WorldWideScience

Sample records for fiber reinforced concretes

  1. Steel fiber reinforced concrete

    International Nuclear Information System (INIS)

    Baloch, S.U.

    2005-01-01

    Steel-Fiber Reinforced Concrete is constructed by adding short fibers of small cross-sectional size .to the fresh concrete. These fibers reinforce the concrete in all directions, as they are randomly oriented. The improved mechanical properties of concrete include ductility, impact-resistance, compressive, tensile and flexural strength and abrasion-resistance. These uniqlte properties of the fiber- reinforcement can be exploited to great advantage in concrete structural members containing both conventional bar-reinforcement and steel fibers. The improvements in mechanical properties of cementitious materials resulting from steel-fiber reinforcement depend on the type, geometry, volume fraction and material-properties of fibers, the matrix mix proportions and the fiber-matrix interfacial bond characteristics. Effects of steel fibers on the mechanical properties of concrete have been investigated in this paper through a comprehensive testing-programme, by varying the fiber volume fraction and the aspect-ratio (Lid) of fibers. Significant improvements are observed in compressive, tensile, flexural strength and impact-resistance of concrete, accompanied by marked improvement in ductility. optimum fiber-volume fraction and aspect-ratio of steel fibers is identified. Test results are analyzed in details and relevant conclusions drawn. The research is finally concluded with future research needs. (author)

  2. Carbon fiber reinforced asphalt concrete

    International Nuclear Information System (INIS)

    Jahromi, Saeed G.

    2008-01-01

    Fibers are often used in the manufacture of other materials. For many years, they have been utilized extensively in numerous applications in civil engineering. Fiber-reinforcement refers to incorporating materials with desired properties within some other materials lacking those properties. Use of fibers is not a new phenomenon, as the technique of fiber-reinforced bitumen began early as 1950. In all industrialized countries today, nearly all concretes used in construction are reinforced. A multitude of fibers and fiber materials are being introduced in the market regularly. The present paper presents characteristics and properties of carbon fiber-reinforced asphalt mixtures, which improve the performance of pavements. To evaluate the effect of fiber contents on bituminous mixtures, laboratory investigations were carried out on the samples with and without fibers. During the course of this study, various tests were undertaken, applying Marshall Test indirect tensile test, creep test and resistance to fatigue cracking by using repeated load indirect tensile test. Carbon fiber exhibited consistency in results and as such it was observed that the addition of fiber does affect the properties of bituminous mixtures, i.e. an increase in its stability and decrease in the flow value as well as an increase in voids in the mix. Results indicate that fibers have the potential to resist structural distress in pavement, in the wake of growing traffic loads and thus improve fatigue by increasing resistance to cracks or permanent deformation. On the whole, the results show that the addition of carbon fiber will improve some of the mechanical properties like fatigue and deformation in the flexible pavement. (author)

  3. Fatigue Performance of Fiber Reinforced Concrete

    DEFF Research Database (Denmark)

    Jun, Zhang; Stang, Henrik

    1996-01-01

    The objective of the present study is to obtain basic data of fibre reinforced concrete under fatigue load and to set up a theoretical model based on micromechanics. In this study, the bridging stress in fiber reinforced concrete under cyclic tensile load was investigted in details. The damage...... mechanism of the interface between fiber and matrix was proposed and a rational model given. Finally, the response of a steel fiber reinforced concrete beam under fatigue loading was predicted based on this model and compared with experimental results....

  4. Durable fiber reinforced self-compacting concrete

    International Nuclear Information System (INIS)

    Corinaldesi, V.; Moriconi, G.

    2004-01-01

    In order to produce thin precast elements, a self-compacting concrete was prepared. When manufacturing these elements, homogenously dispersed steel fibers instead of ordinary steel-reinforcing mesh were added to the concrete mixture at a dosage of 10% by mass of cement. An adequate concrete strength class was achieved with a water to cement ratio of 0.40. Compression and flexure tests were carried out to assess the safety of these thin concrete elements. Moreover, serviceability aspects were taken into consideration. Firstly, drying shrinkage tests were carried out in order to evaluate the contribution of steel fibers in counteracting the high concrete strains due to a low aggregate-cement ratio. Secondly, the resistance to freezing and thawing cycles was investigated on concrete specimens in some cases superficially treated with a hydrophobic agent. Lastly, both carbonation and chloride penetration tests were carried out to assess durability behavior of this concrete mixture

  5. FLEXURAL TOUGHNESS OF STEEL FIBER REINFORCED CONCRETE

    Directory of Open Access Journals (Sweden)

    Fehmi ÇİVİCİ

    2006-02-01

    Full Text Available Fiber concrete is a composite material which has mechanical and physical characteristics unlike plain concrete. One of the important mechanical characteristics of fiber concrete is its energy absorbing capability. This characteristics which is also called toughness, is defined as the total area under the load-deflection curve. A number of composite characteristics such as crack resistance, ductility and impact resistance are related to the energy absorbtion capacity. According to ASTM C 1018 and JSCE SF-4 the calculation of toughness is determined by uniaxial flexural testing. Fiber concrete is often used in plates such as bridge decks, airport pavements, parking areas, subjected to cavitation and erosion. In this paper, toughness has been determined according to ASTM C 1018 and JSCE SF-4 methods by testing beam specimens. Energy absorbing capacities of plain and steel fiber reinforced concrete has been compared by evaluating the results of two methods. Also plain and steel fiber reinforced plate specimens behaviors subjected to biaxial flexure are compared by the loaddeflection curves of each specimen.

  6. Performance of Lightweight Natural-Fiber Reinforced Concrete

    OpenAIRE

    Hardjasaputra Harianto; Ng Gino; Urgessa Girum; Lesmana Gabriella; Sidharta Steven

    2017-01-01

    Concrete, the most common construction material, has negligible tension capacity. However, a reinforcement material such as natural fibers, can be used to improve the tensile properties of concrete. This paper presents experiments conducted on Super Lightweight Concrete mixed with coconut fibers (SLNFRC). Coconut fibers are regarded as one of the toughest natural fibers to strengthen concrete. Coconut fiber reinforced composites have been considered as a sustainable construction material beca...

  7. Cohesive fracture model for functionally graded fiber reinforced concrete

    International Nuclear Information System (INIS)

    Park, Kyoungsoo; Paulino, Glaucio H.; Roesler, Jeffery

    2010-01-01

    A simple, effective, and practical constitutive model for cohesive fracture of fiber reinforced concrete is proposed by differentiating the aggregate bridging zone and the fiber bridging zone. The aggregate bridging zone is related to the total fracture energy of plain concrete, while the fiber bridging zone is associated with the difference between the total fracture energy of fiber reinforced concrete and the total fracture energy of plain concrete. The cohesive fracture model is defined by experimental fracture parameters, which are obtained through three-point bending and split tensile tests. As expected, the model describes fracture behavior of plain concrete beams. In addition, it predicts the fracture behavior of either fiber reinforced concrete beams or a combination of plain and fiber reinforced concrete functionally layered in a single beam specimen. The validated model is also applied to investigate continuously, functionally graded fiber reinforced concrete composites.

  8. Normal Strength Steel Fiber Reinforced Concrete Subjected to Explosive Loading

    OpenAIRE

    Mohammed Alias Yusof; Norazman Norazman; Ariffin Ariffin; Fauzi Mohd Zain; Risby Risby; CP Ng

    2011-01-01

    This paper presents the results of an experimental investigation on the behavior of plain reinforced concrete and Normal strength steel fiber reinforced concrete panels (SFRC) subjected to explosive loading. The experiment were performed by the Blast Research Unit Faculty of Engineering, University Pertahanan Nasional Malaysia A total of 8 reinforced concrete panels of 600mm x 600mm x 100mm were tested. The steel fiber reinforced concrete panels incorporated three different volume fraction, 0...

  9. Enhancing corrosion resistance of reinforced concrete structures with hybrid fiber reinforced concrete

    International Nuclear Information System (INIS)

    Blunt, J.; Jen, G.; Ostertag, C.P.

    2015-01-01

    Highlights: • Reinforced concrete beams were subjected to cyclic flexural loading. • Hybrid fiber reinforced composites were effective in reducing corrosion rates. • Crack resistance due to fibers increased corrosion resistance of steel rebar. • Galvanic corrosion measurements underestimated corrosion rates. • Polarization resistance measurements predicted mass loss more accurately. - Abstract: Service loads well below the yield strength of steel reinforcing bars lead to cracking of reinforced concrete. This paper investigates whether the crack resistance of Hybrid Fiber Reinforced Concrete (HyFRC) reduces the corrosion rate of steel reinforcing bars in concrete after cyclic flexural loading. The reinforcing bars were extracted to examine their surface for corrosion and compare microcell and macrocell corrosion mass loss estimates against direct gravimetric measurements. A delay in corrosion initiation and lower active corrosion rates were observed in the HyFRC beam specimens when compared to reinforced specimens containing plain concrete matrices cycled at the same flexural load

  10. Study on Mechanical Properties of Hybrid Fiber Reinforced Concrete

    Science.gov (United States)

    He, Dongqing; Wu, Min; Jie, Pengyu

    2017-12-01

    Several common high elastic modulus fibers (steel fibers, basalt fibers, polyvinyl alcohol fibers) and low elastic modulus fibers (polypropylene fiber) are incorporated into the concrete, and its cube compressive strength, splitting tensile strength and flexural strength are studied. The test result and analysis demonstrate that single fiber and hybrid fiber will improve the integrity of the concrete at failure. The mechanical properties of hybrid steel fiber-polypropylene fiber reinforced concrete are excellent, and the cube compressive strength, splitting tensile strength and flexural strength respectively increase than plain concrete by 6.4%, 3.7%, 11.4%. Doped single basalt fiber or polypropylene fiber and basalt fibers hybrid has little effect on the mechanical properties of concrete. Polyvinyl alcohol fiber and polypropylene fiber hybrid exhibit ‘negative confounding effect’ on concrete, its splitting tensile and flexural strength respectively are reduced by 17.8% and 12.9% than the single-doped polyvinyl alcohol fiber concrete.

  11. Application of Fiber Reinforcement Concrete Technique in Civil ...

    African Journals Online (AJOL)

    modulus of elasticity, high tensile strength, improved fatigue and impact resistance. Reinforcing the concrete structures with fibers such as polyester is one of the possible ways to provide all the criteria of the durable repair material. This type of reinforcement is called Fiber Reinforcement of Concrete Structures. There is an ...

  12. Properties of Fiber Reinforced Polymer Concrete

    Directory of Open Access Journals (Sweden)

    Marinela Bărbuţă

    2008-01-01

    Full Text Available Polymer concrete is a composite material realized with resin and aggregates. In the present study the epoxy resin was used for binding the aggregates. In the composition were introduced near the fly ash, used as filler, the cellulose fibers. The mechanical characteristics such as compressive strength, flexural strength and split tensile strength of polymer concrete with fibers were investigated. The fiber percentage was constant, the epoxy resin and the filler dosages were varied. The cellulose fiber had not improved the mechanical characteristics of the polymer concrete in comparison to that of polymer concrete without cellulose fibers.

  13. CREATION OF MUSIC WITH FIBER REINFORCED CONCRETE

    Science.gov (United States)

    Kato, Hayato; Takeuchi, Masaki; Ogura, Naoyuki; Kitahara, Yukiko; Okamoto, Takahisa

    This research focuses on the Fiber Reinforcement Concrete(FRC) and its performance on musical tones. Thepossibility of future musical instruments made of this concrete is discussed. Recently, the technical properties of FRC had been improved and the different production styles, such as unit weight of binding material and volume of fiber in the structure, hardly affects the results of the acoustics. However, the board thickness in the FRC instruments is directly related with the variety of musical tone. The FRC musical effects were compared with those produced with wood on wind instruments. The sounds were compared with those produced with woodwind instruments. The sound pressure level was affected by the material and it becomes remarkably notorious in the high frequency levels. These differences had great influence on the spectrum analysis of the tone in the wind instruments and the sensory test. The results from the sensory test show dominant performances of brightness, beauty and power in the FRC instruments compared with those made of wood.

  14. Rotation capacity of self-compacting steel fiber reinforced concrete

    NARCIS (Netherlands)

    Schumacher, P.

    2006-01-01

    Steel fiber reinforced concrete (SFRC) has been used in segmental tunnel linings in the past years. In order to investigate the effect of steel fibers on the rotation capacity of plastic hinges in self-compacting concrete (SCC) the effect of the addition of fibers to SCC in compression, tension and

  15. Shear transfer in concrete reinforced with carbon fibers

    Science.gov (United States)

    El-Mokadem, Khaled Mounir

    2001-10-01

    Scope and method of study. The research started with preliminary tests and studies on the behavior and effect of carbon fibers in different water solutions and mortar/concrete mixes. The research work investigated the use of CF in the production of concrete pipes and prestressed concrete double-tee sections. The research then focused on studying the effect of using carbon fibers on the direct shear transfer of sand-lightweight reinforced concrete push-off specimens. Findings and conclusions. In general, adding carbon fibers to concrete improved its tensile characteristics but decreased its compressive strength. The decrease in compressive strength was due to the decrease in concrete density as fibers act as three-dimensional mesh that entrapped air. The decrease in compressive strength was also due to the increase in the total surface area of non-cementitious material in the concrete. Sand-lightweight reinforced concrete push-off specimens with carbon fibers had lower shear carrying capacity than those without carbon fibers for the same cement content in the concrete. Current building codes and specifications estimate the shear strength of concrete as a ratio of the compressive strength. If applying the same principals then the ratio of shear strength to compressive strength for concrete reinforced with carbon fibers is higher than that for concrete without carbon fibers.

  16. Optimising of Steel Fiber Reinforced Concrete Mix Design | Beddar ...

    African Journals Online (AJOL)

    Optimising of Steel Fiber Reinforced Concrete Mix Design. ... as a result of the loss of mixture workability that will be translated into a difficult concrete casting in site. ... An experimental study of an optimisation method of fibres in reinforced ...

  17. Effect of kenaf fiber in reinforced concrete slab

    Science.gov (United States)

    Syed Mohsin, S. M.; Baarimah, A. O.; Jokhio, G. A.

    2018-04-01

    The effect of kenaf fibers in reinforced concrete slab with different thickness is discusses and presented in this paper. Kenaf fiber is a type of natural fiber and is added in the reinforced concrete slab to improve the structure strength and ductility. For this study, three types of mixtures were prepared with fiber volume fraction of 0%, 1% and 2%, respectively. The design compressive strength considered was 20 MPa. Six cubes were prepared to be tested at 7th and 28th day. A total of six reinforced concrete slab with two variances of thickness were also prepared and tested under four-point bending test. The differences in the thickness is to study the potential of kenaf fiber to serve as part of shear reinforcement in reinforced concrete slab that was design to fail in shear. It was observed that, addition of kenaf fiber in reinforced concrete slab improves the flexural strength and ductility of the reinforced concrete slab. In the slab with reduction in thickness, the mode of failure change from brittle to ductile with the inclusion of kenaf fiber.

  18. Performance of Lightweight Natural-Fiber Reinforced Concrete

    Directory of Open Access Journals (Sweden)

    Hardjasaputra Harianto

    2017-01-01

    Full Text Available Concrete, the most common construction material, has negligible tension capacity. However, a reinforcement material such as natural fibers, can be used to improve the tensile properties of concrete. This paper presents experiments conducted on Super Lightweight Concrete mixed with coconut fibers (SLNFRC. Coconut fibers are regarded as one of the toughest natural fibers to strengthen concrete. Coconut fiber reinforced composites have been considered as a sustainable construction material because the fibers are derived from waste. These wastes, which are available in large quantities in Asia, have to be extracted from the husk of coconut fruits and must pass a mechanical process before being added to a concrete mixture. The Super Lightweight Concrete was made by mixing concrete paste with foam agent that can reduce the overall weight of concrete up to 60% with compressive strength up to 6 MPa. The Super Lightweight Concrete is intended to be used for non-structural walls, as alternative conventional construction materials such as brick walls. The influence of coconut fibers content in increasing the flexural tensile strength of Super Lightweight Concrete was studied in this research. The fiber content studied include 0%, 0.1%, 0.175%, and 0.25% by weight of cement content. Sixteen specimens of SLNFRC mini beams of 60 mm x 60 mm x 300 mm were tested to failure to investigate their flexural strengths. The optimum percent fibers yielding higher tensile strength was found to be 0.175%

  19. Steel fiber reinforced concrete subjected to elevated cyclic temperatures

    International Nuclear Information System (INIS)

    Yousif, R. A.; Rasheed, H. M.; Muhammad, H. A.

    1997-01-01

    The results from a series of tests on steel fiber reinforced concrete at elevated cyclic temperature are presented. The residual compressive strength and ultimate splitting tensile strength were nadir's on specimen ts with no fibers and with 0.5% and 1% plain steel fibers over a temperature range of 300-700 C. concrete was subjected to one, two or three cycles of heating and cooling. In general the exposure to temperature decreased the strength of concrete, although the number of heating cycles seems only to have a secondary effect. The results also show that the steel fiber reinforced concrete performs better than plain concrete. Two equations were suggested to predict the strength of concrete and the results show good agreement with the experimental values. . (authors). 10 refs., 1 tabs. 3 figs

  20. Numerical modeling of hybrid fiber-reinforced concrete (hyfrc)

    International Nuclear Information System (INIS)

    Hameed, R.; Turatsinze, A.

    2015-01-01

    A model for numerical simulation of mechanical response of concrete reinforced with slipping and non slipping metallic fibers in hybrid form is presented in this paper. Constitutive law used to model plain concrete behaviour is based on plasticity and damage theories, and is capable to determine localized crack opening in three dimensional (3-D) systems. Behaviour law used for slipping metallic fibers is formulated based on effective stress carried by these fibers after when concrete matrix is cracked. A continuous approach is proposed to model the effect of addition of non-slipping metallic fibers in plain concrete. This approach considers the constitutive law of concrete matrix with increased fracture energy in tension obtained experimentally in direct tension tests on Fiber Reinforced Concrete (FRC). To simulate the mechanical behaviour of hybrid fiber-reinforced concrete (HyFRC), proposed approaches to model non-slipping metallic fibers and constitutive law of plain concrete and slipping fibers are used simultaneously without any additive equation. All the parameters used by the proposed model have physical meanings and are determined through experiments or drawn from literature. The model was implemented in Finite Element (FE) Code CASTEM and tested on FRC prismatic notched specimens in flexure. Model prediction showed good agreement with experimental results. (author)

  1. Fiber-reinforced neutron shielding mortar concrete

    International Nuclear Information System (INIS)

    Kaji, Keisuke; Okazaki, Masaki; Ohigashi, Toshihide; Mayahara, Mitsuro.

    1989-01-01

    To improve the moldability, durability and economicity by adding cement curing promotors and reinforcing fibers to cement and boron compound which has been considered difficult so far, thereby enabling to add a great amount of the boron compound. The boron compound is added by from 5 to 200% by weight of powder of colemanite or borocarcite as natural ores or boric acid, borax or titanium boride, etc. as synthesis products and lithium hydroxide. calcium aluminate, etc. is added by more than 0.1% x boron compound blending ration (%) as the curing promoter. 0.3 to 5% by weight of polyvinyl alcohol type synthetic fibers, polyacrilonitrile type synthetic fibers or carbon fibers, etc. are added as the reinforcing fibers. This can prevent instantaneous coagulation, curing delay, etc. due to sulfur ions, enable easy application and molding and improve the durability and economicity. (T.M.)

  2. Polymer concrete reinforced with recycled-tire fibers: Mechanical properties

    Science.gov (United States)

    Martínez-Cruz, E.; Martínez-Barrera, G.; Martínez-López, M.

    2013-06-01

    Polymer Concrete was reinforced with recycled-tire fibers in order to improve the compressive and flexural strength. Polymer concrete specimens were prepared with 70% of silicious sand, 30% of polyester resin and various fiber concentrations (0.3, 0.6, 0.9 and 1.2 vol%). The results show increment of 50% in average of the compressive and flexural strength as well as on the deformation when adding 1.2 vol% of recycled-fibers.

  3. Polymer concrete reinforced with recycled-tire fibers: Mechanical properties

    International Nuclear Information System (INIS)

    Martínez-Cruz, E; Martínez-López, M; Martínez-Barrera, G

    2013-01-01

    Polymer Concrete was reinforced with recycled-tire fibers in order to improve the compressive and flexural strength. Polymer concrete specimens were prepared with 70% of silicious sand, 30% of polyester resin and various fiber concentrations (0.3, 0.6, 0.9 and 1.2 vol%). The results show increment of 50% in average of the compressive and flexural strength as well as on the deformation when adding 1.2 vol% of recycled-fibers.

  4. Flexural strength of self compacting fiber reinforced concrete beams using polypropylene fiber: An experimental study

    Science.gov (United States)

    Lisantono, Ade; Praja, Baskoro Abdi; Hermawan, Billy Nouwen

    2017-11-01

    One of the methods to increase the tensile strength of concrete is adding a fiber material into the concrete. While to reduce a noise in a construction project, a self compacting concrete was a good choices in the project. This paper presents an experimental study of flexural behavior and strength of self compacting fiber reinforced concrete (RC) beams using polypropylene fiber. The micro monofilament polypropylene fibers with the proportion 0.9 kg/m3 of concrete weight were used in this study. Four beam specimens were cast and tested in this study. Two beams were cast of self compacting reinforced concrete without fiber, and two beams were cast of self compacting fiber reinforced concrete using polypropylene. The beams specimen had the section of (180×260) mm and the length was 2000 mm. The beams had simple supported with the span of 1800 mm. The longitudinal reinforcements were using diameter of 10 mm. Two reinforcements of Ø10 mm were put for compressive reinforcement and three reinforcements of Ø10 mm were put for tensile reinforcement. The shear reinforcement was using diameter of 8 mm. The shear reinforcements with spacing of 100 mm were put in the one fourth near to the support and the spacing of 150 mm were put in the middle span. Two points loading were used in the testing. The result shows that the load-carrying capacity of the self compacting reinforced concrete beam using polypropylene was a little bit higher than the self compacting reinforced concrete beam without polypropylene. The increment of load-carrying capacity of self compacting polypropylene fiber reinforced concrete was not so significant because the increment was only 2.80 % compare to self compacting non fiber reinforced concrete. And from the load-carrying capacity-deflection relationship curves show that both the self compacting polypropylene fiber reinforced concrete beam and the self compacting non fiber reinforced concrete beam were ductile beams.

  5. FEM performance of concrete beams reinforced by carbon fiber bars

    Directory of Open Access Journals (Sweden)

    Hasan Hashim

    2018-01-01

    Full Text Available Concrete structures may be vulnerable to harsh environment, reinforcement with Fiber Reinforced Polymer (FRP bars have an increasing acceptance than normal steel. The nature of (FRP bar is (non-corrosive which is very beneficial for increased durability as well as the reinforcement of FRP bar has higher strength than steel bar. FRP usage are being specified more and more by public structural engineers and individual companies as main reinforcement and as strengthening of structures. Steel reinforcement as compared to (FRP reinforcement are decreasingly acceptable for structural concrete reinforcement including precast concrete, cast in place concrete, columns, beams and other components. Carbon Fiber Reinforcement Polymer (CFRP have a very high modulus of elasticity “high modulus” and very high tensile strength. In aerospace industry, CFRP with high modulus are popular among all FRPs because it has a high strength to weight ratio. In this research, a finite element models will be used to represent beams with Carbon Fiber Reinforcement and beams with steel reinforcement. The primary objective of the research is the evaluation of the effect of (CFR on beam reinforcement.

  6. Flexural Cracking Behavior Of Steel Fiber Reinforced Concrete Beams

    Directory of Open Access Journals (Sweden)

    Ashraf Abdalkader

    2017-08-01

    Full Text Available Steel fibers are added to concrete due to its ability to improve the tensile strength and control propagation of cracks in reinforced concrete members. Steel fiber reinforced concrete is made of cement fine water and coarse aggregate in addition to steel fibers. In this experimental work flexural cracking behavior of reinforced concrete beams contains different percentage of hooked-end steel fibers with length of 50 mm and equivalent diameter of 0.5 mm was studied. The beams were tested under third-point loading test at 28 days. First cracking load maximum crack width cracks number and load-deflection relations were investigated to evaluate the flexural cracking behavior of concrete beams with 34 MPa target mean strength. Workability wet density compressive and splitting tensile strength were also investigated. The results showed that the flexural crack width is significantly reduced with the addition of steel fibers. Fiber contents of 1.0 resulted in 81 reduction in maximum crack width compared to control concrete without fiber. The results also showed that the first cracking load and maximum load are increased with the addition of steel fibers.

  7. Recent development in blast performance of fiber-reinforced concrete

    Science.gov (United States)

    Hajek, R.; Foglar, M.; Kohoutkova, A.

    2017-09-01

    The paper presents an overview of the recent development in blast performance of fiber reinforced concrete. The paper builds on more than ten years’ history of the research in this field by the team of the Department of Concrete and Masonry Structures of the Faculty of Civil Engineering of the Czech Technical University in Prague.

  8. Flexural fatigue behavior of steel fiber reinforced concrete structures

    International Nuclear Information System (INIS)

    Chang, G.I.; Chai, W.K.; Park, C.W.; Min, I.K.

    1993-01-01

    In this thesis, the fatigue tests are performed on a series of SFRC (steel fiber reinforced concrete) to investigate the fatigue behavior of SFRC varing with the steel fiber contents and the steel fiber aspect ratios. Thirty SFRC beams are used in this test. The relationships between repeated loading cycle and mid-span deflection of the beams are observed under the three-point loading system. From the test results, the effects of the fiber content and the fiber aspect ratio on the concrete fatigue behavior were studied. According to the regression technique, some empirical formulae for predicting the fatigue strength of SFRC beams are also suggested. (author)

  9. Micro-Mechanical Modeling of Fiber Reinforced Concrete

    DEFF Research Database (Denmark)

    Stang, Henrik

    1999-01-01

    of Fiber Reinforced Concrete (FRC) on the micro- the meso- as well as the macro-level, i.e. modeling aspects of fiber-matrix interaction, overall constitutive modeling and structural modeling. Emphasis is placed on the micro- and meso-aspects, however, some basic results on the macro-level are also...

  10. Repair of reinforced concrete beams using carbon fiber reinforced polymer

    Directory of Open Access Journals (Sweden)

    Karzad Abdul Saboor

    2017-01-01

    Full Text Available This research paper is part of an ongoing research on the behaviour of Reinforced Concrete (RC beams retrofitted with Externally Bonded Carbon Fiber Reinforced Polymer (EB-CFRP. A total of 5 large-scale rectangular beams, previously damaged due to shear loading, were repaired and strengthened with EB-CFRP and tested in this study. The major cracks of the damaged beams were injected with epoxy and the beams were wrapped with 2 layers of EB-CFRP discrete strips with 100mm width and 150mm center to center spacing. The beams were instrumented and tested to failure under three points loading in simply supported configuration. The measured test parameters were the beams deflection, maximum load, and the strain in the FRP strips. The failure mode was also observed. The results showed that applying EB-FRP strips increased the shear strength significantly relative to the original shear capacity of the beam. The results demonstrate that the application of EB-FRP strips used in this study is an effective repair method that can be used to repair and strengthen damaged beams.

  11. Stress-Strain Relationship of Synthetic Fiber Reinforced Concrete Columns

    Directory of Open Access Journals (Sweden)

    Rosidawani

    2017-01-01

    Full Text Available Many empirical confinement models for normal and high strength concrete have been developed. Nevertheless, reported studies in the term of confinement of fiber reinforced concrete are limited. Whereas, the use of fiber reinforced concrete in structural elements has become the subject of the research and has indicated positive experiences. Since the stress-strain relationship of concrete in compression is required for analysis of structural members, the study of the stress-strain relationship for synthetic fiber reinforced concrete is substantial. The aim of the study is to examine the capabilities of the various models available in the literature to predict the actual experimental behavior of synthetic fiber reinforced high-strength concrete columns. The experimental data used are the results of the circular column specimens with the spiral spacing and the volume fraction of synthetic fiber as the test variables. The axial stress-strain curves from the tests are then compared with the various models of confinement from the literature. The performance index of each model is measured by using the coefficient of variation (COV concept of stress and strain behavior parameter. Among the confinement models, Cusson model shows the closest valid value of the coefficient of variation.

  12. Behaviour of fiber reinforced concrete slabs under impact loading

    International Nuclear Information System (INIS)

    Huelsewig, M.; Stilp, A.; Pahl, H.

    1982-01-01

    The behaviour of steel fiber reinforced concrete slabs under impact loads has been investigated. The results obtained show that fracturing and spallation effects are reduced to a large extend due to the high energy absorption and the increased yield strength of this material. Crater depths are comparable to those obtained using normal concrete targets. Systematic tests using different fiber types and dimensions show that the terminal ballistic behaviour is strongly dependent on these parameters. (orig.) [de

  13. Crack widths in concrete with fibers and main reinforcement

    DEFF Research Database (Denmark)

    Christensen, Frede; Ulfkjær, Jens Peder; Brincker, Rune

    2015-01-01

    The main object of the research work presented in this paper is to establish design tools for concrete structures where main reinforcement is combined with addition of short discrete steel fibers. The work is concerned with calculating and measuring crack widths in structural elements subjected...... to bending load. Thus, the aim of the work is to enable engineers to calculate crack widths for flexural concrete members and analyze how different combinations of amounts of fibers and amounts of main reinforcement can meet a given maximum crack width requirement. A mathematical model including...... the ductility of the fiber reinforced concrete (FRC) is set up and experimental work is conducted in order to verify the crack width model. The ductility of the FRC is taken into account by using the stress crack width relation. The constitutive model for the FRC is based on the idea that the initial part...

  14. Processing and Mechanical Properties of Macro Polyamide Fiber Reinforced Concrete.

    Science.gov (United States)

    Jeon, Joong Kyu; Kim, WooSeok; Jeon, Chan Ki; Kim, Jin Cheol

    2014-11-26

    This study developed a macro-sized polyamide (PA) fiber for concrete reinforcement and investigated the influence of the PA fiber on flexural responses in accordance with ASTM standards. PA fibers are advantageous compared to steel fibers that are corrosive and gravitated. The macro-sized PA fiber significantly improved concrete ductility and toughness. Unlike steel fibers, the PA fibers produced two peak bending strengths. The first-peaks occurred near 0.005 mm of deflection and decreased up to 0.5 mm of deflection. Then the bending strength increased up to second-peaks until the deflections reached between 1.0 and 1.5 mm. The averaged flexural responses revealed that PA fiber content did not significantly influence flexural responses before L /600, but had significant influence thereafter. Toughness performance levels were also determined, and the results indicated more than Level II at L /600 and Level IV at others.

  15. Engineering Properties of Treated Natural Hemp Fiber-Reinforced Concrete

    Directory of Open Access Journals (Sweden)

    Xiangming Zhou

    2017-06-01

    Full Text Available In recent years, the construction industry has seen a significant rise in the use of natural fibers, for producing building materials. Research has shown that treated hemp fiber-reinforced concrete (THFRC can provide a low-cost building material for residential and low-rise buildings, while achieving sustainable construction and meeting future environmental targets. This study involved enhancing the mechanical properties of hemp fiber-reinforced concrete through the Ca(OH2 solution pretreatment of fibers. Both untreated (UHFRC and treated (THFRC hemp fiber-reinforced concrete were tested containing 15-mm length fiber, at a volume fraction of 1%. From the mechanical strength tests, it was observed that the 28-day tensile and compressive strength of THFRC was 16.9 and 10% higher, respectively, than UHFRC. Based on the critical stress intensity factor (KICs and critical strain energy release rate (GICs, the fracture toughness of THFRC at 28 days was also found to be 7–13% higher than UHFRC. Additionally, based on the determined brittleness number (Q and modulus of elasticity, the THFRC was found to be 11% less brittle and 10.8% more ductile. Furthermore, qualitative analysis supported many of the mechanical strength findings through favorable surface roughness observed on treated fibers and resistance to fiber pull-out.

  16. Performance of steel wool fiber reinforced geopolymer concrete

    Science.gov (United States)

    Faris, Meor Ahmad; Abdullah, Mohd Mustafa Al Bakri; Ismail, Khairul Nizar; Muniandy, Ratnasamy; Ariffin, Nurliayana

    2017-09-01

    In this paper, performance of geopolymer concrete was studied by mixing of Class F fly ash from Manjung power station, Lumut, Perak, Malaysia with alkaline activator which are combination of sodium hydroxide and sodium silicate. Steel wool fiber were added into the geopolymer concrete as reinforcement with different weight percentage vary from 0 % - 5 %. Chemical compositions of Malaysian fly ash was first analyzed by using X-ray fluorescence. All geopolymer concrete reinforced with steel wool fiber with different weight percentage were tested in terms of density, workability, and compression. Result shows Malaysian fly ash identified by using XRF was class F. Density of geopolymer concrete close to density of OPC which is approximately 2400 kg/m3 and the density was increase gradually with the additions of steel fiber. However, the inclusions of steel fibers also shows some reduction to the workability of geopolymer concrete. Besides, the compressive strength was increased with the increasing of fibers addition until maximum of 18.6 % improvement at 3 % of steel fibers.

  17. Direct Shear Behavior of Fiber Reinforced Concrete Elements

    Directory of Open Access Journals (Sweden)

    Hussein Al-Quraishi

    2018-01-01

    Full Text Available Improving the accuracy of load-deformation behavior, failure mode, and ultimate load capacity for reinforced concrete members subjected to in-plane loadings such as corbels, wall to foundation connections and panels need shear strength behavior to be included. Shear design in reinforced concrete structures depends on crack width, crack slippage and roughness of the surface of cracks. This paper illustrates results of an experimental investigation conducted to investigate the direct shear strength of fiber normal strength concrete (NSC and reactive powder concrete (RPC. The tests were performed along a pre-selected shear plane in concrete members named push-off specimens. The effectiveness of concrete compressive strength, volume fraction of steel fiber, and shear reinforcement ratio on shear transfer capacity were considered in this study. Furthermore, failure modes, shear stress-slip behavior, and shear stress-crack width behavior were also presented in this study. Tests’ results showed that volume fraction of steel fiber and compressive strength of concrete in NSC and RPC play a major role in improving the shear strength of concrete. As expectedly, due to dowel action, the shear reinforcement is the predominant factor in resisting the shear stress. The shear failure of NSC and RPC has the sudden mode of failure (brittle failure with the approximately linear behavior of shear stress-slip relationship till failure. Using RPC instead of NSC with the same amount of steel fibers in constructing the push-off specimen result in high shear strength. In NSC, shear strength influenced by the three major factors; crack surface friction, aggregate interlock and steel fiber content if present. Whereas, RPC has only steel fiber and cracks surface friction influencing the shear strength. Due to cementitious nature of RPC in comparisons with NSC, the RPC specimen shows greater cracks width. It is observed that the Mattock model gives very satisfactory

  18. Fatigue life prediction of fiber reinforced concrete under flexural load

    DEFF Research Database (Denmark)

    Zhang, Jun; Stang, Henrik; Li, Victor

    1999-01-01

    This paper presents a semi-analytical method to predict fatigue behavior in flexure of fiber reinforced concrete (FRC) based on the equilibrium of force in the critical cracked section. The model relies on the cyclic bridging law, the so-called stress-crack width relationship under cyclic tensile...

  19. Single fiber pullout from hybrid fiber reinforced concrete

    NARCIS (Netherlands)

    Markovich, I.; Van Mier, J.G.M.; Walraven, J.C.

    2001-01-01

    Hybrid fiber reinforcement can be very efficient for improving the tensile response of the composite. In such materials, fibers of different geometries can act as bridging mechanisms over cracks of different widths. The fiber bridging efficiency depends on the interface properties, which makes

  20. Influence of cellulose fibers on structure and properties of fiber reinforced foam concrete

    Directory of Open Access Journals (Sweden)

    Fedorov Valeriy

    2018-01-01

    Full Text Available One of the promising means of foamed concrete quality improvement is micro-reinforcement by adding synthetic and mineral fibers to the base mix. This research is the first to investigate peculiarities of using recycled cellulose fiber extracted from waste paper for obtaining fiber reinforced foam concrete. The paper presents results of experimental research on the influence of cellulose fibers on structure and properties of fiber reinforced foam concrete by using methods of chemical analysis and scanning electron microscopy. The research determines peculiarities of new formations appearance and densification of binder hydration products in the contact zone between fiber and cement matrix, which boost mechanical strength of fiber reinforced foam concrete. Physico-mechanical properties of fiber reinforced foam concrete were defined depending on the amount of recycled cellulose fiber added to the base mix. It was found that the use of recycled cellulose fibers allows obtaining structural thermal insulating fiber reinforced foam concretes of non-autoclaved hardening of brand D600 with regard to mean density with the following improved properties: compressive strength increased by 35% compared to basic samples, higher stability of foamed concrete mix and decreased shrinkage deformation.

  1. Interface study of fiber reinforced concrete

    Directory of Open Access Journals (Sweden)

    Pacios, A.

    1997-12-01

    Full Text Available In a composite material that uses fibers as reinforcement, the breakage of the matrix is produced jointly with the separation of the fiber from the matrix. The mechanical behavior of the interface describes how fibers can work stabilizing the cracking process. The interface is the medium that puts the fiber on load, being the mechanical behavior of the interface and the strength of the fiber two important parameters to consider to characterize the general behavior of the composite. The present work studies the effect of several parameters on the behavior of the interface. Those parameters are the type of fiber, its geometry and dimension and the modified matrix and loading rate. An experimental technique was designed to allow testing the same set-up for pull-out tests in a quasistatic machine and Charpy pendulum. Modifications of the matrix by adding a mineral admixture improve the behavior of the interface as much as a 100%. It has been observed that combining the two actions, an improved matrix with crimped fibers, the type of failure can be modified. In this new type of failure, the fiber breaks consequently toughness decreases. Other parameters, as the loading rate and inclination of the fiber also affect the behavior of the interface.

    En un material compuesto que utiliza fibras como refuerzo, la rotura de la matriz se produce conjuntamente con la separación de la fibra de la matriz, por lo que el comportamiento mecánico de la interfase describe hasta que punto las fibras pueden trabajar como estabilizadores en el proceso defisuración. La interfase es el medio que pone en carga a la fibra y, por ello, la resistencia mecánica de la interfase y de la fibra son dos parámetros importantes a considerar para caracterizar el comportamiento general del composite. Este trabajo investiga el efecto de la variación del tipo de fibra, geometría y dimensión de las mismas y las modificaciones de la matriz y la velocidad de desplazamiento

  2. New Fiber Reinforced Waterless Concrete for Extraterrestrial Structural Applications

    Science.gov (United States)

    Toutanji, H.; Tucker, D.; Ethridge, E.

    2005-01-01

    Commercial use of sulfur concrete on Earth is well established, particularly in corrosive, e.g., acid and salt, environments. Having found troilite (FeS) on the Moon raises the question of using extracted sulfur as a lunar construction mate: iii an attractive alternative to conventional concrete as it does not require water For the purpose of this paper it is assumed that lunar ore is mined, refined, and the raw sulfur processed with appropriate lunar regolith to form, for example, brick and beam elements. Glass fibers produced from regolith were used as a reinforcement to improve the mechanical properties of the sulfur concrete. Glass fibers and glass rebar were produced by melting the lunar regolith simulant. Lunar regolith stimulant was melted in a 25 cc Pt-Rh crucible in a Sybron Thermoline 46100 high temperature MoSi2 furnace at melting temperatures of 1450 to 1600G. The glass melt wets the ceramic rod and long continuous glass fibers were easily hand drawn. The glass fibers were immediately coated with a protective polymer to maintain the mechanical strength. The viability of sulfur concrete as a construction material for extraterrestrial application is presented. The mechanical properties of the glass fiber reinforced sulfur concrete were investigated.

  3. Experimental analysis of reinforced concrete beams strengthened in bending with carbon fiber reinforced polymer

    Directory of Open Access Journals (Sweden)

    M. M. VIEIRA

    Full Text Available The use of carbon fiber reinforced polymer (CFRP has been widely used for the reinforcement of concrete structures due to its practicality and versatility in application, low weight, high tensile strength and corrosion resistance. Some construction companies use CFRP in flexural strengthening of reinforced concrete beams, but without anchor systems. Therefore, the aim of this study is analyze, through an experimental program, the structural behavior of reinforced concrete beams flexural strengthened by CFRP without anchor fibers, varying steel reinforcement and the amount of carbon fibers reinforcement layers. Thus, two groups of reinforced concrete beams were produced with the same geometric feature but with different steel reinforcement. Each group had five beams: one that is not reinforced with CFRP (reference and other reinforced with two, three, four and five layers of carbon fibers. Beams were designed using a computational routine developed in MAPLE software and subsequently tested in 4-point points flexural test up to collapse. Experimental tests have confirmed the effectiveness of the reinforcement, ratifying that beams collapse at higher loads and lower deformation as the amount of fibers in the reinforcing layers increased. However, the increase in the number of layers did not provide a significant increase in the performance of strengthened beams, indicating that it was not possible to take full advantage of strengthening applied due to the occurrence of premature failure mode in the strengthened beams for pullout of the cover that could have been avoided through the use of a suitable anchoring system for CFRP.

  4. Mechanical Properties of Fiber Reinforced Lightweight Concrete Containing Surfactant

    Directory of Open Access Journals (Sweden)

    Yoo-Jae Kim

    2010-01-01

    Full Text Available Fiber reinforced aerated lightweight concrete (FALC was developed to reduce concrete's density and to improve its fire resistance, thermal conductivity, and energy absorption. Compression tests were performed to determine basic properties of FALC. The primary independent variables were the types and volume fraction of fibers, and the amount of air in the concrete. Polypropylene and carbon fibers were investigated at 0, 1, 2, 3, and 4% volume ratios. The lightweight aggregate used was made of expanded clay. A self-compaction agent was used to reduce the water-cement ratio and keep good workability. A surfactant was also added to introduce air into the concrete. This study provides basic information regarding the mechanical properties of FALC and compares FALC with fiber reinforced lightweight concrete. The properties investigated include the unit weight, uniaxial compressive strength, modulus of elasticity, and toughness index. Based on the properties, a stress-strain prediction model was proposed. It was demonstrated that the proposed model accurately predicts the stress-strain behavior of FALC.

  5. Advance study of fiber-reinforced self-compacting concrete

    Science.gov (United States)

    Mironova, M.; Ivanova, M.; Naidenov, V.; Georgiev, I.; Stary, J.

    2015-10-01

    Incorporation in concrete composition of steel macro- and micro - fiber reinforcement with structural function increases the degree of ductility of typically brittle cement-containing composites, which in some cases can replace completely or partially conventional steel reinforcement in the form of rods and meshes. Thus, that can reduce manufacturing, detailing and placement of conventional reinforcement, which enhances productivity and economic efficiency of the building process. In this paper, six fiber-reinforced with different amounts of steel fiber cement-containing self-compacting compositions are investigated. The results of some of their main strength-deformation characteristics are presented. Advance approach for the study of structural and material properties of these type composites is proposed by using the methods of industrial computed tomography. The obtained original tomography results about the microstructure and characteristics of individual structural components make it possible to analyze the effective macro-characteristics of the studied composites. The resulting analytical data are relevant for the purposes of multi-dimensional modeling of these systems. Multifactor structure-mechanical analysis of the obtained with different methods original scientific results is proposed. It is presented a conclusion of the capabilities and effectiveness of complex analysis in the studies to characterize the properties of self-compacting fiber-reinforced concrete.

  6. Advance study of fiber-reinforced self-compacting concrete

    International Nuclear Information System (INIS)

    Mironova, M.; Ivanova, M.; Naidenov, V.; Georgiev, I.; Stary, J.

    2015-01-01

    Incorporation in concrete composition of steel macro- and micro – fiber reinforcement with structural function increases the degree of ductility of typically brittle cement-containing composites, which in some cases can replace completely or partially conventional steel reinforcement in the form of rods and meshes. Thus, that can reduce manufacturing, detailing and placement of conventional reinforcement, which enhances productivity and economic efficiency of the building process. In this paper, six fiber-reinforced with different amounts of steel fiber cement-containing self-compacting compositions are investigated. The results of some of their main strength-deformation characteristics are presented. Advance approach for the study of structural and material properties of these type composites is proposed by using the methods of industrial computed tomography. The obtained original tomography results about the microstructure and characteristics of individual structural components make it possible to analyze the effective macro-characteristics of the studied composites. The resulting analytical data are relevant for the purposes of multi-dimensional modeling of these systems. Multifactor structure-mechanical analysis of the obtained with different methods original scientific results is proposed. It is presented a conclusion of the capabilities and effectiveness of complex analysis in the studies to characterize the properties of self-compacting fiber-reinforced concrete

  7. Advance study of fiber-reinforced self-compacting concrete

    Energy Technology Data Exchange (ETDEWEB)

    Mironova, M., E-mail: mirona@imbm.bas.bg; Ivanova, M., E-mail: magdalena.ivanova@imbm.bas.bg; Naidenov, V., E-mail: valna53@mail.bg [Institute of Mechanics, Bulgarian Academy of Sciences, Acad. G. Bonchev str., bl. 4, Sofia 1113 (Bulgaria); Georgiev, I., E-mail: ivan.georgiev@parallel.bas.bg [Institute of Information and Communication Technologies & Institute of Mathematics and Informatics, Bulgarian Academy of Sciences, Acad. G. Bonchev str., Sofia 1113 (Bulgaria); Stary, J., E-mail: stary@ugn.cas.cz [Institute of Geonics Czech Academy of Sciences, Studentska str., Ostrava 1768 (Czech Republic)

    2015-10-28

    Incorporation in concrete composition of steel macro- and micro – fiber reinforcement with structural function increases the degree of ductility of typically brittle cement-containing composites, which in some cases can replace completely or partially conventional steel reinforcement in the form of rods and meshes. Thus, that can reduce manufacturing, detailing and placement of conventional reinforcement, which enhances productivity and economic efficiency of the building process. In this paper, six fiber-reinforced with different amounts of steel fiber cement-containing self-compacting compositions are investigated. The results of some of their main strength-deformation characteristics are presented. Advance approach for the study of structural and material properties of these type composites is proposed by using the methods of industrial computed tomography. The obtained original tomography results about the microstructure and characteristics of individual structural components make it possible to analyze the effective macro-characteristics of the studied composites. The resulting analytical data are relevant for the purposes of multi-dimensional modeling of these systems. Multifactor structure-mechanical analysis of the obtained with different methods original scientific results is proposed. It is presented a conclusion of the capabilities and effectiveness of complex analysis in the studies to characterize the properties of self-compacting fiber-reinforced concrete.

  8. Bond of reinforcing bars in self-compacting steel fiber reinforced concrete

    NARCIS (Netherlands)

    Schumacher, P.; Bigaj-van Vliet, A.J.; Braam, C.R.; Uijl, J.A. den; Walraven, J.C.

    2002-01-01

    Pull-out tests were performed on 10 mm diameter ribbed bars embedded along three times the bar diameter in 200 mm cubes made of plain and steel fiber reinforced concrete (SFRC) of normal strength (B45). The fiber content was 60 and 120 kg/m3, respectively, the aspect ratio of the fibers was 45 and

  9. Steel fiber reinforced concrete behavior, modelling and design

    CERN Document Server

    Singh, Harvinder

    2017-01-01

    This book discusses design aspects of steel fiber-reinforced concrete (SFRC) members, including the behavior of the SFRC and its modeling. It also examines the effect of various parameters governing the response of SFRC members in detail. Unlike other publications available in the form of guidelines, which mainly describe design methods based on experimental results, it describes the basic concepts and principles of designing structural members using SFRC as a structural material, predominantly subjected to flexure and shear. Although applications to special structures, such as bridges, retaining walls, tanks and silos are not specifically covered, the fundamental design concepts remain the same and can easily be extended to these elements. It introduces the principles and related theories for predicting the role of steel fibers in reinforcing concrete members concisely and logically, and presents various material models to predict the response of SFRC members in detail. These are then gradually extended to d...

  10. Structural Behavior of Concrete Beams Reinforced with Basalt Fiber Reinforced Polymer (BFRP) Bars

    Science.gov (United States)

    Ovitigala, Thilan

    The main challenge for civil engineers is to provide sustainable, environmentally friendly and financially feasible structures to the society. Finding new materials such as fiber reinforced polymer (FRP) material that can fulfill the above requirements is a must. FRP material was expensive and it was limited to niche markets such as space shuttles and air industry in the 1960s. Over the time, it became cheaper and spread to other industries such as sporting goods in the 1980-1990, and then towards the infrastructure industry. Design and construction guidelines are available for carbon fiber reinforced polymer (CFRP), aramid fiber reinforced polymer (AFRP) and glass fiber reinforced polymer (GFRP) and they are currently used in structural applications. Since FRP is linear elastic brittle material, design guidelines for the steel reinforcement are not valid for FRP materials. Corrosion of steel reinforcement affects the durability of the concrete structures. FRP reinforcement is identified as an alternative to steel reinforcement in corrosive environments. Although basalt fiber reinforced polymer (BFRP) has many advantages over other FRP materials, but limited studies have been done. These studies didn't include larger BFRP bar diameters that are mostly used in practice. Therefore, larger beam sizes with larger BFRP reinforcement bar diameters are needed to investigate the flexural and shear behavior of BFRP reinforced concrete beams. Also, shear behavior of BFRP reinforced concrete beams was not yet studied. Experimental testing of mechanical properties and bond strength of BFRP bars and flexural and shear behavior of BFRP reinforced concrete beams are needed to include BFRP reinforcement bars in the design codes. This study mainly focuses on the use of BFRP bars as internal reinforcement. The test results of the mechanical properties of BFRP reinforcement bars, the bond strength of BFRP reinforcement bars, and the flexural and shear behavior of concrete beams

  11. Preliminary Study on Impact Resistances of Fiber Reinforced Concrete Applied Nuclear Power Plants

    International Nuclear Information System (INIS)

    Jin, Byeong Moo; Kim, Young Jin; Jeon, Se Jin

    2013-01-01

    Studies to improve the impact resistance depending upon design parameters for fiber reinforced concrete, such as type of fibers and application ratio, are in progress. Authors assessed first the impact resistance of concrete walls depending upon fiber types and missile impact velocities. The safety assessment of nuclear power plants against large civil aircraft crashes have been accomplished for normal concrete and fiber reinforced concretes in this study. Studies on the safety assessments on the nuclear power plants against large civil aircraft crashes are ongoing actively. As a step of evaluating the applicability of fiber reinforced concrete in means of ensuring more structural safety of the nuclear power plants against impact, the impact resistance for the 1% steel and 2% polyamide fiber reinforced concretes have been evaluated. For reactor containment building structures, it seem there is no impact resistance enhancement of fiber reinforced concrete applied to reactor containment building in the cases of impact velocity 150 m/sec considered in this study. However this results from the pre-stressing forces which introduce compressive stresses in concrete wall and dome section of reactor containment building. Nonetheless there may be benefits to apply fiber reinforced concrete to nuclear power plants. For double containment type reactor containment building, the outer structure is a reinforced concrete structure. The impact resistances for non pre-stressed cylindrical reactor containment buildings are enhanced by 23 to 47 % for 2 % polyamide fiber reinforced concretes and 1 % steel fiber reinforced concretes respectively. For other buildings such as auxiliary building, compound building and fuel storage building surrounding the reactor containment building, there are so many reinforced concrete walls which are anticipated some enhancements of impact resistance by using fiber reinforced concretes. And heavier or faster large civil aircraft impacts produce higher

  12. Preliminary Study on Impact Resistances of Fiber Reinforced Concrete Applied Nuclear Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Jin, Byeong Moo; Kim, Young Jin; Jeon, Se Jin [Daewoo E and C Co. Ltd., Suwon (Korea, Republic of)

    2013-10-15

    Studies to improve the impact resistance depending upon design parameters for fiber reinforced concrete, such as type of fibers and application ratio, are in progress. Authors assessed first the impact resistance of concrete walls depending upon fiber types and missile impact velocities. The safety assessment of nuclear power plants against large civil aircraft crashes have been accomplished for normal concrete and fiber reinforced concretes in this study. Studies on the safety assessments on the nuclear power plants against large civil aircraft crashes are ongoing actively. As a step of evaluating the applicability of fiber reinforced concrete in means of ensuring more structural safety of the nuclear power plants against impact, the impact resistance for the 1% steel and 2% polyamide fiber reinforced concretes have been evaluated. For reactor containment building structures, it seem there is no impact resistance enhancement of fiber reinforced concrete applied to reactor containment building in the cases of impact velocity 150 m/sec considered in this study. However this results from the pre-stressing forces which introduce compressive stresses in concrete wall and dome section of reactor containment building. Nonetheless there may be benefits to apply fiber reinforced concrete to nuclear power plants. For double containment type reactor containment building, the outer structure is a reinforced concrete structure. The impact resistances for non pre-stressed cylindrical reactor containment buildings are enhanced by 23 to 47 % for 2 % polyamide fiber reinforced concretes and 1 % steel fiber reinforced concretes respectively. For other buildings such as auxiliary building, compound building and fuel storage building surrounding the reactor containment building, there are so many reinforced concrete walls which are anticipated some enhancements of impact resistance by using fiber reinforced concretes. And heavier or faster large civil aircraft impacts produce higher

  13. Design of Ultra High Performance Fiber Reinforced Concrete Shells

    DEFF Research Database (Denmark)

    Jepsen, Michael S.; Lambertsen, Søren Heide; Damkilde, Lars

    2013-01-01

    Fiber Reinforced Concrete shell. The major challenge in the design phase has been securing sufficient stiffness of the structure while keeping the weight at a minimum. The weight/stiffness issue has been investigated by means of the finite element method, to optimize the structure regarding overall......The paper treats the redesign of the float structure of the Wavestar wave energy converter. Previously it was designed as a glass fiber structure, but due to cost reduction requirements a redesign has been initiated. The new float structure will be designed as a double curved Ultra High Performance...

  14. A method for calculating equivalent diameter of fiber in self-compacting fiber reinforced concrete

    NARCIS (Netherlands)

    Yu, R.; Spiesz, P.R.; Brouwers, H.J.H.; Fischer, H.-B.; Bode, K.-A.; Beuthan, C.

    2012-01-01

    This paper presents a method for calculating the equivalent diameter of fiber in self-compacting fiber reinforced concrete (SCFRC). The key idea is to utilize a small amount of particles with a narrow particle size distribution to replace the fibers by the same volume, without causing any obvious

  15. Fiber reinforced concrete as a material for nuclear reactor containment buildings

    International Nuclear Information System (INIS)

    Mallikarjuna; Banthia, N.; Mindess, S.

    1991-01-01

    The fiber reinforced concrete as a constructional material for nuclear reactor containment buildings calls for an examination of its individual characteristics and potentialities due to its inherent superiority over normal plain and reinforced concrete. In the present investigation, first, to study the static behavior of straight, hooked-end and crimped fibers, recently developed nonlinear three-dimensional interface (contact) element has been used in conjunction with the eight nodded hexahedron and two nodded bar elements for concrete and steel fiber respectively. Then impact tests were carried out on fiber reinforced concrete beams with an instrumented drop weight impact machine. Two different concrete mixes were tested: normal strength and high strength concrete specimens. Fibers in the concrete mix found to significantly increase the ductility and the impact resistance of the composite. Deformed fibers increase peak pull-out load and pull-out distance, and perform better in the steel fiber reinforced concrete (SFRC) structures. (author)

  16. Fiber Reinforced Concrete (FRC) for High Rise Construction: Case Studies

    Science.gov (United States)

    Gharehbaghi, Koorosh; Chenery, Rhea

    2017-12-01

    Due to its material element, Fiber Reinforced Concrete (FRC) could be stronger than traditional Concrete. This is due to FRC internal material compounds and elements. Furthermore, FRC can also significantly improve flexural strength when compared to traditional Concrete. This improvement in flexural strength can be varied depending on the actual fibers used. Although not new, FRC is gradually gaining popularity in the construction industry, in particular for high rise structures. This is due to its flexural strength, especially for high seismic zones, as it will provide a better solution then reinforced Concrete. The main aim of this paper is to investigate the structural importance of FRC for the high rise construction. Although there has been numerous studies and literature in justifying the FRC for general construction; this paper will consider its use specifically for high rise construction. Moreover, this paper will closely investigate eight case studies from Australian and United States as a part of the FRC validation for high rise construction. In doing so, this paper will examine their Structural Health Monitoring (SHM) to determine their overall structural performance.

  17. Glass fiber reinforced concrete for terrestrial photovoltaic arrays

    Science.gov (United States)

    Maxwell, H.

    1979-01-01

    The use of glass-fiber-reinforced concrete (GRC) as a low-cost structural substrate for terrestrial solar cell arrays is discussed. The properties and fabrication of glass-reinforced concrete structures are considered, and a preliminary design for a laminated solar cell assembly built on a GRC substrate is presented. A total cost for such a photovoltaic module, composed of a Korad acrylic plastic film front cover, an aluminum foil back cover, an ethylene/vinyl acetate pottant/adhesive and a cotton fabric electrical isolator in addition to the GRC substrate, of $9.42/sq m is projected, which is less than the $11.00/sq m cost goal set by the Department of Energy. Preliminary evaluations are concluded to have shown the design capabilities and cost effectiveness of GRC; however, its potential for automated mass production has yet to be evaluated.

  18. Probabilistic Flexural Fatigue in Plain and Fiber-Reinforced Concrete.

    Science.gov (United States)

    Ríos, José D; Cifuentes, Héctor; Yu, Rena C; Ruiz, Gonzalo

    2017-07-07

    The objective of this work is two-fold. First, we attempt to fit the experimental data on the flexural fatigue of plain and fiber-reinforced concrete with a probabilistic model (Saucedo, Yu, Medeiros, Zhang and Ruiz, Int. J. Fatigue, 2013, 48, 308-318). This model was validated for compressive fatigue at various loading frequencies, but not for flexural fatigue. Since the model is probabilistic, it is not necessarily related to the specific mechanism of fatigue damage, but rather generically explains the fatigue distribution in concrete (plain or reinforced with fibers) for damage under compression, tension or flexion. In this work, more than 100 series of flexural fatigue tests in the literature are fit with excellent results. Since the distribution of monotonic tests was not available in the majority of cases, a two-step procedure is established to estimate the model parameters based solely on fatigue tests. The coefficient of regression was more than 0.90 except for particular cases where not all tests were strictly performed under the same loading conditions, which confirms the applicability of the model to flexural fatigue data analysis. Moreover, the model parameters are closely related to fatigue performance, which demonstrates the predictive capacity of the model. For instance, the scale parameter is related to flexural strength, which improves with the addition of fibers. Similarly, fiber increases the scattering of fatigue life, which is reflected by the decreasing shape parameter.

  19. Effect of PVA fiber content on creep property of fiber reinforced high-strength concrete columns

    Science.gov (United States)

    Xu, Zongnan; Wang, Tao; Wang, Weilun

    2018-04-01

    The effect of PVA (polyvinyl alcohol) fiber content on the creep property of fiber reinforced high-strength concrete columns was investigated. The correction factor of PVA fiber content was proposed and the creep prediction model of ACI209 was modified. Controlling the concrete strength as C80, changing the content of PVA fiber (volume fraction 0%, 0.25%, 0.5%, 1% respectively), the creep experiment of PVA fiber reinforced concrete columns was carried out, the creep coefficient of each specimen was calculated to characterize the creep property. The influence of PVA fiber content on the creep property was analyzed based on the creep coefficient and the calculation results of several frequently used creep prediction models. The correction factor of PVA fiber content was proposed to modify the ACI209 creep prediction model.

  20. Review of Japanese recommendations on design and construction of different classes of fiber reinforced concrete and application examples

    DEFF Research Database (Denmark)

    Uchida, Yuichi; Fischer, Gregor; Hishiki, Yoshihiro

    2008-01-01

    The development of concrete and cementitious composites with fiber reinforcement to improve the tensile load-deformation behavior has resulted in three distinct classes of materials. These include conventional Fiber Reinforced Concrete (FRC) with tension softening response, High Performance Fiber...... Reinforced Cement Composites (HPFRCC) with strain hardening and multiple cracking behavior, and Ultra High-strength Fiber Reinforced concrete (UFC) with increased tensile strength. The recommendations on the design, production, and application of these classes of fiber reinforced concrete have been...

  1. Hybrid Effect Evaluation of Steel Fiber and Carbon Fiber on the Performance of the Fiber Reinforced Concrete.

    Science.gov (United States)

    Song, Weimin; Yin, Jian

    2016-08-18

    Fiber reinforcement is an important method to enhance the performance of concrete. In this study, the compressive test and impact test were conducted, and then the hybrid effect between steel fiber (SF) and carbon fiber (CF) was evaluated by employing the hybrid effect index. Compressive toughness and impact toughness of steel fiber reinforced concrete (SFRC), carbon fiber reinforced concrete (CFRC) and hybrid fiber reinforced concrete (HFRC) were explored at steel fiber volume fraction 0.5%, 1%, 1.5% and carbon fiber 0.1%, 0.2%, 0.3%. Results showed that the addition of steel fiber and carbon fiber can increase the compressive strength. SF, CF and the hybridization between them could increase the compressive toughness significantly. The impact test results showed that as the volume of fiber increased, the impact number of the first visible crack and the ultimate failure also increased. The improvement of toughness mainly lay in improving the crack resistance after the first crack. Based on the test results, the positive hybrid effect of steel fiber and carbon fiber existed in hybrid fiber reinforced concrete. The relationship between the compressive toughness and impact toughness was also explored.

  2. Use of fiber reinforced concrete for concrete pavement slab replacement.

    Science.gov (United States)

    2014-03-01

    Unlike ordinary concrete pavement, replacement concrete slabs need to be open to traffic within 24 hours (sooner in : some cases). Thus, high early-strength concrete is used; however, it frequently cracks prematurely as a result of high : heat of hyd...

  3. Characterization and modeling of fiber reinforced concrete for structural applications in beams and plates

    DEFF Research Database (Denmark)

    Paegle, Ieva

    (i.e., stirrups) is investigated in detail using digital image correlation (DIC) measurement technique. The use of steel fibers to replace traditional shear reinforcement is not without precedent in current reinforced concrete design codes. However, more detailed information is provided......Fiber reinforced concrete (FRC) with discrete, short and randomly distributed fibers can be specified and designed for structural applications in flexural members. In certain cases, fibers are used as the only reinforcement, while in other cases fibers are used in combination with a reduced amount...... are considered in structural design, the work presented in this thesis analyzes in detail many commonly used test methods on three types of FRC, including Polypropylene Fiber Reinforced Concrete (PP-FRC), Polyvinyl Alcohol Fiber Reinforced Concrete called Engineered Cementitious Composite (ECC) and Steel Fiber...

  4. Bond characteristics of steel fiber and deformed reinforcing steel bar embedded in steel fiber reinforced self-compacting concrete (SFRSCC)

    Science.gov (United States)

    Aslani, Farhad; Nejadi, Shami

    2012-09-01

    Steel fiber reinforced self-compacting concrete (SFRSCC) is a relatively new composite material which congregates the benefits of the self-compacting concrete (SCC) technology with the profits derived from the fiber addition to a brittle cementitious matrix. Steel fibers improve many of the properties of SCC elements including tensile strength, ductility, toughness, energy absorption capacity, fracture toughness and cracking. Although the available research regarding the influence of steel fibers on the properties of SFRSCC is limited, this paper investigates the bond characteristics between steel fiber and SCC firstly. Based on the available experimental results, the current analytical steel fiber pullout model (Dubey 1999) is modified by considering the different SCC properties and different fiber types (smooth, hooked) and inclination. In order to take into account the effect of fiber inclination in the pullout model, apparent shear strengths ( τ ( app)) and slip coefficient ( β) are incorporated to express the variation of pullout peak load and the augmentation of peak slip as the inclined angle increases. These variables are expressed as functions of the inclined angle ( ϕ). Furthurmore, steel-concrete composite floors, reinforced concrete floors supported by columns or walls and floors on an elastic foundations belong to the category of structural elements in which the conventional steel reinforcement can be partially replaced by the use of steel fibers. When discussing deformation capacity of structural elements or civil engineering structures manufactured using SFRSCC, one must be able to describe thoroughly both the behavior of the concrete matrix reinforced with steel fibers and the interaction between this composite matrix and discrete steel reinforcement of the conventional type. However, even though the knowledge on bond behavior is essential for evaluating the overall behavior of structural components containing reinforcement and steel fibers

  5. Strain Sharing Assessment in Woven Fiber Reinforced Concrete Beams Using Fiber Bragg Grating Sensors.

    Science.gov (United States)

    Montanini, Roberto; Recupero, Antonino; De Domenico, Fabrizio; Freni, Fabrizio

    2016-09-22

    Embedded fiber Bragg grating sensors have been extensively used worldwide for health monitoring of smart structures. In civil engineering, they provide a powerful method for monitoring the performance of composite reinforcements used for concrete structure rehabilitation and retrofitting. This paper discusses the problem of investigating the strain transfer mechanism in composite strengthened concrete beams subjected to three-point bending tests. Fiber Bragg grating sensors were embedded both in the concrete tensioned surface and in the woven fiber reinforcement. It has been shown that, if interface decoupling occurs, strain in the concrete can be up to 3.8 times higher than that developed in the reinforcement. A zero friction slipping model was developed which fitted very well the experimental data.

  6. Behaviour of reinforced concrete slabs with steel fibers

    Science.gov (United States)

    Baarimah, A. O.; Syed Mohsin, S. M.

    2017-11-01

    This paper investigates the potential effect of steel fiber added into reinforced concrete slabs. Four-point bending test is conducted on six slabs to investigate the structural behaviour of the slabs by considering two different parameters; (i) thickness of slab (ii) volume fraction of steel fiber. The experimental work consists of six slabs, in which three slabs are designed in accordance to Eurocode 2 to fulfil shear capacity characteristic, whereas, the other three slabs are designed with 17% less thickness, intended to fail in shear. Both series of slabs are added with steel fiber with a volume fraction of Vf = 0%, Vf = 1% and Vf = 2% in order to study the effect and potential of fiber to compensate the loss in shear capacity. The slab with Vf = 0% steel fiber and no reduction in thickness is taken as the control slab. The experimental result suggests promising improvement of the load carrying capacity (up to 32%) and ductility (up to 87%) as well as delayed in crack propagation for the slabs with Vf = 2%. In addition, it is observed that addition of fibers compensates the reduction in the slab thickness as well as changes the failure mode of the slab from brittle to a more ductile manner.

  7. Acoustic emission of fire damaged fiber reinforced concrete

    Science.gov (United States)

    Mpalaskas, A. C.; Matikas, T. E.; Aggelis, D. G.

    2016-04-01

    The mechanical behavior of a fiber-reinforced concrete after extensive thermal damage is studied in this paper. Undulated steel fibers have been used for reinforcement. After being exposed to direct fire action at the temperature of 850°C, specimens were subjected to bending and compression in order to determine the loss of strength and stiffness in comparison to intact specimens and between the two types. The fire damage was assessed using nondestructive evaluation techniques, specifically ultrasonic pulse velocity (UPV) and acoustic emission (AE). Apart from the strong, well known, correlation of UPV to strength (both bending and compressive), AE parameters based mainly on the frequency and duration of the emitted signals after cracking events showed a similar or, in certain cases, better correlation with the mechanical parameters and temperature. This demonstrates the sensitivity of AE to the fracture incidents which eventually lead to failure of the material and it is encouraging for potential in-situ use of the technique, where it could provide indices with additional characterization capability concerning the mechanical performance of concrete after it subjected to fire.

  8. Containment performance evaluation of prestressed concrete containment vessels with fiber reinforcement

    Energy Technology Data Exchange (ETDEWEB)

    Choun, Young Sun; Park, Hyung Kui [Integrated Safety Assessment Division, Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-12-15

    Fibers in concrete resist the growth of cracks and enhance the postcracking behavior of structures. The addition of fibers into a conventional reinforced concrete can improve the structural and functional performance of safety-related concrete structures in nuclear power plants. The influence of fibers on the ultimate internal pressure capacity of a prestressed concrete containment vessel (PCCV) was investigated through a comparison of the ultimate pressure capacities between conventional and fiber-reinforced PCCVs. Steel and polyamide fibers were used. The tension behaviors of conventional concrete and fiber-reinforced concrete specimens were investigated through uniaxial tension tests and their tension-stiffening models were obtained. For a PCCV reinforced with 1% volume hooked-end steel fiber, the ultimate pressure capacity increased by approximately 12% in comparison with that for a conventional PCCV. For a PCCV reinforced with 1.5% volume polyamide fiber, an increase of approximately 3% was estimated for the ultimate pressure capacity. The ultimate pressure capacity can be greatly improved by introducing steel and polyamide fibers in a conventional reinforced concrete. Steel fibers are more effective at enhancing the containment performance of a PCCV than polyamide fibers. The fiber reinforcement was shown to be more effective at a high pressure loading and a low prestress level.

  9. Containment performance evaluation of prestressed concrete containment vessels with fiber reinforcement

    International Nuclear Information System (INIS)

    Choun, Young Sun; Park, Hyung Kui

    2015-01-01

    Fibers in concrete resist the growth of cracks and enhance the postcracking behavior of structures. The addition of fibers into a conventional reinforced concrete can improve the structural and functional performance of safety-related concrete structures in nuclear power plants. The influence of fibers on the ultimate internal pressure capacity of a prestressed concrete containment vessel (PCCV) was investigated through a comparison of the ultimate pressure capacities between conventional and fiber-reinforced PCCVs. Steel and polyamide fibers were used. The tension behaviors of conventional concrete and fiber-reinforced concrete specimens were investigated through uniaxial tension tests and their tension-stiffening models were obtained. For a PCCV reinforced with 1% volume hooked-end steel fiber, the ultimate pressure capacity increased by approximately 12% in comparison with that for a conventional PCCV. For a PCCV reinforced with 1.5% volume polyamide fiber, an increase of approximately 3% was estimated for the ultimate pressure capacity. The ultimate pressure capacity can be greatly improved by introducing steel and polyamide fibers in a conventional reinforced concrete. Steel fibers are more effective at enhancing the containment performance of a PCCV than polyamide fibers. The fiber reinforcement was shown to be more effective at a high pressure loading and a low prestress level

  10. Environmental Durability of Reinforced Concrete Deck Girders Strengthened for Shear with Surface-Bonded Carbon Fiber-Reinforced Polymer

    Science.gov (United States)

    2009-05-01

    "This research investigated the durability of carbon fiber-reinforced polymer composites (CFRP) used for shear strengthening reinforced concrete deck girders. Large beams were used to avoid accounting for size effects in the data analysis. The effort...

  11. Evaluation of seismic shear capacity of prestressed concrete containment vessels with fiber reinforcement

    Energy Technology Data Exchange (ETDEWEB)

    Choun, Young Sun; Park, Jun Hee [Integrated Safety Assessment Division, Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-10-15

    Fibers have been used in cement mixture to improve its toughness, ductility, and tensile strength, and to enhance the cracking and deformation characteristics of concrete structural members. The addition of fibers into conventional reinforced concrete can enhance the structural and functional performances of safety-related concrete structures in nuclear power plants. The effects of steel and polyamide fibers on the shear resisting capacity of a prestressed concrete containment vessel (PCCV) were investigated in this study. For a comparative evaluation between the shear performances of structural walls constructed with conventional concrete, steel fiber reinforced concrete, and polyamide fiber reinforced concrete, cyclic tests for wall specimens were conducted and hysteretic models were derived. The shear resisting capacity of a PCCV constructed with fiber reinforced concrete can be improved considerably. When steel fiber reinforced concrete contains hooked steel fibers in a volume fraction of 1.0%, the maximum lateral displacement of a PCCV can be improved by > 50%, in comparison with that of a conventional PCCV. When polyamide fiber reinforced concrete contains polyamide fibers in a volume fraction of 1.5%, the maximum lateral displacement of a PCCV can be enhanced by ∼40%. In particular, the energy dissipation capacity in a fiber reinforced PCCV can be enhanced by > 200%. The addition of fibers into conventional concrete increases the ductility and energy dissipation of wall structures significantly. Fibers can be effectively used to improve the structural performance of a PCCV subjected to strong ground motions. Steel fibers are more effective in enhancing the shear performance of a PCCV than polyamide fibers.

  12. Evaluation of seismic shear capacity of prestressed concrete containment vessels with fiber reinforcement

    International Nuclear Information System (INIS)

    Choun, Young Sun; Park, Jun Hee

    2015-01-01

    Fibers have been used in cement mixture to improve its toughness, ductility, and tensile strength, and to enhance the cracking and deformation characteristics of concrete structural members. The addition of fibers into conventional reinforced concrete can enhance the structural and functional performances of safety-related concrete structures in nuclear power plants. The effects of steel and polyamide fibers on the shear resisting capacity of a prestressed concrete containment vessel (PCCV) were investigated in this study. For a comparative evaluation between the shear performances of structural walls constructed with conventional concrete, steel fiber reinforced concrete, and polyamide fiber reinforced concrete, cyclic tests for wall specimens were conducted and hysteretic models were derived. The shear resisting capacity of a PCCV constructed with fiber reinforced concrete can be improved considerably. When steel fiber reinforced concrete contains hooked steel fibers in a volume fraction of 1.0%, the maximum lateral displacement of a PCCV can be improved by > 50%, in comparison with that of a conventional PCCV. When polyamide fiber reinforced concrete contains polyamide fibers in a volume fraction of 1.5%, the maximum lateral displacement of a PCCV can be enhanced by ∼40%. In particular, the energy dissipation capacity in a fiber reinforced PCCV can be enhanced by > 200%. The addition of fibers into conventional concrete increases the ductility and energy dissipation of wall structures significantly. Fibers can be effectively used to improve the structural performance of a PCCV subjected to strong ground motions. Steel fibers are more effective in enhancing the shear performance of a PCCV than polyamide fibers

  13. Transportation and disposal of low-and medium level waste using fiber reinforced concrete overpacks

    International Nuclear Information System (INIS)

    Pech, R.; Verdier, A.

    1993-01-01

    A multiple-year research effort by Cogema culminated in the development of a new process to immobilize nuclear waste in concrete overpacks reinforced with metal fibers. The fiber concrete overpacks satisfy all French safety requirements relating to waste immobilization and disposal, and have been certified by Andra, the national radioactive waste management agency. This presentation will cover the use of the fiber-reinforced concrete overpack for disposal and transportation, and will discuss their fabrication. (J.P.N.)

  14. Comparison of Mechanical Properties of Lightweight and Normal Weight Concretes Reinforced with Steel Fibers

    Directory of Open Access Journals (Sweden)

    A. Ali

    2018-04-01

    Full Text Available Compared to conventional concrete, lightweight concrete is more brittle in nature however, in many situations its application is advantageous due to its lower weight. The associated brittleness issue can be, to some extent, addressed by incorporation of discrete fibers. It is now established that fibers modify some fresh and hardened concrete properties. However, evaluation of those properties for lightweight fiber-reinforced concrete (LWFC against conventional/normal weight concrete of similar strength class has not been done before. Current study not only discusses the change in these properties for lightweight concrete after the addition of steel fibers, but also presents a comparison of these properties with conventional concrete with and without fibers. Both the lightweight and conventional concrete were reinforced with similar types and quantity of fibers. Hooked end steel fibers were added in the quantities of 0, 20, 40 and 60kg/m3. For similar compressive strength class, results indicate that compared to normal weight fiber-reinforced concrete (NWFC, lightweight fiber-reinforced concrete (LWFC has better fresh concrete properties, but performs poorly when tested for hardened concrete properties.

  15. Tapered Polymer Fiber Sensors for Reinforced Concrete Beam Vibration Detection.

    Science.gov (United States)

    Luo, Dong; Ibrahim, Zainah; Ma, Jianxun; Ismail, Zubaidah; Iseley, David Thomas

    2016-12-16

    In this study, tapered polymer fiber sensors (TPFSs) have been employed to detect the vibration of a reinforced concrete beam (RC beam). The sensing principle was based on transmission modes theory. The natural frequency of an RC beam was theoretically analyzed. Experiments were carried out with sensors mounted on the surface or embedded in the RC beam. Vibration detection results agreed well with Kistler accelerometers. The experimental results found that both the accelerometer and TPFS detected the natural frequency function of a vibrated RC beam well. The mode shapes of the RC beam were also found by using the TPFSs. The proposed vibration detection method provides a cost-comparable solution for a structural health monitoring (SHM) system in civil engineering.

  16. Fracture detection in concrete by glass fiber cloth reinforced plastics

    Science.gov (United States)

    Shin, Soon-Gi; Lee, Sung-Riong

    2006-04-01

    Two types of carbon (carbon fiber and carbon powder) and a glass cloth were used as conductive phases and a reinforcing fiber, respectively, in polymer rods. The carbon powder was used for fabricating electrically conductive carbon powder-glass fiber reinforced plastic (CP-GFRP) rods. The carbon fiber tows and the CP-GFRP rods were adhered to mortar specimens using epoxy resin and glass fiber cloth. On bending, the electrical resistance of the carbon fiber tow attached to the mortar specimen increased greatly after crack generation, and that of the CP-GFRP rod increased after the early stages of deflection in the mortar. Therefore, the CP-GFRP rod is superior to the carbon fiber tow in detecting fractures. Also, by reinforcing with a glass fiber cloth reinforced plastic, the strength of the mortar specimens became more than twice as strong as that of the unreinforced mortar.

  17. Hysteretic evaluation of seismic performance of normal and fiber reinforced concrete shear walls

    International Nuclear Information System (INIS)

    Choun, Young Sun; Hahm, Dae Gi

    2012-01-01

    The use of fibers in concrete or cement composites can enhance the performance of structural elements. Fibers have been used for a cement mixture to increase the toughness and tensile strength, and to improve the cracking and deformation characteristics. The addition of fibers into concrete can improve the ductility and increase the seismic resistance of concrete structures. The application of fibers to earthquake-resistant concrete structures has a major research topic. A recent study shows that an excellent seismic performance can be obtained in shear critical members constructed with high performance fiber reinforced cement composites. To increase the seismic performance of safety related concrete structures in nuclear power plants, fibers can be used. This study investigated the effect of fibers on the hysteretic behavior of a reinforced concrete (RC) shear wall by cyclic tests

  18. Hysteretic evaluation of seismic performance of normal and fiber reinforced concrete shear walls

    Energy Technology Data Exchange (ETDEWEB)

    Choun, Young Sun; Hahm, Dae Gi [KAERI, Daejeon (Korea, Republic of)

    2012-10-15

    The use of fibers in concrete or cement composites can enhance the performance of structural elements. Fibers have been used for a cement mixture to increase the toughness and tensile strength, and to improve the cracking and deformation characteristics. The addition of fibers into concrete can improve the ductility and increase the seismic resistance of concrete structures. The application of fibers to earthquake-resistant concrete structures has a major research topic. A recent study shows that an excellent seismic performance can be obtained in shear critical members constructed with high performance fiber reinforced cement composites. To increase the seismic performance of safety related concrete structures in nuclear power plants, fibers can be used. This study investigated the effect of fibers on the hysteretic behavior of a reinforced concrete (RC) shear wall by cyclic tests.

  19. Compressive Behavior of Fiber-Reinforced Concrete with End-Hooked Steel Fibers

    Directory of Open Access Journals (Sweden)

    Seong-Cheol Lee

    2015-03-01

    Full Text Available In this paper, the compressive behavior of fiber-reinforced concrete with end-hooked steel fibers has been investigated through a uniaxial compression test in which the variables were concrete compressive strength, fiber volumetric ratio, and fiber aspect ratio (length to diameter. In order to minimize the effect of specimen size on fiber distribution, 48 cylinder specimens 150 mm in diameter and 300 mm in height were prepared and then subjected to uniaxial compression. From the test results, it was shown that steel fiber-reinforced concrete (SFRC specimens exhibited ductile behavior after reaching their compressive strength. It was also shown that the strain at the compressive strength generally increased along with an increase in the fiber volumetric ratio and fiber aspect ratio, while the elastic modulus decreased. With consideration for the effect of steel fibers, a model for the stress–strain relationship of SFRC under compression is proposed here. Simple formulae to predict the strain at the compressive strength and the elastic modulus of SFRC were developed as well. The proposed model and formulae will be useful for realistic predictions of the structural behavior of SFRC members or structures.

  20. Compressive Behavior of Fiber-Reinforced Concrete with End-Hooked Steel Fibers.

    Science.gov (United States)

    Lee, Seong-Cheol; Oh, Joung-Hwan; Cho, Jae-Yeol

    2015-03-27

    In this paper, the compressive behavior of fiber-reinforced concrete with end-hooked steel fibers has been investigated through a uniaxial compression test in which the variables were concrete compressive strength, fiber volumetric ratio, and fiber aspect ratio (length to diameter). In order to minimize the effect of specimen size on fiber distribution, 48 cylinder specimens 150 mm in diameter and 300 mm in height were prepared and then subjected to uniaxial compression. From the test results, it was shown that steel fiber-reinforced concrete (SFRC) specimens exhibited ductile behavior after reaching their compressive strength. It was also shown that the strain at the compressive strength generally increased along with an increase in the fiber volumetric ratio and fiber aspect ratio, while the elastic modulus decreased. With consideration for the effect of steel fibers, a model for the stress-strain relationship of SFRC under compression is proposed here. Simple formulae to predict the strain at the compressive strength and the elastic modulus of SFRC were developed as well. The proposed model and formulae will be useful for realistic predictions of the structural behavior of SFRC members or structures.

  1. Mechanical Properties of Steel Fiber Reinforced all Lightweight Aggregate Concrete

    Science.gov (United States)

    Yang, Y. M.; Li, J. Y.; Zhen, Y.; Nie, Y. N.; Dong, W. L.

    2018-05-01

    In order to study the basic mechanical properties and failure characteristics of all lightweight aggregate concrete with different volume of steel fiber (0%, 1%, 2%), shale ceramsite is used as light coarse aggregate. The shale sand is made of light fine aggregate and mixed with different volume of steel fiber, and the mix proportion design of all lightweight aggregate concrete is carried out. The cubic compressive strength, axial compressive strength, flexural strength, splitting strength and modulus of elasticity of steel fiber all lightweight aggregate concrete were studied. Test results show that the incorporation of steel fiber can restrict the cracking of concrete, improve crack resistance; at the same time, it shows good plastic deformation ability and failure morphology. It lays a theoretical foundation for further research on the application of all lightweight aggregate concrete in structural systems.

  2. Serviceability behavior of Reinforcement Concrete beams with polypropylene and steel fibers

    OpenAIRE

    NaserKabashi; Cenë Krasniqi

    2015-01-01

    Serviceability Limit States (SLS) may lead to the design of concrete elements internally reinforced with Fiber Reinforced Polymer (FRP).In many types of concrete structure loss the serviceability due to wide cracks, number of cracks or large deflection is not uncommon behaviour in concrete structures or concrete beams.The flexural ductility affects the serviceability deflection of RC beams once flexural cracking take place.Imprvement will be focused on the use of polypropilene fib...

  3. Review of Carbon Fiber Reinforced Polymer Reinforced Material in Concrete Structure

    Directory of Open Access Journals (Sweden)

    Ayuddin Ayuddin

    2016-05-01

    Full Text Available Carbon Fiber Reinforced Polymer (FRP is a material that is lightweight, strong, anti-magnetic and corrosion resistant. This material can be used as an option to replace the steel material in concrete construction or as material to improve the strength of existing construction. CFRP is quite easy to be attached to the concrete structure and proved economically used as a material for repairing damaged structures and increase the resilience of structural beams, columns, bridges and other parts of the structure against earthquakes. CFRP materials can be shaped sheet to be attached to the concrete surface. Another reason is due to the use of CFRP has a higher ultimate strength and lower weight compared to steel reinforcement so that the handling is significantly easier. Through this paper suggests that CFRP materials can be applied to concrete structures, especially on concrete columns. Through the results of experiments conducted proved that the concrete columns externally wrapped with CFRP materials can increase the strength. This treatment is obtained after testing experiments on 130 mm diameter column with a height of 700 mm with concentric loading method to collapse. The experimental results indicate that a column is wrapped externally with CFRP materials can achieve a load capacity of 250 kN compared to the concrete columns externally without CFRP material which only reached 150 kN. If the column is given internally reinforcing steel and given externally CFRP materials can reach 270 kN. It shows that CFRP materials can be used for concrete structures can even replace reinforcing steel that has been widely used in building construction in Indonesia.

  4. Flexural strengthening of Reinforced Concrete (RC) Beams Retrofitted with Corrugated Glass Fiber Reinforced Polymer (GFRP) Laminates

    Science.gov (United States)

    Aravind, N.; Samanta, Amiya K.; Roy, Dilip Kr. Singha; Thanikal, Joseph V.

    2015-01-01

    Strengthening the structural members of old buildings using advanced materials is a contemporary research in the field of repairs and rehabilitation. Many researchers used plain Glass Fiber Reinforced Polymer (GFRP) sheets for strengthening Reinforced Concrete (RC) beams. In this research work, rectangular corrugated GFRP laminates were used for strengthening RC beams to achieve higher flexural strength and load carrying capacity. Type and dimensions of corrugated profile were selected based on preliminary study using ANSYS software. A total of twenty one beams were tested to study the load carrying capacity of control specimens and beams strengthened with plain sheets and corrugated laminates using epoxy resin. This paper presents the experimental and theoretical study on flexural strengthening of Reinforced Concrete (RC) beams using corrugated GFRP laminates and the results are compared. Mathematical models were developed based on the experimental data and then the models were validated.

  5. Mechanical Behavior of Steel Fiber-Reinforced Concrete Beams Bonded with External Carbon Fiber Sheets.

    Science.gov (United States)

    Gribniak, Viktor; Tamulenas, Vytautas; Ng, Pui-Lam; Arnautov, Aleksandr K; Gudonis, Eugenijus; Misiunaite, Ieva

    2017-06-17

    This study investigates the mechanical behavior of steel fiber-reinforced concrete (SFRC) beams internally reinforced with steel bars and externally bonded with carbon fiber-reinforced polymer (CFRP) sheets fixed by adhesive and hybrid jointing techniques. In particular, attention is paid to the load resistance and failure modes of composite beams. The steel fibers were used to avoiding the rip-off failure of the concrete cover. The CFRP sheets were fixed to the concrete surface by epoxy adhesive as well as combined with various configurations of small-diameter steel pins for mechanical fastening to form a hybrid connection. Such hybrid jointing techniques were found to be particularly advantageous in avoiding brittle debonding failure, by promoting progressive failure within the hybrid joints. The use of CFRP sheets was also effective in suppressing the localization of the discrete cracks. The development of the crack pattern was monitored using the digital image correlation method. As revealed from the image analyses, with an appropriate layout of the steel pins, brittle failure of the concrete-carbon fiber interface could be effectively prevented. Inverse analysis of the moment-curvature diagrams was conducted, and it was found that a simplified tension-stiffening model with a constant residual stress level at 90% of the strength of the SFRC is adequate for numerically simulating the deformation behavior of beams up to the debonding of the CFRP sheets.

  6. Single Fibre Pullout from Hybrid Fiber Reinforced Concrete

    NARCIS (Netherlands)

    Markovich, I.; Van Mier, J.G.M.; Walraven, J.C.

    2001-01-01

    Hybrid fiber reinforcement can be very efficient for improving the tensile response of the composite. In such materials, fibers of different geometries can act as bridging mechanisms over cracks of different widths. The fiber bridging efficiency depends on the interface properties, which makes

  7. Seismic behavior of fiber reinforced steel-concrete composite systems

    OpenAIRE

    Faghih, F.; Das, D.; Ayoub, A.

    2017-01-01

    The addition of Steel Fibers (SF) to concrete has been widely studied in the past decades as a mean to control its crack behavior and maintain its ductility in tension. It has been verified that the use of these fibers at an appropriate dosage can change the behavior of structural members from brittle to ductile. Further, since the discovery of carbon nanotubes/fibers (CNT/CNF), they have been also considered as efficient fibers to be used in construction materials such as concrete. Previous ...

  8. Material equations for the calculations of steel fiber reinforced concrete members

    International Nuclear Information System (INIS)

    Jonas, W.

    1993-01-01

    Steel fiber reinforced concrete (SFRC) is made by the addition of steel fibers to fresh concrete. Usually the fibers are about 0.4-0.8mm in diameter and 25-80mm long. The addition of about 50-120 kg/m 3 is a practical and useful amount. That is about 0.6-1.5% by volume. The fibers are uniformly dispersed with a suitable concrete mix, so that clusters and uneven concentrations are prevented. The tensile strength of steel fiber reinforced concrete is scarcely better compared to that of plain concrete, but the fibers are very effective at preventing the propagation of tensile cracks. Thereby the tensile strength of fiber reinforced concrete is a reliable value. The addition of steel fibers also leads to a considerable increase of plastic deformations in the post cracking region, in comparison to plain concrete members. For nuclear power plant construction the use of steel fiber concrete with additional reinforcement of normal or prestressing steel is of special interest. The finished members exhibit good crack behaviour, increased shear strength and a considerable ability to absorb mechanical energy. These are valuable properties for members providing protection against extreme load cases (e.g. aircraft crash, earthquake, blast caused by explosion, debris due to hurricane, internal pressure loads or debris due to bursting of vessels or pipes). The behaviour of a reinforced concrete beam with steel fiber reinforced concrete against that of a reinforced beam without is shown. Until now the use of steel fiber reinforced concrete in civil engineering has been restricted because of the lack of design rules. For the preparation of fundamental principles and for the development of design rules HOCHTIEF has undertaken a series of tests on steel fiber reinforced concrete members with and without additional bar reinforcement. For this purpose HOCHTIEF has carried out several series of tests using either static, impact or cyclic loadings. In section 2 of this paper the elements

  9. Flexural strength using Steel Plate, Carbon Fiber Reinforced Polymer (CFRP) and Glass Fiber Reinforced Polymer (GFRP) on reinforced concrete beam in building technology

    Science.gov (United States)

    Tarigan, Johannes; Patra, Fadel Muhammad; Sitorus, Torang

    2018-03-01

    Reinforced concrete structures are very commonly used in buildings because they are cheaper than the steel structures. But in reality, many concrete structures are damaged, so there are several ways to overcome this problem, by providing reinforcement with Fiber Reinforced Polymer (FRP) and reinforcement with steel plates. Each type of reinforcements has its advantages and disadvantages. In this study, researchers discuss the comparison between flexural strength of reinforced concrete beam using steel plates and Fiber Reinforced Polymer (FRP). In this case, the researchers use Carbon Fiber Reinforced Polymer (CFRP) and Glass Fiber Reinforced Polymer (GFRP) as external reinforcements. The dimension of the beams is 15 x 25 cm with the length of 320 cm. Based on the analytical results, the strength of the beam with CFRP is 1.991 times its initial, GFRP is 1.877 times while with the steel plate is 1.646 times. Based on test results, the strength of the beam with CFRP is 1.444 times its initial, GFRP is 1.333 times while the steel plate is 1.167 times. Based on these test results, the authors conclude that beam with CFRP is the best choice for external reinforcement in building technology than the others.

  10. High alkali-resistant basalt fiber for reinforcing concrete

    International Nuclear Information System (INIS)

    Lipatov, Ya.V.; Gutnikov, S.I.; Manylov, M.S.; Zhukovskaya, E.S.; Lazoryak, B.I.

    2015-01-01

    Highlights: • Doping of basalt fiber with ZrSiO 4 increased its alkali resistance. • Alkali treatment results in formation of protective surface layer on fibers. • Morphology and chemical composition of surface layer were investigated. • Mechanical properties of fibers were analyzed by a Weibull distribution. • Zirconia doped basalt fibers demonstrate high performance in concrete. - Abstract: Basalt glasses and fibers with zirconia content in the range from 0 to 7 wt% were obtained using ZrSiO 4 as a zirconium source. Weight loss and tensile strength loss of fibers after refluxing in alkali solution were determined. Basalt fiber with 5.7 wt% ZrO 2 had the best alkali resistance properties. Alkali treatment results in formation of protective surface layer on fibers. Morphology and chemical composition of surface layer were investigated. It was shown that alkali resistance of zirconia doped basalt fibers is caused by insoluble compounds of Zr 4+ , Fe 3+ and Mg 2+ in corrosion layer. Mechanical properties of initial and leached fibers were evaluated by a Weibull distribution. The properties of basalt fibers with ZrSiO 4 were compared with AR-glass fibers. The performance of concrete with obtained fibers was investigated

  11. Use of Steel Fiber-Reinforced Rubberized Concrete in Cold Regions

    Science.gov (United States)

    2017-12-24

    This report documents and presents the use of steel fiber-reinforced rubberized concrete (SFRRC) in cold regions. Further investigation of SFRRC use was conducted with the wheel tracker rut and freeze-thaw laboratory testing procedures at the Univers...

  12. ON SHEAR BEHAVIOR OF STRUCTURAL ELEMENTS MADE OF STEEL FIBER REINFORCED CONCRETE

    OpenAIRE

    Cuenca Asensio, Estefanía

    2013-01-01

    Cuenca Asensio, E. (2012). ON SHEAR BEHAVIOR OF STRUCTURAL ELEMENTS MADE OF STEEL FIBER REINFORCED CONCRETE [Tesis doctoral no publicada]. Universitat Politècnica de València. doi:10.4995/Thesis/10251/18326. Palancia

  13. Experimental and analytical investigation of reinforced high strength concrete continuous beams strengthened with fiber reinforced polymer

    International Nuclear Information System (INIS)

    Akbarzadeh, H.; Maghsoudi, A.A.

    2010-01-01

    Carbon and glass fiber reinforced polymer (CFRP and GFRP) are two materials suitable for strengthening the reinforced concrete (RC) beams. Although many in situ RC beams are of continuous constructions, there has been very limited research on the behavior of such beams with externally applied FRP laminate. In addition, most design guidelines were developed for simply supported beams with external FRP laminates. This paper presents an experimental program conducted to study the flexural behavior and redistribution in moment of reinforced high strength concrete (RHSC) continuous beams strengthened with CFRP and GFRP sheets. Test results showed that with increasing the number of CFRP sheet layers, the ultimate strength increases, while the ductility, moment redistribution, and ultimate strain of CFRP sheet decrease. Also, by using the GFRP sheet in strengthening the continuous beam reduced loss in ductility and moment redistribution but it did not significantly increase ultimate strength of beam. The moment enhancement ratio of the strengthened continuous beams was significantly higher than the ultimate load enhancement ratio in the same beam. An analytical model for moment-curvature and load capacity are developed and used for the tested continuous beams in current and other similar studies. The stress-strain curves of concrete, steel and FRP were considered as integrity model. Stress-strain model of concrete is extended from Oztekin et al.'s model by modifying the ultimate strain. Also, new parameters of equivalent stress block are obtained for flexural calculation of RHSC beams. Good agreement between experiment and prediction values is achieved.

  14. Efficiency of fiber reinforced concrete application in structures subjected to dynamic effects

    Directory of Open Access Journals (Sweden)

    Morozov Valeriy Ivanovich

    2014-03-01

    Full Text Available Fiber reinforced concretes possess high strength under dynamic loadings, which include impact loads, thanks to their high structural viscosity. This is the reason for using them in difficult operating conditions, where increasing the performance characteristics and the structure durability is of prime importance, and the issues of the cost become less significant. Applying methods of disperse reinforcement is most challenging in case of subtle high-porous materials on mineral binders, for example foamed concrete. At the same time, the experiments conducted in Russia and abroad show, that also in other cases the concrete strength resistance several times increases as a result of disperse reinforcement. This doesn't depend on average density of the concrete and type of fiber used. In the article the fibre reinforced concrete impact resistance is analysed. Recommendations are given in regard to fibre concrete application in manufacture of monolithic floor units for industrial buildings and precast piles.

  15. Effect of hot-dry environment on fiber-reinforced self-compacting concrete

    Science.gov (United States)

    Tioua, Tahar; Kriker, Abdelouahed; Salhi, Aimad; Barluenga, Gonzalo

    2016-07-01

    Drying shrinkage can be a major reason for the deterioration of concrete structures. Variation in ambient temperature and relative humidity cause changes in the properties of hardened concrete which can affect their mechanical and drying shrinkage characteristics. The present study investigated mechanical strength and particularly drying shrinkage properties of self-compacting concretes (SCC) reinforced with date palm fiber exposed to hot and dry environment. In this study a total of nine different fibers reinforced self compacting concrete (FRSCC) mixtures and one mixture without fiber were prepared. The volume fraction and the length of fibers reinforcement were 0.1-0.2-0.3% and 10-20-30 mm. It was observed that drying shrinkage lessened with adding low volumetric fraction and short length of fibers in curing condition (T = 20 °C and RH = 50 ± 5 %), but increased in hot and dry environment.

  16. Durability of reinforced concrete beams strengthened with fiber reinforced polymers under varying environmental conditions

    International Nuclear Information System (INIS)

    El-Sadani, R.A.M.G

    2008-01-01

    Fiber reinforced polymers (FRP) materials were adopted by the aerospace and marine industries, not only for their lightweight and high strength characteristics but also due to their tough and durable nature . As the engineering community has become more familiar with the performance advantages of these materials, new applications have been investigated and implemented. Researches and design guidelines concluded that externally bonded FRP to concrete elements could efficiently increase the capacity of RC elements. Long-term exposure to harsh environments deteriorates concrete and the need for repair and rehabilitation is evident. In order to accept these FRP materials, they must be evaluated for durability in harsh environments. An experimental program was conducted at the materials laboratory- faculty of engineering-Ain Shams university to study the durability of RC beams strengthened with FRP sheets and to compare them with un strengthened beams.The effect of gamma rays on FRP materials and concrete specimens bonded to FRP sheets were also investigated.

  17. Finite Element Modeling of Compressive and Splitting Tensile Behavior of Plain Concrete and Steel Fiber Reinforced Concrete Cylinder Specimens

    OpenAIRE

    Chowdhury, Md. Arman; Islam, Md. Mashfiqul; Ibna Zahid, Zubayer

    2016-01-01

    Plain concrete and steel fiber reinforced concrete (SFRC) cylinder specimens are modeled in the finite element (FE) platform of ANSYS 10.0 and validated with the experimental results and failure patterns. Experimental investigations are conducted to study the increase in compressive and tensile capacity of cylindrical specimens made of stone and brick concrete and SFRC. Satisfactory compressive and tensile capacity improvement is observed by adding steel fibers of 1.5% volumetric ratio. A tot...

  18. Compressive behavior of steel fiber reinforced recycled aggregate concrete after exposure to elevated temperatures

    OpenAIRE

    Chen, G. M.; He, Y. H.; Yang, H.; Chen, J. F.; Guo, Y.C.

    2014-01-01

    For sustainability considerations, the use of recycled aggregate in concrete has attracted many interests in the research community. One of the main concerns for using such concrete in buildings is its spalling in fire. This may be alleviated by adding steel fibers to form steel fiber reinforced recycled aggregate concrete (SFRAC). This paper presents an experimental investigation into the compressive properties of SFRAC cylinders after exposure to elevated temperatures, including the compres...

  19. FINE-GRAINED THE FIBER CONCRETE WITH APPLICATION VOLCANIC ASH, REINFORCED BY THE BASALT FIBRES

    Directory of Open Access Journals (Sweden)

    I. A. Dzugulov

    2015-01-01

    Full Text Available The compositions of fine-grained concrete with the application of volcanic ash are developed. Are investigated compositions and properties of fine-grained fiber concrete with the volcanic ash with the application of methods of the mathematical planning of experiment. It is revealed, that the reinforcement of finegrained concrete by basaltic fibers substantially increases their strength with the bend. 

  20. Effectiveness of Fiber Reinforcement on the Mechanical Properties and Shrinkage Cracking of Recycled Fine Aggregate Concrete.

    Science.gov (United States)

    Nam, Jeongsoo; Kim, Gyuyong; Yoo, Jaechul; Choe, Gyeongcheol; Kim, Hongseop; Choi, Hyeonggil; Kim, Youngduck

    2016-02-26

    This paper presents an experimental study conducted to investigate the effect of fiber reinforcement on the mechanical properties and shrinkage cracking of recycled fine aggregate concrete (RFAC) with two types of fiber-polyvinyl alcohol (PVA) and nylon. A small fiber volume fraction, such as 0.05% or 0.1%, in RFAC with polyvinyl alcohol or nylon fibers was used for optimum efficiency in minimum quantity. Additionally, to make a comparative evaluation of the mechanical properties and shrinkage cracking, we examined natural fine aggregate concrete as well. The test results revealed that the addition of fibers and fine aggregates plays an important role in improving the mechanical performance of the investigated concrete specimens as well as controlling their cracking behavior. The mechanical properties such as compressive strength, splitting tensile strength, and flexural strength of fiber-reinforced RFAC were slightly better than those of non-fiber-reinforced RFAC. The shrinkage cracking behavior was examined using plat-ring-type and slab-type tests. The fiber-reinforced RFAC showed a greater reduction in the surface cracks than non-fiber-reinforced concrete. The addition of fibers at a small volume fraction in RFAC is more effective for drying shrinkage cracks than for improving mechanical performance.

  1. Steel Fibers Reinforced Concrete Pipes - Experimental Tests and Numerical Simulation

    Science.gov (United States)

    Doru, Zdrenghea

    2017-10-01

    The paper presents in the first part a state of the art review of reinforced concrete pipes used in micro tunnelling realised through pipes jacking method and design methods for steel fibres reinforced concrete. In part two experimental tests are presented on inner pipes with diameters of 1410mm and 2200mm, and specimens (100x100x500mm) of reinforced concrete with metal fibres (35 kg / m3). In part two experimental tests are presented on pipes with inner diameters of 1410mm and 2200mm, and specimens (100x100x500mm) of reinforced concrete with steel fibres (35 kg / m3). The results obtained are analysed and are calculated residual flexural tensile strengths which characterise the post-cracking behaviour of steel fibres reinforced concrete. In the third part are presented numerical simulations of the tests of pipes and specimens. The model adopted for the pipes test was a three-dimensional model and loads considered were those obtained in experimental tests at reaching breaking forces. Tensile stresses determined were compared with mean flexural tensile strength. To validate tensile parameters of steel fibres reinforced concrete, experimental tests of the specimens were modelled with MIDAS program to reproduce the flexural breaking behaviour. To simulate post - cracking behaviour was used the method σ — ε based on the relationship stress - strain, according to RILEM TC 162-TDF. For the specimens tested were plotted F — δ diagrams, which have been superimposed for comparison with the similar diagrams of experimental tests. The comparison of experimental results with those obtained from numerical simulation leads to the following conclusions: - the maximum forces obtained by numerical calculation have higher values than the experimental values for the same tensile stresses; - forces corresponding of residual strengths have very similar values between the experimental and numerical calculations; - generally the numerical model estimates a breaking force greater

  2. Effectiveness of Fiber Reinforcement on the Mechanical Properties and Shrinkage Cracking of Recycled Fine Aggregate Concrete

    Science.gov (United States)

    Nam, Jeongsoo; Kim, Gyuyong; Yoo, Jaechul; Choe, Gyeongcheol; Kim, Hongseop; Choi, Hyeonggil; Kim, Youngduck

    2016-01-01

    This paper presents an experimental study conducted to investigate the effect of fiber reinforcement on the mechanical properties and shrinkage cracking of recycled fine aggregate concrete (RFAC) with two types of fiber—polyvinyl alcohol (PVA) and nylon. A small fiber volume fraction, such as 0.05% or 0.1%, in RFAC with polyvinyl alcohol or nylon fibers was used for optimum efficiency in minimum quantity. Additionally, to make a comparative evaluation of the mechanical properties and shrinkage cracking, we examined natural fine aggregate concrete as well. The test results revealed that the addition of fibers and fine aggregates plays an important role in improving the mechanical performance of the investigated concrete specimens as well as controlling their cracking behavior. The mechanical properties such as compressive strength, splitting tensile strength, and flexural strength of fiber-reinforced RFAC were slightly better than those of non-fiber-reinforced RFAC. The shrinkage cracking behavior was examined using plat-ring-type and slab-type tests. The fiber-reinforced RFAC showed a greater reduction in the surface cracks than non-fiber-reinforced concrete. The addition of fibers at a small volume fraction in RFAC is more effective for drying shrinkage cracks than for improving mechanical performance. PMID:28773256

  3. Fracture Behavior and Properties of Functionally Graded Fiber-Reinforced Concrete

    International Nuclear Information System (INIS)

    Roesler, Jeffery; Bordelon, Amanda; Gaedicke, Cristian; Park, Kyoungsoo; Paulino, Glaucio

    2008-01-01

    In concrete pavements, a single concrete mixture design is selected to resist mechanical loading without attempting to adversely affect the concrete pavement shrinkage, ride quality, or noise attenuation. An alternative approach is to design distinct layers within the concrete pavement surface which have specific functions thus achieving higher performance at a lower cost. The objective of this research was to address the structural benefits of functionally graded concrete materials (FGCM) for rigid pavements by testing and modeling the fracture behavior of different combinations of layered plain and synthetic fiber-reinforced concrete materials. Fracture parameters and the post-peak softening behavior were obtained for each FGCM beam configuration by the three point bending beam test. The peak loads and initial fracture energy between the plain, fiber-reinforced, and FGCM signified similar crack initiation. The total fracture energy indicated improvements in fracture behavior of FGCM relative to full-depth plain concrete. The fracture behavior of FGCM depended on the position of the fiber-reinforced layer relative to the starter notch. The fracture parameters of both fiber-reinforced and plain concrete were embedded into a finite element-based cohesive zone model. The model successfully captured the experimental behavior of the FGCMs and predicted the fracture behavior of proposed FGCM configurations and structures. This integrated approach (testing and modeling) demonstrates the viability of FGCM for designing layered concrete pavements system

  4. Alkali-resistant glass fiber reinforced high strength concrete in simulated aggressive environment

    International Nuclear Information System (INIS)

    Kwan, W.H.; Cheah, C.B.; Ramli, M.; Chang, K.Y.

    2018-01-01

    The durability of the alkali-resistant (AR) glass fiber reinforced concrete (GFRC) in three simulated aggresive environments, namely tropical climate, cyclic air and seawater and seawater immersion was investigated. Durability examinations include chloride diffusion, gas permeability, X-ray diffraction (XRD) and scanning electron microscopy examination (SEM). The fiber content is in the range of 0.6 % to 2.4 %. Results reveal that the specimen containing highest AR glass fiber content suffered severe strength loss in seawater environment and relatively milder strength loss under cyclic conditions. The permeability property was found to be more inferior with the increase in the fiber content of the concrete. This suggests that the AR glass fiber is not suitable for use as the fiber reinforcement in concrete is exposed to seawater. However, in both the tropical climate and cyclic wetting and drying, the incorporation of AR glass fiber prevents a drastic increase in permeability. [es

  5. Use of wet concrete spraying in building technology of reinforced-concrete fiber slabs according to «Monofant» system

    OpenAIRE

    BUGAYEVSKIY S.

    2016-01-01

    Technology of cementation of reinforced-concrete slabs with non-extractable-liners for the «Monofant» system, using wet concrete spraying is implemented. A compression test for obtained columns made of fiber concrete is carried out.

  6. Effect of Different Bar Embedment Length on Bond-Slip in Plain and Fiber Reinforced Concrete

    NARCIS (Netherlands)

    Jankovic, D.; Chopra, M.B.; Kunnath, S.K.

    2001-01-01

    This research aims to study the behaviour of the concrete-steel bond using numerical models, taking into account the effect of the different bar embedment length. Both plain and fiber reinforced concrete (FRC) are modeled. The interface bond stress as well as load-displacement response of the

  7. Highly radioresistant aramid fiber as a concrete-reinforcing material. Development of reinforced compound materials

    International Nuclear Information System (INIS)

    Udagawa, Akira; Moriya, Toshio.

    1997-01-01

    Nuclear installations, such as nuclear fusion reactor always receive strong influence from magnetic field. There, stray current is induced by the changes in magnetic fields among iron rods of the construction, resulting that the plasma control magnetic field might be disturbed. As the countermeasures for these troubles, iron rods mixed with non-magnetic Mn-steel have been used in JAERI, but it is insufficient to completely prevent such electromagnetic damages. Thus, aramid fiber reinforced plastics (ArFRP) was paid an attention as a concrete-reinforcing material. JAERI has been attempting to develop a radioresistant ArFRP jointly with Mitsui Construction Co., Ltd. and a highly efficient producing process of ArFRP was developed. The product had superior properties in respects of radioresistancy, heat-resistancy and durability. The properties of newly developed ArFRP rods were compared with those of the conventional ArFRP and iron rods. (M.N.)

  8. Performance polymeric concrete with synthetic fiber reinforcement against reflective cracking in rigid pavement overlay

    International Nuclear Information System (INIS)

    Khan, N.U.; Khan, B.

    2012-01-01

    Cement concrete pavements are used for heavy traffic loads throughout the world owing to its better and economical performance. Placing of a concrete overlay on the existing pavement is the most prevalent rehabilitating method for such pavements, however, the problem associated with the newly placed overlay is the occurrence of reflective cracking. This paper presents an assessment of the performance of polymeric concrete with synthetic fiber reinforcement against reflective cracking in an overlay system. The performance of polymeric concrete with synthetic fibers as an overlay material is measured in terms of the load-deflection, strain-deflection and load-strain behavior of beams of the polymeric concrete. For this purpose, five types of beams having different number of fiber wires and position are tested for flexure strength. Deflection/strains for each increment of load are recorded. In addition, cubes of plain concrete and of concrete with synthetic fiber needles were tested after 7 and 28 days for compressive strengths. Finite element models in ANSYS software for the beams have also been developed. Beams with greater number of longitudinal fiber wires displayed relatively better performance against deflection whilst beams with synthetic fiber needles showed better performance against strains. Thus, polymeric concrete overlay with fiber reinforcement will serve relatively better against occurrence of reflective cracking. (author)

  9. Behavior of Low Grade Steel Fiber Reinforced Concrete Made with Fresh and Recycled Brick Aggregates

    Directory of Open Access Journals (Sweden)

    Md. Shariful Islam

    2017-01-01

    Full Text Available In recent years, recycled aggregates from construction and demolition waste (CDW have been widely accepted in construction sectors as the replacement of coarse aggregate in order to minimize the excessive use of natural resources. In this paper, an experimental investigation is carried out to observe the influence of low grade steel fiber reinforcements on the stress-strain behavior of concrete made with recycled and fresh brick aggregates. In addition, compressive strength by destructive and nondestructive tests, splitting tensile strength, and Young’s modulus are determined. Hooked end steel wires with 50 mm of length and an aspect ratio of 55.6 are used as fiber reinforcements in a volume fraction of 0% (control case, 0.50%, and 1.00% in concrete mixes. The same gradation of aggregates and water-cement ratio (w/c=0.44 were used to assess the effect of steel fiber in all these concrete mixes. All tests were conducted at 7, 14, and 28 days to perceive the effect of age on different mechanical properties. The experimental results show that around 10%~15% and 40%~60% increase in 28 days compressive strength and tensile strength of steel fiber reinforced concrete, respectively, compared to those of the control case. It is observed that the effect of addition of 1% fiber on the concrete compressive strength is little compared to that of 0.5% steel fiber addition. On the other hand, strain of concrete at failure of steel fiber reinforced concrete has increased almost twice compared to the control case. A simple analytical model is also proposed to generate the ascending portions of the stress-strain curve of concrete. There exists a good correlation between the experimental results and the analytical model. A relatively ductile failure is observed for the concrete made with low grade steel fibers.

  10. Acoustic emission monitoring of concrete columns and beams strengthened with fiber reinforced polymer sheets

    Science.gov (United States)

    Ma, Gao; Li, Hui; Zhou, Wensong; Xian, Guijun

    2012-04-01

    Acoustic emission (AE) technique is an effective method in the nondestructive testing (NDT) field of civil engineering. During the last two decades, Fiber reinforced polymer (FRP) has been widely used in repairing and strengthening concrete structures. The damage state of FRP strengthened concrete structures has become an important issue during the service period of the structure and it is a meaningful work to use AE technique as a nondestructive method to assess its damage state. The present study reports AE monitoring results of axial compression tests carried on basalt fiber reinforced polymer (BFRP) confined concrete columns and three-point-bending tests carried on BFRP reinforced concrete beams. AE parameters analysis was firstly utilized to give preliminary results of the concrete fracture process of these specimens. It was found that cumulative AE events can reflect the fracture development trend of both BFRP confined concrete columns and BFRP strengthened concrete beams and AE events had an abrupt increase at the point of BFRP breakage. Then the fracture process of BFRP confined concrete columns and BFRP strengthened concrete beams was studied through RA value-average frequency analysis. The RA value-average frequency tendencies of BFRP confined concrete were found different from that of BFRP strengthened concrete beams. The variation tendency of concrete crack patterns during the loading process was revealed.

  11. A micromorphic model for steel fiber reinforced concrete.

    Science.gov (United States)

    Oliver, J; Mora, D F; Huespe, A E; Weyler, R

    2012-10-15

    A new formulation to model the mechanical behavior of high performance fiber reinforced cement composites with arbitrarily oriented short fibers is presented. The formulation can be considered as a two scale approach, in which the macroscopic model, at the structural level, takes into account the mesostructural phenomenon associated with the fiber-matrix interface bond/slip process. This phenomenon is contemplated by including, in the macroscopic description, a micromorphic field representing the relative fiber-cement displacement. Then, the theoretical framework, from which the governing equations of the problem are derived, can be assimilated to a specific case of the material multifield theory. The balance equation derived for this model, connecting the micro stresses with the micromorphic forces, has a physical meaning related with the fiber-matrix bond slip mechanism. Differently to previous procedures in the literature, addressed to model fiber reinforced composites, where this equation has been added as an additional independent ingredient of the methodology, in the present approach it arises as a natural result derived from the multifield theory. Every component of the composite is defined with a specific free energy and constitutive relation. The mixture theory is adopted to define the overall free energy of the composite, which is assumed to be homogeneously constituted, in the sense that every infinitesimal volume is occupied by all the components in a proportion given by the corresponding volume fraction. The numerical model is assessed by means of a selected set of experiments that prove the viability of the present approach.

  12. Evaluation of Shear Resisting Capacity of a Prestressed Concrete Containment Building with Steel or Polyamide Fiber Reinforcement

    International Nuclear Information System (INIS)

    Choun, Youngsun; Park, Junhee

    2014-01-01

    Conventional reinforced concrete (RC) members generally show a rapid deterioration in shear resisting mechanisms under a reversed cyclic load. However, the use of high-performance fiber-reinforced cement composites provides excellent damage tolerance under large displacement reversals compared with regular concrete. Previous experimental studies have indicated that the use of fibers in conventional RC can enhance the structural and functional performance of prestressed concrete containment buildings (PCCBs) in nuclear power plants. This study evaluates the shear resisting capacity for a PCCB constructed using steel fiber reinforced concrete (SFRC) or polyamide fiber reinforced concrete (PFRC). The effects of steel and polyamide fibers on the shear performance of a PCCB were investigated. It was revealed that steel fibers are more effective to enhance the shear resisting capacity of a PCCB than polyamide fibers. The ductility and energy dissipation increase significantly in fiber reinforced PCCBs

  13. Evaluation of Shear Resisting Capacity of a Prestressed Concrete Containment Building with Steel or Polyamide Fiber Reinforcement

    Energy Technology Data Exchange (ETDEWEB)

    Choun, Youngsun; Park, Junhee [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2014-05-15

    Conventional reinforced concrete (RC) members generally show a rapid deterioration in shear resisting mechanisms under a reversed cyclic load. However, the use of high-performance fiber-reinforced cement composites provides excellent damage tolerance under large displacement reversals compared with regular concrete. Previous experimental studies have indicated that the use of fibers in conventional RC can enhance the structural and functional performance of prestressed concrete containment buildings (PCCBs) in nuclear power plants. This study evaluates the shear resisting capacity for a PCCB constructed using steel fiber reinforced concrete (SFRC) or polyamide fiber reinforced concrete (PFRC). The effects of steel and polyamide fibers on the shear performance of a PCCB were investigated. It was revealed that steel fibers are more effective to enhance the shear resisting capacity of a PCCB than polyamide fibers. The ductility and energy dissipation increase significantly in fiber reinforced PCCBs.

  14. Analysis of the Behaviour of Composite Steel and Steel Fiber Reinforced Concrete Slabs

    Directory of Open Access Journals (Sweden)

    Mindaugas Petkevičius

    2011-04-01

    Full Text Available There was a pending influence of steel fiber on the strength and stiffness of composite steel–concrete slabs under statical short–time load. Steel profiled sheeting and steel fiber reinforced concrete were used for specimens. Four composite slabs were made. Experimental investigations into the behaviour and influence of steel fiber reinforced concrete in composite slabs were conducted. Transverse, longitudinal, shear deformation and deflection of the slab were measured. The results indicated that the use of steel fiber in composite slabs was effective: strength was 20–24 % higher and the meanings of deflections under the action of the bending moment were 0,6MR (where MR is the bending moment at failure of the slabs and were 16–18 % lower for slabs with usual concrete. Article in Lithuanian

  15. Experimental investigation of steel fiber-reinforced concrete beams under cyclic loading

    Science.gov (United States)

    Ranjbaran, Fariman; Rezayfar, Omid; Mirzababai, Rahmatollah

    2018-03-01

    An experimental study has been conducted to study the cyclic behavior of reinforced concrete beams in which steel fibers were added to the concrete mix. Seven similar geometrically specimens in full scale were studied under four- point bending test in the form of slow cyclic loading. One sample as a control specimen was made without steel fibers or 0% volume fraction (vf) and six other samples with 1, 2 and 4% vf of steel fibers in twin models. The maximum and ultimate resistance, ductility, degradation of loading and unloading stiffness, absorption and dissipation of energy and equivalent viscous damping were studied in this investigation and the effect of steel fibers on the cyclic behavior was compared with each other. Generally, the addition of steel fibers up to a certain limit value (vf = 2%) improves the cyclic behavior of reinforced concrete beams and results in the increase of maximum strength and ultimate displacement.

  16. Strength and deformability of concrete beams reinforced by non-metallic fiber and composite rebar

    Science.gov (United States)

    Kudyakov, K. L.; Plevkov, V. S.; Nevskii, A. V.

    2015-01-01

    Production of durable and high-strength concrete structures with unique properties has always been crucial. Therefore special attention has been paid to non-metallic composite and fiber reinforcement. This article describes the experimental research of strength and deformability of concrete beams with dispersed and core fiber-based reinforcement. As composite reinforcement fiberglass reinforced plastic rods with diameters 6 mm and 10 mm are used. Carbon and basalt fibers are used as dispersed reinforcement. The developed experimental program includes designing and production of flexural structures with different parameters of dispersed fiber and composite rebar reinforcement. The preliminary testing of mechanical properties of these materials has shown their effectiveness. Structures underwent bending testing on a special bench by applying flexural static load up to complete destruction. During the tests vertical displacements were recorded, as well as value of actual load, slippage of rebars in concrete, crack formation. As a result of research were obtained structural failure and crack formation graphs, value of fracture load and maximum displacements of the beams at midspan. Analysis of experimental data showed the effectiveness of using dispersed reinforcement of concrete and the need for prestressing of fiberglass composite rebar.

  17. Statistical and Detailed Analysis on Fiber Reinforced Self-Compacting Concrete Containing Admixtures- A State of Art of Review

    Science.gov (United States)

    Athiyamaan, V.; Mohan Ganesh, G.

    2017-11-01

    Self-Compacting Concrete is one of the special concretes that have ability to flow and consolidate on its own weight, completely fill the formwork even in the presence of dense reinforcement; whilst maintaining its homogeneity throughout the formwork without any requirement for vibration. Researchers all over the world are developing high performance concrete by adding various Fibers, admixtures in different proportions. Various different kinds Fibers like glass, steel, carbon, Poly propylene and aramid Fibers provide improvement in concrete properties like tensile strength, fatigue characteristic, durability, shrinkage, impact, erosion resistance and serviceability of concrete[6]. It includes fundamental study on fiber reinforced self-compacting concrete with admixtures; its rheological properties, mechanical properties and overview study on design methodology statistical approaches regarding optimizing the concrete performances. The study has been classified into seven basic chapters: introduction, phenomenal study on material properties review on self-compacting concrete, overview on fiber reinforced self-compacting concrete containing admixtures, review on design and analysis of experiment; a statistical approach, summary of existing works on FRSCC and statistical modeling, literature review and, conclusion. It is so eminent to know the resent studies that had been done on polymer based binder materials (fly ash, metakaolin, GGBS, etc.), fiber reinforced concrete and SCC; to do an effective research on fiber reinforced self-compacting concrete containing admixtures. The key aim of the study is to sort-out the research gap and to gain a complete knowledge on polymer based Self compacting fiber reinforced concrete.

  18. Finite element modelling of concrete beams reinforced with hybrid fiber reinforced bars

    Science.gov (United States)

    Smring, Santa binti; Salleh, Norhafizah; Hamid, NoorAzlina Abdul; Majid, Masni A.

    2017-11-01

    Concrete is a heterogeneous composite material made up of cement, sand, coarse aggregate and water mixed in a desired proportion to obtain the required strength. Plain concrete does not with stand tension as compared to compression. In order to compensate this drawback steel reinforcement are provided in concrete. Now a day, for improving the properties of concrete and also to take up tension combination of steel and glass fibre-reinforced polymer (GFRP) bars promises favourable strength, serviceability, and durability. To verify its promise and support design concrete structures with hybrid type of reinforcement, this study have investigated the load-deflection behaviour of concrete beams reinforced with hybrid GFRP and steel bars by using ATENA software. Fourteen beams, including six control beams reinforced with only steel or only GFRP bars, were analysed. The ratio and the ordinate of GFRP to steel were the main parameters investigated. The behaviour of these beams was investigated via the load-deflection characteristics, cracking behaviour and mode of failure. Hybrid GFRP-Steel reinforced concrete beam showed the improvement in both ultimate capacity and deflection concomitant to the steel reinforced concrete beam. On the other hand, finite element (FE) modelling which is ATENA were validated with previous experiment and promising the good result to be used for further analyses and development in the field of present study.

  19. Preparation and characterization of glass fibers – polymers (epoxy bars (GFRP reinforced concrete for structural applications

    Directory of Open Access Journals (Sweden)

    Alkjk Saeed

    2016-06-01

    Full Text Available The paper presents some of the results from a large experimental program undertaken at the Department of Civil Engineering of Damascus University. The project aims to study the ability to reinforce and strengthen the concrete by bars from Epoxy polymer reinforced with glass fibers (GFRP and compared with reinforce concrete by steel bars in terms of mechanical properties. Five diameters of GFRP bars, and steel bars (4mm, 6mm, 8mm, 10mm, 12mm tested on tensile strength tests. The test shown that GFRP bars need tensile strength more than steel bars. The concrete beams measuring (15cm wide × 15cm deep × and 70cm long reinforced by GFRP with 0.5 vol.% ratio, then the concrete beams reinforced by steel with 0.89 vol.% ratio. The concrete beams tested on deflection test. The test shown that beams which reinforced by GFRP has higher deflection resistance, than beams which reinforced by steel. Which give more advantage to reinforced concrete by GFRP.

  20. Flow simulation of fiber reinforced self compacting concrete using Lattice Boltzmann method

    DEFF Research Database (Denmark)

    Svec, Oldrich; Skocek, Jan; Stang, Henrik

    2011-01-01

    Self compacting concrete (SCC) is a promising material in the civil engineering industry. One of the benefits of the SCC is a fast and simplified casting followed by decreased labor costs. The SCC as any other type of concrete has a significantly lower tensile and shear strength in comparison to ....... A relatively new group of models - Lattice Boltzmann Modeling (LBM) - is presented in this paper. The conventional LBM is modified to include fiber and particle suspensions and non-Newtonian rheology and is used to model the fiber reinforced self compacting concrete flow....

  1. Design aid for shear strengthening of reinforced concrete T-joints using carbon fiber reinforced plastic composites

    Science.gov (United States)

    Gergely, Ioan

    The research presented in the present work focuses on the shear strengthening of beam column joints using carbon fiber composites, a material considered in seismic retrofit in recent years more than any other new material. These composites, or fiber reinforced polymers, offer huge advantages over structural steel reinforced concrete or timber. A few of these advantages are the superior resistance to corrosion, high stiffness to weight and strength to weight ratios, and the ability to control the material's behavior by selecting the orientation of the fibers. The design and field application research on reinforced concrete cap beam-column joints includes analytical investigations using pushover analysis; design of carbon fiber layout, experimental tests and field applications. Several beam column joints have been tested recently with design variables as the type of composite system, fiber orientation and the width of carbon fiber sheets. The surface preparation has been found to be critical for the bond between concrete and composite material, which is the most important factor in joint shear strengthening. The final goal of this thesis is to develop design aids for retrofitting reinforced concrete beam column joints. Two bridge bents were tested on the Interstate-15 corridor. One bent was tested in the as-is condition. Carbon fiber reinforced plastic composite sheets were used to externally reinforce the second bridge bent. By applying the composite, the displacement ductility has been doubled, and the bent overall lateral load capacity has been increased as well. The finite element model (using DRAIN-2DX) was calibrated to model the actual stiffness of the supports. The results were similar to the experimental findings.

  2. Study on creep of fiber reinforced ultra-high strength concrete based on strength

    Science.gov (United States)

    Peng, Wenjun; Wang, Tao

    2018-04-01

    To complement the creep performance of ultra-high strength concrete, the long creep process of fiber reinforced concrete was studied in this paper. The long-term creep process and regularity of ultra-high strength concrete with 0.5% PVA fiber under the same axial compression were analyzed by using concrete strength (C80/C100/C120) as a variable. The results show that the creep coefficient of ultra-high strength concrete decreases with the increase of concrete strength. Compared with ACI209R (92), GL2000 models, it is found that the predicted value of ACI209R (92) are close to the experimental value, and the creep prediction model suitable for this experiment is proposed based on ACI209R (92).

  3. Abrasion Resistance and Mechanical Properties of Waste-Glass-Fiber-Reinforced Roller-compacted Concrete

    Science.gov (United States)

    Yildizel, S. A.; Timur, O.; Ozturk, A. U.

    2018-05-01

    The potential use of waste glass fibers in roller-compacted concrete (RCC) was investigated with the aim to improve its performance and reduce environmental effects. The research was focused on the abrasion resistance and compressive and flexural strengths of the reinforced concrete relative to those of reference mixes without fibers. The freeze-thaw resistance of RCC mixes was also examined. It was found that the use of waste glass fibers at a rate of 2 % increased the abrasion resistance of the RCC mixes considerably.

  4. A study on the fatigue behavior of Steel Fiber Reinforced Concrete structures with initial cracks

    International Nuclear Information System (INIS)

    Chang, Dong-Il; Chai, Won-Kyu; Son, Young-Hyun; Park, Cheol-Woo

    1992-01-01

    Fatigue tests are performed in order to investigate the fatigue behavior of SFRC (Steel Fiber Reinforced Concrete) structures. Thirty SFRC beams are used in this test. The relationships between repeated loading cycle and mid-span deflection of the beams are observed under the three-point loading system. From the test results, the effects of the fiber content and the fiber aspect ratio on the concrete fatigue behavior were studied. According to the regression technique, some empirical formulae for predicting the fatigue strength of SFRC beams are also suggested. (author)

  5. A study on the fracture energy of Steel Fiber Reinforced Concrete structures with initial cracks

    International Nuclear Information System (INIS)

    Chang, Dong-Il; Sim Jongsung; Chai, Won-Kyu; Lee, Myeong-Gu

    1991-01-01

    Fracture test is performed in order to investigate the fracture behavior of SFRC (Steel Fiber Reinforced Concrete) structures. Thirty six SFRC beams are used in this test. The relationships between loading, strain, and mid-span deflection of the beams are observed under the three point loading system. From the test results, the effects of the fiber content, the fiber aspect ratio and the initial crack ratio on the concrete fracture behavior were studied, and the flexural strength and the fracture energy of SFRC beams were also calculated. According to the regression technique, some empirical formulae for predicting the flexural strength and the fracture energy of SFRC beams are also suggested. (author)

  6. Flexural reinforced concrete member with FRP reinforcement

    OpenAIRE

    Putzolu, Mariana

    2017-01-01

    One of the most problematic point in construction is the durability of the concrete especially related to corrosion of the steel reinforcement. Due to this problem the construction sector, introduced the use of Fiber Reinforced Polymer, the main fibers used in construction are Glass, Carbon and Aramid. In this study, the author aim to analyse the flexural behaviour of concrete beams reinforced with FRP. This aim is achieved by the analysis of specimens reinforced with GFRP bars, with theoreti...

  7. Post-cracking behavior of blocks, prisms, and small concrete walls reinforced with plant fiber

    OpenAIRE

    Soto, I. I.; Ramalho, M. A.; Izquierdo, O. S.

    2013-01-01

    Structural masonry using concrete blocks promotes the rationalization of construction projects, lowering the final cost of a building through the elimination of forms and the reduction of the consumption of reinforcement bars. Moreover, production of a block containing a combination of concrete and vegetable fiber sisal results in a unit with properties such as mechanical strength, stiffness, flexibility, ability to absorb energy, and post-cracking behavior that are comparable to those of a b...

  8. Mechanical Properties of High Volume Fly Ash Concrete Reinforced with Hybrid Fibers

    Directory of Open Access Journals (Sweden)

    Rooban Chakravarthy

    2016-01-01

    Full Text Available Fly ash substitution to cement is a well-recognized approach to reduce CO2 emissions. Although fly ash concrete is prone to brittle behavior, researchers have shown that addition of fibers could reduce brittle behavior. Previous research efforts seem to have utlised a single type of fiber or two types of fibers. In this research, three types of fibers, steel, polypropylene, and basalt as 0%, 0.50%, 0.75%, and 1% by volume of concrete, were mixed in varying proportions with concrete specimens substituted with 50% fly ash (class F. All specimens were tested for compressive strength, indirect tensile strength, and flexural strength over a period of 3 to 56 days of curing. Test results showed that significant improvement in mechanical properties could be obtained by a particular hybrid fiber reinforcement combination (1% steel fiber, 0.75% polypropylene fiber, and 0.75% basalt fiber. The strength values were observed to exceed previous research results. Workability of concrete was affected when the fiber combination exceeded 3%. Thus a limiting value for adding fibers and the combination to achieve maximum strengths have been identified in this research.

  9. Orientation factor and number of fibers at failure plane in ring-type steel fiber reinforced concrete

    International Nuclear Information System (INIS)

    Lee, C.; Kim, H.

    2010-01-01

    Considering the probabilistic distributions of fibers in ring-type steel fiber reinforced concrete, the orientation factor and the number of ring-type steel fibers crossing the failure plane were theoretically derived as a function of fiber geometry, specimen dimensions, and fiber volume fraction. A total number of 24 specimens were tested incorporating different fiber types, specimen geometry, and fiber volume fractions of 0.2% and 0.4%: 5 beams and 5 panels containing straight steel fibers; and 6 beams and 8 panels containing ring-type steel fibers. Measurements were made to assess the number of fibers at fractured surfaces of steel fiber reinforced concrete. The developed theoretical expressions reasonably predicted the orientation factor and the number of ring-type steel fibers at failure plane: the average and the standard deviation for the ratios of the test to theory were 1.03 and 0.26, respectively. Theoretical investigations and comparisons were made for the values of orientation factor and the number of fibers at failure plane for straight steel fibers and ring-type steel fibers.

  10. Prefabricated floor panels composed of fiber reinforced concrete and a steel substructure

    DEFF Research Database (Denmark)

    Lárusson, Lárus H.; Fischer, Gregor; Jönsson, Jeppe

    2013-01-01

    This paper reports on a study on prefabricated composite and modular floor deck panels composed of relatively thin fiber reinforced concrete slabs connected to steel substructures. The study focuses on the design, manufacturing, structural improvements and behavior of the floor systems during...

  11. High performance fiber reinforced concrete : Progress in knowledge and design codes

    NARCIS (Netherlands)

    Walraven, J.C.

    2009-01-01

    High performance fiber reinforced concrete is developing quickly to a modern structural material with a high potential. As for instance testified by the recent symposium on HPFRC in Kassel, Germany (April 2008) the number of structural applications increases. At this moment studies are carried out

  12. Wedge Splitting Test on Fracture Behaviour of Fiber Reinforced and Regular High Performance Concretes

    DEFF Research Database (Denmark)

    Hodicky, Kamil; Hulin, Thomas; Schmidt, Jacob Wittrup

    2013-01-01

    The fracture behaviour of three fiber reinforced and regular High Performance Concretes (HPC) is presented in this paper. Two mixes are based on optimization of HPC whereas the third mix was a commercial mix developed by CONTEC ApS (Denmark). The wedge splitting test setup with 48 cubical specimens...

  13. Performance of Hybrid Steel Fibers Reinforced Concrete Subjected to Air Blast Loading

    Directory of Open Access Journals (Sweden)

    Mohammed Alias Yusof

    2013-01-01

    Full Text Available This paper presents the results of the experimental data and simulation on the performance of hybrid steel fiber reinforced concrete (HSFRC and also normal reinforced concrete (NRC subjected to air blast loading. HSFRC concrete mix consists of a combination of 70% long steel hook end fibre and also 30% of short steel hook end fibre with a volume fraction of 1.5% mix. A total of six concrete panels were subjected to air blast using plastic explosive (PE4 weighing 1 kg each at standoff distance of 0.3 meter. The parameters measured are mode of failure under static and blast loading and also peak overpressure that resulted from detonation using high speed data acquisition system. In addition to this simulation work using AUTODYN was carried out and validated using experimental data. The experimental results indicate that hybrid steel fiber reinforced concrete panel (HSFRC possesses excellent resistance to air blast loading as compared to normal reinforced concrete (NRC panel. The simulation results were also found to be close with experimental data. Therefore the results have been validated using experimental data.

  14. Effect of internal short fibers, steel reinforcement, and surface layer on impact and penetration resistance of concrete

    Directory of Open Access Journals (Sweden)

    Ali Abd_Elhakam Aliabdo

    2013-09-01

    Full Text Available This paper presents an experimental program to investigate the impact and penetration resistance of concrete. The research work is divided into two approaches. These approaches are effect of concrete constituents and effect of surface layer. Effect of concrete aggregate type, w/c ratio, fiber type, fiber shape, fiber volume fraction, and steel reinforcement is considered in the first approach. The second approach includes using fiber reinforced concrete and glass fiber reinforced polymer as surface layers. The evaluating tests include standard impact test according to ASTM D 1557 and suggested simulated penetration test to measure the impact and penetration resistance of concrete. The test results of plain and fibrous concrete from ASTM D 1557 method indicated that steel fiber with different configurations and using basalt have a great positive effect on impact resistance of concrete. Moreover, the simulated penetration test indicates that steel fibers are more effective than propylene fibers, type of coarse aggregate has negligible effect, and steel fiber volume fraction has a more significant influence than fiber shape for reinforced concrete test panels. Finally, as expectable, surface properties of tested concrete panels have a significant effect on impact and penetration resistance.

  15. Preliminary Study on Evaluation of Impact Resistance Performance of Fiber Reinforced Concrete Walls

    International Nuclear Information System (INIS)

    Jin, Byeong Moo; Lee, Yun Seok; Kim, Young Jin; Jeon, Se Jin

    2012-01-01

    As the safety assessments of nuclear power plants for the hypothetical large civil aircraft crash should be made mandatory, studies on large aircraft-nuclear power plant impact analyses and assessments studies are actively in progress. For the safety assessment of nuclear power plants against large civil aircraft crash, it is practically impossible to conduct full-scale experiments. Therefore, analysis using general purpose numerical analysis program accompanied by scale model experiments and element experiments has been adopted for the safety assessment. The safety of nuclear power plants against large civil aircraft crash is able to be accomplished by enhancement of the impact resistance performance, such as increasing the wall thickness, increasing the strength of concrete and using the fiber reinforced concrete which is able to be acquired by relatively simple process of adding fibers to a concrete mix without significant change of design and construction. A research for the enhancement of impact resistance performance depending upon design parameters for fiber reinforced concrete, such as type of fibers and application rate, is in progress. In this study, before the safety assessment of nuclear power plants against large civil aircraft crash, we assess the impact resistance performance of concrete wall depending upon type of fibers and impact velocity of objects

  16. Preliminary Study on Evaluation of Impact Resistance Performance of Fiber Reinforced Concrete Walls

    Energy Technology Data Exchange (ETDEWEB)

    Jin, Byeong Moo; Lee, Yun Seok; Kim, Young Jin [Daewoo E and C Co. Ltd., Suwon (Korea, Republic of); Jeon, Se Jin [Ajou University, Suwon (Korea, Republic of)

    2012-05-15

    As the safety assessments of nuclear power plants for the hypothetical large civil aircraft crash should be made mandatory, studies on large aircraft-nuclear power plant impact analyses and assessments studies are actively in progress. For the safety assessment of nuclear power plants against large civil aircraft crash, it is practically impossible to conduct full-scale experiments. Therefore, analysis using general purpose numerical analysis program accompanied by scale model experiments and element experiments has been adopted for the safety assessment. The safety of nuclear power plants against large civil aircraft crash is able to be accomplished by enhancement of the impact resistance performance, such as increasing the wall thickness, increasing the strength of concrete and using the fiber reinforced concrete which is able to be acquired by relatively simple process of adding fibers to a concrete mix without significant change of design and construction. A research for the enhancement of impact resistance performance depending upon design parameters for fiber reinforced concrete, such as type of fibers and application rate, is in progress. In this study, before the safety assessment of nuclear power plants against large civil aircraft crash, we assess the impact resistance performance of concrete wall depending upon type of fibers and impact velocity of objects

  17. Shear Behavior Models of Steel Fiber Reinforced Concrete Beams Modifying Softened Truss Model Approaches.

    Science.gov (United States)

    Hwang, Jin-Ha; Lee, Deuck Hang; Ju, Hyunjin; Kim, Kang Su; Seo, Soo-Yeon; Kang, Joo-Won

    2013-10-23

    Recognizing that steel fibers can supplement the brittle tensile characteristics of concrete, many studies have been conducted on the shear performance of steel fiber reinforced concrete (SFRC) members. However, previous studies were mostly focused on the shear strength and proposed empirical shear strength equations based on their experimental results. Thus, this study attempts to estimate the strains and stresses in steel fibers by considering the detailed characteristics of steel fibers in SFRC members, from which more accurate estimation on the shear behavior and strength of SFRC members is possible, and the failure mode of steel fibers can be also identified. Four shear behavior models for SFRC members have been proposed, which have been modified from the softened truss models for reinforced concrete members, and they can estimate the contribution of steel fibers to the total shear strength of the SFRC member. The performances of all the models proposed in this study were also evaluated by a large number of test results. The contribution of steel fibers to the shear strength varied from 5% to 50% according to their amount, and the most optimized volume fraction of steel fibers was estimated as 1%-1.5%, in terms of shear performance.

  18. Shear Behavior Models of Steel Fiber Reinforced Concrete Beams Modifying Softened Truss Model Approaches

    Directory of Open Access Journals (Sweden)

    Joo-Won Kang

    2013-10-01

    Full Text Available Recognizing that steel fibers can supplement the brittle tensile characteristics of concrete, many studies have been conducted on the shear performance of steel fiber reinforced concrete (SFRC members. However, previous studies were mostly focused on the shear strength and proposed empirical shear strength equations based on their experimental results. Thus, this study attempts to estimate the strains and stresses in steel fibers by considering the detailed characteristics of steel fibers in SFRC members, from which more accurate estimation on the shear behavior and strength of SFRC members is possible, and the failure mode of steel fibers can be also identified. Four shear behavior models for SFRC members have been proposed, which have been modified from the softened truss models for reinforced concrete members, and they can estimate the contribution of steel fibers to the total shear strength of the SFRC member. The performances of all the models proposed in this study were also evaluated by a large number of test results. The contribution of steel fibers to the shear strength varied from 5% to 50% according to their amount, and the most optimized volume fraction of steel fibers was estimated as 1%–1.5%, in terms of shear performance.

  19. Selected Bibliography on Fiber-Reinforced Cement and Concrete. Supplement Number 4.

    Science.gov (United States)

    1982-08-01

    Building Industry," L’Industria Italiana del Cemento , Vol 50, No. 12, Dec 1980, pp 1135-1144. 19. Bartos, P., "Pullout Failure of Fibres Embedded in Cement...Vol 43, No. 11, Nov 1977, pp 561-564. 21. Bassan, M., "Model of Behavior of Fiber-Reinforced Concretes Under Impact Stresses," il Cemento , Vol 74, No...Pastes," il Cemento , Vol 75, No. 3, Jul-Sep 1978, pp 277-284. 210. Mills, R. H., "Age-Embrittlement of Glass-Reinforced Concrete Containing Blastfurance

  20. Study of the performance of steel fiber reinforced concrete to water and salt freezing condition

    International Nuclear Information System (INIS)

    Niu, Ditao; Jiang, Lei; Bai, Min; Miao, Yuanyao

    2013-01-01

    Highlights: ► Based on the fast freeze–thaw test, the frost resistance of SFRC has been studied. ► Different volumes of steel fiber have been selected to prepare the concrete. ► The microstructure of SFRC subjected to freeze–thaw cycles has been analyzed. ► The influence of steel fiber volume on the frost-resisting property is obvious. ► Steel fiber can be used to improve the frost-resisting property of concrete. -- Abstract: Properties of plain concrete and steel fiber reinforced concrete (SFRC) (with volume fraction of 0.5%, 1%, 1.5% and 2%) subjected to freeze–thaw cycles in water and in the 3.5% NaCl solution were investigated in this paper. Through the experiment, surface damage, weight loss and splitting tensile strength loss of SFRC were measured after different numbers of freeze–thaw circulations. The microstructure and the pore structure of SFRC were analyzed on the basis of scanning electron microscope (SEM) and mercury intrusion experiment. The test results show that the use of steel fiber could improve the pore structure and decelerate the damage of concrete during freeze–thaw cycles. However, the ability of steel fiber to reduce surface scaling of concrete is limited subjected to freeze–thaw cycles in the NaCl solution. Furthermore, the weight loss and the splitting tensile strength loss of concrete tested in the NaCl solution were larger than those in water. It is also shown that the steel fiber content has the great influence on the frost-resisting property of SFRC. When a relatively steel fiber content is introduced (1.5 vol.%), the deterioration process of concrete subjected to the frost damage is considerably reduced.

  1. Investigation of fiber-reinforced self-consolidating concrete.

    Science.gov (United States)

    2010-05-01

    The rising cost of materials and labor, as well as the demand for faster construction, has prompted development of cheaper, faster alternatives to conventional building techniques. Self-consolidating concrete (SCC), a high performance concrete charac...

  2. Adaptive Crack Modeling with Interface Solid Elements for Plain and Fiber Reinforced Concrete Structures.

    Science.gov (United States)

    Zhan, Yijian; Meschke, Günther

    2017-07-08

    The effective analysis of the nonlinear behavior of cement-based engineering structures not only demands physically-reliable models, but also computationally-efficient algorithms. Based on a continuum interface element formulation that is suitable to capture complex cracking phenomena in concrete materials and structures, an adaptive mesh processing technique is proposed for computational simulations of plain and fiber-reinforced concrete structures to progressively disintegrate the initial finite element mesh and to add degenerated solid elements into the interfacial gaps. In comparison with the implementation where the entire mesh is processed prior to the computation, the proposed adaptive cracking model allows simulating the failure behavior of plain and fiber-reinforced concrete structures with remarkably reduced computational expense.

  3. Flexural fracture and fatigue behavior of steel-fiber-reinforced concrete structures

    International Nuclear Information System (INIS)

    Chang, D.I.

    1995-01-01

    Fracture and fatigue tests were performed in order to investigate the fracture and fatigue behavior of steel-fibre-reinforced concrete (SFRC) structures. 33 SFRC beams were used in the fracture and fatigue tests. The relationship between loading, strain and midspan deflection of the beams was observed under the three-point loading system.From the test results, the effects of the fiber content, fiber aspect ratio and notch-to-depth ratio on the concrete fracture and fatigue behavior were studied, and the fatigue strengths of SFRC beams were calculated. According to the regression technique, some empirical formulae for predicting the fatigue strength of SFRC beams were also suggested. (orig.)

  4. Steel fiber reinforced concrete pipes: part 1: technological analysis of the mechanical behavior

    Directory of Open Access Journals (Sweden)

    A. D. de Figueiredo

    Full Text Available This paper is the first part of an extensive work focusing the technological development of steel fiber reinforced concrete pipes (FRCP. Here is presented and discussed the experimental campaign focusing the test procedure and the mechanical behavior obtained for each of the dosages of fiber used. In the second part ("Steel fiber reinforced concrete pipes. Part 2: Numerical model to simulate the crushing test", the aspects of FRCP numerical modeling are presented and analyzed using the same experimental results in order to be validated. This study was carried out trying to reduce some uncertainties related to FRCP performance and provide a better condition to the use of these components. In this respect, an experimental study was carried out using sewage concrete pipes in full scale as specimens. The diameter of the specimens was 600 mm, and they had a length of 2500 mm. The pipes were reinforced with traditional bars and different contents of steel fibers in order to compare their performance through the crushing test. Two test procedures were used in that sense. In the 1st Series, the diameter displacement was monitored by the use of two LVDTs positioned at both extremities of the pipes. In the 2nd Series, just one LVDT is positioned at the spigot. The results shown a more rigidity response of the pipe during tests when the displacements were measured at the enlarged section of the socket. The fiber reinforcement was very effective, especially when low level of displacement was imposed to the FRCP. At this condition, the steel fibers showed an equivalent performance to superior class pipes made with traditional reinforced. The fiber content of 40 kg/m3 provided a hardening behavior for the FRCP, and could be considered as equivalent to the critical volume in this condition.

  5. Compressive behaviour of hybrid fiber-reinforced reactive powder concrete after high temperature

    International Nuclear Information System (INIS)

    Zheng, Wenzhong; Li, Haiyan; Wang, Ying

    2012-01-01

    Highlights: ► We complete the high temperature test and compression test of RPC after 20–900 °C. ► The presence of steel fiber and polypropylene fiber can prevent RPC from spalling. ► Compressive strength increases first and then decreases with elevated temperatures. ► Microstructure deterioration is the root cause of macro-properties recession. ► Equations to express the compressive strength change with temperature are proposed. -- Abstract: This study focuses on the compressive properties and microstructures of reactive powder concrete (RPC) mixed with steel fiber and polypropylene fiber after exposure to 20–900 °C. The volume dosage of steel fiber and polypropylene fiber is (2%, 0.1%), (2%, 0.2%) and (1%, 0.2%). The effects of heating temperature, fiber content and specimen size on the compressive properties are analyzed. The microstructures of RPC exposed to different high temperatures are studied by scanning electron microscope (SEM). The results indicate that the compressive strength of hybrid fiber-reinforced RPC increases at first, then decreases with the increasing temperature, and the basic reason for the degradation of macro-mechanical properties is the deterioration of RPC microstructure. Based on the experimental results, equations to express the relationships of the compressive strength with the heating temperatures are established. Compared with normal-strength and high-strength concrete, the hybrid fiber-reinforced RPC has excellent capacity in resistance to high temperature.

  6. Properties and mesostructural characteristics of linen fiber reinforced self-compacting concrete in slender columns

    Directory of Open Access Journals (Sweden)

    Sabry A. Ahmed

    2013-06-01

    Full Text Available In this study the linen fibers were used to reinforce self-compacting concrete (SCC with 2 and 4 kg/m3 contents; then their effects on the fresh and hardened properties of SCC were investigated. Furthermore, three circular slender columns were cast using both plain and linen fiber reinforced (LFR SCC in order to study the variations of hardened properties and mesostructural characteristics along the columns height. The addition of linen fibers to SCC reduced its workability and affected its self-compacting characteristics in a manner depending on the fiber content. Also, noticeable improvement in mechanical properties and slight reduction in unit weight and UPV were recorded. The hardened properties did not vary significantly along the height of columns, however, lower values were observed at the upper end of columns. The aggregate distribution was slightly more homogenous in case of LFRSCC, and the variation of fiber density along the height of columns was relatively high.

  7. Post-cracking behavior of blocks, prisms, and small concrete walls reinforced with plant fiber

    Directory of Open Access Journals (Sweden)

    I. I. Soto

    Full Text Available Structural masonry using concrete blocks promotes the rationalization of construction projects, lowering the final cost of a building through the elimination of forms and the reduction of the consumption of reinforcement bars. Moreover, production of a block containing a combination of concrete and vegetable fiber sisal results in a unit with properties such as mechanical strength, stiffness, flexibility, ability to absorb energy, and post-cracking behavior that are comparable to those of a block produced with plain concrete. Herein are reported the results of a study on the post-cracking behavior of blocks, prisms, and small walls reinforced with sisal fibers (lengths of 20 mm and 40 mm added at volume fractions of 0.5% and 1%. Tests were performed to characterize the fibers and blocks and to determine the compressive strength of the units, prisms, and small walls. The deformation modulus of the elements was calculated and the stress-strain curves were plotted to gain a better understanding of the values obtained. The compression test results for the small walls reinforced with fibers were similar to those of the reference walls and better than the blocks and prisms with added fibers, which had resistances lower than those of the corresponding conventional materials. All elements prepared with the addition of sisal exhibited an increase in the deformation capacity (conferred by the fibers, which was observed in the stress-strain curves. The failure mode of the reference elements was characterized by an abrupt fracture, whereas the reinforced elements underwent ductile breakage. This result was because of the presence of the fibers, which remained attached to the faces of the cracks via adhesion to the cement matrix, thus preventing loss of continuity in the material. Therefore, the cement/plant fiber composites are advantageous in terms of their ductility and ability to resist further damage after cracking.

  8. Proposed Methodology for Design of Carbon Fiber Reinforced Polymer Spike Anchors into Reinforced Concrete

    Energy Technology Data Exchange (ETDEWEB)

    MacFarlane, Eric Robert [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-05-26

    The included methodology, calculations, and drawings support design of Carbon Fiber Reinforced Polymer (CFRP) spike anchors for securing U-wrap CFRP onto reinforced concrete Tbeams. This content pertains to an installation in one of Los Alamos National Laboratory’s facilities. The anchors are part of a seismic rehabilitation to the subject facility. The information contained here is for information purposes only. The reader is encouraged to verify all equations, details, and methodology prior to usage in future projects. However, development of the content contained here complied with Los Alamos National Laboratory’s NQA-1 quality assurance program for nuclear structures. Furthermore, the formulations and details came from the referenced published literature. This literature represents the current state of the art for FRP anchor design. Construction personnel tested the subject anchor design to the required demand level demonstrated in the calculation. The testing demonstrated the ability of the anchors noted to carry loads in excess of 15 kips in direct tension. The anchors were not tested to failure in part because of the hazards associated with testing large-capacity tensile systems to failure. The calculation, methodology, and drawing originator was Eric MacFarlane of Los Alamos National Laboratory’s (LANL) Office of Seismic Hazards and Risk Mitigation (OSHRM). The checker for all components was Mike Salmon of the LANL OSHRM. The independent reviewers of all components were Insung Kim and Loring Wyllie of Degenkolb Engineers. Note that Insung Kim contributed to the initial formulations in the calculations that pertained directly to his Doctoral research.

  9. The Vibration Based Fatigue Damage Assessment of Steel and Steel Fiber Reinforced Concrete (SFRC Composite Girder

    Directory of Open Access Journals (Sweden)

    Xu Chen

    2015-01-01

    Full Text Available The steel-concrete composite girder has been usually applied in the bridge and building structures, mostly consisting of concrete slab, steel girder, and shear connector. The current fatigue damage assessment for the composite girder is largely based on the strain values and concrete crack features, which is time consuming and not stable. Hence the vibration-based fatigue damage assessment has been considered in this study. In detail, a steel-steel fiber reinforced concrete (SFRC composite girder was tested. The steel fiber reinforced concrete is usually considered for dealing with the concrete cracks in engineering practice. The composite girder was 3.3m long and 0.45m high. The fatigue load and impact excitation were applied on the specimen sequentially. According to the test results, the concrete crack development and global stiffness degradation during the fatigue test were relatively slow due to the favourable performance of SFRC in tension. But on the other hand, the vibration features varied significantly during the fatigue damage development. Generally, it confirmed the feasibility of executing fatigue damage assessment of composite bridge based on vibration method.

  10. High-rate tensile behavior of steel fiber-reinforced concrete for nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jung Jin; Park, Gi-Joon [Department of Civil and Environmental Engineering, Sejong University, 98 Gunja-Dong, Gwangjin-Gu, Seoul 143-747 (Korea, Republic of); Kim, Dong Joo, E-mail: djkim75@sejong.ac.kr [Department of Civil and Environmental Engineering, Sejong University, 98 Gunja-Dong, Gwangjin-Gu, Seoul 143-747 (Korea, Republic of); Moon, Jae Heum; Lee, Jang Hwa [Korea Institute of Construction Technology, 2311 Daewha-Dong, Ilsan-Gu, Goyang-Si, Gyeonggi-Do 411-712 (Korea, Republic of)

    2014-01-15

    Highlights: • The final goal is to develop a fiber reinforced concrete for containment buildings. • High rate tensile behavior of FRC was investigated. • Strain energy frame impact machine was used for tensile impact tests. • Different rate sensitivity of FRC was found according to the type fiber. • Adding more fibers by increasing S/a is positive for higher impact resistance of FRC. -- Abstract: The direct tensile behavior of fiber-reinforced concrete (FRC) at high strain rates were investigated for their potential to enhance the resistance of the containment building of nuclear power plants (NPPs) against aircraft impact. Two types of deformed steel, hooked (H) and twisted (T) fibers were employed. To improve the tensile resistance of FRCs even at higher rates by adding more fibers, the mixture of concrete was modified by either increasing the sand-to-coarse aggregate ratio or decreasing the maximum size of coarse aggregate. All FRC specimens produced two to six times greater tensile strength and one to five times higher toughness at high strain rates (4–53 s{sup −1}) than those at a static rate (0.000167 s{sup −1}). T-fiber generally produced higher tensile strength and toughness than H-fiber at both static and high rates. Although both fibers showed favorable rate sensitivity, T-fiber produced much greater enhancement, at higher strain rates, in tensile strength and slightly lower enhancement in toughness than H-fiber. As the maximum size of coarse aggregate decreased from 19 to 5 mm, the tensile strength and toughness of FRCs with T-fibers noticeably increased at both static and high strain rates.

  11. Strain Rate Dependent Behavior and Modeling for Compression Response of Hybrid Fiber Reinforced Concrete

    Directory of Open Access Journals (Sweden)

    S.M. Ibrahim

    Full Text Available Abstract This paper investigates the stress-strain characteristics of Hybrid fiber reinforced concrete (HFRC composites under dynamic compression using Split Hopkinson Pressure Bar (SHPB for strain rates in the range of 25 to 125 s-1. Three types of fibers - hooked ended steel fibers, monofilament crimped polypropylene fibers and staple Kevlar fibers were used in the production of HFRC composites. The influence of different fibers in HFRC composites on the failure mode, dynamic increase factor (DIF of strength, toughness and strain are also studied. Degree of fragmentation of HFRC composite specimens increases with increase in the strain rate. Although the use of high percentage of steel fibers leads to the best performance but among the hybrid fiber combinations studied, HFRC composites with relatively higher percentage of steel fibers and smaller percentage of polypropylene and Kevlar fibers seem to reflect the equally good synergistic effects of fibers under dynamic compression. A rate dependent analytical model is proposed for predicting complete stress-strain curves of HFRC composites. The model is based on a comprehensive fiber reinforcing index and complements well with the experimental results.

  12. Effect of Polypropylene Fibers on Self-Healing and Dynamic Modulus of Elasticity Recovery of Fiber Reinforced Concrete

    Directory of Open Access Journals (Sweden)

    Adham El-Newihy

    2018-02-01

    Full Text Available This study aims to evaluate self-healing properties and recovered dynamic moduli of engineered polypropylene fiber reinforced concrete using non-destructive resonant frequency testing. Two types of polypropylene fibers (0.3% micro and 0.6% macro and two curing conditions have been investigated: Water curing (at ~25 Celsius and air curing. The Impact Resonance Method (IRM has been conducted in both transverse and longitudinal modes on concrete cylinders prior/post crack induction and post healing of cracks. Specimens were pre-cracked at 14 days, obtaining values of crack width in the range of 0.10–0.50 mm. Addition of polypropylene fibers improved the dynamic response of concrete post-cracking by maintaining a fraction of the original resonant frequency and elastic properties. Macro fibers showed better improvement in crack bridging while micro fiber showed a significant recovery of the elastic properties. The results also indicated that air-cured Polypropylene Fiber Reinforced Concrete (PFRC cylinders produced ~300 Hz lower resonant frequencies when compared to water-cured cylinders. The analyses showed that those specimens with micro fibers exhibited a higher recovery of dynamic elastic moduli.

  13. Fiber reinforced concrete: an advanced technology for LL/ML radwaste conditioning and disposal

    International Nuclear Information System (INIS)

    Tchemitcheff, E.; Verdier, A.

    1993-01-01

    Radioactive waste immobilization is an integral part of operations in nuclear facilities. The goal of immobilization is to contain radioactive materials in a waste form which can maintain its integrity over very long periods of time, thus effectively isolating the materials from the environment and hence from the public. This is true regardless of the activity of the waste, including low-, and medium-level waste (LLW, MLW). A multiple-year research effort by Cogema culminated in the development of a new process to immobilize nuclear waste in concrete containers reinforced with metal fibers. The fiber concrete containers satisfy all French safety requirements relating to waste immobilization and disposal, and have been certified by Andra, the national radioactive waste management agency. The fiber concrete containers have been fabricated on a production scale since July 1990 by Sogefibre. (author). 3 refs., 5 figs., 7 tabs

  14. Characteristics and applications of high-performance fiber reinforced asphalt concrete

    Science.gov (United States)

    Park, Philip

    Steel fiber reinforced asphalt concrete (SFRAC) is suggested in this research as a multifunctional high performance material that can potentially lead to a breakthrough in developing a sustainable transportation system. The innovative use of steel fibers in asphalt concrete is expected to improve mechanical performance and electrical conductivity of asphalt concrete that is used for paving 94% of U. S. roadways. In an effort to understand the fiber reinforcing mechanisms in SFRAC, the interaction between a single straight steel fiber and the surrounding asphalt matrix is investigated through single fiber pull-out tests and detailed numerical simulations. It is shown that pull-out failure modes can be classified into three types: matrix, interface, and mixed failure modes and that there is a critical shear stress, independent of temperature and loading rate, beyond which interfacial debonding will occur. The reinforcing effects of SFRAC with various fiber sizes and shapes are investigated through indirect tension tests at low temperature. Compared to unreinforced specimens, fiber reinforced specimens exhibit up to 62.5% increase in indirect tensile strength and 895% improvements in toughness. The documented improvements are the highest attributed to fiber reinforcement in asphalt concrete to date. The use of steel fibers and other conductive additives provides an opportunity to make asphalt pavement electrically conductive, which opens up the possibility for multifunctional applications. Various asphalt mixtures and mastics are tested and the results indicate that the electrical resistivity of asphaltic materials can be manipulated over a wide range by replacing a part of traditional fillers with a specific type of graphite powder. Another important achievement of this study is development and validation of a three dimensional nonlinear viscoelastic constitutive model that is capable of simulating both linear and nonlinear viscoelasticity of asphaltic materials. The

  15. Effect of Chopped Basalt Fibers on the Mechanical Properties and Microstructure of High Performance Fiber Reinforced Concrete

    Directory of Open Access Journals (Sweden)

    Tehmina Ayub

    2014-01-01

    Full Text Available This paper presents the mechanical properties and the microstructure of the high performance fiber reinforced concrete (HPFRC containing up to 3% volume fraction of chopped Basalt fibers. Three types of the concrete were prepared, out of which, the first type was prepared by utilizing 100% cement content. The other two types of the concrete were prepared by replacing 10% cement content with silica fume and the locally produced metakaolin. Using each concrete type, four mixes were prepared in which Basalt fibers were added in the range of 0–3%; that is, total twelve mixes of the HPFRC concrete were prepared. From each of the twelve concrete mixes, total twelve specimens were cast to determine the mechanical properties of the HPFRC including compressive strength (cube and cylinder, splitting tensile strength, and the flexural strength. In this way, a total of 108 specimens were cast and tested in this study. Test results showed that the addition of the Basalt fibers significantly increased the tensile splitting strength and the flexural strength of the HPFRC, while there was slight improvement in the compressive strength with the addition of Basalt fibers. The microstructure of HPFRC was examined to determine the interfacial transition zone (ITZ between the aggregates and the paste by using field emission scanning electron microscope (FESEM, which showed the improvement of the ITZ due to the addition of the Basalt fibers.

  16. THE INFLUENCE OF NANO-ADDITIVES ON THE PHYSICO-MECHANICAL PROPERTIES FIBER REINFORCED CONCRETE

    Directory of Open Access Journals (Sweden)

    Евгений Петрович Матус

    2018-02-01

    Full Text Available The paper discusses the current state of research of the effect of nanodispersed additives on the properties of fiber reinforced portland cement composites. The results of tests on the strength and viscosity of solutions and samples of fine-grained concrete based on cement binder and cement steel and basalt fiber, carbon nanotubes, silicates, nanosized powder of CaО and degidrol. The effect of methods of introduction of the mixture of nano-additives on the clutch fibers with the matrix. Analysis of experimental data showed the absence of a systematic positive effect of increasing the mechanical strength of the composites due to the introduction of carbon nanotubes.

  17. Study on vibration alleviating properties of glass fiber reinforced polymer concrete through orthogonal tests

    International Nuclear Information System (INIS)

    Bai Wenfeng; Zhang Jianhua; Yan Peng; Wang Xinli

    2009-01-01

    Polymer concrete (PC), because of its good vibration alleviating properties, is a proper material for elementary machine parts in high-precision machine tools. Glass fiber was applied in PC to improve its mechanical properties, and the material obtained is called glass fiber reinforced polymer concrete (GFRPC). The best parameter to estimate the vibration alleviating property is damping ratio. Orthogonal tests were carried out to prepare GFRPC specimens with different component proportions. Damping ratio of the GFRPC specimens was measured. The effect of the factors considered in the experiments on damping ratio of GFRPC was studied. Results of the tests show that granite proportion plays the most important role in determining damping ratio of GFRPC, then flexibilizer dosage and glass fiber length, while epoxy resin dosage and glass fiber dosage play a comparatively less important part. Detailed descriptions were made about how the considered factors affect damping ratio of GFRPC in this paper

  18. Feasibility of Reducing the Fiber Content in Ultra-High-Performance Fiber-Reinforced Concrete under Flexure.

    Science.gov (United States)

    Park, Jung-Jun; Yoo, Doo-Yeol; Park, Gi-Joon; Kim, Sung-Wook

    2017-01-28

    In this study, the flexural behavior of ultra-high-performance fiber-reinforced concrete (UHPFRC) is examined as a function of fiber length and volume fraction. Straight steel fiber with three different lengths ( l f ) of 13, 19.5, and 30 mm and four different volume fractions ( v f ) of 0.5%, 1.0%, 1.5%, and 2.0% are considered. Test results show that post-cracking flexural properties of UHPFRC, such as flexural strength, deflection capacity, toughness, and cracking behavior, improve with increasing fiber length and volume fraction, while first-cracking properties are not significantly influenced by fiber length and volume fraction. A 0.5 vol % reduction of steel fiber content relative to commercial UHPFRC can be achieved without deterioration of flexural performance by replacing short fibers ( l f of 13 mm) with longer fibers ( l f of 19.5 mm and 30 mm).

  19. Bond of reinforcing bars in self-compacting steel fiber reinforced concrete

    NARCIS (Netherlands)

    Schumacher, P.; Bigaj-van Vliet, A.J.; Braam, C.R.; Walraven, J.C.

    2002-01-01

    Plain concrete demonstrates a rather brittle behavior both under compression and tension. By adding steel fibers, the post-cracking behavior becomes more ductile and an increase of the strain capacity under tension and compression is found. The research project currently being carried out aims at

  20. Properties of Hooked Steel Fibers Reinforced Alkali Activated Material Concrete

    Directory of Open Access Journals (Sweden)

    Faris M. A.

    2016-01-01

    Full Text Available In this study, alkali activated material was produced by using Class F fly ash from Manjung power station, Lumut, Perak, Malaysia. Fly ash then was activated by alkaline activator which is consisting of sodium silicate (Na2SiO3 and sodium hydroxide (NaOH. Hooked end steel fibers were added into the alkali activated material system with percentage vary from 0 % – 5 %. Chemical compositions of fly ash were first analyzed by using x-ray fluorescence (XRF. All hardened alkali activated material samples were tested for density, workability, and compression after 28 days. Results show a slight increase of density with the addition of steel fibers. However, the workability was reduced with the addition of steel fibers content. Meanwhile, the addition of steel fibers shows the improvement of compressive strength which is about 19 % obtained at 3 % of steel fibers addition.

  1. Utilization of power plant bottom ash as aggregates in fiber-reinforced cellular concrete.

    Science.gov (United States)

    Lee, H K; Kim, H K; Hwang, E A

    2010-02-01

    Recently, millions tons of bottom ash wastes from thermoelectric power plants have been disposed of in landfills and coastal areas, regardless of its recycling possibility in construction fields. Fiber-reinforced cellular concrete (FRCC) of low density and of high strength may be attainable through the addition of bottom ash due to its relatively high strength. This paper focuses on evaluating the feasibility of utilizing bottom ash of thermoelectric power plant wastes as aggregates in FRCC. The flow characteristics of cement mortar with bottom ash aggregates and the effect of aggregate type and size on concrete density and compressive strength were investigated. In addition, the effects of adding steel and polypropylene fibers for improving the strength of concrete were also investigated. The results from this study suggest that bottom ash can be applied as a construction material which may not only improve the compressive strength of FRCC significantly but also reduce problems related to bottom ash waste.

  2. Some Properties of Carbon Fiber Reinforced Magnetic Reactive Powder Concrete Containing Nano Silica

    Directory of Open Access Journals (Sweden)

    Zain El-Abdin Raouf

    2016-08-01

    Full Text Available This study involves the design of 24 mixtures of fiber reinforced magnetic reactive powder concrete containing nano silica. Tap water was used for 12 of these mixtures, while magnetic water was used for the others. The nano silica (NS with ratios (1, 1.5, 2, 2.5 and 3 % by weight of cement, were used for all the mixtures. The results have shown that the mixture containing 2.5% NS gives the highest compressive strength at age 7 days. Many different other tests were carried out, the results have shown that the carbon fiber reinforced magnetic reactive powder concrete containing 2.5% NS (CFRMRPCCNS had higher compressive strength, modulus of rupture, splitting tension, stress in compression and strain in compression than the corresponding values for the carbon fiber reinforced nonmagnetic reactive powder concrete containing the same ratio of NS (CFRNRPCCNS. The percentage increase in these values for CFRMRPCCNS were (22.37, 17.96, 19.44, 6.44 and 25.8 % at 28 days respectively, as compared with the corresponding CFRNRPCCNS mixtures.

  3. Application of Ultra High Performance Fiber Reinforced Concrete – The Malaysia Perspective

    OpenAIRE

    Voo - Yen Lei; Behzad Nematollahi; Abu Bakar Mohamed Said; Balamurugan A Gopal; Tet Shun Yee

    2012-01-01

    One of the most significant breakthroughs in concrete technology at the end of the 20th century was the development of ultra-high performance fiber reinforced concrete (UHPFRC) with compressive strength and flexure strength beyond 160 MPa and 30 MPa, respectively; remarkable improvement in workability; durability resembled to natural rocks; ductility and toughness comparable to steel. While over the last two decades a tremendous amount of research works have been undertaken by academics and e...

  4. Embedded Distributed Optical Fiber Sensors in Reinforced Concrete Structures-A Case Study.

    Science.gov (United States)

    Barrias, António; Casas, Joan R; Villalba, Sergi

    2018-03-26

    When using distributed optical fiber sensors (DOFS) on reinforced concrete structures, a compromise must be achieved between the protection requirements and robustness of the sensor deployment and the accuracy of the measurements both in the uncracked and cracked stages and under loading, unloading and reloading processes. With this in mind the authors have carried out an experiment where polyimide-coated DOFS were installed on two concrete beams, both embedded in the rebar elements and also bonded to the concrete surface. The specimens were subjected to a three-point load test where after cracking, they are unloaded and reloaded again to assess the capability of the sensor when applied to a real loading scenarios in concrete structures. Rayleigh Optical Frequency Domain Reflectometry (OFDR) was used as the most suitable technique for crack detection in reinforced concrete elements. To verify the reliability and accuracy of the DOFS measurements, additional strain gauges were also installed at three locations along the rebar. The results show the feasibility of using a thin coated polyimide DOFS directly bonded on the reinforcing bar without the need of indention or mechanization. A proposal for a Spectral Shift Quality (SSQ) threshold is also obtained and proposed for future works when using polyimide-coated DOFS bonded to rebars with cyanoacrylate adhesive.

  5. Embedded Distributed Optical Fiber Sensors in Reinforced Concrete Structures—A Case Study

    Science.gov (United States)

    Villalba, Sergi

    2018-01-01

    When using distributed optical fiber sensors (DOFS) on reinforced concrete structures, a compromise must be achieved between the protection requirements and robustness of the sensor deployment and the accuracy of the measurements both in the uncracked and cracked stages and under loading, unloading and reloading processes. With this in mind the authors have carried out an experiment where polyimide-coated DOFS were installed on two concrete beams, both embedded in the rebar elements and also bonded to the concrete surface. The specimens were subjected to a three-point load test where after cracking, they are unloaded and reloaded again to assess the capability of the sensor when applied to a real loading scenarios in concrete structures. Rayleigh Optical Frequency Domain Reflectometry (OFDR) was used as the most suitable technique for crack detection in reinforced concrete elements. To verify the reliability and accuracy of the DOFS measurements, additional strain gauges were also installed at three locations along the rebar. The results show the feasibility of using a thin coated polyimide DOFS directly bonded on the reinforcing bar without the need of indention or mechanization. A proposal for a Spectral Shift Quality (SSQ) threshold is also obtained and proposed for future works when using polyimide-coated DOFS bonded to rebars with cyanoacrylate adhesive. PMID:29587449

  6. High rate response of ultra-high-performance fiber-reinforced concretes under direct tension

    Energy Technology Data Exchange (ETDEWEB)

    Tran, Ngoc Thanh [Department of Civil and Environmental Engineering, Sejong University, 98 Gunja-Dong, Gwangjin-Gu, Seoul 143-747 (Korea, Republic of); Tran, Tuan Kiet [Department of Civil and Environmental Engineering, Sejong University, 98 Gunja-Dong, Gwangjin-Gu, Seoul 143-747 (Korea, Republic of); Department of Civil Engineering and Applied Mechanics, Ho Chi Minh City University of Technology and Education, 01 Vo Van Ngan, Thu Duc District, Ho Chi Minh City (Viet Nam); Kim, Dong Joo, E-mail: djkim75@sejong.ac.kr [Department of Civil and Environmental Engineering, Sejong University, 98 Gunja-Dong, Gwangjin-Gu, Seoul 143-747 (Korea, Republic of)

    2015-03-15

    The tensile response of ultra-high-performance fiber-reinforced concretes (UHPFRCs) at high strain rates (5–24 s{sup −} {sup 1}) was investigated. Three types of steel fibers, including twisted, long and short smooth steel fibers, were added by 1.5% volume content in an ultra high performance concrete (UHPC) with a compressive strength of 180 MPa. Two different cross sections, 25 × 25 and 25 × 50 mm{sup 2}, of tensile specimens were used to investigate the effect of the cross section area on the measured tensile response of UHPFRCs. Although all the three fibers generated strain hardening behavior even at high strain rates, long smooth fibers produced the highest tensile resistance at high rates whereas twisted fiber did at static rate. The breakages of twisted fibers were observed from the specimens tested at high strain rates unlike smooth steel fibers. The tensile behavior of UHPFRCs at high strain rates was clearly influenced by the specimen size, especially in post-cracking strength.

  7. Corrosion detection of steel reinforced concrete using combined carbon fiber and fiber Bragg grating active thermal probe

    International Nuclear Information System (INIS)

    Li, Weijie; Ho, Siu Chun Michael; Song, Gangbing

    2016-01-01

    Steel reinforcement corrosion is one of the dominant causes for structural deterioration for reinforced concrete structures. This paper presents a novel corrosion detection technique using an active thermal probe. The technique takes advantage of the fact that corrosion products have poor thermal conductivity, which will impede heat propagation generated from the active thermal probe. At the same time, the active thermal probe records the temperature response. The presence of corrosion products can thus be detected by analyzing the temperature response after the injection of heat at the reinforcement-concrete interface. The feasibility of the proposed technique was firstly analyzed through analytical modeling and finite element simulation. The active thermal probe consisted of carbon fiber strands to generate heat and a fiber optic Bragg grating (FBG) temperature sensor. Carbon fiber strands are used due to their corrosion resistance. Wet-dry cycle accelerated corrosion experiments were performed to study the effect of corrosion products on the temperature response of the reinforced concrete sample. Results suggest a high correlation between corrosion severity and magnitude of the temperature response. The technique has the merits of high accuracy, high efficiency in measurement and excellent embeddability. (paper)

  8. Development of Flexible Link Slabs using Ductile Fiber Reinforced Concrete

    DEFF Research Database (Denmark)

    Lárusson, Lárus Helgi

    Civil engineering structures with large dimensions, such as multi-span bridges, overpasses and viaducts, are typically equipped with mechanical expansion joints. These joints allow the individual spans of the structure to undergo unrestrained deformations due to thermal expansions and load......-deformation response and crack development of representative sections of the reinforced composites, and iv) detailing, designing and testing of large scale prefabricated link slab elements. In addition, an application of ductile Engineered Cementitious Composite (ECC) in prefabricated floor panels is presented...... crack widths and crack spacing measurements are obtained, which can characterize the tensile behavior of ECC. In chapter 3 on interfacial bond, the bond slip behavior and crack development, between the reinforcement and surrounding cementitious matrix is investigated in a unique test setup with special...

  9. Tensile strength and durability characteristics of high-performance fiber reinforced concrete

    International Nuclear Information System (INIS)

    Ramadoss, P.; Nagamani, K.

    2008-01-01

    This paper presents investigations towards developing a better understanding of the contribution of steel fibers to the tensile strength of high-performance fiber reinforced concrete (HPFRC). For 32 series of mixes, flexural and splitting tensile strengths were determined at 28 days. The variables investigated were fiber volume fraction (0%, 0.5%, 1% and 1.5% with an aspect of 80), silica fume replacement level (SF/CM=0.05 and 0.10) and matrix composition (w/cm ratios ranging from 0.25 t 0.40). The influence of fiber content in terms of fiber reinforcing index on the flexural and splitting tensile strengths of HPFRC is presented. Comparative studies were performed on the tensile behavior of SFRC measured by two different loading tests: flexural test and splitting test. Based on the test results, using the least square method, empirical expressions were developed to predict 28-day tensile strength of HPFRC in terms of fiber reinforcing index. Durability tests were carried out to examine the performance of the SFRC. Relationship between flexural and splitting tensile strengths has been developed using regression analysis. The experimental values of previous researchers were compared with the values predicted by the empirical equations and the absolute variation obtained was within 6% and 5% for flexural and splitting tensile strengths respectively. (author)

  10. High-Temperature Performance and Multiscale Damage Mechanisms of Hollow Cellulose Fiber-Reinforced Concrete

    Directory of Open Access Journals (Sweden)

    Liping Guo

    2016-01-01

    Full Text Available Spalling resistance properties and their damage mechanisms under high temperatures are studied in hollow cellulose fiber-reinforced concrete (CFRC used in tunnel structures. Measurements of mass loss, relative dynamic elastic modulus, compressive strength, and splitting tensile strength of CFRC held under high temperatures (300, 600, 800, and 1050°C for periods of 2.5, 4, and 5.5 h were carried out. The damage mechanism was analyzed using scanning electron microscopy, mercury intrusion porosimetry, thermal analysis, and X-ray diffraction phase analysis. The results demonstrate that cellulose fiber can reduce the performance loss of concrete at high temperatures; the effect of holding time on the performance is more noticeable below 600°C. After exposure to high temperatures, the performance of ordinary concrete deteriorates faster and spalls at 700–800°C; in contrast, cellulose fiber melts at a higher temperature, leaving a series of channels in the matrix that facilitate the release of the steam pressure inside the CFRC. Hollow cellulose fibers can thereby slow the damage caused by internal stress and improve the spalling resistance of concrete under high temperatures.

  11. Flexural and Shear Behavior of RC Concrete Beams Reinforced with Fiber Wire Mesh

    Directory of Open Access Journals (Sweden)

    Rafea Flaih Hassan

    2018-02-01

    Full Text Available This work aims to study  the effect of using fiber wire mesh on the flexural and shear properties of RC concrete beams. Six reinforced concrete beams (120*180*1220mm were tested under two load points. Fiber wire mesh was applied with two manners, first one is three layers as U shape around the section of the beam, the second one is four layers around overall section of beam. The test results indicated that using of fiber wire mesh as additional reinforcement can increase the ultimate load of about (1.85-3.58% in the case of flexural and (17.7-23.7% in case of shear. Also,  results showed that an increasing in  first cracking  load is obtained from  (42.8-85.7% in case of flexural and from (41.2-76.5% in case of shear. Also the shear behavior of beams becomes more ductile when the fiber wire mesh was used in beams. The cracks of shrinkage was disappeared when the fiber wire mesh surround the section of the beam. 

  12. Experience-based training of students on concretes reinforced by recycled carbon fibers

    Science.gov (United States)

    Cosgun, Cumhur; Patlolla, Vamsidhar R.; Alzahrani, Naif; Zeineddine, Hatim F.; Asmatulu, Eylem

    2017-04-01

    Fiber reinforcement increases many properties of the concretes, such as toughness, strength, abrasion, and resistance to corrosion. Use of recycled carbon fibers from industrial waste offers many advantages because it will reduce the waste, contribute the economy, protect natural resources and improve the property of structural units. The City of Wichita, KS is known to be "Air Capital of the World" where many aircraft companies have been producing aircraft, parts and components. Due to the superior properties of composites (e.g., light weight, low density, high impact resistance), they have been highly used by aircraft industry. Prepreg is the most preferred combination of the fiber and resin due to the easy application, but it has a limited shelf life (e.g., three months to one year at most) and scrap has no use after all in the same industry. Every year tons of un-used prepreg or after use scrap are being collected in Wichita, KS. Recycling prepreg from the post-consumer waste offers great advantages of waste reduction and resource conservation in the city. Reusing the carbon fibers obtained from outdated prepreg composites for concrete reinforcement will offer double advantages for our environment and concrete structures. In this study, recycled carbon fibers of the outdated prepreg composites were collected, and then incorporated with concretes at different ratios prior to the molding and mechanical testing. An undergraduate student was involved in the project and observed all the process during the laboratory studies, as well as data collection, analysis and presentation. We believe that experience based learning will enhance the students' skills and interest into the scientific and engineering studies.

  13. Evaluation of Ultimate Pressure Capacity of a Prestressed Concrete Containment Building with Steel or Polyamide Fiber Reinforcement

    Energy Technology Data Exchange (ETDEWEB)

    Choun, Youngsun; Hahm, Daegi [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2014-05-15

    Fiber reinforced concrete (FRC) includes thousands of small fibers that are distributed randomly in the concrete. Fibers resist the growth of cracks in concrete through their bridging at the cracks. Therefore, FRC fails in tension only when the fibers break or are pulled out of the cement matrix. For this reason, the addition of fibers in concrete mixing increases the tensile toughness of concrete and enhances the post-cracking behavior. A prevention of through-wall cracks and an increase of the post-cracking ductility will improve the ultimate internal pressure capacity of a prestressed concrete containment building (PCCB). In this study, the effects of steel or polyamide fiber reinforcement on the ultimate pressure capacity of a PCCB are evaluated. When R-SFRC contains hooked steel fibers in a volume fraction of 1.0%, the ultimate pressure capacity of a PCCB can be improved by 17%. When R-PFRC contains polyamide fibers in a volume fraction of 1.5%, the ultimate pressure capacity of a PCCB can be enhanced by 10%. Further studies are needed to determine the strain limits acceptable for PCCBs reinforced with fibers.

  14. Evaluation of Ultimate Pressure Capacity of a Prestressed Concrete Containment Building with Steel or Polyamide Fiber Reinforcement

    International Nuclear Information System (INIS)

    Choun, Youngsun; Hahm, Daegi

    2014-01-01

    Fiber reinforced concrete (FRC) includes thousands of small fibers that are distributed randomly in the concrete. Fibers resist the growth of cracks in concrete through their bridging at the cracks. Therefore, FRC fails in tension only when the fibers break or are pulled out of the cement matrix. For this reason, the addition of fibers in concrete mixing increases the tensile toughness of concrete and enhances the post-cracking behavior. A prevention of through-wall cracks and an increase of the post-cracking ductility will improve the ultimate internal pressure capacity of a prestressed concrete containment building (PCCB). In this study, the effects of steel or polyamide fiber reinforcement on the ultimate pressure capacity of a PCCB are evaluated. When R-SFRC contains hooked steel fibers in a volume fraction of 1.0%, the ultimate pressure capacity of a PCCB can be improved by 17%. When R-PFRC contains polyamide fibers in a volume fraction of 1.5%, the ultimate pressure capacity of a PCCB can be enhanced by 10%. Further studies are needed to determine the strain limits acceptable for PCCBs reinforced with fibers

  15. Properties of Hooked Steel Fibers Reinforced Alkali Activated Material Concrete

    OpenAIRE

    Faris M. A.; Abdullah Mohd Mustafa Al Bakri; Ismail Khairul Nizar; Muniandy Ratnasamy; Mahmad Nor Aiman; Putra Jaya Ramadhansyah; Waried Wazien A. Z.

    2016-01-01

    In this study, alkali activated material was produced by using Class F fly ash from Manjung power station, Lumut, Perak, Malaysia. Fly ash then was activated by alkaline activator which is consisting of sodium silicate (Na2SiO3) and sodium hydroxide (NaOH). Hooked end steel fibers were added into the alkali activated material system with percentage vary from 0 % – 5 %. Chemical compositions of fly ash were first analyzed by using x-ray fluorescence (XRF). All hardened alkali activated materia...

  16. Study of the compressive behavior of short concrete columns confined by fiber reinforced composite

    International Nuclear Information System (INIS)

    Benzaid, Riad; Mesbah, Habib; Chikh, Nasr eddine

    2009-01-01

    Fiber reinforced polymer (FRP) composites are very attractive for use in civil engineering applications due to their high strength-to-weight and stiffness-to-weight ratios, corrosion resistance, light weight, and potentially high durability. There is a growing interest in the use of FRP for strengthening of concrete structures such as buildings, bridges, chimneys, etc. This is mainly due to their tailorable performance characteristics, ease of application, and low life cycle costs. The present paper deals with the analysis of experimental results, in terms of load carrying capacity and strains, obtained from tests on circular and square prismatic high strength concrete specimens, strengthened with external E-glass fiber reinforced polymer (GFRP). The parameters considered are the number of composite layers, the corner radius for square shape, and the relation of GFRP confinement with steel reinforcement. All the test specimens were loaded to failure in axial compression and the behavior of the specimens in the axial directions was investigated. The obtained results showed that the efficiency of the confinement was very sensitive to the specimen cross section geometry (circular and square) and the confining stress expressed in the number of the GFRP sheet layers applied. In square cross sections, the stress-strain curve was influenced by the radius to which the corners of the section are rounded off, in order to avoid the breakage of the fibers. (author)

  17. Finite Element Modeling of Compressive and Splitting Tensile Behavior of Plain Concrete and Steel Fiber Reinforced Concrete Cylinder Specimens

    Directory of Open Access Journals (Sweden)

    Md. Arman Chowdhury

    2016-01-01

    Full Text Available Plain concrete and steel fiber reinforced concrete (SFRC cylinder specimens are modeled in the finite element (FE platform of ANSYS 10.0 and validated with the experimental results and failure patterns. Experimental investigations are conducted to study the increase in compressive and tensile capacity of cylindrical specimens made of stone and brick concrete and SFRC. Satisfactory compressive and tensile capacity improvement is observed by adding steel fibers of 1.5% volumetric ratio. A total of 8 numbers of cylinder specimens are cast and tested in 1000 kN capacity digital universal testing machine (UTM and also modeled in ANSYS. The enhancement of compressive strength and splitting tensile strength of SFRC specimen is achieved up to 17% and 146%, respectively, compared to respective plain concrete specimen. Results gathered from finite element analyses are validated with the experimental test results by identifying as well as optimizing the controlling parameters to make FE models. Modulus of elasticity, Poisson’s ratio, stress-strain behavior, tensile strength, density, and shear transfer coefficients for open and closed cracks are found to be the main governing parameters for successful model of plain concrete and SFRC in FE platform. After proper evaluation and logical optimization of these parameters by extensive analyses, finite element (FE models showed a good correlation with the experimental results.

  18. Brillouin Corrosion Expansion Sensors for Steel Reinforced Concrete Structures Using a Fiber Optic Coil Winding Method

    Directory of Open Access Journals (Sweden)

    Xingjun Lv

    2011-11-01

    Full Text Available In this paper, a novel kind of method to monitor corrosion expansion of steel rebars in steel reinforced concrete structures named fiber optic coil winding method is proposed, discussed and tested. It is based on the fiber optical Brillouin sensing technique. Firstly, a strain calibration experiment is designed and conducted to obtain the strain coefficient of single mode fiber optics. Results have shown that there is a good linear relationship between Brillouin frequency and applied strain. Then, three kinds of novel fiber optical Brillouin corrosion expansion sensors with different fiber optic coil winding packaging schemes are designed. Sensors were embedded into concrete specimens to monitor expansion strain caused by steel rebar corrosion, and their performance was studied in a designed electrochemical corrosion acceleration experiment. Experimental results have shown that expansion strain along the fiber optic coil winding area can be detected and measured by the three kinds of sensors with different measurement range during development the corrosion. With the assumption of uniform corrosion, diameters of corrosion steel rebars were obtained using calculated average strains. A maximum expansion strain of 6,738 με was monitored. Furthermore, the uniform corrosion analysis model was established and the evaluation formula to evaluate mass loss rate of steel rebar under a given corrosion rust expansion rate was derived. The research has shown that three kinds of Brillouin sensors can be used to monitor the steel rebar corrosion expansion of reinforced concrete structures with good sensitivity, accuracy and monitoring range, and can be applied to monitor different levels of corrosion. By means of this kind of monitoring technique, quantitative corrosion expansion monitoring can be carried out, with the virtues of long durability, real-time monitoring and quasi-distribution monitoring.

  19. Brillouin corrosion expansion sensors for steel reinforced concrete structures using a fiber optic coil winding method.

    Science.gov (United States)

    Zhao, Xuefeng; Gong, Peng; Qiao, Guofu; Lu, Jie; Lv, Xingjun; Ou, Jinping

    2011-01-01

    In this paper, a novel kind of method to monitor corrosion expansion of steel rebars in steel reinforced concrete structures named fiber optic coil winding method is proposed, discussed and tested. It is based on the fiber optical Brillouin sensing technique. Firstly, a strain calibration experiment is designed and conducted to obtain the strain coefficient of single mode fiber optics. Results have shown that there is a good linear relationship between Brillouin frequency and applied strain. Then, three kinds of novel fiber optical Brillouin corrosion expansion sensors with different fiber optic coil winding packaging schemes are designed. Sensors were embedded into concrete specimens to monitor expansion strain caused by steel rebar corrosion, and their performance was studied in a designed electrochemical corrosion acceleration experiment. Experimental results have shown that expansion strain along the fiber optic coil winding area can be detected and measured by the three kinds of sensors with different measurement range during development the corrosion. With the assumption of uniform corrosion, diameters of corrosion steel rebars were obtained using calculated average strains. A maximum expansion strain of 6,738 με was monitored. Furthermore, the uniform corrosion analysis model was established and the evaluation formula to evaluate mass loss rate of steel rebar under a given corrosion rust expansion rate was derived. The research has shown that three kinds of Brillouin sensors can be used to monitor the steel rebar corrosion expansion of reinforced concrete structures with good sensitivity, accuracy and monitoring range, and can be applied to monitor different levels of corrosion. By means of this kind of monitoring technique, quantitative corrosion expansion monitoring can be carried out, with the virtues of long durability, real-time monitoring and quasi-distribution monitoring.

  20. Improved Bond Equations for Fiber-Reinforced Polymer Bars in Concrete.

    Science.gov (United States)

    Pour, Sadaf Moallemi; Alam, M Shahria; Milani, Abbas S

    2016-08-30

    This paper explores a set of new equations to predict the bond strength between fiber reinforced polymer (FRP) rebar and concrete. The proposed equations are based on a comprehensive statistical analysis and existing experimental results in the literature. Namely, the most effective parameters on bond behavior of FRP concrete were first identified by applying a factorial analysis on a part of the available database. Then the database that contains 250 pullout tests were divided into four groups based on the concrete compressive strength and the rebar surface. Afterward, nonlinear regression analysis was performed for each study group in order to determine the bond equations. The results show that the proposed equations can predict bond strengths more accurately compared to the other previously reported models.

  1. Improvement of impact-resistance of a nuclear containment building using fiber reinforced concrete

    International Nuclear Information System (INIS)

    Jeon, Se-Jin; Jin, Byeong-Moo

    2016-01-01

    Highlights: • Impact-resistance of a structure can be improved by fiber reinforced concrete (FRC). • Material modeling of FRC is incorporated into finite element analysis of a structure. • A new index for impact-resistance is proposed based on plastic dissipation energy. • A nuclear power plant made of FRC shows improved resistance against aircraft crashes. - Abstract: Since the act of terrorism that occurred in the USA on September 11, 2001, the protection of nuclear power plants against large commercial aircraft crashes has been an emerging issue. Besides the verification of the safety of nuclear power plants in operation or in design, efficient methods for improving the impact-resistance of these structures have been investigated. Fiber reinforced concrete (FRC) has been generally accepted as an effective material for this purpose. In particular, FRC has been developed to improve the tensile behavior of concrete such as tensile strength, ductility and toughness. One of the main fields of application of FRC can be found in blast-protective or blast-resistant concrete structures. It is expected, therefore, that safety-related structures in a nuclear power plant can also be effectively protected from external blast, aircraft crash, etc. by applying FRC. In order to analytically verify the effect on structural behavior of applying FRC, the particular material properties of FRC should be incorporated into the material modeling of a structural analysis program. This study investigates the mathematical modeling of FRC, which represents various aspects of material behavior. Two numerical examples are provided to show the improved impact-resistance of a nuclear containment building that is expected when applying FRC in comparison with ordinary concrete. The analysis results show that the displacement decreases by 43–67% while the impact-resistance increases by 40–82%, depending on a fiber type.

  2. Improvement of impact-resistance of a nuclear containment building using fiber reinforced concrete

    Energy Technology Data Exchange (ETDEWEB)

    Jeon, Se-Jin, E-mail: conc@ajou.ac.kr [Ajou University, 206, World cup-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do 16499 (Korea, Republic of); Jin, Byeong-Moo [DAEWOO E& C, Institute of Construction Technology, 20, Suil-ro 123beon-gil, Jangan-gu, Suwon-si, Gyeonggi-do 16297 (Korea, Republic of)

    2016-08-01

    Highlights: • Impact-resistance of a structure can be improved by fiber reinforced concrete (FRC). • Material modeling of FRC is incorporated into finite element analysis of a structure. • A new index for impact-resistance is proposed based on plastic dissipation energy. • A nuclear power plant made of FRC shows improved resistance against aircraft crashes. - Abstract: Since the act of terrorism that occurred in the USA on September 11, 2001, the protection of nuclear power plants against large commercial aircraft crashes has been an emerging issue. Besides the verification of the safety of nuclear power plants in operation or in design, efficient methods for improving the impact-resistance of these structures have been investigated. Fiber reinforced concrete (FRC) has been generally accepted as an effective material for this purpose. In particular, FRC has been developed to improve the tensile behavior of concrete such as tensile strength, ductility and toughness. One of the main fields of application of FRC can be found in blast-protective or blast-resistant concrete structures. It is expected, therefore, that safety-related structures in a nuclear power plant can also be effectively protected from external blast, aircraft crash, etc. by applying FRC. In order to analytically verify the effect on structural behavior of applying FRC, the particular material properties of FRC should be incorporated into the material modeling of a structural analysis program. This study investigates the mathematical modeling of FRC, which represents various aspects of material behavior. Two numerical examples are provided to show the improved impact-resistance of a nuclear containment building that is expected when applying FRC in comparison with ordinary concrete. The analysis results show that the displacement decreases by 43–67% while the impact-resistance increases by 40–82%, depending on a fiber type.

  3. A lattice-particle approach for the simulation of fracture processes in fiber-reinforced high-performance concrete

    NARCIS (Netherlands)

    Montero-Chacón, F.; Schlangen, H.E.J.G.; Medina, F.

    2013-01-01

    The use of fiber-reinforced high-performance concrete (FRHPC) is becoming more extended; therefore it is necessary to develop tools to simulate and better understand its behavior. In this work, a discrete model for the analysis of fracture mechanics in FRHPC is presented. The plain concrete matrix,

  4. Interim Report on the Investigation of the Fresh Properties of Synthetic Fiber-Reinforced Concrete for the Richardson Landing Casting Field

    Science.gov (United States)

    2017-04-01

    ER D C/ G SL S R- 17 -1 Interim Report on the Investigation of the Fresh Properties of Synthetic Fiber - Reinforced Concrete for the...default. ERDC/GSL SR-17-1 April 2017 Interim Report on the Investigation of the Fresh Properties of Synthetic Fiber - Reinforced Concrete for... reinforced concrete mixtures containing 3-, 2-, and 1-lb(s)/yd3, respectively, of synthetic (polypropylene) fiber into the current mixture proportion

  5. Grout compactness monitoring of concrete-filled fiber-reinforced polymer tube using electromechanical impedance

    Science.gov (United States)

    Shi, Yaokun; Luo, Mingzhang; Li, Weijie; Song, Gangbing

    2018-05-01

    The concrete-filled fiber-reinforced polymer tube (CFFT) is a type of structural element widely used in corrosive environments. Poor grout compactness results in incomplete contact or even no contact between the fiber-reinforced polymer (FRP) tube and the concrete grout, which reduces the load bearing capacity of a CFFT. The monitoring of grout compactness for CFFTs is important. The piezoceramic-based electromechanical impedance (EMI) method has emerged as an efficient and low-cost structural health monitoring technique. This paper presents a feasibility study using the EMI method to monitor grout compactness of CFFTs. In this research, CFFT specimens with different levels of compactness (empty, 1/5, 1/3, 1/2, 2/3, and full compactness) were prepared and subjected to EMI measurement by using four piezoceramic patches that were bonded circumferentially along the outer surface of the CFFT. To analyze the correlation between grout compactness and EMI signatures, a compactness index (CI) was proposed based on the root-mean-square deviation (RMSD). The experimental results show that the changes in admittance signatures are able to determine the grout compactness qualitatively. The proposed CI is able to effectively identify the compactness of the CFFT, and provides location information of the incomplete concrete infill.

  6. State-of-the-Art Report on Fiber-Reinforced Lightweight Aggregate Concrete Masonry

    Directory of Open Access Journals (Sweden)

    Saul Rico

    2017-01-01

    Full Text Available Masonry construction is the most widely used building method in the world. Concrete masonry is relatively low in cost due to the vast availability of aggregates used within the production process. These aggregate materials are not always reliable for structural use. One of the principal issues associated with masonry is the brittleness of the unit. When subject to seismic loads, the brittleness of the masonry magnifies. In regions with high seismic activity and unspecified building codes or standards, masonry housing has developed into a death trap for countless individuals. A common approach concerning the issue associated with the brittle characteristic of masonry is addition of steel reinforcement. However, this can be expensive, highly dependent on skillfulness of labor, and particularly dependent on the quality of available steel. A proposed solution presented in this investigation consists of introducing steel fibers to the lightweight aggregate concrete masonry mix. Previous investigations in the field of lightweight aggregate fiber-reinforced concrete have shown an increase in flexural strength, toughness, and ductility. The outcome of this research project provides invaluable data for the production of a ductile masonry unit capable of withstanding seismic loads for prolonged periods.

  7. A micromechanical approach to elastic and viscoelastic properties of fiber reinforced concrete

    International Nuclear Information System (INIS)

    Pasa Dutra, V.F.; Maghous, S.; Campos Filho, A.; Pacheco, A.R.

    2010-01-01

    Some aspects of the constitutive behavior of fiber reinforced concrete (FRC) are investigated within a micromechanical framework. Special emphasis is put on the prediction of creep of such materials. The linear elastic behavior is first examined by implementation of a Mori-Tanaka homogenization scheme. The micromechanical predictions for the overall stiffness prove to be very close to finite element solutions obtained from the numerical analysis of a representative elementary volume of FRC modeled as a randomly heterogeneous medium. The validation of the micromechanical concepts based on comparison with a set of experiments, shows remarkable predictive capabilities of the micromechanical representation. The second part of the paper is devoted to non-ageing viscoelasticity of FRC. Adopting a Zener model for the behavior of the concrete matrix and making use of the correspondence principle, the homogenized relaxation moduli are derived analytically. The validity of the model is established by mean of comparison with available experiment measurements of creep strain of steel fiber reinforced concrete under compressive load. Finally, the model predictions are compared to those derived from analytical models formulated within a one-dimensional setting.

  8. Seismic Performance of High-Ductile Fiber-Reinforced Concrete Short Columns

    Directory of Open Access Journals (Sweden)

    Mingke Deng

    2018-01-01

    Full Text Available This study mainly aims to investigate the effectiveness of high-ductile fiber-reinforced concrete (HDC as a means to enhance the seismic performance of short columns. Six HDC short columns and one reinforced concrete (RC short column were designed and tested under lateral cyclic loading. The influence of the material type (concrete or HDC, axial load, stirrup ratio, and shear span ratio on crack patterns, hysteresis behavior, shear strength, deformation capacity, energy dissipation, and stiffness degradation was presented and discussed, respectively. The test results show that the RC short column failed in brittle shear with poor energy dissipation, while using HDC to replace concrete can effectively improve the seismic behavior of the short columns. Compared with the RC short column, the shear strength of HDC specimens was improved by 12.6–30.2%, and the drift ratio and the energy dissipation increases were 56.9–88.5% and 237.7–336.7%, respectively, at the ultimate displacement. Additionally, the prediction model of the shear strength for RC columns based on GB50010-2010 (Chinese code can be safely adopted to evaluate the shear strength of HDC short columns.

  9. Abrasion Properties of Steel Fiber Reinforced Silica Fume Concrete According to Los Angeles and Water Abrasion Tests

    Directory of Open Access Journals (Sweden)

    Tsan-Ching CHENG

    2014-12-01

    Full Text Available The current study mainly investigated the influence of different tests on the abrasion resistance of concrete mixed with steel fibers and silica fume. The abrasion resistance was assessed at 28, 56 and 91 days on concretes with water-binder ratios of 0.35 and 0.55 where in some mixes silica fume was substituted by 5 % of cement by weight. Steel fibers of 0.5 % and 1.0 % of concrete volume were also added into the test concrete by replacement of coarse and fine aggregates. The results showed that concrete with higher compressive strength in Los Angeles abrasion tests also had better abrasion resistance. The inclusion of steel fibers into test concrete with a water-binder ratio of 0.35 resulted in a significant increase in compressive strength. This concrete also displayed better abrasion resistance and splitting tensile strength than reference concrete; in the test sample with a water-binder ratio of 0.55, the added steel fibers was unable to effectively produce cementation with the concrete. The inclusion of silica fume improved the abrasion resistance of concretes. In water abrasion testing, the abrasion resistance of concrete containing steel fiber was worse than that of concrete without steel fibers. In the water abrasion testing, the surface of steel fiber reinforced concrete was eroded by water and steel balls, and the impact caused the steel fibers to separate from the concrete and led to higher wear loss. DOI: http://dx.doi.org/10.5755/j01.ms.20.4.6460

  10. Reinforced sulphur concrete

    NARCIS (Netherlands)

    2014-01-01

    Reinforced sulphur concrete wherein one or more metal reinforcing members are in contact with sulphur concrete is disclosed. The reinforced sulphur concrete comprises an adhesion promoter that enhances the interaction between the sulphur and the one or more metal reinforcing members.

  11. Experimental Study of Concrete-filled Carbon Fiber Reinforced Polymer Tube with Internal Reinforcement under Axially Loading

    Directory of Open Access Journals (Sweden)

    Wenbin SUN

    2014-12-01

    Full Text Available Comparing with the circular concrete columns confined with fiber reinforced polymer (FRP wrap or tube, the rectilinear confined columns were reported much less. Due to the non-uniform distribution of confining pressure in the rectilinear confined columns, the FRP confinement effectiveness was significant reduced. This paper presents findings of an experimental program where nine prefabricated rectangular cross-section CFRP tubes with CFRP integrated crossties filled concrete to form concrete-filled FRP tube (CFFT short columns and three plain concrete control specimens were tested. All specimens were axially loaded until failure. The rest results showed that the stress-strain curves of CFFTs consisted of two distinct branches, an ascending branch before the concrete peak stress was reaches and a second branch that terminated when the tube ruptured, and that the CFFTs with integrated crossties experienced most uniform confinement pressure distribution. Test research also found that the stress-strain curves of CFFTs indicated an increase in ductility. These demonstrate that this confinement system can produce higher lateral confinement stiffness. DOI: http://dx.doi.org/10.5755/j01.ms.20.4.6035

  12. Accelerated testing for studying pavement design and performance (FY 2000) : effectiveness of fiber reinforced and plain, ultra-thin concrete overlays on Portland Cement Concrete Pavement (PCCP).

    Science.gov (United States)

    2003-11-01

    The objective of the research was to compare the performance of fiber reinforced and plain PCC concrete overlay when used as a thin non-dowelled overlay on top of a rubblized, distressed concrete pavement. The experiment was conducted at the Accelera...

  13. Bond Behavior of Wet-Bonded Carbon Fiber-Reinforced Polymer-Concrete Interface Subjected to Moisture

    OpenAIRE

    Yiyan Lu; Tao Zhu; Shan Li; Zhenzhen Liu

    2018-01-01

    The use of carbon fiber-reinforced polymer (CFRP) composite materials to strengthen concrete structures has become popular in coastal regions with high humidity levels. However, many concrete structures in these places remain wet as a result of tides and wave-splashing, so they cannot be completely dried before repair. Therefore, it is vital to investigate the effects of moisture on the initial and long-term bond behavior between CFRP and wet concrete. This research assesses the effects of mo...

  14. Fiber-reinforced concretes with a high fiber volume fraction — a look in future. Can a design determine the fiber amount in concrete in real time in every part of a structure in production?

    Science.gov (United States)

    Tepfers, R.

    2010-09-01

    In near future, when the control of the load-bearing capacity of fiber-only-reinforced concrete members will be safely guaranteed, the deletion of the ordinary continuous steel reinforcing bars might be possible. For the time being, it is difficult to change the fiber amount during the casting with today's techniques. Therefore, the fiber concentration has to be determined by the maximum tensile stress in concrete structural members, resulting in an unnecessary fiber addition in compressed zones. However, if the right amount of fibers could be regulated and added to concrete in real time at the pump outlet, a future vision could be to design and produce a structure by using FEM-controlled equipment. The signals from calculation results could be transmitted to a concrete casting system for addition of a necessary amount of fibers to take care of the actual tensile stresses in the right position in the structure. The casting location could be determined by using a GPS for positioning the pump outlet for targeting the casting location horizontally and a laser vertically. The addition of fibers to concrete at the outlet of a concrete pump and proportioning them there according to the actual needs of the stress situation in a structure, given by a FEM analysis in real time, is a future challenge. The FEM analysis has to be based on material properties of fiber-only-reinforced concrete. This means that the resistance and stiffness of different-strength concrete members with a varying fiber content has to be determined in tests and conveyed to the FEM analysis. The FEM analysis has to be completed before the casting and controlled. Then it can be used as the base for adding a correct amount of fibers to concrete in every part of the structure. Thus, a system for introducing a correct amount of fibers into concrete has to be developed. The fibers have to be added at the outlet of concrete pump. Maybe a system to shotcrete concrete with electronically controlled fiber

  15. Highly Conductive Carbon Fiber Reinforced Concrete for Icing Prevention and Curing

    Directory of Open Access Journals (Sweden)

    Oscar Galao

    2016-04-01

    Full Text Available This paper aims to study the feasibility of highly conductive carbon fiber reinforced concrete (CFRC as a self-heating material for ice formation prevention and curing in pavements. Tests were carried out in lab ambient conditions at different fixed voltages and then introduced in a freezer at −15 °C. The specimens inside the freezer were exposed to different fixed voltages when reaching +5 °C for prevention of icing and when reaching the temperature inside the freezer, i.e., −15 °C, for curing of icing. Results show that this concrete could act as a heating element in pavements with risk of ice formation, consuming a reasonable amount of energy for both anti-icing (prevention and deicing (curing, which could turn into an environmentally friendly and cost-effective deicing method.

  16. Simulation of crack propagation in fiber-reinforced concrete by fracture mechanics

    International Nuclear Information System (INIS)

    Zhang Jun; Li, Victor C.

    2004-01-01

    Mode I crack propagation in fiber-reinforced concrete (FRC) is simulated by a fracture mechanics approach. A superposition method is applied to calculate the crack tip stress intensity factor. The model relies on the fracture toughness of hardened cement paste (K IC ) and the crack bridging law, so-called stress-crack width (σ-δ) relationship of the material, as the fundamental material parameters for model input. As two examples, experimental data from steel FRC beams under three-point bending load are analyzed with the present fracture mechanics model. A good agreement has been found between model predictions and experimental results in terms of flexural stress-crack mouth opening displacement (CMOD) diagrams. These analyses and comparisons confirm that the structural performance of concrete and FRC elements, such as beams in bending, can be predicted by the simple fracture mechanics model as long as the related material properties, K IC and (σ-δ) relationship, are known

  17. Highly Conductive Carbon Fiber Reinforced Concrete for Icing Prevention and Curing.

    Science.gov (United States)

    Galao, Oscar; Bañón, Luis; Baeza, Francisco Javier; Carmona, Jesús; Garcés, Pedro

    2016-04-12

    This paper aims to study the feasibility of highly conductive carbon fiber reinforced concrete (CFRC) as a self-heating material for ice formation prevention and curing in pavements. Tests were carried out in lab ambient conditions at different fixed voltages and then introduced in a freezer at -15 °C. The specimens inside the freezer were exposed to different fixed voltages when reaching +5 °C for prevention of icing and when reaching the temperature inside the freezer, i.e. , -15 °C, for curing of icing. Results show that this concrete could act as a heating element in pavements with risk of ice formation, consuming a reasonable amount of energy for both anti-icing (prevention) and deicing (curing), which could turn into an environmentally friendly and cost-effective deicing method.

  18. Cyclic behavior, development, and characteristics of a ductile hybrid fiber-reinforced polymer (DHFRP) for reinforced concrete members

    Science.gov (United States)

    Hampton, Francis Patrick

    Reinforced concrete (R/C) structures especially pavements and bridge decks that constitute vital elements of the infrastructure of all industrialized societies are deteriorating prematurely. Structural repair and upgrading of these structural elements have become a more economical option for constructed facilities especially in the United States and Canada. One method of retrofitting concrete structures is the use of advanced materials. Fiber reinforced polymer (FRP) composite materials typically are in the form of fabric sheets or reinforcing bars. While the strength and stiffness of the FRP is high, composites are inherently brittle, with limited or no ductility. Conventional FRP systems cannot currently meet ductility demand, and therefore, may fail in a catastrophic failure mode. The primary goal of this research was to develop an optimized prototype 10-mm diameter DHFRP bar. The behavior of the bar under full load reversals to failure was investigated. However, this bar first needed to be designed and manufactured in the Fibrous Materials Research at Drexel University. Material properties were determined through testing to categorize the strength properties of the DHFRP. Similitude was used to demonstrate the scaling of properties from the original model bars. The four most important properties of the DHFRP bars are sufficient strength and stiffness, significant ductility for plasticity to develop in the R/C section, and sufficient bond strength for the R/C section to develop its full strength. Once these properties were determined the behavior of reinforced concrete members was investigated. This included the testing of prototype-size beams under monotonic loading and model and prototype beam-columns under reverse cyclic loading. These tests confirmed the large ductility exhibited by the DHFRP. Also the energy absorption capacity of the bar was demonstrated by the hysteretic behavior of the beam-columns. Displacement ductility factors in the range of 3

  19. Fatigue Behavior of Steel Fiber Reinforced High-Strength Concrete under Different Stress Levels

    Science.gov (United States)

    Zhang, Chong; Gao, Danying; Gu, Zhiqiang

    2017-12-01

    The investigation was conducted to study the fatigue behavior of steel fiber reinforced high-strength concrete (SFRHSC) beams. A series of 5 SFRHSC beams was conducted flexural fatigue tests at different stress level S of 0.5, 0.55, 0.6, 0.7 and 0.8 respectively. Static test was conducted to determine the ultimate static capacity prior to fatigue tests. Fatigue modes and S-N curves were analyzed. Besides, two fatige life prediction model were analyzed and compared. It was found that stress level S significantly influenced the fatigue life of SFRHSC beams and the fatigue behavior of SFRHSC beams was mainly determined by the tensile reinforcement.

  20. Shear strength of reinforced concrete beams strengthened by P.B.O. fiber mesh under loading

    Directory of Open Access Journals (Sweden)

    Blikharskyy Zinoviy

    2017-01-01

    Full Text Available This article presents experimental study of sheer strength of reinforced concrete beams without transverse steel reinforcement, which strengthened by composite materials. The feature of tests is that the beams’ strengthening is made under simultaneous action of loading. The research program involves a series of test beams with size 2100 × 200 × 100 mm and which contains control sample and three reinforced samples by reinforcing FRCM system. FRCM system consisting of two components: mineral mortar based on modified cement Ruredil X Mesh M750 and reinforcing P.B.O. fiber mesh Ruredil X Mesh Gold (Italy. The strength research of test samples was carried out with the shear distance to effective depth ratio a/d = 2. The strengthening loading levels were selected at 0.0, 0.3, 0.5 from shear strength of non strengthened control sample. As a result of experimental studies we found that during strengthening design the inclined cross section of beams we should take into account the existing level of loading. Using the strengthening system Ruredil X Mesh Gold the strengthening effect is reduced at 2.8 to 2.9 times while the existing level of loading increase from 0 to 50%.

  1. Bond-Slip Behavior of Basalt Fiber Reinforced Polymer Bar in Concrete Subjected to Simulated Marine Environment: Effects of BFRP Bar Size, Corrosion Age, and Concrete Strength

    OpenAIRE

    Yongmin Yang; Zhaoheng Li; Tongsheng Zhang; Jiangxiong Wei; Qijun Yu

    2017-01-01

    Basalt Fiber Reinforced Polymer (BFRP) bars have bright potential application in concrete structures subjected to marine environment due to their superior corrosion resistance. Available literatures mainly focused on the mechanical properties of BFRP concrete structures, while the bond-slip behavior of BFRP bars, which is a key factor influencing the safety and service life of ocean concrete structures, has not been clarified yet. In this paper, effects of BFRP bars size, corrosion age, and c...

  2. A study on the fracture strength of steel fiber reinforced concrete structures with initial cracks

    International Nuclear Information System (INIS)

    Chang, Dong Il; Chai, Won Kyu; Lee, Myeong Gu

    1991-01-01

    Fracture tests were carried out in order to investigate the fracture behavior of SFRC(Steel Fiber Reinforced Concrete) structures with initial cracks. Sixty three SFRC beams were used in the tests. And the fracture mode, and relations between loading and mid-span deflection of the beams were observed. On the base of test results, fracture behavior of SFRC beams resulted from steel fiber content and initial crack length to beam depth ratio were found out, and the stress intensity factors, the modulus of rupture and the fracture energy of SFRC beams may then be calculated. According to the results of regression analysis, prediction formulas for the modulus of rupture and the fracture energy of SFRC beams are also suggested. (Author)

  3. Dynamic Fracture Behavior of Steel Fiber Reinforced Self-Compacting Concretes (SFRSCCs

    Directory of Open Access Journals (Sweden)

    Xiaoxin Zhang

    2017-11-01

    Full Text Available Three-point bending tests on notched beams of three types of steel fiber-reinforced self-compacting concrete (SFRSCC have been performed by using both a servo-hydraulic machine and a drop-weight impact instrument. The lo ading rates had a range of six orders of magnitude from 2.20 × 10−3 mm/s (quasi-static to 2.66 × 103 mm/s. These SFRSCCs had the same matrix, but various types of steel fiber (straight and hooked-end and contents (volume ratios, 0.51%, 0.77% and 1.23%, respectively. The results demonstrate that the fracture energy and the flexural strength increase as the loading rate increases. Moreover, such tendency is relatively moderate at low rates. However, at high rates it is accentuated. For the 0.51% fiber content, the dynamic increase factors of the flexural strength and the fracture energy are approximately 6 and 3, while for the 1.23% fiber content, they are around 4 and 2, respectively. Thus, the higher the fiber content the less rate sensitivity there is.

  4. EFFECT OF ELEVATED TEMPERATURE ON COMPRESSIVE STRENGTH OF FIBER REINFORCED CONCRETE

    OpenAIRE

    Prashant shinkar*, Prof. Deepak kakade, Dr.A.P.Wadekar

    2017-01-01

    This paper deals with the mechanical properties of concrete with steel fibers subjected to temperatures up to 500°C. Now a day concrete are being used extensively in the construction that might be subjected to elevated temperatures. The behavior of concrete structures at elevated temperatures is of significant importance in predicting the safety of structures in response to certain accidents or particular service conditions. Concrete mixes of M 50 have been designed along with steel fibers fr...

  5. Strength and deformability of compressed concrete elements with various types of non-metallic fiber and rods reinforcement under static loading

    Science.gov (United States)

    Nevskii, A. V.; Baldin, I. V.; Kudyakov, K. L.

    2015-01-01

    Adoption of modern building materials based on non-metallic fibers and their application in concrete structures represent one of the important issues in construction industry. This paper presents results of investigation of several types of raw materials selected: basalt fiber, carbon fiber and composite fiber rods based on glass and carbon. Preliminary testing has shown the possibility of raw materials to be effectively used in compressed concrete elements. Experimental program to define strength and deformability of compressed concrete elements with non-metallic fiber reinforcement and rod composite reinforcement included design, manufacture and testing of several types of concrete samples with different types of fiber and longitudinal rod reinforcement. The samples were tested under compressive static load. The results demonstrated that fiber reinforcement of concrete allows increasing carrying capacity of compressed concrete elements and reducing their deformability. Using composite longitudinal reinforcement instead of steel longitudinal reinforcement in compressed concrete elements insignificantly influences bearing capacity. Combined use of composite rod reinforcement and fiber reinforcement in compressed concrete elements enables to achieve maximum strength and minimum deformability.

  6. Study on Energy Absorption Capacity of Steel-Polyester Hybrid Fiber Reinforced Concrete Under Uni-axial Compression

    Science.gov (United States)

    Chella Gifta, C.; Prabavathy, S.

    2018-05-01

    This work presents the energy absorption capacity of hybrid fiber reinforced concrete made with hooked end steel fibers (0.5 and 0.75%) and straight polyester fibers (0.5, 0.8, 1.0 and 2.0%). Compressive toughness (energy absorption capacity) under uni-axial compression was evaluated on 100 × 200 mm size cylindrical specimens with varying steel and polyester fiber content. Efficiency of the hybrid fiber reinforcement is studied with respect to fiber type, size and volume fractions in this investigation. The vertical displacement under uni-axial compression was measured under the applied loads and the load-deformation curves were plotted. From these curves the toughness values were calculated and the results were compared with steel and polyester as individual fibers. The hybridization of 0.5% steel + 0.5% polyester performed well in post peak region due to the addition of polyester fibers with steel fibers and the energy absorption value was 23% greater than 0.5% steel FRC. Peak stress values were also higher in hybrid series than single fiber and based on the results it is concluded that hybrid fiber reinforcement improves the toughness characteristics of concrete without affecting workability.

  7. High Strength Concrete Columns under Axial Compression Load: Hybrid Confinement Efficiency of High Strength Transverse Reinforcement and Steel Fibers

    Science.gov (United States)

    Perceka, Wisena; Liao, Wen-Cheng; Wang, Yo-de

    2016-01-01

    Addition of steel fibers to high strength concrete (HSC) improves its post-peak behavior and energy absorbing capability, which can be described well in term of toughness. This paper attempts to obtain both analytically and experimentally the efficiency of steel fibers in HSC columns with hybrid confinement of transverse reinforcement and steel fibers. Toughness ratio (TR) to quantify the confinement efficiency of HSC columns with hybrid confinement is proposed through a regression analysis by involving sixty-nine TRs of HSC without steel fibers and twenty-seven TRs of HSC with hybrid of transverse reinforcement and steel fibers. The proposed TR equation was further verified by compression tests of seventeen HSC columns conducted in this study, where twelve specimens were reinforced by high strength rebars in longitudinal and transverse directions. The results show that the efficiency of steel fibers in concrete depends on transverse reinforcement spacing, where the steel fibers are more effective if the spacing transverse reinforcement becomes larger in the range of 0.25–1 effective depth of the section column. Furthermore, the axial load–strain curves were developed by employing finite element software (OpenSees) for simulating the response of the structural system. Comparisons between numerical and experimental axial load–strain curves were carried out. PMID:28773391

  8. Effect of Using Metakaolin on Chloride Ion Penetration in High Performance Steel Fiber Reinforced Concrete

    Directory of Open Access Journals (Sweden)

    Adnan Mohammed Shihab

    2016-03-01

    Full Text Available This paper attempts to reduce the penetrability of high performance steel fiber reinforced concrete to chloride ions originating from external sources, by using High Reactivity Metakaolin (HRM as a highly active pozzolanic material, in order to prolong the time to initiation of the steel fibers corrosion and to minimize concrete damage that may occur due to the exposure to chloride ion penetration. According to pozzolanic activity index (P.A.I., 8% content of HRM was used as a partial replacement by weight of cement with 2% steel fibers by volume of concrete. During the exposure period of 300 days in 4.5% of NaCl solution, the total and free chloride contents (Cltotal, Clfree with the chloride profiles at the ages of 28 and 300 days were investigated. Also the rapid chloride penetrability test (RCPT, compressive and flexural strengths tests were conducted at the ages of 28, 90, 180 and 300 days. Results showed that the incorporation of 8% HRM caused a reduction in the (Clfree/Cltota ratio, the chloride penetration depth and the electrical conductivity with percentages of 21%, 40% and 43% respectively after 300 days exposure to chloride solution in comparing with the mix of 0% HRM. Results also indicated that the losses in compressive and flexural strengths after exposure of 300 days to chloride solution for the mix incorporating 8% HRM were by 5% and 5.8% respectively while they reached 9.5% and 11% respectively for the mix without HRM in relation to the correspondent test specimens cured in tap water.

  9. Feasibility of Steel Fiber-Reinforced Rubberized Concrete in Cold Regions for High Volume Intersections

    Science.gov (United States)

    Abou Eid, Mahear A.

    There are many challenges faced with the use of Portland Cement Concrete (PCC) in cold regions, but with the inclusion of new technologies such as steel fibers and recycled tire crumb rubber efficient construction may be possible. Research was conducted on a modified concrete material that included both steel fibers and crumb rubber. The composite material was called Steel Fiber-Reinforced Rubberized Concrete (SFRRC). The objective of this investigation was to provide evidence showing that SFRRC can reduce tire rutting compared to asphaltic pavement. In addition, the research showed that the SFRRC could withstand freeze-thaw cycles and increase service life of roadways. Several tests were performed to determine the characteristics of the material. Freeze-thaw testing was performed to determine compressive strength loss and visual deterioration of the material. Wheel tracker rut testing was performed both with the standard steel wheel and with a modified studded rubber tire to determine plastic deformation and rut resistance. An experimental test slab was cast in place on a public approach to observe the construction procedures, the effects of studded tire wear and the frost actions in cold region conditions. Based on freeze-thaw and wheel tracker test results and observations of the experimental test slab, the SFRRC material shows viability in cold regions for resisting freeze-thaw actions. The freeze-thaw testing resulted in increased compressive strength after 300 freeze-thaw cycles and very low deterioration of material compared to standard PCC. The wheel tracker testing resulted in very low plastic deformation and minor material rutting with use of the studded rubber tire. The test slab showed very minor surface wear, no freeze-thaw cracking and no rutting after one winter of use. It is recommended that further testing of the material be conducted by means of a large-scale trial section. This would provide information with respect to cost analysis and

  10. Man-made vitreous fiber produced from incinerator ash using the thermal plasma technique and application as reinforcement in concrete.

    Science.gov (United States)

    Yang, Sheng-Fu; Wang, To-Mai; Lee, Wen-Cheng; Sun, Kin-Seng; Tzeng, Chin-Ching

    2010-10-15

    This study proposes using thermal plasma technology to treat municipal solid waste incinerator ashes. A feasible fiberization method was developed and applied to produce man-made vitreous fiber (MMVF) from plasma vitrified slag. MMVF were obtained through directly blending the oxide melt stream with high velocity compressed air. The basic technological characteristics of MMVF, including morphology, diameter, shot content, length and chemical resistance, are described in this work. Laboratory experiments were conducted on the fiber-reinforced concrete. The effects of fibrous content on compressive strength and flexural strength are presented. The experimental results showed the proper additive of MMVF in concrete can enhance its mechanical properties. MMVF products produced from incinerator ashes treated with the thermal plasma technique have great potential for reinforcement in concrete. 2010 Elsevier B.V. All rights reserved.

  11. Preliminary investigation on the suitablity of using fiber reinforced concrete in the construction of a hazardous waste disposal vessel

    International Nuclear Information System (INIS)

    Ramey, M.R.; Daie-e, G.

    1988-07-01

    There are certain hazardous wastes that must be contained in an extremely secure vessel for transportation and disposal. The vessel, among other things, must be able to withstand relatively large impacts without rupturing. Such containment vessels therefore must be able to absorb substantial amounts of energy during an impact and still perform their function. One of the impacts that the vessel must withstand is a 30-foot fall onto an unyielding surface. For some disposal scenarios it is proposed to encase the waste in a steel enclosure which is to be surrounded by a thick layer of concrete which, in turn, is encased by a relatively thin steel shell. Tests on concrete in compression and flexure, including static, dynamic and impact tests, have shown that low modulus concretes tend to behave in a less brittle manner than higher modulus concretes. Tests also show that fiber reinforced concretes have significantly greater ductility, crack propagation resistance and toughness than conventional concretes. Since it is known that concrete is a reasonably brittle material, it is necessary to do impact tests on sample containment structures consisting of thin-walled metal containers having closed ends which are filled with concrete, grout, or fiber reinforced concrete. This report presents the results of simple tests aimed at observing the behavior of sample containment structures subjected to impacts due to a fall from 30 feet. 8 figs., 4 tabs

  12. Wedge Splitting Test and Inverse Analysis on Fracture Behaviour of Fiber Reinforced and Regular High Performance Concretes

    DEFF Research Database (Denmark)

    Hodicky, Kamil; Hulin, Thomas; Schmidt, Jacob Wittrup

    2014-01-01

    The fracture behaviour of three fiber reinforced and regular HPC (high performance concretes) is presented in this paper. Two mixes are based on optimization of HPC whereas the third mix was a commercial mix developed by CONTEC ApS (Denmark). The wedge splitting test setup with 48 cubical specimens...

  13. Reinforcing method for reinforced concrete structures by using carbon fibers; Tanso sen`i ni yoru tekkin concrete kozobutsu no hokyo koho

    Energy Technology Data Exchange (ETDEWEB)

    Tanaka, T.; Taniki, K. [Mitsubishi Kasei Corp., Tokyo (Japan); Kojima, N.; Kimura, K.; Katsumata, H. [Obayashi Corp., Osaka (Japan)

    1994-08-15

    This paper describes the development of a reinforcing method for reinforced concrete (hereinafter RC) structures by using carbon fibers (hereinafter CF). This developed method attaches a light-weight CFUD prepreg material for reinforcement by laterally winding CF strand impregnated with epoxy resin, which is hardened under normal temperature. This method is economical because no skills and special tools are required. An RC pillar with circular cross section and a hollow RC test body assuming a chimney were used as models. The paper details the experiment. This method has been used in several ten existing RC stacks with effective reinforcing result. Resistance strengths of CF strands and UD prepregs were verified in an accelerated exposure test performed according to JIS A 1415, standard for plastic building materials. The effects of the anti-seismic reinforcement have resulted in improvement in shear resistance force in RC pillars by means of CF winding method, improvement in bending stress in RC structures as a result of CF attaching method, and effectiveness in repair of existing RC stacks. Sufficient exposure resistance has also been proved. A bending test by means of two-point concentrated loading has been performed as a weighted test. 4 figs.

  14. Cracking and debonding of a thin fiber reinforced concrete overlay : research brief.

    Science.gov (United States)

    2017-03-01

    Experimental tests found that the tensile interfacial energy : increased with fiber-reinforcement. Also bond tests indicated : that interfacial fracture occurred through the overlay mixture and : was proportional to the number of fibers which interse...

  15. Crack growth and fracture in fiber reinforced concrete beams under static and fatigue loading

    International Nuclear Information System (INIS)

    Jeanfreau, J.; Arockiasamy, M.; Reddy, D.V.

    1987-01-01

    The paper presents the results of a two-phase experimental investigation on the fatigue and fracture of six different types of concrete: plain, 0.5%, 1.0%, 1.5%, and 2.0% steel fibers and 0.5% kevlar fibers. In the first phase the J-integral was evaluated for different types of concrete from load-displacement curves. The value shows a marked increase in the energy required to fracture concrete when fibers are added. The values did not vary substantially for different notch depths. In the second phase concrete beams were subjected to fatigue by applying a pure bending on the notch. The effect of fiber addition was examined with emphasis on the crack propagation and the increase in the fatigue strength. The crack pattern was mainly influenced by the presence, amount, and the distribution of the fibers in the concrete. (orig./HP)

  16. Using ESEM to analyze the microscopic property of basalt fiber reinforced asphalt concrete

    Directory of Open Access Journals (Sweden)

    Chunmei Gao

    2018-07-01

    Full Text Available The basalt fiber staggered distribution in the asphalt concrete matrix and the bonding situation between asphalt are analyzed by images collected using field emission environmental scanning electron microscope (ESEM test equipment. The results show that bonding of the fiber and the asphalt binder is very good and there is a strong binding force of chemical bonding connections between the two; the lipophilicity of basalt fiber is very good, the wrapped cover ability of asphalt for fiber is very strong; basalt fiber forms the local space network structure in the asphalt concrete matrix, effectively overcome the relative slip between the particles, connect the damaged parts into a whole; basalt fiber across internal micropores, and the internal defects in material can be remedied. At the same time, crack resistance mechanism of the fiber to internal micro cracks is qualitatively explained according to the magnitude of the stress intensity factor Kf. Keywords: Road engineering, Asphalt concrete, Basalt fiber, Microscopic analysis

  17. Electrical and Self-Sensing Properties of Ultra-High-Performance Fiber-Reinforced Concrete with Carbon Nanotubes

    OpenAIRE

    You, Ilhwan; Yoo, Doo-Yeol; Kim, Soonho; Kim, Min-Jae; Zi, Goangseup

    2017-01-01

    This study examined the electrical and self-sensing capacities of ultra-high-performance fiber-reinforced concrete (UHPFRC) with and without carbon nanotubes (CNTs). For this, the effects of steel fiber content, orientation, and pore water content on the electrical and piezoresistive properties of UHPFRC without CNTs were first evaluated. Then, the effect of CNT content on the self-sensing capacities of UHPFRC under compression and flexure was investigated. Test results indicated that higher ...

  18. STUDY ON ANTI-CRACKING PERFORMANCE EVALUATION METHOD OF STEEL FIBER REINFORCED CERAMSITE CONCRETE (SFRCC BASED ON PARTLY-RESTRAINED SHRINKAGE RING

    Directory of Open Access Journals (Sweden)

    Zhang Yi-fan

    2017-12-01

    Full Text Available In the study of crack resistance of steel fiber reinforced concrete in steel fiber on concrete deformation ability and prevent the Angle of the micro cracks, and the lack of overall evaluation on the performance of steel fiber reinforced concrete crack. By tinder barrier-free restrain some experimental research on steel fiber ceramsite concrete shrinkage ring crack resistance, and use the test results within the definition of steel ring strain from expansion to contraction cut-off age for early and late ages, and the ages of the cut-off point for the early and the late steel fiber ceramsite concrete anti-cracking performance evaluation. The results show that the anti-cracking properties of the steel fiber ceramic concrete are improved with the increase of steel fiber content.

  19. Strain measurement in a concrete beam by use of the Brillouin-scattering-based distributed fiber sensor with single-mode fibers embedded in glass fiber reinforced polymer rods and bonded to steel reinforcing bars.

    Science.gov (United States)

    Zeng, Xiaodong; Bao, Xiaoyi; Chhoa, Chia Yee; Bremner, Theodore W; Brown, Anthony W; DeMerchant, Michael D; Ferrier, Graham; Kalamkarov, Alexander L; Georgiades, Anastasis V

    2002-08-20

    The strain measurement of a 1.65-m reinforced concrete beam by use of a distributed fiber strain sensor with a 50-cm spatial resolution and 5-cm readout resolution is reported. The strain-measurement accuracy is +/-15 microepsilon (microm/m) according to the system calibration in the laboratory environment with non-uniform-distributed strain and +/-5 microepsilon with uniform strain distribution. The strain distribution has been measured for one-point and two-point loading patterns for optical fibers embedded in pultruded glass fiber reinforced polymer (GFRP) rods and those bonded to steel reinforcing bars. In the one-point loading case, the strain deviations are +/-7 and +/-15 microepsilon for fibers embedded in the GFRP rods and fibers bonded to steel reinforcing bars, respectively, whereas the strain deviation is +/-20 microepsilon for the two-point loading case.

  20. Comportamiento al corte de hormigones reforzado con fibras de acero Shear behavior of steel fiber reinforced concretes

    Directory of Open Access Journals (Sweden)

    Sergio Carmona Malatesta

    2009-01-01

    Full Text Available En este artículo se presentan los resultados de un estudio experimental a cerca de la influencia de la incorporación de fibras de acero en el comportamiento del hormigón frente a esfuerzos de corte, medidos utilizando el ensayo JSCE - SF6, modificado. Usando los resultados de los ensayos realizados se evalúa La capacidad de disipación de energía del hormigón durante la rotura o tenacidad del hormigón reforzado con fibras en función del contenido y tipo de Fibra utilizada. Con los resultados obtenidos, se puede concluir que la incorporación de fibras como refuerzo al esfuerzo de corte aumenta la ductilidad del hormigón, permitiendo mayores deformaciones que un hormigón convencional. Se observa que la capacidad de absorber energía de los hormigones, cuantificada a través de la tenacidad absoluta, se incrementa más de tres veces cuando se incorporar fibras y no se tienen roturas frágiles. Por lo tanto, la incorporación de fibras como refuerzo es una buena solución para mejorar la respuesta del hormigón ante solicitaciones de corte. Por otra parte, se demuestra que el ensayo de corte propuesto por la recomendación japonesa JSCE-SF6, levemente modificada, entrega resultados coherentes y reproducibles, permitiendo cuantificar diferentes propiedades del hormigón reforzado con fibras sometido a solicitaciones de corte.This paper presents the results of an experimental research on influence of steel fibers on shear behavior of concrete, using modified JSCE - SF6 test. The tests results are used to evaluate the energy dissipation capacity of concrete during failure or fiber reinforced concrete toughness, in terms of amount and type of fibers. With the results, it can be concluded that the addition of fibers as shear reinforcement influence significantly the ductility of concrete. The results show that the absorption energy capacity of concrete, measured by mean of absolute toughness, increase 3 times when concrete is reinforced with

  1. Analytical Study on the Flexural Behavior of Reinforced Concrete Beams Strengthened with Prestressed Carbon Fiber-Reinforced Polymer Plates

    International Nuclear Information System (INIS)

    Woo, S. K.; Song, Y. C.; Lee, H. P.; Byun, K. J.

    2007-01-01

    This study aims to predict the behavior of concrete structures strengthened with prestressed CFRP plates with more reliability, and then develop a nonlinear structural analysis model that can be applied more effectively in reinforcement designs, after examining the behavior characteristics of CFRP plates and epoxy, and the behavior of the boundary layer between CFRP plates and concrete

  2. Finite element analysis-based study of fiber Bragg grating sensor for cracks detection in reinforced concrete

    Science.gov (United States)

    Wang, Lili; Xin, Xiangjun; Song, Jun; Wang, Honggang; Sai, Yaozhang

    2018-02-01

    Fiber Bragg sensor is applied for detecting and monitoring the cracks that occur in the reinforced concrete. We use the three-dimensional finite element model to provide the three-axial stresses along the fiber Bragg sensor and then converted the stresses as a wavelength deformation of fiber Bragg grating (FBG) reflected spectrum. For the crack detection, an FBG sensor with 10-mm length is embedded in the reinforced concrete, and its reflection spectrum is measured after loading is applied to the concrete slab. As a result, the main peak wavelength and the ratio of the peak reflectivity to the maximal side-mode reflectivity of the optic-fiber grating represent the fracture severity. The fact that the sharp decreasing of the ratio of the peak reflectivity to the maximal side-mode reflectivity represents the early crack is confirmed by the theoretical calculation. The method can be used to detect the cracks in the reinforced concrete and give safety evaluation of large-scale infrastructure.

  3. Earthquake Resilient Bridge Columns Utilizing Damage Resistant Hybrid Fiber Reinforced Concrete

    OpenAIRE

    Trono, William Dean

    2014-01-01

    Modern reinforced concrete bridges are designed to avoid collapse and to prevent loss of life during earthquakes. To meet these objectives, bridge columns are typically detailed to form ductile plastic hinges when large displacements occur. California seismic design criteria acknowledges that damage such as concrete cover spalling and reinforcing bar yielding may occur in columns during a design-level earthquake. The seismic resilience of bridge columns can be improved through the use of a da...

  4. Behavior of hybrid high-strength fiber reinforced concrete slab-column connections under the effect of high tempera

    Directory of Open Access Journals (Sweden)

    Reham H. Ahmed

    2016-04-01

    Full Text Available Concrete can be modified to perform in a more ductile form by the addition of randomly distributed discrete fibers in the concrete matrix. The combined effect of the addition of two types of fibers (steel fiber and polypropylene fiber with different percentages to concrete matrix, which is called hybrid effect is currently under investigation worldwide. The current research work presents the conducted experimental program to observe the behavior of hybrid high strength reinforced concrete slab-column connections under the effect of high temperature. For this purpose, ten slab-column connections were casted and tested. The experimental program was designed to investigate the effect of different variables such as concrete mixture, column location and temperature fighting system. All specimens were exposed to a temperature of 500 °C for duration of two hours. To observe the effect of each variable, specimens were divided into four groups according to the studied parameters. The test results revealed that using hybrid high strength concrete HFHSC produced more strength in punching failure compared with high strength concrete HSC when exposed to elevated temperature. Fighting by air had higher initial crack load compared with that for without fighting and fighting by water. On the other hand, fighting by water decreased the ultimate load.

  5. Finite-Element Investigation of the Structural Behavior of Basalt Fiber Reinforced Polymer (BFRP- Reinforced Self-Compacting Concrete (SCC Decks Slabs in Thompson Bridge

    Directory of Open Access Journals (Sweden)

    Lingzhu Zhou

    2018-06-01

    Full Text Available The need for a sustainable development and improved whole life performance of concrete infrastructure has led to the requirement of more durable and sustainable concrete bridges alongside accurate predictive analysis tools. Using the combination of Self-Compacting Concrete (SCC with industrial by-products and fiber-reinforced polymer (FRP, reinforcement is anticipated to address the concerns of high carbon footprint and corrosion in traditional steel-reinforced concrete structures. This paper presents a numerical investigation of the structural behavior of basalt fiber-reinforced polymer (BFRP-reinforced SCC deck slabs in a real bridge, named Thompson Bridge, constructed in Northern Ireland, U.K. A non-linear finite element (FE model is proposed by using ABAQUS 6.10 in this study, which is aimed at extending the previous investigation of the field test in Thompson Bridge. The results of this field test were used to validate the accuracy of the proposed finite element model. The results showed good agreement between the test results and the numerical results; more importantly, the compressive membrane action (CMA inside the slabs could be well demonstrated by this FE model. Subsequently, a series of parametric studies was conducted to investigate the influence of different parameters on the structural performance of the deck slabs in Thompson Bridge. The results of the analyses are discussed, and conclusions on the behavior of the SCC deck slabs reinforced by BFRP bars are presented.

  6. PREDICTION OF MAXIMUM CREEP STRAIN OF HIGH PERFORMANCE STEEL FIBER REINFORCED CONCRETE

    Directory of Open Access Journals (Sweden)

    Mishina Alexandra Vasil'evna

    2012-12-01

    Full Text Available The strongest research potential is demonstrated by the areas of application of high performance steel fiber reinforced concrete (HPSFRC. The research of its rheological characteristics is very important for the purposes of understanding its behaviour. This article is an overview of an experimental study of UHSSFRC. The study was carried out in the form of lasting creep tests of HPSFRC prism specimen, loaded by stresses of varied intensity. The loading was performed at different ages: 7, 14, 28 and 90 days after concreting. The stress intensity was 0.3 and 0.6 Rb; it was identified on the basis of short-term crush tests of similar prism-shaped specimen, performed on the same day. As a result, values of ultimate creep strains and ultimate specific creep of HPSFRC were identified. The data was used to construct an experimental diagramme of the ultimate specific creep on the basis of the HPSFRC loading age if exposed to various stresses. The research has resulted in the identification of a theoretical relationship that may serve as the basis for the high-precision projection of the pattern of changes in the ultimate specific creep of HPSFRC, depending on the age of loading and the stress intensity.

  7. Mechanical Properties and Eco-Efficiency of Steel Fiber Reinforced Alkali-Activated Slag Concrete

    Directory of Open Access Journals (Sweden)

    Sun-Woo Kim

    2015-10-01

    Full Text Available Conventional concrete production that uses ordinary Portland cement (OPC as a binder seems unsustainable due to its high energy consumption, natural resource exhaustion and huge carbon dioxide (CO2 emissions. To transform the conventional process of concrete production to a more sustainable process, the replacement of high energy-consumptive PC with new binders such as fly ash and alkali-activated slag (AAS from available industrial by-products has been recognized as an alternative. This paper investigates the effect of curing conditions and steel fiber inclusion on the compressive and flexural performance of AAS concrete with a specified compressive strength of 40 MPa to evaluate the feasibility of AAS concrete as an alternative to normal concrete for CO2 emission reduction in the concrete industry. Their performances are compared with reference concrete produced using OPC. The eco-efficiency of AAS use for concrete production was also evaluated by binder intensity and CO2 intensity based on the test results and literature data. Test results show that it is possible to produce AAS concrete with compressive and flexural performances comparable to conventional concrete. Wet-curing and steel fiber inclusion improve the mechanical performance of AAS concrete. Also, the utilization of AAS as a sustainable binder can lead to significant CO2 emissions reduction and resources and energy conservation in the concrete industry.

  8. Mechanical Properties and Eco-Efficiency of Steel Fiber Reinforced Alkali-Activated Slag Concrete.

    Science.gov (United States)

    Kim, Sun-Woo; Jang, Seok-Joon; Kang, Dae-Hyun; Ahn, Kyung-Lim; Yun, Hyun-Do

    2015-10-30

    Conventional concrete production that uses ordinary Portland cement (OPC) as a binder seems unsustainable due to its high energy consumption, natural resource exhaustion and huge carbon dioxide (CO₂) emissions. To transform the conventional process of concrete production to a more sustainable process, the replacement of high energy-consumptive PC with new binders such as fly ash and alkali-activated slag (AAS) from available industrial by-products has been recognized as an alternative. This paper investigates the effect of curing conditions and steel fiber inclusion on the compressive and flexural performance of AAS concrete with a specified compressive strength of 40 MPa to evaluate the feasibility of AAS concrete as an alternative to normal concrete for CO₂ emission reduction in the concrete industry. Their performances are compared with reference concrete produced using OPC. The eco-efficiency of AAS use for concrete production was also evaluated by binder intensity and CO₂ intensity based on the test results and literature data. Test results show that it is possible to produce AAS concrete with compressive and flexural performances comparable to conventional concrete. Wet-curing and steel fiber inclusion improve the mechanical performance of AAS concrete. Also, the utilization of AAS as a sustainable binder can lead to significant CO₂ emissions reduction and resources and energy conservation in the concrete industry.

  9. The Importance of Superplastizer Dosage in the Mix Design of Lightweight Aggregate Concrete Reinforced With Plypropylene Fiber

    Directory of Open Access Journals (Sweden)

    Shafigh Payam

    2016-01-01

    Full Text Available This paper reports the results of a study conducted to investigate the effect of superplasticizer (SP dosage on the slump, density, compressive strength and splitting tensile strength under different curing conditions of a lightweight aggregate concrete reinforced with polypropylene (PP fiber. The lightweight aggregate used in this study was oil palm shell, which is an agricultural solid waste, originating from the palm oil industry. The results indicated that an increase in superplasticizer increased the workability, however, all the mechanical properties declined significantly. The reduction in the 28-day compressive and splitting tensile strengths was about 14. This study showed that although additional SP can improve the workability of the concrete, it may have a negative effect on the other properties of concrete. Therefore, the SP dosage in concrete mixtures containing PP fiber should be limited to a certain amount.

  10. Toughness increase of self compacting concrete reinforced with polypropylene short fibers

    Directory of Open Access Journals (Sweden)

    Melián, G.

    2010-12-01

    Full Text Available Increases in bending tests by the addition of low volume fractions of Polypropylene (PP Short Fibers PP. These toughness increases are similar to those attained by Fiber Reinforced Concrete (FRC referred elsewhere as Engineered Cementitious Composites (ECC, having some ductility and strain hardening in direct tensile and flexural tests. Concretes mixtures were manufactured using natural pozzolanic blended Portland cement, volcanic crushed coarse aggregates and fine sand from Sahara desert dunes (0-1 mm from Canary Islands quarries and sand reservoirs, respectively, besides ordinary siliceous sand (0-4 mm and fly ash from an anthracite-coal heat generator.

    Se presentan en este artículo hormigones autocompactables que, mediante la adición de pequeñas fracciones volumétricas de fibras cortas de polipropileno, consiguen incrementos importantes de tenacidad en su comportamiento mecánico a flexión. Estos aumentos de tenacidad son semejantes a los que presentan un grupo de hormigones reforzados con fibras, denominados ECC (Engineered Cementitious Composites, que muestran también alguna ductilidad y endurecimiento por deformación en ensayos de tracción directa y flexión. Los hormigones se dosificaron empleando cemento Pórtland con Puzolana natural, áridos volcánicos de machaqueo y arena fina procedente de dunas del desierto del Sáhara (0-1 mm, de canteras y depósitos de Las Palmas de Gran Canaria (Islas Canarias, respectivamente, además de arena silícea ordinaria (0-4 mm y cenizas volantes de una central térmica de combustible antracita.

  11. Implementation of Highly-Flowable Strain Hardening Fiber Reinforced Concrete in New RC Beam-Column Joints

    Directory of Open Access Journals (Sweden)

    Liao Wen-Cheng

    2018-01-01

    Full Text Available The purpose of New RC project was aimed to reduce the member sections and increase the available space of high rise buildings by using high strength concrete (f’c > 70 MPa and high strength rebars (fy > 685 MPa. Material consumptions and member section sizes can be further reduced owing to the upgrade of strength. However, the nature of brittleness of high strength may also cause early cover spalling and other ductility issues. Addition of steel fibers is an alternative as transverse reinforcement. Highly flowable strain hardening fiber reinforced concrete (HF-SHFRC has excellent workability in the fresh state and exhibits the strain-hardening and multiple cracking characteristics of high performance fiber reinforced cementitious composites (HPFRCC in their hardened state. The objective of this study is to investigate the feasibility of implementing HF-SHFRC in New RC building systems, particularly for beam-column joints as an alternative of transverse reinforcements. Four full-scale exterior beam-column joints, including two specimens with intensive transverse reinforcements and two specimens made of HF-SHFRC without any stirrup, are tested. Test results show that the HF-SHFRC specimens perform as well as specimens with intensive transverse reinforcements regarding failure mode, ductility, energy dissipation and crack width control. Integration of New RC building systems and HF-SHFRC can assuring construction qualities and further diminish labor work and give infrastructure longer service life, and eventually lower the life-cycle cost.

  12. Study on The Geopolymer Concrete Properties Reinforced with Hooked Steel Fiber

    Science.gov (United States)

    Abdullah, M. M. A. B.; Tahir, M. F. M.; Tajudin, M. A. F. M. A.; Ekaputri, J. J.; Bayuaji, R.; Khatim, N. A. M.

    2017-11-01

    In this research, Class F fly ash and a mixture of alkaline activators and different amount of hooked steel fiber were used for preparing geopolymer concrete. In order to analyses the effect of hooked steel fiber on the geopolymer concrete, the analysis such as chemical composition of fly ash, workability of fresh geopolymer, water absorption, density, compressive strength of hardened geopolymer concrete have been carried out. Mixtures were prepared with fly ash to alkaline liquid ratio of 2.0 with hooked steel fibers were added to the mix with different amounts which are 1%, 3%, 5% and 7% by the weight of the concrete. Experimental results showed that the compressive strength of geopolymer concrete increases as the hooked steel fibers increases. The optimum compressive strength obtained was up to 87.83 MPa on the 14th day. The density of geopolymer concrete are in the range between 2466 kg/m3 to 2501 kg/m3. In addition, the workability value of geopolymer without hooked steel fibers is 100 mm while the workability value of geopolymer with hooked steel fibers are between 60 mm to 30 mm.

  13. Development study of concrete reinforcement made of aramid fiber-reinforced plastic rods with high radiation resistance. 1. Epoxy resin compounds with a handling at room temperature impregnation

    International Nuclear Information System (INIS)

    Udagawa, Akira; Seguchi, Tadao; Moriya, Toshio; Matsubara, Sumiyuki; Hongou, Yoshihiko

    1999-03-01

    Aramid fiber-reinforced plastic (ArFRP) rods were developed in order to avoid from conduction current and/or magnetization of the metallic reinforcement using concrete constructions. For the polymer matrix, new epoxy resin compounds consist of tetraglycidyl diaminodiphenylmethane (30%), diglycidyl ether of bisphenol-A (60%), styrene oxide (10%) and aromatic diamine as a hardner were found to be the best formulation, and which were easily impregnated to the aramid fiber braiding yarn at room temperature. The ArFRP rods has a high radiation resistance, and the tensile strength was maintained to 98% (1.45 GPa) after irradiation dose of 100 MGy (absorbed energy MJ/kg), which is available for the reinforcement of concrete construction for the house of fusion reactor with super conducting magnets. (author)

  14. Seismic Retrofitting: Reinforced Concrete (RC shear wall versus Reinforcement of RC element by Carbon Fiber Reinforced Polymer (CFRP using PUSHOVER analysis

    Directory of Open Access Journals (Sweden)

    Yahya RIYAD

    2016-12-01

    Full Text Available Seismic retrofitting of constructions vulnerable to earthquakes is a current problem of great political and social relevance. During the last sixty years, moderate to severe earthquakes have occurred in Morocco (specifically in Agadir 1960 and Hoceima 2004. Such events have clearly shown the vulnerability of the building stock in particular and of the built environment in general. Hence, it is very much essential to retrofit the vulnerable building to cope up for the next damaging earthquake. In this paper, the focus will be on a comparative study between two techniques of seismic retrofitting, the first one is a reinforcement using carbon fiber reinforced polymer (CFRP applied to RC elements by bonding , and the second one is a reinforcement with a shear wall. For this study, we will use a non-linear static analysis -also known as Pushover analysis - on a reinforced concrete structure consisting of beams and columns, and composed from eight storey with a gross area of 240 m², designed conforming to the Moroccan Seismic code[1].

  15. Evaluation of ultra-high-performance-fiber reinforced concrete binder content using the response surface method

    International Nuclear Information System (INIS)

    Aldahdooh, M.A.A.; Muhamad Bunnori, N.; Megat Johari, M.A.

    2013-01-01

    Highlights: • We develop a practical method for adjusting the binder content of UHP-FRC. • We adjust the binder content of UHP-FRC mixtures using RSM. • Increasing the cement content does not contribute to enhance strength. • Increasing the content of cement will increase the flow of UHP-FRC mixtures. - Abstract: One of the major disadvantages in ultra-high-performance-fiber reinforced concrete (UHP-FRC) is its high ordinary Portland cement (OPC) content, which directly translates into an increase in OPC production. More OPC production results in increased emission of greenhouse gases, as well increased electrical energy consumption and concrete price. This study is aimed at adjusting the binder content (OPC and silica fume (SF) contents) of UHP-FRC using the response surface method. The present investigation shows that, for a given water/binder and superplasticizer/OPC, the compressive strength is independent of the binder content, whereas the flow depends on the binder content. Increasing the binder content does not enhance the strength compared with the required design strength because the capillary porosity increases with increasing OPC content; however, the workability increases. The final result is the production of a UHP-FRC with an OPC content of 720.49 kg/m 3 , an SF content of 214.25 kg/m 3 , a compressive strength of 181.41 MPa, a direct tensile strength of 12.49 MPa, a bending tensile strength of 30.31 MPa, and a flow of 167 mm

  16. Monitoring device for reinforced concrete

    International Nuclear Information System (INIS)

    Matsuzaki, Tetsuo; Saito, Koichi; Furukawa, Hideyasu.

    1994-01-01

    A reactor container made of reinforced concretes is monitored for the temperature at each of portions upon placing concretes under construction of a plant, upon pressure-proof test and during plant operation. That is, optical fibers are uniformly laid spirally throughout the inside of the concretes. Pulses are injected from one end of the optical fibers, and the temperature at a reflection point can be measured by measuring specific rays (Raman scattering rays) among lights reflected after a predetermined period of time. According to the present invention, measurement for an optional position within a range where one fiber cable is laid can be conducted. Accordingly, it is possible to conduct temperature control upon concrete placing and apply temperature compensation for the measurement for stresses of the concretes and the reinforcing steels upon container pressure-proof. Further, during plant operation, if the temperature of the concretes rises due to thermal conduction of the temperature in the container, integrity of the concretes can be ensured by a countermeasures such as air conditioning. (I.S.)

  17. Mesoscale Characterization of Fracture Properties of Steel Fiber-Reinforced Concrete Using a Lattice–Particle Model

    Directory of Open Access Journals (Sweden)

    Francisco Montero-Chacón

    2017-02-01

    Full Text Available This work presents a lattice–particle model for the analysis of steel fiber-reinforced concrete (SFRC. In this approach, fibers are explicitly modeled and connected to the concrete matrix lattice via interface elements. The interface behavior was calibrated by means of pullout tests and a range for the bond properties is proposed. The model was validated with analytical and experimental results under uniaxial tension and compression, demonstrating the ability of the model to correctly describe the effect of fiber volume fraction and distribution on fracture properties of SFRC. The lattice–particle model was integrated into a hierarchical homogenization-based scheme in which macroscopic material parameters are obtained from mesoscale simulations. Moreover, a representative volume element (RVE analysis was carried out and the results shows that such an RVE does exist in the post-peak regime and until localization takes place. Finally, the multiscale upscaling strategy was successfully validated with three-point bending tests.

  18. Mesoscale Characterization of Fracture Properties of Steel Fiber-Reinforced Concrete Using a Lattice-Particle Model.

    Science.gov (United States)

    Montero-Chacón, Francisco; Cifuentes, Héctor; Medina, Fernando

    2017-02-21

    This work presents a lattice-particle model for the analysis of steel fiber-reinforced concrete (SFRC). In this approach, fibers are explicitly modeled and connected to the concrete matrix lattice via interface elements. The interface behavior was calibrated by means of pullout tests and a range for the bond properties is proposed. The model was validated with analytical and experimental results under uniaxial tension and compression, demonstrating the ability of the model to correctly describe the effect of fiber volume fraction and distribution on fracture properties of SFRC. The lattice-particle model was integrated into a hierarchical homogenization-based scheme in which macroscopic material parameters are obtained from mesoscale simulations. Moreover, a representative volume element (RVE) analysis was carried out and the results shows that such an RVE does exist in the post-peak regime and until localization takes place. Finally, the multiscale upscaling strategy was successfully validated with three-point bending tests.

  19. Mesoscale Characterization of Fracture Properties of Steel Fiber-Reinforced Concrete Using a Lattice–Particle Model

    Science.gov (United States)

    Montero-Chacón, Francisco; Cifuentes, Héctor; Medina, Fernando

    2017-01-01

    This work presents a lattice–particle model for the analysis of steel fiber-reinforced concrete (SFRC). In this approach, fibers are explicitly modeled and connected to the concrete matrix lattice via interface elements. The interface behavior was calibrated by means of pullout tests and a range for the bond properties is proposed. The model was validated with analytical and experimental results under uniaxial tension and compression, demonstrating the ability of the model to correctly describe the effect of fiber volume fraction and distribution on fracture properties of SFRC. The lattice–particle model was integrated into a hierarchical homogenization-based scheme in which macroscopic material parameters are obtained from mesoscale simulations. Moreover, a representative volume element (RVE) analysis was carried out and the results shows that such an RVE does exist in the post-peak regime and until localization takes place. Finally, the multiscale upscaling strategy was successfully validated with three-point bending tests. PMID:28772568

  20. Hybrid fiber reinforced self-compacting concrete: fiber synergy at low ...

    African Journals Online (AJOL)

    Flexural toughness tests were performed and results were extensively analysed to identify synergy, if any, associated with various fiber combinations. Based on various analysis schemes, the paper identifies fiber combinations that demonstrate maximum synergy in terms of flexural toughness. Journal of Civil Engineering ...

  1. Restrained Shrinkage Cracking of Fiber-Reinforced High-Strength Concrete

    Directory of Open Access Journals (Sweden)

    Ashkan Saradar

    2018-02-01

    Full Text Available Concrete shrinkage and volume reduction happens due to the loss of moisture, which eventually results in cracks and more concrete deformation. In this study, the effect of polypropylene (PP, steel, glass, basalt, and polyolefin fibers on compressive and flexural strength, drying shrinkage, and cracking potential, using the ring test at early ages of high-strength concrete mixtures, was investigated. The restrained shrinkage test was performed on concrete ring specimens according to the ASTM C1581 standard. The crack width and age of restrained shrinkage cracking were the main parameters studied in this research. The results indicated that the addition of fiber increases the compressive strength by 16%, 20%, and 3% at the age of 3, 7, and 28 days, respectively, and increases the flexural toughness index up to 7.7 times. Steel and glass fibers had a better performance in flexural strength, but relatively poor action in the velocity reduction and cracking time of the restrained shrinkage. Additionally, cracks in all concrete ring specimens except for the polypropylene-containing mixture, was developed to a full depth crack. The mixture with polypropylene fiber indicated a reduction in crack width up to 62% and an increasing age cracking up to 84%.

  2. Semiempirical Methodology for Estimating the Service Life of Concrete Deck Panels Strengthened with Fiber-Reinforced Polymer

    Directory of Open Access Journals (Sweden)

    Eon-Kyoung Kim

    2014-01-01

    Full Text Available Deterioration of concrete bridge decks affects their durability, safety, and function. It is therefore necessary to conduct structural rehabilitation of damaged concrete decks by strengthening them with fiber-reinforced polymer. Of the recent studies on the strengthened structures, most have focused on static behavior; only a few studies have investigated fatigue behavior. Accurate analysis of fatigue in concrete deck performance requires a more realistic simulated moving load. This study developed a theoretical live-load model to reflect the effect of moving vehicle loads, based on a statistical approach to the measurement of real traffic loads over various time periods in Korea. It assessed the fatigue life and strengthening effect of bridge decks strengthened with either carbon fiber sheets or grid carbon fiber polymer plastic using probabilistic and reliability analyses. It used extrapolations and simulations to derive maximum load effects for time periods ranging from 1 day to 75 years. Limited fatigue tests were conducted and probabilistic and reliability analyses were carried out on the strengthened concrete bridge deck specimens to predict the extended fatigue life. Analysis results indicated that strengthened concrete decks provide sufficient resistance against increasing truck loads during the service life of a bridge.

  3. Studying of influence of fiber reinforcing at fine-grained concrete applying in transport construction

    Science.gov (United States)

    Begunov, Oleg; Alexandrova, Olga; Solovyov, Vadim

    2017-10-01

    We observed causes of using fiber in nowadays construction industry and its influence on a final product properties, where the fine-grained concrete basing of repairing dry construction mix was used as a base. However, in Russia we do not have such experience. If we’re talking about changes occurring in the fine-grained concrete all of its are known about it, either in concrete, but in dry-construction mixes changes may have another purpose. Advantages and disadvantages of using fiber were oblieved also in that article. The main subject of this research is the influence of fiber on a mechanical properties of fine-grained concrete. The most attention is paid to estimate the influence of a concrete’s properties by metal fibers: casting time (initial and final), workability and strength (tensile strength and compressive strength) in this article. The most popular different type of metal fiber compares for its length and width and the optimum quantity of metal component chooses, which will indicate the maximum possible affirmative result of its using. Dependences comparing properties of fine-grained properties with fiber’s type, measurements and quantity which show the evident result of researching are discussed.

  4. Behavior of reinforced concrete beams reinforced with GFRP bars

    Directory of Open Access Journals (Sweden)

    D. H. Tavares

    Full Text Available The use of fiber reinforced polymer (FRP bars is one of the alternatives presented in recent studies to prevent the drawbacks related to the steel reinforcement in specific reinforced concrete members. In this work, six reinforced concrete beams were submitted to four point bending tests. One beam was reinforced with CA-50 steel bars and five with glass fiber reinforced polymer (GFRP bars. The tests were carried out in the Department of Structural Engineering in São Carlos Engineering School, São Paulo University. The objective of the test program was to compare strength, reinforcement deformation, displacement, and some anchorage aspects between the GFRP-reinforced concrete beams and the steel-reinforced concrete beam. The results show that, even though four GFRP-reinforced concrete beams were designed with the same internal tension force as that with steel reinforcement, their capacity was lower than that of the steel-reinforced beam. The results also show that similar flexural capacity can be achieved for the steel- and for the GFRP-reinforced concrete beams by controlling the stiffness (reinforcement modulus of elasticity multiplied by the bar cross-sectional area - EA and the tension force of the GFRP bars.

  5. Modeling reinforced concrete durability.

    Science.gov (United States)

    2014-06-01

    This project developed a next-generation modeling approach for projecting the extent of : reinforced concrete corrosion-related damage, customized for new and existing Florida Department of : Transportation bridges and suitable for adapting to broade...

  6. Radiation shielding properties of high performance concrete reinforced with basalt fibers infused with natural and enriched boron

    Energy Technology Data Exchange (ETDEWEB)

    Zorla, Eyüp; Ipbüker, Cagatay [University of Tartu, Institute of Physics (Estonia); Biland, Alex [US Basalt Corp., Houston (United States); Kiisk, Madis [University of Tartu, Institute of Physics (Estonia); Kovaljov, Sergei [OÜ Basaltest, Tartu (Estonia); Tkaczyk, Alan H. [University of Tartu, Institute of Physics (Estonia); Gulik, Volodymyr, E-mail: volodymyr.gulik@gmail.com [Institute for Safety Problems of Nuclear Power Plants, Lysogirska 12, of. 201, 03028 Kyiv (Ukraine)

    2017-03-15

    Highlights: • Basalt fiber infused with natural and enriched boron in varying proportions. • Gamma-ray attenuation remains stable with addition of basalt-boron fiber. • Improvement in neutron shielding for nuclear facilities producing fast fission spectrum. • Basalt-boron fiber could decrease the shielding thickness in thermal spectrum reactors. - Abstract: The importance of radiation shielding is increasing in parallel with the expansion of the application areas of nuclear technologies. This study investigates the radiation shielding properties of two types of high strength concrete reinforced with basalt fibers infused with 12–20% boron oxide, containing varying fractions of natural and enriched boron. The gamma-ray shielding characteristics are analyzed with the help of the WinXCom, whereas the neutron shielding characteristics are modeled and computed by Monte Carlo Serpent code. For gamma-ray shielding, the attenuation coefficients of the studied samples do not display any significant variation due to the addition of basalt-boron fibers at any mixing proportion. For neutron shielding, the addition of basalt-boron fiber has negligible effects in the case of very fast neutrons (14 MeV), but it could considerably improve the neutron shielding of concrete for nuclear facilities producing a fast fission spectrum (e.g. with reactors as BN-800, FBTR) and thermal neutron spectrum (Light Water Reactors (LWR)). It was also found that basalt-boron fiber could decrease the thickness of radiation shielding material in thermal spectrum reactors.

  7. Radiation shielding properties of high performance concrete reinforced with basalt fibers infused with natural and enriched boron

    International Nuclear Information System (INIS)

    Zorla, Eyüp; Ipbüker, Cagatay; Biland, Alex; Kiisk, Madis; Kovaljov, Sergei; Tkaczyk, Alan H.; Gulik, Volodymyr

    2017-01-01

    Highlights: • Basalt fiber infused with natural and enriched boron in varying proportions. • Gamma-ray attenuation remains stable with addition of basalt-boron fiber. • Improvement in neutron shielding for nuclear facilities producing fast fission spectrum. • Basalt-boron fiber could decrease the shielding thickness in thermal spectrum reactors. - Abstract: The importance of radiation shielding is increasing in parallel with the expansion of the application areas of nuclear technologies. This study investigates the radiation shielding properties of two types of high strength concrete reinforced with basalt fibers infused with 12–20% boron oxide, containing varying fractions of natural and enriched boron. The gamma-ray shielding characteristics are analyzed with the help of the WinXCom, whereas the neutron shielding characteristics are modeled and computed by Monte Carlo Serpent code. For gamma-ray shielding, the attenuation coefficients of the studied samples do not display any significant variation due to the addition of basalt-boron fibers at any mixing proportion. For neutron shielding, the addition of basalt-boron fiber has negligible effects in the case of very fast neutrons (14 MeV), but it could considerably improve the neutron shielding of concrete for nuclear facilities producing a fast fission spectrum (e.g. with reactors as BN-800, FBTR) and thermal neutron spectrum (Light Water Reactors (LWR)). It was also found that basalt-boron fiber could decrease the thickness of radiation shielding material in thermal spectrum reactors.

  8. Constitutive Relations of Randomly Oriented Steel Fiber Reinforced Concrete under Multiaxial Compressive Loadings,

    Science.gov (United States)

    1981-12-01

    xe yz Tzy + ay* Tzx Txz + Oz y 1; ryxIL 335 Pa = atmospheric pressure (positive) in the same (5.46) units as the stresses (Compression Positiv e...straight * "Fibercon" fibers. Quantitative values of the strengths with percentage improvements over the same plain concrete mix properties are given

  9. Research on corrosion detection for steel reinforced concrete structures using the fiber optical white light interferometer sensing technique

    International Nuclear Information System (INIS)

    Zhao, Xuefeng; Cui, Yanjun; Kong, Xianglong; Wei, Heming; Zhang, Pinglei; Sun, Changsen

    2013-01-01

    In this paper, a novel kind of steel rebar corrosion monitoring technique for steel reinforced concrete structures is proposed, designed, and tested. The technique is based on the fiber optical white light interferometer (WLI) sensing technique. Firstly, a feasibility test was carried out using an equal-strength beam for comparison of strain sensing ability between the WLI and a fiber Bragg grating (FBG). The comparison results showed that the sensitivity of the WLI is sufficient for corrosion expansion strain monitoring. Then, two WLI corrosion sensors (WLI-CSs) were designed, fabricated, and embedded into concrete specimens to monitor expansion strain caused by steel rebar corrosion. Their performance was studied in an accelerated electrochemical corrosion test. Experimental results show that expansion strain along the fiber optical coil winding area can be detected and measured accurately by the proposed sensor. The advantages of the proposed monitoring technique allow for quantitative corrosion expansion monitoring to be executed in real time for reinforced concrete structures and with low cost. (paper)

  10. A new concept for design of fibered high strength reinforced concrete elements using ultimate limit state method

    International Nuclear Information System (INIS)

    Iskhakov, I.; Ribakov, Y.

    2013-01-01

    Highlights: • A new concept for design of two layer reinforced concrete beams is proposed. • Concrete class and section height of bending elements are calculated. • Good correlation between experimental and numerical results is obtained. - Abstract: Existing methods for design of reinforced concrete (RC) bending elements in the ultimate limit state are based on calculating the compressed zone depth of the section. At the same time, in isotropic materials the neutral axis of the bending section crosses its center of gravity (CG). It was proved that if a neutral axis of bending RC element crosses the section’s CG, the total reinforcement section (A s +A s ′ ) is minimal. Therefore the compressed zone depth should be selected so that under the design load the neutral axis should pass through the section’s CG. In this case the compressed zone depth that is unknown in existing design methods becomes a known value. This concept enables to select other parameters as unknowns (bending element concrete class, section height, etc.). It is especially important for design of modern high strength concrete (HSC) bending elements, for which the concrete class can be calculated, but not selected. It is demonstrated that applying the proposed concept enables to assume that the neutral axis location is constant for all stages of stress - strain state in bending. As HSC is rather brittle, stresses diagram in the compressed section zone has a form close to triangular. However, adding steel fibers allows improving the elastic–plastic properties of HSC. In this case a rectangular stresses diagram can be used, as for normal strength concrete. Consequently, the proposed concept yields more economical solutions and allows more effective using the HSC properties

  11. Performance Assessment of Discontinuous Fibers in Fiber Reinforced Concrete: Current State-of-the-Art

    Science.gov (United States)

    2017-07-01

    report are not to be used for advertising , publication, or promotional purposes. Citation of trade names does not constitute an official endorsement or...reduction in crack propagation induces numerous micro cracks, which promote and increase in ductility versus a single large macro crack typically seen in...materials and thus provides the critical insight needed. This will also promote the ability to optimize current materials as well as select fibers based on

  12. Continuous Reinforced Concrete Beams

    DEFF Research Database (Denmark)

    Hoang, Cao Linh; Nielsen, Mogens Peter

    1996-01-01

    This report deals with stress and stiffness estimates of continuous reinforced concrete beams with different stiffnesses for negative and positive moments e.g. corresponding to different reinforcement areas in top and bottom. Such conditions are often met in practice.The moment distribution...

  13. Prestressing Effects on the Performance of Concrete Beams with Near-surface-mounted Carbon-fiber-reinforced Polymer Bars

    Science.gov (United States)

    Hong, Sungnam; Park, Sun-Kyu

    2016-07-01

    The effects of various prestressing levels on the flexural behavior of concrete beams strengthened with prestressed near-surface-mounted (NSM) carbon-fiber-reinforced polymer (CFRP) bars were investigated in this study. Four-point flexural tests up to failure were performed using a total of six strengthened prestressed and nonprestressed concrete beams. The nonprestressed strengthened beam failed by premature debonding at the interface of concrete and the epoxy adhesive, but the prestressed one failed owing due to rupture of the CFRP bar. As the prestressing level of the CFRP bar increased, the cracking and yield loads of the prestressed beams increased, but its effect on their deflections was insignificant. The ultimate load was constant regardless of prestressing level, but the ultimate deflection was almost inversely proportional to the level.

  14. Assesment risk of fracture in thin-walled fiber reinforced and regular High Performance Concretes sandwich elements

    DEFF Research Database (Denmark)

    Hodicky, Kamil; Hulin, Thomas; Schmidt, Jacob Wittrup

    2013-01-01

    load. Due to structural restraints, autogenous shrinkage may lead to high self-induced stresses. Therefore autogenous shrinkage plays important role in design of HPCSE. The present paper assesses risk of fracture due to autogenous shrinkage-induced stresses in three fiber reinforced and regular High....... Finally the paper describes the modeling work with HPCSE predicting structural cracking provoked by autogenous shrinkage. It was observed that risk of cracking due to autogenous shrinkage rapidly rises after 3 days in case of regular HPC and after 7 days in case of fiber reinforced HPC.......High Performance Concrete Sandwich Elements (HPCSE) are an interesting option for future low or plus energy building construction. Recent research and development work, however, indicate that such elements are prone to structural cracking due to the combined effect of shrinkage and high temperature...

  15. Economic viability of ultra high-performance fiber reinforced concrete in prestressed concrete wind towers to support a 5 MW turbine

    Directory of Open Access Journals (Sweden)

    P. V. C. N. GAMA

    Full Text Available Abstract The Ultra-High Performance Fiber-Reinforced Concrete is a material with remarkable mechanical properties and durability when compared to conventional and high performance concrete, which allows its use even without the reinforcement. This paper proposes the design of prestressed towers for a 5 MW turbine, through regulatory provisions and the limit states method, with UHPFRC and the concrete class C50, comparing the differences obtained in the design by parametric analysis, giving the advantages and disadvantages of using this new type of concrete. Important considerations, simplifications and notes are made to the calculation process, as well as in obtaining the prestressing and passive longitudinal and passive transverse reinforcement, highlighting the shear strength of annular sections comparing a model proposed here with recent experimental results present in the literature, which was obtained good agreement. In the end, it is estimated a first value within the constraints here made to ensure the economic viability of the use of UHPFRC in a 100 m prestressed wind tower with a 5 MW turbine.

  16. Experiment Observations of the Effects of Fiber Types on the Post-peak Behaviors of Steel Fiber Reinforced Concretes under Tension

    International Nuclear Information System (INIS)

    Cho, Hyun Woo; Moon, Jae Heum; Lee, Jang Hwa; Kang, Su Tae

    2012-01-01

    Concrete is one of the major construction materials that are used to form the containing structures with the function as a radiation barrier for nuclear power plants. While current (steel reinforced) concrete structures for nuclear power plants provide reliable serviceability regarding the requirements of design codes, further safety requirement has been issued with the considerations of the impact of a large, commercial aircraft. U.S. NRC (Nuclear Regulatory Commission) announced the new regulatory code, 10CFR50.150 related to an aircraft impact assessment (AIA). The goal of AIA is to enhance the safety and robustness of new reactor designs at the design stage. To enhance the safety against aircraft impact, two approaches can be simply suggested, increase of barrier wall thickness and/or application of double containment structures. However, these two approaches expect much higher construction costs and much longer building period. Even also, when the thickness of concrete structure is increased, special cares will be expected during the process of concrete placement because of the cracking behavior of mass concrete due to hydration heat. To avoid the pre-described problems and difficulties, strengthening of the concrete properties could be an alternative and the increase of fracture toughness of concrete itself will be the practical approach to enhance the impact resistivity. With this consideration, this research observed the effects of steel fiber reinforcement on the enhancement of fracture toughness for possible future application to nuclear power plant structures

  17. Experiment Observations of the Effects of Fiber Types on the Post-peak Behaviors of Steel Fiber Reinforced Concretes under Tension

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Hyun Woo; Moon, Jae Heum; Lee, Jang Hwa [Korea Institute of Construction Technology, Goyang (Korea, Republic of); Kang, Su Tae [Daegu University, Gyeongsan (Korea, Republic of)

    2012-05-15

    Concrete is one of the major construction materials that are used to form the containing structures with the function as a radiation barrier for nuclear power plants. While current (steel reinforced) concrete structures for nuclear power plants provide reliable serviceability regarding the requirements of design codes, further safety requirement has been issued with the considerations of the impact of a large, commercial aircraft. U.S. NRC (Nuclear Regulatory Commission) announced the new regulatory code, 10CFR50.150 related to an aircraft impact assessment (AIA). The goal of AIA is to enhance the safety and robustness of new reactor designs at the design stage. To enhance the safety against aircraft impact, two approaches can be simply suggested, increase of barrier wall thickness and/or application of double containment structures. However, these two approaches expect much higher construction costs and much longer building period. Even also, when the thickness of concrete structure is increased, special cares will be expected during the process of concrete placement because of the cracking behavior of mass concrete due to hydration heat. To avoid the pre-described problems and difficulties, strengthening of the concrete properties could be an alternative and the increase of fracture toughness of concrete itself will be the practical approach to enhance the impact resistivity. With this consideration, this research observed the effects of steel fiber reinforcement on the enhancement of fracture toughness for possible future application to nuclear power plant structures

  18. Bond-Slip Behavior of Basalt Fiber Reinforced Polymer Bar in Concrete Subjected to Simulated Marine Environment: Effects of BFRP Bar Size, Corrosion Age, and Concrete Strength

    Directory of Open Access Journals (Sweden)

    Yongmin Yang

    2017-01-01

    Full Text Available Basalt Fiber Reinforced Polymer (BFRP bars have bright potential application in concrete structures subjected to marine environment due to their superior corrosion resistance. Available literatures mainly focused on the mechanical properties of BFRP concrete structures, while the bond-slip behavior of BFRP bars, which is a key factor influencing the safety and service life of ocean concrete structures, has not been clarified yet. In this paper, effects of BFRP bars size, corrosion age, and concrete strength on the bond-slip behavior of BFRP bars in concrete cured in artificial seawater were investigated, and then an improved Bertero, Popov, and Eligehausen (BPE model was employed to describe the bond-slip behavior of BFRP bars in concrete. The results indicated that the maximum bond stress and corresponding slip decreased gradually with the increase of corrosion age and size of BFRP bars, and ultimate slip also decreased sharply. The ascending segment of bond-slip curve tends to be more rigid and the descending segment tends to be softer after corrosion. A horizontal end in bond-slip curve indicates that the friction between BFRP bars and concrete decreased sharply.

  19. Automatic design of the flexural strengthening of reinforced concrete beams using fiber reinforced polymers (FRP - doi: 10.4025/actascitechnol.v34i2.8318

    Directory of Open Access Journals (Sweden)

    Rafael Alves de Souza

    2012-03-01

    Full Text Available Changing the functions of a building, the presence of some design or construction errors, the incidence of seismic actions and even the updating of design codes may demand the strengthening of certain structures. In the specific case of reinforced concrete structures it is desirable the application of a technique of strengthening which is fast, economic and efficient, in order to provide advantages when an intervention is necessary. The technique of strengthening chosen must provide less disorder as possible as well as the guaranty of safety. Taking into account this scenery, fiber reinforced polymers have been working as a very attractive alternative for rehabilitating in-service structures. In that way, the present study aims at presenting the main properties of this new material as well as the design routines for flexural strengthening of reinforced concrete beams. Finally, a package-software developed into the MATLAB platform is presented, intending to generate a simple tool for the automatic design using fiber reinforced polymers.

  20. Surface modification and characterization of basalt fibers as potential reinforcement of concretes

    Science.gov (United States)

    Iorio, M.; Santarelli, M. L.; González-Gaitano, G.; González-Benito, J.

    2018-01-01

    Basalt fibers were surface treated with silane coupling agents as a method to enhance the adhesion and durability of fiber-matrix interfaces in concrete based composite materials. In particular, this work has been focused on the study of basalt fibers chemical coatings with aminosilanes and their subsequent characterization. Surface treatments were carried out after removing the original sizing applied by manufacturer and pretreating them with an activation process of surface silanol regeneration. Different samples were considered to make convenient comparisons: as received fibers (commercial), calcinated fibers (without commercial sizing), activated samples (calcinated fibers subjected to an acid process for hydroxyl regeneration), and silanized fibers with γ-aminopropiltriethoxysilane, γ-aminopropilmethyldiethoxysilane and a mixture of 50% by weight of both silanes. A deep characterization was carried out in terms of structure using X-ray diffraction, XRD, and Fourier transform infrared spectroscopy, FTIR, thermal properties by thermogravimetric analysis, TGA, coupled with single differential thermal analysis, SDTA, and morphology by scanning electron microscopy, SEM, and atomic force microscopy, AFM.

  1. Retrofit of hollow concrete masonry infilled steel frames using glass fiber reinforced plastic laminates

    Science.gov (United States)

    Hakam, Zeyad Hamed-Ramzy

    2000-11-01

    This study focuses on the retrofit of hollow concrete masonry infilled steel frames subjected to in-plane lateral loads using glass fiber reinforced plastic (GFRP) laminates that are epoxy-bonded to the exterior faces of the infill walls. An extensive experimental investigation using one-third scale modeling was conducted and consisted of two phases. In the first phase, 64 assemblages, half of which were retrofitted, were tested under various combined in-plane loading conditions similar to those which different regions of a typical infill wall are subjected to. In the second phase, one bare and four masonry-infilled steel frames representative of a typical single-story, single-bay panel were tested under diagonal loading to study the overall behavior and the infill-frame interaction. The relative infill-to-frame stiffness was varied as a test parameter by using two different steel frame sections. The laminates altered the failure modes of the masonry assemblages and reduced the variability and anisotropic nature of the masonry. For the prisms which failed due to shear and/or mortar joint slip, significant strength increases were observed. For those exhibiting compression failure modes, a marginal increase in strength resulted. Retrofitting the infilled frames resulted in an average increase in initial stiffness of two-fold compared to the unretrofitted infilled frames, and seemed independent of the relative infill-to-frame stiffness. However, the increase in the load-carrying capacity of the retrofitted frames compared to the unretrofitted counterparts was higher for those with the larger relative infill-to-frame stiffness parameter. Unlike the unretrofitted infill walls, the retrofitted panels demonstrated almost identical failure modes that were characterized as "strictly comer crushing" in the vicinity of the loaded comers whereas no signs of distress were evident throughout the remainder of the infill. The laminates also maintained the structural integrity of

  2. Electrical and Self-Sensing Properties of Ultra-High-Performance Fiber-Reinforced Concrete with Carbon Nanotubes

    Directory of Open Access Journals (Sweden)

    Ilhwan You

    2017-10-01

    Full Text Available This study examined the electrical and self-sensing capacities of ultra-high-performance fiber-reinforced concrete (UHPFRC with and without carbon nanotubes (CNTs. For this, the effects of steel fiber content, orientation, and pore water content on the electrical and piezoresistive properties of UHPFRC without CNTs were first evaluated. Then, the effect of CNT content on the self-sensing capacities of UHPFRC under compression and flexure was investigated. Test results indicated that higher steel fiber content, better fiber orientation, and higher amount of pore water led to higher electrical conductivity of UHPFRC. The effects of fiber orientation and drying condition on the electrical conductivity became minor as sufficiently high amount of steel fibers, 3% by volume, was added. Including only steel fibers did not impart UHPFRC with piezoresistive properties. Addition of CNTs substantially improved the electrical conductivity of UHPFRC. Under compression, UHPFRC with a CNT content of 0.3% or greater had a self-sensing ability that was activated by the formation of cracks, and better sensing capacity was achieved by including greater amount of CNTs. Furthermore, the pre-peak flexural behavior of UHPFRC was precisely simulated with a fractional change in resistivity when 0.3% CNTs were incorporated. The pre-cracking self-sensing capacity of UHPFRC with CNTs was more effective under tensile stress state than under compressive stress state.

  3. Electrical and Self-Sensing Properties of Ultra-High-Performance Fiber-Reinforced Concrete with Carbon Nanotubes.

    Science.gov (United States)

    You, Ilhwan; Yoo, Doo-Yeol; Kim, Sooho; Kim, Min-Jae; Zi, Goangseup

    2017-10-29

    This study examined the electrical and self-sensing capacities of ultra-high-performance fiber-reinforced concrete (UHPFRC) with and without carbon nanotubes (CNTs). For this, the effects of steel fiber content, orientation, and pore water content on the electrical and piezoresistive properties of UHPFRC without CNTs were first evaluated. Then, the effect of CNT content on the self-sensing capacities of UHPFRC under compression and flexure was investigated. Test results indicated that higher steel fiber content, better fiber orientation, and higher amount of pore water led to higher electrical conductivity of UHPFRC. The effects of fiber orientation and drying condition on the electrical conductivity became minor as sufficiently high amount of steel fibers, 3% by volume, was added. Including only steel fibers did not impart UHPFRC with piezoresistive properties. Addition of CNTs substantially improved the electrical conductivity of UHPFRC. Under compression, UHPFRC with a CNT content of 0.3% or greater had a self-sensing ability that was activated by the formation of cracks, and better sensing capacity was achieved by including greater amount of CNTs. Furthermore, the pre-peak flexural behavior of UHPFRC was precisely simulated with a fractional change in resistivity when 0.3% CNTs were incorporated. The pre-cracking self-sensing capacity of UHPFRC with CNTs was more effective under tensile stress state than under compressive stress state.

  4. Effects of Reinforcing Fiber and Microsilica on the Mechanical and Chloride Ion Penetration Properties of Latex-Modified Fiber-Reinforced Rapid-Set Cement Concrete for Pavement Repair

    Directory of Open Access Journals (Sweden)

    Woong Kim

    2018-01-01

    Full Text Available This study evaluated the influence of reinforcement fiber type and microsilica content on the performance of latex-modified fiber-reinforced roller-compacted rapid-hardening cement concrete (LMFRCRSC for a concrete pavement emergency repair. Experimental variables were the microsilica substitution ratio (1, 2, 3, and 4%, and the reinforcement fiber (jute versus macrosynthetic fiber. In the tests, compressive, flexural, and splitting tensile strength; chloride ion penetration resistance; and abrasion resistance were assessed. From the compressive and flexural strength tests with microsilica substitution, the 4-hour curing strength decreased as the microsilica substitution ratio increased. From the chloride ion penetration test, as the microsilica substitution ratio increased, chloride ion penetration decreased. The abrasion resistances increased with the substitution ratio of microsilica increase. Based on these test results, microsilica at a substitution ratio of 3% or less and macrosynthetic fiber as the reinforcement improved the performance of LMFRCRSC for a concrete pavement emergency repair and satisfied all of the target strength requirements.

  5. Repairing reinforced concrete slabs using composite layers

    International Nuclear Information System (INIS)

    Naghibdehi, M. Ghasemi; Sharbatdar, M.K.; Mastali, M.

    2014-01-01

    There are several strengthening methods for rehabilitation of RC structural elements. The efficiency of these methods has been demonstrated by many researchers. Due to their mechanical properties, using fibrous materials in rehabilitation applications is growing fast. Therefore, this study presents rehabilitation of slabs in such a way that plain concrete layers on top, on bottom, on the entire cross section are replaced by reinforced concrete layers. In order to reinforce the concrete, Polypropylene (PP) and steel fibers were used by 0.5%, 1% and 2% fiber volume fractions. Nineteen slabs were studied under flexural loadings and fibrous material effects on the initial crack force, the maximum loading carrying capacity, absorbed energy and ductility were investigated. The obtained results demonstrated that increasing the fiber volume fraction or using reinforced concrete layer on top, bottom, or at the entire cross section of the slabs not only always leads to improvement in the slab performance, but also sometimes debilitates the slab performance. Hence, this study will propose the best positioning of reinforced concrete layer, fiber volume fraction and fiber type to achieve the best flexural performance of slabs. - Highlights: • Using PP fibers at the bottom layer led to the best slab performance in bending. • Using steel fiber at the top layer and entire cross-section led to the best slab performance. • Maximum increase in the initial crack force and loading were obtained at 2% steel fiber. • Maximum increase in the initial crack force and loading were obtained at 1% PP fiber

  6. Modeling and Measurement of Sustained Loading and Temperature-Dependent Deformation of Carbon Fiber-Reinforced Polymer Bonded to Concrete.

    Science.gov (United States)

    Jeong, Yoseok; Lee, Jaeha; Kim, WooSeok

    2015-01-29

    This paper aims at presenting the effects of short-term sustained load and temperature on time-dependent deformation of carbon fiber-reinforced polymer (CFRP) bonded to concrete and pull-off strength at room temperature after the sustained loading period. The approach involves experimental and numerical analysis. Single-lap shear specimens were used to evaluate temperature and short-term sustained loading effects on time-dependent behavior under sustained loading and debonding behavior under pull-off loading after a sustained loading period. The numerical model was parameterized with experiments on the concrete, FRP, and epoxy. Good correlation was seen between the numerical results and single-lap shear experiments. Sensitivity studies shed light on the influence of temperature, epoxy modulus, and epoxy thickness on the redistribution of interfacial shear stress during sustained loading. This investigation confirms the hypothesis that interfacial stress redistribution can occur due to sustained load and elevated temperature and its effect can be significant.

  7. Health monitoring of precast bridge deck panels reinforced with glass fiber reinforced polymer (GFRP) bars.

    Science.gov (United States)

    2012-03-01

    The present research project investigates monitoring concrete precast panels for bridge decks that are reinforced with Glass Fiber Reinforced Polymer (GFRP) bars. Due to the lack of long term research on concrete members reinforced with GFRP bars, lo...

  8. Reinforced concrete tomography

    International Nuclear Information System (INIS)

    Mariscotti, M.A.J.; Morixe, M.; Tarela, P.A.; Thieberger, P.

    1997-01-01

    In this paper we describe the technique of reinforced concrete tomography, its historical background, recent technological developments and main applications. Gamma radiation sensitive plates are imprinted with radiation going through the concrete sample under study, and then processed to reveal the presence of reinforcement and defects in the material density. The three dimensional reconstruction, or tomography, of the reinforcement out of a single gammagraphy is an original development alternative to conventional methods. Re-bar diameters and positions may be determined with an accuracy of ± 1 mm 0.5-1 cm, respectively. The non-destructive character of this technique makes it particularly attractive in cases of inhabited buildings and diagnoses of balconies. (author) [es

  9. Finite element analysis of steel fiber-reinforced concrete (SFRC): validation of experimental tensile capacity of dog-bone specimens

    Science.gov (United States)

    Islam, Md. Mashfiqul; Chowdhury, Md. Arman; Sayeed, Md. Abu; Hossain, Elsha Al; Ahmed, Sheikh Saleh; Siddique, Ashfia

    2014-09-01

    Finite element analyses are conducted to model the tensile capacity of steel fiber-reinforced concrete (SFRC). For this purpose dog-bone specimens are casted and tested under direct and uniaxial tension. Two types of aggregates (brick and stone) are used to cast the SFRC and plain concrete. The fiber volume ratio is maintained 1.5 %. Total 8 numbers of dog-bone specimens are made and tested in a 1000-kN capacity digital universal testing machine (UTM). The strain data are gathered employing digital image correlation technique from high-definition images and high-speed video clips. Then, the strain data are synthesized with the load data obtained from the load cell of the UTM. The tensile capacity enhancement is found 182-253 % compared to control specimen to brick SFRC and in case of stone SFRC the enhancement is 157-268 %. Fibers are found to enhance the tensile capacity as well as ductile properties of concrete that ensures to prevent sudden brittle failure. The dog-bone specimens are modeled in the ANSYS 10.0 finite element platform and analyzed to model the tensile capacity of brick and stone SFRC. The SOLID65 element is used to model the SFRC as well as plain concretes by optimizing the Poisson's ratio, modulus of elasticity, tensile strength and stress-strain relationships and also failure pattern as well as failure locations. This research provides information of the tensile capacity enhancement of SFRC made of both brick and stone which will be helpful for the construction industry of Bangladesh to introduce this engineering material in earthquake design. Last of all, the finite element outputs are found to hold good agreement with the experimental tensile capacity which validates the FE modeling.

  10. The Investigation on Flexural Toughness of Partially Steel Fiber Reinforced Concrete Immersed by Simulated Sea-Water

    Directory of Open Access Journals (Sweden)

    Feng GAO

    2017-11-01

    Full Text Available In order to investigate the corrosive resistance of partially steel fiber reinforced concrete (PSFRC, the flexural toughness experiment of nine specimens subjected to corrosion by alternating wet and dry cycles in a simulated marine environment were conducted, which aims at investigating the effect of corrosion time, steel fiber volume fraction and SFRC thickness on PSFRC toughness. The experimental results showed that both the mechanical and ductile characteristics of PSFRC got worse due to corrosion even if increasing the steel fiber volume. Additionally, the effect of steel fiber content on the toughness and ultimate load are greater than PSFRC thickness (t. The increase of 56.6% and 171% could be obtained in the mean ultimate load and I10 if the increase of steel fiber volume is from 0.5 % to 2.0%, respectively. This paper could offer a reference to the application of PSFRC in sea-water environment.DOI: http://dx.doi.org/10.5755/j01.ms.23.4.17049

  11. A review of the application Acoustic Emission (AE) incorporating mechanical approach to monitor Reinforced concrete (RC) strengthened with Fiber Reinforced Polymer (FRP) properties under fracture

    Science.gov (United States)

    Syed Mazlan, S. M. S.; Abdullah, S. R.; Shahidan, S.; Noor, S. R. Mohd

    2017-11-01

    Concrete durability may be affected by so many factors such as chemical attack and weathering action that reduce the performance and the service life of concrete structures. Low durability Reinforced concrete (RC) can be greatly improved by using Fiber Reinforce Polymer (FRP). FRP is a commonly used composite material for repairing and strengthening RC structures. A review on application of Acoustic Emission (AE) techniques of real time monitoring for various mechanical tests for RC strengthened with FRP involving four-point bending, three-point bending and cyclic loading was carried out and discussed in this paper. Correlations between each AE analyses namely b-value, sentry and intensity analysis on damage characterization also been critically reviewed. From the review, AE monitoring involving RC strengthened with FRP using b-value, sentry and intensity analysis are proven to be successful and efficient method in determining damage characterization. However, application of AE analysis using sentry analysis is still limited compared to b-value and intensity analysis in characterizing damages especially for RC strengthened with FRP specimen.

  12. Flexural performance of steel fiber reinforced concrete (SFRC) ribbed slab with various topping thicknesses

    Science.gov (United States)

    Rahman, Fadhillah Abdul; Bakar, Afidah Abu; Hashim, Mohd Hisbany Mohd; Ahmad, Hazrina

    2017-11-01

    Ribbed slab provides lighter slab than an equivalent solid slab which helps in reducing the weight with its voids. However, in order to overcome the drawbacks in the construction process, the application of steel fibre reinforcement concrete (SFRC) is seen as an alternative material to be used in the slab. This study is performed to investigate the behaviour of SFRC as the main material in ribbed slab, omitting the conventional reinforcements, under four-point bending test. Three equivalent samples of ribbed slabs were prepared for this study with variations in the topping thickness of 100, 75 and 50 mm. The flexural strength of ribbed slab with 100 mm topping shows similar loading carrying capacity with the 75mm topping while 50 mm gave the lowest ultimate loading. First cracks for all slabs occurred at the topping. The cracks began from the external ribs and propagates toward the internal rib. Incorporation of steel fibres help in giving a longer deflection softening than a sudden brittle failure, thus proves its ability to increase energy absorption capacity and improving cracking behaviour.

  13. Constitutive model for reinforced concrete

    NARCIS (Netherlands)

    Feenstra, P.H.; Borst, de R.

    1995-01-01

    A numerical model is proposed for reinforced-concrete behavior that combines the commonly accepted ideas from modeling plain concrete, reinforcement, and interaction behavior in a consistent manner. The behavior of plain concrete is govern by fracture-energy-level-based formulation both in tension

  14. Development of Steel Fiber-Reinforced Expanded-Shale Lightweight Concrete with High Freeze-Thaw Resistance

    Directory of Open Access Journals (Sweden)

    Mingshuang Zhao

    2018-01-01

    Full Text Available For the popularized structural application, steel fiber-reinforced expanded-shale lightweight concrete (SFRELC with high freeze-thaw resistance was developed. The experimental study of this paper figured out the effects of air-entraining content, volume fraction of steel fibers, and fine aggregate type. Results showed that while the less change of mass loss rate was taken place for SFRELC after 300 freeze-thaw cycles, the relative dynamic modulus of elasticity and the relative flexural strength presented clear trends of freeze-thaw resistance of SFRELC. The compound effect of the air-entraining agent and the steel fibers was found to support the SFRELC with high freeze-thaw resistance, and the mechanisms were explored with the aid of the test results of water penetration of SFRELC. The beneficial effect was appeared from the replacement of lightweight sand with manufactured sand. Based on the test results, suggestions are given out for the optimal mix proportion of SFRELC to satisfy the durability requirement of freeze-thaw resistance.

  15. Modeling reinforced concrete durability : [summary].

    Science.gov (United States)

    2014-06-01

    Many Florida bridges are built of steel-reinforced concrete. Floridas humid and marine : environments subject steel in these structures : to corrosion once water and salt penetrate the : concrete and contact the steel. Corroded steel : takes up mo...

  16. Latex-modified fiber-reinforced concrete bridge deck overlay : construction/interim report.

    Science.gov (United States)

    1993-06-01

    Latex-modified concrete (LMC) is Portland cement concrete (PCC) with an admixture of latex. LMC is considered to be nearly impermeable to chlorides and is extensively used to construct bridge deck overlays. Unfortunately, some of these overlays have ...

  17. Thermal and strength performance of reinforced self-compacting concrete slabs mixed with basalt and PVA fibers in high intensity fire

    Directory of Open Access Journals (Sweden)

    Mohd Jani Noraniza

    2017-01-01

    Full Text Available Fibers addition to concrete and the innovation of self-compacting concrete technology lead to the development of high-performance concrete. However, high intensity fire may adversely affect the performance of this type of concrete. A series of fire resistance test experiments to evaluate the performance of fiber reinforced self-compacting concrete (FR-SCC slabs consisting of various mix of basalt and PVA fibers were carried out by subjecting the concrete slabs as an element of construction to high intensity Hydrocarbon fire heating condition. The fire testing condition was in accordance with the standard time-temperature fire curve for 120 minutes up to 1100°C heating temperature. The temperatures on the surface and within the concrete slabs were recorded and the performance of each type of FRSCC slabs were evaluated. The performance of Basalt FR-SCC was found to be more resistant to fire in comparison to PVA FRSCC. There residual compressive strength of core samples were tested and SEM analysis were carried out to determine the effect of high intensity fire on the basalt and PVA FR-SCC slabs.

  18. Effect of Elevated Temperature on Mechanical Assets of Metakaolin Base Steel Fiber Reinforced Concrete

    Science.gov (United States)

    Vijay Anand, M.; Ibrahim, Azmi; Patil, Anand A.; Muthu, K. U.

    2017-06-01

    The fact of vast usage of concrete leads to important problems regarding its design and preparation of eco-friendly to obtain an economic cost of the product on varieties of time periods. Conventional ordinary Portland concrete may not able to meet its functional requisites as it found inconsistency in high temperature. The exposing of concrete structure to elevated temperature may be in case of rocket launching space ships, nuclear power plants. In this experiment, to enhance the high temperature resistance, pozzolanic materials and steel fibres are added to preserve the strength characteristics of concrete structure. In this analysis, the pozzolanic admixture MK is used as partial replacement of cementatious materials. The volume fraction of steel fibre is varied 0.25%, 0.5%, 0.75% and 1% by preserving MK as stationary for 10% replacement of cement. The strength parameters of concrete such as compressive strength, split tensile strength and flexural strength are studied.

  19. Modelling reinforcement corrosion in concrete

    DEFF Research Database (Denmark)

    Michel, Alexander; Geiker, Mette Rica; Stang, Henrik

    2012-01-01

    A physio-chemical model for the simulation of reinforcement corrosion in concrete struc-tures was developed. The model allows for simulation of initiation and subsequent propaga-tion of reinforcement corrosion. Corrosion is assumed to be initiated once a defined critical chloride threshold......, a numerical example is pre-sented, that illustrates the formation of corrosion cells as well as propagation of corrosion in a reinforced concrete structure....

  20. Surface treatment of reinforced cement concrete mixtures of hpcm type

    OpenAIRE

    Vyrozhemsky, V.; Krayushkina, K.

    2006-01-01

    One of the most perspective ways of pavement roughness and durability improvement is the arrangement of thin cement concrete layer surface treatment reinforced with different types of fiber. The name of this material is known abroad as HPCM (High Performance Cementious Materials) durable thin layer concrete pavement in a thickness of 1 cm, dispersion-like reinforced with metal or polymer fibers. To enhance bind properties the stone material grade 3 7mm is applied on the top of concrete surfac...

  1. A simple method for non-linear analysis of steel fiber reinforced concrete - 10.4025/actascitechnol.v32i4.7249

    Directory of Open Access Journals (Sweden)

    Leandro Vanalli

    2010-12-01

    Full Text Available This paper proposes a physical non-linear formulation to deal with steel fiber reinforced concrete by the finite element method. The proposed formulation allows the consideration of short or long fibers placed arbitrarily inside a continuum domain (matrix. The most important feature of the formulation is that no additional degree of freedom is introduced in the pre-existent finite element numerical system to consider any distribution or quantity of fiber inclusions. In other words, the size of the system of equations used to solve a non-reinforced medium is the same as the one used to solve the reinforced counterpart. Another important characteristic of the formulation is the reduced work required by the user to introduce reinforcements, avoiding "rebar" elements, node by node geometrical definitions or even complex mesh generation. Bounded connection between long fibers and continuum is considered, for short fibers a simplified approach is proposed to consider splitting. Non-associative plasticity is adopted for the continuum and one dimensional plasticity is adopted to model fibers. Examples are presented in order to show the capabilities of the formulation.

  2. PERFORMANCE OF STEEL FIBER REINFORCED CONCRETE – COMPARABILITY OF TESTS ACCORDING TO DAFSTB-GUIDELINE "STAHLFASERBETON" AND EN 14651

    Directory of Open Access Journals (Sweden)

    Steffen Anders

    2016-12-01

    Full Text Available For the determination of the performance of steel-fiber reinforced concrete (SFRC, the post-peak flexural strengths are used. In different national and European standards, different test-setups are defined, resulting in double efforts for testing for the manufacturers. In addition, the German national guideline "Stahlfaserbeton (DAfStb" on SFRC is well established European-wide, but the test standard is specifically national, demanding a four-point-bending tests using unnotched beams. Contrarily, the European standard EN 14651 as well as the Model Code 2010 demand three-point bending tests using notched specimens. Applying the national guideline is obligatory in Germany for structural use of SFRC. Therefore, it is essential to standardize the performance evaluation of SFRC based on commonly applied international guidelines. In the following, an approach is presented especially dealing with the problem of random occurrence of cracks in the four-point-bending tests. It is shown, that neglecting the point of crack can systematically under-estimate the performance of SFRC especially at deformations.

  3. Multiscale probabilistic modeling of a crack bridge in glass fiber reinforced concrete

    Directory of Open Access Journals (Sweden)

    Rypla R.

    2017-06-01

    Full Text Available The present paper introduces a probabilistic approach to simulating the crack bridging effects of chopped glass strands in cement-based matrices and compares it to a discrete rigid body spring network model with semi-discrete representation of the chopped strands. The glass strands exhibit random features at various scales, which are taken into account by both models. Fiber strength and interface stress are considered as random variables at the scale of a single fiber bundle while the orientation and position of individual bundles with respect to a crack plane are considered as random variables at the crack bridge scale. At the scale of the whole composite domain, the distribution of fibers and the resulting number of crack-bridging fibers is considered. All the above random effects contribute to the variability of the crack bridge performance and result in size-dependent behavior of a multiply cracked composite.

  4. Collaboration of polymer composite reinforcement and cement concrete

    Science.gov (United States)

    Khozin, V. G.; Gizdatullin, A. R.

    2018-04-01

    The results of experimental study of bond strength of cement concrete of different types with fiber reinforcing polymer (FRP) bars are reported. The reinforcing bars were manufactured of glass fibers and had a rebar with different types of the surface relief formed by winding a thin strip impregnated with a binder or by “sanding”. The pullout tests were carried out simultaneously for the steel reinforcing ribbed bars A400. The impact of friction, adhesion and mechanical bond on the strength of bonds between FRP and concrete was studied. The influence of the concrete strength and different operation factors on the bond strength of concrete was evaluated.

  5. High-Strength / High Alkaline Resistant Fe-Phosphate Glass Fibers as Concrete Reinforcement

    Energy Technology Data Exchange (ETDEWEB)

    Mariano Velez

    2008-03-31

    Calcium-iron-phosphate glasses were developed whose chemical durabilities in alkaline solutions (pH 13) were comparable or superior to those of commercial alkaline-resistant (AR) silica-based glasses. However, the tensile strength of Ca-Fe-phosphate fibers, after being exposed to alkaline environments, including wet Portland cement pastes, is lower than that of current AR silicate fibers. Another series of Ca-Fe-phosphate glasses were developed with excellent chemical durability in strong acidic solutions (H2SO4, HF), indicating potential applications where silica-based fibers degrade very quickly, including E-glass. The new Ca-Fe-phosphate glasses can be melted and processed 300 to 500°C lower than silica-based glasses. This offers the possibility of manufacturing glass fibers with lower energy costs by 40-60% and the potential to reduce manufacturing waste and lower gas emissions. It was found that Ca-Fe-phosphate melts can be continuously pulled into fibers depending on the slope of the viscosity-temperature curve and with viscosity ~100 poise, using multi-hole Pt/Rh bushings.

  6. Disperse reinforced concrete used in obtaining prefabricated elements for roads

    Directory of Open Access Journals (Sweden)

    Bogdan MEZEI

    2014-07-01

    Full Text Available Concrete is the most used material in construction. By improving the performance of materials and of technologies, concretes with outstanding performances were also developed, in the past two decades. Concrete with dispersed reinforcement represents a new generation of reinforced concrete that combines a good behavior of concrete compressive strength with an increased tensile strength of steel fibers. Using this material, monolithic and prefabricated concrete elements with high mechanical strengths and high durability can be obtained. Technological processes for preparation of concrete with dispersed reinforcement are similar to the conventional methods and do not involve using additional equipment for dosing the dispersed reinforcement. The study aimed the development of road plates made with optimized disperse- reinforced concrete. The first tests were done on plates from the gutter roadway, having a classic reinforcement, using different percentages of fibre reinforcement in the concrete composition, leading to the development of a new optimized economical solution. The results prove the enhanced characteristics of the disperse-reinforced concrete versus conventional concrete, and hence of the developed concrete plates.

  7. Flexural toughness of steel fiber reinforced high performance concrete containing nano-SiO2 and fly ash.

    Science.gov (United States)

    Zhang, Peng; Zhao, Ya-Nan; Li, Qing-Fu; Wang, Peng; Zhang, Tian-Hang

    2014-01-01

    This paper aims to clarify the effect of steel fiber on the flexural toughness of the high performance concrete containing fly ash and nano-SiO2. The flexural toughness was evaluated by two methods, which are based on ASTM C1018 and DBV-1998, respectively. By means of three-point bending method, the flexural toughness indices, variation coefficients of bearing capacity, deformation energy, and equivalent flexural strength of the specimen were measured, respectively, and the relational curves between the vertical load and the midspan deflection (P(V)-δ) were obtained. The results indicate that steel fiber has great effect on the flexural toughness parameters and relational curves (P(V)-δ) of the three-point bending beam specimen. When the content of steel fiber increases from 0.5% to 2%, the flexural toughness parameters increase gradually and the curves are becoming plumper and plumper with the increase of steel fiber content, respectively. However these flexural toughness parameters begin to decrease and the curves become thinner and thinner after the steel fiber content exceeds 2%. It seems that the contribution of steel fiber to the improvement of flexural toughness of the high performance concrete containing fly ash and nano-SiO2 is well performed only when the steel fiber content is less than 2%.

  8. State-of-Practice on the Dynamic Response of Structures Strengthened with Fiber Reinforced Polymers (FRPs)

    Science.gov (United States)

    2015-07-01

    entitled “Design guidelines for blast strengthening of concrete and masonry structures using Fiber - Reinforced Polymer (FRP).” Seismic provision...2 Reinforced Concrete Fiber Reinforced Polymers are frequently used to retrofit and repair reinforced concrete structures. Most of the work...tested 72 laboratory-size beams (3-in. by 3-in. cross-section and 30–in. long) of unreinforced and nylon fiber reinforced light-weight concrete that

  9. Microstructural aspects in steel fiber reinforced acrylic emulsion polymer modified concrete

    Science.gov (United States)

    Hazimmah, Dayang; Ayob, Afizah; Sie Yee, Lau; Chee Cung, Wong

    2018-03-01

    Scanning electron microscope observations of polymer-free and polymer-modified cements have shown that the polymer particles are partitioned between the inside of hydrates and the surface of anhydrous cement grains. For optimum dosage of acrylic emulsion polymer with 2.5%, the C-S-H gel in this structure is finer and more acicular. Some polymer adheres or deposit on the surface of the C-S-H gel. The presence of acrylic emulsion polymer confines the ionic diffusion so that the Ca(OH)2 crystallized locally to form fine crystals. The void in the structures seems to be smaller but no polymer films appears to be bridging the walls of pores although many polymer bonds or C-S-H spread into the pore spaces. In addition to porosity reduction, acrylic emulsion polymer modified the hydration products in the steel fiber -matrix ITZ. The hydration product C-S-H appeared as a needle like shape. The needle-shaped C-S-H increases and gradually formed the gel, with needles growing into the pore space. The phenomenon is more obvious as curing age increased.

  10. Microstructural aspects in steel fiber reinforced acrylic emulsion polymer modified concrete

    Directory of Open Access Journals (Sweden)

    Hazimmah Dayang

    2018-01-01

    Full Text Available Scanning electron microscope observations of polymer-free and polymer-modified cements have shown that the polymer particles are partitioned between the inside of hydrates and the surface of anhydrous cement grains. For optimum dosage of acrylic emulsion polymer with 2.5%, the C-S-H gel in this structure is finer and more acicular. Some polymer adheres or deposit on the surface of the C-S-H gel. The presence of acrylic emulsion polymer confines the ionic diffusion so that the Ca(OH2 crystallized locally to form fine crystals. The void in the structures seems to be smaller but no polymer films appears to be bridging the walls of pores although many polymer bonds or C-S-H spread into the pore spaces. In addition to porosity reduction, acrylic emulsion polymer modified the hydration products in the steel fiber –matrix ITZ. The hydration product C-S-H appeared as a needle like shape. The needle-shaped C-S-H increases and gradually formed the gel, with needles growing into the pore space. The phenomenon is more obvious as curing age increased.

  11. Nonlinear earthquake analysis of reinforced concrete frames with fiber and Bernoulli-Euler beam-column element.

    Science.gov (United States)

    Karaton, Muhammet

    2014-01-01

    A beam-column element based on the Euler-Bernoulli beam theory is researched for nonlinear dynamic analysis of reinforced concrete (RC) structural element. Stiffness matrix of this element is obtained by using rigidity method. A solution technique that included nonlinear dynamic substructure procedure is developed for dynamic analyses of RC frames. A predicted-corrected form of the Bossak-α method is applied for dynamic integration scheme. A comparison of experimental data of a RC column element with numerical results, obtained from proposed solution technique, is studied for verification the numerical solutions. Furthermore, nonlinear cyclic analysis results of a portal reinforced concrete frame are achieved for comparing the proposed solution technique with Fibre element, based on flexibility method. However, seismic damage analyses of an 8-story RC frame structure with soft-story are investigated for cases of lumped/distributed mass and load. Damage region, propagation, and intensities according to both approaches are researched.

  12. Ceramic fiber reinforced filter

    Science.gov (United States)

    Stinton, David P.; McLaughlin, Jerry C.; Lowden, Richard A.

    1991-01-01

    A filter for removing particulate matter from high temperature flowing fluids, and in particular gases, that is reinforced with ceramic fibers. The filter has a ceramic base fiber material in the form of a fabric, felt, paper of the like, with the refractory fibers thereof coated with a thin layer of a protective and bonding refractory applied by chemical vapor deposition techniques. This coating causes each fiber to be physically joined to adjoining fibers so as to prevent movement of the fibers during use and to increase the strength and toughness of the composite filter. Further, the coating can be selected to minimize any reactions between the constituents of the fluids and the fibers. A description is given of the formation of a composite filter using a felt preform of commercial silicon carbide fibers together with the coating of these fibers with pure silicon carbide. Filter efficiency approaching 100% has been demonstrated with these filters. The fiber base material is alternately made from aluminosilicate fibers, zirconia fibers and alumina fibers. Coating with Al.sub.2 O.sub.3 is also described. Advanced configurations for the composite filter are suggested.

  13. Degradation of Waterfront Reinforced Concrete Structures

    African Journals Online (AJOL)

    Key words: Degradation, reinforced concrete, Dar es Salaam port. Abstract—One of the ... especially corrosion of the reinforcement. ... Corrosion of steel reinforcement contributes .... cracks along the line of reinforcement bars and most of the ...

  14. Quantitative evaluation of compactness of concrete-filled fiber-reinforced polymer tubes using piezoceramic transducers and time difference of arrival

    Science.gov (United States)

    Xu, Yang; Luo, Mingzhang; Hei, Chuang; Song, Gangbing

    2018-03-01

    Owing to its light weight and corrosion resistance, the concrete-filled fiber-reinforced polymer tube (CFFT) structure has a broad application prospect; the concrete compactness is key to the strength of CFFTs. To meet the urgent requirement of compactness monitoring of CFFTs, a quantitative method, which uses an array of four equally spaced piezoceramic patches and an ultrasonic time difference of arrival (TDOA) algorithm, is developed. Since the velocity of the ultrasonic wave propagation in fiber-reinforced polymer (FRP) material is about half of that in concrete material, the compactness condition of CFFT impacts the piezoceramic-induced wave propagation in the CFFT, and differentiates the TDOA for different receivers. An important condition is the half compactness, which can be judged by the Half Compactness Indicator (HCI) based on the TDOAs. To characterize the difference of stress wave propagation durations from the emitter to different receivers, which can be utilized to calculate the concrete infill compactness, the TDOA ratio (TDOAR) is introduced. An innovative algorithm is developed in this paper to estimate the compactness of the CFFT using HCI and TDOAR values. Analytical, numerical, and experimental studies based on a CFFT with seven different states of compactness (empty, 1/10, 1/3, 1/2, 2/3, 9/10, and full) are carried out in this research. Analyses demonstrate that there is a good agreement among the analytical, numerical, and experimental results of the proposed method, which employs a piezoceramic transducer array and the TDOAR for quantitative estimating the compactness of concrete infill in a CFFT.

  15. Effect of the Volume Fraction of Jute Fiber on the Interlaminar Shear Stress and Tensile Behavior Characteristics of Hybrid Glass/Jute Fiber Reinforced Polymer Composite Bar for Concrete Structures

    Directory of Open Access Journals (Sweden)

    Chan-Gi Park

    2016-01-01

    Full Text Available Hybrid glass/jute fiber reinforced polymer (HGJFRP composite bars were manufactured for concrete structures, and their interlaminar shear stress and tensile performance were evaluated. HGJFRP composite bars were manufactured using a combination of pultrusion and braiding processes. Jute fiber was surface-treated with a silane coupling agent. The mixing ratio of the fiber to the vinyl ester used in the HGJFRP composite bars was 7 : 3. Jute fiber was used to replace glass fiber in proportions of 0, 30, 50, 70, and 100%. The interlaminar shear stress decreased as the proportion of jute fiber increased. Fractures appeared due to delamination between the surface-treated component and the main part of the HGJFRP composite bar. Tensile load-strain curves with 50% jute fiber exhibited linear behavior. With a jute fiber volume fraction of 70%, some plastic deformation occurred. A jute fiber mixing ratio of 100% resulted in a display of linear elastic brittle behavior from the fiber; however, when the surface of the fiber was coated with poly(vinyl acetate, following failure, the jute fiber exhibited partial load resistance. The tensile strength decreased as the jute fiber content increased; however, the tensile strength did not vary linearly with jute fiber content.

  16. Experimental studies of fiber concrete creep

    Directory of Open Access Journals (Sweden)

    Korneeva Irina

    2017-01-01

    Full Text Available The results of two-stage experimental studies of the strength and deformation characteristics of fibrous concrete reinforced with steel fiber. In the experiments we used steel fiber with bent ends, which practically does not form "hedgehogs", which allows to achieve an even distribution of the fiber by volume. At the first stage, the cube and prismatic strength, deformability at central compression, a number of special characteristics are determined: water absorption, frost resistance, abrasion; the optimal percentage of fiber reinforcement and the maximum size of the coarse aggregate fraction were selected. Fiber reinforcement led to an increase in the strength of concrete at compression by 1,35 times and an increase in the tensile strength at bending by 3,4 times. At the second stage, the creep of fibrous concrete and plain concrete of similar composition at different stress levels was researched. Creep curves are plotted. It is shown that the use of fiber reinforcement leads to a decrease in creep strain by 21 to 30 percent, depending on the stress level.

  17. Glass FRP reinforcement in rehabilitation of concrete marine infrastructure

    International Nuclear Information System (INIS)

    Newhook, John P.

    2006-01-01

    Fiber reinforced polymer (FRP) reinforcements for concrete structures are gaining wide acceptance as a suitable alternative to steel reinforcements. The primary advantage is that they do not suffer corrosion and hence they promise to be more durable in environments where steel reinforced concrete has a limited life span. Concrete wharves and jetties are examples of structures subjected to such harsh environments and represent the general class of marine infrastructure in which glass FRP (GFRP) reinforcement should be used for improved durability and service life. General design considerations which make glass FRP suitable for use in marine concrete rehabilitation projects are discussed. A case study of recent wharf rehabilitation project in Canada is used to reinforce these considerations. The structure consisted of a GFRP reinforced concrete deck panel and steel - GFRP hybrid reinforced concrete pile cap. A design methodology is developed for the hybrid reinforcement design and verified through testing. The results of a field monitoring program are used to establish the satisfactory field performance of the GFRP reinforcement. The design concepts presented in the paper are applicable to many concrete marine components and other structures where steel reinforcement corrosion is a problem. (author)

  18. Study on Performance of Steel Fiber Concrete Bridge Pier Specimens under Horizontal Cyclic Loading

    Directory of Open Access Journals (Sweden)

    Baiben Chen

    2017-01-01

    Full Text Available Because of that steel fiber can effectively prevent the extension and development of small cracks in the concrete, steel fiber reinforced concrete has good toughness and tensile strength. In the application of building materials, steel fiber reinforced concrete is an ideal elastic-plastic material. For the seismic performance, it has advantages. In order to analyze the seismic performance of steel fiber reinforced concrete, 4 piers of the scale model test under horizontal cyclic loading were done. The results showed that failure mode of steel fiber reinforced concrete is better than that of ordinary concrete, and has a large yield moment under the external loads.

  19. Durability of fibre reinforced concrete structures

    DEFF Research Database (Denmark)

    Hansen, Ernst Jan De Place; Hansen, Kurt Kielsgaard

    1996-01-01

    The planned research will indicate, whether fibre reinforced concrete has better or worse durability than normal concrete. Durability specimens will be measured on cracked as well as uncracked specimens. Also the pore structure in the concrete will be characterized.Keywords: Fibre reinforced...... concrete, durability, pore structure, mechanical load...

  20. Rotational Capacity of Reinforced Concrete Beams

    DEFF Research Database (Denmark)

    Ulfkjær, J. P.; Henriksen, M. S.; Brincker, Rune

    1995-01-01

    programme where 120 reinforced concrete beams, 54 plain concrete beams and 324 concrete cylinders are tested. For the reinforced concrete beams four different parar meters are varied. The slenderness is 6, 12 and 18, the beam depth is 100 mm, 200 mm and 400 mm giving nine different geometries, five...

  1. The usage of carbon fiber reinforcement polymer and glass fiber reinforcement polymer for retrofit technology building

    Science.gov (United States)

    Tarigan, Johannes; Meka, Randi; Nursyamsi

    2018-03-01

    Fiber Reinforcement Polymer has been used as a material technology since the 1970s in Europe. Fiber Reinforcement Polymer can reinforce the structure externally, and used in many types of buildings like beams, columns, and slabs. It has high tensile strength. Fiber Reinforcement Polymer also has high rigidity and strength. The profile of Fiber Reinforcement Polymer is thin and light, installation is simple to conduct. One of Fiber Reinforcement Polymer material is Carbon Fiber Reinforcement Polymer and Glass Fiber Reinforcement Polymer. These materials is tested when it is installed on concrete cylinders, to obtain the comparison of compressive strength CFRP and GFRP. The dimension of concrete is diameter of 15 cm and height of 30 cm. It is amounted to 15 and divided into three groups. The test is performed until it collapsed to obtain maximum load. The results of research using CFRP and GFRP have shown the significant enhancement in compressive strength. CFRP can increase the compressive strength of 26.89%, and GFRP of 14.89%. For the comparison of two materials, CFRP is more strengthening than GFRP regarding increasing compressive strength. The usage of CFRP and GFRP can increase the loading capacity.

  2. Engineered cementitious composites for strengthening masonry infilled reinforced concrete frames

    DEFF Research Database (Denmark)

    Dehghani, Ayoub; Nateghi-Alahi, Fariborz; Fischer, Gregor

    2015-01-01

    The results of the second part of a comprehensive experimental program, aimed at investigating the behavior of masonry infilled reinforced concrete (RC) frames strengthened with fiber reinforced engineered cementitious composites (ECC) used as an overlay on the masonry wall, are presented...

  3. In-plane shear test of fibre reinforced concrete panels

    DEFF Research Database (Denmark)

    Solgaard, Anders Ole Stubbe; Stang, Henrik; Goltermann, Per

    2008-01-01

    The present paper concerns the investigation of polymer Fiber Reinforced Concrete (FRC) panels subjected to in-plane shear. The use of fibers as primary reinforcement in panels is a new application of fiber reinforcement, hence test methods, design bases and models are lacking. This paper...... contributes to the investigation of fibers as reinforcement in panels with experimental results and a consistent approach to material characterization and modeling. The proposed model draws on elements from the classical yield line theory of rigid, perfectly plastic materials and the theory of fracture...... mechanics. Model panels have been cast to investigate the correlation between the load bearing capacity and the amount of fibers (vol. %) in the mixture. The type of fibers in the mixture was Poly Vinyl Alcohol (PVA) fibers, length 8 mm, diameter 0.04 mm. The mechanical properties of the FRC have been...

  4. Ultra High-Performance Fiber-Reinforced Concrete (UHPFRC: a review of material properties and design procedures

    Directory of Open Access Journals (Sweden)

    T. E. T. Buttignol

    Full Text Available ABSTRACT This paper does a review of the recent achievements on the knowledge of UHPFRC properties and in the development of design procedures. UHPFRC is defined as a new material, with unique properties (high ductility, low permeability, very high strength capacity in compression, higher toughness in comparison to conventional concrete. It is important to know both material and mechanical properties to fully take advantage of its outstanding properties for structural applications. However, since this is a new material, the current design codes are not well suited and should be reviewed before being applied to UHPFRC. In the first part, the following material properties are addressed: hydration process; permeability; fibers role; mix design; fiber-matrix bond properties workability; mixing procedure; and curing. In the second part, the mechanical properties of the material are discussed, together with some design recommendations. The aspects herein examined are: size effect; compressive and flexural strength; tensile stress-strain relation; shear and punching shear capacity; creep and shrinkage; fracture energy; steel bars anchorage and adherence. Besides, the tensile mechanical characterization is described using inverse analysis based on bending tests data. In the last part, material behavior at high temperature is discussed, including physical-chemical transformations of the concrete, spalling effect, and transient creep. In the latter case, a new Load Induced Thermal Strain (LITS semi-empirical model is described and compared with UHPC experimental results.

  5. Reinforcement of RC structure by carbon fibers

    Directory of Open Access Journals (Sweden)

    Kissi B.

    2016-01-01

    Full Text Available In recent years, rehabilitation has been the subject of extensive research due to the increased spending on building maintenance work and restoration of built works. In all cases, it is essential to carry out methods of reinforcement or maintenance of structural elements, following an inspection analysis and methodology of a correct diagnosis. This research focuses on the calculation of the necessary reinforcement sections of carbon fiber for structural elements with reinforced concrete in order to improve their load bearing capacity and rigidity. The different results obtained reveal a considerable gain in resistance and deformation capacity of reinforced sections without significant increase in the weight of the rehabilitated elements.

  6. Analysis of FRP bars used as reinforcement in concrete structures

    Directory of Open Access Journals (Sweden)

    Kinga Brózda

    2016-09-01

    Full Text Available In the design and construction of building and engineering structures, it is of utmost importance to provide their reliability and safety. The use of FRP (Fiber Reinforced Polymers bars as reinforcement of structural concrete elements could help reducing the typical defects of reinforced concrete and increase its strength parameters. In the paper the selected FRP bar characteristic properties are presented and advantages derived therefrom are specified. Furthermore, the most commonly used in construction types of FRP bars, depending on the raw material used during the production process are listed. In addition, the possibility of recycling of elements reinforced with FRP bars is presented and compared with traditional reinforced concrete (reinforced with steel bars. The production method of FRP bars (pultrusion is shown. Moreover, the advantages and disadvantages of using this method are discussed.

  7. Monitoring corrosion in reinforced concrete structures

    Science.gov (United States)

    Kung, Peter; Comanici, Maria I.

    2014-06-01

    Many defects can cause deterioration and cracks in concrete; these are results of poor concrete mix, poor workmanship, inadequate design, shrinkage, chemical and environmental attack, physical or mechanical damage, and corrosion of reinforcing steel (RS). We want to develop a suite of sensors and systems that can detect that corrosion is taking place in RS and inform owners how serious the problem is. By understanding the stages of the corrosion process, we can develop special a sensor that detects each transition. First, moisture ingress can be monitored by a fiber optics humidity sensor, then ingress of Chloride, which acts as a catalyst and accelerates the corrosion process by converting iron into ferrous compounds. We need a fiber optics sensor which can quantify Chloride ingress over time. Converting ferric to ferrous causes large volume expansion and cracks. Such pressure build-up can be detected by a fiber optic pressure sensor. Finally, cracks emit acoustic waves, which can be detected by a high frequency sensor made with phase-shifted gratings. This paper will discuss the progress in our development of these special sensors and also our plan for a field test by the end of 2014. We recommend that we deploy these sensors by visually inspecting the affected area and by identifying locations of corrosion; then, work with the designers to identify spots that would compromise the integrity of the structure; finally, drill a small hole in the concrete and insert these sensors. Interrogation can be done at fixed intervals with a portable unit.

  8. Mechanical properties of recycled PET fibers in concrete

    Directory of Open Access Journals (Sweden)

    Fernando Pelisser

    2012-08-01

    Full Text Available Fiber-reinforced concrete represents the current tendency to apply more efficient crack-resistant concrete. For instance, polyethylene terephthalate (PET is a polyester polymer obtained from recyclable bottles; it has been widely used to produce fibers to obtain cement-based products with improved properties. Therefore, this paper reports on an experimental study of recycled-bottle-PET fiber-reinforced concrete. Fibers with lengths of 10, 15 and 20 mm and volume fractions of 0.05, 0.18 and 0.30% related to the volume of the concrete were used. Physical and mechanical characterization of the concrete was performed, including the determination of compressive strength, flexural strength, Young's modulus and fracture toughness as well as analysis using mercury intrusion porosimetry (MIP and scanning electron microscopy (SEM. Flexure and impact tests were performed after 28 and 150 days. No significant effect of the fiber addition on the compressive strength and modulus of elasticity was observed. However, the Young's modulus was observed to decrease as the fiber volume increased. At 28 days, the concrete flexural toughness and impact resistance increased with the presence of PET fibers, except for the 0.05 vol.% sample. However, at 150 days, this improvement was no longer present due to recycled-bottle-PET fiber degradation in the alkaline concrete environment, as visualized by SEM observations. An increase in porosity also has occurred at 365 days for the fiber-reinforced concrete, as determined by MIP.

  9. Engineering Performance of High Strength Concrete Containing Steel Fibre Reinforcement

    Directory of Open Access Journals (Sweden)

    Md Azree Othuman Mydin

    2013-09-01

    Full Text Available The development and utilization of the high strength concrete in the construction industry have been increasing rapidly. Fiber reinforced concrete is introduced to overcome the weakness of the conventional concrete because concrete normally can crack under a low tensile force and it is known to be brittle. Steel fibre is proved to be the popular and best combination in the high strength concrete to result the best in the mechanical and durability properties of high strength concrete with consideration of curing time, steel fibre geometry, concrete grade and else more. The incorporation of steel fibre in the mortar mixture is known as steel fibre reinforced concrete have the potential to produce improvement in the workability, strength, ductility and the deformation of high strength concrete. Besides that, steel fibre also increases the tensile strength of concrete and improves the mechanical properties of the steel fibre reinforced concrete. The range for any high strength concrete is between 60MPa-100MPa. Steel fibre reinforced concrete which contains straight fibres has poorer physical properties than that containing hooked end stainless steel fibre due to the length and the hooked steel fibre provide a better effective aspects ratio. Normally, steel fibre tensile strength is in the range of 1100MPa-1700MPa. Addition of less steel fibre volumes in the range of 0.5% to 1.0% can produce better increase in the flexural fatigue strength. The strength can be increased with addition of steel fibre up to certain percentage. This paper will review and present some basic properties of steel fibre reinforced concrete such as mechanical, workability and durability properties.

  10. Three-dimensional fabric reinforced concrete finds first use in reactor building

    International Nuclear Information System (INIS)

    Akihama, S.; Nakagava, H.

    1989-01-01

    It is reported about creation of concrete reinforced with synthetic fibers by Japanese firm Kadzima. Synthetic material with three-dimensional orientation of fibers is produced of roving impreganted with synthetic resin. The reinforcement produced is submerged into the concrete matrix. The compression strength of such a material makes up 58 MPa. The new material is used for constructing the nuclear reactor shielding containers

  11. Finite element modeling of reinforced concrete beams with a hybrid combination of steel and aramid reinforcement

    International Nuclear Information System (INIS)

    Hawileh, R.A.

    2015-01-01

    Highlights: • Modeling of concrete beams reinforced steel and FRP bars. • Developed finite element models achieved good results. • The models are validated via comparison with experimental results. • Parametric studies are performed. - Abstract: Corrosion of steel bars has an adverse effect on the life-span of reinforced concrete (RC) members and is usually associated with crack development in RC beams. Fiber reinforced polymer (FRP) bars have been recently used to reinforce concrete members in flexure due to their high tensile strength and superior corrosion resistance properties. However, FRP materials are brittle in nature, thus RC beams reinforced with such materials would exhibit a less ductile behavior when compared to similar members reinforced with conventional steel reinforcement. Recently, researchers investigated the performance of concrete beams reinforced with a hybrid combination of steel and Aramid Fiber Reinforced Polymer (AFRP) reinforcement to maintain a reasonable level of ductility in such members. The function of the AFRP bars is to increase the load-carrying capacity, while the function of the steel bars is to ensure ductility of the flexural member upon yielding in tension. This paper presents a three-dimensional (3D) finite element (FE) model that predicted the load versus mid-span deflection response of tested RC beams conducted by other researchers with a hybrid combination of steel and AFRP bars. The developed FE models account for the constituent material nonlinearities and bond–slip behavior between the reinforcing bars and adjacent concrete surfaces. It was concluded that the developed models can accurately capture the behavior and predicts the load-carrying capacity of such RC members. In addition, a parametric study is conducted using the validated models to investigate the effect of AFRP bar size, FRP material type, bond–slip action, and concrete compressive strength on the performance of concrete beams when reinforced

  12. Shear reinforced beams in autoclaved aerated concrete

    DEFF Research Database (Denmark)

    Cornelius, Thomas

    2010-01-01

    Shear behaviour in concrete materials is very well documented, for normal density concrete materials. In this paper results of various tests on low density concrete materials like aerated autoclaved concrete (in the following denoted aircrete) will be presented and analyzed for different combinat....... Codes for designing prefabricated reinforced components of aircrete structures have adopted these recently developed approaches.......Shear behaviour in concrete materials is very well documented, for normal density concrete materials. In this paper results of various tests on low density concrete materials like aerated autoclaved concrete (in the following denoted aircrete) will be presented and analyzed for different...

  13. Mechanical properties of steel fiber reinforced reactive powder concrete following exposure to high temperature reaching 800 deg. C

    Energy Technology Data Exchange (ETDEWEB)

    Tai, Yuh-Shiou, E-mail: ystai@cc.cma.edu.tw [Department of Civil Engineering, ROC Military Academy, Kaohsiung, Taiwan (China); Pan, Huang-Hsing; Kung, Ying-Nien [Department of Civil Engineering, Kaohsiung University of Applied Sciences, Kaohsiung, Taiwan (China)

    2011-07-15

    Highlights: > The stress-strain relation of reactive powder concrete after exposure to high temperatures are tested by using displacement control. > Develops regression formulae to estimate the mechanical properties of RPC. > Valuable experimental data have been obtained about RPC with various fiber contents. These data include compressive strength, peak strain and modulus of elasticity. - Abstract: This study investigates the stress-strain relation of RPC in quasi-static loading after an elevated temperature. The cylinder specimens of RPC with {phi} 50 mm x 100 mm are examined at the room temperature and after 200-800 deg. C. Experimental results indicate that the residual compressive strength of RPC after heating from 200-300 deg. C increases more than that at room temperature, but, significantly decreases when the temperature exceeds 300 deg. C. The residual peak strains of RPC also initially increase up to 400-500 deg. C, then decrease gradually beyond 500 deg. C. Meanwhile, Young's modulus diminishes with an increasing temperature. Based on the regression analysis results, this study also develops regression formulae to estimate the mechanical properties of RPC after an elevated temperature, thus providing a valuable reference for industrial applications and design.

  14. Rapid Strengthening of Full-Sized Concrete Beams with Powder-Actuated fastening Systems and Fiber-Reinforced Polymer (FRP) Composite Materials

    National Research Council Canada - National Science Library

    Bank, Lawrence

    2002-01-01

    A research study was conducted to determine if the method of retrofitting reinforced concrete beams with powder-actuated fasteners and composite materials was applicable to full-scale flexural members...

  15. PERSPECTIVE REINFORCING MATERIAL FOR FIBRE CONCRETE

    Directory of Open Access Journals (Sweden)

    A. V. Vedeneev

    2011-01-01

    Full Text Available The different types of wire fiber are considered, advantages of fiber of high-modular wire with heightened bending stiffness are shown. analysis by volumes of fiber production in the world is carried out. Peculiarities of fiber production at RUP «BMZ» are shown. recommendations on correlation «wire diameter-fiber length» are given for different types of fiber for prevention of fiber caking at production of fibrous concrete are given.

  16. Superelastic SMA–FRP composite reinforcement for concrete structures

    International Nuclear Information System (INIS)

    Wierschem, Nicholas; Andrawes, Bassem

    2010-01-01

    For many years there has been interest in using fiber-reinforced polymers (FRPs) as reinforcement in concrete structures. Unfortunately, due to their linear elastic behavior, FRP reinforcing bars are never considered for structural damping or dynamic applications. With the aim of improving the ductility and damping capability of concrete structures reinforced with FRP reinforcement, this paper studies the application of SMA–FRP, a relatively novel type of composite reinforced with superelastic shape memory alloy (SMA) wires. The cyclic tensile behavior of SMA–FRP composites are studied experimentally and analytically. Tests of SMA–FRP composite coupons are conducted to determine their constitutive behavior. The experimental results are used to develop and calibrate a uniaxial SMA–FRP analytical model. Parametric and case studies are performed to determine the efficacy of the SMA–FRP reinforcement in concrete structures and the key factors governing its behavior. The results show significant potential for SMA–FRP reinforcement to improve the ductility and damping of concrete structures while still maintaining its elastic characteristic, typical of FRP reinforcement

  17. STRUCTURAL PERFORMANCE OF DEGRADED REINFORCED CONCRETE MEMBERS

    International Nuclear Information System (INIS)

    Braverman, J.I.; Miller, C.A.; Ellingwood, B.R.; Naus, D.J.; Hofmayer, C.H.; Bezler, P.; Chang, T.Y.

    2001-01-01

    This paper describes the results of a study to evaluate, in probabilistic terms, the effects of age-related degradation on the structural performance of reinforced concrete members at nuclear power plants. The paper focuses on degradation of reinforced concrete flexural members and shear walls due to the loss of steel reinforcing area and loss of concrete area (cracking/spalling). Loss of steel area is typically caused by corrosion while cracking and spalling can be caused by corrosion of reinforcing steel, freeze-thaw, or aggressive chemical attack. Structural performance in the presence of uncertainties is depicted by a fragility (or conditional probability of failure). The effects of degradation on the fragility of reinforced concrete members are calculated to assess the potential significance of various levels of degradation. The fragility modeling procedures applied to degraded concrete members can be used to assess the effects of degradation on plant risk and can lead to the development of probability-based degradation acceptance limits

  18. Impact of Steel Fiber Size and Shape on the Mechanical Properties of Ultra-High Performance Concrete

    Science.gov (United States)

    2015-08-01

    characteristics of steel fiber reinforcement to the mechanical properties of high-strength concretes , this study investigated four commercially available...Standard test method for flexural performance of fiber - reinforced concrete (using beam with third-point loading). Designation: C1609/1609M. West...STEEL FIBERS are low-carbon, drawn w ire for reinforced concrete . NYCON-SF fibers distribute stresses within the concrete and provide improvement

  19. Structural Behaviors of Reinforced Concrete Piers Rehabilitated with FRP Wraps

    Directory of Open Access Journals (Sweden)

    Junsuk Kang

    2017-01-01

    Full Text Available The use of fiber-reinforced polymer (FRP wraps to retrofit and strengthen existing structures such as reinforced concrete piers is becoming popular due to the higher tensile strength, durability, and flexibility gained and the method’s ease of handling and low installation and maintenance costs. As yet, however, few guidelines have been developed for determining the optimum thicknesses of the FRP wraps applied to external surfaces of concrete or masonry structures. In this study, nonlinear pushover finite element analyses were utilized to analyze the complex structural behaviors of FRP-wrapped reinforced rectangular piers. Design parameters such as pier section sizes, pier heights, pier cap lengths, compressive strengths of concrete, and the thicknesses of the FRP wraps used were thoroughly tested under incremental lateral and vertical loads. The results provide useful guidelines for analyzing and designing appropriate FRP wraps for existing concrete piers.

  20. Development of connecting method for mechanically cut reinforced concrete blocks

    International Nuclear Information System (INIS)

    Nishiuchi, Tatsuo

    2005-01-01

    The purpose of the study is to develop a practical method of disposing and recycling in dismantled reinforced concrete structures. We have devised a new method in which mechanically cut reinforced concrete blocks are connected and they are reused as a structural beam. In this method, concrete blocks are connected with several steel bars and the connected surface is wrapped with a fiber sheet. We verified that the load capacity of renewal beams was considerably large as same as that of continuous structural beams on the basis of experimental as well as numerical analysis results. As far as construction cost of reinforced concrete walls are concerned, we demonstrated that the cost of this method is slightly lower than that of the plan to use new and recycle materials. (author)

  1. Design of reinforced concrete plates and shells

    International Nuclear Information System (INIS)

    Schulz, M.

    1984-01-01

    Nowadays, the internal forces of reinforced concrete laminar structures can be easily evaluated by the finite element procedures. The longitudinal design in each direction is not adequate, since the whole set of internal forces in each point must be concomitantly considered. The classic formulation for the design and new design charts which bring reduction of the amount of necessary reinforcement are presented. A rational reinforced concrete mathematical theory which makes possible the limit state design of plates and shells is discussed. This model can also be applied to define the constitutive relationships of laminar finite elements of reinforced concrete. (Author) [pt

  2. Study on reinforced concrete beams with helical transverse reinforcement

    Science.gov (United States)

    Kaarthik Krishna, N.; Sandeep, S.; Mini, K. M.

    2018-02-01

    In a Reinforced Concrete (R.C) structure, major reinforcement is used for taking up tensile stresses acting on the structure due to applied loading. The present paper reports the behavior of reinforced concrete beams with helical reinforcement (transverse reinforcement) subjected to monotonous loading by 3-point flexure test. The results were compared with identically similar reinforced concrete beams with rectangular stirrups. During the test crack evolution, load carrying capacity and deflection of the beams were monitored, analyzed and compared. Test results indicate that the use of helical reinforcement provides enhanced load carrying capacity and a lower deflection proving to be more ductile, clearly indicating the advantage in carrying horizontal loads. An analysis was also carried out using ANSYS software in order to compare the test results of both the beams.

  3. Reinforced concrete treatment as composite material

    International Nuclear Information System (INIS)

    Oller, S.; Onate, E.; Miguel, J.

    1995-01-01

    This paper presents the general mixing theory applied to the numerical simulation of multiphase composite material behaviour as reinforced concrete materials. This theory is based on the mixture of that composite basic substances and allows to evaluate the inter-dependence behaviour between the different compounding constitutive models. If it would be necessary to consider the initial anisotropy of each compound it could be done by mean of the mapped isotropic plastic formulation. The approach is a generalization of the classic isotropic plasticity theory to be applied to either ortho tropic or anisotropic materials such as reinforced concrete. The existence of a stress and strain real anisotropic spaces, and the respective fictitious isotropic spaces are assumed, where a mapped fictitious problem is solved. Those spaces are relating by means of two fourth order transformation tensors. Both formulation are joined establishing a powerful work tool for the treatment of bulk-fiber composite materials. The induced anisotropy behaviour is take into account by each compounding constitutive formulation. (author). 24 refs., 3 figs

  4. Behavior of reinforced concrete at elevated temperatures

    International Nuclear Information System (INIS)

    Freskakis, G.N.

    1984-09-01

    A study is presented concerning the behavior of reinforced concrete sections at elevated temperatures. Material properties of concrete and reinforcing steel are discussed. Behavior studies are made by means of moment-curvature-axial force relationships. Particular attention is given to the load carrying capacity, thermal forces and moments, and deformation capacity. The effects on these properties of variations in the strength properties, the temperature level and distribution, the amount of reinforcing steel, and limiting values of strains are considered

  5. Estudio experimental del comportamiento a compresión de hormigones autocompactantes reforzados con fibras de acero = Experimental study of performance self-compacting concrete reinforced with steel fibers

    Directory of Open Access Journals (Sweden)

    J. L. Sánchez

    2015-09-01

    Full Text Available El hormigón autocompactante reforzado con fibras de acero presenta simultáneamente las ventajas de los hormigones autocompactantes y de los reforzados con fibras. Se consigue un material de altas prestaciones en cuanto a su colocación en obra, tenacidad y ductilidad. En este trabajo se ha estudiado el comportamiento mecánico de un hormigón autocompactante reforzado con fibras de acero. Se han realizado ensayos a compresión a distintas edades, así como ensayos no destructivos (medida de la velocidad de ultrasonidos e índice esclerométrico. Los resultados muestran la variación de la respuesta del hormigón con el tiempo, la diferencia existente con los hormigones tradicionales y la viabilidad del empleo de técnicas no destructivas para el control de este tipo de hormigones.Abstract Self-compacting steel fibers reinforced concrete simultaneously has the advantages of self-compacting concrete and reinforced with fibers. A material of high performance in their laying on site, toughness and ductility is achieved. This paper has studied the mechanical behavior of a self-compacting concrete reinforced with steel fibers. Have been made compression tests, as well as non-destructive testing (measuring the speed of ultrasound and sclerometer test. The results show the variation of the response of concrete with time, the difference with the traditional concrete and the feasibility of using non-destructive techniques for controlling this type of concrete.

  6. Improved Sectional Image Analysis Technique for Evaluating Fiber Orientations in Fiber-Reinforced Cement-Based Materials.

    Science.gov (United States)

    Lee, Bang Yeon; Kang, Su-Tae; Yun, Hae-Bum; Kim, Yun Yong

    2016-01-12

    The distribution of fiber orientation is an important factor in determining the mechanical properties of fiber-reinforced concrete. This study proposes a new image analysis technique for improving the evaluation accuracy of fiber orientation distribution in the sectional image of fiber-reinforced concrete. A series of tests on the accuracy of fiber detection and the estimation performance of fiber orientation was performed on artificial fiber images to assess the validity of the proposed technique. The validation test results showed that the proposed technique estimates the distribution of fiber orientation more accurately than the direct measurement of fiber orientation by image analysis.

  7. Improving the self-healing properties of concrete materials by using composite actions with fiber reinforced polymers.

    Science.gov (United States)

    2013-06-01

    This research study is motivated by the need to reduce the costs of maintenance and repair of the aging transportation infrastructure in the US. The proposed approach is to use self-healing concrete. The objectives of this study were: (1) to evaluate...

  8. Numerical modelling of the reinforced concrete influence on a combined system of tunnel support

    Directory of Open Access Journals (Sweden)

    Grujić Bojana

    2017-12-01

    Full Text Available The paper presents the experimental, laboratory determined rheological-dynamic analysis of the properties of fiber reinforced concrete, which was then utilized to show nonlinear analysis of combined system of tunnel support structure. According to the performed experiments and calculations, different processes of destructive behavior of tunnel lining were simulated in combination with elastic and elastic-plastic behavior of materials taking into account the tunnel loading, the interaction between the fiber reinforced concrete and soil, as well as the interaction between the fiber reinforced concrete and the inner lining of the tunnel.

  9. Numerical modelling of the reinforced concrete influence on a combined system of tunnel support

    Science.gov (United States)

    Grujić, Bojana; Jokanović, Igor; Grujić, Žarko; Zeljić, Dragana

    2017-12-01

    The paper presents the experimental, laboratory determined rheological-dynamic analysis of the properties of fiber reinforced concrete, which was then utilized to show nonlinear analysis of combined system of tunnel support structure. According to the performed experiments and calculations, different processes of destructive behavior of tunnel lining were simulated in combination with elastic and elastic-plastic behavior of materials taking into account the tunnel loading, the interaction between the fiber reinforced concrete and soil, as well as the interaction between the fiber reinforced concrete and the inner lining of the tunnel.

  10. fatigue strength of reinforced concrete flexural members

    African Journals Online (AJOL)

    Dr Obe

    1980-03-01

    Mar 1, 1980 ... cyclic loads behave differently compared with static bending and can collapse due to the fatigue of concrete, reinforcement or both when maximum fatigue stresses of ... under low and medium load levels, than under high load ...

  11. Corrosion resistant alloys for reinforced concrete [2009

    Science.gov (United States)

    2009-04-01

    Deterioration of concrete bridges because of reinforcing steel corrosion has been recognized for four-plus decades as a major technical and economic challenge for the United States. As an option for addressing this problem, renewed interest has focus...

  12. Corrosion resistant alloys for reinforced concrete [2007

    Science.gov (United States)

    2007-07-01

    Deterioration of concrete bridges because of reinforcing steel corrosion has been recognized for 4-plus decades as a major technical and economic challenge for the United States. As an option for addressing this problem, renewed interest has focused ...

  13. Introduction to Concrete Reinforcing. Instructor Edition. Introduction to Construction Series.

    Science.gov (United States)

    Oklahoma State Dept. of Vocational and Technical Education, Stillwater. Curriculum and Instructional Materials Center.

    This module on concrete reinforcing is one of a series of modules designed to teach basic skills necessary for entry-level employment in this field. This module contains three instructional units that cover the following topics: (1) concrete reinforcing materials; (2) concrete reinforcing tools; and (3) concrete reinforcing basic skills. Each…

  14. The Recent Research on Bamboo Reinforced Concrete

    Directory of Open Access Journals (Sweden)

    Dewi Sri Murni

    2017-01-01

    Full Text Available The paper presents the last research on bamboo reinforced concrete in Brawijaya University Indonesia. Three kinds of structures studied in recent year, the mounting of pegs on reinforcement, the use of lightweight brick to reduce the weight of the beams, and the use the light weight aggregate for bamboo concrete composite frame. All that experiments overcome some problems exist in using bamboo as environmental acceptance structures.

  15. Shaking Table Tests of Reinforced Concrete Frames

    DEFF Research Database (Denmark)

    Skjærbæk, P. S.; Kirkegaard, Poul Henning; Nielsen, Søren R.K.

    -varying systems and to verify various methods for damage assessment of reinforced concrete structures from soft motion measurements. In this study the maximum softening concept will be evaluated. In the paper the assessment obtained by this method is compared to visual damage assessment. The structures considered...... vector ARMA model is suitable for modal identification of degrading reinforced concrete structures and the maximum softening damage index calculated from the obtained identification provides a valuable tool for assessment of the damage state of the structure....

  16. Design Methods for Fibre Reinforced Concrete

    DEFF Research Database (Denmark)

    Stang, Henrik

    1996-01-01

    The present paper describes the outline of a research project on Fibre Reinforced Concrete (FRC) currently being carried out in Denmark under the supervision of Danish Council of Technology, Danish Technical Research Council and Danish Natural Science Research Counsil.......The present paper describes the outline of a research project on Fibre Reinforced Concrete (FRC) currently being carried out in Denmark under the supervision of Danish Council of Technology, Danish Technical Research Council and Danish Natural Science Research Counsil....

  17. The Effect Of Water/powder Material Ratio And Fiber Strength On The Mechanical Properties Of Fiber Reinforced Self-compacting Concrete

    OpenAIRE

    Dinç, Alihan

    2007-01-01

    Apart from the normal concrete to fulfill the necessities, specially designed high performance concrete has started to find a place for use towards special application purposes. Performance does not only mean increase in strength rather it also encompasses the quality of preserving the strength and other functions under external effects during the service life of the structure. High performance concrete can be defined as a concrete with high workability, durability and strength along with pre...

  18. High Performance Fiber Reinforced Cement Composites 6 HPFRCC 6

    CERN Document Server

    Reinhardt, Hans; Naaman, A

    2012-01-01

    High Performance Fiber Reinforced Cement Composites (HPFRCC) represent a class of cement composites whose stress-strain response in tension undergoes strain hardening behaviour accompanied by multiple cracking, leading to a high strain prior to failure. The primary objective of this International Workshop was to provide a compendium of up-to-date information on the most recent developments and research advances in the field of High Performance Fiber Reinforced Cement Composites. Approximately 65 contributions from leading world experts are assembled in these proceedings and provide an authoritative perspective on the subject. Special topics include fresh and hardening state properties; self-compacting mixtures; mechanical behavior under compressive, tensile, and shear loading; structural applications; impact, earthquake and fire resistance; durability issues; ultra-high performance fiber reinforced concrete; and textile reinforced concrete. Target readers: graduate students, researchers, fiber producers, desi...

  19. Self-compacting fibre-reinforced concrete

    NARCIS (Netherlands)

    Grunewald, S.; Walraven, J.C.

    2001-01-01

    The project 'self-compacting fibre-reinforced concrete (SCFRC)' is part of the Dutch STW/PPM program - 'cement-bonded materials' - DCT.4010. Subproject III to which the project ,SCFRC' belongs deals with the development of new high performance concretes. The project 'SCFRC' aims at investigating the

  20. Shrinkage modeling of concrete reinforced by palm fibres in hot dry environments

    Science.gov (United States)

    Akchiche, Hamida; Kriker, Abdelouahed

    2017-02-01

    The cement materials, such as concrete and conventional mortar present very little resistance to traction and cracking, these hydraulic materials which induces large withdrawals on materials and cracks in structures. The hot dry environments such as: the Saharan regions of Algeria, Indeed, concrete structures in these regions are very fragile, and present high shrinkage. Strengthening of these materials by fibers can provide technical solutions for improving the mechanical performance. The aim of this study is firstly, to reduce the shrinkage of conventional concrete with its reinforcement with date palm fibers. In fact, Algeria has an extraordinary resources in natural fibers (from Palm, Abaca, Hemp) but without valorization in practical areas, especially in building materials. Secondly, to model the shrinkage behavior of concrete was reinforced by date palm fibers. In the literature, several models for still fiber concrete were founded but few are offers for natural fiber concretes. To do so, a still fiber concretes model of YOUNG - CHERN was used. According to the results, a reduction of shrinkage with reinforcement by date palm fibers was showed. A good ability of molding of shrinkage of date palm reinforced concrete with YOUNG - CHERN Modified model was obtained. In fact, a good correlation between experimental data and the model data was recorded.

  1. Corrosion of reinforcement bars in steel ibre reinforced concrete structures

    DEFF Research Database (Denmark)

    Solgaard, Anders Ole Stubbe

    and the influence of steel fibres on initiation and propagation of cracks in concrete. Moreover, the impact of fibres on corrosion-induced cover cracking was covered. The impact of steel fibres on propagation of reinforcement corrosion was investigated through studies of their impact on the electrical resistivity...... of concrete, which is known to affect the corrosion process of embedded reinforcement. The work concerning the impact of steel fibres on initiation and propagation of cracks was linked to corrosion initiation and propagation of embedded reinforcement bars via additional studies. Cracks in the concrete cover...... are known to alter the ingress rate of depassivating substances and thereby influence the corrosion process. The Ph.D. study covered numerical as well as experimental studies. Electrochemically passive steel fibres are electrically isolating thus not changing the electrical resistivity of concrete, whereas...

  2. High performance repairing of reinforced concrete structures

    International Nuclear Information System (INIS)

    Iskhakov, I.; Ribakov, Y.; Holschemacher, K.; Mueller, T.

    2013-01-01

    Highlights: ► Steel fibered high strength concrete is effective for repairing concrete elements. ► Changing fibers’ content, required ductility of the repaired element is achieved. ► Experiments prove previously developed design concepts for two layer beams. -- Abstract: Steel fibered high strength concrete (SFHSC) is an effective material that can be used for repairing concrete elements. Design of normal strength concrete (NSC) elements that should be repaired using SFHSC can be based on general concepts for design of two-layer beams, consisting of SFHSC in the compressed zone and NSC without fibers in the tensile zone. It was previously reported that such elements are effective when their section carries rather large bending moments. Steel fibers, added to high strength concrete, increase its ultimate deformations due to the additional energy dissipation potential contributed by fibers. When changing the fibers’ content, a required ductility level of the repaired element can be achieved. Providing proper ductility is important for design of structures to dynamic loadings. The current study discusses experimental results that form a basis for finding optimal fiber content, yielding the highest Poisson coefficient and ductility of the repaired elements’ sections. Some technological issues as well as distribution of fibers in the cross section of two-layer bending elements are investigated. The experimental results, obtained in the frame of this study, form a basis for general technological provisions, related to repairing of NSC beams and slabs, using SFHSC.

  3. Estimating Durability of Reinforced Concrete

    Science.gov (United States)

    Varlamov, A. A.; Shapovalov, E. L.; Gavrilov, V. B.

    2017-11-01

    In this article we propose to use the methods of fracture mechanics to evaluate concrete durability. To evaluate concrete crack resistance characteristics of concrete directly in the structure in order to implement the methods of fracture mechanics, we have developed special methods. Various experimental studies have been carried out to determine the crack resistance characteristics and the concrete modulus of elasticity during its operating. A comparison was carried out for the results obtained with the use of the proposed methods and those obtained with the standard methods for determining the concrete crack resistance characteristics.

  4. CHARACTERIZATION OF COMMERCIALLY AVAILABLE ALKALI RESISTANT GLASS FIBER FOR CONCRETE REINFORCEMENT AND CHEMICAL DURABILITY COMPARISON WITH SrO-Mn2O3-Fe2O3-MgO-ZrO2-SiO2 (SMFMZS SYSTEM GLASSES

    Directory of Open Access Journals (Sweden)

    Göktuğ GÜNKAYA

    2012-12-01

    Full Text Available According to the relevant literature, the utilization of different kind of glass fibers in concrete introduces positive effect on the mechanical behavior, especially toughness. There are many glassfibers available to reinforce concretes. Glass fiber composition is so important because it may change the properties such as strength, elastic modulus and alkali resistance. Its most important property to be used in concrete is the alkali resistance. Some glasses of SrO–MgO–ZrO2–SiO2 (SMZS quaternary system, such as 26SrO, 20MgO, 14ZrO2, 40SiO2 (Zrn glass, have been found to be highly alkali resistant thanks to their high ZrO2 and MgO contents. Previous researches on these glasses with MnO and/or Fe2O3 partially replacing SrO have been made with the aim of improving the chemical resistance and decreasing the production cost.The main target of the present study, first of all, was to characterize commercially available alkali resistant glass fiber for concrete reinforcement and then to compare its alkali durability with those of the SrO-Mn2O3-Fe2O3-MgO-ZrO2-SiO2 (SMFMZS system glasses. For such purposes, XRF, Tg-DTA, alkali resistance tests and SEM analysis conducted with EDX were employed. According tothe alkali endurance test results it was revealed that some of the SMFMZS system glass powders are 10 times resistant to alkali environments than the commercial glass fibers used in this study.Therefore, they can be considered as alternative filling materials on the evolution of chemically resistant concrete structures.

  5. Polarization Induced Deterioration of Reinforced Concrete with CFRP Anode.

    Science.gov (United States)

    Zhu, Ji-Hua; Wei, Liangliang; Zhu, Miaochang; Sun, Hongfang; Tang, Luping; Xing, Feng

    2015-07-15

    This paper investigates the deterioration of reinforced concrete with carbon fiber reinforced polymer (CFRP) anode after polarization. The steel in the concrete was first subjected to accelerated corrosion to various extents. Then, a polarization test was performed with the external attached CFRP as the anode and the steel reinforcement as the cathode. Carbon fiber reinforced mortar and conductive carbon paste as contact materials were used to adhere the CFRP anode to the concrete. Two current densities of 1244 and 2488 mA/m², corresponding to the steel reinforcements were applied for 25 days. Electrochemical parameters were monitored during the test period. The deterioration mechanism that occurred at the CFRP/contact material interface was investigated by scanning electron microscopy (SEM) and X-ray diffraction (XRD) techniques. The increase of feeding voltage and the failure of bonding was observed during polarization process, which might have resulted from the deterioration of the interface between the contact material and CFRP. The formation and accumulation of NaCl crystals at the contact material/CFRP interface were inferred to be the main causes of the failure at the interface.

  6. The possibility of using high strength reinforced concrete

    International Nuclear Information System (INIS)

    Miura, Nobuaki

    1991-01-01

    There is recently much research about and developments in reinforced concrete using high strength concrete and reinforcement. As a result, some high-rise buildings and nuclear buildings have been constructed with such concrete. Reinforced concrete will be stronger in the future, but there is a limit to its strength defined by the character of the materials and also by the character of the reinforced concrete members made of the concrete and reinforcement. This report describes the merits and demerits of using high strength reinforced concrete. (author)

  7. Development of load and resistance factor design for FRP strengthening of reinforced concrete bridges.

    Science.gov (United States)

    2006-05-01

    Externally bonded fiber reinforced polymer (FRP) composites are an increasingly adopted technology for the renewal of existing concrete structures. In order to encourage the further use of these materials, a design code is needed that considers the i...

  8. Strain Measurement Using Embedded Fiber Bragg Grating Sensors Inside an Anchored Carbon Fiber Polymer Reinforcement Prestressing Rod for Structural Monitoring

    DEFF Research Database (Denmark)

    Kerrouche, Abdelfateh; Boyle, William J.O.; Sun, Tong

    2009-01-01

    Results are reported from a study carried out using a series of Bragg grating based optical fiber sensors written into a very short length (60mm) optical fiber net work and integrated into carbon fiber polymer reinforcement (CFPR) rod. Such rods are used as reinforcements in concrete structures...

  9. Reinforced concrete wall under hydrogen detonation

    International Nuclear Information System (INIS)

    Saarenheimo, A.

    2000-11-01

    The structural integrity of a reinforced concrete wall in the BWR reactor building under hydrogen detonation conditions has been analysed. Of particular interest is whether the containment integrity can be jeopardised by an external hydrogen detonation. The load carrying capacity of a reinforced concrete wall was studied. The detonation pressure loads were estimated with computerised hand calculations assuming a direct initiation of detonation and applying the strong explosion theory. The results can be considered as rough and conservative estimates for the first shock pressure impact induced by a reflecting detonation wave. Structural integrity may be endangered due to slow pressurisation or dynamic impulse loads associated with local detonations. The static pressure following the passage of a shock front may be relatively high, thus this static or slowly decreasing pressure after a detonation may damage the structure severely. The mitigating effects of the opening of a door on pressure history and structural response were also studied. The non-linear behaviour of the wall was studied under detonations corresponding a detonable hydrogen mass of 0.5 kg and 1.428 kg. Non-linear finite element analyses of the reinforced concrete structure were carried out by the ABAQUS/Explicit program. The reinforcement and its non-linear material behaviour and the tensile cracking of concrete were modelled. Reinforcement was defined as layers of uniformly spaced reinforcing bars in shell elements. In these studies the surrounding structures of the non-linearly modelled reinforced concrete wall were modelled using idealised boundary conditions. Especially concrete cracking and yielding of the reinforcement was monitored during the numerical simulation. (au)

  10. Braided reinforced composite rods for the internal reinforcement of concrete

    Science.gov (United States)

    Gonilho Pereira, C.; Fangueiro, R.; Jalali, S.; Araujo, M.; Marques, P.

    2008-05-01

    This paper reports on the development of braided reinforced composite rods as a substitute for the steel reinforcement in concrete. The research work aims at understanding the mechanical behaviour of core-reinforced braided fabrics and braided reinforced composite rods, namely concerning the influence of the braiding angle, the type of core reinforcement fibre, and preloading and postloading conditions. The core-reinforced braided fabrics were made from polyester fibres for producing braided structures, and E-glass, carbon, HT polyethylene, and sisal fibres were used for the core reinforcement. The braided reinforced composite rods were obtained by impregnating the core-reinforced braided fabric with a vinyl ester resin. The preloading of the core-reinforced braided fabrics and the postloading of the braided reinforced composite rods were performed in three and two stages, respectively. The results of tensile tests carried out on different samples of core-reinforced braided fabrics are presented and discussed. The tensile and bending properties of the braided reinforced composite rods have been evaluated, and the results obtained are presented, discussed, and compared with those of conventional materials, such as steel.

  11. Analytical, Numerical and Experimental Examination of Reinforced Composites Beams Covered with Carbon Fiber Reinforced Plastic

    Science.gov (United States)

    Kasimzade, A. A.; Tuhta, S.

    2012-03-01

    In the article, analytical, numerical (Finite Element Method) and experimental investigation results of beam that was strengthened with fiber reinforced plastic-FRP composite has been given as comparative, the effect of FRP wrapping number to the maximum load and moment capacity has been evaluated depending on this results. Carbon FRP qualitative dependences have been occurred between wrapping number and beam load and moment capacity for repair-strengthen the reinforced concrete beams with carbon fiber. Shown possibilities of application traditional known analysis programs, for the analysis of Carbon Fiber Reinforced Plastic (CFRP) strengthened structures.

  12. Hysteretic behavior of prestressed concrete bridge pier with fiber model.

    Science.gov (United States)

    Wang, Hui-li; Feng, Guang-qi; Qin, Si-feng

    2014-01-01

    The hysteretic behavior and seismic characteristics of the prestressed concrete bridge pier were researched. The effects of the prestressed tendon ratio, the longitudinal reinforcement ratio, and the stirrup reinforcement ratio on the hysteretic behavior and seismic characteristics of the prestressed concrete bridge pier have been obtained with the fiber model analysis method. The analysis show some results about the prestressed concrete bridge pier. Firstly, greater prestressed tendon ratio and more longitudinal reinforcement can lead to more obvious pier's hysteresis loop "pinching effect," smaller residual displacement, and lower energy dissipation capacity. Secondly, the greater the stirrup reinforcement ratio is, the greater the hysteresis loop area is. That also means that bridge piers will have better ductility and stronger shear capacity. The results of the research will provide a theoretical basis for the hysteretic behavior analysis of the prestressed concrete pier.

  13. Shear behaviour of reinforced phyllite concrete beams

    International Nuclear Information System (INIS)

    Adom-Asamoah, Mark; Owusu Afrifa, Russell

    2013-01-01

    Highlights: ► Phyllite concrete beams often exhibited shear with anchorage bond failure. ► Different shear design provisions for reinforced phyllite beams are compared. ► Predicted shear capacity of phyllite beams must be modified by a reduction factor. -- Abstract: The shear behaviour of concrete beams made from phyllite aggregates subjected to monotonic and cyclic loading is reported. First diagonal shear crack load of beams with and without shear reinforcement was between 42–58% and 42–92% of the failure loads respectively. The phyllite concrete beams without shear links had lower post-diagonal cracking shear resistance compared to corresponding phyllite beams with shear links. As a result of hysteretic energy dissipation, limited cyclic loading affected the stiffness, strength and deformation of the phyllite beams with shear reinforcement. Generally, beams with and without shear reinforcement showed anchorage bond failure in addition to the shear failure due to high stress concentration near the supports. The ACI, BS and EC codes are conservative for the prediction of phyllite concrete beams without shear reinforcement but they all overestimate the shear strength of phyllite concrete beams with shear reinforcement. It is recommended that the predicted shear capacity of phyllite beams reinforced with steel stirrups be modified by a reduction factor of 0.7 in order to specify a high enough safety factor on their ultimate strength. It is also recommended that susceptibility of phyllite concrete beams to undergo anchorage bond failure is averted in design by the provision of greater anchorage lengths than usually permitted.

  14. Nonlinear analysis of reinforced concrete structures using software package abaqus

    OpenAIRE

    Marković Nemanja; Stojić Dragoslav; Cvetković Radovan

    2014-01-01

    Reinforced concrete (AB) is characterized by huge inhomogeneity resulting from the material characteristics of the concrete, then, quasi-brittle behavior during failure. These and other phenomena require the introduction of material nonlinearity in the modeling of reinforced concrete structures. This paper presents the modeling reinforced concrete in the software package ABAQUS. A brief theoretical overview is presented of methods such as: Concrete Damage Plasticity (CDP), Smeared Concrete Cr...

  15. FOAM CONCRETE REINFORCEMENT BY BASALT FIBRES

    Directory of Open Access Journals (Sweden)

    Zhukov Aleksey Dmitrievich

    2012-10-01

    Full Text Available The authors demonstrate that the foam concrete performance can be improved by dispersed reinforcement, including methods that involve basalt fibres. They address the results of the foam concrete modeling technology and assess the importance of technology-related parameters. Reinforcement efficiency criteria are also provided in the article. Dispersed reinforcement improves the plasticity of the concrete mix and reduces the settlement crack formation rate. Conventional reinforcement that involves metal laths and rods demonstrates its limited application in the production of concrete used for thermal insulation and structural purposes. Dispersed reinforcement is preferable. This technology contemplates the infusion of fibres into porous mixes. Metal, polymeric, basalt and glass fibres are used as reinforcing components. It has been identified that products reinforced by polypropylene fibres demonstrate substantial abradability and deformability rates even under the influence of minor tensile stresses due to the low adhesion strength of polypropylene in the cement matrix. The objective of the research was to develop the type of polypropylene of D500 grade that would demonstrate the operating properties similar to those of Hebel and Ytong polypropylenes. Dispersed reinforcement was performed by the basalt fibre. This project contemplates an autoclave-free technology to optimize the consumption of electricity. Dispersed reinforcement is aimed at the reduction of the block settlement in the course of hardening at early stages of their operation, the improvement of their strength and other operating properties. Reduction in the humidity rate of the mix is based on the plasticizing properties of fibres, as well as the application of the dry mineralization method. Selection of optimal parameters of the process-related technology was performed with the help of G-BAT-2011 Software, developed at Moscow State University of Civil Engineering. The authors also

  16. Graphite coated PVA fibers as the reinforcement for cementitious composites

    Science.gov (United States)

    Zhang, Yunhua; Zhang, Zhipeng; Liu, Zhichao

    2018-02-01

    A new preconditioning method was developed to PVA fibers as the reinforcement in cement-based materials. Virgin PVA fibers exhibits limited adhesion to graphite powders due to the presence of oil spots on the surface. Mixing PVA fibers with a moderately concentrated KMnO4-H2SO4 solution can efficiently remove the oil spots by oxidation without creating extra precipitate (MnO2) associated with the reduction reaction. This enhances the coating of graphite powders onto fiber surface and improves the mechanical properties of PVA fiber reinforced concrete (PVA-FRC). Graphite powders yields better fiber distribution in the matrix and reduces the fiber-matrix bonding, which is beneficial in uniformly distributing the stress among embedded fibers and creating steady generation and propagation of tight microcracks. This is evidenced by the significantly enhanced strain hardening behavior and improved flexural strength and toughness.

  17. Behaviour of reinforced columns with E_Glass fiber and carbon fiber

    OpenAIRE

    BOUCHELAGHEM Hafida; BEZAZI Abederrezak; Benzanache Naziha; SCARPA Fabrizio

    2018-01-01

    Externally bonded reinforcement using Fiber Reinforced Polymer (FRP) is a good response to the concern represented by the need for rehabilitation of concrete structures. These techniques are more and more attractive because of their fast and low labour costs, very good strength to weight ratio, good fatigue properties, and non-corrosive characteristics of FRP. The present work is an experimental study investigating the mechanical behaviour under a uni-axial loading of short concrete columns r...

  18. Improving degradation resistance of sisal fiber in concrete through fiber surface treatment

    Science.gov (United States)

    Wei, Jianqiang; Meyer, Christian

    2014-01-01

    As part of an ongoing effort to improve the sustainability of reinforced concrete, recycled concrete aggregate is being considered together with natural fibers such as sisal fiber as replacement of synthetic reinforcement. Since natural fibers are known to undergo potential deterioration in the alkaline cement matrix especially in outdoor erosive environment, they need to be treated to improve their durability. This paper describes two such methods (thermal and Na2CO3 treatment) and evaluates their effects on the degradation resistance of sisal fiber and durability of sisal fiber-reinforced concrete with recycled concrete aggregate. Concrete specimens were subjected to cycles of wetting and drying to accelerate aging. The microstructure, tensile strength and Young's modulus of sisal fiber as well as the weight loss of the composite were evaluated. Of primary interest were the effects on compressive and splitting tensile strength of sisal fiber-reinforced concrete. Thermal treatment and Na2CO3 surface treatment were shown to improve the durability of the composite as measured by splitting tensile strength by 36.5% and 46.2% and the compressive strength by 31.1% and 45.4%, respectively. The mechanisms of these two treatment methods were also analyzed. The thermal treatment achieved improvement of cellulose's crystallization, which ensured the initial strength and improved durability of sisal fiber. A layer consisting of calcium carbonate sediments, which protects the internals of a fiber from the strong alkali solution formed in the cement hydration process, was formed and filled in pits and cavities on the Na2CO3 treated sisal fiber's surface to improve their corrosion resistance and durability and reduced the detrimental effects of Na+ ions on concrete.

  19. Thermal stress control using waste steel fibers in massive concretes

    Science.gov (United States)

    Sarabi, Sahar; Bakhshi, Hossein; Sarkardeh, Hamed; Nikoo, Hamed Safaye

    2017-11-01

    One of the important subjects in massive concrete structures is the control of the generated heat of hydration and consequently the potential of cracking due to the thermal stress expansion. In the present study, using the waste turnery steel fibers in the massive concretes, the amount of used cement was reduced without changing the compressive strength. By substituting a part of the cement with waste steel fibers, the costs and the generated hydration heat were reduced and the tensile strength was increased. The results showed that by using 0.5% turnery waste steel fibers and consequently, reducing to 32% the cement content, the hydration heat reduced to 23.4% without changing the compressive strength. Moreover, the maximum heat gradient reduced from 18.5% in the plain concrete sample to 12% in the fiber-reinforced concrete sample.

  20. Influence of Additives on Reinforced Concrete Durability

    Directory of Open Access Journals (Sweden)

    Neverkovica Darja

    2014-12-01

    Full Text Available The article presents the results of the research on carbonation and chloride induced corrosion mechanisms in reinforced concrete structures, based on three commercially available concrete admixtures: Xypex Admix C-1000, Penetron Admix and Elkem Microsilica. Carbonation takes place due to carbon dioxide diffusion, which in the required amount is present in the air. Chlorides penetrate concrete in case of the use of deicing salt or structure exploitation in marine atmosphere. Based on the implemented research, Elkem Microsilica is the recommended additive for the use in aggressive environmental conditions. Use of Xypex Admix C-1000 and Penetron Admix have only average resistance to the aggressive environmental impact.

  1. Flexural Behaviour of Reinforced Fibrous Concrete Beams: Experiments and Analytical Modelling

    International Nuclear Information System (INIS)

    Hameed, R.; Sellier, A.; Turatsinze, A.; Duprat, F.

    2013-01-01

    Flexural behaviour of reinforced fibrous concrete beams was investigated in this research study. Two types of metallic fibers were studied: amorphous metallic fibers (FibraFlex fibers), and carbon steel hooked-end fibers (Dramix fibers). Four types of reinforced concretes were made: one control (without fibers) and three fibrous. Among three reinforced fibrous concretes, two contained fibers in mono form and one contained fibers in hybrid form. The total quantity of fibers in mono and hybrid forms was 20 kg/m3 and 40 kg/m3, respectively. Three point bending tests were performed according to European standards NF EN 14651 on beams of 150 x 150 mm cross section and length of 550 mm. The results showed that due to positive synergetic interaction between the two metallic fibers used, reinforced fibrous concret (RFC) beams containing fibers in hybrid form exhibited better response at all loading stages. Analytical model to predict ultimate moment capacity of the RFC beam of rectangular section was developed and is presented in this paper. Analytical results for ultimate moment were found to be in good agreement with experimental results. (author)

  2. Ultra thin continuously reinforced concrete pavement research in south Africa

    CSIR Research Space (South Africa)

    Perrie, BD

    2007-08-01

    Full Text Available Ultra thin continuously reinforced concrete pavements (UTCRCP), in literature also referred to as Ultra Thin Reinforced High Performance Concrete (UTHRHPC), have been used in Europe successfully as a rehabilitation measure on steel bridge decks...

  3. Properties of Fiber-Reinforced Mortars Incorporating Nano-Silica

    OpenAIRE

    Ahmed Ghazy; Mohamed T. Bassuoni; Eugene Maguire; Mark O’Loan

    2016-01-01

    Repair and rehabilitation of deteriorating concrete elements are of significant concern in many infrastructural facilities and remain a challenging task. Concerted research efforts are needed to develop repair materials that are sustainable, durable, and cost-effective. Research data show that fiber-reinforced mortars/concretes have superior performance in terms of volume stability and toughness. In addition, it has been recently reported that nano-silica particles can generally improve the m...

  4. Membrane reinforcement in concrete shells: A review

    International Nuclear Information System (INIS)

    Gupta, A.K.

    1984-01-01

    A historical evolution of the membrane reinforcement design in concrete shells is presented. Theoretical developments, experimental verifications and the history of US codes and standards have been traced. For two decades now, the evidence is converging towards application of the principle of minimum resistance. This principle is rational, and it can reasonably explain the experimental results. (orig.)

  5. Corrosion and Cracking of Reinforced Concrete

    DEFF Research Database (Denmark)

    Thoft-Christensen, Palle

    Modelling of the deterioration of reinforced concrete has in recent years changed from being a deterministic modelling based on experience to be stochastic modelling based on sound and consistent physical, chemical and mechanical principles. In this paper is presented a brief review of modern mod...... for time to initial corrosion, time to initial cracking, and time to a given crack width may be obtained....

  6. Global methods for reinforced concrete slabs

    International Nuclear Information System (INIS)

    Hoffmann, A.; Lepareux, M.; Combescure, A.

    1985-08-01

    This paper develops the global method strategy to compute elastoplastic thin shells or beams. It is shown how this methodology can be applied to the case of reinforced concrete structures. Two cases of applications are presented: one static, the other dynamic. The numerical results are compared to experimental data

  7. Damping characteristics of reinforced concrete structures

    International Nuclear Information System (INIS)

    Hisano, M.; Nagashima, I.; Kawamura, S.

    1987-01-01

    Reinforced concrete structures in a nuclear power plant are not permitted to go far into the inelasticity generally, even when subjected to strong ground motion. Therefore it is important to evaluate the damping appropriately in linear and after cracking stage before yielding in the dynamic response analysis. Next three dampings are considered of reinforced concrete structures. 1) Internal damping in linear range material damping of concrete without cracks;2) Hysteretic damping in inelastic range material hysteretic damping of concrete due to cracking and yielding;3) Damping due to the energy dissipation into the ground. Among these damping material damping affects dynamic response of a nuclear power plant on hard rock site where damping due to energy dissipation into the ground is scarcely expected. However material damping in linear and slightly nonlinear range have only been assumed without enough experimental data. In this paper such damping is investigated experimentally by the shaking table tests of reinforced concrete box-walls which modeled roughly the outer wall structure of a P.W.R. type nuclear power plant

  8. Control blasting of reinforced concrete

    International Nuclear Information System (INIS)

    Nagase, Tetsuo

    1981-01-01

    With the need of decommissioning nuclear power plants, it is urgently required to establish its methods and standards. In Shimizu Construction Co., Ltd., experimental feasibility studies have been made on explosive demolition method i.e. the controlled blasting for the massive concrete structures peculiar to nuclear power plants, considering low radiation exposure, safety and high efficiency. As such, four techniques of line drilling, cushion blasting, pre-splitting and guide hole blasting, respectively, are described with photographs. Assuming the selective demolition of activated concrete structures, the series of experiments showed the good results of clear-cut surfaces and the effect of blasting was confined properly. Moreover, the scattering of debris in blasting was able to be entirely prevented by the use of rubber belts. The generation of gas and dust was also little due to the small amount of the charge used. (J.P.N.)

  9. Acoustic emission techniques applied to conventionally reinforced concrete bridge girders.

    Science.gov (United States)

    2008-09-01

    Reinforced concrete (RC) bridges generally operate at service-level loads except during discrete overload events that can reduce the integrity of the structure by initiating concrete cracks, widening or extending of existing concrete cracks, as well ...

  10. Simulating distributed reinforcement effects in concrete analysis

    International Nuclear Information System (INIS)

    Marchertas, A.H.

    1985-01-01

    The effect of the bond slip is brought into the TEMP-STRESS finite element code by relaxing the equal strain condition between concrete and reinforcement. This is done for the elements adjacent to the element which is cracked. A parabolic differential strain variation is assumed along the reinforcement from the crack, which is taken to be at the centroid of the cracked element, to the point where perfect bonding exists. This strain relationship is used to increase the strain of the reinforcement in the as yet uncracked elements located adjacent to a crack. By the same token the corresponding concrete strain is decreased. This estimate is made assuming preservation of strain energy in the element. The effectiveness of the model is shown by examples. Comparison of analytical results is made with structural test data. The influence of the bonding model on cracking is portrayed pictorially. 5 refs., 6 figs

  11. Slipforming of reinforced concrete shield building

    International Nuclear Information System (INIS)

    Hsieh, M.C.; King, J.R.

    1982-01-01

    The unique design and construction features of slipforming the heavily reinforced concrete cylindrical shield walls at the Satsop nuclear plant in Washington, D.C. site are presented. The shield walls were designed in compliance with seismic requirements which resulted in the need for reinforcing steel averaging 326 kg/m/sup 3/. A 7.6 m high, three-deck moving platform was designed to permit easy installation of the reinforcing steel, embedments, and blockouts, and to facilitate concrete placement and finishing. Two circular box trusses, one on each side of the shield wall, were used in combination with a spider truss to meet both the tolerance and strength requirements for the slipform assembly

  12. Continuous Natural Fiber Reinforced Thermoplastic Composites by Fiber Surface Modification

    Directory of Open Access Journals (Sweden)

    Patcharat Wongsriraksa

    2013-01-01

    Full Text Available Continuous natural fiber reinforced thermoplastic materials are expected to replace inorganic fiber reinforced thermosetting materials. However, in the process of fabricating the composite, it is difficult to impregnate the thermoplastic resin into reinforcement fiber because of the high melt viscosity. Therefore, intermediate material, which allows high impregnation during molding, has been investigated for fabricating continuous fiber reinforced thermoplastic composite by aligning resin fiber alongside reinforcing fiber with braiding technique. This intermediate material has been called “microbraid yarn (MBY.” Moreover, it is well known that the interfacial properties between natural fiber and resin are low; therefore, surface treatment on continuous natural fiber was performed by using polyurethane (PU and flexible epoxy (FLEX to improve the interfacial properties. The effect of surface treatment on the mechanical properties of continuous natural fiber reinforced thermoplastic composites was examined. From these results, it was suggested that surface treatment by PU with low content could produce composites with better mechanical properties.

  13. Review of Repair Materials for Fire-Damaged Reinforced Concrete Structures

    Science.gov (United States)

    Zahid, MZA Mohd; Abu Bakar, BH; Nazri, FM; Ahmad, MM; Muhamad, K.

    2018-03-01

    Reinforced concrete (RC) structures perform well during fire and may be repaired after the fire incident because their low heat conductivity prevents the loss or degradation of mechanical strength of the concrete core and internal reinforcing steel. When an RC structure is heated to more than 500 °C, mechanical properties such as compressive strength, stiffness, and tensile strength start to degrade and deformations occur. Although the fire-exposed RC structure shows no visible damage, its residual strength decreases compared with that in the pre-fire state. Upon thorough assessment, the fire-damaged RC structure can be repaired or strengthened, instead of subjecting to partial or total demolition followed by reconstruction. The structure can be repaired using several materials, such as carbon fiber-reinforced polymer, glass fiber-reinforced polymer, normal strength concrete, fiber-reinforced concrete, ferrocement, epoxy resin mortar, and high-performance concrete. Selecting an appropriate repair material that must be compatible with the substrate or base material is a vital step to ensure successful repair. This paper reviews existing repair materials and factors affecting their performance. Of the materials considered, ultra-high-performance fiber-reinforced concrete (UHPFRC) exhibits huge potential for repairing fire-damaged RC structures but lack of information available. Hence, further studies must be performed to assess the potential of UHPFRC in rehabilitating fire-damaged RC structures.

  14. Frost resistance of fibre reinforced concrete structures

    DEFF Research Database (Denmark)

    Hansen, Ernst Jan De Place

    1999-01-01

    Frost resistance of fibre reinforced concrete with 2.5-4.2% air and 6-9% air (% by volume in fresh concrete) casted in the laboratory and in-situ is compared. Steel fibres with hooked ends (ZP, length 30 mm) and polypropylene fibres (PP, CS, length 12 mm) are applied. It is shown that· addition...... of 0.4-1% by volume of fibres cannot replace air entrainment in order to secure a frost resistant concrete; the minimum amount of air needed to make the concrete frost resistant is not changed when adding fibres· the amount of air entrainment must be increased when fibres are added to establish...

  15. Retrofitting of Reinforced Concrete Beams using Reactive Powder Concrete (RPC)

    Science.gov (United States)

    Karthik, S.; Sundaravadivelu, Karthik

    2017-07-01

    Strengthening of existing damaged structures is one of the leading studies in civil engineering. The purpose of retrofitting is to structurally treat the member with an aim to restore the structure to its original strength. The focus of this project is to study the behaviour of damaged Reinforced Concrete beam retrofitted with Reactive Powder Concrete (RPC) Overlay. Reinforced concrete beams of length 1200 mm, width 100 mm and depth 200 mm were casted with M30 grade of concrete in the laboratory and cured for 28 days. One beam is taken as control and are tested under two point loading to find out ultimate load. Remaining beams are subjected to 90 % ultimate load of control beams. The partially damaged beams are retrofitted with Reactive Powder Concrete Overlay at the full tension face of the beam and side overlay depends upon the respectable retrofitting techniques with 10 mm and 20 mm thick layer to find optimum. Materials like steel fibres are added to enhance the ductility by eliminating coarse particle for homogeneity of the structure. Finally, the modes of failure for retrofitted beams are analysed experimentally under two point loading & compared the results with Control beam.

  16. Alkali-resistant glass fiber reinforced high strength concrete in simulated aggressive environment; Hormigón de altas resistencia reforzado con fibras de vidrio resistentes a alcalis en ambientes agresivos simulados.

    Energy Technology Data Exchange (ETDEWEB)

    Kwan, W.H.; Cheah, C.B.; Ramli, M.; Chang, K.Y.

    2018-04-01

    The durability of the alkali-resistant (AR) glass fiber reinforced concrete (GFRC) in three simulated aggresive environments, namely tropical climate, cyclic air and seawater and seawater immersion was investigated. Durability examinations include chloride diffusion, gas permeability, X-ray diffraction (XRD) and scanning electron microscopy examination (SEM). The fiber content is in the range of 0.6 % to 2.4 %. Results reveal that the specimen containing highest AR glass fiber content suffered severe strength loss in seawater environment and relatively milder strength loss under cyclic conditions. The permeability property was found to be more inferior with the increase in the fiber content of the concrete. This suggests that the AR glass fiber is not suitable for use as the fiber reinforcement in concrete is exposed to seawater. However, in both the tropical climate and cyclic wetting and drying, the incorporation of AR glass fiber prevents a drastic increase in permeability. [Spanish] Este trabajo se centra en el estudio de la durabilidad de hormigón reforzado con fibra de vidrio resistente a álcalis (CRFVRA) en tres ambientes agresivos simulados como son, condiciones de clima tropical, ciclos de aire y agua de mar e inmersión marina. Los tests de durabilidad incluyeron la difusión de cloruros, permeabilidad de gas, difracción de rayos X (XRD) y evaluacion por microscopía electrónica de barrido (SEM). Los contenidos de fibra evaluados estuvieron en el rango desde 0.6% hasta 2.4%. Los resultados revelan que la muestra que contiene el mayor porcentaje de fibra sufre una severa pérdida de resistencia en condiciones de agua de mar, y una menor disminución de resistencia bajo condiciones cíclicas. Su permeabilidad disminuyó al incrementar el contenido de fibras en el hormigón. Lo anterior sugiere que el refuerzo con fibra resistente a alcalinos no es adecuado para su uso en hormigón en ambiente de agua de mar. Sin embargo, bajo condiciones de clima

  17. Study of Interaction of Reinforcement with Concrete by Numerical Methods

    Science.gov (United States)

    Tikhomirov, V. M.; Samoshkin, A. S.

    2018-01-01

    This paper describes the study of deformation of reinforced concrete. A mathematical model for the interaction of reinforcement with concrete, based on the introduction of a contact layer, whose mechanical characteristics are determined from the experimental data, is developed. The limiting state of concrete is described using the Drucker-Prager theory and the fracture criterion with respect to maximum plastic deformations. A series of problems of the theory of reinforced concrete are solved: stretching of concrete from a central-reinforced prism and pre-stressing of concrete. It is shown that the results of the calculations are in good agreement with the experimental data.

  18. The Shrinkage Cracking Behavior in Reinforced Reactive Powder Concrete Walls

    Directory of Open Access Journals (Sweden)

    Samir A. Al-Mashhadi

    2017-07-01

    Full Text Available In this study, the reduced scale wall models were used (they are believed to resemble as much as possible the field conditions to study the shrinkage behavior of reactive powder concrete (RPC base restrained walls. Six base restrained RPC walls were casted in different length/height ratios of two ratios of steel fiber by volume in Summer. These walls were restrained by reinforced concrete bases to provide the continuous base restraint to the walls. The mechanical properties of reactive powder concrete investigated were; compressive strength between (75.3 – 140.1 MPa, splitting tensile strength between (5.7 – 13.9 MPa, flexural tensile strength (7.7 – 24.5 MPa, and static modulus of elasticity (32.7 – 47.1GPa. Based on the observations of this work, it was found that the cracks did not develop in the reduced scale of the reactive powder concrete (RPC walls restrained from movement at their bases for different L/H ratios (2, 5, and 10 and for two ratio of steel fiber (1% & 2% during 90 days period of drying conditions. Moreover, the shrinkage values increase toward the edges. Based on the results of this work, the increase in the maximum shrinkage values of walls with 1% steel fiber were (29%, 28%, 28% of the maximum shrinkage values of walls with 2% steel fiber of length/height ratios of (2, 5, and 10 respectively. The experimental observation in beam specimens showed that the free shrinkage, tensile strain capacity and elastic tensile strain capacity (at date of cracking of beams with 1% steel fiber were higher than the beams with 2% steel fiber by about (24%, (45% and (42% respectively

  19. Ductility of Reinforced Concrete Structures in Flexure

    DEFF Research Database (Denmark)

    Hestbech, Lars

    2013-01-01

    In this thesis, a rotational capacity model for flexural reinforced concrete elements is presented. The model is based on the general assumption, that any other failure mode than bending is prevented by proper design. This includes failure due to shear, anchorage, concentrated loads etc. Likewise...... are not necessarily so. An example shows the applicability of the model and a parametric study shows the advantages of the model compared with code provisions. Finally, improvements of the compression zone modelling is performed in order to include a better performance when concrete crushing is the failure criterion...

  20. Deflection of Steel Reinforced Concrete Beam Prestressed With CFRP Bar

    Directory of Open Access Journals (Sweden)

    Selvachandran P.

    2017-09-01

    Full Text Available Carbon Fiber Reinforced polymer (CFRP bars are weak in yielding property which results in sudden failure of structure at failure load. Inclusion of non-pretensioned steel reinforcement in the tension side of CFRP based prestressed concrete beam will balance the yielding requirements of member and it will show the definite crack failure pattern before failure. Experimental investigation has been carried out to study the deflection behavior of partially prestressed beam. Experimental works includes four beam specimens stressed by varying degree of prestressing. The Partial Prestressing Ratio (PPR of specimen is considered for experimental works in the range of 0.6 to 0.8. A new deflection model is recommended in the present study considering the strain contribution of CFRP bar and steel reinforcement for the fully bonded member. New deflection model converges to experimental results with the error of less than 5% .

  1. Bending Moment Decrease of Reinforced Concrete Beam Supported by Additional CFRP

    Directory of Open Access Journals (Sweden)

    Mykolas Daugevičius

    2011-04-01

    Full Text Available The calculation method of reinforced concrete beam with additional CFRP composite is proposed in this article. This method estimates tangential angular concrete deformations in tensioned beam layers between steel and bonded carbon fiber reinforced polymer. The horizontal slip of CFRP composite reduce beam bending moment capacity. An additional coefficient to reduce CFRP resultant force is necessary for better precision of bending moment capacity. Also, various calculation methods of bending moment capacity are considered. Article in Lithuanian

  2. Tensile behavior and tension stiffening of reinforced concrete

    International Nuclear Information System (INIS)

    Choun, Young Sun; Seo, Jeong Moon

    2001-03-01

    For the ultimate behavior analysis of containment buildings under severe accident conditions, a clear understanding of tensile behaviors of plain and reinforced concrete is necessary. Nonlinear models for tensile behaviors of concrete are also needed. This report describe following items: tensile behaviors of plain concrete, test results of reinforced concrete panels in uniaxial and biaxial tension, tension stiffening. The tensile behaviors of reinforced concrete are significantly influenced by the properties of concrete and reinforcing steel. Thus, for a more reliable evaluation of tensile behavior and ultimate pressure capacity of a reinforced or prestressed concrete containment building, an advanced concrete model which can be considered rebar-concrete interaction effects should be developed. In additions, a crack behavior analysis method and tension stiffening models, which are based on fracture mechanics, should be developed. The model should be based on the various test data from specimens considering material and sectional properties of the containment building

  3. Prediction of punching shear capacities of two-way concrete slabs reinforced with FRP bars

    Directory of Open Access Journals (Sweden)

    Ibrahim M. Metwally

    2013-08-01

    Full Text Available Where corrosion of steel reinforcement is a concern, fiber-reinforced polymer (FRP reinforcing bar or grid reinforcement provides an alternative reinforcement for concrete flat slabs. The existing provisions for punching of slabs in most international design standards for reinforced concrete are based on tests of steel reinforced slabs. The elastic stiffness and bonding characteristics of FRP reinforcement are sufficiently different from those of steel to affect punching strength [1]. This paper evaluates the punching shear strength of concrete flat slabs reinforced with different types of fiber-reinforced polymer (FRP. A total of 59 full-size slabs were constructed and tested collected from the literature of FRP bars reinforced concrete slabs. The test parameters were the amount of FRP reinforcing bars, Young’s modulus of FRP bars, slab thickness, loaded areas and concrete compressive strength. The experimental punching shear strengths were compared with the available theoretical predictions, including the ACI 318 Code, BS 8110 Code, ACI 440 design guidelines, and a number of models proposed by some researchers in the literature. Two approaches for predicting the punching strength of FRP-reinforced slabs are examined. The first is an empirical new model which is considered as a modification of El-Gamal et al. [2] model. The second is a Neural Networks Technique; which has been developed to predict the punching shear capacity of FRP reinforced concrete slabs. The accuracies of both methods were evaluated against the experimental test data. They attained excellent agreement with available test results compared to the existing design formulas.

  4. Monitoring the corrosion process of reinforced concrete using BOTDA and FBG sensors.

    Science.gov (United States)

    Mao, Jianghong; Chen, Jiayun; Cui, Lei; Jin, Weiliang; Xu, Chen; He, Yong

    2015-04-15

    Expansion and cracking induced by the corrosion of reinforcement concrete is the major factor in the failure of concrete durability. Therefore, monitoring of concrete cracking is critical for evaluating the safety of concrete structures. In this paper, we introduce a novel monitoring method combining Brillouin optical time domain analysis (BOTDA) and fiber Bragg grating (FBG), based on mechanical principles of concrete expansion cracking. BOTDA monitors concrete expansion and crack width, while FBG identifies the time and position of cracking. A water-pressure loading simulation test was carried out to determine the relationship between fiber strain, concrete expansion and crack width. An electrical accelerated corrosion test was also conducted to evaluate the ability of this novel sensor to monitor concrete cracking under practical conditions.

  5. Numerical Limit Analysis of Reinforced Concrete Structures

    DEFF Research Database (Denmark)

    Larsen, Kasper Paaske

    For more than half a century, limit state analysis based on the extremum principles have been used to assess the load bearing capacity of reinforced concrete structures. Extensi- ve research within the field has lead to several techniques for performing such analysis manually. While these manual...... methods provide engineers with valuable tools for limit sta- te analysis, their application becomes difficult with increased structural complexity. The main challenge is to solve the optimization problem posed by the extremum principles. This thesis is a study of how numerical methods can be used to solve...... limit state analysis problems. The work focuses on determination of the load bearing capacity of reinforced concrete structures by employing the lower bound theorem and a finite element method using equilibrium elements is developed. The recent year’s development within the field of convex optimization...

  6. Investigation of novel composite material based on extra-heavy concrete and basalt fiber for gamma radiation protection properties

    International Nuclear Information System (INIS)

    Romanenko, Yi.M.; Nosovs'kij, A.V.; Gulyik, V.Yi.; Golyuk, M.Yi.

    2018-01-01

    The paper presents a new composite material for radiation protection based on extra-heavy concrete reinforced by basalt fiber. Basalt fiber is a new material for concrete reinforcement, which provides improved mechanical characteristics of concrete, reduces the level of microcracks and increases the durability of concrete. Within the scope of present work, the gamma-ray radiation protection properties of concrete reinforced with basalt fiber was modeled. Two types of extra-heavy concrete were used for this paper. The main gamma-ray attenuation coefficients such as mean atomic number, mean atomic mass, mean electron density, effective atomic number, effective electron density, Murty effective atomic number were analyzed with help of WinXCom software. It has been shown that the addition of basalt fiber to concrete does not impair its gamma-ray radiation shielding properties. With increasing the basalt fiber dosage in concrete, the radiation properties against gamma radiation are improved.

  7. Gaudi and reinforced concrete in construction

    OpenAIRE

    Grima Lopez, Rosa; Aguado de Cea, Antonio; Gómez Serrano, José

    2013-01-01

    The first two decades of the 20th century witnessed the introduction and expansion of reinforced concrete as a building material in Spain. Few years passed between the introduction of the first patents in the most industrialized areas of the Iberian Peninsula and the subsequent generalization of the technique through scientific knowledge obtained in universities. This period coincides almost completely with the professional career of Antoni Gaudí, one of the most famous Catalan architects. Th...

  8. Selected Aspects of Computer Modeling of Reinforced Concrete Structures

    Directory of Open Access Journals (Sweden)

    Szczecina M.

    2016-03-01

    Full Text Available The paper presents some important aspects concerning material constants of concrete and stages of modeling of reinforced concrete structures. The problems taken into account are: a choice of proper material model for concrete, establishing of compressive and tensile behavior of concrete and establishing the values of dilation angle, fracture energy and relaxation time for concrete. Proper values of material constants are fixed in simple compression and tension tests. The effectiveness and correctness of applied model is checked on the example of reinforced concrete frame corners under opening bending moment. Calculations are performed in Abaqus software using Concrete Damaged Plasticity model of concrete.

  9. Strengthening Reinforced Concrete Beams with CFRP and GFRP

    Directory of Open Access Journals (Sweden)

    Mehmet Mustafa Önal

    2014-01-01

    Full Text Available Concrete beams were strengthened by wrapping the shear edges of the beams twice at 45° in opposite directions by either carbon fiber reinforced polymer (CFRP or glass fiber reinforced polymer (GFRP. The study included 3 CFRP wrapped beams, 3 GFRP wrapped beams, and 3 control beams, all of which were 150 × 250 × 2200 mm and manufactured with C20 concrete and S420a structural steel at the Gazi University Technical Education Faculty labs, Turkey. Samples in molds were cured by watering in the open air for 21 days. Four-point bending tests were made on the beam test specimens and the data were collected. Data were evaluated in terms of load displacement, bearing strength, ductility, and energy consumption. In the CFRP and GFRP reinforced beams, compared to controls, 38% and 42%, respectively, strength increase was observed. In all beams, failure-flexural stress occurred in the center as expected. Most cracking was observed in the flexural region 4. A comparison of CFRP and GFRP materials reveals that GFRP enforced parts absorb more energy. Both materials yielded successful results. Thicker epoxy application in both CFRP and GFRP beams was considered to be effective in preventing break-ups.

  10. Process of cracking in reinforced concrete beams (simulation and experiment

    Directory of Open Access Journals (Sweden)

    I. N. Shardakov

    2016-10-01

    Full Text Available The paper presents the results of experimental and theoretical investigations of the mechanisms of crack formation in reinforced concrete beams subjected to quasi-static bending. The boundary-value problem has been formulated in the framework of brittle fracture mechanics and solved using the finite-element method. Numerical simulation of the vibrations of an uncracked beam and a beam with cracks of different size serves to determine the pattern of changes in the spectrum of eigenfrequencies observed during crack evolution. A series of sequential quasi-static 4-point bend tests leading to the formation of cracks in a reinforced concrete beam were performed. At each loading step, the beam was subjected to an impulse load to induce vibrations. Two stages of cracking were detected. During the first stage the nonconservative process of deformation begins to develope, but has not visible signs. The second stage is an active cracking, which is marked by a sharp change in eingenfrequencies. The boundary of a transition from one stage to another is well registered. The vibration behavior was examined for the ordinary concrete beams and the beams strengthened with a carbon-fiber polymer. The obtained results show that the vibrodiagnostic approach is an effective tool for monitoring crack formation and assessing the quality of measures aimed at strengthening concrete structures

  11. Concrete cover cracking due to uniform reinforcement corrosion

    DEFF Research Database (Denmark)

    Solgaard, Anders Ole Stubbe; Michel, Alexander; Geiker, Mette Rica

    2013-01-01

    and reinforcement de-passivation is a frequently used limit state. The present paper investigates an alternative limit state: corrosion-induced cover cracking. Results from numerical simulations of concrete cover cracking due to reinforcement corrosion are presented. The potential additional service life...... is calculated using literature data on corrosion rate and Faraday’s law. The parameters varied comprise reinforcement diameter, concrete cover thickness and concrete material properties, viz. concrete tensile strength and ductility (plain concrete and fibre reinforced concrete). Results obtained from......Service life design (SLD) is an important tool for civil engineers to ensure that the structural integrity and functionality of the structure is not compromised within a given time frame, i.e. the service life. In SLD of reinforced concrete structures, reinforcement corrosion is of major concern...

  12. Self-compacting fibre reinforced concrete applied in thin plates

    NARCIS (Netherlands)

    Grunewald, S.; Shionaga, R.; Walraven, J.C.

    2013-01-01

    Floor panels produced with traditionally vibrated concrete are relatively thick due to the need to reinforce concrete and consequently, heavy. Without the need to place rebars in panels and by applying self-compacting fibre reinforced concrete (SCFRC) the production process becomes more efficient.

  13. Fatigue Strength of Reinforced Concrete Flexural Members | Kuryllo ...

    African Journals Online (AJOL)

    It is well known that reinforced concrete flexural members subjected to cyclic loads behave differently compared with static bending and can collapse due to the fatigue of concrete, reinforcement or both when maximum fatigue stresses of concrete and steel are well below the corresponding static strengths. But up till now ...

  14. Mechanical properties of self-compacted fiber concrete mixes

    Directory of Open Access Journals (Sweden)

    Mounir M. Kamal

    2014-04-01

    Full Text Available Increased productivity and improved working environment have had high priority in the development of concrete construction over the last decade. The major impact of the introduction of self-compacting concrete (SCC is connected to the production process. The productivity is drastically improved through the elimination of vibration compaction and process reorganization. The working environment is significantly enhanced through avoidance of vibration induced damages, reduced noise and improved safety. Additionally, SCC technology has improved the performance in terms of hardened concrete properties like surface quality, strength and durability. The main objective of this research was to determine the optimum content of fibers (steel and polypropylene fibers used in SCC. The effect of different fibers on the fresh and hardened properties was studied. An experimental investigation on the mechanical properties, including compressive strength, flexural strength and impact strength of fiber reinforced self-compacting concrete was performed. The results of the investigation showed that: the optimum dosage of steel and polypropylene fiber was 0.75% and 1.0% of the cement content, respectively. The impact performance was also improved due to the use of fibers. The control mix specimen failed suddenly in flexure and impact, the counterpart specimens contain fibers failed in a ductile manner, and failure was accompanied by several cracks.

  15. Use of Fiber-Reinforced Cements in Masonry Construction and Structural Rehabilitation

    Directory of Open Access Journals (Sweden)

    Ece Erdogmus

    2015-02-01

    Full Text Available The use of fiber reinforcement in traditional concrete mixes has been extensively studied and has been slowly finding its regular use in practice. In contrast, opportunities for the use of fibers in masonry applications and structural rehabilitation projects (masonry and concrete structures have not been as deeply investigated, where the base matrix may be a weaker cementitious mixture. This paper will summarize the findings of the author’s research over the past 10 years in these particular applications of fiber reinforced cements (FRC. For masonry, considering both mortar and mortar-unit bond characteristics, a 0.5% volume fraction of micro fibers in type N Portland cement lime mortar appear to be a viable recipe for most masonry joint applications both for clay and concrete units. In general, clay units perform better with high water content fiber reinforced mortar (FRM while concrete masonry units (CMUs perform better with drier mixtures, so 130% and 110% flow rates should be targeted, respectively. For earth block masonry applications, fibers’ benefits are observed in improving local damage and water pressure resistance. The FRC retrofit technique proposed for the rehabilitation of reinforced concrete two-way slabs has exceeded expectations in terms of capacity increase for a relatively low cost in comparison to the common but expensive fiber reinforced polymer applications. For all of these applications of fiber-reinforced cements, further research with larger data pools would lead to further optimization of fiber type, size, and amount.

  16. Mechanics of fiber reinforced materials

    Science.gov (United States)

    Sun, Huiyu

    This dissertation is dedicated to mechanics of fiber reinforced materials and the woven reinforcement and composed of four parts of research: analytical characterization of the interfaces in laminated composites; micromechanics of braided composites; shear deformation, and Poisson's ratios of woven fabric reinforcements. A new approach to evaluate the mechanical characteristics of interfaces between composite laminae based on a modified laminate theory is proposed. By including an interface as a special lamina termed the "bonding-layer" in the analysis, the mechanical properties of the interfaces are obtained. A numerical illustration is given. For micro-mechanical properties of three-dimensionally braided composite materials, a new method via homogenization theory and incompatible multivariable FEM is developed. Results from the hybrid stress element approach compare more favorably with the experimental data than other existing numerical methods widely used. To evaluate the shearing properties for woven fabrics, a new mechanical model is proposed during the initial slip region. Analytical results show that this model provides better agreement with the experiments for both the initial shear modulus and the slipping angle than the existing models. Finally, another mechanical model for a woven fabric made of extensible yarns is employed to calculate the fabric Poisson's ratios. Theoretical results are compared with the available experimental data. A thorough examination on the influences of various mechanical properties of yarns and structural parameters of fabrics on the Poisson's ratios of a woven fabric is given at the end.

  17. Numerical Study on Deflection Behaviour of Concrete Beams Reinforced with GFRP Bars

    Science.gov (United States)

    Mohamed, Osama A.; Khattab, Rania; Hawat, Waddah Al

    2017-10-01

    Fiber-Reinforced Polymer (FRP) bars are gaining popularity as sustainable alternatives to conventional reinforcing steel bars in reinforced concrete applications. The production of FRP bars has lower environmental impact compared to steel reinforcing bars. In addition, the non-corroding FRP materials can potentially decrease the cost or need for maintenance of reinforced concrete structural elements, especially in harsh environmental conditions that can impact both concrete and reinforcement. FRP bars offer additional favourable properties including high tensile strength and low unit weight. However, the mechanical properties of FRP bars can lead to large crack widths and deflections. The objective of this study is to investigate the deflection behaviour of concrete beams reinforced with Glass FRP (GFRP) bars as a longitudinal main reinforcement. Six concrete beams reinforced with GFRP bars were modelled using the finite element computer program ANSYS. The main variable considered in the study is the reinforcement ratio. The deflection equations in current North American codes including ACI 440.1R-06, ACI 440.1R-15 and CSA S806-12 are used to compute deflections, and these are compared to numerical results. It was concluded in this paper that deflections predicted by ACI 440.1R-06 equations are lower than the numerical analysis results while ACI 440.1R-15 is in agreement with numerical analysis with tendency to be conservative. The values of deflections estimated by CSA S806-12 formulas are consistent with results of numerical analysis.

  18. Delamination of carbon-fiber strengthening layer from concrete beam during deformation (infrared thermography)

    OpenAIRE

    Shardakov, I. N.; Shestakov, A. P.; Bykov, A.A.

    2016-01-01

    Technology of strengthening reinforced concrete structures with composite materials has found wide application. The effectiveness of strengthening of concrete structures with externally bonded reinforcement is supported by a great deal of experimental evidence. However, the problem of serviceability of such structures has not been adequately explored. The present work describes the results of experimental studies on the loadcarrying capacity of concrete beams strengthened with carbon fiber re...

  19. The effect of concrete strength and reinforcement on toughness of reinforced concrete beams

    OpenAIRE

    Carneiro, Joaquim A. O.; Jalali, Said; Teixeira, Vasco M. P.; Tomás, M.

    2005-01-01

    The objective pursued with this work includes the evaluating of the strength and the total energy absorption capacity (toughness) of reinforced concrete beams using different amounts of steel-bar reinforcement. The experimental campaign deals with the evaluation of the threshold load prior collapse, ultimate load and deformation, as well as the beam total energy absorption capacity, using a three point bending test. The beam half span displacement was measured using a displacement transducer,...

  20. Design for whipping pipe impact on reinforced concrete panels

    International Nuclear Information System (INIS)

    Chen, C.C.; Gurbuz, O.

    1984-01-01

    This paper describes determination of local and overall effects on reinforced concrete panels due to whipping pipe impact in postulated pipe break events. Local damage includes the prediction of minimum concrete panel thickness required to prevent spalling from the back face of the target reinforced concrete panels. Evaluation of overall effect deals with the ductility ratio calculation for the target reinforced concrete panels. Design curves for determining the minimum panel thickness and the minimum reinforcement of reinforced concrete panels are presented in this paper for some cases commonly encountered in nuclear applications. The methodology and the results provided can be used to determine if an existing reinforced concrete wall is capable of resisting the whipping pipe impact, and consequently, if pipe whip restraints can be eliminated

  1. A Comparison of Bond Performance of Concrete Reinforced with ...

    African Journals Online (AJOL)

    The transfer of stress from a deformed bar to the concrete is achieved by mechanical locking of the steel into the surrounding concrete. This interfacial bond strength between steel and the surrounding concrete is an important factor influencing the strength and durability of reinforced concrete structure. This paper presents ...

  2. Performance evaluation of corrosion-affected reinforced concrete ...

    Indian Academy of Sciences (India)

    M B Anoop

    Abstract. A methodology for performance evaluation of reinforced concrete bridge girders in corrosive ... concrete (RC) members of infrastructural systems, espe- ... bility will be useful for making engineering decisions for ...... Water-cement ratio.

  3. Nonlinear analysis of reinforced concrete structures using software package abaqus

    Directory of Open Access Journals (Sweden)

    Marković Nemanja

    2014-01-01

    Full Text Available Reinforced concrete (AB is characterized by huge inhomogeneity resulting from the material characteristics of the concrete, then, quasi-brittle behavior during failure. These and other phenomena require the introduction of material nonlinearity in the modeling of reinforced concrete structures. This paper presents the modeling reinforced concrete in the software package ABAQUS. A brief theoretical overview is presented of methods such as: Concrete Damage Plasticity (CDP, Smeared Concrete Cracking (CSC, Cap Plasticity (CP and Drucker-Prager model (DPM. We performed a nonlinear analysis of two-storey reinforced concrete frame by applying CDP method for modeling material nonlinearity of concrete. We have analyzed damage zones, crack propagation and loading-deflection ratio.

  4. A corrosion monitoring system for existing reinforced concrete structures.

    Science.gov (United States)

    2015-05-01

    This study evaluated a multi-parameter corrosion monitoring system for existing reinforced concrete structures in chloride-laden service environments. The system was fabricated based on a prototype concrete corrosion measurement system that : had bee...

  5. Use of metallic fibers in concretes

    Directory of Open Access Journals (Sweden)

    Kherbache Souad

    2014-04-01

    Full Text Available The addition of a waste (fibers in construction materials, particularly, the concretes is a technique increasingly used, for several reasons, either ecological, or economic, or to improve some properties in a fresh or hardened state. In our work we studied the behavior of the concrete and the mortar containing metallic fibers resulting from the unit BCR which is in Bordj-Menaiel in Algeria (metallic fibers resulting from the rejection at the end of the domestic operation of silvering of the tools and which is stored in plastic bags which are preserved in metal containers. Our work consists to study the behavior of the concretes and the mortars containing these fibers of cement substitution. We noted that the use of these fibers in the concretes in substitution of cement decreases its of compressive strength and flexural strength but to 10% of waste these strength remain acceptable.

  6. Contributions to reinforced concrete structures numerical simulations

    International Nuclear Information System (INIS)

    Badel, P.B.

    2001-07-01

    In order to be able to carry out simulations of reinforced concrete structures, it is necessary to know two aspects: the behaviour laws have to reflect the complex behaviour of concrete and a numerical environment has to be developed in order to avoid to the user difficulties due to the softening nature of the behaviour. This work deals with these two subjects. After an accurate estimation of two behaviour models (micro-plan and mesoscopic models), two damage models (the first one using a scalar variable, the other one a tensorial damage of the 2 order) are proposed. These two models belong to the framework of generalized standard materials, which renders their numerical integration easy and efficient. A method of load control is developed in order to make easier the convergence of the calculations. At last, simulations of industrial structures illustrate the efficiency of the method. (O.M.)

  7. Reinforced concrete design to Eurocode 2

    CERN Document Server

    Toniolo, Giandomenico

    2017-01-01

    This textbook describes the basic mechanical features of concrete and explains the main resistant mechanisms activated in the reinforced concrete structures and foundations when subjected to centred and eccentric axial force, bending moment, shear, torsion and prestressing,. It presents a complete set of limit-state design criteria of the modern theory of RC incorporating principles and rules of the final version of the official Eurocode 2. This textbook examines methodological more than notional aspects of the presented topics, focusing on the verifications of assumptions, the rigorousness of the analysis and the consequent degree of reliability of results. Each chapter develops an organic topic, which is eventually illustrated by examples in each final paragraph containing the relative numerical applications. These practical end-of-chapter appendices and intuitive flow-charts ensure a smooth learning experience. The book stands as an ideal learning resource for students of structural design and analysis cou...

  8. Seismic behavior of reinforced concrete shear walls

    International Nuclear Information System (INIS)

    Wang, F.; Gantenbein, F.

    1989-01-01

    Reinforced concrete shear walls have an important contribution to building stiffness. So, it is necessary to know their behavior under seismic loads. The ultimate behavior study of shear walls subjected to dynamic loadings includes: - a description of the nonlinear global model based on cyclic static tests, - nonlinear time history calculations for various forcing functions. The comparison of linear and nonlinear results shows important margins related to the ductility when the bandwidth of the forcing function is narrow and centred on the wall natural frequency

  9. Experimental study on mix proportion of fiber reinforced cementitious composites

    Science.gov (United States)

    Jia, Yi; Zhao, Renda; Liao, Ping; Li, Fuhai; Yuan, Yuan; Zhou, Shuang

    2017-10-01

    To study the mechanical property of fiber reinforced cementations composites influenced by the fiber length, quartz sand diameter, matrix of water cement ratio, volume fraction of fiber and magnesium acrylate solution. Several 40×40×160 mm standard test specimens, "8" specimens and long "8" specimens and 21 groups of fiber concrete specimens were fabricated. The flexural, compressive and uniaxial tensile strength were tested by using the bending resistance, compression resistance and electronic universal testing machine. The results show that flexural and compressive strength of fiber reinforced cementations composites increases along with the increase of quartz sand diameter, with the growth of the PVA fiber length increases; When the water-binder ratio is 0.25 and powder-binder ratio is 0.3, the PVA fiber content is 1.5% of the mass of cementations materials, there is a phenomenon of strain hardening; The addition of magnesium acrylate solution reduces the tensile strength of PVA fiber reinforced cementations composites, the tensile strength of the specimens in the curing age of 7d is decreased by about 21% and the specimens in curing age of 28d is decreased by more than 50%.

  10. Structural behavior of reinforced concrete structures at high temperatures

    International Nuclear Information System (INIS)

    Yamazaki, N.; Yamazaki, M.; Mochida, T.; Mutoh, A.; Miyashita, T.; Ueda, M.; Hasegawa, T.; Sugiyama, K.; Hirakawa, K.; Kikuchi, R.; Hiramoto, M.; Saito, K.

    1995-01-01

    To establish a method to predict the behavior of reinforced concrete structures subjected simultaneously to high temperatures and external loads, this paper presents the results obtained in several series of tests carried out recently in Japan. This paper reports on the material properties of concrete and steel bars under high temperatures. It also considers the heat transfer properties of thick concrete walls under transient high temperatures, and the structural behavior of reinforced concrete beams subjected to high temperatures. In the tests, data up to 800 C were obtained for use in developing a computational method to estimate the non-linear behavior of reinforced concrete structures exposed to high temperatures. (orig.)

  11. Corrosion performance tests for reinforcing steel in concrete : test procedures.

    Science.gov (United States)

    2009-09-01

    The existing test method to assess the corrosion performance of reinforcing steel embedded in concrete, mainly : ASTM G109, is labor intensive, time consuming, slow to provide comparative results, and often expensive. : However, corrosion of reinforc...

  12. Evaluation of size effect on shear strength of reinforced concrete ...

    Indian Academy of Sciences (India)

    of the longitudinal and the web reinforcement, shear span-to-depth ratio and the ... A simple equation for predicting the shear strength of reinforced concrete deep ..... AASHTO 2007 LRFD Bridge Design Specifications, American Association of ...

  13. Study on basalt fiber parameters affecting fiber-reinforced mortar

    Science.gov (United States)

    Orlov, A. A.; Chernykh, T. N.; Sashina, A. V.; Bogusevich, D. V.

    2015-01-01

    This article considers the effect of different dosages and diameters of basalt fibers on tensile strength increase during bending of fiberboard-reinforced mortar samples. The optimal dosages of fiber, providing maximum strength in bending are revealed. The durability of basalt fiber in an environment of cement, by means of microscopic analysis of samples of fibers and fiberboard-reinforced mortar long-term tests is examined. The article also compares the behavior of basalt fiber in the cement stone environment to a glass one and reveals that the basalt fiber is not subject to destruction.

  14. Articularities of Analysis and Behaviour of Concrete Beams Reinforced with Fibrous Polymer Composite Bars

    Directory of Open Access Journals (Sweden)

    N. Ţăranu

    2006-01-01

    Full Text Available Traditional steel based reinforcement systems for concrete elements are facing with serious problems mainly caused by corrosion due to chemically aggressive environments and salts used in deicing procedures, especially in case of bridge steel reinforced concrete girders. Also in some cases special applications require structural members with magnetic transparency. An alternative to this major problem has recently become the use of fiber reinforced polymer (FPR composite bars as internal reinforcement for concrete beams. The particularities of their mechanical properties are making the design process a difficult task for engineers, numerous research centers being involved in correcting this situation. The general aspects concerning the conceiving of FR.P reinforced concrete beams are firstly analyzed, compared to those reinforced with steel bars. Some results of a Finite Element Analysis, as part of a complex program which also implies full scale testing of FRP reinforced beams subjected to bending, are given and discussed in the paper. The low elasticity modulus presented by glass fiber reinforced polymer (GFRP bars does not justify its use from structural point of view when deflection is the limiting condition but for corrosive resistance reasons and special electromagnetic properties this system can be promoted.

  15. Strain Capacity of Reinforced Concrete Members Subjected to Uniaxial Tension

    DEFF Research Database (Denmark)

    Hagsten, Lars German; Rasmussen, Annette Beedholm; Fisker, Jakob

    2017-01-01

    The aim of this paper is to set up a method to determine the strain capacity of tension bars of reinforced concrete (RC) subjected to pure tension. Due to the interaction between reinforcement and concrete and due to the presence of cracks, the stresses in both reinforcement and concrete...... are varying along the length of the tension bar. The strain capacity of the tension bar is seen as the average strain in the reinforcement at the load level corresponding to the ultimate stress capacity of the reinforcement at the cracks. The result of the approach is in overall good agreement when comparing...

  16. Incremental dynamic analysis of concrete moment resisting frames reinforced with shape memory composite bars

    International Nuclear Information System (INIS)

    Zafar, Adeel; Andrawes, Bassem

    2012-01-01

    Fiber reinforced polymer (FRP) reinforcing bars have been used in concrete structures as an alternative to conventional steel reinforcement, in order to overcome corrosion problems. However, due to the linear behavior of the commonly used reinforcing fibers, they are not considered in structures which require ductility and damping characteristics. The use of superelastic shape memory alloy (SMA) fibers with their nonlinear elastic behavior as reinforcement in the composite could potentially provide a solution for this problem. Small diameter SMA wires are coupled with polymer matrix to produce SMA–FRP composite, which is sought in this research as reinforcing bars. SMA–FRP bars are sought in this study to enhance the seismic performance of reinforced concrete (RC) moment resisting frames (MRFs) in terms of reducing their residual inter-story drifts while still maintaining the elastic characteristics associated with conventional FRP. Three story one bay and six story two bay RC MRF prototype structures are designed with steel, SMA–FRP and glass–FRP reinforcement. The incremental dynamic analysis technique is used to investigate the behaviors of the two frames with the three different reinforcement types under a suite of ground motion records. It is found that the frames with SMA–FRP composite reinforcement exhibit higher performance levels including lower residual inter-story drifts, high energy dissipation and thus lower damage, which are important for structures in highly seismic zones. (paper)

  17. Design of reinforced concrete members based on structural mechanics

    International Nuclear Information System (INIS)

    Diaz, B.E.; Schulz, M.

    1984-01-01

    Up to now the design of reinforced concrete linear members is performed with the help of an inconsistent design theory, which nevertherless is sufficiently safe and simple to be used in the practice. The purpose of this paper is to present a rational reinforced concrete design method which is not too dissimilar to the present design rules, but is capable of defining consistently internal stresses along a reinforced concrete section. The present status of the completed computer procedures allows the analysis of linear reinforced concrete members formed by laminar reinforced concrete plates presenting variable thickness. A practical approach is presented for which the concrete and steel section is constant along the member axis. In this case, the concept of the equivalent section is introduced, which allows a simple analysis of the stress pattern along the member section. (Author) [pt

  18. Rockfall vulnerability assessment for reinforced concrete buildings

    Science.gov (United States)

    Mavrouli, O.; Corominas, J.

    2010-10-01

    The vulnerability of buildings to the impact of rockfalls is a topic that has recently attracted increasing attention in the scientific literature. The quantification of the vulnerability, when based on empirical or heuristic approaches requires data recorded from historical rockfalls, which are not always available. This is the reason why appropriate alternatives are required. The use of analytical and numerical models can be one of them. In this paper, a methodology is proposed for the analytical evaluation of the vulnerability of reinforced concrete buildings. The vulnerability is included in the risk equation by incorporating the uncertainty of the impact location of the rock block and the subsequent damage level. The output is a weighted vulnerability that ranges from 0 to 1 and expresses the potential damage that a rock block causes to a building in function of its velocity and size. The vulnerability is calculated by the sum of the products of the probability of block impact on each element of the building and its associated damage state, the latter expressed in relative recovery cost terms. The probability of exceeding a specific damage state such as non-structural, local, partial, extensive or total collapse is also important for the quantification of risk and to this purpose, several sets of fragility curves for various rock diameters and increasing velocities have been prepared. An example is shown for the case of a simple reinforced concrete building and impact energies from 0 to 4075 kJ.

  19. Modeling of fiber orientation in viscous fluid flow with application to self-compacting concrete

    Science.gov (United States)

    Kolařík, Filip; Patzák, Bořek

    2013-10-01

    In recent years, unconventional concrete reinforcement is of growing popularity. Especially fiber reinforcement has very wide usage in high performance concretes like "Self Compacting Concrete" (SCC). The design of advanced tailor-made structures made of SCC can take advantage of anisotropic orientation of fibers. Tools for fiber orientation predictions can contribute to design of tailor made structure and allow to develop casting procedures that enable to achieve the desired fiber distribution and orientation. This paper deals with development and implementation of suitable tool for prediction of fiber orientation in a fluid based on the knowledge of the velocity field. Statistical approach to the topic is employed. Fiber orientation is described by a probability distribution of the fiber angle.

  20. Axial Compression Tests on Corroded Reinforced Concrete Columns Consolidated with Fibre Reinforced Polymers

    Directory of Open Access Journals (Sweden)

    Bin Ding

    2017-06-01

    Full Text Available Reinforced concrete structure featured by strong bearing capacity, high rigidity, good integrity, good fire resistance, and extensive applicability occupies a mainstream position in contemporary architecture. However, with the development of social economy, people need higher requirements on architectural structure; durability, especially, has been extensively researched. Because of the higher requirement on building material, ordinary reinforced concrete structure has not been able to satisfy the demand. As a result, some new materials and structures have emerged, for example, fibre reinforced polymers. Compared to steel reinforcement, fibre reinforced polymers have many advantages, such as high tensile strength, good durability, good shock absorption, low weight, and simple construction. The application of fibre reinforced polymers in architectural structure can effectively improve the durability of the concrete structure and lower the maintenance, reinforcement, and construction costs in severe environments. Based on the concepts of steel tube concrete, fibre reinforced composite material confined concrete, and fibre reinforced composite material tubed concrete, this study proposes a novel composite structure, i.e., fibre reinforced composite material and steel tube concrete composite structure. The structure was developed by pasting fibre around steel tube concrete and restraining core concrete using fibre reinforced composite material and steel tubes. The bearing capacity and ultimate deformation capacity of the structure was tested using column axial compression test.

  1. Sustainability and durability analysis of reinforced concrete structures

    Science.gov (United States)

    Horáková, A.; Broukalová, I.; Kohoutková, A.; Vašková, J.

    2017-09-01

    The article describes an assessment of reinforced concrete structures in terms of durability and sustainable development. There is a short summary of findings from the literature on evaluation methods for environmental impacts and also about corrosive influences acting on the reinforced concrete structure, about factors influencing the durability of these structures and mathematical models describing the corrosion impacts. Variant design of reinforced concrete structure and assessment of these variants in terms of durability and sustainability was performed. The analysed structure was a concrete ceiling structure of a parking house for cars. The variants differ in strength class of concrete and thickness of concrete slab. It was found that in terms of durability and sustainable development it is significantly preferable to use higher class of concrete. There are significant differences in results of concrete structures durability for different mathematical models of corrosive influences.

  2. Reinforced concrete tomography; Tomografia de hormigon armado

    Energy Technology Data Exchange (ETDEWEB)

    Mariscotti, M A.J.; Morixe, M; Tarela, P A; Thieberger, P [Tomografia de Hormigon Armado S.A., Boulogne (Argentina)

    1998-12-31

    In this paper we describe the technique of reinforced concrete tomography, its historical background, recent technological developments and main applications. Gamma radiation sensitive plates are imprinted with radiation going through the concrete sample under study, and then processed to reveal the presence of reinforcement and defects in the material density. The three dimensional reconstruction, or tomography, of the reinforcement out of a single gammagraphy is an original development alternative to conventional methods. Re-bar diameters and positions may be determined with an accuracy of {+-} 1 mm 0.5-1 cm, respectively. The non-destructive character of this technique makes it particularly attractive in cases of inhabited buildings and diagnoses of balconies. (author) 8 refs., 12 figs. [Espanol] En este trabajo se describe la tecnica de tomografia de hormigon armado, sus antededentes, recientes desarrollos y aplicaciones mas importantes. Esta tecnica se basa en el uso de radiacion gamma para penetrar piezas de hormigon. Placas gammagraficas son sensibilizadas con la radiacion que atraviesa la pieza bajo estudio y luego procesadas para revelar la presencia de armadura e inhomogeneidades en la densidad del concreto. La reconstruccion tridimensional o tomografia, de la armadura a partir de una sola gammagrafia es un desarrollo original alternativo a los metodos convencionales. Diametros y posiciones de los hierros existentes en el interior de columnas, vigas y losas pueden ser determinados con precisiones de {+-} 1 mm y 0.5-1 cm, respectivamente. La condicion de no destructiva hace que esta tecnica sea particularmente apreciada en los casos de edificios habitados y sea insustituible para el diagnostico de balcones. (autor)

  3. Properties of Fiber-Reinforced Mortars Incorporating Nano-Silica

    Directory of Open Access Journals (Sweden)

    Ahmed Ghazy

    2016-02-01

    Full Text Available Repair and rehabilitation of deteriorating concrete elements are of significant concern in many infrastructural facilities and remain a challenging task. Concerted research efforts are needed to develop repair materials that are sustainable, durable, and cost-effective. Research data show that fiber-reinforced mortars/concretes have superior performance in terms of volume stability and toughness. In addition, it has been recently reported that nano-silica particles can generally improve the mechanical and durability properties of cement-based systems. Thus, there has been a growing interest in the use of nano-modified fiber-reinforced cementitious composites/mortars (NFRM in repair and rehabilitation applications of concrete structures. The current study investigates various mechanical and durability properties of nano-modified mortar containing different types of fibers (steel, basalt, and hybrid (basalt and polypropylene, in terms of compressive and flexural strengths, toughness, drying shrinkage, penetrability, and resistance to salt-frost scaling. The results highlight the overall effectiveness of the NFRM owing to the synergistic effects of nano-silica and fibers.

  4. Quality control of fireproof coatings for reinforced concrete structures

    Science.gov (United States)

    Gravit, Marina; Dmitriev, Ivan; Ishkov, Alexander

    2017-10-01

    The article analyzes methods of quality inspection of fireproof coatings (work flow, measuring, laboratory, etc.). In modern construction there is a problem of lack of distinct monitoring for the fire protection testing. There is a description of this testing for reinforced concrete structures. The article shows the results of calculation quality control of hatches as an example of fireproof coating for reinforced concrete structures.

  5. Midbroken Reinforced Concrete Shear Frames Due to Earthquakes

    DEFF Research Database (Denmark)

    Köylüoglu, H. U.; Cakmak, A. S.; Nielsen, Søren R. K.

    A non-linear hysteretic model for the response and local damage analyses of reinforced concrete shear frames subject to earthquake excitation is proposed, and, the model is applied to analyse midbroken reinforced concrete (RC) structures due to earthquake loads. Each storey of the shear frame...

  6. Numerical analysis of pipe impact on reinforced concrete structures

    International Nuclear Information System (INIS)

    Prinja, N.K.

    1990-01-01

    This paper presents the methodology and the results of numerical analyses carried out by using the computer code DYNA3D to analyse pipe impacts on a reinforced concrete slab, a floor beam and a column. Modelling techniques employed to represent various features of typical reinforced concrete (RC) structures and the details of a soil and crushable foam type of material model used to represent concrete material behaviour are described. The results show that a reasonable prediction of global behaviour of reinforced concrete structures under impact loading can be obtained by this numerical method. (author)

  7. Reinforced concrete behavior due to missile impact

    International Nuclear Information System (INIS)

    Alderson, M.A.H.G.; Bartley, R.; O'Brien, T.P.

    1977-01-01

    The assessment of the safety of nuclear reactors has necessitated the study of the effect of missiles on reinforced concrete containment structures. Two simple theoretical calculational methods have been developed to provide basic information. The first is based on a crude energy balance approach in which that part of the kinetic energy of the missile which is transferred into the containment structure, is absorbed only as bending strain energy. To determine the energy transferred into the structure it is assumed that during the loading the target does not respond. The energy input to the structure is thus equal to the kinetic energy it will possess immediately the impulse has been removed. The boundary of the responding zone is defined by the distance travelled by the shear stress wave during the time in which the impact force increases to the load at which the shear capacity reaches the ultimate shear resistance. The second method is based on the equation of motion for an equivalent one-degree-of-freedom system assuming that only the peak value of deflection is important and that damping can be ignored. The spring stiffness of the equivalent system has been based upon the stiffness of the actual disc configuration responding in the flexural mode only. The boundaries of the disc have been defined by using the elastic plate formulae and equating those positive and negative moments which will produce a specified yield line pattern which may be inferred from plastic plate formulae. The equation of motion is solved to indicate how the quantity of reinforcement included in the structure may modify the peak deflection. By limiting the ductility ratio of the reinforcement to some prescribed level it is possible to indicate the quantity of reinforcement w

  8. Thin fiber and textile reinforced cementitious systems

    National Research Council Canada - National Science Library

    Aldea, Corina-Maria

    2007-01-01

    This Special Publication (SP) contains ten papers which provide insight on the topics of state of the art of thin fiber and textile-reinforced cementitious systems both in academia and the industry...

  9. Fiber reinforced polymer bridge decks : [technical summary].

    Science.gov (United States)

    2011-01-01

    A number of researchers have addressed the use of Fiber Reinforced Polymer (FRP) deck as a replacement solution for deteriorated bridge decks made of traditional materials. The use of new, advanced materials such as FRP is advantageous when the bridg...

  10. Investigation of the Reliability of Bridge Elements Reinforced with Basalt Plastic Fibers

    Science.gov (United States)

    Koval', T. I.

    2017-09-01

    The poorly studied problem on the reliability and durability of basalt-fiber-reinforced concrete bridge elements is considered. A method of laboratory research into the work of specimens of the concrete under a manyfold cyclic dynamic load is proposed. The first results of such experiments are presented.

  11. Durability of cracked fibre reinforced concrete structures exposed to chlorides

    DEFF Research Database (Denmark)

    Hansen, Ernst Jan De Place; Ekman, Tom; Hansen, Kurt Kielsgaard

    1999-01-01

    is used as environmental load. The chloride penetration is characterized both qualitatively (UV-test) and quantitatively (chloride profile) and by microscopy. The test programme involves three different concrete qualities. Both steel fibres and polypropylene fibres are used in the concrete beams as well...... as main reinforcement. The effect of the cracks, the fibres and the concrete quality on the chloride penetration is studied....

  12. Transporting fibres as reinforcement in self-compacting concrete

    NARCIS (Netherlands)

    Grünewald, S.; Walraven, J.C.

    2009-01-01

    The development of self-compacting concrete (SCC) was an important step towards efficiency at building sites, rationally producing prefabricated concrete elements, better working conditions and improved quality and appearance of concrete structures. By adding fibres to SCC bar reinforcement can be

  13. Improved monolithic reinforced concrete construction for nuclear power stations

    International Nuclear Information System (INIS)

    Guenther, P.; Fischer, K.

    1983-01-01

    Experience has shown that in applying monolithic reinforced concrete in nuclear power plant construction the following auxiliary means are useful: measuring sheets in assembling, welding gauges for reaching high tolerance accuracies of prefabricated reinforced concrete members, suitable lining materials, formwork anchorage and formwork release agents, concrete workability agents, mechanized procedures for finishing and assembling. These means were successfully tested in constructing the Greifswald nuclear power station

  14. Topology Optimization for Conceptual Design of Reinforced Concrete Structures

    DEFF Research Database (Denmark)

    Amir, Oded; Bogomolny, Michael

    2011-01-01

    Design of reinforced concrete structures is governed by the nonlinear behavior of concrete and by its dierent strengths in tension and compression. The purpose of this article is to present a computational procedure for optimal conceptual design of reinforced concrete structures, based on topology...... must be consid- ered. Optimized distribution of material is achieved by introducing interpolation rules for both elastic and plastic material properties. Several numerical examples illustrate the capability and potential of the proposed procedure....

  15. Influence of Basalt FRP Mesh Reinforcement on High-Performance Concrete Thin Plates at High Temperatures

    DEFF Research Database (Denmark)

    Hulin, Thomas; Lauridsen, Dan H.; Hodicky, Kamil

    2015-01-01

    A basalt fiber–reinforced polymer (BFRP) mesh was introduced as reinforcement in high-performance concrete (HPC) thin plates (20–30 mm) for implementation in precast sandwich panels. An experimental program studied the BFRP mesh influence on HPC exposed to high temperature. A set of standard...... furnace tests compared performances of HPC with and without BFRP mesh, assessing material behavior; another set including polypropylene (PP) fibers to avoid spalling compared the performance of BFRP mesh reinforcement to that of regular steel reinforcement, assessing mechanical properties......, requiring the use of steel. Microscope observations highlighted degradation of the HPC-BFRP mesh interface with temperature due to the melting polymer matrix of the mesh. These observations call for caution when using fiber-reinforced polymer (FRP) reinforcement in elements exposed to fire hazard....

  16. Natural fiber-reinforced polymer composites

    International Nuclear Information System (INIS)

    Taj, S.; Khan, S.; Munawar, M.A.

    2007-01-01

    Natural fibers have been used to reinforce materials for over 3,000 years. More recently they have been employed in combination with plastics. Many types of natural fi fibers have been investigated for use in plastics including Flax, hemp, jute, straw, wood fiber, rice husks, wheat, barley, oats, rye, cane (sugar and bamboo), grass reeds, kenaf, ramie, oil palm empty fruit bunch, sisal, coir, water hyacinth, pennywort, kapok, paper-mulberry, raphia, banana fiber, pineapple leaf fiber and papyrus. Natural fibers have the advantage that they are renewable resources and have marketing appeal. The Asian markets have been using natural fibers for many years e.g., jute is a common reinforcement in India. Natural fibers are increasingly used in automotive and packaging materials. Pakistan is an agricultural country and it is the main stay of Pakistan's economy. Thousands of tons of different crops are produced but most of their wastes do not have any useful utilization. Agricultural wastes include wheat husk, rice husk, and their straw, hemp fiber and shells of various dry fruits. These agricultural wastes can be used to prepare fiber reinforced polymer composites for commercial use. This report examines the different types of fibers available and the current status of research. Many references to the latest work on properties, processing and application have been cited in this review. (author)

  17. Cracking in Flexural Reinforced Concrete Members

    DEFF Research Database (Denmark)

    Rasmussen, Annette Beedholm; Fisker, Jakob; Hagsten, Lars German

    2017-01-01

    The system of cracks developing in reinforced concrete is in many aspects essential when modelling structures in both serviceability- and ultimate limit state. This paper discusses the behavior concerning crack development in flexural members observed from tests and associates it with two different...... existing models. From the investigations an approach is proposed on how to predict the crack pattern in flexural members involving two different crack systems; primary flexural cracks and local secondary cracks. The results of the approach is in overall good agreement with the observed tests and captures...... the pronounced size effect associated with flexural cracking in which the crack spacing and crack widths are approximately proportional to the depth of the member....

  18. Neutron imaging of water penetration into cracked steel reinforced concrete

    International Nuclear Information System (INIS)

    Zhang, P.; Wittmann, F.H.; Zhao, T.; Lehmann, E.H.

    2010-01-01

    Service life and durability of reinforced concrete structures have become a crucial issue because of the economical and ecological implications. Service life of reinforced concrete structures is often limited by penetration of water and chemical compounds dissolved in water into the porous cement-based material. By now it is well-known that cracks in reinforced concrete are preferential paths for ingress of aggressive substances. Neutron radiography was successfully applied to study the process of water penetration into cracked steel reinforced concrete. In addition, the effectiveness of integral water repellent concrete to prevent ingress of water and salt solutions was investigated. Results are described in detail in this contribution. It will be shown that neutron radiography is a powerful method to visualize the process of water penetration into cracked and uncracked cement-based materials. On the basis of the obtained experimental data, it is possible to quantify the time-dependent water distributions in concrete with high accuracy and spatial resolution. It is of particular interest that penetration of water and salt solutions into damaged interfaces between concrete and steel can be visualized by means of neutron radiography. Deteriorating processes in cracked reinforced concrete structures can be studied in a completely new way. This advanced technology will help and find adequate ways to improve durability and service life of reinforced concrete structures. This will mean at the same time an essential contribution to improved sustainability.

  19. Investigation on reinforced concrete slabs subjeted to impact loading

    International Nuclear Information System (INIS)

    Freiman, M.; Krutzik, N.J.; Tropp, R.; Zorn, N.F.

    1984-01-01

    A comparison of experimental and computational results for tests of reinforced concrete slabs subjected to soft missile impact is presented. Numerical simulation techniques were employed to predict the target response. The objective of the calculations was to validate the material model for reinforced concrete implemented in a finite difference code. The computational results regarding displacements or strains in the reinforcement conform satisfactorily with the experimental values. (Author) [pt

  20. Characterization of polymer concrete with natural fibers

    Science.gov (United States)

    Barbuta, M.; Serbanoiu, A. A.; Teodorescu, R.; Rosca, B.; Mitroi, R.; Bejan, G.

    2017-09-01

    In the study are presented the experimental results obtained for polymer concrete prepared with epoxy resin, aggregates, fly ash as filler and two types of fibers: wool and hemp. The influence of type and dosage of fibers were studied. The density and mechanical characteristics were determined: compressive strength, flexural strength and split tensile strength. For both types of fibers, with increasing the fiber dosage the density decreases. The studied dosages had not an important influence on mechanical strengths. The fibers improved especially the tensile strength and the compressive strength presented generally smaller values than the control mix.

  1. Modeling of interaction between steel and concrete in continuously reinforced concrete pavements : final report.

    Science.gov (United States)

    2016-01-01

    Continuously reinforced concrete pavement (CRCP) contains continuous longitudinal reinforcement with no transverse : expansion within the early life of the pavement and can continue to develop cracks in the long-term. The : accurate modeling of CRCPs...

  2. Dynamic rupture analysis of reinforced concrete shells

    International Nuclear Information System (INIS)

    Rebora, B.; Zimmermann, Th.; Wolf, J.P.

    1976-01-01

    Extreme dynamic loading conditions often require the rupture analysis of reinforced and prestressed-concrete structures. The study presented in this paper extends a method of analysis of dynamic loading conditions which has proven efficient for short-time loads. Another aim is to adapt the method to thin-walled structures. It is not sufficient to work only with plastic rupture and yield surfaces locally which are compared to the elastic distribution of the stress resultants; it is essential to account for the redistribution of the latter. The method proposed consists of discretizing the structure into isoparametric three-dimensional elements with 20 nodes for the concrete and one-dimensional bar elements with three nodes for the steel. The latter can also be handled with a 'smeared' two-dimensional membrane element. In compression a three-dimensional non-linear elastic constitutive law is introduced for the concrete, and a triaxial failure surface expressed in the stress invariants is used, determining cracking and crushing. Two- and three-dimensional cracking surfaces in which no components of stress are transmitted are accounted for. The possibility exists that, during the history of loading, cracks can close up again. For steel, a yield criterion is selected. The non-linear analysis is based on the concept of initial stress. Residual loads are calculated using information in Gauss integration points. The ultimate load is reached when the algorithm does not converge. The corresponding failure modes can be interpreted as those for which a state of equilibrium is no longer possible. The equations of motion are discretized in time, using an extension of the linear acceleration method. (Auth.)

  3. Homogenization of long fiber reinforced composites including fiber bending effects

    DEFF Research Database (Denmark)

    Poulios, Konstantinos; Niordson, Christian Frithiof

    2016-01-01

    This paper presents a homogenization method, which accounts for intrinsic size effects related to the fiber diameter in long fiber reinforced composite materials with two independent constitutive models for the matrix and fiber materials. A new choice of internal kinematic variables allows...... of the reinforcing fibers is captured by higher order strain terms, resulting in an accurate representation of the micro-mechanical behavior of the composite. Numerical examples show that the accuracy of the proposed model is very close to a non-homogenized finite-element model with an explicit discretization...

  4. Experimental investigation of the relation between damage at the concrete-steel interface and initiation of reinforcement corrosion in plain and fibre reinforced concrete

    DEFF Research Database (Denmark)

    Michel, Alexander; Solgaard, Anders Ole Stubbe; Pease, Bradley Justin

    2013-01-01

    Cracks in covering concrete are known to hasten initiation of steel corrosion in reinforced concrete structures. To minimise the impact of cracks on the deterioration of reinforced concrete structures, current approaches in (inter)national design codes often limit the concrete surface crack width....... Recent investigations however, indicate that the concrete-reinforcement interfacial condition is a more fundamental criterion related to reinforcement corrosion. This work investigates the relation between macroscopic damage at the concrete-steel interface and corrosion initiation of reinforcement...... embedded in plain and fibre reinforced concrete. Comparisons of experimental and numerical results indicate a strong correlation between corrosion initiation and interfacial condition....

  5. Bond slip and crack development in FRC and regular concrete specimens longitudinally reinforced with FRP or steel under tension loading

    DEFF Research Database (Denmark)

    Lárusson, Lárus Helgi; Fischer, Gregor

    2012-01-01

    tensile loading using high definition image analysis in two unique test setups. Two different types of cementitious materials, conventional concrete and highly ductile Engineered Cementitious Composite (ECC), and two types of reinforcement bars, regular steel and Glass Fiber Reinforcement Polymer (GFRP......The governing mechanism in the structural response of reinforced concrete members in tension is the interaction between structural reinforcement and the surrounding concrete matrix. The composite response and the mechanical integrations of reinforced cementitious members were investigated during......), were tested. It was found that the ductile ECC in contrast to regular brittle concrete decreases crack widths significantly which effectively results in decreased bond slip between the reinforcement and surrounding matrix. Furthermore the use of elastic GFRP in comparison to elastic/plastic steel...

  6. Construction of reactor vessel bottom of prestressed reinforced concrete

    International Nuclear Information System (INIS)

    Sitnikov, M.I.; Metel'skij, V.P.

    1980-01-01

    Methods are described for building reactor vessel bottoms of prestressed reinforced concrete during NPPs construction in Great Britain, France, Germany (F.R.) and the USA. Schematic of operations performed in succession is presented. Considered are different versions of one of the methods for concreting a space under a facing by forcing concrete through a hole in the facing. The method provides tight sticking of the facing to the reactor vessel bottom concrete

  7. Influence of reinforcement's corrosion into hyperstatic reinforced concrete beams: a probabilistic failure scenarios analysis

    Directory of Open Access Journals (Sweden)

    G. P. PELLIZZER

    Full Text Available AbstractThis work aims to study the mechanical effects of reinforcement's corrosion in hyperstatic reinforced concrete beams. The focus is the probabilistic determination of individual failure scenarios change as well as global failure change along time. The limit state functions assumed describe analytically bending and shear resistance of reinforced concrete rectangular cross sections as a function of steel and concrete resistance and section dimensions. It was incorporated empirical laws that penalize the steel yield stress and the reinforcement's area along time in addition to Fick's law, which models the chloride penetration into concrete pores. The reliability theory was applied based on Monte Carlo simulation method, which assesses each individual probability of failure. The probability of global structural failure was determined based in the concept of failure tree. The results of a hyperstatic reinforced concrete beam showed that reinforcements corrosion make change into the failure scenarios modes. Therefore, unimportant failure modes in design phase become important after corrosion start.

  8. Tensile Characterization of FRP Rods for Reinforced Concrete Structures

    Science.gov (United States)

    Micelli, F.; Nanni, A.

    2003-07-01

    The application of FRP rods as an internal or external reinforcement in new or damaged concrete structures is based on the development of design equations that take into account the mechanical properties of FRP material systems.The measurement of mechanical characteristics of FRP requires a special anchoring and protocol, since it is well known that these characteristics depend on the direction and content of fibers. In this study, an effective tensile test method is described for the mechanical characterization of FRP rods. Twelve types of glass and carbon FRP specimens with different sizes and surface characteristics were tested to validate the procedure proposed. In all, 79 tensile tests were performed, and the results obtained are discussed in this paper. Recommendations are given for specimen preparation and test setup in order to facilitate the further investigation and standardization of the FRP rods used in civil engineering.

  9. Behavior and strength of beams cast with ultra high strength concrete containing different types of fibers

    Directory of Open Access Journals (Sweden)

    M.M. Kamal

    2014-04-01

    Full Text Available Ultra-high performance concrete (UHPC is a special type of concrete with extraordinary potentials in terms of strength and durability performance. Its production and application implement the most up-to-date knowledge and technology of concrete manufacturing. Sophisticated structural designs in bridges and high-rise buildings, repair works and special structures like nuclear facilities are currently the main fields of applications of UHPC. This paper aimed to evaluate the behavior of ultra-high strength concrete beams. This paper also aimed to determine the effect of adding fibers and explore their effect upon the behavior and strength of the reinforced concrete beams. A total of twelve simple concrete beams with and without shear reinforcements were tested in flexure. The main variables taken into consideration in this research were the type of fibers and the percentage of longitudinal reinforcement as well as the existence or absence of the web reinforcement. Two types of fibers were used including steel and polypropylene fibers. The behavior of the tested beams was investigated with special attention to the deflection under different stages of loading, initial cracking, cracking pattern, and ultimate load. Increased number of cracks was observed at the end of loading due to the use of fibers, which led to the reduced width of cracks. This led to increased stiffness and higher values of maximum loads.

  10. Surface treated polypropylene (PP) fibres for reinforced concrete

    Energy Technology Data Exchange (ETDEWEB)

    López-Buendía, Angel M., E-mail: buendia@uv.es [AIDICO Technological Institute of Construction, Benjamin Franklin 17, 46380 Paterna, Valencia (Spain); Romero-Sánchez, María Dolores [AIDICO Technological Institute of Construction, Marble Technical Unit, Camí de Castella 4, 03660 Novelda. Alicante (Spain); Climent, Verónica [Lafarge Cementos, Polígono Sepes, Isaac Newton s/n, 46500 Sagunto, Valencia (Spain); Guillem, Celia [AIDICO Technological Institute of Construction, Marble Technical Unit, Camí de Castella 4, 03660 Novelda. Alicante (Spain)

    2013-12-15

    Surface treatments on a polypropylene (PP) fibre have contributed to the improvement of fibre/concrete adhesion in fibre-reinforced concrete. The treatments to the PP fibre were characterized by contact angle measurements, ATR-IR and XPS to analyse chemical alterations. The surface topography and fibre/concrete interaction were analysed by several microscopic techniques, namely optical petrographic, and scanning electron microscopy. Treatment modified the surface chemistry and topography of the fibre by introducing sodium moieties and created additional fibre surface roughness. Modifications in the fibre surface led to an increase in the adhesion properties between the treated fibres and concrete and an improvement in the mechanical properties of the fibre-reinforced concrete composite as compared to the concrete containing untreated PP fibres. Compatibility with the concrete and increased roughness and mineral surface was also improved by nucleated portlandite and ettringite mineral association anchored on the alkaline PP fibre surface, which is induced during treatment.

  11. Self-diagnosis of structures strengthened with hybrid carbon-fiber-reinforced polymer sheets

    Science.gov (United States)

    Wu, Z. S.; Yang, C. Q.; Harada, T.; Ye, L. P.

    2005-06-01

    The correlation of mechanical and electrical properties of concrete beams strengthened with hybrid carbon-fiber-reinforced polymer (HCFRP) sheets is studied in this paper. Two types of concrete beams, with and without reinforcing bars, are strengthened with externally bonded HCFRP sheets, which have a self-structural health monitoring function due to the electrical conduction and piezoresistivity of carbon fibers. Parameters investigated include the volume fractions and types of carbon fibers. According to the investigation, it is found that the hybridization of uniaxial HCFRP sheets with several different types of carbon fibers is a viable method for enhancing the mechanical properties and obtaining a built-in damage detection function for concrete structures. The changes in electrical resistance during low strain ranges before the rupture of carbon fibers are generally smaller than 1%. Nevertheless, after the gradual ruptures of carbon fibers, the electrical resistance increases remarkably with the strain in a step-wise manner. For the specimens without reinforcing bars, the electrical behaviors are not stable, especially during the low strain ranges. However, the electrical behaviors of the specimens with reinforcing bars are relatively stable, and the whole range of self-sensing function of the HCFRP-strengthened RC structures has realized the conceptual design of the HCFRP sensing models and is confirmed by the experimental investigations. The relationships between the strain/load and the change in electrical resistance show the potential self-monitoring capacity of HCFRP reinforcements used for strengthening concrete structures.

  12. The characteristics of ultra-high performance concrete and cracking behavior of reinforced concrete tensile specimens

    Directory of Open Access Journals (Sweden)

    H.A. Rahdar

    2016-09-01

    Full Text Available The tensile behavior of concrete depends on some factors such as member dimensions, reinforcement ratio, diameter of rebar, strength and elasticity modulus of material. In this research the experimental method is used to examine the characteristics and the behavior of ultra-high performance concrete on the tensile behavior of concrete members reinforced by steel rebar. The results show that increasing the rebar cover on diameter rebar ratio (C/d increases the initial stiffening before the cracking stage in concrete. Also, by increasing of reinforcement ratio the cracking space decreased.

  13. Flexural Behavior of High-Volume Steel Fiber Cementitious Composite Externally Reinforced with Basalt FRP Sheet

    Directory of Open Access Journals (Sweden)

    Seungwon Kim

    2016-01-01

    Full Text Available High-performance fiber-reinforced cementitious composites (HPFRCCs are characterized by unique tensile strain hardening and multiple microcracking behaviors. The HPFRCC, which demonstrates remarkable properties such as strength, ductility, toughness, durability, stiffness, and thermal resistance, is a class of fiber cement composite with fine aggregates. It can withstand tensile stresses by forming distributed microcracks owing to the embedded fibers in the concrete, which improve the energy absorption capacity and apparent ductility. This high energy absorbing capacity can be enhanced further by an external stiff fiber-reinforced polymer (FRP. Basalt fabric is externally bonded as a sheet on concrete materials to enhance the durability and resistance to fire and other environmental attacks. This study investigates the flexural performance of an HPFRCC that is externally reinforced with multiple layers of basalt FRP. The HPFRCC considered in the study contains steel fibers at a volume fraction of 8%.

  14. Covercrete with hybrid functions - A novel approach to durable reinforced concrete structures

    Energy Technology Data Exchange (ETDEWEB)

    Tang, L.; Zhang, E.Q. [Chalmers University of Technology, SE-412 96 Gothenburg (Sweden); Fu, Y. [KTH Royal Institute of Technology, SE-106 91 Stockholm (Sweden); Schouenborg, B.; Lindqvist, J.E. [CBI Swedish Cement and Concrete Research Institute, c/o SP, Box 857, SE-501 15 Boraas (Sweden)

    2012-12-15

    Due to the corrosion of steel in reinforced concrete structures, the concrete with low water-cement ratio (w/c), high cement content, and large cover thickness is conventionally used for prolonging the passivation period of steel. Obviously, this conventional approach to durable concrete structures is at the sacrifice of more CO{sub 2} emission and natural resources through consuming higher amount of cement and more constituent materials, which is against sustainability. By placing an economically affordable conductive mesh made of carbon fiber or conductive polymer fiber in the near surface zone of concrete acting as anode we can build up a cathodic prevention system with intermittent low current density supplied by, e.g., the solar cells. In such a way, the aggressive negative ions such as Cl{sup -}, CO{sub 3}{sup 2-}, and SO{sub 4}{sup 2-} can be stopped near the cathodic (steel) zone. Thus the reinforcement steel is prevented from corrosion even in the concrete with relatively high w/c and small cover thickness. This conductive mesh functions not only as electrode, but also as surface reinforcement to prevent concrete surface from cracking. Therefore, this new type of covercrete has hybrid functions. This paper presents the theoretical analysis of feasibility of this approach and discusses the potential durability problems and possible solutions to the potential problems. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  15. Structural Applications of Fibre Reinforced Concrete in the Czech Republic

    Science.gov (United States)

    Kohoutková, A.; Broukalová, I.

    2017-09-01

    The paper presents improvement of function and performance of the precast structural members by using fibre reinforced concrete (FRC) instead of ordinary reinforced concrete and attempts to transfer innovative technologies from laboratory in academic sphere into real industrial production which is cost-effective and brings about savings of labour and material. Three examples of successful technology transfer are shown - application of FRC in an element without common rebar reinforcement, in the element with steel rebar reinforcement and SFRC pre-tensioned structural element. Benefits of FRC utilization are discussed.

  16. Additives as corrosion inhibitors in reinforced concrete

    International Nuclear Information System (INIS)

    Venegas, Ricardo; Vera, Rosa; Carvajal, Ana Maria; Villarroel, Maria; Vera, Enrique; Ortiz, Cesar

    2008-01-01

    This work studies the behavior of two additives as inhibitors of corrosion in reinforced concrete. The presence of Microsilica, a physical inhibitor, in the mixture decreases pore size in structures and improves compression. Calcium Nitrite, a chemical inhibitor, is an oxidizing agent and allows a more homogenous film to form over the steel that becomes more resistant to attacks from aggressive ions like anion chloride and others. Three pairs of concrete test pieces were used without additives and with additives with a/c ration of 0.55. The samples were exposed to an accelerated attack of chlorides, submerging them in a 4.27 M solution of NaCl for 24 hours and then drying them at room temperature for another 24 hours, completing a cycle every 48 hours. The tests were carried out at 1 cycle and 5 cycles of partial moistening and drying. The steel corrosion was evaluated with corrosion potential measurements. Conductivity, pH, chlorides and sulfate profiles were defined depending on the depth of the concrete. The composition of the corrosion products was determined using X-ray diffraction and the morphology of the film by scanning electron microscopy. The results show that for 1 test cycle, the corrosion potential of the steel in the sample with calcium nitrite was -54mV, which was a higher value than that measured in the sample with microsilica (-217.3mV) and without an additive (-159.1mV), corroborating its inhibitory power. The content of the free chlorides in the sample with micros ice allows greater capillary suction by adding high amounts of chloride to the structure (2.6% on the outside up to 2.20% near the steel); while the test pieces with calcium nitrite and without an additive had concentrations lower than 2% in all the evaluated points. After five cycles of exposing the samples to the saline solution the behavior is inverted. The measures of conductivity agreed with the previous results. Meanwhile, the pH of the solutions obtained from the powder from the

  17. Evaluation of Blast Resistance of Fiber Reinforced Composite Specimens under Contact Blast Load

    Science.gov (United States)

    Janota, O.; Foglar, M.

    2017-09-01

    This paper presents results of experimental programme which took place in 2014, 2015 and 2016. Experiments were focused on the resistance of full scale concrete panels subjected to contact blast loading. Specimens were loaded by contact blast by plastic explosive. All specimens were reinforced concrete slabs made of fiber concrete. Basalt mesh and textile sheets were added to some of the experiments for creating more heterogeneous material to achieve better resistance of the specimens. Evaluation of experiments was mainly focused on the damaged area on the contact side and soffit of the specimens. Dependency of the final damage of concrete panels on the weight of explosive and concrete strength was assessed.

  18. Producing Durable Continuously Reinforced Concrete Pavement using Glass-ceramic Coated Reinforcing Steel

    Science.gov (United States)

    2010-02-01

    reinforcement if the enamel is broken  Embedded cement grains hydrate if enamel is cracked to self-heal with the formation of calcium silicate hydrate Goal...Reinforced Concrete Pavement The 600% volume change in the iron to iron oxide formation put the concrete in tension and it cracks an spalls BUILDING...corrodes prematurely and delaminates the pavement  Moisture and chlorides can move through the natural porosity of concrete and the cracks in the

  19. Non-traditional shape GFRP rebars for concrete reinforcement

    Science.gov (United States)

    Claure, Guillermo G.

    The use of glass-fiber-reinforced-polymer (GFRP) composites as internal reinforcement (rebars) for concrete structures has proven to be an alternative to traditional steel reinforcement due to significant advantages such as magnetic transparency and, most importantly, corrosion resistance equating to durability and structural life extension. In recent years, the number of projects specifying GFRP reinforcement has increased dramatically leading the construction industry towards more sustainable practices. Typically, GFRP rebars are similar to their steel counterparts having external deformations or surface enhancements designed to develop bond to concrete, as well as having solid circular cross-sections; but lately, the worldwide composites industry has taken advantage of the pultrusion process developing GFRP rebars with non-traditional cross-sectional shapes destined to optimize their mechanical, physical, and environmental attributes. Recently, circular GFRP rebars with a hollow-core have also become available. They offer advantages such as a larger surface area for improved bond, and the use of the effective cross-sectional area that is engaged to carry load since fibers at the center of a solid cross-section are generally not fully engaged. For a complete understanding of GFRP rebar physical properties, a study on material characterization regarding a quantitative cross-sectional area analysis of different GFRP rebars was undertaken with a sample population of 190 GFRP specimens with rebar denomination ranging from #2 to #6 and with different cross-sectional shapes and surface deformations manufactured by five pultruders from around the world. The water displacement method was applied as a feasible and reliable way to conduct the investigation. In addition to developing a repeatable protocol for measuring cross-sectional area, the objectives of establishing critical statistical information related to the test methodology and recommending improvements to

  20. Seismic fragility of a reinforced concrete structure

    Energy Technology Data Exchange (ETDEWEB)

    Kurmann, Davide [Axpo Power AG, Baden (Switzerland); Proske, Dirk [Axpo Power AG, Doettingen (Switzerland); Cervenka, Jan [Cervenka Consulting, Prague (Czech Republic)

    2013-05-15

    Structures can be exposed to seismic loading. For structures of major importance, extreme seismic loadings have to be considered. The proof of safety for such loadings requires sophisticated analysis. This paper introduces an analysis method which of course still includes simplifications, but yields to a far more realistic estimation of the seismic load bearing capacity of reinforced concrete structures compared to common methods. It is based on the development of pushover curves and the application of time-histories for the dynamic model to a representative harmonic oscillator. Dynamic parameters of the oscillator, such as modal mass and damping are computed using a soil-structure-interaction analysis. Based on the pushover-curve nonlinear force-deformation-capacities are applied to the oscillator including hysteresis behaviour characteristics. The oscillator is then exposed to time-histories of several earthquakes. Based on this computation the ductility is computed. The ductility can be scaled based upon the scaling of the time-histories. Since both, the uncertainty of the earthquake by using different timehistories and the uncertainty of the structure by using characteristic and mean material values, are considered, the uncertainty of the structure under seismic loading can be explicitly represented by a fragility. (orig.)

  1. Impact of biofouling on corrosion resistance of reinforced concrete

    Digital Repository Service at National Institute of Oceanography (India)

    Patil, B.T.; Gajendragad, M.R.; Ranganna, G.; Wagh, A.B.; Sudhakaran, T.

    the structure from deterioration; a nonuniform deposit can lead to severe localized pitting corrosion. To study this cylindrical reinforced concrete electrodes were exposed to seawater. They were periodically removed and examined for the presence of fouling...

  2. Corrosion performance tests for reinforcing steel in concrete : technical report.

    Science.gov (United States)

    2009-10-01

    The existing test method used to assess the corrosion performance of reinforcing steel embedded in : concrete, mainly ASTM G 109, is labor intensive, time consuming, slow to provide comparative results, : and can be expensive. However, with corrosion...

  3. Evaluation of corrosion resistance of various concrete reinforcing materials.

    Science.gov (United States)

    2013-06-01

    The Vermont Agency of Transportation undertook a simple experiment to determine the corrosion : resistance ability of various reinforcing steels (rebar) that may be used in bridges and other concrete : structures. Eight types of rebar were used in th...

  4. Numerical estimation of concrete beams reinforced with FRP bars

    Directory of Open Access Journals (Sweden)

    Protchenko Kostiantyn

    2016-01-01

    Full Text Available This paper introduces numerical investigation on mechanical performance of a concrete beam reinforced with Fibre Reinforced Polymer (FRP bars, which can be competitive alternative to steel bars for enhancing concrete structures. The objective of this work is being identified as elaborating of reliable numerical model for predicting strength capacity of structural elements with implementation of Finite Element Analysis (FEA. The numerical model is based on experimental study prepared for the beams, which were reinforced with Basalt FRP (BFRP bars and steel bars (for comparison. The results obtained for the beams reinforced with steel bars are found to be in close agreement with the experimental results. However, the beams reinforced with BFRP bars in experimental programme demonstrated higher bearing capacity than those reinforced with steel bars, which is not in a good convergence with numerical results. Authors did attempt to describe the reasons on achieving experimentally higher bearing capacity of beams reinforced with BFRP bars.

  5. Experimental Study on Voided Reinforced Concrete Beams with Polythene Balls

    Science.gov (United States)

    Sivaneshan, P.; Harishankar, S.

    2017-07-01

    The primary component in any structure is concrete, that exist in buildings and bridges. In present situation, a serious problems faced by construction industry is exhaustive use of raw materials. Recent times, various methods are being adopted to limit the use of concrete. In structural elements like beams, polythene balls can be induced to reduce the usage of concrete. A simply supported reinforced concrete beam has two zones, one above neutral axis and other below neutral axis. The region below neutral axis is in tension and above neutral axis is in compression. As concrete is weak in tension, steel reinforcements are provided in tension zone. The concrete below the neutral axis acts as a stress transfer medium between the compression zone and tension zone. The concrete above the neutral axis takes minimum stress so that we could partially replace the concrete above neutral axis by creating air voids using recycled polythene balls. Polythene balls of varying diameters of 75 mm, 65 mm and 35 mm were partially replaced in compression zone. Hence the usage of concrete in beams and self-weight of the beams got reduced considerably. The Load carrying capacity, Deflection of beams and crack patterns were studied and compared with conventional reinforced concrete beams.

  6. Reinforcement of the concrete base slab of the ATLAS cavern

    CERN Multimedia

    Maximilien Brice

    2002-01-01

    Photo 02: UX15 cavern, preparation for concreting of base slab first lift. Photo 05: UX15 cavern, placing of reinforcement for base slab first lift. Photo 07: UX15 cavern, preparation for concreting of base slab first lift. Photo 09: UX15 cavern, placing of reinforcement for base slab first lift. Photo 10: UX15 cavern, view into PX14 shaft above. Photo 12: UX15 cavern, temporary access platform of RB16 tunnel. Photo 15: UJ17 chamber, invert excavation.

  7. Ultimate Pressure Capacity of Prestressed Concrete Containment Vessels with Steel Fibers

    Energy Technology Data Exchange (ETDEWEB)

    Hahm, Dae Gi; Choun, Young Sun; Choi, In Kil [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2011-10-15

    The ultimate pressure capacity (UPC) of the prestressed concrete containment vessel (PCCV) is very important since the PCCV are final protection to prevent the massive leakage of a radioactive contaminant caused by the severe accident of nuclear power plants (NPPs). The tensile behavior of a concrete is an important factor which influence to the UPC of PCCVs. Hence, nowadays, it is interested that the application of the steel fiber to the PCCVs since that the concrete with steel fiber shows an improved performance in the tensile behavior compared to reinforced concrete (RC). In this study, we performed the UPC analysis of PCCVs with steel fibers corresponding to the different volume ratio of fibers to verify the effectiveness of steel fibers on PCCVs

  8. Mechanical interaction between concrete and structural reinforcement in the tension stiffening process

    DEFF Research Database (Denmark)

    Lárusson, Lárus Helgi; Fischer, Gregor; Jönsson, Jeppe

    2011-01-01

    as Engineered Cementitious Composite (ECC), have been combined with steel and glass fiber reinforced polymer (GFRP) reinforcement to contrast the effects of brittle and ductile cement matrices as well as elastic/plastic and elastic reinforcement on the tension stiffening process. Particular focus...... investigated using an image-based deformation measurement and analysis system. This allowed for detailed view of surface deformations and the implications on the resulting response of the member in tension. In this study, conventional concrete and a ductile, strain hardening cement composite, known...

  9. Ultimate load capacity assessment of reinforced concrete shell structures

    International Nuclear Information System (INIS)

    Gupta, Amita; Singh, R.K.; Kushwaha, H.S.; Mahajan, S.C.; Kakodkar, A.

    1993-01-01

    The objective of this study is to develop capability for prediction of ultimate load capacity of reinforced concrete shell structures. The present finite element code ULCA (Ultimate Load Capacity Assessment) adopts a degenerate concept of formulating general isoparametric shell element with a layered approach in the thickness direction. Different failure modes such as crushing, tensile cracking and reinforcement yielding are recognised for various problems. The structure fails by crushing of concrete when the concrete strain/stress reaches the ultimate stress or strain of concrete. Material nonlinearities as a result of tension cracking, tension stiffening between reinforcement and concrete in cracked region and yielding of reinforcement are considered along with geometric nonlinearity. Thus with this code it is possible to predict the pressure at which the first cracking, first through thickness cracking, first yielding of reinforcement occurs. After validating the code with few bench mark problems for different failure modes a reinforced concrete nuclear containment is analysed for its ultimate capacity and the results are matched with the published results. Further the ultimate load capacity of outer containment wall of Narora Atomic Power Station is predicted. It is observed that containment fails in membrane region and has a sufficient margin against design pressure. (author). 9 refs., 56 figs., 3 tabs., 1 appendix with 4 tabs

  10. Effect of hybrid fiber reinforcement on the cracking process in fiber reinforced cementitious composites

    DEFF Research Database (Denmark)

    Pereira, Eduardo B.; Fischer, Gregor; Barros, Joaquim A.O.

    2012-01-01

    The simultaneous use of different types of fibers as reinforcement in cementitious matrix composites is typically motivated by the underlying principle of a multi-scale nature of the cracking processes in fiber reinforced cementitious composites. It has been hypothesized that while undergoing...... tensile deformations in the composite, the fibers with different geometrical and mechanical properties restrain the propagation and further development of cracking at different scales from the micro- to the macro-scale. The optimized design of the fiber reinforcing systems requires the objective...... materials is carried out by assessing directly their tensile stress-crack opening behavior. The efficiency of hybrid fiber reinforcements and the multi-scale nature of cracking processes are discussed based on the experimental results obtained, as well as the micro-mechanisms underlying the contribution...

  11. column frame for design of reinforced concrete sway frames

    African Journals Online (AJOL)

    adminstrator

    design of slender reinforced concrete columns in sway frames according .... concrete,. Ac = gross cross-sectional area of the columns. Step 3: Effective Buckling Length Factors. The effective buckling length factors of columns in a sway frame shall be computed by .... shall have adequate resistance to failure in a sway mode ...

  12. Survey of Experience Using Reinforced Concrete in Floating Marine Structures.

    Science.gov (United States)

    1983-01-01

    analyzed in several steps. The load history can be simulated by .. using load increments and independent load vectors . 4.31 NTH is not only active in...NILSEN, N., " FEILD TEST OF REINFORCEMENT CORROSION IN CONCRETE", PERFORMANCE OF CONCRETE IN MARINE ENVIRONMENT, ACI SPECIAL PUBLICATION SP-65, 1980. 136

  13. Diagonal Cracking and Shear Strength of Reinforced Concrete Beams

    DEFF Research Database (Denmark)

    Zhang, Jin-Ping

    1997-01-01

    The shear failure of non-shear-reinforced concrete beams with normal shear span ratios is observed to be governed in general by the formation of a critical diagonal crack. Under the hypothesis that the cracking of concrete introduces potential yield lines which may be more dangerous than the ones...

  14. Stripping demolition of reinforced concrete by electric heating method

    International Nuclear Information System (INIS)

    Nakagawa, Wahei; Nishita, Kiwamu; Kasai, Yoshio

    1993-01-01

    The present paper describes the procedures and results of a series of experiments the authors conducted to verify the efficiency of the electric heating method, previously proposed for so-called stripping demolition by applying electric current through reinforcing bars. In this method, a low voltage high current is run from one end to the other of a reinforcing bar or bars existing in a concrete structure, inducing intense heat in the bar(s) which in its turn brings about cracks in the surrounding concrete mass, facilitating secondary demolition by hammer picks or other means. The experiments were performed on full-scale biological shield wall mock-ups of a BWR and a small reactor. The results of the experiments are summarized as follows. (1) When electric current is applied through reinforcing bars, the bond between concrete and bars is loosened, and cracks start from one bar and progress toward other bars. Under appropriate conditions, the cracks in concrete run from the contact surface at one bar all the way to its the contact surface on another bar. (2) Cracks appear and grow only between two electrodes between which current is applied, not extending out of the area thus defined. (3) The concrete in the region closer to a current-bearing bar is intensely heated, whereas the concrete far from the bars remains nearly unheated. (4) Concrete walls after electric heating of bars disintegrates, if demolished with hammers, with the covering concrete are removed from the remaining portion of the structure together with heated bars, in shapes of flakes. (5) The reinforced concrete collapses in massive pieces of concrete, without generating much dust as is the case with the demolition of a concrete structure not heated by electricity. Results of the experiments show that the electric heating method is worth applying also to the demolition of nuclear power plants where concrete in the radioactivated surface region of shield walls needs to be stripped off in flakes

  15. Cracking in reinforced concrete structures due to imposed deformations

    Energy Technology Data Exchange (ETDEWEB)

    Nagy, A.

    1997-04-01

    This thesis is concerned with modeling of the cracking process in reinforced concrete due to imposed deformations. Cracking is investigated both at early ages, during hydration, and at mature age when the final properties of the concrete are reached. One of the most important material characteristics of the concrete at early ages, the Young`s modulus is determined by means of a dynamic method called the resonance frequency method. 40 refs

  16. Modelling of the Deterioration of Reinforced Concrete Structures

    DEFF Research Database (Denmark)

    Thoft-Christensen, Palle

    Stochastic modelling of the deterioration of reinforced concrete structures is addressed in this paper on basis of a detailed modelling of corrosion initiation and corrosion cracking. It is proposed that modelling of the deterioration of concrete should be based on a sound understanding...... of the physical and chemical properties of the concrete. The relationship between rebar corrosion and crack width is investigated. A new service life definition based on evolution of the corrosion crack width is proposed....

  17. Design Method and Cost-Benefit Analysis of Hybrid Fiber Used in Asphalt Concrete

    Directory of Open Access Journals (Sweden)

    Haiwei Zhang

    2016-01-01

    Full Text Available Fiber, as an additive, can improve the performance of asphalt concrete and be widely studied, but only a few works have been done for hybrid fiber. This paper presents a new and convenient method to design hybrid fiber and verifies hybrid fiber’s superiority in asphalt pavement engineering. Firstly, this paper expounds the design method used as its applied example with the hybrid fiber composed of lignin, polyester, and polypropylene fibers. In this method, a direct shear device (DSD is used to measure the shear damage energy density (SDED of hybrid fiber modified asphalts, and range and variance statistical analysis are applied to determine the composition proportion of hybrid fiber. Then, the engineering property of hybrid fiber reinforced asphalt concrete (AC-13 is investigated. Finally, a cost-benefit model is developed to analyze the advantage of hybrid fiber compared to single fibers. The results show that the design method employed in this paper can offer a beneficial reference. A combination of 1.8% of lignin fiber and 2.4% of polyester fiber plus 3.0% polypropylene fiber presented the best reinforcement of the hybrid fiber. The cost-benefit model verifies that the hybrid fiber can bring about comprehensive pavement performance and good economy.

  18. Tensile Capacity of U-bar Loop Connections with Precast Fiber Reinforced Dowels

    DEFF Research Database (Denmark)

    Sørensen, Jesper Harrild; Hoang, Linh Cao; Olesen, John Forbes

    2016-01-01

    This paper describes an investigation of the tensile capacity of in-situ cast U-bar loop connections between precast concrete elements. The basic idea is to introduce a small precast cylindrical dowel of fiber reinforced mortar that fits into the bend diameter of the overlapping U...... that use of a precast fiber reinforced dowel performs at a slightly lower load level, as compared to a connection grouted solely with regular mortar and reinforced with the same amount of transverse reinforcement. However, the load-displacement response of specimens with a fiber reinforced dowel is closer......-bars. The remaining part of the connection is cast in-situ with a regular mortar, which then encapsulates the precast dowel. Different dowel configurations have been investigated, including the use of steel or synthetic fibers with or without lacer bars placed within the precast dowel. The experimental results show...

  19. Seismic Behaviour of Composite Steel Fibre Reinforced Concrete Shear Walls

    Science.gov (United States)

    Boita, Ioana-Emanuela; Dan, Daniel; Stoian, Valeriu

    2017-10-01

    In this paper is presented an experimental study conducted at the “Politehnica” University of Timisoara, Romania. This study provides results from a comprehensive experimental investigation on the behaviour of composite steel fibre reinforced concrete shear walls (CSFRCW) with partially or totally encased profiles. Two experimental composite steel fibre reinforced concrete walls (CSFRCW) and, as a reference specimen, a typical reinforced concrete shear wall (RCW), (without structural reinforcement), were fabricated and tested under constant vertical load and quasi-static reversed cyclic lateral loads, in displacement control. The tests were performed until failure. The tested specimens were designed as 1:3 scale steel-concrete composite elements, representing a three storeys and one bay element from the base of a lateral resisting system made by shear walls. Configuration/arrangement of steel profiles in cross section were varied within the specimens. The main objective of this research consisted in identifying innovative solutions for composite steel-concrete shear walls with enhanced performance, as steel fibre reinforced concrete which was used in order to replace traditional reinforced concrete. A first conclusion was that replacing traditional reinforcement with steel fibre changes the failure mode of the elements, as from a flexural mode, in case of element RCW, to a shear failure mode for CSFRCW. The maximum lateral force had almost similar values but test results indicated an improvement in cracking response, and a decrease in ductility. The addition of steel fibres in the concrete mixture can lead to an increase of the initial cracking force, and can change the sudden opening of a crack in a more stable process.

  20. Dynamic and Static Behavior of Hollow-Core FRP-Concrete-Steel and Reinforced Concrete Bridge Columns under Vehicle Collision

    Directory of Open Access Journals (Sweden)

    Omar I. Abdelkarim

    2016-12-01

    Full Text Available This paper presents the difference in behavior between hollow-core fiber reinforced polymer-concrete-steel (HC-FCS columns and conventional reinforced concrete (RC columns under vehicle collision in terms of dynamic and static forces. The HC-FCS column consisted of an outer FRP tube, an inner steel tube, and a concrete shell sandwiched between the two tubes. The steel tube was hollow inside and embedded into the concrete footing with a length of 1.5 times the tube diameter while the FRP tube stopped at the top of footing. The RC column had a solid cross-section. The study was conducted through extensive finite element impact analyses using LS-DYNA software. Nine parameters were studied including the concrete material model, unconfined concrete compressive strength, material strain rate, column height-to-diameter ratio, column diameter, column top boundary condition, axial load level, vehicle velocity, and vehicle mass. Generally, the HC-FCS columns had lower dynamic forces and higher static forces than the RC columns when changing the values of the different parameters. During vehicle collision with either the RC or the HC-FCS columns, the imposed dynamic forces and their equivalent static forces were affected mainly by the vehicle velocity and vehicle mass.

  1. Study of the internal confinement of concrete reinforced (in civil engineering) with woven reinforcement

    Science.gov (United States)

    Dalal, M.; Goumairi, O.; El Malik, A.

    2017-10-01

    Concrete is generally the most used material in the field of construction. Despite its extensive use in structures, it represents some drawbacks related to its properties including its low tensile strength and low ductility. To solve this problem, the use of steel reinforcement in concrete structures is possible. Another possibility is the introduction of different types of continuous fibre / staple in the concrete, such as steel fibres or synthetic fibres, to obtain ″Concretes bundles″. Many types of fibre concrete, which have been developed and for many of them, the gain provided by the fibre was rather low and no significant improvement in tensile strength was really reaching. By cons, the ductility was higher than that of ordinary concrete. The objective of this study is to examine concrete reinforcement by inserting reinforcements woven polyester. These are either woven bidirectional (2D) or three-dimensional woven (3D). So we will report the properties of each type of reinforcement and the influence of the method of weaving on the strength reinforcements and on the strength of concrete in which they are incorporated. Such influence should contribute to improving the sustainability and enhancement of reinforcement

  2. Reinforced concrete bridges: effects due to corrosion and concrete young modulus variation

    Directory of Open Access Journals (Sweden)

    P. T. C. Mendes

    Full Text Available Most of the Brazilian bridges of federal road network are made of reinforced concrete and are more than 30 years old, with little information about the mechanical properties of their constitutive materials. Along the service life of these bridges much modification occurred on vehicles load and geometry and in design standard. Many of them show signs of concrete and steel deterioration and their stability conditions are unknown. With the aim of contributing to the structural evaluation of reinforced concrete bridges it was decided to analyze the stresses in reinforced concrete bridge sections to verify the effects due to reinforcement corrosion and variation of the concrete Young modulus on the stress distribution regarding several load patterns and cracking effects in a representative bridge of the Brazilian road network with different longitudinal reinforcement taxes and two concrete Young modulus, Ec and 0.5Ec, and with different percentage of reinforcement corrosion. The analysis considered two finite element models: frame and shell elements as well as solid elements. The results indicate that these variation effects are more significant in reinforcement bars than in concrete.

  3. Full Scale Reinforced Concrete Beam-Column Joints Strengthened with Steel Reinforced Polymer Systems

    Directory of Open Access Journals (Sweden)

    Alessandro De Vita

    2017-07-01

    Full Text Available This paper presents the results of an experimental campaign performed at the Laboratory of Materials and Structural Testing of the University of Salerno (Italy in order to investigate the seismic performance of reinforced concrete (RC beam-column joints strengthened with steel reinforced polymer (SRP systems. With the aim to represent typical façade frames’ beam-column subassemblies found in existing RC buildings, specimens were provided with two short beam stubs orthogonal to the main beam and were designed with inadequate seismic details. Five members were strengthened by using two different SRP layouts while the remaining ones were used as benchmarks. Once damaged, two specimens were also repaired, retrofitted with SRP, and subjected to cyclic test again. The results of cyclic tests performed on SRP strengthened joints are examined through a comparison with the outcomes of the previous experimental program including companion specimens not provided with transverse beam stubs and strengthened by carbon fiber-reinforced polymer (CFRP systems. In particular, both qualitative and quantitative considerations about the influence of the confining effect provided by the secondary beams on the joint response, the suitability of all the adopted strengthening solutions (SRP/CFRP systems, the performances and the failure modes experienced in the several cases studied are provided.

  4. Flexural Behavior of High-Volume Steel Fiber Cementitious Composite Externally Reinforced with Basalt FRP Sheet

    OpenAIRE

    Seungwon Kim; Cheolwoo Park

    2016-01-01

    High-performance fiber-reinforced cementitious composites (HPFRCCs) are characterized by unique tensile strain hardening and multiple microcracking behaviors. The HPFRCC, which demonstrates remarkable properties such as strength, ductility, toughness, durability, stiffness, and thermal resistance, is a class of fiber cement composite with fine aggregates. It can withstand tensile stresses by forming distributed microcracks owing to the embedded fibers in the concrete, which improve the energy...

  5. Behaviour of concrete beams reinforced withFRP prestressed concrete prisms

    Science.gov (United States)

    Svecova, Dagmar

    The use of fibre reinforced plastics (FRP) to reinforce concrete is gaining acceptance. However, due to the relatively low modulus of FRP, in comparison to steel, such structures may, if sufficient amount of reinforcement is not used, suffer from large deformations and wide cracks. FRP is generally more suited for prestressing. Since it is not feasible to prestress all concrete structures to eliminate the large deflections of FRP reinforced concrete flexural members, researchers are focusing on other strategies. A simple method for avoiding excessive deflections is to provide sufficiently high amount of FRP reinforcement to limit its stress (strain) to acceptable levels under service loads. This approach will not be able to take advantage of the high strength of FRP and will be generally uneconomical. The current investigation focuses on the feasibility of an alternative strategy. This thesis deals with the flexural and shear behaviour of concrete beams reinforced with FRP prestressed concrete prisms. FRP prestressed concrete prisms (PCP) are new reinforcing bars, made by pretensioning FRP and embedding it in high strength grout/concrete. The purpose of the research is to investigate the feasibility of using such pretensioned rebars, and their effect on the flexural and shear behaviour of reinforced concrete beams over the entire loading range. Due to the prestress in the prisms, deflection of concrete beams reinforced with this product is substantially reduced, and is comparable to similarly steel reinforced beams. The thesis comprises both theoretical and experimental investigations. In the experimental part, nine beams reinforced with FRP prestressed concrete prisms, and two companion beams, one steel and one FRP reinforced were tested. All the beams were designed to carry the same ultimate moment. Excellent flexural and shear behaviour of beams reinforced with higher prestressed prisms is reported. When comparing deflections of three beams designed to have the

  6. Optimization Design and Application of Underground Reinforced Concrete Bifurcation Pipe

    Directory of Open Access Journals (Sweden)

    Chao Su

    2015-01-01

    Full Text Available Underground reinforced concrete bifurcation pipe is an important part of conveyance structure. During construction, the workload of excavation and concrete pouring can be significantly decreased according to optimized pipe structure, and the engineering quality can be improved. This paper presents an optimization mathematical model of underground reinforced concrete bifurcation pipe structure according to real working status of several common pipe structures from real cases. Then, an optimization design system was developed based on Particle Swarm Optimization algorithm. Furthermore, take the bifurcation pipe of one hydropower station as an example: optimization analysis was conducted, and accuracy and stability of the optimization design system were verified successfully.

  7. Shear Capacity of Steel and Polymer Fibre Reinforced Concrete Beams

    DEFF Research Database (Denmark)

    Kragh-Poulsen, Jens C.; Hoang, Cao Linh; Goltermann, Per

    2011-01-01

    This paper deals with the application of a plasticity model for shear strength estimation of fibre reinforced concrete beams without stirrups. When using plastic theory to shear problems in structural concrete, the so-called effective strengths are introduced, usually determined by calibrating...... the plastic solutions with tests. This approach is, however, problematic when dealing with fibre reinforced concrete (FRC), as the effective strengths depend also on the type and the amount of fibres. In this paper, it is suggested that the effective tensile strength of FRC can be determined on the basis...

  8. Probabilistic Fatigue Model for Reinforced Concrete Onshore Wind Turbine Foundations

    DEFF Research Database (Denmark)

    Marquez-Dominguez, Sergio; Sørensen, John Dalsgaard

    2013-01-01

    Reinforced Concrete Slab Foundation (RCSF) is the most common onshore wind turbine foundation type installed by the wind industry around the world. Fatigue cracks in a RCSF are an important issue to be considered by the designers. Causes and consequences of the cracks due to fatigue damage in RCSFs...... are discussed in this paper. A probabilistic fatigue model for a RCSF is established which makes a rational treatment of the uncertainties involved in the complex interaction between fatigue cyclic loads and reinforced concrete. Design and limit state equations are established considering concrete shear...

  9. Experiment and calculation of reinforced concrete at elevated temperatures

    CERN Document Server

    Guo, Zhenhai

    2011-01-01

    Concrete as a construction material goes through both physical and chemical changes under extreme elevated temperatures. As one of the most widely used building materials, it is important that both engineers and architects are able to understand and predict its behavior in under extreme heat conditions. Brief and readable, this book provides the tools and techniques to properly analysis the effects of high temperature of reinforced concrete which will lead to more stable, safer structures. Based on years of the author's research, Reinforced Concrete at Elevated Temperatures four par

  10. Durability evaluation method on rebar corrosion of reinforced concrete

    International Nuclear Information System (INIS)

    Kitsutaka, Yoshinori

    2013-01-01

    In this paper, method on the durability evaluation in nuclear power plant concrete structures was investigated. In view of the importance of evaluating the degree of deterioration of reinforced concrete structures, relationships should be formulated among the number of years elapsed, t, the amount of action of a deteriorative factor, F, the degree of material deterioration, D, and the performance of the structure, P. Evaluation by PDFt diagrams combining these relationships may be effective. A detailed procedure of durability evaluation for a reinforced concrete structure using PDFt concept is presented for the deterioration of rebar corrosion caused by neutralization and penetration of salinity by referring to the recent papers. (author)

  11. Estimation of fracture energy of plain and reinforced concrete members

    International Nuclear Information System (INIS)

    Singh, Rajesh K.; Singh, R.K.; Kant, T.

    2012-01-01

    Modeling the complex behaviour of Reinforced concrete (RC), which is both non-homogenous and anisotropic, is a difficult task in finite element analysis of civil engineering structures. The application of fracture mechanics to plain and reinforced concrete has opened up a new field for modelling of phenomena that have often been treated empirically in the past. Cohesive crack model proposed by Hillerborg and crack band model Bazant et al with localization limiters are frequently used to study of tension failure of concrete. (author)

  12. Strain Measurement Using Embedded Fiber Bragg Grating Sensors Inside an Anchored Carbon Fiber Polymer Reinforcement Prestressing Rod for Structural Monitoring

    OpenAIRE

    Kerrouche, Abdelfateh; Boyle, William J.O.; Sun, Tong; Grattan, Kenneth T. V.; Schmidt, Jacob Wittrup; Täljsten, Björn

    2009-01-01

    Results are reported from a study carried out using a series of Bragg grating-based optical fiber sensors written into a very short length (60 mm) optical fiber network and integrated into carbon fiber polymer reinforcement (CFPR) rod. Such rods are used as reinforcements in concrete structures and in tests were subjected to strain through a series of cycles of pulling tests, with applied forces of up to 30 kN. The results show that effective strain measurements can be obtained from the diffe...

  13. Behavior of Reinforced Hybrid Concrete Corbel-Column Connection with Vertical Construction Joint

    Directory of Open Access Journals (Sweden)

    Ammar Yasir Ali

    2017-03-01

    Full Text Available In this paper, shear behavior of reinforced hybrid concrete connection of corbel-column is experimentally investigated. Nine homogenous and hybrid concrete corbel-column connections subjected to vertical applied loads were constructed and tested within two test groups (A, B. The experimental program included the effect of several variables such as type of hybrid concrete;high strength concrete (HSC or steel fiber reinforced concrete (SFRC, monolithic casting of hybrid concrete connection, and presence of construction joint at the interface of corbel-column. Experimental results showed significant effects of concrete hybridization on the structural behavior of connection specimens such as: ultimate strength, cracking loads, cracking patterns, and failure modes. Hybridization process in group (A included hybrid connection of corbel-column with HSC or SFRC corbel instated of NSC. This process led to increase the capacity of connection by (26%, 38% and shear cracking loads by (20%, 120% respectively. Moreover, connections of hybrid concrete corbels cast monolithically improved the shear capacity of corbels by (19%, 42% for HSC or SFRC respectively. In group (B, presence of construction joint at connection region reduced the shear capacity of connectionsby (10% to 22% and cracking loads by (23%-62% compared with connections cast monolithically.

  14. Mechanical Behavior of Granular/Particulate Media Reinforced with Fibers

    National Research Council Canada - National Science Library

    Michalowski, Radoslw

    1999-01-01

    Fiber-reinforced ganular composites (for instance, fiber-reinforced sand) are considered as construction materials for such applications as subgrades of airfields and roads, aircraft parking facilities, etc...

  15. Potential applications of steel fibre reinforced concrete to improve seismic response of frame structures

    International Nuclear Information System (INIS)

    Adhikari, S.; Patnaik, A.

    2012-01-01

    Fibre reinforced concrete has gained acceptance in several civil engineering applications. The proclivity of new generation of engineers to use steel fibre reinforced concrete can be attributed to some distinct functional and structural benefits that it can provide compared to conventional reinforced concrete. Fibre reinforced concrete has been found to increase the post-cracking tensile strength of concrete thus facilitating pseudo-plastic response, improved energy absorption, and better energy dissipation capabilities that lead to better structural response under cyclic loading. These factors suggest benefits in considering the use of steel fibre reinforced concrete to enhance the structural response of reinforced concrete structures under earthquake loading. This paper summarizes useful background on steel fibre reinforced concrete, the benefits over conventional reinforced concrete, and its response to cyclic excitation. The authors believe that steel fibre reinforced concrete is a suitable ductile high performance material that is gaining acceptance for applications in frame structures and is particularly suitable for enhancing seismic response. (author)

  16. Dynamic behavior of reinforced concrete beam subjected to impact load

    International Nuclear Information System (INIS)

    Ito, Chihiro; Ohnuma, Hiroshi; Sato, Koichi; Takano, Hiroshi

    1984-01-01

    The purpose of this report is to find out the impact behavior of reinforced concrete beams by means of experiment. The reinforced concrete is widely used for such an important structure as the building facilities of the nuclear power plant, and so the impact behavior of the reinforced concrete structures must be examined to estimate the resistance of concrete containment against impact load and to develope the reasonable and reliable design procedure. The impact test on reinforced concrete beam which is one of the most basic elements in the structure was conducted. Main results are summarized as follows. 1) Bending failure occured on static test. On the other hand, shear failure occured in the case of high impact velocity on impact test. 2) Penetration depth and residual deflection are approximately proportional to V 2 (V: velocity at impact). 3) Flexural wave propagates about at the speed of 2000 m/s. 4) The resistance of reinforced concrete beam against the impact load is fairly good. (author)

  17. Monitoring Corrosion of Steel Bars in Reinforced Concrete Structures

    Science.gov (United States)

    Verma, Sanjeev Kumar; Bhadauria, Sudhir Singh; Akhtar, Saleem

    2014-01-01

    Corrosion of steel bars embedded in reinforced concrete (RC) structures reduces the service life and durability of structures causing early failure of structure, which costs significantly for inspection and maintenance of deteriorating structures. Hence, monitoring of reinforcement corrosion is of significant importance for preventing premature failure of structures. This paper attempts to present the importance of monitoring reinforcement corrosion and describes the different methods for evaluating the corrosion state of RC structures, especially hal-cell potential (HCP) method. This paper also presents few techniques to protect concrete from corrosion. PMID:24558346

  18. Monitoring corrosion of steel bars in reinforced concrete structures.

    Science.gov (United States)

    Verma, Sanjeev Kumar; Bhadauria, Sudhir Singh; Akhtar, Saleem

    2014-01-01

    Corrosion of steel bars embedded in reinforced concrete (RC) structures reduces the service life and durability of structures causing early failure of structure, which costs significantly for inspection and maintenance of deteriorating structures. Hence, monitoring of reinforcement corrosion is of significant importance for preventing premature failure of structures. This paper attempts to present the importance of monitoring reinforcement corrosion and describes the different methods for evaluating the corrosion state of RC structures, especially hal-cell potential (HCP) method. This paper also presents few techniques to protect concrete from corrosion.

  19. Stochastic Models for Chloride-Initiated Corrosion in Reinforced Concrete

    DEFF Research Database (Denmark)

    Engelund, Svend; Sørensen, John Dalsgaard

    Corrosion of the reinforcement in concrete structures can lead to a substantial decrease of the load-bearing capacity. One mode of corrosion initiation is when the chloride content around the reinforcement exceeds a threshold value. In the present paper a statistical model is developed by which...... the chloride content in a 1reinforced concrete structure can be predicted. The model parameters are estimated on the basis of measurements. The distribution of the time to initiation of corrosion is estimated by FORMISORM-analysis....

  20. Monitoring Corrosion of Steel Bars in Reinforced Concrete Structures

    Directory of Open Access Journals (Sweden)

    Sanjeev Kumar Verma

    2014-01-01

    Full Text Available Corrosion of steel bars embedded in reinforced concrete (RC structures reduces the service life and durability of structures causing early failure of structure, which costs significantly for inspection and maintenance of deteriorating structures. Hence, monitoring of reinforcement corrosion is of significant importance for preventing premature failure of structures. This paper attempts to present the importance of monitoring reinforcement corrosion and describes the different methods for evaluating the corrosion state of RC structures, especially hal-cell potential (HCP method. This paper also presents few techniques to protect concrete from corrosion.