WorldWideScience

Sample records for fiber optic sensing

  1. Optical fiber rotation sensing

    CERN Document Server

    Burns, William K; Kelley, Paul

    1993-01-01

    Optical Fiber Rotation Sensing is the first book devoted to Interferometric Fiber Optic Gyros (IFOG). This book provides a complete overview of IFOGs, beginning with a historical review of IFOG development and including a fundamental exposition of basic principles, a discussion of devices and components, and concluding with industry reports on state-of-the-art activity. With several chapters contributed by principal developers of this solid-state device, the result is an authoritative work which will serve as the resource for researchers, students, and users of IFOGs.* * State-of-t

  2. Specially fibers and relevant technologies for fiber optic sensing

    International Nuclear Information System (INIS)

    Fiber optic sensing is one of the most important technologies in phonic sensing. Novel specially fibers and relevant technologies have been developed for various application fields, such as avionics, infrastructures, atomic plants and oil and gas industries. In this paper, recent progress in the fiber optic sensing is reviewed with a focus on the specialty fibers. (author)

  3. Ultra Small Integrated Optical Fiber Sensing System

    Directory of Open Access Journals (Sweden)

    Peter Van Daele

    2012-09-01

    Full Text Available This paper introduces a revolutionary way to interrogate optical fiber sensors based on fiber Bragg gratings (FBGs and to integrate the necessary driving optoelectronic components with the sensor elements. Low-cost optoelectronic chips are used to interrogate the optical fibers, creating a portable dynamic sensing system as an alternative for the traditionally bulky and expensive fiber sensor interrogation units. The possibility to embed these laser and detector chips is demonstrated resulting in an ultra thin flexible optoelectronic package of only 40 μm, provided with an integrated planar fiber pigtail. The result is a fully embedded flexible sensing system with a thickness of only 1 mm, based on a single Vertical-Cavity Surface-Emitting Laser (VCSEL, fiber sensor and photodetector chip. Temperature, strain and electrodynamic shaking tests have been performed on our system, not limited to static read-out measurements but dynamically reconstructing full spectral information datasets.

  4. Optical Fiber Sensing Using Quantum Dots

    Directory of Open Access Journals (Sweden)

    Faramarz Farahi

    2007-12-01

    Full Text Available Recent advances in the application of semiconductor nanocrystals, or quantumdots, as biochemical sensors are reviewed. Quantum dots have unique optical properties thatmake them promising alternatives to traditional dyes in many luminescence basedbioanalytical techniques. An overview of the more relevant progresses in the application ofquantum dots as biochemical probes is addressed. Special focus will be given toconfigurations where the sensing dots are incorporated in solid membranes and immobilizedin optical fibers or planar waveguide platforms.

  5. Bridge SHM system based on fiber optical sensing technology

    Science.gov (United States)

    Li, Sheng; Fan, Dian; Fu, Jiang-hua; Huang, Xing; Jiang, De-sheng

    2015-09-01

    The latest progress of our lab in recent 10 years on the area of bridge structural health monitoring (SHM) based on optical fiber sensing technology is introduced. Firstly, in the part of sensing technology, optical fiber force test-ring, optical fiber vibration sensor, optical fiber smart cable, optical fiber prestressing loss monitoring method and optical fiber continuous curve mode inspection system are developed, which not only rich the sensor types, but also provides new monitoring means that are needed for the bridge health monitoring system. Secondly, in the optical fiber sensing network and computer system platform, the monitoring system architecture model is designed to effectively meet the integration scale and effect requirement of engineering application, especially the bridge expert system proposed integration of sensing information and informatization manual inspection to realize the mode of multi index intelligence and practical monitoring, diagnosis and evaluation. Finally, the Jingyue bridge monitoring system as the representative, the research on the technology of engineering applications are given.

  6. Radiation distribution sensing with normal optical fiber

    CERN Document Server

    Kawarabayashi, J; Naka, R; Uritani, A; Watanabe, K I; Iguchi, T; Tsujimura, N

    2002-01-01

    The purpose of this study is to develop a radiation distribution monitor using a normal plastic optical fiber. The monitor has a long operating length (10m-100m) and can obtain continuous radiation distributions. A principle of the position sensing is based on a time-of-flight technique. The characteristics of this monitor to beta particles, gamma rays and fast neutrons were obtained. The spatial resolutions for beta particles ( sup 9 sup 0 Sr sup - sup 9 sup 0 Y), gamma rays ( sup 1 sup 3 sup 7 Cs) and D-T neutrons were 30 cm, 37 cm and 13 cm, respectively. The detection efficiencies for the beta rays, the gamma rays and D-T neutrons were 0.11%, 1.6x10 sup - sup 5 % and 5.4x10 sup - sup 4 %, respectively. The effective attenuation length of the detection efficiency was 18m. New principle of the position sensing based on spectroscopic analysis was also proposed. A preliminary test showed that the spectrum observed at the end of the fiber depended on the position of the irradiated point. This fact shows that t...

  7. Fiber optic pressure sensing with conforming elastomers.

    Science.gov (United States)

    Shao, Li-Yang; Jiang, Qi; Albert, Jacques

    2010-12-10

    A novel pressure sensing scheme based on the effect of a conforming elastomer material on the transmission spectrum of tilted fiber Bragg gratings is presented. Lateral pressure on the elastomer increases its contact angle around the circumference of the fiber and strongly perturbs the optical transmission of the grating. Using an elastomer with a Young's modulus of 20 MPa, a Poisson ratio of 0.48, and a refractive index of 1.42, the sensor reacts monotonically to pressures from 0 to 50 kPa (and linearly from 0 to 15 kPa), with a standard deviation of 0.25 kPa and maximum error of 0.5 kPa. The data are extracted from the optical transmission spectrum using Fourier analysis and we show that this technique makes the response of the sensor independent of temperature, with a maximum error of 2% between 25°C and 75°C. Finally, other pressure ranges can be reached by using conforming materials with different modulii or applying the pressure at different orientations.

  8. Sensing characteristics of birefringent microstructured polymer optical fiber

    DEFF Research Database (Denmark)

    Szczurowski, Marcin K.; Frazao, Orlando; Baptista, J. M.;

    2011-01-01

    We experimentally studied several sensing characteristics of a birefringent microstructured polymer optical fiber. The fiber exhibits a birefringence of the order 2×10-5 at 1.3 μm because of two small holes adjacent to the core. In this fiber, we measured spectral dependence of phase and group mo...

  9. Fiber-Optic Sensing for In-Space Inspection

    Science.gov (United States)

    Pena, Francisco; Richards, W. Lance; Piazza, Anthony; Parker, Allen R.; Hudson, Larry D.

    2014-01-01

    This presentation provides examples of fiber optic sensing technology development activities performed at NASA Armstrong. Examples of current and previous work that support in-space inspection techniques and methodologies are highlighted.

  10. Recent advancement in optical fiber sensing for aerospace composite structures

    Science.gov (United States)

    Minakuchi, Shu; Takeda, Nobuo

    2013-12-01

    Optical fiber sensors have attracted considerable attention in health monitoring of aerospace composite structures. This paper briefly reviews our recent advancement mainly in Brillouin-based distributed sensing. Damage detection, life cycle monitoring and shape reconstruction systems applicable to large-scale composite structures are presented, and new technical concepts, "smart crack arrester" and "hierarchical sensing system", are described as well, highlighting the great potential of optical fiber sensors for the structural health monitoring (SHM) field.

  11. Application of Multiscale Fiber Optical Sensing Network Based on Brillouin and Fiber Bragg Grating Sensing Techniques on Concrete Structures

    OpenAIRE

    Xuefeng Zhao; Jie Lu; Ruicong Han; Xianglong Kong; Yanhong Wang; Le Li

    2012-01-01

    The paper reports the application of the distributed optical fiber sensing technology and the FBG sensing technology in bridge strain monitoring; the overall changeable characteristics of the whole structure can be obtained through the distributed optical fiber sensing technology (BOTDA), meanwhile the accurate information of local important parts of the structure can be obtained through the optical fiber Bragg grating sensor (FBG), which can improve the accuracy of the monitoring. FBG sensor...

  12. Radiation resistant optical fiber for FBG based sensing

    OpenAIRE

    Pal, A.; Dhar, A.; Sen, R; Ams, M.; Sun, T.; Grattan, K.T.V.

    2013-01-01

    Radiation-resistant optical fibers have been fabricated through MCVD process. The low radiation-induced-absorption in the fiber and few picometer shifting of Bragg-wavelength of the FBG under γ-exposure indicate its potential application for sensing in radiation environment.

  13. Optical Fiber Sensing Using Quantum Dots

    OpenAIRE

    Faramarz Farahi; José Luís Santos; Tito Trindade; Manuel António Martins; Pedro Jorge

    2007-01-01

    Recent advances in the application of semiconductor nanocrystals, or quantum dots, as biochemical sensors are reviewed. Quantum dots have unique optical properties that make them promising alternatives to traditional dyes in many luminescence based bioanalytical techniques. An overview of the more relevant progresses in the application of quantum dots as biochemical probes is addressed. Special focus will be given to configurations where the sensing dots are incorporated in sol...

  14. Fiber Optic Wing Shape Sensing on NASA's Ikhana UAV

    Science.gov (United States)

    Richards, Lance; Parker, Allen R.; Ko, William L.; Piazza, Anthony

    2008-01-01

    This document discusses the development of fiber optic wing shape sensing on NASA's Ikhana vehicle. The Dryden Flight Research Center's Aerostructures Branch initiated fiber-optic instrumentation development efforts in the mid-1990s. Motivated by a failure to control wing dihedral resulting in a mishap with the Helios aircraft, new wing displacement techniques were developed. Research objectives for Ikhana included validating fiber optic sensor measurements and real-time wing shape sensing predictions; the validation of fiber optic mathematical models and design tools; assessing technical viability and, if applicable, developing methodology and approaches to incorporate wing shape measurements within the vehicle flight control system; and, developing and flight validating approaches to perform active wing shape control using conventional control surfaces and active material concepts.

  15. Exposed-core chalcogenide microstructured optical fibers for chemical sensing

    Science.gov (United States)

    Troles, Johann; Toupin, Perrine; Brilland, Laurent; Boussard-Plédel, Catherine; Bureau, Bruno; Cui, Shuo; Mechin, David; Adam, Jean-Luc

    2013-05-01

    Chemical bonds of most of the molecules vibrate at a frequency corresponding to the near or mid infrared field. It is thus of a great interest to develop sensitive and portable devices for the detection of specific chemicals and biomolecules for various applications in health, the environment, national security and so on. Optical fibers define practical sensing tools. Chalcogenide glasses are known for their transparency in the infrared optical range and their ability to be drawn as fibers. They are consequently good candidates to be used in biological/chemical sensing. For that matter, in the past decade, chalcogenide glass fibers have been successfully implemented in evanescent wave spectroscopy experiments, for the detection of bio-chemical species in various fields of applications including microbiology and medicine, water pollution and CO2 detection. Different types of fiber can be used: single index fibers or microstructured fibers. Besides, in recent years a new configuration of microstructured fibers has been developed: microstructured exposed-core fibers. This design consists of an optical fiber with a suspended micron-scale core that is partially exposed to the external environment. This configuration has been chosen to elaborate, using the molding method, a chalcogenide fiber for chemical species detection. The sensitivity of this fiber to detect molecules such as propan-2-ol and acetone has been compared with those of single index fibers. Although evanescent wave absorption is inversely proportional to the fiber diameter, the result shows that an exposed-core fiber is much more sensitive than a single index fiber having a twice smaller external diameter.

  16. Multiparameter fiber optic sensing system for monitoring enhanced geothermal systems

    Energy Technology Data Exchange (ETDEWEB)

    Challener, William A

    2014-12-04

    The goal of this project was to design, fabricate and test an optical fiber cable which supports multiple sensing modalities for measurements in the harsh environment of enhanced geothermal systems. To accomplish this task, optical fiber was tested at both high temperatures and strains for mechanical integrity, and in the presence of hydrogen for resistance to darkening. Both single mode (SM) and multimode (MM) commercially available optical fiber were identified and selected for the cable based on the results of these tests. The cable was designed and fabricated using a tube-within-tube construction containing two MM fibers and one SM fiber, and without supporting gel that is not suitable for high temperature environments. Commercial fiber optic sensing instruments using Raman DTS (distributed temperature sensing), Brillouin DTSS (distributed temperature and strain sensing), and Raleigh COTDR (coherent optical time domain reflectometry) were selected for field testing. A microelectromechanical systems (MEMS) pressure sensor was designed, fabricated, packaged, and calibrated for high pressure measurements at high temperatures and spliced to the cable. A fiber Bragg grating (FBG) temperature sensor was also spliced to the cable. A geothermal well was selected and its temperature and pressure were logged. The cable was then deployed in the well in two separate field tests and measurements were made on these different sensing modalities. Raman DTS measurements were found to be accurate to ±5°C, even with some residual hydrogen darkening. Brillouin DTSS measurements were in good agreement with the Raman results. The Rayleigh COTDR instrument was able to detect some acoustic signatures, but was generally disappointing. The FBG sensor was used to determine the effects of hydrogen darkening, but drift over time made it unreliable as a temperature or pressure sensor. The MEMS sensor was found to be highly stable and accurate to better than its 0.1% calibration.

  17. Multiparameter fiber optic sensing system for monitoring enhanced geothermal systems

    Energy Technology Data Exchange (ETDEWEB)

    William A. Challener

    2014-12-04

    The goal of this project was to design, fabricate and test an optical fiber cable which supports multiple sensing modalities for measurements in the harsh environment of enhanced geothermal systems. To accomplish this task, optical fiber was tested at both high temperatures and strains for mechanical integrity, and in the presence of hydrogen for resistance to darkening. Both single mode (SM) and multimode (MM) commercially available optical fiber were identified and selected for the cable based on the results of these tests. The cable was designed and fabricated using a tube-within-tube construction containing two MM fibers and one SM fiber, and without supporting gel that is not suitable for high temperature environments. Commercial fiber optic sensing instruments using Raman DTS (distributed temperature sensing), Brillouin DTSS (distributed temperature and strain sensing), and Raleigh COTDR (coherent optical time domain reflectometry) were selected for field testing. A microelectromechanical systems (MEMS) pressure sensor was designed, fabricated, packaged, and calibrated for high pressure measurements at high temperatures and spliced to the cable. A fiber Bragg grating (FBG) temperature sensor was also spliced to the cable. A geothermal well was selected and its temperature and pressure were logged. The cable was then deployed in the well in two separate field tests and measurements were made on these different sensing modalities. Raman DTS measurements were found to be accurate to ±5°C, even with some residual hydrogen darkening. Brillouin DTSS measurements were in good agreement with the Raman results. The Rayleigh COTDR instrument was able to detect some acoustic signatures, but was generally disappointing. The FBG sensor was used to determine the effects of hydrogen darkening, but drift over time made it unreliable as a temperature or pressure sensor. The MEMS sensor was found to be highly stable and accurate to better than its

  18. Fiber sensing system based on a bragg grating and optical time domain reflectometry

    OpenAIRE

    Chin, Sanghoon; Thévenaz, Luc

    2013-01-01

    Optic fiber sensor characterized in that the sensing fiber is provided with a continuous Bragg grating covering the entire fiber length which is dedicated to sensing and along which spatially resolved measurements are performed.

  19. Experiment Study of Fiber Optic Sensing in Railway Security Monitoring

    Institute of Scientific and Technical Information of China (English)

    Dian Fan; De-Sheng Jiang; Wei-Lai Li

    2008-01-01

    Aiming at some security problems in railway running and the application condition of existing technology, this paper studies some issues of using fiber optic sensing technology in railway security monitoring. Through field experiment measuring the strain of the rail and analyzing the experiment data, the method of diagnosing the health condition of rail and wheel is investigated.

  20. Distributed Fiber Optic Gas Sensing for Harsh Environment

    Energy Technology Data Exchange (ETDEWEB)

    Juntao Wu

    2008-03-14

    This report summarizes work to develop a novel distributed fiber-optic micro-sensor that is capable of detecting common fossil fuel gases in harsh environments. During the 32-month research and development (R&D) program, GE Global Research successfully synthesized sensing materials using two techniques: sol-gel based fiber surface coating and magnetron sputtering based fiber micro-sensor integration. Palladium nanocrystalline embedded silica matrix material (nc-Pd/Silica), nanocrystalline palladium oxides (nc-PdO{sub x}) and palladium alloy (nc-PdAuN{sub 1}), and nanocrystalline tungsten (nc-WO{sub x}) sensing materials were identified to have high sensitivity and selectivity to hydrogen; while the palladium doped and un-doped nanocrystalline tin oxide (nc-PdSnO{sub 2} and nc-SnO{sub 2}) materials were verified to have high sensitivity and selectivity to carbon monoxide. The fiber micro-sensor comprises an apodized long-period grating in a single-mode fiber, and the fiber grating cladding surface was functionalized by above sensing materials with a typical thickness ranging from a few tens of nanometers to a few hundred nanometers. GE found that the morphologies of such sensing nanomaterials are either nanoparticle film or nanoporous film with a typical size distribution from 5-10 nanometers. nc-PdO{sub x} and alloy sensing materials were found to be highly sensitive to hydrogen gas within the temperature range from ambient to 150 C, while nc-Pd/Silica and nc-WO{sub x} sensing materials were found to be suitable to be operated from 150 C to 500 C for hydrogen gas detection. The palladium doped and un-doped nc-SnO{sub 2} materials also demonstrated sensitivity to carbon monoxide gas at approximately 500 C. The prototyped fiber gas sensing system developed in this R&D program is based on wavelength-division-multiplexing technology in which each fiber sensor is identified according to its transmission spectra features within the guiding mode and cladding modes. The

  1. Monitoring of Thermal Protection Systems using Robust Self-Organizing Optical Fiber Sensing Networks Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Objectives a) Development, evaluation and demonstration of a dynamically reconfigurable optical fiber sensing network that is interrogated using the optical...

  2. Plastic Optical Fiber Sensing of Alcohol Concentration in Liquors

    Directory of Open Access Journals (Sweden)

    Masayuki Morisawa

    2012-01-01

    Full Text Available A simple optical fiber sensing system of alcohol concentration in liquors has been studied. In this sensor head, a mixture polymer of novolac resin and polyvinylidenefluoride (PVDF with a ratio of 9 : 1 was coated as a sensitive cladding layer on the plastic fiber core made of polystyrene-(PS-coated polycarbonate (PC. Using this sensor head and a green LED light source, it was confirmed that alcohol concentration in several kinds of liquors from beer to whisky can easily be measured with a fast response time less than 1 minute.

  3. New trends and applications of optical fiber sensing technologies at the NEL-FOST

    Science.gov (United States)

    Yang, Minghong; Huang, Chujia; Yuan, Yinquan; Ding, Liyun; Zhou, Ciming

    2015-07-01

    This paper reviews the recent development of optical fiber sensors at the National Engineering Laboratory for Optic Fiber Sensing Technologies (NEL-FOST) at Wuhan University of Technology. Integration of optical fiber with sensitive thin films will new possibilities for industry application, such as optical fiber hydrogen sensors based on Pt-doped WO3 coatings, fiber humidity sensors with porous oxide coating and high-temperature sapphire fiber sensors based on multilayer coating on fiber tip. Ultra-weak FBG array with thousand of FBGs with on-line draw tower technology will enable FBG sensing network with large capacity, also improved sensing performance and mechanical stability.

  4. Optical fiber sensing technology in the pipeline industry

    Energy Technology Data Exchange (ETDEWEB)

    Braga, A.M.B.; Llerena, R.W.A. [Pontificia Univ. Catolica do Rio de Janeiro, RJ (Brazil). Dept. de Engenharia Mecanica]. E-mail: abraga@mec.puc-rio.br; roberan@mec.puc-rio.br; Valente, L.C.G.; Regazzi, R.D. [Gavea Sensors, Rio de Janeiro, RJ (Brazil)]. E-mail: guedes@gaveasensors.com; regazzi@gaveasensors.com

    2003-07-01

    This paper is concerned with applications of optical fiber sensors to pipeline monitoring. The basic principles of optical fiber sensors are briefly reviewed, with particular attention to fiber Bragg grating technology. Different potential applications in the pipeline industry are discussed, and an example of a pipeline strain monitoring system based on optical fiber Bragg grating sensors is presented. (author)

  5. Frequency-Shifted Interferometry — A Versatile Fiber-Optic Sensing Technique

    OpenAIRE

    Fei Ye; Yiwei Zhang; Bing Qi; Li Qian

    2014-01-01

    Fiber-optic sensing is a field that is developing at a fast pace. Novel fiber-optic sensor designs and sensing principles constantly open doors for new opportunities. In this paper, we review a fiber-optic sensing technique developed in our research group called frequency-shifted interferometry (FSI). This technique uses a continuous-wave light source, an optical frequency shifter, and a slow detector. We discuss the operation principles of several FSI implementations and show their applicati...

  6. Calibration and Deployment of a Fiber-Optic Sensing System for Monitoring Debris Flows

    OpenAIRE

    Tsung-Mo Tien; Hsiao-Yuen Yin; Ping-Sen Chen; Ching-Jer Huang; Chung-Ray Chu

    2012-01-01

    This work presents a novel fiber-optic sensing system, capable of monitoring debris flows or other natural hazards that produce ground vibrations. The proposed sensing system comprises a demodulator (BraggSCOPE, FS5500), which includes a broadband light source and a data logger, a four-port coupler and four Fiber Bragg Grating (FBG) accelerometers. Based on field tests, the performance of the proposed fiber-optic sensing system is compared with that of a conventional sensing system that inclu...

  7. Extreme temperature sensing using brillouin scattering in optical fibers

    CERN Document Server

    Fellay, Alexandre

    Stimulated Brillouin scattering in silica-based optical fibers may be considered from two different and complementary standpoints. For a physicist, this interaction of light and pressure wave in a material, or equivalently in quantum theory terms between photons and phonons, gives some glimpses of the atomic structure of the solid and of its vibration modes. For an applied engineer, the same phenomenon may be put to good use as a sensing mechanism for distributed measurements, thanks to the dependence of the scattered light on external parameters such as the temperature, the pressure or the strain applied to the fiber. As far as temperature measurements are concerned, Brillouin-based distributed sensors have progressively gained wide recognition as efficient systems, even if their rather high cost still restricts the number of their applications. Yet they are generally used in a relatively narrow temperature range around the usual ambient temperature; in this domain, the frequency of the scattered light incre...

  8. Novel Perturbation-Immune All-Fiber Optical Architecture for Current Sensing

    Institute of Scientific and Technical Information of China (English)

    Huang Hung-chia; Yao Shouquan; Guo Qiang

    2003-01-01

    This paper describes a novel all-fiber optical architecture for electric current or magnetic field sensing which is immune against temperature and vibration perturbations in a hazardous environment. The architecture is structured by employing the fiber-optic wave plates (quarter, half or full) of the patented invention of the senior author. Experimental results on prototype fiber-optic specimen and on a variety of optical fiber networks confirm the respective theoretical predictions.

  9. Gamma radiation influence on silica optical fibers measured by optical backscatter reflectometry and Brillouin sensing technique

    Science.gov (United States)

    Wosniok, A.; Sporea, D.; Neguţ, D.; Krebber, K.

    2016-05-01

    We have studied the influence of gamma rays on physical properties of different commercially available silica optical fibers stepwise irradiated up to a total dose of 100 kGy. The detection of radiation-induced changes in silica glass offers the possibility of using selected optical fibers as distributed radiation sensors. The measurements performed by us were based on optical backscatter reflectometry and Brillouin distributed sensing. The measurement methods enable an analysis of radiation-induced modification of the group refractive index and density of the optical fibers. The most distinct physical effect observed by us concerns the increase of the optical attenuation with rising total radiation doses. Quantitative measurement results indicate a crucial impact of fiber dopants on radiation-induced physical and sensory characteristics of silica optical fibers affected by differences in fiber fabrication techniques. Based on the obtained results, the suitability of distributed Brillouin sensing for dosimetry applications seems to be improved by modifying the refractive index profile of the fiber core.

  10. CO2 laser ablation of bent optical fibers for sensing applications

    International Nuclear Information System (INIS)

    A procedure for the fabrication of a fiber optic sensor involving CO2 laser ablation at λ = 10.6 µm is proposed. A basic system to achieve optical fiber bending and material processing on a single mode optical fiber is described and it is demonstrated that an optical fiber can be bent at a very precise angle by focusing a CO2 beam locally near the glass cladding surface until it reaches melting temperature. A method is also described for removing material at the apex of a bent fiber to obtain a smooth and well flattened plane surface that is suitable for optical fiber sensing

  11. Design of distributed Raman temperature sensing system based on single-mode optical fiber

    Institute of Scientific and Technical Information of China (English)

    Ziheng XU; Deming LIU; Hairong LIU; Qizhen SUN; Zhifeng SUN; Xu ZHANG; Wengang WANG

    2009-01-01

    The distributed optical fiber temperature sensor system based on Raman scattering has developed rapidly since it was invented in 1970s. The optical wavelengths used in most of the distributed temperature optical fiber sensor system based on the Raman scattering are around from 840 to 1330 nm, and the system operates with multimode optical fibers. However, this wavelength range is not suitable for long-distance transmission due to the high attenuation and dispersion of the transmission optical fiber. A novel distributed optical fiber Raman temperature sensor system based on standard single-mode optical fiber is proposed. The system employs the wavelength of 1550 nm as the probe light and the standard communication optical fiber as the sensing medium to increase the sensing distance. This system mainly includes three modules: the probe light transmitting module, the light magnifying and transmission module, and the signal acquisition module.

  12. Corrosion monitoring along infrastructures using distributed fiber optic sensing

    Science.gov (United States)

    Alhandawi, Khalil B.; Vahdati, Nader; Shiryayev, Oleg; Lawand, Lydia

    2016-04-01

    Pipeline Inspection Gauges (PIGs) are used for internal corrosion inspection of oil pipelines every 3-5 years. However, between inspection intervals, rapid corrosion may occur, potentially resulting in major accidents. The motivation behind this research project was to develop a safe distributed corrosion sensor placed inside oil pipelines continuously monitoring corrosion. The intrinsically safe nature of light provided motivation for researching fiber optic sensors as a solution. The sensing fiber's cladding features polymer plastic that is chemically sensitive to hydrocarbons within crude oil mixtures. A layer of metal, used in the oil pipeline's construction, is deposited on the polymer cladding, which upon corrosion, exposes the cladding to surrounding hydrocarbons. The hydrocarbon's interaction with the cladding locally increases the cladding's refractive index in the radial direction. Light intensity of a traveling pulse is reduced due to local reduction in the modal capacity which is interrogated by Optical Time Domain Reflectometery. Backscattered light is captured in real-time while using time delay to resolve location, allowing real-time spatial monitoring of environmental internal corrosion within pipelines spanning large distances. Step index theoretical solutions were used to calculate the power loss due changes in the intensity profile. The power loss is translated into an attenuation coefficient characterizing the expected OTDR trace which was verified against similar experimental results from the literature. A laboratory scale experiment is being developed to assess the validity of the model and the practicality of the solution.

  13. Magnetic Sensing with Ferrofluid and Fiber Optic Connectors

    Directory of Open Access Journals (Sweden)

    Daniel Homa

    2014-02-01

    Full Text Available A simple, cost effective and sensitive fiber optic magnetic sensor fabricated with ferrofluid and commercially available fiber optic components is described in this paper. The system uses a ferrofluid infiltrated extrinsic Fabry-Perot interferometer (EFPI interrogated with an infrared wavelength spectrometer to measure magnetic flux density. The entire sensing system was developed with commercially available components so it can be easily and economically reproduced in large quantities. The device was tested with two different ferrofluid types over a range of magnetic flux densities to verify performance. The sensors readily detected magnetic flux densities in the range of 0.5 mT to 12.0 mT with measurement sensitivities in the range of 0.3 to 2.3 nm/mT depending on ferrofluid type. Assuming a conservative wavelength resolution of 0.1 nm for state of the art EFPI detection abilities, the estimated achievable measurement resolution is on the order 0.04 mT. The inherent small size and basic structure complimented with the fabrication ease make it well-suited for a wide array of research, industrial, educational and military applications.

  14. Analyzing Fourier Transforms for NASA DFRC's Fiber Optic Strain Sensing System

    Science.gov (United States)

    Fiechtner, Kaitlyn Leann

    2010-01-01

    This document provides a basic overview of the fiber optic technology used for sensing stress, strain, and temperature. Also, the document summarizes the research concerning speed and accuracy of the possible mathematical algorithms that can be used for NASA DFRC's Fiber Optic Strain Sensing (FOSS) system.

  15. Perfluorinated Plastic Optical Fiber Tapers for Evanescent Wave Sensing

    Directory of Open Access Journals (Sweden)

    Romeo Bernini

    2009-12-01

    Full Text Available In this work we describe the fabrication and the characterization of perfluorinated plastic-cladded optical fiber tapers. The heat-and-pull procedure has been used to fabricate symmetric tapers. Devices with different taper ratio have been produced and the repeatability of the process has been verified. The very low refractive indexes of the core-cladding perfluorinated polymers (n = 1.35–1.34 permit a strong enhancement of the evanescent wave power fraction in aqueous environments (n = 1.33, making them very attractive for evanescent wave sensing. The tapers have been characterized carrying out evanescent field absorbance measurements with different concentrations of methylene blue in water and fluorescence collection measurements in an aqueous solution containing Cy5 dye. A good sensitivity, tightly related to the low refractive index of the core-cladding materials and the geometrical profile, has been shown.

  16. Dynamic Response of Tapered Optical Multimode Fiber Coated with Carbon Nanotubes for Ethanol Sensing Application

    OpenAIRE

    Arafat Shabaneh; Saad Girei; Punitha Arasu; Mohd Mahdi; Suraya Rashid; Suriati Paiman; Mohd Yaacob

    2015-01-01

    Ethanol is a highly combustible chemical universally designed for biomedical applications. In this paper, optical sensing performance of tapered multimode fiber tip coated with carbon nanotube (CNT) thin film towards aqueous ethanol with different concentrations is investigated. The tapered optical multimode fiber tip is coated with CNT using drop-casting technique and is annealed at 70 °C to enhance the binding of the nanomaterial to the silica fiber tip. The optical fiber tip and the CNT se...

  17. Optical sensing in high voltage transmission lines using power over fiber and free space optics

    Science.gov (United States)

    Rosolem, João Batista; Bassan, Fabio Renato; Penze, Rivael Strobel; Leonardi, Ariovaldo Antonio; Fracarolli, João Paulo Vicentini; Floridia, Claudio

    2015-12-01

    In this work we propose the use of power over fiber (PoF) and free space optics (FSO) techniques to powering and receive signals from an electrical current sensor placed at high voltage potential using a pair of optical collimators. The technique evaluation was performed in a laboratorial prototype using 62.5/125 μm multimode fiber to study the sensitivity of the optical alignment and the influence of the collimation process in the sensing system wavelengths: data communication (1310 nm) and powering (830 nm). The collimators were installed in a rigid electric insulator in order to maintain the stability of transmission.

  18. Biochemical sensing application based on optical fiber evanescent wave sensor

    Science.gov (United States)

    Lv, Xiaoyi; Mo, Jiaqing; Xu, Liang; Jia, Zhenhong

    2015-08-01

    We have designed a novel evanescent field fiber optic biosensors with porous silicon dioxide cladding. The pore size of porous silicon dioxide cladding is about 100 nm in diameter. Biological molecules were immobilized to the porous silicon dioxide cladding used APTES and glutaraldehyde. Refractive index of cladding used Bruggemann's effective medium theory. We carried out simulations of changing in light intensity in optical fiber before and after chemical coupling of biomolecules. This novel optical fiber evanescent wave biosensor has a great potential in clinical chemistry for rapid and convenient determination of biological molecule.

  19. Frequency-Shifted Interferometry — A Versatile Fiber-Optic Sensing Technique

    Directory of Open Access Journals (Sweden)

    Fei Ye

    2014-06-01

    Full Text Available Fiber-optic sensing is a field that is developing at a fast pace. Novel fiber-optic sensor designs and sensing principles constantly open doors for new opportunities. In this paper, we review a fiber-optic sensing technique developed in our research group called frequency-shifted interferometry (FSI. This technique uses a continuous-wave light source, an optical frequency shifter, and a slow detector. We discuss the operation principles of several FSI implementations and show their applications in fiber length and dispersion measurement, locating weak reflections along a fiber link, fiber-optic sensor multiplexing, and high-sensitivity cavity ring-down measurement. Detailed analysis of FSI system parameters is also presented.

  20. Sensing system with Michelson-type fiber optical interferometer based on single FBG reflector

    Institute of Scientific and Technical Information of China (English)

    Xueliang Zhang; Zhou Meng; Zhengliang Hu

    2011-01-01

    A sensing system, with Michelson-type fiber optical interferometer based on single fiber Bragg grating (FBG) as the reflector, is demonstrated. The system used a frequency-matched ring fiber optical laser as the source. The closed Michelson-type fiber optical interferometer system will be helpful in simplifying the developed interferometric sensor by replacing the double reflectors with only one FBG reflecting the double-side light. The basic sensing properties of the system are demonstrated, with a fiber optic piezoelectric ceramic transducer embedded in the arm of the interferometer simulating the sensing signal.%As a simple fiber optic component,fiber Bragg grating (FBG) has been used frequently as a sensor,filter or reflector[1-4],etc.Meanwhile,the Michelson-type fiber optical interferometric sensor has achieved a high level of development in the acoustic,electric,and magnetic field sensors because of its simple and low-cost structure as well as multiplexing advantages.The Michelsontype interferometer has been widely applied with Faraday rotating mirrors (FRMs) or polarization maintaining fiber reflectors particularly in the fiber optic hydrophone system[5,6].At present,further research is aimed at simplifying fiber optical interferometric sensors.

  1. Spatially continuous distributed fiber optic sensing using optical carrier based microwave interferometry.

    Science.gov (United States)

    Huang, Jie; Lan, Xinwei; Luo, Ming; Xiao, Hai

    2014-07-28

    This paper reports a spatially continuous distributed fiber optic sensing technique using optical carrier based microwave interferometry (OCMI), in which many optical interferometers with the same or different optical path differences are interrogated in the microwave domain and their locations can be unambiguously determined. The concept is demonstrated using cascaded weak optical reflectors along a single optical fiber, where any two arbitrary reflectors are paired to define a low-finesse Fabry-Perot interferometer. While spatially continuous (i.e., no dark zone), fully distributed strain measurement was used as an example to demonstrate the capability, the proposed concept may also be implemented on other types of waveguide or free-space interferometers and used for distributed measurement of various physical, chemical and biological quantities. PMID:25089493

  2. Single-ring hollow core optical fibers made by glass billet extrusion for Raman sensing.

    Science.gov (United States)

    Tsiminis, G; Rowland, K J; Schartner, E P; Spooner, N A; Monro, T M; Ebendorff-Heidepriem, H

    2016-03-21

    We report the fabrication of the first extruded hollow core optical fiber with a single ring of cladding holes, and its use in a chemical sensing application. These single suspended ring structures show antiresonance reflection optical waveguiding (ARROW) features in the visible part of the spectrum. The impact of preform pressurization on the geometry of these fibers is determined by the size of the different hole types in the preform. The fibers are used to perform Raman sensing of methanol, demonstrating their potential for future fiber sensing applications. PMID:27136787

  3. Optical frequency domain reflectometry: principles and applications in fiber optic sensing

    Science.gov (United States)

    Kreger, Stephen T.; Rahim, Nur Aida Abdul; Garg, Naman; Klute, Sandra M.; Metrey, Daniel R.; Beaty, Noah; Jeans, James W.; Gamber, Robert

    2016-05-01

    Optical Frequency Domain Reflectometry (OFDR) is the basis of an emerging high-definition distributed fiber optic sensing (HD-FOS) technique that provides an unprecedented combination of resolution and sensitivity. OFDR employs swept laser interferometry to produce strain or temperature vs. sensor length with fiber Bragg gratings (FBGs) or Rayleigh scatter as the source signal. We look at the influence of HD-FOS on design and test of new, lighter weight, stronger and more fuel efficient vehicles. Examples include defect detection, model verification and structural health monitoring of composites, and temperature distribution monitoring of battery packs and inverters in hybrid and electric powertrains.

  4. Application of Distributed Optical Fiber Sensing Technology in the Anomaly Detection of Shaft Lining in Grouting

    OpenAIRE

    Chunde Piao; Jun Yuan; Bin Shi; Haijun Lu; Guangqing Wei; Chunsheng Gu

    2015-01-01

    The rupture of the shaft lining caused by grouting has seriously undermined the safety in coal mining. Based on BOTDR distributed optical fiber sensing technology, this paper studied the layout method of optical fiber sensors and the anomaly detection method of the deformation and obtained the evolution law of shaft deformation triggered by grouting. The research results showed that the bonding problem of optical fiber sensors in damp environment could be effectively solved, by applying the b...

  5. Fiber-optic-coupled dosemeter for remote optical sensing of radiation

    International Nuclear Information System (INIS)

    Remote sensing technologies for the detection and measurement of ionizing radiation exposure are of current interest for applications such as patient dose verification during radiotherapy and the monitoring of environmental contaminants. Fiberoptic-based sensing is attractive due to the advantages of small size, low cost, long life and freedom from electromagnetic interference. Several fiberoptic-based radiation sensing systems have been described that utilize radiation induced changes in the optical characteristics of the fiber such as reduced transmission as a result of darkening of the glass, optical phase shifts due to heating, or changes in the birefringence of a polarization-maintaining fiber. The measurement of radiation induced darkening is limited in both sensitivity and dynamic range and requires long fiber lengths. Phase shift measurements require the use of single-mode lasers, phase sensitive interferometric detection, long fiber lengths and complex signal processing techniques. Alternatively, thermoluminescent (TL) phosphor powders have been coated onto fiberoptic cables and remote dosimetry measurements performed using traditional laser heating techniques. The sensitivity is limited by the requirement for a very thin layer of phosphor material, due to problems associated with light scattering and efficient heating by thermal diffusion. In this paper we report the development of an all-optical, fiber-optic-coupled, thermoluminescence dosemeter for remote radiation sensing that offers significant advantages compared to previous technologies. We recently reported the development of an optically transparent, TL glass material having exceptionally good characteristics for traditional dosimetry applications. We also reported a modified TL glass incorporating a rare earth ion dopant in order to absorb light from a semiconductor laser and utilize the absorbed light energy to internally heat the glass and release the trapped electrons. (author)

  6. Structural Health Monitoring of Civil Infrastructure Using Optical Fiber Sensing Technology: A Comprehensive Review

    Directory of Open Access Journals (Sweden)

    X. W. Ye

    2014-01-01

    Full Text Available In the last two decades, a significant number of innovative sensing systems based on optical fiber sensors have been exploited in the engineering community due to their inherent distinctive advantages such as small size, light weight, immunity to electromagnetic interference (EMI and corrosion, and embedding capability. A lot of optical fiber sensor-based monitoring systems have been developed for continuous measurement and real-time assessment of diversified engineering structures such as bridges, buildings, tunnels, pipelines, wind turbines, railway infrastructure, and geotechnical structures. The purpose of this review article is devoted to presenting a summary of the basic principles of various optical fiber sensors, innovation in sensing and computational methodologies, development of novel optical fiber sensors, and the practical application status of the optical fiber sensing technology in structural health monitoring (SHM of civil infrastructure.

  7. NASA Armstrong Flight Research Center (AFRC) Fiber Optic Sensing System (FOSS) Technology

    Science.gov (United States)

    Richards, Lance; Parker, Allen R.; Piazza, Anthony; Chan, Patrick; Hamory, Phil; Pena, Frank

    2014-01-01

    Attached is a power point presentation created to assist the Tech Transfer Office and the FOSS project team members in responding to inquiries from the public about the capabilities of the Fiber Optic Sensing System.

  8. Liquid Seal for Temperature Sensing with Fiber-Optic Refractometers

    OpenAIRE

    Ben Xu; Jianqing Li; Yi Li; Jianglei Xie; Xinyong Dong

    2014-01-01

    Liquid sealing is an effective method to convert a fiber-optic refractometer into a simple and highly sensitive temperature sensor. A refractometer based on the thin-core fiber modal interferometer is sealed in a capillary tube filled with Cargille oil. Due to the thermo-optic effect of the sealing liquid, the high refractive-index sensitivity refractometer is subsequently sensitive to the ambient temperature. It is found that the liquid-sealed sensor produces a highest sensitivity of −2.30 n...

  9. Surface plasmon sensing of gas phase contaminants using optical fiber.

    Energy Technology Data Exchange (ETDEWEB)

    Thornberg, Steven Michael; White, Michael I.; Rumpf, Arthur Norman; Pfeifer, Kent Bryant

    2009-10-01

    Fiber-optic gas phase surface plasmon resonance (SPR) detection of several contaminant gases of interest to state-of-health monitoring in high-consequence sealed systems has been demonstrated. These contaminant gases include H{sub 2}, H{sub 2}S, and moisture using a single-ended optical fiber mode. Data demonstrate that results can be obtained and sensitivity is adequate in a dosimetric mode that allows periodic monitoring of system atmospheres. Modeling studies were performed to direct the design of the sensor probe for optimized dimensions and to allow simultaneous monitoring of several constituents with a single sensor fiber. Testing of the system demonstrates the ability to detect 70mTorr partial pressures of H{sub 2} using this technique and <280 {micro}Torr partial pressures of H{sub 2}S. In addition, a multiple sensor fiber has been demonstrated that allows a single fiber to measure H{sub 2}, H{sub 2}S, and H{sub 2}O without changing the fiber or the analytical system.

  10. Distributed optical fiber perturbation sensing system based on Mach-Zehnder interferometer

    Institute of Scientific and Technical Information of China (English)

    Wengang WANG; Deming LIU; Hairong LIU; Qizhen SUN; Zhifeng SUN; Xu ZHANG; Ziheng XU

    2009-01-01

    A novel distributed optical fiber vibration-sensing system based on Mach-Zehnder interferometer has been designed and experimentally demonstrated. Firstly, the principle of Mach-Zehnder optical path interferometer technique is clarified. The output of the Mach-Zehnder interferometer is proportional to the phase shift induced by the perturbation. Secondly, the system consists of the laser diode (LD) as the light source, fiber, Mach-Zehnder optical interferometers as the sensing units, a 1×N star fiber-optic coupler, an N×1 fiber-optic coupler, a photodiode (PD) detector, and a computer used in signal processing. The entire monitoring region of this system is divided into several small zones, and each small monitoring zone is independent from each other. All of the small monitoring zones have their own sensing unit, which is defined by Mach-Zehnder optical interferometer. A series of sensing units are connected by the star fiber-optic couplers to form a whole sensing net. Thirdly, signal-processing techniques are subsequently used to calculate the phase shift to estimate whether intruders appear. The sensing system is able to locate the vibration signal simultaneously, includ-ing multiple vibrations at different positions, by employing the time-division multiplexed (TDM) technique. Finally, the operation performance of the proposed system is tested in the experiment lab with the conditions as follows: the number of the sensing units is 3, the length of the sensing fiber is 50 m, and the wavelength of the light diode is 1550nm. Based on these investigations, the fiber surrounding alert system is achieved. We have experimen-tally demonstrated that the sensing system can measure both the frequency and position of the vibration in real time, with a spatial positional resolution better than 50 m in an area of 1 km2.

  11. Research on spectral resource optimization and self-healing technology of hybrid optical fiber sensing network

    Science.gov (United States)

    Chen, Cheng; Sang, Mei; Ge, Chunfeng; Chen, Guanghui; Liu, Tiegen

    2015-08-01

    We propose an optical-fiber-sensing-network (OFSN) to allow hybrid fiber sensors working in the same network and it achieves self-healing function. The discrete and distributed optical fiber sensors can be connected in sub-layers of the network. WDM-OTDM technique is introduced to convert multi-wavelengths of light source into a specific arranged wavelength in each sub-layer. Thus every sub-layer can share the system spectrum resources, and sensing signals of each sub-layer are transmitted together in the backbone network. To achieve self-healing function, double-ring structure is adopted in the backbone network. Node microprocessor program is designed to make switching to the protect fiber when working fiber is broken. The experimental backbone setup of the network demonstrates the practical reliability and intelligence of the optical sensing network.

  12. Downhole fiber optic sensing: the oilfield service provider's perspective: from the cradle to the grave

    Science.gov (United States)

    Skinner, Neal G.; Maida, John L.

    2014-06-01

    For almost three decades, interest has continued to increase with respect to the application of fiber-optic sensing techniques for the upstream oil and gas industry. This paper reviews optical sensing technologies that have been and are being adopted downhole, as well as their drivers. A brief description of the life of a well, from the cradle to the grave, and the roles fiber-optic sensing can play in optimizing production, safety, and protection of the environment are also presented. The performance expectations (accuracy, resolution, stability, and operational lifetime) that oil companies and oil service companies have for fiber-optic sensing systems is described. Additionally, the environmental conditions (high hydrostatic pressures, high temperatures, shock, vibration, crush, and chemical exposure) that these systems must tolerate to provide reliable and economically attractive oilfield monitoring solutions are described.

  13. Simultaneous Damage Detection and Deflection Measurement of Morphing Wing Structures by Fiber Optic Sensing System

    OpenAIRE

    Djinovic, Zoran; Scheerer, Michael; Tomic, Milos; Stojkovic, Marijana; Schueller, Martin

    2014-01-01

    International audience; In this paper we present results of investigation of simultaneous damage detection and deflection measurement of morphing CFRP honeycomb structure by fiber optic sensing system developed in the frame of EU-FP7 project ÒFiber Optic System for Deflection and Damage Detection (FOS3D)î. The system is based on low- and high-coherence interferometry performed as Òall-in-fiberî sensing configuration. Raw signals have been on- and off-line processed by Òarctangî algorithm. Def...

  14. Integration of fiber optical shape sensing with medical visualization for minimal-invasive interventions

    Science.gov (United States)

    Paetz, Torben; Waltermann, Christian; Angelmahr, Martin; Ojdanic, Darko; Schade, Wolfgang; Witte, Michael; Hahn, Horst Karl

    2015-03-01

    We present a fiber optical shape sensing system that allows to track the shape of a standard telecom fiber with fiber Bragg grating. The shape sensing information is combined with a medical visualization platform to visualize the shape sensing information together with medical images and post-processing results like 3D models, vessel graphs, or segmentation results. The framework has a modular nature to use it for various medical applications like catheter or needle based interventions. The technology has potential in the medical area as it is MR-compatible and can easily be integrated in catheters and needles due to its small size.

  15. Sapphire optical fiber sensors

    OpenAIRE

    Feth, Shari

    1991-01-01

    Fiber optic sensors offer many advantages over conventional sensors, including; small size, low weight, high strength and durability. Standard silica optical fibers are limited by the material properties of silica. Temperatures above 700°C and other harsh environments are incompatible with standard optical fiber sensors. Sapphire fiber sensors offer another option for fiber optic sensing. Sapphire fibers are limited by the material properties of sapphire, which include high...

  16. Distributed Long-Gauge Optical Fiber Sensors Based Self-Sensing FRP Bar for Concrete Structure

    OpenAIRE

    Tang, Yongsheng; Wu, Zhishen

    2016-01-01

    Brillouin scattering-based distributed optical fiber (OF) sensing technique presents advantages for concrete structure monitoring. However, the existence of spatial resolution greatly decreases strain measurement accuracy especially around cracks. Meanwhile, the brittle feature of OF also hinders its further application. In this paper, the distributed OF sensor was firstly proposed as long-gauge sensor to improve strain measurement accuracy. Then, a new type of self-sensing fiber reinforced p...

  17. Using Distributed Fiber-Optic Sensing Systems to Estimate Inflow and Reservoir Properties

    NARCIS (Netherlands)

    Farshbaf Zinati, F.

    2014-01-01

    Recent developments in the deployment of distributed fiber-optic sensing systems in horizontal wells carry the promise to lead to a new, cheap and reliable way of monitoring production and reservoir performance. Practical applicability of distributed pressure sensing for quantitative inflow detectio

  18. Fiber-Optic Sensing System: Overview, Development and Deployment in Flight at NASA

    Science.gov (United States)

    Chan, Hon Man; Parker, Allen R.; Piazza, Anthony; Richards, W. Lance

    2015-01-01

    An overview of the research and technological development of the fiber-optic sensing system (FOSS) at the National Aeronautics and Space Administration Armstrong Flight Research Center (NASA AFRC) is presented. Theory behind fiber Bragg grating (FBG) sensors, as well as interrogation technique based on optical frequency domain reflectometry (OFDR) is discussed. Assessment and validation of FOSS as an accurate measurement tool for structural health monitoring is realized in the laboratory environment as well as large-scale flight deployment.

  19. Structural Health Monitoring of Civil Infrastructure Using Optical Fiber Sensing Technology: A Comprehensive Review

    OpenAIRE

    Ye, X. W.; Su, Y. H.; Han, J. P.

    2014-01-01

    In the last two decades, a significant number of innovative sensing systems based on optical fiber sensors have been exploited in the engineering community due to their inherent distinctive advantages such as small size, light weight, immunity to electromagnetic interference (EMI) and corrosion, and embedding capability. A lot of optical fiber sensor-based monitoring systems have been developed for continuous measurement and real-time assessment of diversified engineering structures such as b...

  20. Application research on hydraulic coke cutting monitoring system based on optical fiber sensing technology

    Science.gov (United States)

    Zhong, Dong; Tong, Xinglin

    2014-06-01

    With the development of the optical fiber sensing technology, the acoustic emission sensor has become one of the focal research topics. On the basis of studying the traditional hydraulic coke cutting monitoring system, the optical fiber acoustic emission sensor has been applied in the hydraulic coke cutting monitoring system for the first time, researching the monitoring signal of the optical fiber acoustic emission sensor in the system. The actual test results show that using the acoustic emission sensor in the hydraulic coke cutting monitoring system can get the real-time and accurate hydraulic coke cutting state and the effective realization of hydraulic coke cutting automatic monitoring in the Wuhan Branch of Sinopec.

  1. Development of fiber-optic current sensing technique and its applications in electric power systems

    Science.gov (United States)

    Kurosawa, Kiyoshi

    2014-03-01

    This paper describes the development and applications of a fiber-optic electric current sensing technique with the stable properties and compact, simple, and flexible structure of the sensing device. The special characteristics of the sensors were achieved by use of the special low birefringence fiber as the Faraday-effect sensing element and were also achieved with creation of sensing schemes which matched with the features of the fiber. Making use of the excellent features of the sensing technique, various current monitoring devices and systems were developed and applied practically for the control and maintenance in the electric power facility. In this paper, the design and performance of the sensing devices are introduced first. After that, examples of the application systems practically applied are also introduced, including fault section/point location systems for power transmission cable lines.

  2. Fiber Strain Measurement for Wide Region Quasidistributed Sensing by Optical Correlation Sensor with Region Separation Techniques

    Directory of Open Access Journals (Sweden)

    Xunjian Xu

    2010-01-01

    Full Text Available The useful application of optical pulse correlation sensor for wide region quasidistributed fiber strain measurement is investigated. Using region separation techniques of wavelength multiplexing with FBGs and time multiplexing with intensity partial reflectors, the sensor measures the correlations between reference pulses and monitoring pulses from several cascadable selected sensing regions. This novel sensing system can select the regions and obtain the distributed strain information in any desired sensing region.

  3. An optical fiber sensing technique for temperature distribution measurements in microwave heating

    International Nuclear Information System (INIS)

    We introduce an optical fiber sensing technique that can measure the temperature distributions along a fiber during microwave heating. We used a long-length fiber Bragg grating (FBG) as an electromagnetic-immune sensor and interrogated temperature distributions along the FBG by an optical frequency domain reflectometry. Water in a glass tube with a length of 820 mm was heated in a microwave oven, and its temperature distribution along the glass tube was measured using the sensing system. The temperature distribution was obtained in 5 mm intervals. Infrared radiometry was also used to compare the temperature measurement results. Time and spatial variations of the temperature distribution profiles were monitored for several microwave input powers. The results clearly depict inhomogeneous temperature profiles. The applicability and effectiveness of the optical fiber distributed measurement technique in microwave heating are demonstrated. (paper)

  4. An optical fiber sensing technique for temperature distribution measurements in microwave heating

    Science.gov (United States)

    Wada, Daichi; Sugiyama, Jun-ichi; Zushi, Hiroaki; Murayama, Hideaki

    2015-08-01

    We introduce an optical fiber sensing technique that can measure the temperature distributions along a fiber during microwave heating. We used a long-length fiber Bragg grating (FBG) as an electromagnetic-immune sensor and interrogated temperature distributions along the FBG by an optical frequency domain reflectometry. Water in a glass tube with a length of 820 mm was heated in a microwave oven, and its temperature distribution along the glass tube was measured using the sensing system. The temperature distribution was obtained in 5 mm intervals. Infrared radiometry was also used to compare the temperature measurement results. Time and spatial variations of the temperature distribution profiles were monitored for several microwave input powers. The results clearly depict inhomogeneous temperature profiles. The applicability and effectiveness of the optical fiber distributed measurement technique in microwave heating are demonstrated.

  5. Dynamic Response of Tapered Optical Multimode Fiber Coated with Carbon Nanotubes for Ethanol Sensing Application

    Directory of Open Access Journals (Sweden)

    Arafat Shabaneh

    2015-05-01

    Full Text Available Ethanol is a highly combustible chemical universally designed for biomedical applications. In this paper, optical sensing performance of tapered multimode fiber tip coated with carbon nanotube (CNT thin film towards aqueous ethanol with different concentrations is investigated. The tapered optical multimode fiber tip is coated with CNT using drop-casting technique and is annealed at 70 °C to enhance the binding of the nanomaterial to the silica fiber tip. The optical fiber tip and the CNT sensing layer are micro-characterized using FESEM and Raman spectroscopy techniques. When the developed sensor was exposed to different concentrations of ethanol (5% to 80%, the sensor reflectance reduced proportionally. The developed sensors showed high sensitivity, repeatability and fast responses (<55 s towards ethanol.

  6. Highly Sensitive Temperature Sensors Based on Fiber-Optic PWM and Capacitance Variation Using Thermochromic Sensing Membrane.

    Science.gov (United States)

    Khan, Md Rajibur Rahaman; Kang, Shin-Won

    2016-01-01

    In this paper, we propose a temperature/thermal sensor that contains a Rhodamine-B sensing membrane. We applied two different sensing methods, namely, fiber-optic pulse width modulation (PWM) and an interdigitated capacitor (IDC)-based temperature sensor to measure the temperature from 5 °C to 100 °C. To the best of our knowledge, the fiber-optic PWM-based temperature sensor is reported for the first time in this study. The proposed fiber-optic PWM temperature sensor has good sensing ability; its sensitivity is ~3.733 mV/°C. The designed temperature-sensing system offers stable sensing responses over a wide dynamic range, good reproducibility properties with a relative standard deviation (RSD) of ~0.021, and the capacity for a linear sensing response with a correlation coefficient of R² ≈ 0.992 over a wide sensing range. In our study, we also developed an IDC temperature sensor that is based on the capacitance variation principle as the IDC sensing element is heated. We compared the performance of the proposed temperature-sensing systems with different fiber-optic temperature sensors (which are based on the fiber-optic wavelength shift method, the long grating fiber-optic Sagnac loop, and probe type fiber-optics) in terms of sensitivity, dynamic range, and linearity. We observed that the proposed sensing systems have better sensing performance than the above-mentioned sensing system. PMID:27409620

  7. Highly Sensitive Temperature Sensors Based on Fiber-Optic PWM and Capacitance Variation Using Thermochromic Sensing Membrane

    Directory of Open Access Journals (Sweden)

    Md. Rajibur Rahaman Khan

    2016-07-01

    Full Text Available In this paper, we propose a temperature/thermal sensor that contains a Rhodamine-B sensing membrane. We applied two different sensing methods, namely, fiber-optic pulse width modulation (PWM and an interdigitated capacitor (IDC-based temperature sensor to measure the temperature from 5 °C to 100 °C. To the best of our knowledge, the fiber-optic PWM-based temperature sensor is reported for the first time in this study. The proposed fiber-optic PWM temperature sensor has good sensing ability; its sensitivity is ~3.733 mV/°C. The designed temperature-sensing system offers stable sensing responses over a wide dynamic range, good reproducibility properties with a relative standard deviation (RSD of ~0.021, and the capacity for a linear sensing response with a correlation coefficient of R2 ≈ 0.992 over a wide sensing range. In our study, we also developed an IDC temperature sensor that is based on the capacitance variation principle as the IDC sensing element is heated. We compared the performance of the proposed temperature-sensing systems with different fiber-optic temperature sensors (which are based on the fiber-optic wavelength shift method, the long grating fiber-optic Sagnac loop, and probe type fiber-optics in terms of sensitivity, dynamic range, and linearity. We observed that the proposed sensing systems have better sensing performance than the above-mentioned sensing system.

  8. Highly Sensitive Temperature Sensors Based on Fiber-Optic PWM and Capacitance Variation Using Thermochromic Sensing Membrane

    Science.gov (United States)

    Khan, Md. Rajibur Rahaman; Kang, Shin-Won

    2016-01-01

    In this paper, we propose a temperature/thermal sensor that contains a Rhodamine-B sensing membrane. We applied two different sensing methods, namely, fiber-optic pulse width modulation (PWM) and an interdigitated capacitor (IDC)-based temperature sensor to measure the temperature from 5 °C to 100 °C. To the best of our knowledge, the fiber-optic PWM-based temperature sensor is reported for the first time in this study. The proposed fiber-optic PWM temperature sensor has good sensing ability; its sensitivity is ~3.733 mV/°C. The designed temperature-sensing system offers stable sensing responses over a wide dynamic range, good reproducibility properties with a relative standard deviation (RSD) of ~0.021, and the capacity for a linear sensing response with a correlation coefficient of R2 ≈ 0.992 over a wide sensing range. In our study, we also developed an IDC temperature sensor that is based on the capacitance variation principle as the IDC sensing element is heated. We compared the performance of the proposed temperature-sensing systems with different fiber-optic temperature sensors (which are based on the fiber-optic wavelength shift method, the long grating fiber-optic Sagnac loop, and probe type fiber-optics) in terms of sensitivity, dynamic range, and linearity. We observed that the proposed sensing systems have better sensing performance than the above-mentioned sensing system. PMID:27409620

  9. Highly Sensitive Temperature Sensors Based on Fiber-Optic PWM and Capacitance Variation Using Thermochromic Sensing Membrane.

    Science.gov (United States)

    Khan, Md Rajibur Rahaman; Kang, Shin-Won

    2016-07-09

    In this paper, we propose a temperature/thermal sensor that contains a Rhodamine-B sensing membrane. We applied two different sensing methods, namely, fiber-optic pulse width modulation (PWM) and an interdigitated capacitor (IDC)-based temperature sensor to measure the temperature from 5 °C to 100 °C. To the best of our knowledge, the fiber-optic PWM-based temperature sensor is reported for the first time in this study. The proposed fiber-optic PWM temperature sensor has good sensing ability; its sensitivity is ~3.733 mV/°C. The designed temperature-sensing system offers stable sensing responses over a wide dynamic range, good reproducibility properties with a relative standard deviation (RSD) of ~0.021, and the capacity for a linear sensing response with a correlation coefficient of R² ≈ 0.992 over a wide sensing range. In our study, we also developed an IDC temperature sensor that is based on the capacitance variation principle as the IDC sensing element is heated. We compared the performance of the proposed temperature-sensing systems with different fiber-optic temperature sensors (which are based on the fiber-optic wavelength shift method, the long grating fiber-optic Sagnac loop, and probe type fiber-optics) in terms of sensitivity, dynamic range, and linearity. We observed that the proposed sensing systems have better sensing performance than the above-mentioned sensing system.

  10. Chalcogenide glass fibers: Optical window tailoring and suitability for bio-chemical sensing

    Science.gov (United States)

    Lucas, Pierre; Coleman, Garrett J.; Jiang, Shibin; Luo, Tao; Yang, Zhiyong

    2015-09-01

    Glassy materials based on chalcogen elements are becoming increasingly prominent in the development of advanced infrared sensors. In particular, infrared fibers constitute a desirable sensing platform due to their high sensitivity and versatile remote collection capabilities for in-situ detection. Tailoring the transparency window of an optical material to the vibrational signature of a target molecule is important for the design of infrared sensor, and particularly for fiber evanescent wave spectroscopy. Here we review the basic principles and recent developments in the fabrication of chalcogenide glass infrared fibers for application as bio-chemical sensors. We emphasize the challenges in designing materials that combine good rheological properties with chemical stability and sufficiently wide optical windows for bio-chemical sensing. The limitation in optical transparency due to higher order overtones of the amorphous network vibrations is established for this family of glasses. It is shown that glasses with wide optical window suffer from higher order overtone absorptions. Compositional engineering with heavy elements such as iodine is shown to widen the optical window but at the cost of lower chemical stability. The optical attenuations of various families of chalcogenide glass fibers are presented and weighed for their applications as chemical sensors. It is then shown that long-wave infrared fibers can be designed to optimize the collection of selective signal from bio-molecules such as cells and tissues. Issues of toxicity and mechanical resistance in the context of bio-sensing are also discussed.

  11. Characterization of Flexible Copolymer Optical Fibers for Force Sensing Applications

    Directory of Open Access Journals (Sweden)

    Lukas J. Scherer

    2013-09-01

    Full Text Available In this paper, different polymer optical fibres for applications in force sensing systems in textile fabrics are reported. The proposed method is based on the deflection of the light in fibre waveguides. Applying a force on the fibre changes the geometry and affects the wave guiding properties and hence induces light loss in the optical fibre. Fibres out of three different elastic and transparent copolymer materials were successfully produced and tested. Moreover, the influence of the diameter on the sensing properties was studied. The detectable force ranges from 0.05 N to 40 N (applied on 3 cm of fibre length, which can be regulated with the material and the diameter of the fibre. The detected signal loss varied from 0.6% to 78.3%. The fibres have attenuation parameters between 0.16–0.25 dB/cm at 652 nm. We show that the cross-sensitivies to temperature, strain and bends are low. Moreover, the high yield strength (0.0039–0.0054 GPa and flexibility make these fibres very attractive candidates for integration into textiles to form wearable sensors, medical textiles or even computing systems.

  12. Fire Source Localization Based on Distributed Temperature Sensing by a Dual-Line Optical Fiber System.

    Science.gov (United States)

    Sun, Miao; Tang, Yuquan; Yang, Shuang; Li, Jun; Sigrist, Markus W; Dong, Fengzhong

    2016-01-01

    We propose a method for localizing a fire source using an optical fiber distributed temperature sensor system. A section of two parallel optical fibers employed as the sensing element is installed near the ceiling of a closed room in which the fire source is located. By measuring the temperature of hot air flows, the problem of three-dimensional fire source localization is transformed to two dimensions. The method of the source location is verified with experiments using burning alcohol as fire source, and it is demonstrated that the method represents a robust and reliable technique for localizing a fire source also for long sensing ranges. PMID:27275822

  13. Optical fiber based sensing system design for the health monitoring of multi-layered pavement structure

    Science.gov (United States)

    Liu, Wanqiu; Wang, Huaping; Zhou, Zhi; Li, Shiyu; Ni, Yuanbao; Wang, Geng

    2011-11-01

    This paper introduces an optical fiber based sensing system design for multi-layered pavement structural health monitoring. The co-line and integration design of FBG (Fiber Bragg Gating) sensors and BOTDR (Brillouin Optical Time Domain Reflectometry) sensors will ensure the large scale damage monitoring and local high accurate strain measurement. The function of pavement structure multi-scale shape measurement will provide real time subgrade settlement and rutting information. The sensor packaging methodology and strain transfer problem of the system will also be discussed in this paper. Primary lab tests prove the potential and feasibility of the practical application of the sensing system.

  14. Current sensing in magnetic fusion experiments by faraday rotation in single-mode optical fibers

    International Nuclear Information System (INIS)

    Interest in measurement devices which use optical fibers as the sensing element has increased rapidly in the last few years. Fibers interact with their environments in a number of useful ways. Most sensors developed so far have coupled the fiber mechanically to a transducer element which strains the fiber in response to an external field; the strain is measured interferometrically. Applications of this method include acoustic and field sensors. A second important class of sensors exploits the elasto-, electro-, and magnetooptic properties of the fiber material to directly sense the relevant fields. The sensors we report here are of this type. Essentially all of the sensor work uses single-mode fiber; in the beginning fiber intended for telecommunications applications was used but several companies now supply single-mode fiber optimized in various ways for sensors. Exploitation of the Faraday effect in glass fibers for the measurement of current was reported by Smith, Papp and Harms, and others. The authors became interested in using this technique on CTR magnetic fusion experiments because the unique dielectric properties of optical fibers hold promise for making possible the measurement of magnetic fields and currents where present techniques could not, and for avoiding some of the problems associated with the Rogowski coil-integrator system widely used now. Some experiments, the difficulties encountered, and the prospect for continued development of this diagnostic technique are reported

  15. Assessment of fiber optic sensors and other advanced sensing technologies for nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Hashemian, H.M. [Analysis and Measurement Services Corporation, Knoxville, TN (United States)

    1996-03-01

    As a result of problems such as calibration drift in nuclear plant pressure sensors and the recent oil loss syndrome in some models of Rosemount pressure transmitters, the nuclear industry has become interested in fiber optic pressure sensors. Fiber optic sensing technologies have been considered for the development of advanced instrumentation and control (I&C) systems for the next generation of reactors and in older plants which are retrofitted with new I&C systems. This paper presents the results of a six-month Phase I study to establish the state-of-the-art in fiber optic pressure sensing. This study involved a literature review, contact with experts in the field, an industrial survey, a site visit to a fiber optic sensor manufacturer, and laboratory testing of a fiber optic pressure sensor. The laboratory work involved both static and dynamic performance tests. This initial Phase I study has recently been granted a two-year extension by the U.S. Nuclear Regulatory Commission (NRC). The next phase will evaluate fiber optic pressure sensors in specific nuclear plant applications in addition to other advanced methods for monitoring critical nuclear plant equipment.

  16. Use of nondestructive inspection and fiber optic sensing for damage characterization in carbon fiber fuselage structure

    Science.gov (United States)

    Neidigk, Stephen; Le, Jacqui; Roach, Dennis; Duvall, Randy; Rice, Tom

    2014-04-01

    To investigate a variety of nondestructive inspection technologies and assess impact damage characteristics in carbon fiber aircraft structure, the FAA Airworthiness Assurance Center, operated by Sandia National Labs, fabricated and impact tested two full-scale composite fuselage sections. The panels are representative of structure seen on advanced composite transport category aircraft and measured approximately 56"x76". The structural components consisted of a 16 ply skin, co-cured hat-section stringers, fastened shear ties and frames. The material used to fabricate the panels was T800 unidirectional pre-preg (BMS 8-276) and was processed in an autoclave. Simulated hail impact testing was conducted on the panels using a high velocity gas gun with 2.4" diameter ice balls in collaboration with the University of California San Diego (UCSD). Damage was mapped onto the surface of the panels using conventional, hand deployed ultrasonic inspection techniques, as well as more advanced ultrasonic and resonance scanning techniques. In addition to the simulated hail impact testing performed on the panels, 2" diameter steel tip impacts were used to produce representative impact damage which can occur during ground maintenance operations. The extent of impact damage ranges from less than 1 in2 to 55 in2 of interply delamination in the 16 ply skin. Substructure damage on the panels includes shear tie cracking and stringer flange disbonding. It was demonstrated that the fiber optic distributed strain sensing system is capable of detecting impact damage when bonded to the backside of the fuselage.

  17. Advanced end-to-end fiber optic sensing systems for demanding environments

    Science.gov (United States)

    Black, Richard J.; Moslehi, Behzad

    2010-09-01

    Optical fibers are small-in-diameter, light-in-weight, electromagnetic-interference immune, electrically passive, chemically inert, flexible, embeddable into different materials, and distributed-sensing enabling, and can be temperature and radiation tolerant. With appropriate processing and/or packaging, they can be very robust and well suited to demanding environments. In this paper, we review a range of complete end-to-end fiber optic sensor systems that IFOS has developed comprising not only (1) packaged sensors and mechanisms for integration with demanding environments, but (2) ruggedized sensor interrogators, and (3) intelligent decision aid algorithms software systems. We examine the following examples: " Fiber Bragg Grating (FBG) optical sensors systems supporting arrays of environmentally conditioned multiplexed FBG point sensors on single or multiple optical fibers: In conjunction with advanced signal processing, decision aid algorithms and reasoners, FBG sensor based structural health monitoring (SHM) systems are expected to play an increasing role in extending the life and reducing costs of new generations of aerospace systems. Further, FBG based structural state sensing systems have the potential to considerably enhance the performance of dynamic structures interacting with their environment (including jet aircraft, unmanned aerial vehicles (UAVs), and medical or extravehicular space robots). " Raman based distributed temperature sensing systems: The complete length of optical fiber acts as a very long distributed sensor which may be placed down an oil well or wrapped around a cryogenic tank.

  18. Polarization effects in optical fiber communication and distributed vibration sensing systems

    Science.gov (United States)

    Zhang, Ziyi

    This thesis includes studies of polarization effects in two main research areas of optical fiber technology: optical fiber communication systems and optical fiber sensors. Polarization of light in optical fiber is sensitive to environmental disturbances. On the negative side, this results in complex measurement processes and errors in communication systems caused by dynamic polarization mode dispersion (PMD) and polarization dependent loss (PDL). On the positive side though, it also results in the possibility of developing a distributed optical fiber vibration sensor. For the purpose of fast polarization measurement for high bit-rate communication systems, a new PDL vector method was proposed based on the equation of motion in Stokes space. It is capable of providing accurate PDL measurements while requiring less measurement steps compared with other available techniques. We had performed a PMD field test, and found the fastest PMD change in submarine fibers under the Caribbean Sea. With long measurement duration (>24h) on one pair of fiber, correlations between polarization effects and tides were reported for the first time. A histogram of the differential group delay (DGD) data and an auto-correlation function of state of polarization (SOP) and DGD were validated by theoretical fittings. The average and fastest drift time for both SOP and DGD was found to be ˜3min and less than 15s, respectively. Polarization effects were then utilized as a sensing parameter to detect and locate external disturbances along the optical fiber. A system based on polarization optical time domain reflectometry (Polarization-OTDR) technique was developed in order to pinpoint the disturbances as well as to give events' frequency information. For the first time, a fully distributed optical fiber vibration sensor has been demonstrated in a 1km fiber link with 10m spatial resolution and 5kHz maximum detectable frequency. Moreover, by our proposed spectrum analysis, multiple simultaneous

  19. High-resolution absolute frequency referenced fiber optic sensor for quasi-static strain sensing

    Energy Technology Data Exchange (ETDEWEB)

    Lam, Timothy T.-Y.; Chow, Jong H.; Shaddock, Daniel A.; Littler, Ian C. M.; Gagliardi, Gianluca; Gray, Malcolm B.; McClelland, David E.

    2010-07-20

    We present a quasi-static fiber optic strain sensing system capable of resolving signals below nanostrain from 20 mHz. A telecom-grade distributed feedback CW diode laser is locked to a fiber Fabry-Perot sensor, transferring the detected signals onto the laser. An H{sup 13}C{sup 14}N absorption line is then used as a frequency reference to extract accurate low-frequency strain signals from the locked system.

  20. A plastic optical fiber sensor for the dual sensing of temperature and oxygen

    Science.gov (United States)

    Lo, Yu-Lung; Chu, Chen-Shane

    2008-04-01

    This study presents a low-cost plastic optical fiber sensor for the dual sensing of temperature and oxygen. The sensor features a commercially available epoxy glue coated on the side-polished fiber surface for temperature sensing and a fluorinated xerogel doped with platinum tetrakis pentrafluoropheny porphine (PtTFPP) coated on the fiber end for oxygen sensing. The temperature and oxygen indicators are both excited using a UV LED light source with a wavelength of 380 nm. The luminescence emission spectra of the two indicators are well resolved and exhibit no cross-talk effects. Overall, the results indicate that the dual sensor presented in this study provides an ideal solution for the non-contact, simultaneous sensing of temperature and oxygen in general biological and medical applications.

  1. Calibrating single-ended fiber-optic raman spectra distributed temperature sensing data

    NARCIS (Netherlands)

    Hausner, M.B.; Suarez, F.; Glander, K.E.; Van de Giesen, N.C.; Selker, J.S.; Tyler, S.W.

    2011-01-01

    Hydrologic research is a very demanding application of fiber-optic distributed temperature sensing (DTS) in terms of precision, accuracy and calibration. The physics behind the most frequently used DTS instruments are considered as they apply to four calibration methods for single-ended DTS installa

  2. Advanced Fiber Optic-Based Sensing Technology for Unmanned Aircraft Systems

    Science.gov (United States)

    Richards, Lance; Parker, Allen R.; Piazza, Anthony; Ko, William L.; Chan, Patrick; Bakalyar, John

    2011-01-01

    This presentation provides an overview of fiber optic sensing technology development activities performed at NASA Dryden in support of Unmanned Aircraft Systems. Examples of current and previous work are presented in the following categories: algorithm development, system development, instrumentation installation, ground R&D, and flight testing. Examples of current research and development activities are provided.

  3. Fiber Strain Measurement for Wide Region Quasidistributed Sensing by Optical Correlation Sensor with Region Separation Techniques

    OpenAIRE

    Xunjian Xu; Antonio Bueno; Koji Nonaka; Salvador Sales

    2010-01-01

    The useful application of optical pulse correlation sensor for wide region quasidistributed fiber strain measurement is investigated. Using region separation techniques of wavelength multiplexing with FBGs and time multiplexing with intensity partial reflectors, the sensor measures the correlations between reference pulses and monitoring pulses from several cascadable selected sensing regions. This novel sensing system can select the regions and obtain the distributed strain information in an...

  4. Research of AGC technology in a digital optical fiber sensing system with PGC modulation and demodulation

    Science.gov (United States)

    Tang, Jianfeng; Xiong, Shuidong; Zhang, Yan

    2014-11-01

    The magnitude of light intensity on the photo-to-electric detector fluctuates all the time in an optic fiber sensing system, because of the influence of various factors in the fiber optic sensing system and from the external environment. As a result of the excessive intensity, the electric signal will be overload after the amplifier circuit with constant enlargement factor, and when the light intensity becames too small, it will reduce the signal-to-noise ratio of the electric signal. Therefore, it is necessary to introduce an automatic gain control (AGC) module into the system, which can insure the electric signal in a reasonable magnitude. In order to solve the problem of optic intensity fluctuating in the optical fiber sensing system with PGC modulation and demodulation, in this paper, firstly, it is analyzed that the impact of different magnitudes of interferential intensity to the PGC demodulation in theory. Secondly, a reasonable control method is put forward and an AGC module based on the AD602 chip is designed and produced. Finally, it is proved that the optic fiber sensor system with an AGC module has strong ability to resist fluctuation of light intensity within 40dB.

  5. Towards mid-infrared fiber-optic devices and systems for sensing, mapping and imaging

    Science.gov (United States)

    Jayasuriya, D.; Wilson, B.; Furniss, D.; Tang, Z.; Barney, E.; Benson, T. M.; Seddon, A. B.

    2016-03-01

    Novel chalcogenide glass-based fiber opens up the mid-infrared (MIR) range for real-time monitoring and control in medical diagnostics and chemical processing. Fibers with long wavelength cut-off are of interest here. Sulfide, selenide and telluride based chalcogenide glass are candidates, but there are differences in their glass forming region, thermal stability and in the short and long wavelength cut-off positions. In general sulfide and selenide glasses have greater glass stability, but shorter long-wavelength cut-off edge, compared to telluride glasses; selenide-telluride glasses are a good compromise. Low optical loss selenide-telluride based long wavelength fibers could play a substantial role in improving medical diagnostic systems, chemical sensing, and processing, and in security and agriculture. For biological tissue, the molecular finger print lies between ~3-15 μm wavelengths in the MIR region. Using MIR spectral mapping, information about diseased tissue may be obtained with improved accuracy and in vivo using bright broadband MIR super-continuum generation (SCG) fiber sources and low optical loss fiber for routing. The Ge-As-Se-Te chalcogenide glass system is a potential candidate for both MIR SCG and passive-routing fiber, with good thermal stability, wide intrinsic transparency from ~1.5 to 20 μm and low phonon energy. This paper investigates Ge-As-Se-Te glass system pairs for developing high numerical aperture (NA) small-core, step-index optical fiber for MIR SCG and low NA passive step-index optical fiber for an in vivo fiber probe. Control of fiber geometry of small-core optical fiber and methods of producing the glass material are also included in this paper.

  6. Fiber Optic Sensing Monitors Strain and Reduces Costs

    Science.gov (United States)

    2008-01-01

    In applications where stress on a structure may vary widely and have an unknown impact on integrity, a common engineering strategy has been overbuilding to ensure a sufficiently robust design. While this may be appropriate in applications where weight concerns are not paramount, space applications demand a bare minimum of mass, given astronomical per-pound launch costs. For decades, the preferred solution was the tactic of disassembly and investigation between flights. Knowing there must be a better way, Dr. Mark Froggatt, of Langley Research Center, explored alternate means of monitoring stresses and damage to the space shuttle. While a tear-it-apart-and-have-a-look strategy was effective, it was also a costly and time consuming process that risked further stresses through the very act of disassembly and reassembly. An alternate way of monitoring the condition of parts under the enormous stresses of space flight was needed. Froggatt and his colleagues at Langley built an early-warning device to provide detailed information about even minuscule cracks and deformations by etching a group of tiny lines, or grating, on a fiber optic cable five-thousandths of an inch thick with ultraviolet light. By then gluing the fiber to the side of a part, such as a fuel tank, and shining a laser beam down its length, reflected light indicated which gratings were under stress. Inferring this data from measurements in light rather than in bonded gauges saved additional weight. Various shuttle components now employ the ultrasonic dynamic vector stress sensor (UDVSS), allowing stress detection by measuring light beamed from a built-in mini-laser. By measuring changes in dynamic directional stress occurring in a material or structure, and including phase-locked loop, synchronous amplifier, and contact probe, the UDVSS proved especially useful among manufacturers of aerospace and automotive structures for stress testing and design evaluation. Engineers could ensure safety in airplanes

  7. Electrically Insulated Sensing of Respiratory Rate and Heartbeat Using Optical Fibers

    OpenAIRE

    Ernesto Suaste-Gómez; Daniel Hernández-Rivera; Anabel S. Sánchez-Sánchez; Elsy Villarreal-Calva

    2014-01-01

    Respiratory and heart rates are among the most important physiological parameters used to monitor patients’ health. It is important to design devices that can measure these parameters without risking or altering the subject’s health. In this context, a novel sensing method to monitor simultaneously the heartbeat and respiratory rate signals of patients within an electrically safety environment was developed and tested. An optical fiber-based sensor was used in order to detect two optical phen...

  8. Distributed Long-Gauge Optical Fiber Sensors Based Self-Sensing FRP Bar for Concrete Structure

    Science.gov (United States)

    Tang, Yongsheng; Wu, Zhishen

    2016-01-01

    Brillouin scattering-based distributed optical fiber (OF) sensing technique presents advantages for concrete structure monitoring. However, the existence of spatial resolution greatly decreases strain measurement accuracy especially around cracks. Meanwhile, the brittle feature of OF also hinders its further application. In this paper, the distributed OF sensor was firstly proposed as long-gauge sensor to improve strain measurement accuracy. Then, a new type of self-sensing fiber reinforced polymer (FRP) bar was developed by embedding the packaged long-gauge OF sensors into FRP bar, followed by experimental studies on strain sensing, temperature sensing and basic mechanical properties. The results confirmed the superior strain sensing properties, namely satisfied accuracy, repeatability and linearity, as well as excellent mechanical performance. At the same time, the temperature sensing property was not influenced by the long-gauge package, making temperature compensation easy. Furthermore, the bonding performance between self-sensing FRP bar and concrete was investigated to study its influence on the sensing. Lastly, the sensing performance was further verified with static experiments of concrete beam reinforced with the proposed self-sensing FRP bar. Therefore, the self-sensing FRP bar has potential applications for long-term structural health monitoring (SHM) as embedded sensors as well as reinforcing materials for concrete structures. PMID:26927110

  9. Distributed Long-Gauge Optical Fiber Sensors Based Self-Sensing FRP Bar for Concrete Structure.

    Science.gov (United States)

    Tang, Yongsheng; Wu, Zhishen

    2016-01-01

    Brillouin scattering-based distributed optical fiber (OF) sensing technique presents advantages for concrete structure monitoring. However, the existence of spatial resolution greatly decreases strain measurement accuracy especially around cracks. Meanwhile, the brittle feature of OF also hinders its further application. In this paper, the distributed OF sensor was firstly proposed as long-gauge sensor to improve strain measurement accuracy. Then, a new type of self-sensing fiber reinforced polymer (FRP) bar was developed by embedding the packaged long-gauge OF sensors into FRP bar, followed by experimental studies on strain sensing, temperature sensing and basic mechanical properties. The results confirmed the superior strain sensing properties, namely satisfied accuracy, repeatability and linearity, as well as excellent mechanical performance. At the same time, the temperature sensing property was not influenced by the long-gauge package, making temperature compensation easy. Furthermore, the bonding performance between self-sensing FRP bar and concrete was investigated to study its influence on the sensing. Lastly, the sensing performance was further verified with static experiments of concrete beam reinforced with the proposed self-sensing FRP bar. Therefore, the self-sensing FRP bar has potential applications for long-term structural health monitoring (SHM) as embedded sensors as well as reinforcing materials for concrete structures. PMID:26927110

  10. Distributed Long-Gauge Optical Fiber Sensors Based Self-Sensing FRP Bar for Concrete Structure.

    Science.gov (United States)

    Tang, Yongsheng; Wu, Zhishen

    2016-02-25

    Brillouin scattering-based distributed optical fiber (OF) sensing technique presents advantages for concrete structure monitoring. However, the existence of spatial resolution greatly decreases strain measurement accuracy especially around cracks. Meanwhile, the brittle feature of OF also hinders its further application. In this paper, the distributed OF sensor was firstly proposed as long-gauge sensor to improve strain measurement accuracy. Then, a new type of self-sensing fiber reinforced polymer (FRP) bar was developed by embedding the packaged long-gauge OF sensors into FRP bar, followed by experimental studies on strain sensing, temperature sensing and basic mechanical properties. The results confirmed the superior strain sensing properties, namely satisfied accuracy, repeatability and linearity, as well as excellent mechanical performance. At the same time, the temperature sensing property was not influenced by the long-gauge package, making temperature compensation easy. Furthermore, the bonding performance between self-sensing FRP bar and concrete was investigated to study its influence on the sensing. Lastly, the sensing performance was further verified with static experiments of concrete beam reinforced with the proposed self-sensing FRP bar. Therefore, the self-sensing FRP bar has potential applications for long-term structural health monitoring (SHM) as embedded sensors as well as reinforcing materials for concrete structures.

  11. Shear stress sensing with Bragg grating-based sensors in microstructured optical fibers.

    Science.gov (United States)

    Sulejmani, Sanne; Sonnenfeld, Camille; Geernaert, Thomas; Luyckx, Geert; Van Hemelrijck, Danny; Mergo, Pawel; Urbanczyk, Waclaw; Chah, Karima; Caucheteur, Christophe; Mégret, Patrice; Thienpont, Hugo; Berghmans, Francis

    2013-08-26

    We demonstrate shear stress sensing with a Bragg grating-based microstructured optical fiber sensor embedded in a single lap adhesive joint. We achieved an unprecedented shear stress sensitivity of 59.8 pm/MPa when the joint is loaded in tension. This corresponds to a shear strain sensitivity of 0.01 pm/µε. We verified these results with 2D and 3D finite element modeling. A comparative FEM study with conventional highly birefringent side-hole and bow-tie fibers shows that our dedicated fiber design yields a fourfold sensitivity improvement. PMID:24105585

  12. Fiber-optic ultrasonic sensing systems using PS-FBG for damage monitoring in composite materials

    Science.gov (United States)

    Okabe, Yoji; Wu, Qi

    2015-07-01

    Fiber-optic ultrasonic sensing systems have been developed for structural health monitoring of composite structures by introduction of phase-shifted fiber Bragg gratings (PS-FBGs). The systems can achieve the compatibility of high sensitivity and broadband performance. First, PS-FBG balanced sensing system was developed and succeeded in detection of small acoustic emission signals of composite laminates. Next, erbium fiber ring laser sensing system with inbuilt PS-FBG was developed. This system has high robustness due to its self-adjustment function for environmental disturbances and achieved much higher sensitivity and ultra-broadband respondency than piezoelectric ceramic sensors. These systems have large potential to realize the ultrasonic SHM.

  13. Fiber Optic Shape Sensing for Tethered Marsupial Rovers Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Building upon the successful proof of concept work in Phase I, Luna Innovations Incorporated is proposing to design, build, and test a sensing tether for marsupial...

  14. Fiber Optic Shape Sensing for Tethered Marsupial Rovers Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Luna Innovations Incorporated is proposing to design, build, and test a shape, length, and tension sensing tether for robotic exploration and sample-gathering...

  15. Surface Plasmon Scattering in Exposed Core Optical Fiber for Enhanced Resolution Refractive Index Sensing.

    Science.gov (United States)

    Klantsataya, Elizaveta; François, Alexandre; Ebendorff-Heidepriem, Heike; Hoffmann, Peter; Monro, Tanya M

    2015-01-01

    Refractometric sensors based on optical excitation of surface plasmons on the side of an optical fiber is an established sensing architecture that has enabled laboratory demonstrations of cost effective portable devices for biological and chemical applications. Here we report a Surface Plasmon Resonance (SPR) configuration realized in an Exposed Core Microstructured Optical Fiber (ECF) capable of optimizing both sensitivity and resolution. To the best of our knowledge, this is the first demonstration of fabrication of a rough metal coating suitable for spectral interrogation of scattered plasmonic wave using chemical electroless plating technique on a 10 μm diameter exposed core of the ECF. Performance of the sensor in terms of its refractive index sensitivity and full width at half maximum (FWHM) of SPR response is compared to that achieved with an unstructured bare core fiber with 140 μm core diameter. The experimental improvement in FWHM, and therefore the detection limit, is found to be a factor of two (75 nm for ECF in comparison to 150 nm for the large core fiber). Refractive index sensitivity of 1800 nm/RIU was achieved for both fibers in the sensing range of aqueous environment (1.33-1.37) suitable for biosensing applications. PMID:26426022

  16. Surface Plasmon Scattering in Exposed Core Optical Fiber for Enhanced Resolution Refractive Index Sensing

    Directory of Open Access Journals (Sweden)

    Elizaveta Klantsataya

    2015-09-01

    Full Text Available Refractometric sensors based on optical excitation of surface plasmons on the side of an optical fiber is an established sensing architecture that has enabled laboratory demonstrations of cost effective portable devices for biological and chemical applications. Here we report a Surface Plasmon Resonance (SPR configuration realized in an Exposed Core Microstructured Optical Fiber (ECF capable of optimizing both sensitivity and resolution. To the best of our knowledge, this is the first demonstration of fabrication of a rough metal coating suitable for spectral interrogation of scattered plasmonic wave using chemical electroless plating technique on a 10 μm diameter exposed core of the ECF. Performance of the sensor in terms of its refractive index sensitivity and full width at half maximum (FWHM of SPR response is compared to that achieved with an unstructured bare core fiber with 140 μm core diameter. The experimental improvement in FWHM, and therefore the detection limit, is found to be a factor of two (75 nm for ECF in comparison to 150 nm for the large core fiber. Refractive index sensitivity of 1800 nm/RIU was achieved for both fibers in the sensing range of aqueous environment (1.33–1.37 suitable for biosensing applications.

  17. Ratiometric optical fiber sensor for dual sensing of copper ion and dissolved oxygen.

    Science.gov (United States)

    Chu, Cheng-Shane; Chuang, Chih-Yung

    2015-12-20

    This paper develops a new ratiometric optical dual sensor for Cu2+ ions and dissolved oxygen (DO) incorporating a sol-gel matrix doped with palladium tetrakis pentafluorophenyl porphine as the oxygen-sensitive material, CdSe quantum dots as the Cu2+ ion-sensing material, and 7-amino-4-trifluoromethyl coumarin as the Cu2+ /DO practically independent fluorescent dye. The feasibility of coating an optical fiber with the sensing film to fabricate a ratiometric optical fiber dual sensor is investigated. Using an LED with a central wavelength of 405 nm as an excitation source, it is shown that the emission wavelengths of the Cu2+ ion-sensitive, DO-sensitive dye and the reference dye have no spectral overlap and therefore permit Cu2+ ion and DO concentration to be measured using a ratiometric-based method. The ratiometric optical fiber dual sensor has been tested with regard to monitoring different Cu2+ ion (0-10 μM) and DO concentrations (0-38 mg/L). The results show that the luminescence properties of the Cu2+ ion sensor are independent of the presence of the oxygen sensor and have a uniquely good linear response in the 0-10 μM range. The proposed ratiometric sensing approach presented in this study has the advantage of suppressing spurious fluctuations in the intensity of the excitation source. PMID:26837033

  18. Distributed Optical Fiber Radiation and Temperature Sensing at High Energy Accelerators and Experiments

    CERN Document Server

    AUTHOR|(CDS)2090137; Brugger, Markus

    The aim of this Thesis is to investigate the feasibility of a distributed optical fiber radiation sensing system to be used at high energy physics accelerators and experiments where complex mixed-field environments are present. In particular, after having characterized the response of a selection of radiation sensitive optical fibers to ionizing radiation coming from a 60Co source, the results of distributed optical fiber radiation measurements in a mixed-field environment are presented along with the method to actually estimate the dose variation. This study demonstrates that distributed optical fiber dosimetry in the above mentioned mixed-field radiation environment is feasible, allowing to detect dose variations of about 10-15 Gy with a 1 m spatial resolution. The proof of principle has fully succeeded and we can now tackle the challenge of an industrial installation taking into account that some optimizations need to be done both on the control unit of the system as well as on the choice of the sensing f...

  19. Comprehensive long distance and real-time pipeline monitoring system based on fiber optic sensing

    Energy Technology Data Exchange (ETDEWEB)

    Nikles, Marc; Ravet, Fabien; Briffod, Fabien [Omnisens S.A., Morges (Switzerland)

    2009-07-01

    An increasing number of pipelines are constructed in remote regions affected by harsh environmental conditions. These pipeline routes often cross mountain areas which are characterized by unstable grounds and where soil texture changes between winter and summer increase the probability of hazards. Due to the long distances to be monitored and the linear nature of pipelines, distributed fiber optic sensing techniques offer significant advantages and the capability to detect and localize pipeline disturbance with great precision. Furthermore pipeline owner/operators lay fiber optic cable parallel to transmission pipelines for telecommunication purposes and at minimum additional cost monitoring capabilities can be added to the communication system. The Brillouin-based Omnisens DITEST monitoring system has been used in several long distance pipeline projects. The technique is capable of measuring strain and temperature over 100's kilometers with meter spatial resolution. Dedicated fiber optic cables have been developed for continuous strain and temperature monitoring and their deployment along the pipeline has enabled permanent and continuous pipeline ground movement, intrusion and leak detection. This paper presents a description of the fiber optic Brillouin-based DITEST sensing technique, its measurement performance and limits, while addressing future perspectives for pipeline monitoring. (author)

  20. Fiber Loop Ringdown — a Time-Domain Sensing Technique for Multi-Function Fiber Optic Sensor Platforms: Current Status and Design Perspectives

    OpenAIRE

    Chuji Wang

    2009-01-01

    Fiber loop ringdown (FLRD) utilizes an inexpensive telecommunications light source, a photodiode, and a section of single-mode fiber to form a uniform fiber optic sensor platform for sensing various quantities, such as pressure, temperature, strain, refractive index, chemical species, biological cells, and small volume of fluids. In FLRD, optical losses of a light pulse in a fiber loop induced by changes in a quantity are measured by the light decay time constants. FLRD measures time to detec...

  1. Theoretical analysis and experiment of micromechanics and mechanics-optics coupling of distributed optic-fiber crack sensing

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    The micromechanical behaviors and mechanics-optics coupling effects of optic-fiber-concrete complex in the distributed optic-fiber sensing concrete-crack technology,which was used in health monitoring of Wu Gorge Bridge on Yangtze River and a large dam successfully,have been investigated.A micromechanical theoretical analysis method and micromechanical frictional contact bi-interface model,as well as a modified optical theoretical analysis method of the mechanics-optics coupling effects are presented.A series of verification experiments,including mechanical experiments and mechanics-optics coupling experiments,have been preformed.The results of micromechanical theoretical analysis and the analysis of the modified theory of mechanics-optics coupling along with mechanical and optical experimental data are shown to be in close agreement.Both the micromechanical theory and the modified theory of mechanics-optics coupling with their analysis methods can not only enhance credibility of this novel distributed sensing technology but also provide a way to understand its sensing mechanism and optimize its technical details and system.

  2. OptaSense distributed acoustic and seismic sensing using COTS fiber optic cables for infrastructure protection and counter terrorism

    Science.gov (United States)

    Duckworth, Gregory L.; Ku, Emery M.

    2013-06-01

    The OptaSense® Distributed Acoustic Sensing (DAS) technology can turn any cable with single-mode optical fiber into a very large and densely sampled acoustic/seismic sensor array—covering up to a 50 km aperture per system with "virtual" sensor separations as small as 1 meter on the unmodified cable. The system uses Rayleigh scattering from the imperfections in the fiber to return the optical signals measuring local fiber strain from seismic or air and water acoustic signals. The scalable system architecture can provide border monitoring and high-security perimeter and linear asset protection for a variety of industries—from nuclear facilities to oil and gas pipelines. This paper presents various application architectures and system performance examples for detection, localization, and classification of personnel footsteps, vehicles, digging and tunneling, gunshots, aircraft, and earthquakes. The DAS technology can provide a costeffective alternative to unattended ground sensors and geophone arrays, and a complement or alternative to imaging and radar sensors in many applications. The transduction, signal processing, and operator control and display technology will be described, and performance examples will be given from research and development testing and from operational systems on pipelines, critical infrastructure perimeters, railroads, and roadways. Potential new applications will be discussed that can take advantage of existing fiber-optic telecommunications infrastructure as "the sensor"—leading to low-cost and high-coverage systems.

  3. Development of eight-channel methane gas optical fiber sensing system

    Science.gov (United States)

    Zhang, Tianyu; Wang, Weiqi; Gao, Liancong; Koscica, Thomas; Li, David

    2012-10-01

    This paper introduces an eight-channel methane gas optical fiber sensing system designed for underground coalmine methane gas monitoring. With eight self-designed gas sensor heads, this system can detect the concentration of methane gas at eight locations in a coal mine simultaneously. By wavelength modulation with the DFB laser diode, 1×8 WDM, a self-designed processing circuit, and data processing software, this system features a high sensitivity (10ppb). The response time of the system is less than 6 seconds. Extensive tests have been carried out on the system. It is shown that the performance of the optical fiber sensor system is generally better than conventional methane sensing systems currently in wide use in coalmines. It can be used in the coalmines for multi-point gas detecting using one light source and attendant central processing unit only, resulting in more versatility, reduced cost, and increased perational efficiency.

  4. Design and performance of fiber optic pressure cell based on polarimetric sensing

    Science.gov (United States)

    Bock, Wojtek J.; Voet, Mark R.; Beaulieu, Mario; Chen, Jiahua

    1993-03-01

    In this paper we propose replacing a widely used but often difficult and cumbersome technique of hydraulic evaluation of stress in concrete materials with a new fiber-optic measurement device, which has all inherent advantages of fiber-optic sensors. The sensing element of the device consists of a highly birefringent (HB) polarization-maintaining optical fiber. The stress inside it induced by external pressure modulates the polarization state of the output light signal at the detection end of the system. The all-fiber instrumentation system of the sensor consists of a semiconductor pigtailed laser, input and output HB optical fibers, an analyzer and a computer-controlled synchronous detection system. A specially designed leadthrough integrated with the sensor head allowed us to insert the sensor inside a pressure pad filled with oil or alternatively with mercury. For calibration purposes, the pressure cell was placed inside a large pressure chamber designed to simulate the real environment. Characterization of the device for hysteresis, selectivity and sensitivity was performed for pressures up to 70 bar and for ambient temperatures. The described sensor is simple, cost-effective, safe in explosive environments and well adapted for stress monitoring in the large-scale structures.

  5. Double-Ended Calibration of Fiber-Optic Raman Spectra Distributed Temperature Sensing Data

    OpenAIRE

    John Selker; Mark B. Hausner; Scott Tyler; Jop Jansen; Olivier Hoes; Susan C. Steele-Dunne; Nick van de Giesen

    2012-01-01

    Over the past five years, Distributed Temperature Sensing (DTS) along fiber optic cables using Raman backscattering has become an important tool in the environmental sciences. Many environmental applications of DTS demand very accurate temperature measurements, with typical RMSE < 0.1 K. The aim of this paper is to describe and clarify the advantages and disadvantages of double-ended calibration to achieve such accuracy under field conditions. By measuring back...

  6. Advanced materials and techniques for fiber-optic sensing

    International Nuclear Information System (INIS)

    Fibre-optic monitoring systems came of age in about 1999 upon the emergence of the world's first significant commercialising company - a spin-out from the UK's collaborative MAST project. By using embedded fibre-optic technology, the MAST project successfully measured transient strain within high-performance composite yacht masts. Since then, applications have extended from smart composites into civil engineering, energy, military, aerospace, medicine and other sectors. Fibre-optic sensors come in various forms, and may be subject to embedment, retrofitting, and remote interrogation. The unique challenges presented by each implementation require careful scrutiny before widespread adoption can take place. Accordingly, various aspects of design and reliability are discussed spanning a range of representative technologies that include resonant microsilicon structures, MEMS, Bragg gratings, advanced forms of spectroscopy, and modern trends in nanotechnology. (author)

  7. Sensing nanometric displacement of a micro-/nano-fiber induced by optical forces by use of white light interferometry

    Science.gov (United States)

    Qiu, Weiqia; Huang, Hankai; Yu, Jianhui; Dong, Huazhuo; Chen, Zhe; Lu, Huihui

    2015-07-01

    Sensing the nanometric displacement of a micro-/nano-fiber induced by optical forces is a key technology to study optical forces and optical momentum. When the gap between a micro-/nano-fiber and glass substrate becomes down to micrometer scale or less, a white light interference was observed. The gap changes when optical force arising from the propagating pump light along the micro-/nano-fiber causes a transversal nanometric displacement of a micro-/nanofiber, resulting in movement of the interferometric fringes. Therefore this movement of the interferometric fringes can be used to sense the nanometric displacement of the micro-/nano-fiber induced by optical forces. Experimental results show that the resolutions of this method can reach 7.27nm/pixel for tilted angle 0.8o between the micro-/nano-fiber and substrate. It is concluded that the white light interferometry method is suitable for measuring the weak optical force.

  8. Visible vs near-infrared optical fiber plasmonics: performance comparison for protein sensing

    Science.gov (United States)

    Caucheteur, Christophe; Ribaut, Clotilde; Wattiez, Ruddy

    2016-04-01

    In this work, two plasmonic optical fiber sensor configurations are used for protein sensing and their relative performances in terms of limit of detection and sensitivity are compared. The first configuration consists in unclad 200 μm optical fibers that produce a broadband resonance in the visible wavelength range around 650 nm while the second configuration makes use of multiple narrowband resonances produced in the C+L bands with weakly tilted fiber Bragg gratings photo-inscribed in telecommunication-grade single-mode optical fibers. In both cases, the sensitive regions are surrounded by a ~50 nm gold layer so that the evanescent wave can excite a surface plasmon polariton at the metalsurrounding medium interface. Both configurations are used to sense green fluorescent proteins. Our experimental results demonstrate that the two sensor configurations present a complementary measurement dynamics as a function of the investigated concentration in the range 10-12 - 10-7 g/ml. We attribute this difference of sensitivity to the difference of penetration depth of the evanescent wave in the surrounding medium, which is proportional to the light wavelength.

  9. Fiber Optic Sensors for Health Monitoring of Morphing Airframes. Part 2; Chemical Sensing Using Optical Fibers with Bragg Gratings

    Science.gov (United States)

    Wood, Karen; Brown, Timothy; Rogowski, Robert; Jensen, Brian

    2000-01-01

    Part 1 of this two part series described the fabrication and calibration of Bragg gratings written into a single mode optical fiber for use in strain and temperature monitoring. Part 2 of the series describes the use of identical fibers and additional multimode fibers, both with and without Bragg gratings, to perform near infrared spectroscopy. The demodulation system being developed at NASA Langley Research Center currently requires the use of a single mode optical fiber. Attempts to use this single mode fiber for spectroscopic analysis are problematic given its small core diameter, resulting in low signal intensity. Nonetheless, we have conducted a preliminary investigation using a single mode fiber in conjunction with an infrared spectrometer to obtain spectra of a high-performance epoxy resin system. Spectra were obtained using single mode fibers that contained Bragg gratings; however, the peaks of interest were barely discernible above the noise. The goal of this research is to provide a multipurpose sensor in a single optical fiber capable of measuring a variety of chemical and physical properties.

  10. Spectroscopic and fiber optic ethanol sensing properties Gd doped ZnO nanoparticles

    Science.gov (United States)

    Noel, J. L.; Udayabhaskar, R.; Renganathan, B.; Muthu Mariappan, S.; Sastikumar, D.; Karthikeyan, B.

    2014-11-01

    We report the structural, optical and gas sensing properties of prepared pure and Gd doped ZnO nanoparticles through solgel method at moderate temperature. Structural studies are carried out by X-ray diffraction method confirms hexagonal wurtzite structure and doping induced changes in lattice parameters is observed. Optical absorption spectral studies shows red shift in the absorption peak corresponds to band-gap from 3.42 eV to 3.05 eV and broad absorption in the visible range after Gd doping is observed. Scanning electron microscopic studies shows increase in particle size where the particle diameters increase from few nm to micrometers after Gd doping. The clad modified ethanol fiber-optic sensor studies for ethanol sensing exhibits best sensitivity for the 3% Gd doped ZnO nanoparticles and the sensitivity get lowered incase of higher percentage of Gd doped ZnO sample.

  11. Nanoliter-scale, regenerable ion sensor: sensing with surface functionalized microstructured optical fiber

    Science.gov (United States)

    Heng, Sabrina; Nguyen, Mai-Chi; Kostecki, Roman; Monro, Tanya M.; Abell, Andrew D.

    2013-05-01

    The first nanoliter-scale regenerable ion sensor based on microstructured optical fiber (MOF) is reported. The air holes of the MOF are functionalized with a monoazacrown bearing spiropyran to give a switchable sensor that detects lithium ions down to 100 nM in nanoliter-scale volumes. Ion binding is turned on and off on upon irradiation with light, with the sensor being unaffected by multiple rounds of photoswitching. Unbound ions are flushed from the fiber in the `off' state to allow the sensor to be reused. The integration of an ionophore into the sensor paves the way for the development of highly specific light-based sensing platforms that are readily adaptable to sense a particular ion simply by altering the ionophore design.

  12. A Self-Referencing Intensity-Based Fiber Optic Sensor with Multipoint Sensing Characteristics

    Directory of Open Access Journals (Sweden)

    Sang-Jin Choi

    2014-07-01

    Full Text Available A self-referencing, intensity-based fiber optic sensor (FOS is proposed and demonstrated. The theoretical analysis for the proposed design is given, and the validity of the theoretical analysis is confirmed via experiments. We define the measurement parameter, X, and the calibration factor, β, to find the transfer function, , of the intensity-based FOS head. The self-referencing and multipoint sensing characteristics of the proposed system are validated by showing the measured  and relative error versus the optical power attenuation of the sensor head for four cases: optical source fluctuation, various remote sensing point distances, fiber Bragg gratings (FBGs with different characteristics, and multiple sensor heads with cascade and/or parallel forms. The power-budget analysis and limitations of the measurement rates are discussed, and the measurement results of fiber-reinforced plastic (FRP coupon strain using the proposed FOS are given as an actual measurement. The proposed FOS has several benefits, including a self-referencing characteristic, the flexibility to determine FBGs, and a simple structure in terms of the number of devices and measuring procedure.

  13. A novel data adaptive detection scheme for distributed fiber optic acoustic sensing

    Science.gov (United States)

    Ölçer, Íbrahim; Öncü, Ahmet

    2016-05-01

    We introduce a new approach for distributed fiber optic sensing based on adaptive processing of phase sensitive optical time domain reflectometry (Φ-OTDR) signals. Instead of conventional methods which utilizes frame averaging of detected signal traces, our adaptive algorithm senses a set of noise parameters to enhance the signal-to-noise ratio (SNR) for improved detection performance. This data set is called the secondary data set from which a weight vector for the detection of a signal is computed. The signal presence is sought in the primary data set. This adaptive technique can be used for vibration detection of health monitoring of various civil structures as well as any other dynamic monitoring requirements such as pipeline and perimeter security applications.

  14. An Implantable Neural Sensing Microsystem with Fiber-Optic Data Transmission and Power Delivery

    Directory of Open Access Journals (Sweden)

    Yoon-Kyu Song

    2013-05-01

    Full Text Available We have developed a prototype cortical neural sensing microsystem for brain implantable neuroengineering applications. Its key feature is that both the transmission of broadband, multichannel neural data and power required for the embedded microelectronics are provided by optical fiber access. The fiber-optic system is aimed at enabling neural recording from rodents and primates by converting cortical signals to a digital stream of infrared light pulses. In the full microsystem whose performance is summarized in this paper, an analog-to-digital converter and a low power digital controller IC have been integrated with a low threshold, semiconductor laser to extract the digitized neural signals optically from the implantable unit. The microsystem also acquires electrical power and synchronization clocks via optical fibers from an external laser by using a highly efficient photovoltaic cell on board. The implantable unit employs a flexible polymer substrate to integrate analog and digital microelectronics and on-chip optoelectronic components, while adapting to the anatomical and physiological constraints of the environment. A low power analog CMOS chip, which includes preamplifier and multiplexing circuitry, is directly flip-chip bonded to the microelectrode array to form the cortical neurosensor device.

  15. Fiber optic detector

    Energy Technology Data Exchange (ETDEWEB)

    Partin, J.K.; Ward, T.E.; Grey, A.E.

    1990-12-31

    This invention is comprised of a portable fiber optic detector that senses the presence of specific target chemicals by exchanging the target chemical for a fluorescently-tagged antigen that is bound to an antibody which is in turn attached to an optical fiber. Replacing the fluorescently-tagged antigen reduces the fluorescence so that a photon sensing detector records the reduced light level and activates an appropriate alarm or indicator.

  16. A streak camera based fiber optic pulsed polarimetry technique for magnetic sensing to sub-mm resolution

    Science.gov (United States)

    Smith, R. J.; Weber, T. E.

    2016-11-01

    The technique of fiber optic pulsed polarimetry, which provides a distributed (local) measurement of the magnetic field along an optical fiber, has been improved to the point where, for the first time, photocathode based optical detection of backscatter is possible with sub-mm spatial resolutions. This has been realized through the writing of an array of deterministic fiber Bragg gratings along the fiber, a so-called backscatter-tailored optical fiber, producing a 34 000-fold increase in backscatter levels over Rayleigh. With such high backscatter levels, high repetition rate lasers are now sufficiently bright to allow near continuous field sensing in both space and time with field resolutions as low as 0.005 T and as high as 170 T over a ˜mm interval given available fiber materials.

  17. Sensing of corrosion on aluminum surfaces by use of metallic optical fiber.

    Science.gov (United States)

    Dong, Saying; Liao, Yanbiao; Tian, Qian

    2005-10-20

    We present a new method for monitoring aluminum corrosion by determining the kind of light output that is as corrosion occurs. We prepared some metallized multimode optical fibers by physical vacuum deposition of aluminum to monitor metal corrosion. The sensing area was 1-2 cm in length and had an uncladded part. We used scanning-electron microscopy (SEM) to observe the microappearance of the aluminum before and after corrosion by sodium hydroxide or hydrochloric acid. The film's thickness was also measured by SEM. The factors that affect the rate of corrosion were also investigated. PMID:16252643

  18. Overview of Fiber Optic Sensor Technologies for Strain/Temperature Sensing Applications in Composite Materials

    Directory of Open Access Journals (Sweden)

    Manjusha Ramakrishnan

    2016-01-01

    Full Text Available This paper provides an overview of the different types of fiber optic sensors (FOS that can be used with composite materials and also their compatibility with and suitability for embedding inside a composite material. An overview of the different types of FOS used for strain/temperature sensing in composite materials is presented. Recent trends, and future challenges for FOS technology for condition monitoring in smart composite materials are also discussed. This comprehensive review provides essential information for the smart materials industry in selecting of appropriate types of FOS in accordance with end-user requirements.

  19. Overview of Fiber Optic Sensor Technologies for Strain/Temperature Sensing Applications in Composite Materials.

    Science.gov (United States)

    Ramakrishnan, Manjusha; Rajan, Ginu; Semenova, Yuliya; Farrell, Gerald

    2016-01-15

    This paper provides an overview of the different types of fiber optic sensors (FOS) that can be used with composite materials and also their compatibility with and suitability for embedding inside a composite material. An overview of the different types of FOS used for strain/temperature sensing in composite materials is presented. Recent trends, and future challenges for FOS technology for condition monitoring in smart composite materials are also discussed. This comprehensive review provides essential information for the smart materials industry in selecting of appropriate types of FOS in accordance with end-user requirements.

  20. Optical fiber networks for remote fiber optic sensors

    OpenAIRE

    Montserrat Fernandez-Vallejo; Manuel Lopez-Amo

    2012-01-01

    This paper presents an overview of optical fiber sensor networks for remote sensing. Firstly, the state of the art of remote fiber sensor systems has been considered. We have summarized the great evolution of these systems in recent years; this progress confirms that fiber-optic remote sensing is a promising technology with a wide field of practical applications. Afterwards, the most representative remote fiber-optic sensor systems are briefly explained, discussing their schemes, challeng...

  1. Application of Distributed Optical Fiber Sensing Technology in the Anomaly Detection of Shaft Lining in Grouting

    Directory of Open Access Journals (Sweden)

    Chunde Piao

    2015-01-01

    Full Text Available The rupture of the shaft lining caused by grouting has seriously undermined the safety in coal mining. Based on BOTDR distributed optical fiber sensing technology, this paper studied the layout method of optical fiber sensors and the anomaly detection method of the deformation and obtained the evolution law of shaft deformation triggered by grouting. The research results showed that the bonding problem of optical fiber sensors in damp environment could be effectively solved, by applying the binder consisting of sodium silicate and cement. Through BOTDR-based deformation detection, the real-time deformation of the shaft lining caused by grouting was immediately spotted. By comparing the respective strain of shaft lining deformation and concrete deformation, the risk range of shaft lining grouting was identified. With the additional strain increment of the shaft lining triggered by each process of grouting, the saturated condition of grouting volume in strata was analyzed, providing an important technical insight into the field construction and the safety of the shaft lining.

  2. Optic fiber sensor-based smart bridge cable with functionality of self-sensing

    Science.gov (United States)

    He, Jianping; Zhou, Zhi; Jinping, Ou

    2013-02-01

    Bridge cables, characterized by distributed large span, serving in harsh environment and vulnerability to random damage, are the key load-sustaining components of cable-based bridges. To ensure the safety of the bridge structure, it is critical to monitor the loading conditions of these cables under lengthwise random damages. Aiming at obtaining accurate monitoring at the critical points as well as the general information of the cable force distributed along the entire cable, this paper presents a study on cable force monitoring by combining optical fiber Bragg grating (FBG) sensors and Brillouin optical time domain analysis/reflectory (BOTDA/R) sensing technique in one single optical fiber. A smart FRP-OF-FBG rebar based cable was fabricated by protruding a FRP packaged OF-FBG sensor into the bridge cable. And its sensing characteristics, stability under high stress state temperature self-compensation as well as BOTDA/R distributed data improvement by local FBG sensors have been investigated. The results show that FRP-OF-FBG rebar in the smart cable can deform consistantly along with the steel wire and the cable force obtained from the optical fiber sensors agree well with theoretical value with relative error less than ±5%. Besides, the temperature self-compensation method provides a significant cost-effective technique for the FRP-OF-FBG based cables' in situ cable force measurement. And furthermore, potential damages of the bridge cable, e.g. wire breaking and corrosion, can be characterized and symbolized by the discontinuity and fluctuation of the distributed BOTDA data thereafter accuracy improved by local FBG sensors.

  3. A comparative study between SMS interferometers and lossy mode resonace optical fiber devices for sensing applications

    Science.gov (United States)

    Socorro, A. B.; Hernaez, M.; Del Villar, I.; Corres, J. M.; Arregui, F. J.; Matias, I. R.

    2015-05-01

    Optical fiber sensors are of great interest due to their intrinsic advantages over electronic sensors. In this work, the sensing characteristics of two different and novel optical fiber devices are compared, after simultaneously depositing a thin-film using the layer-by-layer assembly deposition process. The first one is an SMS structure, formed by splicing two single-mode fiber pigtails on both sides of a coreless multimode fiber segment. This structure induces an interferometric phenomenon that generates several attenuation and transmission bands along the spectrum. These bands are sensitive to variations in the surrounding refractive index, although this sensitivity has been enhanced by a TiO2/PSS thin-film. The other device is a 40 mm uncladded segment of a 200 μm-core multimode optical fiber. When coated by a TiO2/PSS thinfilm, part of the light transmitted into the uncladded core is coupled into the thin-film, generating a lossy mode resonance (LMR). The absorption peaks due to these phenomena red-shift as long as the thin-film thickness increases or the external RI becomes higher. The performance of these devices as refractometers and relative humidity sensors are tested. Results show that the LMR-based sensor is more sensitive in both situations, in spite of its lower sensitivity. Particularly, it presents a 7-fold sensitivity enhancement when measuring surrounding medium refractive index changes and a 10-fold sensitivity enhancement when measuring environmental relative humidity. To our knowledge, this is the first time that a comparative study between SMS and LMR sensors is performed.

  4. Optical sensing elements for nitrogen dioxide (NO.sub.2) gas detection, a sol-gel method for making the sensing elements and fiber optic sensors incorporating nitrogen dioxide gas optical sensing elements

    Science.gov (United States)

    Mechery, Shelly John; Singh, Jagdish P.

    2007-07-03

    A sensing element, a method of making a sensing element, and a fiber optic sensor incorporating the sensing element are described. The sensor can be used for the quantitative detection of NO.sub.2 in a mixture of gases. The sensing element can be made by incorporating a diazotizing reagent which reacts with nitrous ions to produce a diazo compound and a coupling reagent which couples with the diazo compound to produce an azo dye into a sol and allowing the sol to form an optically transparent gel. The sensing element changes color in the presence of NO.sub.2 gas. The temporal response of the absorption spectrum at various NO.sub.2 concentrations has also been recorded and analyzed. Sensors having different design configurations are described. The sensing element can detect NO.sub.2 gas at levels of parts per billion.

  5. Application of Thin ZnO ALD Layers in Fiber-Optic Fabry-Pérot Sensing Interferometers

    OpenAIRE

    Daria Majchrowicz; Marzena Hirsch; Paweł Wierzba; Michael Bechelany; Roman Viter; Małgorzata Jędrzejewska‑Szczerska

    2016-01-01

    In this paper we investigated the response of a fiber-optic Fabry-Pérot sensing interferometer with thin ZnO layers deposited on the end faces of the optical fibers forming the cavity. Standard telecommunication single-mode optical fiber (SMF-28) segments were used with the thin ZnO layers deposited by Atomic Layer Deposition (ALD). Measurements were performed with the interferometer illuminated by two broadband sources operating at 1300 nm and 1550 nm. Reflected interference signal was acqui...

  6. Preparation and Properties of Modified Sol-Gel Sensing Membrane for Fiber Optic Oxygen Sensor

    Institute of Scientific and Technical Information of China (English)

    HUANG Jun; HAN Yun; ZHANG Tian-hua; JIANG De-sheng; YUE Fang-yu

    2004-01-01

    Modified sensing membranes based on fluorescence quenching were prepared by the sol-gel meth-od, using formamide as the drying control chemical additive, tetraethoxysilane as the main material, Ru( phen )3 Cl2 as the indicator. The membrane with the optimum thickness of 20- 50μm is uniform and crack-free,in which the indicator has a very small leaking rate. The membrane is immersed in water for 50h, the membranesensing parameter M decreases by less than 5% . The fiber optic oxygen sensor with the sensing membrane has adetection limit of 5 × 10-6 M( ppm ), a response time of less than 30s, excellent reproducibility and stability.

  7. Distributed fiber-optic vibration sensing based on phase extraction from time-gated digital OFDR.

    Science.gov (United States)

    Wang, Shuai; Fan, Xinyu; Liu, Qingwen; He, Zuyuan

    2015-12-28

    A novel distributed fiber vibration sensing technique based on phase extraction from time-gated digital optical frequency domain reflectometry (TGD-OFDR) which can achieve quantitative vibration measurement with high spatial resolution and long measurement range is proposed. A 90 degree optical hybrid is used to extract phase information. By increasing frequency sweeping speed, the influence of environmental phase disturbance on TGD-OFDR is mitigated significantly, which makes phase extraction in our new scheme more reliable than that in conventional OFDR-based method, leading to the realization of long distance quantitative vibration measurement. By using the proposed technique, a distributed vibration sensor that has a measurement range of 40 km, a spatial resolution of 3.5 m, a measurable vibration frequency up to 600 Hz, and a minimal measurable vibration acceleration of 0.08g is demonstrated. PMID:26831995

  8. Heated fiber optic distributed temperature sensing: a tool for measuring soil water content

    Science.gov (United States)

    Rodriguez-Sinobas, Leonor; Zubelzu, Sergio; Sánchez-Calvo, Raúl; Horcajo, Daniel

    2016-04-01

    . Finally, the soil water retention curve was estimated by fitting pairs of Tcum- values. Results showed the feasibility of heated fiber optics with distributed temperature sensing to estimate soil water content, and suggest its potential for its application under field conditions

  9. Fiber-Optic Sensor with Simultaneous Temperature, Pressure, and Chemical Sensing Capabilities

    Energy Technology Data Exchange (ETDEWEB)

    Kennedy, Jermaine L. [MicroMaterials, Inc., Tampa, FL (United States)

    2009-03-12

    This project aimed to develop a multifunctional sensor suitable for process control application in chemical and petrochemical industries. Specifically, the objective was to demonstrate a fiber optic sensing system capable of simultaneous temperature, pressure, and chemical composition determinations based on a single strand of sapphire optical fiber. These capabilities were to be achieved through the incorporation of a phosphor and a Bragg grating into the fiber, as well as the exploitation of the evanescent field interaction of the optical radiation inside the fiber with the surrounding chemical medium. The integration of the three functions into a single probe, compared to having three separate probes, would not only substantially reduce the cost of the combined system, but would also minimize the intrusion into the reactor. Such a device can potentially increase the energy efficiency in the manufacture of chemical and petrochemical products, as well as reduce waste and lead to improved quality. In accordance with the proposed research plan, the individual temperature, pressure and chemical sensors where fabricated and characterized first. Then towards the end of the program, an integrated system was implemented. The sapphire fibers were grown on a laser heated pedestal growth system. The temperature sensor was based on the fluorescence decay principle, which exploits the temperature dependence of the fluorescence decay rate of the selected phosphor. For this project, Cr3+ was chosen as the phosphor, and it was incorporated into the sapphire fiber by coating a short length of the source rod with a thin layer of Cr2O3. After the viability of the technique was established and the growth parameters optimized, the temperature sensor was characterized up to 300 °C and its long term stability was verified. The chemical sensor determined the concentration of chemicals through evanescent field absorption. Techniques to increase the

  10. Changes in speckle patterns induced by load application onto an optical fiber and its possible application for sensing purpose

    Science.gov (United States)

    Hasegawa, Makoto; Okumura, Jyun-ya; Hyuga, Akio

    2015-08-01

    Speckle patterns to be observed in an output light spot from an optical fiber are known to be changed due to external disturbances applied onto the optical fiber. In order to investigate possibilities of utilizing such changes in speckle patterns for sensing application, a certain load was applied onto a jacket-covered communication-grade multi-mode glass optical fiber through which laser beams emitted from a laser diode were propagating, and observed changes in speckle patterns in the output light spot from the optical fiber were investigated both as image data via a CCD camera and as an output voltage from a photovoltaic panel irradiated with the output light spot. The load was applied via a load application mechanism in which several ridges were provided onto opposite flat plates and a certain number of weights were placed there so that corrugated bending of the optical fiber was intentionally induced via load application due to the ridges. The obtained results showed that the number of speckles in the observed pattern in the output light spot as well as the output voltage from the photovoltaic panel irradiated with the output light spot showed decreases upon load application with relatively satisfactory repeatability. When the load was reduced, i.e., the weights were removed, the number of speckles then showed recovery. These results indicate there is a certain possibility of utilizing changes in speckle patterns for sensing of load application onto the optical fiber.

  11. Fiber Sensing of Micro -Crack

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    Optical fiber sensors are used for sensing micro-cracking in composite and metal materials in aerospace applications. The sensing mechanism is based on the detection of acoustic emission signals, which are known to emanate from micro-cracks when they grow under further loading. The sensor head consists of a fiber Bragg grating that is capable of detecting acoustic emission signals generated by pencil lead breaking, of frequencies up to 200 kHz.

  12. Fiber Sensing of Micro -Crack

    Institute of Scientific and Technical Information of China (English)

    Hong-Liang Cui

    2003-01-01

    Optical fiber sensors are used for sensing micro -cracking in composite and metal materials in aerospace applications.The sensing mechanism is based on the detection of acoustic emission signals, which are known to emanate from micro-cracks when they grow under further loading. The sensor head consists of a fiber Bragg grating that is capable of detecting acoustic emission signals generated by pencil lead breaking, of frequencies up to 200 kHz.

  13. In-situ strain sensing with fiber optic sensors embedded into stainless steel 316

    Science.gov (United States)

    Havermann, Dirk; Mathew, Jinesh; Macpherson, William N.; Maier, Robert R. J.; Hand, Duncan P.

    2015-04-01

    Fiber Bragg Grating (FBG) sensors are embedded into Stainless Steel (SS) 316 components using bespoke Selective Laser Melting (SLM) technology. SS 316 material is added on substrates by SLM, incorporating U-shaped grooves with dimensions suitable to hold nickel coated optical fibers. Coated optical fibers containing fiber Bragg gratings for strain monitoring are placed in the groove. Melting subsequent powder layer on top of the fiber completes the embedding. Strain levels exceeding 3 mɛ are applied to specimens and are measured by embedded fiber optic sensors. Elastic deformation of the steel component is reliably measured by the Bragg grating from within the component with high accuracy. During plastic deformation of the steel the optical fiber is slipping due to poor adhesive bonding between fused silica and metal surround.

  14. Analysis of Faraday effect in multimode tellurite glass optical fiber for magneto-optical sensing and monitoring applications

    OpenAIRE

    Boetti, Nadia Giovanna; Chen, Qiuping; Lousteau, Joris; Milanese, Daniel; Olivero, Massimo; Chen, Qiuling

    2012-01-01

    The design and fabrication of a tellurite glass multimode optical fiber for magneto-optical applications are presented and discussed. The analysis of the polarization shows that an optical beam, linearly polarized at the fiber input, changes to elliptically polarized with an ellipticity of 1∶4.5 after propagating down the fiber. However, the elliptical distribution remains unchanged with or without an applied magnetic field, demonstrating that no circular dichroism occurs within the fiber. Th...

  15. A surface-enhanced Raman scattering (SERS-active optical fiber sensor based on a three-dimensional sensing layer

    Directory of Open Access Journals (Sweden)

    Chunyu Liu

    2014-08-01

    Full Text Available To fabricate a new surface-enhanced Raman scattering (SERS-active optical fiber sensor, the design and preparation of SERS-active sensing layer is one of important topics. In this study, we fabricated a highly sensitive three-dimensional (3D SERS-active sensing layer on the optical fiber terminal via in situ polymerizing a porous polymer material on a flat optical fiber terminal through thermal-induced process, following with the photochemical silver nanoparticles growth. The polymerized polymer formed a 3D porous structure with the pore size of 0.29–0.81 μm, which were afterward decorated with abundant silver nanoparticles with the size of about 100 nm, allowing for higher SERS enhancement. This SERS-active optical fiber sensor was applied for the determination of 4-mercaptopyridine, crystal violet and maleic acid The enhancement factor of this SERS sensing layer can be reached as about 108. The optical fiber sensor with high sensitive SERS-active porous polymer is expected for online analysis and environment detection.

  16. Torsion sensing characteristics of long period fiber gratings fabricated by femtosecond laser in optical fiber

    Science.gov (United States)

    Duan, Ji'an; Xie, Zheng; Wang, Cong; Zhou, Jianying; Li, Haitao; Luo, Zhi; Chu, Dongkai; Sun, Xiaoyan

    2016-09-01

    With the alignment of the fiber core systems containing dual-CCDs and high-precision electric displacement platform, twisted long period fiber gratings (T-LPFGs) were fabricated in two different twisted SMF-28 fibers by femtosecond laser. The torsion characteristics of the T-LPFGs were experimentally and theoretical investigated and demonstrated in this study. The achieved torsion sensitivity is 117.4 pm/(rad/m) in the torsion range -105-0 rad/m with a linearity of 0.9995. Experimental results show that compared with the ordinary long period fiber gratings, the resonance wavelength of the gratings presents an opposite symmetrical shift depending on the twisting direction after the applied torsion is removed. In addition, high sensitivity could be obtained, which is very suitable for the applications in the torsion sensor. These results are important for the design of new torsion sensors based on T-LPFGs fabricated by femtosecond laser.

  17. Demodulation technique based on diffraction optical elements for fiber Bragg grating sensing system

    Science.gov (United States)

    Feng, Zhongwei; Zhang, Li

    2010-11-01

    A new demodulation technique based on diffraction grating is proposed for high speed application. Compared with tunable filter method, the diffraction grating method has the advantages of potential high interrogation speed, high energy efficiency, no sweeping movements, which makes it a competitive interrogation method in certain field such as dynamic strain monitoring. The optical layout is crucial to guarantee the required performance of the interrogator. A structure which consists of two diffraction gratings, a fiber collimator, a reflection mirror, and a detector is adopted in the consideration of spectrum resolution, optical aberration, and geometrical size. The initial parameters for the structure are figured out by the optical path calculation involving the coefficient of the employed optical elements. The optimized procedure is following sequentially in order to minimize the aberration and obtain the pre-defined specifications theoretically. As the central wavelength for the interrogator is 1550nm, the InGaAs linear array sensor is introduced as the photoelectrical detector. Experiment of demodulation for FBG sensing system is carried out to verify the feasibility of this technique. The wavelength resolution for the interrogator is 1pm, and the demodulation speed is about 2kHz.

  18. Coating-free reflection technique for fiber-optic sensors based on multimode interference: A temperature sensing study

    Science.gov (United States)

    Taue, Shuji; Takahashi, Tsuyoshi; Fukano, Hideki

    2016-08-01

    A novel reflection technique for use in fiber-optic sensors is investigated and applied to a multimode interference structure. The reflectivity at a fiber end face is increased with two operations. Firstly, the light intensity is increased toward the periphery of the end-face by adjusting the fiber length, which is determined theoretically. Secondly, the fiber end-face is deformed into an ellipsoid by heating it with a gas torch. The deformed shape is characterized from microscopic images. The reflected light intensity is increased by more than 10 dB as a result of controlling the fiber length and deforming its end-face. Temperature sensing was performed using the reflection-type multimode interference structure immersed in temperature-controlled silicone oil. The resulting sensitivity was 0.028 °C for a 29.60 mm sensing region, achieved without using any reflection coating.

  19. Integrated Optical Fiber Sensing System by Combing Large-Scale Distributed BOTDA/R and Localized FBGs

    OpenAIRE

    Zhi Zhou; Jianping He; Jinping Ou

    2012-01-01

    Structural health monitoring (SHM) has been regarded as a significant tool for the safety of civil infrastructures. Local fiber Bragg grating (FBG) sensor and distributed Brillouin optical fiber sensor have been successfully applied in civil engineering fields. Unfortunately, neither single FBG nor single Brillouin sensing technique can satisfy the requirements of simultaneously positioning full-scale structural damages and accurate local damage details. So it still matters to establish balan...

  20. A tactile sensing element based on a hetero-core optical fiber for force measurement and texture detection

    Science.gov (United States)

    Yamazaki, Hiroshi; Koyama, Yuya; Watanabe, Kazuhiro

    2014-05-01

    Tactile sensing technology can measure a given property of an object through physical contact between a sensing element and the object. Various tactile sensing techniques have been developed for several applications such as intelligent robots, tactile interface, medical support and nursing care support. A desirable tactile sensing element for supporting human daily life can be embedded in the soft material with high sensitivity and accuracy in order to prevent from damaging to human or object physically. This report describes a new tactile sensing element. Hetero-core optical fibers have high sensitivity of macro-bending at local sensor portion and temperature independency, including advantages of optical fiber itself; thin size, light weight, flexible transmission line, and immunity to electro-magnetic interference. The proposed tactile sensing element could detect textures of touched objects through the optical loss caused by the force applied to the sensing element. The characteristics of the sensing element have been evaluated, in which the sensing element has the monotonic and non-linear sensitivity against the normal force ranged from 0 to 5 N with lower accuracy than 0.25 dB. Additionally, texture detection have been successfully demonstrated in which small surface figures of 0.1 mm in height were detected with spatial resolution of 0.4 mm.

  1. Fiber optic Surface Plasmon Resonance sensor based on wavelength modulation for hydrogen sensing

    NARCIS (Netherlands)

    Perrotton, C.; Javahiraly, N.; Slaman, M.J.; Dam, B.; Meyrueis, P.

    2011-01-01

    A new design of a fiber optic Surface Plasmon Resonance (SPR) sensor using Palladium as a sensitive layer for hydrogen detection is presented. In this approach, a transducer layer is deposited on the outside of a multimode fiber, after removing the optical cladding. The transducer layer is a multila

  2. Fiber Optical Micro-detectors for Oxygen Sensing in Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Gregory L. Baker; Ruby N. Ghosh; D. J. Osborn; Po Zhang

    2006-09-30

    A reflection mode fiber optic oxygen sensor that can operate at high temperatures for power plant applications has been developed. The sensor is based on the {sup 3}O{sub 2} quenching of the red emission from hexanuclear molybdenum chloride clusters. We report on a fiber optic technique for detection of gas phase oxygen up to 100 C based on the {sup 3}O{sub 2} quenching of the luminescence from molybdenum chloride clusters, K{sub 2}Mo{sub 6}Cl{sub 14}. The inorganic sensing film is a composite of sol-gel particles embedded in a thin, oxygen permeable sol-gel binder. The particles are comprised of thermally stable, luminescent K{sub 2}Mo{sub 6}Cl{sub 14} clusters dispersed in a fully equilibrated sol-gel matrix. From 40 to 100 C, the fiber sensor switches {approx}6x in intensity in response to alternating pulses of <0.001% O2 and 21% O{sub 2} between two well defined levels with a response time of 10 s. The sensor signal is a few nW for an input pump power of 250 {micro}W. The normalized sensor signal is linear with molar oxygen concentration and fits the theoretical Stern-Volmer relationship. Although the sensitivity decreases with temperature, sensitivity at 100 C is 160 [O{sub 2}]{sup -1}. These parameters are well suited for in-situ, real-time monitoring of oxygen for industrial process control applications.

  3. A Finite Element Analysis of Fiber Optic Acoustic Sensing Mandrel for Acoustic pressure with Increased Sensitivity

    Directory of Open Access Journals (Sweden)

    Prashil M. Junghare

    2013-09-01

    Full Text Available - This paper investigates the influence of material properties on the performance of an optical fiber wound mandrel composite fiber optic interferometer mandrel by using the ANSYS Cad tool, The acoustic sensitivity of an optical fiber considered analytically, High sensitivity obtained with low young modulus, very thick polymer coatings. The thick coating realized by embedding optical fiber in polyurethane. A flexible composite fiber-optic interferometric acoustic sensor has been developed by wrapping single mode fiber in a winding manner and then embedding a fiber in a thin polyurethane layer. The acoustic sensitivity has to be found more in a frequency range of (2.5-5.0 KHz. In this paper we studied the structural and material properties of a mandrel sensor with foaming layer in such way to get the optimal performance. The sensor was found to be compatible with water. Also the performance of optical fiber is analytically verified using the MATLAB software. In this paper the design was simulated in ANSYS Cad Tool, to verify the sensitivity of the Optical Mach-Zehnder Interferometric Sensor for increased sensitivity. The main objective and focus of the above work is concentrated on choosing the optimal foaming layer material by varying the Young Modulus E to choose the perfect foaming material for implementing in the design of mandrel.

  4. Modeling of Distributed Sensing of Elastic Waves by Fiber-Optic Interferometry.

    Science.gov (United States)

    Agbodjan Prince, Just; Kohl, Franz; Sauter, Thilo

    2016-01-01

    This paper deals with the transduction of strain accompanying elastic waves in solids by firmly attached optical fibers. Stretching sections of optical fibers changes the time required by guided light to pass such sections. Exploiting interferometric techniques, highly sensitive fiber-optic strain transducers are feasible based on this fiber-intrinsic effect. The impact on the actual strain conversion of the fiber segment's shape and size, as well as its inclination to the elastic wavefront is studied. FEM analyses show that severe distortions of the interferometric response occur when the attached fiber length spans a noticeable fraction of the elastic wavelength. Analytical models of strain transduction are presented for typical transducer shapes. They are used to compute input-output relationships for the transduction of narrow-band strain pulses as a function of the mechanical wavelength. The described approach applies to many transducers depending on the distributed interaction with the investigated object. PMID:27608021

  5. Modeling of Distributed Sensing of Elastic Waves by Fiber-Optic Interferometry

    Directory of Open Access Journals (Sweden)

    Just Agbodjan Prince

    2016-09-01

    Full Text Available This paper deals with the transduction of strain accompanying elastic waves in solids by firmly attached optical fibers. Stretching sections of optical fibers changes the time required by guided light to pass such sections. Exploiting interferometric techniques, highly sensitive fiber-optic strain transducers are feasible based on this fiber-intrinsic effect. The impact on the actual strain conversion of the fiber segment’s shape and size, as well as its inclination to the elastic wavefront is studied. FEM analyses show that severe distortions of the interferometric response occur when the attached fiber length spans a noticeable fraction of the elastic wavelength. Analytical models of strain transduction are presented for typical transducer shapes. They are used to compute input-output relationships for the transduction of narrow-band strain pulses as a function of the mechanical wavelength. The described approach applies to many transducers depending on the distributed interaction with the investigated object.

  6. Heterogeneous integration of a III-V VCSEL light source for optical fiber sensing.

    Science.gov (United States)

    Li, Hongqiang; Ma, Xiangdong; Yuan, Danyang; Zhang, Zanyun; Li, Enbang; Tang, Chunxiao

    2016-09-15

    We propose a fiber Bragg grating (FBG) sensor interrogation system utilizing a III-V vertical cavity surface emitting laser (VCSEL) as the on-chip light source. Binary blazed grating (BBG) for coupling between III-V VCSEL and silicon-on-insulator (SOI) waveguides is demonstrated for interrogation of the FBG sensor. The footprint size of the BBG is only 5.62  μm×5.3  μm, and each BBG coupler period has two subperiods. The diameter of the VCSEL's emitting window is 5 μm, which is slightly smaller than that of the BBG coupler, to be well-matched with the proposed structure. Results show that the coupling efficiency from vertical cavities of the III-V VCSEL to the in-plane waveguides reached as high as 32.6% when coupling the 1550.65 nm light. The heterogeneous integration of the III-V VCSEL and SOI waveguides by BBG plays a fundamental role in inducing a great breakthrough to the miniaturization of an on-chip light source for optical fiber sensing. PMID:27628346

  7. High-Tg TOPAS microstructured polymer optical fiber for fiber Bragg grating strain sensing at 110 degrees

    DEFF Research Database (Denmark)

    Markos, Christos; Stefani, Alessio; Nielsen, Kristian;

    2013-01-01

    We present the fabrication and characterization of fiber Bragg gratings (FBGs) in an endlessly single-mode microstructured polymer optical fiber (mPOF) made of humidity-insensitive high-Tg TOPAS cyclic olefin copolymer. The mPOF is the first made from grade 5013 TOPAS with a glass transition...

  8. LSPR enhanced gasoline sensing with a U-bent optical fiber

    Science.gov (United States)

    Paul, D.; Dutta, S.; Biswas, R.

    2016-08-01

    We report here a gasoline sensor utilizing localized surface plasmon resonance (LSPR) phenomenon of metal nanoparticles (NPs) with a U-bent optical fiber. The optical response of the noble metal NPs upon interaction with gasoline has been simulated and experimentally demonstrated. The increase in gasoline vapor over a period of time induces a change in the refractive index of the adjacent medium of nanoparticle colloids, adhering to the probe, and thus the variation has been observed accordingly. This change in the refractive index in the close proximity to noble metals NPs produces a measurable variation in the output signal that has been correlated with the increase in the concentration of gasoline. The sensor provides better sensitivity corresponding to AgNPs when compared to AuNPs. However, in terms of stability, AuNPs-based LSPR performs better than the AgNPs-based plasmonic response. The present sensing set-up offers a light weight, robust and easy to implement platform that has potent application in detecting volatile liquids very effectively.

  9. Standardization in fiber-optic sensing for structural safety: activities in the ISHMII and IEC

    Science.gov (United States)

    Habel, Wolfgang R.; Krebber, K.; Daum, W.

    2015-03-01

    Fiber-optic sensors are increasingly established in the sensor market. Their advantages have unquestionably been verified by numerous demonstrations to enhance the operational performance of aged structures or to monitor the structural behavior of safety-relevant structures or their components. However, there are some barriers in use due to a lack of extensive standardization of fiber-optic sensors. This leads very often to restraints in the user's community. The paper shows the status in international standardization of fiber-optic sensors as well as current activities in leading institutions such as IEC and ISHMII and others with the purpose of providing relevant standards for a broader use of selected fiber-optic sensor technologies.

  10. Fiber-Optic Shape Sensing for Intelligent Solar Sail Deployment Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Luna Innovations proposes to develop a distributed fiber-optic shape sensor to provide a control system for the deployment of ultra-lightweight inflatable support...

  11. Advanced Modular, Multi-Channel, High Speed Fiber Optic Sensing System for Acoustic Emissions Monitoring Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Intelligent Fiber Optic Systems Corporation (IFOS) proposes to prove the feasibility of innovations based on ultra-light-weight, ultra-high-speed, multi-channel,...

  12. Cryogenic Liquid Level-Sensing using Fiber-Optic Strain Sensor (FOSS) Technology Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Armstrong innovators have developed a highly accurate method for measuring liquid levels using optical fibers. Unlike liquid level gauges that rely on discrete...

  13. Fiber optic hydrogen sensor

    Science.gov (United States)

    Jung, Chuck C.; Saaski, Elric W.; McCrae, David A.

    1998-09-01

    This paper describes a novel fiber optic-based hydrogen sensor. The sensor consists of a thin-film etalon, constructed on the distal end of a fiber optic. The exterior mirror of the etalon is palladium or a palladium-alloy, which undergoes an optical change upon exposure to hydrogen. Data is presented on fiber optic sensors constructed with palladium and several alloys of palladium. The linearity of the optical response of these sensors to hydrogen is examined. Etalons made with pure palladium are found to be desirable for sensing low concentrations of hydrogen, or for one-time exposure to high concentrations of hydrogen. Etalons made from palladium alloys are found to be more desirable in applications were repeated cycling in high concentrations of hydrogen occurs.

  14. High spatial resolution, dynamic, and distributed fiber optic strain sensing based on phasorial Brillouin dynamic gratings reflectometry

    Science.gov (United States)

    Bergman, A.; Langer, T.; Tur, M.

    2016-05-01

    We present a novel fiber-optic sensing technique based on the distributed measurement of Brillouin-induced phase-shift in the reflection from Brillouin dynamic gratings in polarization-maintaining fibers. Subject to signal to noise considerations, the strain sensitivity of the phase-shift in the reflection of a pulsed probe, orthogonally polarized to the gratings-generating pumps, is independent of the pulse width, suggesting the potential to achieve higher spatial resolutions than those offered by slope-assisted, phasorial Brillouin sensing techniques in standard single-mode fibers. We report the measurement of 500Hz strain vibrations (at a sampling rate of 1MHz) with a spatial resolution of 20cm.

  15. Optimized design and simulation of high temperature pressure pipeline strain monitoring with optical fiber sensing technology

    Science.gov (United States)

    Zhang, Feng; Liu, Yueming; Lou, Jun

    2011-08-01

    methods mentioned above cannot satisfy the strain change monitoring of high temperature pressure piping. In this paper a novel method is presented using optical Fiber Bragg Grating sensor to carry on the real-time monitoring of the high temperature pressure piping surface strain change. firstly the stress and strain analysis of the high temperature pressure piping surface is given based on the established theoretical model, then optimized design and simulation is accomplished with computer ANSYS software. In the end a optimized set-up is put forward and discussed.

  16. A novel fiber optic humidity sensing element%一种新型光纤湿度敏感元件

    Institute of Scientific and Technical Information of China (English)

    姚岚; 余海湖; 姜德生

    2001-01-01

    The ionic self-assembly technology is used to deposit polymer multilayer thin films onto the end faces of optical fibers. The assemblies of the polymer multilayers and the working principle of the fiber optic humidity-sensing element is introduced. The specialties of this polymer multilayer sensing element are investigated.%利用离子自组装技术在光纤端面上制备了具有多层结构的、含有亲水基团的聚电解质感湿薄膜,介绍了这种光纤湿度敏感元件的工作原理,测试了其感湿特性。

  17. Body-monitoring and health supervision by means of optical fiber-based sensing systems in medical textiles.

    Science.gov (United States)

    Quandt, Brit M; Scherer, Lukas J; Boesel, Luciano F; Wolf, Martin; Bona, Gian-Luca; Rossi, René M

    2015-02-18

    Long-term monitoring with optical fibers has moved into the focus of attention due to the applicability for medical measurements. Within this Review, setups of flexible, unobtrusive body-monitoring systems based on optical fibers and the respective measured vital parameters are in focus. Optical principles are discussed as well as the interaction of light with tissue. Optical fiber-based sensors that are already used in first trials are primarily selected for the section on possible applications. These medical textiles include the supervision of respiration, cardiac output, blood pressure, blood flow and its saturation with hemoglobin as well as oxygen, pressure, shear stress, mobility, gait, temperature, and electrolyte balance. The implementation of these sensor concepts prompts the development of wearable smart textiles. Thus, current sensing techniques and possibilities within photonic textiles are reviewed leading to multiparameter designs. Evaluation of these designs should show the great potential of optical fibers for the introduction into textiles especially due to the benefit of immunity to electromagnetic radiation. Still, further improvement of the signal-to-noise ratio is often necessary to develop a commercial monitoring system. PMID:25358557

  18. Fiber optic calorimetry

    International Nuclear Information System (INIS)

    A twin-bridge calorimeter using optical fiber as the sensor element was constructed and tested. This system demonstrates the principle and capability of using optical fibers for heat-flow measurements of special nuclear material. This calorimeter uses piezoelectric-generated phase-carrier modulation with subsequent electronic signal processing to allow phase shifts as small as 1 microrad to be measured. The sensing element consists of 21-m lengths of single-mode optical fiber wrapped around sample and reference chambers. The sensitivity of the calorimeter was determined to be 74 rad of phase shift per mW of thermal power. One milliwatt of thermal power is equivalent to 400 mg of plutonium (6% 240Pu). The system noise base was about 0.2 rad, equivalent to about 1 mg of plutonium

  19. Fiber Optic Calorimetry

    International Nuclear Information System (INIS)

    A twin-bridge calorimeter using optical fiber as the sensor element was constructed and tested. This system demonstrates the principle and capability of using optical fibers for heat-flow measurements of special nuclear material. This calorimeter uses piezoelectric-generated phase-carrier modulation with subsequent electronic signal processes to allow phase shifts as small as 1 microradian (microrad) to be measured. The sensing element consists of 21-m lengths of single-mode optical fiber wrapped around sample and reference chambers. The sensitivity of the calorimeter was determined to be 74 radians (rad) of phase shift per milliwatt of thermal power. One milliwatt of thermal power is equivalent to 400 mg of plutonium (6% 240Pu). The system noise base was about 0.2 rad, equivalent to about 1 mg of plutonium

  20. Fiber Optic Calorimetry

    Energy Technology Data Exchange (ETDEWEB)

    Rudy, C.; Bayliss, S.; Bracken, D.; Bush, J.; Davis, P.

    1997-12-12

    A twin-bridge calorimeter using optical fiber as the sensor element was constructed and tested. This system demonstrates the principle and capability of using optical fibers for heat-flow measurements of special nuclear material. This calorimeter uses piezoelectric-generated phase-carrier modulation with subsequent electronic signal processes to allow phase shifts as small as 1 microradian ({micro}rad) to be measured. The sensing element consists of 21-m lengths of single-mode optical fiber wrapped around sample and reference chambers. The sensitivity of the calorimeter was determined to be 74 radians (rad) of phase shift per milliwatt of thermal power. One milliwatt of thermal power is equivalent to 400 mg of plutonium (6% {sup 240}Pu). The system noise base was about 0.2 rad, equivalent to about 1 mg of plutonium.

  1. Fiber optic calorimetry

    Energy Technology Data Exchange (ETDEWEB)

    Rudy, C.R.; Bayliss, S.C.; Bracken, D.S. [Los Alamos National Lab., NM (United States); Bush, I.J.; Davis, P.G. [Optiphase, Inc., Van Nuys, CA (United States)

    1998-12-31

    A twin-bridge calorimeter using optical fiber as the sensor element was constructed and tested. This system demonstrates the principle and capability of using optical fibers for heat-flow measurements of special nuclear material. This calorimeter uses piezoelectric-generated phase-carrier modulation with subsequent electronic signal processing to allow phase shifts as small as 1 {micro}rad to be measured. The sensing element consists of 21-m lengths of single-mode optical fiber wrapped around sample and reference chambers. The sensitivity of the calorimeter was determined to be 74 rad of phase shift per mW of thermal power. One milliwatt of thermal power is equivalent to 400 mg of plutonium (6% {sup 240}Pu). The system noise base was about 0.2 rad, equivalent to about 1 mg of plutonium.

  2. Application of Thin ZnO ALD Layers in Fiber-Optic Fabry-Pérot Sensing Interferometers.

    Science.gov (United States)

    Majchrowicz, Daria; Hirsch, Marzena; Wierzba, Paweł; Bechelany, Michael; Viter, Roman; Jędrzejewska-Szczerska, Małgorzata

    2016-03-22

    In this paper we investigated the response of a fiber-optic Fabry-Pérot sensing interferometer with thin ZnO layers deposited on the end faces of the optical fibers forming the cavity. Standard telecommunication single-mode optical fiber (SMF-28) segments were used with the thin ZnO layers deposited by Atomic Layer Deposition (ALD). Measurements were performed with the interferometer illuminated by two broadband sources operating at 1300 nm and 1550 nm. Reflected interference signal was acquired by an optical spectrum analyzer while the length of the air cavity was varied. Thickness of the ZnO layers used in the experiments was 50 nm, 100 nm, and 200 nm. Uncoated SMF-28 fiber was also used as a reference. Based on the results of measurements, the thickness of the ZnO layers and the length of the cavity were selected in order to achieve good visibility. Following, the interferometer was used to determine the refractive index of selected liquids.

  3. Application of Thin ZnO ALD Layers in Fiber-Optic Fabry-Pérot Sensing Interferometers.

    Science.gov (United States)

    Majchrowicz, Daria; Hirsch, Marzena; Wierzba, Paweł; Bechelany, Michael; Viter, Roman; Jędrzejewska-Szczerska, Małgorzata

    2016-01-01

    In this paper we investigated the response of a fiber-optic Fabry-Pérot sensing interferometer with thin ZnO layers deposited on the end faces of the optical fibers forming the cavity. Standard telecommunication single-mode optical fiber (SMF-28) segments were used with the thin ZnO layers deposited by Atomic Layer Deposition (ALD). Measurements were performed with the interferometer illuminated by two broadband sources operating at 1300 nm and 1550 nm. Reflected interference signal was acquired by an optical spectrum analyzer while the length of the air cavity was varied. Thickness of the ZnO layers used in the experiments was 50 nm, 100 nm, and 200 nm. Uncoated SMF-28 fiber was also used as a reference. Based on the results of measurements, the thickness of the ZnO layers and the length of the cavity were selected in order to achieve good visibility. Following, the interferometer was used to determine the refractive index of selected liquids. PMID:27011188

  4. Application of Thin ZnO ALD Layers in Fiber-Optic Fabry-Pérot Sensing Interferometers

    Directory of Open Access Journals (Sweden)

    Daria Majchrowicz

    2016-03-01

    Full Text Available In this paper we investigated the response of a fiber-optic Fabry-Pérot sensing interferometer with thin ZnO layers deposited on the end faces of the optical fibers forming the cavity. Standard telecommunication single-mode optical fiber (SMF-28 segments were used with the thin ZnO layers deposited by Atomic Layer Deposition (ALD. Measurements were performed with the interferometer illuminated by two broadband sources operating at 1300 nm and 1550 nm. Reflected interference signal was acquired by an optical spectrum analyzer while the length of the air cavity was varied. Thickness of the ZnO layers used in the experiments was 50 nm, 100 nm, and 200 nm. Uncoated SMF-28 fiber was also used as a reference. Based on the results of measurements, the thickness of the ZnO layers and the length of the cavity were selected in order to achieve good visibility. Following, the interferometer was used to determine the refractive index of selected liquids.

  5. Advances in Using Fiber-Optic Distributed Temperature Sensing to Identify the Mixing of Waters

    Science.gov (United States)

    Briggs, M. A.; Day-Lewis, F. D.; Rosenberry, D. O.; Harvey, J. W.; Lane, J. W., Jr.; Hare, D. K.; Boutt, D. F.; Voytek, E. B.; Buckley, S.

    2014-12-01

    Fiber-optic distributed temperature sensing (FO-DTS) provides thermal data through space and time along linear cables. When installed along a streambed, FO-DTS can capture the influence of upwelling groundwater (GW) as thermal anomalies. The planning of labor-intensive physical measurements can make use of FO-DTS data to target areas of focused GW discharge that can disproportionately affect surface-water (SW) quality and temperature. Typical longitudinal FO-DTS spatial resolution ranges 0.25 to1.0 m, and cannot resolve small-scale water-column mixing or sub-surface diurnal fluctuations. However, configurations where the cable is wrapped around rods can improve the effective vertical resolution to sub-centimeter scales, and the pipes can be actively heated to induce a thermal tracer. Longitudinal streambed and high-resolution vertical arrays were deployed at the upper Delaware River (PA, USA) and the Quashnet River (MA, USA) for aquatic habitat studies. The resultant datasets exemplify the varied uses of FO-DTS. Cold anomalies found along the Delaware River steambed coincide with zones of known mussel populations, and high-resolution vertical array data showed relatively stable in-channel thermal refugia. Cold anomalies at the Quashnet River identified in 2013 were found to persist in 2014, and seepage measurements and water samples at these locations showed high GW flux with distinctive chemistry. Cable location is paramount to seepage identification, particularly in faster flowing deep streams such as the Quashnet and Delaware Rivers where steambed FO-DTS identified many seepage zones with no surface expression. The temporal characterization of seepage dynamics are unique to FO-DTS. However, data from Tidmarsh Farms, a cranberry bog restoration site in MA, USA indicate that in slower flowing shallow steams GW inflow affects surface temperature; therefore infrared imaging can provide seepage location information similar to FO-DTS with substantially less effort.

  6. Coaxial fiber-optic chemical-sensing excitation-emission matrix fluorometer.

    Science.gov (United States)

    Kim, Yoon-Chang; Jordan, James A; Chávez, Diana; Booksh, Karl S

    2011-02-01

    Great reductions in the overall size and complexity of high throughput multichannel UV-visible fluorometers were achieved by coupling a compact optical fiber array to compact dispersive transmission optics. The coaxial configuration centers on the insertion of a silica/silica optical fiber into the hollow region of a UV-fused silica capillary waveguide. The outer core delivers the maximum power of the narrow wavelength region of the excitation spectrum created by coupling a xenon arc discharge lamp to a compact spectrometer. The molecular fluorescence resulting from the interaction of light emitted at the distal end of the hollow waveguide and the sample matrix is received and transmitted to a CCD via a compact dispersive grating-prism (grism) optical assembly. A linear array of the coaxial optical fibers permits a full excitation-emission matrix spectrum of the analyte matrix to be projected onto the face of the CCD. The in situ identification and monitoring of polycyclic aromatic hydrocarbons was carried out for the initial application testing for this prototype. PMID:21283188

  7. Application Specific Optical Fibers

    OpenAIRE

    Pal, Bishnu P.

    2010-01-01

    In this chapter we have attempted to provide a unified summary description of the most important propagation characteristics of an optical fiber followed by discussion on several variety of special fibers for realizing fiber amplifiers, dispersion compensating fibers, microstructured optical fibers, and so on. Even though huge progress has been made on development of optical fibers for telecom application, a need for developing special fibers, not necessarily for telecom alone, has arisen. Th...

  8. Fiber optic temperature sensor

    Science.gov (United States)

    Sawatari, Takeo (Inventor); Gaubis, Philip A. (Inventor)

    2000-01-01

    A fiber optic temperature sensor uses a light source which transmits light through an optical fiber to a sensor head at the opposite end of the optical fiber from the light source. The sensor head has a housing coupled to the end of the optical fiber. A metallic reflective surface is coupled to the housing adjacent the end of the optical fiber to form a gap having a predetermined length between the reflective surface and the optical fiber. A detection system is also coupled to the optical fiber which determines the temperature at the sensor head from an interference pattern of light which is reflected from the reflective surface.

  9. Fiber optic calorimetry

    Energy Technology Data Exchange (ETDEWEB)

    Rudy, C.; Bayliss, S.; Bracken, D. [Los Alamos National Lab., NM (United States); Bush, J.; Davis, P. [Optiphase, Inc., Van Nuys, CA (United States)

    1998-01-01

    A twin-bridge calorimeter using optical fiber as the sensor element was constructed and tested. This system demonstrates the principle and capability of using fiber for heat-flow measurements of special nuclear material. This calorimeter uses piezoelectric-generated phase-carrier modulation with subsequent electronic signal processing to allow phase shifts as small as 1 microradian ({mu}rad) to be measured. The sensing element consists of 21-m lengths of single-mode optical fiber wrapped around sample and reference chambers. The sensitivity of the calorimeter was determined to be 74 radians (rad) of phase shift per milliwatt of thermal power. One milliwatt of thermal power is equivalent to 400 mg of plutonium (6% {sup 240}Pu). The system noise base was about 0.2 rad, equivalent to about 1 mg of plutonium.

  10. Fiber optic calorimetry

    International Nuclear Information System (INIS)

    A twin-bridge calorimeter using optical fiber as the sensor element was constructed and tested. This system demonstrates the principle and capability of using fiber for heat-flow measurements of special nuclear material. This calorimeter uses piezoelectric-generated phase-carrier modulation with subsequent electronic signal processing to allow phase shifts as small as 1 microradian (μrad) to be measured. The sensing element consists of 21-m lengths of single-mode optical fiber wrapped around sample and reference chambers. The sensitivity of the calorimeter was determined to be 74 radians (rad) of phase shift per milliwatt of thermal power. One milliwatt of thermal power is equivalent to 400 mg of plutonium (6% 240Pu). The system noise base was about 0.2 rad, equivalent to about 1 mg of plutonium

  11. Optical Fiber Chemical Sensor with Sol-Gel Derived Refractive Material as Transducer for High Temperature Gas Sensing in Clean Coal Technology

    Energy Technology Data Exchange (ETDEWEB)

    Shiquan Tao

    2006-12-31

    The chemistry of sol-gel derived silica and refractive metal oxide has been systematically studied. Sol-gel processes have been developed for preparing porous silica and semiconductor metal oxide materials. Micelle/reversed micelle techniques have been developed for preparing nanometer sized semiconductor metal oxides and noble metal particles. Techniques for doping metal ions, metal oxides and nanosized metal particles into porous sol-gel material have also been developed. Optical properties of sol-gel derived materials in ambient and high temperature gases have been studied by using fiber optic spectroscopic techniques, such as fiber optic ultraviolet/visible absorption spectrometry, fiber optic near infrared absorption spectrometry and fiber optic fluorescence spectrometry. Fiber optic spectrometric techniques have been developed for investigating the optical properties of these sol-gel derived materials prepared as porous optical fibers or as coatings on the surface of silica optical fibers. Optical and electron microscopic techniques have been used to observe the microstructure, such as pore size, pore shape, sensing agent distribution, of sol-gel derived material, as well as the size and morphology of nanometer metal particle doped in sol-gel derived porous silica, the nature of coating of sol-gel derived materials on silica optical fiber surface. In addition, the chemical reactions of metal ion, nanostructured semiconductor metal oxides and nanometer sized metal particles with gas components at room temperature and high temperatures have also been investigated with fiber optic spectrometric methods. Three classes of fiber optic sensors have been developed based on the thorough investigation of sol-gel chemistry and sol-gel derived materials. The first group of fiber optic sensors uses porous silica optical fibers doped with metal ions or metal oxide as transducers for sensing trace NH{sub 3} and H{sub 2}S in high temperature gas samples. The second group of

  12. Behavior of Random Hole Optical Fibers under Gamma Ray Irradiation and Its Potential Use in Radiation Sensing Applications

    Directory of Open Access Journals (Sweden)

    Anbo Wang

    2007-05-01

    Full Text Available Effects of radiation on sensing and data transmission components are of greatinterest in many applications including homeland security, nuclear power generation, andmilitary. A new type of microstructured optical fiber (MOF called the random hole opticalfiber (RHOF has been recently developed. The RHOFs can be made in many differentforms by varying the core size and the size and extent of porosity in the cladding region.The fibers used in this study possessed an outer diameter of 110 μm and a core ofapproximately 20 μm. The fiber structure contains thousands of air holes surrounding thecore with sizes ranging from less than 100 nm to a few μm. We present the first study ofthe behavior of RHOF under gamma irradiation. We also propose, for the first time to ourknowledge, an ionizing radiation sensor system based on scintillation light from ascintillator phosphor embedded within a holey optical fiber structure. The RHOF radiationresponse was compared to normal single mode and multimode commercial fibers(germanium doped core, pure silica cladding and to those of radiation resistant fibers (puresilica core with fluorine doped cladding fibers. The comparison was done by measuringradiation-induced absorption (RIA in all fiber samples at the 1550 nm wavelength window(1545 ± 25 nm. The study was carried out under a high-intensity gamma ray field from a 60Co source (with an exposure rate of 4x104 rad/hr at an Oak Ridge National Laboratory gamma ray irradiation facility. Linear behavior, at dose values less than 106 rad, was observed in all fiber samples except in the pure silica core fluorine doped cladding fiber which showed RIA saturation at 0.01 dB. RHOF samples demonstrated low RIA (0.02 and 0.005 dB compared to standard germanium doped core pure silica cladding (SMF and MMF fibers. Results also showed the possibility of post-fabrication treatment to improve the radiation resistance of the RHOF fibers.

  13. Functionalized bioinspired microstructured optical fiber pores for applications in chemical vapor sensing

    Science.gov (United States)

    Calkins, Jacob A.

    Chemical vapor sensing for defense, homeland security, environmental, and agricultural application is a challenge, which due combined requirements of ppt sensitivity, high selectivity, and rapid response, cannot be met using conventional analytical chemistry techniques. New sensing approaches and platforms are necessary in order to make progress in this rapidly evolving field. Inspired by the functionalized nanopores on moth sensilla hairs that contribute to the high selectivity and sensitivity of this biological system, a chemical vapor sensor based on the micro to nanoscale pores in microstructured optical fibers (MOFs) was designed. This MOF based chemical vapor sensor design utilizes MOF pores functionalized with organic self-assembled monolayers (SAMs) for selectivity and separations and a gold plasmonic sensor for detection and discrimination. Thin well-controlled gold films in MOF pores are critical components for the fabrication of structured plasmonic chemical vapor sensors. Thermal decomposition of dimethyl Au(II) trifluoroacetylacetonate dissolved in near-critical CO2 was used to deposit gold island films within the MOF pores. Using a 3mercatopropyltrimethoxysilane adhesion layer, continuous gold thin films as thin as 20--30 nm were deposited within MOF pores as small as 500 nm in diameter. The gold island films proved to be SERS active and were used to detect 900 ppt 2,4 DNT vapor in high pressure nitrogen and 6 ppm benzaldehyde. MOF based waveguide Raman (WGR), which can probe the air/silica interface between a waveguiding core and surrounding pores, was developed to detect and characterize SAMs and other thin films deposited in micro to nanoscale MOF pores. MOF based WGR was used to characterize an octadecyltrichlorosilane (OTS) SAM deposited in 1.6 mum diameter pores iv to demonstrate that the SAM was well-formed, uniform along the pore length, and only a single layer. MOF based WGR was used to detect a human serum albumin monolayer deposited on the

  14. A Sensing Element Based on a Bent and Elongated Grooved Polymer Optical Fiber

    OpenAIRE

    Wen-Fu Xie; Yung-Chuan Chen; Li-Wen Chen; Wei-Hua Lu

    2012-01-01

    An experimental and numerical investigation is performed into the power loss induced in grooved polymer optical fibers (POFs) subjected to combined bending and elongation deformations. The power loss is examined as a function of both the groove depth and the bend radius. An elastic-plastic three-dimensional finite element model is constructed to simulate the deformation in the grooved region of the deformed specimens. The results indicate that the power loss increases significantly with an in...

  15. Measuring the viscosity of whole bovine lens using a fiber optic oxygen sensing system

    OpenAIRE

    Thao, Mai T.; Perez, Daniel; Dillon, James; Gaillard, Elizabeth R.

    2014-01-01

    Purpose To obtain a better understanding of oxygen and nutrient transport within the lens, the viscosity of whole lenses was investigated using a fiber optic oxygen sensor (optode). The diffusion coefficient of oxygen was calculated using the Stokes-Einstein equation at the slip boundary condition. Methods The optode was used to measure the oxygen decay signal in samples consisting of different glycerol/water solutions with known viscosities. The oxygen decay signal was fitted to a double exp...

  16. Review on Optical Fiber Sensing Technologies for Industrical Applications at the NEL-FOST

    OpenAIRE

    Yang, Minghong; Li, Sheng; Jiang, Desheng

    2014-01-01

    International audience The research on engineering experiment is a key step in translating technical development to industrial application. According to our practical experience for more than 30 years and some applications of the fire alarm system, bridge, coal and power safety ensuring system, this paper reviews on engineering technique problems in the application of fiber optic sensor and their solutions, which may provide some references for wider industrial applications.

  17. Research on corrosion detection for steel reinforced concrete structures using the fiber optical white light interferometer sensing technique

    Science.gov (United States)

    Zhao, Xuefeng; Cui, Yanjun; Wei, Heming; Kong, Xianglong; Zhang, Pinglei; Sun, Changsen

    2013-06-01

    In this paper, a novel kind of steel rebar corrosion monitoring technique for steel reinforced concrete structures is proposed, designed, and tested. The technique is based on the fiber optical white light interferometer (WLI) sensing technique. Firstly, a feasibility test was carried out using an equal-strength beam for comparison of strain sensing ability between the WLI and a fiber Bragg grating (FBG). The comparison results showed that the sensitivity of the WLI is sufficient for corrosion expansion strain monitoring. Then, two WLI corrosion sensors (WLI-CSs) were designed, fabricated, and embedded into concrete specimens to monitor expansion strain caused by steel rebar corrosion. Their performance was studied in an accelerated electrochemical corrosion test. Experimental results show that expansion strain along the fiber optical coil winding area can be detected and measured accurately by the proposed sensor. The advantages of the proposed monitoring technique allow for quantitative corrosion expansion monitoring to be executed in real time for reinforced concrete structures and with low cost.

  18. Research on corrosion detection for steel reinforced concrete structures using the fiber optical white light interferometer sensing technique

    International Nuclear Information System (INIS)

    In this paper, a novel kind of steel rebar corrosion monitoring technique for steel reinforced concrete structures is proposed, designed, and tested. The technique is based on the fiber optical white light interferometer (WLI) sensing technique. Firstly, a feasibility test was carried out using an equal-strength beam for comparison of strain sensing ability between the WLI and a fiber Bragg grating (FBG). The comparison results showed that the sensitivity of the WLI is sufficient for corrosion expansion strain monitoring. Then, two WLI corrosion sensors (WLI-CSs) were designed, fabricated, and embedded into concrete specimens to monitor expansion strain caused by steel rebar corrosion. Their performance was studied in an accelerated electrochemical corrosion test. Experimental results show that expansion strain along the fiber optical coil winding area can be detected and measured accurately by the proposed sensor. The advantages of the proposed monitoring technique allow for quantitative corrosion expansion monitoring to be executed in real time for reinforced concrete structures and with low cost. (paper)

  19. Small-diameter optical fiber and high-speed wavelength interrogator for FBG/PZT hybrid sensing system

    Science.gov (United States)

    Komatsuzaki, Shinji; Kojima, Seiji; Hongo, Akihito; Takeda, Nobuo; Sakurai, Takeo

    2007-04-01

    We have been developing a sensing system for checking the health of aircraft structures made of composite materials. In this system, lead zirconium titanate (PZT) actuators generate elastic waves that travel through the composite material and are received by embedded fiber Bragg grating (FBG) sensors. By analyzing the change in received waveforms, we can detect various kinds of damage. The frequency of the elastic waves is several hundred kHz, which is too high for a conventional optical spectrum analyzer to detect the wavelength change. Moreover, a conventional single-mode optical fiber cannot be used for an embedded FBG sensor because it is so thick that it induces defects in the composite material structure when it is embedded. We are thus developing a wavelength interrogator with an arrayed waveguide grating (AWG) that can detect the high-speed wavelength change and a small-diameter optical fiber (cladding diameter of 40µm) that does not induce defects. We use an AWG to convert the wavelength change into an output power change by using the wavelength dependency of the AWG transmittance. For this conversion, we previously used two adjacent output ports that cover the reflection spectrum of an FBG sensor. However, this requires controlling the temperature of the AWG because the ratio of the optical power change to the wavelength change is very sensitive to the relationship of the center wavelengths between an FBG sensor and the output ports of the AWG. We have now investigated the use of a denser AWG and six adjacent output ports, which covers the reflection spectrum of an FBG sensor, for detecting the elastic waves. Experimental results showed that this method can suppress the sensitivity of the power change ratio to the relationship of the center wavelengths between an FBG sensor and the output ports. Although our improved small-diameter optical fiber does not induce structural defects in the composite material when it is embedded, there is some micro or macro

  20. High-resolution temperature sensing in the Dead Sea using fiber optics

    Science.gov (United States)

    Arnon, A.; Lensky, N. G.; Selker, J. S.

    2014-02-01

    The thermal stratification of the Dead Sea was observed in high spatial and temporal resolution by means of fiber-optics temperature sensing. The aim of the research was to employ the novel high-resolution profiler in studying the dynamics of the thermal structure of the Dead Sea and the related processes including the investigation of the metalimnion fluctuations. The 18 cm resolution profiling system was placed vertically through the water column supported by a buoy 450 m from shore, from 2 m above to 53 m below the water surface (just above the local seafloor), covering the entire seasonal upper layer (the metalimnion had an average depth of ˜20 m). Temperature profiles were recorded every 5 min. The May to July 2012 data set allowed quantitative investigation of the thermal morphology dynamics, including objective definitions of key locations within the metalimnion based on the temperature depth profile and its first and second depth derivatives. Analysis of the fluctuation of the defined metalimnion locations showed strong anticorrelation to measured sea level fluctuations. The slope of the sea level versus metalimnion depth was found to be related to the density ratio of the upper layer and the underlying main water body, according to the prediction of a two-layer model. The heat content of the entire water column was calculated by integrating the temperature profiles. The vertically integrated apparent heat content was seen to vary by 50% in a few hours. These fluctuations were not correlated to the atmospheric heat fluxes, nor to the momentum transfer, but were highly correlated to the metalimnion and the sea level fluctuations (r = 0.84). The instantaneous apparent heat flux was 3 orders of magnitude larger than that delivered by radiation, with no direct correlation to the frequency of radiation and wind in the lake. This suggests that the source of the momentary heat flux is lateral advection due to internal waves (with no direct relation to the diurnal

  1. Remote optical sensing on the nanometer scale with a bowtie aperture nano-antenna on a SNOM fiber tip

    CERN Document Server

    Atie, Elie M; Eter, Ali El; Salut, Roland; Nedeljkovic, Dusan; Tannous, Tony; Baida, Fadi I; Grosjean, Thierry

    2015-01-01

    Plasmonic nano-antennas have proven the outstanding ability of sensing chemical and physical processes down to the nano-meter scale. Sensing is usually achieved within the highly confined optical fields generated resonantly by the nano-antennas, i.e. in contact to the nano-structures. In these paper, We demonstrate the sensing capability of nano-antennas to their larger scale environment, well beyond their plasmonic confinement volume, leading to the concept of 'remote' (non contact) sensing on the nano-meter scale. On the basis of a bowtie-aperture nano-antenna (BNA) integrated at the apex of a SNOM fiber tip, we introduce an ultra-compact, move-able and background-free optical nano-sensor for the remote sensing of a silicon surface (up to distance of 300 nm). Sensitivity of the BNA to its large scale environment is high enough to expect the monitoring and control of the spacing between the nano-antenna and a silicon surface with sub-nano-meter accuracy. This work paves the way towards a new class of nano-po...

  2. An air flow sensor for neonatal mechanical ventilation applications based on a novel fiber-optic sensing technique

    International Nuclear Information System (INIS)

    In this work, a simple and low-cost air flow sensor, based on a novel fiber-optic sensing technique has been developed for monitoring air flows rates supplied by a neonatal ventilator to support infants in intensive care units. The device is based on a fiber optic sensing technique allowing (a) the immunity to light intensity variations independent by measurand and (b) the reduction of typical shortcomings affecting all biomedical fields (electromagnetic interference and patient electrical safety). The sensing principle is based on the measurement of transversal displacement of an emitting fiber-optic cantilever due to action of air flow acting on it; the fiber tip displacement is measured by means of a photodiode linear array, placed in front of the entrance face of the emitting optical fiber in order to detect its light intensity profile. As the measurement system is based on a detection of the illumination pattern, and not on an intensity modulation technique, it results less sensitive to light intensity fluctuation independent by measurand than intensity-based sensors. The considered technique is here adopted in order to develop two different configurations for an air flow sensor suitable for the measurement of air flow rates typically occurring during mechanical ventilation of newborns: a mono-directional and a bi-directional transducer have been proposed. A mathematical model for the air flow sensor is here proposed and a static calibration of two different arrangements has been performed: a measurement range up to 3.00 × 10−4 m3/s (18.0 l/min) for the mono-directional sensor and a measurement range of ±3.00 × 10−4 m3/s (±18.0 l/min) for the bi-directional sensor are experimentally evaluated, according to the air flow rates normally encountered during tidal breathing of infants with a mass lower than 10 kg. Experimental data of static calibration result in accordance with the proposed theoretical model: for the mono-directional configuration, the

  3. An air flow sensor for neonatal mechanical ventilation applications based on a novel fiber-optic sensing technique

    Science.gov (United States)

    Battista, L.; Sciuto, S. A.; Scorza, A.

    2013-03-01

    In this work, a simple and low-cost air flow sensor, based on a novel fiber-optic sensing technique has been developed for monitoring air flows rates supplied by a neonatal ventilator to support infants in intensive care units. The device is based on a fiber optic sensing technique allowing (a) the immunity to light intensity variations independent by measurand and (b) the reduction of typical shortcomings affecting all biomedical fields (electromagnetic interference and patient electrical safety). The sensing principle is based on the measurement of transversal displacement of an emitting fiber-optic cantilever due to action of air flow acting on it; the fiber tip displacement is measured by means of a photodiode linear array, placed in front of the entrance face of the emitting optical fiber in order to detect its light intensity profile. As the measurement system is based on a detection of the illumination pattern, and not on an intensity modulation technique, it results less sensitive to light intensity fluctuation independent by measurand than intensity-based sensors. The considered technique is here adopted in order to develop two different configurations for an air flow sensor suitable for the measurement of air flow rates typically occurring during mechanical ventilation of newborns: a mono-directional and a bi-directional transducer have been proposed. A mathematical model for the air flow sensor is here proposed and a static calibration of two different arrangements has been performed: a measurement range up to 3.00 × 10-4 m3/s (18.0 l/min) for the mono-directional sensor and a measurement range of ±3.00 × 10-4 m3/s (±18.0 l/min) for the bi-directional sensor are experimentally evaluated, according to the air flow rates normally encountered during tidal breathing of infants with a mass lower than 10 kg. Experimental data of static calibration result in accordance with the proposed theoretical model: for the mono-directional configuration, the

  4. An air flow sensor for neonatal mechanical ventilation applications based on a novel fiber-optic sensing technique

    Energy Technology Data Exchange (ETDEWEB)

    Battista, L.; Sciuto, S. A.; Scorza, A. [Department of Engineering, ROMA TRE University, via della Vasca Navale 79/81, Rome (Italy)

    2013-03-15

    In this work, a simple and low-cost air flow sensor, based on a novel fiber-optic sensing technique has been developed for monitoring air flows rates supplied by a neonatal ventilator to support infants in intensive care units. The device is based on a fiber optic sensing technique allowing (a) the immunity to light intensity variations independent by measurand and (b) the reduction of typical shortcomings affecting all biomedical fields (electromagnetic interference and patient electrical safety). The sensing principle is based on the measurement of transversal displacement of an emitting fiber-optic cantilever due to action of air flow acting on it; the fiber tip displacement is measured by means of a photodiode linear array, placed in front of the entrance face of the emitting optical fiber in order to detect its light intensity profile. As the measurement system is based on a detection of the illumination pattern, and not on an intensity modulation technique, it results less sensitive to light intensity fluctuation independent by measurand than intensity-based sensors. The considered technique is here adopted in order to develop two different configurations for an air flow sensor suitable for the measurement of air flow rates typically occurring during mechanical ventilation of newborns: a mono-directional and a bi-directional transducer have been proposed. A mathematical model for the air flow sensor is here proposed and a static calibration of two different arrangements has been performed: a measurement range up to 3.00 Multiplication-Sign 10{sup -4} m{sup 3}/s (18.0 l/min) for the mono-directional sensor and a measurement range of {+-}3.00 Multiplication-Sign 10{sup -4} m{sup 3}/s ({+-}18.0 l/min) for the bi-directional sensor are experimentally evaluated, according to the air flow rates normally encountered during tidal breathing of infants with a mass lower than 10 kg. Experimental data of static calibration result in accordance with the proposed

  5. An air flow sensor for neonatal mechanical ventilation applications based on a novel fiber-optic sensing technique.

    Science.gov (United States)

    Battista, L; Sciuto, S A; Scorza, A

    2013-03-01

    In this work, a simple and low-cost air flow sensor, based on a novel fiber-optic sensing technique has been developed for monitoring air flows rates supplied by a neonatal ventilator to support infants in intensive care units. The device is based on a fiber optic sensing technique allowing (a) the immunity to light intensity variations independent by measurand and (b) the reduction of typical shortcomings affecting all biomedical fields (electromagnetic interference and patient electrical safety). The sensing principle is based on the measurement of transversal displacement of an emitting fiber-optic cantilever due to action of air flow acting on it; the fiber tip displacement is measured by means of a photodiode linear array, placed in front of the entrance face of the emitting optical fiber in order to detect its light intensity profile. As the measurement system is based on a detection of the illumination pattern, and not on an intensity modulation technique, it results less sensitive to light intensity fluctuation independent by measurand than intensity-based sensors. The considered technique is here adopted in order to develop two different configurations for an air flow sensor suitable for the measurement of air flow rates typically occurring during mechanical ventilation of newborns: a mono-directional and a bi-directional transducer have been proposed. A mathematical model for the air flow sensor is here proposed and a static calibration of two different arrangements has been performed: a measurement range up to 3.00 × 10(-4) m(3)∕s (18.0 l∕min) for the mono-directional sensor and a measurement range of ±3.00 × 10(-4) m(3)∕s (±18.0 l∕min) for the bi-directional sensor are experimentally evaluated, according to the air flow rates normally encountered during tidal breathing of infants with a mass lower than 10 kg. Experimental data of static calibration result in accordance with the proposed theoretical model: for the mono

  6. An air flow sensor for neonatal mechanical ventilation applications based on a novel fiber-optic sensing technique.

    Science.gov (United States)

    Battista, L; Sciuto, S A; Scorza, A

    2013-03-01

    In this work, a simple and low-cost air flow sensor, based on a novel fiber-optic sensing technique has been developed for monitoring air flows rates supplied by a neonatal ventilator to support infants in intensive care units. The device is based on a fiber optic sensing technique allowing (a) the immunity to light intensity variations independent by measurand and (b) the reduction of typical shortcomings affecting all biomedical fields (electromagnetic interference and patient electrical safety). The sensing principle is based on the measurement of transversal displacement of an emitting fiber-optic cantilever due to action of air flow acting on it; the fiber tip displacement is measured by means of a photodiode linear array, placed in front of the entrance face of the emitting optical fiber in order to detect its light intensity profile. As the measurement system is based on a detection of the illumination pattern, and not on an intensity modulation technique, it results less sensitive to light intensity fluctuation independent by measurand than intensity-based sensors. The considered technique is here adopted in order to develop two different configurations for an air flow sensor suitable for the measurement of air flow rates typically occurring during mechanical ventilation of newborns: a mono-directional and a bi-directional transducer have been proposed. A mathematical model for the air flow sensor is here proposed and a static calibration of two different arrangements has been performed: a measurement range up to 3.00 × 10(-4) m(3)∕s (18.0 l∕min) for the mono-directional sensor and a measurement range of ±3.00 × 10(-4) m(3)∕s (±18.0 l∕min) for the bi-directional sensor are experimentally evaluated, according to the air flow rates normally encountered during tidal breathing of infants with a mass lower than 10 kg. Experimental data of static calibration result in accordance with the proposed theoretical model: for the mono

  7. Interferometric Fiber Optic Sensors

    Directory of Open Access Journals (Sweden)

    Hae Young Choi

    2012-02-01

    Full Text Available Fiber optic interferometers to sense various physical parameters including temperature, strain, pressure, and refractive index have been widely investigated. They can be categorized into four types: Fabry-Perot, Mach-Zehnder, Michelson, and Sagnac. In this paper, each type of interferometric sensor is reviewed in terms of operating principles, fabrication methods, and application fields. Some specific examples of recently reported interferometeric sensor technologies are presented in detail to show their large potential in practical applications. Some of the simple to fabricate but exceedingly effective Fabry-Perot interferometers, implemented in both extrinsic and intrinsic structures, are discussed. Also, a wide variety of Mach-Zehnder and Michelson interferometric sensors based on photonic crystal fibers are introduced along with their remarkable sensing performances. Finally, the simultaneous multi-parameter sensing capability of a pair of long period fiber grating (LPG is presented in two types of structures; one is the Mach-Zehnder interferometer formed in a double cladding fiber and the other is the highly sensitive Sagnac interferometer cascaded with an LPG pair.

  8. Industrial Qualification Process for Optical Fibers Distributed Strain and Temperature Sensing in Nuclear Waste Repositories

    Directory of Open Access Journals (Sweden)

    S. Delepine-Lesoille

    2012-01-01

    Full Text Available Temperature and strain monitoring will be implemented in the envisioned French geological repository for high- and intermediate-level long-lived nuclear wastes. Raman and Brillouin scatterings in optical fibers are efficient industrial methods to provide distributed temperature and strain measurements. Gamma radiation and hydrogen release from nuclear wastes can however affect the measurements. An industrial qualification process is successfully proposed and implemented. Induced measurement uncertainties and their physical origins are quantified. The optical fiber composition influence is assessed. Based on radiation-hard fibers and carbon-primary coatings, we showed that the proposed system can provide accurate temperature and strain measurements up to 0.5 MGy and 100% hydrogen concentration in the atmosphere, over 200 m distance range. The selected system was successfully implemented in the Andra underground laboratory, in one-to-one scale mockup of future cells, into concrete liners. We demonstrated the efficiency of simultaneous Raman and Brillouin scattering measurements to provide both strain and temperature distributed measurements. We showed that 1.3 μm working wavelength is in favor of hazardous environment monitoring.

  9. Magnetic resonance imaging-guided interstitial application of laser aided by fiber optic temperature sensing

    Science.gov (United States)

    Farahani, Keyvan; Shellock, Frank G.; Lufkin, Robert B.; Castro, Dan J.

    1992-04-01

    In order to further understand signal variations observed on magnetic resonance imaging scans of interstitial laser heating, a commercial multichannel fluoroptic thermometer, equipped with fiber optic sensors, was employed in conjunction with the laser/MRI phototherapy system. Three calibrated fiber optic sensors of the thermometer were used to measure temperature changes in ex-vivo sheep's brain at various distances directly across from the beam of a Nd:YAG laser emitted from a bare fiber. Laser was operated at 5 W for 220 sec. Temperature was measured every 10 seconds and MR images were acquired during and after laser irradiation until temperature in all probes returned to the equilibrium level of prelaser irradiation. Image contrast analysis of the heated region showed that MRI signal variations, during heating and cooling periods, correlated well with the changes in temperature. It is concluded that direct thermometry of MRI-monitored laser application will aid in understanding the effects of high focal heating on the MRI signal.

  10. Fiber Singular Optics

    OpenAIRE

    A. V. Volyar

    2002-01-01

    The present review is devoted to the optical vortex behavior both in free space and optical fibers. The processes of the vortex transformations in perturbed optical fibers are analyzed on the base of the operator of the spin – orbit interaction in order to forecast the possible ways of manufacturing the vortex preserving fibers and their applications in supersensitive optical devices.

  11. System and method for determination of the reflection wavelength of multiple low-reflectivity bragg gratings in a sensing optical fiber

    Science.gov (United States)

    Moore, Jason P. (Inventor)

    2009-01-01

    A system and method for determining a reflection wavelength of multiple Bragg gratings in a sensing optical fiber comprise: (1) a source laser; (2) an optical detector configured to detect a reflected signal from the sensing optical fiber; (3) a plurality of frequency generators configured to generate a signal having a frequency corresponding to an interferometer frequency of a different one of the plurality of Bragg gratings; (4) a plurality of demodulation elements, each demodulation element configured to combine the signal produced by a different one of the plurality of frequency generators with the detected signal from the sensing optical fiber; (5) a plurality of peak detectors, each peak detector configured to detect a peak of the combined signal from a different one of the demodulation elements; and (6) a laser wavenumber detection element configured to determine a wavenumber of the laser when any of the peak detectors detects a peak.

  12. Rare Earth Doped Optical Fibers for Temperature Sensing Utilizing Ratio-Based Technology

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    A new and practical fluorescence temperature detecting system based on fluorescence intensity ratio was proposed. The background theory of fluorescence intensity-ratio method was presented simply. And the characters of rare earth doped samples were detailed. The erbium-doped fiber was chosen as the sensing element. The energy levels of 2H11/2 and 4S3/2 are responsible for the emission of radiation at approximately 530 and 555 nm. The erbium-doped (960 ppm) fiber of length 20 cm and core diameter 3.2 μm was used as the sensing part. A silica photodiode transfers the fluorescence signal to electric signal, then the ratio of the average of the two different signals was calculated by the computer and the temperature was obtained. The ratio R of the intensity resulting from the transition between the two levels varies proportionly with temperature interval from 293 K to 373 K. The sensitivity of the sensor is approximately 0.05 K-1.

  13. Optical Fiber Distributed Sensing Structural Health Monitoring (SHM) Strain Measurements Taken During Cryotank Y-Joint Test Article Load Cycling at Liquid Helium Temperatures

    Science.gov (United States)

    Allison, Sidney G.; Prosser, William H.; Hare, David A.; Moore, Thomas C.; Kenner, Winfred S.

    2007-01-01

    This paper outlines cryogenic Y-joint testing at Langley Research Center (LaRC) to validate the performance of optical fiber Bragg grating strain sensors for measuring strain at liquid helium temperature (-240 C). This testing also verified survivability of fiber sensors after experiencing 10 thermal cool-down, warm-up cycles and 400 limit load cycles. Graphite composite skins bonded to a honeycomb substrate in a sandwich configuration comprised the Y-joint specimens. To enable SHM of composite cryotanks for consideration to future spacecraft, a light-weight, durable monitoring technology is needed. The fiber optic distributed Bragg grating strain sensing system developed at LaRC is a viable substitute for conventional strain gauges which are not practical for SHM. This distributed sensing technology uses an Optical Frequency Domain Reflectometer (OFDR). This measurement approach has the advantage that it can measure hundreds of Bragg grating sensors per fiber and the sensors are all written at one frequency, greatly simplifying fiber manufacturing. Fiber optic strain measurements compared well to conventional strain gauge measurements obtained during these tests. These results demonstrated a high potential for a successful implementation of a SHM system incorporating LaRC's fiber optic sensing system on the composite cryotank and other future cryogenic applications.

  14. Optical fiber distributed sensing structural health monitoring (SHM) strain measurements taken during cryotank Y-joint test article load cycling at liquid helium temperatures

    Science.gov (United States)

    Allison, Sidney G.; Prosser, William H.; Hare, David A.; Moore, Thomas C.; Kenner, W. S.

    2007-09-01

    This paper outlines cryogenic Y-joint testing at Langley Research Center (LaRC) to validate the performance of optical fiber Bragg grating strain sensors for measuring strain at liquid helium temperature (-240°C). This testing also verified survivability of fiber sensors after experiencing 10 thermal cool-down, warm-up cycles and 400 limit load cycles. Graphite composite skins bonded to a honeycomb substrate in a sandwich configuration comprised the Y-joint specimens. To enable SHM of composite cryotanks for consideration to future spacecraft, a light-weight, durable monitoring technology is needed. The fiber optic distributed Bragg grating strain sensing system developed at LaRC is a viable substitute for conventional strain gauges which are not practical for SHM. This distributed sensing technology uses an Optical Frequency Domain Reflectometer (OFDR). This measurement approach has the advantage that it can measure hundreds of Bragg grating sensors per fiber and the sensors are all written at one frequency, greatly simplifying fiber manufacturing. Fiber optic strain measurements compared well to conventional strain gauge measurements obtained during these tests. These results demonstrated a high potential for a successful implementation of a SHM system incorporating LaRC's fiber optic sensing system on the composite cryotank and other future cryogenic applications.

  15. Application of Fiber Optic Instrumentation

    Science.gov (United States)

    Richards, William Lance; Parker, Allen R., Jr.; Ko, William L.; Piazza, Anthony; Chan, Patrick

    2012-01-01

    Fiber optic sensing technology has emerged in recent years offering tremendous advantages over conventional aircraft instrumentation systems. The advantages of fiber optic sensors over their conventional counterparts are well established; they are lighter, smaller, and can provide enormous numbers of measurements at a fraction of the total sensor weight. After a brief overview of conventional and fiber-optic sensing technology, this paper presents an overview of the research that has been conducted at NASA Dryden Flight Research Center in recent years to advance this promising new technology. Research and development areas include system and algorithm development, sensor characterization and attachment, and real-time experimentally-derived parameter monitoring for ground- and flight-based applications. The vision of fiber optic smart structure technology is presented and its potential benefits to aerospace vehicles throughout the lifecycle, from preliminary design to final retirement, are presented.

  16. Remote optical sensing on the nanometer scale with a bowtie aperture nano-antenna on a fiber tip of scanning near-field optical microscopy

    International Nuclear Information System (INIS)

    Plasmonic nano-antennas have proven the outstanding ability of sensing chemical and physical processes down to the nanometer scale. Sensing is usually achieved within the highly confined optical fields generated resonantly by the nano-antennas, i.e., in contact to the nanostructures. In this paper, we demonstrate the sensing capability of nano-antennas to their larger scale environment, well beyond their plasmonic confinement volume, leading to the concept of “remote” (non contact) sensing on the nanometer scale. On the basis of a bowtie-aperture nano-antenna (BNA) integrated at the apex of a SNOM (Scanning Near-field Optical Microscopy) fiber tip, we introduce an ultra-compact, moveable, and background-free optical nanosensor for the remote sensing of a silicon surface (up to distance of 300 nm). Sensitivity of the BNA to its large scale environment is high enough to expect the monitoring and control of the spacing between the nano-antenna and a silicon surface with sub-nanometer accuracy. This work paves the way towards an alternative class of nanopositioning techniques, based on the monitoring of diffraction-free plasmon resonance, that are alternative to nanomechanical and diffraction-limited optical interference-based devices

  17. Remote optical sensing on the nanometer scale with a bowtie aperture nano-antenna on a fiber tip of scanning near-field optical microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Atie, Elie M.; Xie, Zhihua; El Eter, Ali; Salut, Roland; Baida, Fadi I.; Grosjean, Thierry, E-mail: thierry.grosjean@univ-fcomte.fr [Institut FEMTO-ST, UMR CNRS 6174, Université de Franche-Comté, Département d' Optique P.M. Duffieux, 15B avenue des Montboucons, 25030 Besançon cedex (France); Nedeljkovic, Dusan [Lovalite s.a.s., 7 rue Xavier Marmier, 25000 Besançon (France); Tannous, Tony [Department of Physics, University of Balamand, P.O. Box 100 Tripoli (Lebanon)

    2015-04-13

    Plasmonic nano-antennas have proven the outstanding ability of sensing chemical and physical processes down to the nanometer scale. Sensing is usually achieved within the highly confined optical fields generated resonantly by the nano-antennas, i.e., in contact to the nanostructures. In this paper, we demonstrate the sensing capability of nano-antennas to their larger scale environment, well beyond their plasmonic confinement volume, leading to the concept of “remote” (non contact) sensing on the nanometer scale. On the basis of a bowtie-aperture nano-antenna (BNA) integrated at the apex of a SNOM (Scanning Near-field Optical Microscopy) fiber tip, we introduce an ultra-compact, moveable, and background-free optical nanosensor for the remote sensing of a silicon surface (up to distance of 300 nm). Sensitivity of the BNA to its large scale environment is high enough to expect the monitoring and control of the spacing between the nano-antenna and a silicon surface with sub-nanometer accuracy. This work paves the way towards an alternative class of nanopositioning techniques, based on the monitoring of diffraction-free plasmon resonance, that are alternative to nanomechanical and diffraction-limited optical interference-based devices.

  18. Optical fiber-based devices and applications

    Institute of Scientific and Technical Information of China (English)

    Perry Ping SHUM; Jonathan C. KNIGHT; Jesper LAEGSGAARD; Dora Juan Juan HU

    2010-01-01

    @@ Optical fiber technology has undergone tremendous growth and development over the last 40 years. Optical fibers constitute an information super highway and are vital in enabling the proliferating use of the Internet. Optical fiber is also an enabling technology which can find applications in sensing, imaging, biomedical, machining, etc. There have been a few milestones in the advancement of optical fiber technology. Firstly, the invention and development of the laser some 50 years ago made optical communications possible. Secondly, the fabrication of low-loss optical fibers has been a key element to the success of optical communication.

  19. Fiber Optics Technology.

    Science.gov (United States)

    Burns, William E.

    1986-01-01

    Discusses various applications of fiber optics technology: information systems, industrial robots, medicine, television, transportation, and training. Types of jobs that will be available with fiber optics training (such as electricians and telephone cable installers and splicers) are examined. (CT)

  20. Fiber optic chemical sensors

    Science.gov (United States)

    Jung, Chuck C.; McCrae, David A.; Saaski, Elric W.

    1998-09-01

    This paper provides a broad overview of the field of fiber optic chemical sensors. Several different types of fiber optic sensors and probes are described, and references are cited for each category discussed.

  1. Deformation monitoring of long GFRP bar soil nails using distributed optical fiber sensing technology

    Science.gov (United States)

    Hong, Cheng-Yu; Yin, Jian-Hua; Zhang, Yi-Fan

    2016-08-01

    This paper introduces a new measurement technology characterized by the use of distributed optical fiber sensor (OFSs) for monitoring the strain and temperature distribution of glass fiber reinforced polymer (GFRP) bar soil nails. Laboratory tension tests were used to verify the performance of the OFSs for strain and elongation monitoring of GFRP bars. The measured strain data from the OFSs agree fairly well with the data from strain gauges in calibration tests. In field monitoring tests, two GFRP bar soil nails were installed with OFSs and pure strain data were used to evaluate the performance of GFRP bar soil nails after installation in a practical slope. Both the strain and temperature distributions measured by the OFSs show symmetric features. A Brillouin optical time domain analysis (BOTDA) measurement unit was used to collect temperature and strain data from the OFSs. The monitoring data show that the accumulative elongations of the soil nails present a continuous but limited increase with time in the field. The achieved maximum elongations of soil nails were less than 0.4 mm. The measured axial elongations of the soil nails were also validated using corresponding data predicted by a theoretical model. The test results from the present study prove that BOTDA based sensors are useful for the investigation of the average strain distributions (or elongation) of long soil nails and these data are useful for the estimation of the potential sliding surface of the entire soil nailing system.

  2. Lamb wave-based damage detection of composite shells using high-speed fiber-optic sensing

    Science.gov (United States)

    Sotoudeh, Vahid; Black, Richard J.; Moslehi, Behzad; Qiao, Pizhong

    2014-04-01

    A Lamb wave-based damage identification method called damage imaging method for composite shells is presented. A damage index (DI) is generated from the delay matrix of the Lamb wave response signals, and it is used to indicate the location and approximate area of the damage. A piezoelectric actuator is employed to generate the Lamb waves that are subsequently captured by a fiber Bragg grating (FBG) sensor element array multiplexed in a single fiber connected to a high-speed fiber-optic sensor system. The high-speed sensing is enabled by an innovative parallel-architecture optical interrogation system. The viability of this method is demonstrated by analyzing the numerical and experimental Lamb wave response signals from laminated composite shells. The technique only requires the response signals from the plate after damage, and it is capable of performing near real-time damage identification. This study sheds some light on the application of a Lamb wave-based damage detection algorithm for curved plate/shell-type structures by using the relatively low frequency (around 100 kHz) Lamb wave response and the high-speed FBG sensor system.

  3. Specialty optical fibers: revisited

    Science.gov (United States)

    Romaniuk, Ryszard S.

    2011-10-01

    The paper contains description of chosen aspects of analysis and design of tailored optical fibers. By specialty optical fibers we understand here the fibers which have complex construction and which serve for the functional processing of optical signal rather than long distance transmission. Thus, they are called also instrumentation optical fibers. The following issues are considered: transmission properties, transformation of optical signal, fiber characteristics, fiber susceptibility to external reactions. The technology of tailored optical fibers offers a wider choice of the design tools for the fiber itself, and then various devices made from these fiber, than classical technology of communication optical fibers. The consequence is different fiber properties, nonstandard dimensions and different metrological problems. The price to be paid for wider design possibilities are bigger optical losses of these fibers and weaker mechanical properties, and worse chemical stability. These fibers find their applications outside the field of telecommunications. The applications of instrumentation optical fibers combine other techniques apart from the photonics ones like: electronic, chemical and mechatronic.

  4. Fiber optic chemical sensors on Mars

    Energy Technology Data Exchange (ETDEWEB)

    Butler, M.A.; Ricco, A.J. [Sandia National Labs., Albuquerque, NM (United States); Grunthaner, F.J.; Lane, A.L. [Jet Propulsion Lab., Pasadena, CA (United States)

    1993-12-31

    A fiber optic chemical sensing instrument is described that will measure the reactivity of the martian soil and atmosphere. The self- contained instrument monitors reflectivity changes in reactive thin films caused by chemical reactions with the martian soil or atmosphere. Data from over 200 separate thin-film-coated optical fibers are recorded simultaneously. This fiber optic sensing technology has many advantages for planetary exploration and monitoring applications on manned spacecraft, in addition to many practical terrestrial uses.

  5. Crossed Optical Fiber Sensor Arrays for High-Spatial-Resolution Sensing: Application to Dissolved Oxygen Concentration Measurements

    OpenAIRE

    M. Veronica Rigo; Peter Geissinger

    2012-01-01

    Optical fiber sensors using luminescent probes located along an optical fiber in the cladding of this fiber are of great interest for monitoring physical and chemical properties in their environment. The interrogation of a luminophore with a short laser pulse propagating through the fiber core allows for the measurement of the location of these luminophores. To increase the spatial resolution of such a measurements and to measure multiple analytes and properties in a confined space, a crossed...

  6. Gold-reinforced silver nanoprisms on optical fiber tapers—A new base for high precision sensing

    Science.gov (United States)

    Wieduwilt, T.; Zeisberger, M.; Thiele, M.; Doherty, B.; Chemnitz, M.; Csaki, A.; Fritzsche, W.; Schmidt, M. A.

    2016-09-01

    Due to their unique optical properties, metallic nanoparticles offer a great potential for important applications such as disease diagnostics, demanding highly integrated device solutions with large refractive index sensitivity. Here we introduce a new type of monolithic localized surface plasmon resonance (LSPR) waveguide sensor based on the combination of an adiabatic optical fiber taper and a high-density ensemble of immobilized gold-reinforced silver nanoprisms, showing sensitivities up to 900 nm/RIU. This result represents the highest value reported so far for a fiber optic sensor using the LSPR effect and exceeds the corresponding value of the bulk solution by a factor of two. The plasmonic resonance is efficiently excited via the evanescent field of the propagating taper mode, leading to pronounced transmission dips (-20 dB). The particle density is so high (approx. 210 particle/μm2) that neighboring particles are able to interact, boosting the sensitivity, as confirmed by qualitative infinite element simulations. We additionally introduce a qualitative model explaining the interaction of plasmon resonance and taper mode on the basis of light extinction, allowing extracting key parameters of the plasmonic taper (e.g., modal attenuation). Due to the monolithic design and the extremely high sensitivity we expect our finding to be relevant in fields such as biomedicine, disease diagnostics, and molecular sensing.

  7. Vibration monitoring of a helicopter blade model using the optical fiber distributed strain sensing technique.

    Science.gov (United States)

    Wada, Daichi; Igawa, Hirotaka; Kasai, Tokio

    2016-09-01

    We demonstrate a dynamic distributed monitoring technique using a long-length fiber Bragg grating (FBG) interrogated by optical frequency domain reflectometry (OFDR) that measures strain at a speed of 150 Hz, spatial resolution of 1 mm, and measurement range of 20 m. A 5 m FBG is bonded to a 5.5 m helicopter blade model, and vibration is applied by the step relaxation method. The time domain responses of the strain distributions are measured, and the blade deflections are calculated based on the strain distributions. Frequency response functions are obtained using the time domain responses of the calculated deflection induced by the preload release, and the modal parameters are retrieved. Experimental results demonstrated the dynamic monitoring performances and the applicability to the modal analysis of the OFDR-FBG technique. PMID:27607270

  8. Monitoring of Thermal Protection Systems Using Robust Self-Organizing Optical Fiber Sensing Networks

    Science.gov (United States)

    Richards, Lance

    2013-01-01

    The general aim of this work is to develop and demonstrate a prototype structural health monitoring system for thermal protection systems that incorporates piezoelectric acoustic emission (AE) sensors to detect the occurrence and location of damaging impacts, and an optical fiber Bragg grating (FBG) sensor network to evaluate the effect of detected damage on the thermal conductivity of the TPS material. Following detection of an impact, the TPS would be exposed to a heat source, possibly the sun, and the temperature distribution on the inner surface in the vicinity of the impact measured by the FBG network. A similar procedure could also be carried out as a screening test immediately prior to re-entry. The implications of any detected anomalies in the measured temperature distribution will be evaluated for their significance in relation to the performance of the TPS during re-entry. Such a robust TPS health monitoring system would ensure overall crew safety throughout the mission, especially during reentry

  9. Detection of plasma equilibrium shifts with fiber optic sensing of image currents

    International Nuclear Information System (INIS)

    The radial equilibrium position of Reverse Field Pinch experiments is determined by the j x B force on the plasma. The current density is that of the toroidal plasma current and the B field is the vertical magnetic field which is present in the plasma. This magnetic field is the result of several components. The main field, generated by the toroidal current windings, is corrected by adjustable trim windings to achieve a desired equilibrium position. There is an additional component to the field due to induced image currents in the close fitting conducting shell which encircles the plasma. These currents vary in time due to the finite L/R time of the conducting shell. It is the object of this paper to investigate the possibility of measuring these shell currents accurately using fiber optics so as to provide an analog signal to the equilibrium feedback circuit. 7 refs., 7 figs

  10. Multipoint Pressure and Temperature Sensing Fiber Optic Cable for Monitoring CO2 Sequestration

    Energy Technology Data Exchange (ETDEWEB)

    Challener, William [General Electric Company, Niskayuna, NY (United States)

    2015-02-10

    This report describes the work completed on contract DE-FE0010116. The goal of this two year project was to develop and demonstrate in the laboratory a highly accurate multi-point pressure measurement fiber optic cable based on MEMS pressure sensors suitable for downhole deployment in a CO2 sequestration well. The sensor interrogator was also to be demonstrated in a remote monitoring system and environmental testing was to be completed to indicate its downhole survivability over a lengthy period of time (e.g., 20 years). An interrogator system based on a pulsed laser excitation was shown to be capable of multiple (potentially 100+) simultaneous sensor measurements. Two sensors packages were completed and spliced in a cable onto the same fiber and measured. One sensor package was subsequently measured at high temperatures and pressures in supercritical CO2, while the other package was measured prior and after being subjected to high torque stresses to mimic downhole deployment. The environmental and stress tests indicated areas in which the package design should be further improved.

  11. Multipoint Pressure and Temperature Sensing Fiber Optic Cable for Monitoring CO2 Sequestration

    Energy Technology Data Exchange (ETDEWEB)

    Challener, William

    2014-12-31

    This report describes the work completed on contract DE-FE0010116. The goal of this two year project was to develop and demonstrate in the laboratory a highly accurate multi-point pressure measurement fiber optic cable based on MEMS pressure sensors suitable for downhole deployment in a CO2 sequestration well. The sensor interrogator was also to be demonstrated in a remote monitoring system and environmental testing was to be completed to indicate its downhole survivability over a lengthy period of time (e.g., 20 years). An interrogator system based on a pulsed laser excitation was shown to be capable of multiple (potentially 100+) simultaneous sensor measurements. Two sensors packages were completed and spliced in a cable onto the same fiber and measured. One sensor package was subsequently measured at high temperatures and pressures in supercritical CO2, while the other package was measured prior and after being subjected to high torque stresses to mimic downhole deployment. The environmental and stress tests indicated areas in which the package design should be further improved.

  12. Sapphire ball lensed fiber probe for common-path optical coherence tomography in ocular imaging and sensing

    Science.gov (United States)

    Zhao, Mingtao; Huang, Yong; Kang, Jin U.

    2013-03-01

    We describe a novel common-path optical coherence tomography (CP-OCT) fiber probe design using a sapphire ball lens for cross-sectional imaging and sensing in retina vitrectomy surgery. Single mode Gaussian beam (TEM00) simulation was used to optimize lateral resolution and working distance (WD) of the common-path probe. A theoretical sensitivity model for CP-OCT was prosed to assess its optimal performance based an unbalanced photodetector configuration. Two probe designs with working distances (WD) 415μm and 1221μm and lateral resolution 11μm and 18μm, respectively were implemented with sensitivity up to 88dB. The designs are also fully compatible with conventional Michelson interferometer based OCT configurations. The reference plane of the probe, located at the distal beam exit interface of the single mode fiber (SMF), was encased within a 25-gauge hypodermic needle by the sapphire ball lens facilitates its applications in bloody and harsh environments. The performances of the fiber probe with 11μm of lateral resolution and 19μm of axial resolution were demonstrated by cross-sectional imaging of a cow cornea and retina in vitro with a 1310nm swept source OCT system. This probe was also attached to a piezoelectric motor for active compensation of physiological tremor for handheld retinal surgical tools.

  13. Fiber optics engineering

    CERN Document Server

    Azadeh, Mohammad

    2009-01-01

    Covering fiber optics from an engineering perspective, this text emphasizes data conversion between electrical and optical domains. Techniques to improve the fidelity of this conversion (from electrical to optical domain, and vice versa) are also covered.

  14. Measuring centimeter-resolution air temperature profiles above land and water using fiber-optic Distributed Temperature Sensing

    Science.gov (United States)

    Sigmund, Armin; Pfister, Lena; Olesch, Johannes; Thomas, Christoph K.

    2016-04-01

    The precise determination of near-surface air temperature profiles is of special importance for the characterization of airflows (e.g. cold air) and the quantification of sensible heat fluxes according to the flux-gradient similarity approach. In contrast to conventional multi-sensor techniques, measuring temperature profiles using fiber-optic Distributed Temperature Sensing (DTS) provides thousands of measurements referenced to a single calibration standard at much reduced costs. The aim of this work was to enhance the vertical resolution of Raman scatter DTS measurements up to the centimeter-scale using a novel approach for atmospheric applications: the optical fiber was helically coiled around a meshed fabric. In addition to testing the new fiber geometry, we quantified the measurement uncertainty and demonstrated the benefits of the enhanced-resolution profiles. The fiber-optic cable was coiled around a hollow column consisting of white reinforcing fabric supported by plexiglass rings every meter. Data from two columns of this type were collected for 47 days to measure air temperature vertically over 3.0 and 5.1 m over a gently inclined meadow and over and in a small lake, respectively. Both profiles had a vertical resolution of 1 cm in the lower section near the surface and 5 cm in the upper section with an along-fiber instrument-specific averaging of 1.0 m and a temporal resolution of 30 s. Measurement uncertainties, especially from conduction between reinforcing fabric and fiber-optic cable, were estimated by modeling the fiber temperature via a detailed energy balance approach. Air temperature, wind velocity and radiation components were needed as input data and measured separately. The temperature profiles revealed valuable details, especially in the lowest 1 m above surface. This was best demonstrated for nighttime observations when artefacts due to solar heating did not occur. For example, the dynamics of a cold air layer was detected in a clear night

  15. The Fiber Optic Connection.

    Science.gov (United States)

    Reese, Susan

    2003-01-01

    Describes the fiber optics programs at the Career and Technical Center in Berlin, Pennsylvania and the Charles S. Monroe Technology Center in Loudoun County, Virginia. Discusses the involvement of the Fiber Optic Association with education, research and development, manufacturing, sales, distribution, installation, and maintenance of fiber optic…

  16. Optical Remote Sensing Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — The Optical Remote Sensing Laboratory deploys rugged, cutting-edge electro-optical instrumentation for the collection of various event signatures, with expertise in...

  17. Statistical mapping of zones of focused groundwater/surface-water exchange using fiber-optic distributed temperature sensing

    Science.gov (United States)

    Mwakanyamale, Kisa; Day-Lewis, Frederick D.; Slater, Lee D.

    2013-01-01

    Fiber-optic distributed temperature sensing (FO-DTS) increasingly is used to map zones of focused groundwater/surface-water exchange (GWSWE). Previous studies of GWSWE using FO-DTS involved identification of zones of focused GWSWE based on arbitrary cutoffs of FO-DTS time-series statistics (e.g., variance, cross-correlation between temperature and stage, or spectral power). New approaches are needed to extract more quantitative information from large, complex FO-DTS data sets while concurrently providing an assessment of uncertainty associated with mapping zones of focused GSWSE. Toward this end, we present a strategy combining discriminant analysis (DA) and spectral analysis (SA). We demonstrate the approach using field experimental data from a reach of the Columbia River adjacent to the Hanford 300 Area site. Results of the combined SA/DA approach are shown to be superior to previous results from qualitative interpretation of FO-DTS spectra alone.

  18. An Efficient Wavelength variation approach for Bend Sensing in Single mode-Multimode-Single mode Optical Fiber Sensors

    Directory of Open Access Journals (Sweden)

    Abdul Samee Khan

    2012-09-01

    Full Text Available Several aspects of the SMS edge filters have been investigated, including the effect of bending the SMS fiber cores due to fabrication tolerances, polarization dependence, and temperature dependence. These aspects can impair the performance of a wavelength measurement system. There are several approaches which have been proposed and demonstrated to achieve high resolution and accuracy of wavelength measurement. Bending effects due to the splicing process on the spectral characteristics of SMS fibre structure-based edge filters are investigated experimentally with the help of MATLAB. A limit for the tolerable of the cores of an SMS fibre structure-based edge filter is proposed, beyond which the edge filter’s spectral performance degrades unacceptably. We use Wavelength variation approach by which we reduce the power loss due to the bending in the optical fiber. Due to the power loss the power transmission is increases and efficiency reduces. So by wavelength variation approach we developed an efficient spectrometer capable of performing a wide variety of coherent multidimensional measurements at optical wavelengths. In this approach we fixed the power and perform variation in the wavelength to sense the bending accurately. The two major components of the largely automated device are a spatial beam shaper which controls the beam geometry and a spatiotemporal pulse shaper which controls the temporal waveform of the femtosecond pulse in each beam. By which we sense the distortion to reduce the power transmission. We apply our algorithm for performing several comparison considerations which shows the performance of our algorithm which is better in comparison to the previous work.

  19. Optical Fiber Fusion Splicing

    CERN Document Server

    Yablon, Andrew D

    2005-01-01

    This book is an up-to-date treatment of optical fiber fusion splicing incorporating all the recent innovations in the field. It provides a toolbox of general strategies and specific techniques that the reader can apply when optimizing fusion splices between novel fibers. It specifically addresses considerations important for fusion splicing of contemporary specialty fibers including dispersion compensating fiber, erbium-doped gain fiber, polarization maintaining fiber, and microstructured fiber. Finally, it discusses the future of optical fiber fusion splicing including silica and non-silica based optical fibers as well as the trend toward increasing automation. Whilst serving as a self-contained reference work, abundant citations from the technical literature will enable readers to readily locate primary sources.

  20. Rayleigh fiber optics gyroscope

    OpenAIRE

    Kung, A.; Budin, J.; Thévenaz, Luc; Robert, P. A.

    1997-01-01

    A novel kind of fiber-optic gyroscope based on Rayleigh backscattering in a fiber-ring resonator is presented in this letter. Information on the rotation rate is obtained from the composed response of the fiber ring to an optical time-domain reflectometry (OTDR) instrument. The developed model based on the coherence properties of the Rayleigh scattering yields a polarization-insensitive and low-cost gyroscope

  1. [Determination of intrinsic alliin dissolution rates with fiber-optic sensing process analysis].

    Science.gov (United States)

    Geng, Jing; Zhang, Zi-Cheng; Zhang, Hai-Bo; Li, Xin-Xia; Chen, Jian

    2014-10-01

    The apparatus for intrinsic dissolution test recorded in United States Pharmacopeia (USP) integrating with fiber-optic drug dissolution test system (FODT) were used to real-time monitor intrinsic dissolution processes of alliin in four media which were water, solution of HCl with pH 1.2, buffer solution of acetate with pH 4.5, and buffer solution of phosphate with pH 6.8. The intrinsic dissolution rate (IDR) and the similarity factor (f2) of two intrinsic dissolution curves with two apparatuses were calculated. The IDR values of alliin with rotating disk system were 28.1.3, 33.55, 28.38 and 30.95 mg x cm(-2) x min(-1) in four media, respectively. And the IDR values of alliin with stationary disk system were 44.16, 47.07, 45.11 and 51.34 mg x cm(-2) x min(-1), respectively. The similarity factors were 56.42, 50.75, 40.30 and 40.64, respectively. The results showed that the intrinsic alliin dissolution rates were much greater than 1 mg x cm(-2) x min(-1). It inferred that alliin dissolution would not be the rate limiting step to absorption. PMID:25577881

  2. Polymer optical fibers integrated directly into 3D orthogonal woven composites for sensing

    Science.gov (United States)

    Hamouda, Tamer; Seyam, Abdel-Fattah M.; Peters, Kara

    2015-02-01

    This study demonstrates that standard polymer optical fibers (POF) can be directly integrated into composites from 3D orthogonal woven preforms during the weaving process and then serve as in-situ sensors to detect damage due to bending or impact loads. Different composite samples with embedded POF were fabricated of 3D orthogonal woven composites with different parameters namely number of y-/x-layers and x-yarn density. The signal of POF was not affected significantly by the preform structure. During application of resin using VARTM technique, significant drop in backscattering level was observed due to pressure caused by vacuum on the embedded POF. Measurements of POF signal while in the final composites after resin cure indicated that the backscattering level almost returned to the original level of un-embedded POF. The POF responded to application of bending and impact loads to the composite with a reduction in the backscattering level. The backscattering level almost returned back to its original level after removing the bending load until damage was present in the composite. Similar behavior occurred due to impact events. As the POF itself is used as the sensor and can be integrated throughout the composite, large sections of future 3D woven composite structures could be monitored without the need for specialized sensors or complex instrumentation.

  3. Monitoring of Thermal Protection Systems and MMOD using Robust Self-Organizing Optical Fiber Sensing Networks

    Science.gov (United States)

    Richards, Lance

    2014-01-01

    The general aim of this work is to develop and demonstrate a prototype structural health monitoring system for thermal protection systems that incorporates piezoelectric acoustic emission (AE) sensors to detect the occurrence and location of damaging impacts, such as those from Micrometeoroid Orbital Debris (MMOD). The approach uses an optical fiber Bragg grating (FBG) sensor network to evaluate the effect of detected damage on the thermal conductivity of the TPS material. Following detection of an impact, the TPS would be exposed to a heat source, possibly the sun, and the temperature distribution on the inner surface in the vicinity of the impact measured by the FBG network. A similar procedure could also be carried out as a screening test immediately prior to re-entry. The implications of any detected anomalies in the measured temperature distribution will be evaluated for their significance in relation to the performance of the TPS during reentry. Such a robust TPS health monitoring system would ensure overall crew safety throughout the mission, especially during reentry.

  4. Fiber optic laser rod

    Science.gov (United States)

    Erickson, G.F.

    1988-04-13

    A laser rod is formed from a plurality of optical fibers, each forming an individual laser. Synchronization of the individual fiber lasers is obtained by evanescent wave coupling between adjacent optical fiber cores. The fiber cores are dye-doped and spaced at a distance appropriate for evanescent wave coupling at the wavelength of the selected dye. An interstitial material having an index of refraction lower than that of the fiber core provides the optical isolation for effective lasing action while maintaining the cores at the appropriate coupling distance. 2 figs.

  5. Optical fiber technology 2012

    OpenAIRE

    Romaniuk, Ryszard S.; Wójcik, Waldemar

    2013-01-01

    The Conference on Optical Fibers and Their Applications, Nał˛eczów 2012, in its 14th edition, which has been organized since more than 35 years, has summarized the achievements of the local optical fiber technology community, for the last year and a half. The conference specializes in developments of optical fiber technology, glass and polymer, classical and microstructured, passive and active. The event gathered around 100 participants. There were shown 60 presentations ...

  6. An Efficient Wavelength variation approach for Bend Sensing in Single mode- Multimode-Single mode Optical Fiber Sensors

    Directory of Open Access Journals (Sweden)

    Abdul Samee Khan

    2012-09-01

    Full Text Available Several aspects of the SMS edge filters have beeninvestigated, including the effect of bending the SMS fibercores due to fabrication tolerances, polarizationdependence, and temperature dependence. These aspectscan impair the performance of a wavelength measurementsystem. There are several approaches which have beenproposed and demonstrated to achieve high resolution andaccuracy of wavelength measurement. Bending effects dueto the splicing process on the spectral characteristics ofSMS fibre structure-based edge filters are investigatedexperimentally with the help of MATLAB. A limit for thetolerable of the cores of an SMS fibre structure-based edgefilter is proposed, beyond which the edge filter’s spectralperformance degrades unacceptably. We use Wavelengthvariation approach by which we reduce the power loss dueto the bending in the optical fiber. Due to the power lossthe power transmission is increases and efficiency reduces.So by wavelength variation approach we developed anefficient spectrometer capable of performing a wide varietyof coherent multidimensional measurements at opticalwavelengths. In this approach we fixed the power andperform variation in the wavelength to sense the bendingaccurately. The two major components of the largelyautomated device are a spatial beam shaper which controlsthe beam geometry and a spatiotemporal pulse shaperwhich controls the temporal waveform of the femtosecondpulse in each beam. By which we sense the distortion toreduce the power transmission. We apply our algorithm forperforming several comparison considerations whichshows the performance of our algorithm which is better incomparison to the previous work

  7. Python fiber optic seal

    Energy Technology Data Exchange (ETDEWEB)

    Ystesund, K.; Bartberger, J.; Brusseau, C.; Fleming, P.; Insch, K.; Tolk, K.

    1993-08-01

    Sandia National Laboratories has developed a high security fiber optic seal that incorporates tamper resistance features that are not available in commercial fiber optic seals. The Python Seal is a passive fiber optic loop seal designed to give indication of unauthorized entry. The seal includes a fingerprint feature that provides seal identity information in addition to the unique fiber optic pattern created when the seal is installed. The fiber optic cable used for the seal loop is produced with tamper resistant features that increase the difficulty of attacking that component of a seal. A Seal Reader has been developed that will record the seal signature and the fingerprint feature of the seal. A Correlator software program then compares seal images to establish a match or mismatch. SNL is also developing a Polaroid reader to permit hard copies of the seal patterns to be obtained directly from the seal.

  8. Sensing Study of An Optical Fiber Strain Gauge%光纤应变片的传感研究

    Institute of Scientific and Technical Information of China (English)

    李川; 张以谟; 李欣; 刘铁根; 陈希明

    2001-01-01

    This paper brings out an optic fiber s train sensor based on an optic fiber strain gauge.Monitoring the bending loss of optic fiber bonded on the optic fiber strain gauge,the strain and the deformation can be obtained.The measuring results for the micro-displacement an d the strain indicate that the optic fiber strain gauge of fers a monitoring method both strain and distortion.And the strain response of the optic fiber strain gauge is more sensitive than the one of resistance strain gauge.%本文设计了基于光纤应变片的光纤应变传感器,方法基于测量粘贴于其上的光纤弯曲损耗来获取应变量和形变量。通过微位移架上的位移测量实验与悬臂梁上的应变测量实验,结果表明该光纤应变片提供了同时适合于应变与形变的检测方式。值得一提的是,该光纤应变片的应变响应灵敏度优于电阻应变片的应变响应。

  9. Focused ion beam post-processing of optical fiber Fabry-Perot cavities for sensing applications.

    Science.gov (United States)

    André, Ricardo M; Pevec, Simon; Becker, Martin; Dellith, Jan; Rothhardt, Manfred; Marques, Manuel B; Donlagic, Denis; Bartelt, Hartmut; Frazão, Orlando

    2014-06-01

    Focused ion beam technology is combined with chemical etching of specifically designed fibers to create Fabry-Perot interferometers. Hydrofluoric acid is used to etch special fibers and create microwires with diameters of 15 μm. These microwires are then milled with a focused ion beam to create two different structures: an indented Fabry-Perot structure and a cantilever Fabry-Perot structure that are characterized in terms of temperature. The cantilever structure is also sensitive to vibrations and is capable of measuring frequencies in the range 1 Hz - 40 kHz.

  10. Preparation and Properties of Sensing Membrane for Fiber Optic Oxygen Sensor

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Four sensing membranes based on fluorescence quenching were prepared by sol-gel method and CA membrane method,and the Ru(Ⅱ) complexes,Ru(bpy)3Cl2 and Ru(phen)3Cl2,were used as the indicators.The results indicate that the volume fraction of oxygen φo2 have a linear relationship in large scale with tanφ0/tanφfor all of the sensing membranes.They have super properties such as excellent limit of detection,fast response time and good reproducibility.The stability of the sensing membranes made by sol-gel method is better than those by CA membranes,but the uniformity of the latter is better than that of the former.

  11. A real-time structural parametric identification system based on fiber optic sensing and neural network algorithms

    Science.gov (United States)

    Wu, Zhishen; Xu, Bin

    2003-07-01

    A structural parametric identification strategy based on neural networks algorithms using dynamic macro-strain measurements in time domain from a long-gage strain sensor by fiber optic sensing technique such as Fiber Bragg Grating (FBG) sensor is developed. An array of long-gage sensors is bounded on the structure to measure reliably and accurately macro-strains. By the proposed methodology, the structural parameter of stiffness can be identified. A beam model with known mass distribution is considered as an object structure. Without any eigenvalue analysis or optimization computation, the structural parameter of stiffness can be identified. First an emulator neural network is presented to identify the beam structure in current state. Free vibration macro-strain responses of the beam structure are used to train the emulator neural network. The trained emulator neural network can be used to forecast the free vibration macro-strain response of the beam structure with enough precision and decide the difference between the free vibration macro-strain responses of other assumed structure with different structural parameters and those of the original beam structure. The root mean square (RMS) error vector is presented to evaluate the difference. Subsequently, corresponding to each assumed structure with different structural parameters, the RMS error vector can be calculated. By using the training data set composed of the structural parameters and RMS error vector, a parametric evaluation neural network is trained. A beam structure is considered as an existing structure, based on the trained parametric evaluation neural network, the stiffness of the beam structure can be forecast. It is shown that the parametric identification strategy using macro-strain measurement from long-gage sensors has the potential of being a practical tool for a health monitoring methodology applied to civil engineering structures.

  12. Fiber optics standard dictionary

    CERN Document Server

    Weik, Martin H

    1997-01-01

    Fiber Optics Vocabulary Development In 1979, the National Communications System published Technical InfonnationBulle­ tin TB 79-1, Vocabulary for Fiber Optics and Lightwave Communications, written by this author. Based on a draft prepared by this author, the National Communications System published Federal Standard FED-STD-1037, Glossary of Telecommunications Terms, in 1980 with no fiber optics tenns. In 1981, the first edition of this dictionary was published under the title Fiber Optics and Lightwave Communications Standard Dictionary. In 1982, the then National Bureau of Standards, now the National Institute of Standards and Technology, published NBS Handbook 140, Optical Waveguide Communications Glossary, which was also published by the General Services Admin­ istration as PB82-166257 under the same title. Also in 1982, Dynamic Systems, Inc. , Fiberoptic Sensor Technology Handbook, co-authored and edited by published the this author, with an extensive Fiberoptic Sensors Glossary. In 1989, the handbook w...

  13. Optical fiber Sagnac interferometer for sensing scalar directional refraction: Application to magnetochiral birefringence

    OpenAIRE

    Loas, Goulc'Hen; Alouini, Mehdi; Vallet, Marc

    2014-01-01

    International audience We present a setup dedicated to the measurement of the small scalar directional anisotropies associated to the magnetochiral interaction. The apparatus, based on a polarization-independent fiber Sagnac interferometer, is optimized to be insensitive to circular anisotropies and to residual absorption. It can thus characterize samples of biological interests, for which the two enantiomers are not available and/or which present poor transmission. The signal-to-noise rat...

  14. Fiber optic distributed temperature sensing for the determination of air temperature

    NARCIS (Netherlands)

    De Jong, S.A.P.; Slingerland, J.D.; Van de Giesen, N.C.

    2015-01-01

    This paper describes a method to correct for the effect of solar radiation in atmospheric distributed temperature sensing (DTS) applications. By using two cables with different diameters, one can determine what temperature a zero diameter cable would have. Such a virtual cable would not be affected

  15. Fiber optic distributed temperature sensing for the determination of air temperature

    NARCIS (Netherlands)

    De Jong, S.A.P.; Slingerland, J.D.; Van de Giesen, N.C.

    2014-01-01

    This paper describes a method to correct for the effect of solar radiation in atmospheric Distributed Temperature Sensing (DTS) applications. By using two cables with different diameters, one can determine what temperature a zero diameter cable would have. Such virtual cable would not be affected by

  16. Novel silica surface charge density mediated control of the optical properties of embedded optically active materials and its application for fiber optic pH sensing at elevated temperatures

    Science.gov (United States)

    Wang, Congjun; Ohodnicki, Paul R.; Su, Xin; Keller, Murphy; Brown, Thomas D.; Baltrus, John P.

    2015-01-01

    Silica and silica incorporated nanocomposite materials have been extensively studied for a wide range of applications. Here we demonstrate an intriguing optical effect of silica that, depending on the solution pH, amplifies or attenuates the optical absorption of a variety of embedded optically active materials with very distinct properties, such as plasmonic Au nanoparticles, non-plasmonic Pt nanoparticles, and the organic dye rhodamine B (not a pH indicator), coated on an optical fiber. Interestingly, the observed optical response to varying pH appears to follow the surface charge density of the silica matrix for all the three different optically active materials. To the best of our knowledge, this optical effect has not been previously reported and it appears universal in that it is likely that any optically active material can be incorporated into the silica matrix to respond to solution pH or surface charge density variations. A direct application of this effect is for optical pH sensing which has very attractive features that can enable minimally invasive, remote, real time and continuous distributed pH monitoring. Particularly, as demonstrated here, using highly stable metal nanoparticles embedded in an inorganic silica matrix can significantly improve the capability of pH sensing in extremely harsh environments which is of increasing importance for applications in unconventional oil and gas resource recovery, carbon sequestration, water quality monitoring, etc. Our approach opens a pathway towards possible future development of robust optical pH sensors for the most demanding environmental conditions. The newly discovered optical effect of silica also offers the potential for control of the optical properties of optically active materials for a range of other potential applications such as electrochromic devices.Silica and silica incorporated nanocomposite materials have been extensively studied for a wide range of applications. Here we demonstrate an

  17. A distributed optical fiber sensing system for synchronous vibration and loss measurement

    Science.gov (United States)

    Zhang, Xu-ping; Qiao, Wei-yan; Sun, Zhen-hong; Shan, Yuan-yuan; Zeng, Jie; Zhang, Yi-xin

    2016-09-01

    We propose a fully distributed fusion system combining phase-sensitive optical time-domain reflectometry (Φ-OTDR) and OTDR for synchronous vibration and loss measurement by setting an ingenious frequency sweep rate ( FSR) of the optical source. The relationships between FSR, probe pulse width and repeat period are given to balance the amplitude fluctuation of OTDR traces, the dead zone probability and the measurable frequency range of vibration events. In the experiment, we achieve synchronous vibration and loss measurement with FSR of 40 MHz/s, the proble pulse width of 100 ns and repeat rate of 0.4 ms. The fluctuation of OTDR trace is less than 0.45 dB when the signal-to-noise ratio ( SNR) is over 12 dB for a captured vibration event located at 9.1 km. The proposed method can be used for not only detection but also early warning of damage events in optical communication networks.

  18. Fiber optic data transmission

    Science.gov (United States)

    Shreve, Steven T.

    1987-01-01

    The Ohio University Avionics Engineering Center is currently developing a fiber optic data bus transmission and reception system that could eventually replace copper cable connections in airplanes. The original form of the system will transmit information from an encoder to a transponder via a fiber optic cable. An altimeter and an altitude display are connected to a fiber optic transmitter by copper cable. The transmitter converts the altimetry data from nine bit parallel to serial form and send these data through a fiber optic cable to a receiver. The receiver converts the data using a cable similar to that used between the altimeter and display. The transmitting and receiving ends also include a display readout. After completion and ground testing of the data bus, the system will be tested in an airborne environment.

  19. Fiber Optics: No Illusion.

    Science.gov (United States)

    American School and University, 1983

    1983-01-01

    A campus computer center at Hofstra University (New York) that holds 70 terminals for student use was first a gymnasium, then a language laboratory. Strands of fiber optics are used for the necessary wiring. (MLF)

  20. Optical remote sensing

    CERN Document Server

    Prasad, Saurabh; Chanussot, Jocelyn

    2011-01-01

    Optical remote sensing relies on exploiting multispectral and hyper spectral imagery possessing high spatial and spectral resolutions respectively. These modalities, although useful for most remote sensing tasks, often present challenges that must be addressed for their effective exploitation. This book presents current state-of-the-art algorithms that address the following key challenges encountered in representation and analysis of such optical remotely sensed data: challenges in pre-processing images, storing and representing high dimensional data, fusing different sensor modalities, patter

  1. Electrospun Amplified Fiber Optics

    OpenAIRE

    Morello, Giovanni; Camposeo, Andrea; Moffa, Maria; Pisignano, Dario

    2015-01-01

    A lot of research is focused on all-optical signal processing, aiming to obtain effective alternatives to existing data transmission platforms. Amplification of light in fiber optics, such as in Erbium-doped fiber amplifiers, is especially important for an efficient signal transmission. However, the complex fabrication methods, involving high-temperature processes performed in highly pure environment, slow down the fabrication and make amplified components expensive with respect to an ideal, ...

  2. Fiber optics welder

    Science.gov (United States)

    Higgins, R.W.; Robichaud, R.E.

    A system is described for welding fiber optic waveguides together. The ends of the two fibers to be joined together are accurately, collinearly aligned in a vertical orientation and subjected to a controlled, diffuse arc to effect welding and thermal conditioning. A front-surfaced mirror mounted at a 45/sup 0/ angle to the optical axis of a stereomicroscope mounted for viewing the junction of the ends provides two orthogonal views of the interface during the alignment operation.

  3. Optical fiber Sagnac interferometer for sensing scalar directional refraction: application to magnetochiral birefringence

    CERN Document Server

    Loas, Goulc'hen; Vallet, Marc

    2014-01-01

    We present a set-up dedicated to the measurement of the small scalar directional anisotropies associated to the magnetochiral interaction. The apparatus, based on a polarization-independent fiber Sagnac interferometer, is optimized to be insensitive to circular anisotropies and to residual absorption. It can thus characterize samples of biological interests, for which the two enantiomers are not available and/or which present poor transmission. The signal-to-noise ratio is shown to be limited only by the source intensity noise, leading to a detection limit of Df = 500 nrad.Hz-1/2. It yields a limit on the magnetochiral index nMC < 4 10-13 T-1 at 1550 nm for the organic molecules tested.

  4. Self Similar Optical Fiber

    Science.gov (United States)

    Lai, Zheng-Xuan

    This research proposes Self Similar optical fiber (SSF) as a new type of optical fiber. It has a special core that consists of self similar structure. Such a structure is obtained by following the formula for generating iterated function systems (IFS) in Fractal Theory. The resulted SSF can be viewed as a true fractal object in optical fibers. In addition, the method of fabricating SSF makes it possible to generate desired structures exponentially in numbers, whereas it also allows lower scale units in the structure to be reduced in size exponentially. The invention of SSF is expected to greatly ease the production of optical fiber when a large number of small hollow structures are needed in the core of the optical fiber. This dissertation will analyze the core structure of SSF based on fractal theory. Possible properties from the structural characteristics and the corresponding applications are explained. Four SSF samples were obtained through actual fabrication in a laboratory environment. Different from traditional conductive heating fabrication system, I used an in-house designed furnace that incorporated a radiation heating method, and was equipped with automated temperature control system. The obtained samples were examined through spectrum tests. Results from the tests showed that SSF does have the optical property of delivering light in a certain wavelength range. However, SSF as a new type of optical fiber requires a systematic research to find out the theory that explains its structure and the associated optical properties. The fabrication and quality of SSF also needs to be improved for product deployment. As a start of this extensive research, this dissertation work opens the door to a very promising new area in optical fiber research.

  5. Optical Waveguide Sensing and Imaging

    CERN Document Server

    Bock, Wojtek J; Tanev, Stoyan

    2008-01-01

    The book explores various aspects of existing and emerging fiber and waveguide optics sensing and imaging technologies including recent advances in nanobiophotonics. The focus is both on fundamental and applied research as well as on applications in civil engineering, biomedical sciences, environment, security and defence. The main goal of the multi-disciplinarry team of Editors was to provide an useful reference of state-of-the-art overviews covering a variety of complementary topics on the interface of engineering and biomedical sciences.

  6. Nonlinear effects in optical fibers

    CERN Document Server

    Ferreira, Mario F

    2011-01-01

    Cutting-edge coverage of nonlinear phenomena occurring inside optical fibers Nonlinear fiber optics is a specialized part of fiber optics dealing with optical nonlinearities and their applications. As fiber-optic communication systems have become more advanced and complex, the nonlinear effects in optical fibers have increased in importance, as they adversely affect system performance. Paradoxically, the same nonlinear phenomena also offer the promise of addressing the bandwidth bottleneck for signal processing for future ultra-high speed optical networks. Nonlinear Effects in Optical Fiber

  7. ESA based fiber optical humidity sensor

    OpenAIRE

    Chen, Qiao

    2002-01-01

    Several techniques for measuring humidity are presented. The goal of the study is to use the electrostatic self-assembled monolayer synthesis process to fabricate a Fabry-Parot Cavity based optical fiber humidity sensor. The sensing scheme bases on the refractive index change with relative humidity of the film applied to the end of optical fiber. That is, the change in reflected optical power indicates certain humidity. To achieve this, some chemicals induce on specific coating materials were...

  8. Laser phase induced intensity noise in fiber-optic signal processing and sensing systems

    Science.gov (United States)

    Arie, Ady

    1991-03-01

    The effects of random phase fluctuations in laser output on the performance of optical systems was studied. The statistical nature of phase induced intensity noise (PIIN) was measured and analysed by studying its probability density function and the second and fourth moments of the optical field at the output of several multiple path systems. The properties of the semiconductor laser, including broad spectral linewidth and non-Lorentzian line shape were shown to have significant influence on the generated PIIN. The PIIN statistics was first studied via the probability density function (PDF) of the beat signal obtained from a two-beam interferometer fed by the laser. Two distinct operating regimes could be defined, according to the ratio between the interferometer delay and the laser coherence time. Analytical expressions were obtained for statistical averages of the PIIN at the output of a general multiple path system; they represent the variance and autocovariance, and the power spectral density of the PIIN at the system output. The non-Lorentzian lineshape of the semiconductor laser was taken into account and the results obtained were found to differ from the Lorentzian model predictions; power spectrum measurements by means of a Mach-Zehnder interferometer confirmed the theoretical model. Analysis of the PIIN for complex signal processing systems comprising several subsystems showed that the PIIN spectrum was determined by two mechanisms: noise generation and noise filtration.

  9. Assessment of a fiber-optic distributed-temperature-sensing system to monitor the thermal dynamics of vegetated roof

    Science.gov (United States)

    Cousiño, J. A.; Hausner, M. B.; Victorero, F.; Bonilla, C.; Gironas, J. A.; Vera, S.; Bustamante, W.; Rojas, V.; Pasten, P.; Suarez, F. I.

    2014-12-01

    Vegetated (green) roofs include a growing media and vegetation layer, and offer a range of benefits such as the reduction of: the heat island effect, rooftop runoff peak flows, roof surface temperatures, energy used for cooling or heating buildings, and noise levels inside infrastructures. Vegetated roofs also offer aesthetic benefits and increase the biodiversity of the urban environment, and are increasingly used in sustainable urban development. Understanding the thermal dynamics of vegetated roofs will make it possible to improve their design and to better assess their impacts on energy efficiency. Here, we evaluate the first vertical high-resolution distributed-temperature-sensing (DTS) system installed in a vegetated roof. This system allows a continuous measurement of the thermal profile within a vegetated roof - going from the interior, upward through the drainage layers and soil substrate of the vegetated roof and ending in the air above the vegetation. Temperatures can be observed as frequently as every 30 s at a spatial resolution on the order of centimeters. This DTS system was installed in the "Laboratory of Vegetal Infrastructure of Buildings" (LIVE - its acronym in Spanish), located in the San Joaquín Campus of the Pontifical Catholic University, Santiago, Chile. The laboratory features 18 experimental modules to investigate different configurations of the vegetated roof layers. The LIVE was designed with the installation of the optical fibers in mind, and the DTS system allows simultaneous monitoring of three or four modules of the LIVE. In this work, we describe the design of this DTS deployment, the calibration metrics obtained using the software provided by the manufacturers, and other calibration algorithms previously developed. We compare the results obtained using single- and double-ended measurements, highlighting strengths and weaknesses of DTS methods. Finally, we present the observations obtained from this biophysical environment

  10. Compact Fiber Optic Strain Sensors (cFOSS) Element

    Data.gov (United States)

    National Aeronautics and Space Administration — Armstrong researchers are reducing the Fiber Optic Sensing Sysme (FOSS) technology’s size, power requirement, weight, and cost to effectively extend...

  11. Electrospun amplified fiber optics.

    Science.gov (United States)

    Morello, Giovanni; Camposeo, Andrea; Moffa, Maria; Pisignano, Dario

    2015-03-11

    All-optical signal processing is the focus of much research aiming to obtain effective alternatives to existing data transmission platforms. Amplification of light in fiber optics, such as in Erbium-doped fiber amplifiers, is especially important for efficient signal transmission. However, the complex fabrication methods involving high-temperature processes performed in a highly pure environment slow the fabrication process and make amplified components expensive with respect to an ideal, high-throughput, room temperature production. Here, we report on near-infrared polymer fiber amplifiers working over a band of ∼20 nm. The fibers are cheap, spun with a process entirely carried out at room temperature, and shown to have amplified spontaneous emission with good gain coefficients and low levels of optical losses (a few cm(-1)). The amplification process is favored by high fiber quality and low self-absorption. The found performance metrics appear to be suitable for short-distance operations, and the large variety of commercially available doping dyes might allow for effective multiwavelength operations by electrospun amplified fiber optics.

  12. A comparison of thermal infrared to fiber-optic distributed temperature sensing for evaluation of groundwater discharge to surface water

    Science.gov (United States)

    Hare, Danielle K.; Briggs, Martin A.; Rosenberry, Donald O.; Boutt, David F.; Lane, John W.

    2015-11-01

    Groundwater has a predictable thermal signature that can be used to locate discrete zones of discharge to surface water. As climate warms, surface water with strong groundwater influence will provide habitat stability and refuge for thermally stressed aquatic species, and is therefore critical to locate and protect. Alternatively, these discrete seepage locations may serve as potential point sources of contaminants from polluted aquifers. This study compares two increasingly common heat tracing methods to locate discrete groundwater discharge: direct-contact measurements made with fiber-optic distributed temperature sensing (FO-DTS) and remote sensing measurements collected with thermal infrared (TIR) cameras. FO-DTS is used to make high spatial resolution (typically m) thermal measurements through time within the water column using temperature-sensitive cables. The spatial-temporal data can be analyzed with statistical measures to reveal zones of groundwater influence, however, the personnel requirements, time to install, and time to georeference the cables can be burdensome, and the control units need constant calibration. In contrast, TIR data collection, either from handheld, airborne, or satellite platforms, can quickly capture point-in-time evaluations of groundwater seepage zones across large scales. However the remote nature of TIR measurements means they can be adversely influenced by a number of environmental and physical factors, and the measurements are limited to the surface "skin" temperature of water features. We present case studies from a range of lentic to lotic aquatic systems to identify capabilities and limitations of both technologies and highlight situations in which one or the other might be a better instrument choice for locating groundwater discharge. FO-DTS performs well in all systems across seasons, but data collection was limited spatially by practical considerations of cable installation. TIR is found to consistently locate

  13. Advances in optical fiber sensing technology for aviation and aerospace application%航空航天光纤传感技术研究进展

    Institute of Scientific and Technical Information of China (English)

    刘铁根; 王双; 江俊峰; 刘琨; 尹金德

    2014-01-01

    Optical fiber sensors are very suitable for the measurement of temperature,strain,pressure,acoustic vibration and angular ve-locity in the extreme working conditions of aviation and aerospace,due to their advantages of being small size,lightweight,multiplexing capability,immunity to electromagnetic interference and easy to be buried into interior of material.The optical fiber sensing researches based on EFPI,FBG and FOG in aviation and aerospace field are focused in this review.And the recent progress of fiber sensing tech-niques for aviation and aerospace application in Tianjin University is introduced,which includes the temperature,strain,pressure and a-coustic vibration sensing system,the measurement experiment of optical fiber Fabry-Perot pressure in aviation field and the application of multi-parameters sensing system in space environment simulator.Finally,the key problems about optical fiber sensing technology in avi-ation and aerospace field are discussed and the developing trend is predicted.%光纤传感器具有体积小、重量轻、测量灵敏度高、复用能力强、抗电磁干扰、易于嵌入材料内部等诸多优点,非常适合航空航天极端环境下温度、应变、压力、声振动以及角速度等多种参量的测量。着重介绍基于EFPI、FBG以及FOG的航空航天光纤传感技术研究现状,以及天津大学在航空航天光纤传感技术研究领域的最新进展,包括航空航天温度、应变、压力、声振动传感系统,航空光纤法珀大气压力测量实验及多参量光纤传感系统在空间环境模拟设备中的应用实例。讨论航空航天光纤传感技术的难点问题,在此基础上指出航空航天光纤传感技术的发展趋势。

  14. Fiber optic gas sensor

    Science.gov (United States)

    Chen, Peng (Inventor); Buric, Michael P. (Inventor); Swinehart, Philip R. (Inventor); Maklad, Mokhtar S. (Inventor)

    2010-01-01

    A gas sensor includes an in-fiber resonant wavelength device provided in a fiber core at a first location. The fiber propagates a sensing light and a power light. A layer of a material is attached to the fiber at the first location. The material is able to absorb the gas at a temperature dependent gas absorption rate. The power light is used to heat the material and increases the gas absorption rate, thereby increasing sensor performance, especially at low temperatures. Further, a method is described of flash heating the gas sensor to absorb more of the gas, allowing the sensor to cool, thereby locking in the gas content of the sensor material, and taking the difference between the starting and ending resonant wavelengths as an indication of the concentration of the gas in the ambient atmosphere.

  15. Optical fiber telecommunications IIIb

    CERN Document Server

    Koch, Thomas L

    2012-01-01

    Updated to include the latest information on light wave technology, Optical Fiber Telecommunication III, Volumes A & B are invaluable for scientists, students, and engineers in the modern telecommunications industry. This two-volume set includes the most current research available in optical fiber telecommunications, light wave technology, and photonics/optoelectronics. The authors cover important background concepts such as SONET, coding device technology, andWOM components as well as projecting the trends in telecommunications for the 21st century.Key Features* One of the hottest subjects of

  16. Fluoride glass fiber optics

    CERN Document Server

    Aggarwal, Ishwar D

    1991-01-01

    Fluoride Glass Fiber Optics reviews the fundamental aspects of fluoride glasses. This book is divided into nine chapters. Chapter 1 discusses the wide range of fluoride glasses with an emphasis on fluorozirconate-based compositions. The structure of simple fluoride systems, such as BaF2 binary glass is elaborated in Chapter 2. The third chapter covers the intrinsic transparency of fluoride glasses from the UV to the IR, with particular emphasis on the multiphonon edge and electronic edge. The next three chapters are devoted to ultra-low loss optical fibers, reviewing methods for purifying and

  17. Theoretical understanding of an alternating dielectric multilayer-based fiber optic SPR sensor and its application to gas sensing

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, A K; Mohr, G J [Institute of Physical Chemistry, Friedrich-Schiller University, Lessingstrasse 10, 07743 Jena (Germany)], E-mail: anuj.sharma@uni-jena.de

    2008-02-15

    In the present work, a detailed theoretical analysis of a surface plasmon resonance (SPR)-based fiber optic sensor with an alternating dielectric multilayer system is carried out. The dielectric system consists of silica and titanium oxide layers. The effect of critical design parameters on the sensor's sensitivity and detection accuracy is studied. The results are explained in terms of appropriate physical phenomena, wherever required. Based on the analysis, a new design of a fiber optic SPR sensor for gas detection is proposed. The analysis of such a gas sensor is carried out for four metals separately for a clear understanding. The proposed gas sensor is able to provide reasonably high values of all the performance parameters simultaneously, as required for an efficient detection of gaseous media.

  18. Power Loss Characteristics of a Sensing Element Based on a Polymer Optical Fiber under Cyclic Tensile Elongation

    OpenAIRE

    Wei-Hua Lu; Yung-Chuan Chen; Li-Wen Chen

    2011-01-01

    In this study, power losses in polymer optical fiber (POF) subjected to cyclic tensile loadings are studied experimentally. The parameters discussed are the cyclic load level and the number of cycles. The results indicate that the power loss in POF specimens increases with increasing load level or number of cycles. The power loss can reach as high as 18.3% after 100 cyclic loadings. Based on the experimental results, a linear equation is proposed to estimate the relationship between the power...

  19. Applications of nonlinear fiber optics

    CERN Document Server

    Agrawal, Govind

    2008-01-01

    * The only book describing applications of nonlinear fiber optics * Two new chapters on the latest developments: highly nonlinear fibers and quantum applications* Coverage of biomedical applications* Problems provided at the end of each chapterThe development of new highly nonlinear fibers - referred to as microstructured fibers, holey fibers and photonic crystal fibers - is the next generation technology for all-optical signal processing and biomedical applications. This new edition has been thoroughly updated to incorporate these key technology developments.The bo

  20. Optical fiber communications

    CERN Document Server

    Keiser, Gerd

    2008-01-01

    The fourth edition of this popular text and reference book presents the fundamental principles for understanding and applying optical fiber technology to sophisticated modern telecommunication systems. Optical-fiber-based telecommunication networks have become a major information-transmission-system, with high capacity links encircling the globe in both terrestrial and undersea installations. Numerous passive and active optical devices within these links perform complex transmission and networking functions in the optical domain, such as signal amplification, restoration, routing, and switching. Along with the need to understand the functions of these devices comes the necessity to measure both component and network performance, and to model and stimulate the complex behavior of reliable high-capacity networks.

  1. Enhanced radiation resistant fiber optics

    Science.gov (United States)

    Lyons, Peter B.; Looney, Larry D.

    1993-01-01

    A process for producing an optical fiber having enhanced radiation resitance is provided, the process including maintaining an optical fiber within a hydrogen-containing atmosphere for sufficient time to yield a hydrogen-permeated optical fiber having an elevated internal hydrogen concentration, and irradiating the hydrogen-permeated optical fiber at a time while the optical fiber has an elevated internal hydrogen concentration with a source of ionizing radiation. The radiation source is typically a cobalt-60 source and the fiber is pre-irradiated with a dose level up to about 1000 kilorads of radiation.

  2. Chiral fiber optical isolator

    Science.gov (United States)

    Kopp, Victor I.; Zhang, Guoyin; Zhang, Sheng; Genack, Azriel Z.; Neugroschl, Dan

    2009-02-01

    We propose an in-fiber chiral optical isolator based on chiral fiber polarizer technology and calculate its performance by incorporating the magnetic field into the scattering matrix. The design will be implemented in a special preform, which is passed through a miniature heat zone as it is drawn and twisted. The birefringence of the fiber is controlled by adjusted the diameter of a dual-core optical fiber. By adjusting the twist, the fiber can convert linear to circular polarization and reject one component of circular polarization. In the novel central portion of the isolator, the fiber diameter is large. The effective birefringence of the circular central core with high Verdet constant embedded in an outer core of slightly smaller index of refraction is small. The central potion is a non-reciprocal polarization converter which passes forward traveling left circularly polarized (LCP) light as LCP, while converting backward propagating LCP to right circularly polarized (RCP) light. Both polarizations of light traveling backwards are scattered out of the isolator. Since it is an all-glass structure, we anticipate that the isolator will be able to handle several watts of power and will be environmentally robust.

  3. Assessment of fiber optic pressure sensors

    International Nuclear Information System (INIS)

    This report presents the results of a six-month Phase 1 study to establish the state-of-the-art in fiber optic pressure sensing and describes the design and principle of operation of various fiber optic pressure sensors. This study involved a literature review, contact with experts in the field, an industrial survey, a site visit to a fiber optic sensor manufacturer, and laboratory testing of a fiber optic pressure sensor. The laboratory work involved both static and dynamic performance tests. In addition, current requirements for environmental and seismic qualification of sensors for nuclear power plants were reviewed to determine the extent of the qualification tests that fiber optic pressure sensors may have to meet before they can be used in nuclear power plants. This project has concluded that fiber optic pressure sensors are still in the research and development stage and only a few manufacturers exist in the US and abroad which supply suitable fiber optic pressure sensors for industrial applications. Presently, fiber optic pressure sensors are mostly used in special applications for which conventional sensors are not able to meet the requirements

  4. Assessment of fiber optic pressure sensors

    Energy Technology Data Exchange (ETDEWEB)

    Hashemian, H.M.; Black, C.L.; Farmer, J.P. [Analysis and Measurement Services Corp., Knoxville, TN (United States)

    1995-04-01

    This report presents the results of a six-month Phase 1 study to establish the state-of-the-art in fiber optic pressure sensing and describes the design and principle of operation of various fiber optic pressure sensors. This study involved a literature review, contact with experts in the field, an industrial survey, a site visit to a fiber optic sensor manufacturer, and laboratory testing of a fiber optic pressure sensor. The laboratory work involved both static and dynamic performance tests. In addition, current requirements for environmental and seismic qualification of sensors for nuclear power plants were reviewed to determine the extent of the qualification tests that fiber optic pressure sensors may have to meet before they can be used in nuclear power plants. This project has concluded that fiber optic pressure sensors are still in the research and development stage and only a few manufacturers exist in the US and abroad which supply suitable fiber optic pressure sensors for industrial applications. Presently, fiber optic pressure sensors are mostly used in special applications for which conventional sensors are not able to meet the requirements.

  5. Improved Optical Fiber Chemical Sensors

    Science.gov (United States)

    Egalon, Claudio O.; Rogowski, Robert S.

    1994-01-01

    Calculations, based on exact theory of optical fiber, have shown how to increase optical efficiency sensitivity of active-core, step-index-profile optical-fiber fluorosensor. Calculations result of efforts to improve efficiency of optical-fiber chemical sensor of previous concept described in "Making Optical-Fiber Chemical Sensors More Sensitive" (LAR-14525). Optical fiber chemical detector of enhanced sensitivity made in several configurations. Portion of fluorescence or chemiluminescence generated in core, and launched directly into bound electromagnetic modes that propagate along core to photodetector.

  6. Aerogel-clad optical fiber

    Science.gov (United States)

    Sprehn, Gregory A.; Hrubesh, Lawrence W.; Poco, John F.; Sandler, Pamela H.

    1997-01-01

    An optical fiber is surrounded by an aerogel cladding. For a low density aerogel, the index of refraction of the aerogel is close to that of air, which provides a high numerical aperture to the optical fiber. Due to the high numerical aperture, the aerogel clad optical fiber has improved light collection efficiency.

  7. Fiber Optics and Library Technology.

    Science.gov (United States)

    Koenig, Michael

    1984-01-01

    This article examines fiber optic technology, explains some of the key terminology, and speculates about the way fiber optics will change our world. Applications of fiber optics to library systems in three major areas--linkage of a number of mainframe computers, local area networks, and main trunk communications--are highlighted. (EJS)

  8. Buying Fiber-Optic Networks.

    Science.gov (United States)

    Fickes, Michael

    2003-01-01

    Describes consortia formed by college and university administrators to buy, manage, and maintain their own fiber-optic networks with the goals of cutting costs of leasing fiber-optic cable and planning for the future. Growth capacity is the real advantage of owning fiber-optic systems. (SLD)

  9. Optical fiber-applied radiation detection system

    International Nuclear Information System (INIS)

    A technique to measure radiation by using plastic scintillation fibers doped radiation fluorescent (scintillator) to plastic optical fiber for a radiation sensor, was developed. The technique contains some superiority such as high flexibility due to using fibers, relatively easy large area due to detecting portion of whole of fibers, and no electromagnetic noise effect due to optical radiation detection and signal transmission. Measurable to wide range of and continuous radiation distribution along optical fiber cable at a testing portion using scintillation fiber and flight time method, the optical fiber-applied radiation sensing system can effectively monitor space radiation dose or apparatus operation condition monitoring. And, a portable type scintillation optical fiber body surface pollution monitor can measure pollution concentration of radioactive materials attached onto body surface by arranging scintillation fiber processed to a plate with small size and flexibility around a man to be tested. Here were described on outline and fundamental properties of various application products using these plastic scintillation fiber. (G.K.)

  10. Micromachined optical fiber current sensor

    OpenAIRE

    Heredero, R. L.; Fernández de Caleya, Ramón; Guerrero, Héctor; Losantos Viñolas, Pedro; Acero, M.C.; Esteve, J.

    1999-01-01

    We describe a micromachined optical fiber current sensor. The sensing element consists of a squared silicon membrane (8 mm long and 20 μm thick) that has a cylindrical permanent magnet (NdFeB alloy, 3-mm diameter, 1.5 mm high) fixed on its central region. This structure allows the permanent magnet to vibrate in the presence of the magnetic field gradient generated by an ac. A linear relation between the electrical current and the magnet displacement was measured with white-light interferometr...

  11. Nonlinear fiber optics

    CERN Document Server

    Agrawal, Govind

    2012-01-01

    Since the 4e appeared, a fast evolution of the field has occurred. The 5e of this classic work provides an up-to-date account of the nonlinear phenomena occurring inside optical fibers, the basis of all our telecommunications infastructure as well as being used in the medical field. Reflecting the big developments in research, this new edition includes major new content: slow light effects, which offers a reduction in noise and power consumption and more ordered network traffic-stimulated Brillouin scattering; vectorial treatment of highly nonlinear fibers; and a brand new chapter o

  12. Power Loss Characteristics of a Sensing Element Based on a Polymer Optical Fiber under Cyclic Tensile Elongation

    Directory of Open Access Journals (Sweden)

    Wei-Hua Lu

    2011-09-01

    Full Text Available In this study, power losses in polymer optical fiber (POF subjected to cyclic tensile loadings are studied experimentally. The parameters discussed are the cyclic load level and the number of cycles. The results indicate that the power loss in POF specimens increases with increasing load level or number of cycles. The power loss can reach as high as 18.3% after 100 cyclic loadings. Based on the experimental results, a linear equation is proposed to estimate the relationship between the power loss and the number of cycles. The difference between the estimated results and the experimental results is found to be less than 3%.

  13. Porous solgel fiber as a transducer for highly sensitive chemical sensing.

    Science.gov (United States)

    Tao, Shiquan; Winstead, Christopher B; Singh, Jagdish P; Jindal, Rajeev

    2002-08-15

    A novel solgel process for making porous silica fiber and doping the fiber core with sensing material is described. A CoCl(2) -doped solgel fiber was fabricated and was used to construct an active-core optical fiber moisture sensor. Test results show that the sensitivity of the active-core optical fiber sensor is much higher than that of an evanescent-wave-based optical fiber sensor. PMID:18026453

  14. Interference of selective higher-order modes in optical fibers

    Institute of Scientific and Technical Information of China (English)

    Li Enbang; Peng Gangding

    2007-01-01

    The interference of selective higher-order modes in optical fibers is investigated both theoretically and experimentally.It has been demonstrated that by coupling the LP01 mode in a step-index single-mode fiber(SMF)to the LPom modes in step-index muhimode fibers(MMFs)with different parameters,one can selectively generate higher-order modes and construct all-fiber interferometers.The research presented in this paper forms a basis of a new type of fiber devices with potential applications in fiber sensing,optical fiber communications,and optical signal processing.

  15. Applications of absolute extrinsic Fabry-Perot interferometer (EFPI) fiber optic sensing system for measurement of strain in pre-tensioned tendons for prestrained concrete

    Science.gov (United States)

    de Vries, Marten J.; Bhatia, Vikram; Claus, Richard O.; Murphy, Kent A.; Tran, Tuan A.

    1995-04-01

    The application of a state-of-the-art fiber optic sensing system for the quantitative analysis of strain in strands used in prestressed concrete is proposed. Compressive stress in concrete is used to counterbalance any tensile force due to loading, which might lead to cracking or deflection. In pre-tensioning prestressed concrete, a tendon is tensioned before concrete is placed and the prestress is transferred to the concrete after it has cured by releasing the tension on the tendon. In linear prestressing it is often required to determine the axial strain on the tendon during the initial procedure of pre-tensioning, so that the required longitudinal force to achieve maximum concrete strength, can be accurately determined. Conventional techniques for this purpose involve the use of conventional foil strain gages, which are not only expensive to use, but are also known for their failure rate in high strain environments. We discuss the absolute extrinsic Fabry-Perot interferometer (AEFPI) fiber optic sensing system for monitoring strain in pretensioned tendons while this tendon is being loaded. The experiments performed at the Turner Fairbanks Federal Highway Administration at McLean, Virginia exhibit the survivability of the EFPI sensor at strain in excess of 12,000 (mu) (epsilon) while being attached to the tendon surface. The results are compared to those obtained from a collocated foil strain gage and excellent correlation is obtained. Applications of the AEFPI system to high performance smart materials and structures are analyzed and future work in this area is discussed.

  16. Polymer Optical Fiber Compound Parabolic Concentrator fiber tip based glucose sensor: In-Vitro Testing

    DEFF Research Database (Denmark)

    Hassan, Hafeez Ul; Janting, Jakob; Aasmul, Soren;

    2016-01-01

    We present in-vitro sensing of glucose using a newly developed efficient optical fiber glucose sensor based on a Compound Parabolic Concentrator (CPC) tipped polymer optical fiber (POF). A batch of 9 CPC tipped POF sensors with a 35 mm fiber length is shown to have an enhanced fluorescence pickup...

  17. Fiber optic geophysical sensors

    Science.gov (United States)

    Homuth, Emil F.

    1991-01-01

    A fiber optic geophysical sensor in which laser light is passed through a sensor interferometer in contact with a geophysical event, and a reference interferometer not in contact with the geophysical event but in the same general environment as the sensor interferometer. In one embodiment, a single tunable laser provides the laser light. In another embodiment, separate tunable lasers are used for the sensor and reference interferometers. The invention can find such uses as monitoring for earthquakes, and the weighing of objects.

  18. Development and testing of redundant optical fiber sensing systems with self-control, for underground nuclear waste disposal site monitoring. Vol. 1: Summary and evaluation. Final report

    International Nuclear Information System (INIS)

    Fiber optic sensors have been developed or further developed, for specific tasks of the research project reported, as for instance detecting and signalling changes of geophysical or geochemical parameters in underground waste storage sites which are of relevance to operating safety. Such changes include e.g. materials dislocations, extensions, temperatures, humidity, pH value and presence of gaseous carbon dioxide and hydrogen. The measuring principle chosen is the fiber Bragg Grating method, as a particularly versatile method easy to integrate into fiber optic networks. After development and successful lab-scale testing of all sensors, except for the gas sensors, field test systems have been made for underground applications and have been tested in situ in the experimental Konrad mine of DBE. Most of the problems discovered with these tests could be resolved within the given project period, so that finally field-test proven sensing systems are available for further activities. The report explains the system performance with a concrete example which shows inter alia beneficial aspects of the system with respect to on-site operation, and the potentials offered in establishing more direct connections between numerical safety analyses and measured results. (orig./CB)

  19. In-Line Fiber Optic Interferometric Sensors in Single-Mode Fibers

    OpenAIRE

    De-Wen Duan; Min Liu; Di Wu; Tao Zhu

    2012-01-01

    In-line fiber optic interferometers have attracted intensive attention for their potential sensing applications in refractive index, temperature, pressure and strain measurement, etc. Typical in-line fiber-optic interferometers are of two types: Fabry-Perot interferometers and core-cladding-mode interferometers. It’s known that the in-line fiber optic interferometers based on single-mode fibers can exhibit compact structures, easy fabrication and low cost. In this paper, ...

  20. Shedding Light on Fiber Optics.

    Science.gov (United States)

    Bunch, Robert M.

    1994-01-01

    Explains the principles of fiber optics as a medium for light-wave communication. Current uses of fiber systems on college campuses include voice, video, and local area network applications. A group of seven school districts in Minnesota are linked via fiber-optic cables. Other uses are discussed. (MLF)

  1. Optical Communication over Plastic Optical Fibers Integrated Optical Receiver Technology

    CERN Document Server

    Atef, Mohamed

    2013-01-01

    This book presents high-performance data transmission over plastic optical fibers (POF) using integrated optical receivers having good properties with multilevel modulation, i.e. a higher sensitivity and higher data rate transmission over a longer plastic optical fiber length. Integrated optical receivers and transmitters with high linearity are introduced for multilevel communication. For binary high-data rate transmission over plastic optical fibers, an innovative receiver containing an equalizer is described leading also to a high performance of a plastic optical fiber link. The cheap standard PMMA SI-POF (step-index plastic optical fiber) has the lowest bandwidth and the highest attenuation among multimode fibers. This small bandwidth limits the maximum data rate which can be transmitted through plastic optical fibers. To overcome the problem of the plastic optical fibers high transmission loss, very sensitive receivers must be used to increase the transmitted length over POF. The plastic optical fiber li...

  2. Dynamic fiber Bragg grating sensing method

    Science.gov (United States)

    Ho, Siu Chun Michael; Ren, Liang; Li, Hongnan; Song, Gangbing

    2016-02-01

    The measurement of high frequency vibrations is important in many scientific and engineering problems. This paper presents a novel, cost effective method using fiber optic fiber Bragg gratings (FBGs) for the measurement of high frequency vibrations. The method uses wavelength matched FBG sensors, with the first sensor acting as a transmission filter and the second sensor acting as the sensing portion. Energy fluctuations in the reflection spectrum of the second FBG due to wavelength mismatch between the sensors are captured by a photodiode. An in-depth analysis of the optical circuit is provided to predict the behavior of the method as well as identify ways to optimize the method. Simple demonstrations of the method were performed with the FBG sensing system installed on a piezoelectric transducer and on a wind turbine blade. Vibrations were measured with sampling frequencies up to 1 MHz for demonstrative purposes. The sensing method can be multiplexed for use with multiple sensors, and with care, can be retrofitted to work with FBG sensors already installed on a structure.

  3. Optical fiber sensors for life support applications

    Science.gov (United States)

    Lieberman, R. A.; Schmidlin, E. M.; Ferrell, D. J.; Syracuse, S. J.

    1992-01-01

    Preliminary experimental results on systems designed to demonstrate sensor operation in regenerative food production and crew air supply applications are presented. The systems use conventional fibers and sources in conjunction with custom wavelength division multiplexers in their optical signal processing sections and nonstandard porous optical fibers in the optical sensing elements. It is considered to be possible to create practical sensors for life-support system applications, and particularly, in regenerative food production environments, based on based on reversible sensors for oxygen, carbon monoxide, and humidity.

  4. Fiber-Optic Chemical Sensors and Fiber-Optic Bio-Sensors

    Directory of Open Access Journals (Sweden)

    Marie Pospíšilová

    2015-09-01

    Full Text Available This review summarizes principles and current stage of development of fiber-optic chemical sensors (FOCS and biosensors (FOBS. Fiber optic sensor (FOS systems use the ability of optical fibers (OF to guide the light in the spectral range from ultraviolet (UV (180 nm up to middle infrared (IR (10 μm and modulation of guided light by the parameters of the surrounding environment of the OF core. The introduction of OF in the sensor systems has brought advantages such as measurement in flammable and explosive environments, immunity to electrical noises, miniaturization, geometrical flexibility, measurement of small sample volumes, remote sensing in inaccessible sites or harsh environments and multi-sensing. The review comprises briefly the theory of OF elaborated for sensors, techniques of fabrications and analytical results reached with fiber-optic chemical and biological sensors.

  5. Selenium semiconductor core optical fibers

    Directory of Open Access Journals (Sweden)

    G. W. Tang

    2015-02-01

    Full Text Available Phosphate glass-clad optical fibers containing selenium (Se semiconductor core were fabricated using a molten core method. The cores were found to be amorphous as evidenced by X-ray diffraction and corroborated by Micro-Raman spectrum. Elemental analysis across the core/clad interface suggests that there is some diffusion of about 3 wt % oxygen in the core region. Phosphate glass-clad crystalline selenium core optical fibers were obtained by a postdrawing annealing process. A two-cm-long crystalline selenium semiconductor core optical fibers, electrically contacted to external circuitry through the fiber end facets, exhibit a three times change in conductivity between dark and illuminated states. Such crystalline selenium semiconductor core optical fibers have promising utility in optical switch and photoconductivity of optical fiber array.

  6. Microstructured optical fiber refractive index sensor

    DEFF Research Database (Denmark)

    Town, Graham E.; McCosker, Ravi; Yuan, Scott Wu;

    2010-01-01

    We describe a dual-core microstructured optical fiber designed for refractive index sensing of fluids. We show that by using the exponential dependence of intercore coupling on analyte refractive index, both large range and high sensitivity can be achieved in the one device. We also show...

  7. Optical Sensors Based on Plastic Fibers

    Science.gov (United States)

    Bilro, Lúcia; Alberto, Nélia; Pinto, João L.; Nogueira, Rogério

    2012-01-01

    The recent advances of polymer technology allowed the introduction of plastic optical fiber in sensor design. The advantages of optical metrology with plastic optical fiber have attracted the attention of the scientific community, as they allow the development of low-cost or cost competitive systems compared with conventional technologies. In this paper, the current state of the art of plastic optical fiber technology will be reviewed, namely its main characteristics and sensing advantages. Several measurement techniques will be described, with a strong focus on interrogation approaches based on intensity variation in transmission and reflection. The potential applications involving structural health monitoring, medicine, environment and the biological and chemical area are also presented. PMID:23112707

  8. 光纤消逝场传感器传感结构的分析与应用%Analysis and Application of the Sensing Structure for Optical Fiber Evanescent Field Sensors

    Institute of Scientific and Technical Information of China (English)

    罗吉; 庄须叶; 倪祖高; 姚军

    2011-01-01

    The optical fiber evanescent field theory is analyzed in detail, and the key factors affecting the sensitivity of the sensor are discussed thoroughly. The merits and defects of several common evanescent field sensing fibers are compared, including the cylinder, D-shaped, U-shaped,tapered fibers, photonic crystal optical fibers and other sensing fibers. Through the analysis of the application examples of those sensing fibers, the general methods to improve the sensing sensitivity are summarized, such as coating the sensing fibers with a thin sensitive membrane or a metal film, optimizing the structure or decorating the sensing fibers with fluorescence or nanoparticles.%对光纤消逝场理论进行了详细分析,阐述了影响光纤消逝场传感器灵敏度的一些关键因素,并对几种常见的光纤消逝场传感光纤的优缺点进行了比较,主要包括圆柱形、D形、U形、锥形以及光子晶体光纤等结构的传感光纤.通过分析各种传感结构的光纤消逝场传感器的应用实例,归纳总结了提高光纤消逝场传感器传感灵敏度的一般方法,包括在传感光纤表面镀薄敏感膜或者金属膜、优化传感光纤结构、进行荧光标记以及用纳米粒子修饰等一系列措施.

  9. Fundamentals of plastic optical fibers

    CERN Document Server

    Koike, Yasuhiro

    2014-01-01

    Polymer photonics is an interdisciplinary field which demands excellence both in optics (photonics) and materials science (polymer). However, theses disciplines have developed independently, and therefore the demand for a comprehensive work featuring the fundamentals of photonic polymers is greater than ever.This volume focuses on Polymer Optical Fiber and their applications. The first part of the book introduces typical optical fibers according to their classifications of material, propagating mode, and structure. Optical properties, the high bandwidth POF and transmission loss are discussed,

  10. Fiber-optic strain sensors for smart structures

    OpenAIRE

    KOSHIDE, Shinichi; 越出 慎一

    1997-01-01

    The first section of this report reviews the use of fiber-optic strain sensors in smart structures. Several types of fiber-optic sensor for strain and damage detection in structures are discussed including the high-birefringence polarimetric sensor, interferometric sensor, sensors which utilize scattered or attenuated light, and sensors which combine optical fibers and detectors such as a birefringent sensing cube or vibrating wire. Interferometric sensors are shown to be particularly suitabl...

  11. Optical Fiber Sensors for Smart Structures : A Review

    Directory of Open Access Journals (Sweden)

    P. Kundu

    1996-10-01

    Full Text Available This review describes recent advances in optical fiber sensors for smart structures. After discussing the fabrication on technology and strain sensing of fiber-optic sensors in a brief introduction, the detailed accounts of signal processing techniques employed in them are given. The application areas of fiber-optic sensors are also described briefly with necessary references. Future trend of work is indicated in the concluding remarks.

  12. Optical Fiber Sensors for Smart Structures : A Review

    OpenAIRE

    Kundu, P.; Ramakrishna, C.; V.N. Saxena

    1996-01-01

    This review describes recent advances in optical fiber sensors for smart structures. After discussing the fabrication on technology and strain sensing of fiber-optic sensors in a brief introduction, the detailed accounts of signal processing techniques employed in them are given. The application areas of fiber-optic sensors are also described briefly with necessary references. Future trend of work is indicated in the concluding remarks.

  13. Fiber optic sensor for flow and viscosity measurement

    Science.gov (United States)

    Wang, Wei-Chih; Leang, Jonathan

    2016-04-01

    A sensitive fluid viscosity and flow measurement device using optical intensity based sensing is presented. The sensing principle makes use of the damping characteristic of a vibrating optical fiber probe with approximate hinge-free end configuration. The viscosity and mass flow are determined by measuring the vibration of a sinusoidally excited tapered optical fiber under different flow conditions. By measuring the frequency response of the fiber probe, viscosity and mass flow can be deduced from the damping coefficient of the response. The concepts and experimental data presented demonstrate and refine the sensing process of the proposed system.

  14. Fabrication of Optical Fiber Devices

    Science.gov (United States)

    Andres, Miguel V.

    In this paper we present the main research activities of the Laboratorio de Fibras Opticas del Instituto de Ciencia de los Materiales de la Universidad de Valencia. We show some of the main results obtained for devices based on tapered fibers, fiber Bragg gratings, acousto-optic effects and photonic crystal fibers.

  15. Quantum cryptography using optical fibers.

    Science.gov (United States)

    Franson, J D; Lives, H

    1994-05-10

    Quantum cryptography permits the transmission of secret information whose security is guaranteed by the uncertainty principle. An experimental system for quantum crytography is implemented based on the linear polarization of single photons transmitted by an optical fiber. Polarization-preserving optical fiber and a feedback loop are employed to maintain the state of polarization. Error rates of less than 0.5% are obtained.

  16. Fiber optics opens window on stream dynamics

    OpenAIRE

    J. Selker; N. C. van de Giesen; M. Westhoff; Luxemburg, W.; Parlange, M.B.

    2006-01-01

    A new approach to monitoring surface waters using distributed fiber optic temperature sensing is presented, allowing resolutions of temperature of 0.01°C every meter along a fiber optic cable of up to 10,000 m in length. We illustrate the potential of this approach by quantifying both stream temperature dynamics and groundwater inflows to the Maisbich, a first-order stream in Luxembourg (49°47'N, 6°02'E). The technique provides a very rich dataset, which may be of interest to many types of en...

  17. Fiber-optic technology review

    International Nuclear Information System (INIS)

    A history of fiber technology is presented. The advantages of fiber optics are discussed (bandwidth, cost, weight and size, nonmetallic construction and isolation). Some aspects of the disadvantages of fiber systems briefly discussed are fiber and cable availability, fiber components, radiation effects, receivers and transmitters, and material dispersion. Particular emphasis over the next several years will involve development of fibers and systems optimized for use at wavelengths near 1.3 μm and development of wavelengths multiplexers for simultaneous system operation at several wavelengths

  18. Fiber optic sensor and method for making

    Energy Technology Data Exchange (ETDEWEB)

    Vartuli, James Scott; Bousman, Kenneth Sherwood; Deng, Kung-Li; McEvoy, Kevin Paul; Xia, Hua

    2010-05-18

    A fiber optic sensor including a fiber having a modified surface integral with the fiber wherein the modified surface includes an open pore network with optical agents dispersed within the open pores of the open pore network. Methods for preparing the fiber optic sensor are also provided. The fiber optic sensors can withstand high temperatures and harsh environments.

  19. Feasibility of soil moisture monitoring with heated fiber optics

    NARCIS (Netherlands)

    Sayde, C.; Gregory, C.; Gil-Rodriguez, M.; Tufillaro, N.; Tyler, S.; Van de Giesen, N.C.; English, M.; Cuenca, R.; Selker, J.S.

    2010-01-01

    Accurate methods are needed to measure changing soil water content from meter to kilometer scales. Laboratory results demonstrate the feasibility of the heat pulse method implemented with fiber optic temperature sensing to obtain accurate distributed measurements of soil water content. A fiber optic

  20. Fiber optic hydrogen sensor

    Energy Technology Data Exchange (ETDEWEB)

    Butler, M.A.; Sanchez, R.; Dulleck, G.R.

    1996-05-01

    This report covers the development of fiber optic hydrogen and temperature sensors for monitoring dissolved hydrogen gas in transformer oil. The concentration of hydrogen gas is a measure of the corona and spark discharge within the transformer and reflects the state of health of the transformer. Key features of the instrument include use of palladium alloys to enhance hydrogen sensitivity, a microprocessor controlled instrument with RS-232, liquid crystal readout, and 4-20 ma. current loop interfaces. Calibration data for both sensors can be down loaded to the instrument through the RS-232 interface. This project was supported by the Technology Transfer Initiative in collaboration with J. W. Harley, Inc. through the mechanism of a cooperative research and development agreement (CRADA).

  1. Data acquisition with fiber optic sensors

    Science.gov (United States)

    Kist, R.

    The advantages of using fiber optic sensors for data acquisition are discussed, and their present utilization in this area is examined. Because of their high cost, these sensors are not likely to be competitive in general metrological applications in the near future. They do, however, provide important advantages in specific areas such as isolation against high voltage and immunity against electromagnetic fields and explosive and/or corrosive environments. They also offer the possibility of miniaturized and compact packaging of the sensing element an application within a broad temperature range. Multimode fiber optic sensors for parameters such as temperature, pressure, and refractive index have more immediate commercial potential than monomode fiber optic sensors, which have higher costs. The latter allow for high precision solutions of metrological tasks under specific conditions, and will be utilized in the foreseeable future.

  2. Glass-clad semiconductor core optical fibers

    Science.gov (United States)

    Morris, Stephanie Lynn

    Glass-clad optical fibers comprising a crystalline semiconductor core have garnered considerable recent attention for their potential utility as novel waveguides for applications in nonlinear optics, sensing, power delivery, and biomedicine. As research into these fibers has progressed, it has become evident that excessive losses are limiting performance and so greater understanding of the underlying materials science, coupled with advances in fiber processing, is needed. More specifically, the semiconductor core fibers possess three performance-limiting characteristics that need to be addressed: (a) thermal expansion mismatches between crystalline core and glass cladding that lead to cracks, (b) the precipitation of oxide species in the core upon fiber cooling, which results from partial dissolution of the cladding glass by the core melt, and (c) polycrystallinity; all of which lead to scattering and increased transmission losses. This dissertation systematically studies each of these effects and develops both a fundamental scientific understanding of and practical engineering methods for reducing their impact. With respect to the thermal expansion mismatch and, in part, the dissolution of oxides, for the first time to our knowledge, oxide and non-oxide glass compositions are developed for a series of semiconductor cores based on two main design criteria: (1) matching the thermal expansion coefficient between semiconductor core and glass cladding to minimize cracking and (2) matching the viscosity-temperature dependences, such that the cladding glass draws into fiber at a temperature slightly above the melting point of the semiconductor in order to minimize dissolution and improve the fiber draw process. The x[Na 2O:Al2O3] + (100 - 2x)SiO2 glass compositional family was selected due to the ability to tailor the glass properties to match the aforementioned targets through slight variations in composition and adjusting the ratios of bridging and non-bridging oxygen

  3. Evaluation of the heat-storage capability of shallow aquifers using active heat tracer tests and Fiber-Optics Distributed-Temperature-Sensing

    Science.gov (United States)

    Suibert Oskar Seibertz, Klodwig; Chirila, Marian Andrei; Bumberger, Jan; Dietrich, Peter; Vienken, Thomas

    2015-04-01

    In the course of the energy transition, geothermal energy storage and heat generation and cooling have proven to be environmental friendly alternatives to conventional energy. However, to ensure sustain usage, the heat transport behavior of aquifers and its distribution has to be studied. A tool to achieve this is the active heat tracer test, eg. Leaf et al. (2012). If active heat tracer tests are combined with in aquifer heat testing via electric heating-cables, eg. Liu et al. (2013), it is possible to observe heat transport and temperature signal decay without disturbing the original pressure field within the aquifer. In this field study a two channel High-Resolution-Fiber-Optic-Distributed-Temperature-Sensing and Pt100 were used to measure temperature signals within in two wells of 1.4 m distance, where the temperature difference was generated using a self regulating heating cable in the upstream well. High resolution Distributed-Temperature-Sensing measurements were achieved by coiling the fiber around screened plastic tubes. The upstream well was also used to observe heating (Δ Tmax approx. 24K) and temperature signal decay, while the downstream well was used to observe heat transport between both wells. The data was analyzed and compared to thermal conductivity of soil samples and Direct-Push (DP) Electrical-Conductivity-Logging and DP Hydraulic-Profiling results. The results show good agreement between DP data and temperature measurements proving the active heat tracer test is a suitable tool for providing reliable information on aquifer heat-storage capability. References Leaf, A.T., Hart, D.J., Bahr, J.M.: Active Thermal Tracer Tests for Improved Hydrostratigraphic Characterization. Ground Water, vol. 50, 2012 Liu, G., Knobbe, S., Butler, J.J.Jr.: Resolving centimeter-scale flows in aquifers and their hydrostratigraphic controls. Geophysical Research Letters, vol. 40, 2013

  4. All-fiber hybrid photon-plasmon circuits: integrating nanowire plasmonics with fiber optics.

    Science.gov (United States)

    Li, Xiyuan; Li, Wei; Guo, Xin; Lou, Jingyi; Tong, Limin

    2013-07-01

    We demonstrate all-fiber hybrid photon-plasmon circuits by integrating Ag nanowires with optical fibers. Relying on near-field coupling, we realize a photon-to-plasmon conversion efficiency up to 92% in a fiber-based nanowire plasmonic probe. Around optical communication band, we assemble an all-fiber resonator and a Mach-Zehnder interferometer (MZI) with Q-factor of 6 × 10(6) and extinction ratio up to 30 dB, respectively. Using the MZI, we demonstrate fiber-compatible plasmonic sensing with high sensitivity and low optical power.

  5. Single-end simultaneous temperature and strain sensing techniques based on Brillouin optical time domain reflectometry in few-mode fibers.

    Science.gov (United States)

    Weng, Yi; Ip, Ezra; Pan, Zhongqi; Wang, Ting

    2015-04-01

    Recently there is a growing interest in developing few-mode fiber (FMF) based distributed sensors, which can attain higher spatial resolution and sensitivity compared with the conventional single-mode approaches. However, current techniques require two lightwaves injected into both ends of FMF, resulting in their complicated setup and high cost, which causes a big issue for geotechnical and petroleum applications. In this paper, we present a single-end FMF-based distributed sensing system that allows simultaneous temperature and strain measurement by Brillouin optical time-domain reflectometry (BOTDR) and heterodyne detection. Theoretical analysis and experimental assessment of multi-parameter discriminative measurement techniques applied to distributed FMF sensors are presented. Experimental results confirm that FM-BOTDR has similar performance with two-end methods such as FM-BOTDA, but with simpler setup and lower cost. The temperature-induced expansion strain (TIES) in response to different modes is discussed as well. Furthermore, we optimized the FMF design by exploiting modal profile and doping concentration, which indicates up to fivefold enhancement in measurement accuracy. This novel distributed FM-sensing system endows with good sensitivity characteristics and can prevent catastrophic failure in many applications. PMID:25968738

  6. A phase mask fiber grating and sensing applications

    Directory of Open Access Journals (Sweden)

    Preecha P. Yupapin

    2003-09-01

    Full Text Available This paper presents an investigation of a fabricated fiber grating device characteristics and its applications, using a phase mask writing technique. The use of a most common UV phase laser (KrF eximer laser, with high intensity light source was focussed to the phase mask for writing on a fiber optic sample. The device (i.e. grating characteristic especially, in sensing application, was investigated. The possibility of using such device for temperature and strain sensors is discussed.

  7. An Optical Fiber Viscometer Based on Long-Period Fiber Grating Technology and Capillary Tube Mechanism

    OpenAIRE

    Jian-Neng Wang; Jaw-Luen Tang

    2010-01-01

    This work addresses the development and assessment of a fiber optical viscometer using a simple and low-cost long-period fiber grating (LPFG) level sensor and a capillary tube mechanism. Previous studies of optical viscosity sensors were conducted by using different optical sensing methods. The proposed optical viscometer consists of an LPFG sensor, a temperature-controlled chamber, and a cone-shaped reservoir where gravitational force could cause fluid to flow through the capillary tube. We ...

  8. Sensing via optical interference

    Directory of Open Access Journals (Sweden)

    Ryan C. Bailey

    2005-04-01

    Full Text Available Chemical and biological sensing are problems of tremendous contemporary technological importance in multiple regulatory and human health contexts, including environmental monitoring, water quality assurance, workplace air quality assessment, food quality control, many aspects of biodiagnostics, and, of course, homeland security. Frequently, what is needed, or at least wanted, are sensors that are simultaneously cheap, fast, reliable, selective, sensitive, robust, and easy to use. Unfortunately, these are often conflicting requirements. Over the past few years, however, a number of promising ideas based on optical interference effects have emerged. Each is based to some extent on advances in the design and fabrication of functional materials. Generally, the advances are of two kinds: chemo- and bio-selective recognition and binding, and efficient methods for micropatterning or microstructuring.

  9. Characteristics of Smart Concrete with Fiber Optical Bragg Grating Sensor

    Institute of Scientific and Technical Information of China (English)

    XIN Si-jin; JIANG De-sheng; LIANG Lei; Luo Pei; ZUO Jun; NAN Qiu-ming; CHEN Da-xiong

    2004-01-01

    Based on the advantages of the fiber Bragg grating sensing technology, this paper presents a principle of a novel smart concrete with fiber optical Bragg grating sensor, analyses the theory and characteristics,illustrates the key technology and method to make the fiber Bragg grating sensor for the smart concrete, and proves the feasibility with experiments. The results indicate that the smart concrete with fiber Bragg grating sensors is feasible in the structure monitoring and damage diagnosing in the long run.

  10. Optical coatings for fiber lasers

    Institute of Scientific and Technical Information of China (English)

    HONG Dong-mei; ZHU Zhen; YUE Wei

    2005-01-01

    Fiber laser is the future development direction for the high energy lasers. This paper describs two kinds of optical coatings for fiber laser, including long and short wave pass filters. The one characteristic of fiber laser coatings lies in that coatings should separate two closely wavelength light including laser pump wavelength (980 nm) and laser irradiation wavelength(1 050~1 100 nm). At the same time, the coatings should have high laser damage threshold.

  11. Polymer optical fiber bragg grating sensors

    DEFF Research Database (Denmark)

    Stefani, Alessio; Yuan, Scott Wu; Andresen, Søren;

    2010-01-01

    Fiber-optical accelerometers based on polymer optical fiber Bragg gratings are reported. We have written fiber Bragg gratings for 1550 nm and 850 nm operations, characterized their temperature and strain response, and tested their performance in a prototype accelerometer....

  12. Fiber Optics: A Bright Future.

    Science.gov (United States)

    Rice, James, Jr.

    1980-01-01

    Presents an overview of the impact of fiber optics on telecommunications and its application to information processing and library services, including information retrieval, news services, remote transmission of library services, and library networking. (RAA)

  13. Fiber optic pressure sensors for nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Hashemian, H.M.; Black, C.L. [Analysis and Measurement Services Corp., Knoxville, TN (United States)

    1995-04-01

    In the last few years, the nuclear industry has experienced some problems with the performance of pressure transmitters and has been interested in new sensors based on new technologies. Fiber optic pressure sensors offer the potential to improve on or overcome some of the limitations of existing pressure sensors. Up to now, research has been motivated towards development and refinement of fiber optic sensing technology. In most applications, reliability studies and failure mode analyses remain to be exhaustively conducted. Fiber optic sensors have currently penetrated certain cutting edge markets where they possess necessary inherent advantages over other existing technologies. In these markets (e.g. biomedical, aerospace, automotive, and petrochemical), fiber optic sensors are able to perform measurements for which no alternate sensor previously existed. Fiber optic sensing technology has not yet been fully adopted into the mainstream sensing market. This may be due to not only the current premium price of fiber optic sensors, but also the lack of characterization of their possible performance disadvantages. In other words, in conservative industries, the known disadvantages of conventional sensors are sometimes preferable to unknown or not fully characterized (but potentially fewer and less critical) disadvantages of fiber optic sensors. A six-month feasibility study has been initiated under the auspices of the US Nuclear Regulatory Commission (NRC) to assess the performance and reliability of existing fiber optic pressure sensors for use in nuclear power plants. This assessment will include establishment of the state of the art in fiber optic pressure sensing, characterization of the reliability of fiber optic pressure sensors, and determination of the strengths and limitations of these sensors for nuclear safety-related services.

  14. Small Business Innovations (Fiber Optics)

    Science.gov (United States)

    1991-01-01

    Foster-Miller, Inc. Waltham, MA developed the In-Situ Fiber Optic Polymer Reaction Monitor which could lead to higher yields and lower costs in complex composite manufacturing. The monitor, developed under a Small Business Innovation Research (SBIR) contract with Langley Research Center, uses an infrared, fiber optic sensor to track the molecular vibrational characteristics of a composite part while it is being cured. It is the first analytical system capable of directly measuring the chemistry of advanced composite materials.

  15. Achromatic optical diode in fiber optics

    CERN Document Server

    Berent, Michal; Vitanov, Nikolay V

    2013-01-01

    We propose a broadband optical diode, which is composed of one achromatic reciprocal quarter-wave plate and one non-reciprocal quarter-wave plate, both placed between two crossed polarizers. The presented design of achromatic wave plates relies on an adiabatic evolution of the Stokes vector, thus, the scheme is robust and efficient. The possible simple implementation using fiber optics is suggested.

  16. Efficient fiber-optical interface for nanophotonic devices

    CERN Document Server

    Tiecke, T G; Thompson, J D; Peyronel, T; de Leon, N P; Vuletić, V; Lukin, M D

    2014-01-01

    We demonstrate a method for efficient coupling of guided light from a single mode optical fiber to nanophotonic devices. Our approach makes use of single-sided conical tapered optical fibers that are evanescently coupled over the last ~10 um to a nanophotonic waveguide. By means of adiabatic mode transfer using a properly chosen taper, single-mode fiber-waveguide coupling efficiencies as high as 97(1)% are achieved. Efficient coupling is obtained for a wide range of device geometries which are either singly-clamped on a chip or attached to the fiber, demonstrating a promising approach for integrated nanophotonic circuits, quantum optical and nanoscale sensing applications.

  17. Networking of optical fiber sensors for extreme environments

    Science.gov (United States)

    Peters, Kara

    2016-04-01

    One of the major benefits of optical fiber sensors for applications to structural health monitoring and other structural measurements is their inherent multiplexing capabilities, meaning that a large number of sensing locations can be achieved with a single optical fiber. It has been well demonstrated that point wise sensors can be multiplexed to form sensor networks or optical fibers integrated with distributed sensing techniques. The spacing between sensing locations can also be tuned to match different length scales of interest. This article presents an overview of directions to adapt optical fiber sensor networking techniques into new applications where limitations such as available power or requirements for high data acquisition speeds are a driving factor. In particular, the trade-off between high fidelity sensor information vs. rapid signal processing or data acquisition is discussed.

  18. Fabrication and characterization of fiber optical components for application in guiding, sensing and molding of THz and mid-IR radiation

    Science.gov (United States)

    Mazhorova, Anna

    lowest absorption loss occurs in dry gases, an efficient waveguide design must maximize the fraction of power guided in the gas. Different types of THz waveguides have been proposed based on this concept including a subwavelength waveguide featuring a core with a size much smaller than the wavelength of light in which a large fraction of the guided light is found outside of the lossy core region. A practical design of such a waveguide was recently proposed in our research group and presents a subwavelength fiber suspended on thin bridges in the middle of a larger protective tube. Large channels formed by the bridges and a tube make a convenient opto-microfluidic system that is easy to fill with liquid analytes or purge with dry gases. Particularly, the THz subwavelength waveguide used in our experiments features a 150 µm core fiber suspended by three 20 µm-thick bridges in the center of a 5.1 mm diameter tube of 4 cm in length. This waveguide design presents several important advantages for bio-sensing applications. First, the waveguide structure allows direct and convenient access to the fiber core and to the evanescent wave guided around it. Second, the outer cladding effectively isolates the core-guided mode from the surrounding environment, (e.g. fiber holders), thereby preventing the undesirable external perturbations of the terahertz signal. Finally, in Chapter 4, low-loss chalcogenide capillary-based waveguides that operate both in the mid-IR and THz spectral ranges are investigated. Chalcogenide glasses have attracted strong interest in a view of optical applications in the near-IR and mid-IR spectral ranges (1-14 µm) due to their relatively low losses and high nonlinearities. Furthermore, chalcogenide glass-based microstructured fibers open many interesting possibilities for a large number of applications in the mid-IR spectral range, where applications in optical sensing, supercontinuum generation and single-mode propagation of IR light, transmission of the

  19. Optimize Etching Based Single Mode Fiber Optic Temperature Sensor

    Directory of Open Access Journals (Sweden)

    Ajay Kumar

    2014-02-01

    Full Text Available This paper presents a description of etching process for fabrication single mode optical fiber sensors. The process of fabrication demonstrates an optimized etching based method to fabricate single mode fiber (SMF optic sensors in specified constant time and temperature. We propose a single mode optical fiber based temperature sensor, where the temperature sensing region is obtained by etching its cladding diameter over small length to a critical value. It is observed that the light transmission through etched fiber at 1550 nm wavelength optical source becomes highly temperature sensitive, compared to the temperature insensitive behavior observed in un-etched fiber for the range on 30ºC to 100ºC at 1550 nm. The sensor response under temperature cycling is repeatable and, proposed to be useful for low frequency analogue signal transmission over optical fiber by means of inline thermal modulation approach.

  20. Utilization of Infrared Fiber Optic in the Automotive Industry

    Science.gov (United States)

    Tucker, Dennis S.; Brantley, Lott W. (Technical Monitor)

    2001-01-01

    Fiber optics are finding a place in the automotive industry. Illumination is the primary application today. Soon, however, fiber optics will be used for data communications and sensing applications. Silica fiber optics and plastic fibers are sufficient for illumination and communication applications however, sensing applications involving high temperature measurement and remote gas analysis would benefit from the use of infrared fiber optics. Chalcogonide and heavy metal fluoride glass optical fibers are two good candidates for these applications. Heavy metal fluoride optical fibers are being investigated by NASA for applications requiring transmission in the infrared portion of the electromagnetic spectrum. Zirconium-Barium-Lanthanum-Aluminum-Sodium-Fluoride (ZBLAN) is one such material which has been investigated. This material has a theoretical attenuation coefficient 100 times lower than that of silica and transmits into the mid-IR. However, the measured attenuation coefficient is higher than silica due to impurities and crystallization. Impurities can be taken care of by utilizing cleaner experimental protocol. It has been found that crystallization can be suppressed by processing in reduced gravity. Fibers processed in reduced gravity on the KC135 reduced gravity aircraft were found to be free of crystals while those processed on the ground were found to have crystals. These results will be presented along with plans for producing continuous lengths of ZBLAN optical fiber on board the International Space Station.

  1. Robust Mapping of Incoherent Fiber-Optic Bundles

    Science.gov (United States)

    Roberts, Harry E.; Deason, Brent E.; DePlachett, Charles P.; Pilgrim, Robert A.; Sanford, Harold S.

    2007-01-01

    A method and apparatus for mapping between the positions of fibers at opposite ends of incoherent fiber-optic bundles have been invented to enable the use of such bundles to transmit images in visible or infrared light. The method is robust in the sense that it provides useful mapping even for a bundle that contains thousands of narrow, irregularly packed fibers, some of which may be defective. In a coherent fiber-optic bundle, the input and output ends of each fiber lie at identical positions in the input and output planes; therefore, the bundle can be used to transmit images without further modification. Unfortunately, the fabrication of coherent fiber-optic bundles is too labor-intensive and expensive for many applications. An incoherent fiber-optic bundle can be fabricated more easily and at lower cost, but it produces a scrambled image because the position of the end of each fiber in the input plane is generally different from the end of the same fiber in the output plane. However, the image transmitted by an incoherent fiber-optic bundle can be unscrambled (or, from a different perspective, decoded) by digital processing of the output image if the mapping between the input and output fiber-end positions is known. Thus, the present invention enables the use of relatively inexpensive fiber-optic bundles to transmit images.

  2. Optical Fiber Sensors Based on Nanoparticle-Embedded Coatings

    Directory of Open Access Journals (Sweden)

    Aitor Urrutia

    2015-01-01

    Full Text Available The use of nanoparticles (NPs in scientific applications has attracted the attention of many researchers in the last few years. The use of NPs can help researchers to tune the physical characteristics of the sensing coating (thickness, roughness, specific area, refractive index, etc. leading to enhanced sensors with response time or sensitivity better than traditional sensing coatings. Additionally, NPs also offer other special properties that depend on their nanometric size, and this is also a source of new sensing applications. This review focuses on the current status of research in the use of NPs within coatings in optical fiber sensing. Most used sensing principles in fiber optics are briefly described and classified into several groups: absorbance-based sensors, interferometric sensors, fluorescence-based sensors, fiber grating sensors, and resonance-based sensors, among others. For each sensor group, specific examples of the utilization of NP-embedded coatings in their sensing structure are reported.

  3. Monolithic fiber optic sensor assembly

    Energy Technology Data Exchange (ETDEWEB)

    Sanders, Scott

    2015-02-10

    A remote sensor element for spectrographic measurements employs a monolithic assembly of one or two fiber optics to two optical elements separated by a supporting structure to allow the flow of gases or particulates therebetween. In a preferred embodiment, the sensor element components are fused ceramic to resist high temperatures and failure from large temperature changes.

  4. Optical Measurement Techniques for Optical Fiber and Waveguide Devices

    Institute of Scientific and Technical Information of China (English)

    D.Y.; Kim; Y.; Park; N.H.; Seong; Y.C.Youk; J.Y.; Lee; S.; Moon; I.H.; Shin; H.S.; Ryu

    2003-01-01

    We describe three major optical characterization methods for fiber and fiber devices. A simple servo controlled scanning fiber-optic confocal microscope is proposed for determining the refractive index profile of an optical fiber. To measure the chromatic dispersion of a short length fiber a Mach-Zehnder fiber interferometer with a novel interferometric distance meter is introduced. At the end, a tomographic method is demonstrated for determining the 2-D stress profile of a fiber.

  5. Multifunctional optical system-on-a-chip for heterogeneous fiber optic sensor networks

    Science.gov (United States)

    Yu, Miao; Pang, Cheng; Gupta, Ashwani

    2015-08-01

    In this article, we review our recent progress on the development of a multifunctional optical system-on-a-chip platform, which can be used for achieving heterogeneous wireless fiber optical sensor networks. A multifunctional optical sensor platform based on the micro-electromechanical systems (MEMS) technology is developed. The key component of the multifunctional optical sensor platform is a MEMS based tunable Fabry-Pérot (FP) filter, which can be used as a phase modulator or a wavelength tuning device in a multifunctional optical sensing system. Mechanics model of the FP filter and optics model of the multifunctional optical sensing system are developed to facilitate the design of the filter. The MEMS FP filter is implemented in a multifunctional optical sensing system including both Fabry-Perot interferometer based sensors and Fiber Bragg grating sensors. The experimental results indicate that this large dynamic range tunable filter can enable high performance heterogeneous optical sensing for many applications.

  6. FIBER-OPTIC GYROSCOPES BASED ON PHOTONIC-CRYSTAL FIBERS

    OpenAIRE

    Haider, Ali

    2015-01-01

    Over the last few decades optical fibers have been widely deployed in navigation industries owing to their special performance as the best light guidance. Fiber-optic gyroscope is one of the applications of optical fibers dependent mainly on the Sagnac effect. It is of important applications in the field of space navigation. In the Fiber-optic gyroscope, an optical fiber is used as the medium of propagation for the light. A long fiber cable is winded into loops in order to increase the effect...

  7. Fiber optic fire detection technology

    International Nuclear Information System (INIS)

    Electrostatic application of paint was, and still is, the most technically feasible method of reducing VOC (volatile organic compounds) emissions, while reducing the cost to apply the coatings. Prior to the use of electrostatics, only two sides of the traditional fire triangle were normally present in the booth, fuel (solvent), and oxygen (air). Now the third leg (the ignition source) was present at virtually all times during the production operation in the form of the electrostatic charge and the resulting energy in the system. The introduction of fiber optics into the field of fire detection was for specific application to the electrostatic painting industry, but specifically, robots used in the application of electrostatic painting in the automotive industry. The use of fiber optics in this hazard provided detection for locations that have been previously prohibited or inaccessible with the traditional fire detection systems. The fiber optic technology that has been adapted to the field of fire detection operates on the principle of transmission of photons through a light guide (optic fiber). When the light guide is subjected to heat, the cladding on the light guide melts away from the core and allows the light (photons) to escape. The controller, which contains the emitter and receiver is set-up to distinguish between partial loss of light and a total loss of light. Glass optical fibers carrying light offer distinct advantages over wires or coaxial cables carrying electricity as a transmission media. The uses of fiber optic detection will be expanded in the near future into such areas as aircraft, cable trays and long conveyor runs because fiber optics can carry more information and deliver it with greater clarity over longer distances with total immunity to all kinds of electrical interference

  8. Fiber Laser Based Multiplexed Sensing System

    Institute of Scientific and Technical Information of China (English)

    Jian-Hua Luo; Bo Liu; Hai-Bin Zhou; Hao Zhang; Shao-Lin Yan

    2008-01-01

    A laser sensing system based on beat frequency demodulation is proposed. The sensor uses a single-longitudinal-mode distributed Bragg reflector (DBR) fiber laser as a sensing element. This laser sensor has great multiplexing capability due to its wide free spectral range. Wavelength-division-multiplex (WDM) and frequency-division-multiplex (FDM) techniques are studied. The sensing system has high sensitivity and multiplexing channels.

  9. Distributed Fiber-Optic Sensors for Vibration Detection.

    Science.gov (United States)

    Liu, Xin; Jin, Baoquan; Bai, Qing; Wang, Yu; Wang, Dong; Wang, Yuncai

    2016-01-01

    Distributed fiber-optic vibration sensors receive extensive investigation and play a significant role in the sensor panorama. Optical parameters such as light intensity, phase, polarization state, or light frequency will change when external vibration is applied on the sensing fiber. In this paper, various technologies of distributed fiber-optic vibration sensing are reviewed, from interferometric sensing technology, such as Sagnac, Mach-Zehnder, and Michelson, to backscattering-based sensing technology, such as phase-sensitive optical time domain reflectometer, polarization-optical time domain reflectometer, optical frequency domain reflectometer, as well as some combinations of interferometric and backscattering-based techniques. Their operation principles are presented and recent research efforts are also included. Finally, the applications of distributed fiber-optic vibration sensors are summarized, which mainly include structural health monitoring and perimeter security, etc. Overall, distributed fiber-optic vibration sensors possess the advantages of large-scale monitoring, good concealment, excellent flexibility, and immunity to electromagnetic interference, and thus show considerable potential for a variety of practical applications. PMID:27472334

  10. Surface Plasmon Resonance Sensors Based on Polymer Optical Fiber

    Institute of Scientific and Technical Information of China (English)

    Rong-Sheng Zheng; Yong-Hua Lu; Zhi-Guo Xie; Jun Tao; Kai-Qun Lin; Hai Ming

    2008-01-01

    Surface Plasmon Resonance (SPR) is a powerful technique for directly sensing in biological studies, chemical detection and environmental pollution monitoring. In this paper, we present polymer optical fiber application in SPR sensors, including wavelength interrogation surface enhanced Raman scattering SPR sensor and surface enhanced Raman scattering (SERS) probe.Long-period fiber gratings are fabricated on single mode polymer optical fiber (POF) with 120 μm period and 50% duty cycle. The polarization characteristic of this kind of birefringent grating is studied. Theoretical analysis shows it will be advantageous in SPR sensing applications.

  11. Magnetic field sensing based on magnetic-fluid-clad fiber-optic structure with taper-like and lateral-offset fusion splicing.

    Science.gov (United States)

    Dong, Shaohua; Pu, Shengli; Wang, Haotian

    2014-08-11

    A kind of magnetic field sensor composed of magnetic fluid surrounding a segment of singlemode fiber is proposed. The taper-like and lateral-offset fusion splicing techniques are employed. The sensing principle is based on cladding mode interference. The interference valley wavelength or transmission loss of the sensing structure is sensitive to the external magnetic field, which is utilized for magnetic field sensing. The linear response regions are obtained in the range of 38-225 Oe and 250-475 Oe. For the valley-wavelength-shift-type sensing, the sensitivities are 14.1 pm/Oe and 26 pm/Oe at low and high field ranges, respectively. For the transmission-loss-variation-type sensing, the sensitivity of -0.024 dB/Oe is achieved for the magnetic field strength ranging from 250 to 475 Oe. PMID:25320997

  12. Novel insights into the dynamics of cold-air drainage and pooling on a gentle slope from fiber-optic distributed temperature sensing

    Science.gov (United States)

    Pfister, Lena; Sigmund, Armin; Olesch, Johannes; Thomas, Christoph

    2016-04-01

    Urban climate can benefit from cold-air drainage as it may help alleviate the urban heat island. In contrast, stable cold-air pools can damage plants especially in rural areas. In this study, we examined the dynamics of cold-air drainage and pooling in a peri-urban setting over a period of 47 days along a 170 m long slope with an inclination of 1.3° located in the Ecological Botany Gardens of the University of Bayreuth. Air and soil temperatures were measured using distributed temperature sensing of an 2-dimensional fiber-optic array at six heights (-2 cm to 100 cm) along the slope sampling every 1 min and every 1 m. Ancillary measurements of winds, turbulence intensity and momentum exchange were collected using two ultrasonic anemometers installed at 0.1 m and 17 m height at the center of the transect. We hypothesized that cold-air drainage, here defined as a gravity-driven density flow near the bottom originating from local radiative cooling of the surface, is decoupled from non-local flows and can thus be predicted from the local topography. The nocturnal data were stratified by classes of longwave radiation balance, wind speed, and wind direction at 0.1 m agl. The four most abundant classes were tested further for decoupling of wind velocities and directions between 17 and 0.1 m. We further computed the vertical and horizontal temperature perturbations of the fiber-optic array as evaluated for these cases, as well as subject the temperature data to a multiresolution decomposition to investigate the spatial two-point correlation coefficient along the transect. Finally, the cold pool intensity was calculated. The results revealed none of the four most abundant classes followed classical textbook knowledge of locally produced cold-air drainage. Instead, we found that the near-surface flow was strongly forced by two possibly competing non-local flow modes. The first mode caused weak (depression the Botanical Gardens are located in. Here, the deeper cold

  13. Fiber-diffraction Interferometer using Coherent Fiber Optic Taper

    OpenAIRE

    Kihm, Hagyong; Lee, Yun-Woo

    2010-01-01

    We present a fiber-diffraction interferometer using a coherent fiber optic taper for optical testing in an uncontrolled environment. We use a coherent fiber optic taper and a single-mode fiber having thermally-expanded core. Part of the measurement wave coming from a test target is condensed through a fiber optic taper and spatially filtered from a single-mode fiber to be reference wave. Vibration of the cavity between the target and the interferometer probe is common to both reference and me...

  14. Multimode optical fiber based spectrometers

    CERN Document Server

    Redding, Brandon; Cao, Hui

    2013-01-01

    A standard multimode optical fiber can be used as a general purpose spectrometer after calibrating the wavelength dependent speckle patterns produced by interference between the guided modes of the fiber. A transmission matrix was used to store the calibration data and a robust algorithm was developed to reconstruct an arbitrary input spectrum in the presence of experimental noise. We demonstrate that a 20 meter long fiber can resolve two laser lines separated by only 8 pm. At the other extreme, we show that a 2 centimeter long fiber can measure a broadband continuous spectrum generated from a supercontinuum source. We investigate the effect of the fiber geometry on the spectral resolution and bandwidth, and also discuss the additional limitation on the bandwidth imposed by speckle contrast reduction when measuring dense spectra. Finally, we demonstrate a method to reduce the spectrum reconstruction error and increase the bandwidth by separately imaging the speckle patterns of orthogonal polarizations. The mu...

  15. Shaping of Looped Miniaturized Chalcogenide Fiber Sensing Heads for Mid-Infrared Sensing

    Directory of Open Access Journals (Sweden)

    Patrick Houizot

    2014-09-01

    Full Text Available Chalcogenide glass fibers are promising photonic tools to develop Fiber Evanescent Wave Spectroscopy (FEWS optical sensors working in the mid-infrared region. Numerous pioneering works have already been carried out showing their efficiency, especially for bio-medical applications. Nevertheless, this technology remains confined to academic studies at the laboratory scale because chalcogenide glass fibers are difficult to shape to produce reliable, sensitive and compact sensors. In this paper, a new method for designing and fabricating a compact and robust sensing head with a selenide glass fiber is described. Compact looped sensing heads with diameter equal to 2 mm were thus shaped. This represents an outstanding achievement considering the brittleness of such uncoated fibers. FEWS experiments were implemented using alcoholic solutions as target samples showing that the sensitivity is higher than with the routinely used classical fiber. It is also shown that the best compromise in term of sensitivity is to fabricate a sensing head including two full loops. From a mechanical point of view, the breaking loads of the loop shaped head are also much higher than with classical fiber. Finally, this achievement paves the way for the use of mid-infrared technology during in situ and even in vivo medical operations. Indeed, is is now possible to slide a chalcogenide glass fiber in the operating channel of a standard 2.8 mm diameter catheter.

  16. Shaping of looped miniaturized chalcogenide fiber sensing heads for mid-infrared sensing.

    Science.gov (United States)

    Houizot, Patrick; Anne, Marie-Laure; Boussard-Plédel, Catherine; Loréal, Olivier; Tariel, Hugues; Lucas, Jacques; Bureau, Bruno

    2014-01-01

    Chalcogenide glass fibers are promising photonic tools to develop Fiber Evanescent Wave Spectroscopy (FEWS) optical sensors working in the mid-infrared region. Numerous pioneering works have already been carried out showing their efficiency, especially for bio-medical applications. Nevertheless, this technology remains confined to academic studies at the laboratory scale because chalcogenide glass fibers are difficult to shape to produce reliable, sensitive and compact sensors. In this paper, a new method for designing and fabricating a compact and robust sensing head with a selenide glass fiber is described. Compact looped sensing heads with diameter equal to 2 mm were thus shaped. This represents an outstanding achievement considering the brittleness of such uncoated fibers. FEWS experiments were implemented using alcoholic solutions as target samples showing that the sensitivity is higher than with the routinely used classical fiber. It is also shown that the best compromise in term of sensitivity is to fabricate a sensing head including two full loops. From a mechanical point of view, the breaking loads of the loop shaped head are also much higher than with classical fiber. Finally, this achievement paves the way for the use of mid-infrared technology during in situ and even in vivo medical operations. Indeed, is is now possible to slide a chalcogenide glass fiber in the operating channel of a standard 2.8 mm diameter catheter. PMID:25264953

  17. Optical fiber meta-tips

    Science.gov (United States)

    Principe, Maria; Micco, Alberto; Crescitelli, Alessio; Castaldi, Giuseppe; Consales, Marco; Esposito, Emanuela; La Ferrara, Vera; Galdi, Vincenzo; Cusano, Andrea

    2016-04-01

    We report on the first example of a "meta-tip" configuration that integrates a metasurface on the tip of an optical fiber. Our proposed design is based on an inverted-Babinet plasmonic metasurface obtained by patterning (via focused ion beam) a thin gold film deposited on the tip of an optical fiber, so as to realize an array of rectangular aperture nanoantennas with spatially modulated sizes. By properly tuning the resonances of the aperture nanoantennas, abrupt variations can be impressed in the field wavefront and polarization. We fabricated and characterized several proof-of-principle prototypes operating an near-infrared wavelengths, and implementing the beam-steering (with various angles) of the cross-polarized component, as well as the excitation of surface waves. Our results pave the way to the integration of the exceptional field-manipulation capabilities enabled by metasurfaces with the versatility and ubiquity of fiber-optics technological platforms.

  18. Damage monitoring and impact detection using optical fiber vibration sensors

    Science.gov (United States)

    Yang, Y. C.; Han, K. S.

    2002-06-01

    Intensity-based optical fiber vibrations sensors (OFVSs) are used in damage monitoring of fiber-reinforced plastics, in vibration sensing, and location of impacts. OFVSs were constructed by placing two cleaved fiber ends in a capillary tube. This sensor is able to monitor structural vibrations. For vibration sensing, the optical fiber sensor was mounted on the carbon fiber reinforced composite beam, and its response was investigated for free and forced vibration. For locating impact points, four OFVSs were placed at chosen positions and the different arrival times of impact-generated vibration signals were recorded. The impact location can be determined from these time delays. Indentation and tensile tests were performed with the measurement of the optical signal and acoustic emission (AE). The OFVSs accurately detected both free and forced vibration signals. Accurate locations of impact were determined on an acrylate plate. It was found that damage information, comparable in quality to AE data, could be obtained from the OFVS signals.

  19. Optical fiber-based photocathode

    Science.gov (United States)

    Cǎsǎndruc, Albert; Bücker, Robert; Kassier, Günther; Dwayne Miller, R. J.

    2016-08-01

    We present the design of a back-illuminated photocathode for electron diffraction experiments based on an optical fiber, and experimental characterization of emitted electron bunches. Excitation light is guided through the fiber into the experimental vacuum chamber, eliminating typical alignment difficulties between the emitter metal and the optical trigger and position instabilities, as well as providing reliable control of the laser spot size and profile. The in-vacuum fiber end is polished and coated with a 30 nm gold (Au) layer on top of 3 nm of chromium (Cr), which emits electrons by means of single-photon photoemission when femtosecond pulses in the near ultraviolet (257 nm) are fed into the fiber on the air side. The emission area can be adjusted to any value between a few nanometers (using tapered fibers) and the size of a multi-mode fiber core (100 μm or larger). In this proof-of-principle experiment, two different types of fibers were tested, with emission spot diameters of 50 μm and 100 μm, respectively. The normalized thermal electron beam emittance (TE) was measured by means of the aperture scan technique, and a TE of 4.0 π nm was measured for the smaller spot diameter. Straightforward enhancements to the concept allowed to demonstrate operation in an electric field environment of up to 7 MV/m.

  20. Adaptive holography for optical sensing applications

    Science.gov (United States)

    Residori, S.; Bortolozzo, U.; Peigné, A.; Molin, S.; Nouchi, P.; Dolfi, D.; Huignard, J. P.

    2016-03-01

    Adaptive holography is a promising method for high sensitivity phase modulation measurements in the presence of slow perturbations from the environment. The technique is based on the use of a nonlinear recombining medium, here an optically addressed spatial light modulator specifically realized to operate at 1.55 μm. Owing to the physical mechanisms involved, the interferometer adapts to slow phase variations within a range of 5-10 Hz, thus filtering out low frequency noise while transmitting higher frequency phase modulations. We present the basic principles of the adaptive interferometer and show that it can be used in association with a sensing fiber in order to detect phase modulations. Finally, a phase-OTDR architecture using the adaptive holographic interferometer is presented and shown to allows the detection of localized perturbations along the sensing fiber.

  1. Fiber Optic Particle Concentration Sensor

    Science.gov (United States)

    Boiarski, Anthony A.

    1986-01-01

    A particle concentration sensor would be useful in many industrial process monitoring applications where in situ measurements are required. These applications include determination of butterfat content of milk, percent insolubles in engine oil, and cell concentration in a bioreactor. A fiber optic probe was designed to measure particle concentration by monitoring the scattered light from the particle-light interaction at the end of a fiber-optic-based probe tip. Linear output was obtained from the sensor over a large range of particle loading for a suspension of 1.7 μm polystyrene microspheres in water and E. coli bacteria in a fermenter.

  2. Fiber Optic Temperature Sensor Based on Multimode Interference Effects

    Energy Technology Data Exchange (ETDEWEB)

    Aguilar-Soto, J G; Antonio-Lopez, J E; Sanchez-Mondragon, J J [Photonics and Optical Physics Laboratory, Optics Department, INAOE Apdo. Postal 51 and 216, Tonantzintla, Puebla 72000 (Mexico); May-Arrioja, D A, E-mail: darrioja@uat.edu.mx

    2011-01-01

    A novel fiber optic temperature sensor based on multimode interference was designed, fabricated and tested. The sensor is very simple and inexpensive since we only need to splice a section of multimode fiber between two single mode fibers. Using this device a sensing range of 25 deg. C to 375 deg. C is demonstrated. We should also highlight that due to the pass-band filter response of MMI devices, multiplexing is rather simple by just changing the length of the multimode section.

  3. Fiber optic gyro development at Fibernetics

    Science.gov (United States)

    Bergh, Ralph A.; Arnesen, Leif; Herdman, Craig

    2016-05-01

    Fiber optic gyroscope based inertial sensors are being used within increasingly severe environments, enabling unmanned systems to sense and navigate in areas where GPS satellite navigation is unavailable or jammed. A need exists for smaller, lighter, lower power inertial sensors for the most demanding land, sea, air, and space applications. Fibernetics is developing a family of inertial sensor systems based on our closed-loop navigation-grade fiber optic gyroscope (FOG). We are making use of the packaging flexibility of the fiber to create a navigation grade inertial measurement unit (IMU) (3 gyroscopes and 3 accelerometers) that has a volume of 102 cubic inches. We are also planning a gyrocompass and an inertial navigation system (INS) having roughly the same size. In this paper we provide an update on our development progress and describe our modulation scheme for the Sagnac interferometers. We also present a novel multiplexed design that efficiently delivers source light to each of the three detectors. In our future development section we discuss our work to improve FOG performance per unit volume, specifically detailing our focus in utilizing a multicore optical fiber.

  4. A fiber-optic current sensor for aerospace applications

    Science.gov (United States)

    Patterson, Richard L.; Rose, A. H.; Tang, D.; Day, G. W.

    1990-12-01

    A robust, accurate, broadband, alternating current sensor using fiber optics is being developed for space applications at power frequencies as high as 20 kHz. It can also be used in low and high voltage 60-Hz terrestrial power systems and in 400-Hz aircraft systems. It is intrinsically electromagnetic interference (EMI) immune and has the added benefit of excellent isolation. The sensor uses the Faraday effect in optical fiber and standard polarimetric measurements to sense electrical current. The primary component of the sensor is a specially treated coil of single-mode optical fiber, through which the current carrying conductor passes. Improved precision is accomplished by temperature compensation by means of signals from a novel fiber-optic temperature sensor embedded in the sensing head. The technology used in the sensor is examined and the results of precision tests conducted at various temperatures within the wide operating range are given. The results of early EMI tests are also given.

  5. Handbook of fiber optics theory and applications

    CERN Document Server

    Yeh, Chai

    2013-01-01

    Dr. Yeh supplies a firm theoretical foundation in such topics as propagation of light through fibers, fiber fabrication, loss mechanisms, and dispersion properties. He then expands from this into such practical areas as fiber splicing, measuring loss in fibers, fiber-based communications networks, remote fiber sensors, and integrated optics. Whether involved in fiber optics research, design, or practical implementation of systems, this handbook will be extremely useful.Key Features* Here is a comprehensive, ""one-stop"" reference with state-of-the-art information on fiber optics Included is da

  6. A Novel Design of Grooved Fibers for Fiber-Optic Localized Plasmon Resonance Biosensors

    Directory of Open Access Journals (Sweden)

    Lai-Kwan Chau

    2009-08-01

    Full Text Available Bio-molecular recognition is detected by the unique optical properties of self-assembled gold nanoparticles on the unclad portions of an optical fiber whose surfaces have been modified with a receptor. To enhance the performance of the sensing platform, the sensing element is integrated with a microfluidic chip to reduce sample and reagent volume, to shorten response time and analysis time, as well as to increase sensitivity. The main purpose of the present study is to design grooves on the optical fiber for the FO-LPR microfluidic chip and investigate the effect of the groove geometry on the biochemical binding kinetics through simulations. The optical fiber is designed and termed as U-type or D-type based on the shape of the grooves. The numerical results indicate that the design of the D-type fiber exhibits efficient performance on biochemical binding. The grooves designed on the optical fiber also induce chaotic advection to enhance the mixing in the microchannel. The mixing patterns indicate that D-type grooves enhance the mixing more effectively than U-type grooves. D-type fiber with six grooves is the optimum design according to the numerical results. The experimental results show that the D-type fiber could sustain larger elongation than the U-type fiber. Furthermore, this study successfully demonstrates the feasibility of fabricating the grooved optical fibers by the femtosecond laser, and making a transmission-based FO-LPR probe for chemical sensing. The sensor resolution of the sensor implementing the D-type fiber modified by gold nanoparticles was 4.1 × 10-7 RIU, which is much more sensitive than that of U-type optical fiber (1.8 × 10-3 RIU.

  7. Characterization of integrated fiber optic sensors in smart textiles

    Science.gov (United States)

    Yuan, Jianming; El-Sherif, Mahmoud A.; Khalil, Saif; Fairneny, James

    2004-03-01

    Smart textiles with integrated fiber optic sensors have been studied for various applications including in-situ measurement of load/deformation on the textiles. Two types of silica multimode optical fibers were successfully integrated into 4/4 Twill-woven and Plain-woven textiles along the warp direction of the textile structures for sensing of applied load conditions. The sensing mechanism is based on the MPD (Modal Power Distribution) technique, which employs the principle of intensity modulation based on modal power redistribution of the propagating light within multimode fibers caused by external perturbations. In the presence of transverse load applied to an integrated optical fiber, the redistribution of the modal power is an indication of the applied load. The spatial modal power redistribution was clearly recorded as a function of the optical intensity profile. Based on the uni-axial tensile test results, the relationship between the mechanical behavior of the textile and the output of the embedded fiber-optic sensor was established and understood. It is clearly demonstrated that the sensitivity and dynamic range of this type of intensity-based sensor is determined by the interaction between the fabric yarns and optical fibers, which are closely related with the textile structure and the type of optical fiber.

  8. Modeling Climate Change and Thermal Restoration Strategies in a Northern California Stream Using HEAT SOURCE and Distributed Temperature Sensing Fiber-optics

    Science.gov (United States)

    Bond, R. M.; Stubblefield, A. P.

    2013-12-01

    Land uses which modify stream channel structure and riparian vegetation can alter the mechanisms of heat transfer within a stream. Stream temperature is a crucial abiotic factor which governs aquatic biota quantity, distribution, and overall health. The IPCC has projected stream temperature to increase with changes in global climate due to elevated air temperature and changes in precipitation patterns. Stream temperature modeling can investigate current and future stream temperature conditions. Heat Source, developed by Oregon Department of Environmental Quality (DEQ), was applied to a one kilometer section of the North Fork of the Salmon River, a tributary of the Klamath River, northern California, USA. Heat Source accounts for internal and external thermal energy transfers to predict stream temperature at point locations. Inputs include meteorologic, geomorphologic, hydrologic and topographic measurements from the study site. The Salmon River watershed has a legacy of historic hydraulic gold mining which has changed channel morphology and created extensive denuded gravel bars. The Salmon River is listed as thermally impaired under California's List of Impaired Water Bodies 303(d) with mainstem temperature commonly exceeding salmonid temperature thresholds. The objective of this research was to utilize Heat Source to predict effects of climate change, riparian management, and channel geometry on stream temperature. This study employed Distributed Temperature Sensing fiber-optics (DTS) to detect stream heating and cooling at one meter resolution which was then used to calibrate Heat Source at the study reach. Predicted values closely matched DTS measurements reflecting shifting responses to air temperature, riparian vegetation distribution, and channel geometry conditions. Heat Source modeling of climate change scenarios using forecasted 2049 and 2099 elevated air temperatures are presented. Furthermore, temperature impacts of increased riparian vegetation density

  9. Feasibility of giant fiber-optic gyroscopes

    OpenAIRE

    Schiller, Stephan

    2013-01-01

    The availability of long-distance, underground fiber-optic links opens a perspective of implementing interferometric fiber-optic gyroscopes embracing very large areas. We discuss the potential sensitivity, some disturbances and approaches to overcome them.

  10. Photonics and Fiber Optics Processor Lab

    Data.gov (United States)

    Federal Laboratory Consortium — The Photonics and Fiber Optics Processor Lab develops, tests and evaluates high speed fiber optic network components as well as network protocols. In addition, this...

  11. Optical Fiber Devices in WDM Networks

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    Crystal optics and fiber grating technology are two of the most important optical fiber device technologies. In this paper, we report several new devices developed in Accelink for WDM networks application.

  12. Fiber optic evanescent wave biosensor

    Science.gov (United States)

    Duveneck, Gert L.; Ehrat, Markus; Widmer, H. M.

    1991-09-01

    The role of modern analytical chemistry is not restricted to quality control and environmental surveillance, but has been extended to process control using on-line analytical techniques. Besides industrial applications, highly specific, ultra-sensitive biochemical analysis becomes increasingly important as a diagnostic tool, both in central clinical laboratories and in the doctor's office. Fiber optic sensor technology can fulfill many of the requirements for both types of applications. As an example, the experimental arrangement of a fiber optic sensor for biochemical affinity assays is presented. The evanescent electromagnetic field, associated with a light ray guided in an optical fiber, is used for the excitation of luminescence labels attached to the biomolecules in solution to be analyzed. Due to the small penetration depth of the evanescent field into the medium, the generation of luminescence is restricted to the close proximity of the fiber, where, e.g., the luminescent analyte molecules combine with their affinity partners, which are immobilized on the fiber. Both cw- and pulsed light excitation can be used in evanescent wave sensor technology, enabling the on-line observation of an affinity assay on a macroscopic time scale (seconds and minutes), as well as on a microscopic, molecular time scale (nanoseconds or microseconds).

  13. Design and fabrication of customized fiber gratings to improve the interrogation of optical fiber sensors

    OpenAIRE

    Ricchiuti, Amelia Lavinia

    2016-01-01

    [EN] Fiber grating sensors and devices have demonstrated outstanding capabilities in both telecommunications and sensing areas, due to their well-known advantageous characteristics. Therefore, one of the most important motivations lies in the potential of customized fiber gratings to be suitably employed for improving the interrogation process of optical fiber sensors and systems. This Ph.D. dissertation is focused on the study, design, fabrication and performance evaluation of customized...

  14. Development of a 2-Channel Embedded Infrared Fiber-Optic Temperature Sensor Using Silver Halide Optical Fibers

    Directory of Open Access Journals (Sweden)

    Bongsoo Lee

    2011-10-01

    Full Text Available A 2-channel embedded infrared fiber-optic temperature sensor was fabricated using two identical silver halide optical fibers for accurate thermometry without complicated calibration processes. In this study, we measured the output voltages of signal and reference probes according to temperature variation over a temperature range from 25 to 225 °C. To decide the temperature of the water, the difference between the amounts of infrared radiation emitted from the two temperature sensing probes was measured. The response time and the reproducibility of the fiber-optic temperature sensor were also obtained. Thermometry with the proposed sensor is immune to changes if parameters such as offset voltage, ambient temperature, and emissivity of any warm object. In particular, the temperature sensing probe with silver halide optical fibers can withstand a high temperature/pressure and water-chemistry environment. It is expected that the proposed sensor can be further developed to accurately monitor temperature in harsh environments.

  15. FIBER OPTIC LIGHTING SYSTEMS

    OpenAIRE

    Munir BATUR; Parali, Ufuk; Osman Nuri UCAN

    2013-01-01

    Recently there have been many important and valuable developments in the communication industry. The huge increase in the sound, data and visual communications has caused a parallel increase in the demand for systems with wider capacity, higher speed and higher quality. Communication systems that use light to transfer data are immensely increased. There have recently many systems in which glass or plastic fiber cables were developed for light wave to be transmitted from a source to a target p...

  16. Applications of fiber optics in physical protection

    International Nuclear Information System (INIS)

    The purpose of this NUREG is to provide technical information useful for the development of fiber-optic communications and intrusion detection subsystems relevant to physical protection. There are major sections on fiber-optic technology and applications. Other topics include fiber-optic system components and systems engineering. This document also contains a glossary, a list of standards and specifications, and a list of fiber-optic equipment vendors

  17. High pressure fiber optic sensor system

    Science.gov (United States)

    Guida, Renato; Xia, Hua; Lee, Boon K; Dekate, Sachin N

    2013-11-26

    The present application provides a fiber optic sensor system. The fiber optic sensor system may include a small diameter bellows, a large diameter bellows, and a fiber optic pressure sensor attached to the small diameter bellows. Contraction of the large diameter bellows under an applied pressure may cause the small diameter bellows to expand such that the fiber optic pressure sensor may measure the applied pressure.

  18. Catching Attention in Fiber Optics Class

    CERN Document Server

    Kezerashvili, G Ya

    2004-01-01

    Following a brief review on the history and the current development of fiber optics, the significance of teaching fiber optics for science and non-science major college students is addressed. Several experimental demonstrations designed to aid the teaching and learning process in fiber optics lectures are presented. Sample laboratory projects are also proposed to help the students to understand the physical principles of fiber optics.

  19. Fiber Optics: Deregulate and Deploy.

    Science.gov (United States)

    Suwinski, Jan H.

    1993-01-01

    Describes fiber optic technology, explains its use in education and commercial settings, and recommends regulations and legislation that will speed its use to create broadband information networks. Topics discussed include distance learning; interactive video; costs; and the roles of policy makers, lawmakers, public advocacy groups, and consumers.…

  20. Nonlinear fiber optics formerly quantum electronics

    CERN Document Server

    Agrawal, Govind

    1995-01-01

    The field of nonlinear fiber optics has grown substantially since the First Edition of Nonlinear Fiber Optics, published in 1989. Like the First Edition, this Second Edition is a comprehensive, tutorial, and up-to-date account of nonlinear optical phenomena in fiber optics. It synthesizes widely scattered research material and presents it in an accessible manner for students and researchers already engaged in or wishing to enter the field of nonlinear fiber optics. Particular attention is paid to the importance of nonlinear effects in the design of optical fiber communication systems. This is

  1. Recent Progress in Distributed Fiber Optic Sensors

    Directory of Open Access Journals (Sweden)

    Xiaoyi Bao

    2012-06-01

    Full Text Available Rayleigh, Brillouin and Raman scatterings in fibers result from the interaction of photons with local material characteristic features like density, temperature and strain. For example an acoustic/mechanical wave generates a dynamic density variation; such a variation may be affected by local temperature, strain, vibration and birefringence. By detecting changes in the amplitude, frequency and phase of light scattered along a fiber, one can realize a distributed fiber sensor for measuring localized temperature, strain, vibration and birefringence over lengths ranging from meters to one hundred kilometers. Such a measurement can be made in the time domain or frequency domain to resolve location information. With coherent detection of the scattered light one can observe changes in birefringence and beat length for fibers and devices. The progress on state of the art technology for sensing performance, in terms of spatial resolution and limitations on sensing length is reviewed. These distributed sensors can be used for disaster prevention in the civil structural monitoring of pipelines, bridges, dams and railroads. A sensor with centimeter spatial resolution and high precision measurement of temperature, strain, vibration and birefringence can find applications in aerospace smart structures, material processing, and the characterization of optical materials and devices.

  2. Recent progress in distributed fiber optic sensors.

    Science.gov (United States)

    Bao, Xiaoyi; Chen, Liang

    2012-01-01

    Rayleigh, Brillouin and Raman scatterings in fibers result from the interaction of photons with local material characteristic features like density, temperature and strain. For example an acoustic/mechanical wave generates a dynamic density variation; such a variation may be affected by local temperature, strain, vibration and birefringence. By detecting changes in the amplitude, frequency and phase of light scattered along a fiber, one can realize a distributed fiber sensor for measuring localized temperature, strain, vibration and birefringence over lengths ranging from meters to one hundred kilometers. Such a measurement can be made in the time domain or frequency domain to resolve location information. With coherent detection of the scattered light one can observe changes in birefringence and beat length for fibers and devices. The progress on state of the art technology for sensing performance, in terms of spatial resolution and limitations on sensing length is reviewed. These distributed sensors can be used for disaster prevention in the civil structural monitoring of pipelines, bridges, dams and railroads. A sensor with centimeter spatial resolution and high precision measurement of temperature, strain, vibration and birefringence can find applications in aerospace smart structures, material processing, and the characterization of optical materials and devices. PMID:23012508

  3. Development of a 2-Channel Embedded Infrared Fiber-Optic Temperature Sensor Using Silver Halide Optical Fibers

    OpenAIRE

    Bongsoo Lee; Byung Gi Park; Jang-Yeon Park; Ki-Tek Han; Jinsoo Moon; Wook Jae Yoo; Kyoung Won Jang; Jeong Ki Seo

    2011-01-01

    A 2-channel embedded infrared fiber-optic temperature sensor was fabricated using two identical silver halide optical fibers for accurate thermometry without complicated calibration processes. In this study, we measured the output voltages of signal and reference probes according to temperature variation over a temperature range from 25 to 225 °C. To decide the temperature of the water, the difference between the amounts of infrared radiation emitted from the two temperature sensing probes wa...

  4. Fiber optic hardware for transport aircraft

    Science.gov (United States)

    White, John A.

    1994-10-01

    Aircraft manufacturers are developing fiber optic technology to exploit the benefits in system performance and manufacturing cost reduction. The fiber optic systems have high bandwidths and exceptional Electromagnetic Interference immunity that exceeds all new aircraft design requirements. Additionally, aircraft manufacturers have shown production readiness of fiber optic systems and design feasibility.

  5. Career Directions--Fiber Optic Installer

    Science.gov (United States)

    Tech Directions, 2012

    2012-01-01

    Fiber-optic communication is a method of transmitting information from one place to another by sending pulses of light through an optical fiber that is roughly the diameter of a human hair. The light forms an electromagnetic carrier wave that is modulated to carry information. Each optical fiber is capable of carrying an enormous amount of…

  6. Crack monitoring capability of plastic optical fibers for concrete structures

    Science.gov (United States)

    Zhao, Jinlei; Bao, Tengfei; Chen, Rui

    2015-08-01

    Optical fibers have been widely used in structural health monitoring. Traditional silica fibers are easy to break in field applications due to their brittleness. Thus, silica fibers are proposed to be replaced by plastic optical fibers (POFs) in crack monitoring in this study. Moreover, considering the uncertainty of crack propagation direction in composite materials, the influence of the angles between fibers and cracks on the monitoring capability of plastic optical fibers is studied. A POF sensing device was designed and the relationship between light intensity loss and crack width under different fiber/crack angles was first measured through the device. Then, three-point bend tests were conducted on concrete beams. POFs were glued to the bottom surfaces of the beams and light intensity loss with crack width was measured. Experimental results showed that light intensity loss in plastic optical fibers increased with crack width increase. Therefore, application of plastic optical fibers in crack monitoring is feasible. Moreover, the results also showed that the sensitivity of the POF crack sensor decreased with the increase of angles between fibers and cracks.

  7. Highly sensitive and reconfigurable fiber optic current sensor by optical recirculating in a fiber loop.

    Science.gov (United States)

    Du, Jiangbing; Tao, Yemeng; Liu, Yinping; Ma, Lin; Zhang, Wenjia; He, Zuyuan

    2016-08-01

    An advanced fiber optic current sensor (FOCS) is proposed based on recirculating fiber loop architecture for significantly enhancing the current sensitivity. The recirculating loop is constructed by a 2X2 optical switch and the standard single mode fiber (SSMF) is used as the sensing head. The proposed FOCS is coupler-free with low insertion loss which results in a significantly improved current sensitivity. We experimentally obtained a sensitivity of 11.5 degrees/A for 1-Km SSMF FOCS and a sensitivity of 21.2 degrees/A for 500-m SSMF FOCS, both of which have been enhanced by more than ten times. The flexible switch control of recirculating can support the FOCS to work for different current scenarios with the same system and thus reconfigurable operation of the FOCS has been achieved. The significantly enhanced high sensitivity with reconfigurable operation capability makes the proposed FOCS a promising method for practical applications. PMID:27505765

  8. Fiber-optical microphones and accelerometers based on polymer optical fiber Bragg gratings

    DEFF Research Database (Denmark)

    Yuan, Scott Wu; Stefani, Alessio; Bang, Ole;

    2010-01-01

    Polymer optical fibers (POFs) are ideal for applications as the sensing element in fiber-optical microphones and accelerometers based on fiber Bragg gratings (FBGs) due to their reduced Young’s Modulus of 3.2GPa, compared to 72GPa of Silica. To maximize the sensitivity and the dynamic range...... of the device the outer diameter and the length of the sensing fiber segment should be as small as possible. To this end we have fabricated 3mm FBGs in single-mode step-index POFs of diameter 115 micron, using 325nm UV writing and a phase-mask technique. 6mm POF sections with FBGs in the center have been glued...... to standard Silica SMF28 fibers. These POF FBGs have been characterized in terms of temperature and strain to find operating regimes with no hysteresis. Commercial fast wavelength interrogators (KHz) are shown to be able to track the thin POF FBGs and they are finally applied in a prototype accelerometer...

  9. Magneto-Optic Field Coupling in Optical Fiber Bragg Gratings

    Science.gov (United States)

    Carman, Gregory P. (Inventor); Mohanchandra, Panduranga K. (Inventor); Emmons, Michael C. (Inventor); Richards, William Lance (Inventor)

    2016-01-01

    The invention is a magneto-optic coupled magnetic sensor that comprises a standard optical fiber Bragg grating system. The system includes an optical fiber with at least one Bragg grating therein. The optical fiber has at least an inner core and a cladding that surrounds the inner core. The optical fiber is part of an optical system that includes an interrogation device that provides a light wave through the optical fiber and a system to determine the change in the index of refraction of the optical fiber. The cladding of the optical fiber comprises at least a portion of which is made up of ferromagnetic particles so that the ferromagnetic particles are subject to the light wave provided by the interrogation system. When a magnetic field is present, the ferromagnetic particles change the optical properties of the sensor directly.

  10. Glass-clad semiconductor core optical fibers

    Science.gov (United States)

    Morris, Stephanie Lynn

    Glass-clad optical fibers comprising a crystalline semiconductor core have garnered considerable recent attention for their potential utility as novel waveguides for applications in nonlinear optics, sensing, power delivery, and biomedicine. As research into these fibers has progressed, it has become evident that excessive losses are limiting performance and so greater understanding of the underlying materials science, coupled with advances in fiber processing, is needed. More specifically, the semiconductor core fibers possess three performance-limiting characteristics that need to be addressed: (a) thermal expansion mismatches between crystalline core and glass cladding that lead to cracks, (b) the precipitation of oxide species in the core upon fiber cooling, which results from partial dissolution of the cladding glass by the core melt, and (c) polycrystallinity; all of which lead to scattering and increased transmission losses. This dissertation systematically studies each of these effects and develops both a fundamental scientific understanding of and practical engineering methods for reducing their impact. With respect to the thermal expansion mismatch and, in part, the dissolution of oxides, for the first time to our knowledge, oxide and non-oxide glass compositions are developed for a series of semiconductor cores based on two main design criteria: (1) matching the thermal expansion coefficient between semiconductor core and glass cladding to minimize cracking and (2) matching the viscosity-temperature dependences, such that the cladding glass draws into fiber at a temperature slightly above the melting point of the semiconductor in order to minimize dissolution and improve the fiber draw process. The x[Na 2O:Al2O3] + (100 - 2x)SiO2 glass compositional family was selected due to the ability to tailor the glass properties to match the aforementioned targets through slight variations in composition and adjusting the ratios of bridging and non-bridging oxygen

  11. Robust fiber-optic sensor networks

    OpenAIRE

    Pérez Herrera, Rosa Ana; Fernández Vallejo, Montserrat; López-Amo Sáinz, Manuel

    2012-01-01

    The ability to operate despite failure will become increasingly important as the use of optical sensor networks grows, and the amount of sensing information to be handled by a sensor network is increasing, especially for safety and security applications. In this review, the four categories of protection to allow service to be reestablished after a failure (dedicated/shared and line/path) are thoroughly discussed. This paper also presents an overview of the most representative robust fiber-opt...

  12. An encapsulated fiber optic fuel level sensor

    Science.gov (United States)

    Sengupta, D.; Sai Shankar, M.; Saidi Reddy, P.; Sai Prasad, R. L. N.; Kamineni, K. S.; Kishore, P.

    2011-05-01

    An encapsulated fiber optic sensor head for the detection of level of fuel in a tank is presented. The design is based on a concentric cam used along with a float and extrinsic intensity modulation of light. The sensor has been tested for its performance to measure a fuel level range of 35cm and a sensitivity of 0.2316 volts/cm was observed during rise in fuel level. The sensitivity and range of level sensing can be varied by varying the length of the connecting rod.

  13. Polydimethylsiloxane fibers for optical fiber sensor of displacement

    Science.gov (United States)

    Martincek, Ivan; Pudis, Dusan; Gaso, Peter

    2013-09-01

    The paper describes the preparation of polydimethylsiloxane (PDMS) fiber integrated on the conventional optical fibers and their use for optical fiber displacement sensor. PDMS fiber was made of silicone elastomer Sylgard 184 (Dow Corning) by drawing from partially cured silicone. Optical fiber displacement sensor using PDMS fiber is based on the measurement of the local minimum of optical signal in visible spectral range generated by intermodal interference of circularly symmetric modes. Position of the local minimum in spectral range varies by stretching the PDMS fiber of 230 μm in the wavelength range from 688 to 477 nm. In the stretched PDMS fiber is possible to determine the longitudinal displacement with an accuracy of approximately 1 micrometer.

  14. Fiber-optic color synthesizer.

    Science.gov (United States)

    Jeong, Y; Lee, D; Lee, Jhang W; Oh, K

    2006-07-15

    Full-color synthesis was achieved, for what we believe is the first time, utilizing a novel 3x1 hard polymer-clad fiber coupler along with red, green, and blue (RGB) LED primaries. By using RGB LEDs that are coupled to three input ports, the device rendered full color from the output port with a circular emitting pixel of 135 microm in diameter with an extended color gamut. The proposed fiber-optic color synthesizer can provide a compact waveguide solution for the beam scanning display and the tunable pure white source for LED backlighting.

  15. Distributed optical fiber surface plasmon resonance sensors

    Institute of Scientific and Technical Information of China (English)

    Zhenxin Cao; Lenan Wu; Dayong Li

    2006-01-01

    @@ The relationships of the resonant wavelength of optical fiber surface plasmon resonance (SPR) sensors to the modulation layer refractive index, thickness and the refractive index of the bulk medium are obtained by using theoretical calculation model of optical fiber SPR sensors under certain conditions, which indicates that resonant wavelength of the sensors is approximately linear with modulation layer thickness. Based on the linear relationship, multiple SPR sensors with different resonant wavelengths can be fabricated in a single optical fiber named as distributed optical fiber surface plasmon resonance sensors (DOFSPRSs).Experimental results are presented, showing that it is practical to fabricate more than one SPR sensors in a single optical fiber.

  16. Comparison of macrobend seismic optical fiber accelerometer and ferrule-top cantilever fiber sensor for vibration monitoring

    Science.gov (United States)

    Poczęsny, Tomasz; Prokopczuk, Krzysztof; Domański, Andrzej W.

    2012-04-01

    The paper presents the exemplary application and comparison of a macrobend seismic optical fiber accelerometer and ferrule-top cantilever fiber sensor for long distance vibration monitoring with use of typical telecommunication optical transmission systems including optical fibers, transmitters and receivers. Use of telecommunication optical systems allows developing cost-effective monitoring and sensing architecture. All-optical fiber sensors do not create any fire hazard due to transmitting low power light through the optical fibers and lack of electrically driven parts in sensing part. Optical fiber macrobend seismic sensor consists of single mode optical fiber bended into a loop of radius around few millimeters with attached small seismic mass around 0.3 grams. We achieve signal that is proportional to the geometrical deformation of the loop. The ferrule-top cantilever (made by Optics11 - Amsterdam, Netherlands) optical fiber sensor is fabricated on a rectangular 3 mm x 3mm x 7 mm glass ferrule equipped with a central borehole and laser curved cantilever with dimensions of 200 microns wide, 30 microns thick and around 3 mm long. Construction allows measuring bending of the cantilever. Both optical fiber sensors in this setup measure force and acceleration similar to the piezoelectric accelerometers. The advantage of these devices is insensitivity to electromagnetic interference because of all-optical sensor head. We compared parameters and measurement capabilities of both sensor types.

  17. The power of fiber optics

    Energy Technology Data Exchange (ETDEWEB)

    Roy, C.

    1999-03-01

    The latest technology in optical groundwire (OPGW), involving a single cable serving as a communications network, providing high-speed data and voice transmission, and as a conventional groundwire, part of a power transmission grid, is described. The first-ever symposium devoted to OPGW was held at Hydro-Quebec`s IREQ facility in Montreal, a fitting venue, considering that Hydro-Quebec has installed an extensive network of some 3,500 km of OPGW cables since 1992. The international symposium was attended by over 130 interested experts mainly from North America, but with delegates as far away as Australia, Japan, Libya, Brazil and the UK. The three-day event showcased a number of presentations and demonstrations concerning OPGW splicing requirements, the live-line installation process, the merits of using fiber optics in a power situation, comparison of international standards in OPGW and fiber optics applications, and future developments in fiber optics technology. Demonstration of IREQ`s OPGW type-testing and manufacturer`s exhibits provided an opportunity for hands-on experience.

  18. Application of active heat pulse method with fiber optic temperature sensing for estimation of wetting bulbs and water distribution in drip emitters.

    OpenAIRE

    Gil Rodríguez, María; Rodríguez Sinobas, Leonor; Benitez Buelga, Javier; Sánchez Calvo, Raúl

    2013-01-01

    Through the use of the Distributed Fiber Optic Temperature Measurement (DFOT) method, it is possible to measure the temperature in small intervals (on the order of centimeters) for long distances (on the order of kilometers) with a high temporal frequency and great accuracy. The heat pulse method consists of applying a known amount of heat to the soil and monitoring the temperature evolution, which is primarily dependent on the soil moisture content. The use of both methods, which is called t...

  19. Methods for integrating optical fibers with advanced aerospace materials

    Science.gov (United States)

    Poland, Stephen H.; May, Russell G.; Murphy, Kent A.; Claus, Richard O.; Tran, Tuan A.; Miller, Mark S.

    1993-07-01

    Optical fibers are attractive candidates for sensing applications in near-term smart materials and structures, due to their inherent immunity to electromagnetic interference and ground loops, their capability for distributed and multiplexed operation, and their high sensitivity and dynamic range. These same attributes also render optical fibers attractive for avionics busses for fly-by-light systems in advanced aircraft. The integration of such optical fibers with metal and composite aircraft and aerospace materials, however, remains a limiting factor in their successful use in such applications. This paper first details methods for the practical integration of optical fiber waveguides and cable assemblies onto and into materials and structures. Physical properties of the optical fiber and coatings which affect the survivability of the fiber are then considered. Mechanisms for the transfer of the strain from matrix to fiber for sensor and data bus fibers integrated with composite structural elements are evaluated for their influence on fiber survivability, in applications where strain or impact is imparted to the assembly.

  20. A fiber optic hybrid multifunctional AC voltage sensor

    Energy Technology Data Exchange (ETDEWEB)

    Sokolovsky, A.; Zadvornov, S. [IRE, Moscow (Russian Federation); Ryabko, M. [UFD, Moscow (Russian Federation)

    2008-07-01

    Hybrid sensors have the advantages of both electronic and optical technologies. Their sensing element is based on conventional transducers and the optical fiber is used as a transmission media for the optical signal encoded with information between the local module and the remote module. The power supply for the remote module is usually provided by a built-in photoelectric converter illuminated by the optical radiation going through the same or another optical fiber. Electro-optic hybrid sensors have been widely used because of the electrical isolation provided by optical fiber. In the conventional fiber optic voltage sensor, piezoelectric or electro-optic transducers are implemented. Processing and conditioning measurement information is a complex task in these sensors. Moreover, the considerable drawback of most of these systems is that only one parameter, usually voltage value, is measured. This paper presented a novel fiber optic hybrid sensor for alternating current voltage measurements. This instrument provides the simultaneous measurement of four parameters, notably voltage value, frequency, phase angle and the external temperature. The paper described the measurement technology of the instrument including the remote module and optical powering as well as the unique modulation algorithm. The results and conclusions were also presented. 7 refs., 4 figs.

  1. Phase sensitive signal analysis for bi-tapered optical fibers

    Science.gov (United States)

    Ben Harush Negari, Amit; Jauregui, Daniel; Sierra Hernandez, Juan M.; Garcia Mina, Diego; King, Branden J.; Idehenre, Ighodalo; Powers, Peter E.; Hansen, Karolyn M.; Haus, Joseph W.

    2016-03-01

    Our study examines the transmission characteristics of bi-tapered optical fibers, i.e. fibers that have a tapered down and up span with a waist length separating them. The applications to aqueous and vapor phase biomolecular sensing demand high sensitivity. A bi-tapered optical fiber platform is suited for label-free biomolecular detection and can be optimized by modification of the length, diameter and surface properties of the tapered region. We have developed a phase sensitive method based on interference of two or more modes of the fiber and we demonstrate that our fiber sensitivity is of order 10-4 refractive index units. Higher sensitivity can be achieved, as needed, by enhancing the fiber design characteristics.

  2. Interferometric fiber-optic bending / nano-displacement sensor using plastic dual-core fiber

    CERN Document Server

    Qu, H; Skorobogatiy, M

    2014-01-01

    We demonstrate an interferometric fiber-optic bending/micro-displacement sensor based on a plastic dual-core fiber with one end coated with a silver mirror. The two fiber cores are first excited with the same laser beam, the light in each core is then back-reflected at the mirror-coated fiber-end, and, finally, the light from the two cores is made to interfere at the coupling end. Bending of the fiber leads to shifting interference fringes that can be interrogated with a slit and a single photodetector. We find experimentally that the resolution of our bending sensor is ~3x10-4 m-1 for sensing of bending curvature, as well as ~70 nm for sensing of displacement of the fiber tip. We demonstrate operation of our sensor using two examples. One is weighting of the individual micro-crystals of salt, while the other one is monitoring dynamics of isopropanol evaporation.

  3. Fiber optics physics and technology

    CERN Document Server

    Mitschke, Fedor

    2016-01-01

    This book tells you all you want to know about optical fibers: Their structure, their light-guiding mechanism, their material and manufacture, their use. It began with telephone, then came telefax and email. Today we use search engines, music downloads and internet videos, all of which require shuffling of bits and bytes by the zillions. The key to all this is the conduit: the line which is designed to carry massive amounts of data at breakneck speed. In their data carrying capacity optical fiber lines beat all other technologies (copper cable, microwave beacons, satellite links) hands down, at least in the long haul; wireless devices rely on fibers, too. Several effects tend to degrade the signal as it travels down the fiber: they are spelled out in detail. Nonlinear processes are given due consideration for a twofold reason: On the one hand they are fundamentally different from the more familiar processes in electrical cable. On the other hand, they form the basis of particularly interesting and innovative ...

  4. Acoustic fiber laser array architecture with reduced optical feedback limitations

    Science.gov (United States)

    Molin, S.; Bouffaron, R.; Peigné, A.; Doisy, M.; Mugnier, A.; Pureur, D.

    2014-05-01

    Many sensing applications would benefit of multiplexing a maximum number of Distributed FeedBack Fiber Lasers (DFB FLs) on the same optical fiber. However, in such configurations, some physical mechanisms may impact DFB FLs stable operation, limiting, for instance, the number of DFB FLs spliced on the same fiber and the distance between them. The aim of this experimental study is to investigate the impact of optical feedback on DFB FLs stability. The results of our study are used to propose possible associated architectures.

  5. Optical Fiber Tip Pressure Sensor

    OpenAIRE

    Wang, Xingwei

    2004-01-01

    Miniature pressure sensors which can endure harsh environments are a highly sought after goal in industrial, medical and research fields. Microelectromechanical systems (MEMS) are the current methods to fabricate such small sensors. However, they suffer from low sensitivity and poor mechanical properties. To fulfill the need for robust and reliable miniature pressure sensors that can operate under high temperatures, a novel type of optical fiber tip sensor only 125μm in diameter is ...

  6. Fiber-optic communication systems

    CERN Document Server

    Agrawal, Govind P

    2010-01-01

    This book provides a comprehensive account of fiber-optic communication systems. The 3rd edition of this book is used worldwide as a textbook in many universities. This 4th edition incorporates recent advances that have occurred, in particular two new chapters. One deals with the advanced modulation formats (such as DPSK, QPSK, and QAM) that are increasingly being used for improving spectral efficiency of WDM lightwave systems. The second chapter focuses on new techniques such as all-optical regeneration that are under development and likely to be used in future communication systems. All othe

  7. Quasi-distributed long-gauge fiber optic sensor system.

    Science.gov (United States)

    Linec, Matjaz; Donlagić, Denis

    2009-07-01

    This paper presents a quasi-distributed, long-gauge, sensor system for measurement optical path length variation. This system can be directly applied to long gauge strain and/or temperature sensing. The proposed sensor system is comprised of sensing fiber, which is divided into the sensor's segments separated by semi reflective mirrors made out of standard optical connectors. Short duration radio-frequency modulated optical bursts are launched into the sensing fiber and phase differences among individual reflected bursts are measured to determine the optical path-length variations among neighboring mirrors. Twenty sensing fiber segments were successfully addressed by a single-signal processor, while relying on standard telecommunication PIN diode, and a Fabry Perot laser diode. The resolution of a fiber-length variation better than 5 microm was demonstrated in practice. Since the long sections of fiber can be employed for constructing individual sensors within the sensor's array, a microstrain resolution can be achieved in practice. The drift of the sensor's system can be predominantly attributed to the temperature sensitivity of the electronic components, which proved to be below 20 microm/ degrees C. The entire system relies on simple and widely-used components that are low-cost. PMID:19582067

  8. Laboratory Equipment Type Fiber Optic Refractometer

    OpenAIRE

    Carome, E. F.; M. Benca; L. Ovsenik; J. Turan

    2002-01-01

    Using fiber optics and micro optics technologies we designed an innovative fiber optic index of refraction transducer that has unique properties. On the base of this transducer a laboratory equipment type fiber optic refractometer was developed for liquid index of refraction measurements. Such refractometer may be used for medical, pharmaceutical, industrial fluid, petrochemical, plastic, food, and beverage industry applications. For example, it may be used for measuring the concentrations of...

  9. Properties of Single Mode Polymer Optical Fiber

    Institute of Scientific and Technical Information of China (English)

    YANG Dong-xiao

    2003-01-01

    The density,dynamic modulus,Young's modulus,tensile strength,extension properties,Fourier transform infrared spectrum and differential scanning calorimetry have been measured and discussed for single mode polymethyl-methacrylate optical fiber.The results show that the fiber can provide large strain range for polymeric optical fiber Bragg gratings.

  10. Architectures of fiber optic network in telecommunications

    Science.gov (United States)

    Vasile, Irina B.; Vasile, Alexandru; Filip, Luminita E.

    2005-08-01

    The operators of telecommunications have targeted their efforts towards realizing applications using broad band fiber optics systems in the access network. Thus, a new concept related to the implementation of fiber optic transmission systems, named FITL (Fiber In The Loop) has appeared. The fiber optic transmission systems have been extensively used for realizing the transport and intercommunication of the public telecommunication network, as well as for assuring the access to the telecommunication systems of the great corporations. Still, the segment of the residential users and small corporations did not benefit on large scale of this technology implementation. For the purpose of defining fiber optic applications, more types of architectures were conceived, like: bus, ring, star, tree. In the case of tree-like networks passive splitters (that"s where the name of PON comes from - Passive Optical Network-), which reduce significantly the costs of the fiber optic access, by separating the costs of the optical electronic components. That's why the passive fiber optics architectures (PON represent a viable solution for realizing the access at the user's loop. The main types of fiber optics architectures included in this work are: FTTC (Fiber To The Curb); FTTB (Fiber To The Building); FTTH (Fiber To The Home).

  11. Extrinsic fiber-optic Fabry-Perot interferometer sensor for refractive index measurement of optical glass

    Energy Technology Data Exchange (ETDEWEB)

    Chen Jihuan; Zhao Jiarong; Huang Xuguang; Huang Zhenjian

    2010-10-10

    A simple fiber-optic sensor based on Fabry-Perot interference for refractive index measurement of optical glass is investigated both theoretically and experimentally. A broadband light source is coupled into an extrinsic fiber Fabry-Perot cavity formed by the surfaces of a sensing fiber end and the measured sample. The interference signals from the cavity are reflected back into the same fiber. The refractive index of the sample can be obtained by measuring the contrast of the interference fringes. The experimental data meet with the theoretical values very well. The proposed technique is a new method for glass refractive index measurement with a simple, solid, and compact structure.

  12. Fiber-optically sensorized composite wing

    Science.gov (United States)

    Costa, Joannes M.; Black, Richard J.; Moslehi, Behzad; Oblea, Levy; Patel, Rona; Sotoudeh, Vahid; Abouzeida, Essam; Quinones, Vladimir; Gowayed, Yasser; Soobramaney, Paul; Flowers, George

    2014-04-01

    Electromagnetic interference (EMI) immune and light-weight, fiber-optic sensor based Structural Health Monitoring (SHM) will find increasing application in aerospace structures ranging from aircraft wings to jet engine vanes. Intelligent Fiber Optic Systems Corporation (IFOS) has been developing multi-functional fiber Bragg grating (FBG) sensor systems including parallel processing FBG interrogators combined with advanced signal processing for SHM, structural state sensing and load monitoring applications. This paper reports work with Auburn University on embedding and testing FBG sensor arrays in a quarter scale model of a T38 composite wing. The wing was designed and manufactured using fabric reinforced polymer matrix composites. FBG sensors were embedded under the top layer of the composite. Their positions were chosen based on strain maps determined by finite element analysis. Static and dynamic testing confirmed expected response from the FBGs. The demonstrated technology has the potential to be further developed into an autonomous onboard system to perform load monitoring, SHM and Non-Destructive Evaluation (NDE) of composite aerospace structures (wings and rotorcraft blades). This platform technology could also be applied to flight testing of morphing and aero-elastic control surfaces.

  13. Distributed fiber optic fuel leak detection system

    Science.gov (United States)

    Mendoza, Edgar; Kempen, C.; Esterkin, Yan; Sun, Sunjian

    2013-05-01

    With the increase worldwide demand for hydrocarbon fuels and the vast development of new fuel production and delivery infrastructure installations around the world, there is a growing need for reliable fuel leak detection technologies to provide safety and reduce environmental risks. Hydrocarbon leaks (gas or liquid) pose an extreme danger and need to be detected very quickly to avoid potential disasters. Gas leaks have the greatest potential for causing damage due to the explosion risk from the dispersion of gas clouds. This paper describes progress towards the development of a fast response, high sensitivity, distributed fiber optic fuel leak detection (HySensTM) system based on the use of an optical fiber that uses a hydrocarbon sensitive fluorescent coating to detect the presence of fuel leaks present in close proximity along the length of the sensor fiber. The HySenseTM system operates in two modes, leak detection and leak localization, and will trigger an alarm within seconds of exposure contact. The fast and accurate response of the sensor provides reliable fluid leak detection for pipelines, tanks, airports, pumps, and valves to detect and minimize any potential catastrophic damage.

  14. Fiber Optic Pressure Sensor using Multimode Interference

    Energy Technology Data Exchange (ETDEWEB)

    Ruiz-Perez, V I; Sanchez-Mondragon, J J [INAOE, Apartado Postal 51 y 216, Puebla 72000 (Mexico); Basurto-Pensado, M A [CIICAp, Universidad Autonoma del Estado de Morelos (Mexico); LiKamWa, P [CREOL, University of Central Florida, Orlando, FL 32816 (United States); May-Arrioja, D A, E-mail: iruiz@inaoep.mx, E-mail: mbasurto@uaem.mx, E-mail: delta_dirac@hotmail.com, E-mail: daniel_may_arrioja@hotmail.com [UAT Reynosa Rodhe, Universidad Autonoma de Tamaulipas (Mexico)

    2011-01-01

    Based on the theory of multimode interference (MMI) and self-image formation, we developed a novel intrinsic optical fiber pressure sensor. The sensing element consists of a section of multimode fiber (MMF) without cladding spliced between two single mode fibers (SMF). The MMI pressure sensor is based on the intensity changes that occur in the transmitted light when the effective refractive index of the MMF is changed. Basically, a thick layer of Polydimethylsiloxane (PDMS) is placed in direct contact with the MMF section, such that the contact area between the PDMS and the fiber will change proportionally with the applied pressure, which results in a variation of the transmitted light intensity. Using this configuration, a good correlation between the measured intensity variations and the applied pressure is obtained. The sensitivity of the sensor is 3 {mu}V/psi, for a range of 0-60 psi, and the maximum resolution of our system is 0.25 psi. Good repeatability is also observed with a standard deviation of 0.0019. The key feature of the proposed pressure sensor is its low fabrication cost, since the cost of the MMF is minimal.

  15. Research progress in the key device and technology for fiber optic sensor network

    Science.gov (United States)

    Liu, Deming; Sun, Qizhen; Lu, Ping; Xia, Li; Sima, Chaotan

    2016-03-01

    The recent research progress in the key device and technology of the fiber optic sensor network (FOSN) is introduced in this paper. An architecture of the sensor optical passive network (SPON), by employing hybrid wavelength division multiplexing/time division multiplexing (WDM/TDM) techniques similar to the fiber communication passive optical network (PON), is proposed. The network topology scheme of a hybrid TDM/WDM/FDM (frequency division multiplexing) three-dimension fiber optic sensing system for achieving ultra-large capacity, long distance, and high resolution sensing performance is performed and analyzed. As the most important device of the FOSN, several kinds of light source are developed, including the wideband multi-wavelength fiber laser operating at C band, switchable and tunable 2 μm multi-wavelength fiber lasers, ultra-fast mode-locked fiber laser, as well as the optical wideband chaos source, which have very good application prospects in the FOSN. Meanwhile, intelligent management techniques for the FOSN including wideband spectrum demodulation of the sensing signals and real-time fault monitoring of fiber links are presented. Moreover, several typical applications of the FOSN are also discussed, such as the fiber optic gas sensing network, fiber optic acoustic sensing network, and strain/dynamic strain sensing network.

  16. Structural health monitoring with fiber optic sensors

    Science.gov (United States)

    Güemes, Alfredo; Fernandez-Lopez, Antonio

    2014-05-01

    SHM is defined as the process of acquiring and analyzing data from on-board sensors to evaluate the health of a structure. Most common damages on aircrafts are local cracks and delaminations, that do not change strongly the overall strain field, but that will act as the failure initiation point. Fiber optic sensors act primarily as strain sensors, so unless damage happens very close to the sensor location, it may go undetected. Currently, three main approaches for detecting damage from strain measurements are being investigated: 1) High resolution fibre optic distributed sensing (OFDR Rayleigh scattering). 2) Strain mapping with a dense network of sensors. Statistical analysis tools, like PCA, have been successfully used. 3) Hybrid FBG/PZT systems. FBGs must detect the ultrasonic elastic waves.

  17. Experimental Sensing Study of a Certain Fabry-Perot Fiber Optic Strain Gauge%某型Fabry-Perot光纤应变计的传感特性试验

    Institute of Scientific and Technical Information of China (English)

    肖邵予; 汪浩

    2014-01-01

    Internationally, the fiber optic strain sensing technology has been widely applied to the hull structure health monitoring. However, such technology is rarely used in domestic engineering applications for the reason that the structural package of fiber optic sensors, one of the main factor that impacts the per⁃formance of the fiber-optic sensing technology, is still unclear. In this paper, a certain type of Fabry-Perot fiber optic strain gauge is selected by a prototype hull structure stress monitoring system, and the corre⁃sponding principle of the fiber optic strain gauge is introduced. Meanwhile, a structure test model is con⁃structed, an experimental study on static strain tests, dynamic strain tests, and temperature characteristics is carried out. The results show that the static and dynamic strain measurement error induced by the two methods (the one based on the fiber-optic strain gauge and the one based on the electrical resistance strain gauge) is less than 2%, which verifies the accuracy of the fiber-optic strain gauge measurement data;in ad⁃dition, strain-temperature curves reveal decent linearity and consistency, indicating that the structural package of the fiber optic strain gauge successfully meets the ship ambient temperature conditions.%光纤应变传感技术在国外已广泛应用于船体结构健康监测之中,而在国内鲜有工程实际应用的尝试,究其原因,光纤传感器的结构封装是影响光纤传感技术工程化应用的重要因素。针对某船体结构应力监测系统原理样机所选型的Fabry-Perot光纤应变计,介绍其测量原理,建立封装结构试验模型,并对该结构开展了静态应变传感特性、动态应变传感特性以及温度特性的试验研究。分析结果表明,该型光纤应变计静态、动态应变测量结果与基于电阻应变片的电测法结果偏差小于2%,从而验证了光纤应变计测量数据的准确性。同时,应变—温度的

  18. Development and Application of Fiber-Optic Sensors in Environmental and Life Sciences

    DEFF Research Database (Denmark)

    Rickelt, Lars Fledelius

    The light guiding properties of optical fibers are the fundament for fiber-optic sensors. The composition of the fiber materials as well as the fabrication methods for both glass optical fibers and plastic optical fibers (POF) are useful knowledge for improvements of the sensor design. A majority...... of sensing materials includes imbedded luminescent dyes and all O2 fiber-optic sensors are based on O2 quenching of a luminophore. The mechanisms of luminescence and O2 quenching are described. A new procedure for etching a recess in the tip of multimode graded index optical glass fibers was used to improve...... inside vials with polymorphonuclear leukocytes revealed strong O2 consumption. The O2 level was measured from outside the vials with a POF. A new method for producing fiber-optic microprobes for measuring scalar irradiance is presented along with an experimental setup for measuring the isotropic response...

  19. Erbium doped tellurite photonic crystal optical fiber

    Science.gov (United States)

    Osorio, Sergio P.; Fernandez, Enver; Rodriguez, Eugenio; Cesar, Carlos L.; Barbosa, Luiz C.

    2005-04-01

    In this work we present the fabrication of tellurite glass photonic crystal fiber doped with a very large erbium concentration. Tellurite glasses are important hosts for rare earth ions due to its very high solubility, which allows up to 10,000 ppm Er3+ concentrations. The photonic crystal optical fibers and tellurite glasses can be, therefore, combined in an efficient way to produce doped fibers for large bandwidth optical amplifiers. The preform was made of a 10 mm external diameter tellurite tube filled with an array of non-periodic tellurite capillaries and an erbium-doped telluride rod that constitute the fiber core. The preform was drawn in a Heathway Drawing Tower, producing fibers with diameters between 120 - 140 μm. We show optical microscope photography of the fiber"s transverse section. The ASE spectra obtained with a spectra analyzer show a red shift as the length of the optical fiber increases.

  20. Fiber Acousto-Electro-Optic Modulator

    Institute of Scientific and Technical Information of China (English)

    Anen; Jiang

    2003-01-01

    A new kind of fiber acousto-electro-optic modulator is made by using Lithium Niobate crystal. This kind of modulator can be used in fiber communication, and its center frequency can be changed by directed current voltages.

  1. Real-time In-Flight Strain and Deflection Monitoring with Fiber Optic Sensors

    Science.gov (United States)

    Richards, Lance; Parker, Allen R.; Ko, William L.; Piazza, Anthony

    2008-01-01

    This viewgraph presentation reviews Dryden's efforts to develop in-flight monitoring based on Fiber Optics. One of the motivating factors for this development was the breakup of the Helios aircraft. On Ikhana the use of fiber optics for wing shape sensing is being developed. They are being used to flight validate fiber optic sensor measurements and real-time wing shape sensing predictions on NASA's Ikhana vehicle; validate fiber optic mathematical models and design tools; Assess technical viability and, if applicable, develop methodology and approach to incorporate wing shape measurements within the vehicle flight control system, and develop and flight validate advanced approaches to perform active wing shape control.

  2. Ball Lens Fiber Optic Sensor based Smart Handheld Microsurgical Instrument

    Science.gov (United States)

    Song, Cheol; Gehlbach, Peter L.; Kang, Jin U.

    2013-01-01

    During freehand performance of vitreoretinal microsurgery the surgeon must perform precise and stable maneuvers that achieve surgical objectives and avoid surgical risk. Here, we present an improved smart handheld microsurgical tool which is based on a ball lens fiber optic sensor that utilizes common path swept source optical coherence tomography. Improvements include incorporation of a ball lens single mode fiber optic probe that increases the working angle of the tool to greater than 45 degrees; and increases the magnitude of the distance sensing signal through water. Also presented is a cutting function with an improved ergonomic design. PMID:24224076

  3. Optical Fiber Embedded in Epoxy Glass Unidirectional Fiber Composite System

    OpenAIRE

    Irina Severin; Rochdi El Abdi; Guillaume Corvec; Mihai Caramihai

    2013-01-01

    We aimed to embed silica optical fibers in composites (epoxy vinyl ester matrix reinforced with E-glass unidirectional fibers in mass fraction of 60%) in order to further monitor the robustness of civil engineering structures (such as bridges). A simple system was implemented using two different silica optical fibers (F1—double coating of 172 µm diameter and F2—single coating of 101.8 µm diameter respectively). The optical fibers were dynamically tensile tested and Weibull plots were traced. ...

  4. Electroless nickel plating on optical fiber probe

    Institute of Scientific and Technical Information of China (English)

    Li Huang; Zhoufeng Wang; Zhuomin Li; Wenli Deng

    2009-01-01

    As a component of near-field scanning optical microscope (NSOM),optical fiber probe is an important factor influncing the equipment resolution.Electroless nickel plating is introduced to metallize the optical fiber probe.The optical fibers are etched by 40% HF with Turner etching method.Through pretreatment,the optical fiber probe is coated with Ni-P film by clectrolcss plating in a constant temperature water tank.Atomic absorption spectrometry (AAS),scanning electron microscopy (SEM),and energy dispersive X-ray spectrometry (EDXS) are carried out to charaeterizc the deposition on fiber probe.We have rcproducibly fabricated two kinds of fiber probes with a Ni-P fihn:aperture probe and apertureless probe.In addition,reductive particle transportation on the surface of fiber probe is proposed to explain the cause of these probes.

  5. Engineering modes in optical fibers with metamaterial

    Institute of Scientific and Technical Information of China (English)

    Min YAN; Niels Asger MORTENSEN; Min QIU

    2009-01-01

    In this paper, we report a preliminary theoret-ical study on optical fibers with fine material inclusions whose geometrical inhomogeneity is almost indistinguish-able by the operating wavelength. We refer to such fibers as metamaterial optical fibers, which can conceptually be considered as an extension from the previously much publicized microstructured optical fibers. Metamaterials can have optical properties not obtainable in naturally existing materials, including artificial anisotropy as well as graded material properties. Therefore, incorporation of metamaterial in optical fiber designs can produce a new range of fiber properties. With a particular example, we will show how mode discrimination can be achieved in a multimode Bragg fiber with the help of metamaterial. We also look into the mean field theory as well as Maxwell-Garner theory for homogenizing a fine metamaterial structure to a homogeneous one. The accuracies of the two homogenization approaches are compared with full-structure calculation.

  6. Fiber-Optic Ammonia Sensors

    Science.gov (United States)

    Carter, Michael T.

    2003-01-01

    Reversible, colorimetric fiber-optic sensors are undergoing development for use in measuring concentrations of ammonia in air at levels relevant to human health [0 to 50 parts per million (ppm)]. A sensor of this type includes an optical fiber that has been modified by replacing a portion of its cladding with a polymer coat that contains a dye that reacts reversibly with ammonia and changes color when it does so. The change in color is measured as a change in the amount of light transmitted from one end of the fiber to the other. Responses are reversible and proportional to the concentration of ammonia over the range from 9 to 175 ppm and in some cases the range of reversibility extends up to 270 ppm. The characteristic time for the response of a sensor to rise from 10 to 90 percent of full scale is about 25 seconds. These sensors are fully operational in pure carbon dioxide and are not adversely affected by humidity. This work was done by Michael T. Carter

  7. Fiber Optics Physics and Technology

    CERN Document Server

    Mitschke, Fedor

    2010-01-01

    Telephone, telefax, email and internet -- the key ingredient of the inner workings is the conduit: the line which is designed to carry massive amounts of data at breakneck speed. In their data-carrying capacity optical fiber lines beat other technologies (copper cable, microwave beacons, satellite links) hands down, at least in the long haul. This book tells you all you want to know about optical fibers: Their structure, their light-guiding mechanism, their material and manufacture, their use. Several effects tend to degrade the signal as it travels down the fiber: they are spelled out in detail. Nonlinear processes are given due consideration for a twofold reason: On the one hand they are fundamentally different from the more familiar processes in electrical cable. On the other hand, they form the basis of particularly interesting and innovative applications, provided they are understood well enough. A case in point is the use of so-called solitons, i.e. special pulses of light which have the wonderful prope...

  8. Optical fiber temperature sensors: applications in heat treatments for foods

    Science.gov (United States)

    Sosa-Morales, María Elena; Rojas-Laguna, Roberto; López-Malo, Aurelio

    2010-10-01

    Heat treatments are important methods to provide safe foods. Conventional heat treatments involve the application of steam and recently microwave treatments have been studied and applied as they are considered as fast, clean and efficient. Optical fiber sensing is an excellent tool to measure the temperature during microwave treatments. This paper shows the application of optical fiber temperature sensing during the heat treatment of different foods such as vegetables (jalapeño pepper and cilantro), cheese and ostrich meat. Reaching the target temperature, important bacteria were inactivated: Salmonella, Listeria and Escherichia coli. Thus, the use of optical fiber sensors has resulted be a useful way to develop protocols to inactivate microorganisms and to propose new methods for food processing.

  9. Experimental Study on Bridge Monitoring Based on Optical Fiber Acoustic Emission Sensing Technology%基于光纤声发射传感技术的桥梁监测实验研究

    Institute of Scientific and Technical Information of China (English)

    单宁

    2011-01-01

    The optical fiber sensor can meet the requirements of the real-time health monitoring of the bridge structure with its features of good wearing, small size and easy to realize the distribution detection. A extrinsic optical fiber F-P sensor structure has been designed in this work and the sensing mechanism of the optical fiber F-P acoustic emission has been analyzed. A detection system based on the optical fiber F-P acoustic emission technolgy has been fabricated for detecting the health state of the concrete bridge on-line in real time. The experimemtal results showed that the sesor has the features of simple structure, small size, cost-effectiveness and easy-to-fabricate. It can be used for the bridge health detection effectively and is easy to produce commercially.%光纤传感器耐久性好,体积小,质量轻,易于实现分布式检测,能满足桥梁等土木结构的实时健康监测.该文设计了一非本征光纤法布里-珀罗(F-P)传感器结构,分析了光纤F-P声发射传感机理,建立了基于光纤F-P声发射传感技术的检测系统,用于混凝土桥梁健康状况的实时在线检测.实验结果表明,该传感器结构简单,体积小,成本低,制作容易,能有效用于桥梁健康监测,易于实现商品化.

  10. Comparison of optical fiber Bragg grating hydrogen sensors with Pd-based thin films and sol–gel WO3 coatings

    International Nuclear Information System (INIS)

    Pd-based thin films and sol–gel WO3 coatings are two kinds of hydrogen sensitive elements used in hydrogen concentration sensing and detection. Optical fiber hydrogen sensors are very promising solutions for flammable hydrogen detection, when the sensitive materials are integrated with optical fiber sensors. This paper reviews the sensing performance of optical fiber hydrogen sensors with these two sensitive materials, which are developed at the National Engineering Laboratory for Optical Fiber Sensing Technologies in Wuhan University of Technology. (paper)

  11. Great prospects for fiber optics sensors

    Science.gov (United States)

    Hansen, T. E.

    1983-10-01

    Fiber optic sensors provide noise immunity and galvanic insulation at the measurement point. Interest in such sensors is increasing for these reasons. In the United States sales are expected to increase from 12 million dollars in 1981 to 180 million in 1991. Interferometric sensors based on single modus fibers deliver extremely high sensitivity, while sensors based on multi-modus fibers are more easily manufactured. The fiber optic sensors which are available today are based on point measurements. Development of fiber optic sensors in Norway is being carried out at the Central institute and has resulted in the development of medical manometers which are now undergoing clinical testing.

  12. Increased Functionality Porous Optical Fiber Structures

    OpenAIRE

    Wooddell, Michael Gary

    2007-01-01

    A novel fiber optic structure, termed stochastic ordered hole fibers, has been developed that contains an ordered array of six hollow tubes surrounding a hollow core, combined with a nanoporous glass creating a unique fully three dimensional pore/fiber configuration. The objective of this study is to increase the functionality of these stochastic ordered hole fibers, as well as porous clad fibers, by integrating electronic device components such as conductors, and semiconductor...

  13. High Temperature Endurable Fiber Optic Accelerometer

    OpenAIRE

    Yeon-Gwan Lee; Jin-Hyuk Kim; Chun-Gon Kim

    2014-01-01

    This paper presents a low frequency fiber optic accelerometer for application in high temperature environments of civil engineering structures. The reflection-based extrinsic fiber optic accelerometer developed in this study consists of a transmissive grating panel, reflective mirror, and two optical fiber collimators as the transceiver whose function can be maintained up to 130°C. The dynamic characteristics of the sensor probe were investigated and the correlation between the natural freque...

  14. Optical fibers and their applications 2012

    Science.gov (United States)

    Romaniuk, Ryszard S.; Wójcik, Waldemar

    2013-01-01

    XIVth Conference on Optical Fibers and Their Applications, Nałęczów 2012, which has been organized since more than 35 years, has summarized the achievements of the local optical fiber technology community, for the last year and a half. The conference specializes in developments of optical fiber technology, glass and polymer, classical and microstructured, passive and active. The event gathered around 100 participants. There were shown 60 presentations from 20 research and application groups active in fiber photonics, originating from academia and industry. Topical tracks of the Conference were: photonic materials, planar waveguides, passive and active optical fibers, propagation theory in nonstandard optical fibers, and new constructions of optical fibers. A panel discussion concerned teaching in fiber photonics. The conference was accompanied by a school on Optical Fiber Technology. The paper summarizes the chosen main topical tracks of the conference on Optical Fibers and Their Applications, Nałęczów 2012. The papers from the conference presentations will be published in Proc.SPIE. The next conference from this series is scheduled for January 2014 in Białowieża.

  15. A Highly Sensitive Fiber Optic Sensor Based on Two-Core Fiber for Refractive Index Measurement

    OpenAIRE

    Daniel Alberto May-Arrioja; Miguel Torres-Cisneros; José Javier Sánchez-Mondragón; José Rafael Guzmán-Sepúlveda; Rafael Guzmán-Cabrera

    2013-01-01

    A simple and compact fiber optic sensor based on a two-core fiber is demonstrated for high-performance measurements of refractive indices (RI) of liquids. In order to demonstrate the suitability of the proposed sensor to perform high-sensitivity sensing in a variety of applications, the sensor has been used to measure the RI of binary liquid mixtures. Such measurements can accurately determine the salinity of salt water solutions, and detect the water content of adulterated alcoholic beverage...

  16. Distributed Optical Fiber Sensor for Multi-point Temperature Measurement

    Institute of Scientific and Technical Information of China (English)

    WANG Yu-tian; LIU Zhan-wei; HOU Pei-guo; SHAN Wei

    2004-01-01

    The distributed optical fiber sensing technology is overviewed, which is based on Raman scattering light theory. Basic operation principle, structure, system characteristics and signal processing are discussed. This structure and method of the signal processing possess of certain spatial resolution, hence will ensure the practicability of system.

  17. Distributed Fiber-Optic Sensor for Detection and Localization of Acoustic Vibrations

    Directory of Open Access Journals (Sweden)

    Sifta Radim

    2015-03-01

    Full Text Available A sensing system utilizing a standard optical fiber as a distributed sensor for the detection and localization of mechanical vibrations is presented. Vibrations can be caused by various external factors, like moving people, cars, trains, and other objects producing mechanical vibrations that are sensed by a fiber. In our laboratory we have designed a sensing system based on the Φ-OTDR (phase sensitive Optical Time Domain Reflectometry using an extremely narrow laser and EDFAs.

  18. Fiber optic smart structures for aerospace applications

    Science.gov (United States)

    Udd, Eric

    Fiber optic smart structures as applied to aerospace platforms are reviewed. Emphasis is placed on advantages of these structures which include weight saving for equivalent performance, immunity to electromagnetic interference, the ability to multiplex a number of fiber optic sensors along a single line, the inherent high bandwidth of fiber optic sensors and the data links supporting them, the ability to perform in extremely hostile environments at high temperatures, vibration, and shock loadings. It is concluded that fiber optic smart structures have a considerable potential to enhance the value of future aircraft and spacecraft through improved reliability, maintainability, and flight performance augmentation.

  19. Fiber-optical accelerometers based on polymer optical fiber Bragg gratings

    DEFF Research Database (Denmark)

    Yuan, Scott Wu; Stefani, Alessio; Bang, Ole;

    2010-01-01

    Fiber-optical accelerometers based on polymer optical fiber Bragg gratings (FBGs) are reported. We have written 3mm FBGs for 1550nm operation, characterized their temperature and strain response, and tested their performance in a prototype accelerometer.......Fiber-optical accelerometers based on polymer optical fiber Bragg gratings (FBGs) are reported. We have written 3mm FBGs for 1550nm operation, characterized their temperature and strain response, and tested their performance in a prototype accelerometer....

  20. A Polymer Optical Fiber Fuel Level Sensor: Application to Paramotoring and Powered Paragliding

    OpenAIRE

    David Sánchez Montero; Carmen Vázquez; Pedro Contreras Lallana

    2012-01-01

    A low-cost intensity-based polymer optical fiber (POF) sensor for fuel level measurements in paramotoring and powered paragliding is presented, exploiting the advantages of the optical fiber sensing technology. Experimental results demonstrate that the best option can be performed by stripping the fiber at the desired discrete points to measure the fuel level as well as with a gauge-shape fiber bending. The prototype has a good linearity, better than 4% full scale (F.S.), and sensitivity arou...

  1. Switchable multi-wavelength erbium-doped fiber laser for remote sensing

    OpenAIRE

    Pérez Herrera, Rosa Ana; Díaz Lucas, Silvia; Fernández Vallejo, Montserrat; López Amo, Manuel; Quintela Incera, María Ángeles; López Higuera, José Miguel

    2009-01-01

    In this work, we present and experimentally demonstrate a switchable Erbium-doped fiber laser for remote sensing applications. The laser uses four Fiber Bragg Gratings (FBGs) for wavelength selection and for temperature sensing and a 2x4 optical switch. By adjusting the switch combinations, the laser can be switched among the four different wavelength lasing configurations. Stable one- and two- wavelength oscillations were achieved based on the use of this device. An output power instability ...

  2. A Large Area Fiber Optic Gyroscope on multiplexed fiber network

    OpenAIRE

    Costanzo, Giovanni Antonio; Pizzocaro, Marco; Clivati, Cecilia

    2013-01-01

    We describe a fiber optical gyroscope based on the Sagnac effect realized on a multiplexed telecom fiber network. Our loop encloses an area of 20 km2 and coexists with Internet data traffic. This Sagnac interferometer achieves a sensitivity of about (10-8 rad/s)/sqrt(Hz), thus approaching ring laser gyroscopes without using narrow linewidth laser nor sophisticated optics. The proposed gyroscope is sensitive enough for seismic applications, opening new possibilities for this kind of optical fi...

  3. A Large Area Fiber Optic Gyroscope on multiplexed fiber network

    OpenAIRE

    Clivati, Cecilia; Calonico, Davide; Giovanni A. Costanzo; Mura, Alberto; Pizzocaro, Marco; Levi, Filippo

    2012-01-01

    We describe a fiber optical gyroscope based on the Sagnac effect realized on a multiplexed telecom fiber network. Our loop encloses an area of 20 km^2 and coexists with Internet data traffic. This Sagnac interferometer achieves a sensitivity of about 1e-8 (rad/s)/sqrt(Hz), thus approaching ring laser gyroscopes without using narrow-linewidth laser nor sophisticated optics. The proposed gyroscope is sensitive enough for seismic applications, opening new possibilities for this kind of optical f...

  4. Engineering modes in optical fibers with metamaterial

    DEFF Research Database (Denmark)

    Yan, Min; Mortensen, Asger; Qiu, Min

    2009-01-01

    In this paper, we report a preliminary theoretical study on optical fibers with fine material inclusions whose geometrical inhomogeneity is almost indistinguishable by the operating wavelength.We refer to such fibers as metamaterial optical fibers, which can conceptually be considered as an exten......In this paper, we report a preliminary theoretical study on optical fibers with fine material inclusions whose geometrical inhomogeneity is almost indistinguishable by the operating wavelength.We refer to such fibers as metamaterial optical fibers, which can conceptually be considered...... as an extension from the previously much publicized microstructured optical fibers. Metamaterials can have optical properties not obtainable in naturally existing materials, including artificial anisotropy as well as graded material properties. Therefore, incorporation of metamaterial in optical fiber designs can...... produce a new range of fiber properties. With a particular example, we will show how mode discrimination can be achieved in a multimode Bragg fiber with the help of metamaterial. We also look into the mean field theory as well as Maxwell-Garnett theory for homogenizing a fine metamaterial structure...

  5. Compact Tb doped fiber optic current sensor with high sensitivity.

    Science.gov (United States)

    Huang, Duanni; Srinivasan, Sudharsanan; Bowers, John E

    2015-11-16

    A highly sensitive fiber optic current sensor using terbium doped fiber is presented. The Verdet constant of the terbium doped fiber at 1300nm is found to be 19.5μrad/A using both a polarimetric and interferometric type sensor. Measurements on a Sagnac-loop sensor using 10cm of terbium doped fiber placed inside a solenoid show over 40dB of open loop dynamic range as well as a minimum detectable current of 0.1mA. Extrapolations of our measurements show that in a practical setup with Tb fiber wrapped around a current carrying wire, the optimal configuration is a 0.5m piece of Tb fiber with a noise limit of 22mA/√Hz. This sensor is promising for current sensing applications that require high sensitivity and small size, weight, and power. PMID:26698480

  6. Nanoparticle-doped radioluminescent silica optical fibers

    Science.gov (United States)

    Mrazek, J.; Nikl, M.; Kasik, I.; Podrazky, O.; Aubrecht, J.; Beitlerova, A.

    2014-05-01

    This contribution deals with the preparation and characterization of the silica optical fibers doped by nanocrystalline zinc silicate. The sol-gel approach was employed to prepare colloidal solution of zinc silicate precursors. Prepared sol was thermally treated to form nanocrystalline zinc silicate disperzed inside amorphous silica matrix or soaked inside the porous silica frit deposed inside the silica substrate tube which was collapsed into preform and drawn into optical fiber. Single mode optical fiber with the core diameter 15 μm and outer diamer 125 μm was prepared. Optical and waveguiding properties of the fiber were analyzed. Concentration of the zinc silicate in the fiber was 0.93 at. %. Radioluminescence properties of nanocrystalline zinc silicate powder and of the prepared optical fiber were investigated. The nanoparticle doped samples appear a emission maximum at 390 nm.

  7. Optical Fiber Embedded in Epoxy Glass Unidirectional Fiber Composite System

    Directory of Open Access Journals (Sweden)

    Irina Severin

    2013-12-01

    Full Text Available We aimed to embed silica optical fibers in composites (epoxy vinyl ester matrix reinforced with E-glass unidirectional fibers in mass fraction of 60% in order to further monitor the robustness of civil engineering structures (such as bridges. A simple system was implemented using two different silica optical fibers (F1—double coating of 172 µm diameter and F2—single coating of 101.8 µm diameter respectively. The optical fibers were dynamically tensile tested and Weibull plots were traced. Interfacial adhesion stress was determined using pull-out test and stress values were correlated to fracture mechanisms based on SEM observations. In the case of the optical fiber (OF (F1/resin system and OF (F1/composite system, poor adhesion was reported that may be correlated to interface fracture at silica core level. Relevant applicable results were determined for OF (F2/composite system.

  8. Optical Fiber Sensor Instrumentation for Slagging Coal Gasifiers

    Energy Technology Data Exchange (ETDEWEB)

    Anbo Wang; Kristie Cooper

    2008-07-19

    Coal gasifier is one of the most promising solutions for clean fossil energy. Refractory thickness monitoring and online real-time temperature measurement is needed for improved reliability and advanced process control for current and future generation power plants. The objective of this program is to design and implement an optical fiber based sensing system that could potentially be used to monitor refractory wall thickness and temperature inside a coal gasifier. For the thickness monitoring, the system should be able to operate at temperatures up to 1000 C. For this temperature range, silica fiber can still work so it is chosen for the sensor design. The measurement is based on a photon counting optical time domain reflectometer. A narrow light pulse is launched into a silica fiber which could be embedded into the gasifier refractory wall, and is partially reflected by the far end of the fiber. The time of flight of the light pulse in the fiber then gives an indication of the position of the fiber end, which is a function of the wall thickness when the fiber is embedded. Results obtained show a measurement accuracy of {+-}2cm in environment of 1000 C with a saw cut fiber end. When the fiber end is corroded by sodium carbide at 900 C, the accuracy is {+-}3cm. For the temperature measurement, a single crystal sapphire fiber sensor is designed. The sapphire fiber guides the broadband light from a light emitting diode to a sapphire wafer functioning as a Fabry-Perot interferometer and the wafer optical thickness is a function of temperature. The returned optical signal is then demodulated by multimode fiber based whitelight interferometry. The system was tested up to 1500 C with a measurement accuracy of {+-}10 C for the entire measurement range.

  9. Integrated optic current transducers incorporating photonic crystal fiber for reduced temperature dependence.

    Science.gov (United States)

    Chu, Woo-Sung; Kim, Sung-Moon; Oh, Min-Cheol

    2015-08-24

    Optical current transducers (OCT) are indispensable for accurate monitoring of large electrical currents in an environment suffering from severe electromagnetic interference. Temperature dependence of OCTs caused by its components, such as wave plates and optical fibers, should be reduced to allow temperature-independent operation. A photonic crystal fiber with a structural optical birefringence was incorporated instead of a PM fiber, and a spun PM fiber was introduced to overcome the temperature-dependent linear birefringence of sensing fiber coil. Moreover, an integrated optic device that provides higher stability than fiber-optics was employed to control the polarization and detect the phase of the sensed optical signal. The proposed OCT exhibited much lower temperature dependence than that from a previous study. The OCT satisfied the 0.5 accuracy class (IIEC 60044-8) and had a temperature dependence less than ± 1% for a temperature range of 25 to 78 °C.

  10. Stress optic coefficient and stress profile in optical fibers.

    Science.gov (United States)

    Lagakos, N; Mohr, R; El-Bayoumi, O H

    1981-07-01

    The stress optic coefficient and stress profile in optical fibers have been determined photoelastically using a polariscope having good reproducibility and high sensitivity. The results of the work presented in this paper indicate that the photoelastic behavior may be different in fibers and in bulk glasses. The photoelastically determined clad compression in strengthened fibers was found to correlate well with the strengthening observed in these fibers using tensile tests. PMID:20332937

  11. Alternative fiber optic conductor for laboratory practices

    Science.gov (United States)

    Calderon Ocampo, Juan F.; Jaramillo Florez, Samuel A.; Amaya Rodriguez, Juan C.

    1995-10-01

    Due to the high cost and difficulty in obtaining an optical fiber sample to be used in laboratory tests, we have given ourselves the task of looking for an adequate optical-fiber alternative for laboratory practices. We have as a result, found an object that can be used as an alternate optical conductor. This object called 'Venoclisis Hose', is a cylindrical plastic tube, hollow inside, whose main use has been in medical applications as a conveyor of liquids going in or coming out of the human body. In this document, the tests carried out and the results obtained to characterize the venoclisis as an optical fiber are described. This project was undertaken in order to propose the use of Venoclisis as an alternate optical fiber for laboratory work, due primarily to its low costs, as well as how easy it to acquire and measure its parameters as an optical fiber.

  12. Laboratory Equipment Type Fiber Optic Refractometer

    Directory of Open Access Journals (Sweden)

    E. F. Carome

    2002-09-01

    Full Text Available Using fiber optics and micro optics technologies we designed aninnovative fiber optic index of refraction transducer that has uniqueproperties. On the base of this transducer a laboratory equipment typefiber optic refractometer was developed for liquid index of refractionmeasurements. Such refractometer may be used for medical,pharmaceutical, industrial fluid, petrochemical, plastic, food, andbeverage industry applications. For example, it may be used formeasuring the concentrations of aqueous solutions: as the concentrationor density of a solute increase, the refractive index increasesproportionately. The paper describes development work related to designof laboratory type fiber optic refractometer and describes experimentsto evaluation of its basic properties.

  13. Passive and Active Fiber Optic Components

    Science.gov (United States)

    Digonnet, Michel Jean-Francois

    This thesis is concerned with the development and characterization of both passive and active fiber-optic components for applications in single-mode fiber systems, in particular in the new technology of fiber sensors and signal processors. These components include single-mode fiber directional couplers, vital to many optical fiber systems, all-fiber wavelength multiplexers, with potential applications in communication systems and active fiber devices, and single-crystal fiber lasers and amplifiers as miniature light sources and signal regenerators. The fiber directional couplers involved in this work, fabricated by a polishing process, are described in detail. Experimental characterization of their coupling, loss and unique tuning properties, and their respective dependence on the coupler geometrical parameters, are reported. A theoretical model of fiber-to-fiber coupling is also developed and shown to be a very useful and accurate tool in the design and study of this type of fiber couplers. The dependence of the coupling properties of fiber couplers on the signal wavelength is studied both theoretically and experimentally for applications in wavelength division multiplexing. All-fiber multiplexers exhibiting a good wavelength selectivity and unique tunability are described and shown to operate according to the coupler model. Work on active fiber devices explores the potential of the new technology of single-crystal fibers grown by the laser-heated floating-zone technique. The status of crystal fiber growth is reported, together with the basic physical and optical characteristics of these fibers. A theoretical model of the effects of fiber model structure on the gain and laser operation of active fibers is also developed to predict the performance of lasers and amplifiers in a fiber form. Several conceptual pumping schemes are described which offer solutions to the difficult problem of optically pumping small diameter fiber amplifiers. The experimental

  14. Experimental network synchronization via plastic optical fiber

    Science.gov (United States)

    Arellano-Delgado, A.; López-Gutiérrez, R. M.; Cruz-Hernández, C.; Posadas-Castillo, C.; Cardoza-Avendaño, L.; Serrano-Guerrero, H.

    2013-03-01

    In this paper, network synchronization of coupled Chua's circuits in star configuration is experimentally studied. In particular, plastic optical fiber (POF) is used in the network like communication channels among chaotic nodes to achieve synchronization. The master signal is sent to multiple slaves through a fiber optical coupler with corresponding electrical/optical and optical/electrical stages. An application to encrypted chaotic communication to transmit analogical signal and image messages to multiple receivers is also given.

  15. Use of Distributed Fiber Optic Sensors to Detect Damage in a Pavement

    OpenAIRE

    Chapeleau, Xavier; BLANC, Juliette; Hornych, Pierre; Gautier, Jean-Luc; Carroget, Jean

    2014-01-01

    International audience; This paper presents the feasibility of damage detection in the asphalt pavements by embedded fiber optics as a new non-destructive inspection technique. The distributed fiber optic sensing technology called ÒRayleigh techniqueî was used in this study. The main advantage of this technique is that it allows to measure strains over long length of fiber optic with a high spatial resolution, less than 1 cm. By comparing strain profiles measured at different time, an attempt...

  16. Coupling Charactor of Polarization Maintaining Optical Fiber Under the Condition of Bend①②

    Institute of Scientific and Technical Information of China (English)

    LIChangchun; LUOFei; 等

    1997-01-01

    In the field of optical fiber communication and sensing,polarization maintaining optical fiber with special polarization wave transmit character has been taken more and more attentions.It is more mportant of couple between polarization modes,with the help of microdisturbed and coupled mode theories ,the couples characters of high birefracting Bow-Tie optical fiber in the condition of pure bend are analysed,and power coupling relationships between transmit modes are also derivated.

  17. Optical Fiber LSPR Biosensor Prepared by Gold Nanoparticle Assembly on Polyelectrolyte Multilayer

    OpenAIRE

    Yunliang Shao; Shuping Xu; Xianliang Zheng; Ye Wang; Weiqing Xu

    2010-01-01

    This article provides a novel method of constructing an optical fiber localized surface plasmon resonance (LSPR) biosensor. A gold nanoparticle (NP) assembled film as the sensing layer was built on the polyelectrolyte (PE) multilayer modified sidewall of an unclad optical fiber. By using a trilayer PE structure, we obtained a monodisperse gold NP assembled film. The preparation procedure for this LSPR sensor is simple and time saving. The optical fiber LSPR sensor has higher sensitivity and o...

  18. Welding-fume-induced transmission loss in tapered optical fibers

    Science.gov (United States)

    Yi, Ji-Haeng

    2015-09-01

    This paper presents a method for sensing welding fumes in real time. This method is based on the results of nanoparticle-induced optical-fiber loss experiments that show that the losses are determined by the nanoparticle density and the taper waist. The tapered fiber is obtained by applying heat radiated from hot quartz, and monitoring is done in real time. First, the durability of the tapered fiber during the welding process is proven. Then, the loss is categorized by using the sizes of welding fume particles. The sensitivity to welding fumes increases with increasing size of the particles; consequently, the dimension of the taper waist decreases.

  19. Fiber-Optic Bend Sensor Based on Double Cladding Fiber

    OpenAIRE

    Ivanov, Oleg V.; Alexey A. Chertoriyskiy

    2015-01-01

    We develop and investigate fiber-optic bend sensor, which is formed by a section of double cladding SM630 fiber between standard SMF-28 fibers. The principle of operation of the sensor is based on coupling of the fiber core and cladding modes at the splices of fibers having different refractive index profiles. We use two sources with wavelengths 1328 and 1545 nm to interrogate the sensor. The dependences of transmission on curvature at these wavelengths are significantly different. We show th...

  20. Interfacial characterization of soil-embedded optical fiber for ground deformation measurement

    International Nuclear Information System (INIS)

    Recently fiber-optic sensing technologies have been applied for performance monitoring of geotechnical structures such as slopes, foundations, and retaining walls. However, the validity of measured data from soil-embedded optical fibers is strongly influenced by the properties of the interface between the sensing fiber and the soil mass. This paper presents a study of the interfacial properties of an optical fiber embedded in soil with an emphasis on the effect of overburden pressure. Laboratory pullout tests were conducted to investigate the load-deformation characteristics of a 0.9 mm tight-buffered optical fiber embedded in soil. Based on a tri-linear interfacial shear stress-displacement relationship, an analytical model was derived to describe the progressive pullout behavior of an optical fiber from soil matrix. A comparison between the experimental and predicted results verified the effectiveness of the proposed pullout model. The test results are further interpreted and discussed. It is found that the interfacial bond between an optical fiber and soil is prominently enhanced under high overburden pressures. The apparent coefficients of friction of the optical fiber/soil interface decrease as the overburden pressure increases, due to the restrained soil dilation around the optical fiber. Furthermore, to facilitate the analysis of strain measurement, three working states of a soil-embedded sensing fiber were defined in terms of two characteristic displacements. (paper)

  1. Development of smart textiles with embedded fiber optic chemical sensors

    Science.gov (United States)

    Khalil, Saif E.; Yuan, Jianming; El-Sherif, Mahmoud A.

    2004-03-01

    Smart textiles are defined as textiles capable of monitoring their own health conditions or structural behavior, as well as sensing external environmental conditions. Smart textiles appear to be a future focus of the textile industry. As technology accelerates, textiles are found to be more useful and practical for potential advanced technologies. The majority of textiles are used in the clothing industry, which set up the idea of inventing smart clothes for various applications. Examples of such applications are medical trauma assessment and medical patients monitoring (heart and respiration rates), and environmental monitoring for public safety officials. Fiber optics have played a major role in the development of smart textiles as they have in smart structures in general. Optical fiber integration into textile structures (knitted, woven, and non-woven) is presented, and defines the proper methodology for the manufacturing of smart textiles. Samples of fabrics with integrated optical fibers were processed and tested for optical signal transmission. This was done in order to investigate the effect of textile production procedures on optical fiber performance. The tests proved the effectiveness of the developed methodology for integration of optical fibers without changing their optical performance or structural integrity.

  2. Numerical Simulation of Modulation Characteristics of Concave Square Pyramid Reflection Optical Fiber Sensing Probe%内凹正方角锥反射式光纤传感探头调制特性的数值模拟

    Institute of Scientific and Technical Information of China (English)

    林晓艳; 姜宇; 梁艺军; 居剑; 苑立波

    2001-01-01

    针对以往滑觉传感器存在的不足,提出了一种新型的光纤滑觉传感机理.这种传感机理的最大优点是系统抗电磁干扰,能实现全自动补偿,灵敏度高.探头结构采用了全方位传感和全自动补偿技术,由5根同种光纤构成.在纤端出射光场光强分布公式的基础上,在小角度近似下,理论上推导出内凹正方角锥反射式光纤传感探头调制特性的简明公式,即输出信号与角镜转角成正比的结论.证明了这种传感机理的可行性,并为这种传感器的后续信号处理提供了理论基础.本文给出了非近似条件下的计算机仿真结果.作出了传感器输出随反射镜调制转角变化的模拟图.研究了影响这种传感探头调制特性的各种因素及初始结构优化参数,为光纤滑觉传感器的研制、开发提供理论指导.数值模拟与理论公式相一致的结果说明,内凹正方角锥反射式光纤传感探头用于光纤滑觉传感器是可行的.%A novel optical fiber sliding sensing mechanism made of five pieces of the same optical fiber which resists disturbance of electromagnetism, automatically realizes compensation, has high sensitivity, and causes the output signal to be proportional to the rotation angle of the angled-mirror, and the computer simulation results under non-approximate calculation and simulation curves of the output signal against modulation rotation angle as well, analyses the effects of all kinds of parameters on modulation characteristics and optimum value and concludes from experimental results that it is feasible to use the optical fiber sensing probe in the optical fiber sliding sensor.

  3. Nanoimprint of a 3D structure on an optical fiber for light wavefront manipulation.

    Science.gov (United States)

    Calafiore, Giuseppe; Koshelev, Alexander; Allen, Frances I; Dhuey, Scott; Sassolini, Simone; Wong, Edward; Lum, Paul; Munechika, Keiko; Cabrini, Stefano

    2016-09-16

    Integration of complex photonic structures onto optical fiber facets enables powerful platforms with unprecedented optical functionalities. Conventional nanofabrication technologies, however, do not permit viable integration of complex photonic devices onto optical fibers owing to their low throughput and high cost. In this paper we report the fabrication of a three-dimensional structure achieved by direct nanoimprint lithography on the facet of an optical fiber. Nanoimprint processes and tools were specifically developed to enable a high lithographic accuracy and coaxial alignment of the optical device with respect to the fiber core. To demonstrate the capability of this new approach, a 3D beam splitter has been designed, imprinted and optically characterized. Scanning electron microscopy and optical measurements confirmed the good lithographic capabilities of the proposed approach as well as the desired optical performance of the imprinted structure. The inexpensive solution presented here should enable advancements in areas such as integrated optics and sensing, achieving enhanced portability and versatility of fiber optic components.

  4. Nanoimprint of a 3D structure on an optical fiber for light wavefront manipulation

    Science.gov (United States)

    Calafiore, Giuseppe; Koshelev, Alexander; Allen, Frances I.; Dhuey, Scott; Sassolini, Simone; Wong, Edward; Lum, Paul; Munechika, Keiko; Cabrini, Stefano

    2016-09-01

    Integration of complex photonic structures onto optical fiber facets enables powerful platforms with unprecedented optical functionalities. Conventional nanofabrication technologies, however, do not permit viable integration of complex photonic devices onto optical fibers owing to their low throughput and high cost. In this paper we report the fabrication of a three-dimensional structure achieved by direct nanoimprint lithography on the facet of an optical fiber. Nanoimprint processes and tools were specifically developed to enable a high lithographic accuracy and coaxial alignment of the optical device with respect to the fiber core. To demonstrate the capability of this new approach, a 3D beam splitter has been designed, imprinted and optically characterized. Scanning electron microscopy and optical measurements confirmed the good lithographic capabilities of the proposed approach as well as the desired optical performance of the imprinted structure. The inexpensive solution presented here should enable advancements in areas such as integrated optics and sensing, achieving enhanced portability and versatility of fiber optic components.

  5. Monolithic integrated optic fiber Bragg grating sensor interrogator

    Science.gov (United States)

    Mendoza, Edgar A.; Esterkin, Yan; Kempen, Cornelia; Sun, Songjian

    2010-04-01

    Fiber Bragg gratings (FBGs) are a mature sensing technology that has gained rapid acceptance in civil, aerospace, chemical and petrochemical, medicine, aviation and automotive industries. Fiber Bragg grating sensors can be use for a variety of measurements including strain, stress, vibration, acoustics, acceleration, pressure, temperature, moisture, and corrosion distributed at multiple locations within the structure using a single fiber element. The most prominent advantages of FBGs are: small size and light weight, multiple FBG transducers on a single fiber, and immunity to radio frequency interference. A major disadvantage of FBG technology is that conventional state-of-the-art fiber Bragg grating interrogation systems are typically bulky, heavy, and costly bench top instruments that are assembled from off-the-shelf fiber optic and optical components integrated with a signal electronics board into an instrument console. Based on the need for a compact FBG interrogation system, this paper describes recent progress towards the development of a miniature fiber Bragg grating sensor interrogator (FBG-TransceiverTM) system based on multi-channel monolithic integrated optic sensor microchip technology. The integrated optic microchip technology enables the monolithic integration of all of the functionalities, both passive and active, of conventional bench top FBG sensor interrogators systems, packaged in a miniaturized, low power operation, 2-cm x 5-cm small form factor (SFF) package suitable for the long-term structural health monitoring in applications where size, weight, and power are critical for operation.

  6. Distributed strain and temperature measurement of a beam using fiber optic BOTDA sensor

    Science.gov (United States)

    Kwon, Il-Bum; Kim, Chi-Yeop; Choi, Man-Yong

    2003-08-01

    In order to do continuous health monitoring of large structures, it is necessary that the distributed sensing of strain and temperature of the structures are to be measured. So, we present the strain and temperature measurement distributed on a beam using fiber optic BOTDA(Brillouin Optical Time Domain Analysis) sensor. Fiber optic BOTDA sensor has good performance of strain measurement. However, the signal of fiber optic BOTDA sensor is influenced by strain and temperature. Therefore, we applied an optical fiber on the beam as follows: one part of the fiber, which is sensitive the strain and the temperature, is bonded on the surface of the beam and another part of the fiber, which is only sensitive to the temperature, is located at the same position of the strain sensing fiber. Therefore, the strains can be determined from the strain sensing fiber with compensating the temperature from the temperature sensing fiber. These measured strains were compared with the strains from electrical strain gages. After temperature compensation, it was concluded that the strains from fiber optic BOTDA sensor had good agreements with those values of the conventional strain gages.

  7. Electrothermal MEMS fiber scanner for optical endomicroscopy.

    Science.gov (United States)

    Seo, Yeong-Hyeon; Hwang, Kyungmin; Park, Hyeon-Cheol; Jeong, Ki-Hun

    2016-02-22

    We report a novel MEMS fiber scanner with an electrothermal silicon microactuator and a directly mounted optical fiber. The microactuator comprises double hot arm and cold arm structures with a linking bridge and an optical fiber is aligned along a silicon fiber groove. The unique feature induces separation of resonant scanning frequencies of a single optical fiber in lateral and vertical directions, which realizes Lissajous scanning during the resonant motion. The footprint dimension of microactuator is 1.28 x 7 x 0.44 mm3. The resonant scanning frequencies of a 20 mm long optical fiber are 239.4 Hz and 218.4 Hz in lateral and vertical directions, respectively. The full scanned area indicates 451 μm x 558 μm under a 16 Vpp pulse train. This novel laser scanner can provide many opportunities for laser scanning endomicroscopic applications.

  8. Fiber Optics: A New World of Possibilities in Light.

    Science.gov (United States)

    Hutchinson, John

    1990-01-01

    The background and history of light and fiber optics are discussed. Applications for light passed either directly or indirectly through optical fibers are described. Suggestions for science activities that use fiber optics are provided. (KR)

  9. Development of on-fiber optical sensors utilizing chromogenic materials

    Science.gov (United States)

    Yuan, Jianming; El-Sherif, Mahmoud A.

    1999-01-01

    On-fiber optical sensors, designed with chromogenic materials used as the fiber modified cladding, were developed for sensing environmental conditions. The design was based on the previously developed on-fiber devices. It is known that the light propagation characteristics in optical fibers are strongly influenced by the refractive index of the cladding materials. Thus, the idea of the on- fiber devices is based on replacing the passive optical fiber cladding with active or sensitive materials. For example, temperature sensors can be developed by replacing the fiber clad material with thermochromic materials. In this paper, segmented polyurethane-diacetylene copolymer (SPU), was selected as the thermochromic material for temperature sensors applications. This material has unique chromogenic properties as well as the required mechanical behaviors. During UV exposure and heat treatment, the color of the SPU copolymer varies with its refractive index. The boundary condition between core and cladding changes due to the change of the refractive index of the modified cladding material. The method used for the sensor development presented involves three steps: (a) removing the fiber jacket and cladding from a small region, (b) coating the chromogenic materials onto the modified region, and (c) integrating the optical fiber sensor components. The experimental set-up was established to detect the changes of the output signal based on the temperature variations. For the sensor evaluation, real-time measurements were performed under different heating-cooling cycles. Abrupt irreversible changes of the sensor output power were detected during the first heating-cooling cycle. At the same time, color changes of the SPU copolymer were observed in the modified region of the optical fiber. For the next heating-cooling cycles, however, the observed changes were almost completely reversible. This result demonstrates that a low-temperature sensor can be built by utilizing the

  10. A microstructured Polymer Optical Fiber Biosensor

    DEFF Research Database (Denmark)

    Emiliyanov, Grigoriy Andreev; Jensen, Jesper Bo; Hoiby, Poul E.;

    2006-01-01

    We demonstrate selective detection of fluorophore labeled antibodies from minute samples probed by a sensor layer of the complementary biomolecules immobilized inside the air holes of microstructured Polymer Optical Fibers.......We demonstrate selective detection of fluorophore labeled antibodies from minute samples probed by a sensor layer of the complementary biomolecules immobilized inside the air holes of microstructured Polymer Optical Fibers....

  11. Bulkhead Interface Chassis for optical fiber patching

    Energy Technology Data Exchange (ETDEWEB)

    George, M.

    1985-06-01

    An optical fiber patch panel was designed to meet the changing needs of optical fiber communication link installations. This paper deals with the specification and construction details of the Bulkhead Interface Chassis patch panel. Included is ordering information for the commercial parts needed and shop drawings of the pieces to be machined.

  12. Bulkhead interface chassis for optical fiber patching

    Science.gov (United States)

    George, M.

    1985-06-01

    An optical fiber patch panel was designed to meet the changing needs of optical fiber communication link installations. This paper deals with the specification and construction details of the Bulkhead Interface Chassis patch panel. Included is ordering information for the commercial parts needed and shop drawings of the pieces to be machined.

  13. Compact fiber optic gyroscopes for platform stabilization

    Science.gov (United States)

    Dickson, William C.; Yee, Ting K.; Coward, James F.; McClaren, Andrew; Pechner, David A.

    2013-09-01

    SA Photonics has developed a family of compact Fiber Optic Gyroscopes (FOGs) for platform stabilization applications. The use of short fiber coils enables the high update rates required for stabilization applications but presents challenges to maintain high performance. We are able to match the performance of much larger FOGs by utilizing several innovative technologies. These technologies include source noise reduction to minimize Angular Random Walk (ARW), advanced digital signal processing that minimizes bias drift at high update rates, and advanced passive thermal packaging that minimizes temperature induced bias drift while not significantly affecting size, weight, or power. In addition, SA Photonics has developed unique distributed FOG packaging technologies allowing the FOG electronics and photonics to be packaged remotely from the sensor head or independent axis heads to minimize size, weight, and power at the sensing location(s). The use of these technologies has resulted in high performance, including ARW less than 0.001 deg/rt-hr and bias drift less than 0.004 deg/hr at an update rate of 10 kHz, and total packaged volume less than 30 cu. in. for a 6 degree of freedom FOG-based IMU. Specific applications include optical beam stabilization for LIDAR and LADAR, beam stabilization for long-range free-space optical communication, Optical Inertial Reference Units for HEL stabilization, and Ka band antenna pedestal pointing and stabilization. The high performance of our FOGs also enables their use in traditional navigation and positioning applications. This paper will review the technologies enabling our high-performance compact FOGs, and will provide performance test results.

  14. Grazing incidence angle based sensing approach integrated with fiber-optic Fourier transform infrared (FO-FTIR) spectroscopy for remote and label-free detection of medical device contaminations

    International Nuclear Information System (INIS)

    Contamination of medical devices has become a critical and prevalent public health safety concern since medical devices are being increasingly used in clinical practices for diagnostics, therapeutics and medical implants. The development of effective sensing methods for real-time detection of pathogenic contamination is needed to prevent and reduce the spread of infections to patients and the healthcare community. In this study, a hollow-core fiber-optic Fourier transform infrared spectroscopy methodology employing a grazing incidence angle based sensing approach (FO-FTIR-GIA) was developed for detection of various biochemical contaminants on medical device surfaces. We demonstrated the sensitivity of FO-FTIR-GIA sensing approach for non-contact and label-free detection of contaminants such as lipopolysaccharide from various surface materials relevant to medical device. The proposed sensing system can detect at a minimum loading concentration of approximately 0.7 μg/cm2. The FO-FTIR-GIA has the potential for the detection of unwanted pathogen in real time

  15. Grazing incidence angle based sensing approach integrated with fiber-optic Fourier transform infrared (FO-FTIR) spectroscopy for remote and label-free detection of medical device contaminations

    Energy Technology Data Exchange (ETDEWEB)

    Hassan, Moinuddin, E-mail: moinuddin.hassan@fda.hhs.gov; Ilev, Ilko [Optical Therapeutics and Medical Nanophotonics Laboratory, Division of Biomedical Physics, Office of Science and Engineering Laboratories, Center for Devices and Radiological Health, U.S. Food and Drug Administration, Silver Spring, Maryland 20993 (United States)

    2014-10-15

    Contamination of medical devices has become a critical and prevalent public health safety concern since medical devices are being increasingly used in clinical practices for diagnostics, therapeutics and medical implants. The development of effective sensing methods for real-time detection of pathogenic contamination is needed to prevent and reduce the spread of infections to patients and the healthcare community. In this study, a hollow-core fiber-optic Fourier transform infrared spectroscopy methodology employing a grazing incidence angle based sensing approach (FO-FTIR-GIA) was developed for detection of various biochemical contaminants on medical device surfaces. We demonstrated the sensitivity of FO-FTIR-GIA sensing approach for non-contact and label-free detection of contaminants such as lipopolysaccharide from various surface materials relevant to medical device. The proposed sensing system can detect at a minimum loading concentration of approximately 0.7 μg/cm{sup 2}. The FO-FTIR-GIA has the potential for the detection of unwanted pathogen in real time.

  16. Silver metaphosphate glass wires inside silica fibers--a new approach for hybrid optical fibers.

    Science.gov (United States)

    Jain, Chhavi; Rodrigues, Bruno P; Wieduwilt, Torsten; Kobelke, Jens; Wondraczek, Lothar; Schmidt, Markus A

    2016-02-22

    Phosphate glasses represent promising candidates for next-generation photonic devices due to their unique characteristics, such as vastly tunable optical properties, and high rare earth solubility. Here we show that silver metaphosphate wires with bulk optical properties and diameters as small as 2 µm can be integrated into silica fibers using pressure-assisted melt filling. By analyzing two types of hybrid metaphosphate-silica fibers, we show that the filled metaphosphate glass has only negligible higher attenuation and a refractive index that is identical to the bulk material. The presented results pave the way towards new fiber-type optical devices relying on metaphosphate glasses, which are promising materials for applications in nonlinear optics, sensing and spectral filtering. PMID:26906989

  17. Wavefront sensing reveals optical coherence

    CERN Document Server

    Stoklasa, B; Rehacek, J; Hradil, Z; Sanchez-Soto, L L

    2014-01-01

    Wavefront sensing is a set of techniques providing efficient means to ascertain the shape of an optical wavefront or its deviation from an ideal reference. Due to its wide dynamical range and high optical efficiency, the Shack-Hartmann is nowadays the most widely used of these sensors. Here, we show that it actually performs a simultaneous measurement of position and angular spectrum of the incident radiation and, therefore, when combined with tomographic techniques previously developed for quantum information processing, the Shack-Hartmann can be instrumental in reconstructing the complete coherence properties of the signal. We confirm these predictions with an experimental characterization of partially coherent vortex beams, a case that cannot be treated with the standard tools. This seems to indicate that classical methods employed hitherto do not fully exploit the potential of the registered data.

  18. Fiber-Optic Continuous Liquid Sensor for Cryogenic Propellant Gauging

    Science.gov (United States)

    Xu. Wei

    2010-01-01

    An innovative fiber-optic sensor has been developed for low-thrust-level settled mass gauging with measurement uncertainty <0.5 percent over cryogenic propellant tank fill levels from 2 to 98 percent. The proposed sensor uses a single optical fiber to measure liquid level and liquid distribution of cryogenic propellants. Every point of the sensing fiber is a point sensor that not only distinguishes liquid and vapor, but also measures temperature. This sensor is able to determine the physical location of each point sensor with 1-mm spatial resolution. Acting as a continuous array of numerous liquid/vapor point sensors, the truly distributed optical sensing fiber can be installed in a propellant tank in the same manner as silicon diode point sensor stripes using only a single feedthrough to connect to an optical signal interrogation unit outside the tank. Either water or liquid nitrogen levels can be measured within 1-mm spatial resolution up to a distance of 70 meters from the optical interrogation unit. This liquid-level sensing technique was also compared to the pressure gauge measurement technique in water and liquid nitrogen contained in a vertical copper pipe with a reasonable degree of accuracy. It has been demonstrated that the sensor can measure liquid levels in multiple containers containing water or liquid nitrogen with one signal interrogation unit. The liquid levels measured by the multiple fiber sensors were consistent with those virtually measured by a ruler. The sensing performance of various optical fibers has been measured, and has demonstrated that they can survive after immersion at cryogenic temperatures. The fiber strength in liquid nitrogen has also been measured. Multiple water level tests were also conducted under various actual and theoretical vibration conditions, and demonstrated that the signal-to-noise ratio under these vibration conditions, insofar as it affects measurement accuracy, is manageable and robust enough for a wide variety of

  19. Simultaneous Temperature and Strain Sensing for Cryogenic Applications Using Dual-Wavelength Fiber Bragg Gratings

    Science.gov (United States)

    Wu, Meng-Chou; Prosser, William H.

    2003-01-01

    A new technique has been developed for sensing both temperature and strain simultaneously by using dual-wavelength fiber-optic Bragg gratings. Two Bragg gratings with different wavelengths were inscribed at the same location in an optical fiber to form a sensor. By measuring the wavelength shifts that resulted from the fiber being subjected to different temperatures and strains, the wavelength-dependent thermo-optic coefficients and photoelastic coefficients of the fiber were determined. This enables the simultaneous measurement of temperature and strain. In this study, measurements were made over the temperature range from room temperature down to about 10 K, addressing much of the low temperature range of cryogenic tanks. A structure transition of the optical fiber during the temperature change was found. This transition caused splitting of the waveforms characterizing the Bragg gratings, and the determination of wavelength shifts was consequently complicated. The effectiveness and sensitivities of these measurements in different temperature ranges are also discussed.

  20. Tunable Laser Development for In-flight Fiber Optic Based Structural Health Monitoring Systems

    Science.gov (United States)

    Richards, Lance; Parker, Allen; Chan, Patrick

    2014-01-01

    The objective of this task is to investigate, develop, and demonstrate a low-cost swept lasing light source for NASA DFRC's fiber optics sensing system (FOSS) to perform structural health monitoring on current and future aerospace vehicles. This is the regular update of the Tunable Laser Development for In-flight Fiber Optic Based Structural Health Monitoring Systems website.

  1. Special optical fiber design to reduce reflection peak distortion of a FBG embedded in inhomogeneous material

    NARCIS (Netherlands)

    Cheng, L.K.; Toet, P.M.; Vreugd, J. de; Nieuwland, R.A.; Tseb, M.-L.V.; Tamb, H.

    2014-01-01

    During the last decades, the use of optical fiber for sensing applications has gained increasing acceptance because of its unique properties of being intrinsically safe, unsusceptible to EMI, potentially lightweight and having a large operational temperature range. Among the different Fiber Optic se

  2. A distributed optical fiber sensor for hydrogen detection based on Pd, and Mg alloys

    NARCIS (Netherlands)

    Perrotton, C.; Slaman, M.; Javahiraly, N.; Schreuders, H.; Dam, B.; Meyrueis, P.

    2010-01-01

    An optical fiber containing structured hydrogen sensing points, consisting of Palladium and/or Magnesium alloys is proposed and characterized. The sensitive layer is deposited on the outside of a multimode fiber, after removing the optical cladding. The sensor is based on a measurement technique whi

  3. Toward the next fiber optic revolution and decision making in the oil and gas industry

    NARCIS (Netherlands)

    Cheng, L.K.; Boering, M.; Braal, F.M.

    2013-01-01

    Fiber optic data transmission has caused revolutionary developments in the current information society. It was also an eye opener for the Oil & Gas industry when fiber optic-based Distributed Temperature Sensing was introduced in the nineties. Temperature profiles over the entire length of the wellb

  4. Essentials of modern optical fiber communication

    CERN Document Server

    Noé, Reinhold

    2016-01-01

    This is a concise introduction into optical fiber communication. It covers important aspects from the physics of optical wave propagation and amplification to the essentials of modulation formats and receivers. The combination of a solid coverage of necessary fundamental theory with an in-depth discussion of recent relevant research results enables the reader to design modern optical fiber communication systems. The book serves both graduate students and professionals. It includes many worked examples with solutions for lecturers. For the second edition, Reinhold Noé made many changes and additions throughout the text so that this concise book presents the essentials of optical fiber communication in an easy readable and understandable way.

  5. Fiber optic sensors for smart taxiways

    Science.gov (United States)

    Janzen, Douglas D.; Fuerstenau, Norbert; Goetze, Wolfgang

    1995-09-01

    Fiber-optic sensors could offer advantages in the field of airport ground traffic monitoring: immunity to electromagnetic interference, installation without costly and time consuming airfield closures, and low loss, low noise optical connection between sensors and signal processing equipment. This paper describes fiber-optic sensors developed for airport taxiway monitoring and the first steps toward their installation in an experimental surface movement guidance and control system at the Braunschweig airport. Initial results obtained with fiber- optic light barriers and vibration sensors are reported. The feasibility of employing interferometric strain gauges for this application will be discussed based on sensor characteristics obtained through measurements of strain in an aircraft structure in flight.

  6. Harsh environment fiber optic connectors/testing

    Science.gov (United States)

    Parker, Douglas A.

    2014-09-01

    Fiber optic systems are used frequently in military, aerospace and commercial aviation programs. There is a long history of implementing fiber optic data transfer for aircraft control, for harsh environment use in local area networks and more recently for in-flight entertainment systems. The advantages of fiber optics include high data rate capacity, low weight, immunity to EMI/RFI, and security from signal tapping. Technicians must be trained particularly to install and maintain fiber systems, but it is not necessarily more difficult than wire systems. However, the testing of the fiber optic interconnection system must be conducted in a standardized manner to assure proper performance. Testing can be conducted with slight differences in the set-up and procedure that produce significantly different test results. This paper reviews various options of interconnect configurations and discusses how these options can affect the performance, maintenance required and longevity of a fiber optic system, depending on the environment. Proper test methods are discussed. There is a review of the essentials of proper fiber optic testing and impact of changing such test parameters as input launch conditions, wavelength considerations, power meter options and the basic methods of testing. This becomes important right from the start when the supplier test data differs from the user's data check upon receiving the product. It also is important in periodic testing. Properly conducting the fiber optic testing will eliminate confusion and produce meaningful test results for a given harsh environment application.

  7. Fiber Optic Temperature Sensors for Thermal Protection Systems Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Intelligent Fiber Optic Systems Corporation (IFOS) proposes an innovative fiber optic-based, multiplexable, highly ruggedized, integrated sensor system for...

  8. 基于分布式光纤传感的堤坝形变监测系统设计%Movement Monitoring System Design for Embankment Dams Using Fully Distributed Sensing Along Optical Fiber

    Institute of Scientific and Technical Information of China (English)

    朱萍玉; 冷元宝; 王少力; 蒋桂林

    2009-01-01

    Aim at solving online hidden deformation monitoring problems for the embankment dams with long distance and large area,a monitoring system using distributed stimulated Briilouin scattering optical fiber sensing is proposed.Data acquisition principle of the distributed optical fiber sensing instrument is briefly introduced and Data Flow Diagrams (DFDs) is analyzed.Take the Yellow River embankment dam as an example of being monitored.The monitoring system based on DiTeSt-STA202,which is a distributed optical fiber sensing instrument made by Omniscns,is constructed.The database of monitoring system consists offour parts,original data from sensors,database,user output,and user operations,which can process and manage these data including real-time monitoring and previous posted data.It also provides important information and guide for the expert decision-making system of embankment dam safety monitoring and maintenance.%针对大型堤坝长距离,大范围和形变隐患实时监测的难题,本文提出采用分布式受激布里渊散射光纤传感技术的监测系统,介绍了分布式光纤传感实验仪的数据采集原理,分析了数据结构流程,以黄河堤坝的监测为例,构建了基于Omnisens的DiTeSt分布式光纤传感仪的监测系统;监测系统的数据库由原始传感数据源、数据库、用户输出和用户操作四部分组成,能对实时监测和历史数据进行处理和管理,为堤坝安全监控专家系统提供重要资料和决策依据.

  9. Honeywell FLASH fiber optic motherboard evaluations

    Science.gov (United States)

    Stange, Kent

    1996-10-01

    The use of fiber optic data transmission media can make significant contributions in achieving increasing performance and reduced life cycle cost requirements placed on commercial and military transport aircraft. For complete end-to-end fiber optic transmission, photonics technologies and techniques need to be understood and applied internally to the aircraft line replaceable units as well as externally on the interconnecting aircraft cable plant. During a portion of the Honeywell contribution to Task 2A on the Fly- by-Light Advanced System Hardware program, evaluations were done on a fiber optic transmission media implementation internal to a Primary Flight Control Computer (PFCC). The PFCC internal fiber optic transmission media implementation included a fiber optic backplane, an optical card-edge connector, and an optical source/detector coupler/installation. The performance of these optical media components were evaluated over typical aircraft environmental stresses of temperature, vibration, and humidity. These optical media components represent key technologies to the computer end-to-end fiber optic transmission capability on commercial and military transport aircraft. The evaluations and technical readiness assessments of these technologies will enable better perspectives on productization of fly-by-light systems requiring their utilizations.

  10. Optical Path Length Multiplexing of Optical Fiber Sensors

    OpenAIRE

    Wavering, Thomas A. II

    1998-01-01

    Optical fiber sensor multiplexing reduces cost per sensor by designing a system that minimizes the expensive system components (sources, spectrometers, etc.) needed for a set number of sensors. The market for multiplexed optical sensors is growing as fiber-optic sensors are finding application in automated factories, mines, offshore platforms, air, sea, land, and space vehicles, energy distribution systems, medical patient surveillance systems, etc. Optical path length mul...

  11. GFOC Project results: High Temperature / High Pressure, Hydrogen Tolerant Optical Fiber

    Energy Technology Data Exchange (ETDEWEB)

    E. Burov; A. Pastouret; E. Aldea; B. Overton; F. Gooijer; A. Bergonzo

    2012-02-12

    Tests results are given for exposure of multimode optical fiber to high temperatures (300 deg. C) and high partial pressure (15 bar) hydrogen. These results demonstrate that fluorine down doped optical fibers are much more hydrogen tolerant than traditional germanium doped multimode optical fibers. Also demonstrated is the similar hydrogen tolerance of carbon coated and non-carbon coated fibers. Model for reversible H2 impact in fiber versus T{sup o}C and H2 pressure is given. These results have significant impact for the longevity of use for distributed temperature sensing applications in harsh environments such as geothermal wells.

  12. Towards optical sensing with hyperbolic metamaterials

    OpenAIRE

    Mackay, Tom G.

    2015-01-01

    A possible means of optical sensing, based on a porous hyperbolic material which is infiltrated by a fluid containing an analyte to be sensed, was investigated theoretically. The sensing mechanism relies on the observation that extraordinary plane waves propagate in the infiltrated hyperbolic material only in directions enclosed by a cone aligned with the optic axis of the infiltrated hyperbolic material. The angle this cone subtends to the plane perpendicular to the optic axis is $\\theta_c$....

  13. Novel manufacturing method of optical fiber coupler

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Based on the coupling mode theory that the coupling ratio of fiber coupler changes periodically with canter distance of two optical fibers, a novel manufacturing method of optical fiber couplers was developed with fused biconical taper experimental system. Its fabrication process is that the fiber is fused but not stretched when light begins to split, and the reduction of diameter of fiber is dependent on the rheological characteristic of the fused fiberglass. The performance of the coupler was tested. The results show that the performance of the novel optical fiber coupler meets the performance expectations, and its diameter of coupling region (about 30 μm) is twice as long as that of classical fused biconical taper coupler (about 16 μm), so the default, that is, the device is easy to fracture, is restrained and the reliability is greatly improved.

  14. Optical Fiber Grating Sensor for Force Measurement of Anchor Cable

    Institute of Scientific and Technical Information of China (English)

    JIANG Desheng; FU Jinghua; LIU Shengchun; SUI Lingfeng; FU Rong

    2006-01-01

    The development of the sensor suitable for measuring large load stress to the anchor cable becomes an important task in bridge construction and maintenance. Therefore, a new type of optical fiber sensor was developed in the laboratory - optical fiber grating sensor for force measurement of anchor cable (OFBFMAC). No similar report about this kind of sensor has been found up to now in China and other countries. This sensor is proved to be an effective way of monitoring in processes of anchor cable installation, cable cutting, cable force regulation, etc, with the accurate and repeatable measuring results. Its successful application in the tie bar cable force safety monitoring for Wuhan Qingchuan bridge is a new exploration of optical fiber grating sensing technology in bridge tie bar monitoring system.

  15. Triaxial fiber optic magnetic field sensor for MRI applications

    Science.gov (United States)

    Filograno, Massimo L.; Pisco, Marco; Catalano, Angelo; Forte, Ernesto; Aiello, Marco; Soricelli, Andrea; Davino, Daniele; Visone, Ciro; Cutolo, Antonello; Cusano, Andrea

    2016-05-01

    In this paper, we report a fiber-optic triaxial magnetic field sensor, based on Fiber Bragg Gratings (FBGs) integrated with giant magnetostrictive material, the Terfenol-D. The realized sensor has been designed and engineered for Magnetic Resonance Imaging (MRI) applications. A full magneto-optical characterization of the triaxial sensing probe has been carried out, providing the complex relationship among the FBGs wavelength shift and the applied magnetostatic field vector. Finally, the developed fiber optic sensors have been arranged in a sensor network composed of 20 triaxial sensors for mapping the magnetic field distribution in a MRI-room at a diagnostic center in Naples (SDN), equipped with Positron emission tomography/magnetic resonance (PET/MR) instrumentation. Experimental results reveal that the proposed sensor network can be efficiently used in MRI centers for performing quality assurance tests, paving the way for novel integrated tools to measure the magnetic dose accumulated day by day by MRI operators.

  16. Curved Piezoelectric Actuators for Stretching Optical Fibers

    Science.gov (United States)

    Allison, Sidney G.; Shams, Qamar A.; Fox, Robert L.

    2008-01-01

    Assemblies containing curved piezoceramic fiber composite actuators have been invented as means of stretching optical fibers by amounts that depend on applied drive voltages. Piezoceramic fiber composite actuators are conventionally manufactured as sheets or ribbons that are flat and flexible, but can be made curved to obtain load-carrying ability and displacement greater than those obtainable from the flat versions. In the primary embodiment of this invention, piezoceramic fibers are oriented parallel to the direction of longitudinal displacement of the actuators so that application of drive voltage causes the actuator to flatten, producing maximum motion. Actuator motion can be transmitted to the optical fiber by use of hinges and clamp blocks. In the original application of this invention, the optical fiber contains a Bragg grating and the purpose of the controlled stretching of the fiber is to tune the grating as part of a small, lightweight, mode-hop-free, rapidly tunable laser for demodulating strain in Bragg-grating strain-measurement optical fibers attached to structures. The invention could also be used to apply controllable tensile force or displacement to an object other than an optical fiber.

  17. Feasibility Study on Fiber-optic Radiation Sensor for Remote Gamma-ray Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Jeon, Hyesu; Jang, Kyoung Won; Shin, Sang Hun and others

    2014-05-15

    In this study, we fabricated a fiber-optic radiation sensor using an optical fiber and various scintillators. To select an adequate inorganic scintillator for the sensing probe of fiber-optic radiation sensor, 5 types of scintillators were evaluated. The spectra of gamma-rays emitted from a Na-22 radiation source were measured by using the manufactured sensors. As a result, the BGO was suitable for the sensing probe of fiber-optic radiation sensor due to its high scintillation output and exact photoelectric peak for the gamma-ray energy. The basic principle of radiation detection is to detect the signals caused by interactions between radiations and materials. There are various types of radiation detectors depending on types of radiation to be detected and physical quantities to be measured. As one of the radiation detectors, a fiber-optic radiation sensor using a scintillator and an optical fiber has two advantages such as no space restraint and remote sensing. Moreover, in nuclear environments, this kind of sensor has immunities for electromagnetic field, temperature, and pressure. Thus, the fiber-optic radiation sensor can be used in various fields including nondestructive inspection, radioactive waste management, nuclear safety, radiodiagnosis and radiation therapy. As a fundamental study of the fiber-optic radiation sensor for remote gamma-ray spectroscopy, in this study, we fabricated a fiber-optic radiation sensor using an optical fiber and various scintillators. To select an adequate inorganic scintillator for the sensing probe of fiber-optic radiation sensor, 5 types of scintillators were evaluated. The spectra of gamma-rays emitted from a Na-22 radiation source were measured by using the manufactured sensors.

  18. Feasibility Study on Fiber-optic Radiation Sensor for Remote Gamma-ray Spectroscopy

    International Nuclear Information System (INIS)

    In this study, we fabricated a fiber-optic radiation sensor using an optical fiber and various scintillators. To select an adequate inorganic scintillator for the sensing probe of fiber-optic radiation sensor, 5 types of scintillators were evaluated. The spectra of gamma-rays emitted from a Na-22 radiation source were measured by using the manufactured sensors. As a result, the BGO was suitable for the sensing probe of fiber-optic radiation sensor due to its high scintillation output and exact photoelectric peak for the gamma-ray energy. The basic principle of radiation detection is to detect the signals caused by interactions between radiations and materials. There are various types of radiation detectors depending on types of radiation to be detected and physical quantities to be measured. As one of the radiation detectors, a fiber-optic radiation sensor using a scintillator and an optical fiber has two advantages such as no space restraint and remote sensing. Moreover, in nuclear environments, this kind of sensor has immunities for electromagnetic field, temperature, and pressure. Thus, the fiber-optic radiation sensor can be used in various fields including nondestructive inspection, radioactive waste management, nuclear safety, radiodiagnosis and radiation therapy. As a fundamental study of the fiber-optic radiation sensor for remote gamma-ray spectroscopy, in this study, we fabricated a fiber-optic radiation sensor using an optical fiber and various scintillators. To select an adequate inorganic scintillator for the sensing probe of fiber-optic radiation sensor, 5 types of scintillators were evaluated. The spectra of gamma-rays emitted from a Na-22 radiation source were measured by using the manufactured sensors

  19. Long distance fiber-optic displacement sensor based on fiber collimator

    Energy Technology Data Exchange (ETDEWEB)

    Shen Wei; Wu Xiaowei; Meng Hongyun; Zhang Guanbin; Huang Xuguang [Key Laboratory of Photonic Information Technology of Guangdong Higher Education Institutes, School for Information and Optoelectronic Science and Engineering, South China Normal University, Guangzhou 510006 (China)

    2010-12-15

    A simple fiber-optic displacement sensor based on reflective intensity modulated technology is demonstrated using a fiber collimator. The sensing range is over 30 cm, which is over 100 times that of the conventional fiber-optic displacement sensor based on the normal single-mode fiber. The measured data are fitted into linear equation very well and the values of R-square are more than 0.995. The sensitivity of the device achieves 0.426 dB/cm over the range of 5-30 cm. By applying the relative technique, the errors resulted from the fluctuation of light source and influences of environment are effectively eliminated, and the stability for wide range measurement can be improved. The simplicity of the design, high dynamic range, stability and the ease of the fabrication make it suitable for applications in industries.

  20. Low-cost fiber-optic chemochromic hydrogen detector

    Energy Technology Data Exchange (ETDEWEB)

    Benson, D.K.; Tracy, C.E.; Hishmeh, G.; Ciszek, P.; Lee, S.H. [National Renewable Energy Lab., Golden, CO (United States)

    1998-08-01

    The ability to detect hydrogen gas leaks economically and with inherent safety is an important technology that could facilitate commercial acceptance of hydrogen fuel in various applications. In particular, hydrogen fueled passenger vehicles will require hydrogen leak detectors to signal the activation of safety devices such as shutoff valves, ventilating fans, alarms, etc. Such detectors may be required in several locations within a vehicle--wherever a leak could pose a safety hazard. It is therefore important that the detectors be very economical. This paper reports progress on the development of low-cost fiber-optic hydrogen detectors intended to meet the needs of a hydrogen-fueled passenger vehicle. In the design, the presence of hydrogen in air is sensed by a thin-film coating at the end of a polymer optical fiber. When the coating reacts reversibly with the hydrogen, its optical properties are changed. Light from a central electro-optic control unit is projected down the optical fiber where it is reflected from the sensor coating back to central optical detectors. A change in the reflected intensity indicates the presence of hydrogen. The fiber-optic detector offers inherent safety by removing all electrical power from the leak sites and offers reduced signal processing problems by minimizing electromagnetic interference. Critical detector performance requirements include high selectivity, response speed and durability as well as potential for low-cost production.

  1. A novel distributed optic fiber transduser for landslides monitoring

    Science.gov (United States)

    Zhu, Zheng-Wei; Liu, Dong-Yan; Yuan, Qiao-Ying; Liu, Bang; Liu, Jing-Cheng

    2011-07-01

    Unstable slopes have been monitored since the beginning of the last century. Current electro-optic detection technology can achieve automatic monitoring remotely with high safety and includes such methods as time domain reflectometry, optical time domain reflectometry and Brillouin optical time domain reflectometry. However, these technologies cannot simultaneously meet the requirements of distributed sensing, high initial measurement accuracy, large sliding distance and high dynamic range. Based on the space frame theory of reinforced concrete beams, this study presents an innovative design for a distributed optic fiber sensor: a novel transduser with a bowknot. Using the optic fiber microbending loss mechanism and optical time domain reflectometry technology, bending and shear tests based on the combined fiber sensor are conducted, and the vertical displacement of midspan, optical fiber sliding distance and loss data under three different spans are collected. Feasibility study and economic analysis of the transduser used for landslide monitoring are also presented. The results show that the maximum sliding distance of our transduser is 21.8, 26.5 and 30.6 mm with corresponding initial accuracies of 1.2, 2.3 and 3.3 mm, and the dynamic ranges are 0-20.6, 0-23.2 and 0-27.3 mm. The cost of the transduser is economical at $0.15/m, which demonstrates promising economic application, high monitoring effectiveness and stability in monitoring civil works, such as slope, dam and tunnel construction and measurement.

  2. A Fiber-Tip Label-Free Biological Sensing Platform: A Practical Approach toward In-Vivo Sensing

    Directory of Open Access Journals (Sweden)

    Alexandre François

    2015-01-01

    Full Text Available The platform presented here was devised to address the unmet need for real time label-free in vivo sensing by bringing together a refractive index transduction mechanism based on Whispering Gallery Modes (WGM in dye doped microspheres and Microstructured Optical Fibers. In addition to providing remote excitation and collection of the WGM signal, the fiber provides significant practical advantages such as an easy manipulation of the microresonator and the use of this sensor in a dip sensing architecture, alleviating the need for a complex microfluidic interface. Here, we present the first demonstration of the use of this approach for biological sensing and evaluate its limitation in a sensing configuration deprived of liquid flow which is most likely to occur in an in vivo setting. We also demonstrate the ability of this sensing platform to be operated above its lasing threshold, enabling enhanced device performance.

  3. Microstructured optical fibers - Fundamentals and applications

    DEFF Research Database (Denmark)

    Lægsgaard, Jesper; Bjarklev, Anders Overgaard

    2006-01-01

    In recent years optical fibers having a complex microstructure in the transverse plane have attracted much attention from both researchers and industry. Such fibers can either guide light through total internal reflection or the photonic bandgap effect. Among the many unique applications offered by...... these fibers are mode guidance in air, highly flexible dispersion engineering, and the use of very heterogeneous material combinations. In this paper, we review the different types and applications of microstructured optical fibers, with particular emphasis on recent advances in the field....

  4. Research on distributed fiber-optic sensor based motor fault monitoring system

    Science.gov (United States)

    Zhang, Yi; Xu, Haiyan; Xiao, Qian; Wu, Hongyan; Zhao, Dong

    2010-10-01

    A new running condition monitoring method of motors such as generator sets, and aircraft engines, using distributed fiber-optic sensor was introduced in this paper. A Michelson Interferometer based fiber-optic sensor was constructed, which offered a high sensitivity of disturbance detection. Because the sensing arm of the sensor was composed of optical fiber, the distributed fiber-optic interferometric sensor provided a high capacity of anti-electromagnetic interference. The monitoring system had a simple structure, and the sensor could be fixed on the motor easily to monitor its running condition.

  5. Thermal Strain Analysis of Optic Fiber Sensors

    Directory of Open Access Journals (Sweden)

    Chih-Ying Huang

    2013-01-01

    Full Text Available An optical fiber sensor surface bonded onto a host structure and subjected to a temperature change is analytically studied in this work. The analysis is developed in order to assess the thermal behavior of an optical fiber sensor designed for measuring the strain in the host structure. For a surface bonded optical fiber sensor, the measuring sensitivity is strongly dependent on the bonding characteristics which include the protective coating, adhesive layer and the bonding length. Thermal stresses can be generated due to a mismatch of thermal expansion coefficients between the optical fiber and host structure. The optical fiber thermal strain induced by the host structure is transferred via the adhesive layer and protective coating. In this investigation, an analytical expression of the thermal strain and stress in the optical fiber is presented. The theoretical predictions are validated using the finite element method. Numerical results show that the thermal strain and stress are linearly dependent on the difference in thermal expansion coefficients between the optical fiber and host structure and independent of the thermal expansion coefficients of the adhesive and coating.

  6. Thermal strain analysis of optic fiber sensors.

    Science.gov (United States)

    Her, Shiuh-Chuan; Huang, Chih-Ying

    2013-01-31

    An optical fiber sensor surface bonded onto a host structure and subjected to a temperature change is analytically studied in this work. The analysis is developed in order to assess the thermal behavior of an optical fiber sensor designed for measuring the strain in the host structure. For a surface bonded optical fiber sensor, the measuring sensitivity is strongly dependent on the bonding characteristics which include the protective coating, adhesive layer and the bonding length. Thermal stresses can be generated due to a mismatch of thermal expansion coefficients between the optical fiber and host structure. The optical fiber thermal strain induced by the host structure is transferred via the adhesive layer and protective coating. In this investigation, an analytical expression of the thermal strain and stress in the optical fiber is presented. The theoretical predictions are validated using the finite element method. Numerical results show that the thermal strain and stress are linearly dependent on the difference in thermal expansion coefficients between the optical fiber and host structure and independent of the thermal expansion coefficients of the adhesive and coating.

  7. High Temperature Endurable Fiber Optic Accelerometer

    Directory of Open Access Journals (Sweden)

    Yeon-Gwan Lee

    2014-01-01

    Full Text Available This paper presents a low frequency fiber optic accelerometer for application in high temperature environments of civil engineering structures. The reflection-based extrinsic fiber optic accelerometer developed in this study consists of a transmissive grating panel, reflective mirror, and two optical fiber collimators as the transceiver whose function can be maintained up to 130°C. The dynamic characteristics of the sensor probe were investigated and the correlation between the natural frequency of the sensor probe and temperature variation was described and discussed. Furthermore, high temperature simulation equipment was designed for the verification test setup of the developed accelerometer for high temperature. This study was limited to consideration of 130°C applied temperature to the proposed fiber optic accelerometer due to an operational temperature limitation of commercial optical fiber collimator. The sinusoidal low frequency accelerations measured from the developed fiber optic accelerometer at 130°C demonstrated good agreement with that of an MEMS accelerometer measured at room temperature. The developed fiber optic accelerometer can be used in frequency ranges below 5.1 Hz up to 130°C with a margin of error that is less than 10% and a high sensitivity of 0.18 (m/s2/rad.

  8. Characterization of the stress and refractive-index distributions in optical fibers and fiber-based devices

    Science.gov (United States)

    Hutsel, Michael R.

    2011-07-01

    Optical fiber technology continues to advance rapidly as a result of the increasing demands on communication systems and the expanding use of fiber-based sensing. New optical fiber types and fiber-based communications components are required to permit higher data rates, an increased number of channels, and more flexible installation requirements. Fiber-based sensors are continually being developed for a broad range of sensing applications, including environmental, medical, structural, industrial, and military. As optical fibers and fiber-based devices continue to advance, the need to understand their fundamental physical properties increases. The residual-stress distribution (RSD) and the refractive-index distribution (RID) play fundamental roles in the operation and performance of optical fibers. Custom RIDs are used to tailor the transmission properties of fibers used for long-distance transmission and to enable fiber-based devices such as long-period fiber gratings (LPFGs). The introduction and modification of RSDs enable specialty fibers, such as polarization-maintaining fiber, and contribute to the operation of fiber-based devices. Furthermore, the RSD and the RID are inherently linked through the photoelastic effect. Therefore, both the RSD and the RID need to be characterized because these fundamental properties are coupled and affect the fabrication, operation, and performance of fibers and fiber-based devices. To characterize effectively the physical properties of optical fibers, the RSD and the RID must be measured without perturbing or destroying the optical fiber. Furthermore, the techniques used must not be limited in detecting small variations and asymmetries in all directions through the fiber. Finally, the RSD and the RID must be characterized concurrently without moving the fiber to enable the analysis of the relationship between the RSD and the RID. Although many techniques exist for characterizing the residual stress and the refractive index in

  9. Implementation Of Fiber Optics In U. S. Naval Combatants

    Science.gov (United States)

    Johnston, R. A.; Stewart, R. C.

    1987-12-01

    This paper describes a program wherein fiber optic technology was introduced into the U. S. Navy's AEGIS Cruisers. This program was sponsored and funded for the most part by Naval Sea Systems Command and represents the first significant effort involving naval vessels. Although specific to one ship class, the program achievements are applicable to most naval as well as commercial ships. The process of transitioning fiber optic technology from the laboratory or commercial sector to a military ship is described. The issues addressed and problems resolved during this transition are discussed. Some of the primary issues include transmission data rates, ship producibility and environmental concerns such as temperature extremes, shock, vibration, ionizing radiation, toxic materials, etc. Additionally, the advantages of fiber optic technology specific to U. S. Naval ships are explained. Of particular importance are the developments that evolved from the AEGIS Cruiser program. Developments include a unique cable design, junction boxes, connectors, a splice, emergency repair procedures, a remote motor control system, a torsionmeter system, and a family of sensors and switches. The overall program resulted in the installation of fiber optic systems on three U. S. Navy ships. These installation projects are described along with some of the lessons learned. The paper concludes that the past issues that prevented the use of fiber optic technology in naval ships have been addressed and resolved. Fiber optics has successfully been introduced into naval combatants in data transmission, control, and sensing applications. Normal producibility has been considered such that fiber optic systems have been installed in almost routine fashion by a commercial shipyard. Additionally, human factor considerations have resulted in little or no additional training being required for operational and maintenance personnel.

  10. A high-sensitivity chemical sensor based on titania coated optical-fiber long period grating for ammonia sensing in water

    Science.gov (United States)

    Tiwari, D.; James, S. W.; Tatam, R. P.; Korposh, S.; Lee, S. W.

    2015-07-01

    Two highly sensitive ammonia sensors, formed by depositing coatings composed of titanium dioxide (TiO2) onto the cladding of an optical fibre sensing platform, are evaluated. A long period grating (LPG) of period 111 μm was fabricated in the core of an optical fibre so that the LPG operates at or near the phase matching turning point (PMTP). The first coating that was investigated was composed of TiO2 nanoparticles deposited by liquid phase deposition. The sensor showed high sensitivity and allowed low concentrations of ammonia in water (0.01 ppm) to be detected with a response time of less than 60 sec. The second coating was composed of TiO2 with subsequent layers of poly (allyamine hydrochloride) (PAH), and SiO2 nanospheres infused with a sensitive element composed of porphine. The ammonia adsorption to the porphine compound led to the changes in the LPG's transmission spectrum and allowed 0.1 ppm of ammonia in water to be detected with a response time of less than 60 sec.

  11. Fiber Optic Vibration Sensor Based on the Tilted Fiber Bragg Grating

    Directory of Open Access Journals (Sweden)

    Jiali An

    2013-01-01

    Full Text Available A temperature-insensitive fiber optic vibration sensor based on the tilted fiber Bragg grating (TFBG is presented. The sensing head is formed by insertion of a small section of MMF between a single-mode fiber and the TFBG. The reflection light from this tilted fiber Bragg grating includes two parts: the reflected Bragg mode and the cladding modes. The cladding modes were coupled back into the core mode as a function of the multimode fiber. The power of the cladding modes is sensitive to vibration, so the external vibration measurement can be obtained through the cladding mode average output power. Experiment results show that the root mean square (RMS of the detection error of the average power was 0.01 μW within the temperature range from 20 to 70°C, so it is proved to be temperature independent; its frequency response has been tested to 1 KHz.

  12. Small form factor optical fiber connector evaluation for harsh environments

    Science.gov (United States)

    Ott, Melanie N.; Thomes, W. Joe, Jr.; Chuska, Richard F.; Switzer, Robert; Blair, Diana E.

    2011-09-01

    For the past decade NASA programs have utilized the Diamond AVIM connector for optical fiber assemblies on space flight instrumentation. These connectors have been used in communications, sensing and LIDAR systems where repeatability and high performance are required. Recently Diamond has released a smaller form factor optical fiber connector called the "Mini-AVIM" which although more compact still includes the tight tolerances and the ratcheting feature of the heritage AVIM. NASA Goddard Space Flight Center Photonics Group in the Parts, Packaging and Assembly Technologies Office has been performing evaluations of this connector to determine how it compares to the performance of the AVIM connector and to assess its feasibility for harsh environmental applications. Vibration and thermal testing were performed on the Mini-AVIM with both multi-mode and single-mode optical fiber using insitu optical transmission monitoring. Random vibration testing was performed using typical launch condition profiles for most NASA missions but extended to 35 Grms, which is much higher than most requirements. Thermal testing was performed incrementally up to a range of -55°C to +125°C. The test results include both unjacketed fiber and cabled assembly evaluations. The data presented here indicate that the Mini-AVIM provides a viable option for small form factor applications that require a high performance optical fiber connector.

  13. Fiber optic communications fundamentals and applications

    CERN Document Server

    Kumar, Shiva

    2014-01-01

    Fiber-optic communication systems have advanced dramatically over the last four decades, since the era of copper cables, resulting in low-cost and high-bandwidth transmission. Fiber optics is now the backbone of the internet and long-distance telecommunication. Without it we would not enjoy the benefits of high-speed internet, or low-rate international telephone calls. This book introduces the basic concepts of fiber-optic communication in a pedagogical way. The important mathematical results are derived by first principles rather than citing research articles. In addition, physical interpre

  14. Characterization of the stress and refractive-index distributions in optical fibers and fiber-based devices

    Science.gov (United States)

    Hutsel, Michael R.

    2011-07-01

    Optical fiber technology continues to advance rapidly as a result of the increasing demands on communication systems and the expanding use of fiber-based sensing. New optical fiber types and fiber-based communications components are required to permit higher data rates, an increased number of channels, and more flexible installation requirements. Fiber-based sensors are continually being developed for a broad range of sensing applications, including environmental, medical, structural, industrial, and military. As optical fibers and fiber-based devices continue to advance, the need to understand their fundamental physical properties increases. The residual-stress distribution (RSD) and the refractive-index distribution (RID) play fundamental roles in the operation and performance of optical fibers. Custom RIDs are used to tailor the transmission properties of fibers used for long-distance transmission and to enable fiber-based devices such as long-period fiber gratings (LPFGs). The introduction and modification of RSDs enable specialty fibers, such as polarization-maintaining fiber, and contribute to the operation of fiber-based devices. Furthermore, the RSD and the RID are inherently linked through the photoelastic effect. Therefore, both the RSD and the RID need to be characterized because these fundamental properties are coupled and affect the fabrication, operation, and performance of fibers and fiber-based devices. To characterize effectively the physical properties of optical fibers, the RSD and the RID must be measured without perturbing or destroying the optical fiber. Furthermore, the techniques used must not be limited in detecting small variations and asymmetries in all directions through the fiber. Finally, the RSD and the RID must be characterized concurrently without moving the fiber to enable the analysis of the relationship between the RSD and the RID. Although many techniques exist for characterizing the residual stress and the refractive index in

  15. New distributed fiber optic sensing system based on virtual instrument%基于虚拟仪器平台的新型分布式光纤传感系统

    Institute of Scientific and Technical Information of China (English)

    杨士宁; 李立京; 陆文超; 李勤; 章敏

    2012-01-01

    An phase-sensitive optical time-domain reflectometer (Φ-OTDR) distributed sensor system based on LABVIEW platform is described. Light pulse modulated by an electro-optic modulator from a continuous-wave fiber laser with a narrow (3. 6 kHz) instantaneous linewidth and low (1 MHz per min) frequency drift are injected into one end of the fiber,and the backscattered light is monitored on the same end of the fiber with a photo-detector. The signal gathered from the photo-detector is sent to LABVIEW in the computer to process. The effect of phase changes resulting from the pressure of the intruder on the ground immediately above the buried fiber are sensed by subtracting a OTDR trace from an earlier stored trace. Such a distributed sensing system is anticipated to be used widely in perimeter security,oil pipeline safety monitoring,large structure monitoring et al.%提出一种可用于探测并定位微弱振动的基于LABVIEW平台的相位敏感光时域反射型(φ-OTDR)分布式光纤传感系统.该系统中,窄线宽(3.6 kHz)、低频率漂移(1 MHz/min)的光纤激光器输出的连续光经电光调制器调制成脉冲光,经环行器后从传感光纤的一端输入,并在环形器的另一端通过光电探测器检测传感光纤中的后向瑞利散射光,探测器接收到的信号经过放大后采集到上位机中,使用LABVIEW进行数据处理.当在传感光缆表面或附近有压力或振动导致光纤中瑞利散射光相位发生变化时,由于干涉作用,光相位变化将引起光强度的变化,经过适当的数据处理后可得到压力或振动点的位置.这种传感系统可应用于周界安防、石油管道安全监测、大型结构监测等.

  16. A Polymer Optical Fiber Fuel Level Sensor: Application to Paramotoring and Powered Paragliding

    Directory of Open Access Journals (Sweden)

    David Sánchez Montero

    2012-05-01

    Full Text Available A low-cost intensity-based polymer optical fiber (POF sensor for fuel level measurements in paramotoring and powered paragliding is presented, exploiting the advantages of the optical fiber sensing technology. Experimental results demonstrate that the best option can be performed by stripping the fiber at the desired discrete points to measure the fuel level as well as with a gauge-shape fiber bending. The prototype has a good linearity, better than 4% full scale (F.S., and sensitivity around 0.5 V per bend are obtained. Hysteresis due to residual fluid at the sensing points is found to be less than 9% F.S.

  17. Fiber Optic Fabry-Perot Current Sensor Integrated with Magnetic Fluid Using a Fiber Bragg Grating Demodulation.

    Science.gov (United States)

    Xia, Ji; Wang, Qi; Liu, Xu; Luo, Hong

    2015-07-09

    An optical fiber current sensor based on Fabry-Perot interferometer using a fiber Bragg grating demodulation is proposed. Magnetic fluid is used as a sensitive medium in fiber optical Fabry-Perot (F-P) cavity for the optical characteristic of magnetic-controlled refractive index. A Fiber Bragg grating (FBG) is connected after the F-P interferometer which is used to reflect the optical power at the Bragg wavelength of the interference transmission spectrum. The corresponding reflective power of the FBG will change with different external current intensity, due to the shift on the interference spectrum of the F-P interferometer. The sensing probe has the advantages of convenient measurement for its demodulation, low cost and high current measurement accuracy on account of its sensing structure. Experimental results show that an optimal sensitivity of 0.8522 nw/A and measurement resolution of 0.001 A is obtained with a FBG at 1550 nm with 99% reflectivity.

  18. Fibre optic distributed scattering sensing system: perspectives and challenges for high performance applications

    Institute of Scientific and Technical Information of China (English)

    Marc Niklès

    2007-01-01

    As fiber optic distributed scattering sensing systems are providing innovative solutions for the monitoring of large structures, the comparison of different techniques and solutions is difficult because of the lack of standardized specifications and the difficulty associated to the characterization of such systems. The article presents a tentative definition of performance specifications and qualification procedures applicable to fiber optic distributed sensing systems aiming at providing clear guidelines for their design, specifications, qualification, application and selection.

  19. Side-emitting fiber optic position sensor

    Energy Technology Data Exchange (ETDEWEB)

    Weiss, Jonathan D. (Albuquerque, NM)

    2008-02-12

    A side-emitting fiber optic position sensor and method of determining an unknown position of an object by using the sensor. In one embodiment, a concentrated beam of light source illuminates the side of a side-emitting fiber optic at an unknown axial position along the fiber's length. Some of this side-illuminated light is in-scattered into the fiber and captured. As the captured light is guided down the fiber, its intensity decreases due to loss from side-emission away from the fiber and from bulk absorption within the fiber. By measuring the intensity of light emitted from one (or both) ends of the fiber with a photodetector(s), the axial position of the light source is determined by comparing the photodetector's signal to a calibrated response curve, look-up table, or by using a mathematical model. Alternatively, the side-emitting fiber is illuminated at one end, while a photodetector measures the intensity of light emitted from the side of the fiber, at an unknown position. As the photodetector moves further away from the illuminated end, the detector's signal strength decreases due to loss from side-emission and/or bulk absorption. As before, the detector's signal is correlated to a unique position along the fiber.

  20. In-fiber Fabry-Perot interferometer for strain and magnetic field sensing.

    Science.gov (United States)

    Costa, Greice K B; Gouvêa, Paula M P; Soares, Larissa M B; Pereira, João M B; Favero, Fernando; Braga, Arthur M B; Palffy-Muhoray, Peter; Bruno, Antonio C; Carvalho, Isabel C S

    2016-06-27

    In this paper we discuss the results obtained with an in-fiber Fabry-Perot interferometer (FPI) used in strain and magnetic field (or force) sensing. The intrinsic FPI was constructed by splicing a small section of a capillary optical fiber between two pieces of standard telecommunication fiber. The sensor was built by attaching the FPI to a magnetostrictive alloy in one configuration and also by attaching the FPI to a small magnet in another. Our sensors were found to be over 4 times more sensitive to magnetic fields and around 10 times less sensitive to temperature when compared to sensors constructed with Fiber Bragg Grating (FBG).