WorldWideScience

Sample records for fiber optic engineers

  1. Fiber optics engineering

    CERN Document Server

    Azadeh, Mohammad

    2009-01-01

    Covering fiber optics from an engineering perspective, this text emphasizes data conversion between electrical and optical domains. Techniques to improve the fidelity of this conversion (from electrical to optical domain, and vice versa) are also covered.

  2. Engineering modes in optical fibers with metamaterial

    Institute of Scientific and Technical Information of China (English)

    Min YAN; Niels Asger MORTENSEN; Min QIU

    2009-01-01

    In this paper, we report a preliminary theoret-ical study on optical fibers with fine material inclusions whose geometrical inhomogeneity is almost indistinguish-able by the operating wavelength. We refer to such fibers as metamaterial optical fibers, which can conceptually be considered as an extension from the previously much publicized microstructured optical fibers. Metamaterials can have optical properties not obtainable in naturally existing materials, including artificial anisotropy as well as graded material properties. Therefore, incorporation of metamaterial in optical fiber designs can produce a new range of fiber properties. With a particular example, we will show how mode discrimination can be achieved in a multimode Bragg fiber with the help of metamaterial. We also look into the mean field theory as well as Maxwell-Garner theory for homogenizing a fine metamaterial structure to a homogeneous one. The accuracies of the two homogenization approaches are compared with full-structure calculation.

  3. Engineering modes in optical fibers with metamaterial

    DEFF Research Database (Denmark)

    Yan, Min; Mortensen, Asger; Qiu, Min

    2009-01-01

    as an extension from the previously much publicized microstructured optical fibers. Metamaterials can have optical properties not obtainable in naturally existing materials, including artificial anisotropy as well as graded material properties. Therefore, incorporation of metamaterial in optical fiber designs can...... produce a new range of fiber properties. With a particular example, we will show how mode discrimination can be achieved in a multimode Bragg fiber with the help of metamaterial. We also look into the mean field theory as well as Maxwell-Garnett theory for homogenizing a fine metamaterial structure...

  4. Fiber-optic sensor applications in civil and geotechnical engineering

    Science.gov (United States)

    Habel, Wolfgang R.; Krebber, Katerina

    2011-09-01

    Different types of fiber-optic sensors based on glass or polymeric fibers are used to evaluate material behavior or to monitor the integrity and long-term stability of load-bearing structure components. Fiber-optic sensors have been established as a new and innovative measurement technology in very different fields, such as material science, civil engineering, light-weight structures, geotechnical areas as well as chemical and high-voltage substations. Very often, mechanical quantities such as deformation, strain or vibration are requested. However, measurement of chemical quantities in materials and structure components, such as pH value in steel reinforced concrete members also provides information about the integrity of concrete structures. A special fiber-optic chemical sensor for monitoring the alkaline state (pH value) of the cementitious matrix in steel-reinforced concrete structures with the purpose of early detection of corrosion-initiating factors is described. The paper presents the use of several fiber-optic sensor technologies in engineering. One example concerns the use of highly resolving concrete-embeddable fiber Fabry-Perot acoustic emission (AE) sensors for the assessment of the bearing behaviour of large concrete piles in existing foundations or during and after its installation. Another example concerns fiber Bragg grating (FBG) sensors attached to anchor steels (micro piles) to measure the strain distribution in loaded soil anchors. Polymer optical fibers (POF) can be — because of their high elasticity and high ultimate strain — well integrated into textiles to monitor their deformation behaviour. Such "intelligent" textiles are capable of monitoring displacement of soil or slopes, critical mechanical deformation in geotechnical structures (dikes, dams, and embankments) as well as in masonry structures during and after earthquakes.

  5. Engineering of Glasses for Advanced Optical Fiber Applications

    Directory of Open Access Journals (Sweden)

    Nathan Carlie

    2009-12-01

    Full Text Available Advanced optical applications (such as fiber opticsdemand the engineering of innovative materialswhich provide the requisite optical performance in aform with specific functionality necessary for thedesired application. We will report on recent effortsto engineer new non-oxide glasses with tailoredphoto-sensitive response, and multi-component oxideglasses optimized for use in next generation Ramanamplification applications. The ultimate performanceof such glasses relies on control of the formation andstability of defective and/or metastable structuralconfigurations and their impact on physical as well aslinear and nonlinear optical properties. Direct laserwriting has drawn considerable attention since thedevelopment of femtosecond lasers and therecognition that such systems possess the requisiteintensity to modify, reversibly or irreversibly thephysical properties of optical materials. Such“structuring” has emerged as one of several possibleroutes for the fabrication of waveguides and otherphoto-induced structures.

  6. Virtual-reality-based educational laboratories in fiber optic engineering

    Science.gov (United States)

    Hayes, Dana; Turczynski, Craig; Rice, Jonny; Kozhevnikov, Michael

    2014-07-01

    Researchers and educators have observed great potential in virtual reality (VR) technology as an educational tool due to its ability to engage and spark interest in students, thus providing them with a deeper form of knowledge about a subject. The focus of this project is to develop an interactive VR educational module, Laser Diode Characteristics and Coupling to Fibers, to integrate into a fiber optics laboratory course. The developed module features a virtual laboratory populated with realistic models of optical devices in which students can set up and perform an optical experiment dealing with laser diode characteristics and fiber coupling. The module contains three increasingly complex levels for students to navigate through, with a short built-in quiz after each level to measure the student's understanding of the subject. Seventeen undergraduate students learned fiber coupling concepts using the designed computer simulation in a non-immersive desktop virtual environment (VE) condition. The analysis of students' responses on the updated pre- and post tests show statistically significant improvement of the scores for the post-test as compared to the pre-test. In addition, the students' survey responses suggest that they found the module very useful and engaging. The conducted study clearly demonstrated the feasibility of the proposed instructional technology for engineering education, where both the model of instruction and the enabling technology are equally important, in providing a better learning environment to improve students' conceptual understanding as compared to other instructional approaches.

  7. Novel Optical Fiber Materials With Engineered Brillouin Gain Coefficients SSL 1: Novel Fiber Lasers

    Science.gov (United States)

    2015-12-29

    NAME(S) AND ADDRESS (ES) U.S. Army Research Office P.O. Box 12211 Research Triangle Park, NC 27709-2211 High energy lasers, optical fiber, glass...Technologies workshop, Le Centre National de la Recherche Scientifique , Institute for Engineering and Systems Sciences (INSIS), Paris, France, October...Sub Contractors (DD882) Names of Personnel receiving masters degrees Names of personnel receiving PHDs Names of other research staff Number of

  8. Ultrafast optics. Ultrafast optical control by few photons in engineered fiber.

    Science.gov (United States)

    Nissim, R; Pejkic, A; Myslivets, E; Kuo, B P; Alic, N; Radic, S

    2014-07-25

    Fast control of a strong optical beam by a few photons is an outstanding challenge that limits the performance of quantum sensors and optical processing devices. We report that a fast and efficient optical gate can be realized in an optical fiber that has been engineered with molecular-scale accuracy. Highly efficient, distributed phase-matched photon-photon interaction was achieved in the fiber with locally controlled, nanometer-scale core variations. A three-photon input was used to manipulate a Watt-scale beam at a speed exceeding 500 gigahertz. In addition to very fast beam control, the results provide a path to developing a new class of sensitive receivers capable of operating at very high rates.

  9. Engineering Optics

    CERN Document Server

    Iizuka, Keigo

    2008-01-01

    Engineering Optics is a book for students who want to apply their knowledge of optics to engineering problems, as well as for engineering students who want to acquire the basic principles of optics. It covers such important topics as optical signal processing, holography, tomography, holographic radars, fiber optical communication, electro- and acousto-optic devices, and integrated optics (including optical bistability). As a basis for understanding these topics, the first few chapters give easy-to-follow explanations of diffraction theory, Fourier transforms, and geometrical optics. Practical examples, such as the video disk, the Fresnel zone plate, and many more, appear throughout the text, together with numerous solved exercises. There is an entirely new section in this updated edition on 3-D imaging.

  10. Application of fiber optic distributed sensor for strain measurement in civil engineering

    Science.gov (United States)

    Kurashima, Toshio; Usu, Tomonori; Tanaka, Kuniaki; Nobiki, Atsushi; Sato, Masashi; Nakai, Kenji

    1997-11-01

    We report on civil engineering applications of a fiber optic distributed strain sensor. It consists of a sensing fiber and a high performance optical time domain reflectometer (OTDR), for measuring both strain and optical loss distribution along optical fibers by accessing only one end of the fiber. The OTDR can measure distributed strain with an accuracy of better than +/- 60 X 10-6 and a high spatial resolution of up to 1 m over a 10 km long fiber. In model experiments using the OTDR, we measured the strain changes in fibers attached to the surface of a concrete test beam. The performance of the fiber strain sensor was tested by measuring the strain distribution in optical fibers and comparing the results with resistance strain gage measurements for several loads. We found that the two sets of results were similar, and in addition, we demonstrated experimentally that the sensor was able to measure an induced strain change of less than 100 by 10-6, which is nearly the elastic limit of the concrete material. These results show the potential of the OTDR to extend the application of monitoring systems to such areas as large building diagnostics for civil engineering.

  11. Nonlinear fiber optics

    CERN Document Server

    Agrawal, Govind P

    2001-01-01

    The Optical Society of America (OSA) and SPIE - The International Society for Optical Engineering have awarded Govind Agrawal with an honorable mention for the Joseph W. Goodman Book Writing Award for his work on Nonlinear Fiber Optics, 3rd edition.Nonlinear Fiber Optics, 3rd Edition, provides a comprehensive and up-to-date account of the nonlinear phenomena occurring inside optical fibers. It retains most of the material that appeared in the first edition, with the exception of Chapter 6, which is now devoted to the polarization effects relevant for light propagation in optical

  12. Distributed optical fiber-based theoretical and empirical methods monitoring hydraulic engineering subjected to seepage velocity

    Science.gov (United States)

    Su, Huaizhi; Tian, Shiguang; Cui, Shusheng; Yang, Meng; Wen, Zhiping; Xie, Wei

    2016-09-01

    In order to systematically investigate the general principle and method of monitoring seepage velocity in the hydraulic engineering, the theoretical analysis and physical experiment were implemented based on distributed fiber-optic temperature sensing (DTS) technology. During the coupling influence analyses between seepage field and temperature field in the embankment dam or dike engineering, a simplified model was constructed to describe the coupling relationship of two fields. Different arrangement schemes of optical fiber and measuring approaches of temperature were applied on the model. The inversion analysis idea was further used. The theoretical method of monitoring seepage velocity in the hydraulic engineering was finally proposed. A new concept, namely the effective thermal conductivity, was proposed referring to the thermal conductivity coefficient in the transient hot-wire method. The influence of heat conduction and seepage could be well reflected by this new concept, which was proved to be a potential approach to develop an empirical method monitoring seepage velocity in the hydraulic engineering.

  13. Development and Performance Verification of Fiber Optic Temperature Sensors in High Temperature Engine Environments

    Science.gov (United States)

    Adamovsky, Grigory; Mackey, Jeffrey R.; Kren, Lawrence A.; Floyd, Bertram M.; Elam, Kristie A.; Martinez, Martel

    2014-01-01

    A High Temperature Fiber Optic Sensor (HTFOS) has been developed at NASA Glenn Research Center for aircraft engine applications. After fabrication and preliminary in-house performance evaluation, the HTFOS was tested in an engine environment at NASA Armstrong Flight Research Center. The engine tests enabled the performance of the HTFOS in real engine environments to be evaluated along with the ability of the sensor to respond to changes in the engine's operating condition. Data were collected prior, during, and after each test in order to observe the change in temperature from ambient to each of the various test point levels. An adequate amount of data was collected and analyzed to satisfy the research team that HTFOS operates properly while the engine was running. Temperature measurements made by HTFOS while the engine was running agreed with those anticipated.

  14. Fiber optic sensing and imaging

    CERN Document Server

    2013-01-01

    This book is designed to highlight the basic principles of fiber optic imaging and sensing devices. The editor has organized the book to provide the reader with a solid foundation in fiber optic imaging and sensing devices. It begins with an introductory chapter that starts from Maxwell’s equations and ends with the derivation of the basic optical fiber characteristic equations and solutions (i.e. fiber modes). Chapter 2 reviews most common fiber optic interferometric devices and Chapter 3 discusses the basics of fiber optic imagers with emphasis on fiber optic confocal microscope. The fiber optic interferometric sensors are discussed in detail in chapter 4 and 5. Chapter 6 covers optical coherence tomography and goes into the details of signal processing and systems level approach of the real-time OCT implementation. Also useful forms of device characteristic equations are provided so that this book can be used as a reference for scientists and engineers in the optics and related fields.

  15. A Review of Distributed Optical Fiber Sensors for Civil Engineering Applications

    Directory of Open Access Journals (Sweden)

    António Barrias

    2016-05-01

    Full Text Available The application of structural health monitoring (SHM systems to civil engineering structures has been a developing studied and practiced topic, that has allowed for a better understanding of structures’ conditions and increasingly lead to a more cost-effective management of those infrastructures. In this field, the use of fiber optic sensors has been studied, discussed and practiced with encouraging results. The possibility of understanding and monitor the distributed behavior of extensive stretches of critical structures it’s an enormous advantage that distributed fiber optic sensing provides to SHM systems. In the past decade, several R & D studies have been performed with the goal of improving the knowledge and developing new techniques associated with the application of distributed optical fiber sensors (DOFS in order to widen the range of applications of these sensors and also to obtain more correct and reliable data. This paper presents, after a brief introduction to the theoretical background of DOFS, the latest developments related with the improvement of these products by presenting a wide range of laboratory experiments as well as an extended review of their diverse applications in civil engineering structures.

  16. A Review of Distributed Optical Fiber Sensors for Civil Engineering Applications.

    Science.gov (United States)

    Barrias, António; Casas, Joan R; Villalba, Sergi

    2016-05-23

    The application of structural health monitoring (SHM) systems to civil engineering structures has been a developing studied and practiced topic, that has allowed for a better understanding of structures' conditions and increasingly lead to a more cost-effective management of those infrastructures. In this field, the use of fiber optic sensors has been studied, discussed and practiced with encouraging results. The possibility of understanding and monitor the distributed behavior of extensive stretches of critical structures it's an enormous advantage that distributed fiber optic sensing provides to SHM systems. In the past decade, several R & D studies have been performed with the goal of improving the knowledge and developing new techniques associated with the application of distributed optical fiber sensors (DOFS) in order to widen the range of applications of these sensors and also to obtain more correct and reliable data. This paper presents, after a brief introduction to the theoretical background of DOFS, the latest developments related with the improvement of these products by presenting a wide range of laboratory experiments as well as an extended review of their diverse applications in civil engineering structures.

  17. Hybrid optical fiber sensor system based on fiber Bragg gratings and plastic optical fibers for health monitoring of engineering structures

    Science.gov (United States)

    Kuang, K. S. C.; Maalej, M.; Quek, S. T.

    2006-03-01

    In this paper, packaged fibre Bragg grating (PFBG) sensors were fabricated by embedding them in 70mm x 10mm x 0.3mm carbon-fibre composites which were then surface-bonded to an aluminium beam and a steel I-beam to investigate their strain monitoring capability. Initially, the response of these packaged sensors under tensile loading was compared to bare FBGs and electrical strain gauges located in the vicinity. The effective calibration constant/ coefficient of the PFBG sensor was also compared with the non-packaged version. These PFBG sensors were then attached to an I-section steel beam to monitor their response under flexural loading conditions. These realistic structures provide a platform to assess the potential and reliability of the PFBG sensors when used in harsh environment. The results obtained in this study gave clear experimental evidence of the difference in performance between the coated and uncoated PFBG fabricated for the study. In another experimental set-up, bare FBG and POF vibration sensors were surface-bonded to the side-surface of a CFRPwrapped reinforced concrete beam which was then subjected to cyclic loading to assess their long-term survivability. Plain plastic optical fibre (POF) sensors were also attached to the side of the 2-meter concrete beam to monitor the progression of cracks developed during the cyclic loading. The results showed excellent long-term survivability by the FBG and POF vibration sensors and provided evidence of the potential of the plain POF sensor to detect and monitor the propagation of the crack developed during the test.

  18. Optical fiber telecommunications IIIb

    CERN Document Server

    Koch, Thomas L

    2012-01-01

    Updated to include the latest information on light wave technology, Optical Fiber Telecommunication III, Volumes A & B are invaluable for scientists, students, and engineers in the modern telecommunications industry. This two-volume set includes the most current research available in optical fiber telecommunications, light wave technology, and photonics/optoelectronics. The authors cover important background concepts such as SONET, coding device technology, andWOM components as well as projecting the trends in telecommunications for the 21st century.Key Features* One of the hottest subjects of

  19. Fiber Optics Technology.

    Science.gov (United States)

    Burns, William E.

    1986-01-01

    Discusses various applications of fiber optics technology: information systems, industrial robots, medicine, television, transportation, and training. Types of jobs that will be available with fiber optics training (such as electricians and telephone cable installers and splicers) are examined. (CT)

  20. Fiber Optics Instrumentation Development

    Science.gov (United States)

    Chan, Patrick Hon Man; Parker, Allen R., Jr.; Richards, W. Lance

    2010-01-01

    This is a general presentation of fiber optics instrumentation development work being conducted at NASA Dryden for the past 10 years and recent achievements in the field of fiber optics strain sensors.

  1. Two Fiber Optical Fiber Thermometry

    Science.gov (United States)

    Jones, Mathew R.; Farmer, Jeffery T.; Breeding, Shawn P.

    2000-01-01

    An optical fiber thermometer consists of an optical fiber whose sensing tip is given a metallic coating. The sensing tip of the fiber is essentially an isothermal cavity, so the emission from this cavity will be approximately equal to the emission from a blackbody. Temperature readings are obtained by measuring the spectral radiative heat flux at the end of the fiber at two wavelengths. The ratio of these measurements and Planck's Law are used to infer the temperature at the sensing tip. Optical fiber thermometers have high accuracy, excellent long-term stability and are immune to electromagnetic interference. In addition, they can be operated for extended periods without requiring re-calibration. For these reasons. it is desirable to use optical fiber thermometers in environments such as the International Space Station. However, it has recently been shown that temperature readings are corrupted by emission from the fiber when extended portions of the probe are exposed to elevated temperatures. This paper will describe several ways in which the reading from a second fiber can be used to correct the corrupted temperature measurements. The accuracy and sensitivity to measurement uncertainty will be presented for each method.

  2. The Fiber Optic Connection.

    Science.gov (United States)

    Reese, Susan

    2003-01-01

    Describes the fiber optics programs at the Career and Technical Center in Berlin, Pennsylvania and the Charles S. Monroe Technology Center in Loudoun County, Virginia. Discusses the involvement of the Fiber Optic Association with education, research and development, manufacturing, sales, distribution, installation, and maintenance of fiber optic…

  3. Fiber Optic Chemical Nanosensors Based on Engineered Single-Walled Carbon Nanotubes

    Directory of Open Access Journals (Sweden)

    M. Consales

    2008-01-01

    Full Text Available In this contribution, a review of the development of high-performance optochemical nanosensors based on the integration of carbon nanotubes with the optical fiber technology is presented. The paper first provide an overview of the amazing features of carbon nanotubes and their exploitation as highly adsorbent nanoscale materials for gas sensing applications. Successively, the attention is focused on the operating principle, fabrication, and characterization of fiber optic chemosensors in the Fabry-Perot type reflectometric configuration, realized by means of the deposition of a thin layer of single-walled carbon nanotubes (SWCNTs upon the distal end of standard silica optical fibers. This is followed by an extensive review of the excellent sensing capabilities of the realized SWCNTs-based chemical nanosensors against volatile organic compounds and other pollutants in different environments (air and water and operating conditions (room temperature and cryogenic temperatures. The experimental results reported here reveal that ppm and sub-ppm chemical detection limits, low response times, as well as fast and complete recovery of the sensor responses have been obtained in most of the investigated cases. This evidences the great potentialities of the proposed photonic nanosensors based on SWCNTs to be successfully employed for practical environmental monitoring applications both in liquid and vapor phase as well as for space. Furthermore, the use of novel SWCNTs-based composites as sensitive fiber coatings is proposed to enhance the sensing performance and to improve the adhesion of carbon nanotubes to the fiber surface. Finally, new advanced sensing configurations based on the use of hollow-core optical fibers coated and partially filled by carbon nanotubes are also presented.

  4. Optical Fiber Fusion Splicing

    CERN Document Server

    Yablon, Andrew D

    2005-01-01

    This book is an up-to-date treatment of optical fiber fusion splicing incorporating all the recent innovations in the field. It provides a toolbox of general strategies and specific techniques that the reader can apply when optimizing fusion splices between novel fibers. It specifically addresses considerations important for fusion splicing of contemporary specialty fibers including dispersion compensating fiber, erbium-doped gain fiber, polarization maintaining fiber, and microstructured fiber. Finally, it discusses the future of optical fiber fusion splicing including silica and non-silica based optical fibers as well as the trend toward increasing automation. Whilst serving as a self-contained reference work, abundant citations from the technical literature will enable readers to readily locate primary sources.

  5. Structural, thermal, optical properties and cytotoxicity of PMMA/ZnO fibers and films: Potential application in tissue engineering

    Energy Technology Data Exchange (ETDEWEB)

    Balen, Rodrigo; Vidotto da Costa, Wilian; Lara Andrade, Jéssica de; Piai, Juliana Francis [Programa de Pós-Graduação em Química, Departamento de Química, Universidade Estadual de Maringá, Av. Colombo 5790, 87020-900, Zona Sete, Maringá, PR (Brazil); Muniz, Edvani Curti [Programa de Pós-Graduação em Química, Departamento de Química, Universidade Estadual de Maringá, Av. Colombo 5790, 87020-900, Zona Sete, Maringá, PR (Brazil); Programa de Pós-Graduação em Biotecnologia Aplicada à Agricultura, Universidade Paranaense (UNIPAR), 87502-210, Umuarama, PR (Brazil); Programa de Pós- Graduação em Ciências de Materiais & Engenharia, Universidade Tecnológica Federal do Paraná (UTFPR-LD), 86036-370, Londrina, PR (Brazil); Companhoni, Mychelle Vianna; Nakamura, Tânia Ueda [Departamento de Ciências Básicas da Saúde, Universidade Estadual de Maringá, Av. Colombo 5790, 87020-900, Zona Sete, Maringá, PR (Brazil); and others

    2016-11-01

    Highlights: • Films and fibers of PMMA/ZnO nanocomposite were prepared. • ZnO NPs incorporated into PMMA fibers reduces their diameter and beads presence. • PMMA films containing ZnO exhibit higher thermal stability than pure polymer. • PMMA/ZnO nanocomposites show improved optical properties compared to pure polymer. • PMMA/ZnO shows potential for applications in tissue engineering. - Abstract: Films and fibers of PMMA/ZnO nanocomposites (100/0, 99/01, 97/03, 95/05, 90/10, and 85/15 wt.%) were produced by casting and electrospinning, respectively. Their structural, thermal, and optical properties were investigated by XRD, SEM, TGA, PAS, and PL. The incorporation of ZnO NPs reduced the diameter of PMMA fibers and the presence of beads. The surfaces of the fibers exhibited greater hydrophobicity, compared to the films, with contact angles of around 120° and 94°, respectively. PMMA films containing ZnO exhibited higher thermal stability than the pure polymer, while the corresponding fibers did not show any changes in thermal stability. The dispersion of the ZnO NPs at the surface and in the bulk of the nanocomposites appeared to be relatively homogeneous. ZnO improved the optical properties of the PMMA, with an intense absorption band near 370 nm observed for all the nanocomposites, which also exhibited luminescence with emission in the near-UV region, both attributed to ZnO. Biological tests demonstrated that fibers and films with up to 1% of ZnO exhibited good performance in the proliferation of fibroblast cells, indicating their potential for applications in tissue engineering. The fibers provided higher cell viability than the films, presumably due to their greater surface area and/or more suitable surface morphology. Nanocomposites with 15% ZnO inhibited cell proliferation, due to the cytotoxicity of the ZnO NPs. Although several applications of PMMA have been suggested by biomedical researchers, until now there have been no reports on the specific

  6. Structural, thermal, optical properties and cytotoxicity of PMMA/ZnO fibers and films: Potential application in tissue engineering

    Science.gov (United States)

    Balen, Rodrigo; da Costa, Wilian Vidotto; de Lara Andrade, Jéssica; Piai, Juliana Francis; Muniz, Edvani Curti; Companhoni, Mychelle Vianna; Nakamura, Tânia Ueda; Lima, Sandro Marcio; da Cunha Andrade, Luis Humberto; Bittencourt, Paulo Rodrigo Stival; Hechenleitner, Ana Adelina Winkler; Pineda, Edgardo Alfonso Gómez; Fernandes, Daniela Martins

    2016-11-01

    Films and fibers of PMMA/ZnO nanocomposites (100/0, 99/01, 97/03, 95/05, 90/10, and 85/15 wt.%) were produced by casting and electrospinning, respectively. Their structural, thermal, and optical properties were investigated by XRD, SEM, TGA, PAS, and PL. The incorporation of ZnO NPs reduced the diameter of PMMA fibers and the presence of beads. The surfaces of the fibers exhibited greater hydrophobicity, compared to the films, with contact angles of around 120° and 94°, respectively. PMMA films containing ZnO exhibited higher thermal stability than the pure polymer, while the corresponding fibers did not show any changes in thermal stability. The dispersion of the ZnO NPs at the surface and in the bulk of the nanocomposites appeared to be relatively homogeneous. ZnO improved the optical properties of the PMMA, with an intense absorption band near 370 nm observed for all the nanocomposites, which also exhibited luminescence with emission in the near-UV region, both attributed to ZnO. Biological tests demonstrated that fibers and films with up to 1% of ZnO exhibited good performance in the proliferation of fibroblast cells, indicating their potential for applications in tissue engineering. The fibers provided higher cell viability than the films, presumably due to their greater surface area and/or more suitable surface morphology. Nanocomposites with 15% ZnO inhibited cell proliferation, due to the cytotoxicity of the ZnO NPs. Although several applications of PMMA have been suggested by biomedical researchers, until now there have been no reports on the specific uses of fibers and films of PMMA/ZnO nanocomposites as scaffolds for fibroblast cell proliferation.

  7. Python fiber optic seal

    Energy Technology Data Exchange (ETDEWEB)

    Ystesund, K.; Bartberger, J.; Brusseau, C.; Fleming, P.; Insch, K.; Tolk, K.

    1993-08-01

    Sandia National Laboratories has developed a high security fiber optic seal that incorporates tamper resistance features that are not available in commercial fiber optic seals. The Python Seal is a passive fiber optic loop seal designed to give indication of unauthorized entry. The seal includes a fingerprint feature that provides seal identity information in addition to the unique fiber optic pattern created when the seal is installed. The fiber optic cable used for the seal loop is produced with tamper resistant features that increase the difficulty of attacking that component of a seal. A Seal Reader has been developed that will record the seal signature and the fingerprint feature of the seal. A Correlator software program then compares seal images to establish a match or mismatch. SNL is also developing a Polaroid reader to permit hard copies of the seal patterns to be obtained directly from the seal.

  8. Fiber optic spanner

    Science.gov (United States)

    Black, Bryan; Mohanty, Samarendra

    2011-10-01

    Rotation is a fundamental function in nano/biotechnology and is being useful in a host of applications such as pumping of fluid flow in microfluidic channels for transport of micro/nano samples. Further, controlled rotation of single cell or microscopic object is useful for tomographic imaging. Though conventional microscope objective based laser spanners (based on transfer of spin or orbital angular momentum) have been used in the past, they are limited by the short working distance of the microscope objective. Here, we demonstrate development of a fiber optic spanner for rotation of microscopic objects using single-mode fiber optics. Fiber-optic trapping and simultaneous rotation of pin-wheel structure around axis perpendicular to fiber-optic axis was achieved using the fiber optic spanner. By adjusting the laser beam power, rotation speed of the trapped object and thus the microfluidic flow could be controlled. Since this method does not require special optical or structural properties of the sample to be rotated, three-dimensional rotation of a spherical cell could also be controlled. Further, using the fiber optic spanner, array of red blood cells could be assembled and actuated to generate vortex motion. Fiber optical trapping and spinning will enable physical and spectroscopic analysis of microscopic objects in solution and also find potential applications in lab- on-a-chip devices.

  9. Fiber optics standard dictionary

    CERN Document Server

    Weik, Martin H

    1997-01-01

    Fiber Optics Vocabulary Development In 1979, the National Communications System published Technical InfonnationBulle­ tin TB 79-1, Vocabulary for Fiber Optics and Lightwave Communications, written by this author. Based on a draft prepared by this author, the National Communications System published Federal Standard FED-STD-1037, Glossary of Telecommunications Terms, in 1980 with no fiber optics tenns. In 1981, the first edition of this dictionary was published under the title Fiber Optics and Lightwave Communications Standard Dictionary. In 1982, the then National Bureau of Standards, now the National Institute of Standards and Technology, published NBS Handbook 140, Optical Waveguide Communications Glossary, which was also published by the General Services Admin­ istration as PB82-166257 under the same title. Also in 1982, Dynamic Systems, Inc. , Fiberoptic Sensor Technology Handbook, co-authored and edited by published the this author, with an extensive Fiberoptic Sensors Glossary. In 1989, the handbook w...

  10. Fiber Optic Microphone

    Science.gov (United States)

    Cho, Y. C.; George, Thomas; Norvig, Peter (Technical Monitor)

    1999-01-01

    Research into advanced pressure sensors using fiber-optic technology is aimed at developing compact size microphones. Fiber optic sensors are inherently immune to electromagnetic noise, and are very sensitive, light weight, and highly flexible. In FY 98, NASA researchers successfully designed and assembled a prototype fiber-optic microphone. The sensing technique employed was fiber optic Fabry-Perot interferometry. The sensing head is composed of an optical fiber terminated in a miniature ferrule with a thin, silicon-microfabricated diaphragm mounted on it. The optical fiber is a single mode fiber with a core diameter of 8 micron, with the cleaved end positioned 50 micron from the diaphragm surface. The diaphragm is made up of a 0.2 micron thick silicon nitride membrane whose inner surface is metallized with layers of 30 nm titanium, 30 nm platinum, and 0.2 micron gold for efficient reflection. The active sensing area is approximately 1.5 mm in diameter. The measured differential pressure tolerance of this diaphragm is more than 1 bar, yielding a dynamic range of more than 100 dB.

  11. Polymer optical fiber fuse

    CERN Document Server

    Mizuno, Yosuke; Tanaka, Hiroki; Nakamura, Kentaro

    2013-01-01

    Although high-transmission-capacity optical fibers are in demand, the problem of the fiber fuse phenomenon needs to be resolved to prevent the destruction of fibers. As polymer optical fibers become more prevalent, clarifying their fuse properties has become important. Here, we experimentally demonstrate a fuse propagation velocity of 21.9 mm/s, which is 1 to 2 orders of magnitude slower than that in standard silica fibers. The achieved threshold power density and proportionality constant between the propagation velocity and the power density are respectively 1/186 of and 16.8 times the values for silica fibers. An oscillatory continuous curve instead of periodic voids is formed after the passage of the fuse. An easy fuse termination method is presented herein, along with its potential plasma applications.

  12. Fiber Optics: No Illusion.

    Science.gov (United States)

    American School and University, 1983

    1983-01-01

    A campus computer center at Hofstra University (New York) that holds 70 terminals for student use was first a gymnasium, then a language laboratory. Strands of fiber optics are used for the necessary wiring. (MLF)

  13. Fiber optic detector

    Energy Technology Data Exchange (ETDEWEB)

    Partin, J.K.; Ward, T.E.; Grey, A.E.

    1990-12-31

    This invention is comprised of a portable fiber optic detector that senses the presence of specific target chemicals by exchanging the target chemical for a fluorescently-tagged antigen that is bound to an antibody which is in turn attached to an optical fiber. Replacing the fluorescently-tagged antigen reduces the fluorescence so that a photon sensing detector records the reduced light level and activates an appropriate alarm or indicator.

  14. Fiber optics welder

    Science.gov (United States)

    Higgins, R.W.; Robichaud, R.E.

    A system is described for welding fiber optic waveguides together. The ends of the two fibers to be joined together are accurately, collinearly aligned in a vertical orientation and subjected to a controlled, diffuse arc to effect welding and thermal conditioning. A front-surfaced mirror mounted at a 45/sup 0/ angle to the optical axis of a stereomicroscope mounted for viewing the junction of the ends provides two orthogonal views of the interface during the alignment operation.

  15. System and method for optical fiber based image acquisition suitable for use in turbine engines

    Energy Technology Data Exchange (ETDEWEB)

    Baleine, Erwan; A V, Varun; Zombo, Paul J.; Varghese, Zubin

    2017-05-16

    A system and a method for image acquisition suitable for use in a turbine engine are disclosed. Light received from a field of view in an object plane is projected onto an image plane through an optical modulation device and is transferred through an image conduit to a sensor array. The sensor array generates a set of sampled image signals in a sensing basis based on light received from the image conduit. Finally, the sampled image signals are transformed from the sensing basis to a representation basis and a set of estimated image signals are generated therefrom. The estimated image signals are used for reconstructing an image and/or a motion-video of a region of interest within a turbine engine.

  16. Nonlinear effects in optical fibers

    CERN Document Server

    Ferreira, Mario F

    2011-01-01

    Cutting-edge coverage of nonlinear phenomena occurring inside optical fibers Nonlinear fiber optics is a specialized part of fiber optics dealing with optical nonlinearities and their applications. As fiber-optic communication systems have become more advanced and complex, the nonlinear effects in optical fibers have increased in importance, as they adversely affect system performance. Paradoxically, the same nonlinear phenomena also offer the promise of addressing the bandwidth bottleneck for signal processing for future ultra-high speed optical networks. Nonlinear Effects in Optical Fiber

  17. Electrospun amplified fiber optics.

    Science.gov (United States)

    Morello, Giovanni; Camposeo, Andrea; Moffa, Maria; Pisignano, Dario

    2015-03-11

    All-optical signal processing is the focus of much research aiming to obtain effective alternatives to existing data transmission platforms. Amplification of light in fiber optics, such as in Erbium-doped fiber amplifiers, is especially important for efficient signal transmission. However, the complex fabrication methods involving high-temperature processes performed in a highly pure environment slow the fabrication process and make amplified components expensive with respect to an ideal, high-throughput, room temperature production. Here, we report on near-infrared polymer fiber amplifiers working over a band of ∼20 nm. The fibers are cheap, spun with a process entirely carried out at room temperature, and shown to have amplified spontaneous emission with good gain coefficients and low levels of optical losses (a few cm(-1)). The amplification process is favored by high fiber quality and low self-absorption. The found performance metrics appear to be suitable for short-distance operations, and the large variety of commercially available doping dyes might allow for effective multiwavelength operations by electrospun amplified fiber optics.

  18. Study of a construction opportunity fiber optic system telecommunications for the analysis of the turbojet engine serviceability

    Science.gov (United States)

    Andreeva, Tatiana P.; Vinogradov, Sergey L.

    2005-06-01

    Nowadays there are several problems, limiting realization of the systems of automatic control based on fiber optic technical equipment. First of all it is the specific feature of signals transmitted with possible condensation (analog signals). Second is caused by the absence of components, adapting to influence condition, like vibrations, acoustic noise, temperature fluctuations. Here we compared two systems, developed for telecommunications: with signal condensation and without signal condensation. Complication is still connected and that is necessary fast (in a mode of real time) processing of a signal. The result of processing should be transferred with use of same system of telecommunications to the devices providing management by modes ofthe engine. Besides the system should be reliable and have reserve ways. In given article statement of a problem is submitted and ways of its decision are proposed.

  19. Fluoride glass fiber optics

    CERN Document Server

    Aggarwal, Ishwar D

    1991-01-01

    Fluoride Glass Fiber Optics reviews the fundamental aspects of fluoride glasses. This book is divided into nine chapters. Chapter 1 discusses the wide range of fluoride glasses with an emphasis on fluorozirconate-based compositions. The structure of simple fluoride systems, such as BaF2 binary glass is elaborated in Chapter 2. The third chapter covers the intrinsic transparency of fluoride glasses from the UV to the IR, with particular emphasis on the multiphonon edge and electronic edge. The next three chapters are devoted to ultra-low loss optical fibers, reviewing methods for purifying and

  20. Optical fiber rotation sensing

    CERN Document Server

    Burns, William K; Kelley, Paul

    1993-01-01

    Optical Fiber Rotation Sensing is the first book devoted to Interferometric Fiber Optic Gyros (IFOG). This book provides a complete overview of IFOGs, beginning with a historical review of IFOG development and including a fundamental exposition of basic principles, a discussion of devices and components, and concluding with industry reports on state-of-the-art activity. With several chapters contributed by principal developers of this solid-state device, the result is an authoritative work which will serve as the resource for researchers, students, and users of IFOGs.* * State-of-t

  1. Roof Polishing of Optical Fibers

    Science.gov (United States)

    Dholakia, A. R.

    1985-01-01

    Bevealed tip gives optimum coupling efficiency. Abrasive tape used to grind tip of optical fiber. Grinding force depends on stiffness of optical fiber. "Roof" shape on end of optical glass fiber increases efficiency which couples laser light. End surface angle of 65 degrees with perpendicular required for optimum coupling. Since fiber and tape are light in weight and compliant, ridge defect-free, and chipping on fiber edge totally eliminated.

  2. Optical fiber communications

    CERN Document Server

    Keiser, Gerd

    2008-01-01

    The fourth edition of this popular text and reference book presents the fundamental principles for understanding and applying optical fiber technology to sophisticated modern telecommunication systems. Optical-fiber-based telecommunication networks have become a major information-transmission-system, with high capacity links encircling the globe in both terrestrial and undersea installations. Numerous passive and active optical devices within these links perform complex transmission and networking functions in the optical domain, such as signal amplification, restoration, routing, and switching. Along with the need to understand the functions of these devices comes the necessity to measure both component and network performance, and to model and stimulate the complex behavior of reliable high-capacity networks.

  3. Applications of nonlinear fiber optics

    CERN Document Server

    Agrawal, Govind

    2008-01-01

    * The only book describing applications of nonlinear fiber optics * Two new chapters on the latest developments: highly nonlinear fibers and quantum applications* Coverage of biomedical applications* Problems provided at the end of each chapterThe development of new highly nonlinear fibers - referred to as microstructured fibers, holey fibers and photonic crystal fibers - is the next generation technology for all-optical signal processing and biomedical applications. This new edition has been thoroughly updated to incorporate these key technology developments.The bo

  4. Compact fiber optic accelerometer

    Institute of Scientific and Technical Information of China (English)

    Feng Peng; Jun Yang; Bing Wu; Yonggui Yuan; Xingliang Li; Ai Zhou; Libo Yuan

    2012-01-01

    A compact fiber optic accelerometer based on a Michelson interferometer is proposed and demonstrated.In the proposed system,the sensing element consists of two single-mode fibers glued together by epoxy,which then act as a simple supported beam.By demodulating the optical phase shift,the acceleration is determined as proportional to the force applied on the central position of the two single-mode fibers.This simple model is able to calculate the sensitivity and the resonant frequency of the compact accelerometer.The experimental results show that the sensitivity and the resonant frequency of the accelerometer are 0.42 rad/g and 600 Hz,respectively.

  5. Infrared Fiber Optic Sensors

    Science.gov (United States)

    1997-01-01

    Successive years of Small Business Innovation Research (SBIR) contracts from Langley Research Center to Sensiv Inc., a joint venture between Foster-Miller Inc. and Isorad, Ltd., assisted in the creation of remote fiber optic sensing systems. NASA's SBIR interest in infrared, fiber optic sensor technology was geared to monitoring the curing cycles of advanced composite materials. These funds helped in the fabrication of an infrared, fiber optic sensor to track the molecular vibrational characteristics of a composite part while it is being cured. Foster-Miller ingenuity allowed infrared transmitting optical fibers to combine with Fourier Transform Infrared spectroscopy to enable remote sensing. Sensiv probes operate in the mid-infrared range of the spectrum, although modifications to the instrument also permits its use in the near-infrared region. The Sensiv needle-probe is built to be placed in a liquid or powder and analyze the chemicals in the mixture. Other applications of the probe system include food processing control; combustion control in furnaces; and maintenance problem solving.

  6. Optical Fiber Protection

    Science.gov (United States)

    1999-01-01

    F&S Inc. developed and commercialized fiber optic and microelectromechanical systems- (MEMS) based instrumentation for harsh environments encountered in the aerospace industry. The NASA SBIR programs have provided F&S the funds and the technology to develop ruggedized coatings and coating techniques that are applied during the optical fiber draw process. The F&S optical fiber fabrication facility and developed coating methods enable F&S to manufacture specialty optical fiber with custom designed refractive index profiles and protective or active coatings. F&S has demonstrated sputtered coatings using metals and ceramics and combinations of each, and has also developed techniques to apply thin coatings of specialized polyimides formulated at NASA Langley Research Center. With these capabilities, F&S has produced cost-effective, reliable instrumentation and sensors capable of withstanding temperatures up to 800? C and continues building commercial sales with corporate partners and private funding. More recently, F&S has adapted the same sensing platforms to provide the rapid detection and identification of chemical and biological agents

  7. 46 CFR 111.60-6 - Fiber optic cable.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Fiber optic cable. 111.60-6 Section 111.60-6 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Wiring Materials and Methods § 111.60-6 Fiber optic cable. Each fiber optic cable must— (a)...

  8. Fiber Optics and Library Technology.

    Science.gov (United States)

    Koenig, Michael

    1984-01-01

    This article examines fiber optic technology, explains some of the key terminology, and speculates about the way fiber optics will change our world. Applications of fiber optics to library systems in three major areas--linkage of a number of mainframe computers, local area networks, and main trunk communications--are highlighted. (EJS)

  9. Buying Fiber-Optic Networks.

    Science.gov (United States)

    Fickes, Michael

    2003-01-01

    Describes consortia formed by college and university administrators to buy, manage, and maintain their own fiber-optic networks with the goals of cutting costs of leasing fiber-optic cable and planning for the future. Growth capacity is the real advantage of owning fiber-optic systems. (SLD)

  10. Aerogel-clad optical fiber

    Science.gov (United States)

    Sprehn, Gregory A.; Hrubesh, Lawrence W.; Poco, John F.; Sandler, Pamela H.

    1997-01-01

    An optical fiber is surrounded by an aerogel cladding. For a low density aerogel, the index of refraction of the aerogel is close to that of air, which provides a high numerical aperture to the optical fiber. Due to the high numerical aperture, the aerogel clad optical fiber has improved light collection efficiency.

  11. Microstructured optical fibers - Fundamentals and applications

    DEFF Research Database (Denmark)

    Lægsgaard, Jesper; Bjarklev, Anders Overgaard

    2006-01-01

    In recent years optical fibers having a complex microstructure in the transverse plane have attracted much attention from both researchers and industry. Such fibers can either guide light through total internal reflection or the photonic bandgap effect. Among the many unique applications offered...... by these fibers are mode guidance in air, highly flexible dispersion engineering, and the use of very heterogeneous material combinations. In this paper, we review the different types and applications of microstructured optical fibers, with particular emphasis on recent advances in the field....

  12. Nonlinear fiber optics

    CERN Document Server

    Agrawal, Govind

    2012-01-01

    Since the 4e appeared, a fast evolution of the field has occurred. The 5e of this classic work provides an up-to-date account of the nonlinear phenomena occurring inside optical fibers, the basis of all our telecommunications infastructure as well as being used in the medical field. Reflecting the big developments in research, this new edition includes major new content: slow light effects, which offers a reduction in noise and power consumption and more ordered network traffic-stimulated Brillouin scattering; vectorial treatment of highly nonlinear fibers; and a brand new chapter o

  13. Structural health monitoring with fiber optic sensors

    Institute of Scientific and Technical Information of China (English)

    F.ANSARI

    2009-01-01

    Optical fiber sensors have been successfully implemented in aeronautics, mechanical systems, and medical applications. Civil structures pose further challenges in monitoring mainly due to their large dimensions, diversity and heterogeneity of materials involved, and hostile construction environment. This article provides a summary of basic principles pertaining to practical health monitoring of civil engineering structures with optical fiber sensors. The issues discussed include basic sensor principles, strain transfer mechanism, sensor packaging, sensor placement in construction environment, and reliability and survivability of the sensors.

  14. Human Oral Mucosa Tissue-Engineered Constructs Monitored by Raman Fiber-Optic Probe

    OpenAIRE

    Khmaladze, Alexander; Kuo, Shiuhyang; Kim, Roderick Y; Matthews, Robert V.; Marcelo, Cynthia L.; Feinberg, Stephen E.; Morris, Michael D.

    2014-01-01

    In maxillofacial and oral surgery, there is a need for the development of tissue-engineered constructs. They are used for reconstructions due to trauma, dental implants, congenital defects, or oral cancer. A noninvasive monitoring of the fabrication of tissue-engineered constructs at the production and implantation stages done in real time is extremely important for predicting the success of tissue-engineered grafts. We demonstrated a Raman spectroscopic probe system, its design and applicati...

  15. Fiber optics physics and technology

    CERN Document Server

    Mitschke, Fedor

    2016-01-01

    This book tells you all you want to know about optical fibers: Their structure, their light-guiding mechanism, their material and manufacture, their use. It began with telephone, then came telefax and email. Today we use search engines, music downloads and internet videos, all of which require shuffling of bits and bytes by the zillions. The key to all this is the conduit: the line which is designed to carry massive amounts of data at breakneck speed. In their data carrying capacity optical fiber lines beat all other technologies (copper cable, microwave beacons, satellite links) hands down, at least in the long haul; wireless devices rely on fibers, too. Several effects tend to degrade the signal as it travels down the fiber: they are spelled out in detail. Nonlinear processes are given due consideration for a twofold reason: On the one hand they are fundamentally different from the more familiar processes in electrical cable. On the other hand, they form the basis of particularly interesting and innovative ...

  16. Optical Fiber Spectroscopy

    Science.gov (United States)

    Buoncristiani, A. M.

    1999-01-01

    This is the final report of work done on NASA Grant NAG-1-443. The work covers the period from July 1, 1992 to December 1, 1998. During this period several distinct but related research studies and work tasks were undertaken. These different subjects are enumerated below with a description of the work done on each of them. The focus of the research was the development of optical fibers for use as distributed temperature and stress sensors. The initial concept was to utilize the utilize the temperature and stress dependence of emission from rare earth and transition metal ions substitutionally doped into crystalline or glass fibers. During the course of investigating this it became clear that fiber Bragg gratings provided a alternative for making the desired measurements and there was a shift of research focus on to include the photo-refractive properties of germano-silicate glasses used for most gratings and to the possibility of developing fiber laser sources for an integrated optical sensor in the research effort. During the course of this work several students from Christopher Newport University and other universities participated in this effort. Their names are listed below. Their participation was an important part of their education.

  17. Optical fiber synaptic sensor

    Science.gov (United States)

    Pisarchik, A. N.; Jaimes-Reátegui, R.; Sevilla-Escoboza, R.; García-Lopez, J. H.; Kazantsev, V. B.

    2011-06-01

    Understanding neuron connections is a great challenge, which is needed to solve many important problems in neurobiology and neuroengineering for recreation of brain functions and efficient biorobotics. In particular, a design of an optical synapse capable to communicate with neuron spike sequences would be crucial to improve the functionality of neuromimmetic networks. In this work we propose an optical synaptic sensor based on an erbium-doped fiber laser driven by a FitzHung-Nagumo electronic neuron, to connect with another electronic neuron. Two possible optical synaptic configurations are analyzed for optoelectronic coupling between neurons: laser cavity loss modulation and pump laser modulation. The control parameters of the proposed optical synapse provide additional degrees of flexibility to the neuron connection traditionally controlled only by coupling strengths in artificial networks.

  18. Fiber optic geophysical sensors

    Science.gov (United States)

    Homuth, Emil F.

    1991-01-01

    A fiber optic geophysical sensor in which laser light is passed through a sensor interferometer in contact with a geophysical event, and a reference interferometer not in contact with the geophysical event but in the same general environment as the sensor interferometer. In one embodiment, a single tunable laser provides the laser light. In another embodiment, separate tunable lasers are used for the sensor and reference interferometers. The invention can find such uses as monitoring for earthquakes, and the weighing of objects.

  19. Shedding Light on Fiber Optics.

    Science.gov (United States)

    Bunch, Robert M.

    1994-01-01

    Explains the principles of fiber optics as a medium for light-wave communication. Current uses of fiber systems on college campuses include voice, video, and local area network applications. A group of seven school districts in Minnesota are linked via fiber-optic cables. Other uses are discussed. (MLF)

  20. Optical fibers for FTTH application

    Science.gov (United States)

    Guzowski, Bartlomiej; Tosik, Grzegorz; Lisik, Zbigniew; Bedyk, Michal; Kubiak, Andrzej

    2013-07-01

    In this paper the specifics of FTTH (Fiber To The Home) networks in terms of requirements for optical fibers has been presented. Optical fiber samples used in FTTH applications acquired from the worldwide leading manufacturers were subjected to small diameter mandrel wraps tests. The detailed procedures of performed tests and the measurement results has been presented.

  1. Optical fiber crossbar switch

    Science.gov (United States)

    Kilcoyne, Michael K.; Beccue, Stephen M.; Brar, Berinder; Robinson, G.; Pedrotti, Kenneth D.; Haber, William A.

    1990-07-01

    Advances in high performance computers and signal processing systems have led to parallel system architectures. The main limitation in achieving the performance expected of these parallel systems has been the realization of an efficient means to interconnect many processors into a effective parallel system. Electronic interconnections have proved cumbersome, costly and ineffective. The Optical Fiber Crossbar Switch (OFCS) is a compact low power, multi-gigahertz bandwidth multi-channel switch which can be used in large scale computer and telecommunication applications. The switch operates in the optical domain using GaAs semiconductor lasers to transmit wideband multiple channel optical data over fiber optic cables. Recently, a 32 X 32 crossbar switching system was completed and demonstrated. Error free performance was obtained at a data bandwidth of 410 MBPS, using a silicon switch IC. The switch can be completely reconfigured in less than 50 nanoseconds under computer control. The fully populated OFCS has the capability to handle 12.8 gigabits per second (GBPS) of data while switching this data over 32 channels without the loss of a single bit during switching. GaAs IC technology has now progressed to the point that 16 X 16 GaAs based crossbar switch Ics are available which have increased the data bandwidth capability to 2.4 GBPS. The present optical interfaces are integrated GaAs transmitter drivers, GaAs lasers, and integrated GaAs optical receivers with data bandwidths exceeding 2.4 GBPS. A system using all Ill-V switching and optoelectronic components is presently under development for both NASA and DoD programs. The overall system is designed to operate at 1.3 GBPS. It is expected that these systems will find wide application in high capacity computing systems based on parallel microprocessor architecture which require high data bandwidth communication between processors. The OFCS will also have application in commercial optical telecommunication systems

  2. Interferometric Fiber Optic Sensors

    Directory of Open Access Journals (Sweden)

    Hae Young Choi

    2012-02-01

    Full Text Available Fiber optic interferometers to sense various physical parameters including temperature, strain, pressure, and refractive index have been widely investigated. They can be categorized into four types: Fabry-Perot, Mach-Zehnder, Michelson, and Sagnac. In this paper, each type of interferometric sensor is reviewed in terms of operating principles, fabrication methods, and application fields. Some specific examples of recently reported interferometeric sensor technologies are presented in detail to show their large potential in practical applications. Some of the simple to fabricate but exceedingly effective Fabry-Perot interferometers, implemented in both extrinsic and intrinsic structures, are discussed. Also, a wide variety of Mach-Zehnder and Michelson interferometric sensors based on photonic crystal fibers are introduced along with their remarkable sensing performances. Finally, the simultaneous multi-parameter sensing capability of a pair of long period fiber grating (LPG is presented in two types of structures; one is the Mach-Zehnder interferometer formed in a double cladding fiber and the other is the highly sensitive Sagnac interferometer cascaded with an LPG pair.

  3. Interferometric fiber optic sensors.

    Science.gov (United States)

    Lee, Byeong Ha; Kim, Young Ho; Park, Kwan Seob; Eom, Joo Beom; Kim, Myoung Jin; Rho, Byung Sup; Choi, Hae Young

    2012-01-01

    Fiber optic interferometers to sense various physical parameters including temperature, strain, pressure, and refractive index have been widely investigated. They can be categorized into four types: Fabry-Perot, Mach-Zehnder, Michelson, and Sagnac. In this paper, each type of interferometric sensor is reviewed in terms of operating principles, fabrication methods, and application fields. Some specific examples of recently reported interferometeric sensor technologies are presented in detail to show their large potential in practical applications. Some of the simple to fabricate but exceedingly effective Fabry-Perot interferometers, implemented in both extrinsic and intrinsic structures, are discussed. Also, a wide variety of Mach-Zehnder and Michelson interferometric sensors based on photonic crystal fibers are introduced along with their remarkable sensing performances. Finally, the simultaneous multi-parameter sensing capability of a pair of long period fiber grating (LPG) is presented in two types of structures; one is the Mach-Zehnder interferometer formed in a double cladding fiber and the other is the highly sensitive Sagnac interferometer cascaded with an LPG pair.

  4. Human oral mucosa tissue-engineered constructs monitored by Raman fiber-optic probe.

    Science.gov (United States)

    Khmaladze, Alexander; Kuo, Shiuhyang; Kim, Roderick Y; Matthews, Robert V; Marcelo, Cynthia L; Feinberg, Stephen E; Morris, Michael D

    2015-01-01

    In maxillofacial and oral surgery, there is a need for the development of tissue-engineered constructs. They are used for reconstructions due to trauma, dental implants, congenital defects, or oral cancer. A noninvasive monitoring of the fabrication of tissue-engineered constructs at the production and implantation stages done in real time is extremely important for predicting the success of tissue-engineered grafts. We demonstrated a Raman spectroscopic probe system, its design and application, for real-time ex vivo produced oral mucosa equivalent (EVPOME) constructs noninvasive monitoring. We performed in vivo studies to find Raman spectroscopic indicators for postimplanted EVPOME failure and determined that Raman spectra of EVPOMEs preexposed to thermal stress during manufacturing procedures displayed correlation of the band height ratio of CH2 deformation to phenylalanine ring breathing modes, giving a Raman metric to distinguish between healthy and compromised postimplanted constructs. This study is the step toward our ultimate goal to develop a stand-alone system, to be used in a clinical setting, where the data collection and analysis are conducted on the basis of these spectroscopic indicators with minimal user intervention.

  5. Lasers and optical fibers in medicine

    CERN Document Server

    Katzir, Abraham

    1993-01-01

    The increasing use of fiber optics in the field of medicine has created a need for an interdisciplinary perspective of the technology and methods for physicians as well as engineers and biophysicists. This book presents a comprehensive examination of lasers and optical fibers in an hierarchical, three-tier system. Each chapter is divided into three basic sections: the Fundamentals section provides an overview of basic concepts and background; the Principles section offers an in-depth engineering approach; and the Advances section features specific information on systems an

  6. Fiber-Optic Sensor Facility

    Data.gov (United States)

    Federal Laboratory Consortium — FUNCTION: Constructs and evaluates fiber-optic sensors for a variety of measurands. These measurands include acoustic, pressure, magnetic, and electric field as well...

  7. Status on Technology Development of Optic Fiber-Coupled Laser Ignition System for Rocket Engine Applications

    Science.gov (United States)

    Trinh, Huu P.; Early, Jim; Osborne, Robin; Thomas, Matthew; Bossard, John

    2003-01-01

    To pursue technology developments for future launch vehicles, NASA/Marshall Space Flight Center (MSFC) is examining vortex chamber concepts for liquid rocket engine applications. Past studies indicated that the vortex chamber schemes potentially have a number of advantages over conventional chamber methods. Due to the nature of the vortex flow, relatively cooler propellant streams tend to flow along the chamber wall. Hence, the thruster chamber can be operated without the need of any cooling techniques. This vortex flow also creates strong turbulence, which promotes the propellant mixing process. Consequently, the subject chamber concept: not only offer system simplicity, but also enhance the combustion performance. Test results have shown that chamber performance is markedly high even at a low chamber length-to-diameter ratio. This incentive can be translated to a convenience in the thrust chamber packaging.

  8. Blind Source Separation Model of Earth-Rock Junctions in Dike Engineering Based on Distributed Optical Fiber Sensing Technology

    Directory of Open Access Journals (Sweden)

    Huaizhi Su

    2015-01-01

    Full Text Available Distributed temperature sensing (DTS provides an important technology support for the earth-rock junctions of dike projects (ERJD, which are binding sites between culvert, gates, and pipes and dike body and dike foundation. In this study, a blind source separation model is used for the identification of leakages based on the temperature data of DTS in leakage monitoring of ERJD. First, a denoising method is established based on the temperature monitoring data of distributed optical fiber in ERJD by a wavelet packet signal decomposition technique. The temperature monitoring messages of fibers are combined response for leakages and other factors. Its character of unclear responding mechanism is very obvious. Thus, a blind source separation technology is finally selected. Then, the rule of temperature measurement data for optical fiber is analyzed and its temporal and spatial change process is also discussed. The realization method of the blind source separation model is explored by combining independent component analysis (ICA with principal component analysis (PCA. The practical test result in an example shows that the method could efficiently locate and identify the leakage location of ERJD. This paper is expected to be useful for further scientific research and efficient applications of distributed optical fiber sensing technology.

  9. Fiber optic to integrated optical chip coupler

    Science.gov (United States)

    Pikulski, Joseph I. (Inventor); Ramer, O. Glenn (Inventor)

    1987-01-01

    Optical fibers are clamped by a block onto a substrate. Thereupon, metal is plated over the fibers to hold them in place upon the substrate. The clamp block is removed and the opening, resulting from the clamp block's presence, is then plated in. The built-up metallic body is a coupling which holds the fibers in position so that the ends can be polished for coupling to an integrated optical chip upon a coupling fixture.

  10. Fundamentals of plastic optical fibers

    CERN Document Server

    Koike, Yasuhiro

    2014-01-01

    Polymer photonics is an interdisciplinary field which demands excellence both in optics (photonics) and materials science (polymer). However, theses disciplines have developed independently, and therefore the demand for a comprehensive work featuring the fundamentals of photonic polymers is greater than ever.This volume focuses on Polymer Optical Fiber and their applications. The first part of the book introduces typical optical fibers according to their classifications of material, propagating mode, and structure. Optical properties, the high bandwidth POF and transmission loss are discussed,

  11. Fabrication of Optical Fiber Devices

    Science.gov (United States)

    Andres, Miguel V.

    In this paper we present the main research activities of the Laboratorio de Fibras Opticas del Instituto de Ciencia de los Materiales de la Universidad de Valencia. We show some of the main results obtained for devices based on tapered fibers, fiber Bragg gratings, acousto-optic effects and photonic crystal fibers.

  12. Optical-Fiber Leak Detector

    Science.gov (United States)

    Workman, Gary L.; Kosten, Susan E.

    1994-01-01

    Proposed optical-fiber sensor detects small changes in pressure in elastomeric O-ring or similar pressure seal, which may indicate deterioration of seal and interpreted as indications of incipient failure. According to concept, length of optical fiber embedded in seal. Light-emitting diode illuminates one end of fiber; photodetector measures intensity of light emerging from other end. Pressure-induced changes in seal bend fiber slightly, altering microbending-induced loss of light from fiber and alter intensity of light at photodetector. Change in intensity approximately proportional to change in pressure.

  13. Quantum cryptography using optical fibers.

    Science.gov (United States)

    Franson, J D; Lives, H

    1994-05-10

    Quantum cryptography permits the transmission of secret information whose security is guaranteed by the uncertainty principle. An experimental system for quantum crytography is implemented based on the linear polarization of single photons transmitted by an optical fiber. Polarization-preserving optical fiber and a feedback loop are employed to maintain the state of polarization. Error rates of less than 0.5% are obtained.

  14. Fiber optic sensor and method for making

    Science.gov (United States)

    Vartuli, James Scott; Bousman, Kenneth Sherwood; Deng, Kung-Li; McEvoy, Kevin Paul; Xia, Hua

    2010-05-18

    A fiber optic sensor including a fiber having a modified surface integral with the fiber wherein the modified surface includes an open pore network with optical agents dispersed within the open pores of the open pore network. Methods for preparing the fiber optic sensor are also provided. The fiber optic sensors can withstand high temperatures and harsh environments.

  15. Fiber-optic technology review

    Energy Technology Data Exchange (ETDEWEB)

    Lyons, P.B.

    1980-01-01

    A history of fiber technology is presented. The advantages of fiber optics are discussed (bandwidth, cost, weight and size, nonmetallic construction and isolation). Some aspects of the disadvantages of fiber systems briefly discussed are fiber and cable availability, fiber components, radiation effects, receivers and transmitters, and material dispersion. Particular emphasis over the next several years will involve development of fibers and systems optimized for use at wavelengths near 1.3 ..mu..m and development of wavelengths multiplexers for simultaneous system operation at several wavelengths.

  16. Absolute Measurement Fiber-optic Sensors in Large Structural Monitoring

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    The security of civil engineering is an important task due to the economic, social and environmental significance. Compared with conventional sensors, the optical fiber sensors have their unique characteristics.Being durable, stable and insensitive to external perturbations,they are particular interesting for the long-term monitoring of civil structures.Focus is on absolute measurement optical fiber sensors, which are emerging from the monitoring large structural, including SOFO system, F-P optical fiber sensors, and fiber Bragg grating sensors. The principle, characteristic and application of these three kinds of optical fiber sensors are described together with their future prospects.

  17. Fiber optic hydrogen sensor

    Energy Technology Data Exchange (ETDEWEB)

    Butler, M.A.; Sanchez, R.; Dulleck, G.R.

    1996-05-01

    This report covers the development of fiber optic hydrogen and temperature sensors for monitoring dissolved hydrogen gas in transformer oil. The concentration of hydrogen gas is a measure of the corona and spark discharge within the transformer and reflects the state of health of the transformer. Key features of the instrument include use of palladium alloys to enhance hydrogen sensitivity, a microprocessor controlled instrument with RS-232, liquid crystal readout, and 4-20 ma. current loop interfaces. Calibration data for both sensors can be down loaded to the instrument through the RS-232 interface. This project was supported by the Technology Transfer Initiative in collaboration with J. W. Harley, Inc. through the mechanism of a cooperative research and development agreement (CRADA).

  18. Optics in aircraft engines

    Science.gov (United States)

    Vachon, James; Malhotra, Subhash

    The authors describe optical IR&D (independent research and development) programs designed to demonstrate and evaluate optical technologies for incorporation into next-generation military and commercial aircraft engines. Using a comprehensive demonstration program to validate this technology in an on-engine environment, problems encountered can be resolved early and risk can be minimized. In addition to specific activities related to the optics demonstration on the fighter engine, there are other optical programs underway, including a solenoid control system, a light off detection system, and an optical communication link. Research is also underway in simplifying opto-electronics and exploiting multiplexing to further reduce cost and weight.

  19. Gold island fiber optic sensor

    Science.gov (United States)

    Meriaudeau, Fabrice; Wig, A. G.; Passian, A.; Downey, Todd R.; Buncick, Milan; Ferrell, Trinidad L.

    1999-12-01

    A fiber optic chemical sensor based on gold-island surface plasmon excitation is presented. The sensing part of the fiber is the end of the fiber onto which a thin layer of gold has been deposited to form a particulate surface. Annealing the gold reshapes the particles and produces an optical absorbance near 535 nm with the fiber in air. The optical absorption resonance of the gold particles is shifted if the fiber is immersed in a medium other than air. These resonance shifts are examined by transmission spectroscopy through the fiber. Experimental results for the sensitivity and dynamic range in the measurement of liquid solutions are in agreement with a basic theoretical model which characterizes the surface plasmon using nonretarded electrodynamics.

  20. Fiber optic-based biosensor

    Science.gov (United States)

    Ligler, Frances S.

    1991-01-01

    The NRL fiber optic biosensor is a device which measures the formation of a fluorescent complex at the surface of an optical fiber. Antibodies and DNA binding proteins provide the mechanism for recognizing an analyze and immobilizing a fluorescent complex on the fiber surface. The fiber optic biosensor is fast, sensitive, and permits analysis of hazardous materials remote from the instrumentation. The fiber optic biosensor is described in terms of the device configuration, chemistry for protein immobilization, and assay development. A lab version is being used for assay development and performance characterization while a portable device is under development. Antibodies coated on the fiber are stable for up to two years of storage prior to use. The fiber optic biosensor was used to measure concentration of toxins in the parts per billion (ng/ml) range in under a minute. Immunoassays for small molecules and whole bacteria are under development. Assays using DNA probes as the detection element can also be used with the fiber optic sensor, which is currently being developed to detect biological warfare agents, explosives, pathogens, and toxic materials which pollute the environment.

  1. Materials Development for Next Generation Optical Fiber

    Science.gov (United States)

    Ballato, John; Dragic, Peter

    2014-01-01

    Optical fibers, the enablers of the Internet, are being used in an ever more diverse array of applications. Many of the rapidly growing deployments of fibers are in high-power and, particularly, high power-per-unit-bandwidth systems where well-known optical nonlinearities have historically not been especially consequential in limiting overall performance. Today, however, nominally weak effects, most notably stimulated Brillouin scattering (SBS) and stimulated Raman scattering (SRS) are among the principal phenomena restricting continued scaling to higher optical power levels. In order to address these limitations, the optical fiber community has focused dominantly on geometry-related solutions such as large mode area (LMA) designs. Since such scattering, and all other linear and nonlinear optical phenomena including higher order mode instability (HOMI), are fundamentally materials-based in origin, this paper unapologetically advocates material solutions to present and future performance limitations. As such, this paper represents a ‘call to arms’ for material scientists and engineers to engage in this opportunity to drive the future development of optical fibers that address many of the grand engineering challenges of our day. PMID:28788683

  2. Fiber laser coupled optical spark delivery system

    Science.gov (United States)

    Yalin, Azer [Fort Collins, CO; Willson, Bryan [Fort Collins, CO; Defoort, Morgan [Fort Collins, CO; Joshi, Sachin [Fort Collins, CO; Reynolds, Adam [Fort Collins, CO

    2008-03-04

    A spark delivery system for generating a spark using a laser beam is provided, and includes a laser light source and a laser delivery assembly. The laser delivery assembly includes a hollow fiber and a launch assembly comprising launch focusing optics to input the laser beam in the hollow fiber. The laser delivery assembly further includes exit focusing optics that demagnify an exit beam of laser light from the hollow fiber, thereby increasing the intensity of the laser beam and creating a spark. Other embodiments use a fiber laser to generate a spark. Embodiments of the present invention may be used to create a spark in an engine. Yet other embodiments include collecting light from the spark or a flame resulting from the spark and conveying the light for diagnostics. Methods of using the spark delivery systems and diagnostic systems are provided.

  3. Glass-clad semiconductor core optical fibers

    Science.gov (United States)

    Morris, Stephanie Lynn

    Glass-clad optical fibers comprising a crystalline semiconductor core have garnered considerable recent attention for their potential utility as novel waveguides for applications in nonlinear optics, sensing, power delivery, and biomedicine. As research into these fibers has progressed, it has become evident that excessive losses are limiting performance and so greater understanding of the underlying materials science, coupled with advances in fiber processing, is needed. More specifically, the semiconductor core fibers possess three performance-limiting characteristics that need to be addressed: (a) thermal expansion mismatches between crystalline core and glass cladding that lead to cracks, (b) the precipitation of oxide species in the core upon fiber cooling, which results from partial dissolution of the cladding glass by the core melt, and (c) polycrystallinity; all of which lead to scattering and increased transmission losses. This dissertation systematically studies each of these effects and develops both a fundamental scientific understanding of and practical engineering methods for reducing their impact. With respect to the thermal expansion mismatch and, in part, the dissolution of oxides, for the first time to our knowledge, oxide and non-oxide glass compositions are developed for a series of semiconductor cores based on two main design criteria: (1) matching the thermal expansion coefficient between semiconductor core and glass cladding to minimize cracking and (2) matching the viscosity-temperature dependences, such that the cladding glass draws into fiber at a temperature slightly above the melting point of the semiconductor in order to minimize dissolution and improve the fiber draw process. The x[Na 2O:Al2O3] + (100 - 2x)SiO2 glass compositional family was selected due to the ability to tailor the glass properties to match the aforementioned targets through slight variations in composition and adjusting the ratios of bridging and non-bridging oxygen

  4. Optical engineering of diamond

    CERN Document Server

    Rabeau, James R

    2013-01-01

    This is the first comprehensive book on the engineering of diamond optical devices. It will give readers an up-to-date account of the properties of optical quality synthetic diamond (single crystal, nanodiamond and polycrystalline) and reviews the large and growing field of engineering of diamond-based optical devices, with applications in quantum computation, nano-imaging, high performance lasers, and biomedicine. It aims to provide scientists, engineers and physicists with a valuable resource and reference book for the design and performance of diamond-based optical devices.

  5. Fiber optics that fly

    Science.gov (United States)

    Wilcox, Michael J.; Thelen, Donald C., Jr.

    1996-11-01

    analog integrated circuit using photodiodes and fiber optic waveguides as the nonlinear light sensing devices, current mirrors and opamp circuits for the processing. The outputs of this circuit will go to other artificial neural networks for further processing.

  6. Optical sectioning using a fiber probe with an angled illumination-collection geometry: evaluation in engineered tissue phantoms

    Science.gov (United States)

    Nieman, Linda; Myakov, Alexey; Aaron, Jesse; Sokolov, Konstantin

    2004-02-01

    We present a fiber optic probe that combines polarized illumination and detection with an angled distal probe geometry to detect the size-dependent scattering at a specific depth within epithelium. Analysis of the scattering signal by use of Mie theory allows the extraction of scatterer size and size distribution-key parameters for precancer detection. The probe was evaluated in two tissue phantoms: polystyrene beads atop collagen gel and multiple layers of cancer cells atop collagen. We also present in vivo measurements in the oral cavity of normal volunteers. The sizes of scatterers extracted from the scattering spectra corresponded to independently measured values.

  7. Polymer optical fiber bragg grating sensors

    DEFF Research Database (Denmark)

    Stefani, Alessio; Yuan, Scott Wu; Andresen, Søren

    2010-01-01

    Fiber-optical accelerometers based on polymer optical fiber Bragg gratings are reported. We have written fiber Bragg gratings for 1550 nm and 850 nm operations, characterized their temperature and strain response, and tested their performance in a prototype accelerometer....

  8. Optical coatings for fiber lasers

    Institute of Scientific and Technical Information of China (English)

    HONG Dong-mei; ZHU Zhen; YUE Wei

    2005-01-01

    Fiber laser is the future development direction for the high energy lasers. This paper describs two kinds of optical coatings for fiber laser, including long and short wave pass filters. The one characteristic of fiber laser coatings lies in that coatings should separate two closely wavelength light including laser pump wavelength (980 nm) and laser irradiation wavelength(1 050~1 100 nm). At the same time, the coatings should have high laser damage threshold.

  9. Application of Fiber Optic Instrumentation

    Science.gov (United States)

    Richards, William Lance; Parker, Allen R., Jr.; Ko, William L.; Piazza, Anthony; Chan, Patrick

    2012-01-01

    Fiber optic sensing technology has emerged in recent years offering tremendous advantages over conventional aircraft instrumentation systems. The advantages of fiber optic sensors over their conventional counterparts are well established; they are lighter, smaller, and can provide enormous numbers of measurements at a fraction of the total sensor weight. After a brief overview of conventional and fiber-optic sensing technology, this paper presents an overview of the research that has been conducted at NASA Dryden Flight Research Center in recent years to advance this promising new technology. Research and development areas include system and algorithm development, sensor characterization and attachment, and real-time experimentally-derived parameter monitoring for ground- and flight-based applications. The vision of fiber optic smart structure technology is presented and its potential benefits to aerospace vehicles throughout the lifecycle, from preliminary design to final retirement, are presented.

  10. Fiber Optics: A Bright Future.

    Science.gov (United States)

    Rice, James, Jr.

    1980-01-01

    Presents an overview of the impact of fiber optics on telecommunications and its application to information processing and library services, including information retrieval, news services, remote transmission of library services, and library networking. (RAA)

  11. Achromatic optical diode in fiber optics

    CERN Document Server

    Berent, Michal; Vitanov, Nikolay V

    2013-01-01

    We propose a broadband optical diode, which is composed of one achromatic reciprocal quarter-wave plate and one non-reciprocal quarter-wave plate, both placed between two crossed polarizers. The presented design of achromatic wave plates relies on an adiabatic evolution of the Stokes vector, thus, the scheme is robust and efficient. The possible simple implementation using fiber optics is suggested.

  12. Fiber Ring Optical Gyroscope (FROG)

    Science.gov (United States)

    1979-01-01

    The design, construction, and testing of a one meter diameter fiber ring optical gyro, using 1.57 kilometers of single mode fiber, are described. The various noise components: electronic, thermal, mechanical, and optical, were evaluated. Both dc and ac methods were used. An attempt was made to measure the Earth rotation rate; however, the results were questionable because of the optical and electronic noise present. It was concluded that fiber ring optical gyroscopes using all discrete components have many serious problems that can only be overcome by discarding the discrete approach and adapting an all integrated optic technique that has the laser source, modulator, detector, beamsplitters, and bias element on a single chip.

  13. Fiber optic Adaline neural networks

    Science.gov (United States)

    Ghosh, Anjan K.; Trepka, Jim; Paparao, Palacharla

    1993-02-01

    Optoelectronic realization of adaptive filters and equalizers using fiber optic tapped delay lines and spatial light modulators has been discussed recently. We describe the design of a single layer fiber optic Adaline neural network which can be used as a bit pattern classifier. In our realization we employ as few electronic devices as possible and use optical computation to utilize the advantages of optics in processing speed, parallelism, and interconnection. The new optical neural network described in this paper is designed for optical processing of guided lightwave signals, not electronic signals. We analyzed the convergence or learning characteristics of the optically implemented Adaline in the presence of errors in the hardware, and we studied methods for improving the convergence rate of the Adaline.

  14. Microfabrication of fiber optic scanners

    Science.gov (United States)

    Fauver, Mark; Crossman-Bosworth, Janet L.; Seibel, Eric J.

    2002-06-01

    A cantilevered optical fiber is micromachined to function as a miniature resonant opto-mechanical scanner. By driving the base of the cantilevered fiber at a resonance frequency using a piezoelectric actuator, the free end of the cantilever beam becomes a scanned light source. The fiber scanners are designed to achieve wide field-of-view (FOV) and high scan frequency. We employ a non-linearly tapered profile fiber to achieve scan amplitudes of 1 mm at scan frequencies above 20 KHz. Scan angles of over 120 degree(s) (full angle) have been achieved. Higher order modes are also employed for scanning applications that require compactness while maintaining large angular FOV. Etching techniques are used to create the non-linearly tapered sections in single mode optical fiber. Additionally, micro-lenses are fabricated on the tips of the etched fibers, with lens diameters as small as 15 microns. Such lenses are capable of reducing the divergence angle of the emitted light to 5 degree(s) (full angle), with greater reduction expected by employing novel lens shaping techniques. Microfabricated optical fiber scanners have display applications ranging from micro-optical displays to larger panoramic displays. Applications for micro-image acquisition include small barcode readers to medical endoscopes.

  15. Advanced Components For Fiber-Optical Systems

    Science.gov (United States)

    Depaula, Ramon; Stowe, David W.

    1989-01-01

    Paper reviews statuses of some advanced passive and active optical components for use with optical fibers. Emphasis on highly birefringent components controling polarization, because control of polarization critical in applications as fiber-optical gyroscopes, interferometric sensors, and coherent communications.

  16. Optics for engineers

    CERN Document Server

    DiMarzio, Charles A

    2011-01-01

    This book is an excellent resource for teaching any student or scientist who needs to use optical systems. I particularly like the addition of MATLAB scripts and functions. Highly recommended.-Professor James C. Wyant, Dean of College of Optical Sciences, University of ArizonaHis book is clear, concise and highly readable. This is an excellent text.-Professor Changhuei Yang, California Institute of TechnologyAt last, a book on optics that is written with the practising engineer in mind. I have been teaching optics to engineers for many years and have often longed for a text aimed at my student

  17. Optical Measurement Techniques for Optical Fiber and Waveguide Devices

    Institute of Scientific and Technical Information of China (English)

    D.Y.; Kim; Y.; Park; N.H.; Seong; Y.C.Youk; J.Y.; Lee; S.; Moon; I.H.; Shin; H.S.; Ryu

    2003-01-01

    We describe three major optical characterization methods for fiber and fiber devices. A simple servo controlled scanning fiber-optic confocal microscope is proposed for determining the refractive index profile of an optical fiber. To measure the chromatic dispersion of a short length fiber a Mach-Zehnder fiber interferometer with a novel interferometric distance meter is introduced. At the end, a tomographic method is demonstrated for determining the 2-D stress profile of a fiber.

  18. RF Fiber Optic Link.

    Science.gov (United States)

    1984-06-01

    CONTENTS (Continued) 0 o p- Paragraph Title Page 4.6.3 Laser Diode and Single Mode Fiber Interface ....... 68 0 4.6.4 Laser Noise Discussion...A111-4. 2. 0. Marcuse and C. L. Lin, "Low Dispersion Single-Mode Fiber Transmission - The Question of Practical Versus Theoretical Maxlimum...001/0161A 68 ,.-. .- ,-... -. ..- , .. -............. . ............... • :q

  19. Gain engineering for all-optical microwave and high speed pulse generation in mode-locked fiber lasers

    Science.gov (United States)

    Li, Fangxin; Helmy, Amr S.

    2014-03-01

    Pulsed sources based on approaches that employ only photonic components and no RF components will be discussed in this talk. Several technologies have been explored to generate actively mode-locked sources using electronically driven fiber ring cavities. However, for these sources the pulse repetition rate is usually limited by the bandwidth of the intracavity modulator. Filtering of highly-stable low repetition rate optical combs utilizing cavities such as Fabry-Perot etalons can be used to overcome this limitation. This scheme is not flexible as it requires highly precise control of ultrahigh finesse etalons which limits the repetition rate to the free spectral range of the filter. Pulsed sources based on semiconductor devices offer many advantages, including large gain bandwidth, rapid tunability, long-term stability. In this work we introduce a novel, simple method to generate optical clock with wavelength tunability using two continuous wave (CW) lasers. The lasers are injected into a conventional SOAs-based fiber ring laser. The beating signal generated by these two lasers causes the modulation of the SOA gain saturation inside the cavity. Thus, the SOA provides gain and functions as the modulator as well as the gain medium. When the lasing mode inside the cavity is amplified, it also results in gain-induced four wave mixing. The proposed technique is particularly versatile, overcoming the bandwidth limitation of other techniques, which require RF sources. Moreover, this technique provides the possibility for hybrid integration as it is comprised of semiconductor chips that can be heterogeneously integrated on a Si platform.

  20. Photochromic glass optical fiber

    Science.gov (United States)

    Alvi, Bilal A.; Israr, Amber; Asif, Muhammad; Aamir, Muhammad; Rehan, Muhammad

    2016-02-01

    This paper describes the fabrication and analysis of novel twin cored fiber which contains a transparent and silver halide doped photochromic core in same cladding. The Photochromic core fibers were fabricated in twin cored structure by rode and tube method. The diameter of photochromic core and transparent core is around 15 m. The distance between two cores is 1.5m. The transparent core was used to guide the probe beam and photochromic core was excited by UV source. The interaction of the probe beam with the excited photochromic core showed the photochromic behavior of the fiber.

  1. Ultra-high Frequency Linear Fiber Optic Systems

    CERN Document Server

    Lau, Kam

    2011-01-01

    This book provides an in-depth treatment of both linear fiber-optic systems and their key enabling devices. It presents a concise but rigorous treatment of the theory and practice of analog (linear) fiber-optics links and systems that constitute the foundation of Hybrid Fiber Coax infrastructure in present-day CATV distribution and cable modem Internet access. Emerging applications in remote fiber-optic feed for free-space millimeter wave enterprise campus networks are also described. Issues such as dispersion and interferometric noise are treated quantitatively, and means for mitigating them are explained. This broad but concise text will thus be invaluable not only to students of fiber-optics communication but also to practicing engineers. To the second edition of this book important new aspects of linear fiber-optic transmission technologies are added, such as high level system architectural issues, algorithms for deriving the optimal frequency assignment, directly modulated or externally modulated laser t...

  2. Fiber-Optic Temperature Sensor

    Science.gov (United States)

    Maram, Jonathan M.

    1987-01-01

    Proposed sensor measures temperatures over wide range, from cryogenic liquids to burning gases. Made in part of optical fibers, sensor lighter in weight than thermocouple and immune to electromagnetic interference. Device does not respond to temperatures elsewhere than at sensing tip. Thermal expansion and contraction of distance between fiber end and mirror alters interference between light reflected from those two surfaces, thereby giving interferometric indication of temperatures.

  3. Applied optics and optical engineering v.9

    CERN Document Server

    Shannon, Robert

    1983-01-01

    Applied Optics and Optical Engineering, Volume IX covers the theories and applications of optics and optical engineering. The book discusses the basic algorithms for optical engineering; diffraction gratings, ruled and holographic; and recording and reading of information on optical disks. The text also describes the perfect point spread function; the multiple aperture telescope diffraction images; and the displays and simulators. Ophthalmic optics, as well as the canonical and real-space coordinates used in the theory of image formation are also encompassed. Optical engineers and students tak

  4. Optical Fiber Grating based Sensors

    DEFF Research Database (Denmark)

    Michelsen, Susanne

    2003-01-01

    In this thesis differenct optical fiber gratings are used for sensor purposes. If a fiber with a core concentricity error (CCE) is used, a directional dependent bend sensor can be produced. The CCE direction can be determined by means of diffraction. This makes it possible to produce long......-period gratings in a fiber with a CCE direction parallel or perpendicular to the writing direction. The maximal bending sensitivity is independent on the writing direction, but the detailed bending response is different in the two cases. A temperature and strain sensor, based on a long-period grating and two...

  5. Campus fiber optic enterprise networks

    Science.gov (United States)

    Weeks, Richard A.

    1991-02-01

    The proliferation of departmental LANs in campus environments has driven network technology to the point where construction of token ring fiber-optic backbone systems is now a cost-effective alternative. This article will discuss several successful real life case history applications of token ring fiber in a campus setting each with unique distance and load factor requirements. It is hoped that these examples will aid in the understanding planning and implementation of similar installations. It will also attempt to provide important information on the emerging Fiber Distributed Data Interface (FDDI) standard.

  6. Fiber optics principles and practices

    CERN Document Server

    Al-Azzawi, Abdul

    2007-01-01

    Since the invention of the laser, our fascination with the photon has led to one of the most dynamic and rapidly growing fields of technology. New advances in fiber optic devices, components, and materials make it more important than ever to stay current. Comprising chapters drawn from the author's highly anticipated book Photonics: Principles and Practices, Fiber Optics: Principles and Practices offers a detailed and focused treatment for anyone in need of authoritative information on this critical area underlying photonics.Using a consistent approach, the author leads you step-by-step throug

  7. Optical fiber-based devices and applications

    Institute of Scientific and Technical Information of China (English)

    Perry Ping SHUM; Jonathan C. KNIGHT; Jesper LAEGSGAARD; Dora Juan Juan HU

    2010-01-01

    @@ Optical fiber technology has undergone tremendous growth and development over the last 40 years. Optical fibers constitute an information super highway and are vital in enabling the proliferating use of the Internet. Optical fiber is also an enabling technology which can find applications in sensing, imaging, biomedical, machining, etc. There have been a few milestones in the advancement of optical fiber technology. Firstly, the invention and development of the laser some 50 years ago made optical communications possible. Secondly, the fabrication of low-loss optical fibers has been a key element to the success of optical communication.

  8. Handbook of fiber optics theory and applications

    CERN Document Server

    Yeh, Chai

    2013-01-01

    Dr. Yeh supplies a firm theoretical foundation in such topics as propagation of light through fibers, fiber fabrication, loss mechanisms, and dispersion properties. He then expands from this into such practical areas as fiber splicing, measuring loss in fibers, fiber-based communications networks, remote fiber sensors, and integrated optics. Whether involved in fiber optics research, design, or practical implementation of systems, this handbook will be extremely useful.Key Features* Here is a comprehensive, ""one-stop"" reference with state-of-the-art information on fiber optics Included is da

  9. Optical fiber telecommunications components and subsystems

    CERN Document Server

    Kaminow, Ivan; Willner, Alan E

    2013-01-01

    Optical Fiber Telecommunications VI (A&B) is the sixth in a series that has chronicled the progress in the R&D of lightwave communications since the early 1970s. Written by active authorities from academia and industry, this edition brings a fresh look to many essential topics, including devices, subsystems, systems and networks. A central theme is the enabling of high-bandwidth communications in a cost-effective manner for the development of customer applications. These volumes are an ideal reference for R&D engineers and managers, optical systems implementers, university researchers and s

  10. Optical fiber telecommunications systems and networks

    CERN Document Server

    Kaminow, Ivan; Willner, Alan E

    2013-01-01

    Optical Fiber Telecommunications VI (A&B) is the sixth in a series that has chronicled the progress in the R&D of lightwave communications since the early 1970s. Written by active authorities from academia and industry, this edition brings a fresh look to many essential topics, including devices, subsystems, systems and networks. A central theme is the enabling of high-bandwidth communications in a cost-effective manner for the development of customer applications. These volumes are an ideal reference for R&D engineers and managers, optical systems implementers, university researchers and s

  11. Fiber optical Bragg grating sensors embedded in CFRP wires

    Science.gov (United States)

    Nellen, Philipp M.; Frank, Andreas; Broennimann, Rolf; Meier, Urs; Sennhauser, Urs J.

    1999-05-01

    Based on the example application of Emmenbridge, a newly built steel-concrete-composite bridge in Switzerland with 47 m long built-in carbon fiber reinforced polymer (CFRP) prestressing cables, we will present and analyze the process chain leading to a reliable surveillance of modern civil engineering structures with embedded fiber optical Bragg gratings. This consists first in the embedding of optical fibers and in-fiber Bragg gratings in long CFRP wires in an industrial environment, including fiber optical monitoring of the curing process. Then, various qualifying tests were done: annealing experiments for determining optical lifetime of the Bragg gratings used, dynamic and static tensile tests for estimating their mechanical lifetime under operation, push-out experiments to check adhesion of fiber/coating/matrix interfaces, and performance tests to determine strain and temperature sensitivity of the embedded Bragg gratings. Finally, the prestressing cables were equipped with the CFRP sensor wires and built into the bridge.

  12. Photonics and Fiber Optics Processor Lab

    Data.gov (United States)

    Federal Laboratory Consortium — The Photonics and Fiber Optics Processor Lab develops, tests and evaluates high speed fiber optic network components as well as network protocols. In addition, this...

  13. Optical Fiber Devices in WDM Networks

    Institute of Scientific and Technical Information of China (English)

    Shan Jiang; Yong Luo; Xinda Yin; Wei Shi; Qianggao Hu

    2003-01-01

    Crystal optics and fiber grating technology are two of the most important optical fiber device technologies.In this paper, we report several new devices developed in Accelink for WDM networks application.

  14. Optical Fiber Devices in WDM Networks

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    Crystal optics and fiber grating technology are two of the most important optical fiber device technologies. In this paper, we report several new devices developed in Accelink for WDM networks application.

  15. Integrated optical fiber lattice accumulators

    OpenAIRE

    Atherton, Adam F

    1997-01-01

    Approved for public release; distribution is unlimited. Sigma-delta modulators track a signal by accumulating the error between an input signal and a feedback signal. The accumulated energy is amplitude analyzed by a comparator. The comparator output signal is fed back and subtracted from the input signal. This thesis is primarily concerned with designing accumulators for inclusion in an optical sigma-delta modulator. Fiber lattice structures with optical amplifiers are used to perform the...

  16. Fiber optic evanescent wave biosensor

    Science.gov (United States)

    Duveneck, Gert L.; Ehrat, Markus; Widmer, H. M.

    1991-09-01

    The role of modern analytical chemistry is not restricted to quality control and environmental surveillance, but has been extended to process control using on-line analytical techniques. Besides industrial applications, highly specific, ultra-sensitive biochemical analysis becomes increasingly important as a diagnostic tool, both in central clinical laboratories and in the doctor's office. Fiber optic sensor technology can fulfill many of the requirements for both types of applications. As an example, the experimental arrangement of a fiber optic sensor for biochemical affinity assays is presented. The evanescent electromagnetic field, associated with a light ray guided in an optical fiber, is used for the excitation of luminescence labels attached to the biomolecules in solution to be analyzed. Due to the small penetration depth of the evanescent field into the medium, the generation of luminescence is restricted to the close proximity of the fiber, where, e.g., the luminescent analyte molecules combine with their affinity partners, which are immobilized on the fiber. Both cw- and pulsed light excitation can be used in evanescent wave sensor technology, enabling the on-line observation of an affinity assay on a macroscopic time scale (seconds and minutes), as well as on a microscopic, molecular time scale (nanoseconds or microseconds).

  17. Catching Attention in Fiber Optics Class

    OpenAIRE

    Kezerashvili, R. Ya.; Leng, L

    2004-01-01

    Following a brief review on the history and the current development of fiber optics, the significance of teaching fiber optics for science and non-science major college students is addressed. Several experimental demonstrations designed to aid the teaching and learning process in fiber optics lectures are presented. Sample laboratory projects are also proposed to help the students to understand the physical principles of fiber optics.

  18. High pressure fiber optic sensor system

    Science.gov (United States)

    Guida, Renato; Xia, Hua; Lee, Boon K; Dekate, Sachin N

    2013-11-26

    The present application provides a fiber optic sensor system. The fiber optic sensor system may include a small diameter bellows, a large diameter bellows, and a fiber optic pressure sensor attached to the small diameter bellows. Contraction of the large diameter bellows under an applied pressure may cause the small diameter bellows to expand such that the fiber optic pressure sensor may measure the applied pressure.

  19. Infrared Fiber Optics.

    Science.gov (United States)

    1979-12-01

    solid lubricants (anthacene, p-terphenyl). To date, the best lubricants have been Parafilm and beeswax . Using these materials to coat the KC1 billets...fabrication involves both extruding KCl fibers and also preparing the starting billet used in the extrusion. The billets are then usually coated with a...8217C) and be removable after extrusion. This has limited the choice of lubricants to waxes (parafin, beeswax ), polyethelene mixtures (Parafilm M), and

  20. Fiber Optics: Deregulate and Deploy.

    Science.gov (United States)

    Suwinski, Jan H.

    1993-01-01

    Describes fiber optic technology, explains its use in education and commercial settings, and recommends regulations and legislation that will speed its use to create broadband information networks. Topics discussed include distance learning; interactive video; costs; and the roles of policy makers, lawmakers, public advocacy groups, and consumers.…

  1. Fiber Optic Magnetic Sensor Research.

    Science.gov (United States)

    1983-02-28

    Michelson inter- ferometric fiber optical point temperature sensor (Appendix B). The sensor has potential applicntion to non-invnsive and high...3roeniheaingUsing similar techniques, to for monolithic circuits. Lange couplers have been fabricated on alumina substrates. The: re- Fig 3 illustrates

  2. Nonlinear fiber optics formerly quantum electronics

    CERN Document Server

    Agrawal, Govind

    1995-01-01

    The field of nonlinear fiber optics has grown substantially since the First Edition of Nonlinear Fiber Optics, published in 1989. Like the First Edition, this Second Edition is a comprehensive, tutorial, and up-to-date account of nonlinear optical phenomena in fiber optics. It synthesizes widely scattered research material and presents it in an accessible manner for students and researchers already engaged in or wishing to enter the field of nonlinear fiber optics. Particular attention is paid to the importance of nonlinear effects in the design of optical fiber communication systems. This is

  3. Optical fibers and RF a natural combination

    CERN Document Server

    Romeiser, Malcolm

    2004-01-01

    The optical fiber industry has experienced a period of consolidation and reorganization and is now poised for a new surge in growth. To take advantage of that growth, and to respond to the demand to use fiber more efficiently, designers need a better understanding of fiber optics. Taking the approach that optical fibers are an extension of RF-based communications, the author explains basic optical concepts, applications, and systems; the nature and performance characteristics of optical fibers; and optical sources, connectors and splices. Subsequent chapters explore current applications of fib

  4. Fiber-diffraction Interferometer using Coherent Fiber Optic Taper

    CERN Document Server

    Kihm, Hagyong

    2010-01-01

    We present a fiber-diffraction interferometer using a coherent fiber optic taper for optical testing in an uncontrolled environment. We use a coherent fiber optic taper and a single-mode fiber having thermally-expanded core. Part of the measurement wave coming from a test target is condensed through a fiber optic taper and spatially filtered from a single-mode fiber to be reference wave. Vibration of the cavity between the target and the interferometer probe is common to both reference and measurement waves, thus the interference fringe is stabilized in an optical way. Generation of the reference wave is stable even with the target movement. Focus shift of the input measurement wave is desensitized by a coherent fiber optic taper.

  5. Overview of Fiber-Optical Sensors

    Science.gov (United States)

    Depaula, Ramon P.; Moore, Emery L.

    1987-01-01

    Design, development, and sensitivity of sensors using fiber optics reviewed. State-of-the-art and probable future developments of sensors using fiber optics described in report including references to work in field. Serves to update previously published surveys. Systems incorporating fiber-optic sensors used in medical diagnosis, navigation, robotics, sonar, power industry, and industrial controls.

  6. Career Directions--Fiber Optic Installer

    Science.gov (United States)

    Tech Directions, 2012

    2012-01-01

    Fiber-optic communication is a method of transmitting information from one place to another by sending pulses of light through an optical fiber that is roughly the diameter of a human hair. The light forms an electromagnetic carrier wave that is modulated to carry information. Each optical fiber is capable of carrying an enormous amount of…

  7. Optical fiber sensors measurement system and special fibers improvement

    Science.gov (United States)

    Jelinek, Michal; Hrabina, Jan; Hola, Miroslava; Hucl, Vaclav; Cizek, Martin; Rerucha, Simon; Lazar, Josef; Mikel, Bretislav

    2017-06-01

    We present method for the improvement of the measurement accuracy in the optical frequency spectra measurements based on tunable optical filters. The optical filter was used during the design and realization of the measurement system for the inspection of the fiber Bragg gratings. The system incorporates a reference block for the compensation of environmental influences, an interferometric verification subsystem and a PC - based control software implemented in LabView. The preliminary experimental verification of the measurement principle and the measurement system functionality were carried out on a testing rig with a specially prepared concrete console in the UJV Řež. The presented system is the laboratory version of the special nuclear power plant containment shape deformation measurement system which was installed in the power plant Temelin during last year. On the base of this research we started with preparation other optical fiber sensors to nuclear power plants measurement. These sensors will be based on the microstructured and polarization maintaining optical fibers. We started with development of new methods and techniques of the splicing and shaping optical fibers. We are able to made optical tapers from ultra-short called adiabatic with length around 400 um up to long tapers with length up to 6 millimeters. We developed new techniques of splicing standard Single Mode (SM) and Multimode (MM) optical fibers and splicing of optical fibers with different diameters in the wavelength range from 532 to 1550 nm. Together with development these techniques we prepared other techniques to splicing and shaping special optical fibers like as Polarization-Maintaining (PM) or hollow core Photonic Crystal Fiber (PCF) and theirs cross splicing methods with focus to minimalize backreflection and attenuation. The splicing special optical fibers especially PCF fibers with standard telecommunication and other SM fibers can be done by our developed techniques. Adjustment

  8. Quantum optics for engineers

    CERN Document Server

    Duarte, FJ

    2013-01-01

    Quantum Optics for Engineers provides a transparent and methodical introduction to quantum optics via the Dirac's bra-ket notation with an emphasis on practical applications and basic aspects of quantum mechanics such as Heisenberg's uncertainty principle and Schrodinger's equation. Self-contained and using mainly first-year calculus and algebra tools, the book:Illustrates the interferometric quantum origin of fundamental optical principles such as diffraction, refraction, and reflectionProvides a transparent introduction, via Dirac's notation, to the probability amplitude of quantum entanglem

  9. Polydimethylsiloxane fibers for optical fiber sensor of displacement

    Science.gov (United States)

    Martincek, Ivan; Pudis, Dusan; Gaso, Peter

    2013-09-01

    The paper describes the preparation of polydimethylsiloxane (PDMS) fiber integrated on the conventional optical fibers and their use for optical fiber displacement sensor. PDMS fiber was made of silicone elastomer Sylgard 184 (Dow Corning) by drawing from partially cured silicone. Optical fiber displacement sensor using PDMS fiber is based on the measurement of the local minimum of optical signal in visible spectral range generated by intermodal interference of circularly symmetric modes. Position of the local minimum in spectral range varies by stretching the PDMS fiber of 230 μm in the wavelength range from 688 to 477 nm. In the stretched PDMS fiber is possible to determine the longitudinal displacement with an accuracy of approximately 1 micrometer.

  10. Fiber optic ionizing radiation detector

    Energy Technology Data Exchange (ETDEWEB)

    Suter, J.J. (Johns Hopkins Univ., Applied Physics Lab., Laurel, MD (United States)); Poret, J.C.; Rosen, M. (Johns Hopkins Univ., Dept. of Materials Science and Engineering, Baltimore, MD (United States))

    1992-08-01

    Radiation detection can be done by various types of devices, such as Geiger counters, thermoluminescent detectors, and electric field sensors. This paper reports on a noel design for an ionizing radiation sensor using coiled optical fibers, which can be placed within or near a radioactive source. This design has several features that make it different from sensors proposed in the past. In order to evaluate this sensor, coiled fiber samples were placed inside metallic and metal-matrix composite cylinders to evaluate the sensitivity of the detector as well as the shielding effectiveness of the materials.

  11. Distributed optical fiber surface plasmon resonance sensors

    Institute of Scientific and Technical Information of China (English)

    Zhenxin Cao; Lenan Wu; Dayong Li

    2006-01-01

    @@ The relationships of the resonant wavelength of optical fiber surface plasmon resonance (SPR) sensors to the modulation layer refractive index, thickness and the refractive index of the bulk medium are obtained by using theoretical calculation model of optical fiber SPR sensors under certain conditions, which indicates that resonant wavelength of the sensors is approximately linear with modulation layer thickness. Based on the linear relationship, multiple SPR sensors with different resonant wavelengths can be fabricated in a single optical fiber named as distributed optical fiber surface plasmon resonance sensors (DOFSPRSs).Experimental results are presented, showing that it is practical to fabricate more than one SPR sensors in a single optical fiber.

  12. Fiber Optic Chemical Sensors

    Science.gov (United States)

    1993-10-01

    Studies Press Ltd, Book Chapter, AIS, 1-25, 1983. Saarl, Linda A. and Seltz, Rudolf W., "Immobilized Morin as Fluorescence Sensor for Determination...34Thin Films," Photonics Spectra, AVO, AIS, 113-118, 1988. Hanst, Philip L. and Stephens, Edgar R., "Infrared Analysis of Engine Exhausts: Methyl...79-84, 1988. Watson, Jr., Edgar , "On-line Analysis of Trace Contaminants 145 36 in Process Streams," Amarican Laboratory, AVO, AIS, 97-101, 1988

  13. Applications of distributed fiber Bragg grating sensors in civil engineering

    Science.gov (United States)

    Nellen, Philipp M.; Broennimann, Rolf; Sennhauser, Urs J.; Askins, Charles G.; Putnam, Martin A.

    1995-09-01

    We report on civil engineering applications of wavelength multiplexed optical-fiber Bragg grating arrays produced directly on the draw tower for testing and surveying advanced structures and material like carbon fiber reinforced concrete elements and prestressing tendons. We equipped a 6 m X 0.9 m X 0.5 m concrete cantilever beam reinforced with carbon fiber lamellas with fiber Bragg grating sensors. Static and dynamic strain levels up to 1500 micrometers /m were measured with a Michelson interferometer used as Fourier spectrometer with resolutions of about 10 micrometers /m for all sensors. Comparative measurements with electrical resistance strain gauges were in good agreement with the fiber optic results. We used the fiber sensors in two different arrangements: some Bragg grating array elements measured the local strain while others were configured in an extensometric way to measure moderate strain over 0.1-1 m.

  14. Generalized fiber Fourier optics.

    Science.gov (United States)

    Cincotti, Gabriella

    2011-06-15

    A twofold generalization of the optical schemes that perform the discrete Fourier transform (DFT) is given: new passive planar architectures are presented where the 2 × 2 3 dB couplers are replaced by M × M hybrids, reducing the number of required connections and phase shifters. Furthermore, the planar implementation of the discrete fractional Fourier transform (DFrFT) is also described, with a waveguide grating router (WGR) configuration and a properly modified slab coupler.

  15. The power of fiber optics

    Energy Technology Data Exchange (ETDEWEB)

    Roy, C.

    1999-03-01

    The latest technology in optical groundwire (OPGW), involving a single cable serving as a communications network, providing high-speed data and voice transmission, and as a conventional groundwire, part of a power transmission grid, is described. The first-ever symposium devoted to OPGW was held at Hydro-Quebec`s IREQ facility in Montreal, a fitting venue, considering that Hydro-Quebec has installed an extensive network of some 3,500 km of OPGW cables since 1992. The international symposium was attended by over 130 interested experts mainly from North America, but with delegates as far away as Australia, Japan, Libya, Brazil and the UK. The three-day event showcased a number of presentations and demonstrations concerning OPGW splicing requirements, the live-line installation process, the merits of using fiber optics in a power situation, comparison of international standards in OPGW and fiber optics applications, and future developments in fiber optics technology. Demonstration of IREQ`s OPGW type-testing and manufacturer`s exhibits provided an opportunity for hands-on experience.

  16. Fiber optic sensors current status and future possibilities

    CERN Document Server

    Ikezawa, Satoshi; Corres, Jesus

    2017-01-01

    This book describes important recent developments in fiber optic sensor technology and examines established and emerging applications in a broad range of fields and markets, including power engineering, chemical engineering, bioengineering, biomedical engineering, and environmental monitoring. Particular attention is devoted to niche applications where fiber optic sensors are or soon will be able to compete with conventional approaches. Beyond novel methods for the sensing of traditional parameters such as strain, temperature, and pressure, a variety of new ideas and concepts are proposed and explored. The significance of the advent of extended infrared sensors is discussed, and individual chapters focus on sensing at THz frequencies and optical sensing based on photonic crystal structures. Another important topic is the resonances generated when using thin films in conjunction with optical fibers, and the enormous potential of sensors based on lossy mode resonances, surface plasmon resonances, and long-range...

  17. Ultra-high Frequency Linear Fiber Optic Systems

    CERN Document Server

    Lau, Kam Y

    2009-01-01

    Designed for a one-semester course on fiber-optics systems and communication links, this book provides a concise but rigorous treatment of the theory and practice of analog (linear) fiber-optics links and systems that constitute the foundation of Hybrid Fiber Coax infrastructure in present-day CATV distribution and cable modem Internet access. Emerging applications in remote fiber-optic feed for free-space millimeter wave enterprise campus networks are also described. Issues such as dispersion and interferometric noise are treated quantitatively, and means for mitigating them are explained. This broad but concise text will thus be invaluable not only to students of fiber-optics communication but also to practicing engineers.

  18. A Large Area Fiber Optic Gyroscope on multiplexed fiber network

    CERN Document Server

    Clivati, Cecilia; Costanzo, Giovanni A; Mura, Alberto; Pizzocaro, Marco; Levi, Filippo

    2012-01-01

    We describe a fiber optical gyroscope based on the Sagnac effect realized on a multiplexed telecom fiber network. Our loop encloses an area of 20 km^2 and coexists with Internet data traffic. This Sagnac interferometer achieves a sensitivity of about 1e-8 (rad/s)/sqrt(Hz), thus approaching ring laser gyroscopes without using narrow-linewidth laser nor sophisticated optics. The proposed gyroscope is sensitive enough for seismic applications, opening new possibilities for this kind of optical fiber sensors

  19. Biosensing with optical fiber gratings

    Directory of Open Access Journals (Sweden)

    Chiavaioli Francesco

    2017-06-01

    Full Text Available Optical fiber gratings (OFGs, especially long-period gratings (LPGs and etched or tilted fiber Bragg gratings (FBGs, are playing an increasing role in the chemical and biochemical sensing based on the measurement of a surface refractive index (RI change through a label-free configuration. In these devices, the electric field evanescent wave at the fiber/surrounding medium interface changes its optical properties (i.e. intensity and wavelength as a result of the RI variation due to the interaction between a biological recognition layer deposited over the fiber and the analyte under investigation. The use of OFG-based technology platforms takes the advantages of optical fiber peculiarities, which are hardly offered by the other sensing systems, such as compactness, lightness, high compatibility with optoelectronic devices (both sources and detectors, and multiplexing and remote measurement capability as the signal is spectrally modulated. During the last decade, the growing request in practical applications pushed the technology behind the OFG-based sensors over its limits by means of the deposition of thin film overlays, nanocoatings, and nanostructures, in general. Here, we review efforts toward utilizing these nanomaterials as coatings for high-performance and low-detection limit devices. Moreover, we review the recent development in OFG-based biosensing and identify some of the key challenges for practical applications. While high-performance metrics are starting to be achieved experimentally, there are still open questions pertaining to an effective and reliable detection of small molecules, possibly up to single molecule, sensing in vivo and multi-target detection using OFG-based technology platforms.

  20. "Reliability Of Fiber Optic Lans"

    Science.gov (United States)

    Code n, Michael; Scholl, Frederick; Hatfield, W. Bryan

    1987-02-01

    Fiber optic Local Area Network Systems are being used to interconnect increasing numbers of nodes. These nodes may include office computer peripherals and terminals, PBX switches, process control equipment and sensors, automated machine tools and robots, and military telemetry and communications equipment. The extensive shared base of capital resources in each system requires that the fiber optic LAN meet stringent reliability and maintainability requirements. These requirements are met by proper system design and by suitable manufacturing and quality procedures at all levels of a vertically integrated manufacturing operation. We will describe the reliability and maintainability of Codenoll's passive star based systems. These include LAN systems compatible with Ethernet (IEEE 802.3) and MAP (IEEE 802.4), and software compatible with IBM Token Ring (IEEE 802.5). No single point of failure exists in this system architecture.

  1. A compact optical fiber positioner

    Science.gov (United States)

    Hu, Hongzhuan; Wang, Jianping; Liu, Zhigang; Zhou, Zengxiang; Zhai, Chao; Chu, Jiaru

    2016-07-01

    In this paper, a compact optical fiber positioner is proposed, which is especially suitable for small scale and high density optical fiber positioning. Based on the positioning principle of double rotation, positioner's center shaft depends on planetary gear drive principle, meshing with the fixed annular gear central motor gear driving device to rotate, and the eccentric shaft rotated driving by a coaxial eccentric motor, both center and the eccentric shaft are supported by a rolling bearings; center and eccentric shaft are both designed with electrical zero as a reference point, and both of them have position-limiting capability to ensure the safety of fiber positioning; both eccentric and center shaft are designed to eliminating clearance with spring structure, and can eliminate the influence of gear gap; both eccentric and center motor and their driving circuit can be installed in the positioner's body, and a favorable heat sink have designed, the heat bring by positioning operation can be effectively transmit to design a focal plane unit through the aluminum component, on sleeve cooling spiral airway have designed, when positioning, the cooling air flow is inlet into install hole on the focal plate, the cooling air flow can effectively take away the positioning's heat, to eliminate the impact of the focus seeing. By measuring position device's sample results show that: the unit accuracy reached 0.01mm, can meet the needs of fiber positioning.

  2. Active Optical Fibers Doped with Ceramic Nanocrystals

    Directory of Open Access Journals (Sweden)

    Jan Mrazek

    2014-01-01

    Full Text Available Erbium-doped active optical fiber was successfully prepared by incorporation of ceramic nanocrystals inside a core of optical fiber. Modified chemical vapor deposition was combined with solution-doping approach to preparing preform. Instead of inorganic salts erbium-doped yttrium-aluminium garnet nanocrystals were used in the solution-doping process. Prepared preform was drawn into single-mode optical fiber with a numerical aperture 0.167. Optical and luminescence properties of the fiber were analyzed. Lasing ability of prepared fiber was proofed in a fiber-ring set-up. Optimal laser properties were achieved for a fiber length of 20~m. The slope efficiency of the fiber-laser was about 15%. Presented method can be simply extended to the deposition of other ceramic nanomaterials.

  3. Fiber-optic communication systems

    CERN Document Server

    Agrawal, Govind P

    2010-01-01

    This book provides a comprehensive account of fiber-optic communication systems. The 3rd edition of this book is used worldwide as a textbook in many universities. This 4th edition incorporates recent advances that have occurred, in particular two new chapters. One deals with the advanced modulation formats (such as DPSK, QPSK, and QAM) that are increasingly being used for improving spectral efficiency of WDM lightwave systems. The second chapter focuses on new techniques such as all-optical regeneration that are under development and likely to be used in future communication systems. All othe

  4. Fiber Optic Geophysics Sensor Array

    Science.gov (United States)

    Grochowski, Lucjan

    1989-01-01

    The distributed optical sensor arrays are analysed in view of specific needs of 3-D seismic explorations methods. There are compared advantages and disadventages of arrays supported by the sensors which are modulated in intensity and phase. In these systems all-fiber optic structures and their compabilities with digital geophysic formats are discussed. It was shown that the arrays based on TDM systems with the intensity modulated sensors are economically and technically the best matched for geophysic systems supported by a large number of the sensors.

  5. MX optical fiber communication system

    Science.gov (United States)

    Keiser, G.

    The fiber optic (FO) network for the proposed MX mobile basing scheme is described. C3 operations would be implemented through 15,000 km of FO links between 4800 sites. Burying the cables would ensure continued C3 operations in a hostile environment, although protection would be needed from burrowing rodents. Technology development criteria, such as optical sources and photodetectors for the 1300-1600 nm long wavelength region, are noted, together with construction of a test site at an Air Force base in California.

  6. Laboratory Equipment Type Fiber Optic Refractometer

    OpenAIRE

    E. F. Carome; M. Benca; L. Ovsenik; J. Turan

    2002-01-01

    Using fiber optics and micro optics technologies we designed an innovative fiber optic index of refraction transducer that has unique properties. On the base of this transducer a laboratory equipment type fiber optic refractometer was developed for liquid index of refraction measurements. Such refractometer may be used for medical, pharmaceutical, industrial fluid, petrochemical, plastic, food, and beverage industry applications. For example, it may be used for measuring the concentrations of...

  7. Properties of Single Mode Polymer Optical Fiber

    Institute of Scientific and Technical Information of China (English)

    YANG Dong-xiao

    2003-01-01

    The density,dynamic modulus,Young's modulus,tensile strength,extension properties,Fourier transform infrared spectrum and differential scanning calorimetry have been measured and discussed for single mode polymethyl-methacrylate optical fiber.The results show that the fiber can provide large strain range for polymeric optical fiber Bragg gratings.

  8. Fiber optic vibration sensor using bifurcated plastic optical fiber

    Science.gov (United States)

    Abdullah, M.; Bidin, N.; Yasin, M.

    2016-11-01

    An extrinsic fiber optic vibration sensor is demonstrated for a fiber optic displacement sensor based on a bundled multimode fiber to measure a vibration frequency ranging from 100 until 3000 Hz. The front slope has a sensitivity of 0.1938mV/mm and linearity of 99.7% within a measurement range between 0.15-3.00 mm. By placing the diaphragm of the concave load-speaker within the linear range from the probe, the frequency of the vibration can be measured with error percentage of less than 1.54%. The graph of input against output frequency for low, medium and high frequency range show very high linearity up to 99%. Slope for low, medium, and high frequency range are calculated as 1.0026, 0.9934, and 1.0007 respectively. Simplicity, long term stability, low power consumption, wide dynamic and frequency ranges, noise reduction, ruggedness, linearity and light weight make it promising alternative to other well-establish methods for vibration frequency measurement.

  9. Architectures of fiber optic network in telecommunications

    Science.gov (United States)

    Vasile, Irina B.; Vasile, Alexandru; Filip, Luminita E.

    2005-08-01

    The operators of telecommunications have targeted their efforts towards realizing applications using broad band fiber optics systems in the access network. Thus, a new concept related to the implementation of fiber optic transmission systems, named FITL (Fiber In The Loop) has appeared. The fiber optic transmission systems have been extensively used for realizing the transport and intercommunication of the public telecommunication network, as well as for assuring the access to the telecommunication systems of the great corporations. Still, the segment of the residential users and small corporations did not benefit on large scale of this technology implementation. For the purpose of defining fiber optic applications, more types of architectures were conceived, like: bus, ring, star, tree. In the case of tree-like networks passive splitters (that"s where the name of PON comes from - Passive Optical Network-), which reduce significantly the costs of the fiber optic access, by separating the costs of the optical electronic components. That's why the passive fiber optics architectures (PON represent a viable solution for realizing the access at the user's loop. The main types of fiber optics architectures included in this work are: FTTC (Fiber To The Curb); FTTB (Fiber To The Building); FTTH (Fiber To The Home).

  10. Use of optical fibers in spectrophotometry

    Science.gov (United States)

    Ramsey, Lawrence W.

    1988-01-01

    The use of single or small numbers of fiber optic fibers in astronomical spectroscopy with the goal of greater spectrophotometric and radial velocity accuracy is discussed. The properties of multimode step index fibers which are most important for this application are outlined, as are laboratory tests of currently available fibers.

  11. Erbium doped tellurite photonic crystal optical fiber

    Science.gov (United States)

    Osorio, Sergio P.; Fernandez, Enver; Rodriguez, Eugenio; Cesar, Carlos L.; Barbosa, Luiz C.

    2005-04-01

    In this work we present the fabrication of tellurite glass photonic crystal fiber doped with a very large erbium concentration. Tellurite glasses are important hosts for rare earth ions due to its very high solubility, which allows up to 10,000 ppm Er3+ concentrations. The photonic crystal optical fibers and tellurite glasses can be, therefore, combined in an efficient way to produce doped fibers for large bandwidth optical amplifiers. The preform was made of a 10 mm external diameter tellurite tube filled with an array of non-periodic tellurite capillaries and an erbium-doped telluride rod that constitute the fiber core. The preform was drawn in a Heathway Drawing Tower, producing fibers with diameters between 120 - 140 μm. We show optical microscope photography of the fiber"s transverse section. The ASE spectra obtained with a spectra analyzer show a red shift as the length of the optical fiber increases.

  12. Fiber Acousto-Electro-Optic Modulator

    Institute of Scientific and Technical Information of China (English)

    Anen; Jiang

    2003-01-01

    A new kind of fiber acousto-electro-optic modulator is made by using Lithium Niobate crystal. This kind of modulator can be used in fiber communication, and its center frequency can be changed by directed current voltages.

  13. Characteristics of Angora rabbit fiber using optical fiber diameter analyzer.

    Science.gov (United States)

    Rafat, S A; de Rochambeau, H; Brims, M; Thébault, R G; Deretz, S; Bonnet, M; Allain, D

    2007-11-01

    An experiment was conducted to describe the characteristics of Angora rabbit fiber using optical fiber diameter analyzer (OFDA). A total of 349 fleece samples were collected from 60 French Angora rabbits. Recorded measurements of OFDA were as follows: mean fiber diameter, CV of fiber diameter, comfort factor, spinning fineness, mean fiber curvature, SD of fiber curvature, mean opacity of fibers, percentage of medullated fibers, mean fiber diameter along the length, and SD of fiber diameter along the length. Comfort factor is the percentage of fibers less than or equal to 30 microns. The main effects included in the mixed model were fixed effects of group, harvest season, and age and a random effect of animal. Correlations among total fleece weight, compression, and OFDA measurements were calculated. Mean fiber diameter was lower than the fiber diameter along the length. Mean percentage of medullated fibers was very low and ranged from 0.1 to 7.3%. The mean comfort factor was 97.5% and ranged from 93.3 to 99.8%. The mean fiber curvature was 40.1 degrees/mm. The major changes in Angora fleece characteristics from 8 to 105 wk of age were an increase in fiber diameter, CV of fiber diameter, mean fiber diameter along the length and curvature, and a decrease in compression and comfort factor. The effect of harvest season was significant on some fiber characteristics. Mean fiber diameter and the mean fiber diameter along the length had a positive correlation with total fleece weight. The OFDA methodology is a method to evaluate fiber diameter, CV of fiber diameter, and bristle content through measuring of the comfort factor. However, OFDA is not adapted for measuring opacity or size of the medulla, or both, in Angora wool and needs a new definition or a special calibration. The spinning fineness should be redefined and adapted for Angora rabbits.

  14. Performance evaluation of fiber optic components in nuclear plant environments

    Energy Technology Data Exchange (ETDEWEB)

    Hastings, M.C.; Miller, D.W. [Ohio State Univ., Columbus, OH (United States); James, R.W. [Electric Power Research Institute, Palo Alto, CA (United States)

    1996-03-01

    Over the past several years, the Electric Power Research Institute (EPRI) has funded several projects to evaluate the performance of commercially available fiber optic cables, connective devices, light sources, and light detectors under environmental conditions representative of normal and abnormal nuclear power plant operating conditions. Future projects are planned to evaluate commercially available fiber optic sensors and to install and evaluate performance of instrument loops comprised of fiber optic components in operating nuclear power plant applications. The objective of this research is to assess the viability of fiber optic components for replacement and upgrade of nuclear power plant instrument systems. Fiber optic instrument channels offer many potential advantages: commercial availability of parts and technical support, small physical size and weight, immunity to electromagnetic interference, relatively low power requirements, and high bandwidth capabilities. As existing nuclear power plants continue to replace and upgrade I&C systems, fiber optics will offer a low-cost alternative technology which also provides additional information processing capabilities. Results to date indicate that fiber optics are a viable technology for many nuclear applications, both inside and outside of containments. This work is funded and manage& under the Operations & Maintenance Cost Control research target of EPRI`s Nuclear Power Group. The work is being performed by faculty and students in the Mechanical and Nuclear Engineering Departments and the staff of the Nuclear Reactor Laboratory of the Ohio State University.

  15. Electroless nickel plating on optical fiber probe

    Institute of Scientific and Technical Information of China (English)

    Li Huang; Zhoufeng Wang; Zhuomin Li; Wenli Deng

    2009-01-01

    As a component of near-field scanning optical microscope (NSOM),optical fiber probe is an important factor influncing the equipment resolution.Electroless nickel plating is introduced to metallize the optical fiber probe.The optical fibers are etched by 40% HF with Turner etching method.Through pretreatment,the optical fiber probe is coated with Ni-P film by clectrolcss plating in a constant temperature water tank.Atomic absorption spectrometry (AAS),scanning electron microscopy (SEM),and energy dispersive X-ray spectrometry (EDXS) are carried out to charaeterizc the deposition on fiber probe.We have rcproducibly fabricated two kinds of fiber probes with a Ni-P fihn:aperture probe and apertureless probe.In addition,reductive particle transportation on the surface of fiber probe is proposed to explain the cause of these probes.

  16. Fiber Optics Physics and Technology

    CERN Document Server

    Mitschke, Fedor

    2010-01-01

    Telephone, telefax, email and internet -- the key ingredient of the inner workings is the conduit: the line which is designed to carry massive amounts of data at breakneck speed. In their data-carrying capacity optical fiber lines beat other technologies (copper cable, microwave beacons, satellite links) hands down, at least in the long haul. This book tells you all you want to know about optical fibers: Their structure, their light-guiding mechanism, their material and manufacture, their use. Several effects tend to degrade the signal as it travels down the fiber: they are spelled out in detail. Nonlinear processes are given due consideration for a twofold reason: On the one hand they are fundamentally different from the more familiar processes in electrical cable. On the other hand, they form the basis of particularly interesting and innovative applications, provided they are understood well enough. A case in point is the use of so-called solitons, i.e. special pulses of light which have the wonderful prope...

  17. Introduction to fiber optics: Sensors for biomedical applications.

    Science.gov (United States)

    Shah, R Y; Agrawal, Y K

    2011-01-01

    The paper focuses on the introduction of fiber optics, a fusion of science and engineering and describes the materials generally used for its construction along with the procedure used to design the fibers. It gives an idea of the materials used for the construction along with the pros and cons associated with them and various factors governing the emission of ultraviolet, infrared or visible radiations. The central core revolves around the applications of optical fibers in the medical and biomedical field and extending the use of the same in pharmaceutical industry as probes in quality control and dosage form analysis.

  18. Great prospects for fiber optics sensors

    Science.gov (United States)

    Hansen, T. E.

    1983-10-01

    Fiber optic sensors provide noise immunity and galvanic insulation at the measurement point. Interest in such sensors is increasing for these reasons. In the United States sales are expected to increase from 12 million dollars in 1981 to 180 million in 1991. Interferometric sensors based on single modus fibers deliver extremely high sensitivity, while sensors based on multi-modus fibers are more easily manufactured. The fiber optic sensors which are available today are based on point measurements. Development of fiber optic sensors in Norway is being carried out at the Central institute and has resulted in the development of medical manometers which are now undergoing clinical testing.

  19. Fiber-optically sensorized composite wing

    Science.gov (United States)

    Costa, Joannes M.; Black, Richard J.; Moslehi, Behzad; Oblea, Levy; Patel, Rona; Sotoudeh, Vahid; Abouzeida, Essam; Quinones, Vladimir; Gowayed, Yasser; Soobramaney, Paul; Flowers, George

    2014-04-01

    Electromagnetic interference (EMI) immune and light-weight, fiber-optic sensor based Structural Health Monitoring (SHM) will find increasing application in aerospace structures ranging from aircraft wings to jet engine vanes. Intelligent Fiber Optic Systems Corporation (IFOS) has been developing multi-functional fiber Bragg grating (FBG) sensor systems including parallel processing FBG interrogators combined with advanced signal processing for SHM, structural state sensing and load monitoring applications. This paper reports work with Auburn University on embedding and testing FBG sensor arrays in a quarter scale model of a T38 composite wing. The wing was designed and manufactured using fabric reinforced polymer matrix composites. FBG sensors were embedded under the top layer of the composite. Their positions were chosen based on strain maps determined by finite element analysis. Static and dynamic testing confirmed expected response from the FBGs. The demonstrated technology has the potential to be further developed into an autonomous onboard system to perform load monitoring, SHM and Non-Destructive Evaluation (NDE) of composite aerospace structures (wings and rotorcraft blades). This platform technology could also be applied to flight testing of morphing and aero-elastic control surfaces.

  20. Fiber-optical accelerometers based on polymer optical fiber Bragg gratings

    DEFF Research Database (Denmark)

    Yuan, Scott Wu; Stefani, Alessio; Bang, Ole

    2010-01-01

    Fiber-optical accelerometers based on polymer optical fiber Bragg gratings (FBGs) are reported. We have written 3mm FBGs for 1550nm operation, characterized their temperature and strain response, and tested their performance in a prototype accelerometer.......Fiber-optical accelerometers based on polymer optical fiber Bragg gratings (FBGs) are reported. We have written 3mm FBGs for 1550nm operation, characterized their temperature and strain response, and tested their performance in a prototype accelerometer....

  1. A Large Area Fiber Optic Gyroscope on multiplexed fiber network

    OpenAIRE

    Clivati, Cecilia; Calonico, Davide; Costanzo, Giovanni A.; Mura, Alberto; Pizzocaro, Marco; Levi, Filippo

    2012-01-01

    We describe a fiber optical gyroscope based on the Sagnac effect realized on a multiplexed telecom fiber network. Our loop encloses an area of 20 km^2 and coexists with Internet data traffic. This Sagnac interferometer achieves a sensitivity of about 1e-8 (rad/s)/sqrt(Hz), thus approaching ring laser gyroscopes without using narrow-linewidth laser nor sophisticated optics. The proposed gyroscope is sensitive enough for seismic applications, opening new possibilities for this kind of optical f...

  2. Sensitive fiber-optic immunoassay

    Science.gov (United States)

    Walczak, Irene M.; Love, Walter F.; Slovacek, Rudolf E.

    1991-07-01

    The principles of evanescent wave theory were applied to an immunological sensor for detecting the cardiac-specific isoenzyme creatine kinase-MB (CK-MB). The detection of the CK-MB isoenzyme is used in conjunction with the total CK measurement in the diagnosis of acute myocardial infarction. The clinical range for CK-MB is from 2-100 ng/ml. Previous work which utilized the fluorophor, Fluorescein isothiocyanate (FITC), was able to discriminate between 0 and 3 ng/ml CK-MB. Use of the fluorophor B-phycoerythrin (BPE) increased the assay sensitivity to 0.1 ng/ml CK-MB. The data was collected for 15 minutes using an optical launch and collection angle of 25 degree(s). This fiber optic based system is homogeneous and requires no subsequent washing, handling, or processing steps after exposure to the sample.

  3. Fiber-optic Michelson interferometer using an optical power divider.

    Science.gov (United States)

    Imai, M; Ohashi, T; Ohtsuka, Y

    1980-10-01

    A fiber-optic interferometer consisting of a multimode fiber-optical power divider was constructed in the Michelson arrangement and applied to measure a micrometer-order displacement of the vibrating object based on an optical homodyne technique. Improvement in the sensitivity of the apparatus is discussed from the viewpoint of increasing the minimum detectable beat signal.

  4. Laboratory Equipment Type Fiber Optic Refractometer

    Directory of Open Access Journals (Sweden)

    E. F. Carome

    2002-09-01

    Full Text Available Using fiber optics and micro optics technologies we designed aninnovative fiber optic index of refraction transducer that has uniqueproperties. On the base of this transducer a laboratory equipment typefiber optic refractometer was developed for liquid index of refractionmeasurements. Such refractometer may be used for medical,pharmaceutical, industrial fluid, petrochemical, plastic, food, andbeverage industry applications. For example, it may be used formeasuring the concentrations of aqueous solutions: as the concentrationor density of a solute increase, the refractive index increasesproportionately. The paper describes development work related to designof laboratory type fiber optic refractometer and describes experimentsto evaluation of its basic properties.

  5. Alternative fiber optic conductor for laboratory practices

    Science.gov (United States)

    Calderon Ocampo, Juan F.; Jaramillo Florez, Samuel A.; Amaya Rodriguez, Juan C.

    1995-10-01

    Due to the high cost and difficulty in obtaining an optical fiber sample to be used in laboratory tests, we have given ourselves the task of looking for an adequate optical-fiber alternative for laboratory practices. We have as a result, found an object that can be used as an alternate optical conductor. This object called 'Venoclisis Hose', is a cylindrical plastic tube, hollow inside, whose main use has been in medical applications as a conveyor of liquids going in or coming out of the human body. In this document, the tests carried out and the results obtained to characterize the venoclisis as an optical fiber are described. This project was undertaken in order to propose the use of Venoclisis as an alternate optical fiber for laboratory work, due primarily to its low costs, as well as how easy it to acquire and measure its parameters as an optical fiber.

  6. All-optical photoacoustic imaging system using fiber ultrasound probe and hollow optical fiber bundle.

    Science.gov (United States)

    Miida, Yusuke; Matsuura, Yuji

    2013-09-23

    An all-optical 3D photoacoustic imaging probe that consists of an optical fiber probe for ultrasound detection and a bundle of hollow optical fibers for excitation of photoacoustic waves was developed. The fiber probe for ultrasound is based on a single-mode optical fiber with a thin polymer film attached to the output end surface that works as a Fabry Perot etalon. The input end of the hollow fiber bundle is aligned so that each fiber in the bundle is sequentially excited. A thin and flexible probe can be obtained because the probe system does not have a scanning mechanism at the distal end.

  7. Fiber optic and laser sensors IX; Proceedings of the Meeting, Boston, MA, Sept. 3-5, 1991

    Science.gov (United States)

    Depaula, Ramon P. (Editor); Udd, Eric (Editor)

    1991-01-01

    The present volume on fiber-optic and laser sensors discusses industrial applications of fiber-optic sensors, fiber-optic temperature sensors, fiber-optic current sensors, fiber-optic pressure/displacement/vibration sensors, and generic fiber-optic systems. Attention is given to a fiber-sensor design for turbine engines, fiber-optic remote Fourier transform IR spectroscopy, near-IR fiber-optic temperature sensors, and an intensity-type fiber-optic electric current sensor. Topics addressed include fiber-optic magnetic field sensors based on the Faraday effect in new materials, diaphragm size and sensitivity for fiber-optic pressure sensors, a microbend pressure sensor for high-temperature environments, and linear position sensing by light exchange between two lossy waveguides. Also discussed are two-mode elliptical-core fiber sensors for measurement of strain and temperature, a fiber-optic interferometric X-ray dosimeter, fiber-optic interferometric sensors using multimode fibers, and optical fiber sensing of corona discharges.

  8. Fiber optic and laser sensors IX; Proceedings of the Meeting, Boston, MA, Sept. 3-5, 1991

    Science.gov (United States)

    Depaula, Ramon P. (Editor); Udd, Eric (Editor)

    1991-01-01

    The present volume on fiber-optic and laser sensors discusses industrial applications of fiber-optic sensors, fiber-optic temperature sensors, fiber-optic current sensors, fiber-optic pressure/displacement/vibration sensors, and generic fiber-optic systems. Attention is given to a fiber-sensor design for turbine engines, fiber-optic remote Fourier transform IR spectroscopy, near-IR fiber-optic temperature sensors, and an intensity-type fiber-optic electric current sensor. Topics addressed include fiber-optic magnetic field sensors based on the Faraday effect in new materials, diaphragm size and sensitivity for fiber-optic pressure sensors, a microbend pressure sensor for high-temperature environments, and linear position sensing by light exchange between two lossy waveguides. Also discussed are two-mode elliptical-core fiber sensors for measurement of strain and temperature, a fiber-optic interferometric X-ray dosimeter, fiber-optic interferometric sensors using multimode fibers, and optical fiber sensing of corona discharges.

  9. Fiber Optics: A New World of Possibilities in Light.

    Science.gov (United States)

    Hutchinson, John

    1990-01-01

    The background and history of light and fiber optics are discussed. Applications for light passed either directly or indirectly through optical fibers are described. Suggestions for science activities that use fiber optics are provided. (KR)

  10. Probing the ultimate limit of fiber-optic strain sensing.

    Science.gov (United States)

    Gagliardi, G; Salza, M; Avino, S; Ferraro, P; De Natale, P

    2010-11-19

    The measurement of relative displacements and deformations is important in many fields such as structural engineering, aerospace, geophysics, and nanotechnology. Optical-fiber sensors have become key tools for strain measurements, with sensitivity limits ranging between 10(-9) and 10(-6)ε hertz (Hz)(-1/2) (where ε is the fractional length change). We report on strain measurements at the 10(-13)ε-Hz(-1/2) level using a fiber Bragg-grating resonator with a diode-laser source that is stabilized against a quartz-disciplined optical frequency comb, thus approaching detection limits set by thermodynamic phase fluctuations in the fiber. This scheme may provide a route to a new generation of strain sensors that is entirely based on fiber-optic systems, which are aimed at measuring fundamental physical quantities; for example, in gyroscopes, accelerometers, and gravity experiments.

  11. Assessment of fiber optic pressure sensors

    Energy Technology Data Exchange (ETDEWEB)

    Hashemian, H.M.; Black, C.L.; Farmer, J.P. [Analysis and Measurement Services Corp., Knoxville, TN (United States)

    1995-04-01

    This report presents the results of a six-month Phase 1 study to establish the state-of-the-art in fiber optic pressure sensing and describes the design and principle of operation of various fiber optic pressure sensors. This study involved a literature review, contact with experts in the field, an industrial survey, a site visit to a fiber optic sensor manufacturer, and laboratory testing of a fiber optic pressure sensor. The laboratory work involved both static and dynamic performance tests. In addition, current requirements for environmental and seismic qualification of sensors for nuclear power plants were reviewed to determine the extent of the qualification tests that fiber optic pressure sensors may have to meet before they can be used in nuclear power plants. This project has concluded that fiber optic pressure sensors are still in the research and development stage and only a few manufacturers exist in the US and abroad which supply suitable fiber optic pressure sensors for industrial applications. Presently, fiber optic pressure sensors are mostly used in special applications for which conventional sensors are not able to meet the requirements.

  12. Industrial applications of fiber optic sensing

    Science.gov (United States)

    Desforges, Francois X.; Blocksidge, Robert

    1996-08-01

    Thanks to the growth of the fiber optics telecommunication industry, fiber optic components have become less expensive, more reliable and well known by potential fiber optic sensor users. LEDs, optical fibers, couplers and connectors are now widely distributed and are the building blocks for the fiber optic sensor manufacturer. Additionally, the huge demand in consumer electronics of the past 10 years has provided the manufacturer with cheap and powerful programmable logic components which reduce the development time as well as the cost of the associated instrumentation. This market trend has allowed Photonetics to develop, manufacture and sell fiber optic sensors for the last 10 years. The company contribution in the fields of fiber optic gyros (4 licenses sold world wide), white light interferometry and fiber optic sensor networks is widely recognized. Moreover, its 1992 acquisition of some of the assets of Metricor Inc., greatly reinforced its position and allowed it to pursue new markets. Over the past four years, Photonetics has done an important marketing effort to better understand the need of its customers. The result of this research has fed R&D efforts towards a new generation instrument, the Metricor 2000, better adapted to the expectations of fiber optic sensors users, thanks to its unique features: (1) universality -- the system can accept more than 20 different sensors (T, P, RI, . . .). (2) scalability -- depending on the customer needs, the system can be used with 1 to 64 sensors. (3) performance -- because of its improved design, overall accuracies of 0.01% FS can be reached. (4) versatility -- its modular design enables a fast and easy custom design for specific applications. This paper presents briefly the Metricor 2000 and its family of FO probes. Then, it describes two fiber optic sensing (FOS) applications/markets where FOS have proven to be very useful.

  13. Essentials of modern optical fiber communication

    CERN Document Server

    Noé, Reinhold

    2016-01-01

    This is a concise introduction into optical fiber communication. It covers important aspects from the physics of optical wave propagation and amplification to the essentials of modulation formats and receivers. The combination of a solid coverage of necessary fundamental theory with an in-depth discussion of recent relevant research results enables the reader to design modern optical fiber communication systems. The book serves both graduate students and professionals. It includes many worked examples with solutions for lecturers. For the second edition, Reinhold Noé made many changes and additions throughout the text so that this concise book presents the essentials of optical fiber communication in an easy readable and understandable way.

  14. Fiber optic sensors for smart taxiways

    Science.gov (United States)

    Janzen, Douglas D.; Fuerstenau, Norbert; Goetze, Wolfgang

    1995-09-01

    Fiber-optic sensors could offer advantages in the field of airport ground traffic monitoring: immunity to electromagnetic interference, installation without costly and time consuming airfield closures, and low loss, low noise optical connection between sensors and signal processing equipment. This paper describes fiber-optic sensors developed for airport taxiway monitoring and the first steps toward their installation in an experimental surface movement guidance and control system at the Braunschweig airport. Initial results obtained with fiber- optic light barriers and vibration sensors are reported. The feasibility of employing interferometric strain gauges for this application will be discussed based on sensor characteristics obtained through measurements of strain in an aircraft structure in flight.

  15. Fiber optical magnetic field sensor for power generator monitoring

    Science.gov (United States)

    Willsch, Michael; Bosselmann, Thomas; Villnow, Michael

    2014-05-01

    Inside of large electrical engines such as power generators and large drives, extreme electric and magnetic fields can occur which cannot be measured electrically. Novel fiber optical magnetic field sensors are being used to characterize the fields and recognize inner faults of large power generators.

  16. Developments in distributed optical fiber detection technology

    Science.gov (United States)

    Ye, Wei; Zhu, Qianxia; You, Tianrong

    2014-12-01

    The distributed optical fiber detection technology plays an important role in many fields, such as key regional security monitoring, pipeline maintenance and communication cable protection. It is superior to the traditional detector, and has a good prospect. This paper presents an overview of various distributed optical fiber sensors. At first, some related technologies of the optical fiber detection schemes are introduced in respect of sensing distance, real-time ability, signal strength, and system complexity; and the advantages and limitations of fiber gratings sensors, reflection-based optical fiber sensors, and interference- based optical fiber sensors are discussed. Then some advanced distributed optical fiber detection systems are mentioned. And the double-loop Sagnac distributed system is improved by adding photoelectric modulators and depolarizers. In order to denoise and enhance the original signal, a spectral subtraction-likelihood ratio method is improved. The experiment results show the spatial resolution is +/-15m per kilometer. Finally, based on the development trends of optical fiber detection technology at home and abroad, development tendency and application fields are predicted.

  17. Experiments on room temperature optical fiber-fiber direct bonding

    Science.gov (United States)

    Hao, Jinping; Yan, Ping; Xiao, Qirong; Wang, Yaping; Gong, Mali

    2012-08-01

    High quality permanent connection between optical fibers is a significant issue in optics and communication. Studies on room temperature optical large diameter fiber-fiber direct bonding, which is essentially surface interactions of glass material, are presented here. Bonded fiber pairs are obtained for the first time through the bonding technics illustrated here. Two different kinds of bonding technics are provided-fresh surface (freshly grinded and polished) bonding and hydrophobic surface (activated by H2SO4 and HF) bonding. By means of fresh surface bonding, a bonded fiber pair with light transmitting efficiency of 98.1% and bond strength of 21.2 N is obtained. Besides, in the bonding process, chemical surface treatment of fibers' end surfaces is an important step. Therefore, various ways of surface treatment are analyzed and compared, based on atomic force microscopy force curves of differently disposed surfaces. According to the comparison, fresh surfaces are suggested as the prior choice in room temperature optical fiber-fiber bonding, owing to their larger adhesive force, attractive force, attractive distance, and adhesive range.

  18. In-fiber integrated chemiluminiscence online optical fiber sensor.

    Science.gov (United States)

    Yang, Xinghua; Yuan, Tingting; Yang, Jun; Dong, Biao; Liu, Yanxin; Zheng, Yao; Yuan, Libo

    2013-09-01

    We report an in-fiber integrated chemiluminiscence (CL) sensor based on a kind of hollow optical fiber with a suspended inner core. The path of microfluid is realized by etching microholes for inlets and outlets on the surface of the optical fiber without damaging the inner core and then constructing a melted point beside the microhole of the outlet. When samples are injected into the fiber, the liquids can be fully mixed and form steady microflows. Simultaneously, the photon emitted from the CL reaction is efficiently coupled into the core and can be detected at the end of the optical fiber. In this Letter, the concentration of H2O2 samples is analyzed through the emission intensity of the CL reaction among H2O2, luminol, K3Fe(CN)6, and NaOH in the optical fiber. The linear sensing range of 0.1-4.0 mmol/L of H2O2 concentration is obtained. The emission intensity can be determined within 400 ms at a total flow rate of 150 μL/min. Significantly, this work presents the information of developing in-fiber integrated online analyzing devices based on optical methods.

  19. Honeywell FLASH fiber optic motherboard evaluations

    Science.gov (United States)

    Stange, Kent

    1996-10-01

    The use of fiber optic data transmission media can make significant contributions in achieving increasing performance and reduced life cycle cost requirements placed on commercial and military transport aircraft. For complete end-to-end fiber optic transmission, photonics technologies and techniques need to be understood and applied internally to the aircraft line replaceable units as well as externally on the interconnecting aircraft cable plant. During a portion of the Honeywell contribution to Task 2A on the Fly- by-Light Advanced System Hardware program, evaluations were done on a fiber optic transmission media implementation internal to a Primary Flight Control Computer (PFCC). The PFCC internal fiber optic transmission media implementation included a fiber optic backplane, an optical card-edge connector, and an optical source/detector coupler/installation. The performance of these optical media components were evaluated over typical aircraft environmental stresses of temperature, vibration, and humidity. These optical media components represent key technologies to the computer end-to-end fiber optic transmission capability on commercial and military transport aircraft. The evaluations and technical readiness assessments of these technologies will enable better perspectives on productization of fly-by-light systems requiring their utilizations.

  20. Fiber optic D dimer biosensor

    Science.gov (United States)

    Glass, Robert S.; Grant, Sheila A.

    1999-01-01

    A fiber optic sensor for D dimer (a fibrinolytic product) can be used in vivo (e.g., in catheter-based procedures) for the diagnosis and treatment of stroke-related conditions in humans. Stroke is the third leading cause of death in the United States. It has been estimated that strokes and stroke-related disorders cost Americans between $15-30 billion annually. Relatively recently, new medical procedures have been developed for the treatment of stroke. These endovascular procedures rely upon the use of microcatheters. These procedures could be facilitated with this sensor for D dimer integrated with a microcatheter for the diagnosis of clot type, and as an indicator of the effectiveness, or end-point of thrombolytic therapy.

  1. Optical fiber sensor having an active core

    Science.gov (United States)

    Egalon, Claudio Oliveira (Inventor); Rogowski, Robert S. (Inventor)

    1993-01-01

    An optical fiber is provided. The fiber is comprised of an active fiber core which produces waves of light upon excitation. A factor ka is identified and increased until a desired improvement in power efficiency is obtained. The variable a is the radius of the active fiber core and k is defined as 2 pi/lambda wherein lambda is the wavelength of the light produced by the active fiber core. In one embodiment, the factor ka is increased until the power efficiency stabilizes. In addition to a bare fiber core embodiment, a two-stage fluorescent fiber is provided wherein an active cladding surrounds a portion of the active fiber core having an improved ka factor. The power efficiency of the embodiment is further improved by increasing a difference between the respective indices of refraction of the active cladding and the active fiber core.

  2. Recent Development in Optical Fiber Biosensors

    Directory of Open Access Journals (Sweden)

    Catalina Bosch Ojeda

    2007-06-01

    Full Text Available Remarkable developments can be seen in the field of optical fibre biosensors in the last decade. More sensors for specific analytes have been reported, novel sensing chemistries or transduction principles have been introduced, and applications in various analytical fields have been realised. This review consists of papers mainly reported in the last decade and presents about applications of optical fiber biosensors. Discussions on the trends in optical fiber biosensor applications in real samples are enumerated.

  3. Nonlinear fiber-optic strain sensor based on four-wave mixing in microstructured optical fiber

    DEFF Research Database (Denmark)

    Gu, Bobo; Yuan, Scott Wu; Frosz, Michael H.

    2012-01-01

    We demonstrate a nonlinear fiber-optic strain sensor, which uses the shifts of four-wave mixing Stokes and anti-Stokes peaks caused by the strain-induced changes in the structure and refractive index of a microstructured optical fiber. The sensor thus uses the inherent nonlinearity of the fiber...

  4. Biodegradable polymer optical fiber (Conference Presentation)

    Science.gov (United States)

    Zhang, Chenji; Kalaba, Surge; Shan, Dingying; Xu, Kaitian; Yang, Jian; Liu, Zhiwen

    2016-10-01

    Biocompatible and even biodegradable polymers have unique advantages in various biomedical applications. Recent years, photonic devices fabricated using biocompatible polymers have been widely studied. In this work, we manufactured an optical fiber using biodegradable polymer POC and POMC. This step index optical fiber is flexible and easy to handle. Light was coupled into this polymer fiber by directly using objective. The fiber has a good light guiding property and an approximate loss of 2db/cm. Due to the two layer structure, our fiber is able to support applications inside biological tissue. Apart from remarkable optical performance, our fiber was also found capable of performing imaging. By measuring the impulse response of this multimode polymer fiber and using the linear inversion algorithm, concept proving experiments were completed. Images input into our fiber were able to be retrieved from the intensity distribution of the light at the output end. Experiment result proves the capability of our optical fiber to be used as a fiber endoscopy no needs to remove.

  5. Curved Piezoelectric Actuators for Stretching Optical Fibers

    Science.gov (United States)

    Allison, Sidney G.; Shams, Qamar A.; Fox, Robert L.

    2008-01-01

    Assemblies containing curved piezoceramic fiber composite actuators have been invented as means of stretching optical fibers by amounts that depend on applied drive voltages. Piezoceramic fiber composite actuators are conventionally manufactured as sheets or ribbons that are flat and flexible, but can be made curved to obtain load-carrying ability and displacement greater than those obtainable from the flat versions. In the primary embodiment of this invention, piezoceramic fibers are oriented parallel to the direction of longitudinal displacement of the actuators so that application of drive voltage causes the actuator to flatten, producing maximum motion. Actuator motion can be transmitted to the optical fiber by use of hinges and clamp blocks. In the original application of this invention, the optical fiber contains a Bragg grating and the purpose of the controlled stretching of the fiber is to tune the grating as part of a small, lightweight, mode-hop-free, rapidly tunable laser for demodulating strain in Bragg-grating strain-measurement optical fibers attached to structures. The invention could also be used to apply controllable tensile force or displacement to an object other than an optical fiber.

  6. Thermal strain analysis of optic fiber sensors.

    Science.gov (United States)

    Her, Shiuh-Chuan; Huang, Chih-Ying

    2013-01-31

    An optical fiber sensor surface bonded onto a host structure and subjected to a temperature change is analytically studied in this work. The analysis is developed in order to assess the thermal behavior of an optical fiber sensor designed for measuring the strain in the host structure. For a surface bonded optical fiber sensor, the measuring sensitivity is strongly dependent on the bonding characteristics which include the protective coating, adhesive layer and the bonding length. Thermal stresses can be generated due to a mismatch of thermal expansion coefficients between the optical fiber and host structure. The optical fiber thermal strain induced by the host structure is transferred via the adhesive layer and protective coating. In this investigation, an analytical expression of the thermal strain and stress in the optical fiber is presented. The theoretical predictions are validated using the finite element method. Numerical results show that the thermal strain and stress are linearly dependent on the difference in thermal expansion coefficients between the optical fiber and host structure and independent of the thermal expansion coefficients of the adhesive and coating.

  7. Investigation of Optical Fibers for Nonlinear Optics.

    Science.gov (United States)

    1985-11-01

    organic photoresists. From 1961 to 1968 he was employed at Korad, working on improving the Verneuil method of crystal growth and also on the development of...1 CCrystallFibers .................... 11C.BORAHE Crystal Fiber Growth ..................... 433. BOGR~p~x~ OF E~y ERSOL...matching value with temperature for 7052 glass fiber embedded in an ADP crystal ......................... 44 9 Horizontal traveling-zone fiber growth

  8. Optical Fiber Sensors for Aircraft Structural Health Monitoring

    Directory of Open Access Journals (Sweden)

    Iker García

    2015-06-01

    Full Text Available Aircraft structures require periodic and scheduled inspection and maintenance operations due to their special operating conditions and the principles of design employed to develop them. Therefore, structural health monitoring has a great potential to reduce the costs related to these operations. Optical fiber sensors applied to the monitoring of aircraft structures provide some advantages over traditional sensors. Several practical applications for structures and engines we have been working on are reported in this article. Fiber Bragg gratings have been analyzed in detail, because they have proved to constitute the most promising technology in this field, and two different alternatives for strain measurements are also described. With regard to engine condition evaluation, we present some results obtained with a reflected intensity-modulated optical fiber sensor for tip clearance and tip timing measurements in a turbine assembled in a wind tunnel.

  9. Optical Fiber Sensors for Aircraft Structural Health Monitoring.

    Science.gov (United States)

    García, Iker; Zubia, Joseba; Durana, Gaizka; Aldabaldetreku, Gotzon; Illarramendi, María Asunción; Villatoro, Joel

    2015-06-30

    Aircraft structures require periodic and scheduled inspection and maintenance operations due to their special operating conditions and the principles of design employed to develop them. Therefore, structural health monitoring has a great potential to reduce the costs related to these operations. Optical fiber sensors applied to the monitoring of aircraft structures provide some advantages over traditional sensors. Several practical applications for structures and engines we have been working on are reported in this article. Fiber Bragg gratings have been analyzed in detail, because they have proved to constitute the most promising technology in this field, and two different alternatives for strain measurements are also described. With regard to engine condition evaluation, we present some results obtained with a reflected intensity-modulated optical fiber sensor for tip clearance and tip timing measurements in a turbine assembled in a wind tunnel.

  10. Optical fiber cable chemical stripping fixture

    Science.gov (United States)

    Kolasinski, John R. (Inventor); Coleman, Alexander M. (Inventor)

    1995-01-01

    An elongated fixture handle member is connected to a fixture body member with both members having interconnecting longitudinal central axial bores for the passage of an optical cable therethrough. The axial bore of the fixture body member, however, terminates in a shoulder stop for the outer end of a jacket of the optical cable covering both an optical fiber and a coating therefor, with an axial bore of reduced diameter continuing from the shoulder stop forward for a predetermined desired length to the outer end of the fixture body member. A subsequent insertion of the fixture body member including the above optical fiber elements into a chemical stripping solution results in a softening of the exposed external coating thereat which permits easy removal thereof from the optical fiber while leaving a desired length coated fiber intact within the fixture body member.

  11. Controllable Optical Solitons in Optical Fiber System with Distributed Coefficients

    Institute of Scientific and Technical Information of China (English)

    ZHANG Xiao-Fei; HE Wan-Quan; ZHANG Pei; ZHANG Peng

    2011-01-01

    We present how to control the dynamics of optical solitons in optical fibers under nonlinearity and dispersion management, together with the fiber loss or gain. We obtain a family of exact solutions for the nonlinear Schr(o)dinger equation, which describes the propagation of optical pulses in optical fibers, and investigate the dynamical features of solitons by analyzing the exact analytical solutions in different physical situations. The results show that under the appropriate condition, not only the group velocity dispersion and the nonlinearity, but also the loss/gain can be used to manipulate the light pulse.

  12. The Soliton Transmissions in Optical Fibers

    Directory of Open Access Journals (Sweden)

    Leos Bohac

    2010-01-01

    Full Text Available The objective of this paper is to familiarize readers with the basic analytical propagation model of short optical pulses in optical fiber. Based on this model simulation of propagation of the special type of pulse, called a soliton, will be carried out. A soliton transmission is especially attractive in the fiber optic telecommunication systems as it does not change a pulses shape during propagating right-down the fiber link to the receiver. The model of very short pulse propagation is based on the numerical solution of the nonlinear Schroedinger equation (NLSE, although in some specific cases it is possible to solve it analytically.

  13. Fiber optic communications fundamentals and applications

    CERN Document Server

    Kumar, Shiva

    2014-01-01

    Fiber-optic communication systems have advanced dramatically over the last four decades, since the era of copper cables, resulting in low-cost and high-bandwidth transmission. Fiber optics is now the backbone of the internet and long-distance telecommunication. Without it we would not enjoy the benefits of high-speed internet, or low-rate international telephone calls. This book introduces the basic concepts of fiber-optic communication in a pedagogical way. The important mathematical results are derived by first principles rather than citing research articles. In addition, physical interpre

  14. Orbital angular momentum in optical fibers

    Science.gov (United States)

    Bozinovic, Nenad

    Internet data traffic capacity is rapidly reaching limits imposed by nonlinear effects of single mode fibers currently used in optical communications. Having almost exhausted available degrees of freedom to orthogonally multiplex data in optical fibers, researchers are now exploring the possibility of using the spatial dimension of fibers, via multicore and multimode fibers, to address the forthcoming capacity crunch. While multicore fibers require complex manufacturing, conventional multi-mode fibers suffer from mode coupling, caused by random perturbations in fibers and modal (de)multiplexers. Methods that have been developed to address the problem of mode coupling so far, have been dependent on computationally intensive digital signal processing algorithms using adaptive optics feedback or complex multiple-input multiple-output algorithms. Here we study the possibility of using the orbital angular momentum (OAM), or helicity, of light, as a means of increasing capacity of future optical fiber communication links. We first introduce a class of specialty fibers designed to minimize mode coupling and show their potential for OAM mode generation in fibers using numerical analysis. We then experimentally confirm the existence of OAM states in these fibers using methods based on fiber gratings and spatial light modulators. In order to quantify the purity of created OAM states, we developed two methods based on mode-image analysis, showing purity of OAM states to be 90% after 1km in these fibers. Finally, in order to demonstrate data transmission using OAM states, we developed a 4-mode multiplexing and demultiplexing systems based on free-space optics and spatial light modulators. Using simple coherent detection methods, we successfully transmit data at 400Gbit/s using four OAM modes at a single wavelength, over 1.1 km of fiber. Furthermore, we achieve data transmission at 1.6Tbit/s using 10 wavelengths and two OAM modes. Our study indicates that OAM light can exist

  15. Templated Chemically Deposited Semiconductor Optical Fiber Materials

    Science.gov (United States)

    Sparks, Justin R.; Sazio, Pier J. A.; Gopalan, Venkatraman; Badding, John V.

    2013-07-01

    Chemical deposition is a powerful technology for fabrication of planar microelectronics. Optical fibers are the dominant platform for telecommunications, and devices such as fiber lasers are forming the basis for new industries. High-pressure chemical vapor deposition (HPCVD) allows for conformal layers and void-free wires of precisely doped crystalline unary and compound semiconductors inside the micro-to-nanoscale-diameter pores of microstructured optical fibers (MOFs). Drawing the fibers to serve as templates into which these semiconductor structures can be fabricated allows for geometric design flexibility that is difficult to achieve with planar fabrication. Seamless coupling of semiconductor optoelectronic and photonic devices with existing fiber infrastructure thus becomes possible, facilitating all-fiber technological approaches. The deposition techniques also allow for a wider range of semiconductor materials compositions to be exploited than is possible by means of preform drawing. Gigahertz bandwidth junction-based fiber devices can be fabricated from doped crystalline semiconductors, for example. Deposition of amorphous hydrogenated silicon, which cannot be drawn, allows for the exploitation of strong nonlinear optical function in fibers. Finally, crystalline compound semiconductor fiber cores hold promise for high-power infrared light-guiding fiber devices and subwavelength-resolution, large-area infrared imaging.

  16. Graduate and research team develops new method for making optical fibers

    OpenAIRE

    Gilbert, Karen

    2006-01-01

    Nitin Goel, a graduate of the College of Engineering at Virginia Tech, along with a team of researchers, has discovered a new way to make optical fibers with compound glass cores. Called"core-suction," the method is ideal for producing the non-linear fibers required for fiber lasers, Raman amplifiers, and continuum generation.

  17. Advanced Optical Fiber Development for kW Fiber Lasers with Sub-GHz Linewidth

    Science.gov (United States)

    2016-01-12

    Advanced Optical Fiber Development for kW Fiber Lasers with Sub-GHz Linewidth The project is for acquiring an optical spectrum analyzer (OSA) covering...27709-2211 Specialty optical fibers , optical fiber lasers REPORT DOCUMENTATION PAGE 11. SPONSOR/MONITOR’S REPORT NUMBER(S) 10. SPONSOR/MONITOR’S...Number of Papers published in non peer-reviewed journals: Final Report: Advanced Optical Fiber Development for kW Fiber Lasers with Sub-GHz Linewidth

  18. Ultra Small Integrated Optical Fiber Sensing System

    Directory of Open Access Journals (Sweden)

    Peter Van Daele

    2012-09-01

    Full Text Available This paper introduces a revolutionary way to interrogate optical fiber sensors based on fiber Bragg gratings (FBGs and to integrate the necessary driving optoelectronic components with the sensor elements. Low-cost optoelectronic chips are used to interrogate the optical fibers, creating a portable dynamic sensing system as an alternative for the traditionally bulky and expensive fiber sensor interrogation units. The possibility to embed these laser and detector chips is demonstrated resulting in an ultra thin flexible optoelectronic package of only 40 μm, provided with an integrated planar fiber pigtail. The result is a fully embedded flexible sensing system with a thickness of only 1 mm, based on a single Vertical-Cavity Surface-Emitting Laser (VCSEL, fiber sensor and photodetector chip. Temperature, strain and electrodynamic shaking tests have been performed on our system, not limited to static read-out measurements but dynamically reconstructing full spectral information datasets.

  19. Military Applications of Fiber Optics Technology

    Science.gov (United States)

    1989-05-01

    I. P., D. Marcuse , and H.M. Presby, "Multimode Fiber Bandwidth: Theory and Practice," Proceedings of the IEEE, Vol. 68 , No. 10, October 1980, pp...Li, Tingye, "Structures, Parameters, and Transmission Properties of Optical Fibers," Proceedings of the IEEE, Vol. 68 , No. 10, October 1980, pp. 1175...121. Sigel, George H., Jr., "Fiber Transmission Losses in High-Radiation Fields," Proceedings of the IEEE, Vol. 68 , No. 10, October 1980, pp. 1236

  20. Dynamic Characterization of Polymer Optical Fibers

    DEFF Research Database (Denmark)

    Stefani, Alessio; Andresen, Søren; Yuan, Wu

    2012-01-01

    With the increasing interest in fiber sensors based on polymer optical fibers, it becomes fundamental to determine the real applicability and reliability of this type of sensor. The viscoelastic nature of polymers gives rise to questions about the mechanical behavior of the fibers. In particular,......-relaxation experiment for larger deformations (2.8%) is also reported and a relaxation time around 5 s is measured, defining a viscosity of 20 GPa·s....

  1. Optical system components for navigation grade fiber optic gyroscopes

    Science.gov (United States)

    Heimann, Marcus; Liesegang, Maximilian; Arndt-Staufenbiel, Norbert; Schröder, Henning; Lang, Klaus-Dieter

    2013-10-01

    Interferometric fiber optic gyroscopes belong to the class of inertial sensors. Due to their high accuracy they are used for absolute position and rotation measurement in manned/unmanned vehicles, e.g. submarines, ground vehicles, aircraft or satellites. The important system components are the light source, the electro optical phase modulator, the optical fiber coil and the photodetector. This paper is focused on approaches to realize a stable light source and fiber coil. Superluminescent diode and erbium doped fiber laser were studied to realize an accurate and stable light source. Therefor the influence of the polarization grade of the source and the effects due to back reflections to the source were studied. During operation thermal working conditions severely affect accuracy and stability of the optical fiber coil, which is the sensor element. Thermal gradients that are applied to the fiber coil have large negative effects on the achievable system accuracy of the optic gyroscope. Therefore a way of calculating and compensating the rotation rate error of a fiber coil due to thermal change is introduced. A simplified 3 dimensional FEM of a quadrupole wound fiber coil is used to determine the build-up of thermal fields in the polarization maintaining fiber due to outside heating sources. The rotation rate error due to these sources is then calculated and compared to measurement data. A simple regression model is used to compensate the rotation rate error with temperature measurement at the outside of the fiber coil. To realize a compact and robust optical package for some of the relevant optical system components an approach based on ion exchanged waveguides in thin glass was developed. This waveguides are used to realize 1x2 and 1x4 splitter with fiber coupling interface or direct photodiode coupling.

  2. Fiber Optic Pressure Sensor Array Project

    Data.gov (United States)

    National Aeronautics and Space Administration — VIP Sensors proposes to develop a Fiber Optic Pressure Sensor Array for measuring air flow pressure at multiple points on the skin of aircrafts for Flight Load Test...

  3. Passive and Portable Polymer Optical Fiber Cleaver

    DEFF Research Database (Denmark)

    Saez-Rodriguez, D.; Min, R.; Ortega, B.

    2016-01-01

    Polymer optical fiber (POF) is a growing technology in short distance telecommunication due to its flexibility, easy connectorization, and lower cost than the mostly deployed silica optical fiber technology. Microstructured POFs (mPOFs) have particular promising potential applications in the sens......Polymer optical fiber (POF) is a growing technology in short distance telecommunication due to its flexibility, easy connectorization, and lower cost than the mostly deployed silica optical fiber technology. Microstructured POFs (mPOFs) have particular promising potential applications...... opening up the possibility of an electrically passive cleaver. In this letter, we describe the implementation and testing of a high quality cleaver based on a mechanical system formed by a constant force spring and a damper, which leads to the first reported electrical passive and portable cleaver....

  4. A microstructured Polymer Optical Fiber Biosensor

    DEFF Research Database (Denmark)

    Emiliyanov, Grigoriy Andreev; Jensen, Jesper Bo; Hoiby, Poul E.

    2006-01-01

    We demonstrate selective detection of fluorophore labeled antibodies from minute samples probed by a sensor layer of the complementary biomolecules immobilized inside the air holes of microstructured Polymer Optical Fibers....

  5. Fiber Optic Pressure Sensor Array Project

    Data.gov (United States)

    National Aeronautics and Space Administration — VIP Sensors proposes to develop a Fiber Optic Pressure Sensor Array System for measuring air flow pressure at multiple points on the skin of aircrafts for Flight...

  6. Fiber Optic Communications Technology. A Status Report.

    Science.gov (United States)

    Hull, Joseph A.

    Fiber optic communications (communications over very pure glass transmission channels of diameter comparable to a human hair) is an emerging technology which promises most improvements in communications capacity at reasonable cost. The fiber transmission system offers many desirable characteristics representing improvements over conventional…

  7. Nonlinear soliton matching between optical fibers

    DEFF Research Database (Denmark)

    Agger, Christian; Sørensen, Simon Toft; Thomsen, Carsten L.

    2011-01-01

    In this Letter, we propose a generic nonlinear coupling coefficient, η2 NL ¼ ηjγ=β2jfiber2=jγ=β2jfiber1, which gives a quantitative measure for the efficiency of nonlinear matching of optical fibers by describing how a fundamental soliton couples from one fiber into another. Specifically, we use η...

  8. Adjustable Fiber Optic Microwave Transversal Filters

    Science.gov (United States)

    Shadaram, Mehdi; Lutes, George F.; Logan, Ronald T.; Maleki, Lutfollah

    1994-01-01

    Microwave transversal filters implemented as adjustable tapped fiber optic delay lines developed. Main advantages of these filters (in comparison with conventional microwave transversal filters) are small size, light weight, no need for matching of radio-frequency impedances, no need for shielding against electromagnetic radiation at suboptical frequencies, no need for mechanical tuning, high stability of amplitude and phase, and active control of transfer functions. Weights of taps in fiber optic delay lines adjusted.

  9. Attenuation in silica-based optical fibers

    DEFF Research Database (Denmark)

    Wandel, Marie Emilie

    2006-01-01

    In this thesis on attenuation in silica based optical fibers results within three main topics are reported. Spectral attenuation measurements on transmission fibers are performed in the wide wavelength range 290 nm – 1700 nm. The measured spectral attenuation is analyzed with special emphasis...... on absorption peaks in order to investigate the cause of an unusual high attenuation in a series of transmission fibers. Strong indications point to Ni2+ in octahedral coordination as being the cause of the high attenuation. The attenuation of fibers having a high core refractive index is analyzed and the cause...... of the high attenuation measured in such fibers is described as being due to scattering of light on fluctuations of the core diameter. A novel semi-empirical model for predicting the attenuation of high index fibers is presented. The model is shown to be able to predict the attenuation of high index fibers...

  10. Advanced fiber components for optical networks

    OpenAIRE

    Ylä-Jarkko, Kalle

    2004-01-01

    Due to the tremendous growth in data traffic and the rapid development in optical transmission technologies, the limits of the transmission capacity available with the conventional erbium-doped amplifiers (EDFA), optical filters and modulation techniques have nearly been reached. The objective of this thesis is to introduce new fiber-optic components to optical networks to cope with the future growth in traffic and also to bring down the size and cost of the transmission equipment. Improvemen...

  11. Strain measurements on concrete beam and carbon fiber cable with distributed optical fiber Bragg grating sensors

    Science.gov (United States)

    Nellen, Philipp M.; Bronnimann, Rolf; Sennhauser, Urs J.; Askins, Charles G.; Putnam, Martin A.

    1996-09-01

    We report on civil engineering applications of wavelength multiplexed optical fiber Bragg grating arrays directly produced on the draw tower for testing and surveying advanced structures and materials such as carbon fiber reinforced concrete elements and prestressing cables. We equipped a 6 by 0.9 by 0.5 m concrete beam, which was reinforced with carbon fiber reinforced epoxy laminates, and a 7-m long prestressing carbon fiber cable made of seven twisted strands, with optical fiber Bragg grating sensors. Static strains up to 8000 micrometers/m and dynamic strains up to 1200 micrometers/m were measured with a Michelson interferometer used as Fourier spectrometer with a resolution of about 10 micrometers/m for all sensors. Comparative measurements with electrical resistance strain gauges were in good agreement with the fiber optical results. We installed the fiber sensors in two different arrangements: some Bragg grating array elements measured local strain while others were applied in an extensometric configuration to measure moderate strain over a base length of 0.1 to 1 m.

  12. Research for Electronic Fiber Optics Technologists

    Science.gov (United States)

    Lawrence, Ellis E.

    1999-01-01

    The intent of this project was to provide research experiences for socially and economically disadvantaged students in networking via fiber optics. The objectives of this project were: 1) To provide knowledge and skills needed by students to use the tools and equipment essential to networking NASA's and the university's topologies; 2) To provide the student researchers with needed mathematical skills and concepts to progress in fiber optic technology; 3) To afford the principal investigator an opportunity to become certified in fiber optics; 4) To build a transmitter and receiver circuit that will be linked by fiber-optic cable to demonstrate mastery of concepts; and 5) To conduct research for NASA and the University in the fiber-optic system. The research will attempt to develop applications for THUNDER (Thin-layer Composite Unimorph Ferroelectric Driver and Sensor) and LARC-SI (Langley Research Center- Soluble Polyimide), (inventions at NASA/LaRC) and fiber-optic technology that will be beneficial to NASA, the university and the consumer. This research has the potential of improving the nation's manpower in the area of fiberoptic technology. It will allow students the opportunity to participate in visible research at NASA and in industry.

  13. Design and performance of ultra-high-density optical fiber cable with rollable optical fiber ribbons

    Science.gov (United States)

    Hogari, Kazuo; Yamada, Yusuke; Toge, Kunihiro

    2010-08-01

    This paper proposes a novel ultra-high-density optical fiber cable that employs rollable optical fiber ribbons. The cable has great advantages in terms of cable weight and diameter, and fiber splicing workability. Moreover, it will be easy to install in a small space in underground ducts and on residential and business premises. The structural design of the rollable optical fiber ribbon is evaluated theoretically and experimentally, and an optimum adhesion pitch P in the longitudinal direction is obtained. In addition, we examined the performance of ultra-high-density cables with a small diameter that employ rollable optical fiber ribbons and bending-loss insensitive optical fibers. The transmission, mechanical and mid-span access performance of these cables was confirmed to be excellent.

  14. Dynamically tunable optical bottles from an optical fiber

    DEFF Research Database (Denmark)

    Chen, Yuhao; Yan, Lu; Rishøj, Lars Søgaard

    2012-01-01

    Optical fibers have long been used to impose spatial coherence to shape free-space optical beams. Recent work has shown that one can use higher order fiber modes to create more exotic beam profiles. We experimentally generate optical bottles from Talbot imaging in the coherent superposition of two...... fiber modes excited with long period gratings, and obtain a 28 μm × 6 μm bottle with controlled contrast up to 10.13 dB. Our geometry allows for phase tuning of one mode with respect to the other, which enables us to dynamically move the bottle in free space....

  15. Technology of strain measurement based on Fabry-Perot optical fiber sensor in monitoring of civil engineering%土木工程健康监测用F-P光纤应变测量技术

    Institute of Scientific and Technical Information of China (English)

    周智; 边玉明; 田石柱

    2001-01-01

    介绍了基于白光干涉的光纤F-P应变传感器原理,对其用于土木工程健康监测的安装工艺、温度补偿技术进行了研究,提出了工程应用中尚存的问题。%The theory of optical fiber Febry-Perot strain sensor based on white light interferometer is introduced. Then, the technics of installation of F-P strain sensor in civil engineering and the compensating of temperature strain are studied. Finally, some problems are brought forward.

  16. Fiber-Optic Vibration Sensor Based on Multimode Fiber

    Directory of Open Access Journals (Sweden)

    I. Lujo

    2008-06-01

    Full Text Available The purpose of this paper is to present a fiberoptic vibration sensor based on the monitoring of the mode distribution in a multimode optical fiber. Detection of vibrations and their parameters is possible through observation of the output speckle pattern from the multimode optical fiber. A working experimental model has been built in which all used components are widely available and cheap: a CCD camera (a simple web-cam, a multimode laser in visible range as a light source, a length of multimode optical fiber, and a computer for signal processing. Measurements have shown good agreement with the actual frequency of vibrations, and promising results were achieved with the amplitude measurements although they require some adaptation of the experimental model. Proposed sensor is cheap and lightweight and therefore presents an interesting alternative for monitoring large smart structures.

  17. Optical-Fiber Fluorosensors With Polarized Light Sources

    Science.gov (United States)

    Egalon, Claudio O.; Rogowski, Robert S.

    1995-01-01

    Chemiluminescent and/or fluorescent molecules in optical-fiber fluorosensors oriented with light-emitting dipoles along transverse axis. Sensor of proposed type captures greater fraction of chemiluminescence or fluorescence and transmits it to photodetector. Transverse polarization increases sensitivity. Basic principles of optical-fiber fluorosensors described in "Making Optical-Fiber Chemical Sensors More Sensitive" (LAR-14525), "Improved Optical-Fiber Chemical Sensors" (LAR-14607), and "Improved Optical-Fiber Temperature Sensors" (LAR-14647).

  18. Optical-Fiber Fluorosensors With Polarized Light Sources

    Science.gov (United States)

    Egalon, Claudio O.; Rogowski, Robert S.

    1995-01-01

    Chemiluminescent and/or fluorescent molecules in optical-fiber fluorosensors oriented with light-emitting dipoles along transverse axis. Sensor of proposed type captures greater fraction of chemiluminescence or fluorescence and transmits it to photodetector. Transverse polarization increases sensitivity. Basic principles of optical-fiber fluorosensors described in "Making Optical-Fiber Chemical Sensors More Sensitive" (LAR-14525), "Improved Optical-Fiber Chemical Sensors" (LAR-14607), and "Improved Optical-Fiber Temperature Sensors" (LAR-14647).

  19. Development of Non-Halogen Flame Retardant Optical Fiber and Optical Fiber Cord

    Institute of Scientific and Technical Information of China (English)

    Kazunori; Tanaka; Kaoru; Okuno; Tomoyuki; Hattori; Kiyoaki; Moriuchi; Hiroshi; Hayami; Wataru; Katsurashima; Yoshikyo; Tamekuni

    2003-01-01

    A non-halogen highly flame-retardant 0.9mm optical fiber and 2.0mm simplex optical cord, which are harmonized with the ecosystem, have been developed. The characteristics of them are presented in this paper.

  20. Hermetic optical-fiber iodine frequency standard.

    Science.gov (United States)

    Light, Philip S; Anstie, James D; Benabid, Fetah; Luiten, Andre N

    2015-06-15

    We have built an optical-frequency standard based on interrogating iodine vapor that has been trapped within the hollow core of a hermetically sealed kagome-lattice photonic crystal fiber. A frequency-doubled Nd:YAG laser locked to a hyperfine component of the P(142)37-0 I2127 transition using modulation transfer spectroscopy shows a frequency stability of 3×10(-11) at 100 s. We discuss the impediments in integrating this all-fiber standard into a fully optical-fiber-based system, and suggest approaches that could improve performance of the frequency standard substantially.

  1. Mobile fiber-optic laser Doppler anemometer.

    Science.gov (United States)

    Stieglmeier, M; Tropea, C

    1992-07-20

    A laser Doppler anemometer (LDA) has been developed that combines the compactness and low power consumption of laser diodes and avalanche photodiodes with the flexibility and possibility of miniaturization by using fiber-optic probes. The system has been named DFLDA for laser diode fiber LDA and is especially suited for mobile applications, for example, in trains, airplanes, or automobiles. Optimization considerations of fiber-optic probes are put forward and several probe examples are described in detail. Measurement results from three typical applications are given to illustrate the use of the DFLDA. Finally, a number of future configurations of the DFLDA concept are discussed.

  2. Optical fiber modulator derivates from hollow optical fiber with suspended core.

    Science.gov (United States)

    Yang, Xinghua; Liu, Yanxin; Tian, Fengjun; Yuan, Libo; Liu, Zhihai; Luo, Shenzi; Zhao, Enming

    2012-06-01

    A fiber optic integrated modulation-depth-tunable modulator based on a type of hollow optical fiber with suspended core is proposed and investigated. We synthesized magnetic fluid containing superparamagnetic Fe(3)O(4) nanoparticles and encapsulated it in the hollow optical fiber as the cladding layer of the suspended core by fusing the hollow optical fiber with the multimode optical fibers. The light with a wavelength of 632.8 nm is coupled in and out of the modulating element by a tapering technique. Experimental results show that the light attenuation in the system can be greatly influenced by only 2.0×10(-2) μL of the magnetic fluid under different magnetic field strengths. The saturated modulation depth is 43% when the magnetic field strength is 489 Oe. The response time of the system is fiber modulators, including other integrated electro-optic devices, such as optical switch, optical fiber filter, and magnetic sensors utilizing the special structure of this hollow optical fiber with suspended core and superparamagnetic magnetic fluid.

  3. Biodegradable polymeric fiber structures in tissue engineering.

    Science.gov (United States)

    Tuzlakoglu, Kadriye; Reis, Rui L

    2009-03-01

    Tissue engineering offers a promising new approach to create biological alternatives to repair or restore function of damaged or diseased tissues. To obtain three-dimensional tissue constructs, stem or progenitor cells must be combined with a highly porous three-dimensional scaffold, but many of the structures purposed for tissue engineering cannot meet all the criteria required by an adequate scaffold because of lack of mechanical strength and interconnectivity, as well as poor surface characteristics. Fiber-based structures represent a wide range of morphological and geometric possibilities that can be tailored for each specific tissue-engineering application. The present article overviews the research data on tissue-engineering therapies based on the use of biodegradable fiber architectures as a scaffold.

  4. Nanosecond laser damage of optical multimode fibers

    Science.gov (United States)

    Mann, Guido; Krüger, Jörg

    2016-07-01

    For pulse laser materials processing often optical step index and gradient index multimode fibers with core diameters ranging from 100 to 600 μm are used. The design of a high power fiber transmission system must take into account limitations resulting from both surface and volume damage effects. Especially, breakdown at the fiber end faces and selffocusing in the fiber volume critically influence the fiber performance. At least operation charts are desirable to select the appropriate fiber type for given laser parameters. In industry-relevant studies the influence of fiber core diameter and end face preparation on laser-induced (surface) damage thresholds (LIDT) was investigated for frequently used all-silica fiber types (manufacturer LEONI). Experiments on preform material (initial fiber material) and compact specimens (models of the cladding and coating material) accompanied the tests performed in accordance with the relevant LIDT standards ISO 21254-1 and ISO 21254-2 for 1-on-1 and S-on-1 irradiation conditions, respectively. The relation beam diameter vs. LIDT was investigated for fused silica fibers. Additionally, laser-induced (bulk) damage thresholds of fused silica preform material F300 (manufacturer Heraeus) in dependence on external mechanical stress simulating fiber bending were measured. All experiments were performed with 10-ns laser pulses at 1064 and 532 nm wavelength with a Gaussian beam profile.

  5. Fourier transform optical profilometry using fiber optic Lloyd's mirrors.

    Science.gov (United States)

    Kart, Türkay; Kösoğlu, Gülşen; Yüksel, Heba; İnci, Mehmet Naci

    2014-12-10

    A fiber optic Lloyd's mirror assembly is used to obtain various optical interference patterns for the detection of 3D rigid body shapes. Two types of fiber optic Lloyd's systems are used in this work. The first consists of a single-mode optical fiber and a highly reflecting flat mirror to produce bright and dark strips. The second is constructed by locating a single-mode optical fiber in a v-groove, which is formed by two orthogonal flat mirrors to allow the generation of square-type interference patterns for the desired applications. The structured light patterns formed by these two fiber Lloyd's techniques are projected onto 3D objects. Fringe patterns are deformed due to the object's surface topography, which are captured by a digital CCD camera and processed with a Fourier transform technique to accomplish 3D surface topography of the object. It is demonstrated that the fiber-optic Lloyd's technique proposed in this work is more compact, more stable, and easier to configure than other existing surface profilometry systems, since it does not include any high-cost optical tools such as aligners, couplers, or 3D stages. The fringe patterns are observed to be more robust against environmental disturbances such as ambient temperature and vibrations.

  6. Optical fiber tip templating using direct focused ion beam milling.

    Science.gov (United States)

    Micco, A; Ricciardi, A; Pisco, M; La Ferrara, V; Cusano, A

    2015-11-04

    We report on a method for integrating sub-wavelength resonant structures on top of optical fiber tip. Our fabrication technique is based on direct milling of the glass on the fiber facet by means of focused ion beam. The patterned fiber tip acts as a structured template for successive depositions of any responsive or functional overlay. The proposed method is validated by depositing on the patterned fiber a high refractive index material layer, to obtain a 'double-layer' photonic crystal slab supporting guided resonances, appearing as peaks in the reflection spectrum. Morphological and optical characterizations are performed to investigate the effects of the fabrication process. Our results show how undesired effects, intrinsic to the fabrication procedure should be taken into account in order to guarantee a successful development of the device. Moreover, to demonstrate the flexibility of our approach and the possibility to engineering the resonances, a thin layer of gold is also deposited on the fiber tip, giving rise to a hybrid photonic-plasmonic structure with a complementary spectral response and different optical field distribution at the resonant wavelengths. Overall, this work represents a significant step forward the consolidation of Lab-on-Fiber Technology.

  7. A fiber optics textile composite sensor for geotechnical applications

    Science.gov (United States)

    Artières, Olivier; Dortland, Gerrit

    2010-09-01

    The fiber optics in structural health monitoring systems for civil engineering applications have been widely used. By integrating fiber optic sensing into a geotextile fabric, the TenCate GeoDetect® system is the first designed specifically for geotechnical applications. This monitoring solution embodies fiber optics on a geotextile fabric, e.g. a textile used into the soil, and combines the benefits of geotextile materials, such as high interface friction in contact with the soil, with the latest fiber optics sensing technologies. It aims to monitor geotechnical structure and to generate early warnings if it detects and localizes the early signs of malfunctioning, such as leaks or instability. This is a customizable solution: Fiber Bragg gratings, Brillouin and Raman scattering can be built into this system. These technologies measure both strain and temperature changes in soil structures. It can provide a leak and deformation location within accuracies resp. 1 l/min/m and 0.02%. The TenCate GeoDetect® solution provides objective, highly precise, and timely in-situ performance information, allowing the design professional and owner to understand system performance in addition to providing alerts for negative "geo-events" (subsidence) and other potentially deleterious events.

  8. Education kits for fiber optics, optoelectronics, and optical communications

    Science.gov (United States)

    Hájek, Martin; Švrček, Miroslav

    2007-04-01

    Our company MIKROKOM, s.r.o. is engaged for many years in development of education equipment and kits for fiber optics, optoelectronics and optical communications. We would like to inform competitors of conference about results of this long-time development. Requirements on education kits and equipment in a modern and dynamic area as is optical communications and fiber optics are quite difficult. The education kits should to clearly introduce students to given issue - the most important physical principles and technical approaches, but it should to introduce also to new and modern technologies, which are quickly changing and developing. On the other hand should be these tools and kits reasonable for the schools. In our paper we would like to describe possible ways of development of this education kits and equipment and present our results of long-time work, which covers very wide range. On the one hand we developed equipment and kits for clear demonstration of physical effects using plastic optical fibers POF, next we prepare kits with a glass fibers, which are the most used fibers in practice and after as much as the kits, which covers broad range of passive and active elements of the optical networks and systems and which makes possible to create complex optical transmission connection. This kind of systems with using corresponding tools and equipment introduce the students to properties, manipulation, measurement and usage of optical fibers, traces and many active and passive components. Furthermore, with using different sorts of optical sources, photodetectors, fiber optics couplers etc., students can get acquainted with all optoelectronics transmission system, which uses different sorts of signals. Special part will be devoted also to effort mentioned before - to implement modern technologies such as e.g. Wavelength Division Multiplex (WDM) into the education kits. Our presentation will inform auditors about development of mentioned education kits and

  9. Structurally embedded fiber Bragg gratings: civil engineering applications

    Science.gov (United States)

    Nellen, Philipp M.; Broennimann, Rolf; Frank, Andreas; Mauron, Pascal; Sennhauser, Urs J.

    1999-12-01

    In civil engineering it is of interest to monitor long-term performance of structures made of new lightweight materials like glass or carbon fiber reinforced polymers (GFRP/CFRP). In contrast to surface applied optical fiber sensors, embedded sensors are expected to be better protected against rough handling and harsh environmental conditions. We report on two recently done fiber optical sensor applications in civil engineering. Both include structurally embedded fiber Bragg grating (BG) arrays but have different demands with respect to their operation. For the first application fiber BGs were embedded in GFRP rockbolts of 3 - 5 m in length either of 3, 8, or 22 mm diameter. The sensor equipped rockbolts are made for distributed measurements of boulder motion during tunnel construction and operation and should withstand strain up to 1.6%. Rockbolt sensors were field tested in a tunnel near Sargans in Switzerland. For a second application fiber BGs were embedded in CFRP wires of 5 mm diameter used for the pre- stressing cables of a 56 m long bridge near Lucerne in Switzerland. The permanent load on the cable corresponds to 0.8% strain. Due to the embedded sensors, strain decay inside the cable anchoring heads could be measured for the first time during loading and operation of the cables. For both applications mechanical and thermal loading tests were performed to assess the function of these new elements. Also, temperature and strain sensitivity were calibrated. Reliability studies with respect to stress transfer, fiber mechanical failure, and wavelength shift caused by thermal BG decay as well as monitoring results of both applications are presented.

  10. Fiber-Optic Optical-Microwave Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — FUNCTION: Used to conduct programs of basic science and applied research in the development of laser sources, high-power fiber amplifiers, photonic control of phased...

  11. POTDR Measurements on Buried Optical Fibers

    Science.gov (United States)

    2007-11-02

    A. M. Vengsarkar and L. G. Cohen , "Polarization optical time domain reflectometry for statistical evaluation of polarization mode dispersion...312-331 (1983). 14. C. D. Poole and J. Nagel , "Polarization effects in lightwave systems" in Optical Fiber Telecommunications MA, I. P. Kaminow and T

  12. Structural health monitoring of civil infrastructure using optical fiber sensing technology: a comprehensive review.

    Science.gov (United States)

    Ye, X W; Su, Y H; Han, J P

    2014-01-01

    In the last two decades, a significant number of innovative sensing systems based on optical fiber sensors have been exploited in the engineering community due to their inherent distinctive advantages such as small size, light weight, immunity to electromagnetic interference (EMI) and corrosion, and embedding capability. A lot of optical fiber sensor-based monitoring systems have been developed for continuous measurement and real-time assessment of diversified engineering structures such as bridges, buildings, tunnels, pipelines, wind turbines, railway infrastructure, and geotechnical structures. The purpose of this review article is devoted to presenting a summary of the basic principles of various optical fiber sensors, innovation in sensing and computational methodologies, development of novel optical fiber sensors, and the practical application status of the optical fiber sensing technology in structural health monitoring (SHM) of civil infrastructure.

  13. Towards biochips using microstructured optical fiber sensors

    DEFF Research Database (Denmark)

    Rindorf, Lars Henning; Hoiby, Poul Erik; Jensen, Jesper Bo

    2006-01-01

    In this paper we present the first incorporation of a microstructured optical fiber (MOF) into biochip applications. A 16-mm-long piece of MOF is incorporated into an optic-fluidic coupler chip, which is fabricated in PMMA polymer using a CO2 laser. The developed chip configuration allows...... the continuous control of liquid flow through the MOF and simultaneous optical characterization. While integrated in the chip, the MOF is functionalized towards the capture of a specific single-stranded DNA string by immobilizing a sensing layer on the microstructured internal surfaces of the fiber. The sensing...

  14. NITINOL Interconnect Device for Optical Fiber Waveguides

    Science.gov (United States)

    1981-07-01

    LE EL,~NAVSEA REPORT NO. S27L~kV-NL 4P fNSWNC TR 81-129 1 JULY 1981 0 NITINOL INTERC&INECT DEVICE FOR OPTICAL FIBER WAVEGUIDES FINAL REPORT A...ACCESSION NO. 3. RECIPIENT’S CATALOG NUMBER NSWC TR 81-129I 1-19 -A )ci , ’ 4 TI TL E (and Sbtitle) S. TYPE OF REPORT & PERIOD COVERED NITINOL ... NITINOL Optical Fibers 20. ABSTRACT (Continue on reverse side if neceeewy and identify by block number) Two different interconnect devices for optical

  15. Investigation of Optical Fibers for Nonlinear Optics.

    Science.gov (United States)

    1984-04-17

    Northwestern University, 1970. Experience Dr. Harrington has 13 years of research experi- ence in the area of optical properties of solids . Since joining...dynamics, and optical properties of solids . 34 34I ANTONIO C. PASTOR, Member of the Technical Staff, Optical Physics Department, Hughes Research

  16. Optical Sensors Based on Plastic Fibers

    Science.gov (United States)

    Bilro, Lúcia; Alberto, Nélia; Pinto, João L.; Nogueira, Rogério

    2012-01-01

    The recent advances of polymer technology allowed the introduction of plastic optical fiber in sensor design. The advantages of optical metrology with plastic optical fiber have attracted the attention of the scientific community, as they allow the development of low-cost or cost competitive systems compared with conventional technologies. In this paper, the current state of the art of plastic optical fiber technology will be reviewed, namely its main characteristics and sensing advantages. Several measurement techniques will be described, with a strong focus on interrogation approaches based on intensity variation in transmission and reflection. The potential applications involving structural health monitoring, medicine, environment and the biological and chemical area are also presented. PMID:23112707

  17. Optical Sensors Based on Plastic Fibers

    Directory of Open Access Journals (Sweden)

    Rogério Nogueira

    2012-09-01

    Full Text Available The recent advances of polymer technology allowed the introduction of plastic optical fiber in sensor design. The advantages of optical metrology with plastic optical fiber have attracted the attention of the scientific community, as they allow the development of low-cost or cost competitive systems compared with conventional technologies. In this paper, the current state of the art of plastic optical fiber technology will be reviewed, namely its main characteristics and sensing advantages. Several measurement techniques will be described, with a strong focus on interrogation approaches based on intensity variation in transmission and reflection. The potential applications involving structural health monitoring, medicine, environment and the biological and chemical area are also presented.

  18. Design of fiber optic adaline neural networks

    Science.gov (United States)

    Ghosh, Anjan K.; Trepka, Jim

    1997-03-01

    Based on possible optoelectronic realization of adaptive filters and equalizers using fiber optic tapped delay lines and spatial light modulators we describe the design of a single-layer fiber optic Adaline neural network that can be used as a bit pattern classifier. In our design, we employ as few electronic devices as possible and use optical computation to utilize the advantages of optics in processing speed, parallelism, and interconnection. The described new optical neural network design is for optical processing of guided light wave signals, not electronic signals. We analyze the convergence or learning characteristics of the optoelectronic Adaline in the presence of errors in the hardware. We show that with such an optoelectronic Adaline it is possible to detect a desired code word/token/header with good accuracy.

  19. Optical fiber sensing technology in the pipeline industry

    Energy Technology Data Exchange (ETDEWEB)

    Braga, A.M.B.; Llerena, R.W.A. [Pontificia Univ. Catolica do Rio de Janeiro, RJ (Brazil). Dept. de Engenharia Mecanica]. E-mail: abraga@mec.puc-rio.br; roberan@mec.puc-rio.br; Valente, L.C.G.; Regazzi, R.D. [Gavea Sensors, Rio de Janeiro, RJ (Brazil)]. E-mail: guedes@gaveasensors.com; regazzi@gaveasensors.com

    2003-07-01

    This paper is concerned with applications of optical fiber sensors to pipeline monitoring. The basic principles of optical fiber sensors are briefly reviewed, with particular attention to fiber Bragg grating technology. Different potential applications in the pipeline industry are discussed, and an example of a pipeline strain monitoring system based on optical fiber Bragg grating sensors is presented. (author)

  20. 1st International Conference on Fiber-Optic Rotation Sensors

    CERN Document Server

    Arditty, Hervé

    1982-01-01

    Currently there is considerable interest in the application of optical meth­ ods for the measurement of absolute rotation. Active approaches, so-called ring laser gyros, have been under serious development for at least 15 years. More recently, passive approaches using ring resonators or multi turn fiber interferometers have also demonstrated much pro~ise. The only previous conference devoted exclusively to optical rotation sensors, held in 1978 in San Diego, California, was organized by the Society of Photo-optical Instru­ mentation Engineers(S.P.I.E.J. Although the main emphasis at that conference was on ring laser gyros, a number of papers were also included that described the early development of fiber gyroscopes. Since then the field of fiber optic rotation sensors has grown so rapidly that a conference devoted primarily to this subject was needed. The First International Conference on Fiber-Optic Rotation Sensors was held at the Massachusetts Institute of Technology, Cambridge, Massachusetts, Nove~­ b...

  1. Chalcogenide glass hollow core microstructured optical fibers

    Science.gov (United States)

    Shiryaev, Vladimir S.

    2015-03-01

    The recent developments on chalcogenide glass hollow core microstructured optical fibers (HC-MOFs) are presented. The comparative analysis of simulated optical properties for chalcogenide HC-MOFs of negative-curvature with different size and number of capillaries is given. The technique for the manufacture of microstructured chalcogenide preforms, which includes the assembly of the substrate glass tube and 8-10 capillaries, is described. Further trends to improve the optical transmission in chalcogenide NCHCFs are considered.

  2. Using single photons to improve fiber optic communication systems

    Science.gov (United States)

    Pinto, Armando N.; Silva, Nuno A.; Almeida, Álvaro J.; Muga, Nelson J.

    2014-08-01

    We show how to generate, encode, transmit and detect single photons. By using single photons we can address two of the more challenging problems that communication engineers face nowadays: capacity and security. Indeed, by decreasing the number of photons used to encode each bit, we can efficiently explore the full capacity to carry information of optical fibers, and we can guarantee privacy at the physical layer. We present results for single and entangled photon generation. We encode information in the photons polarization and after transmission we retrieve that information. We discuss the impact of fiber birefringence on the photons polarization.

  3. Fiber Optic Temperature Sensors for Thermal Protection Systems Project

    Data.gov (United States)

    National Aeronautics and Space Administration — In Phase 1, Intelligent Fiber Optic Systems Corporation (IFOS), in collaboration with North Carolina State University, successfully demonstrated a Fiber Bragg...

  4. Single optical fiber probe for optogenetics

    Science.gov (United States)

    Falk, Ryan; Habibi, Mohammad; Pashaie, Ramin

    2012-03-01

    With the advent of optogenetics, all optical control and visualization of the activity of specific cell types is possible. We have developed a fiber optic based probe to control/visualize neuronal activity deep in the brain of awake behaving animals. In this design a thin multimode optical fiber serves as the head of the probe to be inserted into the brain. This fiber is used to deliver excitation/stimulation optical pulses and guide a sample of the emission signal back to a detector. The major trade off in the design of such a system is to decrease the size of the fiber and intensity of input light to minimize physical damage and to avoid photobleaching/phototoxicity but to keep the S/N reasonably high. Here the excitation light, and the associated emission signal, are frequency modulated. Then the output of the detector is passed through a time-lens which compresses the distributed energy of the emission signal and maximizes the instantaneous S/N. By measuring the statistics of the noise, the structure of the time lens can be designed to achieve the global optimum of S/N. Theoretically, the temporal resolution of the system is only limited by the time lens diffraction limit. By adding a second detector, we eliminated the effect of input light fluctuations, imperfection of the optical filters, and back-reflection of the excitation light. We have also designed fibers and micro mechanical assemblies for distributed delivery and detection of light.

  5. Gain Characteristics of Fiber Optical Parametric Amplifier

    Institute of Scientific and Technical Information of China (English)

    高明义; 姜淳; 胡卫生

    2004-01-01

    The theory model of fiber optical parametric amplifier (FOPA) was introduced, which is based on optical nonlinear effect. And then numerical simulation was done to analyze and discuss the gain spectral characteristics of one-pump and two-pump FOPA. The results show that for one-pump FOPA, when pump wavelength is near to fiber zero-dispersion wavelength(ZDW), the gain flatness is better, and with the increase of the pump power, fiber length and its nonlinear coefficient, the gain value will increase while the gain bandwidth will become narrow. For two-pump FOPA, when the pump central wavelength is near to fiber ZDW, the gain flatness is better. Moreover, by decreasing the space of two pumps wavelength, the gain flatness can be improved. Finally, some problems existing in FOPA were addressed.

  6. Impact of nonlinearities on fiber optic communications

    CERN Document Server

    2011-01-01

    This book covers the recent progress in fiber-optic communication systems with a main focus on the impact of fiber nonlinearities on system performance. There has been significant progress in coherent communication systems in the past few years due to the advances in digital signal processing techniques. This has led to renewed interest in fiber linear and nonlinear impairments as well as techniques to mitigate them in the electrical domain. In this book, the reader will find all the important topics of fiber optic communication systems in one place, with in-depth coverage by the experts of each sub-topic. Pioneers from each of the sub-topics have been invited to contribute. Each chapter will have a section on fundamentals as well as reviews of literature and of recent developments. Readers will benefit from this approach since many of the conference proceedings and journal articles mainly focus on the authors’ research, without spending space on preliminaries.

  7. Tackling the Limits of Optical Fiber Links

    CERN Document Server

    Stefani, Fabio; Bercy, Anthony; Lee, Won-Kyu; Chardonnet, Christian; Santarelli, Giorgio; Pottie, Paul-Eric; Amy-Klein, Anne

    2014-01-01

    We theoretically and experimentally investigate relevant noise processes arising in optical fiber links, which fundamentally limit their relative stability. We derive the unsuppressed delay noise for three configurations of optical links: two-way method, Sagnac interferometry, and actively compensated link, respectively designed for frequency comparison, rotation sensing, and frequency transfer. We also consider an alternative two-way setup allowing real-time frequency comparison and demonstrate its effectiveness on a proof-of-principle experiment with a 25-km fiber spool. For these three configurations, we analyze the noise arising from uncommon fiber paths in the interferometric ensemble and design optimized interferometers. We demonstrate interferometers with very low temperature sensitivity of respectively -2.2, -0.03 and 1 fs/K. We use one of these optimized interferometers on a long haul compensated fiber link of 540km. We obtain a relative frequency stability of 3E-20 after 10,000 s of integration time...

  8. High-sensitivity fiber optic acoustic sensors

    Science.gov (United States)

    Lu, Ping; Liu, Deming; Liao, Hao

    2016-11-01

    Due to the overwhelming advantages compared with traditional electronicsensors, fiber-optic acoustic sensors have arisen enormous interest in multiple disciplines. In this paper we present the recent research achievements of our group on fiber-optic acoustic sensors. The main point of our research is high sensitivity interferometric acoustic sensors, including Michelson, Sagnac, and Fabry-Pérot interferometers. In addition, some advanced technologies have been proposed for acoustic or acoustic pressure sensing such as single-mode/multimode fiber coupler, dual FBGs and multi-longitudinal mode fiber laser based acoustic sensors. Moreover, our attention we have also been paid on signal demodulation schemes. The intensity-based quadrature point (Q-point) demodulation, two-wavelength quadrature demodulation and symmetric 3×3 coupler methodare discussed and compared in this paper.

  9. Evaluations of fiber optic sensors for interior applications

    Energy Technology Data Exchange (ETDEWEB)

    Sandoval, M.W.; Malone, T.P.

    1996-02-01

    This report addresses the testing and evaluation of commercial fiber optic intrusion detection systems in interior applications. The applications include laying optical fiber cable above suspended ceilings to detect removal of ceiling tiles, embedding optical fibers inside a tamper or item monitoring blanket that could be placed over an asset, and installing optical fibers on a door to detect movement or penetration. Detection capability of the fiber optic sensors as well as nuisance and false alarm information were focused on during the evaluation. Fiber optic sensor processing, system components, and system setup are described.

  10. Quantum cryptography over underground optical fibers

    Energy Technology Data Exchange (ETDEWEB)

    Hughes, R.J.; Luther, G.G.; Morgan, G.L.; Peterson, C.G.; Simmons, C.

    1996-05-01

    Quantum cryptography is an emerging technology in which two parties may simultaneously generated shared, secret cryptographic key material using the transmission of quantum states of light whose security is based on the inviolability of the laws of quantum mechanics. An adversary can neither successfully tap the key transmissions, nor evade detection, owing to Heisenberg`s uncertainty principle. In this paper the authors describe the theory of quantum cryptography, and the most recent results from their experimental system with which they are generating key material over 14-km of underground optical fiber. These results show that optical-fiber based quantum cryptography could allow secure, real-time key generation over ``open`` multi-km node-to-node optical fiber communications links between secure ``islands.``

  11. Hot Springs-Garrison Fiber Optic Project

    Energy Technology Data Exchange (ETDEWEB)

    1994-10-01

    Bonneville Power Administration (BPA) is proposing to upgrade its operational telecommunications system between the Hot Springs Substation and the Garrison Substation using a fiber optic system. The project would primarily involve installing 190 kilometers (120 miles) of fiber optic cable on existing transmission structures and installing new fiber optic equipment in BPA`s substation yards and control houses. BPA prepared an environmental assessment (EA) evaluating the proposed action. This EA was published in October 1994. The EA identifies a number of minor impacts that might occur as a result of the proposed action, as well as some recommended mitigation measures. This Mitigation Action Plan (MAP) identifies specific measures to avoid, minimize, or compensate for impacts identified in the EA.

  12. Optical fiber applied to radiation detection

    Energy Technology Data Exchange (ETDEWEB)

    Junior, Francisco A.B.; Costa, Antonella L.; Oliveira, Arno H. de; Vasconcelos, Danilo C., E-mail: fanbra@yahoo.com.br, E-mail: antonella@nuclear.ufmg.br, E-mail: heeren@nuclear.ufmg.br, E-mail: danilochagas@yahoo.com.br [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil). Escola de Engenharia. Departamento de Engenharia Nuclear

    2015-07-01

    In the last years, the production of optical fibers cables has make possible the development of a range of spectroscopic probes for in situ analysis performing beyond nondestructive tests, environmental monitoring, security investigation, application in radiotherapy for dose monitoring, verification and validation. In this work, a system using an optical fiber cable to light signal transmission from a NaI(Tl) radiation detector is presented. The innovative device takes advantage mainly of the optical fibers small signal attenuation and immunity to electromagnetic interference to application for radiation detection systems. The main aim was to simplify the detection system making it to reach areas where the conventional device cannot access due to its lack of mobility and external dimensions. Some tests with this innovative system are presented and the results stimulate the continuity of the researches. (author)

  13. Stabilized Optical Fiber Links for the XFEL

    CERN Document Server

    Winter, Axel; Grawert, Felix J; Ilday, Fatih O; Kaertner, Franz X; Kim, Jung-Won; Schlarb, Holger; Schmidt, Bernhard

    2005-01-01

    The timing synchronization scheme for the European X-Ray free electron laser facility (XFEL) is based on the generation and distribution of sub-picosecond laser pulses with actively stabilized repetition rate which are used to synchronize local RF oscillators. An integral part of the scheme is the distribution of the optical pulse stream to parts of the facility via optical fiber links. The optical path length of the fiber has to be stabilized against short-term and long-term timing jitter due to environmental effects, such as temperature drifts and acoustic vibrations, to better than 10 fs for distances ranging from tens of meters to several kilometers. In this paper, we present first experimental results for signal transmission through a km-long fiber link with femtosecond stability.

  14. Study of fiber optic sugar sensor

    Indian Academy of Sciences (India)

    A Jayanth Kumar; N M Gowri; R Venkateswara Raju; G Nirmala; B S Bellubbi; T Radha Krishna

    2006-08-01

    Over the last two decades, the fiber optic technology has passed through many analytical stages. Some commercially available fiber optic sensors, though in a small way, are being used for automation in mechanical and industrial environments. They are also used for instrumentation and controls. In the present work, an intensity-modulated intrinsic fiber optic sugar sensor is presented. This type of sensor, with slight modification, can be used for on-line determination of the concentration of sugar content in sugarcane juice in sugar industry. In the present set-up, a plastic fiber made of polymethylmethacrylate is used. A portion of the cladding (1 cm, 2 cm, 3 cm) at the mid-point along the length of the fiber is removed. This portion is immersed in sugar solution of known concentration and refractive index. At one end of the fiber an 850 nm source is used and at the other end a power meter is connected. By varying the concentration of sugar solution, the output power is noted. These studies are made due to the change in refractive index of the fluid. The device was found to be very sensitive which is free from EMI and shock hazards, stable and repeatable and they can be remotely interfaced with a computer to give on-line measurements and thus become useful for application in sugar industries.

  15. Study on pure silica core optical fibers

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    An optimal refractive index profile of pure silica core optical fiber (PSCF) was designed, in combination with the characters of the modified chemical vapor deposition (MCVD) process. Techniques of preform fabrication by a new furnace round heating MCVD process and fiber drawing process were reviewed. Difficulties in doping fluorine in silica, widening the depressed-index cladding and maintaining the index of fiber core were discussed. Methods used to overcome these difficulties were given at the same time. Additionally, the optimal refractive index profiles of PSCF were presented.

  16. New glass developments for fiber optics

    Science.gov (United States)

    Higby, Paige L.; Holst, Karen; Tabor, Kevin; James, William; Chase, Elizabeth; Pucilowski, Sally; Gober-Mangan, Elizabeth; Klimek, Ronald; Karetta, Frank; Schreder, Bianca

    2014-02-01

    Fiber optic components for lighting and imaging applications have been in use for decades. Recent requirements such as a need for RoHS compliance, attractive market pricing, or particular optical properties, such as numerical aperture (NA) or transmission, have required SCHOTT to develop and implement new glasses for these applications. From Puravis™ lead-free fibers for lighting applications, to new glasses for digital X-ray imaging and sensor applications, the challenges for SCHOTT scientists are considerable. Pertinent properties of these glasses and methods of determination for suitability will be discussed.

  17. Recent Issues on Nonlinear Effects in Optical Fibers

    Institute of Scientific and Technical Information of China (English)

    Takashi; Inoue; Osamu; Aso; Shu; Namiki

    2003-01-01

    This talk will discuss the types of optical signal degradation due to fiber nonlinearity and review recently invented fibers for suppressing the effects. It also introduces efficiency of highly nonlinear fibers and their applications to nonlinear signal processing.

  18. 光纤网络在通讯工程技术中的应用%Application of Optical Fiber Network in Telecommunications Engineering Technology

    Institute of Scientific and Technical Information of China (English)

    王林

    2015-01-01

    光纤网络的诞生和发展是电信史上的一次重要革命,因其具有抗干扰、速率快、容量大的特点,利用光纤的信息传递优势可以最大限度的提高资源利用效率,因此光纤通信改变了传统的通信方式。随着光纤网络在通讯工程技术中的广泛应用,与之配合的网络基础技术也随之发展起来,其已经渗入到有线通信的多个领域,成为现代通信的主力军,对社会生活的影响日益深刻。展望将来的通信行业,光纤网络技术具有不可限量的潜力。因此,研究光纤网络在通讯工程技术中的应用具有十分重要的现实意义。%The birth and development of optical network is an important revolution in the history of telecommunications, because of its advantages of anti-jamming, speed and large capacity optical ifber characteristics, using the advantage of information transmission can improve efifciency and maximum utilization of resources, so the optical ifber communication has changed the traditional way of communication. With the wide application of optical ifber network in telecommunications engineering technology in the basic technology and network matching has been developed, which has penetrated into many ifelds of wire communication, become the main force of modern communication, more profound inlfuence on social life. The prospect of the communications industry in the future, optical ifber network technology has limitless potential. Therefore, has the extremely important practical signiifcance in the application research of optical ifber network communication technology in engineering.

  19. Fiber Optic Temperature Sensors for Thermal Protection Systems Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Intelligent Fiber Optic Systems Corporation (IFOS) proposes an innovative fiber optic-based, multiplexable, highly ruggedized, integrated sensor system for real-time...

  20. Ultrathin lensed fiber-optic probe for optical coherence tomography.

    Science.gov (United States)

    Qiu, Y; Wang, Y; Belfield, K D; Liu, X

    2016-06-01

    We investigated and validated a novel method to develop ultrathin lensed fiber-optic (LFO) probes for optical coherence tomography (OCT) imaging. We made the LFO probe by attaching a segment of no core fiber (NCF) to the distal end of a single mode fiber (SMF) and generating a curved surface at the tip of the NCF using the electric arc of a fusion splicer. The novel fabrication approach enabled us to control the length of the NCF and the radius of the fiber lens independently. By strategically choosing these two parameters, the LFO probe could achieve a broad range of working distance and depth of focus for different OCT applications. A probe with 125μm diameter and lateral resolution up to 10μm was demonstrated. The low-cost, disposable and robust LFO probe is expected to have great potential for interstitial OCT imaging.

  1. Detecting eavesdropping activity in fiber optic networks

    Science.gov (United States)

    MacDonald, Gregory G.

    The secure transmission of data is critical to governments, military organizations, financial institutions, health care providers and other enterprises. The primary method of securing in-transit data is though data encryption. A number of encryption methods exist but the fundamental approach is to assume an eavesdropper has access to the encrypted message but does not have the computing capability to decrypt the message in a timely fashion. Essentially, the strength of security depends on the complexity of the encryption method and the resources available to the eavesdropper. The development of future technologies, most notably quantum computers and quantum computing, is often cited as a direct threat to traditional encryption schemes. It seems reasonable that additional effort should be placed on prohibiting the eavesdropper from coming into possession of the encrypted message in the first place. One strategy for denying possession of the encrypted message is to secure the physical layer of the communications path. Because the majority of transmitted information is over fiber-optic networks, it seems appropriate to consider ways of enhancing the integrity and security of the fiber-based physical layer. The purpose of this research is to investigate the properties of light, as they are manifested in single mode fiber, as a means of insuring the integrity and security of the physical layer of a fiber-optic based communication link. Specifically, the approach focuses on the behavior of polarization in single mode fiber, as it is shown to be especially sensitive to fiber geometry. Fiber geometry is necessarily modified during the placement of optical taps. The problem of detecting activity associated with the placement of an optical tap is herein approached as a supervised machine learning anomaly identification task. The inputs include raw polarization measurements along with additional features derived from various visualizations of the raw data (the inputs are

  2. Optical fiber strain sensor with improved linearity range

    Science.gov (United States)

    Egalon, Claudio Oliveira (Inventor); Rogowski, Robert S. (Inventor)

    1995-01-01

    A strain sensor is constructed from a two mode optical fiber. When the optical fiber is surface mounted in a straight line and the object to which the optical fiber is mounted is subjected to strain within a predetermined range, the light intensity of any point at the output of the optical fiber will have a linear relationship to strain, provided the intermodal phase difference is less than 0.17 radians.

  3. Optically active mechanical modes of tapered optical fibers

    CERN Document Server

    Wuttke, Chrisitan; Rauschenbeutel, Arno

    2013-01-01

    Tapered optical fibers with a nanofiber waist are widely used tools for efficient coupling of light to photonic devices or quantum emitters via the nanofiber's evanescent field. In order to ensure well-controlled coupling, the phase and polarization of the nanofiber guided light field have to be stable. Here, we show that in typical tapered optical fibers these quantities exhibit high-frequency thermal fluctuations. They originate from high-Q torsional oscillations that opto-mechanically couple to the nanofiber-guided light. We present a simple ab-initio theoretical model that quantitatively explains the torsional mode spectrum and that can be used to design tapered optical fibers with tailored mechanical properties.

  4. Hermetic Coating of Optical Fibers

    Science.gov (United States)

    1987-11-01

    of 450A/min. A number of bulk samples were coated with a-C:H including microscope slides, NaCl plates, ZBLAN fluoride glass and sapphire blanks. IR...deposition were identified. Bulk NaCl, sapphire and glass samples coated with - 1 micron thick films were tested analytically. With the information gathered...1.0 INTRODUCTION: The surface of a freshly drawn glass fiber while seemingly smooth has many imperfections which when under stress, can grow and

  5. Fiber optical asssembly for fluorescence spectrometry

    Science.gov (United States)

    Piltch, Martin S.; Gray, Perry Clayton; Rubenstein, Richard

    2015-08-18

    System is provided for detecting the presence of an analyte of interest in a sample, said system comprising an elongated, transparent container for a sample; an excitation source in optical communication with the sample, wherein radiation from the excitation source is directed along the length of the sample, and wherein the radiation induces a signal which is emitted from the sample; and, at least two linear arrays disposed about the sample holder, each linear array comprising a plurality of optical fibers having a first end and a second end, wherein the first ends of the fibers are disposed along the length of the container and in proximity thereto; the second ends of the fibers of each array are bundled together to form a single end port.

  6. Microstructured optical fiber refractive index sensor

    DEFF Research Database (Denmark)

    Town, Graham E.; McCosker, Ravi; Yuan, Scott Wu

    2010-01-01

    We describe a dual-core microstructured optical fiber designed for refractive index sensing of fluids. We show that by using the exponential dependence of intercore coupling on analyte refractive index, both large range and high sensitivity can be achieved in the one device. We also show...

  7. Standing waves in fiber-optic interferometers

    NARCIS (Netherlands)

    De Haan, V.; Santbergen, R.; Tijssen, M.; Zeman, M.

    2011-01-01

    A study is presented giving the response of three types of fiber-optic interferometers by which a standing wave through an object is investigated. The three types are a Sagnac, Mach–Zehnder and Michelson–Morley interferometer. The response of the Mach–Zehnder interferometer is similar to the Sagnac

  8. FIBER OPTIC BIOSENSOR FOR DNA DAMAGE

    Science.gov (United States)

    This paper describes a fiber optic biosensor for the rapid and sensitive detection of radiation-induced or chemically-induced oxidative DNA damage. The assay is based on the hybridization and temperature-induced dissociation (melting curves) of synthetic oligonucleotides. The...

  9. Cascaded Bragg scattering in fiber optics.

    Science.gov (United States)

    Xu, Y Q; Erkintalo, M; Genty, G; Murdoch, S G

    2013-01-15

    We report on a theoretical and experimental study of cascaded Bragg scattering in fiber optics. We show that the usual energy-momentum conservation of Bragg scattering can be considerably relaxed via cascade-induced phase-matching. Experimentally we demonstrate frequency translation over six- and 11-fold cascades, in excellent agreement with derived phase-matching conditions.

  10. Focusing over Optical Fiber Using Time Reversal

    DEFF Research Database (Denmark)

    Piels, Molly; Porto da Silva, Edson; Estaran Tolosa, Jose Manuel

    2015-01-01

    A time-reversal array in multimode fiber is proposed for lossless remotely controlled switching using passive optical splitters. The signal to be transmitted is digitally pre-distorted so that it is routed through the physical layer in order to arrive at only one receiver in an array. System...

  11. Microstructured optical fiber refractive index sensor

    DEFF Research Database (Denmark)

    Town, Graham E.; McCosker, Ravi; Yuan, Scott Wu

    2010-01-01

    We describe a dual-core microstructured optical fiber designed for refractive index sensing of fluids. We show that by using the exponential dependence of intercore coupling on analyte refractive index, both large range and high sensitivity can be achieved in the one device. We also show that sel...

  12. Optical Fiber Pressure Sensor with Reference channel①

    Institute of Scientific and Technical Information of China (English)

    YUZhijing; TIANWei

    1997-01-01

    The principle of optical fiber pressure sensing probe with common diaphragm and the method for stabilizing the laser diodes are described in this paper at first.Then we discussed the improvement in characteristics of the system by means of taking the techniques of reference light channel and ratio measurement.

  13. Bend-insensitive optical fibers for FTTH applications

    Science.gov (United States)

    Li, Ming-Jun

    2009-01-01

    This paper reviews recent development in bend-insensitive fibers for fiber-to-the-home (FTTH) applications. First, requirements for bend-insensitive fibers are discussed. Then different design approaches for reducing fiber bending loss are described and compared. A new bend-insensitive fiber using the nano-engineered ring design is presented in detail.

  14. 光纤传感技术在岩土工程安全监测中的应用%Application of optical fiber sensing technology to safety monitoring of geotechnical engineering

    Institute of Scientific and Technical Information of China (English)

    高垠; 马玉华; 李克绵

    2013-01-01

    The optical Fiber Grating sensing technology and its characteristics as well as the technical indexes of FBG ( Fiber Bragg Gratings) sensor and its selection are described in detail herein along with the introduction made on the successful cases of the application of this technology to the safety monitoring of geotechnical engineering construction projects in China.The study result can provide some valuable references for the persons engaged in the design of safety monitoring of geotechnical engineering and the relevant in-situ monitoring.%详细介绍了光纤光栅传感技术及其特点、光纤BFG光栅传感器技术特性指标及选择,给出了光纤传感技术在国内岩土工程安全监测中成功应用的实例.研究结果为从事岩土工程安全监测设计、现场监测的人员提供参考和借鉴.

  15. Distributed fiber optic sensors embedded in technical textiles for structural health monitoring

    Science.gov (United States)

    Krebber, Katerina; Lenke, Philipp; Liehr, Sascha; Noether, Nils; Wendt, Mario; Wosniok, Aleksander

    2010-09-01

    Technical textiles with embedded distributed fiber optic sensors have been developed for the purposes of structural health monitoring in geotechnical and civil engineering. The distributed fiber optic sensors are based on Brillouin scattering in silica optical fibers and OTDR in polymer optical fibers. Such "smart" technical textiles can be used for reinforcement of geotechnical and masonry structures and the embedded fiber optic sensors can provide information about the condition of the structures and detect the presence of any damages and destructions in real time. Thus, structural health monitoring of critical geotechnical and civil infrastructures can be realized. The paper highlights the results achieved in this innovative field in the framework of several German and European projects.

  16. Human psychophysiological activity monitoring methods using fiber optic sensors

    Science.gov (United States)

    Zyczkowski, M.; Uzieblo-Zyczkowska, B.

    2010-10-01

    The paper presents the concept of fiber optic sensor system for human psycho-physical activity detection. A fiber optic sensor that utilizes optical phase interferometry or intensity in modalmetric to monitor a patient's vital signs such as respiration cardiac activity, blood pressure and body's physical movements. The sensor, which is non-invasive, comprises an optical fiber interferometer that includes an optical fiber proximately situated to the patient so that time varying acusto-mechanical signals from the patient are coupled into the optical fiber. The system can be implemented in embodiments ranging form a low cost in-home to a high end product for in hospital use.

  17. Fiber optic liquid refractive index sensor

    Science.gov (United States)

    Bhardwaj, Vanita; Gangwar, Rahul Kumar; Singh, Vinod Kumar

    2015-08-01

    In this present work we report fabrication of fiber optic liquid refractive index (RI) measurement sensor based on Michelson Interferometer method. This sensor was assembled by using graded index multimode (MM) fiber with core diameter 50 µm and the cladding of fiber was removed by simple chemical method. To perform this experiment a 2×2 3dB coupler is used. The fiber ends are then immersed in solvent and solution to provide reference and refractive index measurements, respectively. This method was successfully used to measure refractive index of Sodium Chloride (NaCl)-Water solution at different concentrations. The fringe contrast sensitivity of device is 92.90 dB/RIU measured in the RI range from 1.34 to 1.42 which is better than Mach-Zehnder Interferometer sensor [1] and Fabry perot based sensor [2]. The fabrication of sensor is simple, low cost and highly sensitive.

  18. Fiber-Optic Chemical Sensors and Fiber-Optic Bio-Sensors

    Directory of Open Access Journals (Sweden)

    Marie Pospíšilová

    2015-09-01

    Full Text Available This review summarizes principles and current stage of development of fiber-optic chemical sensors (FOCS and biosensors (FOBS. Fiber optic sensor (FOS systems use the ability of optical fibers (OF to guide the light in the spectral range from ultraviolet (UV (180 nm up to middle infrared (IR (10 μm and modulation of guided light by the parameters of the surrounding environment of the OF core. The introduction of OF in the sensor systems has brought advantages such as measurement in flammable and explosive environments, immunity to electrical noises, miniaturization, geometrical flexibility, measurement of small sample volumes, remote sensing in inaccessible sites or harsh environments and multi-sensing. The review comprises briefly the theory of OF elaborated for sensors, techniques of fabrications and analytical results reached with fiber-optic chemical and biological sensors.

  19. Portable fiber-optic taper coupled optical microscopy platform

    Science.gov (United States)

    Wang, Weiming; Yu, Yan; Huang, Hui; Ou, Jinping

    2017-04-01

    The optical fiber taper coupled with CMOS has advantages of high sensitivity, compact structure and low distortion in the imaging platform. So it is widely used in low light, high speed and X-ray imaging systems. In the meanwhile, the peculiarity of the coupled structure can meet the needs of the demand in microscopy imaging. Toward this end, we developed a microscopic imaging platform based on the coupling of cellphone camera module and fiber optic taper for the measurement of the human blood samples and ascaris lumbricoides. The platform, weighing 70 grams, is based on the existing camera module of the smartphone and a fiber-optic array which providing a magnification factor of 6x.The top facet of the taper, on which samples are placed, serves as an irregular sampling grid for contact imaging. The magnified images of the sample, located on the bottom facet of the fiber, are then projected onto the CMOS sensor. This paper introduces the portable medical imaging system based on the optical fiber coupling with CMOS, and theoretically analyzes the feasibility of the system. The image data and process results either can be stored on the memory or transmitted to the remote medical institutions for the telemedicine. We validate the performance of this cell-phone based microscopy platform using human blood samples and test target, achieving comparable results to a standard bench-top microscope.

  20. A novel differential optical fiber accelerometer

    Science.gov (United States)

    Pi, Shaohua; Zhao, Jiang; Hong, Guangwei; Jia, Bo

    2013-08-01

    The development of sensitive fiber-optic accelerometers is a subject of continuing interest. To acquire high resolution, Michelson phase interferometric techniques are widely adopted. Among the variety structures, the compliant cylinder approach is particularly attractive due to its high sensitivity that is defined as the induced phase shift per applied acceleration. While the two arms of Michelson interferometer should be at the same optical path, it is inconvenient to adjust the two arms' length to equal, also the polarization instability and phase random drift will cause a signal decline. To overcome these limitations, a novel optical fiber accelerometer based on differential interferometric techniques is proposed and investigated. The interferometer is a Sagnac-like white light interferometer, which means the bandwidth of laser spectrum can be as wide as tens nanometers. This interferometer was firstly reported by Levin in 1990s. Lights are divided to two paths before entering the coupler. To induce time difference, one passes through a delay arm and another goes a direct arm. After modulated by the sensing component, they reflect to opposite arm. The sensing part is formed by a seismic mass that is held to only one compliant cylinder, where the single-mode optical fiber is wrapped tightly. When sticking to vibrations, the cylinder compresses or stretches as a spring. The corresponding changes in cylinder circumference lead to strain in the sensing fibers, which is detected as an optical phase shift by the interferometer. The lights from two arms reach the vibration source at different time, sensing a different accelerate speed; produce a different optic path difference. Integrating the dissimilarity of the accelerated speed by time can obtain the total acceleration graph. A shaker's vibration has been tested by the proposed accelerometer referring to a standard piezoelectric accelerometer. A 99.8% linearity of the optical phase shift to the ground acceleration

  1. 21 CFR 872.4620 - Fiber optic dental light.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Fiber optic dental light. 872.4620 Section 872...) MEDICAL DEVICES DENTAL DEVICES Surgical Devices § 872.4620 Fiber optic dental light. (a) Identification. A fiber optic dental light is a device that is a light, usually AC-powered, that consists of glass or...

  2. All-optical, Three-axis Fiber Laser Magnetometer

    Science.gov (United States)

    2012-04-16

    E-1 1.  INTRODUCTION ...achieved with other magnetic field sensing technologies such as those based on flux gates and fiber optic magnetostrictive sensors. The deployed...ALL-OPTICAL, THREE-AXIS FIBER LASER MAGNETOMETER 1. INTRODUCTION This report describes the development of an undersea fiber optic magnetometer

  3. Optical-domain Compensation for Coupling between Optical Fiber Conjugate Vortex Modes

    DEFF Research Database (Denmark)

    Lyubopytov, Vladimir S.; Tatarczak, Anna; Lu, Xiaofeng

    2016-01-01

    We demonstrate for the first time optical-domain compensation for coupling between conjugate vortex modes in optical fibers. We introduce a novel method for reconstructing the complex propagation matrix of the optical fiber with straightforward implementation....

  4. Interference of selective higher-order modes in optical fibers

    Institute of Scientific and Technical Information of China (English)

    Li Enbang; Peng Gangding

    2007-01-01

    The interference of selective higher-order modes in optical fibers is investigated both theoretically and experimentally.It has been demonstrated that by coupling the LP01 mode in a step-index single-mode fiber(SMF)to the LPom modes in step-index muhimode fibers(MMFs)with different parameters,one can selectively generate higher-order modes and construct all-fiber interferometers.The research presented in this paper forms a basis of a new type of fiber devices with potential applications in fiber sensing,optical fiber communications,and optical signal processing.

  5. Enabling technologies for fiber optic sensing

    Science.gov (United States)

    Ibrahim, Selwan K.; Farnan, Martin; Karabacak, Devrez M.; Singer, Johannes M.

    2016-04-01

    In order for fiber optic sensors to compete with electrical sensors, several critical parameters need to be addressed such as performance, cost, size, reliability, etc. Relying on technologies developed in different industrial sectors helps to achieve this goal in a more efficient and cost effective way. FAZ Technology has developed a tunable laser based optical interrogator based on technologies developed in the telecommunication sector and optical transducer/sensors based on components sourced from the automotive market. Combining Fiber Bragg Grating (FBG) sensing technology with the above, high speed, high precision, reliable quasi distributed optical sensing systems for temperature, pressure, acoustics, acceleration, etc. has been developed. Careful design needs to be considered to filter out any sources of measurement drifts/errors due to different effects e.g. polarization and birefringence, coating imperfections, sensor packaging etc. Also to achieve high speed and high performance optical sensing systems, combining and synchronizing multiple optical interrogators similar to what has been used with computer/processors to deliver super computing power is an attractive solution. This path can be achieved by using photonic integrated circuit (PIC) technology which opens the doors to scaling up and delivering powerful optical sensing systems in an efficient and cost effective way.

  6. Establishing a fiber-optic-based optical neural interface.

    Science.gov (United States)

    Adamantidis, Antoine R; Zhang, Feng; de Lecea, Luis; Deisseroth, Karl

    2014-08-01

    Selective expression of opsins in genetically defined neurons makes it possible to control a subset of neurons without affecting nearby cells and processes in the intact brain, but light must still be delivered to the target brain structure. Light scattering limits the delivery of light from the surface of the brain. For this reason, we have developed a fiber-optic-based optical neural interface (ONI), which allows optical access to any brain structure in freely moving mammals. The ONI system is constructed by modifying the small animal cannula system from PlasticsOne. The system for bilateral stimulation consists of a bilateral cannula guide that has been stereotactically implanted over the target brain region, a screw cap for securing the optical fiber to the animal's head, a fiber guard modified from the internal cannula adapter, and a bare fiber whose length is customized based on the depth of the target region. For unilateral stimulation, a single-fiber system can be constructed using unilateral cannula parts from PlasticsOne. We describe here the preparation of the bilateral ONI system and its use in optical stimulation of the mouse or rat brain. Delivery of opsin-expressing virus and implantation of the ONI may be conducted in the same surgical session; alternatively, with a transgenic animal no opsin virus is delivered during the surgery. Similar procedures are useful for deep or superficial injections (even for neocortical targets, although in some cases surface light-emitting diodes or cortex-apposed fibers can be used for the most superficial cortical targets).

  7. Development and Performance Evaluation of Optical Sensors for High Temperature Engine Applications

    Science.gov (United States)

    Adamovsky, G.; Varga, D.; Floyd, B.

    2011-01-01

    This paper discusses fiber optic sensors designed and constructed to withstand extreme temperatures of aircraft engine. The paper describes development and performance evaluation of fiber optic Bragg grating based sensors. It also describes the design and presents test results of packaged sensors subjected to temperatures up to 1000 C for prolonged periods of time.

  8. Predicting Engine Parameters using the Optical Spectrum

    Data.gov (United States)

    National Aeronautics and Space Administration — The Optical Plume Anomaly Detection (OPAD) system is under development to predict engine anomalies and engine parameters of the Space Shuttle's Main Engine (SSME)....

  9. Fiber Optic Expanded Beam Connector.

    Science.gov (United States)

    1982-11-01

    Impervious to Repetitive Mating * Sand Proof . Low Insertion Loss (ɚ dB) SDust Proof . Reasonably Priced dust which may damage the optical surface of...exchange methods are used. The first uses a molten salt bath. Here the salt, KNO3 , is maintained at approximately 500C which is near the softening (R)j

  10. Transmission of straight and curved multimode optical fibers

    Science.gov (United States)

    Melnik, Ivan S.; Kravchenko, Igor; Denisov, Nikolay A.; Dets, Sergiy M.; Rusina, Tatyana V.

    1995-01-01

    Bent multimode optical fibers were studied using a 3D ray tracing program. Effect of fiber bending increased with smaller input aperture beams. Transmission of fibers decreased for the longer proximal straight part of the fiber. Significant focusing effect and output light redistribution were detected if a proximal straight part of the fiber was less than 1 fiber diameter. Transmission of hollow waveguides considerably depended on the inner surface quality. Calculated data were in accordance with experimental measurements of fiber transmission and output light distribution. Ray tracing is a useful approach to simulate different delivery systems using optical fibers and hollow waveguides.

  11. Fiber optic gyro development at Fibernetics

    Science.gov (United States)

    Bergh, Ralph A.; Arnesen, Leif; Herdman, Craig

    2016-05-01

    Fiber optic gyroscope based inertial sensors are being used within increasingly severe environments, enabling unmanned systems to sense and navigate in areas where GPS satellite navigation is unavailable or jammed. A need exists for smaller, lighter, lower power inertial sensors for the most demanding land, sea, air, and space applications. Fibernetics is developing a family of inertial sensor systems based on our closed-loop navigation-grade fiber optic gyroscope (FOG). We are making use of the packaging flexibility of the fiber to create a navigation grade inertial measurement unit (IMU) (3 gyroscopes and 3 accelerometers) that has a volume of 102 cubic inches. We are also planning a gyrocompass and an inertial navigation system (INS) having roughly the same size. In this paper we provide an update on our development progress and describe our modulation scheme for the Sagnac interferometers. We also present a novel multiplexed design that efficiently delivers source light to each of the three detectors. In our future development section we discuss our work to improve FOG performance per unit volume, specifically detailing our focus in utilizing a multicore optical fiber.

  12. Aircraft fiber optic structural health monitoring

    Science.gov (United States)

    Mrad, Nezih

    2012-06-01

    Structural Health Monitoring (SHM) is a sought after concept that is expected to advance military maintenance programs, increase platform operational safety and reduce its life cycle cost. Such concept is further considered to constitute a major building block of any Integrated Health Management (IHM) capability. Since 65% to 80% of military assets' Life Cycle Cost (LCC) is devoted to operations and support (O&S), the aerospace industry and military sectors continue to look for opportunities to exploit SHM systems, capability and tools. Over the past several years, countless SHM concepts and technologies have emerged. Among those, fiber optic based systems were identified of significant potential. This paper introduces the elements of an SHM system and investigates key issues impeding the commercial implementation of fiber optic based SHM capability. In particular, this paper presents an experimental study of short gauge, intrinsic, spectrometric-based in-fiber Bragg grating sensors, for potential use as a component of an SHM system. Fiber optic Bragg grating sensors are evaluated against resistance strain gauges for strain monitoring, sensitivity, accuracy, reliability, and fatigue durability. Strain field disturbance is also investigated by "embedding" the sensors under a photoelastic coating in order to illustrate sensor intrusiveness in an embedded configuration.

  13. Ionizing radiation detector using multimode optical fibers

    Energy Technology Data Exchange (ETDEWEB)

    Suter, J.J. (Johns Hopkins Univ., Laurel, MD (United States). Applied Physics Lab.); Poret, J.C.; Rosen, M. (Johns Hopkins Univ., Baltimore, MD (United States). Dept. of Materials Science and Engineering); Rifkind, J.M. (National Inst. of Health, Baltimore, MD (United States). Lab. of Cellular and Molecular Biology)

    1993-08-01

    An optical ionizing radiation detector, based on the attenuation of 850-nm light in 50/125-[mu]m multimode fibers, is described. The detector is especially well suited for application on spacecraft because of its small design. The detection element consists of a section of coiled fibers that has been designed to strip higher-order optical modes. Cylindrical radiation shields with atomic numbers ranging from Z = 13 (aluminum too) Z = 82 (lead) were placed around the ionizing radiation detector so that the effectiveness of the detector could be measured. By exposing the shields and the detector to 1.25-MeV cobalt 60 radiation, the mass attenuation coefficients of the shields were measured. The detector is based on the phenomenon that radiation creates optical color centers in glass fibers. Electron spin resonance spectroscopy performed on the 50/125-[mu]m fibers showed the presence of germanium oxide and phosphorus-based color centers. The intensity of these centers is directly related to the accumulated gamma radiation.

  14. Development Of Porous Glass Fiber Optic Sensors

    Science.gov (United States)

    Macedo, P. B.; Barkatt, Aa.; Feng, X.; Finger, S. M.; Hojaji, H.; Laberge, N.; Mohr, R.; Penafiel, M.; Saad, E.

    A method for producing rugged, continuous porous glass fiber optic sensors was developed. pH and temperature sensors based on this technology have been successfully produced. The sensor portion of the fiber is made porous by selective leaching of a specially formulated borosilicate glass fiber. This results in a strong, monolithic structure where the sensor portion of the fiber remains integrally attached to the rest of the fiber (which acts as a light pipe), essentially eliminating losses at the sensor-light pipe interface. Pore size in the sensor can be controllably varied by modifying heat treatment conditions, making these sensors suitable for chemical concentration measurements in liquids and gases. Appropriate dyes were chemically bonded by silanization to the large interior surface area of the porous sensors to produce the pH and temperature sensors. Cresol red and phenol red were used for pH and pinacyanol chloride was used for temperature sensing. The sensitivity of these devices can be controlled by varying the concentration of the chemically bonded dye and the length of the porous region. Optical absorbance measurements were made in the visible range. The tip of the sensors was coated with a thin, porous layer of gold to reflect the incident light, resulting in a double pass across the porous sensor. Experimental measurements were made over a pH range of 3 to 8 and a temperature range of 28-70 C. These porous glass fiber optic sensors were found to be rugged and reliable due to their monolithic structure and large interior surface area for attachment of active species. A broad range of sensors based on this technology could be developed by using different active species, such as enzymes and other biochemicals, which could be bonded to the interior surface of the porous glass sensor.

  15. Optical Soliton Simulation in Optical Fibers by OptiSystem

    Science.gov (United States)

    Gaik Tay, Kim; Huong Kah Ching, Audrey; Loi, Wei Sen; Tiong Ong, Chee

    2017-08-01

    Fiber optic communication is often known to offer higher frequency transmission of signals with greater bit rate and larger data carrying capacity over a long distance with lower loss and interference as compared to copper wire electrical communication. However, several factors that would affect the performance of an optical fiber transmission are such as group velocity dispersion (GVD), fiber loss and also self-phase modulation (SPM). In this paper, the effects of GVD, SPM, optical soliton formation and fiber loss are simulated using OptiSystem 14. It is found that GVD broaden pulse in temporal domain without modifying its spectrum. Meanwhile, SPM creates chirp in spectrum with its temporal profile maintained. This work concluded that a balance between the GVD and SPM is essential to form solitonthat is able to travel for a long distance without being distorted. It is also found that the decrease in the amplitude of the soliton is dependent on the fiber loss and this decay in the signal increases with the propagation distance.

  16. Fiber optic dosimeter with silicon photomultipliers

    Science.gov (United States)

    Moutinho, L. M.; Castro, I. F.; Peralta, L.; Abreu, M. C.; Veloso, J. F. C. A.

    2014-08-01

    A small dimension, real-time readout dosimeter is desirable for specific applications in medical physics as for example, dose measurement in prostate brachytherapy. This particular radiotherapy procedure consists in the permanent deposition of low energy, low-dose and low-dose rate small sized radioactive seeds. We developed a scintillating fiber optic based dosimeter suitable for in-vivo, real-time low dose and low dose rate measurements. Due to the low scintillation light produced in the scintillating fiber, a high sensitive and high gain light detector is required. The Silicon Photomultipliers are an interesting option that allowed us to obtain good results in our studies.

  17. Scalable Optical-Fiber Communication Networks

    Science.gov (United States)

    Chow, Edward T.; Peterson, John C.

    1993-01-01

    Scalable arbitrary fiber extension network (SAFEnet) is conceptual fiber-optic communication network passing digital signals among variety of computers and input/output devices at rates from 200 Mb/s to more than 100 Gb/s. Intended for use with very-high-speed computers and other data-processing and communication systems in which message-passing delays must be kept short. Inherent flexibility makes it possible to match performance of network to computers by optimizing configuration of interconnections. In addition, interconnections made redundant to provide tolerance to faults.

  18. Enhancing Optical Communications with Brand New Fibers

    DEFF Research Database (Denmark)

    Morioka, Toshio; Awaji, Yoshinari; Ryf, Roland

    2012-01-01

    Optical fibers have often been considered to offer effectively infinite capacity to support the rapid traffic growth essential to our information society. However, as demand has grown and technology has developed, we have begun to realize that there is a fundamental limit to fiber capacity of ~ 100....... This article reviews the most recent research efforts around the globe launched over the past few years with a view to overcome these limitations and substantially increase capacity by exploring the last degree of freedom available: the spatial domain. Central to this effort has been the development of brand...

  19. Multicomponent glass fiber optic integrated structures

    Science.gov (United States)

    Pysz, Dariusz; Kujawa, Ireneusz; Szarniak, Przemyslaw; Franczyk, Marcin; Stepien, Ryszard; Buczynski, Ryszard

    2005-09-01

    A range of integrated fiber optic structures - lightguides, image guides, multicapillary arrays, microstructured (photonic) fibers - manufactured in the Institute of Electronic Materials Technology (ITME) is described. All these structures are made of multicomponent glasses (a part of them melted in ITME). They can be manufactured in similar multistep process that involves drawing glass or lightguide rods and tubes preparing glass performs, stacking a bundle with rods and (or) tubes, drawing multifiber or multicapillary performs. Structure formation, technological process, characterization and applications of different integrated structures are presented.

  20. Cobra Fiber-Optic Positioner Upgrade

    Science.gov (United States)

    Fisher, Charles D.; Braun, David F.; Kaluzny, Joel V.

    2013-01-01

    A prime focus spectrometer (PFS), along with corrective optics, will mount in place of the secondary mirror of the Subaru telescope on Mauna Kea, Hawaii. This will allow simultaneous observations of cosmologic targets. It will enable large-scale galactic archeology and dark energy surveys to help unlock the secrets of the universe. To perform these cosmologic surveys, an array of 2,400 optical fibers needs to be independently positioned within the 498-mm-diameter focal plane of the PFS instrument to collect light from galaxies and stars for spectrographic analyses. To allow for independent re-positioning of the fibers, a very small positioner (7.7 mm in diameter) is required. One hundred percent coverage of the focal plane is also required, so these small actuators need to cover a patrol region of 9.5 mm in diameter. To optimize the amount of light that can be collected, the fibers need to be placed within 5 micrometers of their intended target (either a star or galaxy). The Cobra Fiber Positioner was designed to meet the size and accuracy requirements stated above. Cobra is a two-degrees-of-freedom mechanism that can position an optical fiber in the focal plane of the PFS instrument to a precision of 5 micrometers. It is a theta-phi style positioner containing two rotary piezo tube motors with one offset from the other, which enables the optic fibers to be placed anywhere in a small circular patrol region. The patrol region of the actuator is such that the array of 2,400 positioners allows for full coverage of the instrument focal plane by overlapping the patrol areas. A second-generation Cobra positioner was designed based on lessons learned from the original prototype built in 2009. Improvements were made to the precision of the ceramic motor parts, and hard stops were redesigned to minimize friction and prevent jamming. These changes resulted in reducing the number of move iterations required to position the optical fiber within 5 micrometers of its target. At

  1. Photon pair generation in multimode optical fibers via intermodal phase-matching

    CERN Document Server

    Pourbeyram, Hamed

    2016-01-01

    We present a detailed study of photon-pair generation in a multimode optical fiber via nonlinear four-wave mixing and intermodal phase-matching. We show that in multimode optical fibers, it is possible to generate correlated photon pairs in different fiber modes with large spectral shifts from the pump wavelength, such that the photon pairs are immune to contamination from spontaneous Raman scattering and residual pump photons. We also show that it is possible to generate factorable two-photon states exhibiting minimal spectral correlations between the photon pair components in conventional multimode fibers using commonly available pump lasers. It is also possible to simultaneously generate multiple factorable states from different FWM processes in the same fiber and over a wide range of visible spectrum by varying the pump wavelength without affecting the factorability of the states. Therefore, photon-pair generation in multimode optical fibers exhibits considerable potential for producing state engineered p...

  2. Interferometric Fiber-Optic Gyroscope

    Science.gov (United States)

    Depaula, Ramon P.; Bogert, Gail A.; Minford, William J.

    1990-01-01

    Integrated three-waveguide directional coupler functions as polarizer and splitter. Designed with transverse electric (TE) polarization in bar state (two coupling lengths) and transverse magnetic (TM) polarization in cross state (one coupling length). Intended for eventual fabrication as in mass-producible integrated optical circuit that provides advantages including low drive voltage, large-bandwidth phase modulation, preservation of polarization in transmission between devices on same substrate, and low cost.

  3. Natural Lignocellulosic Fibers as Engineering Materials—An Overview

    Science.gov (United States)

    Monteiro, Sergio Neves; Lopes, Felipe Perissé Duarte; Barbosa, Anderson Paula; Bevitori, Alice Barreto; Silva, Isabela Leão Amaral Da; Costa, Lucas Lopes Da

    2011-10-01

    Recent investigations on the tensile properties of natural cellulose-based fibers revealed an increasing potential as engineering materials. This is particularly the case of very thin fibers of some species such as sisal, ramie, and curaua. However, several other commonly used fibers such as flax, jute, hemp, coir, cotton, and bamboo as well as less known bagasse, piassava, sponge gourde, and buriti display tensile properties that could qualify them as engineering materials. An overview of the strength limits attained by these fibers is presented. Based on a tensile strength vs density chart, it is shown that natural fibers stand out as a relevant class of engineering materials.

  4. Fiber Optic-Based Refractive Index Sensing at INESC Porto

    Science.gov (United States)

    Jorge, Pedro A. S.; Silva, Susana O.; Gouveia, Carlos; Tafulo, Paula; Coelho, Luis; Caldas, Paulo; Viegas, Diana; Rego, Gaspar; Baptista, José M.; Santos, José L.; Frazão, Orlando

    2012-01-01

    A review of refractive index measurement based on different types of optical fiber sensor configurations and techniques is presented. It addresses the main developments in the area, with particular focus on results obtained at INESC Porto, Portugal. The optical fiber sensing structures studied include those based on Bragg and long period gratings, on micro-interferometers, on plasmonic effects in fibers and on multimode interference in a large spectrum of standard and microstructured optical fibers. PMID:22969405

  5. Application of optical system simulation software in a fiber optic telecommunications program

    Science.gov (United States)

    Koontz, Warren L. G.; Mandloi, Divya

    2004-10-01

    One of our objectives in the College of Applied Science and Technology at RIT is to offer our students some kind of "hands-on" experience along with theory. Providing a hands-on experience can be costly, however, especially in the field of optical communication. Although reasonably priced laboratory kits are available, the optical-electronic components in these kits are well below communication grade. Thus if we rely only on hardware, our students can only experiment with low power, low bit rate communication over a few kilometers of fiber. Computer simulation software offers an affordable alternative "hands-on" experience. With this software, a student can create a model of an optical system, execute the model and view measures of the system's performance. The system components can include DFB laser diodes, high-speed modulators, hundreds of kilometers of fiber, APD receivers and other optical and electrical components. The student can view the optical signals in the time or frequency domain, measure optical power and signal-to-noise ratio and much more. He or she can also view the effects of parameter variations or find the optimal value of a parameter. The software is easy to learn, especially if the student has previous experience with an electronic system simulator. This paper describes our application of an optical-electronic system simulator in the Telecommunications Engineering Technology program at RIT. We are developing a series of exercises to complement courses in fiber optic. These exercises will allow students to model and test systems that they have designed. We expect computer simulation to enhance our fiber optic courses significantly by adding a reasonably realistic and accessible test bed for student designs.

  6. A Space-Based Optical Communication System Utilizing Fiber Optics

    Science.gov (United States)

    1989-11-09

    single mode elliptic core fibers," Opt. Commun., 49, 3, 178-183 (1984). 35 15. B.J. Klein and J.J. Degnan, " Optical antenna gain. 1: Transmitting...antennas," Appl. Opt., 13,9,2134- 2141 (1974). 16. B.J. Klein and J.J. Degnan, " Optical antenna gain. 2: Receiving antennas," Appl. Opt., 13, 10,2397- 2401...1974). 17. B.J. Klein and J.J. Degnan, " Optical antenna gain. 3: The effect of secondary element support struts on transmitter gain," Appl. Opt., 15

  7. Cost effective optical coupling for polymer optical fiber communication

    Science.gov (United States)

    Chandrappan, Jayakrishnan; Zhang, Jing; Mohan, Ramkumar V.; Gomez, Philbert Oliver; Aung, Than Aye; Xiao, Yongfei; Ramana, Pamidighantam V.; Lau, John Hon Shing; Kwong, Dim Lee

    2008-02-01

    Polymer Optical Fiber (POF) optical modules are gaining momentum due to their applications in short distance communications. POFs offer more flexibility for plug and play applications and provide cost advantages. They also offer significant weight advantage in automotive and avionic networks. One of the most interesting field of application is home networking. Low cost optical components are required, since cost is a major concern in local and home networks. In this publication, a fast and easy to install, low cost solution for efficient light coupling in and out of Step Index- POF is explored. The efficient coupling of light from a large core POF to a small area detector is the major challenge faced. We simulated direct coupling, lens coupling and bend losses for step index POF using ZEMAX R optical simulation software. Simulations show that a lensed fiber tip particularly at the receiver side improves the coupling efficiency. The design is optimized for 85% coupling efficiency and explored the low cost fabrication method to implement it in the system level. The two methods followed for lens fabrication is described here in detail. The fabricated fiber lenses are characterized using a beam analyzer. The fabrication process was reiterated to optimize the lens performance. It is observed that, the fabricated lenses converge the POF output spot size by one fourth, there by enabling a higher coupling efficiency. This low cost method proves to be highly efficient and effective optical coupling scheme in POF communications.

  8. Standing waves in fiber-optic interferometers.

    Science.gov (United States)

    de Haan, V; Santbergen, R; Tijssen, M; Zeman, M

    2011-10-10

    A study is presented giving the response of three types of fiber-optic interferometers by which a standing wave through an object is investigated. The three types are a Sagnac, Mach-Zehnder and Michelson-Morley interferometer. The response of the Mach-Zehnder interferometer is similar to the Sagnac interferometer. However, the Sagnac interferometer is much harder to study because of the fact that one input port and output port coincide. Further, the Mach-Zehnder interferometer has the advantage that the output ports are symmetric, reducing the systematic effects. Examples of standing wave light absorption in several simple objects are given. Attention is drawn to the influence of standing waves in fiber-optic interferometers with weak-absorbing layers incorporated. A method is described for how these can be theoretically analyzed and experimentally measured. Further experiments are needed for a thorough comparison between theory and experiment.

  9. Normal dispersion femtosecond fiber optical parametric oscillator.

    Science.gov (United States)

    Nguyen, T N; Kieu, K; Maslov, A V; Miyawaki, M; Peyghambarian, N

    2013-09-15

    We propose and demonstrate a synchronously pumped fiber optical parametric oscillator (FOPO) operating in the normal dispersion regime. The FOPO generates chirped pulses at the output, allowing significant pulse energy scaling potential without pulse breaking. The output average power of the FOPO at 1600 nm was ∼60  mW (corresponding to 1.45 nJ pulse energy and ∼55% slope power conversion efficiency). The output pulses directly from the FOPO were highly chirped (∼3  ps duration), and they could be compressed outside of the cavity to 180 fs by using a standard optical fiber compressor. Detailed numerical simulation was also performed to understand the pulse evolution dynamics around the laser cavity. We believe that the proposed design concept is useful for scaling up the pulse energy in the FOPO using different pumping wavelengths.

  10. Fiber Optic Thermal Detection of Composite Delaminations

    Science.gov (United States)

    Wu, Meng-Chou; Winfree, William P.

    2011-01-01

    A recently developed technique is presented for thermographic detection of delaminations in composites by performing temperature measurements with fiber optic Bragg gratings. A single optical fiber with multiple Bragg gratings employed as surface temperature sensors was bonded to the surface of a composite with subsurface defects. The investigated structure was a 10-ply composite specimen with prefabricated delaminations of various sizes and depths. Both during and following the application of a thermal heat flux to the surface, the individual Bragg grating sensors measured the temporal and spatial temperature variations. The data obtained from grating sensors were analyzed with thermal modeling techniques of conventional thermography to reveal particular characteristics of the interested areas. Results were compared and found to be consistent with the calculations using numerical simulation techniques. Also discussed are methods including various heating sources and patterns, and their limitations for performing in-situ structural health monitoring.

  11. Fiber Optic Thermal Health Monitoring of Composites

    Science.gov (United States)

    Wu, Meng-Chou; Winfree, William P.; Moore, Jason P.

    2010-01-01

    A recently developed technique is presented for thermographic detection of flaws in composite materials by performing temperature measurements with fiber optic Bragg gratings. Individual optical fibers with multiple Bragg gratings employed as surface temperature sensors were bonded to the surfaces of composites with subsurface defects. The investigated structures included a 10-ply composite specimen with subsurface delaminations of various sizes and depths. Both during and following the application of a thermal heat flux to the surface, the individual Bragg grating sensors measured the temporal and spatial temperature variations. The data obtained from grating sensors were analyzed with thermal modeling techniques of conventional thermography to reveal particular characteristics of the interested areas. Results were compared with the calculations using numerical simulation techniques. Methods and limitations for performing in-situ structural health monitoring are discussed.

  12. Enzyme-Based Fiber Optic Sensors

    Science.gov (United States)

    Kulp, Thomas J.; Camins, Irene; Angel, Stanley M.

    1988-06-01

    Fiber optic chemical sensors capable of detecting glucose and penicillin were developed. Each consists of a polymer membrane that is covalently attached to the tip of a glass optical fiber. The membrane contains the enzyme and a pH-sensitive fluorescent dye (fluorescein). A signal is produced when the enzyme catalyzes the conversion of the analyte (glucose or penicillin) into a product (gluconic or penicilloic acid, respectively) that lowers the microenvironmental pH of the membrane and, consequently, lowers the fluorescence intensity of the dye. Each sensor is capable of responding to analyte concentrations in the range of ~0.1 to 100 mM. The penicillin optrode response time is 40 to 60 s while that for glucose is ~5 to 12 min.

  13. Fiber optical assembly for fluorescence spectrometry

    Science.gov (United States)

    Carpenter, II, Robert W.; Rubenstein, Richard; Piltch, Martin; Gray, Perry

    2010-12-07

    A system for analyzing a sample for the presence of an analyte in a sample. The system includes a sample holder for containing the sample; an excitation source, such as a laser, and at least one linear array radially disposed about the sample holder. Radiation from the excitation source is directed to the sample, and the radiation induces fluorescent light in the sample. Each linear array includes a plurality of fused silica optical fibers that receive the fluorescent light and transmits a fluorescent light signal from the first end to an optical end port of the linear array. An end port assembly having a photo-detector is optically coupled to the optical end port. The photo-detector detects the fluorescent light signal and converts the fluorescent light signal into an electrical signal.

  14. Fiber optic gyroscopes for vehicle navigation systems

    Science.gov (United States)

    Kumagai, Tatsuya; Soekawa, Hirokazu; Yuhara, Toshiya; Kajioka, Hiroshi; Oho, Shigeru; Sonobe, Hisao

    1994-03-01

    Fiber optic gyroscopes (FOGs) have been developed for vehicle navigation systems and are used in Toyota Motor Corporation models Mark II, Chaser and Cresta in Japan. Use of FOGs in these systems requires high reliability under a wide range of conditions, especially in a temperature range between -40 and 85 degree(s)C. In addition, a high cost-performance ratio is needed. We have developed optical and electrical systems that are inexpensive and can perform well. They are ready to be mass-produced. FOGs have already been installed in luxury automobiles, and will soon be included in more basic vehicles. We have developed more inexpensive FOGs for this purpose.

  15. Temperature insensitive fiber optic interferometer and applications

    OpenAIRE

    Murphy, Kent A.

    1989-01-01

    A method of modifying a uÌ ber optic fused biconical tapered coupler to produce a relatively temperature insensitive Michelson interferometer is presented. The modification was accomplished by cleaving the coupler after the minimum taper region and polishing, perpendicular to the endface, to a point just short of the interaction region. This allows one of the two fiber cores, which are within micrometers of each other with their claddings fused together, to be coated at its end...

  16. Spectrally efficient polymer optical fiber transmission

    Science.gov (United States)

    Randel, Sebastian; Bunge, Christian-Alexander

    2011-01-01

    The step-index polymer optical fiber (SI-POF) is an attractive transmission medium for high speed communication links in automotive infotainment networks, in industrial automation, and in home networks. Growing demands for quality of service, e.g., for IPTV distribution in homes and for Ethernet based industrial control networks will necessitate Gigabit speeds in the near future. We present an overview on recent advances in the design of spectrally efficient and robust Gigabit-over-SI-POF transmission systems.

  17. Perturbation theory for solitons in optical fibers

    Science.gov (United States)

    Kaup, D. J.

    1990-11-01

    Using a singular perturbation expansion, we study the evolution of a Raman loss compensated soliton in an optical fiber. Our analytical results agree quite well with the numerical results of Mollenauer, Gordon, and Islam [IEEE J. Quantum Electron. QE-22, 157 (1986)]. However, there are some differences in that our theory predicts an additional structure that was only partially seen in the numerical calculations. Our analytical results do give a quite good qualitative and quantitative check of the numerical results.

  18. Fast Asynchronous Data Communication Via Fiber Optics

    Science.gov (United States)

    Bergman, Larry A.; Tell, Robert G.

    1989-01-01

    Transmitter and receiver devised for asynchronous digital communication via optical fiber at rates above 100 Mb/s. Transmitter converts parallel data to serial for high-speed transmission; receiver recovers clock signal and converts data back to parallel. No phase-lock loops used. New receiver design avoids over-sampling altogether. Local sampling oscillator operating nominally at clock frequency generates N clock signals of equally spaced phase, used to clock incoming data into N separate shift registers.

  19. Experimental study of the optical fiber characteristics by digital hologram

    Institute of Scientific and Technical Information of China (English)

    HUANG Su-juan; FU Xing-hu; WANG Ting-yun

    2011-01-01

    The characteristics of optical fiber are quite important for improving the performance of optical fiber communication and sensor systems. Based on the Mach-Zehnder interferometer, a new measuring method is proposed and the digital holo- grams between the single mode fibers (SMFs) and specialty double-cladding (DC) fibers are analyzed. The experimental results show that the fringe density can be changed under the conditions of coaxial and off-axial interferences. Therefore it can be used to analyze the optical fiber characteristics including refractive index distribution, fiber modes, phase diff- erence, etc.

  20. Microstructured Optical Fiber for X-ray Detection

    Science.gov (United States)

    DeHaven, Stanton L.

    2009-01-01

    A novel scintillating optical fiber is presented using a composite micro-structured quartz optical fiber. Scintillating materials are introduced into the multiple inclusions of the fiber. This creates a composite optical fiber having quartz as a cladding with an organic scintillating material core. X-ray detection using these fibers is compared to a collimated cadmium telluride (CdTe) detector over an energy range from 10 to 40 keV. Results show a good correlation between the fiber count rate trend and that of the CdTe detector.

  1. Optical engineering: learning by design

    Science.gov (United States)

    Kirk, Andrew G.

    2007-06-01

    This presentation will describe the issues associated with a design-based course in optical engineering. The original purpose of this course was to provide senior undergraduate and graduate students with a good foundation in free-space optics, including topics such as geometric aberrations, Gaussian beam theory, diffractive optics, interference filters and polarization. However in order to make the material more immediate and to help the students to integrate their knowledge, a design project component was introduced into the course several years ago. Over the succeeding years, the project component has become a more and more significant part of the course, so that it now forms the central component. Typical enrollment is 15-25 students. The class is typically 75% graduate students, with the remainder being senior undergraduates. 30% have previously taken an undergraduate optics class and around 30% are typically doing graduate/undergraduate research in photonics. A course in electromagnetic waves is a pre-requisite but for many of the students this is their first real `optics' course. Therefore it is a significant challenge to present sufficient material that the students can do real work in their design projects without over-burdening them with new concepts. Most of the students (90%) attend McGill, with the remainder attending UQAM, Ecole Polytechnique or Concordia.

  2. Fiber optic chemical sensors: The evolution of high- density fiber-optic DNA microarrays

    Science.gov (United States)

    Ferguson, Jane A.

    2001-06-01

    Sensors were developed for multianalyte monitoring, fermentation monitoring, lactate analysis, remote oxygen detection for use in bioremediation monitoring and in a fuel spill clean-up project, heavy metal analysis, and high density DNA microarrays. The major focus of this thesis involved creating and improving high-density DNA gene arrays. Fiber optic sensors are created using fluorescent indicators, polymeric supports, and optical fiber substrates. The fluorescent indicator is entrapped in a polymer layer and attached to the tip of the optical fiber. The tip of the fiber bearing the sensing layer (the distal end) is placed in the sample of interest while the other end of the fiber (the proximal end) is connected to an analysis system. Any length of fiber can be used without compromising the integrity or sensitivity of the system. A fiber optic oxygen sensor was designed incorporating an oxygen sensitive fluorescent dye and a gas permeable polymer attached to an optical fiber. The construction simplicity and ruggedness of the sensor enabled its deployment for in situ chemical oxidation and bioremediation studies. Optical fibers were also used as the substrate to detect biomolecules in solution. To monitor bioprocesses, the production of the analyte of interest must be coupled with a species that is optically measurable. For example, oxygen is consumed in many metabolic functions. The fiber optic oxygen sensor is equipped with an additional sensing layer. Upon contact with a specific biochemical in the sample, a reaction occurs in the additional sensing layer that either consumes or produces oxygen. This dual layer system was used to monitor the presence of lactate, an important metabolite for clinical and bioprocess analysis. In many biological and environmental systems, the generation of one species occurs coincidentally with the generation or consumption of another species. A multianalyte sensor was prepared that can monitor the simultaneous activity of pH, CO2

  3. Seven-year-long crack detection monitoring by Brillouin-based fiber optic strain sensor

    Science.gov (United States)

    Imai, Michio

    2015-03-01

    As an optical fiber is able to act as a sensing medium, a Brillouin-based sensor provides continuous strain information along an optical fiber. The sensor has been used in a wide range of civil engineering applications because no other tool can satisfactorily detect discontinuity such as a crack. Cracking generates a local strain change on the embedded optical fiber, thus Brillouin optical correlation domain analysis (BOCDA), which offers a high spatial resolution by stimulated Brillouin scattering, is expected to detect a fine crack on concrete structures. The author installed the surface-mounted optical fiber on a concrete deck and periodically monitored strain distribution for seven years. This paper demonstrates how a BOCDA-based strain sensor can be employed to monitor cracks in a concrete surface. Additionally, focusing on another advantage of the sensor, the natural frequency of the deck is successfully measured by dynamic strain history.

  4. Hybrid Piezoelectric/Fiber-Optic Sensor Sheets

    Science.gov (United States)

    Lin, Mark; Qing, Xinlin

    2004-01-01

    Hybrid piezoelectric/fiber-optic (HyPFO) sensor sheets are undergoing development. They are intended for use in nondestructive evaluation and long-term monitoring of the integrity of diverse structures, including aerospace, aeronautical, automotive, and large stationary ones. It is anticipated that the further development and subsequent commercialization of the HyPFO sensor systems will lead to economic benefits in the form of increased safety, reduction of life-cycle costs through real-time structural monitoring, increased structural reliability, reduction of maintenance costs, and increased readiness for service. The concept of a HyPFO sensor sheet is a generalization of the concept of a SMART Layer(TradeMark), which is a patented device that comprises a thin dielectric film containing an embedded network of distributed piezoelectric actuator/sensors. Such a device can be mounted on the surface of a metallic structure or embedded inside a composite-material structure during fabrication of the structure. There is has been substantial interest in incorporating sensors other than piezoelectric ones into SMART Layer(TradeMark) networks: in particular, because of the popularity of the use of fiber-optic sensors for monitoring the "health" of structures in recent years, it was decided to incorporate fiber-optic sensors, giving rise to the concept of HyPFO devices.

  5. Overview of advanced components for fiber optic systems

    Science.gov (United States)

    Depaula, Ramon P.; Stowe, David W.

    1986-01-01

    The basic operating principles and potential performance of several state-of-the-art fiber-optic devices are illustrated with diagrams and briefly characterized. Technologies examined include high-birefringence polarization-maintaining fibers and directional couplers, single-mode fiber polarizers and cut-off polarizers, optical-fiber modulators with radially poled piezoactive polymer (PVF2) jackets, and piezoelectric-squeezer polarization modulators. The need for improved manufacturing techniques to make such fiber-optic devices cost-competitive with their thin-film integrated-optics analogs is indicated.

  6. An inexpensive high-temperature optical fiber thermometer

    Science.gov (United States)

    Moore, Travis J.; Jones, Matthew R.; Tree, Dale R.; Allred, David D.

    2017-01-01

    An optical fiber thermometer consists of an optical fiber whose tip is coated with a highly conductive, opaque material. When heated, this sensing tip becomes an isothermal cavity that emits like a blackbody. This emission is used to predict the sensing tip temperature. In this work, analytical and experimental research has been conducted to further advance the development of optical fiber thermometry. An inexpensive optical fiber thermometer is developed by applying a thin coating of a high-temperature cement onto the tip of a silica optical fiber. An FTIR spectrometer is used to detect the spectral radiance exiting the fiber. A rigorous mathematical model of the irradiation incident on the detection system is developed. The optical fiber thermometer is calibrated using a blackbody radiator and inverse methods are used to predict the sensing tip temperature when exposed to various heat sources.

  7. Optical technology applied to jet engine; Jet engine seigyo eno hikari gijutsu no tekiyo

    Energy Technology Data Exchange (ETDEWEB)

    Nakajima, T.; Ebina, K.; Endo, M. [Ishikawajima-Harima Heavy Industries Co. Ltd., Tokyo (Japan)

    1997-09-01

    Pyrometer that can be mounted on an aircraft engine is developed for measuring engine turbine blade temperatures. Energy radiated from the blade surface is collected by a lens and then forwarded to a photoelectric conversion photodiode through a heat-resistant optical fiber. A cleaning/purging mechanism is provided in case the lens collects dirt that will attenuate the signal for the indication of a temperature that is lower than the true temperature (in a cold shift phenomenon). The pyrometer is tested on an engine, when a measurement accuracy of {+-}10degC is attained without cold shift taking place. It responds to changes more swiftly than conventional types, which justifies its application to the control of engines. Since it works effectively to connect a bunch of optical fibers, rather than conventional electric wires, to the printed circuit board for guiding optical signals to a printed circuit board in a digital control unit, an optical backplane structure is developed. This structure is designed to be an optical waveguide type which can incorporate into itself some mechanisms of synthesizer, optical waveguide coupler, and light filter, in case of need for handling multiple transmission. The pyrometer is tested on an aircraft engine in operation at high and low temperatures, and demonstrates satisfying light-receiving and light-emitting properties. 4 refs., 10 figs.

  8. Noninvasive blood pressure measurement scheme based on optical fiber sensor

    Science.gov (United States)

    Liu, Xianxuan; Yuan, Xueguang; Zhang, Yangan

    2016-10-01

    Optical fiber sensing has many advantages, such as volume small, light quality, low loss, strong in anti-jamming. Since the invention of the optical fiber sensing technology in 1977, optical fiber sensing technology has been applied in the military, national defense, aerospace, industrial, medical and other fields in recent years, and made a great contribution to parameter measurement in the environment under the limited condition .With the rapid development of computer, network system, the intelligent optical fiber sensing technology, the sensor technology, the combination of computer and communication technology , the detection, diagnosis and analysis can be automatically and efficiently completed. In this work, we proposed a noninvasive blood pressure detection and analysis scheme which uses optical fiber sensor. Optical fiber sensing system mainly includes the light source, optical fiber, optical detector, optical modulator, the signal processing module and so on. wavelength optical signals were led into the optical fiber sensor and the signals reflected by the human body surface were detected. By comparing actual testing data with the data got by traditional way to measure the blood pressure we can establish models for predicting the blood pressure and achieve noninvasive blood pressure measurement by using spectrum analysis technology. Blood pressure measurement method based on optical fiber sensing system is faster and more convenient than traditional way, and it can get accurate analysis results in a shorter period of time than before, so it can efficiently reduce the time cost and manpower cost.

  9. Fiber optical parametric amplifiers in optical communication systems

    DEFF Research Database (Denmark)

    Marhic, Michel E.; Andrekson, Peter A.; Petropoulos, Periklis

    2015-01-01

    The prospects for using fiber optical parametric amplifiers (OPAs) in optical communication systems are reviewed. Phase-insensitive amplifiers (PIAs) and phase-sensitive amplifiers (PSAs) are considered. Low-penalty amplification at/or near 1 Tb/s has been achieved, for both wavelength- and time-...... in excess of 14,000 Tb/s x km in realistic wavelength-division multiplexed long-haul networks. Technical challenges remaining to be addressed in order for fiber OPAs to become useful for long-haul communication networks are discussed.......The prospects for using fiber optical parametric amplifiers (OPAs) in optical communication systems are reviewed. Phase-insensitive amplifiers (PIAs) and phase-sensitive amplifiers (PSAs) are considered. Low-penalty amplification at/or near 1 Tb/s has been achieved, for both wavelength- and time......-modulated signals. A PSA with 1.1-dB noise figure has been demonstrated, and preliminary wavelength-division multiplexing experiments have been performed with PSAs. 512Gb/s have been transmitted over 6,000km by periodic phase conjugation. Simulations indicate that PIAs could reach data rate x reach products...

  10. Remote Synchrotron Light Instrumentation Using Optical Fibers

    Energy Technology Data Exchange (ETDEWEB)

    De Santis, S.; Yin, Y.

    2009-05-04

    By coupling the emitted synchrotron light into an optical fiber, it is possible to transmit the signal at substantial distances from the light port, without the need to use expensive beamlines. This would be especially beneficial in all those cases when the synchrotron is situated in areas not easily access because of their location, or due to high radiation levels. Furthermore, the fiber output can be easily switched, or even shared, between different diagnostic instruments. We present the latest results on the coupling and dispersion measurements performed at the Advanced Light Source in Berkeley. In several cases, coupling synchrotron light into optical fibers can substantially facilitate the use of beam diagnostic instrumentation that measures longitudinal beam properties by detecting synchrotron radiation. It has been discussed in with some detail, how fiberoptics can bring the light at relatively large distances from the accelerator, where a variety of devices can be used to measure beam properties and parameters. Light carried on a fiber can be easily switched between instruments so that each one of them has 100% of the photons available, rather than just a fraction, when simultaneous measurements are not indispensable. From a more general point of view, once synchrotron light is coupled into the fiber, the vast array of techniques and optoelectronic devices, developed by the telecommunication industry becomes available. In this paper we present the results of our experiments at the Advanced Light Source, where we tried to assess the challenges and limitations of the coupling process and determine what level of efficiency one can typically expect to achieve.

  11. Developing engineering model Cobra fiber positioners for the Subaru Telescope's prime focus spectrometer

    Science.gov (United States)

    Fisher, Charles; Morantz, Chaz; Braun, David; Seiffert, Michael; Aghazarian, Hrand; Partos, Eamon; King, Matthew; Hovland, Larry E.; Schwochert, Mark; Kaluzny, Joel; Capocasale, Christopher; Houck, Andrew; Gross, Johannes; Reiley, Daniel; Mao, Peter; Riddle, Reed; Bui, Khanh; Henderson, David; Haran, Todd; Culhane, Robert; Piazza, Daniele; Walkama, Eric

    2014-07-01

    The Cobra fiber positioner is being developed by the California Institute of Technology (CIT) and the Jet Propulsion Laboratory (JPL) for the Prime Focus Spectrograph (PFS) instrument that will be installed at the Subaru Telescope on Mauna Kea, Hawaii. PFS is a fiber fed multi-object spectrometer that uses an array of Cobra fiber positioners to rapidly reconfigure 2394 optical fibers at the prime focus of the Subaru Telescope that are capable of positioning a fiber to within 5μm of a specified target location. A single Cobra fiber positioner measures 7.7mm in diameter and is 115mm tall. The Cobra fiber positioner uses two piezo-electric rotary motors to move a fiber optic anywhere in a 9.5mm diameter patrol area. In preparation for full-scale production of 2550 Cobra positioners an Engineering Model (EM) version was developed, built and tested to validate the design, reduce manufacturing costs, and improve system reliability. The EM leveraged the previously developed prototype versions of the Cobra fiber positioner. The requirements, design, assembly techniques, development testing, design qualification and performance evaluation of EM Cobra fiber positioners are described here. Also discussed is the use of the EM build and test campaign to validate the plans for full-scale production of 2550 Cobra fiber positioners scheduled to begin in late-2014.

  12. Fiber optic anemometer based on metal infiltrated microstructured optical fiber inscribed with Bragg grating

    Science.gov (United States)

    Wang, Jie; Gao, Shaorui; Liu, Zhengyong; Zhang, A. Ping; Shen, Yonghang; Tam, Hwayaw

    2015-09-01

    An all-fiber optical anemometer with high light-heat conversion efficiency by using an in-house microstructured optical fiber Bragg grating (MOFBG) is presented. Low-molten-temperature BiSnIn alloy was successfully infiltrated into 11- cm length of a six-hole microstructured optical fiber which was inscribed with a fibre Bragg grating (FBG) centered at ~848 nm. Light launched into the MOFBG was strongly absorbed by the metal to generate heat, while the FBG was utilized to monitor temperature change due to surrounding wind speed. The sensitivity of the laser-heated MOFBG anemometer was measured to be ~0.1 nm/(m/s) for wind speed ranged from 0.5 m/s to 2 m/s. The efficiency of the anemometer, defined as effective sensitivity per pump power, is 8.7 nm/(m/s*W).

  13. Optics and photonics: essential technologies for our nation (technology & engineering)

    CERN Document Server

    Research, Committee on Harnessing Light: Capitalizing on Optical Science Trends and Challenges for Future; Sciences, Division on Engineering and Physical; Council, National Research

    2013-01-01

    Optics and photonics technologies are ubiquitous: they are responsible for the displays on smart phones and computing devices, optical fiber that carries the information in the internet, advanced precision manufacturing, enhanced defense capabilities, and a plethora of medical diagnostics tools. The opportunities arising from optics and photonics offer the potential for even greater societal impact in the next few decades, including solar power generation and new efficient lighting that could transform the nation's energy landscape and new optical capabilities that will be essential to support the continued exponential growth of the Internet. As described in the National Research Council report Optics and Photonics: Essential Technologies for our Nation, it is critical for the United States to take advantage of these emerging optical technologies for creating new industries and generating job growth. The report assesses the current state of optical science and engineering in the United States and abroad--incl...

  14. Towards biochips using microstructured optical fiber sensors.

    Science.gov (United States)

    Rindorf, Lars; Høiby, Poul Erik; Jensen, Jesper Bo; Pedersen, Lars Hagsholm; Bang, Ole; Geschke, Oliver

    2006-08-01

    In this paper we present the first incorporation of a microstructured optical fiber (MOF) into biochip applications. A 16-mm-long piece of MOF is incorporated into an optic-fluidic coupler chip, which is fabricated in PMMA polymer using a CO(2) laser. The developed chip configuration allows the continuous control of liquid flow through the MOF and simultaneous optical characterization. While integrated in the chip, the MOF is functionalized towards the capture of a specific single-stranded DNA string by immobilizing a sensing layer on the microstructured internal surfaces of the fiber. The sensing layer contains the DNA string complementary to the target DNA sequence and thus operates through the highly selective DNA hybridization process. Optical detection of the captured DNA was carried out using the evanescent-wave-sensing principle. Owing to the small size of the chip, the presented technique allows for analysis of sample volumes down to 300 nL and the fabrication of miniaturized portable devices.

  15. Recent advances in liquid-crystal fiber optics and photonics

    Science.gov (United States)

    Woliński, T. R.; Siarkowska, A.; Budaszewski, D.; Chychłowski, M.; Czapla, A.; Ertman, S.; Lesiak, P.; Rutkowska, K. A.; Orzechowski, K.; Sala-Tefelska, M.; Sierakowski, M.; DÄ browski, R.; Bartosewicz, B.; Jankiewicz, B.; Nowinowski-Kruszelnicki, E.; Mergo, P.

    2017-02-01

    Liquid crystals over the last two decades have been successfully used to infiltrate fiber-optic and photonic structures initially including hollow-core fibers and recently micro-structured photonic crystal fibers (PCFs). As a result photonic liquid crystal fibers (PLCFs) have been created as a new type of micro-structured fibers that benefit from a merge of "passive" PCF host structures with "active" LC guest materials and are responsible for diversity of new and uncommon spectral, propagation, and polarization properties. This combination has simultaneously boosted research activities in both fields of Liquid Crystals Photonics and Fiber Optics by demonstrating that optical fibers can be more "special" than previously thought. Simultaneously, photonic liquid crystal fibers create a new class of fiber-optic devices that utilize unique properties of the photonic crystal fibers and tunable properties of LCs. Compared to "classical" photonic crystal fibers, PLCFs can demonstrate greatly improved control over their optical properties. The paper discusses the latest advances in this field comprising PLCFs that are based on nanoparticles-doped LCs. Doping of LCs with nanoparticles has recently become a common method of improving their optical, magnetic, electrical, and physical properties. Such a combination of nanoparticles-based liquid crystals and photonic crystal fibers can be considered as a next milestone in developing a new class of fiber-based optofluidic systems.

  16. Extreme temperature sensing using brillouin scattering in optical fibers

    CERN Document Server

    Fellay, Alexandre

    Stimulated Brillouin scattering in silica-based optical fibers may be considered from two different and complementary standpoints. For a physicist, this interaction of light and pressure wave in a material, or equivalently in quantum theory terms between photons and phonons, gives some glimpses of the atomic structure of the solid and of its vibration modes. For an applied engineer, the same phenomenon may be put to good use as a sensing mechanism for distributed measurements, thanks to the dependence of the scattered light on external parameters such as the temperature, the pressure or the strain applied to the fiber. As far as temperature measurements are concerned, Brillouin-based distributed sensors have progressively gained wide recognition as efficient systems, even if their rather high cost still restricts the number of their applications. Yet they are generally used in a relatively narrow temperature range around the usual ambient temperature; in this domain, the frequency of the scattered light incre...

  17. Applications research in ultrasonic testing of carbon fiber composite based on an optical fiber F-p sensor

    Science.gov (United States)

    Shan, Ning

    2016-10-01

    Carbon fiber composite is widely applied to the field of aerospace engineering because of its excellent performance. But it will be able to form more defects in the process of manufacturing inevitably on account of unique manufacturing process. Meanwhile it has sophisticated structure and services in the bad environment long time. The existence of defects will be able to cause the sharp decline in component's performance when the defect accumulates to a certain degree. So the reliability and safety test demand of carbon fiber composite is higher and higher. Ultrasonic testing technology is the important means used for characteristics of component inspection of composite materials. Ultrasonic information detection uses acoustic transducer generally. It need coupling agent and is higher demand for the surface of sample. It has narrow frequency band and low test precision. The extrinsic type optical fiber F-P interference cavity structure is designed to this problem. Its optical interference model is studied. The initial length of F-P cavity is designed. The realtime online detection system of carbon fiber composite is established based on optical fiber F-P Ultrasound sensing technology. Finally, the testing experiment study is conducted. The results show that the system can realize real-time online detection of carbon fiber composite's defect effectively. It operates simply and realizes easily. It has low cost and is easy to practical engineering.

  18. Digitalization optical open loop test system for fiber optic gyroscope

    Institute of Scientific and Technical Information of China (English)

    ZHANG Deng-wei; SHU Xiao-wu; MU Xu-dong; LIU Cheng

    2006-01-01

    In order to receive and process the open loop signal from fiber optic gyroscopes speedily,stably and expediently,and to realize the amity interface between human and machine,a digital system that can convert GPIB (general purpose interface bus ) parallel bus into Universal Serial Bus is developed.All the interface functions of GP1B and the hardware system are realized through FPGA.With a digital sampling and processing system designed with VC++ in Windows platform,the real-time controlling procedure,high-speed receiving and sending data can be carried out,and the results can be displayed too.So the design of the system is flexible,the reliability and the stability are improved,error rate is no more than 10-11,the highest bit rate is 8 MB/s and the open loop detection system for optic fiber gyros achieves standardization and complete digitalization simultaneously.

  19. The Development of Advanced Optical Fibers for Long-Wave Infrared Transmission

    Directory of Open Access Journals (Sweden)

    Pierre Lucas

    2013-12-01

    Full Text Available Long-wave infrared fibers are used in an increasing number of applications ranging from thermal imaging to bio-sensing. However, the design of optical fiber with low-loss in the far-infrared requires a combination of properties including good rheological characteristics for fiber drawing and low phonon energy for wide optical transparency, which are often mutually exclusive and can only be achieved through fine materials engineering. This paper presents strategies for obtaining low loss fibers in the far-infrared based on telluride glasses. The composition of the glasses is systematically investigated to obtained fibers with minimal losses. The fiber attenuation is shown to depend strongly on extrinsic impurity but also on intrinsic charge carrier populations in these low band-gap amorphous semiconductor materials.

  20. Feasibility of an optical fiber clock

    Science.gov (United States)

    Ilinova, Ekaterina; Babb, James F.; Derevianko, Andrei

    2017-09-01

    We explore the feasibility of a fiber clock, i.e., a compact, high-precision, optical lattice atomic clock based on atoms trapped inside a hollow-core optical fiber. Such a setup offers an intriguing potential both for a substantially increased number of interrogated atoms (and thereby an improved clock stability) and for miniaturization. We evaluate the sensitivity of the 1S0-3P0 clock transition in Hg and other divalent atoms to the fiber inner core surface at nonzero temperatures. The Casimir-Polder interaction induced 1S0-3P0 transition frequency shift is calculated for the atom inside the hollow capillary as a function of atomic position, capillary material, and geometric parameters. For Hg atoms on the axis of a silica capillary with inner radius ≥15 μ m and optimally chosen thickness d ˜1 μ m , the atom-surface interaction induced 1S0-3P0 clock transition frequency shift can be kept on the level δ ν /νHg˜10-19 . We also estimate the atom loss and heating due to collisions with the buffer gas, lattice intensity noise induced heating, spontaneous photon scattering heating, and residual birefringence induced frequency shifts.

  1. Algorithm for predictive control implementation on fiber optic transmission lines

    Science.gov (United States)

    Andreev, Vladimir A.; Burdin, Vladimir A.; Voronkov, Andrey A.

    2014-04-01

    This paper presents the algorithm for predictive control implementation on fiber-optic transmission lines. In order to improve the maintenance of fiber optic communication lines, the algorithm prediction uptime optic communication cables have been worked out. It considers the results of scheduled preventive maintenance and database of various works on the track cable line during maintenance.

  2. Packaging considerations of fiber-optic laser sources

    Science.gov (United States)

    Heikkinen, Veli; Tukkiniemi, Kari; Vaehaekangas, Jouko; Hannula, Tapio

    1991-12-01

    The continuous progress in material and component technology has generated new laser-based applications that require special packaging techniques. Hybrid integration offers a flexible method to accomplish custom design needs. This paper discusses several aspects in fiber optic packaging including optical, thermal, and mechanical issues. Special emphasis is on optical coupling between a laser diode and a single-mode fiber.

  3. Fiber optic based optical coherence tomography (OCT) for dental applications

    Energy Technology Data Exchange (ETDEWEB)

    Everett, M. J., LLNL

    1998-06-02

    We have developed a hand-held fiber optic based optical coherence tomography (OCT) system for scanning of the oral cavity We have produced, using this scanning device, in viva cross-sectional images of hard and soft dental tissues in human volunteers Clinically relevant anatomical structures, including the gingival margin, periodontal sulcus, and dento-enamel junction, were visible in all the images The dento-enamel junction and the alveolar bone were identifiable in approximately two thirds of the images These images represent, to our knowledge, the first in viva OCT images of human dental tissue.

  4. Fiber Optic Pressure Sensor using Multimode Interference

    Energy Technology Data Exchange (ETDEWEB)

    Ruiz-Perez, V I; Sanchez-Mondragon, J J [INAOE, Apartado Postal 51 y 216, Puebla 72000 (Mexico); Basurto-Pensado, M A [CIICAp, Universidad Autonoma del Estado de Morelos (Mexico); LiKamWa, P [CREOL, University of Central Florida, Orlando, FL 32816 (United States); May-Arrioja, D A, E-mail: iruiz@inaoep.mx, E-mail: mbasurto@uaem.mx, E-mail: delta_dirac@hotmail.com, E-mail: daniel_may_arrioja@hotmail.com [UAT Reynosa Rodhe, Universidad Autonoma de Tamaulipas (Mexico)

    2011-01-01

    Based on the theory of multimode interference (MMI) and self-image formation, we developed a novel intrinsic optical fiber pressure sensor. The sensing element consists of a section of multimode fiber (MMF) without cladding spliced between two single mode fibers (SMF). The MMI pressure sensor is based on the intensity changes that occur in the transmitted light when the effective refractive index of the MMF is changed. Basically, a thick layer of Polydimethylsiloxane (PDMS) is placed in direct contact with the MMF section, such that the contact area between the PDMS and the fiber will change proportionally with the applied pressure, which results in a variation of the transmitted light intensity. Using this configuration, a good correlation between the measured intensity variations and the applied pressure is obtained. The sensitivity of the sensor is 3 {mu}V/psi, for a range of 0-60 psi, and the maximum resolution of our system is 0.25 psi. Good repeatability is also observed with a standard deviation of 0.0019. The key feature of the proposed pressure sensor is its low fabrication cost, since the cost of the MMF is minimal.

  5. Huge capacity fiber-optic sensing network based on ultra-weak draw tower gratings

    Science.gov (United States)

    Yang, Minghong; Bai, Wei; Guo, Huiyong; Wen, Hongqiao; Yu, Haihu; Jiang, Desheng

    2016-03-01

    This paper reviews the work on huge capacity fiber-optic sensing network based on ultra-weak draw tower gratings developed at the National Engineering Laboratory for Fiber Optic Sensing Technology (NEL-FOST), Wuhan University of Technology, China. A versatile drawing tower grating sensor network based on ultra-weak fiber Bragg gratings (FBGs) is firstly proposed and demonstrated. The sensing network is interrogated with time- and wavelength-division multiplexing method, which is very promising for the large-scale sensing network.

  6. Nanomechanical Optical Fiber with Embedded Electrodes Actuated by Joule Heating

    Directory of Open Access Journals (Sweden)

    Zhenggang Lian

    2014-07-01

    Full Text Available Nanomechanical optical fibers with metal electrodes embedded in the jacket were fabricated by a multi-material co-draw technique. At the center of the fibers, two glass cores suspended by thin membranes and surrounded by air form a directional coupler that is highly temperature-dependent. We demonstrate optical switching between the two fiber cores by Joule heating of the electrodes with as little as 0.4 W electrical power, thereby demonstrating an electrically actuated all-fiber microelectromechanical system (MEMS. Simulations show that the main mechanism for optical switching is the transverse thermal expansion of the fiber structure.

  7. Activities to investigate wavelength-shifting optical fibers

    Science.gov (United States)

    Anderson, Megan; Strong, Denver; Baker, Blane

    2017-07-01

    Understanding principles and operation of optical fibers is important for students of physics due to increased applications of fiber optics in today’s technological world. In an effort to devise new activities to study such fibers, we obtained samples of wavelength-shifting WLS optical fibers, used in construction of research-grade particle detectors. Qualitative experiments in our laboratories examined how these fibers interact with various colors of visible light. From these results, student activities were developed to increase critical thinking in introductory physics courses and to facilitate students’ progression from traditional-classroom to research-oriented settings.

  8. Distributed optical fiber dynamic magnetic field sensor based on magnetostriction.

    Science.gov (United States)

    Masoudi, Ali; Newson, Trevor P

    2014-05-01

    A distributed optical fiber sensor is introduced which is capable of quantifying multiple magnetic fields along a 1 km sensing fiber with a spatial resolution of 1 m. The operation of the proposed sensor is based on measuring the magnetorestrictive induced strain of a nickel wire attached to an optical fiber. The strain coupled to the optical fiber was detected by measuring the strain-induced phase variation between the backscattered Rayleigh light from two segments of the sensing fiber. A magnetic field intensity resolution of 0.3 G over a bandwidth of 50-5000 Hz was demonstrated.

  9. Glass-based integrated optical splitters: engineering oriented research

    Science.gov (United States)

    Hao, Yinlei; Zheng, Weiwei; Yang, Jianyi; Jiang, Xiaoqing; Wang, Minghua

    2010-10-01

    Optical splitter is one of most typical device heavily demanded in implementation of Fiber To The Home (FTTH) system. Due to its compatibility with optical fibers, low propagation loss, flexibility, and most distinguishingly, potentially costeffectiveness, glass-based integrated optical splitters made by ion-exchange technology promise to be very attractive in application of optical communication networks. Aiming at integrated optical splitters applied in optical communication network, glass ion-exchange waveguide process is developed, which includes two steps: thermal salts ion-exchange and field-assisted ion-diffusion. By this process, high performance optical splitters are fabricated in specially melted glass substrate. Main performance parameters of these splitters, including maximum insertion loss (IL), polarization dependence loss (PDL), and IL uniformity are all in accordance with corresponding specifications in generic requirements for optic branching components (GR-1209-CORE). In this paper, glass based integrated optical splitters manufacturing is demonstrated, after which, engineering-oriented research work results on glass-based optical splitter are presented.

  10. Optical Fiber High Temperature Sensor Instrumentation for Energy Intensive Industries

    Energy Technology Data Exchange (ETDEWEB)

    Cooper, Kristie L.; Wang, Anbo; Pickrell, Gary R.

    2006-11-14

    This report summarizes technical progress during the program “Optical Fiber High Temperature Sensor Instrumentation for Energy Intensive Industries”, performed by the Center for Photonics Technology of the Bradley Department of Electrical and Computer Engineering at Virginia Tech. The objective of this program was to use technology recently invented at Virginia Tech to develop and demonstrate the application of self-calibrating optical fiber temperature and pressure sensors to several key energy-intensive industries where conventional, commercially available sensors exhibit greatly abbreviated lifetimes due primarily to environmental degradation. A number of significant technologies were developed under this program, including • a laser bonded silica high temperature fiber sensor with a high temperature capability up to 700°C and a frequency response up to 150 kHz, • the world’s smallest fiber Fabry-Perot high temperature pressure sensor (125 x 20 μm) with 700°C capability, • UV-induced intrinsic Fabry-Perot interferometric sensors for distributed measurement, • a single crystal sapphire fiber-based sensor with a temperature capability up to 1600°C. These technologies have been well demonstrated and laboratory tested. Our work plan included conducting major field tests of these technologies at EPRI, Corning, Pratt & Whitney, and Global Energy; field validation of the technology is critical to ensuring its usefulness to U.S. industries. Unfortunately, due to budget cuts, DOE was unable to follow through with its funding commitment to support Energy Efficiency Science Initiative projects and this final phase was eliminated.

  11. Transmission test in connection of different types of optical fibers: a dispersion-shifted single-mode optical fiber (DSF) and a single-mode optical fiber (SM); DSF-SM ishu hikari fiber setsuzoku ni okeru denso shiken

    Energy Technology Data Exchange (ETDEWEB)

    Uemura, J. [Chugoku Electric Power Co. Inc., Hiroshima (Japan)

    1998-08-25

    The currently used optical transmission system usually uses a single-mode optical fiber (SM) with 1.3 {mu} m band. For sections requiring long-distance transmission, a dispersion-shifted single-mode optical fiber (DSF) with 1.55 {mu} m band is beginning to be partly used. If, in using these fibers, the different types of optical fibers, SM and DSF, can be used directly connected with each other, structuring an economical optical communication network including the existing SM fibers may become possible. This paper describes measurements of connection loss between the different optical fibers of DSF and SM, a transmission test on the connection between the different optical fibers of DSF and SM by using an amplifier for optical fibers used in an actual field, and an optical wave multiplex transmission test. The measurements and the tests were carried out in winter and summer of 1997 by using the existing OPGW optical fibers among the Okayama substation, the Higashi-Okayama substation, and the Susai substation. The connection between the different optical fibers of DSF and SM generates greater connection loss than in connection with the same type of fibers due to difference in the mode field diameters. Therefore, it will be necessary in constituting an optical fiber line to incorporate connection loss of about 1 to 2 dB in connector connection and about 0.5 to 1 dB in welding connection. 1 ref., 17 figs., 7 tabs.

  12. Optical fibers with composite magnetic coating for magnetic field sensing

    Energy Technology Data Exchange (ETDEWEB)

    Radojevic, V.; Nedeljkovic, D.; Talijan, N. E-mail: ntalijan@elab.tmf.bg.ac.yu; Trifunovic, D.; Aleksic, R

    2004-05-01

    The investigated system for optical fiber sensor was multi-mode optical fiber with magnetic composite coating. Polymer component of composite coating was poly (ethylene-co-vinyl acetate)-EVA, and the magnetic component was powder of SmCo{sub 5} permanent magnet in form of single domain particles. The influence of the applied external magnetic field on the change of intensity of the light signal propagated through optical fiber was investigated.

  13. Optical fibers with composite magnetic coating for magnetic field sensing

    Science.gov (United States)

    Radojevic, V.; Nedeljkovic, D.; Talijan, N.; Trifunovic, D.; Aleksic, R.

    2004-05-01

    The investigated system for optical fiber sensor was multi-mode optical fiber with magnetic composite coating. Polymer component of composite coating was poly (ethylene-co-vinyl acetate)-EVA, and the magnetic component was powder of SmCo5 permanent magnet in form of single domain particles. The influence of the applied external magnetic field on the change of intensity of the light signal propagated through optical fiber was investigated.

  14. Demonstration of a Fiber Optic Regression Probe

    Science.gov (United States)

    Korman, Valentin; Polzin, Kurt A.

    2010-01-01

    The capability to provide localized, real-time monitoring of material regression rates in various applications has the potential to provide a new stream of data for development testing of various components and systems, as well as serving as a monitoring tool in flight applications. These applications include, but are not limited to, the regression of a combusting solid fuel surface, the ablation of the throat in a chemical rocket or the heat shield of an aeroshell, and the monitoring of erosion in long-life plasma thrusters. The rate of regression in the first application is very fast, while the second and third are increasingly slower. A recent fundamental sensor development effort has led to a novel regression, erosion, and ablation sensor technology (REAST). The REAST sensor allows for measurement of real-time surface erosion rates at a discrete surface location. The sensor is optical, using two different, co-located fiber-optics to perform the regression measurement. The disparate optical transmission properties of the two fiber-optics makes it possible to measure the regression rate by monitoring the relative light attenuation through the fibers. As the fibers regress along with the parent material in which they are embedded, the relative light intensities through the two fibers changes, providing a measure of the regression rate. The optical nature of the system makes it relatively easy to use in a variety of harsh, high temperature environments, and it is also unaffected by the presence of electric and magnetic fields. In addition, the sensor could be used to perform optical spectroscopy on the light emitted by a process and collected by fibers, giving localized measurements of various properties. The capability to perform an in-situ measurement of material regression rates is useful in addressing a variety of physical issues in various applications. An in-situ measurement allows for real-time data regarding the erosion rates, providing a quick method for

  15. Development, Qualification and Integration of the Optical Fiber Array Assemblies for the Lunar Reconnaissance Orbiter

    Science.gov (United States)

    Ott, Melanie N.; Switzer, Robert; Chuska, Richard; LaRocca, Frank; Thomas, William Joe; Macmurphy, Shawn

    2008-01-01

    The NASA Goddard Fiber Optics Team in the Electrical Engineering Division of the Applied Engineering and Technology Directorate, designed, developed and integrated the space flight optical fiber array hardware for the Lunar Reconnaissance Orbiter (LRO). The two new assemblies that were designed and manufacturing at GSFC for the LRO exist in configurations that are unique in the world for the application of ranging and LIDAR. Described here is an account of the journey and the lessons learned from design to integration for the Lunar Orbiter Laser Altimeter and the Laser Ranging Application on the LRO.

  16. In-Line Fiber Optic Interferometric Sensors in Single-Mode Fibers

    Directory of Open Access Journals (Sweden)

    De-Wen Duan

    2012-08-01

    Full Text Available In-line fiber optic interferometers have attracted intensive attention for their potential sensing applications in refractive index, temperature, pressure and strain measurement, etc. Typical in-line fiber-optic interferometers are of two types: Fabry-Perot interferometers and core-cladding-mode interferometers. It’s known that the in-line fiber optic interferometers based on single-mode fibers can exhibit compact structures, easy fabrication and low cost. In this paper, we review two kinds of typical in-line fiber optic interferometers formed in single-mode fibers fabricated with different post-processing techniques. Also, some recently reported specific technologies for fabricating such fiber optic interferometers are presented.

  17. Eliminating Crystals in Non-Oxide Optical Fiber Preforms and Optical Fibers

    Science.gov (United States)

    Tucker, Dennis S.; LaPointe, Michael R.

    2012-01-01

    Non ]oxide fiber optics such as heavy metal fluoride and chalcogenide glasses are extensively used in infrared transmitting applications such as communication systems, chemical sensors, and laser fiber guides for cutting, welding and medical surgery. The addition of rare earths such as erbium, enable these materials to be used as fiber laser and amplifiers. Some of these glasses however are very susceptible to crystallization. Even small crystals can lead to light scatter and a high attenuation coefficient, limiting their usefulness. Previously two research teams found that microgravity suppressed crystallization in heavy metal fluoride glasses. Looking for a less expensive method to suppress crystallization, ground based research was performed utilizing an axial magnetic field. The experiments revealed identical results to those obtained via microgravity processing. This research then led to a patented process for eliminating crystals in optical fiber preforms and the resulting optical fibers. In this paper, the microgravity results will be reviewed as well as patents and papers relating to the use of magnetic fields in various material and glass processing applications. Finally our patent to eliminate crystals in non ]oxide glasses utilizing a magnetic field will be detailed.

  18. Secure optical communication using stimulated Brillouin scattering in optical fiber

    Science.gov (United States)

    Yi, Lilin; Zhang, Tao; Li, Zhengxuan; Zhou, Junhe; Dong, Yi; Hu, Weisheng

    2013-03-01

    We propose to encrypt/decrypt high-speed optical signal using stimulated Brillouin scattering (SBS) effect in optical fiber for the first time. The broadened SBS gain or loss distorts the amplitude and phase of the optical signal so as to realize all-optical encryption. The corresponding SBS loss or gain with the same bandwidth and amplitude recovers the distorted signal to implement optical decryption. The encryption/decryption keys could be the SBS gain amplitude, bandwidth, central wavelength and the spectral shape, which are configurable and can be flexibly controlled by the users. The operation principle of the SBS based encryption and decryption is explained in detail. Complete encryption and error-free decryption for a 10.86-Gb/s on-off-keying signal has been experimentally demonstrated using broadband SBS amplification and absorption. The immunity of the proposed encryption method to the eavesdropper's attack is also analyzed. The SBS based secure optical communication is compatible with the current optical communication systems.

  19. Optical fiber gas sensing system based on FBG filtering

    Science.gov (United States)

    Wang, Shutao

    2008-10-01

    An optical fiber gas sensing system based on the law of Beer-Lambert is designed to determine the concentration of gas. This technique relies on the fact that the target gas has a unique, well-defined absorption characteristic within the infrared region of electromagnetic spectrum. The narrow-band filtering characteristic of optical fiber Bragg grating is used to produce the narrow spectrum light signal. An aspheric objective optical fiber collimator is used in the system as an optical fiber gas sensing detector to improve the sensitivity and stability. Experimental results show there is a high measuring sensitivity at 0.01%, and the measuring range goes beyond 5%.

  20. Compact Fiber Optic Strain Sensors (cFOSS) Element

    Data.gov (United States)

    National Aeronautics and Space Administration — Armstrong researchers are reducing the Fiber Optic Sensing Sysme (FOSS) technology’s size, power requirement, weight, and cost to effectively extend...

  1. Static sensitivity calculation of a novel fiber optic biosensor

    Institute of Scientific and Technical Information of China (English)

    Zhongchen Bai; Shuijie Qin; Jing Li; Dashun Huang; Xin Zhang

    2008-01-01

    A novel structure of fiber optic biosensor and its principle are introduced. The sample is detected in microchannels of several microns diameter in fiber optic biosensors. The relation between the optic fiber tapered angle and the fluorescence incident angle is calculated in signal receiving part. As the sensor is a zero-order system, calculating formula of the static sensitivity is derived. When ZnSe nano-crystalline cluster is used for marking the molecules, the static sensitivity for fiber optic biosensors is calculated. At the same time, the relation between the static sensitivity and the ratio of exciting wavelength to fluorescence wavelength is presented.

  2. NOVEL SPECTRUM ABSORPTION OPTICAL FIBER METHANE SENSOR

    Institute of Scientific and Technical Information of China (English)

    Wang Shutao; Che Rensheng

    2005-01-01

    Based on spectrum principle and analyzing the infrared absorption spectrum of methane, a kind of optical fiber methane gas sensor and its system are developed. DFBLD(Distributed feedback laser diode) in 1 300 nm waveband is used as illuminant and phase-detecting technology is used to carry out harmonic wave detecting the concentration of methane. The sensitivity can arrive at 10-5.Experiments results show that the performance targets of the sensor such as sensitivity can basically satisfy the requests of methane detection.

  3. Adaptive Holographic Fiber-Optic Interferometer

    Science.gov (United States)

    Kozhevnikov, Nikolai M.; Lipovskaya, Margarita J.

    1990-04-01

    Interaction of phase-modulated light beams in photorefractive local inertial responce media was analysed. Interaction of this type allows to registrate phase-modulated signals adaptively under low frequency phase disturbtion. The experiments on multimode fiber-optic interferometer with demodulation element based on photorefractive bacteriorhodopsin-doped polimer film are described. As the writing of dynamic phase hologram is an inertial process the signal fluctuations with the frequencies up to 100 Hz can be canceled. The hologram efficiencies are enough to registrate high frequency phase shifts ~10-4 radn.

  4. OPTICAL FIBER SENSOR TECHNOLOGIES FOR EFFICIENT AND ECONOMICAL OIL RECOVERY

    Energy Technology Data Exchange (ETDEWEB)

    Anbo Wang; Kristie L. Cooper; Gary R. Pickrell

    2003-06-01

    Efficient recovery of petroleum reserves from existing oil wells has been proven to be difficult due to the lack of robust instrumentation that can accurately and reliably monitor processes in the downhole environment. Commercially available sensors for measurement of pressure, temperature, and fluid flow exhibit shortened lifetimes in the harsh downhole conditions, which are characterized by high pressures (up to 20 kpsi), temperatures up to 250 C, and exposure to chemically reactive fluids. Development of robust sensors that deliver continuous, real-time data on reservoir performance and petroleum flow pathways will facilitate application of advanced recovery technologies, including horizontal and multilateral wells. This is the final report for the four-year program ''Optical Fiber Sensor Technologies for Efficient and Economical Oil Recovery'', funded by the National Petroleum Technology Office of the U.S. Department of Energy, and performed by the Center for Photonics Technology of the Bradley Department of Electrical and Computer Engineering at Virginia Tech from October 1, 1999 to March 31, 2003. The main objective of this research program was to develop cost-effective, reliable optical fiber sensor instrumentation for real-time monitoring of various key parameters crucial to efficient and economical oil production. During the program, optical fiber sensors were demonstrated for the measurement of temperature, pressure, flow, and acoustic waves, including three successful field tests in the Chevron/Texaco oil fields in Coalinga, California, and at the world-class oil flow simulation facilities in Tulsa, Oklahoma. Research efforts included the design and fabrication of sensor probes, development of signal processing algorithms, construction of test systems, development and testing of strategies for the protection of optical fibers and sensors in the downhole environment, development of remote monitoring capabilities allowing real

  5. Genomes for jeans: cotton genomics for engineering superior fiber.

    Science.gov (United States)

    Mansoor, Shahid; Paterson, Andrew H

    2012-10-01

    Twenty years ago, scientists predicted that better understanding of fiber development would lead to novel ways to engineer superior cotton fiber. Advances in genetic resources, DNA markers, DNA sequence information, and gene expression data have indeed provided new insights into fiber initiation, elongation and maturation. Many exciting applications of this knowledge offer the potential to select better cotton genotypes more effectively in mainstream breeding programs or engineer genotypes with improved agronomic and/or quality traits. Here, we discuss recent progress in understanding genes involved in fiber development, and their regulation and manipulation to engineer improved fibers. Better understanding of quantitative trait loci/gene interactions that influence fiber quality and yield may help to tailor superior cotton genotypes to diverse environments.

  6. All-fiber hybrid photon-plasmon circuits: integrating nanowire plasmonics with fiber optics.

    Science.gov (United States)

    Li, Xiyuan; Li, Wei; Guo, Xin; Lou, Jingyi; Tong, Limin

    2013-07-01

    We demonstrate all-fiber hybrid photon-plasmon circuits by integrating Ag nanowires with optical fibers. Relying on near-field coupling, we realize a photon-to-plasmon conversion efficiency up to 92% in a fiber-based nanowire plasmonic probe. Around optical communication band, we assemble an all-fiber resonator and a Mach-Zehnder interferometer (MZI) with Q-factor of 6 × 10(6) and extinction ratio up to 30 dB, respectively. Using the MZI, we demonstrate fiber-compatible plasmonic sensing with high sensitivity and low optical power.

  7. Optimize Etching Based Single Mode Fiber Optic Temperature Sensor

    Directory of Open Access Journals (Sweden)

    Ajay Kumar

    2014-02-01

    Full Text Available This paper presents a description of etching process for fabrication single mode optical fiber sensors. The process of fabrication demonstrates an optimized etching based method to fabricate single mode fiber (SMF optic sensors in specified constant time and temperature. We propose a single mode optical fiber based temperature sensor, where the temperature sensing region is obtained by etching its cladding diameter over small length to a critical value. It is observed that the light transmission through etched fiber at 1550 nm wavelength optical source becomes highly temperature sensitive, compared to the temperature insensitive behavior observed in un-etched fiber for the range on 30ºC to 100ºC at 1550 nm. The sensor response under temperature cycling is repeatable and, proposed to be useful for low frequency analogue signal transmission over optical fiber by means of inline thermal modulation approach.

  8. Hollow fiber bioreactor technology for tissue engineering applications.

    Science.gov (United States)

    Eghbali, Hadis; Nava, Michele M; Mohebbi-Kalhori, Davod; Raimondi, Manuela T

    2016-01-01

    Hollow fiber bioreactors are the focus of scientific research aiming to mimic physiological vascular networks and engineer organs and tissues in vitro. The reason for this lies in the interesting features of this bioreactor type, including excellent mass transport properties. Indeed, hollow fiber bioreactors allow limitations to be overcome in nutrient transport by diffusion, which is often an obstacle to engineer sizable constructs in vitro. This work reviews the existing literature relevant to hollow fiber bioreactors in organ and tissue engineering applications. To this purpose, we first classify the hollow fiber bioreactors into 2 categories: cylindrical and rectangular. For each category, we summarize their main applications both at the tissue and at the organ level, focusing on experimental models and computational studies as predictive tools for designing innovative, dynamic culture systems. Finally, we discuss future perspectives on hollow fiber bioreactors as in vitro models for tissue and organ engineering applications.

  9. A Case Study of Search Engine on World Wide Web for Chemical Fiber Engineering

    Institute of Scientific and Technical Information of China (English)

    张利; 邵世煌; 曾献辉; 尹美华

    2001-01-01

    Search engine is an effective approach to promote the service quality of the World Wide Web. On terms of the analysis of search engines at home and abroad, the developing principle of search engines is given according to the requirement of Web information for chemical fiber engineering. The implementation method for the communication and dynamic refreshment of information on home page of the search engines are elaborated by using programming technology of Active Server Page 3.0 (ASP3.0). The query of chemical fiber information and automatic linking of chemical fiber Web sites can be easily realized by the developed search engine under Internet environment according to users' requirement.

  10. Infiltrated microstructured fibers as tunable and nonlinear optical devices

    DEFF Research Database (Denmark)

    Rosberg, Christian Romer; Bennet, Francis; Neshev, Dragomir N.;

    We study the light guiding properties of microstructured optical fibers infiltrated with nonlinear liquids and demonstrate their applicability for spatial beam control in novel type tunable and nonlinear optical devices....

  11. Tunable photonic bandgap fiber based devices for optical networks

    DEFF Research Database (Denmark)

    Alkeskjold, Thomas Tanggaard; Scolari, Lara; Rottwitt, Karsten

    2005-01-01

    In future all optical networks one of the enabling technologies is tunable elements including reconfigurable routers, switches etc. Thus, the development of a technology platform that allows construction of tuning components is critical. Lately, microstructured optical fibers, filled with liquid...

  12. Fiber fuse light-induced continuous breakdown of silica glass optical fiber

    CERN Document Server

    Todoroki, Shin-ichi

    2014-01-01

    This book describes the fiber fuse phenomenon that causes a serious problem for the present optical communication systems. High-power light often brings about catastrophic damage to optical devices. Silica glass optical fibers with ultralow transmission loss are not the exception. A fiber fuse appears in a heated region of the fiber cable delivering a few watts of light and runs toward the light source destroying its core region. Understanding this phenomenon is a necessary first step in the development of future optical communication systems. This book provides supplementary videos and photog

  13. Tilted fiber Bragg gratings in multicore optical fibers for optical sensing.

    Science.gov (United States)

    Barrera, David; Madrigal, Javier; Sales, Salvador

    2017-04-01

    We have inscribed a tilted fiber Bragg grating (TFBG) in selected cores of a multicore optical fiber. The presence of the TFBG permits to couple light from the incident-guided mode to the cladding modes and to the neighbor cores, and this interaction can be used for optical sensing. We measured different magnitudes: strain, curvature magnitude and direction, and external refractive index. The curvature results show a linear dependence of the maximum crosstalk with the curvature magnitude with a sensitivity of 2.5  dB/m-1 as the curvature magnitude increases and at the same time a wavelength shift of 70  pm/m-1. Changes in the external refractive index gradually vanish the cladding modes resonances and the crosstalk between the different cores, obtaining a reduction of the 90% of the optical spectra integral area for refractive indexes between 1.398 and 1.474.

  14. Fiber-Optic Terahertz Data-Communication Networks

    Science.gov (United States)

    Chua, Peter L.; Lambert, James L.; Morookian, John M.; Bergman, Larry A.

    1994-01-01

    Network protocols implemented in optical domain. Fiber-optic data-communication networks utilize fully available bandwidth of single-mode optical fibers. Two key features of method: use of subpicosecond laser pulses as carrier signals and spectral phase modulation of pulses for optical implementation of code-division multiple access as multiplexing network protocol. Local-area network designed according to concept offers full crossbar functionality, security of data in transit through network, and capacity about 100 times that of typical fiber-optic local-area network in current use.

  15. Full-mesh optical backplane with standard MM fiber ribbons

    Science.gov (United States)

    Ferrario, M.; Coviello, D.; Boffi, P.; Martinelli, M.; Basile, V.; Fassi, I.; Falcucci, M.; Renghini, C.; Scalmati, Paolo

    2016-03-01

    A new optical backplane solution is proposed for high-capacity ICT apparatus. A modular, scalable and full-mesh bandwidth-upgradable optical interconnection between optoelectronic boards is guaranteed thanks to an optimized layout of standard MM 12-fiber ribbons which divides the overall backplane into several independent optical sub-circuits. The novel automated assembly procedure of fiber ribbons inside sub-circuits with a robotic work-cell is described. System validation of the optical backplane performed with commercially available MM 12-fiber transceivers @10Gb/s proved the feasibility of the proposed solution for future optical interconnections with terabit overall capacity.

  16. Grizzly Substation Fiber Optics : Environmental Assessment.

    Energy Technology Data Exchange (ETDEWEB)

    United States. Bonneville Power Administration.

    1998-02-01

    This notice announces BPA`s decision to construct, operate, and maintain the Grizzly Substation Fiber Optic Project (Project). This Project is part of a continuing effort by BPA to complete a regionwide upgrade of its existing telecommunications system. The US Forest Service and BPA jointly prepared the Grizzly Substation Fiber Optic Project Environmental Assessment (EA) (DOE/EA-1241) evaluating the potential environmental impacts of the Proposed Action, the Underground Installation Alternative, and the No Action Alternative. Based on the analysis in the EA, the US Forest Service and BPA have determined that the Proposed Action is not a major Federal action significantly affecting the quality of the human environment, within the meaning of the National Environmental Policy Act (NEPA) of 1969. Therefore, the preparation of an Environmental Impact Statement (EIS) is not required and BPA is issuing this FONSI. The US Forest Service has separately issued a FONSI and Decision Notice authorizing BPA to construct, operate, and maintain the Project within the Crooked River National Grassland (Grassland).

  17. Fiber optic pressure sensing with conforming elastomers.

    Science.gov (United States)

    Shao, Li-Yang; Jiang, Qi; Albert, Jacques

    2010-12-10

    A novel pressure sensing scheme based on the effect of a conforming elastomer material on the transmission spectrum of tilted fiber Bragg gratings is presented. Lateral pressure on the elastomer increases its contact angle around the circumference of the fiber and strongly perturbs the optical transmission of the grating. Using an elastomer with a Young's modulus of 20 MPa, a Poisson ratio of 0.48, and a refractive index of 1.42, the sensor reacts monotonically to pressures from 0 to 50 kPa (and linearly from 0 to 15 kPa), with a standard deviation of 0.25 kPa and maximum error of 0.5 kPa. The data are extracted from the optical transmission spectrum using Fourier analysis and we show that this technique makes the response of the sensor independent of temperature, with a maximum error of 2% between 25°C and 75°C. Finally, other pressure ranges can be reached by using conforming materials with different modulii or applying the pressure at different orientations.

  18. Portable optical fiber probe for in vivo brain temperature measurements.

    Science.gov (United States)

    Musolino, Stefan; Schartner, Erik P; Tsiminis, Georgios; Salem, Abdallah; Monro, Tanya M; Hutchinson, Mark R

    2016-08-01

    This work reports on the development of an optical fiber based probe for in vivo measurements of brain temperature. By utilizing a thin layer of rare-earth doped tellurite glass on the tip of a conventional silica optical fiber a robust probe, suitable for long-term in vivo measurements of temperature can be fabricated. This probe can be interrogated using a portable optical measurement setup, allowing for measurements to be performed outside of standard optical laboratories.

  19. Miniaturized Optical Tweezers Through Fiber-End Microfabrication

    KAUST Repository

    Liberale, Carlo

    2014-07-30

    Optical tweezers represent a powerful tool for a variety of applications both in biology and in physics, and their miniaturization and full integration is of great interest so as to reduce size (towards portable systems), and to minimize the required intervention from the operator. Optical fibers represent a natural solution to achieve this goal, and here we review the realization of single-fiber optical tweezers able to create a purely optical three-dimensional trap. © Springer International Publishing Switzerland 2015.

  20. HIGH-STABLE ERBIUM SUPERLUMINESCENT FIBER OPTICAL SOURCES CREATION METHODS

    OpenAIRE

    A. S. Aleynik; N. E. Kikilich; V. N. Kozlov; A. A. Vlasov; NIKITENKO A.N.

    2016-01-01

    We present the overview of wideband Erbium doped superluminescent fiber sources (EDSFS) creation methods. This type of optical sources is mainly used in navigation accuracy class fiber-optical gyroscopes (FOG) production. For this application an optical source should have small coherence length to reduce FOG output signal error rate. Output signal errors are caused by different parasitic effects: reverse Rayleigh scattering, optical components mode swapping, Kerr effect. Consequently, the mos...

  1. Optical sensors of bulk refractive index using optical fiber resonators

    Science.gov (United States)

    Eryürek, M.; Karadag, Y.; Ghafoor, M.; Bavili, N.; Cicek, K.; Kiraz, A.

    2017-05-01

    Optical fiber resonator (OFR) sensor is presented for bulk liquid refractive index (RI) sensing. The sensing mechanism relies on the spectral shifts of whispering gallery modes (WGMs) of OFRs which are excited using a tapered fiber. OFR liquid RI sensor is fully characterized using water solutions of ethanol and ethylene glycol (EG). A good agreement is achieved between the analytical calculations and experimental results for both TE and TM polarizations. The detection limit for bulk RI is calculated to be between 2.7 - 4.7 × 10-5 refractive index unit (RIU). The OFR sensor provides a robust, easy-to-fabricate and sensitive liquid refractive index sensor which can be employed in lab-on-a-chip applications.

  2. Polarization-maintaining fiber loop with double optical length and its application to fiber optic gyroscope

    Institute of Scientific and Technical Information of China (English)

    Changsheng Li; Chunxi Zhang; Ningfang Song; Hongjie Xu

    2011-01-01

    @@ A novel polarization maintaining fiber (PMP) loop is proposed and used for an interferometric fiber optic gyroscope (FOG). By splicing a conventional PMF loop with two pigtailed polarization beam splitters, polarized light can be guided to propagate along the slow and fast axes of the PMF in sequence to double its effective optical length in the loop. In particular, the resultant optical length in the combined loop is partially self-compensated for some external disturbances, such as transverse strain. Primary experiments on the FOG using the proposed loop demonstrate that the average static bias deviation between -40 and +60 ℃ is less than 0.050 deg./h, and the average bias variation under conventional random vibration test is less than 0.10 deg./h.%A novel polarization maintaining fiber (PMF) loop is proposed and used for an interferometric fiber optic gyroscope (FOG). By splicing a conventional PMF loop with two pigtailed polarization beam splitters,polarized light can be guided to propagate along the slow and fast axes of the PMF in sequence to double its effective optical length in the loop. In particular, the resultant optical length in the combined loop is partially self-compensated for some external disturbances, such as transverse strain. Primary experiments on the FOG using the proposed loop demonstrate that the average static bias deviation between -40 and +60 ℃ is less than 0.050 deg./h, and the average bias variation under conventional random vibration test is less than 0.10 deg./h.

  3. Optical Frequency Upconversion Technique for Transmission of Wireless MIMO-Type Signals over Optical Fiber

    OpenAIRE

    R. Q. Shaddad; Mohammad, A. B.; S. A. Al-Gailani; Al-Hetar, A. M.

    2014-01-01

    The optical fiber is well adapted to pass multiple wireless signals having different carrier frequencies by using radio-over-fiber (ROF) technique. However, multiple wireless signals which have the same carrier frequency cannot propagate over a single optical fiber, such as wireless multi-input multi-output (MIMO) signals feeding multiple antennas in the fiber wireless (FiWi) system. A novel optical frequency upconversion (OFU) technique is proposed to solve this problem. In this paper, the n...

  4. Fiber-optical microphones and accelerometers based on polymer optical fiber Bragg gratings

    DEFF Research Database (Denmark)

    Yuan, Scott Wu; Stefani, Alessio; Bang, Ole

    2010-01-01

    Polymer optical fibers (POFs) are ideal for applications as the sensing element in fiber-optical microphones and accelerometers based on fiber Bragg gratings (FBGs) due to their reduced Young’s Modulus of 3.2GPa, compared to 72GPa of Silica. To maximize the sensitivity and the dynamic range...... of the device the outer diameter and the length of the sensing fiber segment should be as small as possible. To this end we have fabricated 3mm FBGs in single-mode step-index POFs of diameter 115 micron, using 325nm UV writing and a phase-mask technique. 6mm POF sections with FBGs in the center have been glued...... to standard Silica SMF28 fibers. These POF FBGs have been characterized in terms of temperature and strain to find operating regimes with no hysteresis. Commercial fast wavelength interrogators (KHz) are shown to be able to track the thin POF FBGs and they are finally applied in a prototype accelerometer...

  5. Fiber-optical microphones and accelerometers based on polymer optical fiber Bragg gratings

    DEFF Research Database (Denmark)

    Yuan, Scott Wu; Stefani, Alessio; Bang, Ole

    2010-01-01

    Polymer optical fibers (POFs) are ideal for applications as the sensing element in fiber-optical microphones and accelerometers based on fiber Bragg gratings (FBGs) due to their reduced Young’s Modulus of 3.2GPa, compared to 72GPa of Silica. To maximize the sensitivity and the dynamic range...... of the device the outer diameter and the length of the sensing fiber segment should be as small as possible. To this end we have fabricated 3mm FBGs in single-mode step-index POFs of diameter 115 micron, using 325nm UV writing and a phase-mask technique. 6mm POF sections with FBGs in the center have been glued...... to standard Silica SMF28 fibers. These POF FBGs have been characterized in terms of temperature and strain to find operating regimes with no hysteresis. Commercial fast wavelength interrogators (KHz) are shown to be able to track the thin POF FBGs and they are finally applied in a prototype accelerometer...

  6. Fiber optical parametric amplifiers in optical communication systems.

    Science.gov (United States)

    Marhic, Michel E; Andrekson, Peter A; Petropoulos, Periklis; Radic, Stojan; Peucheret, Christophe; Jazayerifar, Mahmoud

    2015-01-01

    The prospects for using fiber optical parametric amplifiers (OPAs) in optical communication systems are reviewed. Phase-insensitive amplifiers (PIAs) and phase-sensitive amplifiers (PSAs) are considered. Low-penalty amplification at/or near 1 Tb/s has been achieved, for both wavelength- and time-division multiplexed formats. High-quality mid-span spectral inversion has been demonstrated at 0.64 Tb/s, avoiding electronic dispersion compensation. All-optical amplitude regeneration of amplitude-modulated signals has been performed, while PSAs have been used to demonstrate phase regeneration of phase-modulated signals. A PSA with 1.1-dB noise figure has been demonstrated, and preliminary wavelength-division multiplexing experiments have been performed with PSAs. 512 Gb/s have been transmitted over 6,000 km by periodic phase conjugation. Simulations indicate that PIAs could reach data rate x reach products in excess of 14,000 Tb/s × km in realistic wavelength-division multiplexed long-haul networks. Technical challenges remaining to be addressed in order for fiber OPAs to become useful for long-haul communication networks are discussed. [Formula: see text].

  7. Study on a transient optical fiber high temperature measurement system

    Science.gov (United States)

    Cai, Lulu; Liu, Yusha; Wang, Yutian

    2009-07-01

    . Finally, the experimental result shows: the resolution is 1°C,the measurement range is 500~2000°C and the dynamic response time is 5s.In view of possessing a high precision and resolution, resisting high temperature and corrosion, and being able to realize the continuous measurement of the dynamic temperature, this transient optical fiber high temperature measurement system can be applied widely in the continuous temperature measurement of molten steel and heating furnace kiln temperature measurement and so many other fields of engineering technology.

  8. Simple fiber optic sensor for applications in security systems

    Science.gov (United States)

    Zyczkowski, M.; Karol, M.; Markowski, P.; Napierala, M. S.

    2014-10-01

    In this paper we demonstrate measurement results of the modalmetric fiber optic sensor used for the monitoring of the fiber optic link integrity to protect it against unauthorized access to classified information. The presented construction is based on the detection of changes of the modes distribution in a multimode fiber. Any mechanical stress on the multimode fiber causes changes of polarization and distribution of propagating modes, hence it changes the distribution of modes at the end of the multimode fiber. Observation of these changes using a narrow core single-mode fiber allows to use the structure as an optical fiber sensor. We used several kilometers long optical links to conduct field tests of laboratory sensor. On this basis the prototype module of modalmetric fiber optic sensor wasbuilt. The modification of optoelectronic part, the variation of sensor length and the change of the method of light reflection at the end of the fiber enable the use of the modalmetric fiber optic sensor in many applications. The sensor finds wide range of applications in security systems. It can be applied to protect the museum's collection, transmission lines and to protect objects of critical infrastructure.

  9. Silica optical fiber technology for devices and components design, fabrication, and international standards

    CERN Document Server

    Oh, Kyunghwan

    2012-01-01

    From basic physics to new products, Silica Optical Fiber Technology for Device and Components examines all aspects of specialty optical fibers. Moreover, the inclusion of the latest international standards governing optical fibers enables you to move from research to fabrication to commercialization. Reviews all the latest specialty optical fiber technologies, including those developed for high capacity WDM applications; broadband fiber amplifiers; fiber filleters based on periodic coupling; fiber branching devices; and fiber terminations Discusses key differences among sing

  10. Sensing characteristics of birefringent microstructured polymer optical fiber

    DEFF Research Database (Denmark)

    Szczurowski, Marcin K.; Frazao, Orlando; Baptista, J. M.;

    2011-01-01

    We experimentally studied several sensing characteristics of a birefringent microstructured polymer optical fiber. The fiber exhibits a birefringence of the order 2×10-5 at 1.3 μm because of two small holes adjacent to the core. In this fiber, we measured spectral dependence of phase and group mo...

  11. Sensing characteristics of birefringent microstructured polymer optical fiber

    DEFF Research Database (Denmark)

    Szczurowski, Marcin K.; Frazao, Orlando; Baptista, J. M.

    2011-01-01

    We experimentally studied several sensing characteristics of a birefringent microstructured polymer optical fiber. The fiber exhibits a birefringence of the order 2×10-5 at 1.3 μm because of two small holes adjacent to the core. In this fiber, we measured spectral dependence of phase and group mo...

  12. Developing Engineering Model Cobra fiber positioners for the Subaru Telescope Prime Focus Spectrometer

    CERN Document Server

    Fisher, Charles; Braun, David; Seiffert, Michael; Aghazarian, Hrand; Partos, Eamon; King, Matthew; Hovland, Larry; Schwochert, Mark; Kaluzny, Joel; Capocasale, Christopher; Houck, Andrew; Gross, Johannes; Reiley, Dan; Mao, Peter; Riddle, Reed; Bui, Khanh; Henderson, David; Haran, Todd; Culhane, Rob; Piazza, Daniele; Walkama, Eric

    2014-01-01

    The Cobra fiber positioner is being developed by the California Institute of Technology (CIT) and the Jet Propulsion Laboratory (JPL) for the Prime Focus Spectrograph (PFS) instrument that will be installed at the Subaru Telescope on Mauna Kea, Hawaii. PFS is a fiber fed multi-object spectrometer that uses an array of Cobra fiber positioners to rapidly reconfigure 2394 optical fibers at the prime focus of the Subaru Telescope that are capable of positioning a fiber to within 5um of a specified target location. A single Cobra fiber positioner measures 7.7mm in diameter and is 115mm tall. The Cobra fiber positioner uses two piezo-electric rotary motors to move a fiber optic anywhere in a 9.5mm diameter patrol area. In preparation for full-scale production of 2550 Cobra positioners an Engineering Model (EM) version was developed, built and tested to validate the design, reduce manufacturing costs, and improve system reliability. The EM leveraged the previously developed prototype versions of the Cobra fiber posi...

  13. Design and performance optimization of fiber optic adaptive filters.

    Science.gov (United States)

    Paparao, P; Ghosh, A; Allen, S D

    1991-05-10

    There is a great need for easy-to-fabricate and versatile fiber optic signal processing systems in which optical fibers are used for the delay and storage of wideband guided lightwave signals. We describe the design of the least-mean-square algorithm-based fiber optic adaptive filters for processing guided lightwave signals in real time. Fiber optic adaptive filters can learn to change their parameters or to process a set of characteristics of the input signal. In our realization we employ as few electronic devices as possible and use optical computation to utilize the advantages of optics in the processing speed, parallelism, and interconnection. Many schemes for optical adaptive filtering of electronic signals are available in the literature. The new optical adaptive filters described in this paper are for optical processing of guided lightwave signals, not electronic signals. We analyzed the convergence or learning characteristics of the adaptive filtering process as a function of the filter parameters and the fiber optic hardware errors. From this analysis we found that the effects of the optical round-off errors and noise can be reduced, and the learning speed can be comparatively increased in our design through an optimal selection of the filter parameters. A general knowledge of the fiber optic hardware, the statistics of the lightwave signal, and the desired goal of the adaptive processing are enough for this optimum selection of the parameters. Detailed computer simulations validate the theoretical results of performance optimization.

  14. Utilization of Infrared Fiber Optic in the Automotive Industry

    Science.gov (United States)

    Tucker, Dennis S.; Brantley, Lott W. (Technical Monitor)

    2001-01-01

    Fiber optics are finding a place in the automotive industry. Illumination is the primary application today. Soon, however, fiber optics will be used for data communications and sensing applications. Silica fiber optics and plastic fibers are sufficient for illumination and communication applications however, sensing applications involving high temperature measurement and remote gas analysis would benefit from the use of infrared fiber optics. Chalcogonide and heavy metal fluoride glass optical fibers are two good candidates for these applications. Heavy metal fluoride optical fibers are being investigated by NASA for applications requiring transmission in the infrared portion of the electromagnetic spectrum. Zirconium-Barium-Lanthanum-Aluminum-Sodium-Fluoride (ZBLAN) is one such material which has been investigated. This material has a theoretical attenuation coefficient 100 times lower than that of silica and transmits into the mid-IR. However, the measured attenuation coefficient is higher than silica due to impurities and crystallization. Impurities can be taken care of by utilizing cleaner experimental protocol. It has been found that crystallization can be suppressed by processing in reduced gravity. Fibers processed in reduced gravity on the KC135 reduced gravity aircraft were found to be free of crystals while those processed on the ground were found to have crystals. These results will be presented along with plans for producing continuous lengths of ZBLAN optical fiber on board the International Space Station.

  15. Extruded single ring hollow core optical fibers for Raman sensing

    Science.gov (United States)

    Tsiminis, G.; Rowland, K. J.; Ebendorff-Heidepriem, H.; Spooner, N. A.; Monro, T. M.

    2014-05-01

    In this work we report the fabrication of the first extruded hollow core optical fiber with a single ring of cladding holes. A lead-silicate glass billet is used to produce a preform through glass extrusion to create a larger-scale version of the final structure that is subsequently drawn to an optical fiber. The simple single suspended ring structure allows antiresonance reflection guiding. The resulting fibers were used to perform Raman sensing of liquid samples filling the length of the fiber, demonstrating its potential for fiber sensing applications.

  16. Optical fiber sensing based on reflection laser spectroscopy.

    Science.gov (United States)

    Gagliardi, Gianluca; Salza, Mario; Ferraro, Pietro; Chehura, Edmond; Tatam, Ralph P; Gangopadhyay, Tarun K; Ballard, Nicholas; Paz-Soldan, Daniel; Barnes, Jack A; Loock, Hans-Peter; Lam, Timothy T-Y; Chow, Jong H; De Natale, Paolo

    2010-01-01

    An overview on high-resolution and fast interrogation of optical-fiber sensors relying on laser reflection spectroscopy is given. Fiber Bragg-gratings (FBGs) and FBG resonators built in fibers of different types are used for strain, temperature and acceleration measurements using heterodyne-detection and optical frequency-locking techniques. Silica fiber-ring cavities are used for chemical sensing based on evanescent-wave spectroscopy. Various arrangements for signal recovery and noise reduction, as an extension of most typical spectroscopic techniques, are illustrated and results on detection performances are presented.

  17. Optical Fiber Sensing Based on Reflection Laser Spectroscopy

    Directory of Open Access Journals (Sweden)

    Gianluca Gagliardi

    2010-03-01

    Full Text Available An overview on high-resolution and fast interrogation of optical-fiber sensors relying on laser reflection spectroscopy is given. Fiber Bragg-gratings (FBGs and FBG resonators built in fibers of different types are used for strain, temperature and acceleration measurements using heterodyne-detection and optical frequency-locking techniques. Silica fiber-ring cavities are used for chemical sensing based on evanescent-wave spectroscopy. Various arrangements for signal recovery and noise reduction, as an extension of most typical spectroscopic techniques, are illustrated and results on detection performances are presented.

  18. Fiber Optic Cable Thermal Preparation to Ensure Stable Operation

    Science.gov (United States)

    Thoames Jr, William J.; Chuska, Rick F.; LaRocca, Frank V.; Switzer, Robert C.; Macmurphy, Shawn L.; Ott, Melanie N.

    2008-01-01

    Fiber optic cables are widely used in modern systems that must provide stable operation during exposure to changing environmental conditions. For example, a fiber optic cable on a satellite may have to reliably function over a temperature range of -50 C up to 125 C. While the system requirements for a particular application will dictate the exact method by which the fibers should be prepared, this work will examine multiple ruggedized fibers prepared in different fashions and subjected to thermal qualification testing. The data show that if properly conditioned the fiber cables can provide stable operation, but if done incorrectly, they will have large fluctuations in transmission.

  19. Optical fiber tips functionalized with semiconductor photonic crystal cavities

    CERN Document Server

    Shambat, Gary; Rivoire, Kelley; Sarmiento, Tomas; Harris, James; Vuckovic, Jelena

    2011-01-01

    We demonstrate a simple and rapid epoxy-based method for transferring photonic crystal cavities to the facets of optical fibers. Passive Si cavities were measured via fiber taper coupling as well as direct transmission from the fiber facet. Active quantum dot containing GaAs cavities showed photoluminescence that was collected both in free space and back through the original fiber. Cavities maintain a high quality factor (2000-4000) in both material systems. This new design architecture provides a practical mechanically stable platform for the integration of photonic crystal cavities with macroscale optics and opens the door for novel research on fiber-coupled cavity devices.

  20. Reusable rocket engine optical condition monitoring

    Science.gov (United States)

    Wyett, L.; Maram, J.; Barkhoudarian, S.; Reinert, J.

    1987-01-01

    Plume emission spectrometry and optical leak detection are described as two new applications of optical techniques to reusable rocket engine condition monitoring. Plume spectrometry has been used with laboratory flames and reusable rocket engines to characterize both the nominal combustion spectra and anomalous spectra of contaminants burning in these plumes. Holographic interferometry has been used to identify leaks and quantify leak rates from reusable rocket engine joints and welds.

  1. Research on Additional Loss of Guidance Optical Fiber

    Institute of Scientific and Technical Information of China (English)

    CUI De-dong; HAO Chong-yang

    2010-01-01

    The factors which cause additional losses of guidance optical fiber in wound state were analyzed. A mathematical model used to analyze the macro-bend losses in the cross region producing in the precision winding process was established.For an actual guidance optical fiber, the measured data of the fiber's additional losses under low temperature and the loss curves with radius were given in the paper. The simulation results were compared with the test data. It shows that the addi-tional losses of optical fiber caused by bending and low temperature can meet the actual requirements of the fiber optical guidance system. The established model can be used to predict the change trend of fiber losses in the winding process with a certain tensile force.

  2. Optically Powered Temperature Sensor with Optical Fiber Ling①

    Institute of Scientific and Technical Information of China (English)

    YUZhijing; WANGYutian

    1997-01-01

    The principle of a new optical fiber temperature transducer is presented,and ingenious design scheme of this transducer is given.Because taking the special modulation and ratio measurement,this new transducer has provided with high characteristics:experimental transmitting distance is 500m;measurement error,in the measured temperature range of 0-250℃,,is less than ±0.5℃;power consumption of the probe is less than 300μW.Finally,some points of the experiment are given.

  3. Combined electromechanical impedance and fiber optic diagnosis of aerospace structures

    Science.gov (United States)

    Schlavin, Jon; Zagrai, Andrei; Clemens, Rebecca; Black, Richard J.; Costa, Joey; Moslehi, Behzad; Patel, Ronak; Sotoudeh, Vahid; Faridian, Fereydoun

    2014-03-01

    Electromechanical impedance is a popular diagnostic method for assessing structural conditions at high frequencies. It has been utilized, and shown utility, in aeronautic, space, naval, civil, mechanical, and other types of structures. By contrast, fiber optic sensing initially found its niche in static strain measurement and low frequency structural dynamic testing. Any low frequency limitations of the fiber optic sensing, however, are mainly governed by its hardware elements. As hardware improves, so does the bandwidth (frequency range * number of sensors) provided by the appropriate enabling fiber optic sensor interrogation system. In this contribution we demonstrate simultaneous high frequency measurements using fiber optic and electromechanical impedance structural health monitoring technologies. A laboratory specimen imitating an aircraft wing structure, incorporating surfaces with adjustable boundary conditions, was instrumented with piezoelectric and fiber optic sensors. Experiments were conducted at different structural boundary conditions associated with deterioration of structural health. High frequency dynamic responses were collected at multiple locations on a laboratory wing specimen and conclusions were drawn about correspondence between structural damage and dynamic signatures as well as correlation between electromechanical impedance and fiber optic sensors spectra. Theoretical investigation of the effect of boundary conditions on electromechanical impedance spectra is presented and connection to low frequency structural dynamics is suggested. It is envisioned that acquisition of high frequency structural dynamic responses with multiple fiber optic sensors may open new diagnostic capabilities for fiber optic sensing technologies.

  4. Fiber-optic interferometric acoustic sensors for wind tunnel applications

    Science.gov (United States)

    Cho, Y. C.

    1993-01-01

    Progress in developing fiber-optic interferometric sensors for aeroacoustic measurements in wind tunnels, performed under the NASA program, is reported. Preliminary results show that the fiber-optic interferometer sensor array is a powerful instrument for solving complex acoustic measurement problems in wind tunnels, which cannot be resolved with the conventional transducer technique.

  5. Fiber Optics Technician. Curriculum Research Project. Final Report.

    Science.gov (United States)

    Whittington, Herschel K.

    A study examined the role of technicians in the fiber optics industry and determined those elements that should be included in a comprehensive curriculum to prepare fiber optics technicians for employment in the Texas labor market. First the current literature, including the ERIC database and equipment manufacturers' journals were reviewed. After…

  6. Fiber Optics Deliver Real-Time Structural Monitoring

    Science.gov (United States)

    2013-01-01

    To alter the shape of aircraft wings during flight, researchers at Dryden Flight Research Center worked on a fiber optic sensor system with Austin-based 4DSP LLC. The company has since commercialized a new fiber optic system for monitoring applications in health and medicine, oil and gas, and transportation, increasing company revenues by 60 percent.

  7. Fiber-optic interferometric acoustic sensors for wind tunnel applications

    Science.gov (United States)

    Cho, Y. C.

    1993-01-01

    Progress in developing fiber-optic interferometric sensors for aeroacoustic measurements in wind tunnels, performed under the NASA program, is reported. Preliminary results show that the fiber-optic interferometer sensor array is a powerful instrument for solving complex acoustic measurement problems in wind tunnels, which cannot be resolved with the conventional transducer technique.

  8. Localized biosensing with Topas microstructured Polymer Optical Fiber

    DEFF Research Database (Denmark)

    Emiliyanov, Grigoriy Andreev; Jensen, Jesper Bo; Bang, Ole

    2007-01-01

    We present what is believed to be the first microstructured polymer optical fiber (mPOF) fabricated from Topas cyclic olefin copolymer, which has attractive material and biochemical properties. This polymer allows for a novel type of fiber-optic biosensor, where localized sensor layers may...

  9. Modulational instability of short pulses in long optical fibers

    DEFF Research Database (Denmark)

    Shukla, P. K.; Juul Rasmussen, Jens

    1986-01-01

    The effect of time-derivative nonlinearity is incorporated into the study of the modulational instability of heat pulses propagating through long optical fibers. Conditions for soliton formation are discussed......The effect of time-derivative nonlinearity is incorporated into the study of the modulational instability of heat pulses propagating through long optical fibers. Conditions for soliton formation are discussed...

  10. OPTICAL FIBER SENSOR TECHNOLOGIES FOR EFFICIENT AND ECONOMICAL OIL RECOVERY

    Energy Technology Data Exchange (ETDEWEB)

    Kristie Cooper; Gary Pickrell; Anbo Wang

    2003-04-01

    This report summarizes technical progress over the fourth year of the ''Optical Fiber Sensor Technologies for Efficient and Economical Oil Recovery'' program, funded by the Federal Energy Technology Center of the U.S. Department of Energy, and performed by the Center for Photonics Technology of the Bradley Department of Electrical and Computer Engineering at Virginia Tech. During the reporting period, research efforts under the program were focused on the development and evaluation of the fiber optic flow sensor system, and field testing in Tulsa, OK and the second field test of the pressure and temperature sensors in Coalinga, CA. The feasibility of a self-compensating fiber optic flow sensor based on a cantilever beam and interferometer for real-time flow rate measurements in the fluid filled pipes of oil field was clearly demonstrated. In addition, field testing of the pressure and temperature sensors deployed downhole continued. These accomplishments are summarized here: (1) Theoretical analysis and simulations were performed to ensure performance of the design. (2) The sensor fabrication and packaging techniques were investigated and improved. (3) Prototype flow sensors were fabricated based on the fabrication experience of hundreds of test sensors. (4) A lab-scale flow testing system was constructed and used for sensor evaluation. (5) Field-testing was performed in both the indoor and outdoor flow testing facility at the University of Tulsa, OK. (6) Testing of a multimode white light pressure and temperature sensor system continued at the oil site of Chevron/Texaco Company (Coalinga CA).

  11. Intrinsic Fabry-Perot optical fiber sensors and their multiplexing

    Science.gov (United States)

    Wang, Anbo

    2007-12-11

    An intrinsic Fabry-Perot optical sensor includes a thin film sandwiched between two fiber ends. When light is launched into the fiber, two reflections are generated at the two fiber/thin film interfaces due to a difference in refractive indices between the fibers and the film, giving rise to the sensor output. In another embodiment, a portion of the cladding of a fiber is removed, creating two parallel surfaces. Part of the evanescent fields of light propagating in the fiber is reflected at each of the surfaces, giving rise to the sensor output. In a third embodiment, the refractive index of a small portion of a fiber is changed through exposure to a laser beam or other radiation. Interference between reflections at the ends of the small portion give rise to the sensor output. Multiple sensors along a single fiber are multiplexed using an optical time domain reflectometry method.

  12. DIRECTIVITY PATTERN INVESTIGATION OF DUAL FIBER OPTIC HYDROPHONE

    Directory of Open Access Journals (Sweden)

    M. E. Efimov

    2015-11-01

    Full Text Available Subject of Research. The paper provides comparison of theoretical and experimental research results of directivity pattern of dual fiber optic hydrophone at various acoustic frequencies. Application of multiple fiber optic transducers in fiber optic hydrophone design placed in sensitive arm of the interferometer gives the possibility for increasing the sensitivity of a fiber optic hydrophone without changing the fiber-optic transducers. In the simplest case, such fiber optic hydrophone can be built on the basis of two spatially separated acoustic transducers. However, this diversity inevitably leads to the directivity pattern unevenness of the fiber optic hydrophone at acoustic frequencies which wavelengths are commensurate with the size of the transducers system. Method. Mathematical model has been created and it became the base material for a theoretical study of two acoustic transducers system in Mathcad environment. Directivity pattern was described by a mathematical formula, depending on the frequency of the acoustic impact and the distance between sensors. To confirm the correctness of theoretical research of the directivity pattern, dual fiber optic hydrophone on Bragg gratings was produced and investigated experimentally. It consists of two consequently welded sensitive elements with a 9 cm distance between them. In trials carried out in open water conditions, fiber-optic hydrophone was placed on the rotator and rotated relative to the piezoceramic emitter for 360 degrees. During investigation, the signal from a fiber optic hydrophone has been recorded simultaneously with the rotation. Further, after the data processing in MATLAB, amplitude of the measured phase signal and the directivity pattern of the test sample were estimated. Amplitude estimation of the measured phase signal and directivity pattern creation of the sample was performed at frequencies equal to 1000, 3000 and 8000 Hz. Main Results. Sensitivity of the dual fiber optic

  13. Overview of fiber optics technology :industrial and military

    OpenAIRE

    Derrington, Dolores Cormack

    1989-01-01

    Fiber optics technology is being used in many applications, both in the military world and in the industrial world. A broad overview of this technology is provided, including a discussion of the fundamentals of fiber operation and component characteristics. Applications of fiber optics in both military and industrial communities is addressed, identifying specific examples in both cases. In addition, market projections and technology trends are discussed for both the milit...

  14. Single mode variable-sensitivity fiber optic sensors

    Science.gov (United States)

    Murphy, K. A.; Fogg, B. R.; Gunther, M. F.; Claus, R. O.

    1992-01-01

    We review spatially-weighted optical fiber sensors that filter specific vibration modes from one dimensional beams placed in clamped-free and clamped-clamped configurations. The sensitivity of the sensor is varied along the length of the fiber by tapering circular-core, dual-mode optical fibers. Selective vibration mode suppression on the order of 10 dB was obtained. We describe experimental results and propose future extensions to single mode sensor applications.

  15. Improved Fiber-Optic-Coupled Pressure And Vibration Sensors

    Science.gov (United States)

    Zuckerwar, Allan J.; Cuomo, Frank W.

    1994-01-01

    Improved fiber-optic coupler enables use of single optical fiber to carry light to and from sensor head. Eliminates problem of alignment of multiple fibers in sensor head and simplifies calibration by making performance both more predictable and more stable. Sensitivities increased, sizes reduced. Provides increased margin for design of compact sensor heads not required to contain amplifier circuits and withstand high operating temperatures.

  16. Fiber design and realization of point-by-point written fiber Bragg gratings in polymer optical fibers

    DEFF Research Database (Denmark)

    Stefani, Alessio; Stecher, Matthias; Town, Graham E.;

    2012-01-01

    and realization of a microstructured polymer optical fiber made of PMMA for direct writing of FBGs. The fiber was designed specifically to avoid obstruction of the writing beam by air-holes. The realized fiber has been used to point-by-point write a 5 mm long fourth order FBG with a Bragg wavelength of 1518 nm...

  17. Generation and propagation of radially polarized beams in optical fibers

    DEFF Research Database (Denmark)

    Ramachandran, Siddharth; Kristensen, P; Yan, M F

    2009-01-01

    Beams with polarization singularities have attracted immense recent attention in a wide array of scientific and technological disciplines. We demonstrate a class of optical fibers in which these beams can be generated and propagated over long lengths with unprecedented stability, even in the pres......Beams with polarization singularities have attracted immense recent attention in a wide array of scientific and technological disciplines. We demonstrate a class of optical fibers in which these beams can be generated and propagated over long lengths with unprecedented stability, even...... in the presence of strong bend perturbations. This opens the door to exploiting nonlinear fiber optics to manipulate such beams. This fiber also possesses the intriguingly counterintuitive property of being polarization maintaining despite being strictly cylindrically symmetric, a prospect hitherto considered...... infeasible with optical fibers. (C) 2009 Optical Society of America....

  18. Optical fiber sensors fabricated by the focused ion beam technique

    DEFF Research Database (Denmark)

    Yuan, Scott Wu; Wang, Fei; Bang, Ole

    2012-01-01

    crystal fiber (PCF). Using this technique we fabricate a highly compact fiber-optic Fabry-Pérot (FP) refractive index sensor near the tip of fiber taper, and a highly sensitive in-line temperature sensor in PCF. We also demonstrate the potential of using FIB to selectively fill functional fluid......Focused ion beam (FIB) is a highly versatile technique which helps to enable next generation of lab-on-fiber sensor technologies. In this paper, we demonstrate the use application of FIB to precisely mill the fiber taper and end facet of both conventional single mode fiber (SMF) and photonic...

  19. Simulations and experiments on polarization squeezing in optical fiber

    DEFF Research Database (Denmark)

    Corney, J.F.; Heersink, J.; Dong, R.;

    2008-01-01

    We investigate polarization squeezing of ultrashort pulses in optical fiber, over a wide range of input energies and fiber lengths. Comparisons are made between experimental data and quantum dynamical simulations to find good quantitative agreement. The numerical calculations, performed using both...... effects cause a marked deterioration of squeezing at higher energies and longer fiber lengths. We also calculate the optimum fiber length for maximum squeezing....

  20. Using a Fiber Loop and Fiber Bragg Grating as a Fiber Optic Sensor to Simultaneously Measure Temperature and Displacement

    Directory of Open Access Journals (Sweden)

    Hsu-Chih Cheng

    2013-05-01

    Full Text Available This study integrated a fiber loop manufactured by using commercial fiber (SMF-28, Corning and a fiber Bragg grating (FBG to form a fiber optic sensor that could simultaneously measure displacement and temperature. The fiber loop was placed in a thermoelectric cooling module with FBG affixed to the module, and, consequently, the center wavelength displacement of FBG was limited by only the effects of temperature change. Displacement and temperature were determined by measuring changes in the transmission of optical power and shifts in Bragg wavelength. This study provides a simple and economical method to measure displacement and temperature simultaneously.

  1. Crack monitoring capability of plastic optical fibers for concrete structures

    Science.gov (United States)

    Zhao, Jinlei; Bao, Tengfei; Chen, Rui

    2015-08-01

    Optical fibers have been widely used in structural health monitoring. Traditional silica fibers are easy to break in field applications due to their brittleness. Thus, silica fibers are proposed to be replaced by plastic optical fibers (POFs) in crack monitoring in this study. Moreover, considering the uncertainty of crack propagation direction in composite materials, the influence of the angles between fibers and cracks on the monitoring capability of plastic optical fibers is studied. A POF sensing device was designed and the relationship between light intensity loss and crack width under different fiber/crack angles was first measured through the device. Then, three-point bend tests were conducted on concrete beams. POFs were glued to the bottom surfaces of the beams and light intensity loss with crack width was measured. Experimental results showed that light intensity loss in plastic optical fibers increased with crack width increase. Therefore, application of plastic optical fibers in crack monitoring is feasible. Moreover, the results also showed that the sensitivity of the POF crack sensor decreased with the increase of angles between fibers and cracks.

  2. Linear and nonlinear optical properties of chalcogenide microstructured optical fibers

    Science.gov (United States)

    Trolès, Johann; Brilland, Laurent; Caillaud, Celine; Renversez, Gilles; Mechin, David; Adam, Jean-Luc

    2015-03-01

    Chalcogenide glasses are known for their large transparency in the mid-infrared and their high linear refractive index (>2). They present also a high non-linear coefficient (n2), 100 to 1000 times larger than for silica, depending on the composition. we have developed a casting method to prepare the microstructured chalcogenide preform. This method allows optical losses as low as 0.4 dB/m at 1.55 µm and less than 0.05 dB/m in the mid IR. Various chalcogenide MOFs operating in the IR range has been fabricated in order to associate the high non-linear properties of these glasses and the original MOF properties. For example, small core fibers have been drawn to enhance the non linearities for telecom applications such as signal regeneration and generation of supercontinuum sources. On another hand, in the 3-12 µm window, single mode fibers and exposed core fibers have been realized for Gaussian beams propagation and sensors applications respectively.

  3. Fiber optic pressure sensors for nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Hashemian, H.M.; Black, C.L. [Analysis and Measurement Services Corp., Knoxville, TN (United States)

    1995-04-01

    In the last few years, the nuclear industry has experienced some problems with the performance of pressure transmitters and has been interested in new sensors based on new technologies. Fiber optic pressure sensors offer the potential to improve on or overcome some of the limitations of existing pressure sensors. Up to now, research has been motivated towards development and refinement of fiber optic sensing technology. In most applications, reliability studies and failure mode analyses remain to be exhaustively conducted. Fiber optic sensors have currently penetrated certain cutting edge markets where they possess necessary inherent advantages over other existing technologies. In these markets (e.g. biomedical, aerospace, automotive, and petrochemical), fiber optic sensors are able to perform measurements for which no alternate sensor previously existed. Fiber optic sensing technology has not yet been fully adopted into the mainstream sensing market. This may be due to not only the current premium price of fiber optic sensors, but also the lack of characterization of their possible performance disadvantages. In other words, in conservative industries, the known disadvantages of conventional sensors are sometimes preferable to unknown or not fully characterized (but potentially fewer and less critical) disadvantages of fiber optic sensors. A six-month feasibility study has been initiated under the auspices of the US Nuclear Regulatory Commission (NRC) to assess the performance and reliability of existing fiber optic pressure sensors for use in nuclear power plants. This assessment will include establishment of the state of the art in fiber optic pressure sensing, characterization of the reliability of fiber optic pressure sensors, and determination of the strengths and limitations of these sensors for nuclear safety-related services.

  4. Optical characteristic variations in gamma ray irradiated polarization-maintaining optical fibers

    Science.gov (United States)

    Yokota, Hirohisa; Kameda, Yosuke; Imai, Yoh

    2017-02-01

    Polarization-maintaining (PM) optical fibers are introduced in fiber optic communication systems and optical fiber sensors to improve their performances. It is known that characteristics of optical fibers vary for radiation exposures, e.g., a transmission loss increment. It is important to clarify the characteristic variations of PM fibers by radiations in their applications. The radiation induced optical characteristic variation is also useful for an application of optical fibers including PM fibers as radiation sensors. In this paper, optical characteristic variations in gamma ray irradiated PM optical fibers with low modal birefringence were experimentally clarified indenting to apply a polarization optical time domain reflectometry to a distributed radiation sensor. It was confirmed that the transmission losses for both polarization modes in elliptical jacket fibers increased similar to ordinary silica based single-mode fibers, where the difference of transmission losses of two polarization modes was enhanced by the irradiation. We also clarified that the modal birefringence of the elliptical jacket fibers increased for the irradiation for the first time by the beat length measurement using the wavelength sweeping technique.

  5. Curvature Optical Fiber Whiskers for Mobile Robot Guidance

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    A novel optical fiber tactile sensory system is proposed forobstacle avoidance of mobile robot. The principle of this whisker-like tactile sensor is based on the geometric curvature changes of the optical fiber, which modulate the optical fiber′s light output. With high compliance of plastic optical fiber, the whiskers can produce only small flexing force upon mechanical contact with an obstacle. It can produce reliable proximity signals in extended tactile range, which can be translated into a larger stopping distance for the mobile robot. This sensor is lightweight, and of low cost to allow as many sensor, as necessary to be mounted on a robot.

  6. Strength measurements of silica optical fibers under severe environment

    Science.gov (United States)

    Severin, I.; El Abdi, R.; Poulain, M.

    2007-03-01

    Optical fibers are key components in telecommunication technologies. Apart from optical specifications, optical fibers are expected to keep most of their physical properties for 10-20 years in current operating conditions. The reliability and the expected lifetime of optical links are closely related to action of the chemical environment on the silica network. However, the coating also contributes largely to the mechanical properties of the fibers. The aim of this work was to study the strength and the mechanical behavior of the silica optical fibers in an acid environment and with a permanent deformation. A container with ammonium bifluoride acid salt was plunged into hot water at different temperatures (55 and 75 °C). This emitted acid vapors which attacked the optical fibers for a period of 1-18 days. An aging study was performed on silica optical fibers with standard polyacrylate coating and with hermetic carbon coating. A dynamic two-point bending bench at different faceplate velocities (100, 200, 400 and 800 μm/s) was used. For comparison, the same dynamic measurements were also carried out on non-aged fibers. After acid vapor condensation, salt crystal deposits on the fibers were displayed using an electron scanning microscope. These crystals became visible to the naked eye from the seventh day.

  7. Aging study of silica optical fibers under acid environment

    Science.gov (United States)

    Severin, I.; El Abdi, R.; Poulain, M.

    2005-05-01

    Optical fibers are key components in telecommunication technologies. Apart from optical specifications, optical fibers are expected to keep most of their physical properties for 10 to 20 years in current operating conditions. The reliability and the expected lifetime of optical links are closely related to the action of the chemical environment on the silica network. However, the coating also contributes largely to the mechanical properties of the fibers. The aim of this work was to study the strength and the mechanical behaviour of the silica optical fibers in an acid environment. A container with ammonium bifluoride acid salt was plunged into hot water at different temperatures (55° and 75°C). This emitted acid vapors which attacked the optical fibers for a period of 1 to 18 days. An aging study was performed on silica optical fibers with standard polyacrylate coating and with hermetic carbon coating. A dynamic two-point bending bench at different faceplate velocities (100, 200, 400 and 800 μm/s) was used. For comparison, the same dynamic measurements were also carried out on non-aged fibers. After acid vapor condensation, salt crystal deposits on the fibers were displayed using an electron scanning microscope. These crystals became visible to the naked eye from the 7th day post exposure.

  8. Optical fibers and photonics applications: topical tracks at Wilga conferences

    Science.gov (United States)

    Romaniuk, Ryszard S.

    2013-01-01

    This paper is a research survey of WILGA Symposium work, 2010-2012 Editions, concerned with Optical Fibers, Optoelectronic Devices, Sensors, Communication and Photonics Applications. It presents a digest of chosen technical work results shown by young researchers from different technical universities from this country during the three recent Wilga Symposia on Photonics and Web Engineering. Topical tracks of the symposia embraced, among others, nanomaterials and nanotechnologies for photonics, sensory and nonlinear optical fibers, object oriented design of hardware, photonic metrology, optoelectronics and photonics applications, photonics-electronics co-design, optoelectronic and electronic systems for astronomy and high energy physics experiments, photonic equipment for JET tokamak and pi-of-the sky experiments development. The symposium is an annual summary in the development of numerable Ph.D. theses carried out in this country in the area of advanced electronic and photonic systems. It is also a great occasion for SPIE, IEEE, OSA and PSP students to meet together in a large group spanning the whole country with guests from this part of Europe. A digest of Wilga references is presented [1-274]. Wilga Symposia play a role of an universal integrator of young science in photonics and related areas in this country and also in this part of Europe. More than 5000 young scientists participated in scientific Wilga meetings and discussions during the last nearly two decades. Over 2500 papers were published, including over 1000 in Proc. SPIE.

  9. Optical fiber strain sensor using fiber resonator based on frequency comb Vernier spectroscopy

    DEFF Research Database (Denmark)

    Zhang, Liang; Lu, Ping; Chen, Li;

    2012-01-01

    A novel (to our best knowledge) optical fiber strain sensor using a fiber ring resonator based on frequency comb Vernier spectroscopy is proposed and demonstrated. A passively mode-locked optical fiber laser is employed to generate a phased-locked frequency comb. Strain applied to the optical fiber...... be proportionally improved by increasing the length of the optical fiber ring resonator....... of the fiber ring resonator can be measured with the transmission spectrum. A good linearity is obtained between displacement and the inverse of wavelength spacing with an R2 of 0.9989, and high sensitivities better than 40  pm/με within the range of 0 to 10  με are achieved. The sensitivity can...

  10. Quantum Communication Experiments Over Optical Fiber

    Science.gov (United States)

    Takesue, Hiroki

    Quantum key distribution (QKD) is expected to be the first application of quantum information to be realized as a practical system. In the last decade, research on QKD made significant progress both in concept and technology. In this chapter, we review the progress of technologies designed to realize high-speed and long-distance quantum communication over optical fiber, focusing on the results obtained by NTT. The first section describes a roadmap towards scalable quantum communications, which is composed of three phases. The second section reviews our effort to realize phase 1 quantum communication systems, namely point-to-point QKD systems based on the differential phase shift QKD (DPS-QKD) protocol. The third section describes entanglement generation and application in the telecom band, which are the key technologies for realizing phase 2 and 3 systems. The final section provides a summary and describes the future outlook.

  11. Fiber optic biosensor of immobilized firefly luciferase

    Institute of Scientific and Technical Information of China (English)

    蔡谨; 吉鑫松; 等

    2002-01-01

    Luciferase from firefly lantern extract was immobilized on CNBr-activated Sepharose 4B,The kinetic properties of immobilized luciferase were extensively studied.The Km' for D-luciferin is 11.9umol/L,the optimum pH and temperature for Sepharose-bound enzyme were 7.8 and 25℃ respectively.A luminescence fiber optic biosensor,making use of immobilized crude luciferase was developed for assay of ATP.The peak light intensity was linear with respect to ATP concentration in range of 10-9-10-5mol/L.A biological application was also demonstrated with the determination of serum ATP from rats bred in low versus normal oxygen environments.

  12. Fiber optic biosensor of immobilized firefly luciferase

    Institute of Scientific and Technical Information of China (English)

    蔡谨; 孟文芳; 吉鑫松

    2002-01-01

    Luciferase from firefly lantern extract was immobilized on CNBr-activated Sepharose 4B. The kinetic properties of immobilized luciferase were extensively studied. The Km′ for D-luciferin is 11.9 μmol/L, the optimum pH and temperature for Sepharose-bound enzyme were 7.8 and 25℃ respectively. A luminescence fiber optic biosensor, making use of immobilized crude luciferase, was developed for assay of ATP. The peak light intensity was linear with respect to ATP concentration in range of 10-9-10-5 mol/L. A biological application was also demonstrated with the determination of serum ATP from rats bred in low versus normal oxygen environments.

  13. Radiation distribution sensing with normal optical fiber

    Energy Technology Data Exchange (ETDEWEB)

    Kawarabayashi, Jun; Mizuno, Ryoji; Naka, Ryotaro; Uritani, Akira; Watanabe, Ken-ichi; Iguchi, Tetsuo [Nagoya Univ., Dept. of Nuclear Engineering, Nagoya, Aichi (Japan); Tsujimura, Norio [Japan Nuclear Cycle Development Inst., Tokai Works, Tokai, Ibaraki (Japan)

    2002-12-01

    The purpose of this study is to develop a radiation distribution monitor using a normal plastic optical fiber. The monitor has a long operating length (10m-100m) and can obtain continuous radiation distributions. A principle of the position sensing is based on a time-of-flight technique. The characteristics of this monitor to beta particles, gamma rays and fast neutrons were obtained. The spatial resolutions for beta particles ({sup 90}Sr{sup -90}Y), gamma rays ({sup 137}Cs) and D-T neutrons were 30 cm, 37 cm and 13 cm, respectively. The detection efficiencies for the beta rays, the gamma rays and D-T neutrons were 0.11%, 1.6x10{sup -5}% and 5.4x10{sup -4}%, respectively. The effective attenuation length of the detection efficiency was 18m. New principle of the position sensing based on spectroscopic analysis was also proposed. A preliminary test showed that the spectrum observed at the end of the fiber depended on the position of the irradiated point. This fact shows that the radiation distributions were calculated from the spectrum by mathematical deconvolution technique. (author)

  14. Radiation distribution sensing with normal optical fiber

    CERN Document Server

    Kawarabayashi, J; Naka, R; Uritani, A; Watanabe, K I; Iguchi, T; Tsujimura, N

    2002-01-01

    The purpose of this study is to develop a radiation distribution monitor using a normal plastic optical fiber. The monitor has a long operating length (10m-100m) and can obtain continuous radiation distributions. A principle of the position sensing is based on a time-of-flight technique. The characteristics of this monitor to beta particles, gamma rays and fast neutrons were obtained. The spatial resolutions for beta particles ( sup 9 sup 0 Sr sup - sup 9 sup 0 Y), gamma rays ( sup 1 sup 3 sup 7 Cs) and D-T neutrons were 30 cm, 37 cm and 13 cm, respectively. The detection efficiencies for the beta rays, the gamma rays and D-T neutrons were 0.11%, 1.6x10 sup - sup 5 % and 5.4x10 sup - sup 4 %, respectively. The effective attenuation length of the detection efficiency was 18m. New principle of the position sensing based on spectroscopic analysis was also proposed. A preliminary test showed that the spectrum observed at the end of the fiber depended on the position of the irradiated point. This fact shows that t...

  15. Modern optical diagnostics in engine research

    Science.gov (United States)

    Leipertz, A.; Wensing, M.

    2007-10-01

    Different optical diagnistic techniques are used to gain insight into the single steps forming the functioning chain of the engine combustion process and the complex interplay between these single steps. Examples are given for the application of Mie scattering, laser-induced fluorescence, Raman scattering, CARS and laser-induced incandescence to study diesel engine, SI engine and HCCI combustion processes. The careful adaptation of each optical tool to one part of the engine process makes it possible to get valuable information with minimum change of the process investigated. The paper demonstrates that in addition to conventional engine measurement techniques, a number of different optical techniques must be applied -- and sometimes simultaneously -- to successfully determine the critical parameters of the processes and to investigate their influences on the performance and the quality of real engine combustion.

  16. A Fiber-Optical Intrusion Alarm System Based on Quasi-Distributed Fiber Bragg Grating Sensors

    Institute of Scientific and Technical Information of China (English)

    Qi Jiang; Yun-Jiang Rao; De-Hong Zeng

    2008-01-01

    A fiber-optical intrusion alarm system based on quasi-distributed fiber Bragg grating (FBG) sensors is demonstrated in this paper. The algorithms of empirical mode decomposition (EMD) and wavelet packet characteristic entropy are adopted to determine the intrusion location. The intrusion alarm software based on the Labview is developed, and it is also proved by the experiments. The results show that such a fiber-optical intrusion alarm system can offer the automatic intrusion alarm in real-time.

  17. Novel fiber optic tip designs and devices for laser surgery

    Science.gov (United States)

    Hutchens, Thomas Clifton

    Fiber optic delivery of laser energy has been used for years in various types of surgical procedures in the human body. Optical energy provides several benefits over electrical or mechanical surgery, including the ability to selectively target specific tissue types while preserving others. Specialty fiber optic tips have also been introduced to further customize delivery of laser energy to the tissue. Recent evolution in lasers and miniaturization has opened up opportunities for many novel surgical techniques. Currently, ophthalmic surgeons use relatively invasive mechanical tools to dissect retinal deposits which occur in proliferative diabetic retinopathy. By using the tight focusing properties of microspheres combined with the short optical penetration depth of the Erbium:YAG laser and mid-IR fiber delivery, a precise laser scalpel can be constructed as an alternative, less invasive and more precise approach to this surgery. Chains of microspheres may allow for a self limiting ablation depth of approximately 10 microm based on the defocusing of paraxial rays. The microsphere laser scalpel may also be integrated with other surgical instruments to reduce the total number of handpieces for the surgeon. In current clinical laser lithotripsy procedures, poor input coupling of the Holmium:YAG laser energy frequently damages and requires discarding of the optical fiber. However, recent stone ablation studies with the Thulium fiber laser have provided comparable results to the Ho:YAG laser. The improved spatial beam profile of the Thulium fiber laser can also be efficiently coupled into a fiber approximately one third the diameter and reduces the risk of damaging the fiber input. For this reason, the trunk optical fiber minus the distal fiber tip can be preserved between procedures. The distal fiber tip, which degrades during stone ablation, could be made detachable and disposable. A novel, low-profile, twist-locking, detachable distal fiber tip interface was designed

  18. Fiber optic flow velocity sensor based on an in-fiber integrated Michelson interferometer

    Science.gov (United States)

    Yuan, Libo; Yang, Jun; Liu, Zhihai

    2008-04-01

    A novel fiber optic flow velocity sensor based on a twin-core fiber Michelson interferometer has been proposed and demonstrated. The sensor only is a segment of twin-core fiber acting as cylinder cantilever beam. The force exerted on the cylinder by the flow of a fluid with unknown velocity bends the fiber, which corresponding to the shift of the phase of the twin-core in-fiber integrated Michelson interferometer. This twin-core fiber sensing technique could automatically compensate the variation of environmental temperature and pressure due to both arms of the interferometer would be affected equally by such changes.

  19. Crystal-free Formation of Non-Oxide Optical Fiber

    Science.gov (United States)

    Nabors, Sammy A.

    2015-01-01

    Researchers at NASA Marshall Space Flight Center have devised a method for the creation of crystal-free nonoxide optical fiber preforms. Non-oxide fiber optics are extensively used in infrared transmitting applications such as communication systems, chemical sensors, and laser fiber guides for cutting, welding and medical surgery. However, some of these glasses are very susceptible to crystallization. Even small crystals can lead to light scatter and a high attenuation coefficient, limiting their usefulness. NASA has developed a new method of non-oxide fiber formation that uses axial magnetic fields to suppress crystallization. The resulting non-oxide fibers are crystal free and have lower signal attenuation rates than silica based optical fibers.

  20. Computational imaging through a fiber-optic bundle

    Science.gov (United States)

    Lodhi, Muhammad A.; Dumas, John Paul; Pierce, Mark C.; Bajwa, Waheed U.

    2017-05-01

    Compressive sensing (CS) has proven to be a viable method for reconstructing high-resolution signals using low-resolution measurements. Integrating CS principles into an optical system allows for higher-resolution imaging using lower-resolution sensor arrays. In contrast to prior works on CS-based imaging, our focus in this paper is on imaging through fiber-optic bundles, in which manufacturing constraints limit individual fiber spacing to around 2 μm. This limitation essentially renders fiber-optic bundles as low-resolution sensors with relatively few resolvable points per unit area. These fiber bundles are often used in minimally invasive medical instruments for viewing tissue at macro and microscopic levels. While the compact nature and flexibility of fiber bundles allow for excellent tissue access in-vivo, imaging through fiber bundles does not provide the fine details of tissue features that is demanded in some medical situations. Our hypothesis is that adapting existing CS principles to fiber bundle-based optical systems will overcome the resolution limitation inherent in fiber-bundle imaging. In a previous paper we examined the practical challenges involved in implementing a highly parallel version of the single-pixel camera while focusing on synthetic objects. This paper extends the same architecture for fiber-bundle imaging under incoherent illumination and addresses some practical issues associated with imaging physical objects. Additionally, we model the optical non-idealities in the system to get lower modelling errors.

  1. Optical Nanofiber Integrated into Optical Tweezers for In Situ Fiber Probing and Optical Binding Studies

    Directory of Open Access Journals (Sweden)

    Ivan Gusachenko

    2015-07-01

    Full Text Available Precise control of particle positioning is desirable in many optical propulsion and sorting applications. Here, we develop an integrated platform for particle manipulation consisting of a combined optical nanofiber and optical tweezers system. We show that consistent and reversible transmission modulations arise when individual silica microspheres are introduced to the nanofiber surface using the optical tweezers. The observed transmission changes depend on both particle and fiber diameter and can be used as a reference point for in situ nanofiber or particle size measurement. Thence, we combine scanning electron microscope (SEM size measurements with nanofiber transmission data to provide calibration for particle-based fiber assessment. This integrated optical platform provides a method for selective evanescent field manipulation of micron-sized particles and facilitates studies of optical binding and light-particle interaction dynamics.

  2. Effects of Temperature and X-rays on Plastic Scintillating Fiber and Infrared Optical Fiber.

    Science.gov (United States)

    Lee, Bongsoo; Shin, Sang Hun; Jang, Kyoung Won; Yoo, Wook Jae

    2015-05-11

    In this study, we have studied the effects of temperature and X-ray energy variations on the light output signals from two different fiber-optic sensors, a fiber-optic dosimeter (FOD) based on a BCF-12 as a plastic scintillating fiber (PSF) and a fiber-optic thermometer (FOT) using a silver halide optical fiber as an infrared optical fiber (IR fiber). During X-ray beam irradiation, the scintillating light and IR signals were measured simultaneously using a dosimeter probe of the FOD and a thermometer probe of the FOT. The probes were placed in a beaker with water on the center of a hotplate, under variation of the tube potential of a digital radiography system or the temperature of the water in the beaker. From the experimental results, in the case of the PSF, the scintillator light output at the given tube potential decreased as the temperature increased in the temperature range from 25 to 60 °C. We demonstrated that commonly used BCF-12 has a significant temperature dependence of -0.263 ± 0.028%/°C in the clinical temperature range. Next, in the case of the IR fiber, the intensity of the IR signal was almost uniform at each temperature regardless of the tube potential range from 50 to 150 kVp. Therefore, we also demonstrated that the X-ray beam with an energy range used in diagnostic radiology does not affect the IR signals transmitted via a silver halide optical fiber.

  3. A fiber optic hybrid multifunctional AC voltage sensor

    Energy Technology Data Exchange (ETDEWEB)

    Sokolovsky, A.; Zadvornov, S. [IRE, Moscow (Russian Federation); Ryabko, M. [UFD, Moscow (Russian Federation)

    2008-07-01

    Hybrid sensors have the advantages of both electronic and optical technologies. Their sensing element is based on conventional transducers and the optical fiber is used as a transmission media for the optical signal encoded with information between the local module and the remote module. The power supply for the remote module is usually provided by a built-in photoelectric converter illuminated by the optical radiation going through the same or another optical fiber. Electro-optic hybrid sensors have been widely used because of the electrical isolation provided by optical fiber. In the conventional fiber optic voltage sensor, piezoelectric or electro-optic transducers are implemented. Processing and conditioning measurement information is a complex task in these sensors. Moreover, the considerable drawback of most of these systems is that only one parameter, usually voltage value, is measured. This paper presented a novel fiber optic hybrid sensor for alternating current voltage measurements. This instrument provides the simultaneous measurement of four parameters, notably voltage value, frequency, phase angle and the external temperature. The paper described the measurement technology of the instrument including the remote module and optical powering as well as the unique modulation algorithm. The results and conclusions were also presented. 7 refs., 4 figs.

  4. Optical Cutting Interruption Sensor for Fiber Lasers

    Directory of Open Access Journals (Sweden)

    Benedikt Adelmann

    2015-09-01

    Full Text Available We report on an optical sensor system attached to a 4 kW fiber laser cutting machine to detect cutting interruptions. The sensor records the thermal radiation from the process zone with a modified ring mirror and optical filter arrangement, which is placed between the cutting head and the collimator. The process radiation is sensed by a Si and InGaAs diode combination with the detected signals being digitalized with 20 kHz. To demonstrate the function of the sensor, signals arising during fusion cutting of 1 mm stainless steel and mild steel with and without cutting interruptions are evaluated and typical signatures derived. In the recorded signals the piercing process, the laser switch on and switch off point and waiting period are clearly resolved. To identify the cutting interruption, the signals of both Si and InGaAs diodes are high pass filtered and the signal fluctuation ranges being subsequently calculated. Introducing a correction factor, we identify that only in case of a cutting interruption the fluctuation range of the Si diode exceeds the InGaAs diode. This characteristic signature was successfully used to detect 80 cutting interruptions of 83 incomplete cuts (alpha error 3.6% and system recorded no cutting interruption from 110 faultless cuts (beta error of 0. This particularly high detection rate in combination with the easy integration of the sensor, highlight its potential for cutting interruption detection in industrial applications.

  5. Fiber optical artificial nose for the food industry

    Science.gov (United States)

    Mahmoud, Mohamed

    2003-04-01

    An artificial nose has been attractive for scientific research and the food industry. This paper proposes that the detection and recognition of odours or chemicals concentrate can be achieved by means of passive and compact size fiber optic sensors (Fiber Bragg Gratings Technology) that will form an olfactory sensor array and a fuzzy logic algorithm that will form the recognition artificial intelligence. The mathematical model of the fiber Bragg gratings olfactory sensor is developed and the design model of the artificial fiber optic nose is introduced.

  6. Thermal characterization of optical fibers using wavelength-sweeping interferometry

    Energy Technology Data Exchange (ETDEWEB)

    Perret, Luc; Pfeiffer, Pierre; Serio, Bruno; Twardowski, Patrice

    2010-06-20

    In this paper, we report a new method of thermal characterization of optical fibers using wavelength-sweeping interferometry and discuss its advantages compared to other techniques. The setup consists of two temperature-stabilized interferometers, a reference Michelson and a Mach-Zehnder, containing the fiber under test. The wavelength sweep is produced by an infrared tunable laser diode. We obtained the global phase shift coefficients of a large effective area fiber and gold-coated fiber optics with a 10{sup -7} accuracy.

  7. Mode field expansion in index-guiding microstructured optical fibers

    Science.gov (United States)

    Sharma, Dinesh Kumar; Sharma, Anurag

    2013-05-01

    The mode-field expander (MFE) is a microstructured optical fiber (MOF) based device that enlarges the modal field distribution and can couple light from large mode area (LMA) fibers into small core fibers or vice-versa and other optical waveguides. Using our earlier developed analytical field model, we studied the mode-field expansion in MOFs having triangular lattice, and low-loss splicing of MOFs to standard single-mode fibers (SMFs), based on the controlled all airhole collapse method, which leads to an optimum mode-field match at the joint interface of the MOF-SMF. Comparisons with available experimental and simulation results have also been included.

  8. Femtosecond nonlinear fiber optics in the ionization regime.

    Science.gov (United States)

    Hölzer, P; Chang, W; Travers, J C; Nazarkin, A; Nold, J; Joly, N Y; Saleh, M F; Biancalana, F; Russell, P St J

    2011-11-11

    By using a gas-filled kagome-style photonic crystal fiber, nonlinear fiber optics is studied in the regime of optically induced ionization. The fiber offers low anomalous dispersion over a broad bandwidth and low loss. Sequences of blueshifted pulses are emitted when 65 fs, few-microjoule pulses, corresponding to high-order solitons, are launched into the fiber and undergo self-compression. The experimental results are confirmed by numerical simulations which suggest that free-electron densities of ∼10(17) cm(-3) are achieved at peak intensities of 10(14) W/cm(2) over length scales of several centimeters.

  9. Quantum dots microstructured optical fiber for x-ray detection

    Science.gov (United States)

    DeHaven, S. L.; Williams, P. A.; Burke, E. R.

    2016-02-01

    A novel concept for the detection of x-rays with microstructured optical fibers containing quantum dots scintillation material comprised of zinc sulfide nanocrystals doped with magnesium sulfide is presented. These quantum dots are applied inside the microstructured optical fibers using capillary action. The x-ray photon counts of these fibers are compared to the output of a collimated CdTe solid state detector over an energy range from 10 to 40 keV. The results of the fiber light output and associated effects of an acrylate coating and the quantum dots application technique are discussed.

  10. Quantum Dots Microstructured Optical Fiber for X-Ray Detection

    Science.gov (United States)

    DeHaven, Stan; Williams, Phillip; Burke, Eric

    2015-01-01

    Microstructured optical fibers containing quantum dots scintillation material comprised of zinc sulfide nanocrystals doped with magnesium sulfide are presented. These quantum dots are applied inside the microstructured optical fibers using capillary action. The x-ray photon counts of these fibers are compared to the output of a collimated CdTe solid state detector over an energy range from 10 to 40 keV. The results of the fiber light output and associated effects of an acrylate coating and the quantum dot application technique are discussed.

  11. An overview of plastic optical fiber end finishers at Fermilab

    Energy Technology Data Exchange (ETDEWEB)

    Mishina, M.; Lindenmeyer, C.; Korienek, J.

    1993-11-01

    Several years ago the need for equipment to precisely finish the ends of plastic optical fibers was recognized. Many high energy physics experiments use thousands of these fibers which must be polished on one or both ends. A fast, easy-to-operate machine yielding repeatable finishes was needed. Three types of machines were designed and constructed that are in daily use at Fermilab, all finish the fiber ends by flycutting with a diamond tool. Althrough diamond flycutting of plastic is not new, the size and fragility of plastic optical fibers present several challenges.

  12. Confocal microscopy through a multimode fiber using optical correlation

    CERN Document Server

    Loterie, Damien; Psaltis, Demetri; Moser, Christophe

    2015-01-01

    We report on a method to obtain confocal imaging through multimode fibers using optical correlation. First, we measure the fiber's transmission matrix in a calibration step. This allows us to create focused spots at one end of the fiber by shaping the wavefront sent into it from the opposite end. These spots are scanned over a sample, and the light coming back from the sample via the fiber is optically correlated with the input pattern. We show that this achieves spatial selectivity in the detection. The technique is demonstrated on microbeads, a dried epithelial cell, and a cover glass.

  13. Confocal microscopy through a multimode fiber using optical correlation

    Science.gov (United States)

    Loterie, Damien; Goorden, Sebastianus A.; Psaltis, Demetri; Moser, Christophe

    2015-12-01

    We report on a method to obtain confocal imaging through multimode fibers using optical correlation. First, we measure the fiber's transmission matrix in a calibration step. This allows us to create focused spots at one end of the fiber by shaping the wavefront sent into it from the opposite end. These spots are scanned over a sample, and the light coming back from the sample via the fiber is optically correlated with the input pattern. We show that this achieves spatial selectivity in the detection. The technique is demonstrated on microbeads, a dried epithelial cell, and a cover glass.

  14. Fiber optic and laser sensors VIII; Proceedings of the Meeting, San Jose, CA, Sept. 17-19, 1990

    Science.gov (United States)

    Depaula, Ramon P. (Editor); Udd, Eric (Editor)

    1991-01-01

    This issue presents topics on the advances in fiber-optic sensor technology, fiber-optic gyroscope, fiber-optic position and pressure sensors, fiber-optic magnetic and temperature sensors, and generic fiber-optic sensors. Papers included are on a novel analog phase tracker for interferometric fiber-optic sensor applications, recent development status of fiber-optic sensors in China, the magnetic-field sensitivity of depolarized fiber-optic gyros, a depolarized fiber-optic gyro for future tactical applications, fiber-optic position transducers for aircraft controls, and a metal embedded optical-fiber pressure sensor. Attention is also given to a fiber-optic magnetic field sensor using spectral modulation encoding, a bare-fiber temperature sensor, an interferometric fiber-optic accelerometer, improvement of specular reflection pyrometer, a theoretical analysis of two-mode elliptical-core optical fiber sensors, and a fiber probe for ring pattern.

  15. Tunable Optical Filter Based on Mechanically Induced Cascaded Long Period Optical Fiber Grating

    Directory of Open Access Journals (Sweden)

    Sunita P. Ugale

    2013-01-01

    Full Text Available We have proposed and demonstrated experimentally a novel and simple tunable optical filter based on mechanically induced and cascaded long period optical fiber gratings. In this filter variable FWHM and center wavelength is provided by cascading long period and ultralong period optical fiber gratings with different periods in a novel fiber structure. We report here for the first time to our knowledge the characterization of mechanically induced long period fiber gratings with periods up to several millimeters in novel multimode-single-mode-multimode fiber structure. We have obtained maximum loss peak of around 20 dB.

  16. Design of the fiber optic support system and fiber bundle accelerated life test for VIRUS

    Science.gov (United States)

    Soukup, Ian M.; Beno, Joseph H.; Hayes, Richard J.; Heisler, James T.; Mock, Jason R.; Mollison, Nicholas T.; Good, John M.; Hill, Gary J.; Vattiat, Brian L.; Murphy, Jeremy D.; Anderson, Seth C.; Bauer, Svend M.; Kelz, Andreas; Roth, Martin M.; Fahrenthold, Eric P.

    2010-07-01

    The quantity and length of optical fibers required for the Hobby-Eberly Telescope* Dark Energy eXperiment (HETDEX) create unique fiber handling challenges. For HETDEX‡, at least 33,600 fibers will transmit light from the focal surface of the telescope to an array of spectrographs making up the Visible Integral-Field Replicable Unit Spectrograph (VIRUS). Up to 96 Integral Field Unit (IFU) bundles, each containing 448 fibers, hang suspended from the telescope's moving tracker located more than 15 meters above the VIRUS instruments. A specialized mechanical system is being developed to support fiber optic assemblies onboard the telescope. The discrete behavior of 448 fibers within a conduit is also of primary concern. A life cycle test must be conducted to study fiber behavior and measure Focal Ratio Degradation (FRD) as a function of time. This paper focuses on the technical requirements and design of the HETDEX fiber optic support system, the electro-mechanical test apparatus for accelerated life testing of optical fiber assemblies. Results generated from the test will be of great interest to designers of robotic fiber handling systems for major telescopes. There is concern that friction, localized contact, entanglement, and excessive tension will be present within each IFU conduit and contribute to FRD. The test apparatus design utilizes six linear actuators to replicate the movement of the telescope over 65,000 accelerated cycles, simulating five years of actual operation.

  17. New cobweb-structure hollow Bragg optical fibers

    Institute of Scientific and Technical Information of China (English)

    YU Rong-jin; ZHANG Yong-qiang; ZHANG Bing; WANG Chao-ran; WU Chang-qi

    2007-01-01

    A new type of Bragg fibers,i.e. hollow-core cobweb-structured optical fibers,which can be used to the low-loss transmission from visible to near infrared region (0.65 μm-1.55 μm),terahertz wave (200 μm-480 μm) and circular-polarization-maintaining single-mode transmission are investigated. Results show that the hollow-core cobweb-structured fibers have less loss than other hollow-core Bragg fibers. The fibers can be constituted by using the plastics or glasses with large absorption losses.

  18. Fabrication of nonlinear plastic optical fiber (POF) and application

    Science.gov (United States)

    Kim, Eung Soo; Kinoshita, Takeshi; Yu, Yun Sik; Jeong, Myung Yung

    2007-04-01

    We have developed a fabrication technique for plastic optical fiber (POF) using nonlinear organic materials. The fabrication technique is the direct core solution injection into the hole of cladding preform formed by polymerization of cladding solution. The cladding solution was made of MMA, BBP, and BPO. The preform of fiber was drawn into fiber following polymerization of core solution in cladding preform. We used DR1 to control the refractive index of fiber and investigated the sensor characteristics. The sensitivity of fabricated fiber is about 0.11 W/°C in the temperature range from 20 °C to 100 °C.

  19. Optical devices based on liquid crystal photonic bandgap fibers

    DEFF Research Database (Denmark)

    Alkeskjold, Thomas Tanggaard

    2005-01-01

    of LCs combined with the unique waveguiding features of PBG fibers gives the LC filled PCFs unique tunable properties. PBG guidance has been demonstrated for different mesophases of LCs and various functional compact fibers has been demonstrated, which utilitzes the high thermo-optical and electro-optical...... effects of LCs. Thermally controlled spectral filters and broadband switching functionalities, electrically controlled switches, polarizers and polarization rotators and an all-optical modulator has been demonstrated. The waveguiding mechanism of anistotropic PBGs fibers has been analyzed and spectral...

  20. Efficient Fiber Optic Detection of Trapped Ion Fluorescence

    CERN Document Server

    VanDevender, A P; Amini, J; Leibfried, D; Wineland, D J

    2010-01-01

    Integration of fiber optics may play a critical role in the development of quantum information processors based on trapped ions and atoms by enabling scalable collection and delivery of light and coupling trapped ions to optical microcavities. We trap 24Mg+ ions in a surface-electrode Paul trap that includes an integrated optical fiber for detecting 280-nm fluorescence photons. The collection numerical aperture is 0.37 and total collection efficiency is 2.1 %. The ion can be positioned between 80 \\mum and 100 \\mum from the tip of the fiber by use of an adjustable rf-pseudopotential.

  1. Design and implementation of a fiber optic RS232 link

    Science.gov (United States)

    Ryan, James W.

    1987-09-01

    This thesis investigates the feasibility of using a bi-directional fiber optic link to implement a RS232 data link. The results showed that a fiber optic link is a viable replacement. It offers a bandwidth up to 5 MHz, 250 times that of a RS232 data link. This fiber optic link was tested over a distance of 1.5 kilometers, nearly 100 times that of the present RS232 link. It also offers the benefits of space and weight savings and is comparable to devices produced commercially but at a substantial cost savings.

  2. Development of fiber optic data bus for aircraft

    Science.gov (United States)

    Komouchi, Yutaka; Sueoka, Akira

    1988-02-01

    An account is given of the design, construction, and both ground and flight testing of a star-coupled fiber-optic data bus consisting of an optic coupler, fibers, a connector, and a transmitter/receiver. This system precludes spark/fire hazards and crosstalk problems, while offering very small size and weight for a given capability. The communication protocol for the data bus is of 1 Mbit/sec command response type, and its design attempted to minimize the effect on electronic interfaces as a result of conversion from electrical to fiber-optic buses.

  3. Precision-analog fiber-optic transmission system

    Energy Technology Data Exchange (ETDEWEB)

    Stover, G.

    1981-06-01

    This article describes the design, experimental development, and construction of a DC-coupled precision analog fiber optic link. Topics to be covered include overall electrical and mechanical system parameters, basic circuit organization, modulation format, optical system design, optical receiver circuit analysis, and the experimental verification of the major design parameters.

  4. 3D refractive index measurements of special optical fibers

    Science.gov (United States)

    Yan, Cheng; Huang, Su-Juan; Miao, Zhuang; Chang, Zheng; Zeng, Jun-Zhang; Wang, Ting-Yun

    2016-09-01

    A digital holographic microscopic chromatography-based approach with considerably improved accuracy, simplified configuration and performance stability is proposed to measure three dimensional refractive index of special optical fibers. Based on the approach, a measurement system is established incorporating a modified Mach-Zehnder interferometer and lab-developed supporting software for data processing. In the system, a phase projection distribution of an optical fiber is utilized to obtain an optimal digital hologram recorded by a CCD, and then an angular spectrum theory-based algorithm is adopted to extract the phase distribution information of an object wave. The rotation of the optic fiber enables the experimental measurements of multi-angle phase information. Based on the filtered back projection algorithm, a 3D refraction index of the optical fiber is thus obtained at high accuracy. To evaluate the proposed approach, both PANDA fibers and special elliptical optical fiber are considered in the system. The results measured in PANDA fibers agree well with those measured using S14 Refractive Index Profiler, which is, however, not suitable for measuring the property of a special elliptical fiber.

  5. Research of Optical Performance On Rare-Earth Optical Fiber

    Institute of Scientific and Technical Information of China (English)

    Li Baojun; Zhou Meng; Yang Tao; Zhou Yao; Fu Li; Li Tiansi; YangShilong

    2004-01-01

    The rare-earth optical fiber is made of organic material and inorganic rare earth material.It can be used to absorb and transfer solar energy.When sunlight irradiates, it may absorb and transfer solar energy automatically; while at night or without sunlight it may give out light and play role of decoration.By utilizing high transmissivity of organic material and heat-resisting performance of inorganic material, we know the reorganization of material performance under the melting condition, and make empty core bear the high temperature of 150 ~200 ℃.When the light spreads in light guide, some light energy travels along the direction of light guide, and is introduced in the room directly.Another part of light energy is absorbed and stored by light guide, and can release light again after 8 ~ 12 h.

  6. A distributed fiber optic sensor system for dike monitoring using Brillouin optical frequency domain analysis

    Science.gov (United States)

    Nöther, Nils; Wosniok, Aleksander; Krebber, Katerina; Thiele, Elke

    2008-03-01

    We report on the development of a complete system for spatially resolved detection of critical soil displacement in river embankments. The system uses Brillouin frequency domain analysis (BOFDA) for distributed measurement of strain in silica optical fibers. Our development consists of the measurement unit, an adequate coating for the optical fibers and a technique to integrate the coated optical fibers into geotextiles as they are commonly used in dike construction. We present several laboratory and field tests that prove the capability of the system to detect areas of soil displacement as small as 2 meters. These are the first tests of truly distributed strain measurements on optical fibers embedded into geosynthetics.

  7. A Novel Design of Grooved Fibers for Fiber-Optic Localized Plasmon Resonance Biosensors

    Directory of Open Access Journals (Sweden)

    Lai-Kwan Chau

    2009-08-01

    Full Text Available Bio-molecular recognition is detected by the unique optical properties of self-assembled gold nanoparticles on the unclad portions of an optical fiber whose surfaces have been modified with a receptor. To enhance the performance of the sensing platform, the sensing element is integrated with a microfluidic chip to reduce sample and reagent volume, to shorten response time and analysis time, as well as to increase sensitivity. The main purpose of the present study is to design grooves on the optical fiber for the FO-LPR microfluidic chip and investigate the effect of the groove geometry on the biochemical binding kinetics through simulations. The optical fiber is designed and termed as U-type or D-type based on the shape of the grooves. The numerical results indicate that the design of the D-type fiber exhibits efficient performance on biochemical binding. The grooves designed on the optical fiber also induce chaotic advection to enhance the mixing in the microchannel. The mixing patterns indicate that D-type grooves enhance the mixing more effectively than U-type grooves. D-type fiber with six grooves is the optimum design according to the numerical results. The experimental results show that the D-type fiber could sustain larger elongation than the U-type fiber. Furthermore, this study successfully demonstrates the feasibility of fabricating the grooved optical fibers by the femtosecond laser, and making a transmission-based FO-LPR probe for chemical sensing. The sensor resolution of the sensor implementing the D-type fiber modified by gold nanoparticles was 4.1 × 10-7 RIU, which is much more sensitive than that of U-type optical fiber (1.8 × 10-3 RIU.

  8. Optical fibers and their applications for radiation measurements

    Energy Technology Data Exchange (ETDEWEB)

    Kakuta, Tsunemi [Japan Atomic Energy Research Inst., Tokyo (Japan)

    1998-07-01

    When optical fibers are used in a strong radiation field, it is necessary to increase the radiation-resistant capacity. Aiming at the improvement of such property, the characteristics of recent optical fibers made from quartz-glass were reviewed and the newly developed techniques for radiation measurement using those fibers were summarized in this report. Since optical fibers became able to use in the levels near the core conditions, their applications have started in various fields of technologies related to radiation. By combining the optical fibers and a small sensor, it became possible to act as `Key Component` for measuring wide range radioactivity from a trace activity to a strong radiation field in the reactor core. Presently, the fibers are utilized for investigation of the optical mechanisms related in radiation, evaluation of their validities so on. Further, the optical fibers are expected to utilize in a multi-parametric measuring system which allows to concomitantly determine the radiation, temperature, pressure, flow amount etc. as an incore monitor. (M.N.)

  9. Comparative study of optical fiber cure-monitoring methods

    Science.gov (United States)

    Crosby, Peter A.; Powell, Graham R.; Fernando, Gerard F.; Waters, David N.; France, Chris M.; Spooncer, Ronald C.

    1997-06-01

    This paper reports on a comparative study undertaken for different types of optical fiber sensor developed to monitor the cure of an epoxy resin system. The optical fiber sensors used to monitor the cure process were based on transmission spectroscopy, evanescent wave spectroscopy and refractive index monitoring. The transmission sensor was prepared by aligning two optical fibers within a specially prepared sleeve with a gap between the optical fiber end-faces. During cure, resin from the specimen flowed into the gap between the optical fibers allowing transmission spectra of the resin to be obtained. The evanescent wave sensor was prepared by stripping the cladding from a high refractive index core optical fiber. The prepared sensor was embedded in the sample and attenuated total reflectance spectra recorded from the resin/core boundary. Refractive index monitoring was undertaken using a high refractive index core optical fiber which had a small portion of its cladding removed. The prepared sensor was embedded in the resin specimen and light from a single wavelength source was launched into the fiber. Changes in the guiding characteristics of the sensor due to refractive index changes at the resin/core boundary were used to monitor the progress of the cure reaction. The transmission and evanescent wave spectroscopy sensors were used to follow changes in characteristic near-infrared absorption bands of the resin over the range 1450 - 1700 nm during the cure reaction. Consequently these techniques required tunable wavelength sources covering specific wavelength ranges. However, the refractive index based sensor used a single wavelength source. Therefore the equipment costs for this type of sensor were considerably less. Additionally, the refractive index sensor did not require a single wavelength source at any particular wavelength and could be applied to any spectral region in which the optical fiber would transmit light. The advantages and disadvantages of these

  10. Linear and nonlinear optical properties of carbon nanotube-coated single-mode optical fiber gratings.

    Science.gov (United States)

    Villanueva, Guillermo E; Jakubinek, Michael B; Simard, Benoit; Oton, Claudio J; Matres, Joaquín; Shao, Li-Yang; Pérez-Millán, Pere; Albert, Jacques

    2011-06-01

    Single-wall carbon nanotube deposition on the cladding of optical fibers has been carried out to fabricate an all-fiber nonlinear device. Two different nanotube deposition techniques were studied. The first consisted of repeatedly immersing the optical fiber into a nanotube supension, increasing the thickness of the coating in each step. The second deposition involved wrapping a thin film of nanotubes around the optical fiber. For both cases, interaction of transmitted light through the fiber core with the external coating was assisted by the cladding mode resonances of a tilted fiber Bragg grating. Ultrafast nonlinear effects of the nanotube-coated fiber were measured by means of a pump-probe pulses experiment. © 2011 Optical Society of America

  11. Polymer Optical Fiber Compound Parabolic Concentrator fiber tip based glucose sensor: In-Vitro Testing

    DEFF Research Database (Denmark)

    Hassan, Hafeez Ul; Janting, Jakob; Aasmul, Soren;

    2016-01-01

    We present in-vitro sensing of glucose using a newly developed efficient optical fiber glucose sensor based on a Compound Parabolic Concentrator (CPC) tipped polymer optical fiber (POF). A batch of 9 CPC tipped POF sensors with a 35 mm fiber length is shown to have an enhanced fluorescence pickup...... efficiency with an average increment factor of 1.7 as compared to standard POF sensors with a plane cut fiber tip. Invitro measurements for two glucose concentrations (40 and 400 mg/dL) confirm that the CPC tipped sensors efficiently can detect both glucose concentrations. it sets the footnote at the bottom...

  12. Engineering optical properties of semiconductor metafilm superabsorbers

    Science.gov (United States)

    Kim, Soo Jin; Fan, Pengyu; Kang, Ju-Hyung; Brongersma, Mark L.

    2016-04-01

    Light absorption in ultrathin layer of semiconductor has been considerable interests for many years due to its potential applications in various optical devices. In particular, there have been great efforts to engineer the optical properties of the film for the control of absorption spectrums. Whereas the isotropic thin films have intrinsic optical properties that are fixed by materials' properties, metafilm that are composed by deep subwavelength nano-building blocks provides significant flexibilities in controlling the optical properties of the designed effective layers. Here, we present the ultrathin semiconductor metafilm absorbers by arranging germanium (Ge) nanobeams in deep subwavelength scale. Resonant properties of high index semiconductor nanobeams play a key role in designing effective optical properties of the film. We demonstrate this in theory and experimental measurements to build a designing rule of efficient, controllable metafilm absorbers. The proposed strategy of engineering optical properties could open up wide range of applications from ultrathin photodetection and solar energy harvesting to the diverse flexible optoelectronics.

  13. Optical Fiber Sensor Based on Localized Surface Plasmon Resonance Using Silver Nanoparticles Photodeposited on the Optical Fiber End

    Science.gov (United States)

    Ortega-Mendoza, J. Gabriel; Padilla-Vivanco, Alfonso; Toxqui-Quitl, Carina; Zaca-Morán, Placido; Villegas-Hernández, David; Chávez, Fernando

    2014-01-01

    This paper reports the implementation of an optical fiber sensor to measure the refractive index in aqueous media based on localized surface plasmon resonance (LSPR). We have used a novel technique known as photodeposition to immobilize silver nanoparticles on the optical fiber end. This technique has a simple instrumentation, involves laser light via an optical fiber and silver nanoparticles suspended in an aqueous medium. The optical sensor was assembled using a tungsten lamp as white light, a spectrometer, and an optical fiber with silver nanoparticles. The response of this sensor is such that the LSPR peak wavelength is linearly shifted to longer wavelengths as the refractive index is increased, showing a sensitivity of 67.6 nm/RIU. Experimental results are presented. PMID:25302813

  14. Optical fiber sensor based on localized surface plasmon resonance using silver nanoparticles photodeposited on the optical fiber end.

    Science.gov (United States)

    Ortega-Mendoza, J Gabriel; Padilla-Vivanco, Alfonso; Toxqui-Quitl, Carina; Zaca-Morán, Placido; Villegas-Hernández, David; Chávez, Fernando

    2014-10-09

    This paper reports the implementation of an optical fiber sensor to measure the refractive index in aqueous media based on localized surface plasmon resonance (LSPR). We have used a novel technique known as photodeposition to immobilize silver nanoparticles on the optical fiber end. This technique has a simple instrumentation, involves laser light via an optical fiber and silver nanoparticles suspended in an aqueous medium. The optical sensor was assembled using a tungsten lamp as white light, a spectrometer, and an optical fiber with silver nanoparticles. The response of this sensor is such that the LSPR peak wavelength is linearly shifted to longer wavelengths as the refractive index is increased, showing a sensitivity of 67.6 nm/RIU. Experimental results are presented.

  15. Optical Fiber Sensor Based on Localized Surface Plasmon Resonance Using Silver Nanoparticles Photodeposited on the Optical Fiber End

    Directory of Open Access Journals (Sweden)

    J. Gabriel Ortega-Mendoza

    2014-10-01

    Full Text Available This paper reports the implementation of an optical fiber sensor to measure the refractive index in aqueous media based on localized surface plasmon resonance (LSPR. We have used a novel technique known as photodeposition to immobilize silver nanoparticles on the optical fiber end. This technique has a simple instrumentation, involves laser light via an optical fiber and silver nanoparticles suspended in an aqueous medium. The optical sensor was assembled using a tungsten lamp as white light, a spectrometer, and an optical fiber with silver nanoparticles. The response of this sensor is such that the LSPR peak wavelength is linearly shifted to longer wavelengths as the refractive index is increased, showing a sensitivity of 67.6 nm/RIU. Experimental results are presented.

  16. Numerical stability of solitons waves through splices in optical fibers

    CERN Document Server

    de Oliveira, Camila Fogaça; Cirilo, Eliandro Rodrigues; Romeiro, Neyva Maria Lopes; Natti, Érica Regina Takano

    2015-01-01

    The propagation of soliton waves is simulated through splices in optical fibers, in which fluctuations of dielectric parameters occur. The mathematical modeling of these local fluctuations of dielectric properties of fibers was performed by Gaussian functions. By simulating soliton wave propagation in optical fibers with Gaussian fluctuations in their dielectric properties, it was observed that the perturbed soliton numerical solution presented higher sensitivity to fluctuations in the dielectric parameter $\\beta$, a measure of the intensity of nonlinearity in the fiber. In order to verify whether the fluctuations of $\\beta$ parameter in the splices of the optical fiber generate unstable solitons, the propagation of a soliton wave, subject to this perturbation, was simulated for large time intervals. Considering various geometric configurations and intensities of the fluctuations of parameter $\\beta$, it was found that the perturbed soliton wave stabilizes, i.e., the amplitude of the wave oscillations decreas...

  17. Graphene-based side-polished optical fiber amplifier.

    Science.gov (United States)

    Karimi, Mohammad; Ahmadi, Vahid; Ghezelsefloo, Masoud

    2016-12-20

    We demonstrate a novel design for optical fiber amplifiers, utilizing side-polished fibers with a single-layer graphene overlay as the active medium and carrier injection in the graphene layer to provide the required inversion. We study the effects of an electrically induced graphene p-i-n heterojunction in the forward bias regime on optical modes of side-polished fibers and show that gain values of 0.51, 1.81, and 1.79 dB/cm for wavelengths 1064, 1330, and 1550 nm can be obtained for single-mode side-polished fibers. Our results show that in multi-mode side-polished fibers, higher order modes experience higher values of gain, and gain can be increased by increasing polished depth. The proposed system is a tunable wideband optical amplifier that can operate for wavelengths larger than 1000 nm.

  18. Damage monitoring and impact detection using optical fiber vibration sensors

    Science.gov (United States)

    Yang, Y. C.; Han, K. S.

    2002-06-01

    Intensity-based optical fiber vibrations sensors (OFVSs) are used in damage monitoring of fiber-reinforced plastics, in vibration sensing, and location of impacts. OFVSs were constructed by placing two cleaved fiber ends in a capillary tube. This sensor is able to monitor structural vibrations. For vibration sensing, the optical fiber sensor was mounted on the carbon fiber reinforced composite beam, and its response was investigated for free and forced vibration. For locating impact points, four OFVSs were placed at chosen positions and the different arrival times of impact-generated vibration signals were recorded. The impact location can be determined from these time delays. Indentation and tensile tests were performed with the measurement of the optical signal and acoustic emission (AE). The OFVSs accurately detected both free and forced vibration signals. Accurate locations of impact were determined on an acrylate plate. It was found that damage information, comparable in quality to AE data, could be obtained from the OFVS signals.

  19. Nanostructured sapphire optical fiber for sensing in harsh environments

    Science.gov (United States)

    Chen, Hui; Liu, Kai; Ma, Yiwei; Tian, Fei; Du, Henry

    2017-05-01

    We describe an innovative and scalable strategy of transforming a commercial unclad sapphire optical fiber to an allalumina nanostructured sapphire optical fiber (NSOF) that overcomes decades-long challenges faced in the field of sapphire fiber optics. The strategy entails fiber coating with metal Al followed by subsequent anodization to form anodized alumina oxide (AAO) cladding of highly organized pore channel structure. We show that Ag nanoparticles entrapped in AAO show excellent structural and morphological stability and less susceptibility to oxidation for potential high-temperature surface-enhanced Raman Scattering (SERS). We reveal, with aid of numerical simulations, that the AAO cladding greatly increases the evanescent-field overlap both in power and extent and that lower porosity of AAO results in higher evanescent-field overlap. This work has opened the door to new sapphire fiber-based sensor design and sensor architecture.

  20. Power Transmission by Optical Fibers for Component Inherent Communication

    Directory of Open Access Journals (Sweden)

    Michael Dumke

    2010-02-01

    Full Text Available The use of optical fibers for power transmission has been investigated intensely. An optically powered device combined with optical data transfer offers several advantages compared to systems using electrical connections. Optical transmission systems consist of a light source, a transmission medium and a light receiver. The overall system performance depends on the efficiency of opto-electronic converter devices, temperature and illumination dependent losses, attenuation of the transmission medium and coupling between transmitter and fiber. This paper will summarize the state of the art for optically powered systems and will discuss reasons for negative influences on efficiency. Furthermore, an outlook on power transmission by the use of a new technology for creating polymer optical fibers (POF via micro dispensing will be given. This technology is capable to decrease coupling losses by direct contacting of opto-electronic devices.

  1. Coaxial electrospun fibers: applications in drug delivery and tissue engineering.

    Science.gov (United States)

    Lu, Yang; Huang, Jiangnan; Yu, Guoqiang; Cardenas, Romel; Wei, Suying; Wujcik, Evan K; Guo, Zhanhu

    2016-09-01

    Coelectrospinning and emulsion electrospinning are two main methods for preparing core-sheath electrospun nanofibers in a cost-effective and efficient manner. Here, physical phenomena and the effects of solution and processing parameters on the coaxial fibers are introduced. Coaxial fibers with specific drugs encapsulated in the core can exhibit a sustained and controlled release. Their exhibited high surface area and three-dimensional nanofibrous network allows the electrospun fibers to resemble native extracellular matrices. These features of the nanofibers show that they have great potential in drug delivery and tissue engineering applications. Proteins, growth factors, antibiotics, and many other agents have been successfully encapsulated into coaxial fibers for drug delivery. A main advantage of the core-sheath design is that after the process of electrospinning and release, these drugs remain bioactive due to the protection of the sheath. Applications of coaxial fibers as scaffolds for tissue engineering include bone, cartilage, cardiac tissue, skin, blood vessels and nervous tissue, among others. A synopsis of novel coaxial electrospun fibers, discussing their applications in drug delivery and tissue engineering, is covered pertaining to proteins, growth factors, antibiotics, and other drugs and applications in the fields of bone, cartilage, cardiac, skin, blood vessel, and nervous tissue engineering, respectively. WIREs Nanomed Nanobiotechnol 2016, 8:654-677. doi: 10.1002/wnan.1391 For further resources related to this article, please visit the WIREs website.

  2. Fiber Optic Temperature Sensor Based on Multimode Interference Effects

    Energy Technology Data Exchange (ETDEWEB)

    Aguilar-Soto, J G; Antonio-Lopez, J E; Sanchez-Mondragon, J J [Photonics and Optical Physics Laboratory, Optics Department, INAOE Apdo. Postal 51 and 216, Tonantzintla, Puebla 72000 (Mexico); May-Arrioja, D A, E-mail: darrioja@uat.edu.mx

    2011-01-01

    A novel fiber optic temperature sensor based on multimode interference was designed, fabricated and tested. The sensor is very simple and inexpensive since we only need to splice a section of multimode fiber between two single mode fibers. Using this device a sensing range of 25 deg. C to 375 deg. C is demonstrated. We should also highlight that due to the pass-band filter response of MMI devices, multiplexing is rather simple by just changing the length of the multimode section.

  3. Optofluidic magnetometer developed in a microstructured optical fiber.

    Science.gov (United States)

    Candiani, A; Konstantaki, M; Margulis, W; Pissadakis, S

    2012-11-01

    A directional, in-fiber optofluidic magnetometer based on a microstructured optical fiber (MOF) Bragg-grating infiltrated with a ferrofluidic defect is presented. Upon application of a magnetic field, the ferrofluidic defect moves along the length of the MOF Bragg grating, modifying its reflection spectrum. The magnetometer is capable of measuring magnetic fields from 317 to 2500 G. The operational principle of such in-fiber magnetic field probe allows the elaboration of directional measurements of the magnetic field flux.

  4. Optical Fiber Sensor Instrumentation for Slagging Coal Gasifiers

    Energy Technology Data Exchange (ETDEWEB)

    Anbo Wang; Kristie Cooper

    2008-07-19

    Coal gasifier is one of the most promising solutions for clean fossil energy. Refractory thickness monitoring and online real-time temperature measurement is needed for improved reliability and advanced process control for current and future generation power plants. The objective of this program is to design and implement an optical fiber based sensing system that could potentially be used to monitor refractory wall thickness and temperature inside a coal gasifier. For the thickness monitoring, the system should be able to operate at temperatures up to 1000 C. For this temperature range, silica fiber can still work so it is chosen for the sensor design. The measurement is based on a photon counting optical time domain reflectometer. A narrow light pulse is launched into a silica fiber which could be embedded into the gasifier refractory wall, and is partially reflected by the far end of the fiber. The time of flight of the light pulse in the fiber then gives an indication of the position of the fiber end, which is a function of the wall thickness when the fiber is embedded. Results obtained show a measurement accuracy of {+-}2cm in environment of 1000 C with a saw cut fiber end. When the fiber end is corroded by sodium carbide at 900 C, the accuracy is {+-}3cm. For the temperature measurement, a single crystal sapphire fiber sensor is designed. The sapphire fiber guides the broadband light from a light emitting diode to a sapphire wafer functioning as a Fabry-Perot interferometer and the wafer optical thickness is a function of temperature. The returned optical signal is then demodulated by multimode fiber based whitelight interferometry. The system was tested up to 1500 C with a measurement accuracy of {+-}10 C for the entire measurement range.

  5. Fiber optic and laser sensors V; Proceedings of the Meeting, San Diego, CA, Aug. 17-19, 1987

    Science.gov (United States)

    De Paula, Ramon P. (Editor); Udd, Eric (Editor)

    1988-01-01

    The papers contained in this volume focus on recent developments in fiber optic and laser sensors. Topics discussed include electric and magnetic field sensors, fiber optic pressure sensors, fiber optic gyros, fiber optic sensors for aerospace applications, fiber sensor multiplexing, temperature sensors, and specialized fiber optic sensors. Papers are presented on remote fiber optic sensors for angular orientation; fiber optic rotation sensor for space missions; adaptation of an electro-optic monitoring system to aerospace structures; optical fiber sensor for dust concentration measurements; and communication-sensing system using a single optical fiber.

  6. Large-area fiber-optic gyroscope on a multiplexed fiber network.

    Science.gov (United States)

    Clivati, C; Calonico, D; Costanzo, G A; Mura, A; Pizzocaro, M; Levi, F

    2013-04-01

    We describe a fiber-optic gyroscope based on the Sagnac effect, realized on a multiplexed telecom fiber network. Our loop encloses an area of 20 km² and coexists with Internet data traffic. This Sagnac interferometer is capable of detecting signals that are larger than 10(-8) (rad/s)/√Hz, thus approaching ring laser gyroscopes without using a narrow-linewidth laser or sophisticated optics. The proposed gyroscope could be useful for seismic applications, opening new possibilities for this kind of optical fiber sensor.

  7. High Performance Fiber-Optic Sensor for Environmental Monitoring Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Los Gatos Research (LGR) proposes to develop a low-cost, compact, lightweight, rugged and easy-to-use environmental monitoring optical fiber sensor device based on...

  8. Fiber Optic Wing Shape Sensing on NASA's Ikhana UAV

    Science.gov (United States)

    Richards, Lance; Parker, Allen R.; Ko, William L.; Piazza, Anthony

    2008-01-01

    This document discusses the development of fiber optic wing shape sensing on NASA's Ikhana vehicle. The Dryden Flight Research Center's Aerostructures Branch initiated fiber-optic instrumentation development efforts in the mid-1990s. Motivated by a failure to control wing dihedral resulting in a mishap with the Helios aircraft, new wing displacement techniques were developed. Research objectives for Ikhana included validating fiber optic sensor measurements and real-time wing shape sensing predictions; the validation of fiber optic mathematical models and design tools; assessing technical viability and, if applicable, developing methodology and approaches to incorporate wing shape measurements within the vehicle flight control system; and, developing and flight validating approaches to perform active wing shape control using conventional control surfaces and active material concepts.

  9. THE PARALLEL CONFOCAL DETECTING SYSTEM USING OPTICAL FIBER PLATE

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    Objective Focusing on the problem such as slow scanning speed, complex system design and low light efficiency, a new parallel confocal 3D profile detecting method based on optical fiber technology, which realizes whole-field confocal detecting, is proposed. Methods The optical fiber plate generates an 2D point light source array, which splits one light beam into N2 subbeams and act the role of pinholes as point source and point detecting to filter the stray light and reflect light. By introducing the construction and working principle of the multi-beam 3D detecting system, the feasibility is investigated. Results Experiment result indicates that the optical fiber technology is applicable in rotation. The measuring parameters that influence the detecting can easily be adapted to satisfy different requirments of measurement. Compared with the conventional confocal method, the parallel confocal detecting system using optical fiber plate is simple in the mechanism, the measuring field is larger and the speed is faster.

  10. In-Space Distributed Fiber Optic Hydrogen Leak Sensor Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Broadband Photonics Inc. proposes development of a patent-pending distributed fiber optic sensor for in-space hydrogen leak detection. Reliable and fast detection of...

  11. FTTA System Demo Using Optical Fiber-Coupled Active Antennas

    Directory of Open Access Journals (Sweden)

    Niels Neumann

    2014-08-01

    Full Text Available The convergence of optical and wireless systems such as Radio-over-Fiber (RoF networks is the key to coping with the increasing bandwidth demands due to the increasing popularity of video and other high data rate applications. A high level of integration of optical technologies enables simple base stations with a fiber-to-the-antenna (FTTA approach. In this paper, we present a complete full-duplex RoF–FTTA system consisting of integrated active fiber-coupled optical receiving and transmitting antennas that are directly connected to a standard single mode fiber optical link. Data rates up to 1 Gbit/s could be shown without advanced modulation formats on a 1.5 GHz carrier frequency. The antennas as well as the whole system are explained and the results of the system experiments are discussed.

  12. Manipulating time-bin qubits with fiber optics components

    OpenAIRE

    Bussieres, Felix; Soudagar, Yasaman; Berlin, Guido; Lacroix, Suzanne; Godbout, Nicolas

    2006-01-01

    We propose two experimental schemes to implement arbitrary unitary single qubit operations on single photons encoded in time-bin qubits. Both schemes require fiber optics components that are available with current technology.

  13. Fiber Optic Continuous Liquid Sensor for Cryogenic Propellant Gauging Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Broadband Photonics Incorporated proposes to develop a patent-pending fiber optic continuous liquid sensor for low-thrust level settled mass gauging with measurement...

  14. Sensitization of an optical fiber methane sensor with graphene

    Science.gov (United States)

    Zhang, J. Y.; Ding, E. J.; Xu, S. C.; Li, Z. H.; Wang, X. X.; Song, F.

    2017-09-01

    We analyze the mechanism by which tin oxide can be utilized for the optical sensing of methane gas via surface adsorption and electromagnetic theory. Single-mode optical fibers with core diameters of 9 μm and cladding diameters of 12 μm were used. A 15 mm-long segment of each optical fiber was polished to the core via wheel side-polishing; the exposed fiber core areas were coated with graphene-doped tin oxide such that a novel graphene-based optical fiber methane sensor was fabricated. The experimental results show that the sensor exhibits excellent linear fitting and reproducibility, making it useful for the detection of low concentrations of methane.

  15. Fiber-Optic Sensing for In-Space Inspection

    Science.gov (United States)

    Pena, Francisco; Richards, W. Lance; Piazza, Anthony; Parker, Allen R.; Hudson, Larry D.

    2014-01-01

    This presentation provides examples of fiber optic sensing technology development activities performed at NASA Armstrong. Examples of current and previous work that support in-space inspection techniques and methodologies are highlighted.

  16. The Compatibility in Optic Fiber Smart Concrete and Structure

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    The compatibility between a fiber optical sensor and concrete structure in the optic fiber smart concrete is studied.The methods of improving the compatibility are proposed based on theory analysing, and a novel fiber optical sensor was developed. The experimental results show that the novel structure of fiber optical sensor and the scheme of the protecting layer of epoxy resin bed composite not only enable the sensor to be applied in strict environment, but also can monitor the beginning propagation and breaking of concrete cracks. The results also indicate that the sensor will maintain its properties in the case of large deformation and that it has the high compatibility with concrete structure and can meet special needs of the intelligent materials and structure.

  17. Networking of optical fiber sensors for extreme environments

    Science.gov (United States)

    Peters, Kara

    2016-04-01

    One of the major benefits of optical fiber sensors for applications to structural health monitoring and other structural measurements is their inherent multiplexing capabilities, meaning that a large number of sensing locations can be achieved with a single optical fiber. It has been well demonstrated that point wise sensors can be multiplexed to form sensor networks or optical fibers integrated with distributed sensing techniques. The spacing between sensing locations can also be tuned to match different length scales of interest. This article presents an overview of directions to adapt optical fiber sensor networking techniques into new applications where limitations such as available power or requirements for high data acquisition speeds are a driving factor. In particular, the trade-off between high fidelity sensor information vs. rapid signal processing or data acquisition is discussed.

  18. Recent progresses in scintillating doped silica fiber optics

    Science.gov (United States)

    De Mattia, Cristina; Mones, Eleonora; Veronese, Ivan; Fasoli, Mauro; Chiodini, Norberto; Cantone, Marie Claire; Vedda, Anna

    2014-09-01

    The recent progresses in the development and characterization of doped silica fiber optics for dosimetry applications in the modern radiation therapy, and for high energy physics experiments, are presented and discussed. In particular, the main purpose was the production of scintillating fiber optics with an emission spectrum which can be easily and efficiently distinguished from that of other spurious luminescent signals originated in the fiber optic material as consequence of the exposition to ionizing radiations (e.g. Cerenkov light and intrinsic fluorescence phenomena). In addition to the previously investigated dopant (Ce), other rare earth elements (Eu and Yb) were considered for the scintillating fiber optic development. The study of the luminescent and dosimetric properties of these new systems was carried out by using X and gamma rays of different energies and field sizes.

  19. Development of The Liquid Refractometer Using Optical Fiber Detection

    Institute of Scientific and Technical Information of China (English)

    Ming-Horng Chiu; Hsiharng Yang; Shao-Nan Hsu

    2003-01-01

    This article presents a new technique of optical heterodyne interferometry to measure the refractive index of some unknown liquid. It's based on total-internal-reflection heterodyne interferometry and the uses of fiber sensor technology.

  20. Development of The Liquid Refractometer Using Optical Fiber Detection

    Institute of Scientific and Technical Information of China (English)

    Ming-Horng; Chiu; Hsiharng; Yang; Shao-Nan; Hsu

    2003-01-01

    This article presents a new technique of optical heterodyne interferometry to measure the refractive index of some unknown liquid. It's based on total -internal-reflection heterodyne interferometry and the uses of fiber sensor technology.