WorldWideScience

Sample records for fiber rope barrier

  1. DNA analysis of natural fiber rope.

    Science.gov (United States)

    Dunbar, Mignon; Murphy, Terence M

    2009-01-01

    When rope is found at a crime scene, the type of fiber is currently identified through its microscopic characteristics. However, these characteristics may not always unambiguously distinguish some types of rope from others. If rope samples contain cells from the plants of origin, then DNA analysis may prove to be a better way to identify the type of rope obtained from a crime scene. The objective of this project was to develop techniques of DNA analysis that can be used to differentiate between ropes made from Cannabis sativa L. (hemp), Agave sisalana Perrine (sisal), Musa textilis Née (abaca, "Manila hemp"), Linum usitatissimum L. (flax), and Corchorus olitorus L. (jute). The procedures included extracting the DNA from the rope, performing polymerase chain reaction (PCR) using the extracted DNA as a template, and analyzing the DNA products. A primer pair for PCR, chosen from within a chloroplast gene for the large subunit of ribulose bisphosphate carboxylase/oxygenase, was designed to be specific for plant DNA and complementary to the genes from all five plants. The resulting PCR fragments were approximately 771 base pairs long. The PCR fragments, distinguished through base sequence analysis or restriction enzyme analysis, could be used to identify the five different rope types. The procedure provides a useful addition to visual methods of comparing rope samples.

  2. Mussel Spat Ropes Assist Redfin Bully Gobiomorphus huttoni Passage through Experimental Culverts with Velocity Barriers

    Directory of Open Access Journals (Sweden)

    Jonathan D. Tonkin

    2012-09-01

    Full Text Available The application of mussel spat rope for enabling the passage of redfin bully Gobiomorphus huttoni through culverts, which create velocity barriers, was trialled in the laboratory. No fish were able to access the un-roped control pipes whereas 52% successfully negotiated the pipes in the rope treatments. The success of fish ascending treatment pipes suggests mussel spat rope may be effective for enabling the passage of this and other similar fish species through otherwise impassable culverts with velocity barriers.

  3. Mechanical Properties of Coir Rope-Glass Fibers Reinforced Polymer Hybrid Composites

    Directory of Open Access Journals (Sweden)

    B.Bakri

    2015-10-01

    Full Text Available Natural fiber composites have been developed and taken more attention in the last decades. Coir fiber is the natural fiber which has been used as reinforcement of composites. This fiber is hybridized with glass fiber for reinforcement composite. In this paper, coir rope and glass fibers were combined as reinforcement into hybrid composites with unsaturated polyester resin as matrix. The composition of fibers and matrix into hybrid composites are used 30:70 (volume fraction with unsaturated polyester. Volume fractions of coir rope mat and glass fiber mat in hybrid composites are 10:20, 15:15 and 20:10 respectively. The mechanical properties of the coir rope-glass fiber composite hybrid were described in this paper. Their properties include tensile strength, tensile modulus, flexural strength, flexural modulus, impact energy and impact strength. Fractography of tensile composite hybrid is also analyzed using Scanning Electron Microscope.

  4. Mussel Spat Ropes Assist Redfin Bully Gobiomorphus huttoni Passage through Experimental Culverts with Velocity Barriers

    Directory of Open Access Journals (Sweden)

    Liam A.H. Wright

    2012-09-01

    Full Text Available The application of mussel spat rope for enabling the passage of redfin bully Gobiomorphus huttoni through culverts, which create velocity barriers, was trialled in the laboratory. No fish were able to access the un-roped control pipes whereas 52% successfully negotiated the pipes in the rope treatments. The success of fish ascending treatment pipes suggests mussel spat rope may be effective for enabling the passage of this and other similar fish species through otherwise impassable culverts with velocity barriers.

  5. MNASA as a Test for Carbon Fiber Thermal Barrier Development

    Science.gov (United States)

    Bauer, Paul; McCool, Alex (Technical Monitor)

    2001-01-01

    A carbon fiber rope thermal barrier is being evaluated as a replacement for the conventional room temperature vulcanizing (RTV) thermal barrier that is currently used to protect o-rings in Reusable Solid Rocket Motor (RSRM) nozzle joints. Performance requirements include its ability to cool any incoming, hot propellant gases that fill and pressurize the nozzle joints, filter slag and particulates, and to perform adequately in various joint assembly conditions as well as dynamic flight motion. Modified National Aeronautics and Space Administration (MNASA) motors, with their inherent and unique ability to replicate select RSRM internal environment features, were an integral step in the development path leading to full scale RSRM static test demonstration of the carbon fiber rope (CFR) joint concept. These 1/4 scale RSRM motors serve to bridge the gap between the other classes of subscale test motors (extremely small and moderate duration, or small scale and short duration) and the critical asset RSRM static test motors. A series of MNASA tests have been used to demonstrate carbon fiber rope performance and have provided rationale for implementation into a full-scale static motor and flight qualification.

  6. Advanced Fibers, Anti-Friction Materials and Jackets for Navy Ropes

    Science.gov (United States)

    2005-01-20

    Zylon (polybenzoxazole or PBO) and Vectran (a liquid crystal polymer or LCP). Single fibers have been tested extensively, using a custom designed device...important since we want to use the BOB rope from Cortland Cable and apply a single treatment to a mix of Vectran and Spectra. Zylon : - few results, but no...on Vectran, Spectra and Zylon using equivalent testing parameters. Even though a large amount of data was collected on Kevlar fibers with various

  7. Laboratory Performance Of Evaporative Cooler Using Jute Fiber Ropes As Cooling Media

    OpenAIRE

    Kulkarni, R K; S.P.S. Rajput

    2014-01-01

    Evaporative coolers use a variety of cooling media like wood wool, cellulose, aspen. This paper analyses the performance of jute fiber ropes as alternative cooling media. They are capable of retaining high moisture and have a large wetted surface area. Hot and dry air is allowed to flow over the wet jute rope bank tightly held between two plates which are integral part of two tanks. The inlet conditions of air varied from 30.5 0C dry bulb temperature and 52 % relative humidity to ...

  8. Deterioration of Synthetic Fiber Rope during Marine Usage

    Science.gov (United States)

    1981-12-31

    essential to establish such changes and to 3.27 determine their effect on subsequent constitutive behavior of the filaments involved. Future Plans Further...explore the fatigue behavior of higher order rope structures, both in theory and in experiment, The approach being taken is to consider fatigue failure...of Pneumatic Tires, Edited by S. Clark, N.B.S. Monograp 12,2, Washington, D.C. (1971). 6.3 Treloar , L.R.G. and Riding, G., A Theory of the Stresm

  9. Laboratory Performance Of Evaporative Cooler Using Jute Fiber Ropes As Cooling Media

    Directory of Open Access Journals (Sweden)

    R.K.Kulkarni

    2014-12-01

    Full Text Available Evaporative coolers use a variety of cooling media like wood wool, cellulose, aspen. This paper analyses the performance of jute fiber ropes as alternative cooling media. They are capable of retaining high moisture and have a large wetted surface area. Hot and dry air is allowed to flow over the wet jute rope bank tightly held between two plates which are integral part of two tanks. The inlet conditions of air varied from 30.5 0C dry bulb temperature and 52 % relative humidity to 34.5 0C dry bulb temperature and 32 % relative humidity. Outlet temperature of air is measured and saturation efficiency and cooling capacity are calculated. The outlet dry bulb temperature is obtained between 25.8 0C and 26.2 0C.The saturation efficiencies range from 69 % to 59 % and the cooling capacity is obtained between 6173 kJ/h and 11979 kJ/h. Thus jute fiber ropes prove to be a good alternative cooling media in evaporative cooler

  10. Measurement of Restricted Atmospheric Barrier Discharge in Nonwoven Fiber Pores

    Science.gov (United States)

    Kawabe, Masaaki

    The restricted dielectric barrier discharge in nonwoven pores has been investigated by observation of the current pulse, the Lissajous figure and light emissions. The current pulse measurement revealed that homogeneity of the discharge was relatively high and the amount of individual pulse was quite small on the order of 0.01nC. Such a small current pulse demonstrates that nonwoven fiber is effective as a dielectric barrier. Analysis of the Lissajous figure, indicates the calculated value of the gap voltage for the discharge starting point of nonwoven fiber layers is close to what was predicted using the Paschen curve. On the other hand, the measured value of the gap voltage in the Lissajous figure is larger than its calculated value, so the surface charge on the dielectrics dissipated relatively fast. The observations of light emissions also showed a high homogeneity.

  11. A Dietary Fiber-Deprived Gut Microbiota Degrades the Colonic Mucus Barrier and Enhances Pathogen Susceptibility.

    Science.gov (United States)

    Desai, Mahesh S; Seekatz, Anna M; Koropatkin, Nicole M; Kamada, Nobuhiko; Hickey, Christina A; Wolter, Mathis; Pudlo, Nicholas A; Kitamoto, Sho; Terrapon, Nicolas; Muller, Arnaud; Young, Vincent B; Henrissat, Bernard; Wilmes, Paul; Stappenbeck, Thaddeus S; Núñez, Gabriel; Martens, Eric C

    2016-11-17

    Despite the accepted health benefits of consuming dietary fiber, little is known about the mechanisms by which fiber deprivation impacts the gut microbiota and alters disease risk. Using a gnotobiotic mouse model, in which animals were colonized with a synthetic human gut microbiota composed of fully sequenced commensal bacteria, we elucidated the functional interactions between dietary fiber, the gut microbiota, and the colonic mucus barrier, which serves as a primary defense against enteric pathogens. We show that during chronic or intermittent dietary fiber deficiency, the gut microbiota resorts to host-secreted mucus glycoproteins as a nutrient source, leading to erosion of the colonic mucus barrier. Dietary fiber deprivation, together with a fiber-deprived, mucus-eroding microbiota, promotes greater epithelial access and lethal colitis by the mucosal pathogen, Citrobacter rodentium. Our work reveals intricate pathways linking diet, the gut microbiome, and intestinal barrier dysfunction, which could be exploited to improve health using dietary therapeutics.

  12. Liquid rope coiling

    NARCIS (Netherlands)

    N.M. Ribe; M. Habibi; D. Bonn

    2012-01-01

    A thin stream or rope of viscous fluid falling from a sufficient height onto a surface forms a steadily rotating helical coil. Tabletop laboratory experiments in combination with a numerical model for slender liquid ropes reveal that finite-amplitude coiling can occur in four distinct regimes (visco

  13. Reinforcing Effect of Glass Fiber-incorporated ProRoot MTA and Biodentine as Intraorifice Barriers.

    Science.gov (United States)

    Nagas, Emre; Cehreli, Zafer C; Uyanik, Ozgur; Vallittu, Pekka K; Lassila, Lippo V J

    2016-11-01

    The purpose of this study was to investigate the fracture resistance of roots by using intraorifice barriers with glass fiber-incorporated ProRoot MTA and Biodentine. The diametral tensile strength and compressive strength of ProRoot MTA and Biodentine were determined after incorporation of 5 wt% and 10 wt% alkali resistant (AR) glass fiber powder into both cements. On the basis of higher diametral tensile strength and compressive strength values, ProRoot MTA and Biodentine with 5 wt% AR glass fiber were selected for further testing as intraorifice barriers. The 14-mm-long root specimens obtained from extracted mandibular premolars (n = 60) were prepared with nickel-titanium rotary files and obturated with gutta-percha + AH Plus sealer. After removal of coronal 3 mm of root fillings, the roots were grouped with respect to the intraorifice barrier material (n = 12/group): (1) ProRoot MTA, (2) ProRoot MTA with 5 wt% AR glass fibers, (3) Biodentine, (4) Biodentine with 5 wt% AR glass fibers, and (5) control (no intraorifice barrier). The specimens were loaded vertically at 1 mm/min crosshead speed until vertical root fracture occurred. The data were evaluated statistically by using 2-way analysis of variance and Tukey tests. Both incorporation of glass fiber and the type of material significantly affected fracture resistance (both P = .002). Roots with glass fiber-reinforced Biodentine barriers showed the highest fracture strength (P = .000). Incorporation of 5 wt% AR glass fiber can significantly improve the reinforcement effect of ProRoot MTA and Biodentine when used as intraorifice barriers. Copyright © 2016 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  14. Mechanical and Barrier Properties of Epoxy/ultra-short Glass Fibers Composite Coatings

    Institute of Scientific and Technical Information of China (English)

    Yongsheng Hao; Fuchun Liu; En-Hou Han

    2012-01-01

    Epoxy coatings containing different volume fractions of ultra-short glass fibers were prepared successfully. Ultra-short glass fiber not only can improve the hardness, adhesion of the coating, and glass transition tem-perature (Tg), but also can decrease the coefficient of thermal expansion (CTE) of the coating. Electrochemical impedance spectroscopy (EIS) was used to evaluate the barrier properties of the coatings containing different volume fractions of ultra-short glass fibers. The EIS results showed that the coating had the best barrier property when it contained 20% (volume fraction) ultra-short glass fibers. The functions of the ultra-short glass fibers in epoxy coating are two fold: first, they can improve the coating mechanical properties as reinforcement materials; second, they parallel to the substrate and inhibit the corrosive medium to pass through the coating.

  15. Application of diffusion barriers to the refractory fibers of tungsten, columbium, carbon and aluminum oxide

    Science.gov (United States)

    Douglas, F. C.; Paradis, E. L.; Veltri, R. D.

    1973-01-01

    A radio frequency powered ion-plating system was used to plate protective layers of refractory oxides and carbide onto high strength fiber substrates. Subsequent overplating of these combinations with nickel and titanium was made to determine the effectiveness of such barrier layers in preventing diffusion of the overcoat metal into the fibers with consequent loss of fiber strength. Four substrates, five coatings, and two metal matrix materials were employed for a total of forty material combinations. The substrates were tungsten, niobium, NASA-Hough carbon, and Tyco sapphire. The diffusion-barrier coatings were aluminum oxide, yttrium oxide, titanium carbide, tungsten carbide with 14% cobalt addition, and zirconium carbide. The metal matrix materials were IN 600 nickel and Ti 6/4 titanium. Adhesion of the coatings to all substrates was good except for the NASA-Hough carbon, where flaking off of the oxide coatings in particular was observed.

  16. Solar Magnetic Flux Ropes

    Indian Academy of Sciences (India)

    Boris Filippov; Olesya Martsenyuk; Abhishek K. Srivastava; Wahab Uddin

    2015-03-01

    In the early 1990s, it was found that the strongest disturbances of the space–weather were associated with huge ejections of plasma from the solar corona, which took the form of magnetic clouds when moved from the Sun. It is the collisions of the magnetic clouds with the Earth's magnetosphere that lead to strong, sometimes catastrophic changes in space–weather. The onset of a coronal mass ejection (CME) is sudden and no reliable forerunners of CMEs have been found till date. The CME prediction methodologies are less developed compared to the methods developed for the prediction of solar flares. The most probable initial magnetic configuration of a CME is a flux rope consisting of twisted field lines which fill the whole volume of a dark coronal cavity. The flux ropes can be in stable equilibrium in the coronal magnetic field for weeks and even months, but suddenly they lose their stability and erupt with high speed. Their transition to the unstable phase depends on the parameters of the flux rope (i.e., total electric current, twist, mass loading, etc.), as well as on the properties of the ambient coronal magnetic field. One of the major governing factors is the vertical gradient of the coronal magnetic field, which is estimated as decay index (). Cold dense prominence material can be collected in the lower parts of the helical flux tubes. Filaments are, therefore, good tracers of the flux ropes in the corona, which become visible long before the beginning of the eruption. The perspectives of the filament eruptions and following CMEs can be estimated by a comparison of observed filament heights with calculated decay index distributions. The present paper reviews the formation of magnetic flux ropes, their stable and unstable phases, eruption conditions, and also discusses their physical implications in the solar corona.

  17. Operative treatment of acute acromioclavicular dislocations Rockwood III and V-Comparative study between K-wires combined with FiberTape(®) vs. TightRope System(®).

    Science.gov (United States)

    Vrgoč, G; Japjec, M; Jurina, P; Gulan, G; Janković, S; Šebečić, B; Starešinić, M

    2015-11-01

    Acromioclavicular (AC) joint dislocations usually occur in a young active population as a result of a fall on the shoulder. Rockwood divided these dislocations into six types. Optimal treatment is still a matter of discussion. Many operative techniques have been developed, but the main choice is between open and minimally-invasive arthroscopic procedures. The aim of this study was to compare two different surgical methods on two groups of patients to find out which method is superior in terms of benefit to the patient. The methods were evaluated through objective and subjective scores, with a focus on complications and material costs. A retrospective two-centre study was conducted in patients with acute AC joint dislocation Rockwood types III and V. The two methods conducted were an open procedure using K-wires combined with FiberTape(®) (Arthrex, Naples, USA) (Group 1) and an arthroscopic procedure using the TightRope System(®) (Arthrex, Naples, USA) (Group 2). Groups underwent procedures during a two-year period. Diagnosis was based on the clinical and radiographic examination of both AC joints. Surgical treatment and rehabilitation were performed. Sixteen patients were included in this study: Group 1 comprised 10 patients, all male, average age 41.6 years (range 17-64 years), Rockwood type III (eight patients) and Rockwood type V (two patients); Group 2 had six patients, one female and five male, average age 37.8 years (range 18-58 years), Rockwood type III (two patients) and Rockwood type V (four patients). Time from injury to surgery was shorter and patients needed less time to return to daily activities in Group 1. Duration of the surgical procedure was shorter in Group 2 compared with Group 1. Complications of each method were noted. According to the measured scores and operative outcome between dislocation Rockwood type III and V, no significant difference was found. Implant material used in Group 2 was 4.7 times more expensive than that used in Group 1

  18. Improving the Interfacial Mechanical Property of Fiber Reinforced Cement with Dielectric Barrier Discharge 2: Morphological and Compositional Changes of the Fiber Surface

    Institute of Scientific and Technical Information of China (English)

    丁可; 胡群华; 谢涵坤

    2001-01-01

    The morphological and compositional changes of the PP fibers pretreated with dielectric barrier discharge (DBD)are investigated with SEM, XPS and IR. The result shows that the etching effect is the main reason for the improvement of the result of pull-out test of the fibercement composite reported in a previous paper and the oxidation of the fiber surface also favors the adhesion between the fiber and the matrix.

  19. Mechanical Rope and Cable

    Science.gov (United States)

    1975-04-01

    factors, singly or in combinations. These factors may include tensile load, bend radius, crushing load, bearing pressure, dynamic conditions, fatigue... bearing pressures imposed upon rope in service generally are not determined readily and the few systems available for measuring these parameters are of...C111ARACTcs-V13COUS (normal); gummy ; caked 1. Good Normal amount as in new lope. A. Good C.rrasy and flrxihle. Well lubricated. 2. Fair Lubricant

  20. Tensile Property Analysis and Prediction Model Building for Coir Rope Reinforced Unsaturated Polyester Composite

    Directory of Open Access Journals (Sweden)

    Jia Yao

    2014-12-01

    Full Text Available Because of the light weight and environmental advantages of natural fibers, an increasing amount of natural fibers have been used to replace synthetic fibers in reinforced unsaturated polyester (UPE. Because of the impact property advantage of coir fibers, coir toughened UPE composites can achieve excellent impacting toughness, but at the cost of a lower tensile performance. In order to get the better comprehensive performance, the tensile strength must be maintained in a higher level, so coir ropes as an appropriate reinforced form were added to UPE matrix. The different weight-percent contents for the coir rope addition were set to achieve coir rope reinforced UPE composites with different coir contents. The tensile test results showed increasing tensile strength with the increased content of coir ropes. To reasonably and accurately predict the composite performance, taking the original performance prediction model based on a continuous reinforced fiber composite (using the Classical Mixed Law as a reference and assuming each coir rope was ideally continuous fiber, the destructive principle of coir rope reinforced UPE composite under the action of tensile load was analyzed and the tensile failure mechanics model was improved. According to the experimental proof, the new model can be proven to have higher precision accuracy, which can provide new train of thought for the building of the theoretical models for natural fiber reinforced composites, thus guiding the actual production application.

  1. Specific inulin-type fructan fibers protect against autoimmune diabetes by modulating gut immunity, barrier function, and microbiota homeostasis

    NARCIS (Netherlands)

    Chen, Kang; Chen, Hao; Faas, Marijke M; de Haan, Bart J; Li, Jiahong; Xiao, Ping; Zhang, Hao; Diana, Julien; de Vos, Paul; Sun, Jia

    2017-01-01

    Scope: Dietary fibers capable of modifying gut barrier and microbiota homeostasis affect the progression of type 1 diabetes (T1D). Here, we aim to compare modulatory effects of inulin-type fructans (ITFs), natural soluble dietary fibers with different degrees of fermentability from chicory root, on

  2. Miniaturization of cellulose fibers and effect of addition on the mechanical and barrier properties of hydroxypropyl methylcellulose

    Science.gov (United States)

    Cellulose fibers were miniaturized by microfluidics technology and incorporated in hydroxypropyl methylcellulose (HPMC) films to study the effect of the addition of such fibers on the mechanical and barrier properties of HPMC films suitable for food packaging applications. The particle size of the f...

  3. Specific inulin-type fructan fibers protect against autoimmune diabetes by modulating gut immunity, barrier function, and microbiota homeostasis

    NARCIS (Netherlands)

    Chen, Kang; Chen, Hao; Faas, Marijke M; de Haan, Bart J; Li, Jiahong; Xiao, Ping; Zhang, Hao; Diana, Julien; de Vos, Paul; Sun, Jia

    Scope: Dietary fibers capable of modifying gut barrier and microbiota homeostasis affect the progression of type 1 diabetes (T1D). Here, we aim to compare modulatory effects of inulin-type fructans (ITFs), natural soluble dietary fibers with different degrees of fermentability from chicory root, on

  4. Team Sports--Jump Roping.

    Science.gov (United States)

    Nebraska State Dept. of Education, Lincoln.

    Rope skipping contributes to the development of agility, coordination, rhythm, and endurance. It is practical and fun for both sexes. A high degree of motor ability, excellent timing, precision of movement, cooperation, perseverance, and concentration are required. This guide describes rope skipping variations and games, including chants and songs…

  5. Wire ropes tension, endurance, reliability

    CERN Document Server

    Feyrer, Klaus

    2015-01-01

    The main goal of this book is to present the methods used to calculate the most important parameters for ropes, and to explain how they are applied on the basis of numerous sample calculations. The book, based on the most important chapters of the German book DRAHTSEILE, has been updated to reflect the latest developments, with the new edition especially focusing on computational methods for wire ropes. Many new calculations and examples have also been added to facilitate the dimensioning and calculation of mechanical characteristics of wire ropes. This book offers a valuable resource for all those working with wire ropes, including construction engineers, operators and supervisors of machines and installations involving wire ropes.

  6. A Reconnecting Flux Rope Dynamo

    OpenAIRE

    Baggaley, Andrew W.; Barenghi, Carlo F.; Shukurov, Anvar; Subramanian, Kandaswamy

    2009-01-01

    We develop a new model of the fluctuation dynamo in which the magnetic field is confined in thin flux ropes advected by a multi-scale flow modeling turbulence. Magnetic dissipation occurs only via reconnection of the flux ropes. We investigate the kinetic energy release into heat, mediated by the dynamo action, both in our model and by solving the induction equation with the same flow. We find that a flux rope dynamo is an order of magnitude more efficient at converting mechanical energy into...

  7. Continuous micron-scaled rope engineering using a rotating multi-nozzle electrospinning emitter

    Science.gov (United States)

    Zhang, Chunchen; Gao, Chengcheng; Chang, Ming-Wei; Ahmad, Zeeshan; Li, Jing-Song

    2016-10-01

    Electrospinning (ES) enables simple production of fibers for broad applications (e.g., biomedical engineering, energy storage, and electronics). However, resulting structures are predominantly random; displaying significant disordered fiber entanglement, which inevitably gives rise to structural variations and reproducibility on the micron scale. Surface and structural features on this scale are critical for biomaterials, tissue engineering, and pharmaceutical sciences. In this letter, a modified ES technique using a rotating multi-nozzle emitter is developed and utilized to fabricate continuous micron-scaled polycaprolactone (PCL) ropes, providing control on fiber intercalation (twist) and structural order. Micron-scaled ropes comprising 312 twists per millimeter are generated, and rope diameter and pitch length are regulated using polymer concentration and process parameters. Electric field simulations confirm vector and distribution mechanisms, which influence fiber orientation and deposition during the process. The modified fabrication system provides much needed control on reproducibility and fiber entanglement which is crucial for electrospun biomedical materials.

  8. Safe use of mine winding ropes, volume 3: rope terminations.

    CSIR Research Space (South Africa)

    Borrello, M

    1996-04-01

    Full Text Available and evaluating a less labour intensive, less skill dependent termination with better efficiencies. The work carried out here investigated the applicability of resin and white metal cappings as rope terminations on South African mines....

  9. CONDITION MONITORING AND FAULT DIAGNOSIS FOR TENSION UNBALANCE OF ROPES IN MULTI-ROPE FRICTION WINDER

    Institute of Scientific and Technical Information of China (English)

    杨兆建; 王勤贤; 任芳

    1997-01-01

    This paper analyzes the reasons of the tension unbalance of the ropes in multi-rope friction winder, introduces the method of an on-line monitoring rope tensions with a testing device developed by authors, and proposes the criteria of the fault diagnosis and the method of adjustment for the tension unbalance of the ropes, which is important to the theoretical study on the tension unbalance of the ropes and the maintenance of multi-rope winder.

  10. On sphere-filling ropes

    CERN Document Server

    Gerlach, Henryk

    2010-01-01

    What is the longest rope on the unit sphere? Intuition tells us that the answer to this packing problem depends on the rope's thickness. For a countably infinite number of prescribed thickness values we construct and classify all solution curves. The simplest ones are similar to the seamlines of a tennis ball, others exhibit a striking resemblance to Turing patterns in chemistry, or to ordered phases of long elastic rods stuffed into spherical shells.

  11. Changing the functional state of the pupils of high classes during the passage of obstacles rope park

    Directory of Open Access Journals (Sweden)

    Kozina Zh.L.

    2012-03-01

    Full Text Available The influence of training in rope parks on parameters of heart rate and reaction rate high school students. A measurement of heart rate monitor using the continuous recording of heart rate «Polar» during the rope obstacles Park students. Also, the reaction rate was measured before and after passing obstacles rope park students on the program "Psychodiagnostics". In the study involved 42 student of 10th class of the Kharkiv school N140. Research conducted at the park Kharkov «S-Park." Found that the passage of rope barriers provides functional load, which corresponds to the average load of aerobic capacity. Heart rate during the obstacle is in the range 130-150 beatsmin-1. Passing the rope stages has stimulating effect on the functional status of school children, as evidenced by the increasing speed of complex reactions. Classes in rope parks can be used more widely in the system of physical education.

  12. Discard criteria for mine winder ropes.

    CSIR Research Space (South Africa)

    Van Zyl, M

    2000-09-01

    Full Text Available to be able to establish and propose proper discard criteria for broken wires in non-spin ropes. The discard criteria for broken wires in SABS0293 were based on a 10% reduction in strength of a rope. An expectation was therefore created that by complying... with these discard criteria, a rope would not fail as long as the rope loads did not exceed 90% of the new rope breaking strength. However, it is shown in this report that rope strands with "allowable" broken wires could fail at loads considerably lower than 90...

  13. 30 CFR 77.1431 - Minimum rope strength.

    Science.gov (United States)

    2010-07-01

    ... Hoisting Wire Ropes § 77.1431 Minimum rope strength. At installation, the nominal strength (manufacturer's published catalog strength) of wire ropes used for hoisting shall meet the minimum rope strength values...=Static Load×4.0 (b) Friction drum ropes. For rope lengths less than 4,000 feet: Minimum Value=Static Load...

  14. 30 CFR 57.19021 - Minimum rope strength.

    Science.gov (United States)

    2010-07-01

    ... Hoisting Wire Ropes § 57.19021 Minimum rope strength. At installation, the nominal strength (manufacturer's published catalog strength) of wire ropes used for hoisting shall meet the minimum rope strength values...=Static Load×4.0. (b) Friction drum ropes. For rope lengths less than 4,000 feet: Minimum Value=Static...

  15. Method and device for detecting impact events on a security barrier which includes a hollow rebar allowing insertion and removal of an optical fiber

    Science.gov (United States)

    Pies, Ross E.

    2016-03-29

    A method and device for the detection of impact events on a security barrier. A hollow rebar is farmed within a security barrier, whereby the hollow rebar is completely surrounded by the security barrier. An optical fiber passes through the interior of the hollow rebar. An optical transmitter and an optical receiver are both optically connected to the optical fiber and connected to optical electronics. The optical electronics are configured to provide notification upon the detection of an impact event at the security barrier based on the detection of disturbances within the optical fiber.

  16. Experimental Snap Loading of Synthetic Ropes

    Directory of Open Access Journals (Sweden)

    C.M. Hennessey

    2005-01-01

    Full Text Available Large tensile forces, known as snap loads, can occur when a slack rope becomes taut. Such forces may damage the rope or masses connected to it. Experiments are described in which one end of a rope is attached to the top of a drop tower and the bottom end is attached to a weight. The weight is raised to a certain height and then released. The force at the top of the rope and the acceleration of the weight are recorded during the first snap load that occurs. Repeated drop tests are performed on each rope. The effects of the type of rope, drop height, drop weight, whether the rope has been subjected to static precycling, and the number of previous dynamic tests are examined. A mathematical model is proposed for the rope force as a function of the displacement and velocity of the weight.

  17. Physics of Magnetic Flux Ropes

    CERN Document Server

    Priest, E R; Lee, L C

    1990-01-01

    The American Geophysical Union Chapman Conference on the Physics of Magnetic Flux Ropes was held at the Hamilton Princess Hotel, Hamilton, Bermuda on March 27–31, 1989. Topics discussed ranged from solar flux ropes, such as photospheric flux tubes, coronal loops and prominences, to flux ropes in the solar wind, in planetary ionospheres, at the Earth's magnetopause, in the geomagnetic tail and deep in the Earth's magnetosphere. Papers presented at that conference form the nucleus of this book, but the book is more than just a proceedings of the conference. We have solicited articles from all interested in this topic. Thus, there is some material in the book not discussed at the conference. Even in the case of papers presented at the conference, there is generally a much more detailed and rigorous presentation than was possible in the time allowed by the oral and poster presentations.

  18. A Reconnecting Flux Rope Dynamo

    CERN Document Server

    Baggaley, Andrew W; Shukurov, Anvar; Subramanian, Kandaswamy

    2009-01-01

    We develop a new model of the fluctuation dynamo in which the magnetic field is confined in thin flux ropes advected by a multi-scale flow modeling turbulence. Magnetic dissipation occurs only via reconnection of the flux ropes. We investigate the kinetic energy release into heat, mediated by the dynamo action, both in our model and by solving the induction equation with the same flow. We find that a flux rope dynamo is an order of magnitude more efficient at converting mechanical energy into heat. The probability density of the magnetic energy release in reconnections has a power-law form with the slope -3, consistent with the Solar corona heating by nanoflares.

  19. Reconnecting flux-rope dynamo

    Science.gov (United States)

    Baggaley, Andrew W.; Barenghi, Carlo F.; Shukurov, Anvar; Subramanian, Kandaswamy

    2009-11-01

    We develop a model of the fluctuation dynamo in which the magnetic field is confined to thin flux ropes advected by a multiscale model of turbulence. Magnetic dissipation occurs only via reconnection of the flux ropes. This model can be viewed as an implementation of the asymptotic limit Rm→∞ for a continuous magnetic field, where magnetic dissipation is strongly localized to small regions of strong-field gradients. We investigate the kinetic-energy release into heat mediated by the dynamo action, both in our model and by solving the induction equation with the same flow. We find that a flux-rope dynamo is an order of magnitude more efficient at converting mechanical energy into heat. The probability density of the magnetic energy release in reconnections has a power-law form with the slope -3 , consistent with the solar corona heating by nanoflares.

  20. Reconnecting flux-rope dynamo.

    Science.gov (United States)

    Baggaley, Andrew W; Barenghi, Carlo F; Shukurov, Anvar; Subramanian, Kandaswamy

    2009-11-01

    We develop a model of the fluctuation dynamo in which the magnetic field is confined to thin flux ropes advected by a multiscale model of turbulence. Magnetic dissipation occurs only via reconnection of the flux ropes. This model can be viewed as an implementation of the asymptotic limit R_{m}-->infinity for a continuous magnetic field, where magnetic dissipation is strongly localized to small regions of strong-field gradients. We investigate the kinetic-energy release into heat mediated by the dynamo action, both in our model and by solving the induction equation with the same flow. We find that a flux-rope dynamo is an order of magnitude more efficient at converting mechanical energy into heat. The probability density of the magnetic energy release in reconnections has a power-law form with the slope -3 , consistent with the solar corona heating by nanoflares.

  1. Strawberry Shortcake and Other Jumping Rope Ideas.

    Science.gov (United States)

    Adams, Polly K.; Taylor, Michaell K.

    Information, guidelines, and activities for jumping rope are given. A short history of jumping rope explains how it evolved from a spring ritual for men to a play activity involving mostly young girls. Physical and cultural reasons are given as to why jumping rope has been more a sport for girls than for boys. Research studies are noted which show…

  2. Strawberry Shortcake and Other Jumping Rope Ideas.

    Science.gov (United States)

    Adams, Polly K.; Taylor, Michaell K.

    Information, guidelines, and activities for jumping rope are given. A short history of jumping rope explains how it evolved from a spring ritual for men to a play activity involving mostly young girls. Physical and cultural reasons are given as to why jumping rope has been more a sport for girls than for boys. Research studies are noted which show…

  3. The mechanics of trick roping

    Science.gov (United States)

    Brun, Pierre-Thomas

    2014-03-01

    Trick roping evolved from humble origins as a cattle-catching tool into a sport that delights audiences the world over with its complex patterns or ``tricks,'' such as the Merry-Go-Round , the Wedding-Ring, the Spoke-Jumping, the Texas Skip... Its implement is the lasso, a length of rope with a small loop (``honda'') at one end through which the other end is passed to form a large loop. Here, we study the physics of the simplest rope trick, the Flat Loop, in which the motion of the lasso is forced by a uniform circular motion of the cowboy's/cowgirl's hand in a horizontal plane. To avoid accumulating twist in the rope, the cowboy/cowgirl rolls it between his/her thumb and forefinger while spinning it. The configuration of the rope is stationary in a reference frame that rotates with the hand. Exploiting this fact we derive a dynamical ``string'' model in which line tension is balanced by the centrifugal force and the rope's weight. Using a numerical continuation method, we calculate the steady shapes of a lasso with a fixed honda, examine their stability, and determine a bifurcation diagram exhibiting coat-hanger shapes and whirling modes in addition to flat loops. We then extend the model to a honda with finite sliding friction by using matched asymptotic expansions to determine the structure of the boundary layer where bending forces are significant, thereby obtaining a macroscopic criterion for frictional sliding of the honda. We compare our theoretical results with high-speed videos of a professional trick roper and experiments performed using a laboratory ``robo-cowboy.'' Finally, we conclude with a practical guidance on how to spin a lasso in the air based on the results of our analysis. With the support of Univ. Paris Sud (Lab. FAST/CNRS) and UPMC (d'Alembert/CNRS).

  4. Learning the Ropes with Electricity

    Science.gov (United States)

    Carrier, Sarah; Rex, Ted

    2013-01-01

    This article presents a lesson plan that uses materials such as rope, drinking water, and straws in a classroom activity to teach elementary students about electrical circuits in a "hands on/minds on" fashion. Students first experiment with bulbs, wires, and switches, then they do an activity with simulating electricity through a circuit…

  5. Learning the Ropes with Electricity

    Science.gov (United States)

    Carrier, Sarah; Rex, Ted

    2013-01-01

    This article presents a lesson plan that uses materials such as rope, drinking water, and straws in a classroom activity to teach elementary students about electrical circuits in a "hands on/minds on" fashion. Students first experiment with bulbs, wires, and switches, then they do an activity with simulating electricity through a circuit…

  6. Degradation of triclosan in aqueous solution by dielectric barrier discharge plasma combined with activated carbon fibers.

    Science.gov (United States)

    Xin, Lu; Sun, Yabing; Feng, Jingwei; Wang, Jian; He, Dong

    2016-02-01

    The degradation of triclosan (TCS) in aqueous solution by dielectric barrier discharge (DBD) plasma with activated carbon fibers (ACFs) was investigated. In this study, ACFs and DBD plasma coexisted in a planar DBD plasma reactor, which could synchronously achieve degradation of TCS, modification and in situ regeneration of ACFs, enhancing the effect of recycling of ACFs. The properties of ACFs before and after modification by DBD plasma were characterized by BET and XPS. Various processing parameters affecting the synergetic degradation of TCS were also investigated. The results exhibited excellent synergetic effects in DBD plasma-ACFs system on TCS degradation. The degradation efficiency of 120 mL TCS with initial concentration of 10 mg L(-1) could reach 93% with 1 mm thick ACFs in 18 min at input power of 80 W, compared with 85% by single DBD plasma. Meanwhile, the removal rate of total organic carbon increased from 12% at pH 6.26-24% at pH 3.50. ACFs could ameliorate the degradation efficiency for planar DBD plasma when treating TCS solution at high flow rates or at low initial concentrations. A possible degradation pathway of TCS was investigated according to the detected intermediates, which were identified by liquid chromatography-hybrid quadrupole time-of-flight mass spectrometry (LC-QTOF-MS) combined with theoretical calculation of Gaussian 09 program.

  7. Effects of surface modification by atmospheric oxygen dielectric barrier discharge plasma on PBO fibers and its composites

    Science.gov (United States)

    Liu, Zhe; Chen, Ping; Zhang, Xiaoliang; Yu, Qi; Ma, Keming; Ding, Zhenfeng

    2013-10-01

    In this paper, oxygen dielectric barrier discharge (oxy-DBD) plasma was employed to modify PBO fibers and enhance the interfacial adhesion of PBO fiber/bismaleimide composites. The interlaminar shear strength (ILSS) of the composites was improved greatly to 62.0 MPa with an increment of 41.2% at 30 W/cm3, 24 s. The SEM images of fracture morphology indicated that the failure place shifted from the interface to the matrix, and the water absorption decreased from 1.96 to 1.53%, the two results demonstrated the improved adhesive strength in other ways. In addition, the ILSS retention ratio of PBO/BMI composites after boiling in water were about 90%, confirming good humid resistance of the composites. The results obtained from XPS and AFM revealed that some polar groups were introduced onto PBO fibers and the surface morphology of PBO fibers was roughened. As a result, the wettability, reactivity and roughness of PBO fibers were all improved, they contributed to the improvement of the ILSS of the composites. The comparisons with air-DBD plasma showed that the chemical changes of PBO fibers were not alike because of different plasma gases.

  8. 30 CFR 75.1431 - Minimum rope strength.

    Science.gov (United States)

    2010-07-01

    ... MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Hoisting and Mantrips Wire Ropes § 75.1431 Minimum rope... used for hoisting shall meet the minimum rope strength values obtained by the following formulas in...) For rope lengths 3,000 feet or greater: Minimum Value=Static Load×4.0 (b) Friction drum ropes. For...

  9. MECHANICAL CHARACTERISTICS OF DYNAMIC CLIMBING ROPES

    Directory of Open Access Journals (Sweden)

    Stojan Burnik

    2011-08-01

    Full Text Available Climbing rope is certainly one of the most important pieces of climbing equipment. On market there are many manufacturers of dynamic climbing ropes and even more of their products. All the ropes meet the requirements of the standards, which ensure that the ropes are safe enough for use in climbing. However the requirements are set only under certain conditions. In reality climbing ropes are exposed to various conditions that are many times different to those set by the standards. Consequently there are many different falls, which lead to very different loads of impact. By using appropriate method of testing rope samples made by three different manufacturers we discovered that there are differences between all three manufacturers. This leads us to a suggestion that standards should be improved.

  10. The ancient art of laying rope

    CERN Document Server

    Bohr, Jakob

    2010-01-01

    We describe a hitherto overlooked geometrical property of helical structures and show how it accounts for the early art of ropemaking. Helices have a maximum number of rotations that can be added to them - and we show that it is a geometrical feature, not a material property. This geometrical insight explains why nearly identically appearing rope can be made from very different materials and it is also the reason behind the unyielding nature of ropes. The necessity for the rope to be stretched while being laid, known from Egyptian tomb scenes, follows straightforwardly, as does the function of the top, an old tool for laying ropes.

  11. Self-organization in magnetic flux ropes

    Science.gov (United States)

    Lukin, Vyacheslav S.

    2014-06-01

    This cross-disciplinary special issue on 'Self-organization in magnetic flux ropes' follows in the footsteps of another collection of manuscripts dedicated to the subject of magnetic flux ropes, a volume on 'Physics of magnetic flux ropes' published in the American Geophysical Union's Geophysical Monograph Series in 1990 [1]. Twenty-four years later, this special issue, composed of invited original contributions highlighting ongoing research on the physics of magnetic flux ropes in astrophysical, space and laboratory plasmas, can be considered an update on our state of understanding of this fundamental constituent of any magnetized plasma. Furthermore, by inviting contributions from research groups focused on the study of the origins and properties of magnetic flux ropes in a variety of different environments, we have attempted to underline both the diversity of and the commonalities among magnetic flux ropes throughout the solar system and, indeed, the universe. So, what is a magnetic flux rope? The answer will undoubtedly depend on whom you ask. A flux rope can be as narrow as a few Larmor radii and as wide as the Sun (see, e.g., the contributions by Heli Hietala et al and by Angelous Vourlidas). As described below by Ward Manchester IV et al , they can stretch from the Sun to the Earth in the form of interplanetary coronal mass ejections. Or, as in the Swarthmore Spheromak Experiment described by David Schaffner et al , they can fit into a meter-long laboratory device tended by college students. They can be helical and line-tied (see, e.g., Walter Gekelman et al or J Sears et al ), or toroidal and periodic (see, e.g., John O'Bryan et al or Philippa Browning et al ). They can form in the low plasma beta environment of the solar corona (Tibor Török et al ), the order unity beta plasmas of the solar wind (Stefan Eriksson et al ) and the plasma pressure dominated stellar convection zones (Nicholas Nelson and Mark Miesch). In this special issue, Setthivoine You

  12. Different buckling regimes in direct electrospinning: A comparative approach to rope buckling

    NARCIS (Netherlands)

    Shariatpanahi, S.P.; Etesami, Z.; Iraji zad, A.; Bonn, D.; Ejtehadi, M.R.

    2015-01-01

    Understanding the dynamics of direct electrospinning is the key to control fiber morphologies that are critical for the development of new electrospinning methods and novel materials. Here, we propose the theory for direct electrospinning based on theories for (liquid) "rope coiling" and experimenta

  13. Rope Jumping: A Preliminary Developmental Study.

    Science.gov (United States)

    Wickstrom, Ralph L.

    The basic movement pattern used in skilled individual rope jumping performance was determined and used as a model against which to evaluate the rope jumping form used by children at various levels of skills development. The techniques of adults and nursery school children were filmed and analyzed. The specific causes of unsuccessful attempts were…

  14. The aerodynamics of jumping rope

    Science.gov (United States)

    Aristoff, Jeffrey; Stone, Howard

    2011-03-01

    We present the results of a combined theoretical and experimental investigation of the motion of a rotating string that is held at both ends (i.e. a jump rope). In particular, we determine how the surrounding fluid affects the shape of the string at high Reynolds numbers: the string bends toward the axis of rotation, thereby reducing its total drag. We derive a pair of coupled non-linear differential equations that describe the shape, the numerical solution of which compares well with asymptotic approximations and experiments. Implications for successful skipping will be discussed.

  15. Histamine activates p38 MAP kinase and alters local lamellipodia dynamics, reducing endothelial barrier integrity and eliciting central movement of actin fibers.

    Science.gov (United States)

    Adderley, Shaquria P; Lawrence, Curtis; Madonia, Eyong; Olubadewo, Joseph O; Breslin, Jerome W

    2015-07-01

    The role of the actin cytoskeleton in endothelial barrier function has been debated for nearly four decades. Our previous investigation revealed spontaneous local lamellipodia in confluent endothelial monolayers that appear to increase overlap at intercellular junctions. We tested the hypothesis that the barrier-disrupting agent histamine would reduce local lamellipodia protrusions and investigated the potential involvement of p38 mitogen-activated protein (MAP) kinase activation and actin stress fiber formation. Confluent monolayers of human umbilical vein endothelial cells (HUVEC) expressing green fluorescent protein-actin were studied using time-lapse fluorescence microscopy. The protrusion and withdrawal characteristics of local lamellipodia were assessed before and after addition of histamine. Changes in barrier function were determined using electrical cell-substrate impedance sensing. Histamine initially decreased barrier function, lamellipodia protrusion frequency, and lamellipodia protrusion distance. A longer time for lamellipodia withdrawal and reduced withdrawal distance and velocity accompanied barrier recovery. After barrier recovery, a significant number of cortical fibers migrated centrally, eventually resembling actin stress fibers. The p38 MAP kinase inhibitor SB203580 attenuated the histamine-induced decreases in barrier function and lamellipodia protrusion frequency. SB203580 also inhibited the histamine-induced decreases in withdrawal distance and velocity, and the subsequent actin fiber migration. These data suggest that histamine can reduce local lamellipodia protrusion activity through activation of p38 MAP kinase. The findings also suggest that local lamellipodia have a role in maintaining endothelial barrier integrity. Furthermore, we provide evidence that actin stress fiber formation may be a reaction to, rather than a cause of, reduced endothelial barrier integrity.

  16. 30 CFR 56.19021 - Minimum rope strength.

    Science.gov (United States)

    2010-07-01

    ... MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Personnel Hoisting... published catalog strength) of wire ropes used for hoisting shall meet the minimum rope strength values...=Static Load×4.0 (b) Friction drum ropes. For rope lengths less than 4,000 feet: Minimum Value=Static Load...

  17. The "Owl Trail"--A Sensory Awareness Rope Trail

    Science.gov (United States)

    Kauffman, Robert B.

    1978-01-01

    Constructed and experienced by students engaged in an outdoor education class at East Stroudsburg State College in Pennsylvania, the "Owl Trail" is a self guided rope trail (600 yards in length) employing such devices as sensory corrals, bridges, and "go to" ropes (ropes attached to the main rope which provide side trip…

  18. Neutral detergent-soluble fiber improves gut barrier function in twenty-five-day-old weaned rabbits.

    Science.gov (United States)

    Gómez-Conde, M S; García, J; Chamorro, S; Eiras, P; Rebollar, P G; Pérez de Rozas, A; Badiola, I; de Blas, C; Carabaño, R

    2007-12-01

    The effect of neutral detergent-soluble fiber level on gut barrier function and intestinal microbiota was examined in weaned rabbits. A control diet (AH) containing 103 g of neutral detergent-soluble fiber/ kg of DM included alfalfa hay as main source of fiber. Another diet (B-AP) was formulated by replacing half of the alfalfa hay with a mixture of beet and apple pulp resulting in 131 g of soluble fiber/kg of DM. A third diet (OH) was obtained by substituting half of the alfalfa hay with a mix of oat hulls and a soybean protein concentrate and contained 79 g of soluble fiber/kg of DM. Rabbits weaned at 25 d and slaughtered at 35 d were used to determine ileal digestibility, jejunal morphology, sucrase activity, lamina propria lymphocytes, and intestinal microbiota. Suckling 35-d-old rabbits were used to assess mucosa morphology. Mortality (from weaning to 63 d of age) was also determined. Villous height of the jejunal mucosa increased with soluble fiber (P = 0.001). Rabbits fed with the greatest level of soluble fiber (BA-P diet) showed the highest villous height/ crypt depth ratio (8.14; P = 0.001), sucrase specific activity (8,671 mumol of glucose/g of protein; P = 0.019), and the greatest ileal starch digestibility (96.8%; P = 0.002). The opposite effects were observed in rabbits fed decreased levels of soluble fiber (AH and OH diets; 4.70, 5,848 mumol of glucose/g of protein, as average, respectively). The lowest ileal starch digestibility was detected for animals fed OH diet (93.2%). Suckling rabbits of the same age showed a lower villous height/crypt depth ratio (6.70) compared with the B-AP diet group, but this ratio was higher than the AH or OH diet groups. Lower levels of soluble fiber tended (P = 0.074) to increase the cellular immune response (CD8+ lymphocytes). Diet affected IL-2 production (CD25+, P = 0.029; CD5+CD25+, P = 0.057), with no clear relationship between soluble fiber and IL-2. The intestinal microbiota biodiversity was not affected by

  19. Cool and hot flux ropes, their helicity

    Science.gov (United States)

    Nindos, Alexander

    2016-07-01

    We will review recent indirect and direct evidence for the existence of magnetic flux ropes in the solar atmosphere. Magnetic flux ropes may appear as S-shaped or reverse S-shaped (sigmoidal) structures in regions that are likely to erupt, and may also show in nonlinear force-free field extrapolations that use data from photospheric vector magnetograms as boundary condition. The availability of high sensitivity data recorded with unprecedented spatial and temporal resolution in hot EUV wavelengths by the Atmospheric Imaging Assembly (AIA) onboard the Solar Dynamics Observatory (SDO) has revealed the existence of coherent structures identified as hot flux ropes. In this presentation, we will review the properties of both cool and hot flux ropes with an emphasis on the frequency of their occurrence in large flares and on their magnetic helicity content.

  20. The finite element modeling of spiral ropes

    Institute of Scientific and Technical Information of China (English)

    Juan Wu

    2014-01-01

    Accurate understanding the behavior of spiral rope is complicated due to their complex geometry and complex contact conditions between the wires. This study proposed the finite element models of spiral ropes subjected to tensile loads. The parametric equations developed in this paper were implemented for geometric modeling of ropes. The 3D geometric models with different twisting manner, equal diameters of wires were generated in details by using Pro/ENGINEER software. The results of the present finite element analysis were on an acceptable level of accuracy as compared with those of theoretical and experimental data. Further development is ongoing to analysis the equivalent stresses induced by twisting manner of cables. The twisting manner of wires was important to spiral ropes in the three wire layers and the outer twisting manner of wires should be contrary to that of the second layer, no matter what is the first twisting manner of wires.

  1. Peripheral nerve injury and TRPV1-expressing primary afferent C-fibers cause opening of the blood-brain barrier

    Directory of Open Access Journals (Sweden)

    Salter Michael W

    2010-11-01

    Full Text Available Abstract Background The blood-brain barrier (BBB plays the crucial role of limiting exposure of the central nervous system (CNS to damaging molecules and cells. Dysfunction of the BBB is critical in a broad range of CNS disorders including neurodegeneration, inflammatory or traumatic injury to the CNS, and stroke. In peripheral tissues, the vascular-tissue permeability is normally greater than BBB permeability, but vascular leakage can be induced by efferent discharge activity in primary sensory neurons leading to plasma extravasation into the extravascular space. Whether discharge activity of sensory afferents entering the CNS may open the BBB or blood-spinal cord barrier (BSCB remains an open question. Results Here we show that peripheral nerve injury (PNI produced by either sciatic nerve constriction or transecting two of its main branches causes an increase in BSCB permeability, as assessed by using Evans Blue dye or horseradish peroxidase. The increase in BSCB permeability was not observed 6 hours after the PNI but was apparent 24 hours after the injury. The increase in BSCB permeability was transient, peaking about 24-48 hrs after PNI with BSCB integrity returning to normal levels by 7 days. The increase in BSCB permeability was prevented by administering the local anaesthetic lidocaine at the site of the nerve injury. BSCB permeability was also increased 24 hours after electrical stimulation of the sciatic nerve at intensity sufficient to activate C-fibers, but not when A-fibers only were activated. Likewise, BSCB permeability increased following application of capsaicin to the nerve. The increase in permeability caused by C-fiber stimulation or by PNI was not anatomically limited to the site of central termination of primary afferents from the sciatic nerve in the lumbar cord, but rather extended throughout the spinal cord and into the brain. Conclusions We have discovered that injury to a peripheral nerve and electrical stimulation of C-fibers

  2. Influence of the simultaneous addition of bentonite and cellulose fibers on the mechanical and barrier properties of starch composite-films.

    Science.gov (United States)

    de Moraes, J Oliveira; Müller, C M O; Laurindo, J B

    2012-02-01

    The addition of nanoclay or cellulose fibers has been presented in the literature as a suitable alternative for reinforcing starch films. The aim of the present work was to evaluate the effect of the simultaneous incorporation of nanoclay (bentonite) and cellulose fibers on the mechanical and water barrier properties of the resultant composite-films. Films were prepared by casting with 3% in weight of cassava starch, using glycerol as plasticizer (0.30 g per g of starch), cellulose fibers at a concentration of 0.30 g of fibers per g of starch and nanoclay (0.05 g clay per g starch and 0.10 g clay per g starch). The addition of cellulose fibers and nanoclay increased the tensile strength of the films 8.5 times and the Young modulus 24 times but reduced the elongation capacity 14 times. The water barrier properties of the composite-films to which bentonite and cellulose fibers were added were approximately 60% inferior to those of starch films. Diffractograms showed that the nanoclay was intercalated in the polymeric matrix. These results indicate that the simultaneous addition of bentonite and cellulose fibers is a suitable alternative to increase the tensile strength of the films and decrease their water vapor permeabilities.

  3. Wire rope improvement program. Final report. [For draglines

    Energy Technology Data Exchange (ETDEWEB)

    Alzheimer, J.M.; Anderson, W.E.; Beeman, G.H.; Dudder, G.B.; Erickson, R.; Glaeser, W.A.; Jentgen, R.L.; Rice, R.R.; Strope, L.A.

    1981-09-01

    Activities in five major areas were undertaken during the WRIP: experiments using PNL-developed bend-over-sheave fatigue test machines to generate data on which to base a model for predicting large-diameter rope performance from that of small-diameter ropes; bend-over-sheave fatigue testing to determine differences in rope failure rates at varying rope loads; analyses to determine how wire ropes actually fail; development of a load sensor to record and quantity operational loads on drag and hoist ropes; and technology transfer activities to disseminate useful program findings to coal mine operators. Data obtained during the 6-year program support are included. High loads on wire ropes are damaging. As an adjunct, however, potentially useful countermeasures to high loads were identified. Large-diameter rope bend-over-sheave performance can be predicted from small-diameter rope test behavior, over some ranges.

  4. Safe use of mine winding rope, volume 2: recommendations for changes in rope safety factors.

    CSIR Research Space (South Africa)

    Hecker, GFK

    1996-04-01

    Full Text Available The steering committee on factors of safety of winder ropes has appointed a working group to draw up a set of proposals for changing the regulations governing the required rope strength in the Minerals Act. Certain research projects have been...

  5. Numerical Simulations of a Flux Rope Ejection

    Indian Academy of Sciences (India)

    P. Pagano; D. H. Mackay; S. Poedts

    2015-03-01

    Coronal mass ejections (CMEs) are the most violent phenomena observed on the Sun. One of the most successful models to explain CMEs is the flux rope ejection model, where a magnetic flux rope is expelled from the solar corona after a long phase along which the flux rope stays in equilibrium while magnetic energy is being accumulated. However, still many questions are outstanding on the detailed mechanism of the ejection and observations continuously provide new data to interpret and put in the context. Currently, extreme ultraviolet (EUV) images from the Atmospheric Imaging Assembly (AIA) on board the Solar Dynamic Observatory (SDO) are providing new insights into the early phase of CME evolution. In particular, observations show the ejection of magnetic flux ropes from the solar corona and how they evolve into CMEs. However, these observations are difficult to interpret in terms of basic physical mechanisms and quantities, thus, we need to compare equivalent quantities to test and improve our models. In our work, we intend to bridge the gap between models and observations with our model of flux rope ejection where we consistently describe the full life span of a flux rope from its formation to ejection. This is done by coupling the global non-linear force-free model (GNLFFF) built to describe the slow low- formation phase, with a full MHD simulation run with the software MPI-AMRVAC, suitable to describe the fast MHD evolution of the flux rope ejection that happens in a heterogeneous regime. We also explore the parameter space to identify the conditions upon which the ejection is favoured (gravity stratification and magnetic field intensity) and we produce synthesised AIA observations (171 Å and 211 Å). To carry this out, we run 3D MHD simulation in spherical coordinates where we include the role of thermal conduction and radiative losses, both of which are important for determining the temperature distribution of the solar corona during a CME. Our model of flux

  6. Breaking the diffraction-limited resolution barrier in fiber-optical two-photon fluorescence endoscopy by an azimuthally-polarized beam.

    Science.gov (United States)

    Gu, Min; Kang, Hong; Li, Xiangping

    2014-01-10

    Although fiber-optical two-photon endoscopy has been recognized as a potential high-resolution diagnostic and therapeutic procedure in vivo, its resolution is limited by the optical diffraction nature to a few micrometers due to the low numerical aperture of an endoscopic objective. On the other hand, stimulated emission depletion (STED) achieved by a circularly-polarized vortex beam has been used to break the diffraction-limited resolution barrier in a bulky microscope. It has been a challenge to apply the STED principle to a fiber-optical two-photon endoscope as a circular polarization state cannot be maintained due to the birefringence of a fiber. Here, we demonstrate the first fiber-optical STED two-photon endoscope using an azimuthally-polarized beam directly generated from a double-clad fiber. As such, the diffraction-limited resolution barrier of fiber-optical two-photon endoscopy can be broken by a factor of three. Our new accomplishment has paved a robust way for high-resolution in vivo biomedical studies.

  7. Electrospun Aligned Fibrous Arrays and Twisted Ropes: Fabrication, Mechanical and Electrical Properties, and Application in Strain Sensors

    Science.gov (United States)

    Zheng, Jie; Yan, Xu; Li, Meng-Meng; Yu, Gui-Feng; Zhang, Hong-Di; Pisula, Wojciech; He, Xiao-Xiao; Duvail, Jean-Luc; Long, Yun-Ze

    2015-12-01

    Electrospinning (e-spinning) is a versatile technique to fabricate ultrathin fibers from a rich variety of functional materials. In this paper, a modified e-spinning setup with two-frame collector is proposed for the fabrication of highly aligned arrays of polystyrene (PS) and polyvinylidene fluoride (PVDF) nanofibers, as well as PVDF/carbon nanotube (PVDF/CNT) composite fibers. Especially, it is capable of producing fibrous arrays with excellent orientation over a large area (more than 14 cm × 12 cm). The as-spun fibers are suspended and can be easily transferred to other rigid or flexible substrates. Based on the aligned fibrous arrays, twisted long ropes are also prepared. Compared with the aligned arrays, twisted PVDF/CNT fiber ropes show enhanced mechanical and electrical properties and have potential application in microscale strain sensors.

  8. Knots, splices and rope-work an illustrated handbook

    CERN Document Server

    Verrill, A Hyatt

    2006-01-01

    This treasury of practical and ornamental knots ranges from easy half-hitches and bow-lines to intricate rope-work projects, such as rope buckles and cask slings. Detailed instructions accompany the 148 drawings.

  9. A helically distorted MHD flux rope model

    Science.gov (United States)

    Theobald, Michael L.; Montgomery, David

    1990-01-01

    A flux rope model is proposed which has a variable degree of helical distortion from axisymmetry. The basis for this suggestion is a series of numerical and analytical investigations of magnetohydrodynamic states which result when an axial electric current is directed down on dc magnetic field. The helically distorted states involve a flow velocity and seem to be favored because of their lower rate of energy dissipation. Emphasis is on the magnetometer and particle energy analyzer traces that might be characteristic of such flux ropes. It is shown that even a fractionally small helical distortion may considerably alter the traces in minimum-variance coordinates. In short, what may be fairly common MHD processes can render a flux rope almost unrecognizable under standard diagnostics, even if the departures from axisymmetry are not great.

  10. Teaching Jump Rope to Children with Visual Impairments

    Science.gov (United States)

    Lieberman, Lauren J.; Schedlin, Haley; Pierce, Tristan

    2009-01-01

    This article presents strategies for jumping rope for children with visual impairments. Giving choices related to the types of rope and the use of mats is important. In addition, using appropriate instructional strategies and modifications will make jumping rope a skill that the children will enjoy and will lead to their involvement in other…

  11. Develop discard criteria for non-spin wire ropes

    CSIR Research Space (South Africa)

    Hecker, GFK

    2004-01-01

    Full Text Available The initial project objective was to correlate the level of internal broken wire indications, obtained using a magnetic rope test instrument, with rope strength loss and then to propose a given indication level at which non-spin ropes...

  12. Rope culture of the kelp Laminaria groenlandica in Alaska

    Energy Technology Data Exchange (ETDEWEB)

    Ellis, R.J.; Calvin, N.I.

    1981-02-01

    This paper is an account of rope culture of the brown seaweed or kelp, Laminaria groenlandica, in Alaska. It describes the placement of the ropes, time of first appearance of young L. groenlandica, size of the plants at various ages, and other life history features applicable to the use of rope for the culture of seaweeds in Alaska. (Refs. 3).

  13. Roping in uncertainty – measuring the tensile strength of steel wire ropes

    CSIR Research Space (South Africa)

    Bergh, Riaan

    2016-09-01

    Full Text Available stream_source_info Bergh_2016.pdf.txt stream_content_type text/plain stream_size 3019 Content-Encoding UTF-8 stream_name Bergh_2016.pdf.txt Content-Type text/plain; charset=UTF-8 Roping in uncertainty – measuring... the tensile strength of steel wire ropes Riaan Bergh 27 September 2016 2Presentation outline The test environment Why test? The detail The outcome The process 3Why do we test new ropes? Riaan Bergh - September 2016 - rbergh@csir.co.za - 011-482 1300 Theory...

  14. Jumping Rope at Day of Play

    Science.gov (United States)

    2005-01-01

    Sarah Dastugue, 11, leaps in the air as Libby Knox, 9, swings a jump rope. The children were participants in Nickelodeon's Worldwide Day of Play celebration at Stennis Space Center (SSC) on Oct. 1. On the day of the event, children all over the world participate in physical activities as part of the celebration.

  15. Technology transfer of winder ropes research

    CSIR Research Space (South Africa)

    Van Zyl, M

    2002-07-01

    Full Text Available been produced. These reports either had some bearing on the new rope load factors that were included in the South African regulations, or were produced as a result of the changes introduced to the regulations. In total, the reports consist of more than...

  16. Technology transfer of winder ropes research

    CSIR Research Space (South Africa)

    Van Zyl, M

    2002-07-01

    Full Text Available on these "privately" sponsored investigations were made available to the research effort. By the year 2000, more than 100 research reports had been produced. These reports either had some bearing on the new rope load factors that were included in the regulations...

  17. The ancient art of laying rope

    DEFF Research Database (Denmark)

    Bohr, Jakob; Olsen, Kasper

    2011-01-01

    We describe a geometrical property of helical structures and show how it accounts for the early art of rope-making. Helices have a maximum number of rotations that can be added to them — and it is shown that this is a geometrical feature, not a material property. This geometrical insight explains...

  18. Kinematic analysis of rope skipper's stability

    Science.gov (United States)

    Ab Ghani, Nor Atikah; Rambely, Azmin Sham

    2014-06-01

    There are various kinds of jumping that can be done while performing rope skipping activity. This activity was always associated with injury. But, if the rope skipper can perform the activity in a right way, it is believed that the injury might be reduced. The main purpose of this paper is to observe the stability of rope skipper from a biomechanics perspective, which are the centre of mass, angle at the ankle, knee and hip joints and also the trajectory for the ipsilateral leg between the two types of skip which is one leg and two legs. Six healthy, physically active subject, two males and four females (age: 8.00±1.25 years, weight: 17.90±6.85 kg and height: 1.22±0.08 m) participated in this study. Kinematic data of repeated five cycles of rope skipping activity was captured by using Vicon Nexus system. Based on the data collected, skipping with two legs shows more stable behavior during preparation, flight and landing phases. It is concluded that landing on the balls of the feet, lowering the trajectory positions of the feet from the ground as well as flexion of each joint which would reduce the injury while landing.

  19. Coronal Magnetic Flux Rope Equilibria and Magnetic Helicity

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Using a 2.5-dimensional (2.5-D) ideal MHD model, this paper ana lyzes the equilibrium properties of coronal magnetic flux ropes in a bipolar ambient magnetic field. It is found that the geometrical features of the magnetic flux rope,including the height of the rope axis, the half-width of the rope, and the length of the vertical current sheet below the rope, are determined by a single magnetic parameter, the magnetic helicity, which is the sum of the self-helicity of the rope and the mutual helicity between the rope field and the ambient magnetic field. All the geometrical parameters increase monotonically with increasing magnetic helicity.The implication of this result in solar active phenomena is briefly discussed.

  20. Development of HMPE fiber for deep water permanent mooring applications

    Energy Technology Data Exchange (ETDEWEB)

    Vlasblom, Martin; Fronzaglia, Bill; Boesten, Jorn [DSM Dyneema, Urmond (Netherlands); Leite, Sergio [Lankhorst Ropes, Sneek (Netherlands); Davies, Peter [Institut Francais de Recherche pour L' Exploration de la Mer (IFREMER) (France)

    2012-07-01

    For a number of years, the creep performance of standard High Modulus Polyethylene (HMPE) fiber types has limited their use in synthetic offshore mooring systems. In 2003, a low creep HMPE fiber was introduced and qualified for semi-permanent MODU moorings. This paper reports on a new High Modulus Polyethylene fiber type with significantly improved creep properties compared to any other HMPE fiber type, which, for the first time, allows its use in permanent offshore mooring systems, for example for deep water FPSO moorings. Results on fiber and rope creep experiments and stiffness measurements are reported. Laboratory testing shows that ropes made with the new fiber type retain the properties characteristic of HMPE such as high static strength, high fatigue resistance and stiffness, and illustrate that stiffness properties determined on HMPE fiber or rope are dependent on the applied load and temperature. (author)

  1. Catalogue of best practices for the ropes and winders of deep shaft sinking operations

    CSIR Research Space (South Africa)

    Van Zyl, M

    1998-11-01

    Full Text Available The primary purpose of the catalogue of best practices is to ensure the safety of the winding ropes. It therefore addresses aspects that will influence rope loads, rope strength, rope deterioration and the condition assessment of the winding ropes...

  2. Rope Climbing Robot with Surveillance Capability

    Directory of Open Access Journals (Sweden)

    Kanza Zafar

    2013-08-01

    Full Text Available In the past different engineers and researcher developed robots capable of climbing for various purposes. In this paper we have developed a robot capable of rope climbing in both horizontal and vertical direction. Furthermore, the robot has the ability to perform surveillance using a camera mounted on top of the robot. The quality of the transmitted video from the camera to the computer is clear and stable. Hence the developed robot is a good choice for surveillance purposes. In addition, it can be used to traverse floors of a building. It uses an IR sensor to sense strips attached at each floor. Once the strips are sensed, a dropping mechanism is activated in which a specific object is dropped to the targeted floor or location. The robot can work in automatic mode or manual through RF signals from an RF transmitter. Finally the robot is cost effective compared to many other developed robots for rope climbing.

  3. Distribution of wire deformation within strands of wire ropes

    Institute of Scientific and Technical Information of China (English)

    MA Jun; GE Shi-rong; ZHANG De-kun

    2008-01-01

    Using ANSYS software, we developed a modeling program for several kinds of wire ropes with metal cores and built a geometric model for the 6x19 IWS wire rope. Through proper grid partitioning, a finite element model for calculating the deformation of wire rope was obtained. Completely constraining one end of the wire rope and applying an axial force to the other end, we established the boundary conditions for solving the model. In addition, we numerically simulated the stress and deformation of the wire, obtaining the deformation distribution of each wire within the wire rope under different laying directions.At the end, a tensile test of the 6x19 IWS wire rope was carried out and the results of simulation and experiment compared.

  4. Structural ropes development for the E-ELT structure

    Science.gov (United States)

    Pajuelo, Eugenio; Gómez, José Ramón; Ronquillo, Bernardo; Brunetto, Enzo; Koch, Franz

    2008-07-01

    The European Extremely Large Telescope (E-ELT) structural rope system will be integrated in a mechanical structure, which can be made of mild steel and/or composite material. The following critical problems shall be solved by the rope system: matching of differential thermal expansion and tensioning forces calibration and control. The structural rope system consists of ropes, thermal compensation and tension control devices, and mechanical interfaces with the telescope structure. The objective of this study is to provide solutions to stabilize slender structural elements located in the upper part of the E-ELT Altitude Structure and increase global mode frequencies of the upper part of the E-ELT Altitude Structure. An appropriate rope system is developed to avoid local mode shapes and loss of stiffness that could lead to the failure of the whole structure under operational loads. The pre-tension level of the ropes needs to be controlled before operation to reach that objective.

  5. The sagging rope sign: a critical appraisal.

    Science.gov (United States)

    Clarke, N M; Harrison, M H; Keret, D

    1983-05-01

    Certain features of the sagging rope sign recently analysed by Apley and Weintroub (1981) are examined in detail. Evidence is presented to show that the line is a radiological shadow cast by the lateral edge of a severely deformed femoral head rather than a condensation of the spongiosa within the neck. An explanation is offered to explain the common association of the presence of this radiological sign with premature epiphysial fusion.

  6. Suprathermal Charged Particle Acceleration by Small-scale Flux Ropes.

    Science.gov (United States)

    Zank, G. P.; le Roux, J. A.; Webb, G. M.

    2015-12-01

    We consider different limits of our recently developed kinetic transport theory to investigate the potential of super-Alvenic solar wind regions containing several small-scale flux ropes to explain the acceleration of suprathermal ions to power-law spectra as observations show. Particle acceleration is modeled in response to flux-rope activity involving contraction, merging (reconnection), and collisions in the limit where the particle gyoradius is smaller than the characteristic flux-rope scale length. The emphasis is mainly on the statistical variance in the electric fields induced by flux-rope dynamics rather than on the mean electric field induced by multiple flux ropes whose acceleration effects are discussed elsewhere. Our steady-state analytical solutions suggest that particle drift acceleration by flux ropes, irrespective of whether displaying incompressible or compressible behavior, can yield power laws asymptotically at higher energies whereas an exponential spectral rollover results asymptotically when field-aligned guiding center motion acceleration occur by reconnection electric fields from merging flux ropes. This implies that at sufficiently high particle energies, drift acceleration might dominate. We also expect compressive flux ropes to yield harder power-law spectra than incompressible flux ropes. Preliminary results will be discussed to illustrate how particle acceleration might be affected when both diffusive shock and small-scale flux acceleration occur simultaneously at interplanetary shocks.

  7. Flux ropes in the magnetic solar convection zone

    DEFF Research Database (Denmark)

    Dorch, S. B. F.

    2006-01-01

    In this contribution results are presented on how twisted magnetic flux ropes interact with a magnetized model envelope similar to the solar convection zone. Both the flux ropes and the atmosphere are modelled as idealized 2.5-dimensional concepts using high resolution numerical MHD simulations (on...... of the magnetic flux ropes interact with the magnetic field in the atmosphere in a manner that depends, among other things, on the polarity and strength of the atmospheric field. The results include limits on the necessary and possible twist and polarity of solar magnetic flux ropes....

  8. Simulating Idealized Flux Ropes with the Flux Rope Insertion Method: A Parameter Space Exploration of Currents and Topology

    Science.gov (United States)

    Savcheva, Antonia; Tassev, Svetlin; DeLuca, Edward E.; Gibson, Sarah; Fan, Yuhong

    2016-05-01

    Knowledge of the 3D magnetic filed structure at the time of major solar eruptions is vital to the understanding of the space weather effects of these eruptions. Multiple data-constrained techniques that reconstruct the 3D coronal field based on photospheric magnetograms have been used to achieve this goal. In particular, we have used the flux rope insertion method to obtain the coronal magnetic field of multiple regions containing flux ropes or sheared arcades based on line-of-sight magnetograms and X-ray and EUV observations of coronal loops. For the purpose of developing statistical measures of the goodness of fit of these models to the observations, here we present our modeling of flux ropes based on synthetic magnetograms obtained from aFan & Gibson emerging flux rope simulation. The goal is to study the effect of of different input flux rope parameters on the geometry of currents, field line connectivity, and topology, in a controled setting. For this purpose we create a large grid of models with the flux rope insertion method with different combinations of axial and poloidal flux, which give us different morphology of the flux rope. We create synthetic images of these flux ropes in AIA passbands with the FORWARD forward-fitting code. The present parametric study will later be used to get a better handle on the initial condition for magnetofrictional and MHD simulations of observed regions containing flux ropes, such as sigmoids and polar-crown filaments.

  9. New constructions of wire ropes for the industry

    Directory of Open Access Journals (Sweden)

    ŠŠaderová Jana

    1996-03-01

    Full Text Available The wire ropes are used in different industrial fields. Their construction depends on the type of equipment and its purpose. Most frequently we meet with ropes at different transport and hoisting equipments and very freqently in the civil industry. For users characteristics are important which must meet requirements of the individual regulations and standards of the selection of wire ropes for the concrete equipment. The most important is the factor of safety being safeguarded by the corresponding bearing capacity of the rope. The service life of rope is interesting for the user, too, because of having an influence on the economy of the equipment on which the rope is working. These problems are solved by the grant project at our department . We are aimed at questions of the optimization of construction of wire rope with regard to their geometric construction and service life. Respectively on the basis of elaborated computer software eightstrand ropes of parallel construction were disigned and produced at the Drôtov ň a Hlohovec. The results of the fatigue tests confirmed their better qualitative properties, longer service life and economy advantages for users, too. Their using is possible and suitable on the new hoisting eguipment on the surface, in the undeground and in the hole drilling industry. By the application of the computer technique is also possible to improve the parametres of six-strands` construction of rope, the classic and parallel constructions, especially their bearing capacity. This fact follows from the knowledge that for the production of rope we use calculated diameters of wires, which secure better utilization of the metal cross-section of the wire ropes.

  10. Comparative Training Responses to Rope Skipping and Jogging.

    Science.gov (United States)

    Buyze, Michael T.; And Others

    1986-01-01

    This study compared physiological adaptations of 26 sedentary volunteers to six-week programs of jogging and rope skipping in order to test whether 10 minutes of rope skipping is equal to 30 minutes of jogging for improved cardiovascular efficiency. Results are discussed. (Author/MT)

  11. Flux ropes in the magnetic solar convection zone

    DEFF Research Database (Denmark)

    Dorch, S. B. F.

    2006-01-01

    In this contribution results are presented on how twisted magnetic flux ropes interact with a magnetized model envelope similar to the solar convection zone. Both the flux ropes and the atmosphere are modelled as idealized 2.5-dimensional concepts using high resolution numerical MHD simulations (on...

  12. POST OBSTRUCTIVE PULMONARY EDEMA AFTER ATTEMPTED NYLON ROPE SUICIDAL HANGING

    Directory of Open Access Journals (Sweden)

    Rakesh

    2015-06-01

    Full Text Available Survival after nylon rope suicidal hanging is a rare occurance . We describe here a patient who attempted suicide by nylon rope hanging and developed post obstructive pulmonary edema was managed successfully . Patient recovered completely with ventilatory support in next 60 hours without any neurological deficit.This case highlights an unusual complication of hanging and its recovery.

  13. Kinematic characteristics of motor patterns in rope skipping

    Directory of Open Access Journals (Sweden)

    Luiz Henrique da Silva

    2009-09-01

    Full Text Available Rope skipping seems to be an easy task to be performed. However, careful analysis of this motor skill shows how complex the execution of this task is. The objective of this study was to examine kinematic variables of jump patterns as a function of skipping frequency. Eight male university students performed a sequence of 30 rope jumps using two jump patterns (alternating support of the feet and simultaneous support of the feet at three skipping frequencies (1.5, 1.7,1.9 Hz. Frequencies were determined with a digital metronome and the rope was turned by the student himself. Rope jumping performance was recorded with two digital cameras for 3Danalysis. Passive markers were attached to the rope and to the ankle, knee and hip joints forcollection of the following dependent variables: continuous relative phase, time interval betweenthe loss of contact of the feet with the ground and cross of the rope under the feet of the volunteer,jump height, and rope height. ANOVA showed that for the pattern with alternating support ofthe feet the jump is executed at a lower height. In addition, analysis of the time interval revealeda delay in the withdrawal of the feet for crossing the rope in the case of the jump pattern with simultaneous support of the feet.

  14. Synthetic radio views on simulated solar flux ropes

    CERN Document Server

    Kuznetsov, Alexey; Xia, Chun

    2016-01-01

    In this paper, we produce synthetic radio views on simulated flux ropes in the solar corona, where finite-beta magnetohydrodynamic (MHD) simulations serve to mimic the flux rope formation stages, as well as their stable endstates. These endstates represent twisted flux ropes where balancing Lorentz forces, gravity and pressure gradients determine the full thermodynamic variation throughout the flux rope. The obtained models are needed to quantify radiative transfer in radio bands, and allow us to contrast weak to strong magnetic field conditions. Field strengths of up to 100 G in the flux rope yield the radio views dominated by optically thin free-free emission. The forming flux rope shows clear morphological changes in its emission structure as it deforms from an arcade to a flux rope, both on disk and at the limb. For an active region filament channel with a field strength of up to 680 G in the flux rope, gyroresonance emission (from the third-fourth gyrolayers) can be detected and even dominates over free-...

  15. Muscle Activity during Unilateral Vs. Bilateral Battle Rope Exercises

    DEFF Research Database (Denmark)

    Calatayud, J.; Martin, F.; Colado, J. C.

    2015-01-01

    Calatayud, J, Martin, F, Colado, JC, Benitez, JC, Jakobsen, MD, and Andersen, LL. Muscle activity during unilateral vs. bilateral battle rope exercises. J Strength Cond Res 29(10): 2854-2859, 2015High training intensity is important for efficient strength gains. Although battle rope training is m...

  16. Deterioration mechanisms of drum winder ropes

    CSIR Research Space (South Africa)

    Van Zyl, M

    2000-12-01

    Full Text Available degradation will not increase the susceptibility of wires to fatigue crack initiation, it is postulated that high contact stresses will generate their own problems (like split wires) if left unchecked. An alternative approach to the pulling in of back ends... is proposed in the section on contact stresses to minimise the adverse effects of contact stresses: Pull in back ends much more frequent in the beginning of the service life of a rope. The analysis and measurement of bending stresses in triangular strand...

  17. Fatigue of Synthetic Fibers for Marine Rope Applications.

    Science.gov (United States)

    1984-04-01

    specimen lifetime. [f S N 0102- LF- 014-6601 SECURITY CLASSIFICATION OF THIS PAGE( toefl Date Entered) f1k INSTRUCTIONS FOR PREPARATION OF REPORT...technical reports prepared by or for DoD organizations. CLASSIFICATION. Since this Report Documentation Page, DD Form 1473, is used in preparing ...performing activity. For contractor or grantee reports enter ihe name and address of the contractor or grantee who prepared the report and identify the

  18. The modelling and analysis of the mechanics of ropes

    CERN Document Server

    Leech, C M

    2014-01-01

    This book considers the modelling and analysis of the many types of ropes, linear fibre assemblies. The construction of these structures is very diverse and in the work these are considered from the modelling point of view. As well as the conventional twisted structures, braid and plaited structures and parallel assemblies are modelled and analysed, first for their assembly and secondly for their mechanical behaviour. Also since the components are assemblies of components, fibres into yarns, into strands, and into ropes the hierarchical nature of the construction is considered. The focus of the modelling is essentially toward load extension behaviour but there is reference to bending of ropes, encompassed by the two extremes, no slip between the components and zero friction resistance to component slip. Friction in ropes is considered both between the rope components, sliding, sawing and scissoring, and within the components, dilation and distortion, these latter modes being used to model component set, the p...

  19. Mechanical properties of steel rope wires -– quality test assurance

    Directory of Open Access Journals (Sweden)

    Jaroslava Dečmanová

    2010-02-01

    Full Text Available We investigate the mechanical properties of wires of steel ropes by tests in accordance with rule in operation and valid regulation.There are specified values of minimal and maximum capacity or strenghts and values of minimal bendings and torsion in them. Minimalvalues of bendings and torsion are rated wire strenght, diameter and surface treatment dependent. It is suitable to use the calculationof irregularity coefficient of steel wires strenght for quality assessment of steel ropes which put into practice soviet authors Žitkovand Pospechov. Statistical methods make possible to review the quality of steel ropes from the test results of their wires on capacity,bending and torsion. In the paper we evaluate and compare the quality of two steel ropes with triangular strands, we appear fromprotocols about their tests in the accredited testing station of steel ropes of our workstation.

  20. Coronal Magnetic Flux Ropes in Quadrupolar Magnetic Fields

    Science.gov (United States)

    Zhang, Yingzhi; Hu, Youqiu; Wang, Jingxiu

    Using a 2.5-D, time-dependent ideal MHD model in spherical coordinates, we carry out a numerical study of the equilibrium properties of coronal magnetic flux ropes in a quadrupolar background magnetic field. For such a flux rope system, a catastrophic occurs: the flux rope is detached from the photosphere and jumps to a finite altitude with a vertical current sheet below. There is a transversal current sheet formed above the rope, and the whole system stays in quasi-equilibrium. We argue that the additional Lorentz force provided by the transversal current sheet on the flux rope plays an important role in keeping the system in quasi-equilibrium in the corona.

  1. Safe use of mine winding ropes, volume 4: studies towards a code of practice for rope condition assessment.

    CSIR Research Space (South Africa)

    Borrello, M

    1996-06-01

    Full Text Available The aim of this investigation was the verification of the code of Practice for Rope Condition Assessment. Ropes were meant to be discarded according to the discard criteria as outlined in the code and then tested by the CSIR. The results...

  2. Downward catastrophe of solar magnetic flux ropes

    CERN Document Server

    Zhang, Quanhao; Hu, Youqiu; Liu, Rui

    2016-01-01

    2.5D time-dependent ideal magnetohydrodynamic (MHD) models in Cartesian coordinates were used in previous studies to seek MHD equilibria involving a magnetic flux rope embedded in a bipolar, partially open background field. As demonstrated by these studies, the equilibrium solutions of the system are separated into two branches: the flux rope sticks to the photosphere for solutions at the lower branch but is suspended in the corona for those at the upper branch. Moreover, a solution originally at the lower branch jumps to the upper, as the related control parameter increases and reaches a critical value, and the associated jump is here referred to as upward catastrophe. The present paper advances these studies in three aspects. First, the magnetic field is changed to be force-free. The system still experiences an upward catastrophe with an increase in each control parameter. Secondly, under the force-free approximation, there also exists a downward catastrophe, characterized by a jump of a solution from the u...

  3. ROPE: Recoverable Order-Preserving Embedding of Natural Language

    Energy Technology Data Exchange (ETDEWEB)

    Widemann, David P. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Wang, Eric X. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Thiagarajan, Jayaraman J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2016-02-11

    We present a novel Recoverable Order-Preserving Embedding (ROPE) of natural language. ROPE maps natural language passages from sparse concatenated one-hot representations to distributed vector representations of predetermined fixed length. We use Euclidean distance to return search results that are both grammatically and semantically similar. ROPE is based on a series of random projections of distributed word embeddings. We show that our technique typically forms a dictionary with sufficient incoherence such that sparse recovery of the original text is possible. We then show how our embedding allows for efficient and meaningful natural search and retrieval on Microsoft’s COCO dataset and the IMDB Movie Review dataset.

  4. The effects of rope or weighted rope jump training on strength, coordination and proprioception in adolescent female volleyball players.

    Science.gov (United States)

    Ozer, D; Duzgun, I; Baltaci, G; Karacan, S; Colakoglu, F

    2011-06-01

    The aim was to assess the effects of a 12-week "rope jumping" and "weighted rope jumping" training programs on functional parameters including multi-joint coordination and proprioception, strength, endurance in adolescent female volleyball players. Pretest posttest experimental design. Weighted Rope Training group (N.=9; 15±1 years), Rope Training group (N.=9; 14.1±1.3 years) and Controls (N.=7; 14.4±1.3 years). Motor coordination, proprioception, strength and endurance of the lower extremities with concentric and eccentric performances in closed kinetic chain on multi joint system assessed by the Monitorized Squat system. Absolute average error (cm) and the standard deviation for coordination and proprioception, Peak Force (N), Total Work (Nm), Average Power (Nm/s), Maximal Speed for strength and endurance tests were calculated. Kruskal-Wallis and Mann Whitney U test were utilized. Weighted rope jump group had significant decrease for the deviation results of coordination on the concentric and eccentric phases for both legs (PRope jump and weighted rope jump groups had significantly lower results on non visible second movement deviation (PRope Training group in comparison to controls (PRope Training and control groups improved in concentric maximal speed (PRope Training group (Prope jump to training programs improves joint repositioning and coordination. Weighted Rope Training group got greater gains for coordination and eccentric endurance parameters for lower extremities in a closed kinetic chain.

  5. Evaluation of international and local magnetic rope testing instrument defect detection capabilities and resolution, particularly in respect of low rotation, multi-layer rope constructions.

    CSIR Research Space (South Africa)

    Dohm, M

    1999-05-01

    Full Text Available which in turn resulted in safer hoisting practices. Unfortunately in-service rope failures still occurred. This report describes the evaluation of international and local magnetic rope testing instrument defect detection capabilities and resolutions....

  6. Studying the Formation and Evolution of Eruptive Magnetic Flux Ropes

    Science.gov (United States)

    Linton, Mark

    2017-08-01

    Solar magnetic eruptions are dramatic sources of solar activity, and dangerous sources of space weather hazards. Many of these eruptions take the form of magnetic flux ropes, i.e., magnetic fieldlines wrapping around a core magnetic flux tube. Investigating the processes which form these flux ropes both prior to and during eruption, and investigating their evolution after eruption, can give us a critical window into understanding the sources of and processes involved in these eruptions. This presentation will discuss modeling and observational investigations into these various phases of flux rope formation, eruption, and evolution, and will discuss how these different explorations can be used to develop a more complete picture of erupting flux rope dynamics.

  7. Pre-Stressed Rope Reinforced Anti-Sliding Pile

    Institute of Scientific and Technical Information of China (English)

    XU Jun; WANG Chenghua

    2006-01-01

    Pre-stressed rope reinforced anti-sliding pile is a composite anti-sliding structure. It is made up of pre-stressed rope and general anti-sliding pile. It can bring traditional anti-sliding pile's retaining performance into full play, and to treat with landslide fast and economically. The difference between them is that the pre-stressed rope will transfix the whole anti-sliding pile through a prearranged pipe in this structure. The working mechanics, the design method and economic benefit are studied. The results show that the pre-stressed rope reinforced anti-sliding pile can treat with the small and middle landslides or high slopes well and possess the notable advantage of technology and economic.

  8. Design of Handheld Wire Rope Laser Cutting System%手提式钢缆激光切割系统的设计

    Institute of Scientific and Technical Information of China (English)

    何琼; 杨晟; 王英

    2012-01-01

    This article mainly introduce a handheld laser cutting system for wire rope which used for fiber transferring. By the use of pulsed solid laser,we chose fibers as flexible transmission, designed a special clamping apparatus for rope cutting. Furthermore, we also did some research on its cutting technologies. With the optimized discharge current, pulsed frequency, pulsed width and assisted gas pressure, this system now can meet cutting requirements up to diameter 12 mm wire rope which affords a new approach to rope cutting field.%介绍了一种手提式光纤传输钢缆激光切割系统.以脉冲固体激光器作为光源,采用光纤进行柔性传输,设计了切割钢缆的专用夹具,研究了钢缆的切割工艺.通过优化放电电流、脉冲频率、脉冲宽度、辅助气压等参数,该系统可满足直径12 mm内的钢缆的切割要求,提供了切割钢缆的新方法.

  9. Plasma Flows Associated with Two Kink-Unstable Flux Ropes

    Science.gov (United States)

    DeHaas, Timothy; Gekelman, W.; Van Compernolle, B.

    2013-07-01

    Magnetic flux ropes are self-organized, magnetized plasma structures embedded in an ambient medium. Their structure consists of helical field lines which vary in pitch due to the electric current flowing along a background magnetic field.1 Multiple braided flux ropes have been observed in the solar corona, and their unraveling is theorized to be the signature of magnetic reconnection.2 Two flux ropes (L=10 m, A=7 cm2, J=10 amp/cm2) were created in the Large Plasma Device (LAPD) at UCLA (Bo=330 G, no = 1012 cm-3, Te=4eV, Ar). The flux ropes are highly kink unstable, which cause the ropes to twist and oscillate at frequencies associated with shear Alfven waves. Through the use of a six-faced Mach probe, volumetric data was taken to determine the three-dimensional plasma flow. Volumetric b-field information was also obtained through use of a three-axis magnetic probe. The data collected from these probes is laden with Lorentzian pulses, a characteristic of deterministic chaos.3 The flux ropes are shown to twist, interact, then merge; while the plasma flows are shown to spiral around the two flux ropes in a singular O-point. A quasi-separatrix layer (QSL) forms as the flux ropes collide and the magnetic field lines reconnect. The relationship between flow and reconnection sites is explored. 1Gekelman, W. et al. ApJ 753, 131 2Cirtain, J.W. et al. Nature 493, 501-503 (2013) 3Maggs, J.E. et al. Phys. Rev. Lett. 107, 185003 (2011)

  10. Unsteady wandering magnetic field lines, turbulence and laboratory flux ropes

    Science.gov (United States)

    Intrator, T.; Sears, J.; Weber, T.; Liu, D.; Pulliam, D.; Lazarian, A.

    2011-12-01

    We describe earth bound laboratory experiment investigations of patchy, unsteady, bursty, patchy magnetic field structures that are unifying features of magnetic reconnection and turbulence in helio, space and astro physics. Macroscopic field lines occupy cross sectional areas, fill up three dimensional (3D) volumes as flux tubes. They contain mass with Newtonian dynamics that follow magneto-hydro-dynamic (MHD) equations of motion. Flux rope geometry can be ubiquitous in laminar reconnection sheet geometries that are themselves unstable to formation of secondary "islands" that in 3D are really flux ropes. Flux ropes are ubiquitous structures on the sun and the rest of the heliosphere. Understanding the dynamics of flux ropes and their mutual interactions offers the key to many important astrophysical phenomena, including magnetic reconnection and turbulence. We describe laboratory investigations on RSX, where 3D interaction of flux ropes can be studied in great detail. We use experimental probes inside the the flux ropes to measure the magnetic and electric fields, current density, density, temperatures, pressure, and electrostatic and vector plasma potentials. Macroscopic magnetic field lines, unsteady wandering characteristics, and dynamic objects with structure down to the dissipation scale length can be traced from data sets in a 3D volume. Computational approaches are finally able to tackle simple 3D systems and we sketch some intriguing simulation results that are consistent with 3D extensions of typical 2D cartoons for magnetic reconnection and turbulence.

  11. Effect of Tension on Friction Coefficient Between Lining and Wire Rope with Low Speed Sliding

    Institute of Scientific and Technical Information of China (English)

    PENG Yu-xing; ZHU Zhen-cai; CHEN Guo-an; CAO Guo-hua

    2007-01-01

    In order to obtain the exact friction coefficient between lining and wire rope, the tension of wire rope is studied as a factor which affects this coefficient. A mechanical model of a wire rope subjected to axial load was established to determine the torque of the wire rope. The contact motion between lining and wire rope was regarded as a screw rotation and the axial force of the lining resulting from the torque of the wire rope was analyzed. Theoretical formulas relating tension of the wire rope and the friction coefficient was obtained. Experiments between lining and wire rope with low sliding speed were carried out with friction tester made by us. Experimental results show that increment of the friction coefficient is proportional to that of the tension of the wire rope with a low sliding speed. The experimental results agree with the theoretical calculation; the errors are less than 6%, which proves the validity of the theoretical model.

  12. Vacuum barrier for excimer lasers

    Energy Technology Data Exchange (ETDEWEB)

    Shurter, Roger P. (Jemez Springs, NM)

    1992-01-01

    A barrier for separating the vacuum area of a diode from the pressurized gas area of an excimer laser. The barrier is a composite material comprising layers of a metal such as copper, along with layers of polyimide, and a matrix of graphite fiber yarns impregnated with epoxy. The barrier is stronger than conventional foil barriers, and allows greater electron throughput.

  13. Vacuum barrier for excimer lasers

    Energy Technology Data Exchange (ETDEWEB)

    Shurter, R.P.

    1992-09-15

    A barrier for separating the vacuum area of a diode from the pressurized gas area of an excimer laser. The barrier is a composite material comprising layers of a metal such as copper, along with layers of polyimide, and a matrix of graphite fiber yarns impregnated with epoxy. The barrier is stronger than conventional foil barriers, and allows greater electron throughput. 3 figs.

  14. Pulsating Reconnection in the interaction of Two Magnetic Fux Ropes.

    Science.gov (United States)

    Gekelman, W. N.; DeHaas, T.; Daughton, W. S.; Van Compernolle, B.

    2015-12-01

    Two flux ropes (dia = 7 cm, ds= 3 cm, L = 10m, Irope = 300 A/rope) are generated by using a mask in front of a high emissivity cathode (n = 4X1012 cm3, Te-rope = 8.5 eV) in a background magnetoplasma (He, Boz= 330 G, n=1.0X1012 cm3, Te = 4 eV) in the LAPD device at UCLA. The ropes are kink unstable ( I > 250 A) but not violently so. All three components of the magnetic field were measured with small (1 mm dia) 3-axis probes sensitive to and the plasma potential measured with an emissive probe. These were measured at over 42,000 locations in the volume containing the ropes and 7000 time steps (δτ = .33 μs). The total electric field and parallel resistivity as well as the Quasi Seperatrix layer (QSL) were derived from the data. The flux ropes periodically collide as they rotate about when another and kink. Each time this happens a strong QSL (Q<400) forms and the resistivity jumps to over a hundred times the classical value at locations within the QSL and also on the gradient of the rope current. The QSL formation and 3D electric fields are presented as a function of space and time. The reconnection rate is directly evaluated by integrating the electric field along field lines as well as the energy deposition . The data indicate that there is more than one process causing the enhanced resistivity. The reconnection rate cannot be explained by conventional 2D theories.

  15. Coronal Flux Rope Equilibria in Closed Magnetic Fields

    Institute of Scientific and Technical Information of China (English)

    Zhen Wang; You-Qiu Hu

    2003-01-01

    Using a 2.5-dimensional ideal MHD model in Cartesian coordinates, weinvestigate the equilibrium properties of coronal magnetic flux ropes in backgroundmagnetic fields that are completely closed. The background fields are produced by adipole, a quadrupole, and an octapole, respectively, located below the photosphereat the same depth. A magnetic flux rope is then launched from below the photo-sphere, and its magnetic properties, i.e., the annular magnetic flux φp and the axialmagnetic flux φz, are controlled by a single emergence parameter. The whole sys-tem eventually evolves into equilibrium, and the resultant flux rope is characterizedby three geometrical parameters: the height of the rope axis, the half-width of therope, and the length of the vertical current sheet below the rope. It is found thatthe geometrical parameters increase monotonically and continuously with increasingφ p and φz: no catastrophe occurs. Moreover, there exists a steep segment in theprofiles of the geometrical parameters versus either φp or φz, and the faster thebackground field decays with height, the larger both the gradient and the growthamplitude within the steep segment will be.

  16. Determining the axis orientation of cylindrical magnetic flux rope

    Science.gov (United States)

    Rong, Zhaojin; Wan, Weixing; Shen, Chao; Zhang, Tielong; Lui, Anthony; Wang, Yuming; Dunlop, malcolm; Zhang, Yongcun; Zong, Qiugang

    2013-04-01

    We develop a new simple method for inferring the orientation of a magnetic flux rope, which is assumed to be a time-independent cylindrically symmetric structure via the direct single-point analysis of magnetic field structure. The model tests demonstrate that, for the cylindrical flux rope regardless of whether it is force-free or not, the method can consistently yield the axis orientation of the flux rope with higher accuracy and stability than the minimum variance analysis of the magnetic field and the Grad-Shafranov reconstruction technique. Moreover, the radial distance to the axis center and the current density can also be estimated consistently. Application to two actual flux transfer events observed by the four satellites of the Cluster mission demonstrates that the method is more appropriate to be used for the inner part of flux rope, which might be closer to the cylindrical structure, showing good agreement with the results obtained from the optimal Grad-Shafranov reconstruction and the least squares technique of Faraday's law, but fails to produce such agreement for the outer satellite that grazes the flux rope. Therefore, the method must be used with caution.

  17. Sagging rope sign in achondroplasia is different from Perthes disease.

    Science.gov (United States)

    Oh, Chang-Wug; Shingade, Viraj Uttamrao; Song, Hae-Ryong; Suh, Seung-Woo; Hong, Jun-Seok; Lee, Seok-Hyun

    2005-01-01

    The "sagging rope" sign is a radiopaque line seen on radiographs of hips with Perthes disease. The main purpose of this study was to determine the incidence, cause, and importance of this sign in achondroplasia and to reveal how it differs from in Perthes disease. Serial radiograms, along with two- and three-dimensional CT images were studied in 42 patients with achondroplasia. The sign was observed bilaterally in all patients. Evaluation of CT images revealed spherical heads with the presence of circumferential overhang in all hips. This circumferential overhang seen on three-dimensional CT images corresponded to the sagging rope sign on plain radiographs. The presence of the sagging rope sign in bilateral hips is a characteristic feature of achondroplasia. It usually appears before epiphyseal closure. Its cause, incidence, and nature differ from in Perthes disease, and its presence does not carry a negative prognosis in achondroplasia.

  18. Magneto-inductive Sensors for Metallic Ropes in Lift Application

    Directory of Open Access Journals (Sweden)

    Aldo CANOVA

    2010-12-01

    Full Text Available In this paper an innovative system for the contemporary, selective and reliable control of integrity of multiple rope plants is presented. The system is based on magneto-inductive technology and is composed by a magnetic detector connected to an acquisition system. The core of the detector is constituted by an array of Hall sensors properly placed inside the instrument. After a brief introduction to the Non Destructive Techniques applied to the control of metallic ropes, the first part paper deals with the design and behavior of the detector and the acquisition system. In the second part of the paper a performance analysis for different rope size and experimental results on an elevator plants is presented and discussed.

  19. Modulation of the intestinal environment, innate immune response, and barrier function by dietary threonine and purified fiber during a coccidiosis challenge in broiler chicks.

    Science.gov (United States)

    Wils-Plotz, E L; Jenkins, M C; Dilger, R N

    2013-03-01

    Coccidiosis is a major contributor to economic losses in the poultry industry due to its detrimental effects on growth performance and nutrient utilization. We hypothesized that the combined effects of supplemental dietary Thr and purified fiber may modulate the intestinal environment and positively affect intestinal immune responses and barrier function in broiler chicks infected with Eimeria maxima. A Thr-deficient basal diet (3.1 g of Thr/kg of diet) was supplemented with 70 g/kg of silica sand (control) or high-methoxy pectin and 1 of 2 concentrations of Thr (1.8 or 5.3 g/kg of diet; 4 diets total), and fed to chicks from hatch to d 16 posthatch. On d 10 posthatch, chicks received 0.5 mL of distilled water or an acute dose of Eimeria maxima (1.5 × 10(3) sporulated oocytes) with 6 replicate pens of 6 chicks per each of 8 treatment combinations (4 diets and 2 inoculation states). Body weight gain, feed intake, and G:F increased (P coccidiosis, Thr supplementation had the greatest effect on intestinal immune response and maintenance of near normal growth in young broiler chicks infected with E. maxima.

  20. MESSENGER observations of flux ropes in Mercury's magnetotail

    Science.gov (United States)

    DiBraccio, Gina A.; Slavin, James A.; Imber, Suzanne M.; Gershman, Daniel J.; Raines, Jim M.; Jackman, Caitriona M.; Boardsen, Scott A.; Anderson, Brian J.; Korth, Haje; Zurbuchen, Thomas H.; McNutt, Ralph L.; Solomon, Sean C.

    2015-09-01

    We report an investigation of magnetic reconnection in Mercury's magnetotail conducted with MESSENGER Magnetometer and Fast Imaging Plasma Spectrometer measurements during seven "hot seasons" when the periapsis of the spacecraft orbit is on Mercury's dayside. Flux ropes are formed in the cross-tail current sheet by reconnection. We have analyzed 49 flux ropes observed between 1.7 RM and 2.8 RM (where RM is Mercury's radius, or 2440 km) down the tail from the center of the planet, for which minimum variance analysis indicates that the spacecraft passed near the central axis of the structure. An average Alfvén speed of 465 km s-1 is measured in the plasma sheet surrounding these flux ropes. Under the assumption that the flux ropes moved at the local Alfvén speed, the mean duration of 0.74±0.15 s determined for these structures implies a typical diameter of ~345 km, or ~0.14 RM, which is comparable to a proton gyroradius in the plasma sheet of ~380 km. We successfully fit the magnetic signatures of 16 flux ropes to a force-free model. The mean radius and core field determined in this manner were ~450 km, or ~0.18 RM, and ~40 nT, respectively. A superposed epoch analysis of the magnetic field during these events shows variations similar to those observed at Earth, including the presence of a post-plasmoid plasma sheet, filled with disconnected magnetic flux, but the timescales are 40 times shorter at Mercury. The results of this flux rope survey indicate that intense magnetic reconnection occurs frequently in the cross-tail current layer of this small but extremely dynamic magnetosphere.

  1. Measurements of Magnetic Helicity within Two Interacting Flux Ropes

    Science.gov (United States)

    Dehaas, Timothy; Gekelman, Walter

    2016-10-01

    Magnetic helicity (HM) has become a useful tool in the exploration of astrophysical plasmas. Its conservation in the MHD limit (and even some fluid approaches) constrains the global behavior of large plasma structures. One such astrophysical structure is a magnetic flux rope: a rope-like, current-carrying plasma embedded in an external magnetic field. Bundles of these ropes are commonly observed extending from the solar surface and can be found in the near-earth environment. In this well-diagnosed experiment (3D measurements of ne, Te, Vp, B, J, E, uflow) , two magnetic flux ropes were generated in the Large Plasma Device at UCLA. These ropes were driven kink-unstable, commencing complex motion. As they interact, helicity conservation is broken in regions of reconnection, turbulence, and instabilities. The changes in helicity can be visualized as 1) the transport of helicity (ϕB +E × A) and 2) the dissipation of the helicity (-2EB). Magnetic helicity is observed to have a negative sign and its counterpart, cross helicity, a positive one. These qualities oscillate 8% peak-to-peak. As the ropes move and the topology of the field lines change, a quasi-separatrix layer (QSL) is formed. The volume averaged HM and the largest value of Q both oscillate but not in phase. In addition to magnetic helicity, similar quantities such as self-helicity, mutual-helicity, vorticity, and canonical helicity are derived and will be presented. This work is supported by LANL-UC research Grant and done at the Basic Plasma Science Facility, which is funded by DOE and NSF.

  2. ISEE 3 observations of plasmoids with flux rope magnectic topologies

    OpenAIRE

    Slavin, J.; Owen, C.; KUZNETSOVA, M.

    1995-01-01

    This paper reports new evidence for the existence of plasmoids with force‐free flux rope magnetic topologies. Motivated by the fact that force‐free magnetic flux ropes have intense axial fields at their centers, the ISEE 3 observations have been searched for plasma sheet intervals in which the magnetic field intensity exceeds that in the lobes by ≥10% for a minute or longer. A total of 39 “high field regions” were found which met this simple criterion. Further examination showed that they nea...

  3. Kinematic characteristics of motor patterns in rope skipping

    OpenAIRE

    Luiz Henrique da Silva; Ana Maria Pellegrini

    2009-01-01

    Rope skipping seems to be an easy task to be performed. However, careful analysis of this motor skill shows how complex the execution of this task is. The objective of this study was to examine kinematic variables of jump patterns as a function of skipping frequency. Eight male university students performed a sequence of 30 rope jumps using two jump patterns (alternating support of the feet and simultaneous support of the feet) at three skipping frequencies (1.5, 1.7,1.9 Hz). Frequencies were...

  4. Are There Different Populations of Flux Ropes in the Solar Wind?

    OpenAIRE

    Janvier, Miho; Démoulin, Pascal; Dasso, Sergio

    2014-01-01

    Flux ropes are twisted magnetic structures, which can be detected by in situ measurements in the solar wind. However, different properties of detected flux ropes suggest different types of flux-rope population. As such, are there different populations of flux ropes? The answer is positive, and is the result of the analysis of four lists of flux ropes, including magnetic clouds (MCs), observed at 1 AU. The in situ data for the four lists have been fitted with the same cylindrical force-free fi...

  5. Role of steel wire ropes in mine safety

    CSIR Research Space (South Africa)

    Peake, A

    2008-11-01

    Full Text Available Today there are an estimated 2 300 steel wire ropes installed in roughly 200 underground mines in South Africa. These mines employ more than 280 000 workers underground and hoist several millions of tonnes of rock to the surface every month...

  6. Magnetic Flux Ropes from the Sun to 1 AU*

    Science.gov (United States)

    Krall, J.; Yurchyshyn, V. B.; St. Cyr, O. C.; Chen, J.

    2004-12-01

    Any practical model of the dynamics of a coronal mass ejection (CME) and its interplanetary counterpart (ICME) must conform to available observational constraints from sun and to the earth; the upcoming STEREO mission will add significantly to those constraints. We present model/data comparisons for specific CME/ICME events near the sun (using coronagraph image data) and in the heliosphere (using in situ measurements) to show that the flux rope model of Chen and Krall[1-2] provides an accurate physics-based characterization of flux-rope CMEs over this range. We further show that quantitative results, such as the field energy required for eruption, depend on specific aspects of the flux rope geometry, such as the ratio (length/width) of the elliptical shape traced out by the flux-rope axis. It is this geometry that will be determined, for the first time, by STEREO. [1] Chen, J. 1996, JGR, 101, 27499 [2] Krall, J. et al., 2000, ApJ, 539, 964 *Work supported by ONR, NASA and NSF

  7. Safe use of mine winding rope, volume 1: executive summary.

    CSIR Research Space (South Africa)

    Hecker, GFK

    1996-04-01

    Full Text Available The current South African regulations for sizing of mine winder ropes were introduced during 1956, based mainly on circumstantial evidence. A more rational approach was required to meet the demands for improved guarantees of safety and for more...

  8. Thermoelectric power of a single-walled carbon nanotubes rope.

    Science.gov (United States)

    Yu, Fang; Hu, Lijun; Zhou, Haiqing; Qiu, Caiyu; Yang, Huaichao; Chen, Minjiang; Lu, Jianglei; Sun, Lianfeng

    2013-02-01

    In this work, a rope of single-walled carbon nanotubes is prepared by using a diamond wire drawing die. At atmospheric condition, the electrical conductance and the thermoelectric voltage of single-walled carbon nanotubes rope have been investigated with the hot-side temperature ranging from 292 to 380 K, and cold-side temperature at 292 K. For different temperatures in the range of 292 to 380 K at hot-side, the current-voltage curves are almost parallel to each other, indicating that the electrical conductance does not change. The dynamic characteristics of voltage at positive, zero and negative current bias demonstrate that a thermoelectric voltage is induced with a direction from hot- to cold-side. The induced thermoelectric voltage shows linear dependence on the temperature difference between hot- and cold-side. The thermoelectric power of single-walled carbon nanotubes rope is found to be positive and has a value about 17.8 +/- 1.0 microV/K. This result suggests the hole-like carriers in single-walled carbon nanotubes rope. This study will pave the way for single-walled carbon nanotubes based thermoelectric devices.

  9. Counterstreaming electrons in small interplanetary magnetic flux ropes

    Science.gov (United States)

    Feng, H. Q.; Zhao, G. Q.; Wang, J. M.

    2015-12-01

    Small interplanetary magnetic flux ropes (SIMFRs) are commonly observed by spacecraft at 1 AU, and their origin still remains disputed. We investigated the counterstreaming suprathermal electron (CSE) signatures of 106 SIMFRs measured by Wind during 1995-2005. We found that 79 (75%) of the 106 flux ropes contain CSEs, and the percentages of counterstreaming vary from 8% to 98%, with a mean value of 51%. CSEs are often observed in magnetic clouds (MCs), and this indicates these MCs are still attached to the Sun at both ends. CSEs are also related to heliospheric current sheets (HCSs) and the Earth's bow shock. We divided the SIMFRs into two categories: The first category is far from HCSs, and the second category is in the vicinity of HCSs. The first category has 57 SIMFRs, and only 7 of 57 ropes have no CSEs. This ratio is similar to that of MCs. The second category has 49 SIMFRs; however, 20 of the 49 events have no CSEs. This ratio is larger than that of MCs. These two categories have different origins. One category originates from the solar corona, and most ropes are still connected to the Sun at both ends. The other category is formed near HCSs in the interplanetary space.

  10. A HOT FLUX ROPE OBSERVED BY SDO/AIA

    Energy Technology Data Exchange (ETDEWEB)

    Aparna, V.; Tripathi, Durgesh, E-mail: aparnav@iucaa.in [Inter-University Centre for Astronomy and Astrophysics, Post Bag—4, Ganeshkhind, Pune 411007 (India)

    2016-03-01

    A filament eruption was observed on 2010 October 31 in the images recorded by the Atmospheric Imaging Assembly (AIA) on board the Solar Dynamic Observatory (SDO) in its Extreme Ultra-Violet (EUV) channels. The filament showed a slow-rise phase followed by a fast rise and was classified to be an asymmetric eruption. In addition, multiple localized brightenings which were spatially and temporally associated with the slow-rise phase were identified, leading us to believe that the tether-cutting mechanism initiated the eruption. An associated flux rope was detected in high-temperature channels of AIA, namely 94 and 131 Å, corresponding to 7 and 11 MK plasma respectively. In addition, these channels are also sensitive to cooler plasma corresponding to 1–2 MK. In this study, we have applied the algorithm devised by Warren et al. to remove cooler emission from the 94 Å channel to deduce only the high-temperature structure of the flux rope and to study its temporal evolution. We found that the flux rope was very clearly seen in the clean 94 Å channel image corresponding to Fe xviii emission, which corresponds to a plasma at a temperature of 7 MK. This temperature matched well with that obtained using Differential Emission Measure analysis. This study provides important constrains in the modeling of the thermodynamic structure of the flux ropes in coronal mass ejections.

  11. Pull-pull position control of dual motor wire rope transmission

    Science.gov (United States)

    Guo, Quan; Jiao, Zongxia; Yan, Liang; Yu, Qian; Shang, Yaoxing

    2016-08-01

    Wire rope transmission is very efficient because of the small total moving object mass. The wire rope could only transmit pulling force. Therefore it has to be kept in a tightened state during transmission; in high speed applications the dynamic performance depends on the rope's stiffness, which can be adjusted by the wire rope tension. To improve the system dynamic performance output, this paper proposes a novel pull-pull method based on dual motors connected by wire ropes, for precise, high speed position control applications. The method can regulate target position and wire rope tension simultaneously. Wire ropes remain in a pre-tightening state at all times, which prevents the influence of elasticity and reduces the position tracking error in the changing direction process. Simulations and experiments were conducted; the results indicate that both position precision and superior dynamic performance can be synchronously achieved. The research is relevant to space craft precision pointing instruments.

  12. Dynamic Response of Parallel Hoisting System under Drive Deviation between Ropes with Time-Varying Length

    Directory of Open Access Journals (Sweden)

    Guohua Cao

    2017-01-01

    Full Text Available The dynamic responses of parallel hoisting system with time-varying length and rigid guidance under drive deviation are investigated considering tension and torsion characteristics of the ropes. The variable-domain three-node elements of rope are employed and the corresponding differential algebraic equations (DAEs are derived using Lagrange’s equations of the first kind. The slack situation of the rope is considered, and the dynamic equations which are systems of DAEs are transformed to ordinary differential equations (ODEs. The dynamic responses of tension, torsion, and acceleration are analyzed considering radius’ error of the drums, which indicates that the drive deviation between ropes can cause large influence on the tension difference and even cause one of the ropes to slack. However, the torsion of the corresponding rope is active. And unreasonable discordance between ropes should be controlled for the design and manufacture of drum on super deep parallel hoisting system.

  13. Vacuum barrier for excimer lasers

    Energy Technology Data Exchange (ETDEWEB)

    Shurter, R.P.

    1990-10-10

    This invention is comprised of a barrier for separating the vacuum area of a diode from the pressurized gas area of an excimer laser. The barrier is a composite material comprising layers of a metal such as copper, along with layers of polyimide, and a matrix of graphite fiber yearns impregnated with epoxy. The barrier is stronger than conventional foil barriers, and allows greater electron throughput.

  14. Wire rope improvement program. Fiscal years 1979 to 1980. Interim report

    Energy Technology Data Exchange (ETDEWEB)

    Morgenstern, M.H.; Alzheimer, J.M.; Anderson, W.E.; Beeman, G.H.; Rice, R.C.; Strope, L.A.; Werry, E.V.

    1980-08-01

    This report describes the work performed by the Pacific Northwest Laboratory and its subcontractor Battelle Columbus Laboratories on the Wire Rope Improvement Program during FY-1979 and the first half of FY80. The program, begun in 1975 by the US Bureau of Mines, was transferred to the US Department of Energy (DOE) on October 1, 1978. Since that time, the DOE's Division of Solid Fuels Mining and Preparation has sponsored the program. To address identified problems and provide information from which behavior of large-diameter wire rope could be better understood, efforts in the following areas were undertaken: large-diameter rope testing, small-diameter rope testing, data analysis and evaluation, wear and failure analysis, load sensor development, and technology transfer. Wire ropes 3/4 in., 1-1/2 in., and 3 in. in diameter were tested in bend-over sheave fatigue. Attempts were made to correlate fatigue life of these ropes. Limited field rope data were available to compare with test results. The modes of failure and wear in laboratory ropes were compared with those seen previously in field ropes. A load sensor was designed and ordered in FY79. It will be connected to the drag rope and jewelry of working draglines during the summer of FY80. Technology transfer was achieved through disseminating written materials, conducting seminars, holding a national symposium, and filming of selected field operations.

  15. A Novel Ropes-DrivenWideband Piezoelectric Vibration Energy Harvester

    Directory of Open Access Journals (Sweden)

    Jinhui Zhang

    2016-12-01

    Full Text Available This paper presents a novel piezoelectric vibration energy harvester (PVEH in which a high-frequency generating beam (HFGB is driven by an array of low-frequency driving beams (LFDBs using ropes. Two mechanisms based on frequency upconversion and multimodal harvesting work together to broaden the frequency bandwidth of the proposed vibration energy harvester (VEH. The experimental results show that the output power of generating beam (GB remains unchanged with the increasing number of driving beams (DBs, compared with the traditional arrays of beams vibration energy harvester (AB-VEH, and the output power and bandwidth behavior can be adjusted by parameters such as acceleration, rope margin, and stiffness of LFDBs, which shows the potential to achieve unlimited wideband vibration energy-harvesting for a variable environment.

  16. Magnetic field generation from shear flow in flux ropes

    Science.gov (United States)

    Intrator, T. P.; Sears, J.; Gao, K.; Klarenbeek, J.; Yoo, C.

    2012-10-01

    In the Reconnection Scaling Experiment (RSX) we have measured out of plane quadrupole magnetic field structure in situations where magnetic reconnection was minimal. This quadrupole out of plane magnetic signature has historically been presumed to be the smoking gun harbinger of reconnection. On the other hand, we showed that when flux ropes bounced instead of merging and reconnecting, this signature could evolve. This can follow from sheared fluid flows in the context of a generalized Ohms Law. We reconstruct a shear flow model from experimental data for flux ropes that have been experimentally well characterized in RSX as screw pinch equilibria, including plasma ion and electron flow, with self consistent profiles for magnetic field, pressure, and current density. The data can account for the quadrupole field structure.

  17. Design aspects of a deployable tensegrity-hollow-rope footbridge

    OpenAIRE

    Rhode-Barbarigos, Landolf; BEL HADJ ALI, Nizar; Motro, René; Smith, Ian F. C.

    2012-01-01

    International audience; Tensegrity structures are composed of cables and struts in a pre-stressed self-equilibrium. Although tensegrity first appeared in the 1950s, it is seldom used in civil engineering. This paper focuses on the design aspects of a deployable tensegrity-hollow-rope footbridge. Deployment is usually not a critical design case for traditional deployable structures. However, for tensegrity systems deployment may be critical due to the actuation required. In this paper, deploym...

  18. The sagging rope sign in Perthes' disease and allied disorders.

    Science.gov (United States)

    Apley, A G; Wientroub, S

    1981-02-01

    The sagging rope sign is the term used to describe the radiographic appearances which sometimes occur after Perthes' disease. It is severe examples of that disease and indicates damage to the growth plate with a marked metaphysial reaction. The same appearance follows severe epiphysitis after forcible reduction of a congenitally dislocated hip, and certain rare epiphysial dysplasias. The origin and significance of the sign are discussed.

  19. The Whole Elephant: A Synoptic View of Liquid Rope Coiling

    Science.gov (United States)

    Ribe, Neil

    2016-11-01

    Liquid rope coiling is the instability that occurs when e.g. a thin stream of honey is poured onto toast. While we now have a fine-grained understanding of each of the four principal coiling modes (viscous, gravitational, inertio-gravitational and inertial), we still lack a global view of how the modes cohere to form a larger whole. Using a numerical continuation procedure, I determine how the dimensionless coiling frequency depends on the dimensionless fall height and flow rate, for several values of the dimensionless nozzle diameter. Starting with the onset of coiling, I propose a purely geometrical definition of the critical surface between coiling and no coiling as the locus of points where the radius a1 of the rope at the contact point is just equal to the coil radius R. Coiling with a1 > R is impossible because the rope would intersect itself. I characterize the asymptotic limits of the critical surface as well as the structure of the supercritical volume inside that surface. The procedure reveals a new mode of coiling onset that has not yet been identified.

  20. Do the legs of magnetic clouds contain twisted flux-rope magnetic fields?

    OpenAIRE

    Owens, Mathew

    2016-01-01

    Magnetic clouds (MCs) are a subset of interplanetary coronal mass ejections (ICMEs) characterised primarily by a smooth rotation in the magnetic field direction indicative of the presence of a magnetic flux rope. Energetic particle signatures suggest MC flux ropes remain magnetically connected to the Sun at both ends, leading to widely used model of global MC structure as an extended flux rope, with a loop-like axis stretching out from the Sun into the heliosphere and back to the Sun. The tim...

  1. Effect of Finite Larmor Radius on the Cosmic Ray Penetration into an Interplanetary Magnetic Flux Rope

    OpenAIRE

    Kubo, Yuki; Shimazu, Hironori

    2010-01-01

    We discuss a mechanism for cosmic ray penetration into an interplanetary magnetic flux rope, particularly the effect of the finite Larmor radius and magnetic field irregularities. First, we derive analytical solutions for cosmic ray behavior inside a magnetic flux rope, on the basis of the Newton-Lorentz equation of a particle, to investigate how cosmic rays penetrate magnetic flux ropes under an assumption of there being no scattering by small-scale magnetic field irregularities. Next, we pe...

  2. Multi-year investigation of flux ropes in the Martian ionosphere

    Science.gov (United States)

    Cartwright, M. L.; Brain, D.; Halekas, J. S.; Eastwood, J. P.

    2011-12-01

    A magnetic flux rope is a collection of twisted magnetic field lines capable of transporting plasma from one region to another. Several studies report the occurrence of magnetic flux ropes in the Martian ionosphere [Cloutier et al., 1999; Vignes et al., 2004; Eastwood et al., 2008; Brain et al., 2010; Morgan et al., 2011]. Observations of a flux rope transporting ionospheric plasma away from Mars indicate that flux ropes could be an important means of atmospheric loss. Interestingly, there are at least three suggested flux rope formation mechanisms at Mars; the first is similar to Venus type events where the flux rope is formed via a shear related instability that occurs by interaction with the solar wind [Cloutier et al., 1999; Vignes et al., 2004]. The second mechanism is similar to plasmoid creation in the Earth's magnetotail, where the flux rope is created when the crustal fields stretch and shear due to interaction with the solar wind [Brain et al., 2010; Morgan et al., 2011]. The third flux rope formation mechanism is based on the identification of flux ropes near current sheets on the night side of Mars and likely created via collisionless magnetic reconnection [Eastwood et al., 2008]. Previous statistical surveys suggest that all three of these formation mechanisms are continuously active at Mars, but have had difficulty differentiating the three populations of flux ropes due to the spacecraft orbit or lack of events. We conducted a larger statistical study of the Martian flux ropes using two years of the MGS magnetic field and suprathermal electron datasets in the circular mapping orbit at ~400km. The purpose of this study is to collect a large dataset of events to characterize the flux rope formation mechanisms and study the relationship to solar cycle.

  3. Are There Different Populations of Flux Ropes in the Solar Wind?

    Science.gov (United States)

    Janvier, M.; Démoulin, P.; Dasso, S.

    2014-07-01

    Flux ropes are twisted magnetic structures that can be detected by in-situ measurements in the solar wind. However, different properties of detected flux ropes suggest different types of flux-rope populations. As such, are there different populations of flux ropes? The answer is positive and is the result of the analysis of four lists of flux ropes, including magnetic clouds (MCs), observed at 1 AU. The in-situ data for the four lists were fitted with the same cylindrical force-free field model, which provides an estimate of the local flux-rope parameters such as its radius and orientation. Since the flux-rope distributions have a broad dynamic range, we went beyond a simple histogram analysis by developing a partition technique that uniformly distributes the statistical fluctuations across the radius range. By doing so, we found that small flux ropes with radius Rlaw distribution in contrast to the larger flux ropes (identified as MCs), which have a Gaussian-like distribution. Next, from four CME catalogs, we estimated the expected flux-rope frequency per year at 1 AU. We found that the predicted numbers are similar to the frequencies of MCs observed in-situ. However, we also found that small flux ropes are at least ten times too abundant to correspond to CMEs, even to narrow ones. Investigating the different possible scenarios for the origin of these small flux ropes, we conclude that these twisted structures can be formed by blowout jets in the low corona or in coronal streamers.

  4. Do the Legs of Magnetic Clouds Contain Twisted Flux-rope Magnetic Fields?

    Science.gov (United States)

    Owens, M. J.

    2016-02-01

    Magnetic clouds (MCs) are a subset of interplanetary coronal mass ejections (ICMEs) characterized primarily by a smooth rotation in the magnetic field direction indicative of the presence of a magnetic flux rope. Energetic particle signatures suggest MC flux ropes remain magnetically connected to the Sun at both ends, leading to widely used model of global MC structure as an extended flux rope, with a loop-like axis stretching out from the Sun into the heliosphere and back to the Sun. The time of flight of energetic particles, however, suggests shorter magnetic field line lengths than such a continuous twisted flux rope would produce. In this study, two simple models are compared with observed flux rope axis orientations of 196 MCs to show that the flux rope structure is confined to the MC leading edge. The MC “legs,” which magnetically connect the flux rope to the Sun, are not recognizable as MCs and thus are unlikely to contain twisted flux rope fields. Spacecraft encounters with these non-flux rope legs may provide an explanation for the frequent observation of non-MC ICMEs.

  5. The force‐free configuration of flux ropes in geomagnetotail: Cluster observations

    National Research Council Canada - National Science Library

    Yang, Y. Y; Shen, C; Zhang, Y. C; Rong, Z. J; Li, X; Dunlop, M; Ma, Y. H; Liu, Z. X; Carr, C. M; Rème, H

    2014-01-01

    Unambiguous knowledge of magnetic field structure and the electric current distribution is critical for understanding the origin, evolution, and related dynamic properties of magnetic flux ropes (MFRs...

  6. Energetic Ion Acceleration by Small-scale Solar Wind Flux Ropes

    Science.gov (United States)

    le Roux, J. A.; Webb, G. M.; Zank, G. P.; Khabarova, O.

    2015-09-01

    We consider different limits of our recently developed kinetic transport theory to investigate the potential of supersonic solar wind regions containing several small-scale flux ropes to explain the acceleration of suprathermal ions to power-law spectra as observations show. Particle acceleration is modeled in response to flux-rope activity involving contraction, merging (reconnection), and collisions in the limit where the particle gyoradius is smaller than the characteristic flux-rope scale length. The emphasis is mainly on the statistical variance in the electric fields induced by flux-rope dynamics rather than on the mean electric field induced by multiple flux ropes whose acceleration effects are discussed elsewhere. Our steady-state analytical solutions suggest that ion drift acceleration by flux ropes, irrespective of whether displaying incompressible or compressible behavior, can yield power laws asymptotically at higher energies whereas an exponential spectral rollover results asymptotically when field-aligned guiding center motion acceleration occur by reconnection electric fields from merging flux ropes. This implies that at sufficiently high particle energies, drift acceleration might dominate. We also expect compressive flux ropes to yield harder power-law spectra than incompressible flux ropes.

  7. Are There Different Populations of Flux Ropes in the Solar Wind?

    CERN Document Server

    Janvier, Miho; Dasso, Sergio

    2014-01-01

    Flux ropes are twisted magnetic structures, which can be detected by in situ measurements in the solar wind. However, different properties of detected flux ropes suggest different types of flux-rope population. As such, are there different populations of flux ropes? The answer is positive, and is the result of the analysis of four lists of flux ropes, including magnetic clouds (MCs), observed at 1 AU. The in situ data for the four lists have been fitted with the same cylindrical force-free field model, which provides an estimation of the local flux-rope parameters such as its radius and orientation. Since the flux-rope distributions have a large dynamic range, we go beyond a simple histogram analysis by developing a partition technique that uniformly distributes the statistical fluctuations over the radius range. By doing so, we find that small flux ropes with radius R<0.1 AU have a steep power-law distribution in contrast to the larger flux ropes (identified as MCs), which have a Gaussian-like distributio...

  8. Signal Acquisition and Processing in the Magnetic Defectoscopy of Steel Wire Ropes

    Directory of Open Access Journals (Sweden)

    N. S. Jovičić

    2012-11-01

    Full Text Available The system that resolves the problem of wire rope defects using a magnetic method of inspection is presented in this paper. Implementation of the system should provide for full monitoring of wire rope condition, according to the prescribed international standards. The purpose of this system, in addition to identifying defects in the rope, is to determine to what extent damage has been done. The measurement procedure provides for a better understanding of the defects that occur, as well as the rejection criteria of used ropes, that way increasing their security. Hardware and software design of appliance for recording defects and test results are presented in this paper.

  9. DO THE LEGS OF MAGNETIC CLOUDS CONTAIN TWISTED FLUX-ROPE MAGNETIC FIELDS?

    Energy Technology Data Exchange (ETDEWEB)

    Owens, M. J. [Space and Atmospheric Electricity Group, Department of Meteorology, University of Reading, Earley Gate, P.O. Box 243, Reading RG6 6BB (United Kingdom)

    2016-02-20

    Magnetic clouds (MCs) are a subset of interplanetary coronal mass ejections (ICMEs) characterized primarily by a smooth rotation in the magnetic field direction indicative of the presence of a magnetic flux rope. Energetic particle signatures suggest MC flux ropes remain magnetically connected to the Sun at both ends, leading to widely used model of global MC structure as an extended flux rope, with a loop-like axis stretching out from the Sun into the heliosphere and back to the Sun. The time of flight of energetic particles, however, suggests shorter magnetic field line lengths than such a continuous twisted flux rope would produce. In this study, two simple models are compared with observed flux rope axis orientations of 196 MCs to show that the flux rope structure is confined to the MC leading edge. The MC “legs,” which magnetically connect the flux rope to the Sun, are not recognizable as MCs and thus are unlikely to contain twisted flux rope fields. Spacecraft encounters with these non-flux rope legs may provide an explanation for the frequent observation of non-MC ICMEs.

  10. Towards a Data-Optimized Coronal Magnetic Field Model (DOC-FM): Simulating Flux Ropes with the Flux Rope Insertion Method

    Science.gov (United States)

    Dalmasse, K.; DeLuca, E. E.; Savcheva, A. S.; Gibson, S. E.; Fan, Y.

    2015-12-01

    Knowledge of the 3D magnetic filed structure at the time of major solar eruptions is vital or understanding of the space weather effects of these eruptions. Multiple data-constrained techniques that reconstruct the 3D coronal field based on photospheric magnetograms have been used to achieve this goal. In particular, we have used the flux rope insertion method to obtain the coronal magnetic field of multiple regions containing flux ropes or sheared arcades based on line-of-sight magnetograms and X-ray and EUV observations of coronal loops. For the purpose of developing statistical measures of the goodness of fit of these models to the observations, here we present our modeling of flux ropes based on synthetic magnetograms obtained from Fan & Gibson emerging flux rope simulation. The goal is to reproduce the flux rope structure from a given time step of the MHD simulations based only on the photospheric magnetogram and synthetic forward modeled coronal emission obtained from the same step of the MHD simulation. For this purpose we create a large grid of models with the flux rope insertion method with different combinations of axial and poloidal flux, which give us different morphology of the flux rope. Then we compare the synthetic coronal emission with the shape of the current distribution and field lines from the models to come up with a best fit. This fit is then tested using the statistical methods developed by our team.

  11. Twisted versus braided magnetic flux ropes in coronal geometry. II. Comparative behaviour

    Science.gov (United States)

    Prior, C.; Yeates, A. R.

    2016-06-01

    Aims: Sigmoidal structures in the solar corona are commonly associated with magnetic flux ropes whose magnetic field lines are twisted about a mutual axis. Their dynamical evolution is well studied, with sufficient twisting leading to large-scale rotation (writhing) and vertical expansion, possibly leading to ejection. Here, we investigate the behaviour of flux ropes whose field lines have more complex entangled/braided configurations. Our hypothesis is that this internal structure will inhibit the large-scale morphological changes. Additionally, we investigate the influence of the background field within which the rope is embedded. Methods: A technique for generating tubular magnetic fields with arbitrary axial geometry and internal structure, introduced in part I of this study, provides the initial conditions for resistive-MHD simulations. The tubular fields are embedded in a linear force-free background, and we consider various internal structures for the tubular field, including both twisted and braided topologies. These embedded flux ropes are then evolved using a 3D MHD code. Results: Firstly, in a background where twisted flux ropes evolve through the expected non-linear writhing and vertical expansion, we find that flux ropes with sufficiently braided/entangled interiors show no such large-scale changes. Secondly, embedding a twisted flux rope in a background field with a sigmoidal inversion line leads to eventual reversal of the large-scale rotation. Thirdly, in some cases a braided flux rope splits due to reconnection into two twisted flux ropes of opposing chirality - a phenomenon previously observed in cylindrical configurations. Conclusions: Sufficiently complex entanglement of the magnetic field lines within a flux rope can suppress large-scale morphological changes of its axis, with magnetic energy reduced instead through reconnection and expansion. The structure of the background magnetic field can significantly affect the changing morphology of a

  12. MAVEN observations of magnetic flux ropes with a strong field amplitude in the Martian magnetosheath during the ICME passage on 8 March 2015

    Science.gov (United States)

    Hara, Takuya; Luhmann, Janet G.; Halekas, Jasper S.; Espley, Jared R.; Seki, Kanako; Brain, David A.; Hasegawa, Hiroshi; McFadden, James P.; Mitchell, David L.; Mazelle, Christian; Harada, Yuki; Livi, Roberto; DiBraccio, Gina A.; Connerney, John E. P.; Andersson, Lailla; Jakosky, Bruce M.

    2016-05-01

    We present initial results of strong field amplitude flux ropes observed by Mars Atmosphere and Volatile EvolutioN (MAVEN) mission around Mars during the interplanetary coronal mass ejection (ICME) passage on 8 March 2015. The observed durations were shorter than 5 s and the magnetic field magnitudes peaked above 80 nT, which is a few times stronger than those usually seen in the magnetosheath barrier. These are the first unique observations that MAVEN detected such flux ropes with a strong field at high altitudes (>5000 km). Across these structures, MAVEN coincidentally measured planetary heavy ions with energies higher than a few keV. The spatial properties inferred from the Grad-Shafranov equation suggest that the speed of the structure can be estimated at least an order of magnitude faster than those previously reported quiet-time counterparts. Hence, the space weather event like the ICME passage can be responsible for generating the observed strong field, fast-traveling flux ropes.

  13. High-Resolution Observations of a Flux Rope with the Interface Region Imaging Spectrograph

    Science.gov (United States)

    Li, Ting; Zhang, Jun

    2015-10-01

    We report the observations of a flux rope at transition region temperatures with the Interface Region Imaging Spectrograph (IRIS) on 30 August 2014. Initially, magnetic flux cancellation continually took place and a filament was activated. Then the bright material from the filament moved southward and tracked out several fine structures. These fine structures were twisted and tangled with each other, and appeared as a small flux rope at 1330 Å, with a total twist of about 4π. Afterwards, the flux rope underwent a counterclockwise (viewed top-down) unwinding motion around its axis. Spectral observations of C ii 1335.71 Å at the southern leg of the flux rope revealed Doppler redshifts of 6 - 24 km s^{-1} at the western side of the axis, which is consistent with the counterclockwise rotation motion. We suggest that the magnetic flux cancellation initiates reconnection and activation of the flux rope. The stored twist and magnetic helicity of the flux rope are transported into the upper atmosphere by the unwinding motion in the late stage. The small-scale flux rope (width of 8.3^'') had a cylindrical shape with helical field lines, similar to the morphology of the large-scale CME core (width of 1.54 {R}_{⊙}) on 2 June 1998. This similarity shows the presence of flux ropes of different scales on the Sun.

  14. Feeling the Tug: Creative Use of Ropes and Felt Board to Promote Family Change

    Science.gov (United States)

    Bruhn, Rick A.; Lykke, Debra B.; Duhl, Bunny S.

    2006-01-01

    Experiential metaphor has been used in marriage and family therapy for many years. One example of metaphor application involves the use of ropes and felt board to identify and explore relationships in families. In this case, the mother of a son who was socially isolated is treated by a marriage and family therapy intern, using ropes and felt board…

  15. Jump Rope Skills for Fun and Fitness in Grades K-12

    Science.gov (United States)

    Michiels Hernandez, Barbara L.; Gober, Donna; Boatwright, Douglas; Strickland, George

    2009-01-01

    A jump rope is a remarkable piece of exercise equipment. It is inexpensive and easy to store, and it can be used by a wide variety of age groups to improve cardiovascular fitness, increase agility, and tone the body's muscles all at the same time. Consequently, the teaching of jump rope skills is highly suitable for physical education classes in…

  16. Relating to Older People Evaluation (ROPE): A Measure of Self-Reported Ageism

    Science.gov (United States)

    Cherry, Katie E.; Palmore, Erdman

    2008-01-01

    The Relating to Older People Evaluation (ROPE) is a 20-item questionnaire that measures positive and negative ageist behaviors that people may engage in during everyday life. In this article, we report the first findings from several administrations of the ROPE along with initial psychometric information on the instrument. Respondents were college…

  17. Theoretical coupling longitudinal-transverse model and experimental verification of transverse vibration of rope for multi-rope friction hoisting system

    National Research Council Canada - National Science Library

    Juan Wu Ziming Kou

    2016-01-01

    Using the mass of time-varying length balance rope focused on the hoisting conveyance, the coupling longi- tudinal-transverse model of mine friction hoist was established by using of the Hamilton's principle...

  18. Load carrying capacity of shear wall t-connections reinforced with high strength wire ropes

    DEFF Research Database (Denmark)

    Jørgensen, Henrik B.; Bryndom, Thor; Larsen, Michael

    2016-01-01

    Traditionally, U-bar loop connections with keyed joints have been used in vertical shear connections between precast concrete wall elements. However, in the recent years, connections with looped high strength wire ropes instead of U-bar loops have proven to be a much more construction......-friendly solution. The wire ropes have no bending stiffness and therefore allow for an easier vertical installation of the wall elements. During the last 10 – 15 years, a number of shear tests on plane wire rope connections have been carried out. However, to the best knowledge of the authors, tests on wire rope...... connections for assembly of precast elements in different planes, such as T- and L-connections, have not yet been published. This paper presents the results of a large test series recently conducted at the University of Southern Denmark to study the shear behaviour of high strength wire rope T...

  19. Load Carrying Capacity of Shear Wall T-Connections Reinforced with High Strength Wire Ropes

    DEFF Research Database (Denmark)

    Jørgensen, Henrik Brøner; Bryndum, Thor; Larsen, Michael

    2017-01-01

    Traditionally, U-bar loop connections with keyed joints have been used in vertical shear connections between precast concrete wall elements. However, in the recent years, connections with looped high strength wire ropes instead of U-bar loops have proven to be a much more construction......-friendly solution. The wire ropes have no bending stiffness and therefore allow for an easier vertical installation of the wall elements. During the last 10 – 15 years, a number of shear tests on plane wire rope connections have been carried out. However, to the best knowledge of the authors, tests on wire rope...... connections for assembly of precast elements in different planes, such as T- and L-connections, have not yet been published. This paper presents the results of a large test series recently conducted at the University of Southern Denmark to study the shear behaviour of high strength wire rope T...

  20. Multiple Triangulation Analysis: another approach to determine the orientation of magnetic flux ropes

    Directory of Open Access Journals (Sweden)

    X.-Z. Zhou

    2006-07-01

    Full Text Available Another approach (Multiple Triangulation Analysis, MTA is presented to determine the orientation of magnetic flux rope, based on 4-point measurements. A 2-D flux rope model is used to examine the accuracy of the MTA technique in a theoretical way. It is found that the precision of the estimated orientation is dependent on both the spacecraft separation and the constellation path relative to the flux rope structure. However, the MTA error range can be shown to be smaller than that of the traditional MVA technique. As an application to real Cluster data, several flux rope events on 26 January 2001 are analyzed using MTA, to obtain their orientations. The results are compared with the ones obtained by several other methods which also yield flux rope orientation. The estimated axis orientations are shown to be fairly close, suggesting the reliability of the MTA method.

  1. Magnetic Flux Rope Identification and Characterization from Observationally Driven Solar Coronal Models

    Science.gov (United States)

    Lowder, Chris; Yeates, Anthony

    2017-09-01

    Formed through magnetic field shearing and reconnection in the solar corona, magnetic flux ropes are structures of twisted magnetic field, threaded along an axis. Their evolution and potential eruption are of great importance for space weather. Here we describe a new methodology for the automated detection of flux ropes in simulated magnetic fields, utilizing field-line helicity. Our Flux Rope Detection and Organization (FRoDO) code, which measures the magnetic flux and helicity content of pre-erupting flux ropes over time, as well as detecting eruptions, is publicly available. As a first demonstration, the code is applied to the output from a time-dependent magnetofrictional model, spanning 1996 June 15–2014 February 10. Over this period, 1561 erupting and 2099 non-erupting magnetic flux ropes are detected, tracked, and characterized. For this particular model data, erupting flux ropes have a mean net helicity magnitude of 2.66× {10}43 Mx2, while non-erupting flux ropes have a significantly lower mean of 4.04× {10}42 Mx2, although there is overlap between the two distributions. Similarly, the mean unsigned magnetic flux for erupting flux ropes is 4.04× {10}21 Mx, significantly higher than the mean value of 7.05× {10}20 Mx for non-erupting ropes. These values for erupting flux ropes are within the broad range expected from observational and theoretical estimates, although the eruption rate in this particular model is lower than that of observed coronal mass ejections. In the future, the FRoDO code will prove to be a valuable tool for assessing the performance of different non-potential coronal simulations and comparing them with observations.

  2. Reconnection Experiments with Flux Ropes near 3D Magnetic Nulls

    Science.gov (United States)

    Vrublevskis, A.; Egedal, J.; Le, A.

    2012-12-01

    Magnetic reconnection has been predominantly investigated in two dimensions. However, depending on the topology and geometry of the magnetic field, a rich collection of magnetic reconnection scenarios is possible in 3D including reconnection at magnetic nulls. Nulls have been reported in the solar corona [1] and in Earth's magnetosphere [2], yet there are a limited number of laboratory observations. At the Versatile Toroidal Facility (VTF) we have implemented a new magnetic geometry with a pair of 3D null points in the background toroidal field. We form a flux rope along the background field and observe it to rapidly restructure and rewire as the nulls develop. We can adjust the topology of the configuration from one where a field line connects the nulls to one where the nulls are no longer linked. A suit of diagnostics will be deployed and results presented for the dynamics of the flux rope. [1] Fletcher et al., Astrophys. J. 554, 451(2001) [2] Xiao et al., Nat. Phys. 2, 478 (2006)

  3. Degradation of common polymer ropes in a sublittoral marine environment.

    Science.gov (United States)

    Welden, Natalie A; Cowie, Phillip R

    2017-05-15

    Contamination by microplastic particles and fibres has been observed in sediment and animals sampled from the Firth of Clyde, West Scotland. In addition to microplastics released during clothes washing, a probable source is polymer ropes in abandoned, lost and discarded fishing and recreational sailing gear. The fragmentation of polypropylene, polyethylene, and nylon exposed to benthic conditions at 10m depth over 12months was monitored using changes in weight and tensile properties. Water temperature and light levels were continuously monitored. The degree of biofouling was measured using chlorophyll a, the weight of attached macroalgae, and colonising fauna. Results indicate microplastic fibres and particles may be formed in benthic environments despite reduced photodegradation. Polypropylene, Nylon, and polyethylene lost an average of 0.39%, 1.02%, and 0.45% of their mass per month respectively. Microscope images of the rope surface revealed notable surface roughening believed to be caused by abrasion by substrate and the action of fouling organisms. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Research on wire rope deformation distribution of WR-CVT

    Science.gov (United States)

    Zhang, Wu; Guo, Wei; Zhang, Chuanwei; Lu, Zhengxiong; Xu, Xiaobin

    2017-07-01

    A wire rope continuously variable transmissions (WR-CVT) has been introduced in the paper, in view of its less research, this paper mainly studied the deformation distribution of 6×7+IWS bending wire rope. The results shown that in the same section, half of the side strands are in a stretched state and half are in a compressed state. When the transmission ratio i=2.35, the maximum deformation and the minimum deformation are decrease when section U1 to U2, U3 transition. Wire deformation distribution when the transmission ratio i=0.42 is similar to that of i=0.2.35. Wire deformation amount and the deformation difference decrease as the transmission ratio decreases, this shows that the increase in the bending radius of the wire will make the wire deformation more uniform, and the reduction of the deformation difference will also reduce the wear. This study provides a basis for the study of fatigue and wears failure of WR-CVT components.

  5. Dynamic field of elastic displacements in a rope which is reeled up on the drum at lifting of loads

    Directory of Open Access Journals (Sweden)

    V. A. Ostapenko

    2011-11-01

    Full Text Available The boundary-value problem about construction of the displacement waves and the strain waves arising in ropes of elevating devices, such as lifts, mine lifts and so on is considered. The rope at lifting of loads is reeled up on a drum. In a case when the friction coefficient of a rope about a drum is not too big, occurs frictional sliding a rope on a drum. Therefore the behavior of a rope on a drum is described by the telegraph equation. The behavior of a hanging part of a rope is described by the wave equation. It means, that in different parts of a rope the displacements are solutions of the different equations. That is from this point of view the rope is shared on two zones. Thus owing to reeling of a rope on a drum the border which shares these two zones is a variable. In such model the waves not only reflect from ending points of a rope. There is also their reflection and refraction on moving border of the sharing of zones. Is developed methods for obtaining of exact solutions for the boundary-value problems with mobile borders for both the wave and telegraph equations. They are based on maintenance of a continuity of the displacements in points of reflection of waves. The exact solution of such problem is obtained for the case of sagging a rope prior to the beginning of rise.

  6. Dynamic Contact between a Wire Rope and a Pulley Using Absolute Nodal Coordinate Formulation

    Directory of Open Access Journals (Sweden)

    Shoichiro Takehara

    2016-01-01

    Full Text Available Wire rope and pulley devices are used in various machines. To use these machines more safely, it is necessary to analyze the behavior of the contact between them. In this study, we represent a wire rope by a numerical model of a flexible body. This flexible body is expressed in the absolute nodal coordinate formulation (ANCF, and the model includes the normal contact force and the frictional force between the wire rope and the pulley. The normal contact force is expressed by spring-damper elements, and the frictional force is expressed by the Quinn method. The advantage of the Quinn method is that it reduces the numerical problems associated with the discontinuities in Coulomb friction at zero velocity. By using the numerical model, simulations are performed, and the validity of this model is shown by comparing its results with those of an experiment. Through numerical simulations, we confirm the proposed model for the contact between the wire rope and the pulley. We confirmed that the behavior of the wire rope changes when both the bending elastic modulus of the wire rope and the mass added to each end of the wire rope are changed.

  7. Damage-Induced Stresses and Remaining Service Life Predictions of Wire Ropes

    Directory of Open Access Journals (Sweden)

    Goran Vukelic

    2017-01-01

    Full Text Available Wire ropes in marine applications often encounter relatively fast and noticeable wear, a result of the fatigue to which they are exposed coupled with harsh operational conditions. This paper addresses some of the aspects of fatigue damage that occur in wire ropes. Using the finite element method, stress and fatigue analysis of three different design types (6 × 7, 7 × 7, 8 × 7 of wire rope is performed. The size of the wire rope cross-section area is varied in order to simulate the progressive damage of the wires so that consequential stress levels and remaining fatigue life can be numerically predicted. The aim was to provide a better understanding of the mechanical behavior of damaged wire ropes under various conditions, since an appropriate choice of wire rope design could then be made from engineering and economic points of view. Additionally, potential failures can be predicted, resulting in effective maintenance and the avoidance of potential risks of rope failure, especially important regarding economical and safety aspects of transportation in the marine industry.

  8. Finite element analysis on the wire breaking rule of 1×7IWS steel wire rope

    Directory of Open Access Journals (Sweden)

    Wenzheng Du

    2017-01-01

    Full Text Available Taking the wire rope of 1×7+IWS structure as the research object, the influences of the number of broken wires on the stress distribution under the same axial load were simulated and analysed, and it also explored the rule of wire breaking of steel wire ropes. Based on the SolidWorks software, the three-dimensional model of the wire rope was established. Importing the model into the ABAQUS, the finite element model of the steel wire rope was established. Firstly 5000 N axial tension was placed on the rope, the stress distribution was simulated and analysed, and the steel wire with the largest stress distribution was found out. Then one steel wire was truncated with the load unchanged, and the finite element simulation was carried out again, and repeated the steps several times. The results show that, with the increase of the number of broken wires, the Von-Mises stress of the wire rope increases sharply, and the stress distribution is concentrated on the rest of the unbroken wires, which brings great challenges to the safety of the wire rope.

  9. The formation and launch of a coronal mass ejection flux rope: a narrative based on observations

    Energy Technology Data Exchange (ETDEWEB)

    Howard, T. A.; DeForest, C. E., E-mail: howard@boulder.swri.edu [Southwest Research Institute, 1050 Walnut Street, Suite 300, Boulder, CO 80302 (United States)

    2014-11-20

    We present a data-driven narrative of the launch and early evolution of the magnetic structure that gave rise to the coronal mass ejection (CME) on 2008 December 12. The structure formed on December 7 and launched early on December 12. We interpret this structure as a flux rope based on prelaunch morphology, postlaunch magnetic measurements, and the lack of large-scale magnetic reconnection signatures at launch. We ascribe three separate onset mechanisms to the complete disconnection of the flux rope from the Sun. It took 19 hr for the flux rope to be fully removed from the Sun, by which time the segment that first disconnected was around 40 R {sub ☉} away. This implies that the original flux rope was stretched or broken; we provide evidence for a possible bisection. A transient dark arcade was observed on the Sun that was later obscured by a bright arcade, which we interpret as the strapping field stretching and magnetically reconnecting as it disconnected from the coronal field. We identify three separate structures in coronagraph images to be manifestations of the same original flux rope, and we describe the implications for CME interpretation. We cite the rotation in the central flux rope vector of the magnetic clouds observed in situ by ACE/Wind and STEREO-B as evidence of the kink instability of the eastern segment of the flux rope. Finally, we discuss possible alternative narratives, including multiple prelaunch magnetic structures and the nonflux rope scenario. Our results support the view that, in at least some CMEs, flux rope formation occurs before launch.

  10. Behavioral and Physiological Responses of Calves to Marshalling and Roping in a Simulated Rodeo Event

    Science.gov (United States)

    Sinclair, Michelle; Keeley, Tamara; Lefebvre, Anne-Cecile; Phillips, Clive J. C.

    2016-01-01

    Simple Summary Rodeos often include a calf roping event, where calves are first lassoed by a rider on a horse, who then dismounts, ties the calves’ legs, lifts it from the ground and releases it back to the floor. We tested whether calves that were familiar to the roping experience stress during the roping event, and found increased concentrations of stress hormones in their blood after the roping. We also found increased concentrations of stress hormones in the blood of calves that had never been roped before but were just marshelled across the arena by the horse and rider. We conclude that the roping event in rodeos is stressful for both experienced and naïve calves. Abstract Rodeos are public events at which stockpeople face tests of their ability to manage cattle and horses, some of which relate directly to rangeland cattle husbandry. One of these is calf roping, in which a calf released from a chute is pursued by a horse and rider, who lassoes, lifts and drops the calf to the ground and finally ties it around the legs. Measurements were made of behavior and stress responses of ten rodeo-naïve calves marshalled by a horse and rider, and ten rodeo-experienced calves that were roped. Naïve calves marshalled by a horse and rider traversed the arena slowly, whereas rodeo-experienced calves ran rapidly until roped. Each activity was repeated once after two hours. Blood samples taken before and after each activity demonstrated increased cortisol, epinephrine and nor-epinephrine in both groups. However, there was no evidence of a continued increase in stress hormones in either group by the start of the repeated activity, suggesting that the elevated stress hormones were not a response to a prolonged effect of the initial blood sampling. It is concluded that both the marshalling of calves naïve to the roping chute by stockpeople and the roping and dropping of experienced calves are stressful in a simulated rodeo calf roping event. PMID:27136590

  11. A rope-net support system for the liquid scintillator detector for the SNO+ experiment

    Energy Technology Data Exchange (ETDEWEB)

    Bialek, A., E-mail: abialek@snolab.ca [University of Alberta, Edmonton (Canada); Chen, M. [Queen' s University, Kingston (Canada); Cleveland, B. [SNOLAB, Lively (Canada); Gorel, P.; Hallin, A. [University of Alberta, Edmonton (Canada); Harvey, P.J.; Heise, J. [Queen' s University, Kingston (Canada); Kraus, C. [Laurentian University, Sudbury (Canada); Krauss, C.B. [University of Alberta, Edmonton (Canada); Lawson, I. [SNOLAB, Lively (Canada); Ng, C.J.; Pinkney, B. [University of Alberta, Edmonton (Canada); Rogowsky, D.M. [Rogowsky Engineering Ltd, AECOM Canada Ltd (Canada); Sibley, L.; Soluk, R.; Soukup, J. [University of Alberta, Edmonton (Canada); Vázquez-Jáuregui, E. [SNOLAB, Lively (Canada); Laurentian University, Sudbury (Canada)

    2016-08-11

    The detector for the SNO+ experiment consists of 780 000 kg of liquid scintillator contained in an acrylic vessel that is surrounded by water. A mechanical system has been installed to counteract the 1.25 MN of buoyant force on the acrylic and prevent the vessel from moving. The system is a rope net, designed using a Finite Element Analysis to calculate the amount of stress on the acrylic induced by the ropes, hydrostatic pressures and gravity. A dedicated test was performed to measure strains in the acrylic arising from the complex geometry of the knots in the rope system. The ratio between measured and FEA calculated strains was 1.3.

  12. Design of strain tension sensor of steel wire rope used in the coal mine

    Science.gov (United States)

    Zhang, Xin; Jin, Huawei

    2016-01-01

    According to the dynamic tension testing requirements of the multi-rope winder rope, this paper designs the sensor used to measure the tension of steel wire rope directly. The sensor uses the strain shear measuring principle, and has many features with small size, big measuring range, easy to install, don't change the structure of connected devices and so on. Application of the finite element analysis software makes the structure of the sensor optimized, and then enhance the static and dynamic performance of the sensor.

  13. Movement analysis on steel wire rope of continuous conveyor with disc-tube assembly

    Institute of Scientific and Technical Information of China (English)

    LUAN Li-jun; SHI Shu-lin; REN Li-yi

    2004-01-01

    The steel wire rope of continuous conveyor with disc-tube assembly is droved by the driving wheel. When the driving wheel rotates, the gear is combined to the connection disc in turn, promoting the connection disc to move in succession. Turning the whirling torque of driving wheel into the straight-line traction force. When the steel wire rope is winded by the driving wheel some winded along the circumference, others winded along the straight line. Used motion subject law, this article analyses the change of the velocity and the acceleration of the steel wire rope in the straight movement, and observe the mathematics' model of velocity and acceleration.

  14. Flux Rope Formation Preceding Coronal Mass Ejection Onset

    CERN Document Server

    Green, L M

    2009-01-01

    We analyse the evolution of a sigmoidal (S shaped) active region toward eruption, which includes a coronal mass ejection (CME) but leaves part of the filament in place. The X-ray sigmoid is found to trace out three different magnetic topologies in succession: a highly sheared arcade of coronal loops in its long-lived phase, a bald-patch separatrix surface (BPSS) in the hours before the CME, and the first flare loops in its major transient intensity enhancement. The coronal evolution is driven by photospheric changes which involve the convergence and cancellation of flux elements under the sigmoid and filament. The data yield unambiguous evidence for the existence of a BPSS, and hence a flux rope, in the corona prior to the onset of the CME.

  15. Hydroelectric System Response to Part Load Vortex Rope Excitation

    Science.gov (United States)

    Alligné, S.; Nicolet, C.; Bégum, A.; Landry, C.; Gomes, J.; Avellan, F.

    2016-11-01

    The prediction of pressure and output power fluctuations amplitudes on Francis turbine prototype is a challenge for hydro-equipment industry since it is subjected to guarantees to ensure smooth and reliable operation of the hydro units. The European FP7 research project Hyperbole aims to setup a methodology to transpose the pressure fluctuations induced by the cavitation vortex rope on the reduced scale model to the prototype generating units. A Francis turbine unit of 444MW with a specific speed value of v = 0.29, is considered as case study. A SIMSEN model of the power station including electrical system, controllers, rotating train and hydraulic system with transposed draft tube excitation sources is setup. Based on this model, a frequency analysis of the hydroelectric system is performed to analyse potential interactions between hydraulic excitation sources and electrical components.

  16. The effects of dance music jump rope exercise on pulmonary function and body mass index after music jump rope exercise in overweight adults in 20’s

    Science.gov (United States)

    Seo, KyoChul

    2017-01-01

    [Purpose] The purpose of this study was to examine the effect of a dance music jump rope exercise on changes Pulmonary Function and body mass index in female overweight subjects in their 20’s. [Subjects and Methods] The subjects were randomly assigned to the dance music jump rope exercise group and the stationary cycle exercise group. All subjects have conducted the exercises three times a week for four weeks. Pulmonary function was evaluated using a spirometer, and body mass index was evaluated using an InBody 3.0. [Results] The findings of this study showed significant improvements in the voluntary capacity and body mass index of the experimental groups. Vital capacity was higher in the music jump rope exercise group than the stationary cycle exercise group, and body mass index was lower in the music jump rope exercise group than the stationary cycle exercise group. [Conclusion] This study showed that the dance music jump rope exercise can be used to improve vital capacity and body mass index. PMID:28878460

  17. The effects of dance music jump rope exercise on pulmonary function and body mass index after music jump rope exercise in overweight adults in 20's.

    Science.gov (United States)

    Seo, KyoChul

    2017-08-01

    [Purpose] The purpose of this study was to examine the effect of a dance music jump rope exercise on changes Pulmonary Function and body mass index in female overweight subjects in their 20's. [Subjects and Methods] The subjects were randomly assigned to the dance music jump rope exercise group and the stationary cycle exercise group. All subjects have conducted the exercises three times a week for four weeks. Pulmonary function was evaluated using a spirometer, and body mass index was evaluated using an InBody 3.0. [Results] The findings of this study showed significant improvements in the voluntary capacity and body mass index of the experimental groups. Vital capacity was higher in the music jump rope exercise group than the stationary cycle exercise group, and body mass index was lower in the music jump rope exercise group than the stationary cycle exercise group. [Conclusion] This study showed that the dance music jump rope exercise can be used to improve vital capacity and body mass index.

  18. Strength of precast concrete shear joints reinforced with high-strength wire ropes

    DEFF Research Database (Denmark)

    Joergensen, Henrik B.; Hoang, Linh Cao; Hagsten, Lars German

    2017-01-01

    This paper concerns the in-plane shear strength of connections between precast concrete wall elements reinforced with looped high-strength wire ropes. The looped wire ropes are pre-installed in so-called ‘wire boxes’ which function as shear keys. Although only a small amount of research...... on the shear strength of such connections can be found in the literature, this type of connection is increasingly being used because wire ropes are much more construction-friendly than traditional U-bars. A rigid plastic upper bound model for the shear strength of wall connections reinforced with looped wire...... ropes that are pre-installed in wire boxes is presented along with test results on the shear strength of connections with double-wire boxes. It is shown that the plastic solution agrees well with both the obtained test results and results from previously conducted tests....

  19. Interpretation of damages in hoisting ropes based on the testing device with three sensors

    Energy Technology Data Exchange (ETDEWEB)

    Langebrake, F.; Fuchs, D.; Sindern, W.; Spas, W. [DMT-Gesellschaft fuer Foerderung und Transport, Bochum (Germany)

    1996-12-31

    The compulsion for cost-effective hoisting led to the concentration of few heavy-loaded Koepe hoists. The heavy load demands a lot of operational safety of the component parts that are subjected to high-level static and dynamic stresses. The DMT-Institute of Hoisting and Transport has developed suitable test methods to record reliably damage of the ropes. Apart from the visual inspection, non-destructive test methods are used to obtain information about wire breaks, cross section losses by corrosion or wear and the rope diameter. The assessment of the test results considers the rope stresses, operational conditions and damage developments that were derived from previous running ropes. 3 refs., 11 figs.

  20. Jump Rope Training: Balance and Motor Coordination in Preadolescent Soccer Players

    National Research Council Canada - National Science Library

    Trecroci, Athos; Cavaggioni, Luca; Caccia, Riccardo; Alberti, Giampietro

    2015-01-01

    ... to the learning soccer-specific skills. Jumping rope is a widely-used and non-specific practical method for the development of athletic conditioning, balance and coordination in several disciplines...

  1. Computational fluid dynamics modeling of rope-guided conveyances in two typical kinds of shaft layouts.

    Directory of Open Access Journals (Sweden)

    Renyuan Wu

    Full Text Available The behavior of rope-guided conveyances is so complicated that the rope-guided hoisting system hasn't been understood thoroughly so far. In this paper, with user-defined functions loaded, ANSYS FLUENT 14.5 was employed to simulate lateral motion of rope-guided conveyances in two typical kinds of shaft layouts. With rope-guided mine elevator and mine cages taken into account, results show that the lateral aerodynamic buffeting force is much larger than the Coriolis force, and the side aerodynamic force have the same order of magnitude as the Coriolis force. The lateral aerodynamic buffeting forces should also be considered especially when the conveyance moves along the ventilation air direction. The simulation shows that the closer size of the conveyances can weaken the transverse aerodynamic buffeting effect.

  2. Dynamic High-speed Knotting of a Rope by a Manipulator

    Directory of Open Access Journals (Sweden)

    Yuji Yamakawa

    2013-10-01

    Full Text Available In this paper we suggest an entirely new strategy for the dexterous manipulation of a linear flexible object, such as rope or a cable, with a high-speed manipulator. We deal with a flexible rope as one example of the linear flexible object. The strategy involves manipulating the object at high-speed. By moving the robot at high-speed, we can assume that the dynamic behaviour of the flexible rope can be obtained by performing algebraic calculations of the high- speed robot motion. Based on this assumption, we derive a dynamic deformation model of the flexible rope and confirm the validity of the proposed model. Then we perform a simulation of dynamic, high-speed knotting based on the proposed model. We also discuss the possibility of forming the knot based on a simple analysis model. Finally, we show experimental results demonstrating dynamic, high-speed knotting with a high-speed manipulator.

  3. Load Carrying Capacity of Keyed Joints Reinforced with High Strength Wire Rope Loops

    DEFF Research Database (Denmark)

    Jørgensen, Henrik Brøner; Hoang, Linh Cao

    Vertical shear connections between precast concrete wall elements are usually made as keyed joints reinforced with overlapping U-bars. The overlapping U-bars form a cylindrical core in which the locking bar is placed and the connection is subsequently grouted with mortar. A more construction...... friendly shear connection can be obtained by replacing the U-bars with high strength looped wire ropes. The wire ropes have the advantage of being flexible (they have virtually no bending stiffness) which makes installation of wall elements much easier. The looped wire ropes are usually pre-installed in so...... the shear capacity of wire loop connections. Tests have shown that the shear capacity of such joints – due to the relatively high tensile strength of the wire ropes - is more prone to be governed by fracture of the joint mortar in combination with yielding of the locking bar. To model this type of failure...

  4. High-resolution Observations of a Flux Rope with the Interface Region Imaging Spectrograph

    OpenAIRE

    Li, Ting; ZHANG, JUN

    2015-01-01

    We report the observations of a flux rope at transition region temperatures with the \\emph{Interface Region Imaging Spectrograph} (IRIS) on 30 August 2014. Initially, magnetic flux cancellation constantly took place and a filament was activated. Then the bright material from the filament moved southward and tracked out several fine structures. These fine structures were twisted and tangled with each other, and appeared as a small flux rope at 1330 {\\AA}, with a total twist of about 4$\\pi$. Af...

  5. The expected imprint of flux rope geometry on suprathermal electrons in magnetic clouds

    OpenAIRE

    Owens, Mathew James; Crooker, N. U.; Horbury, T. S.

    2009-01-01

    Magnetic clouds are a subset of interplanetary coronal mass ejections characterized by a smooth rotation in the magnetic field direction, which is interpreted as a signature of a magnetic flux rope. Suprathermal electron observations indicate that one or both ends of a magnetic cloud typically remain connected to the Sun as it moves out through the heliosphere. With distance from the axis of the flux rope, out toward its edge, the magnetic field winds more tightly about the axis and electrons...

  6. Advanced signal processing methods applied to guided waves for wire rope defect detection

    Science.gov (United States)

    Tse, Peter W.; Rostami, Javad

    2016-02-01

    Steel wire ropes, which are usually composed of a polymer core and enclosed by twisted wires, are used to hoist heavy loads. These loads are different structures that can be clamshells, draglines, elevators, etc. Since the loading of these structures is dynamic, the ropes are working under fluctuating forces in a corrosive environment. This consequently leads to progressive loss of the metallic cross-section due to abrasion and corrosion. These defects can be seen in the forms of roughened and pitted surface of the ropes, reduction in diameter, and broken wires. Therefore, their deterioration must be monitored so that any unexpected damage or corrosion can be detected before it causes fatal accident. This is of vital importance in the case of passenger transportation, particularly in elevators in which any failure may cause a catastrophic disaster. At present, the widely used methods for thorough inspection of wire ropes include visual inspection and magnetic flux leakage (MFL). Reliability of the first method is questionable since it only depends on the operators' eyes that fails to determine the integrity of internal wires. The later method has the drawback of being a point by point and time-consuming inspection method. Ultrasonic guided wave (UGW) based inspection, which has proved its capability in inspecting plate like structures such as tubes and pipes, can monitor the cross-section of wire ropes in their entire length from a single point. However, UGW have drawn less attention for defect detection in wire ropes. This paper reports the condition monitoring of a steel wire rope from a hoisting elevator with broken wires as a result of corrosive environment and fatigue. Experiments were conducted to investigate the efficiency of using magnetostrictive based UGW for rope defect detection. The obtained signals were analyzed by two time-frequency representation (TFR) methods, namely the Short Time Fourier Transform (STFT) and the Wavelet analysis. The location of

  7. Flux rope proxies and fan-spine structures in active region NOAA 11897

    CERN Document Server

    Hou, Y J; Zhang, J

    2016-01-01

    Employing the high-resolution observations from the Solar Dynamics Observatory (SDO) and the Interface Region Imaging Spectrograph (IRIS), we statistically investigate flux rope proxies in NOAA AR 11897 from 14-Nov-2013 to 19-Nov-2013 and display two fan-spine structures in this AR. For the first time, we detect flux rope proxies of NOAA 11897 for total 30 times in 4 different locations. These flux rope proxies were either tracked in both lower and higher temperature wavelengths or only detected in hot channels. Specially, none of these flux rope proxies was observed to erupt, but just faded away gradually. In addition to these flux rope proxies, we firstly detect a secondary fan-spine structure. It was covered by dome-shaped magnetic fields which belong to a larger fan-spine topology. These new observations imply that considerable amounts of flux ropes can exist in an AR and the complexity of AR magnetic configuration is far beyond our imagination.

  8. The expected imprint of flux rope geometry on suprathermal electrons in magnetic clouds

    Directory of Open Access Journals (Sweden)

    M. J. Owens

    2009-10-01

    Full Text Available Magnetic clouds are a subset of interplanetary coronal mass ejections characterized by a smooth rotation in the magnetic field direction, which is interpreted as a signature of a magnetic flux rope. Suprathermal electron observations indicate that one or both ends of a magnetic cloud typically remain connected to the Sun as it moves out through the heliosphere. With distance from the axis of the flux rope, out toward its edge, the magnetic field winds more tightly about the axis and electrons must traverse longer magnetic field lines to reach the same heliocentric distance. This increased time of flight allows greater pitch-angle scattering to occur, meaning suprathermal electron pitch-angle distributions should be systematically broader at the edges of the flux rope than at the axis. We model this effect with an analytical magnetic flux rope model and a numerical scheme for suprathermal electron pitch-angle scattering and find that the signature of a magnetic flux rope should be observable with the typical pitch-angle resolution of suprathermal electron data provided ACE's SWEPAM instrument. Evidence of this signature in the observations, however, is weak, possibly because reconnection of magnetic fields within the flux rope acts to intermix flux tubes.

  9. Catastrophe of coronal magnetic flux ropes in fully open magnetic field

    Institute of Scientific and Technical Information of China (English)

    LI; Guoqiang(李国强); HU; Youqiu(胡友秋)

    2002-01-01

    The catastrophe of coronal magnetic flux ropes is closely related to solar explosive phenomena, such as prominence eruptions, coronal mass ejections, and two-ribbon solar flares. Using a 2-dimensional, 3-component ideal MHD model in Cartesian coordinates, numerical simulations are carried out to investigate the equilibrium property of a coronal magnetic flux rope which is embedded in a fully open background magnetic field. The flux rope emerges from the photosphere and enters the corona with its axial and annular magnetic fluxes controlled by a single "emergence parameter". For a flux rope that has entered the corona, we may change its axial and annular fluxes artificially and let the whole system reach a new equilibrium through numerical simulations. The results obtained show that when the emergence parameter, the axial flux, or the annular flux is smaller than a certain critical value, the flux rope is in equilibrium and adheres to the photosphere. On the other hand, if the critical value is exceeded, the flux rope loses equilibrium and erupts freely upward, namely, a catastrophe takes place. In contrast with the partly-opened background field, the catastrophic amplitude is infinite for the case of fully-opened background field.

  10. Timing perception and motor coordination on rope jumping in children with attention deficit hyperactivity disorder.

    Science.gov (United States)

    Chen, Ying-Yi; Liaw, Lih-Jiun; Liang, Jing-Min; Hung, Wei-Tso; Guo, Lan-Yuen; Wu, Wen-Lan

    2013-05-01

    To evaluate timing perception ability and motor coordination in children with ADHD (Attention Deficit Hyperactivity Disorder) while rope jumping at different rates. Rope jumping at (1) a constant tempo of 100 for 15 s (RJ-C) and (2) two randomly permutated tempos (80, 100, or 120) for 15 s (RJ-V). The "timing variation while jumping", "timing variation while whirling", and "hand-foot deviation time" in each rope jumping cycle were recorded, to assess the time estimation ability. 10 children with ADHD (9.65 ± 1.27 years) and 10 children without ADHD (9.93 ± 1.54 years) were recruited. The ADHD group showed greater variation in time between the foot jumping and the rope whirling tasks. Also, the median value of hand-foot deviation time was greater in the ADHD group (3.34 ms) than in the control group (1.75 ms). In RJ-V, the control group was able to modify their pace and respond to the target speed in the post-phase, while the ADHD group could not. Impaired timing perception leads to less accurate performance during rope jumping for ADHD children. The findings also reveal that poor hand-foot coordination results in poor control of simultaneous movements of the upper and lower limbs during rope jumping. Copyright © 2012 Elsevier Ltd. All rights reserved.

  11. High-resolution Observations of a Flux Rope with the Interface Region Imaging Spectrograph

    CERN Document Server

    Li, Ting

    2015-01-01

    We report the observations of a flux rope at transition region temperatures with the \\emph{Interface Region Imaging Spectrograph} (IRIS) on 30 August 2014. Initially, magnetic flux cancellation constantly took place and a filament was activated. Then the bright material from the filament moved southward and tracked out several fine structures. These fine structures were twisted and tangled with each other, and appeared as a small flux rope at 1330 {\\AA}, with a total twist of about 4$\\pi$. Afterwards, the flux rope underwent a counter-clockwise (viewed top-down) unwinding motion around its axis. Spectral observations of C {\\sc ii} 1335.71 {\\AA} at the southern leg of the flux rope showed that Doppler redshifts of 6$-$24 km s$^{-1}$ appeared at the western side of the axis, which is consistent with the counter-clockwise rotation motion. We suggest that the magnetic flux cancellation initiates reconnection and some activation of the flux rope. The stored twist and magnetic helicity of the flux rope are transpor...

  12. Multiple flux rope events at the magnetopause observations by TC-1 on 18 March 2004

    Directory of Open Access Journals (Sweden)

    C. J. Xiao

    2005-11-01

    Full Text Available From 23:10 to 23:50 UT on 18 March 2004, the Double Star TC-1 spacecraft detected eight flux ropes at the outbound crossing of the southern dawnside magnetopause. A notable guide field existed inside all ropes. In the mean time the Cluster spacecraft were staying in the magnetosheath and found that the events occurred under the condition of southward IMF Bz and dominant negative IMF By. There are six ropes that appeared quasi-periodically, with a repeated period being approximately 1-4 min. The last flux rope lasts for a longer time interval with a larger peak in the BN variations; it can thus be referred to as a typical FTE. The 18 March 2004 event is quite similar to the multiple flux rope event observed by Cluster on 26 January 2001 at the northern duskside high-latitude magnetopause. A detailed comparison of these two events is made in the paper. Preliminary studies imply that both of these multiple flux ropes events seem to be produced by component reconnection at the dayside low-latitude magnetopause.

  13. Behavioral and Physiological Responses of Calves to Marshalling and Roping in a Simulated Rodeo Event

    Directory of Open Access Journals (Sweden)

    Michelle Sinclair

    2016-04-01

    Full Text Available Rodeos are public events at which stockpeople face tests of their ability to manage cattle and horses, some of which relate directly to rangeland cattle husbandry. One of these is calf roping, in which a calf released from a chute is pursued by a horse and rider, who lassoes, lifts and drops the calf to the ground and finally ties it around the legs. Measurements were made of behavior and stress responses of ten rodeo-naïve calves marshalled by a horse and rider, and ten rodeo-experienced calves that were roped. Naïve calves marshalled by a horse and rider traversed the arena slowly, whereas rodeo-experienced calves ran rapidly until roped. Each activity was repeated once after two hours. Blood samples taken before and after each activity demonstrated increased cortisol, epinephrine and nor-epinephrine in both groups. However, there was no evidence of a continued increase in stress hormones in either group by the start of the repeated activity, suggesting that the elevated stress hormones were not a response to a prolonged effect of the initial blood sampling. It is concluded that both the marshalling of calves naïve to the roping chute by stockpeople and the roping and dropping of experienced calves are stressful in a simulated rodeo calf roping event.

  14. Slow Rise and Partial Eruption of a Double-Decker Filament. II. Modeling by a Double Flux Rope Equilibrium

    CERN Document Server

    Kliem, Bernhard; Titov, Viacheslav S; Lionello, Roberto; Linker, Jon A; Liu, Rui; Liu, Chang; Wang, Haimin

    2014-01-01

    Force-free equilibria containing two vertically arranged magnetic flux ropes of like chirality and current direction are considered as a model for split filaments/prominences and filament-sigmoid systems. Such equilibria are constructed analytically through an extension of the methods developed in Titov & D\\'emoulin (1999) and numerically through an evolutionary sequence including shear flows, flux emergence, and flux cancellation in the photospheric boundary. It is demonstrated that the analytical equilibria are stable if an external toroidal (shear) field component exceeding a threshold value is included. If this component decreases sufficiently, then both flux ropes turn unstable for conditions typical of solar active regions, with the lower rope typically being unstable first. Either both flux ropes erupt upward, or only the upper rope erupts while the lower rope reconnects with the ambient flux low in the corona and is destroyed. However, for shear field strengths staying somewhat above the threshold...

  15. A Markov chain analysis of the effectiveness of drum-buffer-rope material flow management in job shop environment

    Directory of Open Access Journals (Sweden)

    Masoud Rabbani

    2015-09-01

    Full Text Available The theory of constraints is an approach for production planning and control, which emphasizes on the constraints in the system to increase throughput. The theory of constraints is often referred to as Drum-Buffer-Rope developed originally by Goldratt. Drum-Buffer-Rope uses the drum or constraint to create a schedule based on the finite capacity of the first bottleneck. Because of complexity of the job shop environment, Drum-Buffer-Rope material flow management has very little attention to job shop environment. The objective of this paper is to apply the Drum-Buffer-Rope technique in the job shop environment using a Markov chain analysis to compare traditional method with Drum-Buffer-Rope. Four measurement parameters were considered and the result showed the advantage of Drum-Buffer-Rope approach compared with traditional one.

  16. The numerical research of runner cavitation effects on spiral vortex rope in draft tube of Francis turbine

    Science.gov (United States)

    Yang, J.; Zhou, L. J.; Wang, Z. W.

    2015-12-01

    The spiral cavitating vortex rope developed in the draft tube of Francis turbine under part load condition maybe causes serious pressure fluctuations and power swings, which threatens the safety and stability of the power plant operations. Many works have been performed to explore the mechanisms of it. In this paper, the runner cavitation and spiral vortex rope under part load conditions were studied to investigate the relations of runner cavitation and the spiral vortex rope. The results proved the existence of obvious interaction between them. The swirl flow at the runner outlet plays an important role in the formation of vortex rope. And the periodic procession of vortex rope in turn intensifies the uneven pressure distribution near the runner outlet and causes the asymmetric cavitation on the runner blades, which then give rise to the modification of swirl flow at the runner blades and thereby affects the characteristics of vortex rope.

  17. Slipping Magnetic Reconnection of Flux-rope Structures as a Precursor to an Eruptive X-class Solar Flare

    Science.gov (United States)

    Li, Ting; Yang, Kai; Hou, Yijun; Zhang, Jun

    2016-10-01

    We present the quasi-periodic slipping motion of flux-rope structures prior to the onset of an eruptive X-class flare on 2015 March 11, obtained by the Interface Region Imaging Spectrograph and the Solar Dynamics Observatory. The slipping motion occurred at the north part of the flux rope and seemed to successively peel off the flux rope. The speed of the slippage was 30-40 km s-1, with an average period of 130 ± 30 s. The Si iv λ1402.77 line showed a redshift of 10-30 km s-1 and a line width of 50-120 km s-1 at the west legs of slipping structures, indicative of reconnection downflow. The slipping motion lasted about 40 minutes, and the flux rope started to rise up slowly at the late stage of the slippage. Then an X2.1 flare was initiated, and the flux rope was impulsively accelerated. One of the flare ribbons swept across a negative-polarity sunspot, and the penumbral segments of the sunspot decayed rapidly after the flare. We studied the magnetic topology at the flaring region, and the results showed the existence of a twisted flux rope, together with quasi-separatrix layer (QSL) structures binding the flux rope. Our observations imply that quasi-periodic slipping magnetic reconnection occurs along the flux-rope-related QSLs in the preflare stage, which drives the later eruption of the flux rope and the associated flare.

  18. Evolution of a typical ion-scale magnetic flux rope caused by thermal pressure enhancement

    Science.gov (United States)

    Teh, W.-L.; Nakamura, T. K. M.; Nakamura, R.; Baumjohann, W.; Russell, C. T.; Pollock, C.; Lindqvist, P.-A.; Ergun, R. E.; Burch, J. L.; Torbert, R. B.; Giles, B. L.

    2017-02-01

    With high time-resolution field and plasma measurements by the Magnetospheric Multiscale spacecraft, interior fine structures of two ion-scale magnetic flux ropes ( 5 and 11 ion inertial length radius) separated by 14 s are resolved. These two ion-scale flux ropes (FR1 and FR2) show non-frozen-in ion behavior and consist of a strong axial magnetic field at the reversal of the negative-then-positive bipolar field component. The negative bipolar field component of the FR2 is found to be depressed, where magnetic pressure and total pressure decrease, but ion and electron thermal pressures increase, a feature akin to a crater-like flux rope. The pressure enhancement is due to the magnetosheath plasma feeding into the flux rope along the field lines. Magnetic field draping and energetic electrons are also observed in the trailing part of the FR2. The ratio of perpendicular and parallel currents indicates that the FR1 appears force-free but the FR2 seems not. Moreover, the FR2 is time-dependent as a result of a low correlation coefficient (CC = 0.75) for the derivation of the deHoffmann-Teller frame using the direct measured electric fields, while the FR1 is in quasi-steady conditions (CC = 0.94). It is concluded that the crater formation within the FR2 can be interpreted by the analytical flux rope simulation as the evolution of typical flux rope to crater-like one due to the thermal pressure enhancement, which could be induced by the depression of transverse magnetic fields of the flux rope.

  19. Hooked flare ribbons and flux-rope related QSL footprints

    CERN Document Server

    Zhao, Jie; Aulanier, Guillaume; Schmieder, Brigitte; Pariat, Etienne; Li, Hui

    2016-01-01

    We studied the magnetic topology of active region 12158 on 2014 September 10 and compared it with the observations before and early in the flare which begins at 17:21 UT (SOL2014-09-10T17:45:00). Our results show that the sigmoidal structure and flare ribbons of this active region observed by SDO/AIA can be well reproduced from a Grad-Rubin non linear force free field extrapolation method. Various inverse-S and -J shaped magnetic field lines, that surround a coronal flux rope, coincide with the sigmoid as observed in different extreme ultraviolet wavelengths, including its multi-threaded curved ends. Also, the observed distribution of surface currents in the magnetic polarity where it was not prescribed is well reproduced. This validates our numerical implementation and set-up of the Grad-Rubin method. The modeled double inverse-J shaped Quasi-Separatrix Layer (QSL) footprints match the observed flare ribbons during the rising phase of the flare, including their hooked parts. The spiral-like shape of the latt...

  20. Shear behavior of concrete beams externally prestressed with Parafil ropes

    Directory of Open Access Journals (Sweden)

    A.H. Ghallab

    2013-03-01

    Full Text Available Although extensive work has been carried out investigating the use of external prestressing system for flexural strengthening, a few studies regarding the shear behavior of externally prestressed beams can be found. Five beams, four of them were externally strengthened using Parafil rope, were loaded up to failure to investigate the effect of shear span/depth ratio, external prestressing force and concrete strength on their shear behavior. Test results showed that the shear span to depth ratio has a significant effect on both the shear strength and failure mode of the strengthened beams and the presence of external prestressing force increased the ultimate load of the tested beams by about 75%. Equations proposed by different codes for both the conventional reinforced concrete beams and for ordinary prestressed beams were used to evaluate the obtained experimental results. In general, codes equations showed a high level of conservatism in predicting the shear strength of the beams. Also, using the full strength rather than half of the concrete shear strength in the Egyptian code PC-method improves the accuracy of the calculated ultimate shear strength.

  1. Effects of fishing rope strength on the severity of large whale entanglements.

    Science.gov (United States)

    Knowlton, Amy R; Robbins, Jooke; Landry, Scott; McKenna, Henry A; Kraus, Scott D; Werner, Timothy B

    2016-04-01

    Entanglement in fixed fishing gear affects whales worldwide. In the United States, deaths of North Atlantic right (Eubalaena glacialis) and humpback whales (Megaptera novaeangliae) have exceeded management limits for decades. We examined live and dead whales entangled in fishing gear along the U.S. East Coast and the Canadian Maritimes from 1994 to 2010. We recorded whale species, age, and injury severity and determined rope polymer type, breaking strength, and diameter of the fishing gear. For the 132 retrieved ropes from 70 cases, tested breaking strength range was 0.80-39.63 kN (kiloNewtons) and the mean was 11.64 kN (SD 8.29), which is 26% lower than strength at manufacture (range 2.89-53.38 kN, mean = 15.70 kN [9.89]). Median rope diameter was 9.5 mm. Right and humpback whales were found in ropes with significantly stronger breaking strengths at time of manufacture than minke whales (Balaenoptera acuturostrata) (19.30, 17.13, and 10.47 mean kN, respectively). Adult right whales were found in stronger ropes (mean 34.09 kN) than juvenile right whales (mean 15.33 kN) and than all humpback whale age classes (mean 17.37 kN). For right whales, severity of injuries increased since the mid 1980s, possibly due to changes in rope manufacturing in the mid 1990s that resulted in production of stronger ropes at the same diameter. Our results suggest that broad adoption of ropes with breaking strengths of ≤ 7.56 kN (≤ 1700 lbsf) could reduce the number of life-threatening entanglements for large whales by at least 72%, and yet could provide sufficient strength to withstand the routine forces involved in many fishing operations. A reduction of this magnitude would achieve nearly all the mitigation legally required for U.S. stocks of North Atlantic right and humpback whales. Ropes with reduced breaking strength should be developed and tested to determine the feasibility of their use in a variety of fisheries.

  2. A Review of Methods for Termination of Synthetic-Fiber Ropes

    Science.gov (United States)

    1975-12-01

    3,409,951 The combination of ends is again impregnated with fresh binder, and then passes into a plaiting machine comprising 24 spindles, each fed by...angle 150. The cable is subjected to a tensile stress by means of a tensometer until it breaks. This takes place at a load of 20.3 metric tons and the...angle of 150 and a base diameter of 40 mm. The cable, fixed at its twr- ends, is broken by means of the same tensometer as before. The break takes

  3. Temperature evolution of magnetic flux rope in a failed solar eruption

    CERN Document Server

    Song, Hongqiang; Cheng, Xin; Chen, Yao; Liu, Rui; Wang, Yuming; Li, Bo

    2014-01-01

    In this presentation, we report for the first time the detailed temperature evolution process of the magnetic flux rope in a failed solar eruption. Occurred on January 05, 2013, the flux rope was impulsively accelerated to a speed of ~ 400 km/s in the first minute, then decelerated and came to a complete stop in two minutes. The failed eruption resulted in a large-size high-lying (~ 100 Mm above the surface) high-temperature "fire ball" sitting in the corona for more than two hours. The time evolution of the thermal structure of the flux rope was revealed through the differential emission measure analysis technique, which produced temperature maps using observations of the Atmospheric Imaging Assembly on board Solar Dynamic Observatory. The average temperature of the flux rope steadily increased from ~ 5 MK to ~ 10 MK during the first nine minutes of the evolution, which was much longer than the rise time (about three minutes) of the associated soft X-ray flare. We suggest that the flux rope be heated by the ...

  4. Key technique of a detection sensor for coal mine wire ropes

    Institute of Scientific and Technical Information of China (English)

    WANG Hong-yao; XU Zhao; HUA Gang; TIAN Jie; ZHOU Bing-bing; LU Yan-hong; CHEN Feng-jun

    2009-01-01

    Wire ropes, employed extensively in coal mine hoists and transportation systems are subject to damage due to wear,corrosion and fatigue. The extent of damage and the carrying capacity of ropes are closely related to the sense of safety by staff and equipments. Magnetic flux leakage detection method (MFL), as an effective method, is these days widely used in detection of bro-ken strands of wire ropes. In order to improve the accuracy of detection of flaws in wire ropes by magnetic flux leakage (MFL), the effect of the distance between a sensor and the surface of a wire rope (i.e., lift-off) on detection by magnetic flux leakage was in-vestigated. An analysis of the main principles for the choice of lift-off is described by us and a new method that improves the struc-ture of the detector is proposed from the point of view of the design of a magnetic circuit, to restrain the impact of fluctuations of sensor lift-off. The effect of this kind of method is validated by simulation and computation. The results show that the detection sensitivity is markedly increased by this method. Furthermore, the signal-to-noise ratio (SNR) can be increased by over 28%. This method will lend itself to offer reliable scientific information to optimize the structure of excitation devices and improve the accu-racy of MFL detection.

  5. A plasma β transition within a propagating flux rope

    Energy Technology Data Exchange (ETDEWEB)

    Savani, N. P. [George Mason University, Faifax, VA (United States); Vourlidas, A.; Linton, M. G. [Space Science Division, Naval Research Laboratory, Washington, DC 20375-5352 (United States); Shiota, D. [Computational Astrophysics Laboratory, Advanced Science Institute, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); Kusano, K. [Solar-Terrestrial Environment Laboratory, Nagoya University, Nagoya 464-8601 (Japan); Lugaz, N. [Space Science Center and Department of Physics, University of New Hampshire, Durham, NH 03824 (United States); Rouillard, A. P. [Institut de Recherche en Astrophysique et Plantologie, Universit de Toulouse (UPS) (France)

    2013-12-20

    We present a 2.5 dimensional magnetohydrodynamic simulation of a magnetic flux rope (FR) propagating in the heliosphere and investigate the cause of the observed sharp plasma β transition. Specifically, we consider a strong internal magnetic field and an explosive fast start, such that the plasma β is significantly lower in the FR than in the sheath region that is formed ahead. This leads to an unusual FR morphology in the first stage of propagation, while the more traditional view (e.g., from space weather simulations like Enlil) of a pancake-shaped FR is observed as it approaches 1 AU. We investigate how an equipartition line, defined by a magnetic Weber number, surrounding a core region of a propagating FR, can demarcate a boundary layer where there is a sharp transition in the plasma β. The substructure affects the distribution of toroidal flux, with the majority of the flux remaining in a small core region that maintains a quasi-cylindrical structure. We quantitatively investigate a locus of points where the kinetic energy density of the relative inflow field is equal to the energy density of the transverse magnetic field (i.e., effective tension force). The simulation provides compelling evidence that at all heliocentric distances the distribution of toroidal magnetic flux away from the FR axis is not linear, with 80% of the toroidal flux occurring within 40% of the distance from the FR axis. Thus, our simulation displays evidence that the competing ideas of a pancaking structure observed remotely can coexist with a quasi-cylindrical magnetic structure seen in situ.

  6. Load carrying capacity of keyed joints reinforced with high strength wire rope loops

    DEFF Research Database (Denmark)

    Jørgensen, Henrik B.; Hoang, Linh Cao

    2015-01-01

    Vertical shear connections between precast concrete wall elements are usually made as keyed joints reinforced with overlapping U-bars. The overlapping U-bars form a cylindrical core in which the locking bar is placed and the connection is subsequently grouted with mortar. A more construction...... friendly shear connection can be obtained by replacing the U-bars with high strength looped wire ropes. The wire ropes have the advantage of being flexible (they have virtually no bending stiffness) which makes installation of wall elements much easier. The looped wire ropes are usually pre-installed in so......-called wire boxes which are embedded in the precast wall elements. Once the joint is grouted with mortar, the boxes will function as shear keys and the overlapping wire loops will function as transverse reinforcement that replaces the U-bars. This paper presents a rigid-plastic upper bound model to determine...

  7. Load Carrying Capacity of Keyed Joints Reinforced with High Strength Wire Rope Loops

    DEFF Research Database (Denmark)

    Jørgensen, Henrik Brøner; Hoang, Linh Cao

    Vertical shear connections between precast concrete wall elements are usually made as keyed joints reinforced with overlapping U-bars. The overlapping U-bars form a cylindrical core in which the locking bar is placed and the connection is subsequently grouted with mortar. A more construction...... friendly shear connection can be obtained by replacing the U-bars with high strength looped wire ropes. The wire ropes have the advantage of being flexible (they have virtually no bending stiffness) which makes installation of wall elements much easier. The looped wire ropes are usually pre-installed in so......-called wire boxes which are embedded in the precast wall elements. Once the joint is grouted with mortar, the boxes will function as shear keys and the overlapping wire loops will function as transverse reinforcement that replaces the U-bars. This paper presents a rigid-plastic upper bound model to determine...

  8. Comparison of CME radial velocities from a flux rope model and an ice cream cone model

    Science.gov (United States)

    Kim, T.; Moon, Y.; Na, H.

    2011-12-01

    Coronal Mass Ejections (CMEs) on the Sun are the largest energy release process in the solar system and act as the primary driver of geomagnetic storms and other space weather phenomena on the Earth. So it is very important to infer their directions, velocities and three-dimensional structures. In this study, we choose two different models to infer radial velocities of halo CMEs since 2008 : (1) an ice cream cone model by Xue et al (2005) using SOHO/LASCO data, (2) a flux rope model by Thernisien et al. (2009) using the STEREO/SECCHI data. In addition, we use another flux rope model in which the separation angle of flux rope is zero, which is morphologically similar to the ice cream cone model. The comparison shows that the CME radial velocities from among each model have very good correlations (R>0.9). We will extending this comparison to other partial CMEs observed by STEREO and SOHO.

  9. ARTHROSCOPIC TREATMENT OF ACROMIOCLAVICULAR JOINT DISLOCATION BY TIGHT ROPE TECHNIQUE (ARTHREX®)

    Science.gov (United States)

    GÓmez Vieira, Luis Alfredo; Visco, Adalberto; Daneu Fernandes, Luis Filipe; GÓmez Cordero, Nicolas Gerardo

    2015-01-01

    Presenting the arthroscopic treatment by Tight Rope - Arthrex® system for acute acromioclavicular dislocation and to evaluate results obtained with this procedure. Methods: Between August 2006 and May 2007, 10 shoulders of 10 patients with acute acromioclavicular dislocation were submitted to arthroscopic repair using the Tight Rope - Arthrex® system. Minimum follow-up was 12 months, with a mean of 15 months. Age ranged from 26 to 42, mean 34 years. All patients were male. Radiology evaluation was made by trauma series x-ray. The patients were assisted in the first month weekly and after three months after the procedure. Clinical evaluation was based on the University of California at Los Angeles (UCLA) criteria. Results: All patients were satisfied after the arthroscopic procedure and the mean UCLA score was 32,5. Conclusion: The arthroscopic treatment by Tight Rope – Arthrex® system for acute acromioclavicular dislocation showed to be an efficient technique. PMID:26998453

  10. Magnetar Giant Flares in Multipolar Magnetic Fields --- I. Fully and Partially Open Eruptions of Flux Ropes

    CERN Document Server

    Huang, Lei

    2014-01-01

    We propose a catastrophic eruption model for magnetar's enormous energy release during giant flares, in which a toroidal and helically twisted flux rope is embedded within a force-free magnetosphere. The flux rope stays in stable equilibrium states initially and evolves quasi-statically. Upon the loss of equilibrium point is reached, the flux rope cannot sustain the stable equilibrium states and erupts catastrophically. During the process, the magnetic energy stored in the magnetosphere is rapidly released as the result of destabilization of global magnetic topology. The magnetospheric energy that could be accumulated is of vital importance for the outbursts of magnetars. We carefully establish the fully open fields and partially open fields for various boundary conditions at the magnetar surface and study the relevant energy thresholds. By investigating the magnetic energy accumulated at the critical catastrophic point, we find that it is possible to drive fully open eruptions for dipole dominated background...

  11. Topology of magnetic flux ropes and formation of fossil flux transfer events and boundary layer plasmas

    Science.gov (United States)

    Lee, L. C.; Ma, Z. W.; Fu, Z. F.; Otto, A.

    1993-01-01

    A mechanism for the formation of fossil flux transfer events and the low-level boundary layer within the framework of multiple X-line reconnection is proposed. Attention is given to conditions for which the bulk of magnetic flux in a flux rope of finite extent has a simple magnetic topology, where the four possible connections of magnetic field lines are: IMF to MSP, MSP to IMF, IMF to IMF, and MSP to MSP. For a sufficient relative shift of the X lines, magnetic flux may enter a flux rope from the magnetosphere and exit into the magnetosphere. This process leads to the formation of magnetic flux ropes which contain a considerable amount of magnetosheath plasma on closed magnetospheric field lines. This process is discussed as a possible explanation for the formation of fossil flux transfer events in the magnetosphere and the formation of the low-latitude boundary layer.

  12. Non-Uniqueness of the Geometry of Interplanetary Magnetic Flux Ropes Obtained from Model-Fitting

    Science.gov (United States)

    Marubashi, K.; Cho, K.-S.

    2015-12-01

    Since the early recognition of the important role of interplanetary magnetic flux ropes (IPFRs) to carry the southward magnetic fields to the Earth, many attempts have been made to determine the structure of the IPFRs by model-fitting analyses to the interplanetary magnetic field variations. This paper describes the results of fitting analyses for three selected solar wind structures in the latter half of 2014. In the fitting analysis a special attention was paid to identification of all the possible models or geometries that can reproduce the observed magnetic field variation. As a result, three or four geometries have been found for each of the three cases. The non-uniqueness of the fitted results include (1) the different geometries naturally stemming from the difference in the models used for fitting, and (2) an unexpected result that either of magnetic field chirality, left-handed and right-handed, can reproduce the observation in some cases. Thus we conclude that the model-fitting cannot always give us a unique geometry of the observed magnetic flux rope. In addition, we have found that the magnetic field chirality of a flux rope cannot be uniquely inferred from the sense of field vector rotation observed in the plane normal to the Earth-Sun line; the sense of rotation changes depending on the direction of the flux rope axis. These findings exert an important impact on the studies aimed at the geometrical relationships between the flux ropes and the magnetic field structures in the solar corona where the flux ropes were produced, such studies being an important step toward predicting geomagnetic storms based on observations of solar eruption phenomena.

  13. Determining the Intrinsic CME Flux Rope Type Using Remote-sensing Solar Disk Observations

    Science.gov (United States)

    Palmerio, E.; Kilpua, E. K. J.; James, A. W.; Green, L. M.; Pomoell, J.; Isavnin, A.; Valori, G.

    2017-02-01

    A key aim in space weather research is to be able to use remote-sensing observations of the solar atmosphere to extend the lead time of predicting the geoeffectiveness of a coronal mass ejection (CME). In order to achieve this, the magnetic structure of the CME as it leaves the Sun must be known. In this article we address this issue by developing a method to determine the intrinsic flux rope type of a CME solely from solar disk observations. We use several well-known proxies for the magnetic helicity sign, the axis orientation, and the axial magnetic field direction to predict the magnetic structure of the interplanetary flux rope. We present two case studies: the 2 June 2011 and the 14 June 2012 CMEs. Both of these events erupted from an active region, and despite having clear in situ counterparts, their eruption characteristics were relatively complex. The first event was associated with an active region filament that erupted in two stages, while for the other event the eruption originated from a relatively high coronal altitude and the source region did not feature a filament. Our magnetic helicity sign proxies include the analysis of magnetic tongues, soft X-ray and/or extreme-ultraviolet sigmoids, coronal arcade skew, filament emission and absorption threads, and filament rotation. Since the inclination of the post-eruption arcades was not clear, we use the tilt of the polarity inversion line to determine the flux rope axis orientation and coronal dimmings to determine the flux rope footpoints, and therefore, the direction of the axial magnetic field. The comparison of the estimated intrinsic flux rope structure to in situ observations at the Lagrangian point L1 indicated a good agreement with the predictions. Our results highlight the flux rope type determination techniques that are particularly useful for active region eruptions, where most geoeffective CMEs originate.

  14. Magnetar giant flares in multipolar magnetic fields. II. Flux rope eruptions with current sheets

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Lei [Key Laboratory for Research in Galaxies and Cosmology, Shanghai Astronomical Observatory, Chinese Academy of Sciences, Shanghai 200030 (China); Yu, Cong, E-mail: muduri@shao.ac.cn, E-mail: cyu@ynao.ac.cn [Key Laboratory for the Structure and Evolution of Celestial Object, Chinese Academy of Sciences, Kunming 650011 (China)

    2014-11-20

    We propose a physical mechanism to explain giant flares and radio afterglows in terms of a magnetospheric model containing both a helically twisted flux rope and a current sheet (CS). With the appearance of a CS, we solve a mixed boundary value problem to get the magnetospheric field based on a domain decomposition method. We investigate properties of the equilibrium curve of the flux rope when the CS is present in background multipolar fields. In response to the variations at the magnetar surface, it quasi-statically evolves in stable equilibrium states. The loss of equilibrium occurs at a critical point and, beyond that point, it erupts catastrophically. New features show up when the CS is considered. In particular, we find two kinds of physical behaviors, i.e., catastrophic state transition and catastrophic escape. Magnetic energy would be released during state transitions. This released magnetic energy is sufficient to drive giant flares, and the flux rope would, therefore, go away from the magnetar quasi-statically, which is inconsistent with the radio afterglow. Fortunately, in the latter case, i.e., the catastrophic escape, the flux rope could escape the magnetar and go to infinity in a dynamical way. This is more consistent with radio afterglow observations of giant flares. We find that the minor radius of the flux rope has important implications for its eruption. Flux ropes with larger minor radii are more prone to erupt. We stress that the CS provides an ideal place for magnetic reconnection, which would further enhance the energy release during eruptions.

  15. Fiber diffraction without fibers.

    Science.gov (United States)

    Poon, H-C; Schwander, P; Uddin, M; Saldin, D K

    2013-06-28

    Postprocessing of diffraction patterns of completely randomly oriented helical particles, as measured, for example, in so-called "diffract-and-destroy" experiments with an x-ray free electron laser can yield "fiber diffraction" patterns expected of fibrous bundles of the particles. This will allow "single-axis alignment" to be performed computationally, thus obviating the need to do this by experimental means such as forming fibers and laser or flow alignment. The structure of such particles may then be found by either iterative phasing methods or standard methods of fiber diffraction.

  16. Investigation into the effects of steel wire rope specimen length on breaking force

    CSIR Research Space (South Africa)

    O'Brien, TM

    2004-03-01

    Full Text Available rope Table 2 summarizes the results of the tests conducted on ropes with no cut wires. Note that of the ten specimens tested, three results were discarded due to end cap failures. Similarly, certificate number 225888 was conducted in the 15 MN... the general trend in the data. It is interesting to note that the line through the specimens that failed at the end cap suggest a similar decrease in strength of the specimen with length to the acceptable tests. 19 BF = -2.143L + 1951.149 R2 = 0.791 BF...

  17. Effects of Strand Lay Direction and Crossing Angle on Tribological Behavior of Winding Hoist Rope

    OpenAIRE

    Xiang-dong Chang; Yu-xing Peng; Zhen-cai Zhu; Xian-sheng Gong; Zhang-fa Yu; Zhen-tao Mi; Chun-ming Xu

    2017-01-01

    Friction and wear behavior exists between hoisting ropes that are wound around the drums of a multi-layer winding hoist. It decreases the service life of ropes and threatens mine safety. In this research, a series of experiments were conducted using a self-made test rig to study the effects of the strand lay direction and crossing angle on the winding rope’s tribological behavior. Results show that the friction coefficient in the steady-state period shows a decreasing tendency with an increas...

  18. MHD Forces in Quasi-Static Evolution, Catastrophe, and ``Failed'' Eruption of Solar Flux Ropes

    Science.gov (United States)

    Chen, James

    2017-08-01

    This paper presents the first unified theoretical model of flux rope dynamics---a single set of flux-rope equations in ideal MHD---to describe as one dynamical process the quasi-static evolution, catastrophic transition to eruption, cessation (``failure'') of eruption, and the post-eruption quasi-equilibria. The model is defined by the major radial {\\it and} minor radial equations of motion including pressure. The initial equilibrium is a flux rope in a background plasma with pressure $p_c(Z)$ and an overlying magnetic field $B_c(Z)$. The flux rope is initially force-free, but theevolution is not required to be force- free. A single quasi-static control parameter, the rate of increase in poloidal flux, is used for the entire process. As this parameter is slowly increased, the flux rope rises, following a sequence of quasi-static equilibria. As the apex of the flux rope rises past a critical height $Z_{crt}$, it expands on a dynamical (Alfvénic) timescale. The eruption rapidly ceases, as the stored magnetic energy of eruption is exhausted, and a new equilibrium is established at height $Z_1 > Z_{crt}$. The calculated velocity profile resembles the observed velocity profiles in ``failed'' eruptions including a damped oscillation. In the post-eruption equilibria, the outward hoop force is balanced by the tension of the toroidal self magnetic field and pressure gradient force. Thus, the flux rope does not evolve in a force-free manner. The flux rope may also expand without reaching a new equilibrium, provided a sufficient amount of poloidal flux is injected on the timescale of eruption. This scenario results in a full CME eruption. It is shown that the minor radial expansion critically couples the evolution of the toroidal self-field and pressure gradient force. No parameter regime is found in which the commonly used simplifications---near-equilibrium minor radial expansion, force-free expansion, and constant aspect ratio $R/a$ (e.g., the torus instability equation

  19. Inhomogeneous superconductivity in quasi-one dimensional organic conductors and ropes of carbon nanotubes

    Science.gov (United States)

    Bellafi, B.; Haddad, S.; Sfar, I.; Charfi-Kaddour, S.

    2009-03-01

    It has been reported that, in quasi-one dimensional organic conductors, superconductivity may coexist macroscopically with non-superconducting states giving rise to an inhomogeneous phase. We investigate, based on the time-dependent Ginzburg-Landau theory, the effect of disorder on the stability of the superconducting phase in such a mixed state. We also focus on the interplay between superconductivity and disorder in ropes of carbon nanotubes. We show that the superconducting transition temperature in quasi-one organic conductors is reduced by disorder but does not obey the Abrikosov-Gorkov law. However, and contrary to what is expected, disorder can further superconductivity in ropes of carbon nanotubes.

  20. In-Situ TEM-STM Observations of SWCNT Ropes/Tubular Transformations

    Science.gov (United States)

    Sola, F.; Lebron-Colon, M.; Ferreira, P. J.; Fonseca, L. F.; Meador, M. A.; Marin, C.

    2010-01-01

    Single-walled carbon nanotubes (SWCNTs) prepared by the HiPco process were purified using a modified gas phase purification technique. A TEM-STM holder was used to study the morphological changes of SWCNT ropes as a function of applied voltage. Kink formation, buckling behavior, tubular transformation and eventual breakdown of the system were observed. The tubular formation was attributed to a transformation from SWCNT ropes to multi-walled carbon nanotube (MWCNT) structures. It is likely mediated by the patching and tearing mechanism which is promoted primarily by the mobile vacancies generated due to current-induced heating and, to some extent, by electron irradiation.

  1. Scented guide ropes as a method to enhance brown treesnake (Boiga irregularis) trap capture success on Guam

    Science.gov (United States)

    Mason, L.C.; Savidge, J.A.; Rodda, G.H.; Yackel Adams, A.A.

    2011-01-01

    Current methods for controlling the invasive Brown Treesnake (Boiga irregularis) on Guam include a modified minnow trap with a live mouse lure. We investigated the effects on capture success of augmenting these traps with scented guide ropes leading to trap entrances. Initial screening of scent preferences was based on time spent in scented and unscented arms of a Y-maze. Preferences of large and small snakes were scored for six different prey scents (live and carrion gecko, skink, and mouse). Large snakes spent more time in the maze arm scented with live gecko and carrion gecko, whereas small snakes spent more time in the arm scented with carrion mouse and carrion gecko. After the laboratory study, a pilot trapping session was conducted in the field using three treatments (live mouse-scented ropes, carrion gecko-scented ropes, and carrion mouse-scented ropes) and two controls (traps with unscented guide ropes and those with no ropes attached). Contrary to laboratory results, live mouse-scented ropes were most effective. We conducted a second trapping session using live mouse-scented ropes as well as the two controls used in the pilot study. For snakes of below-average to average condition, the number of captures for traps with live mouse-scented ropes was higher than for traps with no ropes. However, for snakes of above-average condition, there were no differences in capture rates between trap treatments. Overall, treatment effects were weaker than latent individual heterogeneity and the influence of snake body size, with large snakes trapped more readily. ?? 2011 Society for the Study of Amphibians and Reptiles.

  2. Flux-Rope Twist in Eruptive Flares and CMEs: Due to Zipper and Main-Phase Reconnection

    Science.gov (United States)

    Priest, E. R.; Longcope, D. W.

    2017-01-01

    The nature of three-dimensional reconnection when a twisted flux tube erupts during an eruptive flare or coronal mass ejection is considered. The reconnection has two phases: first of all, 3D "zipper reconnection" propagates along the initial coronal arcade, parallel to the polarity inversion line (PIL); then subsequent quasi-2D "main-phase reconnection" in the low corona around a flux rope during its eruption produces coronal loops and chromospheric ribbons that propagate away from the PIL in a direction normal to it. One scenario starts with a sheared arcade: the zipper reconnection creates a twisted flux rope of roughly one turn (2π radians of twist), and then main-phase reconnection builds up the bulk of the erupting flux rope with a relatively uniform twist of a few turns. A second scenario starts with a pre-existing flux rope under the arcade. Here the zipper phase can create a core with many turns that depend on the ratio of the magnetic fluxes in the newly formed flare ribbons and the new flux rope. Main phase reconnection then adds a layer of roughly uniform twist to the twisted central core. Both phases and scenarios are modeled in a simple way that assumes the initial magnetic flux is fragmented along the PIL. The model uses conservation of magnetic helicity and flux, together with equipartition of magnetic helicity, to deduce the twist of the erupting flux rope in terms the geometry of the initial configuration. Interplanetary observations show some flux ropes have a fairly uniform twist, which could be produced when the zipper phase and any pre-existing flux rope possess small or moderate twist (up to one or two turns). Other interplanetary flux ropes have highly twisted cores (up to five turns), which could be produced when there is a pre-existing flux rope and an active zipper phase that creates substantial extra twist.

  3. An analytical study on the static vertical stiffness of wire rope isolators

    Energy Technology Data Exchange (ETDEWEB)

    Balaji, P. S.; Rahman, M. E.; Ho, Lau Hieng [Curtin University Sarawak, Miri (Malaysia); Moussa, Leblouba [University of Sharjah, Sharjah (United Arab Emirates)

    2016-01-15

    The vibrations caused by earthquake ground motions or the operations of heavy machineries can affect the functionality of equipment and cause damages to the hosting structures and surrounding equipment. A Wire rope isolator (WRI), which is a type of passive isolator known to be effective in isolating shocks and vibrations, can be used for vibration isolation of lightweight structures and equipment. The primary advantage of the WRI is that it can provide isolation in all three planes and in any orientation. The load-supporting capability of the WRI is identified from the static stiffness in the loading direction. Static stiffness mainly depends on the geometrical and material properties of the WRI. This study develops an analytical model for the static stiffness in the vertical direction by using Castigliano's second theorem. The model is validated by using the experimental results obtained from a series of monotonic loading tests. The flexural rigidity of the wire ropes required in the model is obtained from the transverse bending test. Then, the analytical model is used to conduct a parametric analysis on the effects of wire rope diameter, width, height, and number of turns (loops) on vertical stiffness. The wire rope diameter influences stiffness more than the other geometric parameters. The developed model can be accurately used for the evaluation and design of WRIs.

  4. The Evolution of Writhe in Kink-Unstable Flux Ropes and Erupting Filaments

    CERN Document Server

    Torok, Tibor; Berger, Mitchell A; Linton, Mark G; Demoulin, Pascal; van Driel-Gesztelyi, Lidia

    2014-01-01

    The helical kink instability of a twisted magnetic flux tube has been suggested as a trigger mechanism for solar filament eruptions and coronal mass ejections (CMEs). In order to investigate if estimations of the pre-eruptive twist can be obtained from observations of writhe in such events, we quantitatively analyze the conversion of twist into writhe in the course of the instability, using numerical simulations. We consider the line tied, cylindrically symmetric Gold-Hoyle flux rope model and measure the writhe using the formulae by Berger and Prior which express the quantity as a single integral in space. We find that the amount of twist converted into writhe does not simply scale with the initial flux rope twist, but depends mainly on the growth rates of the instability eigenmodes of higher longitudinal order than the basic mode. The saturation levels of the writhe, as well as the shapes of the kinked flux ropes, are very similar for considerable ranges of initial flux rope twists, which essentially preclu...

  5. Fine-scale Structures of Flux Ropes Tracked by Erupting Material

    CERN Document Server

    Li, Ting

    2013-01-01

    We present the Solar Dynamics Observatory observations of two flux ropes respectively tracked out by material from a surge and a failed filament eruption on 2012 July 29 and August 04. For the first event, the interaction between the erupting surge and a loop-shaped filament in the east seems to "peel off" the filament and add bright mass into the flux rope body. The second event is associated with a C-class flare that occurs several minutes before the filament activation. The two flux ropes are respectively composed of 85$\\pm$12 and 102$\\pm$15 fine-scale structures, with an average width of about 1$\\arcsec$.6. Our observations show that two extreme ends of the flux rope are rooted in the opposite polarity fields and each end is composed of multiple footpoints (FPs) of the fine-scale structures. The FPs of the fine-scale structures are located at network magnetic fields, with magnetic fluxes from 5.6$\\times10^{18}$ Mx to 8.6$\\times10^{19}$ Mx. Moreover, almost half of the FPs show converging motion of smaller...

  6. Female recreational athletes demonstrate different knee biomechanics from male counterparts during jumping rope and turning activities.

    Science.gov (United States)

    Tanikawa, Hidenori; Matsumoto, Hideo; Harato, Kengo; Kiriyama, Yoshimori; Suda, Yasunori; Toyama, Yoshiaki; Nagura, Takeo

    2014-01-01

    A variety of athletic exercises are performed in sports training or rehabilitation after knee injuries. However, it remains unclear whether males and females exhibit similar joint loading during the various athletic motions. The purpose of this study was to identify gender differences in knee biomechanics during the athletic motions. Three-dimensional knee kinematics and kinetics were investigated in 20 recreational athletes (10 males and 10 females) while jumping rope, backward running, side running, side-to-side running, side-to-forward running, inside turning, and outside turning. The strengths of the quadriceps and hamstring muscles, the knee joint force, the knee joint angle, and the knee joint moment were compared between males and females using one-tailed t tests. Peak knee anterior force was greater in female recreational athletes than in their male counterparts during jumping rope, side-to-forward running, inside turning, and outside turning. Female subjects displayed greater peak knee abduction angles and greater peak knee flexion moments while jumping rope compared to their male counterparts. There were no significant differences between the sexes in knee kinematics and kinetics in the frontal and transverse planes during running and turning motions. Female recreational athletes exhibited significantly different knee biomechanics compared with male counterparts during jumping rope and turning motions.

  7. The Impact of Rope Jumping Exercise on Physical Fitness of Visually Impaired Students

    Science.gov (United States)

    Chen, Chao-Chien; Lin, Shih-Yen

    2011-01-01

    The main purpose of this study was to investigate the impact of rope jumping exercise on the health-related physical fitness of visually impaired students. The participants' physical fitness was examined before and after the training. The exercise intensity of the experimental group was controlled with Rating of Perceived Exertion (RPE) (values…

  8. Two-dimensional numerical simulation of flow around three-stranded rope

    Science.gov (United States)

    Wang, Xinxin; Wan, Rong; Huang, Liuyi; Zhao, Fenfang; Sun, Peng

    2016-08-01

    Three-stranded rope is widely used in fishing gear and mooring system. Results of numerical simulation are presented for flow around a three-stranded rope in uniform flow. The simulation was carried out to study the hydrodynamic characteristics of pressure and velocity fields of steady incompressible laminar and turbulent wakes behind a three-stranded rope. A three-cylinder configuration and single circular cylinder configuration are used to model the three-stranded rope in the two-dimensional simulation. The governing equations, Navier-Stokes equations, are solved by using two-dimensional finite volume method. The turbulence flow is simulated using Standard κ-ɛ model and Shear-Stress Transport κ-ω (SST) model. The drag of the three-cylinder model and single cylinder model is calculated for different Reynolds numbers by using control volume analysis method. The pressure coefficient is also calculated for the turbulent model and laminar model based on the control surface method. From the comparison of the drag coefficient and the pressure of the single cylinder and three-cylinder models, it is found that the drag coefficients of the three-cylinder model are generally 1.3-1.5 times those of the single circular cylinder for different Reynolds numbers. Comparing the numerical results with water tank test data, the results of the three-cylinder model are closer to the experiment results than the single cylinder model results.

  9. Simulating the formation of a sigmoidal flux rope in AR10977 from SOHO/MDI magnetograms

    Energy Technology Data Exchange (ETDEWEB)

    Gibb, G. P. S.; Mackay, D. H.; Meyer, K. A. [University of St Andrews, School of Mathematics and Statistics, North Haugh, St Andrews, Fife KY16 9SS (United Kingdom); Green, L. M. [University College London, Mullard Space Science Laboratory, Holmbury St. Mary, Dorking, Surrey RH5 6NT (United Kingdom)

    2014-02-20

    The modeling technique of Mackay et al. is applied to simulate the coronal magnetic field of NOAA active region AR10977 over a seven day period (2007 December 2-10). The simulation is driven with a sequence of line-of-sight component magnetograms from SOHO/MDI and evolves the coronal magnetic field though a continuous series of non-linear force-free states. Upon comparison with Hinode/XRT observations, results show that the simulation reproduces many features of the active region's evolution. In particular, it describes the formation of a flux rope across the polarity inversion line during flux cancellation. The flux rope forms at the same location as an observed X-ray sigmoid. After five days of evolution, the free magnetic energy contained within the flux rope was found to be 3.9 × 10{sup 30} erg. This value is more than sufficient to account for the B1.4 GOES flare observed from the active region on 2007 December 7. At the time of the observed eruption, the flux rope was found to contain 20% of the active region flux. We conclude that the modeling technique proposed in Mackay et al.—which directly uses observed magnetograms to energize the coronal field—is a viable method to simulate the evolution of the coronal magnetic field.

  10. Is flux rope a necessary condition for the progenitor of coronal mass ejections?

    CERN Document Server

    Ouyang, Y; Chen, P F

    2015-01-01

    A magnetic flux rope structure is believed to exist in most coronal mass ejections (CMEs). However, it has been long debated whether the flux rope exists before eruption or is formed during eruption via magnetic reconnection. The controversy has been continuing because of our lack of routine measurements of the magnetic field in the pre-eruption structure, such as solar filaments. However, recently an indirect method was proposed to infer the magnetic field configuration based on the sign of helicity and the bearing direction of the filament barbs. In this paper, we apply this method to two erupting filament events, one on 2014 September 2 and the other on 2011 March 7, and find that the first filament is supported by a magnetic flux rope and the second filament is supported by a sheared arcade, i.e., the first one is an inverse-polarity filament and the second one is a normal-polarity filament. With the identification of the magnetic configurations in these two filaments, we stress that a flux rope is not a ...

  11. Extending "the Rubber Rope": Convergent Series, Divergent Series and the Integrating Factor

    Science.gov (United States)

    McCartney, Mark

    2013-01-01

    A well-known mathematical puzzle regarding a worm crawling along an elastic rope is considered. The resulting generalizations provide examples for use in a teaching context including applications of series summation, the use of the integrating factor for the solution of differential equations, and the evaluation of definite integrals. A number of…

  12. Evaluation of arthroscopic stabilization of acute acromioclavicular joint dislocation using the TightRope system.

    Science.gov (United States)

    El Sallakh, Sameh A

    2012-01-16

    The purpose of this study was to evaluate the results of the arthroscopic treatment of acute acromioclavicular dislocation using the TightRope system (Arthrex, Naples, Florida). Between January 2006 and May 2007, ten shoulders in 10 patients with acute acromioclavicular joint dislocation (Rockwood types IV and V) underwent arthroscopic acromioclavicular joint stabilization using the TightRope. Average patient age was 30 years (range, 22-42 years), and mean follow-up was 24 months (range, 18-30 months). Follow-up occurred at 2 and 6 weeks, 3 months, and then every 6 months postoperatively. The shoulders were evaluated radiologically by comparing the acromioclavicular joint with the normal side and clinically by assessing the pain, function, and range of joint motion using the Constant score.Ten patients returned to work without pain 10 to 12 weeks postoperatively. Average Constant score was 96.3 (range, 94-99) at last follow-up. Because of technical error, 1 patient experienced TightRope fixation failure on the coracoid side, and the acromioclavicular joint was redislocated, which was treated by an open technique. The 10 patients were satisfied with their functional results and cosmetic appearance.The arthroscopic treatment of acute acromioclavicular dislocation using the TightRope is a minimally invasive surgical technique that has been proven effective for the treatment of these lesions. It is characterized by less morbidity, less hospitalization, excellent cosmoses, and early rehabilitation. Copyright 2012, SLACK Incorporated.

  13. Chronic acromioclavicular joint dislocations treated by the GraftRope device.

    Science.gov (United States)

    Nordin, Jonas S; Aagaard, Knut E; Lunsjö, Karl

    2015-04-01

    Surgical treatment of chronic acromioclavicular joint dislocations is challenging, and no single procedure can be considered to be the gold standard. In 2010, the GraftRope method (Arthrex Inc., Naples, FL) was introduced in a case series of 10 patients, showing good clinical results and no complications. We wanted to evaluate the GraftRope method in a prospective consecutive series. 8 patients with chronic Rockwood type III-V acromioclavicular joint dislocations were treated surgically using the GraftRope method. The patients were clinically evaluated and a CT scan was performed to assess the integrity of the repair. In 4 of the 8 patients, loss of reduction was seen within the first 6 weeks postoperatively. A coracoid fracture was the reason in 3 cases and graft failure was the reason in 1 case. In 3 of the 4 patients with intact repairs, the results were excellent with no subjective shoulder disability 12 months postoperatively. It was our intention to include 30 patients in this prospective treatment series, but due to the high rate of complications the study was discontinued prematurely. Based on our results and other recent reports, we cannot recommend the GraftRope method as a treatment option for chronic acromioclavicular joint dislocations.

  14. The Impact of Rope Jumping Exercise on Physical Fitness of Visually Impaired Students

    Science.gov (United States)

    Chen, Chao-Chien; Lin, Shih-Yen

    2011-01-01

    The main purpose of this study was to investigate the impact of rope jumping exercise on the health-related physical fitness of visually impaired students. The participants' physical fitness was examined before and after the training. The exercise intensity of the experimental group was controlled with Rating of Perceived Exertion (RPE) (values…

  15. Research of Broken Wire Rope Detection System Based on LabVIEW

    Directory of Open Access Journals (Sweden)

    Jing-ge Gao

    2014-04-01

    Full Text Available In this study, we introduce how to detect broken wires in steel rope based on wavelet transform and virtual instrument technology. By means of the powerful data analysis function of virtual instrument and wavelet transform, the singularity of wires can be found and it could help to improve ability of locating broken wires and determining breakage grade.

  16. Practical Applications of Cables and Ropes in the ISS Countermeasures System

    Science.gov (United States)

    Svetlik, Randall G.; Moore, Cherice; Williams, Antony

    2017-01-01

    National Aeronautics and Space Administration (NASA) uses exercise countermeasures on the International Space Station (ISS) to maintain crew health and combat the negative effects of long-duration spaceflight on the human body. Most ISS exercise countermeasures system (CMS) equipment rely heavily on the use of textile and wire ropes to transmit resistive loads and provide stability in a microgravity environment. For a variety of reasons, including challenges in simulating microgravity environments for testing and limits on time available for life cycle testing, the textiles and wire ropes have contributed significantly to on-orbit planned and unplanned maintenance time. As a result, continued ground testing and on-orbit experience since the first expedition on the ISS in 2000 provide valuable data and lessons learned in materials selection, applications, and design techniques to increase service life of these ropes. This paper will present a review of the development and failure history of textile and wire ropes for four exercise countermeasure systems-the Treadmill with Vibration Isolation and Stabilization (TVIS) System, Cycle Ergometer with Vibration Isolation and Stabilization (CEVIS) System, Interim Resistive Exercise Device (IRED), and the Advanced Resistive Exercise Device (ARED)-to identify lessons learned in order to improve future systems. These lessons learned, paired with thorough testing on the ground, offer a forward path towards reduced maintenance time and up-mass for future space missions.

  17. Combining Diffusive Shock Acceleration with Acceleration by Contracting and Reconnecting Small-scale Flux Ropes at Heliospheric Shocks

    Science.gov (United States)

    le Roux, J. A.; Zank, G. P.; Webb, G. M.; Khabarova, O. V.

    2016-08-01

    Computational and observational evidence is accruing that heliospheric shocks, as emitters of vorticity, can produce downstream magnetic flux ropes and filaments. This led Zank et al. to investigate a new paradigm whereby energetic particle acceleration near shocks is a combination of diffusive shock acceleration (DSA) with downstream acceleration by many small-scale contracting and reconnecting (merging) flux ropes. Using a model where flux-rope acceleration involves a first-order Fermi mechanism due to the mean compression of numerous contracting flux ropes, Zank et al. provide theoretical support for observations that power-law spectra of energetic particles downstream of heliospheric shocks can be harder than predicted by DSA theory and that energetic particle intensities should peak behind shocks instead of at shocks as predicted by DSA theory. In this paper, a more extended formalism of kinetic transport theory developed by le Roux et al. is used to further explore this paradigm. We describe how second-order Fermi acceleration, related to the variance in the electromagnetic fields produced by downstream small-scale flux-rope dynamics, modifies the standard DSA model. The results show that (i) this approach can qualitatively reproduce observations of particle intensities peaking behind the shock, thus providing further support for the new paradigm, and (ii) stochastic acceleration by compressible flux ropes tends to be more efficient than incompressible flux ropes behind shocks in modifying the DSA spectrum of energetic particles.

  18. THE ROLE OF A FLUX ROPE EJECTION IN A THREE-DIMENSIONAL MAGNETOHYDRODYNAMIC SIMULATION OF A SOLAR FLARE

    Energy Technology Data Exchange (ETDEWEB)

    Nishida, Keisuke; Shibata, Kazunari [Kwasan and Hida Observatories, Kyoto University, Yamashina, Kyoto 607-8471 (Japan); Nishizuka, Naoto, E-mail: nishida@kwasan.kyoto-u.ac.jp [Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency, 3-1-1 Yoshinodai, Chuo-ku, Sagamihara, Kanagawa 252-5210 (Japan)

    2013-10-01

    We investigated the dynamic evolution of a three-dimensional (3D) flux rope eruption and magnetic reconnection process in a solar flare by simply extending the two-dimensional (2D) resistive magnetohydrodynamic simulation model of solar flares with low β plasma to a 3D model. We succeeded in reproducing a current sheet and bi-directional reconnection outflows just below the flux rope during the eruption in our 3D simulations. We calculated four cases of a strongly twisted flux rope and a weakly twisted flux rope in 2D and 3D simulations. The time evolution of a weakly twisted flux rope in the 3D simulation shows behaviors similar to those of the 2D simulation, while a strongly twisted flux rope in the 3D simulation clearly shows a different time evolution from the 2D simulation except for the initial phase evolution. The ejection speeds of both strongly and weakly twisted flux ropes in 3D simulations are larger than in the 2D simulations, and the reconnection rates in 3D cases are also larger than in the 2D cases. This indicates positive feedback between the ejection speed of a flux rope and the reconnection rate even in the 3D simulation, and we conclude that the plasmoid-induced reconnection model can be applied to 3D. We also found that small-scale plasmoids are formed inside a current sheet and make it turbulent. These small-scale plasmoid ejections have a role in locally increasing the reconnection rate intermittently as observed in solar flares, coupled with a global eruption of a flux rope.

  19. Radio Diagnostics of Electron Acceleration Sites During the Eruption of a Flux Rope in the Solar Corona

    Science.gov (United States)

    Carley, Eoin P.; Vilmer, Nicole; Gallagher, Peter T.

    2016-12-01

    Electron acceleration in the solar corona is often associated with flares and the eruption of twisted magnetic structures known as flux ropes. However, the locations and mechanisms of such particle acceleration during the flare and eruption are still subject to much investigation. Observing the exact sites of particle acceleration can help confirm how the flare and eruption are initiated and how they evolve. Here we use the Atmospheric Imaging Assembly to analyze a flare and erupting flux rope on 2014 April 18, while observations from the Nançay Radio Astronomy Facility allow us to diagnose the sites of electron acceleration during the eruption. Our analysis shows evidence of a pre-formed flux rope that slowly rises and becomes destabilized at the time of a C-class flare, plasma jet, and the escape of ≳75 keV electrons from the rope center into the corona. As the eruption proceeds, continued acceleration of electrons with energies of ˜5 keV occurs above the flux rope for a period over 5 minutes. At the flare peak, one site of electron acceleration is located close to the flare site, while another is driven by the erupting flux rope into the corona at speeds of up to 400 km s-1. Energetic electrons then fill the erupting volume, eventually allowing the flux rope legs to be clearly imaged from radio sources at 150-445 MHz. Following the analysis of Joshi et al. (2015), we conclude that the sites of energetic electrons are consistent with flux rope eruption via a tether cutting or flux cancellation scenario inside a magnetic fan-spine structure. In total, our radio observations allow us to better understand the evolution of a flux rope eruption and its associated electron acceleration sites, from eruption initiation to propagation into the corona.

  20. Characterization of Monkeypox virus infection in African rope squirrels (Funisciurus sp.)

    Science.gov (United States)

    Falendysz, Elizabeth; Lopera, Juan G.; Doty, Jeffrey B.; Nakazawa, Yoshinori J.; Crill, Colleen; Lorenzsonn, Faye; Kalemba, Lem's N.; Ronderos, Monica; Meija, Andres; Malekani, Jean M.; Karem, Kevin L.; Caroll, Darrin; Osorio, Jorge E.; Rocke, Tonie E.

    2017-01-01

    Monkeypox (MPX) is a zoonotic disease endemic in Central and West Africa and is caused by Monkeypox virus (MPXV), the most virulent Orthopoxvirus affecting humans since the eradication of Variola virus (VARV). Many aspects of the MPXV transmission cycle, including the natural host of the virus, remain unknown. African rope squirrels (Funisciurus spp.) are considered potential reservoirs of MPXV, as serosurveillance data in Central Africa has confirmed the circulation of the virus in these rodent species [1,2]. In order to understand the tissue tropism and clinical signs associated with infection with MPXV in these species, wild-caught rope squirrels were experimentally infected via intranasal and intradermal exposure with a recombinant MPXV strain from Central Africa engineered to express the luciferase gene. After infection, we monitored viral replication and shedding via in vivo bioluminescent imaging, viral culture and real time PCR. MPXV infection in African rope squirrels caused mortality and moderate to severe morbidity, with clinical signs including pox lesions in the skin, eyes, mouth and nose, dyspnea, and profuse nasal discharge. Both intranasal and intradermal exposures induced high levels of viremia, fast systemic spread, and long periods of viral shedding. Shedding and luminescence peaked at day 6 post infection and was still detectable after 15 days. Interestingly, one sentinel animal, housed in the same room but in a separate cage, also developed severe MPX disease and was euthanized. This study indicates that MPXV causes significant pathology in African rope squirrels and infected rope squirrels shed large quantities of virus, supporting their role as a potential source of MPXV transmission to humans and other animals in endemic MPX regions.

  1. Confined partial filament eruption and its reformation within a stable magnetic flux rope

    Energy Technology Data Exchange (ETDEWEB)

    Joshi, Navin Chandra; Kayshap, Pradeep; Uddin, Wahab [Aryabhatta Research Institute of Observational Sciences (ARIES), Manora Peak, Nainital 263 002, Uttarakhand (India); Srivastava, Abhishek K.; Dwivedi, B. N. [Department of Physics, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005 (India); Filippov, Boris [Pushkov Institute of Terrestrial Magnetism, Ionosphere and Radio Wave Propagation, Russian Academy of Sciences, Troitsk, Moscow (Russian Federation); Chandra, Ramesh [Department of Physics, D.S.B. Campus, Kumaun University, Nainital 263 002, Uttarakhand (India); Choudhary, Debi Prasad, E-mail: navin@aries.res.in, E-mail: njoshi98@gmail.com [California State University Northridge, 18111 Nordhoff Street, Northridge, CA 91330 (United States)

    2014-05-20

    We present observations of a confined partial eruption of a filament on 2012 August 4, which restores its initial shape within ≈2 hr after eruption. From the Global Oscillation Network Group Hα observations, we find that the filament plasma turns into dynamic motion at around 11:20 UT from the middle part of the filament toward the northwest direction with an average speed of ≈105 km s{sup –1}. A little brightening underneath the filament possibly shows the signature of low-altitude reconnection below the filament eruptive part. In Solar Dynamics Observatory/Atmospheric Imaging Assembly 171 Å images, we observe an activation of right-handed helically twisted magnetic flux rope that contains the filament material and confines it during its dynamical motion. The motion of cool filament plasma stops after traveling a distance of ≈215 Mm toward the northwest from the point of eruption. The plasma moves partly toward the right foot point of the flux rope, while most of the plasma returns after 12:20 UT toward the left foot point with an average speed of ≈60 km s{sup –1} to reform the filament within the same stable magnetic structure. On the basis of the filament internal fine structure and its position relative to the photospheric magnetic fields, we find filament chirality to be sinistral, while the activated enveloping flux rope shows a clear right-handed twist. Thus, this dynamic event is an apparent example of one-to-one correspondence between the filament chirality (sinistral) and the enveloping flux rope helicity (positive). From the coronal magnetic field decay index, n, calculation near the flux rope axis, it is evident that the whole filament axis lies within the domain of stability (i.e., n < 1), which provides the filament stability despite strong disturbances at its eastern foot point.

  2. Fiber biology

    Science.gov (United States)

    Cotton fiber cells arising from seed epidermis is the most important agricultural textile commodity in the world. To produce fully mature fibers, approximately two months of fiber developmental process are required. The timing of four distinctive fiber development stages consisting of initiation, ...

  3. Hydrogel fibers for ACL prosthesis: design and mechanical evaluation of PVA and PVA/UHMWPE fiber constructs.

    Science.gov (United States)

    Bach, Jason S; Detrez, Fabrice; Cherkaoui, Mohammed; Cantournet, Sabine; Ku, David N; Corté, Laurent

    2013-05-31

    Prosthetic devices for anterior cruciate ligament (ACL) reconstruction have been unsuccessful due to mechanical failure or chronic inflammation. Polymer hydrogels combine biocompatibility and unique low friction properties; however, their prior use for ligament reconstruction has been restricted to coatings due to insufficient tensile mechanics. Here, we investigate new constructs of polyvinyl alcohol (PVA) hydrogel fibers. In water, these fibers swell to an equilibrium water content of 50% by weight, retaining a tensile modulus greater than 40 MPa along the fiber axis at low strain. Rope constructs were assembled for ACL replacement and mechanical properties were compared with data from the literature. Pure PVA hydrogel constructs closely reproduce the non-linear tensile stiffness of the native ACL with an ultimate strength of about 2000 N. An additional safety factor in tensile strength was achieved with composite braids by adding ultrahigh molecular weight polyethylene (UHMWPE) fibers around a core of PVA cords. Composition and braiding angle are adjusted to produce a non-linear tensile behavior within the range of the native ligament that can be predicted by a simple rope model. This design was found to sustain over one million cycles between 50 and 450 N with limited damage and less than 20% creep. The promising mechanical performances of these systems provide justification for more extensive in vivo evaluation.

  4. A Self-Consistent Numerical Magnetohydrodynamic (MHD) Model of Helmet Streamer and Flux-Rope Interactions: Initiation and Propagation of Coronal Mass Ejections (CMEs)

    Science.gov (United States)

    Wu, S. T.; Guo, W. P.

    1997-01-01

    We present results for an investigation of the interaction of a helmet streamer arcade and a helical flux-rope emerging from the sub-photosphere. These results are obtained by using a three-dimensional axisymmetric, time-dependent ideal magnetohydrodynamic (MHD) model. Because of the physical nature of the flux-rope, we investigate two types of flux-ropes; (1) high density flux-rope (i.e. flux-rope without cavity), and (2) low density flux rope (i.e. flux-rope with cavity). When the streamer is disrupted by the flux-rope, it will evolve into a configuration resembling the typical observed loop-like Coronal Mass Ejection (CMES) for both cases. The streamer-flux rope system with cavity is easier to be disrupted and the propagation speed of the CME is faster than the streamer-flux rope system without cavity. Our results demonstrate that magnetic buoyancy force plays an important role in disrupting the streamer.

  5. Predicting changes in high-intensity intermittent running performance with acute responses to short jump rope workouts in children

    National Research Council Canada - National Science Library

    Buchheit, Martin; Rabbani, Alireza; Beigi, Hamid Taghi

    2014-01-01

    The aims of the present study were to 1) examine whether individual HR and RPE responses to a jump rope workout could be used to predict changes in high-intensity intermittent running performance in young athletes, and 2...

  6. Optimisation of testing cycles in heavy-duty mine haulage ropes, especially three-layered flattened wire ropes; Optimierung von Pruefzyklen bei hochbelasteten Bergbau-Foerderseilen, insbesondere bei dreilagigen Flachlitzenseilen

    Energy Technology Data Exchange (ETDEWEB)

    Gronau, O. [Deutsche Montan Technologie GmbH, Bochum (Germany). Car Synergies Division

    2003-07-01

    In three-layered flattened wire ropes, which are common in mine haulage systems in coal mines, only part of the wires can be inspected by the visual method, so magnetic induction testing is employed as well. The project aimed at reducing inspection requirements without impairing the safety standard. Random sampling of flattened wire ropes have shown that this is possible, provided that fatigue and corrosion curves of the cable can be made comparable with the diagrams of magnetic induction tests. Monitoring of the strength reduction of these ropes must be possible throughout the whole rope life. The project focused on the following tasks: Assessment and description of the haulage systems and operating conditions (haulage equipment, mine climate, number of hoists per day, etc.); Inspection of the geometries of new and worn-out ropes and calculation of rupture forces and residual rupture forces; Modification of existing measuring and storage instruments, if possible in explosion-proof construction; Development of software for assessing the residual fracture force of haulage ropes.

  7. INFLUENCE ANALYSIS OF ELASTIC DEFORMATIONS OF THE TRACK CABLE ON EFFORTS IN THE HAULING ROPE OF AERIAL ROPEWAY

    Directory of Open Access Journals (Sweden)

    S. V. Raksha

    2013-10-01

    Full Text Available Purpose. To estimate influence of elastic deformations of the track cable arising at movement of cars, on effort in a hauling rope of the aerial ropeway. Methodology. The method of consecutive approaches was used for research influence of elastic deformations of a track cable on effort in a hauling rope. Thus, definition of a tension of a track cable was carried out with use of the technique based on principles of modular configuration, the essence of which consists in formation of mathematical model by a combination of blocks of the formulas describing balance of the track cable on supports. Findings. The research has shown that influence of elastic deformations of a track cable on effort in a hauling rope was insignificant (less than 1 %. That points to possibility not to consider change of the track cable length, caused by its elastic properties, when modeling loading of elements of system «drive – traction rope – tension device». Also it has been found that use of the tension device of a track cable increased influence of its elastic properties on loading of rope system elements. At the same time the elastic component of the track cable tension in the test flight does not depend on a car position in the adjacent span, but only determines by the parameters of the rope system. Originality. The possibility of excluding the changes of track cable length caused by its elastic properties, when modeling loading of elements of system «drive – traction rope – tension device» was proved. Practical value. The use of these techniques and the results will simplify the mathematical model of loading of elements of the cable system and the system «drive – traction rope – tension device» as a whole.

  8. Self-concept responses of children to participation in an eight-week precision jump-rope program.

    Science.gov (United States)

    Hatfield, B D; Vaccaro, P; Benedict, G J

    1985-12-01

    Two measures of self-concept were administered to 11 children, aged from 9 to 11 yr., before and after 8 wk. of participation in a guided exercise program of precision rope jumping. Despite the fact that the children evidenced as a group high self-concept at the outset, a significant improvement on this measure appeared after the jump-rope regimen. This psychological change was noted while there was no alteration in the physiological indices of body composition and cardiovascular fitness.

  9. Simulations of Emerging Magnetic Flux. II. The Formation of Unstable Coronal Flux Ropes and the Initiation of Coronal Mass Ejections

    Science.gov (United States)

    Leake, James E.; Linton, Mark G.; Antiochos, Spiro K.

    2014-01-01

    We present results from three-dimensional magnetohydrodynamic simulations of the emergence of a twisted convection zone flux tube into a pre-existing coronal dipole field. As in previous simulations, following the partial emergence of the sub-surface flux into the corona, a combination of vortical motions and internal magnetic reconnection forms a coronal flux rope. Then, in the simulations presented here, external reconnection between the emerging field and the pre-existing dipole coronal field allows further expansion of the coronal flux rope into the corona. After sufficient expansion, internal reconnection occurs beneath the coronal flux rope axis, and the flux rope erupts up to the top boundary of the simulation domain (approximately 36 Mm above the surface).We find that the presence of a pre-existing field, orientated in a direction to facilitate reconnection with the emerging field, is vital to the fast rise of the coronal flux rope. The simulations shown in this paper are able to self-consistently create many of the surface and coronal signatures used by coronal mass ejection (CME) models. These signatures include surface shearing and rotational motions, quadrupolar geometry above the surface, central sheared arcades reconnecting with oppositely orientated overlying dipole fields, the formation of coronal flux ropes underlying potential coronal field, and internal reconnection which resembles the classical flare reconnection scenario. This suggests that proposed mechanisms for the initiation of a CME, such as "magnetic breakout," are operating during the emergence of new active regions.

  10. Investigation of the Plunging Pressure Pulsation in a Swirling Flow with Precessing Vortex Rope in a Straight Diffuser

    Science.gov (United States)

    Muntean, S.; Tănasă, C.; Bosioc, A. I.; Moş, D. C.

    2016-11-01

    The paper investigates an unexpected feature of the unsteady pressure field resulting from the self-induced instability of the decelerated swirling flow in a straight diffuser. Firstly, the self-induced instability is experimentally investigated on the swirl generator test rig. As a result, the asynchronous (rotating) pressure pulsation associated with the rotating vortex rope of 15 Hz and it second harmonic are discriminated. Also, a low frequency synchronous (plunging) pulsation around of 2.5 Hz is identified based on unsteady pressure field measured at the wall and LDV measurement of the velocity components in the flow. The low frequency plunging pressure fluctuations is superimposed on the rotating pressure pulsations associated with the vortex rope. The numerical simulations are performed to explore the vortex rope dynamics. The numerical results are compared against experimental data to assess the accuracy of the models. Next, the pressure pulsation dynamics is correlated with the time evolution of the vortex rope. The main conclusion emerging from the analysis of the vortex rope evolution in time is that the cycle with low frequency is responsible for the plunging (synchronous) pressure fluctuations superimposed over the rotating (asynchronous) pressure field associated with the precession of the vortex rope.

  11. The modified forced-swim test in rats: influence of rope- or straw-suspension on climbing behavior.

    Science.gov (United States)

    Nishimura, H; Tsuda, A; Ida, Y; Tanaka, M

    1988-01-01

    We modified Porsolt's forced-swim test by suspending ropes or straws above the water in order to investigate a possible relationship between immobility and perceived escape responses from water. In this modified test, it was demonstrated clearly that rats reduced their duration of immobility and attempted to climb up the suspended ropes or straws. Most rats which had remained immobile during a 5-min test period in the forced-swim test, exhibited such climbing responses within 5-10 min of rope-suspension. Despite the suspension of ropes, however, some rats showed immobile postures and did not respond to the rope. On the other hand, straws were used in order to produce sliding and prevent climbing when the animals attempted to climb. There were no differences in immobility during either rope- or straw-suspension. It seems that the climbing behavior displayed by forced-swimming rats is due to a "pseudo-escape" effect produced by the suspension of an object above the water. The present findings were interpreted as further evidence for the notion that immobility in forced-swimming rats does not necessarily imply "behavioral despair," but rather an emotional reaction to an inescapable stressor.

  12. Practical Applications of Cables and Ropes in the ISS Countermeasures System

    Science.gov (United States)

    Moore, Cherice; Svetlik, Randall; Williams, Antony

    2017-01-01

    As spaceflight durations have increased over the last four decades, the effects of weightlessness on the human body are far better understood, as are the countermeasures. A combination of aerobic and resistive exercise devices contribute to countering the losses in muscle strength, aerobic fitness, and bone strength of today's astronauts and cosmonauts that occur during their missions on the International Space Station. Creation of these systems has been a dynamically educational experience for designers and engineers. The ropes and cables in particular have experienced a wide range of challenges, providing a full set of lessons learned that have already enabled improvements in on-orbit reliability by initiating system design improvements. This paper examines the on-orbit experience of ropes and cables in several exercise devices and discusses the lessons learned from these hardware items, with the goal of informing future system design.

  13. Particle Acceleration At Small-Scale Flux Ropes In The Heliosphere

    Science.gov (United States)

    Zank, G. P.; Hunana, P.; Mostafavi, P.; le Roux, J. A.; Li, G.; Webb, G. M.; Khabarova, O.; Cummings, A. C.; Stone, E. C.; Decker, R. B.

    2015-12-01

    An emerging paradigm for the dissipation of magnetic turbulence in the supersonic solar wind is via localized small-scale reconnection processes, essentially between quasi-2D interacting magnetic islands or flux roped. Charged particles trapped in merging magnetic islands can be accelerated by the electric field generated by magnetic island merging and the contraction of magnetic islands. We discuss the basic physics of particle acceleration by single magnetic islands and describe how to incorporate these ideas in a distributed "sea of magnetic islands". We describe briefly some observations, selected simulations, and then introduce a transport approach for describing particle acceleration at small-scale flux ropes. We discuss particle acceleration in the supersonic solar wind and extend these ideas to particle acceleration at shock waves. These models are appropriate to the acceleration of both electrons and ions. We describe model predictions and supporting observations.

  14. Quantitative Inspection of Remanence of Broken Wire Rope Based on Compressed Sensing

    Science.gov (United States)

    Zhang, Juwei; Tan, Xiaojiang

    2016-01-01

    Most traditional strong magnetic inspection equipment has disadvantages such as big excitation devices, high weight, low detection precision, and inconvenient operation. This paper presents the design of a giant magneto-resistance (GMR) sensor array collection system. The remanence signal is collected to acquire two-dimensional magnetic flux leakage (MFL) data on the surface of wire ropes. Through the use of compressed sensing wavelet filtering (CSWF), the image expression of wire ropes MFL on the surface was obtained. Then this was taken as the input of the designed back propagation (BP) neural network to extract three kinds of MFL image geometry features and seven invariant moments of defect images. Good results were obtained. The experimental results show that nondestructive inspection through the use of remanence has higher accuracy and reliability compared with traditional inspection devices, along with smaller volume, lighter weight and higher precision. PMID:27571077

  15. THE EFFECT OF ROPE JUMPING TRAINING OF DIFFERENT SPEEDS ON ANAEROBIC POWER

    OpenAIRE

    ŞAHİN, Gülşah

    2017-01-01

    The objective of this study was to compare the effect of rope jumpingtraining on anaerobic vertical, horizontal, mean and peak power of rope jumpingat different speeds in trained females. The study was comprised of 20 trainedfemales as the low-speed jumping group (n=10, mean age 21.4±2.3 years, body weight54.30±6.03 kg, height 161.30±6.99 cm) and the high-speed jumping group (n=10,mean age 21±1.8 years, body weight: 56.50±5.91 kg, height 163.20±7.02 cm). Thejumping speed was adjusted using a ...

  16. New Catalytic Proportions for Syntheses of SWNT Bundles (Ropes) and Its Characterization

    Institute of Scientific and Technical Information of China (English)

    DAI Tong; DAI Jian-feng

    2006-01-01

    The single-walled carbon nanotube(SWNT) bundles and ropes have been prepared by using the anode arc discharge plasma to evaporate the graphite rods which contain Fe,Co and Ni powders as catalyst in He atmosphere. Many purifying methods are used for the products. It indicates that the synthesis of SWNTs has been greatly affected by the preparation parameters of catalyzer,the buffer gas and its pressure,the arc current intensity,etc. The optimal condition for preparing SWNTs in our case has been proposed. The forming mechanism of the SWNTs bundles and ropes is also studied qualitatively. The evaporated single graphite sheet tends to reduce its active energy.

  17. Solar prominences embedded in flux ropes: morphological features and dynamics from 3D MHD simulations

    CERN Document Server

    Terradas, J; Luna, M; Oliver, R; Ballester, J L; Wright, A N

    2015-01-01

    The temporal evolution of a solar prominence inserted in a three-dimensional magnetic flux rope is investigated numerically. Using the model of Titov Demoulin (1999) under the regime of weak twist, the cold and dense prominence counteracts gravity by modifying the initially force-free magnetic configuration. In some cases a quasi-stationary situation is achieved after the relaxation phase, characterized by the excitation of standing vertical oscillations. These oscillations show a strong attenuation with time produced by the mechanism of continuum damping due to the inhomogeneous transition between the prominence and solar corona. The characteristic period of the vertical oscillations does not depend strongly on the twist of the flux rope. Nonlinearity is the responsible for triggering the Kelvin-Helmholtz instability associated to the vertical oscillations and that eventually produces horizontal structures. Contrary to other configurations in which the longitudinal axis of the prominence is permeated by a pe...

  18. On the Role of Repetitive Magnetic Reconnections in Evolution of Magnetic Flux Ropes in Solar Corona

    Science.gov (United States)

    Kumar, Sanjay; Bhattacharyya, R.; Joshi, Bhuwan; Smolarkiewicz, P. K.

    2016-10-01

    Parker's magnetostatic theorem, extended to astrophysical magnetofluids with large magnetic Reynolds number, supports ceaseless regeneration of current sheets and, hence, spontaneous magnetic reconnections recurring in time. Consequently, a scenario is possible where the repeated reconnections provide an autonomous mechanism governing emergence of coherent structures in astrophysical magnetofluids. In this work, such a scenario is explored by performing numerical computations commensurate with the magnetostatic theorem. In particular, the computations explore the evolution of a flux rope governed by repeated reconnections in a magnetic geometry resembling bipolar loops of solar corona. The revealed morphology of the evolution process—including onset and ascent of the rope, reconnection locations, and the associated topology of the magnetic field lines—agrees with observations, and thus substantiates physical realizability of the advocated mechanism.

  19. Unsteady hydraulic simulation of the cavitating part load vortex rope in Francis turbines

    Science.gov (United States)

    Brammer, J.; Segoufin, C.; Duparchy, F.; Lowys, P. Y.; Favrel, A.; Avellan, F.

    2017-04-01

    For Francis turbines at part load operation a helical vortex rope is formed due to the swirling nature of the flow exiting the runner. This vortex creates pressure fluctuations which can lead to power swings, and the unsteady loading can lead to fatigue damage of the runner. In the case that the vortex rope cavitates there is the additional risk that hydro-acoustic resonance can occur. It is therefore important to be able to accurately simulate this phenomenon to address these issues. In this paper an unsteady, multi-phase CFD model was used to simulate two part-load operating points, for two different cavitation conditions. The simulation results were validated with test-rig data, and showed very good agreement. These results also served as an input for FEA calculations and fatigue analysis, which are presented in a separate study.

  20. Quantitative Inspection of Remanence of Broken Wire Rope Based on Compressed Sensing

    Directory of Open Access Journals (Sweden)

    Juwei Zhang

    2016-08-01

    Full Text Available Most traditional strong magnetic inspection equipment has disadvantages such as big excitation devices, high weight, low detection precision, and inconvenient operation. This paper presents the design of a giant magneto-resistance (GMR sensor array collection system. The remanence signal is collected to acquire two-dimensional magnetic flux leakage (MFL data on the surface of wire ropes. Through the use of compressed sensing wavelet filtering (CSWF, the image expression of wire ropes MFL on the surface was obtained. Then this was taken as the input of the designed back propagation (BP neural network to extract three kinds of MFL image geometry features and seven invariant moments of defect images. Good results were obtained. The experimental results show that nondestructive inspection through the use of remanence has higher accuracy and reliability compared with traditional inspection devices, along with smaller volume, lighter weight and higher precision.

  1. Ion‐scale secondary flux ropes generated by magnetopause reconnection as resolved by MMS

    Science.gov (United States)

    Phan, T. D.; Cassak, P. A.; Gershman, D. J.; Haggerty, C.; Malakit, K.; Shay, M. A.; Mistry, R.; Øieroset, M.; Russell, C. T.; Slavin, J. A.; Argall, M. R.; Avanov, L. A.; Burch, J. L.; Chen, L. J.; Dorelli, J. C.; Ergun, R. E.; Giles, B. L.; Khotyaintsev, Y.; Lavraud, B.; Lindqvist, P. A.; Moore, T. E.; Nakamura, R.; Paterson, W.; Pollock, C.; Strangeway, R. J.; Torbert, R. B.; Wang, S.

    2016-01-01

    Abstract New Magnetospheric Multiscale (MMS) observations of small‐scale (~7 ion inertial length radius) flux transfer events (FTEs) at the dayside magnetopause are reported. The 10 km MMS tetrahedron size enables their structure and properties to be calculated using a variety of multispacecraft techniques, allowing them to be identified as flux ropes, whose flux content is small (~22 kWb). The current density, calculated using plasma and magnetic field measurements independently, is found to be filamentary. Intercomparison of the plasma moments with electric and magnetic field measurements reveals structured non‐frozen‐in ion behavior. The data are further compared with a particle‐in‐cell simulation. It is concluded that these small‐scale flux ropes, which are not seen to be growing, represent a distinct class of FTE which is generated on the magnetopause by secondary reconnection. PMID:27635105

  2. Observations of Magnetic Flux-rope Oscillation During the Precursor Phase of a Solar Eruption

    Science.gov (United States)

    Zhou, Guiping; Zhang, Jie

    2016-07-01

    What is the pre-cursor of a solar eruption is a key question in solar physics for both understanding the physical mechanism and predicting solar eruptions. In this letter, we present the finding of flux rope oscillation as well as significant plasma heating before the onset of an X1.6 GOES X-ray flare and the eruption of a fast CME on 10 September 2014. This precursor oscillation, lasting for about 13 min and occurring in a sigmoidal structure as seen from SDO/AIA and Hinode XRT, was identified based on the IRIS spectrum observations at the coronal emission line of Fe XXI with wavelength of 1354.08 A and formation temperature of 9.1 MK. The IRIS slit was situated at a fixed position almost vertical to the main axis of the sigmoid, which had a length of about 243 arcsec or 1.8x10^{5} km. The vertical velocity oscillation was in the range from -5 to 11 km s^{-1} with a period T of ˜290 s. Our analysis, based on sigmoid temperature, density, length and magnetic field strength, indicates that the oscillation is best described by the fast magnetoacoustic standing kink mode. We conjecture that the pre-cursor oscillation was caused by the interaction of an unstable magnetic flux rope with the overlaying constraining magnetic field, as manifested by a localized plasma heating. The flux rope was subsequently erupted when the main flare reconnection was triggered in the possible current sheet underneath the magnetic flux rope.

  3. Spatial distribution of Mercury's flux ropes and reconnection fronts: MESSENGER observations

    Science.gov (United States)

    Sun, W. J.; Fu, S. Y.; Slavin, J. A.; Raines, J. M.; Zong, Q. G.; Poh, G. K.; Zurbuchen, T. H.

    2016-08-01

    We perform a statistical study of flux ropes and reconnection fronts based on MErcury Surface, Space ENviroment, GEochemistry, and Ranging (MESSENGER) magnetic field and plasma observations to study the implications for the spatial distribution of reconnection sites in Mercury's near magnetotail. The results show important differences of temporal and spatial distributions as compared to Earth. We have surveyed the plasma sheet crossings between -2 RM and -3 RM downtail from the planet, i.e., the location of Near-Mercury Neutral Line (NMNL). Plasma sheets were defined to be regions with β ≥ 0.5. Using this definition, 39 flux ropes and 86 reconnection fronts were identified in the plasma sheet. At Mercury, the distributions of flux ropes and reconnection fronts show clear dawn-dusk asymmetry with much higher occurrence rate on the dawnside plasma sheet than on the duskside. This suggests that magnetic reconnection in Mercury's magnetotail occurs more frequently in the dawnside than in the duskside plasma sheet, which is different than the observations in Earth's magnetotail showing more reconnection signatures in the duskside plasma sheet. The distribution of plasma sheet thickness shows that plasma sheet near the midnight is the thinnest part and does not show obvious asymmetry. Thus, the reasons that cause magnetic reconnection to preferentially occur on the dawnside of the magnetotail at Mercury may not be the plasma sheet thickness and require further study. The peak occurrence rates of flux ropes and reconnection fronts in Mercury's plasma sheet are ~ 60 times higher than that of Earth's values, which we interpret to be due to the highly variable magnetospheric conditions at Mercury. Such higher occurrence rate of magnetic reconnection would generate more plasma flows in the dawnside plasma sheet than in the duskside. These plasma flows would mostly brake and initiate the substorm dipolarization on the postmidnight sector at Mercury rather than the

  4. The Grad-Shafranov Reconstruction of Toroidal Magnetic Flux Ropes: First Applications

    OpenAIRE

    Hu,Qiang; Linton, M. G.; Wood, B. E.; Riley, P.; Nieves-Chinchilla, T.

    2017-01-01

    This article completes and extends a recent study of the Grad-Shafranov (GS) reconstruction in toroidal geometry, as applied to a two and a half dimensional configurations in space plasmas with rotational symmetry. A further application to the benchmark study of an analytic solution to the toroidal GS equation with added noise shows deviations in the reconstructed geometry of the flux rope configuration, characterized by the orientation of the rotation axis, the major radius, and the impact p...

  5. Biometric hoof evaluation of athletic horses of show jumping, barrel, long rope and polo modalities

    OpenAIRE

    Sampaio,Breno Fernandes Barreto; Zúccari,Carmem Estefânia Serra Neto; Shiroma,Monica Yurie Machado; Bertozzo,Beatriz Ramos; Leonel,Ellen Cristina Rivas; Surjus,Ricardo da Silva; Gomes,Monique Maitê Malho; Costa e Silva,Eliane Vianna da

    2013-01-01

    This study aimed to evaluate, through biometry, the forelimb hoof of horses participating in show jumping, barrel, long rope and polo competitions. Thirty subjects were assessed in relation to each competition (total of 120 animals). The linear measurements (cm) included the dorsal length of the toe; medial and lateral lengths of the quarter; medial and lateral heights of the quarter; lateral and medial lengths of the heel; medial and lateral heights of the heel; hoof length; hoof width; frog...

  6. Possibility of stretch-shortening cycle movement training using a jump rope.

    Science.gov (United States)

    Miyaguchi, Kazuyoshi; Sugiura, Hiroki; Demura, Shinichi

    2014-03-01

    Although jumping rope has been said to be a typical stretch-shortening cycle movement (SSC) from the dynamic analysis of muscle contraction, there are few research reports that focus on this point. Recently, the function of SSC of the legs with respect to the jumping movement has been evaluated using the rebound jump index (RJ-index). This study aimed to examine the possibility of using rope jumping in SSC training by comparing the RJ-index of the rebound jump (standard value) and the 2 different methods of rope jumping. The subjects included 76 healthy young men. Most subjects were involved in routine sports training 2-3 times per week. They performed the rebound jump (5 consecutive vertical jumps) and both a basic and a double-under jump with the jump rope, according to each participant's individual style (rhythm or timing). The RJ-index was calculated using the ground contact time and the jump height. The reliabilities of the RJ-index in the basic (intraclass correlation coefficient: 0.85) and double-under jump (0.92) were high, and the RJ-index of the latter (1.34 ± 0.24) was significantly higher than that of the former (0.60 ± 0.21). In the case of a group with inferior SSC ability, the RJ-index of the rebound jump only showed a significant correlation with the double-under but not with the basic jump. When using the RJ-index (1.97 ± 0.38) of the rebound jump as a criterion, the double-under-using about 70% of the SSC ability-may be effective for reinforcement of SSC ability.

  7. Jump Rope Training: Balance and Motor Coordination in Preadolescent Soccer Players

    OpenAIRE

    Trecroci, Athos; Cavaggioni, Luca; Caccia, Riccardo; Alberti, Giampietro

    2015-01-01

    General physical practice and multidimensional exercises are essential elements that allow young athletes to enhance their coordinative traits, balance, and strength and power levels, which are linked to the learning soccer-specific skills. Jumping rope is a widely-used and non-specific practical method for the development of athletic conditioning, balance and coordination in several disciplines. Thus, the aim of this study was to investigate the effects of a short-term training protocol incl...

  8. Quasi-Static Evolution, Catastrophe, and Failed Eruption of Solar Flux Ropes

    Science.gov (United States)

    2016-12-30

    Naval Research Laboratory Washington, DC 20375-5320 NRL/MR/6794--16-9710 Quasi-Static Evolution , Catastrophe, and “Failed” Eruption of Solar Flux...TELEPHONE NUMBER (include area code) b. ABSTRACT c. THIS PAGE 18. NUMBER OF PAGES 17. LIMITATION OF ABSTRACT Quasi-Static Evolution , Catastrophe... evolution of solar flux ropes subject to slowly increasing magnetic energy, encompassing quasi-static evolution , “catastrophic” transition to an eruptive

  9. On the Characteristics of Footpoints of Solar Magnetic Flux Ropes during the Eruption

    OpenAIRE

    Cheng, X; Ding, M. D.

    2016-01-01

    We investigate the footpoints of four erupted magnetic flux ropes (MFRs) that appear as sigmoidal hot channels prior to the eruptions in the Atmospheric Imaging Assembly high temperaure passbands. The simultaneous Helioseismic and Magnetic Imager observations disclose that one footpoint of the MFRs originates in the penumbra or penumbra edge with a stronger magnetic field, while the other in the moss region with a weaker magnetic field. The significant deviation of the axis of the MFRs from t...

  10. Direct observations of magnetic flux rope formation during a solar coronal mass ejection

    OpenAIRE

    Song, Hongqiang; Zhang, Jie; Chen, Yao; Cheng, Xin

    2014-01-01

    Coronal mass ejections (CMEs) are the most spectacular eruptive phenomena in the solar atmosphere. It is generally accepted that CMEs are results of eruptions of magnetic flux ropes (MFRs). However, a heated debate is on whether MFRs pre-exist before the eruptions or they are formed during the eruptions. Several coronal signatures, \\textit{e.g.}, filaments, coronal cavities, sigmoid structures and hot channels (or hot blobs), are proposed as MFRs and observed before the eruption, which suppor...

  11. Magnetar giant flares in multipolar magnetic fields. I. Fully and partially open eruptions of flux ropes

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Lei [Key Laboratory for Research in Galaxies and Cosmology, Shanghai Astronomical Observatory, Chinese Academy of Sciences, Shanghai 200030 (China); Yu, Cong, E-mail: muduri@shao.ac.cn, E-mail: cyu@ynao.ac.cn [Key Laboratory for the Structure and Evolution of Celestial Object, Chinese Academy of Sciences, Kunming 650011 (China)

    2014-04-01

    We propose a catastrophic eruption model for the enormous energy release of magnetars during giant flares, in which a toroidal and helically twisted flux rope is embedded within a force-free magnetosphere. The flux rope stays in stable equilibrium states initially and evolves quasi-statically. Upon the loss of equilibrium, the flux rope cannot sustain the stable equilibrium states and erupts catastrophically. During the process, the magnetic energy stored in the magnetosphere is rapidly released as the result of destabilization of global magnetic topology. The magnetospheric energy that could be accumulated is of vital importance for the outbursts of magnetars. We carefully establish the fully open fields and partially open fields for various boundary conditions at the magnetar surface and study the relevant energy thresholds. By investigating the magnetic energy accumulated at the critical catastrophic point, we find that it is possible to drive fully open eruptions for dipole-dominated background fields. Nevertheless, it is hard to generate fully open magnetic eruptions for multipolar background fields. Given the observational importance of the multipolar magnetic fields in the vicinity of the magnetar surface, it would be worthwhile to explore the possibility of the alternative eruption approach in multipolar background fields. Fortunately, we find that flux ropes may give rise to partially open eruptions in the multipolar fields, which involve only partial opening of background fields. The energy release fractions are greater for cases with central-arcaded multipoles than those with central-caved multipoles that emerged in background fields. Eruptions would fail only when the centrally caved multipoles become extremely strong.

  12. Relationship Between Jump Rope Double Unders and Sprint Performance in Elementary Schoolchildren.

    Science.gov (United States)

    Miyaguchi, Kazuyoshi; Demura, Shinichi; Omoya, Masashi

    2015-11-01

    According to dynamic analyses of muscle contraction, jump rope is a typical stretch-shortening cycle (SSC) movement. It has been reported that the relationship with SSC is higher in double unders than in single unders (basic jumps); however, the relationship between jump rope and sprint performances has not been extensively studied. To clarify this relationship in elementary schoolchildren, we compared the sprint speed and SSC ability of children who were grouped according to gender and ability. The subjects were 143 elementary fifth and sixth graders (78 boys, 65 girls). The consecutive maximal number of double unders, reactivity index (index of SSC ability) by Myotest, and 20-m sprint time were measured. According to the mean of jump rope records, the children were divided into a superior ability group (more than average + 0.5 SD) and an inferior ability group (less than average - 0.5 SD) for each gender. In both genders, a significant difference was found in the 20-m sprint time between the inferior and superior ability groups. The times for the superior ability groups (boys, 3.75 ± 0.23 seconds; girls, 4.02 ± 0.24 seconds) were excellent compared with the inferior ability groups (boys, 4.17 ± 0.32 seconds; girls, 4.23 ± 0.21 seconds). This effect size was higher in boys (1.44) than in girls (0.93). The reactivity index in the superior ability group was excellent compared with that in the inferior ability group. In conclusion, children who perform better in double unders are also faster during a 20-m sprint run. This tendency may be higher in boys. Classic jump rope training, such as double unders, should be effective as elementary plyometrics for improving the sprint ability of children.

  13. Helicity Transformation under the Collision and Merging of Magnetic Flux Ropes

    Science.gov (United States)

    Dehaas, Timothy

    2016-10-01

    A magnetic flux rope is a tube-like, current carrying plasma embedded in an external magnetic field. The magnetic field lines resemble threads in a rope, which vary in pitch according to radius. Flux ropes are ubiquitous in astrophysical plasmas, and bundles of these structures play an important role in the dynamics of the space environment. They are observed in the solar atmosphere and near-earth environment where they are seen to twist, merge, tear, and writhe. In this MHD context, their global dynamics are bound by rules of magnetic helicity conservation, unless, under a non-ideal process, helicity is transformed through magnetic reconnection, turbulence, or localized instabilities. These processes are tested under experimental conditions in the Large Plasma Device (LAPD). The device is a twenty-meter long, one-meter diameter, cylindrical vacuum vessel designed to generate a highly reproducible, magnetized plasma. Reliable shot-to-shot repetition of plasma parameters and over four hundred diagnostic ports enable the collection of volumetric datasets (measurements of ne, Te, Vp, B, J, E, uflow) as two kink-unstable flux ropes form, move, collide, and merge. Similar experiments on the LAPD have utilized these volumetric datasets, visualizing magnetic reconnection through a topological quasi-separatrix layer, or QSL. This QSL is shown to be spatially coincident with the reconnection rate, ∫ E . dl , and oscillates (although out of phase) with global helicity. Magnetic helicity is observed to have a negative sign and its counterpart, cross helicity, a positive one. These quantities oscillate 8% peak-to-peak, and the changes in helicity are visualized as 1) the transport of helicity (ϕB + E × A) and 2) the dissipation of the helicity - 2 E . B . This work is supported by LANL-UC research Grant and done at the Basic Plasma Science Facility, which is funded by DOE and NSF.

  14. Pulsating Magnetic Reconnection Driven by Three-Dimensional Flux-Rope Interactions.

    Science.gov (United States)

    Gekelman, W; De Haas, T; Daughton, W; Van Compernolle, B; Intrator, T; Vincena, S

    2016-06-10

    The dynamics of magnetic reconnection is investigated in a laboratory experiment consisting of two magnetic flux ropes, with currents slightly above the threshold for the kink instability. The evolution features periodic bursts of magnetic reconnection. To diagnose this complex evolution, volumetric three-dimensional data were acquired for both the magnetic and electric fields, allowing key field-line mapping quantities to be directly evaluated for the first time with experimental data. The ropes interact by rotating about each other and periodically bouncing at the kink frequency. During each reconnection event, the formation of a quasiseparatrix layer (QSL) is observed in the magnetic field between the flux ropes. Furthermore, a clear correlation is demonstrated between the quasiseparatrix layer and enhanced values of the quasipotential computed by integrating the parallel electric field along magnetic field lines. These results provide clear evidence that field lines passing through the quasiseparatrix layer are undergoing reconnection and give a direct measure of the nonlinear reconnection rate. The measurements suggest that the parallel electric field within the QSL is supported predominantly by electron pressure; however, resistivity may play a role.

  15. Effects of Strand Lay Direction and Crossing Angle on Tribological Behavior of Winding Hoist Rope.

    Science.gov (United States)

    Chang, Xiang-Dong; Peng, Yu-Xing; Zhu, Zhen-Cai; Gong, Xian-Sheng; Yu, Zhang-Fa; Mi, Zhen-Tao; Xu, Chun-Ming

    2017-06-09

    Friction and wear behavior exists between hoisting ropes that are wound around the drums of a multi-layer winding hoist. It decreases the service life of ropes and threatens mine safety. In this research, a series of experiments were conducted using a self-made test rig to study the effects of the strand lay direction and crossing angle on the winding rope's tribological behavior. Results show that the friction coefficient in the steady-state period shows a decreasing tendency with an increase of the crossing angle in both cross directions, but the variation range is different under different cross directions. Using thermal imaging, the high temperature regions always distribute along the strand lay direction in the gap between adjacent strands, as the cross direction is the same with the strand lay direction (right cross contact). Additionally, the temperature rise in the steady-state increases with the increase of the crossing angle in both cross directions. The differences of the wear scar morphology are obvious under different cross directions, especially for the large crossing angle tests. In the case of right cross, the variation range of wear mass loss is larger than that in left cross. The damage that forms on the wear surface is mainly ploughing, pits, plastic deformation, and fatigue fracture. The major wear mechanisms are adhesive wear, and abrasive and fatigue wear.

  16. Adaptive fuzzy sliding mode control for gantry crane as varying rope length

    Directory of Open Access Journals (Sweden)

    TRINH LUONG MIEN

    2016-08-01

    Full Text Available Gantry crane is used quite commonly in hazardous areas, which increasingly requires strict conrol of the gantry crane operation process to improve efficiency and ensure safe gantry crane opeartion. Automated the gantry crane operating process is being applied pupular currently. Gantry crane is often affected by large noise, having the varying- model parameters, so that proposed a apdaptive fuzzy combining sliding mode controller for the gantry crane in this article. This control method derived from combining the sliding surfaces of three subsystem of the gantry crane (trolley position, rope length, anti-swing to draw out two system sliding surfaces: the trolley positon with the anti-swing and the rope length and the anti-swing. On the based of the sliding mode control principle,drawn out the equivalent controller and the switching controller for gantry crane. But due to the uncertain parameters - nonlinear model of gantry crane with the bound disturbances, combining the fuzzy approximate method, defined the fuzzy controller (used to minic the equivalent controller and the compensation controller for the difference between the equivalent controller and the fuzzy controller (used as the switching controller for two system control inputs: trolley position and rope length The adaptive control laws for these controllers were deduced from Lyapunov’s stable criteria to asymptotically stabilize the sliding surfaces. Simulation results demonstrated the feasibility of the suggested method through grantry crane in the hazard areas.

  17. SOLAR PROMINENCES EMBEDDED IN FLUX ROPES: MORPHOLOGICAL FEATURES AND DYNAMICS FROM 3D MHD SIMULATIONS

    Energy Technology Data Exchange (ETDEWEB)

    Terradas, J.; Soler, R.; Oliver, R.; Ballester, J. L. [Departament de Física, Universitat de les Illes Balears, E-07122 Palma de Mallorca (Spain); Luna, M. [Instituto de Astrofsíca de Canarias, E-38205 La Laguna, Tenerife (Spain); Wright, A. N., E-mail: jaume.terradas@uib.es [School of Mathematics and Statistics, University of St Andrews, St Andrews, KY16 9SS (United Kingdom)

    2016-04-01

    The temporal evolution of a solar prominence inserted in a three-dimensional magnetic flux rope is investigated numerically. Using the model of Titov and Démoulin under the regime of weak twist, the cold and dense prominence counteracts gravity by modifying the initially force-free magnetic configuration. In some cases a quasi-stationary situation is achieved after the relaxation phase, characterized by the excitation of standing vertical oscillations. These oscillations show a strong attenuation with time produced by the mechanism of continuum damping due to the inhomogeneous transition between the prominence and solar corona. The characteristic period of the vertical oscillations does not depend strongly on the twist of the flux rope. Nonlinearity is responsible for triggering the Kelvin–Helmholtz instability associated with the vertical oscillations and that eventually produces horizontal structures. Contrary to other configurations in which the longitudinal axis of the prominence is permeated by a perpendicular magnetic field, like in unsheared arcades, the orientation of the prominence along the flux rope axis prevents the development of Rayleigh–Taylor instabilities and therefore the appearance of vertical structuring along this axis.

  18. A novel method for harmless disposal and resource reutilization of steel wire rope sludges.

    Science.gov (United States)

    Zhang, Li; Liu, Yang-Sheng

    2016-10-01

    Rapid development of steel wire rope industry has led to the generation of large quantities of pickling sludge, which causes significant ecological problems and considerable negative environmental effects. In this study, a novel method was proposed for harmless disposal and resource reutilization of the steel wire rope sludge. Based on the method, two steel wire rope sludges (the Pb sludge and the Zn sludge) were firstly extracted by hydrochloric or sulfuric acid and then mixed with the hydrochloride acid extracting solution of aluminum skimmings to produce composite polyaluminum ferric flocculants. The optimum conditions (acid concentration, w/v ratio, reaction time, and reaction temperature) for acid extraction of the sludges were studied. Results showed that 97.03 % of Pb sludge and 96.20 % of Zn sludge were extracted. Leaching potential of the residues after acid extraction was evaluated, and a proposed treatment for the residues had been instructed. The obtained flocculant products were used to purify the real domestic wastewater and showed an equivalent or better performance than the commercial ones. This method is environmental-friendly and cost-effective when compared with the conventional sludge treatments.

  19. Magnetar Giant Flares in Multipolar Magnetic Fields --- II. Flux Rope Eruptions With Current Sheets

    CERN Document Server

    Huang, Lei

    2014-01-01

    We propose a physical mechanism to explain giant flares and radio afterglows in terms of a magnetospheric model containing both a helically twisted flux rope and a current sheet (CS). With the appearance of CS, we solve a mixed boundary value problem to get the magnetospheric field based on a domain decomposition method. We investigate properties of the equilibrium curve of the flux rope when the CS is present in background multipolar fields. In response to the variations at the magnetar surface, it quasi-statically evolves in stable equilibrium states. The loss of equilibrium occurs at a critical point and, beyond that point, it erupts catastrophically. New features show up when the CS is considered. Especially, we find two kinds of physical behaviors, i.e., catastrophic state transition and catastrophic escape. Magnetic energy would be released during state transitions. The released magnetic energy is sufficient to drive giant flares. The flux rope would go away from the magnetar quasi-statically, which is ...

  20. Potential Magnetic Field around a Helical Flux-rope Current Structure in the Solar Corona

    CERN Document Server

    Petrie, G J D

    2007-01-01

    We consider the potential magnetic field associated with a helical electric line current flow, idealizing the near-potential coronal field within which a highly localized twisted current structure is embedded. It is found that this field has a significant axial component off the helical magnetic axis where there is no current flow, such that the flux winds around the axis. The helical line current field, in including the effects of flux rope writhe, is therefore more topologically complex than straight line and ring current fields sometimes used in solar flux rope models. The axial flux in magnetic fields around confined current structures may be affected by the writhe of these current structures such that the field twists preferentially with the same handedness as the writhe. This property of fields around confined current structures with writhe may be relevant to classes of coronal magnetic flux rope, including structures observed to have sigmoidal forms in soft X-rays and prominence magnetic fields. For ex...

  1. Experimental investigation of the mass flow gain factor in a draft tube with cavitation vortex rope

    Science.gov (United States)

    Landry, C.; Favrel, A.; Müller, A.; Yamamoto, K.; Alligné, S.; Avellan, F.

    2017-04-01

    At off-design operating operations, cavitating flow is often observed in hydraulic machines. The presence of a cavitation vortex rope may induce draft tube surge and electrical power swings at part load and full load operations. The stability analysis of these operating conditions requires a numerical pipe model taking into account the complexity of the two-phase flow. Among the hydroacoustic parameters describing the cavitating draft tube flow in the numerical model, the mass flow gain factor, representing the mass excitation source expressed as the rate of change of the cavitation volume as a function of the discharge, remains difficult to model. This paper presents a quasi-static method to estimate the mass flow gain factor in the draft tube for a given cavitation vortex rope volume in the case of a reduced scale physical model of a ν = 0.27 Francis turbine. The methodology is based on an experimental identification of the natural frequency of the test rig hydraulic system for different Thoma numbers. With the identification of the natural frequency, it is possible to model the wave speed, the cavitation compliance and the volume of the cavitation vortex rope. By applying this new methodology for different discharge values, it becomes possible to identify the mass flow gain factor and improve the accuracy of the system stability analysis.

  2. Quantifying the tailward motion of reconnecting flux ropes at magnetopauses of Earth and other planets

    Science.gov (United States)

    Cassak, P.; Doss, C.; Palmroth, M.; Hoilijoki, S.; Pfau-Kempf, Y.; Ganse, U.; Dorelli, J.

    2015-12-01

    Flux ropes caused by magnetic reconnection commonly form at the dayside magnetopauses of Earth and other planets, such as Mercury and Jupiter. They are convected tailward due to their interaction with the solar wind and as the result of reconnection. The leading model for their tailward propagation speed at Earth's magnetopause has been described using boundary layer physics (Cowley and Owen, Planet. Space Sci., 37, 1461, 1989). We revisit this topic, noting that during times when the reconnection at both X-lines bracketing the flux ropes remain active, there should be consistency with the scaling laws of asymmetric magnetic reconnection with a flow shear. The convection speed of an isolated reconnecting X-line as a function of arbitrary upstream plasma parameters, including the reconnecting magnetic fields, densities, and upstream flow in the plane of the fields, was recently calculated analytically and tested with two-fluid simulations (Doss et al., J. Geophys. Res., submitted). Here, we present fully electromagnetic kinetic particle-in-cell simulations of local asymmetric reconnection with a flow shear that confirm the prediction in collisionless plasmas relevant to planetary magnetospheres. It is notable that the X-line convects even for sub-Alfvenic flow shear and can reconnect even for flow speeds exceeding twice the magnetosheath Alfven speed, which counters previous models. The application of these results for flux rope motion in global magnetospheric simulations of Earth is discussed, as are applications to the magnetospheres of other planets.

  3. [Vehicle-assisted suicide with a nylon rope causing complete decapitation].

    Science.gov (United States)

    Blässer, Katharina; Tatschner, Thomas; Bohnert, Michael

    2013-01-01

    The present case deals with the unusual suicide method of a 36-year-old man who fastened one end of a nylon rope to a tree, guided the other end into a van through the open tailgate and placed the loop round his neck. Then he stepped on the accelerator. Before, he had marked the point on the ground where the rope would tighten. As the rope tightened complete decapitation occurred at a speed of about 35 km/h. Autopsy showed a nearly circular abrasion zone around the site of transection slightly ascending towards the nape, a fracture of the cervical spine between the 3rd and 4th vertebra and a fracture of the thoracic spine between the 7th and 8th vertebra. The test for air embolism of the heart was positive. Macroscopically, no evidence of blood aspiration was found. Histological investigation showed general anaemia and minor blood aspiration in the lungs. Wound morphology was largely in line with the injury patterns described after decapitation in the literature. However, our results differed in that blood aspiration was discernible only under the microscope and there was a second fracture of the spine. Decapitation as a suicide method is an expression of enormous autoaggression and is categorized as a "hard" suicide method. It is used predominantly by men and its occurrence in the spectrum of suicidal actions is rare. Police investigations revealed that the man had led a sort of double life with a sexually motivated background and had suffered from depressive episodes.

  4. Dietary Fiber

    Science.gov (United States)

    Fiber is a substance in plants. Dietary fiber is the kind you eat. It's a type of carbohydrate. You may also see it listed on a food label as soluble ... types have important health benefits. Good sources of dietary fiber include Whole grains Nuts and seeds Fruit and ...

  5. Fiber Amplifiers

    DEFF Research Database (Denmark)

    Rottwitt, Karsten

    2017-01-01

    The chapter provides a discussion of optical fiber amplifiers and through three sections provides a detailed treatment of three types of optical fiber amplifiers, erbium doped fiber amplifiers (EDFA), Raman amplifiers, and parametric amplifiers. Each section comprises the fundamentals including t...

  6. Direct evidence for a three-dimensional magnetic flux rope flanked by two active magnetic reconnection X lines at Earth's magnetopause.

    Science.gov (United States)

    Øieroset, M; Phan, T D; Eastwood, J P; Fujimoto, M; Daughton, W; Shay, M A; Angelopoulos, V; Mozer, F S; McFadden, J P; Larson, D E; Glassmeier, K-H

    2011-10-14

    We report the direct detection by three THEMIS spacecraft of a magnetic flux rope flanked by two active X lines producing colliding plasma jets near the center of the flux rope. The observed density depletion and open magnetic field topology inside the flux rope reveal important three-dimensional effects. There was also evidence for nonthermal electron energization within the flux rope core where the fluxes of 1-4 keV superthermal electrons were higher than those in the converging reconnection jets. The observed ion and electron energizations differ from current theoretical predictions.

  7. Ropes parks as a way of increase of the motor activity of students [Verevochnye parki kak sredstvo povysheniia dvigatel'noj aktivnosti uchashchejsia molodezhi

    Directory of Open Access Journals (Sweden)

    Kozіna Zh.L.

    2011-11-01

    Full Text Available Psychological and physiological reasons of attractiveness of rope parks are considered for studying young people. 25 sources of network are analysed in the Internet. The questionnaire of 52 visitors of rope park is conducted (youths in age 16-19 years. It is set that overcoming of rope obstacles helps to get the necessary physical loading. Also to get feelings, characteristic for the extreme types of sport. It is found out that overcoming of rope obstacles helps people to be delivered from fear before difficulties and agitation before important events.

  8. Laboratory study of low-β forces in arched, line-tied magnetic flux ropes

    Science.gov (United States)

    Myers, C. E.; Yamada, M.; Ji, H.; Yoo, J.; Jara-Almonte, J.; Fox, W.

    2016-11-01

    The loss-of-equilibrium is a solar eruption mechanism whereby a sudden breakdown of the magnetohydrodynamic force balance in the Sun's corona ejects a massive burst of particles and energy into the heliosphere. Predicting a loss-of-equilibrium, which has more recently been formulated as the torus instability, relies on a detailed understanding of the various forces that hold the pre-eruption magnetic flux rope in equilibrium. Traditionally, idealized analytical force expressions are used to derive simplified eruption criteria that can be compared to solar observations and modeling. What is missing, however, is a validation that these idealized analytical force expressions can be applied to the line-tied, low-aspect-ratio conditions of the corona. In this paper, we address this shortcoming by using a laboratory experiment to study the forces that act on long-lived, arched, line-tied magnetic flux ropes. Three key force terms are evaluated over a wide range of experimental conditions: (1) the upward hoop force; (2) the downward strapping force; and (3) the downward toroidal field tension force. First, the laboratory force measurements show that, on average, the three aforementioned force terms cancel to produce a balanced line-tied equilibrium. This finding validates the laboratory force measurement techniques developed here, which were recently used to identify a dynamic toroidal field tension force that can prevent flux rope eruptions [Myers et al., Nature 528, 526 (2015)]. The verification of magnetic force balance also confirms the low-β assumption that the plasma thermal pressure is negligible in these experiments. Next, the measured force terms are directly compared to corresponding analytical expressions. While the measured and analytical forces are found to be well correlated, the low-aspect-ratio, line-tied conditions in the experiment are found to both reduce the measured hoop force and increase the measured tension force with respect to analytical

  9. Jump Rope Training: Balance and Motor Coordination in Preadolescent Soccer Players.

    Science.gov (United States)

    Trecroci, Athos; Cavaggioni, Luca; Caccia, Riccardo; Alberti, Giampietro

    2015-12-01

    General physical practice and multidimensional exercises are essential elements that allow young athletes to enhance their coordinative traits, balance, and strength and power levels, which are linked to the learning soccer-specific skills. Jumping rope is a widely-used and non-specific practical method for the development of athletic conditioning, balance and coordination in several disciplines. Thus, the aim of this study was to investigate the effects of a short-term training protocol including jumping rope (JR) exercises on motor abilities and body balance in young soccer players. Twenty-four preadolescent soccer players were recruited and placed in two different groups. In the Experimental group (EG), children performed JR training at the beginning of the training session. The control group (CG), executed soccer specific drills. Harre circuit test (HCT) and Lower Quarter Y balance test (YBT-LQ) were selected to evaluate participant's motor ability (e.g. ability to perform rapidly a course with different physical tasks such as somersault and passages above/below obstacles ) and to assess unilateral dynamic lower limb balance after 8 weeks of training. Statistical analysis consisted of paired t-test and mixed analysis of variance scores to determine any significant interactions. Children who performed jumping rope exercises showed a significant decrease of 9% (p 0.05, ES = 0.05-0.2) from pre- to post-training. A training-by-group interaction was found for the composite score in both legs (p 0.14). Our findings demonstrated that JR practice within regular soccer training enhanced general motor coordination and balance in preadolescent soccer players. Therefore, the inclusion of JR practice within regular soccer training session should encouraged to improve children's motor skills. Key pointsPerforming jumping rope exercises within a regular soccer program can be an additional method to improve balance and motor coordination.The performance improvement in the

  10. What does determine the sign of core in Magnetic Flux Rope structures of the Earth's magnetotail

    Directory of Open Access Journals (Sweden)

    D. V. Sarafopoulos

    2014-09-01

    Full Text Available This paper primarily examines the key factors being involved in precisely determining the sign of the core field in a magnetic flux rope (MFR like structure embedded in the tailward plasma flow associated with the Earth's magnetotail. Magnetic flux ropes are frequently detected by satellites moving smoothly northwards (upwards or southwards (downwards and crossing almost the whole plasma sheet; the sign of the rope's core is associated with the local tail's motion: If the tail is bending to an upward or downward direction, then the sign of the rope's core, being essentially an intense By deviation, will be positive or negative correspondingly. On the basis of this observational finding, a major question concerns the mechanism by which the tail's motion is dictated. The reconnection process acting in the tail will obviously produce symmetric structures of MFRs (with respect to the neutral sheet plane; therefore, the detected organized asymmetry may be an additional indication in the whole magnetotail' s dynamics. Moreover, we discuss the issue of the core's sign in cases without any significant magnetotail's motion. A model interpreting the diagnosed behavior is introduced: Once a tailward ion jet is produced in a thinned plasma sheet, it might form clockwise or counterclockwise ion vortices (i.e., loop-like ion currents providing the "magnetic core" with the appropriate sign. The crucial role of the interplanetary By deviation of the magnetic field (IMF is scrutinized and taken into account. The whole model is tested under the condition of long-lasting extraordinary events characterized by a persistent-intense By deviation with a duration up to 34 min. This work, based on Geotail single-satellite measurements, is not a statistical one; it is a first approach allowing the reconstruction of measurements in the whole range of the magnetotail's deflections, from negligible up to stronger significant magnetotail movements, and should be therefore

  11. Water Fibers

    CERN Document Server

    Douvidzon, Mark L; Martin, Leopoldo L; Carmon, Tal

    2016-01-01

    Fibers constitute the backbone of modern communication and are used in laser surgeries; fibers also genarate coherent X-ray, guided-sound and supercontinuum. In contrast, fibers for capillary oscillations, which are unique to liquids, were rarely considered in optofluidics. Here we fabricate fibers by water bridging an optical tapered-coupler to a microlensed coupler. Our water fibers are held in air and their length can be longer than a millimeter. These hybrid fibers co-confine two important oscillations in nature: capillary- and electromagnetic-. We optically record vibrations in the water fiber, including an audio-rate fundamental and its 3 overtones in a harmonic series, that one can hear in soundtracks attached. Transforming Micro-Electro-Mechanical-Systems [MEMS] to Micro-Electro-Capillary-Systems [MECS], boosts the device softness by a million to accordingly improve its response to minute forces. Furthermore, MECS are compatible with water, which is a most important liquid in our world.

  12. Model measurement based identification of Francis turbine vortex rope parameters for prototype part load pressure and power pulsation prediction

    Science.gov (United States)

    Manderla, M.; Weber, W.; Koutnik, J.

    2016-11-01

    Pressure and power fluctuations of hydro-electric power plants in part-load operation are an important measure for the quality of the power which is delivered to the electrical grid. It is well known that the unsteadiness is driven by the flow patterns in the draft tube where a vortex rope is present. However, until today the equivalent vortex rope parameters for common numerical 1D-models are a major source of uncertainty. In this work, a new optimization-based grey box method for experimental vortex rope modelling and parameter identification is presented. The combination of analytical vortex rope and test rig modelling and the usage of dynamic measurements allow the identification of the unknown vortex rope parameters. Upscaling from model to prototype size is achieved via existing nondimensional parameters. In this work, a new experimental setup and system identification method is proposed which are suitable for the determination of the full set of part load vortex rope parameters in the lab. For the vortex rope, a symmetric model with cavity compliance, bulk viscosity and two pressure excitation sources is developed and implemented which shows the best correspondence with available measurement data. Due to the non-dimensional parameter definition, scaling is possible. This finally provides a complete method for the prediction of prototype part-load pressure and power oscillations. Since the proposed method is based on a simple limited control domain, limited modelling effort and also small modelling uncertainties are some major advantages. Due to the generality of the approach, a future application to other operating conditions such as full load will be straightforward.

  13. Polymer Coating of Carbon Nanotube Fibers for Electric Microcables

    Directory of Open Access Journals (Sweden)

    Noe T. Alvarez

    2014-11-01

    Full Text Available Carbon nanotubes (CNTs are considered the most promising candidates to replace Cu and Al in a large number of electrical, mechanical and thermal applications. Although most CNT industrial applications require macro and micro size CNT fiber assemblies, several techniques to make conducting CNT fibers, threads, yarns and ropes have been reported to this day, and improvement of their electrical and mechanical conductivity continues. Some electrical applications of these CNT conducting fibers require an insulating layer for electrical insulation and protection against mechanical tearing. Ideally, a flexible insulator such as hydrogenated nitrile butadiene rubber (HNBR on the CNT fiber can allow fabrication of CNT coils that can be assembled into lightweight, corrosion resistant electrical motors and transformers. HNBR is a largely used commercial polymer that unlike other cable-coating polymers such as polyvinyl chloride (PVC, it provides unique continuous and uniform coating on the CNT fibers. The polymer coated/insulated CNT fibers have a 26.54 μm average diameter—which is approximately four times the diameter of a red blood cell—is produced by a simple dip-coating process. Our results confirm that HNBR in solution creates a few microns uniform insulation and mechanical protection over a CNT fiber that is used as the electrically conducting core.

  14. Current Sheet Structures Observed by the TESIS EUV Telescope During A Flux Rope Eruption on the Sun

    CERN Document Server

    Reva, Anton; Kuzin, Ssergey

    2016-01-01

    We use the TESIS EUV telescope to study the current sheet signatures observed during flux rope eruption. The special feature of the TESIS telescope was its ability to image the solar corona up to a distance of 2 $R_\\odot$ from the Sun's center in the Fe 171 \\AA\\ line. The Fe 171 \\AA\\ line emission illuminates the magnetic field lines, and the TESIS images reveal the coronal magnetic structure at high altitudes. The analyzed CME had a core with a spiral-flux rope-structure. The spiral shape indicates that the flux rope radius varied along its length. The flux rope had a complex temperature structure: cold legs (70 000 K, observed in He 304 \\AA\\ line) and a hotter core (0.7 MK, observed in Fe 171 \\AA\\ line). Such structure contradicts the common assumption that the CME core is a cold prominence. When the CME impulsively accelerated, a dark double Y-structure appeared below the flux rope. The Y-structure timing, location, and morphology agree with the previously performed MHD simulations of the current sheet. We...

  15. Method for inferring the axis orientation of cylindrical magnetic flux rope based on single-point measurement

    Science.gov (United States)

    Rong, Z. J.; Wan, W. X.; Shen, C.; Zhang, T. L.; Lui, A. T. Y.; Wang, Yuming; Dunlop, M. W.; Zhang, Y. C.; Zong, Q.-G.

    2013-01-01

    We develop a new simple method for inferring the orientation of a magnetic flux rope, which is assumed to be a time-independent cylindrically symmetric structure via the direct single-point analysis of magnetic field structure. The model tests demonstrate that, for the cylindrical flux rope regardless of whether it is force-free or not, the method can consistently yield the axis orientation of the flux rope with higher accuracy and stability than the minimum variance analysis of the magnetic field and the Grad-Shafranov reconstruction technique. Moreover, the radial distance to the axis center and the current density can also be estimated consistently. Application to two actual flux transfer events observed by the four satellites of the Cluster mission demonstrates that the method is more appropriate to be used for the inner part of flux rope, which might be closer to the cylindrical structure, showing good agreement with the results obtained from the optimal Grad-Shafranov reconstruction and the least squares technique of Faraday's law, but fails to produce such agreement for the outer satellite that grazes the flux rope. Therefore, the method must be used with caution.

  16. Radio Diagnostics of Electron Acceleration Sites During the Eruption of a Flux Rope in the Solar Corona

    CERN Document Server

    Carley, Eoin P; Gallagher, Peter T

    2016-01-01

    Electron acceleration in the solar corona is often associated with flares and the eruption of twisted magnetic structures known as flux ropes. However, the locations and mechanisms of such particle acceleration during the flare and eruption are still subject to much investigation. Observing the exact sites of particle acceleration can help confirm how the flare and eruption are initiated are initiated and how they evolve. Here we use the Atmospheric Imaging Assembly to analyse a flare and erupting flux rope on 2014-April-18, while observations from the Nancay Radio Astronomy Facility allows us to diagnose the sites of electron acceleration during the eruption. Our analysis shows evidence for a pre-formed flux rope which slowly rises and becomes destabilised at the time of a C-class flare, plasma jet and the escape of >75 keV electrons from rope center into the corona. As the eruption proceeds, continued acceleration of electrons with energies of ~5 keV occurs above the flux rope for a period over 5 minutes. A...

  17. Slipping Magnetic Reconnection of Flux Rope Structures as a Precursor to an Eruptive X-class Solar Flare

    CERN Document Server

    Li, Ting; Hou, Yijun; Zhang, Jun

    2016-01-01

    We present the quasi-periodic slipping motion of flux rope structures prior to the onset of an eruptive X-class flare on 2015 March 11, obtained by the \\emph{Interface Region Imaging Spectrograph} (\\emph{IRIS}) and the \\emph{Solar Dynamics Observatory} (\\emph{SDO}). The slipping motion occurred at the north part of the flux rope and seemed to successively peel off the flux rope. The speed of the slippage was 30$-$40 km s$^{-1}$, with an average period of 130$\\pm$30 s. The Si {\\sc iv} 1402.77 {\\AA} line showed a redshift of 10$-$30 km s$^{-1}$ and a line width of 50$-$120 km s$^{-1}$ at the west legs of slipping structures, indicative of reconnection downflow. The slipping motion lasted about 40 min and the flux rope started to rise up slowly at the late stage of the slippage. Then an X2.1 flare was initiated and the flux rope was impulsively accelerated. One of the flare ribbons swept across a negative-polarity sunspot and the penumbral segments of the sunspot decayed rapidly after the flare. We studied the m...

  18. The self-similar, non-linear evolution of rotating magnetic flux ropes

    Directory of Open Access Journals (Sweden)

    C. J. Farrugia

    Full Text Available We study, in the ideal MHD approximation, the non-linear evolution of cylindrical magnetic flux tubes differentially rotating about their symmetry axis. Our force balance consists of inertial terms, which include the centrifugal force, the gradient of the axial magnetic pressure, the magnetic pinch force and the gradient of the gas pressure. We employ the "separable" class of self-similar magnetic fields, defined recently. Taking the gas to be a polytrope, we reduce the problem to a single, ordinary differential equation for the evolution function. In general, two regimes of evolution are possible; expansion and oscillation. We investigate the specific effect rotation has on these two modes of evolution. We focus on critical values of the flux rope parameters and show that rotation can suppress the oscillatory mode. We estimate the critical value of the angular velocity Ωcrit, above which the magnetic flux rope always expands, regardless of the value of the initial energy. Studying small-amplitude oscillations of the rope, we find that torsional oscillations are superimposed on the rotation and that they have a frequency equal to that of the radial oscillations. By setting the axial component of the magnetic field to zero, we study small-amplitude oscillations of a rigidly rotating pinch. We find that the frequency of oscillation ω is inversely proportional to the angular velocity of rotation Ω; the product ωΩbeing proportional to the inverse square of the Alfvén time. The period of large-amplitude oscillations of a rotating flux rope of low beta increases exponentially with the energy of the equivalent 1D oscillator. With respect to large-amplitude oscillations of a non-rotating flux rope, the only change brought about by rotation is to introduce a multiplicative factor greater than unity, which further increases the period. This multiplicative factor depends on the ratio of the azimuthal speed to the Alfvén speed

  19. Evolution of the Coronal Magnetic Configurations Including a Current-Carrying Flux Rope in Response to the Change in the Background Field

    CERN Document Server

    Wang, Hong-Juan; Gong, Jian-Cun; Lin, Jun

    2014-01-01

    We investigate equilibrium height of the flux rope, and its internal equilibrium in a realistic plasma environment by carrying out numerical simulations of the evolution of systems including a current-carrying flux rope. We find that the equilibrium height of the flux rope is approximately a power-law function of the relative strength of the background field. Our simulations indicate that the flux rope can escape more easily from a weaker background field. This further confirms the catastrophe in the magnetic configuration of interest can be triggered by decrease of strength of the background field. Our results show that it takes some time to reach internal equilibrium depending on the initial state of the flux rope. The plasma flow inside the flux rope due to the adjustment for the internal equilibrium of the flux rope remains small and does not last very long when the initial state of the flux rope commences from the stable branch of the theoretical equilibrium curve. This work also confirms the influence o...

  20. Jump Rope Training: Balance and Motor Coordination in Preadolescent Soccer Players

    Directory of Open Access Journals (Sweden)

    Athos Trecroci, Luca Cavaggioni, Riccardo Caccia, Giampietro Alberti

    2015-12-01

    Full Text Available General physical practice and multidimensional exercises are essential elements that allow young athletes to enhance their coordinative traits, balance, and strength and power levels, which are linked to the learning soccer-specific skills. Jumping rope is a widely-used and non-specific practical method for the development of athletic conditioning, balance and coordination in several disciplines. Thus, the aim of this study was to investigate the effects of a short-term training protocol including jumping rope (JR exercises on motor abilities and body balance in young soccer players. Twenty-four preadolescent soccer players were recruited and placed in two different groups. In the Experimental group (EG, children performed JR training at the beginning of the training session. The control group (CG, executed soccer specific drills. Harre circuit test (HCT and Lower Quarter Y balance test (YBT-LQ were selected to evaluate participant’s motor ability (e.g. ability to perform rapidly a course with different physical tasks such as somersault and passages above/below obstacles and to assess unilateral dynamic lower limb balance after 8 weeks of training. Statistical analysis consisted of paired t-test and mixed analysis of variance scores to determine any significant interactions. Children who performed jumping rope exercises showed a significant decrease of 9% (p 0.05, ES = 0.05-0.2 from pre- to post-training. A training-by-group interaction was found for the composite score in both legs (p 0.14. Our findings demonstrated that JR practice within regular soccer training enhanced general motor coordination and balance in preadolescent soccer players. Therefore, the inclusion of JR practice within regular soccer training session should encouraged to improve children’s motor skills.

  1. Effects of rope-jump training on the os calcis stiffness index of postpubescent girls.

    Science.gov (United States)

    Arnett, Mark G; Lutz, Bob

    2002-12-01

    The specific aims of the study were to 1) determine what effects dose-dependent rope jumping had on os calcis stiffness index (OCSI) and 2) determine whether OCSI values measured by quantitative ultrasound (QUS) were dependent or independent of the values of bone mineral content (BMC) determined by dual energy x-ray absorptiometry (DXA) at the lumbar spine and proximal femur (femoral neck; greater trochanter). Upon study entry, girls were randomly assigned to either one of two treatment groups (high volume; low volume) or a control group. Thirty-seven high school girls were recruited to participate in the study. QUS and DXA measurements were made at baseline and at 4-month follow-up. Students in the high-volume and low-volume groups jumped rope for 10 and 5 min, respectively. The follow-up mean OCSI values for the high-volume, low-volume, and control conditions were 103.95 +/- 12.55, 102.09 +/- 12.70, and 99.05 +/- 9.84, respectively. A statistically significant difference (P = 0.033) was identified between the high-volume and control groups. Baseline and follow-up OCSI values were significantly correlated with baseline and follow-up BMC measures of the femoral neck (r = 0.60, r = 0.59), greater trochanter (r = 0.47, r = 0.40), and lumbar spine (r = 0.56, r = 0.56). High-volume rope jumping increases the OCSI more than the control condition in postpubescent girls. Furthermore, the OCSI measured by QUS is moderately related to proximal femur and lumbar spine BMC measured by DXA.

  2. Multiwavelength observations of a flux rope formation by series of magnetic reconnection in the chromosphere

    Science.gov (United States)

    Kumar, Pankaj; Yurchyshyn, Vasyl; Cho, Kyung-Suk; Wang, Haimin

    2017-07-01

    Using high-resolution observations from the 1.6 m New Solar Telescope (NST) operating at the Big Bear Solar Observatory (BBSO), we report direct evidence of merging and reconnection of cool Hα loops in the chromosphere during two homologous flares (B and C class) caused by a shear motion at the footpoints of two loops. The reconnection between these loops caused the formation of an unstable flux rope that showed counterclockwise rotation. The flux rope could not reach the height of torus instability and failed to form a coronal mass ejection. The HMI magnetograms revealed rotation of the negative and positive (N1/P2) polarity sunspots in the opposite directions, which increased the right- and left-handed twist in the magnetic structures rooted at N1/P2. Rapid photospheric flux cancellation (duration 20-30 min, rate ≈3.44 × 1020 Mx h-1) was observed during and even after the first B6.0 flare and continued until the end of the second C2.3 flare. The RHESSI X-ray sources were located at the site of the loop coalescence. To the best of our knowledge, such a clear interaction of chromospheric loops along with rapid flux cancellation has not been reported before. These high-resolution observations suggest the formation of a small flux rope by a series of magnetic reconnections within chromospheric loops that are associated with very rapid flux cancellation. Movies attached to Figs. 2, 7, 8, and 10 are available at http://www.aanda.org

  3. 防扭钢丝绳用单股钢丝绳生产中存在的问题和对策%Problems and countermeasures in production of single strand wire rope for torsionproof wire rope

    Institute of Scientific and Technical Information of China (English)

    邵永清; 刘红芳; 许铭锋; 马水国

    2013-01-01

    To analyze the factors affecting service life of single strand wire rope for torsionproof wire rope,aiming at the problems existing in production to give out countermeasures:(1) to control steel wire tensile strength scatter difference fluctuation,adopting wet wire drawing machine to strictly control tolerance range of semi-finished steel wire and eliminate steel wire cold drawn forming residual stress; (2) to control galvanizing,adopting electro galvanizing for diameter less than 0.50 mm steel wire with more than 95% reduction of area,hot dipping galvanizing for others; outer layer steel wire in single strand rope adopt hot dipping galvanizing steel wire,inner wire is produced in electro galvanizing way; (3) to control wire rope length and linear density,in wire drawing course to control pass diameters and tolerance strictly,adopt electric meter counter to detect rope length in lay process,ensure wire rope length precision.Strengthening production process control of single strand rope for torsionproof wire rope can improve product quality,raise production efficiency,and decrease production cost.%分析影响防扭钢丝绳用单股钢丝绳使用寿命的因素,针对生产中存在的问题给出对策:(1)钢丝抗拉强度散差波动控制.拉拔过程采用水箱湿式拉拔,严格控制半成品钢丝的公差范围并消除钢丝冷拉变形的残余应力.(2)镀锌控制.水箱拉拔压缩率大于95%且出线直径小于0.50 mm的钢丝全部采用电镀锌生产,其余则用热镀锌生产;单股钢丝绳外层钢丝采用热镀锌生产,内层钢丝采用电镀锌生产.(3)钢丝绳长度和线密度的控制.严格控制拉丝工序各道次钢丝直径及公差,捻制工序采用电子计米器检测钢丝绳的长度,保证钢丝绳长度精确率.加强防扭钢丝绳用单股钢丝绳生产过程控制,可提高产品质量,提升生产效率,降低生产成本.

  4. Research of x-ray nondestructive detector for high-speed running conveyor belt with steel wire ropes

    Science.gov (United States)

    Wang, Junfeng; Miao, Changyun; Wang, Wei; Lu, Xiaocui

    2008-03-01

    An X-ray nondestructive detector for high-speed running conveyor belt with steel wire ropes is researched in the paper. The principle of X-ray nondestructive testing (NDT) is analyzed, the general scheme of the X-ray nondestructive testing system is proposed, and the nondestructive detector for high-speed running conveyor belt with steel wire ropes is developed. The hardware of system is designed with Xilinx's VIRTEX-4 FPGA that embeds PowerPC and MAC IP core, and its network communication software based on TCP/IP protocol is programmed by loading LwIP to PowerPC. The nondestructive testing of high-speed conveyor belt with steel wire ropes and network transfer function are implemented. It is a strong real-time system with rapid scanning speed, high reliability and remotely nondestructive testing function. The nondestructive detector can be applied to the detection of product line in industry.

  5. Evolving Playable Content for Cut the Rope through a Simulation-Based Approach

    DEFF Research Database (Denmark)

    Shaker, Mohammad; Shaker, Noor; Togelius, Julian

    2013-01-01

    -based agent can be used to suggest all sensible moves at each state, which allows us to restrict the search space so that depth-first search for solutions become viable. This agent is successfully used to test playability in Ropossum, a level generator based on grammatical evolution. The method proposed...... and such an agent is not always readily available. We discuss this prob- lem in the context of the physics-based puzzle game Cut the Rope, which features continuous time and state space, mak- ing several approaches such as exhaustive search and reactive agents inefficient. We show that a deliberative Prolog...

  6. The structure of an earthward propagating magnetic flux rope early in its evolution: comparison of methods

    Directory of Open Access Journals (Sweden)

    C. Möstl

    2009-05-01

    Full Text Available We analyze a magnetic signature associated with the leading edge of a bursty bulk flow observed by Cluster at −19 RE downtail on 22 August 2001. A distinct rotation of the magnetic field was seen by all four spacecraft. This event was previously examined by Slavin et al. (2003b using both linear force-free modeling as well as a curlometer technique. Extending this work, we apply here single- and multi-spacecraft Grad-Shafranov (GS reconstruction techniques to the Cluster observations and find good evidence that the structure encountered is indeed a magnetic flux rope and contains helical magnetic field lines. We find that the flux rope has a diameter of approximately 1 RE, an axial field of 26.4 nT, a velocity of ≈650 km/s, a total axial current of 0.16 MA and magnetic fluxes of order 105 Wb. The field line twist is estimated as half a turn per RE. The invariant axis is inclined at 40° to the ecliptic plane and 10° to the GSM equatorial plane. The flux rope has a force-free core and non-force-free boundaries. When we compare and contrast our results with those obtained from minimum variance, single-spacecraft force-free fitting and curlometer techniques, we find in general fair agreement, but also clear differences such as a higher inclination of the axis to the ecliptic. We further conclude that single-spacecraft methods have limitations which should be kept in mind when applied to THEMIS observations, and that non-force-free GS and curlometer techniques are to be preferred in their analysis. Some properties we derived for this earthward– moving structure are similar to those inferred by Lui et al. (2007, using a different approach, for a tailward-moving flux rope observed during the expansion phase of the same substorm.

  7. Ropossum: An Authoring Tool for Designing, Optimizing and Solving Cut the Rope Levels

    DEFF Research Database (Denmark)

    Shaker, Mohammad; Shaker, Noor; Togelius, Julian

    2013-01-01

    We present a demonstration of Ropossum, an authoring tool for the generation and testing of levels of the physics-based game, Cut the Rope. Ropossum integrates many features: (1) automatic design of complete solvable content, (2) incorporation of designer’s input through the creation of complete...... or partial designs, (3) automatic check for playability and (4) optimization of a given design based on playability. The system includes a physics engine to simulate the game and an evolutionary framework to evolve content as well as an AI reasoning agent to check for playability. The system is optimised...

  8. On the twists of interplanetary magnetic flux ropes observed at 1 AU

    OpenAIRE

    Wang, Yuming; Zhuang, Bin; Hu, Qiang; Liu, Rui; Shen, Chenglong; Chi, Yutian

    2016-01-01

    Magnetic flux ropes (MFRs) are one kind of fundamental structures in the solar physics, and involved in various eruption phenomena. Twist, characterizing how the magnetic field lines wind around a main axis, is an intrinsic property of MFRs, closely related to the magnetic free energy and stableness. So far it is unclear how much amount of twist is carried by MFRs in the solar atmosphere and in heliosphere and what role the twist played in the eruptions of MFRs. Contrasting to the solar MFRs,...

  9. Spectroscopic Diagnostics of Solar Magnetic Flux Ropes Using Iron Forbidden Line

    OpenAIRE

    Cheng, X; Ding, M. D.

    2016-01-01

    In this Letter, we present Interface Region Imaging Spectrograph Fe XXI 1354.08 A forbidden line emission of two magnetic flux ropes (MFRs) that caused two fast coronal mass ejections with velocities of $\\ge$1000 km s$^{-1}$ and strong flares (X1.6 and M6.5) on 2014 September 10 and 2015 June 22, respectively. The EUV images at the 131 A and 94 A passbands provided by the Atmospheric Imaging Assembly on board Solar Dynamics Observatory reveal that both MFRs initially appear as suspended hot c...

  10. Visualization of the Flux Rope Generation Process Using Large Quantities of MHD Simulation Data

    Directory of Open Access Journals (Sweden)

    Y Kubota

    2013-03-01

    Full Text Available We present a new concept of analysis using visualization of large quantities of simulation data. The time development of 3D objects with high temporal resolution provides the opportunity for scientific discovery. We visualize large quantities of simulation data using the visualization application 'Virtual Aurora' based on AVS (Advanced Visual Systems and the parallel distributed processing at "Space Weather Cloud" in NICT based on Gfarm technology. We introduce two results of high temporal resolution visualization: the magnetic flux rope generation process and dayside reconnection using a system of magnetic field line tracing.

  11. Evolving Playable Content for Cut the Rope through a Simulation-Based Approach

    DEFF Research Database (Denmark)

    Shaker, Mohammad; Shaker, Noor; Togelius, Julian

    2013-01-01

    -based agent can be used to suggest all sensible moves at each state, which allows us to restrict the search space so that depth-first search for solutions become viable. This agent is successfully used to test playability in Ropossum, a level generator based on grammatical evolution. The method proposed...... and such an agent is not always readily available. We discuss this prob- lem in the context of the physics-based puzzle game Cut the Rope, which features continuous time and state space, mak- ing several approaches such as exhaustive search and reactive agents inefficient. We show that a deliberative Prolog...

  12. Current-voltage characteristics of an individual helical CdS nanowire rope

    Institute of Scientific and Technical Information of China (English)

    Long Yun-Ze; Wang Wen-Long; Bai Feng-Lian; Chen Zhao-Jia; Jin Ai-Zi; Gu Chang-Zhi

    2008-01-01

    This paper studies the electronic transport in an individual helically twisted CdS nanowire rope, on which platinum microleacls are attached by focused-ion beam deposition. The current-voltage (Ⅰ - Ⅴ ) characteristics are nonlinear from 300 down to 60 K. Some step-like structures in the Ⅰ - Ⅴ curves and oscillation peaks in the differential conductance (dⅠ/dⅤ - Ⅴ) curves have been observed even at room temperature. It proposes that the observed behaviour can be attributed to Coulomb-blockade transport in the one-dimensional CdS nanowires with diameters of 6-10 nm.

  13. Safety assessment of heavy-duty multilayer flattened strand haulage ropes by means of life calculations. Parts 1 and 2; Beurteilung der sicheren Verwendbarkeit von hochbeanspruchten mehrlagigen Flachlitzen-Foerderseilen durch Berechnung der Lebensdauer. T. 1 und 2

    Energy Technology Data Exchange (ETDEWEB)

    Spas, W. [Deutsche Montan Technologie GmbH, Bochum (Germany). Car Synergies Division

    2003-07-01

    The life of multilayer flattened strand ropes was calculated. Based on the operating parameters of the mine shafts and the characteristic data of the ropes, a correlation between the life of single wires under variable dynamic tensile stress on the one hand and the real stress variation during operation of flattened strand ropes in mine shafts was to be established.

  14. Development of three dimensional Eulerian numerical procedure toward plate-mantle simulation: accuracy test by the fluid rope coiling

    Science.gov (United States)

    Furuichi, M.; Kameyama, M.; Kageyama, A.

    2007-12-01

    Reproducing a realistic plate tectonics with mantle convection simulation is one of the greatest challenges in computational geophysics. We have developed a three dimensional Eulerian numerical procedure toward plate-mantle simulation, which includes a finite deformation of the plate in the mantle convection. Our method, combined with CIP-CSLR (Constrained Interpolation Profile method-Conservative Semi-Lagrangian advection scheme with Rational function) and ACuTE method, enables us to solve advection and force balance equations even with a large and sharp viscosity jump, which marks the interface between the plates and surrounding upper mantle materials. One of the typical phenomena represented by our method is a fluid rope coiling event, where a stream of viscous fluid is poured onto the bottom plane from a certain height. This coiling motion is due to delicate balances between bending, twisting and stretching motions of fluid rope. In the framework of the Eulerian scheme, the fluid rope and surrounding air are treated as a viscosity profile which differs by several orders of magnitude. Our method solves the complex force balances of the fluid rope and air, by a multigrid iteration technique of ACuTE algorithm. In addition, the CIP-CSLR advection scheme allows us to obtain a deforming shape of the fluid rope, as a low diffusive solution in the Eulerian frame of reference. In this presentation, we will show the simulation result of the fluid rope coiling as an accuracy test for our simulation scheme, by comparing with the simplified numerical solution for thin viscous jet.

  15. Diode Pumped Fiber Laser.

    Science.gov (United States)

    1984-12-01

    FIBER LASERS I. Nd:YAG FIBER LASER FABRICATION .............. 5 A. FIBER GROWTH .......................... 5 B. FIBER PROCESSING 7...1.32 pm FIBER LASERS I. Nd:YAG FIBER LASER FABRICATION A. FIBER GROWTH The single crystal fibers used in this work were grown at Stanford University

  16. Replacement of steel cable with synthetic rope in mountain logging operations in Castanea sativa Mill. coppice stands

    Directory of Open Access Journals (Sweden)

    Elena Canga

    2014-12-01

    Full Text Available Aim of the study: The objective of this study was to evaluate skidding from stump area to roadside with a tracked skidder (Caterpillar 3DG XL using two different types of cable (steel or synthetic.Area of study: NW of Spain.Material and methods: A time study was performed to calculate productivity for the two types of cable and two regression models were fitted to predict the productive and cycle time of the tracked skidder.Research highlights: An increase of 12.53% in productivity (m3/SMH and improvements in working conditions using synthetic rope were found.Keywords: Chestnut; synthetic rope; time study; tracked skidder.

  17. Two Fiber Optical Fiber Thermometry

    Science.gov (United States)

    Jones, Mathew R.; Farmer, Jeffery T.; Breeding, Shawn P.

    2000-01-01

    An optical fiber thermometer consists of an optical fiber whose sensing tip is given a metallic coating. The sensing tip of the fiber is essentially an isothermal cavity, so the emission from this cavity will be approximately equal to the emission from a blackbody. Temperature readings are obtained by measuring the spectral radiative heat flux at the end of the fiber at two wavelengths. The ratio of these measurements and Planck's Law are used to infer the temperature at the sensing tip. Optical fiber thermometers have high accuracy, excellent long-term stability and are immune to electromagnetic interference. In addition, they can be operated for extended periods without requiring re-calibration. For these reasons. it is desirable to use optical fiber thermometers in environments such as the International Space Station. However, it has recently been shown that temperature readings are corrupted by emission from the fiber when extended portions of the probe are exposed to elevated temperatures. This paper will describe several ways in which the reading from a second fiber can be used to correct the corrupted temperature measurements. The accuracy and sensitivity to measurement uncertainty will be presented for each method.

  18. Experimental testing of flexible barriers for containment of debris flows

    Science.gov (United States)

    DeNatale, Jay S.; Iverson, Richard M.; Major, Jon J.; LaHusen, Richard G.; Fliegel, Gregg L.; Duffy, John D.

    1999-01-01

    In June 1996, six experiments conducted at the U.S. Geological Survey Debris Flow Flume demonstrated that flexible, vertical barriers constructed of wire rope netting can stop small debris flows. All experimental debris flows consisted of water-saturated gravelly sand with less than two percent finer sediment by weight. All debris flows had volumes of about 10 cubic meters, masses of about 20 metre tons, and impact velocities of 5 to 9 meters per second. In four experiments, the debris flow impacted pristine, unreformed barriers of varying design; in the other two experiments, the debris flow impacted barriers already loaded with sediment from a previous flow. Differences in barrier design led to differences in barrier performance. Experiments were conducted with barriers constructed of square-mesh wire-rope netting with 30centimeter, 20centimeter, and 15 centimeter mesh openings as well as 30centimeter diameter interlocking steel rings. In all cases, sediment cascading downslope at the leading edge of the debris flows tended to spray through the nets. Nets fitted with finer-mesh chain link or chicken wire liners contained more sediment than did unlined nets, and a ring net fitted with a synthetic silt screen liner contained nearly 100 percent of the sediment. Irreversible net displacements of up to 2 meters and friction brake engagement on the support and anchor cables dissipated some of the impact energy. However, substantial forces developed in the steel support columns and the lateral and tie-back anchor cables attached to these columns. As predicted by elementary mechanics, the anchor cables experienced larger tensile forces when the support columns were hinged at the base rather than bolted rigidly to the foundation. Measured loads in the lateral anchor cables exceeded those in the tie-back anchor cables and the load cell capacity of 45 kilo-Newtons. Measurements also indicated that the peak loads in the tie- back anchors were highly transient and occurred at

  19. Structure, Stability, and Evolution of Magnetic Flux Ropes from the Perspective of Magnetic Twist

    CERN Document Server

    Liu, Rui; Titov, Viacheslav S; Chen, Jun; Wang, Yuming; Wang, Haimin; Liu, Chang; Xu, Yan; Wiegelmann, Thomas

    2015-01-01

    We investigate the evolution of NOAA Active Region 11817 during 2013 August 10--12, when it developed a complex field configuration and produced four confined, followed by two eruptive, flares. These C-and-above flares are all associated with a magnetic flux rope (MFR) located along the major polarity inversion line, where shearing and converging photospheric flows are present. Aided by the nonlinear force-free field modeling, we identify the MFR through mapping magnetic connectivities and computing the twist number $\\mathcal{T}_w$ for each individual field line. The MFR is moderately twisted ($|\\mathcal{T}_w| < 2$) and has a well-defined boundary of high squashing factor $Q$. We found that the field line with the extremum $|\\mathcal{T}_w|$ is a reliable proxy of the rope axis, and that the MFR's peak $|\\mathcal{T}_w|$ temporarily increases within half an hour before each flare while it decreases after the flare peak for both confined and eruptive flares. This pre-flare increase in $|\\mathcal{T}_w|$ has li...

  20. Effects of Strand Lay Direction and Crossing Angle on Tribological Behavior of Winding Hoist Rope

    Directory of Open Access Journals (Sweden)

    Xiang-dong Chang

    2017-06-01

    Full Text Available Friction and wear behavior exists between hoisting ropes that are wound around the drums of a multi-layer winding hoist. It decreases the service life of ropes and threatens mine safety. In this research, a series of experiments were conducted using a self-made test rig to study the effects of the strand lay direction and crossing angle on the winding rope’s tribological behavior. Results show that the friction coefficient in the steady-state period shows a decreasing tendency with an increase of the crossing angle in both cross directions, but the variation range is different under different cross directions. Using thermal imaging, the high temperature regions always distribute along the strand lay direction in the gap between adjacent strands, as the cross direction is the same with the strand lay direction (right cross contact. Additionally, the temperature rise in the steady-state increases with the increase of the crossing angle in both cross directions. The differences of the wear scar morphology are obvious under different cross directions, especially for the large crossing angle tests. In the case of right cross, the variation range of wear mass loss is larger than that in left cross. The damage that forms on the wear surface is mainly ploughing, pits, plastic deformation, and fatigue fracture. The major wear mechanisms are adhesive wear, and abrasive and fatigue wear.

  1. Eruption of the magnetic flux rope in a quick decaying active region

    Science.gov (United States)

    Yang, Shangbin; Xie, Wenbin; Liu, Jihong

    2015-03-01

    An isolated and quickly decaying active region (NOAA 9729) was observed as it passed across the solar disk. There was only one CME associated with the active region, which provides a good opportunity to investigate the whole process of the CME. A filament in this active region was observed to rise rapidly before stalling and disintegrating into flare loops. The rising filament seen in EIT images separates into two parts just before eruption. A new filament reforms several hours later after the CME; the axis of this new filament is rotated clockwise approximately 22° compared with that of the first filament,due to a changed orientation of the polarity inversion line. We also observed a bright transient slightly S-shaped X-ray sigmoid, which appears immediately after the filament eruption. The X-ray sigmoid quickly develops into a soft X-ray cusp and rises before dropping back down. Two magnetic cancelation regions were observed clearly just before filament eruption. The eruption process of the sigmoid structure in this quick decaying active region could be explained by using the 3D Tether-Cutting model. The magnetic flux rope erupted as the magnetic helicity approached its maximum and the normalized helicity was -0.036 when the magnetic flux rope erupted, which is an order of magnitude smaller than the simulation results of the kink and torus instability, but is close to the predicted value of Zhang et al. (2008) based on the theoretical non-linear force-free model.

  2. Circular-cylindrical flux-rope analytical model for Magnetic Clouds

    Science.gov (United States)

    Nieves-Chinchilla, Teresa; Linton, Mark; Hidalgo, Miguel A.; Vourlidas, Angelos; Savani, Neel P.; Szabo, Adam; Farrugia, Charlie; Yu, Wenyuan

    2016-05-01

    We present an analytical model to describe magnetic flux-rope topologies. When these structures are observed embedded in Interplanetary Coronal Mass Ejections (ICMEs) with a depressed proton temperature, they are called Magnetic Clouds ( MCs). The model extends the circular-cylindrical concept of Hidalgo et al. (2000) by introducing a general form for the radial dependence of the current density. This generalization provides information on the force distribution inside the flux rope in addition to the usual parameters of MC geometrical information and orientation.The generalized model provides flexibility for implementation in 3D MHD simulations. Here, we evaluate its performance in the reconstruction of MCs in in-situ observations. Four Earth directed ICME events, observed by the Wind spacecraft, are used to validate the technique. The events are selected from the ICME Wind list with the magnetic obstacle boundaries chosen consistently with the magnetic fi eld and plasma in situ observations and with a new parameter (EPP, Electron Pitch angle distribution Parameter) which quantifies the bidirectionally of theplasma electrons. The goodness of the fit is evaluated with a single correlation parameter to enable comparative analysis of the events. In general, at first glance, the model fits the selected events very well. However, a detailed analysis of events with signatures of significant compression indicates the need to explore geometries other than the circular-cylindrical.

  3. A Circular-cylindrical Flux-rope Analytical Model for Magnetic Clouds

    Science.gov (United States)

    Nieves-Chinchilla, T.; Linton, M. G.; Hidalgo, M. A.; Vourlidas, A.; Savani, N. P.; Szabo, A.; Farrugia, C.; Yu, W.

    2016-05-01

    We present an analytical model to describe magnetic flux-rope topologies. When these structures are observed embedded in Interplanetary Coronal Mass Ejections (ICMEs) with a depressed proton temperature, they are called Magnetic Clouds (MCs). Our model extends the circular-cylindrical concept of Hidalgo et al. by introducing a general form for the radial dependence of the current density. This generalization provides information on the force distribution inside the flux rope in addition to the usual parameters of MC geometrical information and orientation. The generalized model provides flexibility for implementation in 3D MHD simulations. Here, we evaluate its performance in the reconstruction of MCs in in situ observations. Four Earth-directed ICME events, observed by the Wind spacecraft, are used to validate the technique. The events are selected from the ICME Wind list with the magnetic obstacle boundaries chosen consistently with the magnetic field and plasma in situ observations and with a new parameter (EPP, the Electron Pitch angle distribution Parameter) which quantifies the bidirectionally of the plasma electrons. The goodness of the fit is evaluated with a single correlation parameter to enable comparative analysis of the events. In general, at first glance, the model fits the selected events very well. However, a detailed analysis of events with signatures of significant compression indicates the need to explore geometries other than the circular-cylindrical. An extension of our current modeling framework to account for such non-circular CMEs will be presented in a forthcoming publication.

  4. Mechanical discrete simulator of the electro-mechanical lift with n:1 roping

    Science.gov (United States)

    Alonso, F. J.; Herrera, I.

    2016-05-01

    The design process of new products in lift engineering is a difficult task due to, mainly, the complexity and slenderness of the lift system, demanding a predictive tool for the lift mechanics. A mechanical ad-hoc discrete simulator, as an alternative to ‘general purpose’ mechanical simulators is proposed. Firstly, the synthesis and experimentation process that has led to establish a suitable model capable of simulating accurately the response of the electromechanical lift is discussed. Then, the equations of motion are derived. The model comprises a discrete system of 5 vertically displaceable masses (car, counterweight, car frame, passengers/loads and lift drive), an inertial mass of the assembly tension pulley-rotor shaft which can rotate about the machine axis and 6 mechanical connectors with 1:1 suspension layout. The model is extended to any n:1 roping lift by setting 6 equivalent mechanical components (suspension systems for car and counterweight, lift drive silent blocks, tension pulley-lift drive stator and passengers/load equivalent spring-damper) by inductive inference from 1:1 and generalized 2:1 roping system. The application to simulate real elevator systems is proposed by numeric time integration of the governing equations using the Kutta-Meden algorithm and implemented in a computer program for ad-hoc elevator simulation called ElevaCAD.

  5. Study of kefir grains application in sourdough bread regarding rope spoilage caused by Bacillus spp.

    Science.gov (United States)

    Mantzourani, I; Plessas, S; Saxami, G; Alexopoulos, A; Galanis, A; Bezirtzoglou, E

    2014-01-15

    Sourdough breads prepared with kefir grains resulted in appearance of rope spoilage at the 15th day of bread storage, while the control samples (sourdough breads prepared with wild microflora) were spoiled approximately at the 7th day. Denaturing Gradient Gel Electrophoresis (DGGE) analysis confirmed the above macroscopic observation since Bacillus spp. were detected on sourdough breads prepared with kefir grains at the 15th day of bread storage. The content of organic acids that play synergistic role regarding the enhancement of bread self life was also determined. Lactic acid concentration of sourdough breads prepared with kefir grains were approximately 41-82% higher than the control samples, while acetic acid concentration was about 0.5-1-fold higher respectively. The concentration of some other organic acids studied was also found in higher levels (up to 0.06μg/g) than the control samples. These findings could probably explain the stability of breads prepared with kefir grains against rope spoilage.

  6. Energy spectrum of interplanetary magnetic flux ropes and its connection with solar activity

    Science.gov (United States)

    Wu, D. J.; Feng, H. Q.; Chao, J. K.

    2008-03-01

    Context: Recent observations of the solar wind show that interplanetary magnetic flux ropes (IMFRs) have a continuous scale-distribution from small-scale flux ropes to large-scale magnetic clouds. Aims: In this work, we investigate the energy spectrum of IMFRs and its possible connection with solar activity. Methods: In consideration of the detectable probability of an IMFR to be proportional to its diameter, the actual energy spectrum of IMFRs can be obtained from the observed spectrum based on spacecraft observations in the solar wind. Results: It is found that IMFRs have a negative power-law spectrum with an index α = 1.36±0.03, which is similar to that of solar flares, and is probably representative of interplanetary energy spectrum of coronal mass ejections (CMEs), that is, the energy spectrum of interplanetary CMEs (ICMEs). This indicates that the energy distribution of CMEs has a similar negative power-law spectrum. In particular, there are numerous small-scale CMEs in the solar corona, and their interplanetary consequences may be directly detected in situ by spacecraft in the solar wind as small-scale IMFRs, although they are too weak to appear clearly in current coronagraph observations. Conclusions: The presence of small-scale CMEs, especially the energy spectrum of CMEs is potentially important for understanding both the solar magneto-atmosphere and CMEs.

  7. Measurement of Ohms Law and Transport with Two Interacting Flux Ropes

    Science.gov (United States)

    Gekelman, Walter; Dehaas, Tim; Vincena, Steve; Daughton, Bill

    2016-10-01

    Two flux ropes, which are kink unstable, and repeatedly collide, were generated in a laboratory magnetoplasma. All the electric field terms in Ohms law: - ∇ ϕ -∂/A-> ∂ t ,1/ne , J-> × B-> , -1/ne ∇ P , u-> × B-> were measured at 48,000 spatial locations and thousands of time steps. All quantities oscillate at the flux rope collision frequency. The resistivity was derived from these quantities and could locally be 30 times the classical value. The resistivity, which was evaluated by integrating the electric field and current along 3D magnetic field is not largest at the quasi-seperatrix layer (QSL) where reconnection occurs. The relative size and spatial distribution of the Ohms law terms will be presented. The reconnection rate, Ξ = ∫ E-> . dl-> was largest near the QSL and could be positive or negative. Regions of negative resistivity exists (the volume integrated resistivity is positive) indicating dynamo action or the possibility of a non-local Ohms law. Volumetric temperature and density measurements are used to estimate electron heat transport and particle diffusion across the magnetic field. Work supported by UC office of the President (LANL-UCLA Grant) and done at the BAPSF which is supported by NSF-DOE.

  8. A pseudo-magnetic flux rope observed by the THEMIS satellites in the Earth's magnetotail

    Science.gov (United States)

    Sarafopoulos, D. V.

    2011-10-01

    We investigate an extraordinary event showing all the typical magnetic flux rope (MFR) signatures, although it is not really a MFR structure. It occurred on 1 March 2008 in the Earth's magnetotail and was observed by a major tail conjunction of Time History of Events and Macroscale Interactions during Substorms (THEMIS) satellites. THEMIS B and C being located inside the central plasma sheet and almost symmetrically above and below the neutral sheet observed the same tailward retreating MFR-like structure: they indeed detected strong but oppositely directed cross-tail magnetic field excursions: positive “By core” for TH-C and negative for TH-B; an apparent inconsistency. We finally categorize the case under study as a pseudo-MFR event and we doubt that the previously studied MFR-like structures were really rope structures. We suggest that the By excursions are dictated by Ampere's law; they are produced by filamentary field-aligned currents (FACs) created in front of the “akis structure”, as it is introduced by Sarafopoulos (2008, 2010): In a locally thinned plasma sheet, the akis potentially causes charge separation due to non-adiabatic motion and stochastic scattering of ions. In turn, the newly tailward escaped ions drive field-aligned ionospheric currents in order to neutralize this region. We extensively discuss an additional and extremely rare phenomenon of “irregular MFR” cited in the literature and observed by the Cluster satellites; filamentary FACs suffice to reproduce all the observed magnetic field signatures, too.

  9. Dynamos and anti-dynamos as thin magnetic flux ropes in Riemannian spaces

    CERN Document Server

    de Andrade, L Garcia

    2007-01-01

    Two examples of magnetic anti-dynamos in magnetohydrodynamics (MHD) are given. The first is a 3D metric conformally related to Arnold cat fast dynamo metric: ${ds_{A}}^{2}=e^{-{\\lambda}z}dp^{2}+e^{{\\lambda}z}dq^{2}+dz^{2}$ is shown to present a behaviour of non-dynamos where the magnetic field exponentially decay in time. The curvature decay as z-coordinates increases without bounds. Some of the Riemann curvature components such as $R_{pzpz}$ also undergoes dissipation while component $R_{qzqz}$ increases without bounds. The remaining curvature component $R_{pqpq}$ is constant on the torus surface. The other anti-dynamo which may be useful in plasma astrophysics is the thin magnetic flux rope or twisted magnetic thin flux tube which also behaves as anti-dynamo since it also decays with time. This model is based on the Riemannian metric of the magnetic twisted flux tube where the axis possesses Frenet curvature and torsion. Since in this last example the Frenet torsion of the axis of the rope is almost zero, o...

  10. On the twists of interplanetary magnetic flux ropes observed at 1 AU

    CERN Document Server

    Wang, Yuming; Hu, Qiang; Liu, Rui; Shen, Chenglong; Chi, Yutian

    2016-01-01

    Magnetic flux ropes (MFRs) are one kind of fundamental structures in the solar physics, and involved in various eruption phenomena. Twist, characterizing how the magnetic field lines wind around a main axis, is an intrinsic property of MFRs, closely related to the magnetic free energy and stableness. So far it is unclear how much amount of twist is carried by MFRs in the solar atmosphere and in heliosphere and what role the twist played in the eruptions of MFRs. Contrasting to the solar MFRs, there are lots of in-situ measurements of magnetic clouds (MCs), the large-scale MFRs in interplanetary space, providing some important information of the twist of MFRs. Thus, starting from MCs, we investigate the twist of interplanetary MFRs with the aid of a velocity-modified uniform-twist force-free flux rope model. It is found that most of MCs can be roughly fitted by the model and nearly half of them can be fitted fairly well though the derived twist is probably over-estimated by a factor of 2.5. By applying the mod...

  11. Eruption of the magnetic flux rope in a fast decayed active region

    CERN Document Server

    Yang, Shangbin; Liu, Jihong

    2013-01-01

    An isolated and fast decayed active region (NOAA 9729) was observed when passing through solar disk. There is only one CME related with it that give us a good opportunity to investigate the whole process of the CME. Filament in this active region rises up rapidly and then hesitates and disintegrates into flare loops. The rising filament from EIT images separates into two parts just before eruption. A new filament reforms several hours later after CME and the axis of this new one rotates clockwise about 22 degrees comparing with that of the former one. We also observed a bright transient J-shaped X-ray sigmoid immediately appears after filament eruption. It quickly develops into a soft X-ray cusp and rises up firstly then drops down. Two magnetic cancelation regions have been observed clearly just before filament eruption. Moreover, the magnetic flux rope erupted as the magnetic helicity approach the maximum and the normalized helicity is -0.036 when the magnetic flux rope erupted, which is close to the predic...

  12. Vacuum fiber-fiber coupler

    Science.gov (United States)

    Heinrici, Axel; Bjelajac, Goran; Jonkers, Jeroen; Jakobs, Stefan; Olschok, Simon; Reisgen, Uwe

    2017-02-01

    Research and development carried out by the ISF Welding and Joining Institute of RWTH Aachen University has proven that combining high power laser and low vacuum atmosphere provides a welding performance and quality, which is comparable to electron beam welding. The developed welding machines are still using a beam forming which takes place outside the vacuum and the focusing laser beam has to be introduced to the vacuum via a suitable window. This inflexible design spoils much of the flexibility of modern laser welding. With the target to bring a compact, lightweight flying optics with flexible laser transport fibers into vacuum chambers, a high power fiber-fiber coupler has been adapted by II-VI HIGHYAG that includes a reliable vacuum interface. The vacuum-fiber-fiber coupler (V-FFC) is tested with up to 16 kW sustained laser power and the design is flexible in terms of a wide variety of laser fiber plug systems and vacuum flanges. All that is needed to implement the V-FFC towards an existing or planned vacuum chamber is an aperture of at least 100 mm (4 inch) diameter with any type of vacuum or pressure flange. The V-FFC has a state-of-the-art safety interface which allows for fast fiber breakage detection for both fibers (as supported by fibers) by electric wire breakage and short circuit detection. Moreover, the System also provides connectors for cooling and electric signals for the laser beam optics inside the vacuum. The V-FFC has all necessary adjustment options for coupling the laser radiation to the receiving fiber.

  13. Evaluation of rope shovel operators in surface coal mining using a Multi-Attribute Decision-Making model

    Institute of Scientific and Technical Information of China (English)

    Vukotic Ivana; Kecojevic Vladislav

    2014-01-01

    Rope shovels are used to dig and load materials in surface mines. One of the main factors that influence the production rate and energy consumption of rope shovels is the performance of the operator. This paper presents a method for evaluating rope shovel operators using the Multi-Attribute Decision-Making (MADM) model. Data used in this research were collected from an operating surface coal mine in the southern United States. The MADM model consists of attributes, their weights of importance, and alter-natives. Shovel operators are considered the alternatives. The energy consumption model was developed with multiple regression analysis, and its variables were included in the MADM model as attributes. Preferences with respect to min/max of the defined attributes were obtained with multi-objective opti-mization. Multi-objective optimization was conducted with the overall goal of minimizing energy con-sumption and maximizing production rate. Weights of importance of the attributes were determined by the Analytical Hierarchy Process (AHP). The overall evaluation of operators was performed by one of the MADM models, i.e., PROMETHEE II. The research results presented here may be used by mining professionals to help evaluate the performance of rope shovel operators in surface mining.

  14. Current Sheet Structures Observed by the TESIS EUV Telescope during a Flux Rope Eruption on the Sun

    Science.gov (United States)

    Reva, A. A.; Ulyanov, A. S.; Kuzin, S. V.

    2016-11-01

    We use the TESIS EUV telescope to study the current sheet signatures observed during flux rope eruption. The special feature of the TESIS telescope was its ability to image the solar corona up to a distance of 2 {R}⊙ from the Sun’s center in the Fe 171 Å line. The Fe 171 Å line emission illuminates the magnetic field lines, and the TESIS images reveal the coronal magnetic structure at high altitudes. The analyzed coronal mass ejection (CME) had a core with a spiral—flux rope—structure. The spiral shape indicates that the flux rope radius varied along its length. The flux rope had a complex temperature structure: cold legs (70,000 K, observed in He 304 Å line) and a hotter core (0.7 MK, observed in Fe 171 Å line). Such a structure contradicts the common assumption that the CME core is a cold prominence. When the CME impulsively accelerated, a dark double Y-structure appeared below the flux rope. The Y-structure timing, location, and morphology agree with the previously performed MHD simulations of the current sheet. We interpreted the Y-structure as a hot envelope of the current sheet and hot reconnection outflows. The Y-structure had a thickness of 6.0 Mm. Its length increased over time from 79 Mm to more than 411 Mm.

  15. How Roebling did it: Building the world's first wire-rope suspension aqueduct in 1840s Pittsburgh

    Science.gov (United States)

    Gibbon, Donald L.

    2006-05-01

    The noted bridge designed John Roebling introduced his wire-rope suspension concept in Pittsburgh on a wooden aqueduct. His design was later implemented in bridges in Pittsburgh and elsewhere, including New York's Brooklyn Bridge. This article describes Roebling's work based on reviews of his notes and other historical documents.

  16. Testing a Solar Coronal Magnetic Field Extrapolation Code with the Titov-Demoulin Magnetic Flux Rope Model

    CERN Document Server

    Jiang, Chaowei

    2015-01-01

    In the solar corona, magnetic flux rope is believed to be a fundamental structure accounts for magnetic free energy storage and solar eruptions. Up to the present, the extrapolation of magnetic field from boundary data is the primary way to obtain fully three-dimensional magnetic information of the corona. As a result, the ability of reliable recovering coronal magnetic flux rope is important for coronal field extrapolation. In this paper, our coronal field extrapolation code (CESE-MHD-NLFFF, Jiang & Feng 2012) is examined with an analytical magnetic flux rope model proposed by Titov & Demoulin (1999), which consists of a bipolar magnetic configuration holding an semi-circular line-tied flux rope in force-free equilibrium. By using only the vector field in the bottom boundary as input, we test our code with the model in a representative range of parameter space and find that the model field is reconstructed with high accuracy. Especially, the magnetic topological interfaces formed between the flux rop...

  17. Mathematical model for the power supply system of an autonomous object with an AC power transmission over a cable rope

    Science.gov (United States)

    Rulevskiy, V. M.; Bukreev, V. G.; Shandarova, E. B.; Kuleshova, E. O.; Shandarov, S. M.; Vasilyeva, Yu Z.

    2017-02-01

    A modeling problem of the power system, which provides an AC power transmission to a submersible device over the conducting rope, was considered. The power supply system units and their parameters are described. The system multi-dimensional mathematical model in the variables state space with regard to the nonlinear characteristic of system elements is proposed.

  18. A Tiny Eruptive Filament as a Flux-Rope Progenitor and Driver of a Large-Scale CME and Wave

    CERN Document Server

    Grechnev, V V; Kochanov, A A; Kuzmenko, I V; Prosovetsky, D V; Egorov, Ya I; Fainshtein, V G; Kashapova, L K

    2016-01-01

    A solar eruptive event SOL2010-06-13 observed with SDO/AIA has been discussed in the contexts of the CME gebesis and an associated EUV transient in terms of a shock driven by the apparent CME rim. We have revealed in this event an erupting flux rope, studied its properties, and detected wave signatures inside the developing CME. These findings have allowed us to establish new features in the genesis of the CME and associated EUV wave and to reconcile all of the episodes into a causally-related sequence. (1) A hot 11 MK flux rope developed from a compact filament, accelerated up to 3 km/s$^2$ 1 min before a hard X-ray burst and earlier than other structures, reached 420 km/s, and decelerated to 50 km/s. (2) The CME development was driven by the flux rope. Closed structures above the rope got sequentially involved in the expansion from below upwards, came closer together, and disappeared to reveal their envelope, the rim, which became the outer boundary of the cavity. The rim was associated with the separatrix ...

  19. Dietary fiber.

    Science.gov (United States)

    Madar, Z; Thorne, R

    1987-01-01

    Studies done on dietary fiber (DF) over the past five years are presented in this Review. The involvement of dietary fiber in the control of plasma glucose and lipid levels is now established. Two dietary fiber sources (soybean and fenugreek) were studied in our laboratory and are discussed herein. These sources were found to be potentially beneficial in the reduction of plasma glucose in non-insulin dependent diabetes mellitus subjects. They are shown to be acceptable by human subjects and are easy to use either in a mixture of milk products and in cooking. The mechanism by which dietary fiber alters the nutrient absorption is also discussed. The effect of DF on gastric emptying, transit time, adsorption and glucose transport may contribute to reducing plasma glucose and lipid levels. DF was found to be effective in controlling blood glucose and lipid levels of pregnant diabetic women. Dietary fiber may also be potentially beneficial in the reduction of exogenous insulin requirements in these subjects. However, increased consumption of DF may cause adverse side effects; the binding capabilities of fiber may affect nutrient availability, particularly that of minerals and prolonged and high DF dosage supplementation must be regarded cautiously. This is particularly true when recommending such a diet for pregnant or lactating women, children or subjects with nutritional disorders. Physiological effects of DF appear to depend heavily on the source and composition of fiber. Using a combination of DF from a variety of sources may reduce the actual mass of fiber required to obtain the desired metabolic effects and will result in a more palatable diet. Previously observed problems, such as excess flatus, diarrhea and mineral malabsorption would also be minimized.

  20. Loads Acting on the Mine Conveyance Attachments and Tail Ropes during the Emergency Braking in the Event of an Overtravel

    Science.gov (United States)

    Wolny, Stanisław

    2016-09-01

    It has now become the common practice among the design engineers that in dimensioning of structural components of conveyances, particularly the load bearing elements, they mostly use methods that do not enable the predictions of their service life, instead they rely on determining the safety factor related to the static loads exclusively. In order to solve the problem, i.e. to derive and verify the key relationships needed to determine the fatigue endurance of structural elements of conveyances expressed in the function of time and taking into account the type of hoisting gear, it is required that the values of all loads acting upon the conveyance should be determined, including those experienced under the emergency conditions, for instance during the braking phase in the event of overtravel. This study relies on the results of dynamic analysis of a hoisting installation during the braking phase when the conveyance approaches the topmost or lowermost levels. For the assumed model of the system, the equations of motion are derived for the hoisting and tail rope elements and for the elastic strings. The section of the hoisting rope between the full conveyance approaching the top station and the Keope pulley is substituted by a spring with the constant elasticity coefficient, equal to that of the rope section at the instant the conveyance begins the underwind travel. Recalling the solution to the wave equation, analytical formulas are provided expressing the displacements of any cross-profiles of hoisting and tail ropes, including the conveyance attachments and tail ropes, in the function of braking forces applied to conveyances in the overtravel path and operational parameters of the hoisting gear. Besides, approximate formulas are provided yielding: loading of the hoisting rope segment between the conveyance braking in the headgear tower and the Keope pulley deceleration of the conveyance during the braking phase. The results will be utilised to derive the function

  1. Ceramic Fiber Structures for Cryogenic Load-Bearing Applications

    Science.gov (United States)

    Jaskowiak, Martha H.; Eckel, Andrew J.

    2009-01-01

    This invention is intended for use as a load-bearing device under cryogenic temperatures and/or abrasive conditions (i.e., during missions to the Moon). The innovation consists of small-diameter, ceramic fibers that are woven or braided into devices like ropes, belts, tracks, or cables. The fibers can be formed from a variety of ceramic materials like silicon carbide, carbon, aluminosilicate, or aluminum oxide. The fiber architecture of the weave or braid is determined by both the fiber properties and the mechanical requirements of the application. A variety of weave or braid architectures is possible for this application. Thickness of load-bearing devices can be achieved by using either a 3D woven structure, or a layered, 2D structure. For the prototype device, a belt approximately 0.10 in. (0.25 cm) thick, and 3.0 in. (7.6 cm) wide was formed by layering and stitching a 2D aluminosilicate fiber weave.

  2. High frequency strain measurements with fiber Bragg grating sensors

    Science.gov (United States)

    Koch, J.; Angelmahr, M.; Schade, W.

    2015-05-01

    In recent years fiber Bragg grating sensors gained interest in structural health monitoring and concepts for smart structures. They are small, lightweight, and immune to electromagnetic interference. Using multiplexing techniques, several sensors can be addressed by a single fiber. Therefore, well-established structures and materials in industrial applications can be easily equipped with fiber optical sensors with marginal influence on their mechanical properties. In return, critical components can be monitored in real-time, leading to reduced maintenance intervals and a great reduction of costs. Beside of generally condition monitoring, the localization of failures in a structure is a desired feature of the condition monitoring system. Detecting the acoustic emission of a sudden event, its place of origin can be determined by analyzing the delay time of distributed sensor signals. To achieve high localization accuracies for the detection of cracks, breaks, and impacts high sampling rates combined with the simultaneous interrogation of several fiber Bragg grating sensors are required. In this article a fiber Bragg grating interrogator for high frequency measurements up to the megahertz range is presented. The interrogator is based on a passive wavelength to intensity conversion applying arrayed waveguide gratings. Light power fluctuations are suppressed by a differential data evaluation, leading to a reduced signal-to-noise ratio and a low strain detection limit. The measurement system is used to detect, inter alia, wire breaks in steel wire ropes for dockside cranes.

  3. Design and Weaving of Rope Woven Fabric%绳带机织物的设计与织制

    Institute of Scientific and Technical Information of China (English)

    张萍; 王克清

    2012-01-01

    探讨绳带机织物的设计与织造要点.通过对绳带机织物原料、组织、规格等进行设计,采用纹杆织机进行绳带机织物的手工织造;同时对现代机械化织制绳带机织物进行尝试和可行性分析.认为:只有对现代整经机的导纱部件、伸缩筘及定幅筘等进行扁平状改造,保证其尺寸与所选用的带经规格相吻合,并对织机的综丝和钢筘进行特殊形状的改造,合理配置工艺参数,才能最终成功织制绳带机织物.%Design and weaving key points of rope woven fabric were discussed. Raw material, fabric weave structure and specification of rope woven fabric were designed. Wasp bar loom was adopted and rope woven fabric was produced by hand-woven. Experiment and feasiblility analysis were done on modem mechanization rope woven fabric. It is considered that yam guide deveic, expansion reed and spacing reed of modern warping machine were modified to ensure the matchi to selected warp. Heald and reed of loom were modified,parameter were set rationally,finally rope woven fabric can be produced successfully.

  4. Use of coconut fibre reinforced concrete and coconut-fibre ropes for seismic-resistant construction

    Directory of Open Access Journals (Sweden)

    Ali, Majid

    2016-03-01

    Full Text Available Earthquake-resistant and economical housing is the most desirable need in rural areas of developing countries. These regions often suffer significant loss of life during a seismic event. To enable an efficient and cost-effective solution, a new concept of construction, i.e. a wallette of interlocking blocks with movability at the interface and rope reinforcement, is investigated. The novel interlocking block is made of coconut fibre reinforced concrete (CFRC. The reason for using coconut fibre is their highest toughness amongst natural fibres. This paper describes the in-plane behaviour of the interlocking wallette under earthquake loadings. The wallette response is measured in terms of induced acceleration, block uplift, top maximum relative displacement and rope tension. The applied earthquake loadings cannot produce any damage in the structure, i.e. blocks and/or ropes. The response of the wallette is explained in detail along with correlation of materials aspect with structural behaviour.En las zonas rurales de los países en desarrollo, entre las características principales que deben reunir las viviendas es que sean tanto económicas como sismoresistentes, ya que en estas zonas la pérdida de vidas humanas debido a los terremotos es aun elevada. A fin de hallar una solución que cumple con estos requisitos de manera técnica y económicamente efectiva, se ha investigado un nuevo concepto constructivo: un murete de bloques conjugados con movilidad en el interfaz y reforzado con cuerda. Este novedoso bloque conjugable está realizado en hormigón reforzado con fibra de coco (CFRC, elegida por su alta tenacidad, la mayor de entre las fibras naturales. El artículo describe el comportamiento dentro del plano del murete conjugado frente a las cargas sísmicas. La respuesta de esta estructura se ha medido en función de la aceleración inducida, el levantamiento de los bloques, el desplazamiento relativo máximo y la tensión de las cuerdas

  5. Fiber optic sensors for smart taxiways

    Science.gov (United States)

    Janzen, Douglas D.; Fuerstenau, Norbert; Goetze, Wolfgang

    1995-09-01

    Fiber-optic sensors could offer advantages in the field of airport ground traffic monitoring: immunity to electromagnetic interference, installation without costly and time consuming airfield closures, and low loss, low noise optical connection between sensors and signal processing equipment. This paper describes fiber-optic sensors developed for airport taxiway monitoring and the first steps toward their installation in an experimental surface movement guidance and control system at the Braunschweig airport. Initial results obtained with fiber- optic light barriers and vibration sensors are reported. The feasibility of employing interferometric strain gauges for this application will be discussed based on sensor characteristics obtained through measurements of strain in an aircraft structure in flight.

  6. Guanidine Soaps As Vehicles For Coating Ceramic Fibers

    Science.gov (United States)

    Philipp, Warren H.; Veitch, Lisa C.; Jaskowiak, Martha H.

    1994-01-01

    Soaps made from strong organic base guanidine and organic fatty acids serve as vehicles and binders for coating ceramic fibers, various smooth substrates, and other problematic surfaces with thin precious-metal or metal-oxide films. Films needed to serve as barriers to diffusion in fiber/matrix ceramic composite materials. Guanidine soaps entirely organic and burn off, leaving no residues.

  7. Translocation pathways for inhaled asbestos fibers

    Directory of Open Access Journals (Sweden)

    Mantegazza F

    2008-01-01

    Full Text Available Abstract We discuss the translocation of inhaled asbestos fibers based on pulmonary and pleuro-pulmonary interstitial fluid dynamics. Fibers can pass the alveolar barrier and reach the lung interstitium via the paracellular route down a mass water flow due to combined osmotic (active Na+ absorption and hydraulic (interstitial pressure is subatmospheric pressure gradient. Fibers can be dragged from the lung interstitium by pulmonary lymph flow (primary translocation wherefrom they can reach the blood stream and subsequently distribute to the whole body (secondary translocation. Primary translocation across the visceral pleura and towards pulmonary capillaries may also occur if the asbestos-induced lung inflammation increases pulmonary interstitial pressure so as to reverse the trans-mesothelial and trans-endothelial pressure gradients. Secondary translocation to the pleural space may occur via the physiological route of pleural fluid formation across the parietal pleura; fibers accumulation in parietal pleura stomata (black spots reflects the role of parietal lymphatics in draining pleural fluid. Asbestos fibers are found in all organs of subjects either occupationally exposed or not exposed to asbestos. Fibers concentration correlates with specific conditions of interstitial fluid dynamics, in line with the notion that in all organs microvascular filtration occurs from capillaries to the extravascular spaces. Concentration is high in the kidney (reflecting high perfusion pressure and flow and in the liver (reflecting high microvascular permeability while it is relatively low in the brain (due to low permeability of blood-brain barrier. Ultrafine fibers (length

  8. On the Characteristics of Footpoints of Solar Magnetic Flux Ropes during the Eruption

    CERN Document Server

    Cheng, X

    2016-01-01

    We investigate the footpoints of four erupted magnetic flux ropes (MFRs) that appear as sigmoidal hot channels prior to the eruptions in the Atmospheric Imaging Assembly high temperaure passbands. The simultaneous Helioseismic and Magnetic Imager observations disclose that one footpoint of the MFRs originates in the penumbra or penumbra edge with a stronger magnetic field, while the other in the moss region with a weaker magnetic field. The significant deviation of the axis of the MFRs from the main polarity inversion lines and associated filaments suggests that the MFRs have ascended to a high altitude, thus being distinguishable from the source sigmoidal ARs. The more interesting thing is that, with the eruption of the MFRs, the average inclination angle and direct current at the footpoints with stronger magnetic field tend to decrease, which is suggestive of a straightening and untwisting of the magnetic field in the MFR legs. Moreover, the associated flare ribbons also display an interesting evolution. Th...

  9. Observation and simulation of flux rope structures at the dayside magnetopause

    Institute of Scientific and Technical Information of China (English)

    CUI Hailong; JIN Shuping; LIU Shaoliang; LIU Zhenxing; A. Balogh

    2003-01-01

    The signatures of flux ropes with obvious core magnetic field are detected by ClusterⅡ at the dayside magnetopause during 11: 00-11: 15 UT on Mar. 2, 2001. The similar characteristics can be found from the magnetic field variations recorded by the four spacecrafts (Cluster Ⅱ C1-C4). All the three (-/+) bipolar signatures in the BN component are accompanied with enhancements of BM and magnetic field strength B in the boundary normal coordinates (LMN coordinates). A MHD simulation with two dimensions and three components is performed to explore the reconnection process driven by the incoming flow of solar wind at the dayside magnetopause. The numerical results can illustrate the recurrent formation of magnetic structures with a core magnetic field. The time history of the magnetic field B and three components Bx, By and Bz at a given point of the current sheet can reproduce the observational features of the events mentioned above.

  10. Kinetic models of magnetic flux ropes observed in the Earth magnetosphere

    Energy Technology Data Exchange (ETDEWEB)

    Vinogradov, A. A. [Department of Physics, Lomonosov Moscow State University, Moscow (Russian Federation); Vasko, I. Y.; Petrukovich, A. A.; Zelenyi, L. M. [Space Research Institute of Russian Academy of Sciences, Moscow (Russian Federation); Artemyev, A. V. [Space Research Institute of Russian Academy of Sciences, Moscow (Russian Federation); University of California, Los Angeles, California 90095 (United States); Yushkov, E. V. [Department of Physics, Lomonosov Moscow State University, Moscow (Russian Federation); Space Research Institute of Russian Academy of Sciences, Moscow (Russian Federation)

    2016-07-15

    Magnetic flux ropes (MFR) are universal magnetoplasma structures (similar to cylindrical screw pinches) formed in reconnecting current sheets. In particular, MFR with scales from about the ion inertial length to MHD range are widely observed in the Earth magnetosphere. Typical MFR have force-free configuration with the axial magnetic field peaking on the MFR axis, whereas bifurcated MFR with an off-axis peak of the axial magnetic field are observed as well. In the present paper, we develop kinetic models of force-free and bifurcated MFR and determine consistent ion and electron distribution functions. The magnetic field configuration of the force-free MFR represents well-known Gold-Hoyle MFR (uniformly twisted MFR). We show that bifurcated MFR are characterized by the presence of cold and hot current-carrying electrons. The developed models are capable to describe MFR observed in the Earth magnetotail as well as MFR recently observed by Magnetospheric Multiscale Mission at the Earth magnetopause.

  11. Active flow control of the vortex rope and pressure pulsations in a swirl generator

    Directory of Open Access Journals (Sweden)

    Ardalan Javadi

    2017-01-01

    Full Text Available The vortex rope and pressure pulsations caused by a radial pressure gradient in the conical diffuser of a swirl generator is controlled using continuous slot jets with different momentum fluxes and angles injected from the runner crown. The swirl apparatus is designed to generate flows similar to those in the different operating conditions of a Francis turbine. The study is done with numerical modelling using the hybrid URANS-LES (Unsteady Reynolds-Averaged Navier–Stokes–Large Eddy Simulation method with the rotor–stator interaction. The comprehensive studies of Javadi and Nilsson [Time-accurate numerical simulations of swirling flow with rotor–stator interaction. Flow, Turbulence and Combustion, Vol. 95, pp. 755–774], and Javadi, Bosioc, Nilsson, Muntean and Susan-Resiga [Experimental and numerical investigation of the precessing helical vortex in a conical diffuser, with rotor–stator interaction. ASME Journal of Fluids Engineering, doi:10.1115/1.4033416] are considered as the bench mark, and the capabilities of the technique is studied in the present work with the validated numerical results presented in those studies. The pressure pulsations caused by the pressure gradient generated by the swirl, present at off-design conditions, are cumbersome for hydropower structures. The investigation shows that the pressure pulsation, velocity fluctuations and the size of the vortex rope decrease when the jet is injected from the runner crown. The flow rate of the jet is less than 3% of the flow rate of the swirl generator. The momentum flux, angle of injection of the jet and the position of the slot are important factors for the effectiveness of the flow control technique.

  12. Smart parking barrier

    KAUST Repository

    Alharbi, Abdulrazaq M.

    2016-05-06

    Various methods and systems are provided for smart parking barriers. In one example, among others, a smart parking barrier system includes a movable parking barrier located at one end of a parking space, a barrier drive configured to control positioning of the movable parking barrier, and a parking controller configured to initiate movement of the parking barrier, via the barrier drive. The movable parking barrier can be positioned between a first position that restricts access to the parking space and a second position that allows access to the parking space. The parking controller can initiate movement of the movable parking barrier in response to a positive identification of an individual allowed to use the parking space. The parking controller can identify the individual through, e.g., a RFID tag, a mobile device (e.g., a remote control, smartphone, tablet, etc.), an access card, biometric information, or other appropriate identifier.

  13. Soluble vs. insoluble fiber

    Science.gov (United States)

    Insoluble vs. soluble fiber; Fiber - soluble vs. insoluble ... There are 2 different types of fiber -- soluble and insoluble. Both are important for health, digestion, and preventing diseases. Soluble fiber attracts water and turns to gel during digestion. ...

  14. Photovoltaic fibers

    Science.gov (United States)

    Gaudiana, Russell; Eckert, Robert; Cardone, John; Ryan, James; Montello, Alan

    2006-08-01

    It was realized early in the history of Konarka that the ability to produce fibers that generate power from solar energy could be applied to a wide variety of applications where fabrics are utilized currently. These applications include personal items such as jackets, shirts and hats, to architectural uses such as awnings, tents, large covers for cars, trucks and even doomed stadiums, to indoor furnishings such as window blinds, shades and drapes. They may also be used as small fabric patches or fiber bundles for powering or recharging batteries in small sensors. Power generating fabrics for clothing is of particular interest to the military where they would be used in uniforms and body armor where portable power is vital to field operations. In strong sunlight these power generating fabrics could be used as a primary source of energy, or they can be used in either direct sunlight or low light conditions to recharge batteries. Early in 2002, Konarka performed a series of proof-of-concept experiments to demonstrate the feasibility of building a photovoltaic cell using dye-sensitized titania and electrolyte on a metal wire core. The approach taken was based on the sequential coating processes used in making fiber optics, namely, a fiber core, e.g., a metal wire serving as the primary electrode, is passed through a series of vertically aligned coating cups. Each of the cups contains a coating fluid that has a specific function in the photocell. A second wire, used as the counter electrode, is brought into the process prior to entering the final coating cup. The latter contains a photopolymerizable, transparent cladding which hardens when passed through a UV chamber. Upon exiting the UV chamber, the finished PV fiber is spooled. Two hundred of foot lengths of PV fiber have been made using this process. When the fiber is exposed to visible radiation, it generates electrical power. The best efficiency exhibited by these fibers is 6% with an average value in the 4

  15. Optimization of hoisting parameters in a multi-rope friction mine hoist based on the multi-source coupled vibration characteristics of hoisting catenaries

    National Research Council Canada - National Science Library

    Yao, Jiannan; Deng, Yong; Xiao, Xingming

    2017-01-01

    To avoid catenary collision in a multi-rope friction mine hoist, in this study, the relevant hoisting parameters based on the multi-source coupled vibration characteristics of hoisting catenaries are optimized...

  16. ACL injury while jumping rope in a patient with an unintended increase in the tibial slope after an opening wedge high tibial osteotomy.

    Science.gov (United States)

    Jung, Kwang Am; Lee, Su Chan; Hwang, Seung Hyun; Song, Moon Bok

    2009-08-01

    High tibial osteotomy (HTO) is an accepted surgical technique for the treatment of medial compartmental arthrosis of the knee in younger patients. Compared to total knee arthroplasty, HTO may be a good choice in patients who wish to continue with heavy labor and/or impact sports. Based on the rehabilitation protocol after HTO, impact sports, such as running, jumping rope, and full sports activities, are generally permitted 6 months postoperatively. Jumping rope is an excellent form of aerobic exercise, and when done properly, jumping rope can lead to a dramatic improvement in rehabilitation and full sports activities. However, an adequate evaluation should be performed prior to initiating impact sports. We present the case of a ruptured anterior cruciate ligament that occurred in a patient with an unintended increase in the tibial slope after an opening wedge HTO who was jumping rope.

  17. Changing Rope Technique of Long-Distance Man Car%长距离架空乘人装置的换绳工艺

    Institute of Scientific and Technical Information of China (English)

    张东峰; 张国华

    2011-01-01

    介绍了架空乘人装置钢丝绳更换工艺,利用架空乘人装置驱动旧绳带新绳、钢丝绳缠绳机回收旧绳。济三煤矿使用该工艺后实现了快速高效地换绳目的,供同业参考。%Introduces the wire rope changing techniques of man car,using man car to drive new ropes replacing old ones,the steel wire rope twist machine recycles old ones.Jining No.3 coal mine realizes changing rope quickly and high efficiency by this technique.It i

  18. The effect of falling anxiety on selected physiological parameters with different rope protocols in sport rock climbing

    Directory of Open Access Journals (Sweden)

    Dicle Aras

    2011-10-01

    Full Text Available The purpose of this study is to investigate the effects of falling anxiety on selected physiological parameters in sport rock climbing. For this aim, before performing the top-rope and lead climbing, the anxiety inventory was used in sport rock climbers. Afterwards, the selected physiological parameters were recorded during the climbing.Four female and 22 male, totally 26 middle level rock climber were participated to the study. The mean age of the subjects was 27.73 ± 6.67, climbing years 6.61 ±4.84 and lead climbing age was 5.71 ±4.34. In order to eliminate force loss differences between top-rope and lead climbing, top rope climbing was designed as if it is a lead climbing. The second rope was connected on the waist of the athletes during top-rope climbing and they clipped it to expresses such as leading. The ascents were perforformed on 15 m high climbing wall. The route was rated as VI grad (Unıon Internationale des Association d’Alpinisme.During both climbing hearth rate was recorded and energy consumption was measured by portable gas analyzer as MET and VO2ml.min.kg units. Though gas analyzer VE, RER were measured. When two types of climbing trial compared, results indicated that there were statistically significant mean difference between CSAI-2 subscales cognitive anxiety, somatic anxiety and self confidence. When physiological parameters examined in terms of two different types of climbing, results showed that there was no statistically significant difference in HR values. However, there were significant differences found between VO2ml.min.kg, VE, RER, and MET values.There wasn’t found significant difference in climbing times between two trials. This result shows us that we designed the ascents successfully and could eliminate the physical differences both lead and top-rope climbing. We observed on the same work load of two climbing trials more oxygen consumption, energy expenditure and anxiety scores during leading. This

  19. The effect of falling anxiety on selected physiological parameters with different rope protocols in sport rock climbing

    Directory of Open Access Journals (Sweden)

    Dicle Aras

    2011-10-01

    Full Text Available The purpose of this study is to investigate the effects of falling anxiety on selected physiological parameters in sport rock climbing. For this aim, before performing  the top-rope and lead climbing, the anxiety inventory was used in sport rock climbers. Afterwards, the selected physiological parameters were recorded during the climbing. Four female and 22 male, totally 26 middle level rock climber were participated to the study. The mean age of the subjects was 27.73 ± 6.67, climbing years 6.61 ±4.84 and lead climbing age was 5.71 ±4.34.  In order to eliminate force loss differences between top-rope and lead climbing, top rope climbing was designed as if it is a lead climbing. The second rope was connected on the waist of the athletes during top-rope climbing and they clipped it to expresses such as leading. The ascents were perforformed on 15 m high climbing wall. The route was rated as VI grad (Unıon Internationale des Association d’Alpinisme. During both climbing  hearth rate was recorded and energy consumption was measured by portable gas analyzer as MET and VO2ml.min.kg units. Though gas analyzer VE, RER were measured.  When two types of climbing trial compared, results indicated that there were statistically significant mean difference between CSAI-2 subscales cognitive anxiety, somatic anxiety and self confidence. When physiological parameters examined in terms of two different types of climbing, results showed that there was no statistically significant difference in HR values. However, there were significant differences found between VO2ml.min.kg, VE, RER, and MET values. There wasn’t found significant difference in climbing times between two trials. This result shows us that we designed the ascents successfully and could eliminate the physical differences both lead and top-rope climbing. We observed on the same work load of two climbing trials more oxygen consumption, energy expenditure and anxiety scores during leading

  20. NUMERICAL ANALYSIS OF THE STRESS-STRAIN STATE OF A ROPE STRAND WITH LINEAR CONTACT UNDER TENSION AND TORSION LOADING CONDITIONS

    Directory of Open Access Journals (Sweden)

    Evgenij Kalentev

    2017-06-01

    Full Text Available The paper presents the results of a numerical analysis of the stress-strain state of a rope strand with linear contact under tension and torsion loading conditions. Calculations are done using the ANSYS software package. Different approaches to calculation of the stress-strain state of ropes are reviewed, and their advantages and deficiencies are considered. The analysis of the obtained results leads us to the conclusion that the proposed method can be used in engineering calculations.

  1. Fiber resources

    Science.gov (United States)

    P. J. Ince

    2004-01-01

    In economics, primary inputs or factors of production define the term ‘resources.’ Resources include land resources (plants, animals, and minerals), labor, capital, and entrepreneurship. Almost all pulp and paper fiber resources are plant materials obtained from trees or agricultural crops. These resources encompass plant materials harvested directly from the land (...

  2. MHD simulations of formation and eruption of a magnetic flux rope in an active region with a delta-sunspot

    Science.gov (United States)

    Yokoyama, Takaaki; Oi, Yoshiaki; Toriumi, Shin

    2017-08-01

    Active regions holding a delta-sunspot are known to produce the largest class of solar flares. How, where, and when such large flares occur above a delta-sunspot are still under debate. For studying this, 3D MHD simulations of the emergence of a subsurface flux tube at two locations in a simulation box modeling the convection zone to the corona were conducted. We found that a flux rope is formed as a consequence of magnetic reconnection of two bipolar loops and sunspot rotation caused by the twist of the subsurface flux tube. Moreover, the flux rope stops ascending when the initial background is not magnetized, whereas it rises up to the upper boundary when a reconnection favorably oriented pre-existing field is introduced to the initial background.

  3. On the role of repetitive magnetic reconnections in evolution of magnetic flux-ropes in solar corona

    CERN Document Server

    Kumar, Sanjay; Joshi, Bhuwan; Smolarkiewicz, P K

    2016-01-01

    Parker's magnetostatic theorem extended to astrophysical magnetofluids with large magnetic Reynolds number supports ceaseless regeneration of current sheets and hence, spontaneous magnetic reconnections recurring in time. Consequently, a scenario is possible where the repeated reconnections provide an autonomous mechanism governing emergence of coherent structures in astrophysical magnetofluids. In this work, such a scenario is explored by performing numerical computations commensurate with the magnetostatic theorem. In particular, the computations explore the evolution of a flux-rope governed by repeated reconnections in a magnetic geometry resembling bipolar loops of solar corona. The revealed morphology of the evolution process, including onset and ascent of the rope, reconnection locations and the associated topology of the magnetic field lines, agrees with observations, and thus substantiates physical realisability of the advocated mechanism.

  4. Adhesion of PBO Fiber in Epoxy Composites

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The high mechanical and thermal performance of poly p-phenylene- 2, 6-benzobisoxazole ( PBO ) fiber provides great potential applications as reinforcement fibers for composites. A composite of PBO fiber and epoxy resin has excellent electrical insulation properties, therefore, it is considered to be the best choice for the reinforcement in high magnetic field coils for pulsed magnetic fields up to 100 T.However, poor adhesion between PBO fiber and matrix is found because of the chemically inactive and/or relatively smooth surface of the reinforcement fiber preventing efficient chemical bonding in the interface, which is a challenging issue to improve mechanical properties. Here, we report the surface modification of PBO fibers by ultraviolet (UV)irradiation, O2 and NH3 plasma, as well as acidic treatments. The interfacial adhesion strength values of all the treatments show the similar level as determined for aramid fibers by pull-out tests, a significant impact on fibermatrix-adhesion was not achieved. The surface free energy and roughness are increased for both sized and extracted fibers after plasma treatments together with maleic anhydride grafting. The sized fiber shows marginal improvement in adhesion strength and no change in fiber tensile strength because of the barrier effect of the finish.For the extracted fiber, different surface treatments either show no apparent effect or cause reduction in adhesion strength. Atomic force microscopy (AFM) topography analysis of the fracture surfaces proved adhesive failure at the fiber surface. The fiber surface roughness is increased and more surface flaws are induced, which could result in coarse interface structures when the treated fiber surface has no adequate wetting and functional groups. The adhesion failure is further confirmed by similar adhesion strength and compression shear strength values when the fiber was embedded in various epoxy resins with different temperature behavior. The tensile strength of fiber

  5. Electrospun Nanofiber Scaffolds with Gradations in Fiber Organization

    Science.gov (United States)

    Khandalavala, Karl; Jiang, Jiang; Shuler, Franklin D.; Xie, Jingwei

    2015-01-01

    The goal of this protocol is to report a simple method for generating nanofiber scaffolds with gradations in fiber organization and test their possible applications in controlling cell morphology/orientation. Nanofiber organization is controlled with a new fabrication apparatus that enables the gradual decrease of fiber organization in a scaffold. Changing the alignment of fibers is achieved through decreasing deposition time of random electrospun fibers on a uniaxially aligned fiber mat. By covering the collector with a moving barrier/mask, along the same axis as fiber deposition, the organizational structure is easily controlled. For tissue engineering purposes, adipose-derived stem cells can be seeded to these scaffolds. Stem cells undergo morphological changes as a result of their position on the varied organizational structure, and can potentially differentiate into different cell types depending on their locations. Additionally, the graded organization of fibers enhances the biomimicry of nanofiber scaffolds so they more closely resemble the natural orientations of collagen nanofibers at tendon-to-bone insertion site compared to traditional scaffolds. Through nanoencapsulation, the gradated fibers also afford the possibility to construct chemical gradients in fiber scaffolds, and thereby further strengthen their potential applications in fast screening of cell-materials interaction and interfacial tissue regeneration. This technique enables the production of continuous gradient scaffolds, but it also can potentially produce fibers in discrete steps by controlling the movement of the moving barrier/mask in a discrete fashion. PMID:25938562

  6. The power supply system model of the process submersible device with AC power transmission over the cable-rope

    Science.gov (United States)

    Rulevskiy, V. M.; Bukreev, V. G.; Kuleshova, E. O.; Shandarova, E. B.; Shandarov, S. M.; Vasilyeva, Yu Z.

    2017-02-01

    A practical problem of power supply system modeling for the process submersible device with AC power transmission over the cable-rope was considered. The problem is highly relevant in developing and operation of submersible centrifugal pumps and submersibles. The results of modeling a symmetrical three-phase power supply system and their compliance with the real data are given at the paper. The obtained results in the mathematical and simulation models were similar.

  7. Low-cost water-lifting from groundwater sources: a comparison of the EMAS Pump with the Rope Pump

    Science.gov (United States)

    MacCarthy, Michael F.; Carpenter, Jacob D.; Mihelcic, James R.

    2017-08-01

    In sub-Saharan Africa, low-cost groundwater supply systems offer great opportunities for the current unserved population of >300 million to access drinking water. A comparative study was performed in Uganda of the EMAS Pump (designed by Escuela Móvil Aguas y Saneamiento Básico) with the trade-named Rope Pump, two low-cost manual water-lifting devices appropriate to pumping from shallow groundwater sources. Pumping rates, energy expended, material costs, and construction requirements were analyzed. Focus was on low-cost application for use in shallow groundwater systems at the household level in developing countries, particularly in sub-Saharan Africa. The study site was northern Uganda, with testing performed at several drilled boreholes. Two variants of each pump were tested by a male and female user, pumping from multiple static water-level depths ranging from 5 to 28 m. Results demonstrated the most common version of the EMAS Pump to perform similarly to the comparable version of the Rope Pump in terms of average pumping rate at depth range 5 to 18 m (93-111%), but less so at deeper depths (63-85%). Normalized pumping rates (considering energy expended) accentuated differences between these versions of the EMAS Pump and Rope Pump (47-97%). Cost of materials to construct the EMAS Pump were 21-60% those of the Rope Pump, and EMAS Pump construction requirements were also less. Based on the assessed factors, it is concluded that the EMAS Pump has potential for success in "self-supply" groundwater systems in sub-Saharan Africa and is particularly appropriate to link with low-cost shallow groundwater sources.

  8. THERMAL DEGRADATION AND FLAME RETARDANCY OF CALCIUM ALGINATE FIBERS

    Institute of Scientific and Technical Information of China (English)

    Qing-shan Kong; Bing-bing Wang; Quan Ji; Yan-zhi Xia; Zhao-xia Guo; Jian Yu

    2009-01-01

    Calcium alginate fibers were prepared by wet spinning of sodium alginate into a coagulating bath containing calcium chloride. The thermal degradation and flame retardancy of calcium alginate fibers were investigated with thermal gravimetry (TG), X-ray diffraction (XRD), limiting oxygen index (LOI) and cone calorimeter (CONE). The results show that calcium alginate fibers are inherently flame retardant with a LOI value of 34, and the heat release rate (HRR), total heat release (THR), CO and CO_2 concentrations during combustion are much lower compared with those of viscose fibers. Calcium carbonate and calcium oxide were formed during thermal degradation of calcium alginate fibers at different temperatures. The shape of calcium alginate fibers is well kept after LOI test. The rigid combustion residue char acts as an effective barrier to the outward diffusion of flame and heat. The combustion process and flame retardant mechanism of calcium alginate fibers are also discussed.

  9. Safety-barrier diagrams

    DEFF Research Database (Denmark)

    Duijm, Nijs Jan

    2007-01-01

    are discussed. A simple method for quantification of safety-barrier diagrams is proposed, including situations where safety barriers depend on shared common elements. It is concluded that safety-barrier diagrams provide a useful framework for an electronic data structure that integrates information from risk......Safety-barrier diagrams and the related so-called "bow-tie" diagrams have become popular methods in risk analysis. This paper describes the syntax and principles for constructing consistent and valid safety-barrier diagrams. The relation with other methods such as fault trees and Bayesian networks...... analysis with operational safety management....

  10. Extremal surface barriers

    Energy Technology Data Exchange (ETDEWEB)

    Engelhardt, Netta; Wall, Aron C. [Department of Physics, University of California,Santa Barbara, CA 93106 (United States)

    2014-03-13

    We present a generic condition for Lorentzian manifolds to have a barrier that limits the reach of boundary-anchored extremal surfaces of arbitrary dimension. We show that any surface with nonpositive extrinsic curvature is a barrier, in the sense that extremal surfaces cannot be continuously deformed past it. Furthermore, the outermost barrier surface has nonnegative extrinsic curvature. Under certain conditions, we show that the existence of trapped surfaces implies a barrier, and conversely. In the context of AdS/CFT, these barriers imply that it is impossible to reconstruct the entire bulk using extremal surfaces. We comment on the implications for the firewall controversy.

  11. Realizing one-dimensional quantum and high-frequency transport features in aligned single-walled carbon nanotube ropes

    Science.gov (United States)

    Ncube, Siphephile; Chimowa, George; Chiguvare, Zivayi; Bhattacharyya, Somnath

    2014-07-01

    The superiority of the electronic transport properties of single-walled carbon nanotube (SWNT) ropes over SWNT mats is verified from low temperature and frequency-dependent transport. The overall change of resistance versus in nanotube mats shows that 3D variable range hopping is the dominant conduction mechanism within the 2-300 K range. The magneto-resistance (MR) is found to be predominantly negative with a parabolic nature, which can also be described by the hopping model. Although the positive upturn of the MR at low temperatures establishes the contribution from quantum interference, the inherent quantum transport in individual tubes is suppressed at elevated temperatures. Therefore, to minimize multi-channel effects from inter-tube interactions and other defects, two-terminal devices were fabricated from aligned SWNT (extracted from a mat) for low temperature transport as well as high-frequency measurements. In contrast to the mat, the aligned ropes exhibit step-like features in the differential conductance within the 80-300 K temperature range. The effects of plasmon propagation, unique to one dimension, were identified in electronic transport as a non-universal power-law dependence of the differential conductance on temperature and source-drain voltage. The complex impedance showed high power transmission capabilities up to 65 GHz as well as oscillations in the frequency range up to 30 GHz. The measurements suggest that aligned SWNT ropes have a realistic potential for high-speed device applications.

  12. A finite element model for independent wire rope core with double helical geometry subjected to axial loads

    Indian Academy of Sciences (India)

    Cengiz Erdonmez; C Erdem Imrak

    2011-12-01

    Due to the complex geometry of wires within a wire rope, it is difficult to model and analyse independent wire rope core accurately (IWRC). In this paper, a more realistic three-dimensional modelling approach and finite element analysis of wire ropes are explained. Single helical geometry is enough to model simple straight strand while IWRC has a more complex geometry by inclusion of double helical wires in outer strands. Taking the advantage of the double helical wires, three-dimensional IWRCs modelling is applied for both right regular lay and lang lay IWRCs. Wire-by-wire based results are gathered by using the proposed modelling and analysis method under various loading conditions. Illustrative examples are given for those show the accuracy and the robustness of the present FE analysis scheme with considering frictional properties and contact interactions between wires. FE analysis results are compared with the analytical and available test results and show reasonable agreement with a simpler and more practical approach.

  13. Suprathermal Ion Acceleration in Multiple Contracting and Reconnecting Inertial-scale Flux Ropes in the Supersonic Solar Wind.

    Science.gov (United States)

    le Roux, J. A.; Zank, G. P.; Webb, G. M.

    2014-12-01

    3D and 2D MHD turbulence simulations with a strong large-scale magnetic field show that the turbulence is filled with quasi-2D inertial-scale flux ropes that intermittently reconnect, while test particle simulations stress how suprathermal particles can be efficiently accelerated to produce power law spectra (kappa distributions) when traversing multiple flux ropes. Solar wind observations indicate that the statistical properties of the turbulence agree well with the MHD turbulence simulation. In addition, recent observations show the presence of different size inertial-scale magnetic islands in the slow solar wind near the heliospheric current sheet, evidence of island merging, and of heating of ions and electrons in their vicinity. At the same time, observations in the supersonic solar wind suggest the existence of suprathermal ion spectra in the solar wind frame where the distribution function is a power law in momentum with a -5 exponent. We present a new statistical transport theory to model the acceleration of superthermal ions traversing multiple contracting and reconnecting inertial-scale quasi-2D flux ropes in the supersonic solar wind. Steady-state analytical solutions for the accelerated suprathermal particle spectrum in a radially expanding solar wind will be explored to show under what conditions one can reproduce the observed superthermal power-law slope.

  14. Superthermal Ion Transport and Acceleration in Multiple Contracting and Reconnecting Inertial-scale Flux Ropes in the Solar Wind

    Science.gov (United States)

    Le Roux, Jakobus; Zank, Gary; Webb, Gary

    2014-10-01

    MHD turbulence simulations with a strong large-scale magnetic field show that the turbulence is filled with quasi-2D inertial-scale flux ropes that intermittently reconnect. Solar wind observations indicate that the statistical properties of the turbulence agree well with the MHD turbulence simulations, while particle simulations stress how ions can be efficiently accelerated to produce power law spectra when traversing multiple flux ropes. Recent observations show the presence of different size inertial-scale magnetic islands in the slow solar wind near the heliospheric current sheet, evidence of island merging, and of heating of ions and electrons in the vicinity. We will present a new statistical transport theory designed to model the acceleration and transport of superthermal ions traversing multiple contracting and reconnecting inertial-scale quasi-2D flux ropes in the supersonic slow solar wind. A steady-state solution for the accelerated particle spectrum in a radially expanding solar wind will discussed, showing that the theory potentially can explain naturally the existence of superthermal power-law spectra observed during quiet solar wind conditions.

  15. Realizing one-dimensional quantum and high-frequency transport features in aligned single-walled carbon nanotube ropes

    Energy Technology Data Exchange (ETDEWEB)

    Ncube, Siphephile; Chimowa, George; Chiguvare, Zivayi; Bhattacharyya, Somnath, E-mail: Somnath.Bhattacharyya@wits.ac.za [Nano-Scale Transport Physics Laboratory, School of Physics and DST/NRF Centre of Excellence in Strong Materials, University of the Witwatersrand, Private Bag 3, WITS 2050, Johannesburg (South Africa)

    2014-07-14

    The superiority of the electronic transport properties of single-walled carbon nanotube (SWNT) ropes over SWNT mats is verified from low temperature and frequency-dependent transport. The overall change of resistance versus in nanotube mats shows that 3D variable range hopping is the dominant conduction mechanism within the 2–300 K range. The magneto-resistance (MR) is found to be predominantly negative with a parabolic nature, which can also be described by the hopping model. Although the positive upturn of the MR at low temperatures establishes the contribution from quantum interference, the inherent quantum transport in individual tubes is suppressed at elevated temperatures. Therefore, to minimize multi-channel effects from inter-tube interactions and other defects, two-terminal devices were fabricated from aligned SWNT (extracted from a mat) for low temperature transport as well as high-frequency measurements. In contrast to the mat, the aligned ropes exhibit step-like features in the differential conductance within the 80–300 K temperature range. The effects of plasmon propagation, unique to one dimension, were identified in electronic transport as a non-universal power-law dependence of the differential conductance on temperature and source-drain voltage. The complex impedance showed high power transmission capabilities up to 65 GHz as well as oscillations in the frequency range up to 30 GHz. The measurements suggest that aligned SWNT ropes have a realistic potential for high-speed device applications.

  16. A Theory for Self-consistent Acceleration of Energetic Charged Particles by Dynamic Small-scale Flux Ropes

    Science.gov (United States)

    le Roux, J. A.; Zank, G. P.; Khabarova, O.; Webb, G. M.

    2016-12-01

    Simulations of charged particle acceleration in turbulent plasma regions with numerous small-scale contracting and merging (reconnecting) magnetic islands/flux ropes emphasize the key role of temporary particle trapping in these structures for efficient acceleration that can result in power-law spectra. In response, a comprehensive kinetic transport theory framework was developed by Zank et al. and le Roux et al. to capture the essential physics of energetic particle acceleration in solar wind regions containing numerous dynamic small-scale flux ropes. Examples of test particle solutions exhibiting hard power-law spectra for energetic particles were presented in recent publications by both Zank et al. and le Roux et al.. However, the considerable pressure in the accelerated particles suggests the need for expanding the kinetic transport theory to enable a self-consistent description of energy exchange between energetic particles and small-scale flux ropes. We plan to present the equations of an expanded kinetic transport theory framework that will enable such a self-consistent description.

  17. Study of pre-processing model of coal-mine hoist wire-rope fatigue damage signal

    Institute of Scientific and Technical Information of China (English)

    Tian Jie; Wang Hongyao⇑; Zhou Junying; Meng Guoying

    2015-01-01

    In this paper, we propose a pre-processing method for the detection of wire-rope signals. This is neces-sary because of the lack of processing methods that are currently employed. First, we investigated the one-dimensional discrete morphological and wavelet transform. Then, we developed a pre-processing model that is based on the morphological wavelet-filtering algorithm. We then proposed a modified morphology filtering algorithm. We also designed an experiment platform for wire-rope detection. Eight levels of localized flaws (LFs) and damage were formed in the wire-rope specimen. We performed a series of experimental studies, and the results show that the proposed method can effectively filter the drift signal. The signal-to-noise ratio of the new filtering algorithm was over 26 dB. The signal-to-noise ratio of the existing method is less than 15 dB, and the noise-signal ratio of the new filtering algorithm has improved by 73%. Based on our results, the filtering effect of the proposed method is better than that of the present method. This study has great significance and practical value in engineering applications.

  18. Comparison of the Tight Rope Technique and Clavicular Hook Plate for the Treatment of Rockwood Type III Acromioclavicular Joint Dislocation.

    Science.gov (United States)

    Cai, Leyi; Wang, Te; Lu, Di; Hu, Wei; Hong, Jianjun; Chen, Hua

    2017-04-12

    Acromioclavicular joint dislocation is one of the most common shoulder problems and may lead to instability or degenerative changes. The aim of this study was to compare the clinical outcomes of the Tight Rope system and clavicular hook plate for Rockwood type III acromioclavicular joint dislocation in adults. This was a prospective, randomized study in a hospital setting. From January 2012 to December 2014, 69 patients with type III injury were reviewed. Patients were randomly divided into two groups: Group A was treated using the TightRope system and Group B with the clavicular hook plate. All participants were followed up for 12 months. Clinical outcomes, radiological results and postoperative complications were recorded. The length of incision was significantly shorter in Goup A than that in Group B. The blood loss of surgery was significantly less in the Group A. Significant difference could be found between the two groups regarding the Visual Analogue Scale scores one day after surgery, at the 3 and 12 months follow-up. There were no differences according to the improvement of the Constant-Murley score and the coracoclavicular distance between the groups. The two groups have similar clinical and radiological outcomes. Both treatments could relieve the pain of dislocation, improve the function of Acromioclavicular joint and rectify the coracoclavicular distance measured in plain films. However, the TightRope system exhibited some advantages in terms of length of incision, blood loss of surgery, the pain postoperatively and no need for a second surgery.

  19. The RoPE Score and Right-to-Left Shunt Severity by Transcranial Doppler in the CODICIA Study

    Science.gov (United States)

    Wessler, Benjamin S.; Kent, David M.; Thaler, David E.; Ruthazer, Robin; Lutz, Jennifer S.; Serena, Joaquín

    2015-01-01

    Background For patients with cryptogenic stroke (CS) and patent foramen ovale (PFO), it is unknown whether the magnitude of right-to-left shunt (RLSh) measured by contrast transcranial Doppler (c-TCD) is correlated with the likelihood an identified PFO is related to CS as determined by the Risk of Paradoxical Embolism (RoPE) score. Additionally, for patients with CS, it is unknown whether PFO assessment by c-TCD is more sensitive for identifying RLSh compared with transesophageal echocardiography (TEE). Our aim was to determine the significance of RLSh grade by c-TCD in patients with PFO and CS. Methods We evaluated patients with CS who had RLSh quantified by c-TCD in The Multicenter Study into RLSh in Cryptogenic Stroke (CODICIA) to determine whether there is an association between c-TCD shunt grade and the RoPE Score. For patients who underwent c-TCD and TEE, we determined whether there is agreement in identifying and grading RLSh between these two modalities. Results The RoPE score predicted the presence versus the absence of RLSh documented by contrast transcranial Doppler (c-statistic = 0.66). For patients with documented RLSh by c-TCD, shunt severity was correlated with increasing RoPE score (rank correlation (r) = 0.15, p = 0.01). Among 293 patients who had both c-TCD and TEE performed, c-TCD was more sensitive (98.7%) for detecting RLSh. Of the 97 patients with no PFO identified on TEE, 28 (29%) had a large amount of RLSh seen on c-TCD. Conclusions For patients with CS, severity of RLSh by c-TCD is positively correlated with the RoPE score, indicating this technique for shunt grading identifies patients more likely to have pathogenic rather than incidental PFOs. C-TCD is also more sensitive in detecting RLSh than TEE. These findings suggest an important role for c-TCD in the evaluation of PFO in the setting of CS. PMID:26184495

  20. Predicting changes in high-intensity intermittent running performance with acute responses to short jump rope workouts in children.

    Science.gov (United States)

    Buchheit, Martin; Rabbani, Alireza; Beigi, Hamid Taghi

    2014-09-01

    The aims of the present study were to 1) examine whether individual HR and RPE responses to a jump rope workout could be used to predict changes in high-intensity intermittent running performance in young athletes, and 2) examine the effect of using different methods to determine a smallest worthwhile change (SWC) on the interpretation of group-average and individual changes in the variables. Before and after an 8-week high-intensity training program, 13 children athletes (10.6 ± 0.9 yr) performed a high-intensity running test (30-15 Intermittent Fitness Test, VIFT) and three jump rope workouts, where HR and RPE were collected. The SWC was defined as either 1/5(th) of the between-subjects standard deviation or the variable typical error (CV). After training, the large ~9% improvement in VIFT was very likely, irrespective of the SWC. Standardized changes were greater for RPE (very likely-to-almost certain, ~30-60% changes, ~4-16 times >SWC) than for HR (likely-to-very likely, ~2-6% changes, ~1-6 times >SWC) responses. Using the CV as the SWC lead to the smallest and greatest changes for HR and RPE, respectively. The predictive value for individual performance changes tended to be better for HR (74-92%) than RPE (69%), and greater when using the CV as the SWC. The predictive value for no-performance change was low for both measures (jump rope workouts can predict substantial improvements in high-intensity running performance at the individual level. Using the CV of test measures as the SWC might be the better option. Key pointsDecreased HR and RPE responses to short jump rope workouts can be confidently used to track improvements in high-intensity intermittent running performance in children familiarized with this exercise mode. Rope jumping is a particularly convenient exercise, since it can be performed in a restricted space and allows the testing of a large number of athletes simultaneously.We recommend using the CV of the measures (i.e., 3 and 4% for HR and RPE

  1. A Kinetic Transport Theory for Particle Acceleration and Transport in Regions of Multiple Contracting and Reconnecting Inertial-scale Flux Ropes

    Science.gov (United States)

    le Roux, J. A.; Zank, G. P.; Webb, G. M.; Khabarova, O.

    2015-03-01

    Simulations of particle acceleration in turbulent plasma regions with multiple contracting and merging (reconnecting) magnetic islands emphasize the key role of temporary particle trapping in island structures for the efficient acceleration of particles to form hard power-law spectra. Statistical kinetic transport theories have been developed that capture the essential physics of particle acceleration in multi-island regions. The transport theory of Zank et al. is further developed by considering the acceleration effects of both the mean and the variance of the electric fields induced by the dynamics of multiple inertial-scale flux ropes. A focused transport equation is derived that includes new Fokker-Planck terms for particle scattering and stochastic acceleration due to the variance in multiple flux-rope magnetic fields, plasma flows, and reconnection electric fields. A Parker transport equation is also derived in which a new expression for momentum diffusion appears, combining stochastic acceleration by particle scattering in the mean multi-flux-rope electric fields with acceleration by the variance in these electric fields. Test particle acceleration is modeled analytically considering drift acceleration by the variance in the induced electric fields of flux ropes in the slow supersonic, radially expanding solar wind. Hard power-law spectra occur for sufficiently strong inertial-scale flux ropes with an index modified by adiabatic cooling, solar wind advection, and diffusive escape from flux ropes. Flux ropes might be sufficiently strong behind interplanetary shocks where the index of suprathermal ion power-law spectra observed in the supersonic solar wind can be reproduced.

  2. A KINETIC TRANSPORT THEORY FOR PARTICLE ACCELERATION AND TRANSPORT IN REGIONS OF MULTIPLE CONTRACTING AND RECONNECTING INERTIAL-SCALE FLUX ROPES

    Energy Technology Data Exchange (ETDEWEB)

    Le Roux, J. A.; Zank, G. P. [Department of Space Science, University of Alabama in Huntsville, Huntsville, AL 35805 (United States); Webb, G. M. [Center for Space Plasma and Aeronomic Research (CSPAR), University of Alabama in Huntsville, Huntsville, AL 35805 (United States); Khabarova, O., E-mail: jar0013@uah.edu [Heliophysical Laboratory, Pushkov Institute of Terrestrial Magnetism, Ionosphere and Radiowave Propagation RAS (IZMIRAN), Troitsk, Moscow 142190 (Russian Federation)

    2015-03-10

    Simulations of particle acceleration in turbulent plasma regions with multiple contracting and merging (reconnecting) magnetic islands emphasize the key role of temporary particle trapping in island structures for the efficient acceleration of particles to form hard power-law spectra. Statistical kinetic transport theories have been developed that capture the essential physics of particle acceleration in multi-island regions. The transport theory of Zank et al. is further developed by considering the acceleration effects of both the mean and the variance of the electric fields induced by the dynamics of multiple inertial-scale flux ropes. A focused transport equation is derived that includes new Fokker-Planck terms for particle scattering and stochastic acceleration due to the variance in multiple flux-rope magnetic fields, plasma flows, and reconnection electric fields. A Parker transport equation is also derived in which a new expression for momentum diffusion appears, combining stochastic acceleration by particle scattering in the mean multi-flux-rope electric fields with acceleration by the variance in these electric fields. Test particle acceleration is modeled analytically considering drift acceleration by the variance in the induced electric fields of flux ropes in the slow supersonic, radially expanding solar wind. Hard power-law spectra occur for sufficiently strong inertial-scale flux ropes with an index modified by adiabatic cooling, solar wind advection, and diffusive escape from flux ropes. Flux ropes might be sufficiently strong behind interplanetary shocks where the index of suprathermal ion power-law spectra observed in the supersonic solar wind can be reproduced.

  3. Formation of Solar Delta Active Regions:Twist and Writhe of Magnetic Ropes

    Institute of Scientific and Technical Information of China (English)

    Hong-Qi Zhang

    2004-01-01

    We analyze the process of formation of delta configuration in some well-known super active regions based on photospheric vector magnetogram observations. It is found that the magnetic field in the initial developing stage of some delta active regions shows a potential-like configuration in the solar atmosphere,the magnetic shear develops mainly near the magnetic neutral line with magnetic islands of opposite polarities, and the large-scale photospheric twisted field forming gradually later. Some results are obtained: (1) The analysis of magnetic writhe of whole active regions cannot be limited in the strong field of sunspots, because the contribution of the fraction of decayed magnetic field is non-negligible. (2) The magnetic model of kink magnetic ropes, supposed to be generated in the subatmosphere,is not consistent with the evolution of large-scale twisted photospheric transverse magnetic field and not entirely consistent with the relationship with magnetic shear in some delta active regions. (3) The proposition is that the large-scale delta active regions are formed from contribution by small-scale non-potential magnetic flux bundles generated in the subatmosphere.

  4. Formation of a Double-decker Magnetic Flux Rope in the Sigmoidal Solar Active Region 11520

    CERN Document Server

    Cheng, X; Zhang, J; Sun, X D; Guo, Y; Wang, Y M; Kliem, B; Deng, Y Y

    2014-01-01

    In this paper, we address the formation of a magnetic flux rope (MFR) that erupted on 2012 July 12 and caused a strong geomagnetic storm event on July 15. Through analyzing the long-term evolution of the associated active region observed by the Atmospheric Imaging Assembly and the Helioseismic and Magnetic Imager on board the Solar Dynamics Observatory, it is found that the twisted field of an MFR, indicated by a continuous S-shaped sigmoid, is built up from two groups of sheared arcades near the main polarity inversion line half day before the eruption. The temperature within the twisted field and sheared arcades is higher than that of the ambient volume, suggesting that magnetic reconnection most likely works there. The driver behind the reconnection is attributed to shearing and converging motions at magnetic footpoints with velocities in the range of 0.1--0.6 km s$^{-1}$. The rotation of the preceding sunspot also contributes to the MFR buildup. Extrapolated three-dimensional non-linear force-free field s...

  5. Spectroscopic Diagnostics of Solar Magnetic Flux Ropes Using Iron Forbidden Line

    CERN Document Server

    Cheng, X

    2016-01-01

    In this Letter, we present Interface Region Imaging Spectrograph Fe XXI 1354.08 A forbidden line emission of two magnetic flux ropes (MFRs) that caused two fast coronal mass ejections with velocities of $\\ge$1000 km s$^{-1}$ and strong flares (X1.6 and M6.5) on 2014 September 10 and 2015 June 22, respectively. The EUV images at the 131 A and 94 A passbands provided by the Atmospheric Imaging Assembly on board Solar Dynamics Observatory reveal that both MFRs initially appear as suspended hot channel-like structures. Interestingly, part of the MFRs is also visible in the Fe XXI 1354.08 forbidden line, even prior to the eruption, e.g., for the SOL2014-09-10 event. However, the line emission is very weak and that only appears at a few locations but not the whole structure of the MFRs. This implies that the MFRs could be comprised of different threads with different temperatures and densities, based on the fact that the formation of the Fe XXI forbidden line requires a critical temperature ($\\sim$11.5 MK) and dens...

  6. Spectroscopic Diagnostics of Solar Magnetic Flux Ropes Using Iron Forbidden Line

    Science.gov (United States)

    Cheng, X.; Ding, M. D.

    2016-05-01

    In this Letter, we present Interface Region Imaging Spectrograph Fe xxi 1354.08 Å forbidden line emission of two magnetic flux ropes (MFRs) that caused two fast coronal mass ejections with velocities of ≥1000 km s-1 and strong flares (X1.6 and M6.5) on 2014 September 10 and 2015 June 22, respectively. The extreme-ultraviolet images at the 131 and 94 Å passbands provided by the Atmospheric Imaging Assembly on board Solar Dynamics Observatory reveal that both MFRs initially appear as suspended hot channel-like structures. Interestingly, part of the MFRs is also visible in the Fe xxi 1354.08 forbidden line, even prior to the eruption, e.g., for the SOL2014-09-10 event. However, the line emission is very weak and that only appears at a few locations but not the whole structure of the MFRs. This implies that the MFRs could be comprised of different threads with different temperatures and densities, based on the fact that the formation of the Fe xxi forbidden line requires a critical temperature (˜11.5 MK) and density. Moreover, the line shows a non-thermal broadening and a blueshift in the early phase. It suggests that magnetic reconnection at that time has initiated; it not only heats the MFR and, at the same time, produces a non-thermal broadening of the Fe xxi line but also produces the poloidal flux, leading to the ascension of the MFRs.

  7. Direct observations of magnetic flux rope formation during a solar coronal mass ejection

    CERN Document Server

    Song, Hongqiang; Chen, Yao; Cheng, Xin

    2014-01-01

    Coronal mass ejections (CMEs) are the most spectacular eruptive phenomena in the solar atmosphere. It is generally accepted that CMEs are results of eruptions of magnetic flux ropes (MFRs). However, a heated debate is on whether MFRs pre-exist before the eruptions or they are formed during the eruptions. Several coronal signatures, \\textit{e.g.}, filaments, coronal cavities, sigmoid structures and hot channels (or hot blobs), are proposed as MFRs and observed before the eruption, which support the pre-existing MFR scenario. There is almost no reported observation about MFR formation during the eruption. In this letter, we present an intriguing observation of a solar eruptive event occurred on 2013 November 21 with the Atmospheric Imaging Assembly on board the \\textit{Solar Dynamic Observatory}, which shows a detailed formation process of the MFR during the eruption. The process started with the expansion of a low-lying coronal arcade, possibly caused by the flare magnetic reconnection underneath. The newly-fo...

  8. Quantifying the Topology and Evolution of a Magnetic Flux Rope Associated with Multi-flare Activities

    CERN Document Server

    Yang, Kai; Ding, M D

    2016-01-01

    Magnetic flux rope (MFR) plays an important role in solar activities. A quantitative assessment of the topology of an MFR and its evolution is crucial for a better understanding of the relationship between the MFR and the associated activities. In this paper, we investigate the magnetic field of active region 12017 from 2014 March 28 to 29, where 12 flares were triggered by the intermittent eruptions of a filament (either successful or confined). Using the vector magnetic field data from the Helioseismic and Magnetic Imager on board the \\textit{Solar Dynamics Observatory}, we calculate the magnetic energy and helicity injection in the active region, and extrapolate the 3D magnetic field with a nonlinear force-free field model. From the extrapolations, we find an MFR that is cospatial with the filament. We further determine the configuration of this MFR by a closed quasi-separatrix layer (QSL) around it. Then, we calculate the twist number and the magnetic helicity for the field lines composing the MFR. The re...

  9. Dosimetry on ocular brachytherapy with I-125 ophthalmologic ROPES and COMS plaques

    Energy Technology Data Exchange (ETDEWEB)

    Mourao, Arnaldo P. [Centro Federal de Educacao Tecnoloica de Minas Gerais (CEFET-MG), Belo Horizonte, MG (Brazil). Nucleo de Engenharia Hospitalar], e-mail: aprata@des.cefetmg.br; Campos, Tarcisio P.R. [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil). Programa de Pos-graduacao em Ciencias e Tecnicas Nucleares], e-mail: campos@nuclear.ufmg.br

    2009-07-01

    Radiotherapy is an alternative to ocular enucleation. However, the irradiation of ocular region can bring deleterious effects due to the high doses, mainly in the lens, retina and in the bone structures in growth phase. Brachytherapy instead of teletherapy looks for departuring absorbed doses in tumor minimizing doses in the lens and the adjacent tissues of the eyeball (orbital region), avoiding deleterious effects. Thus, a three-dimensional computational voxel model and an analytical model were coupled, including the heterogeneous properties of the globe and the adjacent tissues. The analytical model was applied to define the thin structures of the ocular globe. This computational model is used to simulate orbital irradiation with ROPES and COMS ophthalmologic plaques placed on the sclera surface filled to ten and eight iodine-125 seeds, respectively. Simulations are performed on the MCNP5 code. The computational simulation allows evaluating how the dose rates are spatially distributed in the orbital volume. The results are normalized to 100% at the maximum dose on the tumor base, and by the applied source activity. The external globe structures receive 0.5% of the maximum internal dose. The crystalline lens dosimetry depends on the position and thickness of the tumor and the plaque diameters. On the present case, 12.75% of maximum dose is found on the lens. The maximum dose is found onto the eyeball, in the vitreous. The present model represents an advance in simulating and predicting absorbed dose on ocular brachytherapy, incorporating anthropomorphic and anthropometric features of the real eyeball. (author)

  10. Controlled sliding of logs downhill by chute system integrated with portable winch and synthetic rope

    Directory of Open Access Journals (Sweden)

    Neşe Gülci

    2016-01-01

    Full Text Available Over 80% of wood extraction operations have been performed by conventional methods in Turkey. Conventional methods include skidding or sliding of logs mainly by man and animal power, which poses problems in terms of technical, economical, environmental, and ergonomic aspects. Skidding wood on plastic chutes has been implemented in limited numbers of logging applications in recent years, and provides important advantages such as reducing environmental damages and minimizing the value and volume loss of transported wood products. In this study, a chute system integrated with a mobile winch was developed for controlled sliding of large diameter logs downhill. In addition, synthetic ropes rather than steel cables were used to pull log products, resulting in a lower weight and more efficient extraction system. The system was tested on a sample wood production operation in Çınarpınar Forest Enterprise Chief of Kahramanmaraş Forest Enterprise Directorate. In the study, productivity analysis of chute system was performed and its ecological impacts were evaluated. During controlled sliding of logs downhill, the highest productivity (10.01 m3/hour was reached in the fourth chute system characterized as 36 m in length and 70% ground slope. One of the main factors that affected the productivity of chute system was the controlled sliding time of the logs. It was found that residual stand damage was very limited during controlled sliding operations.

  11. Barriers to screening mammography.

    Science.gov (United States)

    Sarma, Elizabeth A

    2015-01-01

    Breast cancer (BRCA) is the second most commonly diagnosed cancer among women in the USA, and mammography is an effective means for the early detection of BRCA. Identifying the barriers to screening mammography can inform research, policy and practice aiming to increase mammography adherence. A literature review was conducted to determine common barriers to screening mammography adherence. PsycINFO and PubMed databases were searched to identify studies published between 2000 and 2012 that examined barriers associated with reduced mammography adherence. Three thematic groups of barriers, based on social ecology, were identified from the literature: healthcare system-level, social and individual-level barriers. Researchers must consider screening behaviour in context and, therefore, should simultaneously consider each level of barriers when attempting to understand screening behaviour and create interventions to increase mammography adherence.

  12. Photonic Bandgap Fibers

    DEFF Research Database (Denmark)

    Barkou, Stig Eigil; Broeng, Jes; Bjarklev, Anders Overgaard

    1999-01-01

    Photonic bandgap fibers are describes using a new Kagomé cladding structure. These fibers may potentially guide light in low-index regions. Such fibers offer new dispersion properties, and large design flexibility.......Photonic bandgap fibers are describes using a new Kagomé cladding structure. These fibers may potentially guide light in low-index regions. Such fibers offer new dispersion properties, and large design flexibility....

  13. Slippage power transmission technology on the wire rope%钢丝绳上滑移输电技术的应用

    Institute of Scientific and Technical Information of China (English)

    彭伟; 张维钧

    2012-01-01

    According to the actual project demand, the paper designs an electric cable trolley which is able to glide freely on the wire rope. The trolley features novel style, and its structure has a function of preventing wire rope to jump from the slot of wheel. Electric cable trolley can only glide on the wire rope under haulage cable' s dragging. Slippage power transmission technology on the wire rope is based on the electric cable trolley which is able to transmit power to the long-distance equipment which moves in the three-dimensional space and is dragged by wire ropes.%为了满足特定的工程需要,设计了一种能在钢丝绳上滑移的电缆小车,该电缆小车型式新颖,结构上具备防止钢丝绳脱槽的功能,电缆小车在牵引绳的牵引下拖拽着电缆只能沿承载它的钢丝绳方向运动.以该电缆小车为基础的钢丝绳上滑移输电技术能实现向被钢丝绳牵引并作空间移动的设备进行长距离输电.

  14. The Eruption of a Small-scale Emerging Flux Rope as the Driver of an M-class Flare and of a Coronal Mass Ejection

    Science.gov (United States)

    Yan, X. L.; Jiang, C. W.; Xue, Z. K.; Wang, J. C.; Priest, E. R.; Yang, L. H.; Kong, D. F.; Cao, W. D.; Ji, H. S.

    2017-08-01

    Solar flares and coronal mass ejections are the most powerful explosions in the Sun. They are major sources of potentially destructive space weather conditions. However, the possible causes of their initiation remain controversial. Using high-resolution data observed by the New Solar Telescope of Big Bear Solar Observaotry, supplemented by Solar Dynamics Observatory observations, we present unusual observations of a small-scale emerging flux rope near a large sunspot, whose eruption produced an M-class flare and a coronal mass ejection. The presence of the small-scale flux rope was indicated by static nonlinear force-free field extrapolation as well as data-driven magnetohydrodynamics modeling of the dynamic evolution of the coronal three-dimensional magnetic field. During the emergence of the flux rope, rotation of satellite sunspots at the footpoints of the flux rope was observed. Meanwhile, the Lorentz force, magnetic energy, vertical current, and transverse fields were increasing during this phase. The free energy from the magnetic flux emergence and twisting magnetic fields is sufficient to power the M-class flare. These observations present, for the first time, the complete process, from the emergence of the small-scale flux rope, to the production of solar eruptions.

  15. MMS observations of oblique small-scale magnetopause flux ropes near the ion diffusion region during weak guide-field reconnection

    Science.gov (United States)

    Teh, W.-L.; Denton, R. E.; Sonnerup, B. U. Ã.-.; Pollock, C.

    2017-07-01

    We report Magnetospheric Multiscale observations of a series of five small-scale magnetic flux ropes (FR1-5) embedded in the southward reconnection outflow during a magnetopause reconnection event with a small guide field ( 2.2 nT). These small-scale flux ropes (diameter 3-11 ion inertial lengths) are found inside or near the ion diffusion region on the magnetosheath side of the magnetopause boundary layer. A consistent result for determining the axis orientation of the flux ropes is achieved using two different methods, namely, minimum variance analysis of the axial electric field and constrained minimum variance analysis of the magnetic field. Our results show that the axes of these flux ropes (FR1-4) form a large angle (53°-66°) to the guide-field orientation and are tilted toward the direction of the reconnecting field. These observations provide evidence for the presence of oblique ion-scale flux ropes near the ion diffusion region during reconnection with a weak guide field. Our findings are similar to those obtained from a 3-D kinetic simulation of turbulent reconnection.

  16. Tratamento artroscópico da luxação acromio-clavicular pelo método "tight rope" (arthrex® Arthroscopic treatment of acromioclavicular joint dislocation by tight rope technique (arthrex®

    Directory of Open Access Journals (Sweden)

    Luis Alfredo Gómez Vieira

    2009-02-01

    Full Text Available OBJETIVO: Apresentar a técnica cirúrgica artroscópica pelo método "Tight Rope" e a avaliação dos resultados com esta técnica no tratamento da luxação acrômio-clavicular aguda. MÉTODOS: entre agosto de 2006 e maio de 2007, 10 ombros de 10 pacientes com luxação acrômio-clavicular aguda foram submetidos a tratamento artroscópcio pela técnica Tight Rope-Arthrex®. O seguimento mínimo foi de 12 meses, com média de 15 meses. A idade variou de 26 e 42 anos com média de 34 anos. Todos os pacientes eram do sexo masculino. Todos os pacientes foram atendidos na fase aguda da lesão sendo avaliados por radiologia simples (série trauma. Os pacientes foram acompanhados semanalmente no primeiro mês e a cada três meses após o procedimento artroscópico. A avaliação clínica foi feita por meio dos critérios da University of Califórnia at Los Angeles (UCLA. RESULTADOS: Todos os pacientes operados agudamente encontravam-se satisfeitos com os resultados do tratamento cirúrgico artroscópico com uma média de 32,5 pontos na escala de avaliação da UCLA. CONCLUSÃO: O tratamento artroscópico da luxação acrômio-clavicular aguda pelo método "Tight Rope" é uma técnica cirúrgica minimamente invasiva que mostrou-se eficiente para o tratamento destas lesões.OBJECTIVE: Presenting the arthroscopic treatment by Tight Rope - Arthrex® system for acute acromioclavicular dislocation and to evaluate results obtained with this procedure. METHODS: Between August 2006 and May 2007, 10 shoulders of 10 patients with acute acromioclavicular dislocation were submitted to arthroscopic repair using the Tight Rope - Arthrex® system. Minimum follow-up was 12 months, with a mean of 15 months. Age ranged from 26 to 42, mean 34 years. All patients were male. Radiology evaluation was made by trauma series x-ray. The patients were assisted in the first month weekly and after three months after the procedure. Clinical evaluation was based on the University

  17. Converse Barrier Certificate Theorems

    DEFF Research Database (Denmark)

    Wisniewski, Rafael; Sloth, Christoffer

    2016-01-01

    This paper shows that a barrier certificate exists for any safe dynamical system. Specifically, we prove converse barrier certificate theorems for a class of structurally stable dynamical systems. Other authors have developed a related result by assuming that the dynamical system has neither sing...

  18. Recovery Act: Hydroelectric Facility Improvement Project - Replacement of Current Mechanical Seal System with Rope Packing System

    Energy Technology Data Exchange (ETDEWEB)

    Stephens, Jessica D.

    2013-05-29

    had an IMD installed. This further study of facilities revealed that the implementation of the project as originally described, while proving the benefits described in the original grant application, would likely intensify sand intake. Increased sand intake would lead to an increase in required shutdowns for maintenance and more rapid depreciation of key equipment which would result in a loss of generation capacity. A better solution to the problem, one that continued to meet the criteria for the original grant and ARRA standards, was developed. A supporting day trip was planned to visit other facilities located on the Arkansas River to determine how they were coping with the same strong amounts of sand, silt, and debris. Upon returning from the trip to other Arkansas River facilities it was extremely clear what direction to go in order to most efficiently address the issue of generator capacity and efficiency. Of the plants visited on the Arkansas River, every one of them was running what is called a rope packing shaft sealing system as opposed to mechanical shaft seals, which the facility was running. Rope packing is a time proven sealing method that has been around for centuries. It has proved to perform very well in dirty water situations just like that of the Arkansas River. In April of 2012 a scope change proposal was submitted to the DOE for approval. In August of 2012 the City received word that the change of scope had been approved. Plans were immediately set in motion to begin the conversion from mechanical seals to a packing box at the facility. Contractors arrived on October 1st, 2012 and the project team began unwatering the unit for disassembly. The seal conversion was completed on February 29th, 2013 with start-up of the unit. Further testing and adjusting was done throughout the first two weeks of March.

  19. Development of braided rope seals for hypersonic engine applications: Flow modeling

    Science.gov (United States)

    Mutharasan, Rajakkannu; Steinetz, Bruce M.; Tao, Xiaoming; Du, Guang-Wu; Ko, Frank

    1992-12-01

    A new type of engine seal is being developed to meet the needs of advanced hypersonic engines. A seal braided of emerging high temperature ceramic fibers comprised of a sheath-core construction was selected for study based on its low leakage rates. Flexible, low-leakage, high temperature seals are required to seal the movable engine panels of advanced ramjet-scramjet engines either preventing potentially dangerous leakage into backside engine cavities or limiting the purge coolant flow rates through the seals. To predict the leakage through these flexible, porous seal structures new analytical flow models are required. Two such models based on the Kozeny-Carman equations are developed herein and are compared to experimental leakage measurements for simulated pressure and seal gap conditions. The models developed allow prediction of the gas leakage rate as a function of fiber diameter, fiber packing density, gas properties, and pressure drop across the seal. The first model treats the seal as a homogeneous fiber bed. The second model divides the seal into two homogeneous fiber beds identified as the core and the sheath of the seal. Flow resistances of each of the main seal elements are combined to determine the total flow resistance. Comparisons between measured leakage rates and model predictions for seal structures covering a wide range of braid architectures show good agreement. Within the experimental range, the second model provides a prediction within 6 to 13 percent of the flow for many of the cases examined. Areas where future model refinements are required are identified.

  20. DIRECT OBSERVATIONS OF MAGNETIC FLUX ROPE FORMATION DURING A SOLAR CORONAL MASS EJECTION

    Energy Technology Data Exchange (ETDEWEB)

    Song, H. Q.; Chen, Y. [Shandong Provincial Key Laboratory of Optical Astronomy and Solar-Terrestrial Environment and Institute of Space Sciences, Shandong University, Weihai, Shandong 264209 (China); Zhang, J. [School of Physics, Astronomy and Computational Sciences, George Mason University, Fairfax, VA 22030 (United States); Cheng, X., E-mail: hqsong@sdu.edu.cn [School of Astronomy and Space Science, Nanjing University, Nanjing, Jiangsu 210093 (China)

    2014-09-10

    Coronal mass ejections (CMEs) are the most spectacular eruptive phenomena in the solar atmosphere. It is generally accepted that CMEs are the results of eruptions of magnetic flux ropes (MFRs). However, there is heated debate on whether MFRs exist prior to the eruptions or if they are formed during the eruptions. Several coronal signatures, e.g., filaments, coronal cavities, sigmoid structures, and hot channels (or hot blobs), are proposed as MFRs and observed before the eruption, which support the pre-existing MFR scenario. There is almost no reported observation of MFR formation during the eruption. In this Letter, we present an intriguing observation of a solar eruptive event that occurred on 2013 November 21 with the Atmospheric Imaging Assembly on board the Solar Dynamic Observatory, which shows the formation process of the MFR during the eruption in detail. The process began with the expansion of a low-lying coronal arcade, possibly caused by the flare magnetic reconnection underneath. The newly formed ascending loops from below further pushed the arcade upward, stretching the surrounding magnetic field. The arcade and stretched magnetic field lines then curved in just below the arcade vertex, forming an X-point. The field lines near the X-point continued to approach each other and a second magnetic reconnection was induced. It is this high-lying magnetic reconnection that led to the formation and eruption of a hot blob (∼10 MK), presumably an MFR, producing a CME. We suggest that two spatially separated magnetic reconnections occurred in this event, which were responsible for producing the flare and the hot blob (CME)

  1. The Characteristics of the Footpoints of Solar Magnetic Flux Ropes during Eruptions

    Science.gov (United States)

    Cheng, X.; Ding, M. D.

    2016-07-01

    We investigate the footpoints of four erupted magnetic flux ropes (MFRs) that appear as sigmoidal hot channels prior to the eruptions in the Atmospheric Imaging Assembly high temperature passbands. The simultaneous Helioseismic and Magnetic Imager observations disclose that one footpoint of the MFRs originates in the penumbra or penumbra edge with a stronger magnetic field, while the other originates in the moss region with a weaker magnetic field. The significant deviation of the axes of the MFRs from the main polarity inversion lines and associated filaments suggests that the MFRs have ascended to a high altitude, thus becoming distinguishable from the source sigmoidal active regions. Further, with the eruption of the MFRs, the average inclination angle and direct current at the footpoints with stronger magnetic fields tend to decrease, which is suggestive of a straightening and untwisting of the magnetic field in the MFR legs. Moreover, the associated flare ribbons also display an interesting evolution. They initially appear as sporadic brightenings at the two footpoints of the MFRs and in the regions below, and then quickly extend to two slender sheared J-shaped ribbons with the two hooks corresponding to the two ends of the MFRs. Finally, the straight parts of the two ribbons separate from each other, evolving into two widened parallel ones. These features mostly conform to and support the recently proposed three-dimensional standard coronal mass ejection/flare model, i.e., the twisted MFR eruption stretches and leads to the reconnection of the overlying field that transits from a strong to weak shear with increasing height.

  2. Skin barrier function

    DEFF Research Database (Denmark)

    2016-01-01

    Renowned experts present the latest knowledge Although a very fragile structure, the skin barrier is probably one of the most important organs of the body. Inward/out it is responsible for body integrity and outward/in for keeping microbes, chemicals, and allergens from penetrating the skin. Since...... the role of barrier integrity in atopic dermatitis and the relationship to filaggrin mutations was discovered a decade ago, research focus has been on the skin barrier, and numerous new publications have become available. This book is an interdisciplinary update offering a wide range of information...... on the subject. It covers new basic research on skin markers, including results on filaggrin and on methods for the assessment of the barrier function. Biological variation and aspects of skin barrier function restoration are discussed as well. Further sections are dedicated to clinical implications of skin...

  3. Method for inferring the axis-orientation of cylindrical flux rope or plasmoid based on single-point measurement

    Science.gov (United States)

    Rong, Z.; Wan, W.; Shen, C.; Zhang, T.; Lui, A.; Dunlop, M.; Zhang, Y.; Zong, Q.

    2012-12-01

    We develop a new simple method for inferring the orientation of flux rope or plasmoid (FoP) which is assumed to be a time-independent cylindrically symmetric structure via the direct single-point analysis of magnetic field structure. The model test demonstrate that, for the cylindrical FoP no matter it is force-free or non-force-free, the method can consistently yield the axis-orientation of FoP with higher accuracy and stability than the minimum variance analysis of magnetic field and the technique of Grad-Shafranov(GS) reconstruction. Moreover, the radial distance to the axis-center and the current density can be also estimated consistently. The application to two actual flux transfer events observed by the four satellites of Cluster mission demonstrate that the method is more appropriate to be used for the inner part of FoP which might be closer to the cylindrical structure, showing good agreement with the results obtained from the optimal GS reconstruction and the least squares technique of Faraday's law (Sonnerup and Hasegawa, 2005), but fails to produce such agreement for the outer satellite that grazes FoP. Therefore the method must be used with caution.; The interior structure of flux rope or plasmoid (adapted from Russell and Elphic, 1979). ; Sketched diagram to show the helical handedness of flux rope or plasmoid and the variation of field direction along the path of S/C on the cross-section. Panel-a is for the right-handed structure while panel-b is for the left-handed structure. The red arrow is the projection of S/C path, while the black arrow is the perpendicular direction of unit magnetic field vector to the axis-orientation.

  4. Deflection and Distortion of CME internal magnetic flux rope due to the interaction with a structured solar wind

    Science.gov (United States)

    Shiota, D.; Iju, T.; Hayashi, K.; Fujiki, K.; Tokumaru, M.; Kusano, K.

    2016-12-01

    CMEs are the most violent driver of geospace disturbances, and therefore their arrival to the Earth position is an important factor in space weather forecast. The dynamics of CME propagation is strongly affected by the interaction with background solar wind. To understand the interaction between a CME and background solar wind, we performed three-dimensional MHD simulations of the propagation of a CME with internal twisted magnetic flux rope into a structured bimodal solar wind. We compared three different cases in which an identical CME is launched into an identical bimodal solar wind but the launch dates of the CME are different. Each position relative to the boundary between slow and fast solar winds becomes almost in the slow wind stream region, almost in the fast wind stream region, or in vicinity of the boundary of the fast and slow solar wind stream (that grows to CIR). It is found that the CME is most distorted and deflected eastward in the case near the CIR, in contrast to the other two cases. The maximum strength of southward magnetic field at the Earth position is also highest in the case near CIR. The results are interpreted that the dynamic pressure gradient due to the back reaction from pushing the ahead slow wind stream and due to the collision behind fast wind stream hinders the expansion of the CME internal flux rope into the direction of the solar wind velocity gradient. As a result, the expansion into the direction to the velocity gradient is slightly enhanced and results in the enhanced deflection and distortion of the CME and its internal flux rope. These results support the pileup accident hypothesis proposed by Kataoka et al. (2015) to form unexpectedly geoeffective solar wind structure.

  5. Coronal plane radiographic evaluation of the single TightRope technique in the treatment of acute acromioclavicular joint injury.

    Science.gov (United States)

    Yi, Young; Kim, Jeong Woo

    2015-10-01

    This study aimed to demonstrate the technical aspects of the single TightRope (Arthrex, Naples, FL, USA) procedure for acute acromioclavicular-coracoclavicular joint dislocation, identify the predictive factors influencing its outcome, and assess and validate the significance of specific radiologic parameters. We reviewed true anteroposterior shoulder radiographs of 62 consecutive patients who had undergone surgical reconstruction using TightRope for an acute acromioclavicular-coracoclavicular injury. All patients were followed up for at least 12 months between October 2009 and March 2012 and were divided into dissociated or nondissociated groups according to their surgical outcome. We measured the clavicle tunnel anteroposterior angle, distal clavicular tunnel placement, and tunnel-to-medial coracoid ratio, and compared the parameters in each group after a satisfactory intraclass correlation coefficient reliability test result. The angles of patients in the dissociated group were more acute compared with the angles of those in the nondissociated group, which were perpendicular, as verified statistically using the paired t test. The difference in the distal clavicular tunnel placement and tunnel-to-medial coracoid ratio between the groups was not significant. Therefore, tunnel placement is not influenced by coracoclavicular dissociation. The clavicle tunnel anteroposterior angle can be used as a predictor of surgical outcome in coracoclavicular augmentation surgery. The surgeon should strive to place a perpendicular hole from the clavicle to the coracoid process for the TightRope fixation to enable a successful reconstruction of the acute acromioclavicular-coracoclavicular injury. Copyright © 2015 Journal of Shoulder and Elbow Surgery Board of Trustees. Published by Elsevier Inc. All rights reserved.

  6. Development of suppliers for polyester ropes used in floating units mooring; Desenvolvimento de fornecedores de cabos de poliester para ancoragem de unidades flutuantes

    Energy Technology Data Exchange (ETDEWEB)

    Araujo, Ricardo T.; Farias, Marco Antonio L. de; Castro, Gustavo A.V. de [PETROBRAS, Rio de Janeiro, RJ (Brazil)

    1998-07-01

    Mooring of floating units in deep water requires the use of low specific gravity lines with small anchorage radius, which besides not demanding large installation loads, allow a larger number of mooring on the same area. This system is known as taut-leg and is composed mainly of polyester ropes, instead of the wire ropes or anchor chains used in conventional mooring systems. Until July of 1997, PETROBRAS had only two suppliers of polyester ropes having a minimum breaking load of up to 500 t, and only one for greater loads. The large demand for this material was causing price increases. The development of two other suppliers started in July of 1997, with the elaboration of four cooperation agreements, reversing the higher price trend and even lowering prices below initial values. (author)

  7. Flux rope, hyperbolic flux tube, and late extreme ultraviolet phases in a non-eruptive circular-ribbon flare

    Science.gov (United States)

    Masson, Sophie; Pariat, Étienne; Valori, Gherardo; Deng, Na; Liu, Chang; Wang, Haimin; Reid, Hamish

    2017-08-01

    Context. The dynamics of ultraviolet (UV) emissions during solar flares provides constraints on the physical mechanisms involved in the trigger and the evolution of flares. In particular it provides some information on the location of the reconnection sites and the associated magnetic fluxes. In this respect, confined flares are far less understood than eruptive flares generating coronal mass ejections. Aims: We present a detailed study of a confined circular flare dynamics associated with three UV late phases in order to understand more precisely which topological elements are present and how they constrain the dynamics of the flare. Methods: We perform a non-linear force-free field extrapolation of the confined flare observed with the Helioseismic and Magnetic Imager (HMI) and Atmospheric Imaging Assembly (AIA) instruments on board Solar Dynamics Observatory (SDO). From the 3D magnetic field we compute the squashing factor and we analyse its distribution. Conjointly, we analyse the AIA extreme ultraviolet (EUV) light curves and images in order to identify the post-flare loops, and their temporal and thermal evolution. By combining the two analyses we are able to propose a detailed scenario that explains the dynamics of the flare. Results: Our topological analysis shows that in addition to a null-point topology with the fan separatrix, the spine lines and its surrounding quasi-separatix layer (QSL) halo (typical for a circular flare), a flux rope and its hyperbolic flux tube (HFT) are enclosed below the null. By comparing the magnetic field topology and the EUV post-flare loops we obtain an almost perfect match between the footpoints of the separatrices and the EUV 1600 Å ribbons and between the HFT field line footpoints and bright spots observed inside the circular ribbons. We show, for the first time in a confined flare, that magnetic reconnection occurred initially at the HFT below the flux rope. Reconnection at the null point between the flux rope and the

  8. NASA Invention of the year Award - 2004. The revolutionary unique braided carbon-fiber thermal barr

    Science.gov (United States)

    2005-01-01

    NASA Invention of the year Award - 2004. The revolutionary unique braided carbon-fiber thermal barrier is designed to with stand the extreme temperature environments in current and future solid rocket motors with application to industrial equipment

  9. Carbon nanotube reinforced polyacrylonitrile and poly(etherketone) fibers

    Science.gov (United States)

    Jain, Rahul

    stability with almost no weight loss up to 500°C and negligible thermal shrinkage up to 200°C. The PEK based fibers showed high toughness which surpassed many of the high-performance fibers like KevlarRTM and Zylon RTM. The 10% FWNT containing fiber is unique in terms of high electrical conductivity and high toughness. The CNT based fibers may be used as structural material, fire-barrier/protection textile, electrode for electrochemical capacitor or fuel cells, and as a template for directional growth of tissues.

  10. Photonic crystal fibers

    DEFF Research Database (Denmark)

    Lægsgaard, Jesper; Hansen, K P; Nielsen, M D;

    2003-01-01

    Photonic crystal fibers having a complex microstructure in the transverse plane constitute a new and promising class of optical fibers. Such fibers can either guide light through total internal reflection or the photonic bandgap effect, In this paper, we review the different types and applications...... of photonic crystal fibers with particular emphasis on recent advances in the field....

  11. Photonic crystal fibers -

    DEFF Research Database (Denmark)

    Libori, Stig E. Barkou

    2002-01-01

    During this ph.d. work, attention has been focused on understanding and analyzing the modal behavior of micro-structured fibers. Micro-structured fibers are fibers with a complex dielectric toplogy, and offer a number of novel possibilities, compared to standard silica based optical fibers. The t...

  12. Photonic Crystal Fiber Attenuator

    Institute of Scientific and Technical Information of China (English)

    Joo; Beom; Eom; Hokyung; Kim; Jinchae; Kim; Un-Chul; Paek; Byeong; Ha; Lee

    2003-01-01

    We propose a novel fiber attenuator based on photonic crystal fibers. The difference in the modal field diameters of a conventional single mode fiber and a photonic crystal fiber was used. A variable optical attenuator was also achieved by applying macro-bending on the PCF part of the proposed attenuator

  13. Converse Barrier Certificate Theorem

    DEFF Research Database (Denmark)

    Wisniewski, Rafael; Sloth, Christoffer

    2013-01-01

    This paper presents a converse barrier certificate theorem for a generic dynamical system.We show that a barrier certificate exists for any safe dynamical system defined on a compact manifold. Other authors have developed a related result, by assuming that the dynamical system has no singular...... points in the considered subset of the state space. In this paper, we redefine the standard notion of safety to comply with generic dynamical systems with multiple singularities. Afterwards, we prove the converse barrier certificate theorem and illustrate the differences between ours and previous work...

  14. Recycler barrier RF buckets

    Energy Technology Data Exchange (ETDEWEB)

    Bhat, C.M.; /Fermilab

    2011-03-01

    The Recycler Ring at Fermilab uses a barrier rf systems for all of its rf manipulations. In this paper, I will give an overview of historical perspective on barrier rf system, the longitudinal beam dynamics issues, aspects of rf linearization to produce long flat bunches and methods used for emittance measurements of the beam in the RR barrier rf buckets. Current rf manipulation schemes used for antiproton beam stacking and longitudinal momentum mining of the RR beam for the Tevatron collider operation are explained along with their importance in spectacular success of the Tevatron luminosity performance.

  15. High power fiber lasers

    Institute of Scientific and Technical Information of China (English)

    LOU Qi-hong; ZHOU Jun

    2007-01-01

    In this review article, the development of the double cladding optical fiber for high power fiber lasers is reviewed. The main technology for high power fiber lasers, including laser diode beam shaping, fiber laser pumping techniques, and amplification systems, are discussed in de-tail. 1050 W CW output and 133 W pulsed output are ob-tained in Shanghai Institute of Optics and Fine Mechanics, China. Finally, the applications of fiber lasers in industry are also reviewed.

  16. [Vascular endothelial Barrier Function].

    Science.gov (United States)

    Ivanov, A N; Puchinyan, D M; Norkin, I A

    2015-01-01

    Endothelium is an important regulator of selective permeability of the vascular wall for different molecules and cells. This review summarizes current data on endothelial barrier function. Endothelial glycocalyx structure, its function and role in the molecular transport and leukocytes migration across the endothelial barrier are discussed. The mechanisms of transcellular transport of macromolecules and cell migration through endothelial cells are reviewed. Special section of this article addresses the structure and function of tight and adherens endothelial junction, as well as their importance for the regulation of paracellular transport across the endothelial barrier. Particular attention is paid to the signaling mechanism of endothelial barrier function regulation and the factors that influence on the vascular permeability.

  17. Barriers to Effective Listening.

    Science.gov (United States)

    Hulbert, Jack E.

    1989-01-01

    Discusses the following barriers which interfere with listening efficiency: content, speaker, medium, distractions, mindset, language, listening speed, and feedback. Suggests ways to combat these obstacles to accurate comprehension. (MM)

  18. Principal components analysis to characterise fatigue-related changes in technique: Application to double under jump rope.

    Science.gov (United States)

    Bruce, Olivia; Moull, Kimberly; Fischer, Steven

    2017-07-01

    The upper extremities play an important role in managing the rope-turning technique required to perform continuous double unders. However, acute adaptions in this technique may occur as a jumper fatigues. The purpose of this study was to examine how turning technique is adapted with fatigue. Three-dimensional kinematic data of the upper extremity were collected from 10 trained athletes as they performed consecutive double unders to volitional fatigue. Time series wrist, elbow and shoulder joint angles were calculated where joint angle waveforms representing 10 unique trials from the beginning ("fresh") and end ("fatigued") of the continuous jumping protocol for all participants were analysed using principal component analysis. Participants reported stopping due to cardiovascular and shoulder muscular fatigue. From a kinematics perspective, with fatigue athletes used a more internally rotated range of motion at the shoulder, which we believe prompted a series of more distal adaptions in order to maintain rope turning, preserving consecutive double under performance. The presence of a maladaptive adaptation at the shoulder may increase the risk of developing shoulder injuries. Coaches should consider helping jumpers develop appropriate shoulder muscle endurance such that they can continue to maximise their training and proficiency, while protecting against potential fatigue-related maladaptation.

  19. The "sagging rope sign" in avascular necrosis in children's hip diseases--confirmation by 3D CT studies.

    Science.gov (United States)

    Kim, H T; Eisenhauer, E; Wenger, D R

    1995-01-01

    Growth disturbance of the proximal femoral epiphysis and physis secondary to avascular necrosis (AVN) in a variety of children's hip disorders produces changes in the femoral head and neck that make radiographic interpretation difficult. The enlarged overhanging femoral head produces radiographic markings on the femoral neck which are sometimes confusing. These have sometimes been misinterpreted as growth arrest lines. Apley and Wientroub reintroduced Perkins' description of the "sagging rope" sign in AVN of the femoral head, and Clarke clarified that this puzzling radiographic transverse metaphyseal line overlying the femoral neck in fact represents the margin of the femoral head rather than a growth arrest line. Their report was made after studying plain and stereoscopic radiographs alone. Our review of 23 cases of femoral head AVN in children, documented by 3 dimensional computerized tomographic (3D CT) radiographs of the femoral head and pelvis, confirms Clarke's view of the nature of the "sagging rope" sign. These sophisticated radiographic studies provide new detail and understanding of head-neck relationship in AVN which allows better planning for surgical correction of hip disorders in children.

  20. Formation and Eruption of a Small Flux Rope in the Chromosphere Observed by NST, IRIS, and SDO

    CERN Document Server

    Kumar, Pankaj; Wang, Haimin; Cho, Kyung-Suk

    2015-01-01

    Using high-resolution images from 1.6 m New Solar Telescope (NST) at Big Bear Solar Observatory (BBSO), we report the direct evidence of chromospheric reconnection at the polarity inversion line (PIL) between two small opposite polarity sunspots. Small jet-like structures (with velocities of ~20-55 km/s) were observed at the reconnection site before the onset of the first M1.0 flare. The slow rise of untwisting jets was followed by the onset of cool plasma inflow (~10 km/s) at the reconnection site, causing the onset of a two-ribbon flare. The reconnection between two sheared J-shaped cool H$\\alpha$ loops causes the formation of a small twisted flux rope (S shaped) in the chromosphere. In addition, Helioseismic and Magnetic Imager (HMI) magnetograms show the flux cancellation (both positive and negative) during the first M1.0 flare. The emergence of negative flux and cancellation of positive flux (with shear flows) continue until the successful eruption of the flux rope. The newly formed chromospheric flux ro...

  1. Barriers to SCM implementing

    OpenAIRE

    M.E. Rosli; B. Md Dero; A. R. Ismail; M. N. Ab Rahman

    2008-01-01

    Purpose: This paper explores the barriers faced by Malaysian manufacturing companies in successfullyimplementing the Supply Chain Management (SCM). The study has highlighted some pertinent factorsperforming the barriers that are most frequently reported by the studied companies. Sixteen companies, fromservice and manufacturing companies were studied over a period of two years to assess their SCM practicesthrough survey and interview processes.Design/methodology/approach: This part discusses t...

  2. Effects of Rest Interval Length on Acute Battling Rope Exercise Metabolism.

    Science.gov (United States)

    Ratamess, Nicholas A; Smith, Charles R; Beller, Noah A; Kang, Jie; Faigenbaum, Avery D; Bush, Jill A

    2015-09-01

    The purpose of this study was to quantify and compare the acute metabolic responses to battling rope (BR) exercise using 2 different rest intervals. Twelve men and 10 women (age = 20.8 ± 1.3 years) performed a control protocol and 2 BR exercise protocols on separate days (48-72 hours) in random order while connected to a metabolic system. The BR protocol consisted of 8 sets of 30-second intervals (15 seconds of single-arm waves and 15 seconds of double-arm waves) using either a 1-minute (1RI) or 2-minute (2RI) rest interval length. A metronome was used to standardize repetition number/frequency for each exercise, that is, 15 waves for each arm for single-arm waves and 15 repetitions of double-arm waves. The mean oxygen consumption (VO2) values for the entire protocol were significantly higher during the 1RI than 2RI protocol, and values in men were 11.1% (1RI) and 13.5% (2RI) higher than women, respectively, and equated to 52.8 ± 5.5% (men) and 50.0 ± 11.2% (women) of VO2max during 1RI and 40.5 ± 4.5% (men) and 37.7 ± 11.0% (women) of VO2max during 2RI. Energy expenditure values were significantly higher during the 1RI than the 2RI protocol in men (11.93 ± 1.4 vs. 8.78 ± 1.4 kcal·min) and women (7.69 ± 1.3 vs. 5.04 ± 1.7 kcal·min) with values in men statistically higher than women. Blood lactate, mean protocol minute ventilation, and heart rate were significantly higher during the 1RI protocol than the 2RI protocol, and these data were significantly higher in men compared with women. These data demonstrate that BR exercise poses a significant cardiovascular and metabolic stimulus with the mean effects augmented with the use of a short rest interval.

  3. Development of CVD Mullite Coatings for SiC Fibers

    Energy Technology Data Exchange (ETDEWEB)

    Sarin, V.K.; Varadarajan, S.

    2000-03-15

    A process for depositing CVD mullite coatings on SiC fibers for enhanced oxidation and corrosion, and/or act as an interfacial protective barrier has been developed. Process optimization via systematic investigation of system parameters yielded uniform crystalline mullite coatings on SiC fibers. Structural characterization has allowed for tailoring of coating structure and therefore properties. High temperature oxidation/corrosion testing of the optimized coatings has shown that the coatings remain adherent and protective for extended periods. However, preliminary tests of coated fibers showed considerable degradation in tensile strength.

  4. Amplitude-modulated fiber-ring laser

    DEFF Research Database (Denmark)

    Caputo, J. G.; Clausen, Carl A. Balslev; Sørensen, Mads Peter

    2000-01-01

    Soliton pulses generated by a fiber-ring laser are investigated by numerical simulation and perturbation methods. The mathematical modeling is based on the nonlinear Schrödinger equation with perturbative terms. We show that active mode locking with an amplitude modulator leads to a self-starting......Soliton pulses generated by a fiber-ring laser are investigated by numerical simulation and perturbation methods. The mathematical modeling is based on the nonlinear Schrödinger equation with perturbative terms. We show that active mode locking with an amplitude modulator leads to a self......-starting of stable solitonic pulses from small random noise, provided the modulation depth is small. The perturbative analysis leads to a nonlinear coupled return map for the amplitude, phase, and position of the soliton pulses circulating in the fiber-ring laser. We established the validity of this approach...

  5. Amplitude-modulated fiber-ring laser

    DEFF Research Database (Denmark)

    Caputo, J. G.; Clausen, Carl A. Balslev; Sørensen, Mads Peter

    2000-01-01

    Soliton pulses generated by a fiber-ring laser are investigated by numerical simulation and perturbation methods. The mathematical modeling is based on the nonlinear Schrödinger equation with perturbative terms. We show that active mode locking with an amplitude modulator leads to a self-starting......Soliton pulses generated by a fiber-ring laser are investigated by numerical simulation and perturbation methods. The mathematical modeling is based on the nonlinear Schrödinger equation with perturbative terms. We show that active mode locking with an amplitude modulator leads to a self......-starting of stable solitonic pulses from small random noise, provided the modulation depth is small. The perturbative analysis leads to a nonlinear coupled return map for the amplitude, phase, and position of the soliton pulses circulating in the fiber-ring laser. We established the validity of this approach...

  6. Optical Fiber Fusion Splicing

    CERN Document Server

    Yablon, Andrew D

    2005-01-01

    This book is an up-to-date treatment of optical fiber fusion splicing incorporating all the recent innovations in the field. It provides a toolbox of general strategies and specific techniques that the reader can apply when optimizing fusion splices between novel fibers. It specifically addresses considerations important for fusion splicing of contemporary specialty fibers including dispersion compensating fiber, erbium-doped gain fiber, polarization maintaining fiber, and microstructured fiber. Finally, it discusses the future of optical fiber fusion splicing including silica and non-silica based optical fibers as well as the trend toward increasing automation. Whilst serving as a self-contained reference work, abundant citations from the technical literature will enable readers to readily locate primary sources.

  7. Impact of dietary fibers on nutrient management and detoxification organs: gut, liver, and kidneys

    Science.gov (United States)

    Increased dietary fiber (DF) intake elicits a wide range of physiological effects, not just locally in the gut, but systemically. Dietary fibers can greatly alter the gut milieu by impacting the gut microbiome, which in turn influences the gut barrier, gastrointestinal immune and endocrine response...

  8. Non-Destructive Detection of Wire Rope Discontinuities from Residual Magnetic Field Images Using the Hilbert-Huang Transform and Compressed Sensing

    Directory of Open Access Journals (Sweden)

    Juwei Zhang

    2017-03-01

    Full Text Available Electromagnetic methods are commonly employed to detect wire rope discontinuities. However, determining the residual strength of wire rope based on the quantitative recognition of discontinuities remains problematic. We have designed a prototype device based on the residual magnetic field (RMF of ferromagnetic materials, which overcomes the disadvantages associated with in-service inspections, such as large volume, inconvenient operation, low precision, and poor portability by providing a relatively small and lightweight device with improved detection precision. A novel filtering system consisting of the Hilbert-Huang transform and compressed sensing wavelet filtering is presented. Digital image processing was applied to achieve the localization and segmentation of defect RMF images. The statistical texture and invariant moment characteristics of the defect images were extracted as the input of a radial basis function neural network. Experimental results show that the RMF device can detect defects in various types of wire rope and prolong the service life of test equipment by reducing the friction between the detection device and the wire rope by accommodating a high lift-off distance.

  9. Modeling the Initiation of the 2006 December 13 Coronal Mass Ejection in AR 10930: The Structure and Dynamics of the Erupting Flux Rope

    Science.gov (United States)

    Fan, Yuhong

    2016-06-01

    We carry out a 3D magnetohydrodynamic simulation to model the initiation of the coronal mass ejection (CME) on 2006 December 13 in the emerging δ-sunspot active region NOAA 10930. The setup of the simulation is similar to a previous simulation by Fan, but with a significantly widened simulation domain to accommodate the wide CME. The simulation shows that the CME can result from the emergence of a east-west oriented twisted flux rope whose positive, following emerging pole corresponds to the observed positive rotating sunspot emerging against the southern edge of the dominant pre-existing negative sunspot. The erupting flux rope in the simulation accelerates to a terminal speed that exceeds 1500 km s-1 and undergoes a counter-clockwise rotation of nearly 180° such that its front and flanks all exhibit southward directed magnetic fields, explaining the observed southward magnetic field in the magnetic cloud impacting the Earth. With continued driving of flux emergence, the source region coronal magnetic field also shows the reformation of a coronal flux rope underlying the flare current sheet of the erupting flux rope, ready for a second eruption. This may explain the build up for another X-class eruptive flare that occurred the following day from the same region.

  10. Microwave imaging of a hot flux rope structure during the pre-impulsive stage of an eruptive M7.7 solar flare

    CERN Document Server

    Wu, Z; Huang, G; Nakajima, H; Song, H; Melnikov, V; Liu, W; Li, G; Chandrashekhar, K; Jiao, F

    2016-01-01

    Corona structures and processes during the pre-impulsive stage of solar eruption are crucial to understanding the physics leading to the subsequent explosive energy release. Here we present the first microwave imaging study of a hot flux rope structure during the pre-impulsive stage of an eruptive M7.7 solar flare, with the Nobeyama Radioheliograph (NoRH) at 17 GHz. The flux rope is also observed by the SDO/AIA in its hot passbands of 94 and 131 \\AA\\. In the microwave data, it is revealed as an overall arcade-like structure consisting of several intensity enhancements bridged by generally weak emissions, with brightness temperatures ($T_B$) varying from ~10,000~K to ~20,000 K. Locations of microwave intensity enhancements along the structure remain relatively fixed at certain specific parts of the flux rope, indicating that the distribution of emitting electrons is affected by the large scale magnetic configuration of the twisted flux rope. Wavelet analysis shows a pronounced 2-min period of the microwave $T_...

  11. Hedging Double Barriers with Singles

    NARCIS (Netherlands)

    Sbuelz, A.

    2000-01-01

    Double barrier options provide risk managers with good-deal flexibility in tailoring portfolio returns.Their hedges offer full protection only if unwound along the barriers.This work provides non-dynamic hedges that project the risk of double barriers on to single barriers.Non-dynamic hedges overcom

  12. PULP FIBER SIZE CHARACTERIZATION

    Institute of Scientific and Technical Information of China (English)

    Shijie Liu

    2004-01-01

    Pulp fiber length distribution characterization has been examined in this study. Because of the fiber morphology: slender in shape, fiber size distribution characterization is a very difficult task. Traditional technique involves separation of the particles by size,such as Bauer-McNett fiber classifier, and measuring the weight fractions. The particle fractions obtained may or may not reflect the desired size classification.On the other hand, the more recent technique through optical measurement of fiber length is limited by its inability to measure the mass of the particle fractions.Therefore, not only the two techniques fail to generate identical results, either one was accepted to be of better value. Pure hardwood kraft, softwood kraft, and their mixture samples have been measured for their fiber length distributions using an optical fiber quality analyzer: FQA. The data obtained from FQA are extensively studied to investigate more reliable way of representing the fiber length data and thus examining the viable route for measuring the fiber size distributions. It has been found that the fiber length averaged length 11 is a viable indicator of the average pulp fiber length. The fiber size fraction and/or distribution can be represented by the fiber "length" fractions.

  13. 捻向组合对钢丝绳应力分布的影响规律%Influence laws of twisting combination of wire ropes on their stress distribution

    Institute of Scientific and Technical Information of China (English)

    戴珊珊

    2011-01-01

    To reveal influence laws of twisting combination of the wire rope on stress distribution of the steel wire of the wire rope, according to the twisting formation theory of the wire rope, 6 × 19 IWS right-handed wire rope twisted in the same direction and 6 × 19 IWS right-handed wire rope twisted in different directions serve as examples to build their finite element model by ANSYS, and nonlinear FEA in tensile load mode is carried out in combination with the strength theory of the wire rope. The analysis results show that the stress of inside steel wire varies as a secondary space spiral, and the closer to the outside of the wire rope, the greater the stress of the steel wire is; the stress and its variation range of the wire rope twisted in different directions are lower than those of the wire rope twisted in the same direction.%为揭示捻向组合对钢丝绳股内钢丝应力的影响规律,根据钢丝绳捻制成形理论,以6×19IWS型右同向捻和右交互捻2种钢丝绳为例,利用ANSYS软件建立了钢丝绳的有限元模型,并结合钢丝绳的强度理论,对其进行拉伸载荷下的非线性有限元分析。结果表明,钢丝绳股内侧丝的应力呈空间二次螺旋线形状变化,并且侧丝越靠近外侧,其应力值越大;交互捻钢丝绳应力水平及变化幅度低于同向捻钢丝绳。

  14. MICROWAVE IMAGING OF A HOT FLUX ROPE STRUCTURE DURING THE PRE-IMPULSIVE STAGE OF AN ERUPTIVE M7.7 SOLAR FLARE

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Zhao; Chen, Yao; Song, Hongqiang; Chandrashekhar, Kalugodu; Jiao, Fangran [Shandong Provincial Key Laboratory of Optical Astronomy and Solar-Terrestrial Environment, and Institute of Space Sciences, Shandong University, Weihai, Shandong 264209 (China); Huang, Guangli [Purple Mountain Observatory, Chinese Academy of Sciences (CAS), Nanjing, 210008 (China); Nakajima, Hiroshi [Nobeyama Radio Observatory, NAOJ, 462-2 Nobeyama, Minamimaki, Minamisaku, Nagano 384-1305 (Japan); Melnikov, Victor [Central Astronomical Observatory at Pulkovo, Russian Academy of Sciences, Saint Petersburg 196140 (Russian Federation); Liu, Wei [W. W. Hansen Experimental Physics Laboratory, Stanford University, Stanford, CA 94305 (United States); Li, Gang, E-mail: yaochen@sdu.edu.cn [Department of Space Science and CSPAR, University of Alabama in Huntsville, Huntsville, AL 35899 (United States)

    2016-04-01

    Corona structures and processes during the pre-impulsive stage of solar eruption are crucial to understanding the physics leading to the subsequent explosive energy release. Here we present the first microwave imaging study of a hot flux rope structure during the pre-impulsive stage of an eruptive M7.7 solar flare, with the Nobeyama Radioheliograph at 17 GHz. The flux rope is also observed by the SDO/AIA in its hot passbands of 94 and 131 Å. In the microwave data, it is revealed as an overall arcade-like structure consisting of several intensity enhancements bridged by generally weak emissions, with brightness temperatures (T{sub B}) varying from ∼10,000 K to ∼20,000 K. Locations of microwave intensity enhancements along the structure remain relatively fixed at certain specific parts of the flux rope, indicating that the distribution of emitting electrons is affected by the large-scale magnetic configuration of the twisted flux rope. Wavelet analysis shows a pronounced 2 minute period of the microwave T{sub B} variation during the pre-impulsive stage of interest. The period agrees well with that reported for AIA sunward-contracting loops and upward ejective plasmoids (suggested to be reconnection outflows). This suggests that both periodicities are controlled by the same reconnection process that takes place intermittently at a 2 minute timescale. We infer that at least a part of the emission is excited by non-thermal energetic electrons via the gyro-synchrotron mechanism. The study demonstrates the potential of microwave imaging in exploring the flux rope magnetic geometry and relevant reconnection process during the onset of solar eruption.

  15. Nonlinear Photonic Crystal Fibers

    DEFF Research Database (Denmark)

    Hansen, Kim Per

    2004-01-01

    Despite the general recession in the global economy and the collapse of the optical telecommunication market, research within specialty fibers is thriving. This is, more than anything else, due to the technology transition from standard all-glass fibers to photonic crystal fibers, which, instead...... of doping, use a microstructure of air and glass to obtain a refractive index difference between the core and the cladding. This air/glass microstructure lends the photonic crystal fibers a range of unique and highly usable properties, which are very different from those found in solid standard fibers....... The freedom to design the dispersion profile of the fibers is much larger and it is possible to create fibers, which support only a single spatial mode, regardless of wavelength. In comparison, the standard dispersion-shifted fibers are limited by a much lower index-contrast between the core and the cladding...

  16. Glass Fibers: Quo Vadis?

    Directory of Open Access Journals (Sweden)

    Edith Mäder

    2017-02-01

    Full Text Available Since the early 1930s, the process of melting glass and subsequently forming fibers, in particular discontinuous fiber glass or continuous glass filaments, evolved into commercial-scale manufacturing.[...

  17. Fiber Optics Technology.

    Science.gov (United States)

    Burns, William E.

    1986-01-01

    Discusses various applications of fiber optics technology: information systems, industrial robots, medicine, television, transportation, and training. Types of jobs that will be available with fiber optics training (such as electricians and telephone cable installers and splicers) are examined. (CT)

  18. Fiber Optics Instrumentation Development

    Science.gov (United States)

    Chan, Patrick Hon Man; Parker, Allen R., Jr.; Richards, W. Lance

    2010-01-01

    This is a general presentation of fiber optics instrumentation development work being conducted at NASA Dryden for the past 10 years and recent achievements in the field of fiber optics strain sensors.

  19. Cause Analysis of Break of Leveling Wire Rope for Wiggins Gasholder and Countermeasures%威金斯气柜调平钢丝绳断丝原因分析及解决措施

    Institute of Scientific and Technical Information of China (English)

    张善明; 张文义; 梁明明; 张天寿

    2016-01-01

    通过威金斯气柜调平钢丝绳损伤机理的分析,经过钢丝绳破断拉力计算,查找钢丝绳断丝的原因,提出了调平钢丝绳的选型。%Through analysis of the damage mechanism of the leveling wire rope for Wiggins gasholder and calculation of the breaking force of wire rope, the cause of wire break was found out and type selection method for the level wire rope was recommended.

  20. 某钨矿斜井提升钢丝绳断绳事故的原因分析及对策%On the Causes of Steel Wire Rope Fracture and Countermeasures in an Inclined Hoisting

    Institute of Scientific and Technical Information of China (English)

    刘立新

    2011-01-01

    对某钨矿斜井提升的紧急制动工况进行了讨论,找出了断绳的原因,导出了松绳量与冲击力的计算式,指出了松绳的危害性,并提出了相应对策.%This paper studies the emergency braking operating conditions of an incline hoisting. The reasons for the rope fracture are identified by working out a formula of the quantity of the rope laxity and shock load and stating the danger of rope laxity. Some countermeasures are put forward.

  1. Barriers to cancer screening.

    Science.gov (United States)

    Womeodu, R J; Bailey, J E

    1996-01-01

    Many barriers to cancer screening have been summarized and discussed. Barriers have been documented in all patient populations, but some groups such as ethnic minorities and the elderly face unique barriers. The barriers to cancer screening, are multifactorial, but much of the responsibility for change must lie with health care providers and the health care delivery industry. This is not to free the patient of all responsibility, but some significant barriers are beyond their direct control. Take, for example, socioeconomic status, disease knowledge, and culturally related perceptions and myths about cancer detection and treatment. The health care industry must do a better job identifying and overcoming these barriers. The significant effects of provider counseling and advice must not be underestimated. Patients must first be advised, and then further actions must be taken if they reject the screening advice. Did they refuse adherence to recommendations because they do not view themselves as susceptible, because of overwhelming personal barriers, or because of a fatalistic attitude toward cancer detection and treatment? If that is the case, physicians and health care institutions must attempt to change perceptions, educate, and personalize the message so that patients accept their disease susceptibility [table: see text]. Multiple patient and provider risk factors have been identified that can be used to target patients particularly at high risk for inadequate cancer screening and providers at high risk for performing inadequate screening. Research has clearly demonstrated the effectiveness of interventions to improve tracking of patient and physician compliance with screening recommendations. Further research is needed to show the impact of managed-care penetration and payer status on screening efforts, and incentive schemes need to be tested that reward institutions and third-party payers who develop uniform standards and procedures for cancer screening. The

  2. Fundamentals of fiber lasers and fiber amplifiers

    CERN Document Server

    Ter-Mikirtychev, Valerii (Vartan)

    2014-01-01

    This book covers the fundamental aspects of fiber lasers and fiber amplifiers, and includes a wide range of material from laser physics fundamentals to state-of-the-art topics in this rapidly growing field of quantum electronics. Emphasis is placed on the nonlinear processes taking place in fiber lasers and amplifiers, their similarities, differences to, and their advantages over other solid-state lasers. The reader will learn basic principles of solid-state physics and optical spectroscopy of laser active centers in fibers, main operational laser regimes, and practical recommendations and suggestions on fiber laser research, laser applications, and laser product development. The book will be useful for students, researchers, and professionals who work with lasers, in the optical communications, chemical and biological industries, etc.

  3. Oil sorption by lignocellulosic fibers

    Science.gov (United States)

    Beom-Goo. Lee; James S. Han; Roger M. Rowell

    1999-01-01

    The oil sorption capacities of cotton fiber, kenaf bast fiber, kenaf core fiber, and moss fiber were compared after refining, extraction, and reduction in particle sizes. The tests were conducted on diesel oil in a pure form. Cotton fiber showed the highest capacity, followed by kenaf core and bast fibers. Wetting, extraction, and reduction in particle size all...

  4. Lightweight Absorption and Barrier Systems Comprising N-Layer Microperforates

    OpenAIRE

    Kim, Nicholas N; Bolton, J. Stuart

    2017-01-01

    Since the concept of microperforated panels (MPPs) was introduced by Maa, there have been continuing efforts to apply MPPs, primarily as fiber-free sound absorbing materials, typically wall-mounted. The objective of the present work was to demonstrate that multi-layer MPPs can also be effective functional absorbers and lightweight barrier systems. The acoustical properties of lightweight MPPs depend on hole diameter, thickness, porosity, mass per unit area, and air cavity depth. In the case o...

  5. Whole Grains and Fiber

    Science.gov (United States)

    ... whole grains. Does not contain partially hydrogenated oils. Dietary Fiber Dietary fiber is the term for several materials that make ... water. When eaten regularly as part of a diet low in saturated fat and trans fat soluble fiber has been associated with increased diet quality and ...

  6. Resonant filtered fiber amplifiers

    DEFF Research Database (Denmark)

    Alkeskjold, Thomas Tanggaard; Laurila, Marko; Olausson, Christina Bjarnal Thulin

    2013-01-01

    In this paper we present our recent result on utilizing resonant/bandgap fiber designs to achieve high performance ytterbium doped fiber amplifers for achieving diffraction limited beam quality in large mode area fibers, robust bending performance and gain shaping for long wavelength operation of...

  7. Mineral Fiber Toxicology

    Science.gov (United States)

    The chemical and physical properties of different forms of mineral fibers impact biopersistence and pathology in the lung. Fiber chemistry, length, aspect ratio, surface area and dose are critical factors determining mineral fiber-associated health effects including cancer and as...

  8. The Fiber Optic Connection.

    Science.gov (United States)

    Reese, Susan

    2003-01-01

    Describes the fiber optics programs at the Career and Technical Center in Berlin, Pennsylvania and the Charles S. Monroe Technology Center in Loudoun County, Virginia. Discusses the involvement of the Fiber Optic Association with education, research and development, manufacturing, sales, distribution, installation, and maintenance of fiber optic…

  9. Fiber Nonlinearities: A Tutorial

    Institute of Scientific and Technical Information of China (English)

    Govind P. Agrawal

    2003-01-01

    Fiber nonlinearities have long been regarded as being mostly harmful for fiber-optic communication systems. Over the last few years, however, the nonlinear effects are increasingly being used for practical telecommunications applications,the Raman amplification being only one of the recent examples. In this tutorial I review the vario us nonlinear effects occurring in optical fibers from both standpoints..

  10. Fiber Nonlinearities: A Tutorial

    Institute of Scientific and Technical Information of China (English)

    Govind; P.; Agrawal

    2003-01-01

    Fiber nonlinearities have long been regarded as being mostly harmful for fiber-optic communication systems. Over the last few years, however, the nonlinear effects are increasingly being used for practical telecommunications applications, the Raman amplification being only one of the recent examples. In this tutorial I review the various nonlinear effects occurring in optical fibers from both standpoints..

  11. Liquid-core capsules via interfacial polymerization: a free-radical analogy of the nylon rope trick.

    Science.gov (United States)

    Scott, Charles; Wu, Dan; Ho, Chia-Chi; Co, Carlos C

    2005-03-30

    Liquid-core capsules have wide-ranging applications in the high-efficiency encapsulation and controlled release of drugs, dyes, enzymes, and other substrates. Their great utility has driven the rapid development of various preparation techniques. However, there remains no convenient technique for the preparation of submicrometer liquid-core capsules with shell thicknesses less than 100 nm. Here, we demonstrate a new interfacial free-radical polymerization approach for the straightforward preparation of liquid-core polymer capsules. Conceptually, this interfacial free-radical polymerization is analogous to the classical "nylon rope trick" wherein hydrophobic and hydrophilic monomers alternately copolymerize to constrain the polymerization at interfaces, but its free-radical mechanism allows precise control of initiation, which makes it possible to finely disperse the immiscible phases prior to polymerization.

  12. Initiation and Eruption Process of Magnetic Flux Rope from Solar Active Region NOAA 11719 to Earth Directed-CME

    CERN Document Server

    Vemareddy, P

    2014-01-01

    An eruption event launched from solar active region (AR) NOAA 11719 is investigated based on coronal EUV observations and photospheric magnetic field measurements obtained from Solar Dynamic Observatory. The AR consists of a filament channel originating from major sunspot and its south section is associated with inverse-S sigmoidal system as observed in AIA passbands. We regard the sigmoid as the main body of the flux rope (FR). There also exists a twisted flux bundle crossing over this FR. This overlying flux bundle transforms in shape similar to kink-rise evolution which has correspondence with rise motion of the FR. The emission measure and temperature along the FR exhibits increasing trend with its rising motion, indicating reconnection in the thinning current sheet underneath the FR. Net magnetic flux of the AR evaluated at north and south polarities showed decreasing behavior whereas the net current in these fluxes exhibits increasing trend. As the negative (positive) flux is having dominant positive (n...

  13. A new vibration absorber based on the hysteresis of multi-configuration NiTiNOL-steel wire ropes assemblies

    Directory of Open Access Journals (Sweden)

    Carboni Biagio

    2014-01-01

    Full Text Available A new vibration absorber based on the restoring forces of NiTiNOL and mixed NiTiNOL-steel wire ropes subject to flexural and coupled tensile-flexural states is presented. The peculiar hysteresis of the device is due to the simultaneous presence of interwire friction and phase tranformations. An extension of the Bouc-Wen model is proposed to fit the experimental force-displacement cycles by employing the Differential Evolutionary optimization algorithm. The genetic-like optimization is carried out both for the constitutive identification and for the design of the vibration absorber. The effectiveness of the device is proved experimentally by a series of shaking table tests on a multi-story scale building.

  14. Collision of an Arched Plasma-Filled Flux Rope with a Target Cloud of Initially Neutral Gas

    Science.gov (United States)

    Wongwaitayakornkul, Pakorn; Bellan, Paul M.

    2015-11-01

    The Caltech solar loop experiment apparatus had been used to create an arched plasma-filled flux rope that expands to collide with a pre-injected initially-neutral gas. We investigated such a situation in two regimes: (i) plasma made by heavy gas impacting a much lighter neutral gas cloud and (ii) a light-gas plasma impacting much heavier neutral gas. The neutral gas became ionized immediately upon impact. In regime (i), multiple shock layers were formed in the target cloud; these magnetized collisionless shocks are relevant to solar physics as such shocks develop ahead of Coronal Mass Ejections and occur in Co-rotating Interaction Regions. In regime (ii), plasma expansion was inhibited. In both cases, fast camera images, magnetic probe measurements, and spectroscopy data will be reported. The analysis of plasma and shock expansion, as well as associated density and temperature changes, will be presented.

  15. RANS computations for identification of 1-D cavitation model parameters: application to full load cavitation vortex rope

    Science.gov (United States)

    Alligné, S.; Decaix, J.; Müller, A.; Nicolet, C.; Avellan, F.; Münch, C.

    2017-04-01

    Due to the massive penetration of alternative renewable energies, hydropower is a key energy conversion technology for stabilizing the electrical power network by using hydraulic machines at off design operating conditions. At full load, the axisymmetric cavitation vortex rope developing in Francis turbines acts as an internal source of energy, leading to an instability commonly referred to as self-excited surge. 1-D models are developed to predict this phenomenon and to define the range of safe operating points for a hydropower plant. These models require a calibration of several parameters. The present work aims at identifying these parameters by using CFD results as objective functions for an optimization process. A 2-D Venturi and 3-D Francis turbine are considered.

  16. Growth-Prediction Model for Blue Mussels (Mytilus edulis on Future Optimally Thinned Farm-Ropes in Great Belt (Denmark

    Directory of Open Access Journals (Sweden)

    Poul S. Larsen

    2016-07-01

    Full Text Available A recently developed BioEnergetic Growth (BEG model for blue mussels (Mytilus edulis, valid for juvenile mussels, has been further developed to an ‘extended model’ and an alternative ‘ad hoc BEG model’ valid for post-metamorphic mussels, where the latter accounts for changing ambient chl a concentration. It was used to predict the growth of M. edulis on optimally thinned farm-ropes in Great Belt (Denmark, from newly settled post-metamorphic mussels of an initial shell size of 0.8 mm to marketable juvenile 30–35 mm ‘mini-mussels’. Such mussels will presumably in the near future be introduced as a new Danish, smaller-sized consumer product. Field data for actual growth (from Day 0 = 14 June 2011 showed that size of ‘mini-mussel’ was reached on Day 109 (Oct 1 and length 38 mm on Day 178 (Dec 9 while the corresponding predictions using the extended model were Day 121 (Oct 13 and Day 159 (Nov 20. Similar results were obtained by use of the ad hoc BEG model which also demonstrated the sensitivity of growth prediction to levels of chl a concentration, but less to temperature. The results suggest that it is possible (when the conditions are optimal, i.e., no intraspecific competition ensured by sufficient thinning to produce ‘mini-mussels’ in Great Belt during one season, but not the usual marketable 45-mm mussels. We suggest that the prediction model may be used as a practical instrument to evaluate to what degree the actual growth of mussels on farm ropes due to intraspecific competition may deviate from the potential (optimal growth under specified chl a and temperature conditions, and this implies that the effect of thinning to optimize the individual growth by eliminating intraspecific competition can be rationally evaluated.

  17. Support or Barrier?

    DEFF Research Database (Denmark)

    Sanden, Guro Refsum; Lønsmann, Dorte

    This study offers a critical look at how corporate-level language management influences front-line language practices among employees in three multinational corporations (MNCs) headquartered in Scandinavia. Based on interview and document data, we examine, firstly, what front-line practices emplo...... to a discussion of how a company’s language policy may be seen as both support and a barrier....

  18. Overcoming Language Barriers

    Science.gov (United States)

    De Buda, Yvonne

    1976-01-01

    Many family physicians in Canada experience language and cultural barriers between themselves and their patients. Several aspects of the ensuing problems are described and some practical suggestions for solutions are made. The importance of health education for new Canadians in the family physician's office as well as through the media and community projects is stressed. Imagesp68-ap68-bp70-a PMID:21308059

  19. Barriers to obesity treatment.

    Science.gov (United States)

    Mauro, Marina; Taylor, Valerie; Wharton, Sean; Sharma, Arya M

    2008-05-01

    Obesity, one of the most prevalent health problems in the Western world, is a chronic and progressive condition. Therefore, as with other chronic diseases, patients with obesity require lifelong treatment. Long-term efficacy and effectiveness of obesity treatments is notoriously poor. This may in part be attributable to the substantial barriers that undermine long-term obesity management strategies. These can include lack of recognition of obesity as a chronic condition, low socioeconomic status, time constraints, intimate saboteurs, and a wide range of comorbidities including mental health, sleep, chronic pain, musculoskeletal, cardiovascular, respiratory, digestive and endocrine disorders. Furthermore, medications used to treat some of these disorders may further undermine weight-loss efforts. Lack of specific obesity training of health professionals, attitudes and beliefs as well as coverage and availability of obesity treatments can likewise pose important barriers. Health professionals need to take care to identify, acknowledge and address these barriers where possible to increase patient success as well as compliance and adherence with treatments. Failure to do so may further undermine the sense of failure, low self esteem and self efficacy already common among obese individuals. Addressing treatment barriers can save resources and increase the prospect of long-term success.

  20. Barrier mechanisms in the Drosophila blood-brain barrier

    OpenAIRE

    Samantha Jane Hindle; Roland Jerome Bainton

    2014-01-01

    The invertebrate blood-brain barrier field is growing at a rapid pace and, in recent years, studies have shown a physiologic and molecular complexity that has begun to rival its vertebrate counterpart. Novel mechanisms of paracellular barrier maintenance through GPCR signaling were the first demonstrations of the complex adaptive mechanisms of barrier physiology. Building upon this work, the integrity of the invertebrate blood-brain barrier has recently been shown to require coordinated funct...

  1. Fiber draw synthesis

    Science.gov (United States)

    Orf, Nicholas D.; Shapira, Ofer; Sorin, Fabien; Danto, Sylvain; Baldo, Marc A.; Joannopoulos, John D.; Fink, Yoel

    2011-01-01

    The synthesis of a high-melting temperature semiconductor in a low-temperature fiber drawing process is demonstrated, substantially expanding the set of materials that can be incorporated into fibers. Reagents in the solid state are arranged in proximate domains within a fiber preform. The preform is fluidized at elevated temperatures and drawn into fiber, reducing the lateral dimensions and bringing the domains into intimate contact to enable chemical reaction. A polymer preform containing a thin layer of selenium contacted by tin–zinc wires is drawn to yield electrically contacted crystalline ZnSe domains of sub-100-nm scales. The in situ synthesized compound semiconductor becomes the basis for an electronic heterostructure diode of arbitrary length in the fiber. The ability to synthesize materials within fibers while precisely controlling their geometry and electrical connectivity at submicron scales presents new opportunities for increasing the complexity and functionality of fiber structures.

  2. Nonlinear Photonic Crystal Fibers

    DEFF Research Database (Denmark)

    Hansen, Kim Per

    2004-01-01

    , leading to reduced mode confinement and dispersion flexibility. In this thesis, we treat the nonlinear photonic crystal fiber – a special sub-class of photonic crystal fibers, the core of which has a diameter comparable to the wavelength of the light guided in the fiber. The small core results in a large...... nonlinear coefficient and in various applications, it is therefore possible to reduce the required fiber lengths quite dramatically, leading to increased stability and efficiency. Furthermore, it is possible to design these fibers with zero-dispersion at previously unreachable wavelengths, paving the way...... for completely new applications, especially in and near the visible wavelength region. One such application is supercontinuum generation. Supercontinuum generation is extreme broadening of pulses in a nonlinear medium (in this case a small-core fiber), and depending on the dispersion of the fiber, it is possible...

  3. Dual layer hollow fiber sorbents: Concept, fabrication and characterization

    KAUST Repository

    Bhandari, Dhaval

    2013-02-01

    Hollow fiber sorbents are pseudo-monolithic separations materials created with fiber spinning technology using a polymer \\'binder\\', impregnated with high loadings of sorbent \\'fillers\\' [1]. To increase purified gas recovery during the sorption step and to ensure consistent sorption capacity over repeated cycles, a dense, thin polymer barrier layer on the fiber sorbents is needed to allow only thermal interactions between the sorbate loaded layer and the thermal regeneration fluid. This paper considers materials and methods to create delamination-free dual layer fiber sorbents, with a porous core and a barrier sheath layer formed using a simultaneous co-extrusion process. Low permeability polymers were screened for sheath layer creation, with the core layer comprising cellulose acetate polymer as binder and zeolite NaY as sorbent fillers. Appropriate core and sheath layer dope compositions were determined by the cloud-point method and rheology measurements. The morphology of the as-spun fibers was characterized in detail by SEM, EDX and gas permeation analysis. A simplified qualitative model is described to explain the observed fiber morphology. The effects of core, sheath spin dope and bore fluid compositions, spinning process parameters such as air-gap height, spin dope and coagulation bath temperatures, and elongation draw ratio are examined in detail. © 2012 Elsevier B.V. All rights reserved.

  4. Geophysical characterization of subsurface barriers

    Energy Technology Data Exchange (ETDEWEB)

    Borns, D.J.

    1995-08-01

    An option for controlling contaminant migration from plumes and buried waste sites is to construct a subsurface barrier of a low-permeability material. The successful application of subsurface barriers requires processes to verify the emplacement and effectiveness of barrier and to monitor the performance of a barrier after emplacement. Non destructive and remote sensing techniques, such as geophysical methods, are possible technologies to address these needs. The changes in mechanical, hydrologic and chemical properties associated with the emplacement of an engineered barrier will affect geophysical properties such a seismic velocity, electrical conductivity, and dielectric constant. Also, the barrier, once emplaced and interacting with the in situ geologic system, may affect the paths along which electrical current flows in the subsurface. These changes in properties and processes facilitate the detection and monitoring of the barrier. The approaches to characterizing and monitoring engineered barriers can be divided between (1) methods that directly image the barrier using the contrasts in physical properties between the barrier and the host soil or rock and (2) methods that reflect flow processes around or through the barrier. For example, seismic methods that delineate the changes in density and stiffness associated with the barrier represents a direct imaging method. Electrical self potential methods and flow probes based on heat flow methods represent techniques that can delineate the flow path or flow processes around and through a barrier.

  5. Hierarchically Structured Electrospun Fibers

    Directory of Open Access Journals (Sweden)

    Nicole E. Zander

    2013-01-01

    Full Text Available Traditional electrospun nanofibers have a myriad of applications ranging from scaffolds for tissue engineering to components of biosensors and energy harvesting devices. The generally smooth one-dimensional structure of the fibers has stood as a limitation to several interesting novel applications. Control of fiber diameter, porosity and collector geometry will be briefly discussed, as will more traditional methods for controlling fiber morphology and fiber mat architecture. The remainder of the review will focus on new techniques to prepare hierarchically structured fibers. Fibers with hierarchical primary structures—including helical, buckled, and beads-on-a-string fibers, as well as fibers with secondary structures, such as nanopores, nanopillars, nanorods, and internally structured fibers and their applications—will be discussed. These new materials with helical/buckled morphology are expected to possess unique optical and mechanical properties with possible applications for negative refractive index materials, highly stretchable/high-tensile-strength materials, and components in microelectromechanical devices. Core-shell type fibers enable a much wider variety of materials to be electrospun and are expected to be widely applied in the sensing, drug delivery/controlled release fields, and in the encapsulation of live cells for biological applications. Materials with a hierarchical secondary structure are expected to provide new superhydrophobic and self-cleaning materials.

  6. [The cultural barrier in care].

    Science.gov (United States)

    Djadaoudjee, Lisa

    2013-11-01

    French cultural diversity is evident within French hospitals, where nurses are confronted with communication problems resulting from the language barrier. While communication is indeed essential, there is another important aspect of caring for a patient for behind the language barrier lies a cultural barrier which must be taken into account in order to provide high-quality care.

  7. Thermal barrier coating materials

    Directory of Open Access Journals (Sweden)

    David R. Clarke

    2005-06-01

    Full Text Available Improved thermal barrier coatings (TBCs will enable future gas turbines to operate at higher gas temperatures. Considerable effort is being invested, therefore, in identifying new materials with even better performance than the current industry standard, yttria-stabilized zirconia (YSZ. We review recent progress and suggest that an integrated strategy of experiment, intuitive arguments based on crystallography, and simulation may lead most rapidly to the development of new TBC materials.

  8. Processing and Performance of Alumina Fiber Reinforced Alumina Composites

    Institute of Scientific and Technical Information of China (English)

    P.Y.Lee; T.Uchijima; T.Yano

    2003-01-01

    Processing of alumina fiber-reinforced alumina matrix composites by hot-pressing was described. The mechanical properties of the composites fabricated by different sintering conditions including temperature and pressure have been investigated. The results indicated that the higher sintering temperature and pressure corresponded to the higher bulk density and higher maximum strength of the composite, whereas the pseudo-ductility of the composite was lower. The preliminary results of the composite with monazite-coated fibers showed that maximum strength could be improved up to 35% compared with the noncoated fiber composite in the same sintering condition. Moreover, the fracture behavior of the composite changed from completely brittle fracture to non-brittle fracture under the suitable sintering conditions. SEM observation of the fracture surface indicated that the coating worked as a protective barrier and avoided sintering of the fibers together even at high temperature and pressure during densification process.

  9. Fiber Lasers V

    DEFF Research Database (Denmark)

    Hansen, Kim P.; Olausson, Christina Bjarnal Thulin; Broeng, Jes

    2008-01-01

    High-power fiber lasers and amplifiers have gained tremendous momentum in the last five years, and many of the traditional manufactures of gas and solid-state lasers are pursuing the attractive fiber-based systems, which are now displacing the old technology in many areas. High-power fiber laser...... laser system. We present the latest advancements within airclad fiber technology including a new 70 μm single-mode polarization-maintaining rod-type fiber capable of amplifying to MW power levels. Furthermore we describe the novel airclad based pump combiners and their use in a completely monolithic 350...... W CW fiber laser system with an M2 of less than 1.1. Finally, we briefly touch upon the subject of photo darkening and its origin....

  10. Polymer optical fiber fuse

    CERN Document Server

    Mizuno, Yosuke; Tanaka, Hiroki; Nakamura, Kentaro

    2013-01-01

    Although high-transmission-capacity optical fibers are in demand, the problem of the fiber fuse phenomenon needs to be resolved to prevent the destruction of fibers. As polymer optical fibers become more prevalent, clarifying their fuse properties has become important. Here, we experimentally demonstrate a fuse propagation velocity of 21.9 mm/s, which is 1 to 2 orders of magnitude slower than that in standard silica fibers. The achieved threshold power density and proportionality constant between the propagation velocity and the power density are respectively 1/186 of and 16.8 times the values for silica fibers. An oscillatory continuous curve instead of periodic voids is formed after the passage of the fuse. An easy fuse termination method is presented herein, along with its potential plasma applications.

  11. Airclad fiber laser technology

    DEFF Research Database (Denmark)

    Hansen, Kim P.; Olausson, Christina Bjarnal Thulin; Broeng, Jes

    2008-01-01

    High-power fiber lasers and amplifiers have gained tremendous momentum in the last five years, and many of the traditional manufactures of gas and solid-state lasers are pursuing the attractive fiber-based systems, which are now displacing the old technology in many areas. High-power fiber laser...... laser system. We present the latest advancements within airclad fiber technology including a new 70 μm single-mode polarization-maintaining rod-type fiber capable of amplifying to MW power levels. Furthermore we describe the novel airclad based pump combiners and their use in a completely monolithic 350...... W CW fiber laser system with an M2 of less than 1.1. Finally, we briefly touch upon the subject of photo darkening and its origin....

  12. Airclad fiber laser technology

    DEFF Research Database (Denmark)

    Hansen, Kim P.; Olausson, Christina Bjarnal Thulin; Broeng, Jes

    2011-01-01

    High-power fiber lasers and amplifiers have gained tremendous momentum in the last 5 years. Many of the traditional manufacturers of gas and solid-state lasers are now pursuing the fiber-based systems, which are displacing the conventional technology in many areas. High-power fiber laser systems...... laser system. We present the latest advancements within airclad fiber technology including a new 100 m single-mode polarization-maintaining rod-type fiber capable of amplifying to megawatt power levels. Furthermore, we describe the novel airclad-based pump combiners and their use in a completely...... monolithic 350 W cw fiber laser system with an M2 of less than 1.1. © 2011 Society of Photo-Optical Instrumentation Engineers (SPIE)....

  13. Raman fiber lasers

    Science.gov (United States)

    Supradeepa, V. R.; Feng, Yan; Nicholson, Jeffrey W.

    2017-02-01

    High-power fiber lasers have seen tremendous development in the last decade, with output powers exceeding multiple kilowatts from a single fiber. Ytterbium has been at the forefront as the primary rare-earth-doped gain medium owing to its inherent material advantages. However, for this reason, the lasers are largely confined to the narrow emission wavelength region of ytterbium. Power scaling at other wavelength regions has lagged significantly, and a large number of applications rely upon the diversity of emission wavelengths. Currently, Raman fiber lasers are the only known wavelength agile, scalable, high-power fiber laser technology that can span the wavelength spectrum. In this review, we address the technology of Raman fiber lasers, specifically focused on the most recent developments. We will also discuss several applications of Raman fiber lasers in laser pumping, frequency conversion, optical communications and biology.

  14. 29 CFR 1910.184 - Slings.

    Science.gov (United States)

    2010-07-01

    ... alloy steel chain, wire rope, metal mesh, natural or synthetic fiber rope (conventional three strand construction), and synthetic web (nylon, polyester, and polypropylene). (b) Definitions. Angle of loading is.... Braided wire rope is a wire rope formed by plaiting component wire ropes. Bridle wire rope sling is a...

  15. Superhydrophobic lignocellulosic wood fiber/mineral networks.

    Science.gov (United States)

    Mirvakili, Mehr Negar; Hatzikiriakos, Savvas G; Englezos, Peter

    2013-09-25

    Lignocellulosic wood fibers and mineral fillers (calcium carbonate, talc, or clay) were used to prepare paper samples (handsheets), which were then subjected to a fluorocarbon plasma treatment. The plasma treatment was performed in two steps: first using oxygen plasma to create nanoscale roughness on the surface of the handsheet, and second fluorocarbon deposition plasma to add a layer of low surface energy material. The wetting behavior of the resulting fiber/mineral network (handsheet) was determined. It was found the samples that were subjected to oxygen plasma etching prior to fluorocarbon deposition exhibit superhydrophobicity with low contact angle hysteresis. On the other hand, those that were only treated by fluorocarbon plasma resulted in "sticky" hydrophobicity behavior. Moreover, as the mineral content in the handsheet increases, the hydrophobicity after plasma treatment decreases. Finally, it was found that although the plasma-treated handsheets show excellent water repellency they are not good water vapor barriers.

  16. 钢丝绳淋油装置的改造设计及故障分析%Design and Fault Analysis of Wire Rope Oil Dripping Device

    Institute of Scientific and Technical Information of China (English)

    穆亚娟

    2014-01-01

    本文主要分析了钢丝绳除油装置设计技术难点、创新点以及电气原理图设计,最后分析总结了常见故障的分析及解决方法。%This paper mainly analyzes the difficult points and innovative points of steel wire rope in design and electrical schematic diagram, finally summarizes the common problems and solutions.

  17. Comparative study on the treatment of Rockwood type III acute acromioclavicular dislocation: Clinical results from the TightRope(®) technique vs. K-wire fixation.

    Science.gov (United States)

    Horst, K; Garving, C; Thometzki, T; Lichte, P; Knobe, M; Dienstknecht, T; Hofman, M; Pape, H-C

    2017-04-01

    The aim of this study was to address the inconsistency regarding the operative treatment of Rockwood type III acromioclavicular joint separation. We compared results after single- and double TightRope(®) reduction with results after acromioclavicular transfixation via K-wires only and additional ligament augmentation in acute acromioclavicular (AC) joint separations graded Rockwood type III, and hypothesized that the TightRope(®) technique leads to better clinical and radiological results. We conducted a retrospective clinical cohort study and included 42 consecutive patients (mean age 43 years [24-66]) diagnosed and operatively treated between 2004 and 2012 (mean follow-up was 54.6 months [15-118]). Specific shoulder scores as well as scores reflecting the patients' overall mental and physical health status were used. Radiological evaluation was also performed. The SF12 test revealed comparability between all subgroups. Specific shoulder tests and a visual analogue scale demonstrated comparable results. Radiographic measurements showed a significant reduction in the AC distance and CC distance after surgery in all subgroups. The early complication rate was 9.5% for all patients, while late complications occurred in 14.3% of all cases. Compared to the established methods, the operative TightRope(®) procedures represent a safe alternative in Rockwood III injuries. All investigated techniques predominantly led to good and excellent clinical results in acute Rockwood type III AC joint instabilities. Avoidance of material removal and shorter hospital stays appear to speak in favour for the TightRope(®) technique. IV. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  18. Metallization of Kevlar fibers with gold.

    Science.gov (United States)

    Little, Brian K; Li, Yunfeng; Cammarata, V; Broughton, R; Mills, G

    2011-06-01

    Electrochemical gold plating processes were examined for the metallization of Kevlar yarn. Conventional Sn(2+)/Pd(2+) surface activation coupled with electroless Ni deposition rendered the fibers conductive enough to serve as cathodes for electrochemical plating. The resulting coatings were quantified gravimetrically and characterized via adhesion tests together with XRD, SEM, TEM; the coatings effect on fiber strength was also probed. XRD data showed that metallic Pd formed during surface activation whereas amorphous phases and trace amounts of pure Ni metal were plated via the electroless process. Electrodeposition in a thiosulfate bath was the most efficient Au coating process as compared with the analogous electroless procedure, and with electroplating using a commercial cyanide method. Strongly adhering coatings resulted upon metallization with three consecutive electrodepositions, which produced conductive fibers able to sustain power outputs in the range of 1 W. On the other hand, metallization affected the tensile strength of the fiber and defects present in the metal deposits make questionable the effectiveness of the coatings as protective barriers.

  19. Fiber laser performance in industrial applications

    Science.gov (United States)

    McCulloch, S.; Hassey, A.; Harrison, P.

    2013-02-01

    Fiber lasers are competing with the traditional CO2 Laser, Plasma, Water Jet and Press Punch technology. This paper concentrates on the drivers behind the progress that cutting and welding market. Thin metal cutting in this case is defined as below 4mm and the dominant technology has been the Press Punch for higher quality, large volume components and Plasma for lower quality, small quantities. Up until the fiber lasers were commercially available many machine manufacturers were deterred from incorporating lasers due to the technical barriers posed by the lasers available at that time. In particular fiber laser requires no maintenance does not necessitate a beam path to be aligned and kept free of contaminant so have encouraged many traditionally non-laser machine builders to integrate fiber sources into a variety of applications and push the performance envelope. All of the components to build a fibre laser cutting or welding system are now available "off-the shelf" which is even allowing end users to design and build their own systems directly in production environments.

  20. Nanotailored Carbon Fibers

    Science.gov (United States)

    2012-04-27

    precursor fiber and also utilize bi- component spinning along with gel spinning, to obtain small diameter fibers. Various processing parameters during...shape of the fiber. In this regard, we have also conducted single component gel spinning using different gelation bath temperatures (100% methanol). SEM...domestic dishwashing detergent, Palmolive antibacterial , 3 wt% detergent and 97% water) for about a week and retested. *** For 5th trial, tungsten

  1. Continuous Fiber Ceramic Composites

    Energy Technology Data Exchange (ETDEWEB)

    None

    2002-09-01

    Fiber-reinforced ceramic composites demonstrate the high-temperature stability of ceramics--with an increased fracture toughness resulting from the fiber reinforcement of the composite. The material optimization performed under the continuous fiber ceramic composites (CFCC) included a series of systematic optimizations. The overall goals were to define the processing window, to increase the robustinous of the process, to increase process yield while reducing costs, and to define the complexity of parts that could be fabricated.

  2. Insulated Fiber Brush.

    Science.gov (United States)

    An insulated-strand fiber brush is provided for a DC motor /generator. The brush is comprised of a plurality of fiber segments which are insulated from one another near the contact surface of a rotor bar. In one embodiment, insulating spacers are fixed to a brush assembly and wear with the fibers, and in another embodiment insulation is provided by a separate shell. (Author)

  3. SILICA SURFACED CARBON FIBERS.

    Science.gov (United States)

    carbon fibers . Several economical and simple processes were developed for obtaining research quantities of silica surfaced carbon filaments. Vat dipping processes were utilized to deposit an oxide such as silica onto the surface and into the micropores of available carbon or graphite base fibers. High performance composite materials were prepared with the surface treated carbon fibers and various resin matrices. The ablative characteristics of these composites were very promising and exhibited fewer limitations than either silica or...treated

  4. Aplicador de herbicidas com pavios de corda: primeiros resultados de controle Rope wick applicator for herbicides: 1. fistweed control results

    Directory of Open Access Journals (Sweden)

    R.M. Prudente

    1985-12-01

    Full Text Available Os aplicadores de herbicidas baseados em pavios de corda foram introducidos e largamente aceitos nos EUA a partir de 1978, devido a sua grande simplicidade, baixo custo operacional e economia do herbicida. Um protótipo fabricado com material inteiramente nacional, montado sobre duas rodas de bicicleta, tracionado pelo homem, tendo uma barra de 2 metros de comprimento, foi desenvolvido pelo departamento de defesa fitossanitária da Faculdade de Ciência Agrárias e Veterinárias de Jaboticabal - UNESP e submetido a um ensaio preliminar. A área estava uniformemente coberta com vegetação natural, com altura média de 55 cm e a maioria das plantas daninhas em estádio de maturação das sementes. O aplicador foi deslocado à velocidade de 2,7 km/h, com consumo médio de 9,3 litros de calda por hectare, tendo aplicado diluições de glyphosate em água, nas proporções de 1:2, 1:4 e 1:6 (produto comercial: água e comparado à pulverização convencional tratorizada, efetuada com velocidade de 4,2 km/h e consumo de 4 litros de produto comercial com 310 litros de água por hectare. As avaliações do controle foram efetuadas através da determinação da biomassa epígea por ocasião de aplicação aos 15 e 33 dias após , além da atribuição de notas aos 33 dias da aplicação. Os resultados mostraram-se promissores para o protótipo, que pode desde já ser considerado um precioso instrumento para o manejo de plantas daninhas.Rope wick applicators were introduced and widely accepted in the U.S.A. since 1978 due to its simplicity, low operational cost and reduced amount of herbicide used. A first working built with material available in local market was assembled by the Department of Crop Protection of Faculdade de Ciências Agrárias e Veterinárias - UNESP, Jaboticabal, Brazil, and preliminary results are reported in this paper. This model is mounted on two ordinary biclycle wheels , hand pulled, having 2 m wide boom with rope wicks. The

  5. Agave Americana Leaf Fibers

    Directory of Open Access Journals (Sweden)

    Ashish Hulle

    2015-02-01

    Full Text Available The growing environmental problems, the problem of waste disposal and the depletion of non-renewable resources have stimulated the use of green materials compatible with the environment to reduce environmental impacts. Therefore, there is a need to design products by using natural resources. Natural fibers seem to be a good alternative since they are abundantly available and there are a number of possibilities to use all the components of a fiber-yielding crop; one such fiber-yielding plant is Agave Americana. The leaves of this plant yield fibers and all the parts of this plant can be utilized in many applications. The “zero-waste” utilization of the plant would enable its production and processing to be translated into a viable and sustainable industry. Agave Americana fibers are characterized by low density, high tenacity and high moisture absorbency in comparison with other leaf fibers. These fibers are long and biodegradable. Therefore, we can look this fiber as a sustainable resource for manufacturing and technical applications. Detailed discussion is carried out on extraction, characterization and applications of Agave Americana fiber in this paper.

  6. Oriented Fiber Filter Media

    Directory of Open Access Journals (Sweden)

    R. Bharadwaj

    2008-06-01

    Full Text Available Coalescing filters are widely used throughout industry and improved performance will reduce droplet emissions and operating costs. Experimental observations show orientation of micro fibers in filter media effect the permeability and the separation efficiency of the filter media. In this work two methods are used to align the fibers to alter the filter structure. The results show that axially aligned fiber media improve quality factor on the order of 20% and cutting media on an angle from a thick layered media can improve performance by about 40%. The results also show the improved performance is not monotonically correlated to the average fiber angle of the medium.

  7. PULP FIBER SIZE CHARACTERIZATION

    Institute of Scientific and Technical Information of China (English)

    ShijieLiu

    2004-01-01

    Pulp fiber length distribution characterization hasbeen examined in this study. Because of the fibermorphology: slender in shape, fiber size distributioncharacterization is a very difficult task. Traditionaltechnique involves separation of the particles by size,such as Bauer-McNett fiber classifier, and measuringthe weight fractions. Themay or may not reflect theparticle fractions obtaineddesired size classification.On the other hand, the more recent technique throughoptical measurement of fiber length is limited by itsinability to measure the mass of the particle fractions.Therefore, not only the two techniques fail togenerate identical results, either one was accepted tobe of better value. Pure hardwood kraft, softwoodkraft, and their mixture samples have been measuredfor their fiber length distributions using an opticalfiber quality analyzer: FQA. The data obtained fromFQA are extensively studied to investigate morereliable way of representing the fiber length data andthus examining the viable route for measuring thefiber size distributions. It has been found that thefiber length averaged length 1~ is a viable indicator ofthe average pulp fiber length. The fiber size fractionand/or distribution can be represented by the fiber"length" fractions.

  8. ZBLAN, Silica Fiber Comparison

    Science.gov (United States)

    1998-01-01

    This graph depicts the increased signal quality possible with optical fibers made from ZBLAN, a family of heavy-metal fluoride glasses (fluorine combined zirconium, barium, lanthanum, aluminum, and sodium) as compared to silica fibers. NASA is conducting research on pulling ZBLAN fibers in the low-g environment of space to prevent crystallization that limits ZBLAN's usefulness in optical fiber-based communications. In the graph, a line closer to the black theoretical maximum line is better. Photo credit: NASA/Marshall Space Flight Center

  9. Collection of Oral Fluids Using Cotton Ropes as a Sampling Method to Detect Foot-and-Mouth Disease Virus Infection in Pigs.

    Science.gov (United States)

    Vosloo, W; Morris, J; Davis, A; Giles, M; Wang, J; Nguyen, H T T; Kim, P V; Quach, N V; Le, P T T; Nguyen, P H N; Dang, H; Tran, H X; Vu, P P; Hung, V V; Le, Q T; Tran, T M; Mai, T M T; Le, Q T V; Singanallur, N B

    2015-10-01

    In high-density farming practices, it is important to constantly monitor for infectious diseases, especially diseases that have the potential to spread rapidly between holdings. Pigs are known to amplify foot-and-mouth disease (FMD) by excreting large amounts of virus, and it is therefore important to detect the virus quickly and accurately to minimize the spread of disease. Ropes were used to collect oral fluid samples from pigs, and each sample was compared to saliva samples collected from individual animals by detecting FMD virus RNA using real-time PCR. Two different experiments are described where groups of pigs were infected with different serotypes of FMD virus, either with or without vaccination, and unvaccinated pigs were kept in aerosol contact. The sensitivity of the rope sampling varied between 0.67 and 0.92, and the statistical agreement between this method and individual sampling ranged from substantial to moderate for the two different serotypes. The ease of collecting oral fluids using ropes together with the high sensitivity of subsequent FMD detection through PCR indicates that this could be a useful method to monitor pig populations for FMD virus infection. With further validation of the sensitivity of detection of FMD virus RNA, this can be a cost-effective, non-invasive diagnostic tool.

  10. 浅谈打捞钢丝首趟下深%Introduction to salvage wire rope under the first trip depth

    Institute of Scientific and Technical Information of China (English)

    张士阳

    2015-01-01

    目前我国油田生产单位在机械清蜡和测试等方面,依旧广泛采用钢丝绳清蜡绞车对油井进行机械刮蜡,采用钢丝绳带入测试仪器进行测试。这种工况易导致钢丝绳及刮刀或测试仪器落入井内。打捞钢丝时,要保证每次打捞既不捞空,又不捞断有一定难度,尤其是第一次打捞时,打捞工具下入的深度是整个打捞过程的重点。%Our production units in terms of mechanical wax removal and testing,still widely used paraffin hoist wire rope for oil well machinery scraping wax and wire rope into the test apparatus for testing.Both of these conditions can cause wire rope and scraper or test equipment from falling into the hole.When fishing wire,to ensure that fishing does not remove empty at a time without fishing has been difficult,especially when fishing for the first time,fishing tools down into the depth of the focus of entire salvaging process.

  11. Study on safety coefficient of main rope in mine%矿用提升钢丝绳安全系数的研究

    Institute of Scientific and Technical Information of China (English)

    封士彩; 张晓英

    2001-01-01

    Taking single-rope drum wind as analysing object,the paper analyses safety coefficient of main rope using the dynamic state method under speed up,constant the speed, reduce the speed and emergency braking, change law is gotten comparing them with"mine safety standards",points out existing problems and solving methods of safety coefficient in selecting and using rope in home.%以立井单绳缠绕式提升机为研究对象,从动态方面分析提升钢丝绳安全系数,得出其在加速、等速、减速、紧急制动状态下的变化规律,与我国《煤矿安全规程》的要求进行比较,指出目前国内选择和使用提升钢丝绳在安全系数方面存在的问题和解决办法。

  12. The Solar Connection of Enhanced Heavy Ion Charge States in the Interplanetary Medium: Implications for the Flux-Rope Structure of CMEs

    Science.gov (United States)

    Gopalswamy, N.; Makela, P.; Akiyama, S.; Xie, H.; Yashiro, S.; Reinard, A. A.

    2013-01-01

    We investigated a set of 54 interplanetary coronal mass ejection (ICME) events whose solar sources are very close to the disk center (within +/- 15deg from the central meridian). The ICMEs consisted of 23 magnetic-cloud (MC) events and 31 non-MC events. Our analyses suggest that the MC and non-MC ICMEs have more or less the same eruption characteristics at the Sun in terms of soft X-ray flares and CMEs. Both types have significant enhancements in ion charge states, although the non-MC structures have slightly lower levels of enhancement. The overall duration of charge-state enhancement is also considerably smaller than that in MCs as derived from solar wind plasma and magnetic signatures. We find very good correlation between the Fe and O charge-state measurements and the flare properties such as soft X-ray flare intensity and flare temperature for both MCs and non-MCs. These observations suggest that both MC and non-MC ICMEs are likely to have a flux-rope structure and the unfavorable observational geometry may be responsible for the appearance of non-MC structures at 1 AU. We do not find any evidence for an active region expansion resulting in ICMEs lacking a flux-rope structure because the mechanism of producing high charge states and the flux-rope structure at the Sun is the same for MC and non-MC events.

  13. Barrier mechanisms in the Drosophila blood-brain barrier

    Directory of Open Access Journals (Sweden)

    Samantha Jane Hindle

    2014-12-01

    Full Text Available The invertebrate blood-brain barrier field is growing at a rapid pace and, in recent years, studies have shown a physiologic and molecular complexity that has begun to rival its vertebrate counterpart. Novel mechanisms of paracellular barrier maintenance through GPCR signaling were the first demonstrations of the complex adaptive mechanisms of barrier physiology. Building upon this work, the integrity of the invertebrate blood-brain barrier has recently been shown to require coordinated function of all layers of the compound barrier structure, analogous to signaling between the layers of the vertebrate neurovascular unit. These findings strengthen the notion that many blood-brain barrier mechanisms are conserved between vertebrates and invertebrates, and suggest that novel findings in invertebrate model organisms will have a significant impact on the understanding of vertebrate BBB functions. In this vein, important roles in coordinating localized and systemic signaling to dictate organism development and growth are beginning to show how the blood-brain barrier can govern whole animal physiologies. This includes novel functions of blood-brain barrier gap junctions in orchestrating synchronized neuroblast proliferation, and of blood-brain barrier secreted antagonists of insulin receptor signaling. These advancements and others are pushing the field forward in exciting new directions. In this review, we provide a synopsis of invertebrate blood-brain barrier anatomy and physiology, with a focus on insights from the past 5 years, and highlight important areas for future study.

  14. Effect of plasma etching on destructive adsorption properties of polypropylene fibers containing magnesium oxide nanoparticles.

    Science.gov (United States)

    Lange, Laura E; Obendorf, S Kay

    2012-02-01

    Dermal absorption of pesticides poses a danger for agricultural workers. Use of personal protection equipment (PPE) is required to provide protection; some of the current PPE involves impermeable barriers. In these barrier materials, the same mechanism that prevents the penetration of toxic chemicals also blocks the passage of water vapor and air from flowing through the material, making the garments uncomfortable. Fibers that degrade organophosphate pesticides, such as methyl parathion, were developed by incorporating metal oxides. These modified fibers can be incorporated into conventional fabric structures that allow water vapor to pass through, thereby maintaining comfort. Fibers with self-decontamination functionality were developed by incorporating magnesium oxide (MgO) nanoparticles into a polypropylene (PP) melt-extruded fiber. These fibers were then treated with plasma etching to expose increased surface area of the MgO nanoparticles. Three steps were involved in this research project: (1) determining the reactivity of MgO and methyl parathion, (2) making melt-spun MgO/PP fibers, and (3) testing the reactivity of MgO/PP composite fibers and methyl parathion. It was confirmed that MgO stoichiometrically degrades methyl parathion by way of destructive adsorption. The etching of the PP fibers containing MgO nanoparticles increased the chemical accessibility of MgO reactive sites, therefore making them more effective in degrading methyl parathion. These fibers can enhance the protection provided by PPE to agricultural and horticultural workers and military personnel.

  15. Applications of monolithic fiber interferometers and actively controlled fibers

    OpenAIRE

    Rugeland, Patrik

    2013-01-01

    The objective of this thesis was to develop applications of monolithic fiber devices and actively controlled fibers. A special twin-core fiber known as a ‘Gemini’ fiber was used to construct equal arm-length fiber interferometers, impervious to temperature and mechanical perturbations. A broadband add/drop multiplexer was constructed by inscribing fiber Bragg gratings in the arms of a Gemini Mach-Zehnder interferometer. A broadband interferometric nanosecond switch was constructed from a micr...

  16. Embedded Optical Sensors for Thermal Barrier Coatings

    Energy Technology Data Exchange (ETDEWEB)

    David R. Clarke

    2005-11-09

    In the second year of this program on developing embedded optical sensors for thermal barrier coatings, our research has focused three topics: (1) Eu{sup 3+} doping for temperature sensing, (2) the effect of long-term, high-temperature aging on the characteristics of the luminescence from the Eu{sup 3+} ions of 8YSZ materials, (3) construction of a fiber-optic based luminescence detector system. It has been demonstrated that the variation in luminescence lifetime with temperature is identical for electron-beam evaporated Eu-doped YSZ coatings as for bulk ceramics of the same composition. Experiments indicate that the luminescence lifetime method of measuring temperatures is sensitive up to 1150 C for both Eu-doped YSZ coatings and Eu-doped Gd{sub 2}Zr{sub 2}O{sub 7}. Furthermore, the technique is sensitive up to 1250 C for the composition Eu{sub 2}Zr{sub 2}O{sub 7}. The luminescence spectra Eu-doped YSZ are insensitive to long-term aging at high-temperatures, even to 195 hours at 1425 C, except for a small frequency shift that is probably too small in measure except with instruments of the highest spectral resolution. The temperature of 1425 C is much higher than present engines attain or even planned in the foreseeable future. Nevertheless, experiments are on-going to explore longer term exposures. A fiber-optic based luminescence system has been constructed in which the hottest section of fiber operates to at least 1250 C.

  17. Long-duration magnetic clouds: a comparison of analyses using torus- and cylinder-shaped flux rope models

    Directory of Open Access Journals (Sweden)

    K. Marubashi

    2007-11-01

    Full Text Available We identified 17 magnetic clouds (MCs with durations longer than 30 h, surveying the solar wind data obtained by the WIND and ACE spacecraft during 10 years from 1995 through 2004. Then, the magnetic field structures of these 17 MCs were analyzed by the technique of the least-squares fitting to force-free flux rope models. The analysis was made with both the cylinder and torus models when possible, and the results from the two models are compared. The torus model was used in order to approximate the curved portion of the MCs near the flanks of the MC loops. As a result, we classified the 17 MCs into 4 groups. They are (1 5 MC events exhibiting magnetic field rotations through angles substantially larger than 180° which can be interpreted only by the torus model; (2 3 other MC events that can be interpreted only by the torus model as well, though the rotation angles of magnetic fields are less than 180°; (3 3 MC events for which similar geometries are obtained from both the torus and cylinder models; and (4 6 MC events for which the resultant geometries obtained from both models are substantially different from each other, even though the observed magnetic field variations can be interpreted by either of the torus model or the cylinder model. It is concluded that the MC events in the first and second groups correspond to those cases where the spacecraft traversed the MCs near the flanks of the MC loops, the difference between the two being attributed to the difference in distance between the torus axis and the spacecraft trajectory. The MC events in the third group are interpreted as the cases where the spacecraft traversed near the apexes of the MC loops. For the MC events in the fourth group, the real geometry cannot be determined from the model fitting technique alone. Though an attempt was made to determine which model is more plausible for each of the MCs in this group by comparing the characteristics of associated bidirectional electron

  18. Characterization of a double flux-rope magnetic cloud observed by ACE spacecraft on August 19-21, 1998

    Science.gov (United States)

    Ojeda González, A.; Mendes, O.; Domingues Oliveira, M.; Moestl, C.; Farrugia, C. J.; Gonzalez, W. D.

    2013-05-01

    Investigations have studied MC cases of double flux rope configuration with apparent asymmetry. Grad-Shafranov reconstruction technique allows deriving the local magnetic structure from data of a single spacecraft. The results obtained show two cylindrical flux ropes next to each other, where a single X point forms between them. In all possible combinations of two bipolar MCs, the magnetic field between them is antiparallel in eight cases SWN-SWN, SWN-SEN, SEN-SWN, SEN-SEN, NWS-NWS, NWS-NES, NES-NWS, NES-NWS. If clouds are under magnetic coupling, reconnection evidences are expected from the interaction between them. In this work, we examine the event that occurred at Aug. 19-21, 1998 using solar wind measurements collected by ACE. In Fig. 1 a) presents the recovered cross-section of the two bipolar MCs (SEN-SWN). The black contour lines show the transverse magnetic field lines (calculated as the contours of the magnetic potential function A(x,y)), and the colors show the axial magnetic field Bz distribution. The yellow arrows along y=0 denote measured transverse magnetic field vectors, direction and magnitude measurements at ACE utilized as initial input into the numerical solver. The green arrows are residual velocities in the deHoffmann-Teller frame at ACE. The spacecraft crosses the X point and observes the exact moment of the magnetic reconnection, from 0.13 to 0.15 AU in x axis. In the opposite corners of the X point, the magnetic fields are antiparallel (see yellow arrows in this region). The residual velocity (green arrow in y=0) in the deHoffmann-Teller frame at ACE is perpendicular to the magnetic field line in the reconnection region. In principle, it is possible to adjust a two-dimension model considering the most common separator reconnection, in which four separate magnetic domains exchange magnetic field lines. In Fig. 1 b), the cross-section through four magnetic domains undergoing separator reconnection is represented. The green array in the top

  19. Enhanced Barrier Performance of Engineered Paper by Atomic Layer Deposited Al2O3 Thin Films.

    Science.gov (United States)

    Mirvakili, Mehr Negar; Van Bui, Hao; van Ommen, J Ruud; Hatzikiriakos, Savvas G; Englezos, Peter

    2016-06-01

    Surface modification of cellulosic paper is demonstrated by employing plasma assisted atomic layer deposition. Al2O3 thin films are deposited on paper substrates, prepared with different fiber sizes, to improve their barrier properties. Thus, a hydrophobic paper is created with low gas permeability by combining the control of fiber size (and structure) with atomic layer deposition of Al2O3 films. Papers are prepared using Kraft softwood pulp and thermomechanical pulp. The cellulosic wood fibers are refined to obtain fibers with smaller length and diameter. Films of Al2O3, 10, 25, and 45 nm in thickness, are deposited on the paper surface. The work demonstrates that coating of papers prepared with long fibers efficiently reduces wettability with slight enhancement in gas permeability, whereas on shorter fibers, it results in significantly lower gas permeability. Wettability studies on Al2O3 deposited paper substrates have shown water wicking and absorption over time only in papers prepared with highly refined fibers. It is also shown that there is a certain fiber size at which the gas permeability assumes its minimum value, and further decrease in fiber size will reverse the effect on gas permeability.

  20. Linguistic Barriers and Bridges

    DEFF Research Database (Denmark)

    Thuesen, Frederik

    2016-01-01

    The influence of language on social capital in low-skill and ethnically diverse workplaces has thus far received very limited attention within the sociology of work. As the ethnically diverse workplace is an important social space for the construction of social relations bridging different social...... and intercultural communication, this article analyses interviews with 31 employees from two highly ethnically diverse Danish workplaces. The article shows how linguistic barriers such as different levels of majority language competence and their consequent misunderstandings breed mistrust and hostility, whilst...