related ECM synthesis at both the protein and gene levels, without proinflammatory cytokine synthesis or reduced proliferative activity. Deposited collagen fibers were included in these surfaces and sufficiently bound to the nano-topographies to resist the physical, enzymatic and chemical detachment treatments, in contrast to machined surfaces. Well-organized, isotropically

  2. Surface Treatment And Protection Method For Cadium Zinc Telluride Crystals

    Science.gov (United States)

    Wright, Gomez W.; James, Ralph B.; Burger, Arnold; Chinn, Douglas A.

    2006-02-21

    A method for treatment of the surface of a CdZnTe (CZT) crystal that provides a native dielectric coating to reduce surface leakage currents and thereby, improve the resolution of instruments incorporating detectors using CZT crystals. A two step process is disclosed, etching the surface of a CZT crystal with a solution of the conventional bromine/methanol etch treatment, and after attachment of electrical contacts, passivating the CZT crystal surface with a solution of 10 w/o NH4F and 10 w/o H2O2 in water.

  3. High-Performance Supercapacitor of Functionalized Carbon Fiber Paper with High Surface Ionic and Bulk Electronic Conductivity: Effect of Organic Functional Groups

    International Nuclear Information System (INIS)

    Suktha, Phansiri; Chiochan, Poramane; Iamprasertkun, Pawin; Wutthiprom, Juthaporn; Phattharasupakun, Nutthaphon; Suksomboon, Montakan; Kaewsongpol, Tanon; Sirisinudomkit, Pichamon; Pettong, Tanut; Sawangphruk, Montree

    2015-01-01

    Highlights: • A supercapacitor of organic functionalized carbon fiber paper (f-CFP) exhibits high areal and volumetric capacitances. • The performance of the supercapacitor depends on the organic functional group on the surface of the f-CFP. • Hydroxyl and carboxylic groups modified on the surface of f-CFP have higher pseudocapacitive property than amide and amine functional groups. • The f-CFP exhibits high surface ionic and bulk electrical conductivities. - Abstract: Although carbon fiber paper (CFP) or nonwovens are widely used as a non-corrosive and conductive substrate or current collector in batteries and supercapacitors as well as a gas diffusion layer in proton exchange membrane fuel cells, the CFP cannot store charges due to its poor ionic conductivity and its hydrophobic surface. In this work, the chemically functionalized CFP (f-CFP) consisting of hydroxyl and carboxylic groups on its surface was produced by an oxidation reaction of CFP in a mixed concentrated acid solution of H 2 SO 4 :HNO 3 (3:1 v/v) at 60 °C for 1 h. Other amide and amine groups modified CFP were also synthesized for comparison using a dehydration reaction of carboxylic modified CFP with ethylenediamine and n-butylamine. Interestingly, it was found that hydroxyl and carboxylic groups modified CFP behave as a pseudocapacitor electrode, which can store charges via the surface redox reaction in addition to electrochemical double layer capacitance. The aqueous-based supercapacitor of f-CFP has high areal, volumetric, and specific energy (49.0 μW.h/cm 2 , 1960 mW.h/L, and 5.2 W.h/Kg) and power (3.0 mW/cm 2 , 120 W/L, and 326.2 W/Kg) based on the total geometrical surface area and volume as well as the total weight of positive and negative electrodes. High charge capacity of the f-CFP stems from high ionic charge and pseudocapacitive behavior due to hydroxyl and carboxylic groups on its surface and high bulk electronic conductivity (2.03 mS/cm) due to 1D carbon fiber paper. The

  4. Effect of surface treatment of tailings on effluent quality

    International Nuclear Information System (INIS)

    Murray, D.R.; Okuhara, D.

    1980-01-01

    Lysimeters containing 125 tons of mine tailings were used to determine the impact of gravel, sawdust, and vegetation as surface treatments on the quality and quantity of effluent produced from sulfide-containing uranium mill tailings. Over a 5-yr period, treatments did not alter the effluent quality to a level acceptable to regulatory requirements. The concentration of iron, copper, lead, aluminum, and sulfate increased with the rise of acidity during this period. However, the rate and extent of changes did vary with the treatment. The role of surface treatment in long-term waste abandonment must be investigated further

  5. Laser surface treatment of polyamide and NiTi alloy and the effects on mesenchymal stem cell response

    Science.gov (United States)

    Waugh, D. G.; Lawrence, J.; Shukla, P.; Chan, C.; Hussain, I.; Man, H. C.; Smith, G. C.

    2015-07-01

    Mesenchymal stem cells (MSCs) are known to play important roles in development, post-natal growth, repair, and regeneration of mesenchymal tissues. What is more, surface treatments are widely reported to affect the biomimetic nature of materials. This paper will detail, discuss and compare laser surface treatment of polyamide (Polyamide 6,6), using a 60 W CO2 laser, and NiTi alloy, using a 100 W fiber laser, and the effects of these treatments on mesenchymal stem cell response. The surface morphology and composition of the polyamide and NiTi alloy were studied by scanning electron microscopy (SEM) and X-ray photoemission spectroscopy (XPS), respectively. MSC cell morphology cell counting and viability measurements were done by employing a haemocytometer and MTT colorimetric assay. The success of enhanced adhesion and spreading of the MSCs on each of the laser surface treated samples, when compared to as-received samples, is evidenced in this work.

  6. Effect of surface treatment of tailings on effluent quality

    International Nuclear Information System (INIS)

    Murray, D.R.

    1980-01-01

    Successful reclamation treatment, in preparation for long range abandonment of mining wastes, involves both surface treatment and water quality control containment of waste solids and liquid contaminants. This paper describes use of lysimeters containing 125 tonnes of tailings to determine the impact of gravel, sawdust, and vegetation as surface treatments on the quality and quantity of effluent produced from sulphide-containing uranium mill tailings. Over a five-year period these treatments were observed and compared with bare tailings where no surface addition was made. The treatments did not alter the effluent quality to a level acceptable to regulatory requirements. Surface treatments did not appear to affect the leaching of Ra-226, NH 4 and NO 3 . The concentration of Fe, SO 4 , Cu, Pb, and Al increased with the rise of acidity as the pH changed from pH 9.5 to pH 2 in four and one-half years. However the rate and extent of changes of some of these parameters vary with the treatment. The experimental results for the observed trends are presented with limited explanation. Original design problems and unexpected delays in tailing reactions have made firm conclusions impossible at this stage. These data, however, provide a base for further investigation and development of explanations and firm conclusions, as to the role of surface treatment in long-term waste abandonment

  7. Dielectric barrier discharge plasma treatment of cellulose nanofibre surfaces

    DEFF Research Database (Denmark)

    Kusano, Yukihiro; Madsen, Bo; Berglund, Linn

    2017-01-01

    on the nanofibre surface. Ultrasonic irradiation further enhanced the wetting and oxidation of the nanofibre coating. Scanning electron microscopic observations showed skeleton-like features on the plasma-treated surface, indicating preferential etching of weaker domains, such as low-molecular weight domains......Dielectric barrier discharge plasma treatment was applied to modify cellulose nanofibre (CNF) surfaces with and without ultrasonic irradiation. The plasma treatment improved the wetting by deionised water and glycerol, and increased the contents of oxygen, carbonyl group, and carboxyl group...... and amorphous phases. Ultrasonic irradiation also improved the uniformity of the treatment. Altogether, it is demonstrated that atmospheric pressure plasma treatment is a promising technique to modify the CNF surface before composite processing....

  8. Cleaning of diffusion bonding surface by argon ion bombardment treatment

    International Nuclear Information System (INIS)

    Wang, Airu; Ohashi, Osamu; Yamaguchi, Norio; Aoki, Masanori; Higashi, Yasuo; Hitomi, Nobuteru

    2003-01-01

    The specimens of oxygen-free high conductivity copper, SUS304L stainless steel and pure iron were treated by argon ion bombardment and then were bonded by diffusion bonding method. The effects of argon ion bombardment treatment on faying surface morphology, tensile strength of bonding joints and inclusions at the fracture surface were investigated. The results showed that argon ion bombardment treatment was effective to remove the oxide film and contamination at the faying surface and improve the quality of joints. The tensile strength of the bonded joints was improved, and minimum bonding temperature to make the metallic bonding at the interface was lowered by argon ion bombardment treatment. At the joints with argon ion bombardment treatment, ductile fractured surface was seen and the amount of inclusions was obviously decreased

  9. Surface treatment of nanocrystal quantum dots after film deposition

    Science.gov (United States)

    Sykora, Milan; Koposov, Alexey; Fuke, Nobuhiro

    2015-02-03

    Provided are methods of surface treatment of nanocrystal quantum dots after film deposition so as to exchange the native ligands of the quantum dots for exchange ligands that result in improvement in charge extraction from the nanocrystals.

  10. Mechanical and interfacial properties of poly(vinyl chloride) based composites reinforced by cassava stillage residue with different surface treatments

    Science.gov (United States)

    Zhang, Yanjuan; Gan, Tao; Li, Qian; Su, Jianmei; Lin, Ye; Wei, Yongzuo; Huang, Zuqiang; Yang, Mei

    2014-09-01

    Cassava stillage residue (CSR), a kind of agro-industrial plant fiber, was modified by coupling agent (CA), mechanical activation (MA), and MA-assisted CA (MACA) surface treatments, respectively. The untreated and different surface treated CSRs were used to prepare plant fibers/polymer composites (PFPC) with poly(vinyl chloride) (PVC) as polymer matrix, and the properties of these CSR/PVC composites were compared. Surface treated CSR/PVC composites possessed better mechanical properties, water resistance and dimensional stability compared with the untreated CSR/PVC composite, attributing to the improvement of interfacial properties between CSR and PVC matrix. MACA-treated CSR was the best reinforcement among four types of CSRs (untreated, MA-treated, CA-treated, and MACA-treated CSRs) because MACA treatment led to the significant improvement of dispersion, interfacial adhesion and compatibility between CSR and PVC. MACA treatment could be considered as an effective and green method for enhancing reinforcement efficiency of plant fibers and the properties of PFPC.

  11. Characterization of palm fibers modified with alkaline solution

    International Nuclear Information System (INIS)

    Sipiao, Bryan L.S.; Goulart, Shane A.G.; Mulinari, Daniella R.; Souza Junior, Fernando G. de

    2011-01-01

    This work had the objective of to study one inexpensive and effective technique that enables the application of natural fibers from the Australian Royal Palm as reinforcement in polymer composites. The fibers treated with alkaline solution were characterized by infrared spectroscopy (FTIR) and scanning electron microscopy (SEM) and had their data compared with the fiber in nature. Data showed that the treatment made on fibers surface was effective. (author)

  12. Erratum to 'Surface Modification of PBO Fibers for Composites by Coaxial Atmospheric Dielectric Barrier Discharge (PLA-PLA)'

    International Nuclear Information System (INIS)

    2013-01-01

    There is a mistake in the funding number (National Natural Science Foundation of China (No. 10875146)) of article Surface Modification of PBO Fibers for Composites by Coaxial Atmospheric Dielectric Barrier Discharge (PLA-PLA), written by HU Qianqian, XU Jinzhou, ZHOU Zhenxing, ZHANG Jing, published in Plasma Science and Technology, 2013, Vol. 15, Issue 5, page number 429, it should be corrected as National Natural Science Foundation of China (No. 11075033). (erratum)

  13. Microbubble enhanced ozonation process for advanced treatment of wastewater produced in acrylic fiber manufacturing industry

    KAUST Repository

    Zheng, Tianlong

    2015-02-02

    This work investigated microbubble-ozonation for the treatment of a refractory wet-spun acrylic fiber wastewater in comparison to macrobubble-ozonation. CODcr, NH3-N, and UV254 of the wastewater were removed by 42%, 21%, and 42%, respectively in the microbubble-ozonation, being 25%, 9%, and 35% higher than the removal rates achieved by macrobubble-ozonation at the same ozone dose. The microbubbles (with average diameter of 45μm) had a high concentration of 3.9×105 counts/mL at a gas flow rate of 0.5L/min. The gas holdup, total ozone mass-transfer coefficient, and average ozone utilization efficiency in the microbubble-ozonation were 6.6, 2.2, and 1.5 times higher than those of the macrobubble-ozonation. Greater generation of hydroxyl radicals and a higher zeta potential of the bubbles were also observed in the microbubble ozonation process. The biodegradability of the wastewater was also significantly improved by microbubble-ozonation, which was ascribed to the enhanced degradation of alkanes, aromatic compounds, and the many other bio-refractory organic compounds in the wastewater. Microbubble-ozonation can thus be a more effective treatment process than traditional macrobubble-ozonation for refractory wastewater produced by the acrylic fiber manufacturing industry.

  14. The effects of surface treatments on rapid chloride permeability tests

    KAUST Repository

    Yoon, Seyoon

    2012-08-01

    Surface treatments are commonly applied to improve the chloride resistance of concrete structures exposed to saline environments. Information on chloride ingress to surface-treated concrete is mostly provided by application of the rapid chloride permeability test (RCPT); this test is short in duration and provides rapid results. This study presents a numerical formulation, based on the extended Nernst-Plank/Poisson (NPP) equation, to model the effect of the surface treatment on a sample tested by RCPT. Predictions of the model are compared to experimental measurements. The simulations show that the results from RCPT, in terms of ionic profiles and measurement of the electric field, are dependent on the effectiveness of surface treatments. During RCPT, highly effective surface treatments cause both cations and anions to flocculate at the interface between the surface treatment and the concrete, creating a local electric field. Our numerical model includes these phenomena and presents a methodology to obtain more accurate diffusivities of the surface-treated- concrete from RCPT. © 2012 Elsevier B.V. All rights reserved.

  15. The effects of surface treatments on rapid chloride permeability tests

    KAUST Repository

    Yoon, Seyoon; Oh, Sang-gyun; Ha, Juyoung; Monteiro, Paulo M.

    2012-01-01

    Surface treatments are commonly applied to improve the chloride resistance of concrete structures exposed to saline environments. Information on chloride ingress to surface-treated concrete is mostly provided by application of the rapid chloride permeability test (RCPT); this test is short in duration and provides rapid results. This study presents a numerical formulation, based on the extended Nernst-Plank/Poisson (NPP) equation, to model the effect of the surface treatment on a sample tested by RCPT. Predictions of the model are compared to experimental measurements. The simulations show that the results from RCPT, in terms of ionic profiles and measurement of the electric field, are dependent on the effectiveness of surface treatments. During RCPT, highly effective surface treatments cause both cations and anions to flocculate at the interface between the surface treatment and the concrete, creating a local electric field. Our numerical model includes these phenomena and presents a methodology to obtain more accurate diffusivities of the surface-treated- concrete from RCPT. © 2012 Elsevier B.V. All rights reserved.

  16. Treatment of polymer surfaces in plasma Part I. Kinetic model

    International Nuclear Information System (INIS)

    Tabaliov, N A; Svirachev, D M

    2006-01-01

    The surface tension of the polymer materials depends on functional groups over its surface. As a result from the plasma treatment the kind and concentration of the functional groups can be changed. In the present work, the possible kinetic reactions are defined. They describe the interaction between the plasma and the polymer surface of polyethylene terephthalate (PET). Basing on these reactions, the systems of differential kinetic equations are suggested. The solutions are obtained analytically for the system kinetic equations at defined circumstances

  17. Effect and origin of the structure of hyperbranched polysiloxane on the surface and integrated performances of grafted Kevlar fibers

    Science.gov (United States)

    Zhang, Hongrui; Yuan, Li; Liang, Guozheng; Gu, Aijuan

    2014-11-01

    Four hyperbranched polysiloxanes (HPSis) with different molecular weights and concentration ratios of double bonds to epoxy groups (1:6.5-1:0.7) were synthesized and characterized. Each HPSi was facilely grafted onto surfaces of Kevlar fibers (KFs) to develop novel modified fibers (HPSi-g-KFs). The structures and integrated properties of HPSi-g-KFs as well as the origin behind were systematically investigated. Results show that HPSi-g-KFs have much rougher surface morphologies, and their surface free energies are as high as about 1.7 times that of KFs, showing greatly improved wettability. Besides, HPSi-g-KFs have excellent UV resistance after 168 h UV irradiation, the retentions of tenacity, energy to break, modulus and break extension are as high as 92, 86, 95 and 96%, respectively, while those of KFs are 66-85%. In addition, compared with KFs, HPSi-g-KFs have higher tensile tenacity and energy to break with similar modulus and break extension, much better thermal stability and flame retardancy. The nature of HPSi has different influence on different property of fibers, the HPSi with smaller molecular weight and more epoxy groups is beneficial to prepare HPSi-g-KFs with better wettability, while that with larger molecular weight and more double bonds tends to prepare HPSi-g-KF with better flame retardancy and UV resistance.

  18. Applying fenton process in acrylic fiber wastewater treatment and practice teaching

    Science.gov (United States)

    Zhang, Chunhui; Jiang, Shan

    2018-02-01

    Acrylic fiber manufacturing wastewater, containing a wider range of pollutants, high concentration of refractory organics, poisonous and harmful matters, was significant to treat from the effluents of wastewater treatment plants (WWTPs). In this work, a Fenton reactor was employed for advanced treatment of the WWTP effluents. An orthogonal test and a parametric study were carried out to determine the effect of the main operating conditions and the Fenton process attain excellent performance on the degradation of pollutants under an optimal condition of ferrous dosage was 6.25 mM, hydrogen peroxide was 75 mM and initial pH value was 3.0 in 90 min reaction time. The removal efficiency of COD, TOC, NH4 +-N and TN reached from 45% to 69%. Lastly, as a teaching advice, the Fenton reactor was used in practicing teaching nicely.

  19. Evaluation of ultra-high-performance-fiber reinforced concrete binder content using the response surface method

    International Nuclear Information System (INIS)

    Aldahdooh, M.A.A.; Muhamad Bunnori, N.; Megat Johari, M.A.

    2013-01-01

    Highlights: • We develop a practical method for adjusting the binder content of UHP-FRC. • We adjust the binder content of UHP-FRC mixtures using RSM. • Increasing the cement content does not contribute to enhance strength. • Increasing the content of cement will increase the flow of UHP-FRC mixtures. - Abstract: One of the major disadvantages in ultra-high-performance-fiber reinforced concrete (UHP-FRC) is its high ordinary Portland cement (OPC) content, which directly translates into an increase in OPC production. More OPC production results in increased emission of greenhouse gases, as well increased electrical energy consumption and concrete price. This study is aimed at adjusting the binder content (OPC and silica fume (SF) contents) of UHP-FRC using the response surface method. The present investigation shows that, for a given water/binder and superplasticizer/OPC, the compressive strength is independent of the binder content, whereas the flow depends on the binder content. Increasing the binder content does not enhance the strength compared with the required design strength because the capillary porosity increases with increasing OPC content; however, the workability increases. The final result is the production of a UHP-FRC with an OPC content of 720.49 kg/m 3 , an SF content of 214.25 kg/m 3 , a compressive strength of 181.41 MPa, a direct tensile strength of 12.49 MPa, a bending tensile strength of 30.31 MPa, and a flow of 167 mm

  20. Surface pre-treatment for barrier coatings on polyethylene terephthalate

    Science.gov (United States)

    Bahre, H.; Bahroun, K.; Behm, H.; Steves, S.; Awakowicz, P.; Böke, M.; Hopmann, Ch; Winter, J.

    2013-02-01

    Polymers have favourable properties such as light weight, flexibility and transparency. Consequently, this makes them suitable for food packaging, organic light-emitting diodes and flexible solar cells. Nonetheless, raw plastics do not possess sufficient barrier functionality against oxygen and water vapour, which is of paramount importance for most applications. A widespread solution is to deposit thin silicon oxide layers using plasma processes. However, silicon oxide layers do not always fulfil the requirements concerning adhesion and barrier performance when deposited on films. Thus, plasma pre-treatment is often necessary. To analyse the influence of a plasma-based pre-treatment on barrier performance, different plasma pre-treatments on three reactor setups were applied to a very smooth polyethylene terephthalate film before depositing a silicon oxide barrier layer. In this paper, the influence of oxygen and argon plasma pre-treatments towards the barrier performance is discussed examining the chemical and topological change of the film. It was observed that a short one-to-ten-second plasma treatment can reduce the oxygen transmission rate by a factor of five. The surface chemistry and the surface topography change significantly for these short treatment times, leading to an increased surface energy. The surface roughness rises slowly due to the development of small spots in the nanometre range. For very long treatment times, surface roughness of the order of the barrier layer's thickness results in a complete loss of barrier properties. During plasma pre-treatment, the trade-off between surface activation and roughening of the surface has to be carefully considered.

  1. Surface pre-treatment for barrier coatings on polyethylene terephthalate

    International Nuclear Information System (INIS)

    Bahre, H; Böke, M; Winter, J; Bahroun, K; Behm, H; Hopmann, Ch; Steves, S; Awakowicz, P

    2013-01-01

    Polymers have favourable properties such as light weight, flexibility and transparency. Consequently, this makes them suitable for food packaging, organic light-emitting diodes and flexible solar cells. Nonetheless, raw plastics do not possess sufficient barrier functionality against oxygen and water vapour, which is of paramount importance for most applications. A widespread solution is to deposit thin silicon oxide layers using plasma processes. However, silicon oxide layers do not always fulfil the requirements concerning adhesion and barrier performance when deposited on films. Thus, plasma pre-treatment is often necessary. To analyse the influence of a plasma-based pre-treatment on barrier performance, different plasma pre-treatments on three reactor setups were applied to a very smooth polyethylene terephthalate film before depositing a silicon oxide barrier layer. In this paper, the influence of oxygen and argon plasma pre-treatments towards the barrier performance is discussed examining the chemical and topological change of the film. It was observed that a short one-to-ten-second plasma treatment can reduce the oxygen transmission rate by a factor of five. The surface chemistry and the surface topography change significantly for these short treatment times, leading to an increased surface energy. The surface roughness rises slowly due to the development of small spots in the nanometre range. For very long treatment times, surface roughness of the order of the barrier layer's thickness results in a complete loss of barrier properties. During plasma pre-treatment, the trade-off between surface activation and roughening of the surface has to be carefully considered. (paper)

  2. Phase modulation and structural effects in a D-shaped all-solid photonic crystal fiber surface plasmon resonance sensor.

    Science.gov (United States)

    Tan, Zhixin; Hao, Xin; Shao, Yonghong; Chen, Yuzhi; Li, Xuejin; Fan, Ping

    2014-06-16

    We numerically investigate a D-shaped fiber surface plasmon resonance sensor based on all-solid photonic crystal fiber (PCF) with finite element method. In the side-polished PCF sensor, field leakage is guided to penetrate through the gap between the rods, causing a pronounced phase modulation in the deep polishing case. Taking advantage of these amplified phase shifts, a high-performance fiber sensor design is proposed. The significant enhancements arising from this new sensor design should lift the performance of the fiber SPR sensor into the range capable of detecting a wide range of biochemical interactions, which makes it especially attractive for many in vivo and in situ bioanalysis applications. Several parameters which influence the field leakage, such as the polishing position, the pitch of the PCF, and the rod diameter, are inspected to evaluate their impacts. Furthermore, we develop a mathematical model to describe the effects of varying the structural parameters of a D-shaped PCF sensor on the evanescent field and the sensor performance.

  3. Preparation of Mg(OH)_2 hybrid pigment by direct precipitation and graft onto cellulose fiber via surface-initiated atom transfer radical polymerization

    International Nuclear Information System (INIS)

    Wang, Xiao; Zhang, Yue; Lv, Lihua; Cui, Yongzhu; Wei, Chunyan; Pang, Guibing

    2016-01-01

    Graphical abstract: - Highlights: • Adsorbed anionic dye molecules are conducive to preferential growth of (0 0 1) plane of Mg(OH)_2 crystal for Mg(OH)_2 pigments. • Uniform coverage of nanosized Mg(OH)_2 pigments on fiber surface is achieved via surface-initiated ATRP. • About 4 wt% of Mg(OH)_2 pigment on fiber surface shortens nearly half of burning time of cellulose. - Abstract: Mg(OH)_2 flame retardant hybrid pigment is synthesized through simultaneous solution precipitation and adsorption of anionic dyes (C.I. Acid Red 6). The Mg(OH)_2 hybrid pigment bearing vinyl groups after surface silane modification is immobilized onto the surface of bromo end-functional cellulose fiber by atom transfer radical polymerization (ATRP). The morphology and structure of Mg(OH)_2 pigments and cellulose fibers grafted with modified pigments are characterized. The thermal properties, flammability and color fastness of cellulose fibers grafted with modified pigments are measured. The results reveal that anionic dye molecules are adsorbed onto Mg(OH)_2 crystals and affect the formation of lamella-like Mg(OH)_2 crystals. The cellulose fiber grafted with modified Mg(OH)_2 hybrid pigment absorbs about four times heat more than original cellulose fiber with about 4% immobilization ratio of pigment, which shortens nearly half of afterflame time and afterglow time.

  4. Rapid growth of amorphous carbon films on the inner surface of micron-thick and hollow-core fibers

    Energy Technology Data Exchange (ETDEWEB)

    Ji, Longfei [Fujian Key Laboratory for Plasma and Magnetic Resonance, Department of Electric Science, School of Physics and Mechanical and Electrical Engineering, Xiamen University, Xiamen, Fujian 361005 (China); School of Physics and Materials Engineering, Dalian Nationalities University, Dalian 116600 (China); School of Science, Changchun University of Science and Technology, Changchun, Jilin 130022 (China); Liu, Dongping, E-mail: Dongping.liu@dlnu.edu.cn [Fujian Key Laboratory for Plasma and Magnetic Resonance, Department of Electric Science, School of Physics and Mechanical and Electrical Engineering, Xiamen University, Xiamen, Fujian 361005 (China); School of Physics and Materials Engineering, Dalian Nationalities University, Dalian 116600 (China); School of Science, Changchun University of Science and Technology, Changchun, Jilin 130022 (China); Zhou, Xinwei [Department of Mechanical Engineering, Zhejiang University, Zhejiang 310007 (China); Song, Ying [School of Physics and Materials Engineering, Dalian Nationalities University, Dalian 116600 (China); School of Physics and Optoelectronic Technology, Dalian University of Technology, Dalian 116023 (China); Ni, Weiyuan [School of Physics and Materials Engineering, Dalian Nationalities University, Dalian 116600 (China); School of Science, Changchun University of Science and Technology, Changchun, Jilin 130022 (China); Niu, Jinhai; Fan, Hongyu [School of Physics and Materials Engineering, Dalian Nationalities University, Dalian 116600 (China)

    2013-10-01

    Ultrathick (> 25 μm) carbon films were obtained on the inner surface of hollow and micron-thick quartz fibers by confining CH{sub 4}/He or C{sub 2}H{sub 2}/He microplasmas in their hollow cores. The resulting carbon films were studied by using scanning electron microscopy and energy-dispersive X-ray spectroscopy. The microplasma-enhanced chemical vapor deposition (CVD) technique resulted in the uniform growth of amorphous carbon films on the inner surface of very long (> 1 m) hollow-core fibers. Film deposition is performed by using microplasmas at atmospheric pressure and at 50 Pa. The carbon films obtained with the latter show the smooth inner surfaces and the well continuity across the film/optical fiber. Low-pressure CH{sub 4}/He and C{sub 2}H{sub 2}/He microplasmas can lead to a rapid growth (∼ 2.00 μm/min) of carbon films with their thickness of > 25 μm. The optical emission measurements show that various hydrocarbon species were formed in these depositing microplasmas due to the collisions between CH{sub 4}/C{sub 2}H{sub 2} molecules and energetic species. The microplasma-enhanced CVD technique running without the complicated fabrication processes shows its potentials for rapidly depositing the overlong carbon tubes with their inner diameters of tens of microns. - Highlights: • The microplasma device is applied for coating deposition inside hollow-core fibers. • The microplasma device results in > 25 μm-thick carbon films. • The microplasma device is simple for deposition of ultralong carbon tubes.

  5. Effect and origin of the structure of hyperbranched polysiloxane on the surface and integrated performances of grafted Kevlar fibers

    International Nuclear Information System (INIS)

    Zhang, Hongrui; Yuan, Li; Liang, Guozheng; Gu, Aijuan

    2014-01-01

    Highlights: • Four new hyperbranched polysiloxanes (HPSis) with various structures were prepared. • HPSis have different molecular weights and contents of active groups. • Four grafted Kevlar fibers (HPSi-g-KFs) were facilely prepared with different HPSis. • The structure and properties of HPSi-g-KF depend on the structure of HPSi. • The origin behind greatly improved integrated properties of HPSi-g-KF is discussed. - Abstract: Four hyperbranched polysiloxanes (HPSis) with different molecular weights and concentration ratios of double bonds to epoxy groups (1:6.5–1:0.7) were synthesized and characterized. Each HPSi was facilely grafted onto surfaces of Kevlar fibers (KFs) to develop novel modified fibers (HPSi-g-KFs). The structures and integrated properties of HPSi-g-KFs as well as the origin behind were systematically investigated. Results show that HPSi-g-KFs have much rougher surface morphologies, and their surface free energies are as high as about 1.7 times that of KFs, showing greatly improved wettability. Besides, HPSi-g-KFs have excellent UV resistance after 168 h UV irradiation, the retentions of tenacity, energy to break, modulus and break extension are as high as 92, 86, 95 and 96%, respectively, while those of KFs are 66–85%. In addition, compared with KFs, HPSi-g-KFs have higher tensile tenacity and energy to break with similar modulus and break extension, much better thermal stability and flame retardancy. The nature of HPSi has different influence on different property of fibers, the HPSi with smaller molecular weight and more epoxy groups is beneficial to prepare HPSi-g-KFs with better wettability, while that with larger molecular weight and more double bonds tends to prepare HPSi-g-KF with better flame retardancy and UV resistance

  6. Analysis of the Surface of Deposited Copper After Electroerosion Treatment

    Science.gov (United States)

    Ablyaz, T. R.; Simonov, M. Yu.; Shlykov, E. S.

    2018-03-01

    An electron microscope analysis of the surface of deposited copper is performed after a profiling-piercing electroerosion treatment. The deposited copper is treated with steel, duralumin, and copper electrode tools at different pulse energies. The treatment with the duralumin electrode produces on the treated surface a web-like structure and cubic-morphology polyhedral dimples about 10 μm in size. The main components of the surface treated with the steel electrode are developed polyhedral dimples with a size of 10 - 50 μm. After the treatment with the copper electrode the main components of the treated surface are large polyhedral dimples about 30 - 80 μm in size.

  7. Improvement of crystalline silicon surface passivation by hydrogen plasma treatment

    International Nuclear Information System (INIS)

    Martin, I.; Vetter, M.; Orpella, A.; Voz, C.; Puigdollers, J.; Alcubilla, R.; Kharchenko, A.V.; Roca i Cabarrocas, P.

    2004-01-01

    A completely dry low-temperature process has been developed to passivate 3.3 Ω cm p-type crystalline silicon surface with excellent results. Particularly, we have investigated the use of a hydrogen plasma treatment, just before hydrogenated amorphous silicon carbide (a-SiC x :H) deposition, without breaking the vacuum. We measured effective lifetime, τ eff , through a quasi-steady-state photoconductance technique. Experimental results show that hydrogen plasma treatment improves surface passivation compared to classical HF dip. S eff values lower than 19 cm s -1 were achieved using a hydrogen plasma treatment and an a-SiC x :H film deposited at 300 deg. C

  8. PITTING CORROSION OF STAINLESS STEEL AT THE VARIOUS SURFACE TREATMENT

    Directory of Open Access Journals (Sweden)

    Viera Zatkalíková

    2011-09-01

    Full Text Available The stainless steel surface treatment is very important with regard to its pitting corrosion susceptibility. An effect of various types surfacing on pitting corrosion resistance of AISI 304stainless steel is investigated in this work. The samples of the tested material are turned, blasted, peened, grinded and a half of them are pickled to achieve higher purity of surfaces and better quality of passive film. Eight types of different finished surfaces are tested by electrochemical and immersion tests to determine corrosion behaviour in conditions where pitting is evoked by controlled potential and second by solution with high redox potential. By this way the effect of mechanical and chemical surface treatment on the resistance to pitting corrosion, character, size and shape of pits are compared in the conditions of different mechanisms of corrosion process.

  9. Numerical treatment of free surface problems in ferrohydrodynamics

    International Nuclear Information System (INIS)

    Lavrova, O; Matthies, G; Mitkova, T; Polevikov, V; Tobiska, L

    2006-01-01

    The numerical treatment of free surface problems in ferrohydrodynamics is considered. Starting from the general model, special attention is paid to field-surface and flow-surface interactions. Since in some situations these feedback interactions can be partly or even fully neglected, simpler models can be derived. The application of such models to the numerical simulation of dissipative systems, rotary shaft seals, equilibrium shapes of ferrofluid drops, and pattern formation in the normal-field instability of ferrofluid layers is given. Our numerical strategy is able to recover solitary surface patterns which were discovered recently in experiments

  10. A simple surface treatment and characterization of AA 6061 aluminum alloy surface for adhesive bonding applications

    International Nuclear Information System (INIS)

    Saleema, N.; Sarkar, D.K.; Paynter, R.W.; Gallant, D.; Eskandarian, M.

    2012-01-01

    Highlights: ► A very simple surface treatment method to achieve excellent and durable aluminum adhesive bonding. ► Our method involves simple immersion of aluminum in very dilute NaOH solution at room temperature with no involvement of strong acids or multiple procedures. ► Surface analysis via various surface characterization techniques showed morphological and chemical modifications favorable for obtaining highly durable bond strengths on the treated surface. ► Safe, economical, reproducible and simple method, easily applicable in industries. - Abstract: Structural adhesive bonding of aluminum is widely used in aircraft and automotive industries. It has been widely noted that surface preparation of aluminum surfaces prior to adhesive bonding plays a significant role in improving the strength of the adhesive bond. Surface cleanliness, surface roughness, surface wettability and surface chemistry are controlled primarily by proper surface treatment methods. In this study, we have employed a very simple technique influencing all these criteria by simply immersing aluminum substrates in a very dilute solution of sodium hydroxide (NaOH) and we have studied the effect of varying the treatment period on the adhesive bonding characteristics. A bi-component epoxy adhesive was used to join the treated surfaces and the bond strengths were evaluated via single lap shear (SLS) tests in pristine as well as degraded conditions. Surface morphology, chemistry, crystalline nature and wettability of the NaOH treated surfaces were characterized using various surface analytical tools such as scanning electron microscopy and energy dispersive X-ray analysis (SEM/EDX), optical profilometry, infrared reflection absorption spectroscopy, X-ray photoelectron spectroscopy, X-ray diffraction and contact angle goniometry. Excellent adhesion characteristics with complete cohesive failure of the adhesive were encountered on the NaOH treated surfaces that are comparable to the benchmark

  11. Theme day: corrosion and surface treatments in nuclear facilities. Proceedings

    International Nuclear Information System (INIS)

    2012-02-01

    This document brings together the available presentations given at the theme day organized by the Bourgogne Nuclear Pole on the topic of corrosion and surface treatments in nuclear facilities. Eleven presentations (slides) are compiled in this document: 1 - Introduction - PNB centre of competitiveness and R and D activities (A. Mantovan, PNB); 2 - Corrosion damage (M. Foucault, Areva NP - Centre Technique Le Creusot); 3 - Corrosion mechanisms (R. Oltra, UB-ICB); 4 - Examples of expertise management (C. Duret-Thual, Institut de la corrosion/Corrosion Institute); 5 - General framework of surface treatments (C. Nouveau, ENSAM Cluny Paris Tech); 6 - Surfaces et interfaces characterisation - Part A (C. Langlade, Y. Gachon, UTBM and HEF); 7 - Surfaces et interfaces characterisation - Part B (C. Langlade, Y. Gachon, UTBM and HEF); 8 - Ion beam surface treatment (Y. Le Guellec, Quertech Ingenierie); 9 - Impact surface treatment (G. Saout, Sonats); 10 - Metal oxides Characterisation by US laser (R. Oltra, UB-ICB); 11 - Detection and Characterisation of intergranular corrosion (Y. Kernin, Stephane Bourgois, Areva Intercontrole)

  12. Study on hydrophilicity of polymer surfaces improved by plasma treatment

    International Nuclear Information System (INIS)

    Lai Jiangnan; Sunderland, Bob; Xue Jianming; Yan, Sha; Zhao Weijiang; Folkard, Melvyn; Michael, Barry D.; Wang Yugang

    2006-01-01

    Surface properties of polycarbonate (PC), polypropylene (PP), polyethylene terephthalate (PET) samples treated by microwave-induced argon plasma have been studied with contact angle measurement, X-ray photoelectron spectroscopy (XPS) and scanned electron microscopy (SEM). It is found that plasma treatment modified the surfaces both in composition and roughness. Modification of composition makes polymer surfaces tend to be highly hydrophilic, which mainly depended on the increase of ratio of oxygen-containing group as same as other papers reported. And this experiment further revealed that C=O bond is Key factor to the improvement of the hydrophilicity of polymer surfaces. Our SEM observation on PET shown that the roughness of the surface has also been improved in micron scale and it has influence on the surface hydrophilicity

  13. Evolution of Surface Texture and Cracks During Injection Molding of Fiber-Reinforced, Additively-Manufactured, Injection Molding Inserts

    DEFF Research Database (Denmark)

    Hofstätter, Thomas; Mischkot, Michael; Pedersen, David Bue

    2016-01-01

    This paper investigates the lifetime and surfacedeterioration of additively-manufactured, injection-moulding inserts. The inserts were produced using digital light processing and were reinforcedwith oriented short carbon fibers. Theinserts were used during injection molding oflow-density polyethy......This paper investigates the lifetime and surfacedeterioration of additively-manufactured, injection-moulding inserts. The inserts were produced using digital light processing and were reinforcedwith oriented short carbon fibers. Theinserts were used during injection molding oflow......-density polyethylene until their failure. The molded products were used to analyse the development of the surface roughness and wear. By enhancing the lifetime of injection-molding inserts,this work contributes to the establishment of additively manufactured inserts in pilot production....

  14. Optimization of Aqueous Ammonia Soaking of manure fibers by Response Surface Methodology for unlocking the methane potential of swine manure

    DEFF Research Database (Denmark)

    Lymperatou, Anna; Gavala, Hariklia N.; Skiadas, Ioannis

    2017-01-01

    Swine manure mono-digestion often results to economically non-feasible processes, due to the high dilution and ammonia concentration together with the low degradation rates it presents. The effects of different parameters of Aqueous Ammonia Soaking (AAS) as a pretreatment for improving...... to be optimal (7% w/w NH3, 96 hours, and 0.16 kg/l) in combination to a significant increase of the short term CH4 yield (244% in 17 days), make this pretreatment a promising solution for improving swine manure mono-digestion. Furthermore, compositional analysis of the manure fibers revealed significant...... the digestion of manure fibers when coupled to an ammonia removal step were investigated in this study. Response Surface Methodology was followed and the influence and interactions of the following AAS parameters were studied: NH3 concentration, duration and solid-to-liquid ratio. The mild conditions found...

  15. Surface oxide formation during corona discharge treatment of AA 1050 aluminium surfaces

    DEFF Research Database (Denmark)

    Minzari, Daniel; Møller, Per; Kingshott, Peter

    2008-01-01

    process modifies aluminium AA 1050 surface, the oxide growth and resulting corrosion properties. The corona treatment is carried out in atmospheric air. Treated surfaces are characterized using XPS, SEM/EDS, and FIB-FESEM and results suggest that an oxide layer is grown, consisting of mixture of oxide...

  16. Preparation of a non-woven poly(ε-caprolactone) fabric with partially embedded apatite surface for bone tissue engineering applications by partial surface melting of poly(ε-caprolactone) fibers.

    Science.gov (United States)

    Kim, In Ae; Rhee, Sang-Hoon

    2017-07-01

    This article describes a novel method for the preparation of a biodegradable non-woven poly(ε-caprolactone) fabric with a partially embedded apatite surface designed for application as a scaffold material for bone tissue engineering. The non-woven poly(ε-caprolactone) fabric was generated by the electro-spinning technique and then apatite was coated in simulated body fluid after coating the PVA solution containing CaCl 2 ·2H 2 O. The apatite crystals were partially embedded or fully embedded into the thermoplastic poly(ε-caprolactone) fibers by controlling the degree of poly(ε-caprolactone) fiber surface melting in a convection oven. Identical apatite-coated poly(ε-caprolactone) fabric that did not undergo heat-treatment was used as a control. The features of the embedded apatite crystals were evaluated by FE-SEM, AFM, EDS, and XRD. The adhesion strengths of the coated apatite layers and the tensile strengths of the apatite coated fabrics with and without heat-treatment were assessed by the tape-test and a universal testing machine, respectively. The degree of water absorbance was assessed by adding a DMEM droplet onto the fabrics. Moreover, cell penetrability was assessed by seeding preosteoblastic MC3T3-E1 cells onto the fabrics and observing the degrees of cell penetration after 1 and 4 weeks by staining nuclei with DAPI. The non-woven poly(ε-caprolactone) fabric with a partially embedded apatite surface showed good water absorbance, cell penetrability, higher apatite adhesion strength, and higher tensile strength compared with the control fabric. These results show that the non-woven poly(ε-caprolactone) fabric with a partially embedded apatite surface is a potential candidate scaffold for bone tissue engineering due to its strong apatite adhesion strength and excellent cell penetrability. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 1973-1983, 2017. © 2017 Wiley Periodicals, Inc.

  17. Surface improvement of EPDM rubber by plasma treatment

    Energy Technology Data Exchange (ETDEWEB)

    Moraes, J H [LPP, Physics Department, ITA, CTA, Pca Mal Eduardo Gomes 50, 12228-900 Sao Jose dos Campos, S.P. (Brazil); Silva Sobrinho, A S da [LPP, Physics Department, ITA, CTA, Pca Mal Eduardo Gomes 50, 12228-900 Sao Jose dos Campos, S.P. (Brazil); Maciel, H S [LPP, Physics Department, ITA, CTA, Pca Mal Eduardo Gomes 50, 12228-900 Sao Jose dos Campos, S.P. (Brazil); Dutra, J C N [EBO, Chemistry Division, IAE, CTA, Pca Mal Eduardo Gomes 50, 12228-904 Sao Jose dos Campos, S.P. (Brazil); Massi, M [LPP, Physics Department, ITA, CTA, Pca Mal Eduardo Gomes 50, 12228-900 Sao Jose dos Campos, S.P. (Brazil); Mello, S A C [EBO, Chemistry Division, IAE, CTA, Pca Mal Eduardo Gomes 50, 12228-904 Sao Jose dos Campos, S.P. (Brazil); Schreiner, W H [Physics Department, UFPR, Centro Politecnico, 80060-000 Curitiba, P.R. (Brazil)

    2007-12-21

    The surface of ethylene-propylene-diene monomer (EPDM) rubber was treated in N{sub 2}/Ar and N{sub 2}/H{sub 2}/Ar RF plasmas in order to achieve similar or better adhesion properties than NBR (acrylonitrile-butadiene) rubber, nowadays used as thermal protection of rocket chambers. The surface properties were studied by contact angle measurements and by x-ray photoelectron spectroscopy (XPS). The treated surfaces of the EPDM samples show a significant reduction in the contact angle measurement, indicating an increase in the surface energy. XPS analyses show the incorporation of polar nitrogen- and oxygen-containing groups on the rubber surface. After plasma treatment the presence of oxygen is observed due to surface oxidation which occurs when the samples are exposed to the air. Atomic force microscopy and scanning electron microscopy analyses indicate a decrease in the EPDM rubber surface roughness, promoted by surface etching during the plasma treatment. Strength tests indicate improvement of about 30% and 110% in the adhesion strength for the plasma treated EPDM/polyurethane liner interface and for the EPDM/epoxy adhesive interface, respectively. The adhesion strength of the EPDM/liner is similar to that obtained for the NBR/liner, which indicates that EPDM rubber can safely be used as thermal protection of the solid propellant rocket chamber.

  18. Surface improvement of EPDM rubber by plasma treatment

    International Nuclear Information System (INIS)

    Moraes, J H; Silva Sobrinho, A S da; Maciel, H S; Dutra, J C N; Massi, M; Mello, S A C; Schreiner, W H

    2007-01-01

    The surface of ethylene-propylene-diene monomer (EPDM) rubber was treated in N 2 /Ar and N 2 /H 2 /Ar RF plasmas in order to achieve similar or better adhesion properties than NBR (acrylonitrile-butadiene) rubber, nowadays used as thermal protection of rocket chambers. The surface properties were studied by contact angle measurements and by x-ray photoelectron spectroscopy (XPS). The treated surfaces of the EPDM samples show a significant reduction in the contact angle measurement, indicating an increase in the surface energy. XPS analyses show the incorporation of polar nitrogen- and oxygen-containing groups on the rubber surface. After plasma treatment the presence of oxygen is observed due to surface oxidation which occurs when the samples are exposed to the air. Atomic force microscopy and scanning electron microscopy analyses indicate a decrease in the EPDM rubber surface roughness, promoted by surface etching during the plasma treatment. Strength tests indicate improvement of about 30% and 110% in the adhesion strength for the plasma treated EPDM/polyurethane liner interface and for the EPDM/epoxy adhesive interface, respectively. The adhesion strength of the EPDM/liner is similar to that obtained for the NBR/liner, which indicates that EPDM rubber can safely be used as thermal protection of the solid propellant rocket chamber

  19. Surface improvement of EPDM rubber by plasma treatment

    Science.gov (United States)

    Moraes, J. H.; da Silva Sobrinho, A. S.; Maciel, H. S.; Dutra, J. C. N.; Massi, M.; Mello, S. A. C.; Schreiner, W. H.

    2007-12-01

    The surface of ethylene-propylene-diene monomer (EPDM) rubber was treated in N2/Ar and N2/H2/Ar RF plasmas in order to achieve similar or better adhesion properties than NBR (acrylonitrile-butadiene) rubber, nowadays used as thermal protection of rocket chambers. The surface properties were studied by contact angle measurements and by x-ray photoelectron spectroscopy (XPS). The treated surfaces of the EPDM samples show a significant reduction in the contact angle measurement, indicating an increase in the surface energy. XPS analyses show the incorporation of polar nitrogen- and oxygen-containing groups on the rubber surface. After plasma treatment the presence of oxygen is observed due to surface oxidation which occurs when the samples are exposed to the air. Atomic force microscopy and scanning electron microscopy analyses indicate a decrease in the EPDM rubber surface roughness, promoted by surface etching during the plasma treatment. Strength tests indicate improvement of about 30% and 110% in the adhesion strength for the plasma treated EPDM/polyurethane liner interface and for the EPDM/epoxy adhesive interface, respectively. The adhesion strength of the EPDM/liner is similar to that obtained for the NBR/liner, which indicates that EPDM rubber can safely be used as thermal protection of the solid propellant rocket chamber.

  20. The formation and growing properties of poly(ethylene terephthalate) fiber growing media after thermo-oxidative treatment

    International Nuclear Information System (INIS)

    Chang, C.P.; Lin, S.M.

    2007-01-01

    This research uses three kinds of recycled synthetic fibers that all possess excellent thermal plasticity property as raw material to develop a new firm cultivation media: polyethylene terephthalate, polyamide and polypropylene. One can not only freely control plants cultivation growing condition by changing bulk density of the media, but also solve disposal problem after usage by applying thermal oxidative treatment during manufacturing processes. The water content, air permeability and formation conditions of these fiber growing media that are required in plants growing habitat were discussed, and compared the fallout with rockwool (RW) growing media that is commonly used at present days. The results indicated that the polyethylene terephthalate fiber media could attain best formation characteristics among these fibers at the same bulk density range. Furthermore, the fiber media that were thermo-oxidative treated at 240-260 deg. C could obtained above 90% total porosity, 23-49% air capacity and 48-68% water availability, water contents raised from 1735-1094 to 2145-1156% under bulk densities of 0.03-0.09 g/cm 3 , which conforms to the common plant growing habitat conditions. Its performance well surpasses the rockwool growing media. We also discovered that the thermo-oxidative treated polyethylene terephthalate (PET) fiber media could be easily broken down and become powdery by exerting pressure, thus greatly reduce its volume and effectively improve disposal processes that are difficult presently for the huge refuse create by rockwool

  1. Chemical and Biological Sensing with a Fiber Optic Surface Plasmon Resonance Device

    Science.gov (United States)

    Shevchenko, Yanina

    Fiber biosensors have emerged as an alternative to other optical sensor platforms which utilize bulkier optical elements. Sensors manufactured using optical fiber offer considerable advantages over traditional platforms, such as simple manufacturing process, small size and possibility for in situ and remote measurements. The possibility to manufacture a compact sensor with very few optical elements and package it into a portable hand-held device makes it particularly useful in many biomedical applications. Such applications generate a growing demand for an improved understanding of how fiber sensors function as well as for sensor optimization techniques so later these devices can suit the needs of the applications they are developed for. Research presented in this thesis is focused on a development of a plasmonic fiber biosensor and its application towards biochemical sensing. The fiber sensor used in this study integrates plasmonics with tilted Bragg grating technology, creating a versatile sensing solution. Plasmonics alone is an established phenomenon that is widely employed in many sensing applications. The Bragg grating is also a well-researched optical component that has been extensively applied in telecommunication. By combining both plasmonics and Bragg gratings, it is possible to design a compact and very sensitive chemical sensor. The presented work focuses on the characterization and optimization of the fiber sensor so later it could be applied in biochemical sensing. It also explores several applications including real-time monitoring of polymer adsorption, detection of thrombin and cellular sensing. All applications are focused on studying processes that are very different in their nature and thus the various strengths of the developed sensing platform were leveraged to suit the requirements of these applications.

  2. Effects of Alkali Treatment and Polyisocyanate Crosslinking on the Mechanical Properties of Kraft Fiber-Reinforced Unsaturated Polyester Composites

    Directory of Open Access Journals (Sweden)

    Zhenhua Gao

    2014-08-01

    Full Text Available The effects of alkali treatment and polyisocyanate crosslinking on the mechanical properties of kraft fiber-reinforced UPE composites were investigated by means of tensile evaluation, SEM analysis, and XRD analysis. The results indicated that the alkali treatment decreased the tensile strength of the prepared composite before aging from 121 MPa to 97 MPa due to the decreased degree of crystallinity of the alkali-treated kraft fiber. Polyisocyanate crosslinking could apparently improve the mechanical properties and stability in terms of a 43% increase of non-aged tensile strength and 52% increase of hydrothermal-aged tensile strength compared with the controlled composite without crosslinking modification, which was attributable to the formation of strong chemical bonding between the interfaces of kraft fiber and polyester.

  3. Surface Modification of Polymeric Materials by Plasma Treatment

    Directory of Open Access Journals (Sweden)

    E.F. Castro Vidaurre

    2002-03-01

    Full Text Available Low-temperature plasma treatment has been used in the last years as a useful tool to modify the surface properties of different materials, in special of polymers. In the present work low temperature plasma was used to treat the surface of asymmetric porous substrates of polysulfone (PSf membranes. The main purpose of this work was to study the influence of the exposure time and the power supplied to argon plasma on the permeability properties of the membranes. Three rf power levels, respectively 5, 10 and 15 W were used. Treatment time ranged from 1 to 50 min. Reduction of single gas permeability was observed with Ar plasma treatments at low energy bombardment (5 W and short exposure time (20 min. Higher power and/or higher plasma exposition time causes a degradation process begins. The chemical and structural characterization of the membranes before and after the surface modification was done by AFM, SEM and XPS.

  4. Surface and Bulk Characteristics of Cesium Iodide (CsI) coated Carbon (C) Fibers for High Power Microwave (HPM) Field Emission Cathodes

    Science.gov (United States)

    Vlahos, Vasilios; Morgan, Dane; Booske, John H.; Shiffler, Don

    2008-11-01

    CsI coated C fibers [1] are promising field emission cathodes for HPM applications. Ab initio computational modeling has shown that atomically-thin CsI coatings reduce the work function of C substrates by a surface dipole mechanism [2]. Characterization measurements of the composition and morphology of the CsI-coated C fibers are underway for determining the properties and characteristics of the following important regions of the fiber: (i) the surface on the tip of the fiber where the majority of electron emission is believed to occur, (ii) the surface covering the body of the fiber and its role on the emission properties of the system, and (iii) the interior volume of the fiber and its effects on the CsI surface re-supply process and rate. The results will be interpreted in terms of surface electronic properties and theoretical electron emission models. [1]D. Shiffler, et al., Phys. Plasmas 11 (2004) 1680. [2]V.Vlahos et al., Appl. Phys. Lett. 91 (2007) 144102.

  5. Ion beam surface treatment: A new capability for rapid melt and resolidification of surfaces

    International Nuclear Information System (INIS)

    Stinnett, R.W.; McIntyre, D.C.; Buchheit, R.G.; Greenly, J.B.; Thompson, M.O.

    1994-01-01

    The emerging capability to produce high average power (5--250 kW) pulsed ion beams at 0.2--2 MeV energies is enabling us to develop a new, commercial-scale thermal surface treatment technology called Ion Beam Surface Treatment (IBEST). This technique uses high energy, pulsed (≤100 ns) ion beams to directly deposit energy in the top 2--20 micrometers of the surface of any material. Depth of treatment is controllable by varying the ion energy and species. Deposition of the energy with short pulses in a thin surface layer allows melting of the layer with relatively small energies and allows rapid cooling of the melted layer by thermal diffusion into the underlying substrate. Typical cooling rates of this process (10 9 10 10 K/sec) cause rapid resolidification, resulting in production of non-equilibrium microstructures (nano-crystalline and metastable phases) that have significantly improved corrosion, wear, and hardness properties. We have conducted IBEST feasibility experiments with results confirming surface hardening, nanocrystaline grain formation, metal surface polishing, controlled melt of ceramic surfaces, and surface cleaning

  6. HIGH VELOCITY THERMAL GUN FOR SURFACE PREPARATION AND TREATMENT

    Directory of Open Access Journals (Sweden)

    I.A. Gorlach

    2012-01-01

    Full Text Available Many surface preparation and treatment processes utilise compressed air to propel particles against surfaces in order to clean and treat them. The effectiveness of the processes depends on the velocity of the particles, which in turn depends on the pressure of the compressed air. This paper describes a thermal gun built on the principles of High Velocity Air Fuel (HVAF and High Velocity Oxy Fuel (HVOF processes. The designed apparatus can be used for abrasive blasting, coating of surfaces, cutting of rocks, removing rubber from mining equipment, cleaning of contaminations etc.

  7. Effect of heat treatment of wood on the morphology, surface roughness and penetration of simulated and human blood.

    Science.gov (United States)

    Rekola, J; Lassila, L V J; Nganga, S; Ylä-Soininmäki, A; Fleming, G J P; Grenman, R; Aho, A J; Vallittu, P K

    2014-01-01

    Wood has been used as a model material for the development of novel fiber-reinforced composite bone substitute biomaterials. In previous studies heat treatment of wood was perceived to significantly increase the osteoconductivity of implanted wood material. The objective of this study was to examine some of the changing attributes of wood materials that may contribute to improved biological responses gained with heat treatment. Untreated and 140°C and 200°C heat-treated downy birch (Betula pubescens Ehrh.) were used as the wood materials. Surface roughness and the effect of pre-measurement grinding were measured with contact and non-contact profilometry. Liquid interaction was assessed with a dipping test using two manufactured liquids (simulated blood) as well as human blood. SEM was used to visualize possible heat treatment-induced changes in the hierarchical structure of wood. The surface roughness was observed to significantly decrease with heat treatment. Grinding methods had more influence on the surface contour and roughness than heat treatment. The penetration of the human blood in the 200°C heat-treated exceeded that in the untreated and 140°C heat-treated materials. SEM showed no significant change due to heat treatment in the dry-state morphology of the wood. The results of the liquid penetration test support previous findings in literature concerning the effects of heat treatment on the biological response to implanted wood. Heat-treatment has only a marginal effect on the surface contour of wood. The highly specialized liquid conveyance system of wood may serve as a biomimetic model for the further development of tailored fiber-composite materials.

  8. A fiber-optic setup for quantification of root surface demineralization

    NARCIS (Netherlands)

    vanderVeen, MH; tenBosch, JJ

    A fiber-optic fluorescence observation (FOFO) technique has been developed for the quantification of demineralized root dentin, The method was tested on 40 specimens of in vitro demineralized parts of human root dentin, Fluorescein sodium salt was used as a penetrating dye, The fluorescein sodium

  9. Polyester fibers can be rendered calcium phosphate-binding by surface functionalization with bisphosphonate groups.

    NARCIS (Netherlands)

    Polini, A.; Petre, D.G.; Iafisco, M.; Lacerda Schickert, S. de; Tampieri, A.; Beucken, J.J. van den; Leeuwenburgh, S.C.G.

    2017-01-01

    Fibers are often used as structural elements to improve the mechanical properties of materials such as brittle ceramic matrices by facilitating the dissipation of energy. However, this energy dissipation is mainly controlled by the interface between the two components, and a poorly designed

  10. Nanotag-enabled photonic crystal fiber as quantitative surface-enhanced Raman scattering optofluidic platform

    Czech Academy of Sciences Publication Activity Database

    Pinkhasova, P.; Chen, H.; Kaňka, Jiří; Mergo, P.; Du, H.

    2015-01-01

    Roč. 106, č. 7 (2015), 0711061-0711064 ISSN 0003-6951 R&D Projects: GA MŠk(CZ) LH11038 Institutional support: RVO:67985882 Keywords : Photonic crystal fibers * Raman scattering * Crystal whiskers Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering Impact factor: 3.142, year: 2015

  11. Research of plating aluminum and aluminum foil on internal surface of carbon fiber composite material centrifuge rotor drum

    International Nuclear Information System (INIS)

    Lu Xiuqi; Dong Jinping; Dai Xingjian

    2014-01-01

    In order to improve the corrosion resistance, thermal conductivity and sealability of the internal surface of carbon fiber/epoxy composite material centrifuge rotor drum, magnetron sputtering aluminum and pasting an aluminum foil on the inner wall of the drum are adopted to realize the aim. By means of XRD, SEM/EDS and OM, the surface topography of aluminum coated (thickness of 5 μm and 12 μm) and aluminum foil (12 μm) are observed and analyzed; the cohesion of between aluminum coated (or aluminum foil) and substrate material (CFRP) is measured by scratching experiment, direct drawing experiment, and shear test. Besides, the ultra-high-speed rotation experiment of CFRP ring is carried out to analyze stress and strain of coated aluminum (or aluminum foil) which is adhered on the ring. The results showed aluminum foil pasted on inner surface do better performance than magnetron sputtering aluminum on CFRP centrifuge rotor drum. (authors)

  12. Measurement of entrance surface dose on an anthropomorphic thorax phantom using a miniature fiber-optic dosimeter.

    Science.gov (United States)

    Yoo, Wook Jae; Shin, Sang Hun; Jeon, Dayeong; Hong, Seunghan; Sim, Hyeok In; Kim, Seon Geun; Jang, Kyoung Won; Cho, Seunghyun; Youn, Won Sik; Lee, Bongsoo

    2014-04-01

    A miniature fiber-optic dosimeter (FOD) system was fabricated using a plastic scintillating fiber, a plastic optical fiber, and a multi-pixel photon counter to measure real-time entrance surface dose (ESD) during radiation diagnosis. Under varying exposure parameters of a digital radiography (DR) system, we measured the scintillating light related to the ESD using the sensing probe of the FOD, which was placed at the center of the beam field on an anthropomorphic thorax phantom. Also, we obtained DR images using a flat panel detector of the DR system to evaluate the effects of the dosimeter on image artifacts during posteroanterior (PA) chest radiography. From the experimental results, the scintillation output signals of the FOD were similar to the ESDs including backscatter simultaneously obtained using a semiconductor dosimeter. We demonstrated that the proposed miniature FOD can be used to measure real-time ESDs with minimization of DR image artifacts in the X-ray energy range of diagnostic radiology.

  13. Measurement of Entrance Surface Dose on an Anthropomorphic Thorax Phantom Using a Miniature Fiber-Optic Dosimeter

    Directory of Open Access Journals (Sweden)

    Wook Jae Yoo

    2014-04-01

    Full Text Available A miniature fiber-optic dosimeter (FOD system was fabricated using a plastic scintillating fiber, a plastic optical fiber, and a multi-pixel photon counter to measure real-time entrance surface dose (ESD during radiation diagnosis. Under varying exposure parameters of a digital radiography (DR system, we measured the scintillating light related to the ESD using the sensing probe of the FOD, which was placed at the center of the beam field on an anthropomorphic thorax phantom. Also, we obtained DR images using a flat panel detector of the DR system to evaluate the effects of the dosimeter on image artifacts during posteroanterior (PA chest radiography. From the experimental results, the scintillation output signals of the FOD were similar to the ESDs including backscatter simultaneously obtained using a semiconductor dosimeter. We demonstrated that the proposed miniature FOD can be used to measure real-time ESDs with minimization of DR image artifacts in the X-ray energy range of diagnostic radiology.

  14. The Effect of Muscle Fiber Direction on the Cut Surface Angle of Frozen Fish Muscular Tissue Cut by Bending Force

    OpenAIRE

    岡本, 清; 羽倉, 義雄; 鈴木, 寛一; 久保田, 清

    1996-01-01

    We have proposed a new cutting method named "Cryo-cutting" for frozen foodstuffs by applying a bending force instead of conventional cutting methods with band saw. This paper investigated the effect of muscle fiber angle (θf) to cut surface angle (θs) of frozen tuna muscular tissue at -70, -100 and -130°C for the purpose of evaluating the applicability of the cryo-cutting method to frozen fishes. The results were as follows : (1) There were two typical cutting patterns ("across the muscle fib...

  15. Using a nitrogen dielectric barrier discharge for surface treatment

    International Nuclear Information System (INIS)

    Borcia, G; Anderson, C A; Brown, N M D

    2005-01-01

    In this paper, continuing previous work, we report on the installation and the testing of an experimental dielectric barrier discharge (DBD) reactor run in a controlled atmospheric pressure gaseous environment other than air. Here, the effects of a N 2 -DBD treatment on the surface of a test polymer material (UHMW polyethylene) are examined, reported, discussed and compared to results obtained previously following air-DBD treatment. Surface analysis and characterization were performed using x-ray photoelectron spectroscopy, contact angle measurement and scanning electron microscopy before and following the DBD processing described. The discharge parameters used were correlated with the changes in the surface characteristics found following DBD treatments of various durations in a nitrogen atmosphere. The work focuses on the control of the gaseous environment supporting the discharge and on the possibility of overcoming the potentially dominant effect of reactive oxygen-related species, derived from any residual air present. The results obtained underline the very high reactivity of such species in the discharge, but are encouraging in respect of the possibility of the implantation or generation of functional groups other than oxygen-related ones at the surface of interest. The processing conditions concerned simulate 'real' continuous high speed processing, allowing the planning of further experiments, where various gaseous mixtures of the type X + N 2 will be used for controlled surface functionalization

  16. Influence of argon plasma treatment on polyethersulphone surface

    Indian Academy of Sciences (India)

    2013-01-09

    Jan 9, 2013 ... waste water treatment from heavy and toxic metals, low-level nuclear waste management and separation of Zr from ... solid surface permits a rapid and qualitative evaluation of the SFE of the polymer. The water contact angle ...

  17. 40 CFR 268.4 - Treatment surface impoundment exemption.

    Science.gov (United States)

    2010-07-01

    ... residues may not be placed in any other surface impoundment for subsequent management. (iv) Recordkeeping... exemption. 268.4 Section 268.4 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID...), the residues from treatment are analyzed, as specified in § 268.7 or § 268.32, to determine if they...

  18. Facile Dry Surface Cleaning of Graphene by UV Treatment

    Science.gov (United States)

    Kim, Jin Hong; Haidari, Mohd Musaib; Choi, Jin Sik; Kim, Hakseong; Yu, Young-Jun; Park, Jonghyurk

    2018-05-01

    Graphene has been considered an ideal material for application in transparent lightweight wearable electronics due to its extraordinary mechanical, optical, and electrical properties originating from its ordered hexagonal carbon atomic lattice in a layer. Precise surface control is critical in maximizing its performance in electronic applications. Graphene grown by chemical vapor deposition is widely used but it produces polymeric residue following wet/chemical transfer process, which strongly affects its intrinsic electrical properties and limits the doping efficiency by adsorption. Here, we introduce a facile dry-cleaning method based on UV irradiation to eliminate the organic residues even after device fabrication. Through surface topography, Raman analysis, and electrical transport measurement characteristics, we confirm that the optimized UV treatment can recover the clean graphene surface and improve graphene-FET performance more effectively than thermal treatment. We propose our UV irradiation method as a systematically controllable and damage-free post process for application in large-area devices.

  19. Surface treatments for material protection in nuclear power plants

    International Nuclear Information System (INIS)

    De, P.K.; Gadiyar, H.S.

    1987-01-01

    The paper highlights some of the surface treatment methods used in nuclear power plants to improve their performance. The corrosion resistance of zirconium alloys results from the formation of an adherent and protective film of ZrO 2 . Graphite coating of zircaloy-2 cladding minimizes the susceptibility to environmental induced cracking. Magnetite formation during the hot conditioning operation improves the corrosion resistance of carbon steel as well as controls the spread of radioactivity. It has been illustrated how the surface treatment is helpful for redistributing residual stress to facilitate conversion of tensile stress to compressive stress to mitigate failures due to stress corrosion and fatigue corrosion. Inhibitors and passivators can modify the surface conditions (in situ) of condenser tubes and cooling water systems. These aspects have been dealt in the text of the paper. (author). 8 refs., 3 figures

  20. Advantages of surface treatment processes by ionic sputtering

    International Nuclear Information System (INIS)

    Gantois, M.

    1976-01-01

    The use of high intensity glow-discharge permits to realize a superficial thermochemical treatment. Ions formed by discharge are accelerated against the surfaces to be treated; by effect of ion bombardment, surfaces get heated and a chemical reaction is developed depending on the composition of the ionized gas. The technique presents advantages, as the potential of the active gas might be freely chosen, and as many gases might be used, the decomposition of gases by pyrolysis and a homogeneous treatment (concerning nature of phases and thickness) all over the surface being not necessary. It is possible to develop layers of various nature, looking for those which offer the best properties to solve a technological problem (wear, friction, fatigue toughness, etc.). Some examples of nitruration, carbonitruration are considered [fr

  1. Characterization and treatment of sisal fiber residues for cement-based composite application

    OpenAIRE

    Lima,Paulo R. L.; Santos,Rogério J.; Ferreira,Saulo R.; Toledo Filho,Romildo D.

    2014-01-01

    Sisal fiber is an important agricultural product used in the manufacture of ropes, rugs and also as a reinforcement of polymeric or cement-based composites. However, during the fiber production process a large amount of residues is generated which currently have a low potential for commercial use. The aim of this study is to characterize the agricultural residues by the production and improvement of sisal fiber, called field bush and refugo and verify the potentiality of their use in the rein...

  2. Experimental investigation and modeling of industrial oily wastewater treatment using modified polyethersulfone ultrafiltration hollow fiber membranes

    International Nuclear Information System (INIS)

    Salahi, Abdolhamid; Mohammadi, Toraj; Behbahani, Reza Mosayebi; Hemmati, Mahmood

    2015-01-01

    Hollow fiber membranes were prepared from polyethersulfone/additives/NMP and DMSO system via phase inversion induced by precipitation in non-solvent coagulation bath. The interaction effects of polyethylene-glycol (PEG), propionic-acid (PA), Tween-20, PEG molecular weight and polyvinyl-pyrrolidone (PVP) on morphology and performance of synthesized membranes were investigated. Taguchi method (L 16 orthogonal array) was used initially to plan a minimum number of experiments. 32 membranes were synthesized (with two replications) and their permeation flux and TOC rejection properties to oily wastewater treatment were studied. The obtained results indicated that addition of PA to spinning dope decreases flux while it increases TOC rejection of prepared membranes. Also, the result shows that addition of PVP, Tween-20 and PEG content in spinning dope enhances permeation flux while reducing TOC rejection. The obtained results indicated that the synthesized membranes was effective and suitable for treatment of the oily wastewater to achieve up to 92.6, 98.2, and 98.5% removal of TOC, TSS, and OGC, respectively with a flux of 247.19 L/(m 2 h). Moreover, Hermia's models were used for permeation flux decline prediction. Experimental data and models predictions were compared. The results showed that there is reasonable agreement between experimental data and the cake layer model followed by the intermediate blocking model

  3. Experimental investigation and modeling of industrial oily wastewater treatment using modified polyethersulfone ultrafiltration hollow fiber membranes

    Energy Technology Data Exchange (ETDEWEB)

    Salahi, Abdolhamid; Mohammadi, Toraj [Iran University of Science and Technology (IUST), Tehran (Iran, Islamic Republic of); Behbahani, Reza Mosayebi [Petroleum University of Technology (PUT), Ahwaz (Iran, Islamic Republic of); Hemmati, Mahmood [Research Institute of Petroleum Industry, Tehran (Iran, Islamic Republic of)

    2015-06-15

    Hollow fiber membranes were prepared from polyethersulfone/additives/NMP and DMSO system via phase inversion induced by precipitation in non-solvent coagulation bath. The interaction effects of polyethylene-glycol (PEG), propionic-acid (PA), Tween-20, PEG molecular weight and polyvinyl-pyrrolidone (PVP) on morphology and performance of synthesized membranes were investigated. Taguchi method (L{sub 16} orthogonal array) was used initially to plan a minimum number of experiments. 32 membranes were synthesized (with two replications) and their permeation flux and TOC rejection properties to oily wastewater treatment were studied. The obtained results indicated that addition of PA to spinning dope decreases flux while it increases TOC rejection of prepared membranes. Also, the result shows that addition of PVP, Tween-20 and PEG content in spinning dope enhances permeation flux while reducing TOC rejection. The obtained results indicated that the synthesized membranes was effective and suitable for treatment of the oily wastewater to achieve up to 92.6, 98.2, and 98.5% removal of TOC, TSS, and OGC, respectively with a flux of 247.19 L/(m{sup 2}h). Moreover, Hermia's models were used for permeation flux decline prediction. Experimental data and models predictions were compared. The results showed that there is reasonable agreement between experimental data and the cake layer model followed by the intermediate blocking model.

  4. A novel Ag catalyzation process using swelling impregnation method for electroless Ni deposition on Kevlar® fiber

    Science.gov (United States)

    Pang, Hongwei; Bai, Ruicheng; Shao, Qinsi; Gao, Yufang; Li, Aijun; Tang, Zhiyong

    2015-12-01

    A novel Ag catalyzation process using swelling impregnation pretreatment method was developed for electroless nickel (EN) deposition on Kevlar fiber. Firstly, the fiber was immersed into an aqueous dimethylsulfoxide (DMSO) solution of silver nitrate to impart silver nitrate into the inner part of the fiber near the surface. Subsequently silver nitrate was reduced to metal silver nanoparticles on the fiber surface by treatment with aqueous solution of sodium borohydride. After electroless plating, a dense and homogeneous nickel coating was obtained on the fiber surface. The silver nanoparticles formed at the fiber surface functioned as a catalyst for electroless deposition as well as an anchor for the plated layer. The study also revealed that the incorporation of surfactant sodium dodecyl sulfate (SDS) in electroless nickel plating bath can enhance the adhesion strength of EN layer with the fiber surface and minimize the surface roughness of the EN coating. The Ni plated Kevlar fiber possessed excellent corrosion resistance and high tensile strength.

  5. Histologic analyses on the response of the skin to 1,927-nm fractional thulium fiber laser treatment.

    Science.gov (United States)

    Kwon, In Ho; Bae, Youin; Yeo, Un-Cheol; Lee, Jin Yong; Kwon, Hyuck Hoon; Choi, Young Hee; Park, Gyeong-Hun

    2018-02-01

    The histologic responses to varied parameters of 1,927-nm fractional thulium fiber laser treatment have not yet been sufficiently elucidated. This study sought to evaluate histologic changes immediately after 1,927-nm fractional thulium fiber laser session at various parameters. The dorsal skin of Yucatan mini-pig was treated with 1,927-nm fractional thulium fiber laser at varied parameters, with or without skin drying. The immediate histologic changes were evaluated to determine the effects of varying laser parameters on the width and the depth of treated zones. The increase in the level of pulse energy widened the area of epidermal changes in the low power level, but increased the dermal penetration depth in the high power level. As the pulse energy level increased, the increase in the power level under the given pulse energy level more evidently made dermal penetration deeper and the treatment area smaller. Skin drying did not show significant effects on epidermal changes, but evidently increased the depth of dermal denaturation under both high and low levels of pulse energy. These results may provide important information to establish treatment parameters of the 1,927-nm fractional thulium fiber laser for various skin conditions.

  6. Surface Treatment of PET Nonwovens with Atmospheric Plasma

    International Nuclear Information System (INIS)

    Li Shufang

    2013-01-01

    In this study, polyethylene-terephthalate (PET) nonwovens are treated using an atmospheric plasma and the effects of the treatment time, treatment power and discharge distance on the ability of water-penetration into the nonwovens are investigated. The result indicates that the method can improve the wettability of PET nonwovens remarkably, but the aging decay of the sample's wettability is found to be notable as a function of the storage time after treatment due to the internal rotation of the single bond of surface macromolecules. As shown by SEM and XPS analysis, the etching and surface reaction are significant, and water-penetration weight is found to increase remarkably with the increasing power. This variation can be attributed to momentum transfer and enhanced higher-energy particle excitation.

  7. Photocatalysis application of zinc oxide fibers obtained by electrospinning

    International Nuclear Information System (INIS)

    Gerchman, D.; Alves, A.K.; Berutti, F.A.; Bergmann, C.P.

    2010-01-01

    Using the electrospinning technique, composite fibers of polyvinylbutyral and zinc nitrate were obtained. After a heat treatment at 600 deg C, nanostructured zinc oxide fibers were obtained. The fibers were characterized using X ray diffraction. The photocatalytic activity of the nanostructured fibers was determined using the photodegradation of a methyl orange solution. The increase in the heat treatment temperature decreases the photoactivity of the zinc oxide. The heat treatment, the phases and the surface area, affect the physical, chemical and photocatalytic activity of the zinc oxide. (author)

  8. Interfacial Studies of Sized Carbon Fiber

    International Nuclear Information System (INIS)

    Shahrul, S. N.; Hartini, M. N.; Hilmi, E. A.; Nizam, A.

    2010-01-01

    This study was performed to investigate the influence of sizing treatment on carbon fiber in respect of interfacial adhesion in composite materials, Epolam registered 2025. Fortafil unsized carbon fiber was used to performed the experiment. The fiber was commercially surface treated and it was a polyacrylonitrile based carbon fiber with 3000 filament per strand. Epicure registered 3370 was used as basic sizing chemical and dissolved in two types of solvent, ethanol and acetone for the comparison purpose. The single pull out test has been used to determine the influence of sizing on carbon fiber. The morphology of carbon fiber was observed by atomic force microscopy (AFM) and scanning electron microscopy (SEM). The apparent interfacial strength IFSS values determined by pull out test for the Epicure registered 3370/ethanol sized carbon fiber pointed to a good interfacial behaviour compared to the Epicure registered 3370/acetone sized carbon fiber. The Epicure registered 3370/ethanol sizing agent was found to be effective in promoting adhesion because of the chemical reactions between the sizing and Epolam registered 2025 during the curing process. From this work, it showed that sized carbon fiber using Epicure registered 3370 with addition of ethanol give higher mechanical properties of carbon fiber in terms of shear strength and also provided a good adhesion between fiber and matrix compared to the sizing chemical that contain acetone as a solvent.

  9. Effects of Surface Treatment of Activated Carbon on Its Surface and Cr(VI) Adsorption Characteristics

    Energy Technology Data Exchange (ETDEWEB)

    Park, Soo Jin; Jang, Yu Sin [Advanced Materials Division., Korea Research Institute of Chimical Technology, Taejon (Korea)

    2001-04-01

    In this work, the effect of surface treatments on activated carbons (ACs) has been studied in the context of gas and liquid adsorption behaviors. The chemical solutions used in this experiment were 35% sodium hydroxide, and these were used for the acidic and basic treatments, respectively. The surface properties have been determined by pH, acid-base values, and FT-IR. The adsorption isotherms of Cr(VI) ion on activated carbons have been studied with the 5 mg/l concentration at ambient temperature. N{sub 2} adsorption isotherm characteristics, which include the specific surface area, micro pore volume, and microporosity, were determined by BET and Boer's-plot methods. In case of the acidic treatment of activated carbons, it was observed that the adsorption of Cr(VI) ion was more effective due to the increase acid value (or acidic functional group) of activated carbon surfaces. However, the basic treatment on activated carbons was caused no significant effects, probably due to the decreased specific surface area and total pore volume. 27 refs., 7 figs., 4 tabs.

  10. Oxidation of hydrogen-passivated silicon surfaces by scanning near-field optical lithography using uncoated and aluminum-coated fiber probes

    DEFF Research Database (Denmark)

    Madsen, Steen; Bozhevolnyi, Sergey I.; Birkelund, Karen

    1997-01-01

    Optically induced oxidation of hydrogen-passivated silicon surfaces using a scanning near-field optical microscope was achieved with both uncoated and aluminum-coated fiber probes. Line scans on amorphous silicon using uncoated fiber probes display a three-peak profile after etching in potassium...... hydroxide. Numerical simulations of the electromagnetic field around the probe-sample interaction region are used to explain the experimental observations. With an aluminum-coated fiber probe, lines of 35 nm in width were transferred into the amorphous silicon layer. (C) 1997 American Institute of Physics....

  11. Fiber-optic Fourier transform infrared spectroscopy for remote label-free sensing of medical device surface contamination

    Science.gov (United States)

    Hassan, Moinuddin; Tan, Xin; Welle, Elissa; Ilev, Ilko

    2013-05-01

    As a potential major source of biochemical contamination, medical device surfaces are of critical safety concerns in the clinical practice and public health. The development of innovative sensing methods for accurate and real-time detection of medical device surface contamination is essential to protect patients from high risk infection. In this paper, we demonstrate an alternative fiber-optic Fourier Transform Infrared (FTIR) spectroscopy based sensing approach for remote, non-contact, and label-free detection of biochemical contaminants in the mid-infrared (mid-IR) region. The sensing probe is designed using mid-IR hollow fibers and FTIR measurements are carried out in reflection mode. Bovine Serum Albumin (BSA) and bacterial endotoxin of different concentrations under thoroughly dry condition are used to evaluate the detection sensitivity. The devised system can identify ≤0.0025% (≤4 × 1011 molecules) BSA and 0.5% (0.5 EU/ml) endotoxin concentration. The developed sensing approach may be applied to detect various pathogens that pose public health threats.

  12. Collagen fiber with surface-grafted polyphenol as a novel support for Pd(0) nanoparticles: Synthesis, characterization and catalytic application

    International Nuclear Information System (INIS)

    Wu Hao; Wu Chao; He Qiang; Liao Xuepin; Shi Bi

    2010-01-01

    The aim of this study is to use collagen fiber (CF) as a natural polymeric support to synthesize a novel palladium (Pd) nanoparticle catalyst. To achieve a stable immobilization of Pd on CF support, epigallocatechin-3-gallate (EGCG), a typical plant polyphenol, was grafted onto CF surface, acting both as dispersing and stabilizing agent for Pd nanoparticles. Scanning electron microscopy showed that this catalyst was in ordered fibrous state with high flexibility. The presence of EGCG grafted on CF and the interaction mechanism of Pd ions with support was investigated by X-ray photoelectron spectroscopy. X-ray diffraction and transmission electron microscopy offered evidence that the well-dispersed Pd nanoparticles were generated on the outer surface of CF. By using the hydrogenation of allyl alcohol as a model reaction, the synthesized catalyst presented remarkably improved activity, selectivity and reusability as compared with the Pd catalyst supported by CF without grafting of EGCG.

  13. Comprehensive surface treatment of high-speed steel tool

    Science.gov (United States)

    Fedorov, Sergey V.; Aleshin, Sergey V.; Swe, Min Htet; Abdirova, Raushan D.; Kapitanov, Alexey V.; Egorov, Sergey B.

    2018-03-01

    One of the promising directions of hardening of high-speed steel tool is the creation on their surface of the layered structures with the gradient of physic-chemical properties between the wear-resistant coatings to the base material. Among the methods of such surface modification, a special process takes place based on the use of pulsed high-intensity charged particle beams. The high speed of heating and cooling allows structural-phase transformations in the surface layer, which cannot be realized in a stationary mode. The treatment was conducted in a RITM-SP unit, which constitutes a combination of a source of low-energy high-current electron beams "RITM" and two magnetron spraying systems on a single vacuum chamber. The unit enables deposition of films on the surface of the desired product and subsequent liquid-phase mixing of materials of the film and the substrate by an intense pulse electron beam. The article discusses features of the structure of the subsurface layer of high-speed steel M2, modified by surface alloying of a low-energy high-current electron beam, and its effect on the wear resistance of the tool when dry cutting hard to machine Nickel alloy. A significant decrease of intensity of wear of high-speed steel with combined treatment happens due to the displacement of the zone of wear and decrease the radius of rounding of the cutting edge because of changes in conditions of interaction with the material being treated.

  14. Surface treatments of metal supports for photocatalysis applications

    Energy Technology Data Exchange (ETDEWEB)

    Montecchio, Francesco, E-mail: fmon@kth.se [KTH, Royal Institute of Technology, Dept. of Chemical Engineering and Technology, 100 44 Stockholm (Sweden); Chinungi, Don [KTH, Royal Institute of Technology, Dept. of Chemical Engineering and Technology, 100 44 Stockholm (Sweden); Lanza, Roberto [Verdant Chemical Technologies AB, 114 28 Stockholm (Sweden); Engvall, Klas [KTH, Royal Institute of Technology, Dept. of Chemical Engineering and Technology, 100 44 Stockholm (Sweden)

    2017-04-15

    Highlights: • Treated metals can be used as photocatalyst support in full-scale applications. • Various electrochemical treatments were performed, checking the surface corrugation. • Stainless steel etched in DC and aqua regia shows the highest surface modification. • P25 coated on the DC etched sample has a high stability, with constant activity. • The support modification increases the UV irradiated area and the activity of P25. - Abstract: One of the most important challenges, for scaling up a photocatalytic system for VOCs abatement to full-scale, is the design of a suitable photocatalyst support. The support has to firmly immobilize the photocatalyst, without using an organic adhesive, and should also withstand relatively high mechanical stresses. Metals may be effectively implemented as a support material, after a corrugation of the surface with electrochemical treatments. In the present work, we treated stainless steel and aluminum supports, evaluating the surface modifications due to the electrochemical treatments, with scanning electron microscopy (SEM) and confocal microscopy. Five samples showing the highest degree of restructuring were selected and spray coated with P25, a TiO{sub 2} photocatalyst, evaluating the mechanical stability of the coating with a standard tape test method. One particular stainless steel sample presented a superior surface restructuring and coating stability. The photocatalytic activity of this sample, evaluated measuring the complete oxidation of acetaldehyde, was tested for 15 h, and compared with sample of TiO{sub 2}-P25 on a ceramic support. The stainless steel exhibited a constant performance after an initial stabilization period. The stainless steel sample showed a slightly higher activity, due to the surface restructuring, increasing the irradiated area available for the coated photocatalyst.

  15. Surface modification of silk fibroin fibers with poly(methyl methacrylate) and poly(tributylsilyl methacrylate) via RAFT polymerization for marine antifouling applications

    Energy Technology Data Exchange (ETDEWEB)

    Buga, Mihaela-Ramona [National Research and Development Institute for Cryogenics and Isotopic Technologies, ICIT Rm. Valcea, 240050 Rm. Valcea, Uzinei 4, CP7, Raureni, Valcea (Romania); Zaharia, Cătălin, E-mail: zaharia.catalin@gmail.com [Advanced Polymer Materials Group, University Politehnica of Bucharest, 1-7, Gh. Polizu Street, Sector 1, 011061 Bucharest (Romania); Bălan, Mihai [National Research and Development Institute for Cryogenics and Isotopic Technologies, ICIT Rm. Valcea, 240050 Rm. Valcea, Uzinei 4, CP7, Raureni, Valcea (Romania); Bressy, Christine [Université de Toulon, MAPIEM, EA 4323, 83957 La Garde (France); Ziarelli, Fabio [Fédération des Sciences Chimiques de Marseille, CNRS-FR1739, Spectropole, 13397 Marseille (France); Margaillan, André [Université de Toulon, MAPIEM, EA 4323, 83957 La Garde (France)

    2015-06-01

    In this study, silk fibroin surface containing hydroxyl and aminogroups was firstly modified using a polymerizable coupling agent 3-(trimethoxysilyl) propyl methacrylate (MPS), in order to induce vinyl groups onto the fiber surface. The reversible addition–fragmentation chain transfer (RAFT)-mediated polymerization of methyl methacrylate (MMA) and tributylsilyl methacrylate (TBSiMA) through the immobilized vinyl bond on the silk fibroin surface in the presence of 2-cyanoprop-2-yl dithiobenzoate (CPDB) as chain-transfer agent and 2,2′-azobis(isobutyronitrile) (AIBN) as initiator was conducted in toluene solution at 70 °C for 24 h. The structure and properties of the modified fiber were characterized by Fourier Transform Infrared Spectroscopy, {sup 13}C, {sup 29}Si Nuclear Magnetic Resonance (NMR) spectroscopy, thermogravimetric analysis (TGA), scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS), confirming the presence of the coupling molecule and the methacrylate groups onto the silk fibroin fiber surface. Molecular weight distributions were assessed by triple detection size exclusion chromatography (TD-SEC) in order to verify the livingness of the polymerization. - Highlights: • SF surface containing hydroxyl and amino groups was firstly modified with MPS. • RAFT polymerizations of MMA and TBSiMA were studied. • TD-SEC was used to verify the livingness of the RAFT polymerization. • The grafted polymer chains enhance the thermal stability of the SF fibers. • The grafted fibers could be potentially promising candidates as antifouling agents.

  16. Surface modification of silk fibroin fibers with poly(methyl methacrylate) and poly(tributylsilyl methacrylate) via RAFT polymerization for marine antifouling applications

    International Nuclear Information System (INIS)

    Buga, Mihaela-Ramona; Zaharia, Cătălin; Bălan, Mihai; Bressy, Christine; Ziarelli, Fabio; Margaillan, André

    2015-01-01

    In this study, silk fibroin surface containing hydroxyl and aminogroups was firstly modified using a polymerizable coupling agent 3-(trimethoxysilyl) propyl methacrylate (MPS), in order to induce vinyl groups onto the fiber surface. The reversible addition–fragmentation chain transfer (RAFT)-mediated polymerization of methyl methacrylate (MMA) and tributylsilyl methacrylate (TBSiMA) through the immobilized vinyl bond on the silk fibroin surface in the presence of 2-cyanoprop-2-yl dithiobenzoate (CPDB) as chain-transfer agent and 2,2′-azobis(isobutyronitrile) (AIBN) as initiator was conducted in toluene solution at 70 °C for 24 h. The structure and properties of the modified fiber were characterized by Fourier Transform Infrared Spectroscopy, 13 C, 29 Si Nuclear Magnetic Resonance (NMR) spectroscopy, thermogravimetric analysis (TGA), scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS), confirming the presence of the coupling molecule and the methacrylate groups onto the silk fibroin fiber surface. Molecular weight distributions were assessed by triple detection size exclusion chromatography (TD-SEC) in order to verify the livingness of the polymerization. - Highlights: • SF surface containing hydroxyl and amino groups was firstly modified with MPS. • RAFT polymerizations of MMA and TBSiMA were studied. • TD-SEC was used to verify the livingness of the RAFT polymerization. • The grafted polymer chains enhance the thermal stability of the SF fibers. • The grafted fibers could be potentially promising candidates as antifouling agents

  17. Transfer matrix treatment of atomic chemisorption on transition metal surface

    International Nuclear Information System (INIS)

    Mariz, A.M.; Koiller, B.

    1980-05-01

    The atomic adsorption of hydrogen on paramagnetic nickel 100 surface is studied, using the Green's function formalism and the transfer matrix technique, which allows the treatment of the geometry of the system in a simple manner. Electronic correlation at the adatom orbital in a self consistent Hartree-Fock approach is incorporated. The adsorption energy, local density of states and charge transfer between the solid and the adatom are calculated for different crystal structures (sc and fcc) and adatom positions at the surface. The results are discussed in comparison with other theories and with available experimental data, with satisfactory agreement. (Author) [pt

  18. Physical Damages of Wood Fiber in Acacia Mangium due to Biopulping Treatment

    Directory of Open Access Journals (Sweden)

    Ridwan Yahya

    2016-05-01

    chrysosporium to Acacia mangium Willd can reduce lignin and improve holocellulose and cellulose content of the material. Fiber dimension recognized as other important factor for paper properties. The question is how the integrity and dimensions of the wood fiber that has been pretreated with the fungus. The objectives of present study were to know effect of pretreatment of P. chrysosporium to the integrity and dimensions of the fiber. The P. chrysosporium was cultured for 14 days in growth medium, and inoculated to wood chips 5% (w/v and incubated for 0, 15 and 30 days. The inoculated wood chips were chipped into 1 mm x 1 mm x 20 mm and macerated using franklin solution at 60 oC for 48 hours. Forty fibers from each incubated time were analized their physical damages using a light microscope at a 400 magnification. The inoculated fibers were measured theirs dimensions. The physical damage percentage of fibers pretreated using P. chrysosporium was 0%. Length and wall thickness of the pretreated fibers were can be categorized as middle class and thin fibers, respectively.

  19. Modeling the Role of Bulk and Surface Characteristics of Carbon Fiber on Thermal Conductance across the Carbon Fiber/Matrix Interface (Postprint)

    Science.gov (United States)

    2015-11-09

    heat flow from carbon fiber to the matrix (most of the laser energy is absorbed by the carbon fiber), subsequently determining the temperature rise and...Reductase- Trimethoprim , a Drug-Receptor System. Proteins: Struct., Funct., Genet. 1988, 4, 31−47. (37) Sun, H.; Mumby, S. J.; Maple, J. R.; Hagler, A. T

  20. Effect of interactions between Co(2+) and surface goethite layer on the performance of α-FeOOH coated hollow fiber ceramic ultrafiltration membranes.

    Science.gov (United States)

    Zhu, Zhiwen; Zhu, Li; Li, Jianrong; Tang, Jianfeng; Li, Gang; Hsieh, Yi-Kong; Wang, TsingHai; Wang, Chu-Fang

    2016-03-15

    The consideration of water energy nexus inspires the environmental engineering community to pursue a more sustainable strategy in the wastewater treatment. One potential response would be to enhance the performance of the low-pressure driven filtration system. To reach this objective, it is essential to have a better understanding regarding the surface interaction between the target substance and the surface of membrane. In this study, the hollow fiber ceramic membranes were coated with a goethite layer in order to enhance the Co(2+) rejection. Experimental results indicate that higher Co(2+) rejections are always accompanied with the significant reduction in the permeability. Based on the consideration of electroviscous effect, the surface interactions including the induced changes in viscosity, pore radius and Donnan effect in the goethite layer are likely responsible for the pH dependent behaviors in the rejection and permeability. These results could be valuable references to develop the filtration system with high rejection along with acceptable degree of permeability in the future. Copyright © 2015 Elsevier Inc. All rights reserved.

  1. Treatment of Lignin Precursors to Improve their Suitability for Carbon Fibers: A Literature Review

    Energy Technology Data Exchange (ETDEWEB)

    Paul, Ryan [GrafTech International Holdings Inc.; Naskar, Amit [Oak Ridge National Laboratory; Gallego, Nidia [Oak Ridge National Laboratory; Dai, Xuliang [GrafTech International Holdings Inc.; Hausner, Andrew [GrafTech International Holdings Inc.

    2015-04-17

    Lignin has been investigated as a carbon fiber precursor since the 1960s. Although there have been a number of reports of successful lignin-based carbon fiber production at the lab scale, lignin-based carbon fibers are not currently commercially available. This review will highlight some of the known challenges, and also the reported methods for purifying and modifying lignin to improve it as a precursor. Lignin can come from different sources (e.g. hardwood, softwood, grasses) and extraction methods (e.g. organosolv, kraft), meaning that lignin can be found with a diversity of purity and structure. The implication of these conditions on lignin as carbon fiber precursor is not comprehensively known, especially as the lignin landscape is evolving. The work presented in this review will help guide the direction of a project between GrafTech and ORNL to develop lignin carbon fiber technology, as part of a cooperative agreement with the DOE Advanced Manufacturing Office.

  2. Fiber-reinforced materials: finite elements for the treatment of the inextensibility constraint

    Science.gov (United States)

    Auricchio, Ferdinando; Scalet, Giulia; Wriggers, Peter

    2017-12-01

    The present paper proposes a numerical framework for the analysis of problems involving fiber-reinforced anisotropic materials. Specifically, isotropic linear elastic solids, reinforced by a single family of inextensible fibers, are considered. The kinematic constraint equation of inextensibility in the fiber direction leads to the presence of an undetermined fiber stress in the constitutive equations. To avoid locking-phenomena in the numerical solution due to the presence of the constraint, mixed finite elements based on the Lagrange multiplier, perturbed Lagrangian, and penalty method are proposed. Several boundary-value problems under plane strain conditions are solved and numerical results are compared to analytical solutions, whenever the derivation is possible. The performed simulations allow to assess the performance of the proposed finite elements and to discuss several features of the developed formulations concerning the effective approximation for the displacement and fiber stress fields, mesh convergence, and sensitivity to penalty parameters.

  3. Thermal and chemical treatment of polymer optical fiber Bragg grating sensors for enhanced mechanical sensitivity

    DEFF Research Database (Denmark)

    Pospori, Andreas; Marques, C. A. F.; Saez-Rodriguez, D.

    2017-01-01

    An investigation of the thermal annealing effects on the strain, stress, and force sensitivities of polymer optical fiber Bragg grating sensors is performed. We demonstrate for the first time that the fiber annealing can enhance both stress and force sensitivities of Bragg grating sensors......, with the possible cause being the molecular relaxation of the polymer when fiber is raised above the β-transition temperature. A simple, cost-effective, but well controlled method for fiber annealing is also presented in this work. In addition, the effects of chemical etching on the strain, stress, and force...... sensitivities have been investigated. Results show that fiber etching too can increase the force sensitivity, and it can also affect the strain and stress sensitivities of the Bragg grating sensors....

  4. Thermal and chemical treatment of polymer optical fiber Bragg grating sensors for enhanced mechanical sensitivity

    Science.gov (United States)

    Pospori, A.; Marques, C. A. F.; Sáez-Rodríguez, D.; Nielsen, K.; Bang, O.; Webb, D. J.

    2017-07-01

    An investigation of the thermal annealing effects on the strain, stress, and force sensitivities of polymer optical fiber Bragg grating sensors is performed. We demonstrate for the first time that the fiber annealing can enhance both stress and force sensitivities of Bragg grating sensors, with the possible cause being the molecular relaxation of the polymer when fiber is raised above the β -transition temperature. A simple, cost-effective, but well controlled method for fiber annealing is also presented in this work. In addition, the effects of chemical etching on the strain, stress, and force sensitivities have been investigated. Results show that fiber etching too can increase the force sensitivity, and it can also affect the strain and stress sensitivities of the Bragg grating sensors.

  5. Chromium surface alloying of structural steels during laser treatment

    International Nuclear Information System (INIS)

    Kurov, I.E.; Nagornykh, S.N.; Sivukhin, G.A.; Solenov, S.V.

    1987-01-01

    Results of matrix alloying from the surface layer and creation of considerably increased chromium concentration in the depth which permits to increase the efficiency of laser treatment of steels (12Kh18N10T and 38KhN3M) in the process of their further mechanical polishing, are presented. The treatment was realized by continuous CO 2 -laser at different power densities and scanning rates are presented. A model describing the creation of anomalous distributions of the alloying element in steels is plotted

  6. Hybrid fuzzy logic control of laser surface heat treatments

    International Nuclear Information System (INIS)

    Perez, Jose Antonio; Ocana, Jose Luis; Molpeceres, Carlos

    2007-01-01

    This paper presents an advanced hybrid fuzzy logic control system for laser surface heat treatments, which allows to increase significantly the uniformity and final quality of the obtained product, reducing the rejection rate and increasing the productivity and efficiency of the treatment. Basically, the proposed hybrid control structure combines a fuzzy logic controller, with a pure integral action, both fully decoupled, improving the performances of the process with a reasonable design cost, since the system nonlinearities are fully compensated by the fuzzy component of the controller, while the integral action contributes to eliminate the steady-state error

  7. Effect of different surface treatments on bond strength, surface and microscopic structure of zirconia ceramic

    Directory of Open Access Journals (Sweden)

    Zeinab R. El-Shrkawy

    2016-06-01

    Conclusions: (1 Surface treatments of Y-TZP ceramic together with MDP primer and silane-coupling agent application improve the bond strength to resin cement. (2 Plasma-Silica coating and plasma-oxygen treatment, both are valuable methods that improve the bond strength of resin cement to Y-TZP ceramic. (3 Silica coating by plasma technology provides durable bond strength and can be a promising alternative pretreatment before silane application to enhance bonding with zirconia ceramic. (4 Tetragonal-monoclinic phase transformation had occurred in Y-TZP samples received both types of plasma treatment.

  8. Separation efficiency of two waste polymer fibers for oily water treatment

    Directory of Open Access Journals (Sweden)

    Sokolović Dunja S.

    2016-01-01

    Full Text Available This work is concerned with the efficiency of two different waste polymeric materials as the filter media in a laboratory-scale bed coalescer in the horizontal fluid flow mode, operating in a steady-state regime. The applied materials are: waste polyethylene terephthalate from textile industry, BA1 and waste polypropylene from carpet industry, PP. Using these compressible fiber polymeric materials, high bed porosity (up to 98% could be obtained. The investigation was carried out over a wide range of working conditions. Bed permeability was varied in the range from 0.18•10-9 to 5.389•10-9 m2. Operating fluid velocity was varied from 19 to 80 m/h, until the critical velocity was reached. Different oily wastewaters were used in the experiments. Oily wastewater is defined as the oil-inwater emulsion model prepared using mineral oils of different physico-chemical characteristics: crude oil (A from Vojvodina region, two vacuum distillation fractions (A1, A4, and blended petroleum product with a high paraffinic content (P1. Both applied polymeric materials, BA1 and PP, showed high separation efficiency for treatment of all investigated oily wastewater. However, the BA1 material showed higher efficiency in a wider range of bed permeability and physico-chemical characteristics of oil. [Projekat Ministarstva nauke Republike Srbije, br. 172022

  9. Treatment of Rural Wastewater Using a Spiral Fiber Based Salinity-Persistent Sequencing Batch Biofilm Reactor

    Directory of Open Access Journals (Sweden)

    Ying-Xin Zhao

    2017-12-01

    Full Text Available Differing from municipal wastewater, rural wastewater in salinization areas is characterized with arbitrary discharge and high concentration of salt, COD, nitrogen and phosphorus, which would cause severe deterioration of rivers and lakes. To overcome the limits of traditional biological processes, a spiral fiber based salinity-persistent Sequencing Biofilm Batch Reactor (SBBR was developed and investigated with synthetic rural wastewater (COD = 500 mg/L, NH4+-N = 50 mg/L, TP = 6 mg/L under different salinity (0.0–10.0 g/L of NaCl. Results indicated that a quick start-up could be achieved in 15 days, along with sufficient biomass up to 7275 mg/L. During operating period, the removal of COD, NH4+-N, TN was almost not disturbed by salt varying from 0.0 to 10.0 g/L with stable efficiency reaching 92%, 82% and 80%, respectively. Although TP could be removed at high efficiency of 90% in low salinity conditions (from 0.0 to 5.0 g/L of NaCl, it was seriously inhibited due to nitrite accumulation and reduction of Phosphorus Accumulating Organisms (PAOs after addition of 10.0 g/L of salt. The behavior proposed in this study will provide theoretical foundation and guidance for application of SBBR in saline rural wastewater treatment.

  10. Graphoepitaxy of sexithiophene and orientation control by surface treatment

    International Nuclear Information System (INIS)

    Ikeda, Susumu; Saiki, Koichiro; Wada, Yasuo; Inaba, Katsuhiko; Ito, Yoshiyasu; Kikuchi, Hirokazu; Terashima, Kazuo; Shimada, Toshihiro

    2008-01-01

    The factors influencing the graphoepitaxy of organic semiconductor α-sexithiophene (6T) on thermally oxidized silicon substrates were studied and it was discovered that a wider pitch in the microgrooves decreased the degree of graphoepitaxy. A more significant finding was that in-plane orientation could be changed by simple surface treatment. On UV/ozone-treated substrates (hydrophilic condition), the b-axis of 6T was parallel to the grooves. Further surface treatment with hexamethyl-disiloxane (under hydrophobic conditions) changed this in-plane orientation by 90 deg. This change is due to the interaction between the topmost chemical species (functional groups) of the groove walls and organic molecules, a behavior peculiar to organic graphoepitaxy and exploitable for optimal orientation control in device processing. The nucleation and growth processes that cause the graphoepitaxy are discussed, based on the experimental results

  11. Tensile responses of treated Cissus populnea fibers | Azeez ...

    African Journals Online (AJOL)

    acetic acid (EDTA), respectively, were used for fiber treatment and optimi zed with variable parameters (concentration and time) using response surface methodology (RSM) with central composite design. Scanning electron microscopy (SEM) with ...

  12. Surface treatments for biological, chemical and physical applications

    CERN Document Server

    Karaman, Mustafa

    2017-01-01

    A step-by-step guide to the topic with a mix of theory and practice in the fields of biology, chemistry and physics. Straightforward and well-structured, the first chapter introduces fundamental aspects of surface treatments, after which examples from nature are given. Subsequent chapters discuss various methods to surface modification, including chemical and physical approaches, followed by the characterization of the functionalized surfaces. Applications discussed include the lotus effect, diffusion barriers, enzyme immobilization and catalysis. Finally, the book concludes with a look at future technology advances. Throughout the text, tutorials and case studies are used for training purposes to grant a deeper understanding of the topic, resulting in an essential reference for students as well as for experienced engineers in R&D.

  13. Effect of alkali treatment on surface morphology of titanium

    Energy Technology Data Exchange (ETDEWEB)

    Tan, K. J., E-mail: gd130056@siswa.uthm.edu.my; Wahab, M. A. A., E-mail: cd110006@siswa.uthm.edu.my; Mahmod, S., E-mail: cd110201@siswa.uthm.edu.my; Idris, M. I., E-mail: izwana@uthm.edu.my; Abdullah, H. Z., E-mail: hasan@uthm.edu.my [Faculty of Mechanical and Manufacturing Engineering, Universiti Tun Hussein Onn Malaysia, 86400 Parit Raja, Batu Pahat, Johor (Malaysia)

    2015-07-22

    Alkali and heat treatments were first introduced by Kim et al. to prepare a bioactive surface on titanium. This method has been proven very effective and widely used in other studies to promote titanium osteointegration. This study aims to investigate further the effect of alkali treatment on surface morphology of high purity titanium. High purity titanium foils were immersed in NaOH aqueous solutions of 0.5 M, 5 M and 15 M at 60°C and 80 °C for 1, 3 and 7 days. The surface morphology was examined using Field Emission Scanning Electron Microscope (FESEM). The obtained phases were analysed using Fourier Transform Infrared Spectroscopy (FTIR) in the spectra range of 4000-600 cm{sup −1} at 4 cm{sup −1} resolution and 50 scans. At the same soaking temperature and soaking time, a thicker porous network was observed with increasing concentration of NaOH. At the same soaking temperature, a much porous structure was observed with increasing soaking time. At constant alkali concentration, more homogenously distributed porous surface structure was observed with increasing soaking temperature.

  14. Treatment of chemical waste piassava for application in polymeric composites

    International Nuclear Information System (INIS)

    Miranda, C.S.; Fiuza, R.P.; Guimaraes, D.H.; Carvalho, G.G.P.; Carvalho, R.F.; Jose, N.M.

    2010-01-01

    Piassava fibers were investigated with the aim of adding new business value. The surface of the fibers were treated with NaOH and H 2 SO 4 for 1 h at room temperature. The samples were characterized by FTIR, TGA, DSC, chemical composition, XRD, SEM and tensile tests. The micrographs of the fibers showed that treatment with NaOH cleaned the fiber surface of a large amount of impurities and cause fibrillation. Chemical analysis, using the Van Soest method, showed that the palm fiber is a fiber rich in lignin, as evidenced by their brown color and with alkali treatment there was partial removal of hemicellulose and lignin, increasing the crystallinity index of the fiber, observed by XRD. The acid treatment caused no significant changes in the properties of the fiber. Therefore, the mercerisation was efficient in the fiber of palm fiber, improving their properties, enabling thus their use as reinforcement in polymer composites. (author)

  15. Fiber optic hydrogen gas sensor utilizing surface plasmon resonance and native defects of zinc oxide by palladium

    International Nuclear Information System (INIS)

    Tabassum, Rana; Gupta, Banshi D

    2016-01-01

    We present an experimental study on a surface plasmon resonance (SPR) based fiber optic hydrogen gas sensor employing a palladium doped zinc oxide nanocomposite (ZnO (1−x) Pd x , 0 ≤ x ≤ 0.85) layer over the silver coated unclad core of the fiber. Palladium doped zinc oxide nanocomposites (ZnO (1−x) Pd x )  are prepared by a chemical route for different composition ratios and their structural, morphological and hydrogen sensing properties are investigated experimentally. The sensing principle involves the absorption of hydrogen gas by ZnO (1−x) Pd x , altering its dielectric function. The change in the dielectric constant is analyzed in terms of the red shift of the resonance wavelength in the visible region of the electromagnetic spectrum. To check the sensing capability of sensing probes fabricated with varying composition ratio (x) of nanocomposite, the SPR curves are recorded typically for 0% H 2 and 4% H 2 in N 2 atmosphere for each fabricated probe. On changing the concentration of hydrogen gas from 0% to 4%, the red shift in the SPR spectrum confirms the change in dielectric constant of ZnO (1−x) Pd x on exposure to hydrogen gas. It is noted that the shift in the SPR spectrum increases monotonically up to a certain fraction of Pd in zinc oxide, beyond which it starts decreasing. SEM images and the photoluminescence (PL) spectra reveal that Pd dopant atoms substitutionally incorporated into the ZnO lattice profoundly affect its defect levels; this is responsible for the optimal composition of ZnO (1−x) Pd x to sense the hydrogen gas. The sensor is highly selective to hydrogen gas and possesses high sensitivity. Since optical fiber sensing technology is employed along with the SPR technique, the present sensor is capable of remote sensing and online monitoring of hydrogen gas. (paper)

  16. Surface plasmon resonance-based fiber-optic hydrogen gas sensor utilizing palladium supported zinc oxide multilayers and their nanocomposite.

    Science.gov (United States)

    Tabassum, Rana; Gupta, Banshi D

    2015-02-10

    We analyze surface plasmon resonance-based fiber-optic sensor for sensing of small concentrations of hydrogen gas in the visible region of the electromagnetic spectrum. One of the two probes considered has multilayers of zinc oxide (ZnO) and palladium (Pd) while the other has layer of their composite over a silver coated unclad core of the fiber. The analysis is carried out for different volume fractions of palladium nanoparticles dispersed in zinc oxide host material in the nanocomposite layer. For the analysis, a Maxwell-Garnett model is adopted for calculating the dielectric function of a ZnO:Pd nanocomposite having nanoparticles of dimensions smaller than the wavelength of radiation used. The effects of the volume fraction of the nanoparticles in the nanocomposite and the thickness of the nanocomposite layer on the figure of merit of the sensor have been studied. The film thickness of the layer and the volume fraction of nanoparticles in the ZnO:Pd nanocomposite layer have been optimized to achieve the maximum value of the figure of merit of the sensor. It has been found that the figure of merit of the sensing probe coated with ZnO:Pd nanocomposite is more than twofold of the sensing probe coated with multilayers of Pd and ZnO over a silver coated unclad core of the fiber; hence, the sensor with a nanocomposite layer works better than that with multilayers of zinc oxide and palladium. The sensor can be used for online monitoring and remote sensing of hydrogen gas.

  17. Microwave induced hierarchical nanostructures on aramid fibers and their influence on adhesion properties in a rubber matrix

    International Nuclear Information System (INIS)

    Palola, S.; Sarlin, E.; Kolahgar Azari, S.; Koutsos, V.; Vuorinen, J.

    2017-01-01

    Highlights: • A novel method for creating nanostructures to aramid fiber surface is proposed. • The nanostructures enable mechanical interlocking at fiber-matrix interface. • A ∼250% increase in adhesion can be created with this method. - Abstract: Several commercial surface treatments are used to increase the adhesion between aramid fibers and the matrix material in composite structures but each of these has some limitations. The aim of this study is to address some of these limitations by developing a surface treatment method for aramid fibers that would not affect mechanical properties of the fibers negatively, could be used with any matrix material and that could withstand handling of the fibers and ageing. The method used is microwave assisted surface treatment that uses microwave radiation together with dry reactive chemicals to create hierarchical structures to the fiber surface and so makes it possible to control the adhesion properties of the fibers. SEM and AFM imaging, fiber tensile tests and modified bundle pull-out test were used to investigate the outcome of the surface treatment and measure adhesion between aramid fiber bundles and rubber. SEM and AFM imaging revealed that nanoscale deposits are formed on to the fiber surface which enable mechanical interlocking between the fiber and the matrix material. Fiber tensile tests showed that the surface treatment does not influence the tensile properties of the fiber negatively. Results from the bundle pull-out tests confirmed that this kind of method can lead up to 259% improvement in adhesion when compared to untreated aramid fibers in the rubber matrix.

  18. Microwave induced hierarchical nanostructures on aramid fibers and their influence on adhesion properties in a rubber matrix

    Energy Technology Data Exchange (ETDEWEB)

    Palola, S., E-mail: sarianna.palola@tut.fi [Laboratory of Materials Science, Tampere University of Technology, P.O. Box 589, 33101, Tampere (Finland); Institute for Materials and Processes, School of Engineering, The University of Edinburgh, The King' s Buildings, Robert Stevenson Road, EH9 3FB Edinburgh (United Kingdom); Sarlin, E. [Laboratory of Materials Science, Tampere University of Technology, P.O. Box 589, 33101, Tampere (Finland); Kolahgar Azari, S.; Koutsos, V. [Institute for Materials and Processes, School of Engineering, The University of Edinburgh, The King' s Buildings, Robert Stevenson Road, EH9 3FB Edinburgh (United Kingdom); Vuorinen, J. [Laboratory of Materials Science, Tampere University of Technology, P.O. Box 589, 33101, Tampere (Finland)

    2017-07-15

    Highlights: • A novel method for creating nanostructures to aramid fiber surface is proposed. • The nanostructures enable mechanical interlocking at fiber-matrix interface. • A ∼250% increase in adhesion can be created with this method. - Abstract: Several commercial surface treatments are used to increase the adhesion between aramid fibers and the matrix material in composite structures but each of these has some limitations. The aim of this study is to address some of these limitations by developing a surface treatment method for aramid fibers that would not affect mechanical properties of the fibers negatively, could be used with any matrix material and that could withstand handling of the fibers and ageing. The method used is microwave assisted surface treatment that uses microwave radiation together with dry reactive chemicals to create hierarchical structures to the fiber surface and so makes it possible to control the adhesion properties of the fibers. SEM and AFM imaging, fiber tensile tests and modified bundle pull-out test were used to investigate the outcome of the surface treatment and measure adhesion between aramid fiber bundles and rubber. SEM and AFM imaging revealed that nanoscale deposits are formed on to the fiber surface which enable mechanical interlocking between the fiber and the matrix material. Fiber tensile tests showed that the surface treatment does not influence the tensile properties of the fiber negatively. Results from the bundle pull-out tests confirmed that this kind of method can lead up to 259% improvement in adhesion when compared to untreated aramid fibers in the rubber matrix.

  19. Chemical Modification Effect on the Mechanical Properties of Coir Fiber

    Directory of Open Access Journals (Sweden)

    Samia Sultana Mir

    2012-04-01

    Full Text Available Natural fiber has a vital role as a reinforcing agent due to its renewable, low cost, biodegradable, less abrasive and eco-friendly nature. Whereas synthetic fibers like glass, boron, carbon, metallic, ceramic and inorganic fibers are expensive and not eco-friendly. Coir is one of the natural fibers easily available in Bangladesh and cheap. It is derived from the husk of the coconut (Cocos nucifera. Coir has one of the highest concentrations of lignin, which makes it stronger. In recent years, wide range of research has been carried out on fiber reinforced polymer composites [4-13].The aim of the present research is to characterize brown single coir fiber for manufacturing polymer composites reinforced with characterized fibers. Adhesion between the fiber and polymer is one of factors affecting the strength of manufactured composites. In order to increase the adhesion, the coir fiber was chemically treated separately in single stage (with Cr2(SO43•12(H2O and double stages (with CrSO4 and NaHCO3. Both the raw and treated fibers were characterized by tensile testing, Fourier transform infrared (FTIR spectroscopic analysis, scanning electron microscopic analysis. The result showed that the Young’s modulus increased, while tensile strength and strain to failure decreased with increase in span length. Tensile properties of chemically treated coir fiber was found higher than raw coir fiber, while the double stage treated coir fiber had better mechanical properties compared to the single stage treated coir fiber. Scanning electron micrographs showed rougher surface in case of the raw coir fiber. The surface was found clean and smooth in case of the treated coir fiber. Thus the performance of coir fiber composites in industrial application can be improved by chemical treatment.

  20. Work function modifications of graphite surface via oxygen plasma treatment

    Science.gov (United States)

    Duch, J.; Kubisiak, P.; Adolfsson, K. H.; Hakkarainen, M.; Golda-Cepa, M.; Kotarba, A.

    2017-10-01

    The surface modification of graphite by oxygen plasma was investigated experimentally (X-ray diffraction, nanoparticle tracking analysis, laser desorption ionization mass spectrometry, thermogravimetry, water contact angle) and by molecular modelling (Density Functional Theory). Generation of surface functional groups (mainly sbnd OHsurf) leads to substantial changes in electrodonor properties and wettability gauged by work function and water contact angle, respectively. The invoked modifications were analyzed in terms of Helmholtz model taking into account the theoretically determined surface dipole moment of graphite-OHsurf system (μ = 2.71 D) and experimentally measured work function increase (from 0.75 to 1.02 eV) to determine the sbnd OH surface coverage (from 0.70 to 1.03 × 1014 groups cm-2). Since the plasma treatment was confined to the surface, the high thermal stability of the graphite material was preserved as revealed by the thermogravimetric analysis. The obtained results provide a suitable quantitative background for tuning the key operating parameters of carbon electrodes: electronic properties, interaction with water and thermal stability.

  1. Influence of skew rays on the sensitivity and signal-to-noise ratio of a fiber-optic surface-plasmon-resonance sensor: a theoretical study

    International Nuclear Information System (INIS)

    Dwivedi, Yogendra S.; Sharma, Anuj K.; Gupta, Banshi D.

    2007-01-01

    We have theoretically analyzed the influence of skew rays on the performance of a fiber-optic sensor based on surface plasmon resonance. The performance of the sensor has been evaluated in terms of its sensitivity and signal-to-noise ratio (SNR). The theoretical model for skewness dependence includes the material dispersion in fiber cores and metal layers, simultaneous excitation of skew rays, and meridional rays in the fiber core along with all guided rays launching from a collimated light source. The effect of skew rays on the SNR and the sensitivity of the sensor with two different metals has been compared. The same comparison is carried out for the different values of design parameters such as numerical aperture, fiber core diameter, and the length of the surface-plasmon-resonance (SPR)active sensing region. This detailed analysis for the effect of skewness on the SNR and the sensitivity of the sensor leads us to achieve the best possible performance from a fiber-optic SPR sensor against the skewness in the optical fiber

  2. Electrospun Collagen/Silk Tissue Engineering Scaffolds: Fiber Fabrication, Post-Treatment Optimization, and Application in Neural Differentiation of Stem Cells

    Science.gov (United States)

    Zhu, Bofan

    Biocompatible scaffolds mimicking the locally aligned fibrous structure of native extracellular matrix (ECM) are in high demand in tissue engineering. In this thesis research, unidirectionally aligned fibers were generated via a home-built electrospinning system. Collagen type I, as a major ECM component, was chosen in this study due to its support of cell proliferation and promotion of neuroectodermal commitment in stem cell differentiation. Synthetic dragline silk proteins, as biopolymers with remarkable tensile strength and superior elasticity, were also used as a model material. Good alignment, controllable fiber size and morphology, as well as a desirable deposition density of fibers were achieved via the optimization of solution and electrospinning parameters. The incorporation of silk proteins into collagen was found to significantly enhance mechanical properties and stability of electrospun fibers. Glutaraldehyde (GA) vapor post-treatment was demonstrated as a simple and effective way to tune the properties of collagen/silk fibers without changing their chemical composition. With 6-12 hours GA treatment, electrospun collagen/silk fibers were not only biocompatible, but could also effectively induce the polarization and neural commitment of stem cells, which were optimized on collagen rich fibers due to the unique combination of biochemical and biophysical cues imposed to cells. Taken together, electrospun collagen rich composite fibers are mechanically strong, stable and provide excellent cell adhesion. The unidirectionally aligned fibers can accelerate neural differentiation of stem cells, representing a promising therapy for neural tissue degenerative diseases and nerve injuries.

  3. Using Monoclonal Antibody to Determine Lead Ions with a Localized Surface Plasmon Resonance Fiber-optic Biosensor

    Directory of Open Access Journals (Sweden)

    Mon-Fu Chung

    2008-01-01

    Full Text Available A novel reflection-based localized surface plasmon resonance (LSPR fiber-optic probe has been developed to determine the heavy metal lead ion concentration. Monoclonal antibody as the detecting probe containing massive amino groups to capture Pb(II-chelate complexes was immobilized onto gold nanoparticle-modified optical fiber (NMAuOF. The optimal immobilizing conditions of monoclonal antibody on to the NMAuOF are 189 μg/mL in pH7.4 PBS for 2 h at 25°C. The absorbability of the functionalized NMAuOF sensor increases to 12.2 % upon changing the Pb(II-EDTA level from 10 to 100 ppb with a detection limit of 0.27 ppb. The sensor retains 92.7 % of its original activity and gives reproducible results after storage in 5% D-( -Trehalose dehydrate solution at 4°C for 35 days. In conclusion, the monoclonal antibody-functionalized NMAuOF sensor shows a promising result for determining the concentration of Pb(II with high sensitivity.

  4. Optimization of Aqueous Ammonia Soaking of manure fibers by Response Surface Methodology for unlocking the methane potential of swine manure.

    Science.gov (United States)

    Lymperatou, Anna; Gavala, Hariklia N; Skiadas, Ioannis V

    2017-11-01

    Swine manure mono-digestion often results to economically non-feasible processes, due to the high dilution and ammonia concentration together with the low degradation rates it presents. The effects of different parameters of Aqueous Ammonia Soaking (AAS) as a pretreatment for improving the digestion of manure fibers when coupled to an ammonia removal step were investigated in this study. Response Surface Methodology was followed and the influence and interactions of the following AAS parameters were studied: NH 3 concentration, duration and solid-to-liquid ratio. The mild conditions found to be optimal (7%w/w NH 3 , 96h, and 0.16kg/L) in combination to a significant increase of the short term CH 4 yield (244% in 17days), make this pretreatment a promising solution for improving swine manure mono-digestion. Furthermore, compositional analysis of the manure fibers revealed significant solubilization of hemicellulose, while no lignin removal or loss of cellulose occurred under optimal conditions. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  5. Oxygen inhibition layer of composite resins: effects of layer thickness and surface layer treatment on the interlayer bond strength.

    Science.gov (United States)

    Bijelic-Donova, Jasmina; Garoushi, Sufyan; Lassila, Lippo V J; Vallittu, Pekka K

    2015-02-01

    An oxygen inhibition layer develops on surfaces exposed to air during polymerization of particulate filling composite. This study assessed the thickness of the oxygen inhibition layer of short-fiber-reinforced composite in comparison with conventional particulate filling composites. The effect of an oxygen inhibition layer on the shear bond strength of incrementally placed particulate filling composite layers was also evaluated. Four different restorative composites were selected: everX Posterior (a short-fiber-reinforced composite), Z250, SupremeXT, and Silorane. All composites were evaluated regarding the thickness of the oxygen inhibition layer and for shear bond strength. An equal amount of each composite was polymerized in air between two glass plates and the thickness of the oxygen inhibition layer was measured using a stereomicroscope. Cylindrical-shaped specimens were prepared for measurement of shear bond strength by placing incrementally two layers of the same composite material. Before applying the second composite layer, the first increment's bonding site was treated as follows: grinding with 1,000-grit silicon-carbide (SiC) abrasive paper, or treatment with ethanol or with water-spray. The inhibition depth was lowest (11.6 μm) for water-sprayed Silorane and greatest (22.9 μm) for the water-sprayed short-fiber-reinforced composite. The shear bond strength ranged from 5.8 MPa (ground Silorane) to 36.4 MPa (water-sprayed SupremeXT). The presence of an oxygen inhibition layer enhanced the interlayer shear bond strength of all investigated materials, but its absence resulted in cohesive and mixed failures only with the short-fiber-reinforced composite. Thus, more durable adhesion with short-fiber-reinforced composite is expected. © 2014 Eur J Oral Sci.

  6. The Effect of Fiber Treatment on the Water Absorption of Piliostigma ...

    African Journals Online (AJOL)

    MBI

    2015-07-24

    Jul 24, 2015 ... composites in structural applications Saiki (2008). ... composition and specific structure. Water .... sites for fiber/matrix interface (Mwaikwambo and. Ansell .... EPOXY. UTP. NTP. BTP. KTP. %. Wate r Ab sorp tion. Composites ...

  7. Catalytic Effect of Activated Carbon and Activated Carbon Fiber in Non-Equilibrium Plasma-Based Water Treatment

    Science.gov (United States)

    Zhang, Yanzong; Zheng, Jingtang; Qu, Xianfeng; Yu, Weizhao; Chen, Honggang

    2008-06-01

    Catalysis and regeneration efficiency of granular activated carbon (GAC) and activated carbon fiber (ACF) were investigated in a non-equilibrium plasma water treatment reactor with a combination of pulsed streamer discharge and GAC or ACF. The experimental results show that the degradation efficiency of methyl orange (MO) by the combined treatment can increase 22% (for GAC) and 24% (for ACF) respectively compared to pulsed discharge treatment alone, indicating that the combined treatment has a synergetic effect. The MO degradation efficiency by the combined treatment with pulsed discharge and saturated GAC or ACF can increase 12% and 17% respectively compared to pulsed discharge treatment alone. Both GAC and ACF show catalysis and the catalysis of ACF is prominent. Meanwhile, the regeneration of GAC and ACF are realized in this process. When H2O2 is introduced into the system, the utilization efficiency of ozone and ultraviolet light is improved and the regeneration efficiency of GAC and ACF is also increased.

  8. Catalytic Effect of Activated Carbon and Activated Carbon Fiber in Non-Equilibrium Plasma-Based Water Treatment

    International Nuclear Information System (INIS)

    Zhang Yanzong; Zheng Jingtang; Qu Xianfeng; Yu Weizhao; Chen Honggang

    2008-01-01

    Catalysis and regeneration efficiency of granular activated carbon (GAC) and activated carbon fiber (ACF) were investigated in a non-equilibrium plasma water treatment reactor with a combination of pulsed streamer discharge and GAC or ACF. The experimental results show that the degradation efficiency of methyl orange (MO) by the combined treatment can increase 22% (for GAC) and 24% (for ACF) respectively compared to pulsed discharge treatment alone, indicating that the combined treatment has a synergetic effect. The MO degradation efficiency by the combined treatment with pulsed discharge and saturated GAC or ACF can increase 12% and 17% respectively compared to pulsed discharge treatment alone. Both GAC and ACF show catalysis and the catalysis of ACF is prominent. Meanwhile, the regeneration of GAC and ACF are realized in this process. When H 2 O 2 is introduced into the system, the utilization efficiency of ozone and ultraviolet light is improved and the regeneration efficiency of GAC and ACF is also increased.

  9. Effect of Lamina Thickness of Prepreg on the Surface Accuracy of Carbon Fiber Composite Space Mirrors

    Science.gov (United States)

    Yang, Zhiyong; Tang, Zhanwen; Xie, Yongjie; Shi, Hanqiao; Zhang, Boming; Guo, Hongjun

    2018-02-01

    Composite space mirror can completely replicate the high-precision surface of mould by replication process, but the actual surface accuracy of the replication composite mirror always decreases. Lamina thickness of prepreg affects the layers and layup sequence of composite space mirror, and which would affect surface accuracy of space mirror. In our research, two groups of contrasting cases through finite element analyses (FEA) and comparative experiments were studied; the effect of different lamina thicknesses of prepreg and corresponding lay-up sequences was focused as well. We describe a special analysis model, validated process and result analysis. The simulated and measured surface figures both get the same conclusion. Reducing lamina thickness of prepreg used in replicating composite space mirror is propitious to optimal design of layup sequence for fabricating composite mirror, and could improve its surface accuracy.

  10. Statistical mapping of zones of focused groundwater/surface-water exchange using fiber-optic distributed temperature sensing

    Science.gov (United States)

    Mwakanyamale, Kisa; Day-Lewis, Frederick D.; Slater, Lee D.

    2013-01-01

    Fiber-optic distributed temperature sensing (FO-DTS) increasingly is used to map zones of focused groundwater/surface-water exchange (GWSWE). Previous studies of GWSWE using FO-DTS involved identification of zones of focused GWSWE based on arbitrary cutoffs of FO-DTS time-series statistics (e.g., variance, cross-correlation between temperature and stage, or spectral power). New approaches are needed to extract more quantitative information from large, complex FO-DTS data sets while concurrently providing an assessment of uncertainty associated with mapping zones of focused GSWSE. Toward this end, we present a strategy combining discriminant analysis (DA) and spectral analysis (SA). We demonstrate the approach using field experimental data from a reach of the Columbia River adjacent to the Hanford 300 Area site. Results of the combined SA/DA approach are shown to be superior to previous results from qualitative interpretation of FO-DTS spectra alone.

  11. Prestressing Effects on the Performance of Concrete Beams with Near-surface-mounted Carbon-fiber-reinforced Polymer Bars

    Science.gov (United States)

    Hong, Sungnam; Park, Sun-Kyu

    2016-07-01

    The effects of various prestressing levels on the flexural behavior of concrete beams strengthened with prestressed near-surface-mounted (NSM) carbon-fiber-reinforced polymer (CFRP) bars were investigated in this study. Four-point flexural tests up to failure were performed using a total of six strengthened prestressed and nonprestressed concrete beams. The nonprestressed strengthened beam failed by premature debonding at the interface of concrete and the epoxy adhesive, but the prestressed one failed owing due to rupture of the CFRP bar. As the prestressing level of the CFRP bar increased, the cracking and yield loads of the prestressed beams increased, but its effect on their deflections was insignificant. The ultimate load was constant regardless of prestressing level, but the ultimate deflection was almost inversely proportional to the level.

  12. Preparation and characterization of high-surface-area activated carbon fibers from silkworm cocoon waste for congo red adsorption

    International Nuclear Information System (INIS)

    Li, Jia; Ng, Dickon H.L.; Song, Peng; Kong, Chao; Song, Yi; Yang, Ping

    2015-01-01

    Herein, we report the preparation of activated carbon fibers from silkworm cocoon waste via the combination of (NH 4 ) 2 HPO 4 -pretreatment and KOH activation. The morphology, phase structure and surface chemistry constitute of the obtained ACFs were characterized by X-ray diffraction, IR spectroscopy, Micro Raman spectroscopy, X-ray photoelectron spectroscopy, scanning electron microscopy, thermal analysis and N 2 adsorption–desorption isotherm. The effects of various factors such as the concentration of (NH 4 ) 2 HPO 4 and the activation time of KOH were also evaluated. These results demonstrated that the synthesized ACFs retained the fibrous morphology of silkworm cocoon waste, and exhibited highly defective graphite layer structure. A large amount of surface oxygen-containing functional groups were found on the ACFs surface. The obtained samples exhibited high BET surface areas ranging from 1153 to 2797 m 2  g −1 , total pore volumes of 0.64–1.74 cm 3  g −1 with mic