WorldWideScience

Sample records for fiber membrane contactors

  1. Triple-bore hollow fiber membrane contactor for liquid desiccant based air dehumidification

    KAUST Repository

    Bettahalli Narasimha, Murthy Srivatsa

    2016-04-26

    Dehumidification is responsible for a large part of the energy consumption in cooling systems in high humidity environments worldwide. Improving efficiency is therefore essential. Liquid desiccants offer a promising solution for dehumidification, as desired levels of humidity removal could be easily regulated. The use of membrane contactors in combination with liquid desiccant is attractive for dehumidification because they prevent direct contact between the humid air and the desiccant, removing both the potential for desiccant carryover to the air and the potential for contamination of the liquid desiccant by dust and other airborne materials, as well as minimizing corrosion. However, the expected additional mass transport barrier of the membrane surface can lower the expected desiccation rate per unit of desiccant surface area. In this context, hollow fiber membranes present an attractive option for membrane liquid desiccant contactors because of their high surface area per unit volume. We demonstrate in this work the performance of polyvinylidene fluoride (PVDF) based triple-bore hollow fiber membranes as liquid desiccant contactors, which are permeable to water vapor but impermeable to liquid water, for dehumidification of hot and humid air.

  2. Composite hollow fiber gas-liquid membrane contactors for olefin/paraffin separation

    NARCIS (Netherlands)

    Nijmeijer, Dorothea C.; Visser, Tymen; Assen, R.; Wessling, Matthias

    2004-01-01

    Gas¿liquid membrane contactors frequently suffer from undesired wetting of the microporous membrane by the absorption liquid. Stabilization layers at the liquid-side of the microporous membrane potentially prevent this wetting. We apply such stabilized membranes in a membrane contactor using AgNO3

  3. Performance of Hollow Fiber Membrane Gas-Liquid Contactors to Absorb CO2 Using Diethanolamine (Dea as a Solvent

    Directory of Open Access Journals (Sweden)

    Sutrasno Kartohardjono

    2010-10-01

    Full Text Available This study uses DEA solution to absorb CO2 from the gas flow through the hollow fiber membrane contactors. This study aims to evaluate the performance of hollow fiber membrane contactors to absorb CO2 gas using DEA solution as solvent through mass transfer and hydrodynamics studies. The use of DEA solution is to reduce the mass transfer resistance in the liquid phase, and on the other side, the large contact area of the membrane surface can cover the disadvantage of membrane contactors; additional mass transfer resistance in the membrane phase. During experiments, CO2 feed flows through the fiber lumens, while the 0.01 M DEA solution flows in the shell side of membrane contactors. Experimental results show that the mass transfer coefficients and fluxes of CO2 increase with an increase in both water and DEA solution flow rates. Increasing the amount of fibers in the contactors will decrease the mass transfer and fluxes at the same DEA solution flow rate. Mass transfer coefficients and CO2 fluxes using DEA solution can achieve 28,000 and 7.6 million times greater than using water as solvent, respectively. Hydrodynamics studies show that the liquid pressure drops in the contactors increase with increasing liquid flow rate and number of fibers in the contactors. The friction between water and the fibers in the contactor was more pronounced at lower velocities, and therefore, the value of the friction factor is also higher at lower velocities.

  4. Mathematical Modeling and Numerical Simulation of CO2 Removal by Using Hollow Fiber Membrane Contactors

    Directory of Open Access Journals (Sweden)

    Mohammad Mesbah

    2017-10-01

    Full Text Available Abstract In this study, a mathematical model is proposed for CO2 separation from N2/CO2 mixtureusing a hollow fiber membrane contactor by various absorbents. The contactor assumed as non-wetted membrane; radial and axial diffusions were also considered in the model development. The governing equations of the model are solved via the finite element method (FEM. To ensure the accuracy of the developed model, the simulation results were validated using the reported experimental data for potassium glycinate (PG, monoethanol amine (MEA, and methyldiethanol amine (MDEA. The results of the proposed model indicated that PG absorbent has the highest removal efficiency of CO2, followed by potassium threonate (PT, MEA, amino-2-methyl-1-propanol (AMP, diethanol amine (DEA, and MDEA in sequence. In addition, the results revealed that the CO2 removal efficiency was favored by absorbent flow rate and liquid temperature, while the gas flow rate has a reverse effect. The simulation results proved that the hollow fiber membrane contactors have a good potential in the area of CO2 capture.

  5. Extraction of zirconium from simulated acidic nitrate waste using liquid membrane in hollow fiber contactor

    International Nuclear Information System (INIS)

    Pandey, G.; Chinchale, R.; Renjith, A.U.; Dixit, S.; Mukhopadhyay, S.; Shenoy, K.T.; Ghosh, S.K.

    2015-01-01

    The acidic waste raffinate stream of zirconium (Zr) purification plant contains about 2 gpl of Zr in about 2M free nitric acid. TBP, which is the most commonly used solvent in the nuclear industry, is not suitable for the extraction of Zr from this lean solution as its distribution coefficient is less than one. In house synthesized Mixed Alkyl Phosphine Oxide (MAPO) is a potential extractant for Zr from this lean stream. Intensification of this process for recovery of Zr has been attempted through use of efficient contactor, namely, hollow fiber module and efficient process, namely, simultaneous extraction and stripping across liquid membrane containing MAPO. Based on batch equilibrium studies selection of suitable concentration of extractant, composition of diluent, selection and concentration of strippant for the proposed liquid membrane system was made. The selected organic and strippant concentration was used to study suitability of application of Dispersion Liquid Membrane (DLM) in hollow fiber contactor for recovery Zr from solution simulated to Zr plant raffinate. Challenges related to stable operation of the liquid membrane system like stability of the organic phase in the micropores of lumen and stability of the dispersion during the pertraction were addressed through pressure balance across the lumen and choice of adequate dispersion condition respectively. (author)

  6. Effect of Feed Gas Flow Rate on CO2 Absorption through Super Hydrophobic Hollow Fiber membrane Contactor

    Science.gov (United States)

    Kartohardjono, Sutrasno; Alexander, Kevin; Larasati, Annisa; Sihombing, Ivander Christian

    2018-03-01

    Carbon dioxide is pollutant in natural gas that could reduce the heating value of the natural gas and cause problem in transportation due to corrosive to the pipeline. This study aims to evaluate the effects of feed gas flow rate on CO2 absorption through super hydrophobic hollow fiber contactor. Polyethyleneglycol-300 (PEG-300) solution was used as absorbent in this study, whilst the feed gas used in the experiment was a mixture of 30% CO2 and 70% CH4. There are three super hydrophobic hollow fiber contactors sized 6 cm and 25 cm in diameter and length used in this study, which consists of 1000, 3000 and 5000 fibers, respectively. The super hydrophobic fiber membrane used is polypropylene-based with outer and inner diameter of about 525 and 235 μm, respectively. In the experiments, the feed gas was sent through the shell side of the membrane contactor, whilst the absorbent solution was pumped through the lumen fibers. The experimental results showed that the mass transfer coefficient, flux, absorption efficiency for CO2-N2 system and CO2 loading increased with the feed gas flow rate, but the absorption efficiency for CO2-N2 system decreased. The mass transfer coefficient and the flux, at the same feed gas flow rate, decreased with the number of fibers in the membrane contactor, but the CO2 absorption efficiency and the CO2 loading increased.

  7. Counteracting ammonia inhibition in anaerobic digestion by removal with a hollow fiber membrane contactor.

    Science.gov (United States)

    Lauterböck, B; Ortner, M; Haider, R; Fuchs, W

    2012-10-01

    The aim of the current study was to investigate the feasibility of membrane contactors for continuous ammonia (NH₃-N) removal in an anaerobic digestion process and to counteract ammonia inhibition. Two laboratory anaerobic digesters were fed slaughterhouse wastes with ammonium (NH₄⁺) concentrations ranging from 6 to 7.4 g/L. One reactor was used as reference reactor without any ammonia removal. In the second reactor, a hollow fiber membrane contactor module was used for continuous ammonia removal. The hollow fiber membranes were directly submerged into the digestate of the anaerobic reactor. Sulfuric acid was circulated in the lumen as an adsorbent solution. Using this set up, the NH₄⁺-N concentration in the membrane reactor was significantly reduced. Moreover the extraction of ammonia lowered the pH by 0.2 units. In combination that led to a lowering of the free NH₃-N concentration by about 70%. Ammonia inhibition in the reference reactor was observed when the concentration exceeded 6 g/L NH₄⁺-N or 1-1.2 g/L NH₃-N. In contrast, in the membrane reactor the volatile fatty acid concentration, an indicator for process stability, was much lower and a higher gas yield and better degradation was observed. The chosen approach offers an appealing technology to remove ammonia directly from media having high concentrations of solids and it can help to improve process efficiency in anaerobic digestion of ammonia rich substrates. Copyright © 2012 Elsevier Ltd. All rights reserved.

  8. Ozone mass transfer behaviors on physical and chemical absorption for hollow fiber membrane contactors.

    Science.gov (United States)

    Zhang, Yong; Li, Kuiling; Wang, Jun; Hou, Deyin; Liu, Huijuan

    2017-09-01

    To understand the mass transfer behaviors in hollow fiber membrane contactors, ozone fluxes affected by various conditions and membranes were investigated. For physical absorption, mass transfer rate increased with liquid velocity and the ozone concentration in the gas. Gas flow rate was little affected when the velocity was larger than the critical value, which was 6.1 × 10 -3 m/s in this study. For chemical absorption, the flux was determined by the reaction rate between ozone and the absorbent. Therefore, concentration, species, and pH affected the mass transfer process markedly. For different absorbents, the order of mass transfer rate was the same as the reaction rate constant, which was phenol, sodium nitrite, hydrogen peroxide, and oxalate. Five hydrophobic membranes with various properties were employed and the mass transfer behavior can be described by the Graetz-Lévèque equation for the physical absorption process. The results showed the process was controlled by liquid film and the gas phase conditions, and membrane properties did not affect the ozone flux. For the chemical absorption, gas film, membrane and liquid film affected the mass transfer together, and none of them were negligible.

  9. Sweep gas membrane distillation in a membrane contactor with metallic hollow fibers

    NARCIS (Netherlands)

    Shukla, Sushumna; Benes, Nieck Edwin; Vankelecom, I.F.J.; Mericq, J.P.; Belleville, M.P.; Hengl, N.; Sanchez Marcano, Jose

    2015-01-01

    This work revolves around the use of porous metal hollow fibers in membrane distillation. Various stages are covered, starting from membrane synthesis up to the testing of a pilot scale membrane module. Mechanically stable metal hollow fibers have been synthesized by phase inversion of a stainless

  10. Mathematical modeling of liquid/liquid hollow fiber membrane contactor accounting for interfacial transport phenomena: Extraction of lanthanides as a surrogate for actinides

    International Nuclear Information System (INIS)

    Rogers, J.D.

    1994-01-01

    This report is divided into two parts. The second part is divided into the following sections: experimental protocol; modeling the hollow fiber extractor using film theory; Graetz model of the hollow fiber membrane process; fundamental diffusive-kinetic model; and diffusive liquid membrane device-a rigorous model. The first part is divided into: membrane and membrane process-a concept; metal extraction; kinetics of metal extraction; modeling the membrane contactor; and interfacial phenomenon-boundary conditions-applied to membrane transport

  11. CFD simulation of copper(II) extraction with TFA in non-dispersive hollow fiber membrane contactors.

    Science.gov (United States)

    Muhammad, Amir; Younas, Mohammad; Rezakazemi, Mashallah

    2018-04-01

    This study presents computational fluid dynamics (CFD) simulation of dispersion-free liquid-liquid extraction of copper(II) with trifluoroacetylacetone (TFA) in hollow fiber membrane contactor (HFMC). Mass and momentum balance Navier-Stokes equations were coupled to address the transport of copper(II) solute across membrane contactor. Model equations were simulated using COMSOL Multiphysics™. The simulation was run to study the detailed concentration distribution of copper(II) and to investigate the effects of various parameters like membrane characteristics, partition coefficient, and flow configuration on extraction efficiency. Once-through extraction was found to be increased from 10 to 100% when partition coefficient was raised from 1 to 10. Similarly, the extraction efficiency was almost doubled when porosity to tortuosity ratio of membrane was increased from 0.05 to 0.81. Furthermore, the study revealed that CFD can be used as an effective optimization tool for the development of economical membrane-based dispersion-free extraction processes.

  12. Investigation of H2S and CO2 Removal from Gas Streams Using Hollow Fiber Membrane Gas–liquid Contactors

    Directory of Open Access Journals (Sweden)

    S. M. Mirfendereski

    2017-07-01

    Full Text Available Chemical absorption of H2S and CO2 from CH4 was carried out in a polypropylene porous asymmetric hollow fiber membrane contactor (HFMC. A 0.5 mol L–1 aqueous solution of methyldiethanolamine (MDEA was used as chemical absorbent solution. Effects of gas flow rate, liquid flow rate, H2S concentration and CO2 concentration on the H2S outlet concentrations and CO2 removal percentage were investigated. The results showed that the removal of H2S with aqueous solution of MDEA was very high and indicated almost total removal of H2S. Experimental results also indicated that the membrane contactor was very efficient in the removal of trace H2S at high gas/ liquid flow ratio. The removal of H2S was almost complete with a recovery of more than 96 %. Using feed gas mixtures containing 5000 ppm H2S with CO2 concentrations in the range of 4–12 vol.%, the outlet H2S concentration of less than 1.0 ppm was attained with less than 4.0 vol.% of CO2 permeated and absorbed.

  13. Osmotic distillation and quality evaluation of sucrose, apple and orange juices in hollow fiber membrane contactor

    Directory of Open Access Journals (Sweden)

    Rehman Waheed Ur

    2017-01-01

    Full Text Available Sucrose solution, apple and orange juices were concentrated through osmotic distillation (OD process using a mini-module Liqui-CelTM hollow fibre membrane contactor. Mass transport characteristics of water molecules from feed to stripping solution were studied. Process parameters such as feed temperature, feed flow rate and concentration of stripping solution (CaCl2 were varied. Sucrose solution was concentrated from 135 to 510 g TSS kg-1 in 340 min using feed-in- -lumen flow configuration at a start-up water flux of 0.250 L m-2 h-1 and a temperature of 30°C. Similarly, it was concentrated up to 510 g TSS kg-1 in 200 min using feed-in-shell flow configuration at a start-up water flux of 0.505 L m-2 hr1 and a temperature of 30°C. In a total recycle time of 340 min, clarified apple and orange juices were concentrated up to 500 g TSS kg-1 using feed-in-lumen flow configuration at a start-up water flux of 0.204 and 0.294 L m-2 hr1, respectively. It was found that quality parameters of fruit juices were well improved after the osmotic distillation process. The process therefore has good potential for application in the fruit processing industry for concentration of fruit juices.

  14. Development of robust fluorinated TiO2/PVDF composite hollow fiber membrane for CO2 capture in gas-liquid membrane contactor

    Science.gov (United States)

    Lin, Yuqing; Xu, Yilin; Loh, Chun Heng; Wang, Rong

    2018-04-01

    Gas-liquid membrane contactor (GLMC) is a promising method to attain high efficiency for CO2 capture from flue gas, biogas and natural gas. However, membranes used in GLMC are prone to pore wetting due to insufficient hydrophobicity and low chemical resistance, resulting in significant increase in mass transfer resistance. To mitigate this issue, inorganic-organic fluorinated titania/polyvinylidene fluoride (fTiO2/PVDF) composite hollow fiber (HF) membranes was prepared via facile in-situ vapor induced hydrolyzation method, followed by hydrophobic modification. The proposed composite membranes were expected to couple the superb chemical stability of inorganic and high permeability/low cost of organic materials. The continuous fTiO2 layer deposited on top of PVDF substrate was found to possess a tighter microstructure and better hydrophobicity, which effectively prevented the membrane from wetting and lead to a high CO2 absorption flux (12.7 × 10-3 mol m-2 s-1). In a stability test with 21-day operation of GLMC using 1M monoethanolamine (MEA) as the absorbent, the fTiO2/PVDF membrane remained to be intact with a CO2 absorption flux decline of ∼16%, while the pristine PVDF membrane suffered from a flux decline of ∼80% due to membrane damage. Overall, this work provides an insight into the preparation of high-quality inorganic/organic composite HF membranes for CO2 capture in GLMC application.

  15. Hollow Fiber Membrane Contactors for Post-Combustion CO2 Capture: A Scale-Up Study from Laboratory to Pilot Plant

    Directory of Open Access Journals (Sweden)

    Chabanon E.

    2014-11-01

    Full Text Available Membrane contactors have been proposed for decades as a way to achieve intensified mass transfer processes. Post-combustion CO2 capture by absorption into a chemical solvent is one of the currently most intensively investigated topics in this area. Numerous studies have already been reported, unfortunately almost systematically on small, laboratory scale, modules. Given the level of flue gas flow rates which have to be treated for carbon capture applications, a consistent scale-up methodology is obviously needed for a rigorous engineering design. In this study, the possibilities and limitations of scale-up strategies for membrane contactors have been explored and will be discussed. Experiments (CO2 absorption from a gas mixture in a 30%wt MEA aqueous solution have been performed both on mini-modules and at pilot scale (10 m2 membrane contactor module based on PTFE hollow fibers. The results have been modelled utilizing a resistance in series approach. The only adjustable parameter is in fitting the simulations to experimental data is the membrane mass transfer coefficient (km, which logically plays a key role. The difficulties and uncertainties associated with scaleup computations from lab scale to pilot scale modules, with a particular emphasis on the km value, are presented and critically discussed.

  16. Carbon Dioxide Absorption in a Membrane Contactor with Color Change

    Science.gov (United States)

    Pantaleao, Ines; Portugal, Ana F.; Mendes, Adelio; Gabriel, Joaquim

    2010-01-01

    A pedagogical experiment is described to examine the physical absorption of gases, in this case carbon dioxide, in a hollow fiber membrane contactor (HFMC) where the absorption concentration profile can be followed by a color change. The HFMC is used to teach important concepts and can be used in interesting applications for students, such as…

  17. Triple-bore hollow fiber membrane contactor for liquid desiccant based air dehumidification

    KAUST Repository

    Bettahalli Narasimha, Murthy Srivatsa; Lefers, Ryan; Fedoroff, Nina V.; Leiknes, TorOve; Nunes, Suzana Pereira

    2016-01-01

    the potential for desiccant carryover to the air and the potential for contamination of the liquid desiccant by dust and other airborne materials, as well as minimizing corrosion. However, the expected additional mass transport barrier of the membrane surface

  18. Modelling of cross-flow membrane contactors : Physical mass transfer processes

    NARCIS (Netherlands)

    Dindore, V. Y.; Brilman, D. W. F.; Versteeg, G. F.

    2005-01-01

    Traditionally, hollow fiber membrane contactors used for gas-liquid contacting were designed in a shell and tube configuration with shell-side fluid flowing parallel to the fiber-side fluid, either in co-current or counter-current pattern. The primary limitations of these so-called 'parallel flow'

  19. Membrane contactors for CO2 capture processes - critical review

    Science.gov (United States)

    Nogalska, Adrianna; Trojanowska, Anna; Garcia-Valls, Ricard

    2017-07-01

    The use of membrane contactor in industrial processes is wide, and lately it started to be used in CO2 capture process mainly for gas purification or to reduce the emission. Use of the membrane contactor provides high contact surface area so the size of the absorber unit significantly decreases, which is an important factor for commercialization. The research has been caried out regarding the use of novel materials for the membrane production and absorbent solution improvements. The present review reveals the progress in membrane contactor systems for CO2 capture processes concerning solution for ceramic membrane wetting, comparison study of different polymers used for fabrication and methods of enzyme immobilization for biocomposite membrane. Also information about variety of absorbent solutions is described.

  20. Hollow fiber membrane contactors for CO2 capture: modeling and up-scaling to CO2 capture for an 800 MWe coal power station

    NARCIS (Netherlands)

    Kimball, E.; Al-Azki, A.; Gomez, A.; Goetheer, E.L.V.; Booth, N.; Adams, D.; Ferre, D.

    2014-01-01

    A techno-economic analysis was completed to compare the use of Hollow Fiber Membrane Modules (HFMM) with the more conventional structured packing columns as the absorber in amine-based CO2capture systems for power plants. In order to simulate the operation of industrial scale HFMMsystems, a

  1. Hollow Fiber Membrane Contactors for CO2 Capture: Modeling and Up-Scaling to CO2 Capture for an 800 MWe Coal Power Station

    Directory of Open Access Journals (Sweden)

    Kimball Erin

    2014-11-01

    Full Text Available A techno-economic analysis was completed to compare the use of Hollow Fiber Membrane Modules (HFMM with the more conventional structured packing columns as the absorber in amine-based CO2 capture systems for power plants. In order to simulate the operation of industrial scale HFMM systems, a two-dimensional model was developed and validated based on results of a laboratory scale HFMM. After successful experiments and validation of the model, a pilot scale HFMM was constructed and simulated with the same model. The results of the simulations, from both sizes of HFMM, were used to assess the feasibility of further up-scaling to a HFMM system to capture the CO2 from an 800 MWe power plant. The system requirements – membrane fiber length, total contact surface area, and module volume – were determined from simulations and used for an economic comparison with structured packing columns. Results showed that a significant cost reduction of at least 50% is required to make HFMM competitive with structured packing columns. Several factors for the design of industrial scale HFMM require further investigation, such as the optimal aspect ratio (module length/diameter, membrane lifetime, and casing material and shape, in addition to the need to reduce the overall cost. However, HFMM were also shown to have the advantages of having a higher contact surface area per unit volume and modular scale-up, key factors for applications requiring limited footprints or flexibility in configuration.

  2. Characterization of fouling of membrane contactors

    DEFF Research Database (Denmark)

    Ciurkot, Kaludia; Zarebska, Agata; Christensen, Knud Villy

    2013-01-01

    of ammonia and membrane fouling tendency. The surface morphology of both clean and fouled membranes by model manure solution and undigested pig manure has been studied by: Optical and Atomic Force Microscopy and contact angle measurements. Based on the experimental results, it is concluded that real manure...... achieved higher ammonia removal than the synthetic model manure solution. This might be due to the larger particle size of the milled straw in the model solution compared to the size of suspended solids present in real manure. From the fouling autopsy, it was found that PTFE membranes are more prone...... to fouling than PP membranes. In both membranes the hydrophobicity decreased after running the process for 30 h, especially when undigested pig manure was used....

  3. Studies on non dispersive solvent extraction for removal of dissolved di-butyl phosphate (DBP) from aqueous medium using hollow fiber membrane contactor

    International Nuclear Information System (INIS)

    Singh, Suman Kumar; Bindu, M.; Tripathi, S.C.; Gandhi, P.M.

    2013-01-01

    PUREX process is based on the principle of mass transfer by liquid liquid dispersion. Tri-n-butyl phosphate (TBP) is universal extractant for PUREX process which is employed for reprocessing the irradiated nuclear fuels for separation and recovery of fissile and fertile materials. The multi cycle solvent extraction processes encompass continuous extraction and stripping operations that are invariably carried out in pulsed columns. The continuous exposure of organic solvent (TBP) to high acidic and radioactive medium leads to decrease the solvent extraction efficiency as it degraded to different level producing di-butyl phosphate and mono-butyl phosphate in significant quantities. Efficiency of purex process decreases as di-butyl phosphate forms aqueous soluble complexes with uranium. Removal of such dissolved DBP from aqueous medium is of direct interest in reprocessing processes as this would enable to sustain the better efficiency of the process and also control the loss of fissile and fertile materials. The non-dispersive solvent extraction is a configuration of the conventional solvent-extraction process where a microporous membrane separates both the immiscible phases, one of which impregnates the membrane, thus bringing the liquid-liquid interface to one side of the membrane. This study is a preliminary evaluation of microporous hollow fiber membrane modules for the removal of dissolved DBP from acidic medium. The performance of the proposed system can be improved by optimizing controlling parameters of the process for quantitative transport of dissolved DBP from acidic medium in the purex process context

  4. Experimental performance of indirect air–liquid membrane contactors for liquid desiccant cooling systems

    International Nuclear Information System (INIS)

    Das, Rajat Subhra; Jain, Sanjeev

    2013-01-01

    Owing to the stringent indoor air quality (IAQ) requirements and high cost of desiccants, one of the major concerns in liquid desiccant technology has been the carryover, which can be eliminated through indirect contact between desiccant and air. Membrane contactors using microporous semipermeable hydrophobic membranes have a great potential in this regard. This communication investigates the performance of semipermeable membrane based indirect contactors as dehumidifiers in liquid desiccant cooling applications. Experiments on different types of membrane contactors are carried out using lithium chloride (LiCl) solution as desiccant. The membrane contactors consist of alternate channels of air and liquid desiccant flowing in cross-flow direction. Hydrophobic membranes form a liquid tight, vapor permeable porous barrier between hygroscopic solution and moist air, thus eliminating carryover of desiccant droplets. In order to provide maximum contact area for air–desiccant interaction, a wicking material is sandwiched between two membranes in the liquid channel. It is observed that vapor flux upto 1300 g/m 2 h can be achieved in a membrane contactor with polypropylene (PP) membranes, although the dehumidification effectiveness remains low. The effect of key parameters on the transmembrane vapor transport is presented in the paper. - Highlights: • Indirect membrane contactors developed to avoid carryover in liquid desiccant system. • Dehumidification effectiveness and vapor flux reported under varying conditions. • Vapor flux upto 1295 g/m 2 h in polypropylene contactor with high area density. • Dehumidification effectiveness with LiCl solution varies within 23% to 45%

  5. Emergency membrane contactor based absorption system for ammonia leaks in water treatment plants.

    Science.gov (United States)

    Shao, Jiahui; Fang, Xuliang; He, Yiliang; Jin, Qiang

    2008-01-01

    Abstract Because of the suspected health risks of trihalomethanes (THMs), more and more water treatment plants have replaced traditional chlorine disinfection process with chloramines but often without the proper absorption system installed in the case of ammonia leaks in the storage room. A pilot plant membrane absorption system was developed and installed in a water treatment plant for this purpose. Experimentally determined contact angle, surface tension, and corrosion tests indicated that the sulfuric acid was the proper choice as the absorbent for leaking ammonia using polypropylene hollow fiber membrane contactor. Effects of several operating conditions on the mass transfer coefficient, ammonia absorption, and removal efficiency were examined, including the liquid concentration, liquid velocity, and feed gas concentration. Under the operation conditions investigated, the gas absorption efficiency over 99.9% was achieved. This indicated that the designed pilot plant membrane absorption system was effective to absorb the leaking ammonia in the model storage room. The removal rate of the ammonia in the model storage room was also experimentally and theoretically found to be primarily determined by the ammonia suction flow rate from the ammonia storage room to the membrane contactor. The ammonia removal rate of 99.9% was expected to be achieved within 1.3 h at the ammonia gas flow rate of 500 m3/h. The success of the pilot plant membrane absorption system developed in this study illustrated the potential of this technology for ammonia leaks in water treatment plant, also paved the way towards a larger scale application.

  6. Application of dual membrane contactor for simultaneous CO2 removal using continues diethanolamine (DEA)

    Science.gov (United States)

    Rahmawati, Yeni; Nurkhamidah, Siti; Susianto, Listiyana, Nidia Intan; Putricahyani, Widyawati

    2017-05-01

    Technology of membrane contactor is an improvemet of acid gas (CO2) removal technology that combining gas absorption process with solvent and membrane technology. The objective of the experiment are study the effect of feed gas flow rate and solvent to flux CO2 and efficiency of CO2 removal, and also study the performance of membrane contactor. The experiment is conducted by circulating DEA in certain flow rate and arranging hollow fiber membrane in double-crossed section with the amount of desorption membrane three times more than absorption membrane. Feed gas streamed in the tube of membrane absorption and solvent on the shell. At the same time and condition, the process of desorption is done by streamed N2 gas as the stripping gas in desorption membrane. Performance test is conducted by running optimum variable for 8 hours. The result showed that flux of absorption gain the highest at 24,747 × 10-4 mol/m2.s, while flux of desorption gain the highest at 1,761 × 10-4 mol/m2.s. Increasing of absorption flux correspond to increasing of flow rate of feed gas and CO2 gas concentration but decreasing in flow rate of solvent. Increasing of desorption flux correspond to increasing of flow rate of feed gas and solvent but concentration of CO2 does not have impact. Efficiency increase while flow rate of mix gas and solvent decreasing, but CO2 concentration increase. The highest efficiency is 61,64%. Efficiency performance for CO2 removal of module membrane has the highest value at first 2 hours and stay constant at next running for 8 hours.

  7. Separation of gaseous air pollutants using membrane contactors

    Science.gov (United States)

    Sverak, T.; Bulejko, P.; Ostrezi, J.; Kristof, O.; Kalivoda, J.; Kejik, P.; Mayerova, K.; Adamcik, M.

    2017-10-01

    This work deals with the separation of CO2 gaseous pollutant from gas mixtures to a water solution using the laboratory contactor. The laboratory set process parameters showed the rate of carbon dioxide transition through the interface in a so promising level the contactor separators can be considered as a very promising pathway to reduce the content of this greenhouse gas from the air.

  8. Membrane contactor/separator for an advanced ozone membrane reactor for treatment of recalcitrant organic pollutants in water

    International Nuclear Information System (INIS)

    Chan, Wai Kit; Jouët, Justine; Heng, Samuel; Yeung, King Lun; Schrotter, Jean-Christophe

    2012-01-01

    An advanced ozone membrane reactor that synergistically combines membrane distributor for ozone gas, membrane contactor for pollutant adsorption and reaction, and membrane separator for clean water production is described. The membrane reactor represents an order of magnitude improvement over traditional semibatch reactor design and is capable of complete conversion of recalcitrant endocrine disrupting compounds (EDCs) in water at less than three minutes residence time. Coating the membrane contactor with alumina and hydrotalcite (Mg/Al=3) adsorbs and traps the organics in the reaction zone resulting in 30% increase of total organic carbon (TOC) removal. Large surface area coating that diffuses surface charges from adsorbed polar organic molecules is preferred as it reduces membrane polarization that is detrimental to separation. - Graphical abstract: Advanced ozone membrane reactor synergistically combines membrane distributor for ozone, membrane contactor for sorption and reaction and membrane separator for clean water production to achieve an order of magnitude enhancement in treatment performance compared to traditional ozone reactor. Highlights: ► Novel reactor using membranes for ozone distributor, reaction contactor and water separator. ► Designed to achieve an order of magnitude enhancement over traditional reactor. ► Al 2 O 3 and hydrotalcite coatings capture and trap pollutants giving additional 30% TOC removal. ► High surface area coating prevents polarization and improves membrane separation and life.

  9. Membrane contactors in the beverage industry for controlling the water gas composition.

    Science.gov (United States)

    Criscuoli, Alessandra; Drioli, Enrico; Moretti, Ugo

    2003-03-01

    In the work described here, membrane contactors are used for coupling the removal of species (oxygen and hydrogen sulfide) present in the water with the water carbonation process. We include both experiments and a theoretical study devoted to the analysis of the transport phenomena that occur in the membrane contactor. The main resistance to mass transport was located at the liquid side. Correlations between Sherwood and Reynolds numbers on the shell side that are suitable for the membrane contactor used to carry out our experiments have been determined. In particular, for Re > 1.6, the expression proposed by Yang and Cussler in 1986: Sh = 0.90 Re(0.40) Sc(0.33) describes the behavior of the system; whereas, for Re between 0.03 and 0.3, a new expression is proposed: Sh = 0.435 Re(1.2)Sc(0.33). A comparison with traditional equipment is also furnished. Membrane contactors offer reduced size, CO(2) consumption, and capital costs.

  10. A Feasibility Study of Ammonia Recovery from Coking Wastewater by Coupled Operation of a Membrane Contactor and Membrane Distillation

    Directory of Open Access Journals (Sweden)

    Po-Hsun Lin

    2018-03-01

    Full Text Available More than 80% of ammonia (NH3 in the steel manufacturing process wastewater is contributed from the coking wastewater, which is usually treated by biological processes. However, the NH3 in the coking wastewater is typically too high for biological treatment due to its inhibitory concentration. Therefore, a two-stage process including a hollow fiber membrane contactor (HFMC and a modified membrane distillation (MD system was developed and applied to reduce and recover NH3 from coking wastewater. The objectives of this paper are to evaluate different membrane materials, receiving solutions, and operation parameters for the system, remove NH3 from the coking wastewater to less than 300 mg N/L, which is amenable to the biological process, and recover ammonia solution for reuse. As a result, the polytetrafluoroethylene (PTFE HFMC using sulfuric acid as a receiving solution can achieve a maximum NH3-N transmembrane flux of 1.67 g N/m2·h at pH of 11.5 and reduce NH3 in the coking wastewater to less than 300 mg N/L. The NH3 in the converted ammonium sulfate ((NH42SO4 was then recovered by the modified MD using ice water as the receiving solution to produce ≥3% of ammonia solution for reuse.

  11. Membrane distillation with porous metal hollow fibers for the concentration of thermo-sensitive solutions

    NARCIS (Netherlands)

    Shukla, Sushumna

    2014-01-01

    This thesis presents an original approach for the concentration of thermo-sensitive solutions: the Sweep Gas Membrane Distillation (SGMD) process. A new membrane contactor with metallic hollow fibers has been designed and allows the distillation process to be operational at low temperature. Heat is

  12. Hybrid membrane contactor system for creating semi-breathing air

    Science.gov (United States)

    Timofeev, D. V.

    2012-02-01

    Typically, the equipment to create an artificial climate does not involve changing the composition of the respiratory air. In particular in medical institutions assumes the existence of plant of artificial climate and disinfection in operating rooms and intensive care wards. The use of a hybrid membrane-absorption systems for the generation of artificial atmospheres are improving the respiratory system, blood is enriched or depleted of various gases, resulting in increased stamina, there is a better, faster or slower metabolism, improves concentration and memory. Application of the system contributes to easy and rapid recovery after the operation. By adding a special component, with drug activity, air ionization, and adjust its composition, you can create a special, more favorable for patients with the atmosphere. These factors allow for the treatment and rehabilitation of patients and reduce mortality of heavy patients.

  13. Surface modification of poly(vinylidene fluoride) hollow fibre membranes for biogas purification in a gas-liquid membrane contactor system.

    Science.gov (United States)

    Jin, Pengrui; Huang, Chuan; Li, Jiaxiang; Shen, Yadong; Wang, Liao

    2017-11-01

    The wetting of hollow fibre membranes decreases the performance of the liquid-gas membrane contactor for CO 2 capture in biogas upgrading. To solve this problem, in this work, a poly(vinylidene fluoride) (PVDF) hollow fibre membrane for a liquid-gas membrane contactor was coated with a superhydrophobic layer composed of a combination of hydrophobic SiO 2 nanoparticles and polydimethylsiloxane (PDMS) by the method of spray deposition. A rough layer of SiO 2 deposited on the PVDF membrane resulted in an enhanced surface hydrophobicity. The surface structure of the pristine PVDF significantly affected the homogeneity of the generated SiO 2 layer. A uniform surface coating on the PVDF upper layer resulted from the presence of micrometre and nanometre-sized roughness on the surface of the PVDF membrane, which was achieved with a SiO 2 concentration of 4.44 mg ml -1 (0.2 g/45 ml) in the coating solution. As a result, the water contact angle of the modified surface was recorded as 155 ± 3°, which is higher than that of the pristine surface. The high contact angle is advantageous for reducing the wetting of the membrane. Additional mass transfer resistance was introduced by the superhydrophobic layer. In addition, continuous CO 2 absorption tests were carried out in original and modified PVDF hollow fibre membrane contactors, using monoethanolamine (MEA) solution as the absorbent. A long-term stability test revealed that the modified PVDF hollow fibre membrane contactor was able to outperform the original membrane contactor and demonstrated outstanding long-term stability, suggesting that spray deposition is a promising approach to obtain superhydrophobic PVDF membranes for liquid-gas membrane absorption.

  14. Performance evaluation and mass transfer study of CO2 absorption in flat sheet membrane contactor using novel porous polysulfone membrane

    International Nuclear Information System (INIS)

    Nabian, Nima; Ghoreyshi, Ali Asghar; Rahimpour, Ahmad; Shakeri, Mohsen

    2015-01-01

    The performance of gas-liquid membrane contactor for CO 2 capture was investigated using a novel polysulfone (PSF) flat membrane prepared via non-solvent phase inversion method. Polyvinyl pyrrolidone (PVP) was used as an additive in the dope solution of PSF membranes. Morphological studies by scanning electron microscopy (SEM) analysis revealed that PSF membrane with PVP has a finger-like structure, but the PSF membrane without PVP has a sponge-like structure. Also, characterization results through atomic force microscopy (AFM) and contact angle measurement demonstrated that the porosity, surface roughness and hydrophobicity of the PSF membrane increased with addition of PVP to the dope solution. Mass transfer resistance analysis, based on CO 2 absorption flux, displayed that addition of PVP to the dope solution of PSF membrane decreased membrane mass transfer resistance, and significantly improved CO 2 absorption flux up to 2.7 and 1.8 times of absorption fluxes of PSF membrane without PVP and commercial PVDF, respectively.

  15. Open absorption system for cooling and air conditioning using membrane contactors. 2006 annual report

    Energy Technology Data Exchange (ETDEWEB)

    Conde-Petit, M. [M. Conde Engineering, Zuerich (Switzerland); Weber, R. [Materials Science and Technology (EMPA), Abteilung Bautechnologien, Duebendorf (Switzerland)

    2006-11-15

    This illustrated annual report for 2006 for the Swiss Federal Office of Energy (SFOE) reports on work being done on the development of an open absorption system for cooling and air-conditioning. The report reviews the construction of a first prototype and the manufacture of its components. The conceptual design of this new type of air handling unit (AHU), operating with a liquid desiccant, is discussed. The AHU is to be autonomous and the system will not require additional mechanical refrigeration. It is to be thermally driven at temperatures below 80 {sup o}C. Waste heat sources, solar collectors, district heating plants and co-generation systems are targeted as providers of thermal energy at this temperature level. Work carried out is reported on, including that on two-stream membrane contactors.

  16. Gas-liquid mass transfer in a cross-flow hollow fiber module : Analytical model and experimental validation

    NARCIS (Netherlands)

    Dindore, V. Y.; Versteeg, G. F.

    2005-01-01

    The cross-flow operation of hollow fiber membrane contactors offers many advantages and is preferred over the parallel-flow contactors for gas-liquid mass transfer operations. However, the analysis of such a cross-flow membrane gas-liquid contactor is complicated due to the change in concentrations

  17. Performance of polydimethylsiloxane membrane contactor process for selective hydrogen sulfide removal from biogas.

    Science.gov (United States)

    Tilahun, Ebrahim; Bayrakdar, Alper; Sahinkaya, Erkan; Çalli, Bariş

    2017-03-01

    H 2 S in biogas affects the co-generation performance adversely by corroding some critical components within the engine and it has to be removed in order to improve the biogas quality. This work presents the use of polydimethylsiloxane (PDMS) membrane contactor for selective removal of H 2 S from the biogas. Experiments were carried out to evaluate the effects of different pH of absorption liquid, biogas flowrate and temperature on the absorption performances. The results revealed that at the lowest loading rate (91mg H 2 S/m 2 ·h) more than 98% H 2 S and 59% CO 2 absorption efficiencies were achieved. The CH 4 content in the treated gas increased from 60 to 80% with nearly 5% CH 4 loss. Increasing the pH (7-10) and loading rate (91-355mg H 2 S/m 2 ·h) enhanced the H 2 S absorption capacity, and the maximum H 2 S/CO 2 and H 2 S/CH 4 selectivity factors were 2.5 and 58, respectively. Temperature played a key role in the process and lower temperature was beneficial for intensifying H 2 S absorption performance. The highest H 2 S fluxes at pH 10 and 7 were 3.4g/m 2 ·d and 1.8g/m 2 ·d with overall mass transfer coefficients of 6.91×10 -6 and 4.99×10 -6 m/s, respectively. The results showed that moderately high H 2 S fluxes with low CH 4 loss may be achieved by using a robust and cost-effective membrane based absorption process for desulfurization of biogas. A tubular PDMS membrane contactor was tested for the first time to remove H 2 S from biogas under slightly alkaline conditions and the suggested process could be a promising for real scale applications. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. FOULING CHARACTERIZATION OF MEMBRANE CONTACTORS USED FOR THE RECOVERY AND CONCENTRATION OF AMMONIA FROM UNDIGESTED PIG SLURRY

    DEFF Research Database (Denmark)

    Zarebska, Agata; Norddahl, Birgir; Christensen, Knud Villy

    2012-01-01

    The main obstacle impeding implementation of membrane contactors for the recovery and concentration of ammonia from swine manure is the phenomena of membrane fouling. Fouling is defined as the accumulation of suspended or dissolved substances on the membrane surface and/or within its pores. Due...... to the different types of fouling which can occur in a membrane system, characterization of fouling is a complex problem. Fouling intensity, morphology and composition of fouling layers has been determined using Scanning Electron Microscopy, X-ray Energy Dispersive Spectrometry and Attenuated Total Reflectance...... Infrared Spectrometry. Based on the analysis of fouled membranes, it is concluded that membrane fouling is dominated by organic fouling in combination with biofouling mainly due to adsorption and deposition of undegraded organic matter. The average fouling layer thickness was estimated to 127.4 μm after...

  19. Improvement of anaerobic digestion performance by continuous nitrogen removal with a membrane contactor treating a substrate rich in ammonia and sulfide.

    Science.gov (United States)

    Lauterböck, B; Nikolausz, M; Lv, Z; Baumgartner, M; Liebhard, G; Fuchs, W

    2014-04-01

    The effect of reduced ammonia levels on anaerobic digestion was investigated. Two reactors were fed with slaughterhouse waste, one with a hollow fiber membrane contractor for ammonia removal and one without. Different organic loading rates (OLR) and free ammonia and sulfide concentrations were investigated. In the reactor with the membrane contactor, the NH4-N concentration was reduced threefold. At a moderate OLR (3.1 kg chemical oxygen demand - COD/m(3)/d), this reactor performed significantly better than the reference reactor. At high OLR (4.2 kg COD/m(3)/d), the reference reactor almost stopped producing methane (0.01 Nl/gCOD). The membrane reactor also showed a stable process with a methane yield of 0.23 Nl/g COD was achieved. Both reactors had predominantly a hydrogenotrophic microbial consortium, however in the membrane reactor the genus Methanosaeta (acetoclastic) was also detected. In general, all relevant parameters and the methanogenic consortium indicated improved anaerobic digestion of the reactor with the membrane. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Novel Water Treatment Processes Based on Hybrid Membrane-Ozonation Systems: A Novel Ceramic Membrane Contactor for Bubbleless Ozonation of Emerging Micropollutants

    Directory of Open Access Journals (Sweden)

    Stylianos K. Stylianou

    2015-01-01

    Full Text Available The aim of this study is the presentation of novel water treatment systems based on ozonation combined with ceramic membranes for the treatment of refractory organic compounds found in natural water sources such as groundwater. This includes, firstly, a short review of possible membrane based hybrid processes for water treatment from various sources. Several practical and theoretical aspects for the application of hybrid membrane-ozonation systems are discussed, along with theoretical background regarding the transformation of target organic pollutants by ozone. Next, a novel ceramic membrane contactor, bringing into contact the gas phase (ozone and water phase without the creation of bubbles (bubbleless ozonation, is presented. Experimental data showing the membrane contactor efficiency for oxidation of atrazine, endosulfan, and methyl tert-butyl ether (MTBE are shown and discussed. Almost complete endosulfan degradation was achieved with the use of the ceramic contactor, whereas atrazine degradation higher than 50% could not be achieved even after 60 min of reaction time. Single ozonation of water containing MTBE could not result in a significant MTBE degradation. MTBE mineralization by O3/H2O2 combination increased at higher pH values and O3/H2O2 molar ratio of 0.2 reaching a maximum of around 65%.

  1. Modelling of cross-flow membrane contactors : Mass transfer with chemical reactions

    NARCIS (Netherlands)

    Dindore, V. Y.; Brilman, D. W. F.; Versteeg, G. F.

    2005-01-01

    Conventionally, carbon dioxide and hydrogen sulphide are absorbed using aqueous alkanolamines or carbonate solution in column type of equipment. However, in view of the unparallel advantages offered, the use of microporous hollow fiber membrane modules is an attractive alternative. In the present

  2. Modelling of a tubular membrane contactor for pre-combustion CO2 capture using ionic liquids: Influence of the membrane configuration, absorbent properties and operation parameters

    Directory of Open Access Journals (Sweden)

    Zhongde Dai

    2016-10-01

    Full Text Available A membrane contactor using ionic liquids (ILs as solvent for pre-combustion capture CO2 at elevated temperature (303–393 K and pressure (20 bar has been studied using mathematic model in the present work. A comprehensive two-dimensional (2D mass-transfer model was developed based on finite element method. The effects of liquid properties, membrane configurations, as well as operation parameters on the CO2 removal efficiency were systematically studied. The simulation results show that CO2 can be effectively removed in this process. In addition, it is found that the liquid phase mass transfer dominated the overall mass transfer. Membranes with high porosity and small thickness could apparently reduce the membrane resistance and thus increase the separation efficiency. On the other hand, the membrane diameter and membrane length have a relatively small influence on separation performance within the operation range. Keywords: CO2 capture, Pre-combustion, Membrane contactor, Ionic liquids, Modelling

  3. Liquid-phase membrane extraction of targeted pesticides from manufacturing wastewaters in a hollow fibre contactor with feed-stream recycle.

    Science.gov (United States)

    Đorđević, Jelena; Vladisavljević, Goran T; Trtić-Petrović, Tatjana

    2017-01-01

    A two-phase membrane extraction in a hollow fibre contactor with feed-stream recycle was applied to remove selected pesticides (tebufenozide, linuron, imidacloprid, acetamiprid and dimethoate) from their mixed aqueous solutions. The contactor consisted of 50 polypropylene hollow fibres impregnated with 5% tri-n-octylphosphine oxide in di-n-hexyl ether. For low-polar pesticides with log P ≥ 2 (tebufenozide and linuron), the maximum removal efficiency increased linearly from 85% to 96% with increasing the feed flow rate. The maximum removal efficiencies of more polar pesticides were significantly higher under feed recirculation (86%) than in a continuous single-pass operation (30%). It was found from the Wilson's plot that the mass transfer resistance of the liquid membrane can be neglected for low-polar pesticides. The pesticide removals from commercial formulations were similar to those from pure pesticide solutions, indicating that built-in adjuvants did not affect the extraction process.

  4. Novel Ultrafine Fibrous Poly(tetrafluoroethylene Hollow Fiber Membrane Fabricated by Electrospinning

    Directory of Open Access Journals (Sweden)

    Qinglin Huang

    2018-04-01

    Full Text Available Novel poly(tetrafluoroethylene (PTFE hollow fiber membranes were successfully fabricated by electrospinning, with ultrafine fibrous PTFE membranes as separation layers, while a porous glassfiber braided tube served as the supporting matrix. During this process, PTFE/poly(vinylalcohol (PVA ultrafine fibrous membranes were electrospun while covering the porous glassfiber braided tube; then, the nascent PTFE/PVA hollow fiber membrane was obtained. In the following sintering process, the spinning carrier PVA decomposed; meanwhile, the ultrafine fibrous PTFE membrane shrank inward so as to further integrate with the supporting matrix. Therefore, the ultrafine fibrous PTFE membranes had excellent interface bonding strength with the supporting matrix. Moreover, the obtained ultrafine fibrous PTFE hollow fiber membrane exhibited superior performances in terms of strong hydrophobicity (CA > 140°, high porosity (>70%, and sharp pore size distribution. The comprehensive properties indicated that the ultrafine fibrous PTFE hollow fiber membranes could have potentially useful applications in membrane contactors (MC, especially membrane distillation (MD in harsh water environments.

  5. Sweeping Gas Membrane Desalination Using Commercial Hydrophobic Hollow Fiber Membranes; TOPICAL

    International Nuclear Information System (INIS)

    EVANS, LINDSEY; MILLER, JAMES E.

    2002-01-01

    Water shortages affect 88 developing countries that are home to half of the world's population. In these places, 80-90% of all diseases and 30% of all deaths result from poor water quality. Furthermore, over the next 25 years, the number of people affected by severe water shortages is expected to increase fourfold. Low cost methods of purifying freshwater, and desalting seawater are required to contend with this destabilizing trend. Membrane distillation (MD) is an emerging technology for separations that are traditionally accomplished via conventional distillation or reverse osmosis. As applied to desalination, MD involves the transport of water vapor from a saline solution through the pores of a hydrophobic membrane. In sweeping gas MD, a flowing gas stream is used to flush the water vapor from the permeate side of the membrane, thereby maintaining the vapor pressure gradient necessary for mass transfer. Since liquid does not penetrate the hydrophobic membrane, dissolved ions are completely rejected by the membrane. MD has a number of potential advantages over conventional desalination including low temperature and pressure operation, reduced membrane strength requirements, compact size, and 100% rejection of non-volatiles. The present work evaluated the suitability of commercially available technology for sweeping gas membrane desalination. Evaluations were conducted with Celgard Liqui-Cel(reg s ign) Extra-Flow 2.5X8 membrane contactors with X-30 and X-40 hydrophobic hollow fiber membranes. Our results show that sweeping gas membrane desalination systems are capable of producing low total dissolved solids (TDS) water, typically 10 ppm or less, from seawater, using low grade heat. However, there are several barriers that currently prevent sweeping gas MD from being a viable desalination technology. The primary problem is that large air flows are required to achieve significant water yields, and the costs associated with transporting this air are prohibitive. To

  6. Hollow fiber liquid supported membranes

    International Nuclear Information System (INIS)

    Violante, V.

    1987-01-01

    The hollow fiber system are well known and developed in the scientific literature because of their applicability in the process separation units. The authors approach to a mathematical model for a particular hollow fiber system, usin liquid membranes. The model has been developed in order to obtain a suitable tool for a sensitivy analysis and for a scaling-up. This kind of investigation is very usefull from an engineering point of view, to get a spread range of information to build up a pilot plant from the laboratory scale

  7. Development of Membrane Contactors Using Phase Change Solvents for CO2 Capture: Material Compatibility Study

    OpenAIRE

    Ansaloni, Luca; Asad, Arif; Çiftja, Arlinda; Knuutila, Hanna K; Deng, Liyuan

    2016-01-01

    Phase change solvents represent a new class of CO2 absorbents with a promising potential to reduce the energy penalty associated with CO2 capture. However, their high volatility is a major concern for their use at the industrial scale. It is believed that membrane absorption offers a solution to overcome this issue, particularly if the membrane can prevent amine evaporation. In the present work a compatibility study is carried out in order to identify suitable membranes in a membrane contacto...

  8. An experimental study of the air humidification process using a membrane contactor

    Directory of Open Access Journals (Sweden)

    Englart Sebastian

    2017-01-01

    Full Text Available The article presents the results of the experimental examination of the effectiveness of air humidification using a membrane module. The construction of the membrane module and the measuring stand is also discussed. In order to assess the effectiveness of air humidification using the membrane module, the measurements of temperature and humidity at the membrane module’s inlet and outlet, air flow rate, water flow rate and water temperature were taken. Based on the measurements, the effectiveness coefficients, E, have been determined. The power demand for the solution under study has also been discussed.

  9. Polyazole hollow fiber membranes for direct contact membrane distillation

    KAUST Repository

    Maab, Husnul; Alsaadi, Ahmad Salem; Francis, Lijo; Livazovic, Sara; Ghaffour, NorEddine; Amy, Gary L.; Nunes, Suzana Pereira

    2013-01-01

    Porous hollow fiber membranes were fabricated from fluorinated polyoxadiazole and polytriazole by a dry-wet spinning method for application in desalination of Red Sea water by direct contact membrane distillation (DCMD). The data were compared with commercially available hollow fiber MD membranes prepared from poly(vinylidene fluoride). The membranes were characterized by electron microscopy, liquid entry pressure (LEP), and pore diameter measurements. Finally, the hollow fiber membranes were tested for DCMD. Salt selectivity as high as 99.95% and water fluxes as high as 35 and 41 L m -2 h-1 were demonstrated, respectively, for polyoxadiazole and polytriazole hollow fiber membranes, operating at 80 C feed temperature and 20 C permeate. © 2013 American Chemical Society.

  10. Polyazole hollow fiber membranes for direct contact membrane distillation

    KAUST Repository

    Maab, Husnul

    2013-08-07

    Porous hollow fiber membranes were fabricated from fluorinated polyoxadiazole and polytriazole by a dry-wet spinning method for application in desalination of Red Sea water by direct contact membrane distillation (DCMD). The data were compared with commercially available hollow fiber MD membranes prepared from poly(vinylidene fluoride). The membranes were characterized by electron microscopy, liquid entry pressure (LEP), and pore diameter measurements. Finally, the hollow fiber membranes were tested for DCMD. Salt selectivity as high as 99.95% and water fluxes as high as 35 and 41 L m -2 h-1 were demonstrated, respectively, for polyoxadiazole and polytriazole hollow fiber membranes, operating at 80 C feed temperature and 20 C permeate. © 2013 American Chemical Society.

  11. Large-scale preparation of clove essential oil and eugenol-loaded liposomes using a membrane contactor and a pilot plant.

    Science.gov (United States)

    Sebaaly, Carine; Greige-Gerges, Hélène; Agusti, Géraldine; Fessi, Hatem; Charcosset, Catherine

    2016-01-01

    Based on our previous study where optimal conditions were defined to encapsulate clove essential oil (CEO) into liposomes at laboratory scale, we scaled-up the preparation of CEO and eugenol (Eug)-loaded liposomes using a membrane contactor (600 mL) and a pilot plant (3 L) based on the principle of ethanol injection method, both equipped with a Shirasu Porous Glass membrane for injection of the organic phase into the aqueous phase. Homogenous, stable, nanometric-sized and multilamellar liposomes with high phospholipid, Eug loading rates and encapsulation efficiency of CEO components were obtained. Saturation of phospholipids and drug concentration in the organic phase may control the liposome stability. Liposomes loaded with other hydrophobic volatile compounds could be prepared at large scale using the ethanol injection method and a membrane for injection.

  12. Open absorption system for cooling and air conditioning using membrane contactors - Final report

    Energy Technology Data Exchange (ETDEWEB)

    Conde-Petit, M. [M. Conde Engineering, Zuerich (Switzerland); Weber, R.; Dorer, V. [Swiss Federal Laboratories for Materials Testing and Research (EMPA), Duebendorf (Switzerland)

    2008-07-01

    Air conditioning systems based upon the open absorption principle, essentially an absorption device operating at atmospheric pressure, have been proposed and investigated at many instances in the past eighty years. Their potential for improving energy efficiency is clearly recognized in the earliest research reports. By the mid 1950ies, solar thermal energy was being applied to drive open absorption-based air conditioning systems. For several reasons, however, the open absorption technology was not mature enough to take place in the mainstream. In the past two decades, vigorous efforts have been undertaken to reverse this situation, but success continued to elude, despite the fact that the main problems, such as corrosion, aerosols in the supply air, etc., have been identified. This report details the work and the main results from the MemProDEC Project. In this project innovative solutions were proposed, and successfully investigated, for the corrosion problem and the improvement of efficiency of the absorption process, in particular a new method to cool a very compact absorber. The practically uniform flow distribution for all three streams in the absorber (air, water and desiccant) warrants the contact of the air to be dehumidified with the desiccant over the whole surface of exchange (across a porous membrane). This, together with the cooling with water in counter flow to the air, are the key factors for the excellent effectiveness of the absorber. As the results show, the dehydration effectiveness of the prototype absorber is up to 150 % higher than that previously obtained by others. The solutions developed for compactness and modularity represent an important step in the way to flexible manufacturing, i.e. using a single element size to assemble autonomous air handling units of various nominal capacities. And although the manufacturing methods of the individual elements require improvement, namely by avoiding adhesive bonding, the choice of materials and the

  13. MEMBRANE BIOTREATMENT OF VOC-LADEN AIR

    Science.gov (United States)

    The paper discusses membrane biotreatment of air laden with volatile organic compounds (VOCs). Microporous flat-sheet and hollow-fiber membrane contactors were used to support air-liquid mass transfer interfaces. These modules were used in a two-step process to transfer VOCs fr...

  14. Clove essential oil-in-cyclodextrin-in-liposomes in the aqueous and lyophilized states: From laboratory to large scale using a membrane contactor.

    Science.gov (United States)

    Sebaaly, Carine; Charcosset, Catherine; Stainmesse, Serge; Fessi, Hatem; Greige-Gerges, Hélène

    2016-03-15

    This work is dedicated to prepare liposomal dry powder formulations of inclusion complexes of clove essential oil (CEO) and its main component eugenol (Eug). Ethanol injection method and membrane contactor were applied to prepare liposomes at laboratory and large scale, respectively. Various liposomal formulations were tested: (1) free hydroxypropyl-β-cyclodextrin loaded liposomes; (2) drug in hydroxypropyl-β-cyclodextrin in liposomes (DCL); (3) DCL2 obtained by double loading technique, where the drug is added in the organic phase and the inclusion complex in the aqueous phase. Liposomes were characterized for their particle size, polydispersity index, Zeta potential, morphology, encapsulation efficiency of CEO components and Eug loading rate. Reproducible results were obtained with both injection devices. Compared to Eug-loaded liposomes, DCL and DCL2 improved the loading rate of Eug and possessed smaller vesicles size. The DPPH(•) scavenging activity of Eug and CEO was maintained upon incorporation of Eug and CEO into DCL and DCL2. Contrary to DCL2, DCL formulations were stable after 1 month of storage at 4°C and upon reconstitution of the dried lyophilized cakes. Hence, DCL in aqueous and lyophilized forms, are considered as a promising carrier system to preserve volatile and hydrophobic drugs enlarging their application in cosmetic, pharmaceutical and food industries. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Vacuum membrane distillation of liquid desiccants Utilizing Hollow Fiber Membranes

    KAUST Repository

    Lefers, Ryan; Srivatsa Bettahalli, N.M.; Fedoroff, Nina V.; Nunes, Suzana Pereira; Leiknes, TorOve

    2018-01-01

    This paper documents the testing of a vacuum membrane distillation system intended for use with liquid desiccants. Liquid desiccants offer the possibility for low-energy, ambient temperature dehumidification. Effective desalination and purification of diluted desiccants outputs two important products: a concentrated desiccant for reuse in dehumidification and fresh water. In this study, vacuum membrane distillation was used in the laboratory to purify diluted liquid desiccants. Calcium chloride and magnesium chloride were the desiccants selected for testing. Desiccant solutions were pumped through the lumens of poly(vinylidene fluoride) (PVDF) hollow fiber membranes at varying feed inlet temperatures, solution velocity rates and vacuum set points during membrane distillation. An average flux of 8 kg m-2 h-1 was obtained using 30 wt% magnesium chloride solution at a temperature of 50 °C while applying vacuum to achieve 25 mbar absolute pressure on the air side of the membrane. The results are promising for the development of a full-scale vacuum membrane distillation process for desiccant solution regeneration and fresh water recovery. In addition, the recovered condensate was of sufficient quality for use in agricultural irrigation or drinking water.

  16. Vacuum membrane distillation of liquid desiccants Utilizing Hollow Fiber Membranes

    KAUST Repository

    Lefers, Ryan

    2018-01-31

    This paper documents the testing of a vacuum membrane distillation system intended for use with liquid desiccants. Liquid desiccants offer the possibility for low-energy, ambient temperature dehumidification. Effective desalination and purification of diluted desiccants outputs two important products: a concentrated desiccant for reuse in dehumidification and fresh water. In this study, vacuum membrane distillation was used in the laboratory to purify diluted liquid desiccants. Calcium chloride and magnesium chloride were the desiccants selected for testing. Desiccant solutions were pumped through the lumens of poly(vinylidene fluoride) (PVDF) hollow fiber membranes at varying feed inlet temperatures, solution velocity rates and vacuum set points during membrane distillation. An average flux of 8 kg m-2 h-1 was obtained using 30 wt% magnesium chloride solution at a temperature of 50 °C while applying vacuum to achieve 25 mbar absolute pressure on the air side of the membrane. The results are promising for the development of a full-scale vacuum membrane distillation process for desiccant solution regeneration and fresh water recovery. In addition, the recovered condensate was of sufficient quality for use in agricultural irrigation or drinking water.

  17. Hollow-Fiber Spacesuit Water Membrane Evaporator

    Science.gov (United States)

    Bue, Grant; Trevino, Luis; Tsioulos, Gus; Mitchell, Keith; Settles, Joseph

    2013-01-01

    The hollow-fiber spacesuit water membrane evaporator (HoFi SWME) is being developed to perform the thermal control function for advanced spacesuits and spacecraft to take advantage of recent advances in micropore membrane technology in providing a robust, heat-rejection device that is less sensitive to contamination than is the sublimator. After recent contamination tests, a commercial-off-the-shelf (COTS) micro porous hollow-fiber membrane was selected for prototype development as the most suitable candidate among commercial hollow-fiber evaporator alternatives. An innovative design that grouped the fiber layers into stacks, which were separated by small spaces and packaged into a cylindrical shape, was developed into a full-scale prototype for the spacesuit application. Vacuum chamber testing has been performed to characterize heat rejection as a function of inlet water temperature and water vapor back-pressure, and to show contamination resistance to the constituents expected to be found in potable water produced by the wastewater reclamation distillation processes. Other tests showed tolerance to freezing and suitability to reject heat in a Mars pressure environment. In summary, HoFi SWME is a lightweight, compact evaporator for heat rejection in the spacesuit that is robust, contamination- insensitive, freeze-tolerant, and able to reject the required heat of spacewalks in microgravity, lunar, and Martian environments. The HoFi is packaged to reject 810 W of heat through 800 hours of use in a vacuum environment, and 370 W in a Mars environment. The device also eliminates free gas and dissolved gas from the coolant loop.

  18. Block copolymer/homopolymer dual-layer hollow fiber membranes

    KAUST Repository

    Hilke, Roland; Neelakanda, Pradeep; Behzad, Ali Reza; Nunes, Suzana Pereira; Peinemann, Klaus-Viktor

    2014-01-01

    We manufactured the first time block copolymer dual-layer hollow fiber membranes and dual layer flat sheet membranes manufactured by double solution casting and phase inversion in water. The support porous layer was based on polystyrene

  19. Air Separation Using Hollow Fiber Membranes

    Science.gov (United States)

    Huang, Stephen E.

    2004-01-01

    The NASA Glenn Research Center in partnership with the Ohio Aerospace Institute provides internship programs for high school and college students in the areas of science, engineering, professional administrative, and other technical areas. During the summer of 2004, I worked with Dr. Clarence T. Chang at NASA Glenn Research Center s combustion branch on air separation using hollow fiber membrane technology. . In light of the accident of Trans World Airline s flight 800, FAA has mandated that a suitable solution be created to prevent the ignition of fuel tanks in aircrafts. In order for any type of fuel to ignite, three important things are needed: fuel vapor, oxygen, and an energy source. Two different ways to make fuel tanks less likely to ignite are reformulating the fuel to obtain a lower vapor pressure for the fuel and or using an On Board Inert Gas Generating System (OBIGGS) to inert the Central Wing Tank. goal is to accomplish the mission, which means that the Air Separation Module (ASM) tends to be bulky and heavy. The primary goal for commercial aviation companies is to transport as much as they can with the least amount of cost and fuel per person, therefore the ASM must be compact and light as possible. The plan is to take bleed air from the aircraft s engines to pass air through a filter first to remove particulates and then pass the air through the ASM containing hollow fiber membranes. In the lab, there will be a heating element provided to simulate the temperature of the bleed air that will be entering the ASM and analysis of the separated air will be analyzed by a Gas Chromatograph/Mass Spectrometer (GC/MS). The GUMS will separate the different compounds in the exit streams of the ASM and provide information on the performance of hollow fiber membranes. Hopefully I can develop ways to improve efficiency of the ASM. different types of jet fuel were analyzed and data was well represented on SAE Paper 982485. Data consisted of the concentrations of over

  20. Electromechanical behavior of fiber-reinforced dielectric elastomer membrane

    Directory of Open Access Journals (Sweden)

    Chi Li

    2015-04-01

    Full Text Available Based on its large deformation, light weight, and high energy density, dielectric elastomer (DE has been used as driven muscle in many areas. We design the fiber-reinforced DE membrane by adding fibers in the membrane. The deformation and driven force direction of the membrane can be tuned by changing the fiber arrangements. The actuation in the perpendicular direction of the DE membrane with long fibers first increases and then decreases by the increasing of the fiber spacing in the perpendicular direction. The horizontal actuation of the membrane decreases by decreasing the spacing of short fibers. In the membrane-inflating structure, the radially arranged fibers will break the axisymmetric behavior of the structure. The top area of the inflated balloon without fiber will buckle up when the voltage reaches a certain level. Finite element simulations based on nonlinear field theory are conducted to investigate the effects of fiber arrangement and verify the experimental results. This work can guide the design of fiber-reinforced DE.

  1. Permeation of supercritical carbon dioxide through polymeric hollow fiber membranes

    NARCIS (Netherlands)

    Patil, V.E.; Broeke, van den L.J.P.; Vercauteren, F.F.; Keurentjes, J.T.F.

    2006-01-01

    Permeation of carbon dioxide was measured for two types of composite polymeric hollow fiber membranes for feed pressures up to 18 MPa at a temp. of 313 K. support membrane. The membranes consist of a polyamide copolymer (IPC) layer or a poly(vinyl alc.) (PVA) layer on top of a polyethersulfone

  2. Hollow fiber membranes and methods for forming same

    Science.gov (United States)

    Bhandari, Dhaval Ajit; McCloskey, Patrick Joseph; Howson, Paul Edward; Narang, Kristi Jean; Koros, William

    2016-03-22

    The invention provides improved hollow fiber membranes having at least two layers, and methods for forming the same. The methods include co-extruding a first composition, a second composition, and a third composition to form a dual layer hollow fiber membrane. The first composition includes a glassy polymer; the second composition includes a polysiloxane; and the third composition includes a bore fluid. The dual layer hollow fiber membranes include a first layer and a second layer, the first layer being a porous layer which includes the glassy polymer of the first composition, and the second layer being a polysiloxane layer which includes the polysiloxane of the second composition.

  3. Fabrication of Polyacrylonitrile Hollow Fiber Membranes from Ionic Liquid Solutions

    KAUST Repository

    Kim, Dooli; Moreno Chaparro, Nicolas; Nunes, Suzana Pereira

    2015-01-01

    The interest in green processes and products has increased to reduce the negative impact of many industrial processes to the environment. Solvents, which play a crucial role in the fabrication of membranes, need to be replaced by sustainable and less toxic solvent alternatives for commonly used polymers. The purpose of this study is the fabrication of greener hollow fiber membranes based on polyacrylonitrile (PAN), substituting dimethylformamide (DMF) by less toxic mixtures of ionic liquids (IL) and dimethylsulfoxide (DMSO). A thermodynamic analysis was conducted, estimating the Gibbs free energy of mixing to find the most convenient solution compositions. Hollow fiber membranes were manufactured and optimized. As a result, a uniform pattern and high porosity were observed in the inner surface of the membranes prepared from the ionic liquid solutions. The membranes were coated with a polyamide layer by interfacial polymerization the hollow fiber membranes were applied in forward osmosis experiments by using sucrose solutions as draw solution.

  4. Fabrication of Polyacrylonitrile Hollow Fiber Membranes from Ionic Liquid Solutions

    KAUST Repository

    Kim, Dooli

    2015-10-08

    The interest in green processes and products has increased to reduce the negative impact of many industrial processes to the environment. Solvents, which play a crucial role in the fabrication of membranes, need to be replaced by sustainable and less toxic solvent alternatives for commonly used polymers. The purpose of this study is the fabrication of greener hollow fiber membranes based on polyacrylonitrile (PAN), substituting dimethylformamide (DMF) by less toxic mixtures of ionic liquids (IL) and dimethylsulfoxide (DMSO). A thermodynamic analysis was conducted, estimating the Gibbs free energy of mixing to find the most convenient solution compositions. Hollow fiber membranes were manufactured and optimized. As a result, a uniform pattern and high porosity were observed in the inner surface of the membranes prepared from the ionic liquid solutions. The membranes were coated with a polyamide layer by interfacial polymerization the hollow fiber membranes were applied in forward osmosis experiments by using sucrose solutions as draw solution.

  5. Performance of different hollow fiber membranes for seawater desalination using membrane distillation

    KAUST Repository

    Francis, Lijo; Ghaffour, NorEddine; Alsaadi, Ahmad Salem; Amy, Gary L.

    2014-01-01

    Membrane distillation requires a highly porous hydrophobic membrane with low surface energy. In this paper, we compare the direct contact membrane distillation (DCMD) performances of four different types of in-house fabricated hollow fiber membranes and two different commercially available hollow fiber membranes. Hollow fiber membranes are fabricated using wet-jet phase inversion technique and the polymeric matrices used for the fabrication are polyvinylidine fluoride (PVDF) and polyvinyl chloride (PVC). Commercial hollow fiber membrane materials are made of polytetrafluoroethylene (PTFE) and polypropylene (PP). PVDF hollow fibers showed a superior performance among all the hollow fibers tested in the DCMD process and gave a water vapor flux of 31 kg m-2h-1 at a feed and coolant inlet temperatures of 80 and 20°C, respectively. Under the same conditions, the water vapor flux observed for PP, PTFE, and PVC hollow fiber membranes are 13, 11, and 6 kg m-2h-1, respectively, with 99.99% salt rejection observed for all membranes used.

  6. Performance of different hollow fiber membranes for seawater desalination using membrane distillation

    KAUST Repository

    Francis, Lijo

    2014-08-11

    Membrane distillation requires a highly porous hydrophobic membrane with low surface energy. In this paper, we compare the direct contact membrane distillation (DCMD) performances of four different types of in-house fabricated hollow fiber membranes and two different commercially available hollow fiber membranes. Hollow fiber membranes are fabricated using wet-jet phase inversion technique and the polymeric matrices used for the fabrication are polyvinylidine fluoride (PVDF) and polyvinyl chloride (PVC). Commercial hollow fiber membrane materials are made of polytetrafluoroethylene (PTFE) and polypropylene (PP). PVDF hollow fibers showed a superior performance among all the hollow fibers tested in the DCMD process and gave a water vapor flux of 31 kg m-2h-1 at a feed and coolant inlet temperatures of 80 and 20°C, respectively. Under the same conditions, the water vapor flux observed for PP, PTFE, and PVC hollow fiber membranes are 13, 11, and 6 kg m-2h-1, respectively, with 99.99% salt rejection observed for all membranes used.

  7. Efficiency of contactors

    International Nuclear Information System (INIS)

    Orth, D.A.; Graham, F.R.; Holt, D.L.

    1986-01-01

    The Savannah River Plant has two separations plants that began Purex operations in 1954 and 1955 with pump-mix mixer-settlers as contactors to process nuclear fuels. The only changes to the extraction equipment were replacement of most of the mixer-settlers in one plant with larger units in 1959, and the further replacement of the large 1A bank with a bank of rapid-contact centrifugal contactors in 1966. Improved performance of the old units has become highly desirable, and an experimental program is underway. Good contact between the phases, and adequate settling without entrainment of the opposite phase are required for high efficiency operation of the mixer-settlers. Factors that determine efficiency are mixer design, drop size generated, and phase coalescence properties. The original development work and accumulated plant data confirm that the tip speed of a given impeller design determines the throughput capacity and extraction performance. An experimental unit with three full-scale stages has been constructed and is being utilized to test different impeller designs; reduced pumping and better mixing with lower speeds appear to be the key factors for improvement. Decontamination performance of the rapid-contact centrifugal contactors is limited by the number of scrub contacts and the time of contact because of slowly equilibrating fission product species. Where solvent degradation is not a factor, the longer scrub contact of mixer-settlers gives better decontamination than the centrifugals. This kinetic effect can be overcome with long scrub contacts that follow the initial short extraction and short scrub contacts in the centrifugal contactors. A hybrid experimental unit with both rapid contact sections and longer contact scrub sections is under development to establish the degree of improvement that might be attained

  8. High selectivity ZIF-93 hollow fiber membranes for gas separation.

    Science.gov (United States)

    Cacho-Bailo, Fernando; Caro, Guillermo; Etxeberría-Benavides, Miren; Karvan, Oğuz; Téllez, Carlos; Coronas, Joaquín

    2015-06-30

    Zeolitic imidazolate framework-93 (ZIF-93) continuous membranes were synthesized on the inner side of P84 co-polyimide hollow fiber supports by microfluidics. MOFs and polymers showed high compatibility and the membrane exhibited H2-CH4 and CO2-CH4 separation selectivities of 97 (100 °C) and 17 (35 °C), respectively.

  9. Block copolymer/homopolymer dual-layer hollow fiber membranes

    KAUST Repository

    Hilke, Roland

    2014-12-01

    We manufactured the first time block copolymer dual-layer hollow fiber membranes and dual layer flat sheet membranes manufactured by double solution casting and phase inversion in water. The support porous layer was based on polystyrene and the selective layer with isopores was formed by micelle assembly of polystyrene-. b-poly-4-vinyl pyridine. The dual layers had an excellent interfacial adhesion and pore interconnectivity. The dual membranes showed pH response behavior like single layer block copolymer membranes with a low flux for pH values less than 3, a fast increase between pH4 and pH6 and a constant high flux level for pH values above 7. The dry/wet spinning process was optimized to produce dual layer hollow fiber membranes with polystyrene internal support layer and a shell block copolymer selective layer.

  10. Sandwich-structured hollow fiber membranes for osmotic power generation

    KAUST Repository

    Fu, Feng Jiang; Zhang, Sui; Chung, Neal Tai-Shung

    2015-01-01

    In this work, a novel sandwich-structured hollow fiber membrane has been developed via a specially designed spinneret and optimized spinning conditions. With this specially designed spinneret, the outer layer, which is the most crucial part of the sandwich-structured membrane, is maintained the same as the traditional dual-layer membrane. The inner substrate layer is separated into two layers: (1) an ultra-thin middle layer comprising a high molecular weight polyvinylpyrrolidone (PVP) additive to enhance integration with the outer polybenzimidazole (PBI) selective layer, and (2) an inner-layer to provide strong mechanical strength for the membrane. Experimental results show that a high water permeability and good mechanical strength could be achieved without the expensive post treatment process to remove PVP which was necessary for the dual-layer pressure retarded osmosis (PRO) membranes. By optimizing the composition, the membrane shows a maximum power density of 6.23W/m2 at a hydraulic pressure of 22.0bar when 1M NaCl and 10mM NaCl are used as the draw and feed solutions, respectively. To our best knowledge, this is the best phase inversion hollow fiber membrane with an outer selective PBI layer for osmotic power generation. In addition, this is the first work that shows how to fabricate sandwich-structured hollow fiber membranes for various applications. © 2015 Elsevier B.V.

  11. Sandwich-structured hollow fiber membranes for osmotic power generation

    KAUST Repository

    Fu, Feng Jiang

    2015-11-01

    In this work, a novel sandwich-structured hollow fiber membrane has been developed via a specially designed spinneret and optimized spinning conditions. With this specially designed spinneret, the outer layer, which is the most crucial part of the sandwich-structured membrane, is maintained the same as the traditional dual-layer membrane. The inner substrate layer is separated into two layers: (1) an ultra-thin middle layer comprising a high molecular weight polyvinylpyrrolidone (PVP) additive to enhance integration with the outer polybenzimidazole (PBI) selective layer, and (2) an inner-layer to provide strong mechanical strength for the membrane. Experimental results show that a high water permeability and good mechanical strength could be achieved without the expensive post treatment process to remove PVP which was necessary for the dual-layer pressure retarded osmosis (PRO) membranes. By optimizing the composition, the membrane shows a maximum power density of 6.23W/m2 at a hydraulic pressure of 22.0bar when 1M NaCl and 10mM NaCl are used as the draw and feed solutions, respectively. To our best knowledge, this is the best phase inversion hollow fiber membrane with an outer selective PBI layer for osmotic power generation. In addition, this is the first work that shows how to fabricate sandwich-structured hollow fiber membranes for various applications. © 2015 Elsevier B.V.

  12. Increasing the Performance of Vacuum Membrane Distillation Using Micro-Structured Hydrophobic Aluminum Hollow Fiber Membranes

    Directory of Open Access Journals (Sweden)

    Chia-Chieh Ko

    2017-04-01

    Full Text Available This study develops a micro-structured hydrophobic alumina hollow fiber with a high permeate flux of 60 Lm−2h−1 and salt rejection over 99.9% in a vacuum membrane distillation process. The fiber is fabricated by phase inversion and sintering, and then modified with fluoroalkylsilanes to render it hydrophobic. The influence of the sintering temperature and feeding temperature in membrane distillation (MD on the characteristics of the fiber and MD performance are investigated. The vacuum membrane distillation uses 3.5 wt % NaCl aqueous solution at 70 °C at 0.03 bar. The permeate flux of 60 Lm−2h−1 is the highest, compared with reported data and is higher than that for polymeric hollow fiber membranes.

  13. Electrospun Porous PDLLA Fiber Membrane Coated with nHA

    Directory of Open Access Journals (Sweden)

    Linhui Qiang

    2018-05-01

    Full Text Available Porous poly- D, L-lactic acid (PDLLA electrospinning fiber membrane was prepared, and nano-hydroxyapatite (nHA was adsorbed and wrapped into it during the unique shrinking process of the PDLLA fiber membrane to fabricate the PDLLA/nHA composite membrane scaffold for tissue engineering. Compare with the composite fibers prepared by blend electrospinning, most of nHA particles are observed to distribute on the surface of new type composite fibers, which could significantly improve the water wettability and induce the cellular adherence. FTIR analysis indicated that the PDLLA/nHA composite fibrous membrane was formed by physical adsorption. The combination was probed by scanning electron microscope, thermo-gravimetric, water contact angle and mechanical property analysis. It was proved that the nHA particles’ content and distribution, surface wettability, modulus and tensile strength of PDLLA/nHA composite fibrous membrane were influenced by the concentration of nHA dispersion and pores on the PDLLA fiber surface. The 10.6 wt % PDLLA/nHA composite fibrous membrane exhibits a more balanced tensile strength (3.28 MPa and surface wettability (with a water contact angle of 0° of the composite mats. Scanning electron microscope and confocal laser scanning microscopy images of chondrocyte proliferation further showed that the composite scaffold is non-toxic. The adherence and proliferation of chondrocytes on the 10.6 wt % PDLLA/nHA fibrous membrane was significantly improved, compared with PDLLA mat. The 10.6 wt % PDLLA/nHA composite fibrous membrane has potential application value as scaffold material in tissue engineering.

  14. Testing of pyrochemical centrifugal contactors

    International Nuclear Information System (INIS)

    Chow, L.S.; Carls, E.L.; Basco, J.K.; Johnson, T.R.

    1996-01-01

    A centrifugal contactor that performs oxidation and reduction exchange reactions between molten metals and salts at 500 degrees Centigrade has been tested successfully at Argonne National Laboratory (ANL). The design is based on contactors for aqueous- organic systems operation near room temperature. In tests to demonstrate the performance of the pyrocontactor, cadmium and LICl-KCl eutectic salt were the immiscible solvent phases, and rare earths were the distributing solutes. The tests showed that the pyrocontactor mixed and separated the phases well, with stage efficiencies approaching 99% at rotor speeds near 2700 rpm. The contactor ran smoothly and reliably over the entire range of speeds that was tested

  15. Isolation contactor state control system

    Energy Technology Data Exchange (ETDEWEB)

    Bissontz, Jay E.

    2017-05-16

    A controller area network (CAN) installed on a hybrid electric vehicle provides one node with control of high voltage power distribution system isolation contactors and the capacity to energize a secondary electro-mechanical relay device. The output of the secondary relay provides a redundant and persistent backup signal to the output of the node. The secondary relay is relatively immune to CAN message traffic interruptions and, as a result, the high voltage isolation contactor(s) are less likely to transition open in the event that the intelligent output driver should fail.

  16. PVDF hollow fiber and nanofiber membranes for fresh water reclamation using membrane distillation

    KAUST Repository

    Francis, Lijo; Ghaffour, NorEddine; Alsaadi, Ahmad Salem; Nunes, Suzana Pereira; Amy, Gary L.

    2013-01-01

    Polyvinylidene fluoride hollow fiber and nanofibrous membranes are engineered and successfully fabricated using dry-jet wet spinning and electrospinning techniques, respectively. Fabricated membranes are characterized for their morphology, average pore size, pore size distribution, nanofiber diameter distribution, thickness, and water contact angle. Direct contact membrane distillation (DCMD) performances of the fabricated membranes have been investigated using a locally designed and fabricated, fully automated MD bench scale unit and DCMD module. Electrospun nanofibrous membranes showed a water flux as high as 36 L m-2 h-1 whereas hollow fiber membranes showed a water flux of 31.6 L m-2 h-1, at a feed inlet temperature of 80 °C and at a permeate inlet temperature of 20 °C.

  17. PVDF hollow fiber and nanofiber membranes for fresh water reclamation using membrane distillation

    KAUST Repository

    Francis, Lijo

    2013-11-26

    Polyvinylidene fluoride hollow fiber and nanofibrous membranes are engineered and successfully fabricated using dry-jet wet spinning and electrospinning techniques, respectively. Fabricated membranes are characterized for their morphology, average pore size, pore size distribution, nanofiber diameter distribution, thickness, and water contact angle. Direct contact membrane distillation (DCMD) performances of the fabricated membranes have been investigated using a locally designed and fabricated, fully automated MD bench scale unit and DCMD module. Electrospun nanofibrous membranes showed a water flux as high as 36 L m-2 h-1 whereas hollow fiber membranes showed a water flux of 31.6 L m-2 h-1, at a feed inlet temperature of 80 °C and at a permeate inlet temperature of 20 °C.

  18. Evolution of radiation resistant hollow fibers membranes for nuclear

    International Nuclear Information System (INIS)

    Neelam Kumari; Raut, D.R.; Bhardwaj, Y.K.; Mohapatra, P.K.

    2014-01-01

    We have evaluated hollow fiber supported liquid membrane (HFSLM) technique for the separation of actinides, fission products and other valuables from the nuclear waste solutions. In this technique, ligand responsible for separation of metal ion is held in tiny pores of membrane. Any drastic change as a consequence of irradiation, like change in pore size, change in hydrophobicity of polymeric material can be fatal for separation process as it may lead dislodging of carrier ligands from the pores. It was therefore needed to study the irradiation stability of hollow fibers. We have earlier showed that polypropylene fibers were stable up to 500 radiation dose and we therefore need to look into other options. In the present work, hollow fiber membranes made from polyether ether ketone (PEEK), polysulphone (PS). Polymers were evaluated for their radiation stability after exposing to varying absorbed dose of gamma radiation. The hollow fibers were irradiated to 100 KGy, 200 KGy, 500 KGy and 1000 KGy and its changes in hydrophobicity were measured using contact angle measurement studies

  19. Preparation of hollow fiber membranes for gas separation

    NARCIS (Netherlands)

    Li, Shu-Guang

    1994-01-01

    Today, immersion precipitation is the most often used process for the preparation of gas separation membranes from polymeric materials. In this process a polymer solution in the form of a thin liquid film or hollow fiber is immersed in a nonsolvent bath where the polymer precipitates and forms a

  20. Hollow fiber ultrafiltration membranes with microstructured inner skin

    NARCIS (Netherlands)

    Culfaz, P.Z.; Wessling, Matthias; Lammertink, Rob G.H.

    2011-01-01

    Hollow fiber membranes with microstructured inner surfaces were fabricated from a PES/PVP blend using a spinneret with a microstructured needle. The effect of spinning parameters such as polymer dope flow rate, bore liquid flowrate, air gap and take-up speed on the microstructure and shape of the

  1. Polymer solution, fiber mat, and nanofiber membrane-electrode-assembly therewith, and method of fabricating same

    DEFF Research Database (Denmark)

    2016-01-01

    of fibers. The fibers may further include particles of a catalyst. The fiber mat may be used to form an electrode or a membrane. In a further aspect, a fuel cell membrane-electrode-assembly has an anode electrode, a cathode electrode, and a membrane disposed between the anode electrode and the cathode...... electrode. Each of the anode electrode, the cathode electrode and the membrane may be formed with a fiber mat....

  2. Clarification of Orange Press Liquors by PVDF Hollow Fiber Membranes

    Directory of Open Access Journals (Sweden)

    Silvia Simone

    2016-01-01

    Full Text Available Press liquors are typical by-products of the citrus juice processing characterized by a high content of organic compounds and associated problems of environmental impact, which imply high treatment costs. However, these wastes contain a great number of health promoting substances, including fibers, carotenoids and phenolic compounds (mainly flavonoids, whose recovery against waste-destruction technologies is very attractive for new business opportunities. In this work, the clarification of orange press liquor by using microfiltration (MF membranes is studied as a preliminary step to obtain a permeate stream enriched in antioxidant compounds which can be further processed to produce extracts of nutraceutical and/or pharmaceutical interest. MF poly(vinylidene fluoride (PVDF hollow fibers were prepared by the dry/wet spinning technique. A series of fibers was produced from the same polymeric dope, in order to investigate the effect of selected spinning parameters, i.e., bore fluid composition and flowrate, on their properties. The morphology of the produced fibers was analyzed by Scanning Electron Microscopy (SEM. Fibers were further characterized for their mechanical properties, porosity, bubble point, pore size distribution and pure water permeability (PWP. Some of the produced fibers exhibited high permeability (pure water permeability ~530 L/m2·h·bar, coupled to good mechanical resistance and pore size in the range of MF membranes. These fibers were selected and used for the clarification of press liquor from orange peel processing. In optimized operating conditions, the selected fibers produced steady-state fluxes of about 41 L/m2·h with rejections towards polyphenols and total antioxidant activity of 4.1% and 1.4%, respectively.

  3. Plasma contactor development for Space Station

    Science.gov (United States)

    Patterson, Michael J.; Hamley, John A.; Sarmiento, Charles J.; Manzella, David H.; Sarver-Verhey, Timothy; Soulas, George C.; Nelson, Amy

    1993-01-01

    Plasma contactors have been baselined for the Space Station (SS) to control the electrical potentials of surfaces to eliminate/mitigate damaging interactions with the space environment. The system represents a dual-use technology which is a direct outgrowth of the NASA electric propulsion program and, in particular, the technology development effort on ion thrustor systems. The plasma contactor subsystems include the plasma contactor unit, a power electronics unit, and an expellant management unit. Under this pre-flight development program these will all be brought to breadboard or engineering model status. Development efforts for the plasma contactor include optimizing the design and configuration of the contactor, validating its required lifetime, and characterizing the contactor plume and electromagnetic interference. The plasma contactor unit design selected for the SS is an enclosed keeper, xenon hollow cathode plasma source. This paper discusses the test results and development status of the plasma contactor unit subsystem for the SS.

  4. Hollow fiber membrane lumen modified by polyzwitterionic grafting

    KAUST Repository

    Le, Ngoc Lieu

    2016-08-24

    In this study, we demonstrate an effective way to modify the lumen of polyetherimide hollow fibers by grafting zwitterionic poly(sulfobetaine) to increase the membrane resistance to fouling. Surface-selective grafting of the protective hydrogel layers has been achieved in a facile two-step process. The first step is the adsorption of a macromolecular redox co-initiator on the lumen-side surface of the membrane, which in the second step, after flushing the lumen of the membrane with a solution comprising monomers and a complementary redox initiator, triggers the in situ cross-linking copolymerization at room temperature. The success of grafting reaction has been verified by the surface elemental analyses using X-ray photoelectron spectroscopy (XPS) and the surface charge evaluation using zeta potential measurements. The hydrophilicity of the grafted porous substrate is improved as indicated by the change of contact angle value from 44° to 30°, due to the hydration layer on the surface produced by the zwitterionic poly(sulfobetaine). Compared to the pristine polyetherimide (PEI) substrate, the poly(sulfobetaine) grafted substrates exhibit high fouling resistance against bovine serum albumin (BSA) adsorption, E. coli attachment and cell growth on the surface. Fouling minimization in the lumen is important for the use of hollow fibers in different processes. For instance, it is needed to preserve power density of pressure-retarded osmosis (PRO). In high-pressure PRO tests, a control membrane based on PEI with an external polyamide selective layer was seriously fouled by BSA, leading to a high water flux drop of 37%. In comparison, the analogous membrane, whose lumen was modified with poly(sulfobetaine), not only had a less water flux decline but also had better flux recovery, up to 87% after cleaning and hydraulic pressure impulsion. Clearly, grafting PRO hollow fiber membranes with zwitterionic polymeric hydrogels as a protective layer potentially sustains PRO

  5. Modeling of Hollow-Fiber Membrane System During Ultrafiltration

    International Nuclear Information System (INIS)

    EI-Bialy, S.H.

    2004-01-01

    The present study aims to evaluate the performance of hollow fiber membrane module during ultrafiltration of aqueous solutions. The model is represented by a set of differential equations for permeate and residue pressure drop and volumetric flow rates in the axial direction, beside the principle equations of both solvent and solute fluxes through the membrane, while osmotic pressure was neglected in model equations. The shell and tube module type was considered where feed pass in the shell and permeate in the bore side. Tortousily factor of membrane pores in addition to concentration polarization modulus were taken into account in calculations. The model was solved numerically with the help of suitable program in both co current and countercurrent flow pattern and comparison of results were carried out

  6. Hollow Fiber Membrane Dehumidification Device for Air Conditioning System.

    Science.gov (United States)

    Zhao, Baiwang; Peng, Na; Liang, Canzeng; Yong, Wai Fen; Chung, Tai-Shung

    2015-11-16

    In order to provide a comfortable living and working environment indoors in tropical countries, the outdoor air often needs to be cooled and dehumidified before it enters the rooms. Membrane separation is an emerging technology for air dehumidification and it is based on the solution diffusion mechanism. Water molecules are preferentially permeating through the membranes due to its smaller kinetic diameter and higher condensability than the other gases. Compared to other dehumidification technologies such as direct cooling or desiccation, there is no phase transition involved in membrane dehumidification, neither the contact between the fresh air stream and the desiccants. Hence, membrane dehumidification would not only require less energy consumption but also avoid cross-contamination problems. A pilot scale air dehumidification system is built in this study which comprises nine pieces of one-inch PAN/PDMS hollow fiber membrane modules. A 150 h long-term test shows that the membrane modules has good water vapor transport properties by using a low vacuum force of only 0.78 bar absolute pressure at the lumen side. The water vapor concentration of the feed humid air decreases dramatically from a range of 18-22 g/m³ to a range of 13.5-18.3 g/m³. Most importantly, the total energy saving is up to 26.2% compared with the conventional air conditioning process.

  7. Hollow Fiber Membrane Dehumidification Device for Air Conditioning System

    Directory of Open Access Journals (Sweden)

    Baiwang Zhao

    2015-11-01

    Full Text Available In order to provide a comfortable living and working environment indoors in tropical countries, the outdoor air often needs to be cooled and dehumidified before it enters the rooms. Membrane separation is an emerging technology for air dehumidification and it is based on the solution diffusion mechanism. Water molecules are preferentially permeating through the membranes due to its smaller kinetic diameter and higher condensability than the other gases. Compared to other dehumidification technologies such as direct cooling or desiccation, there is no phase transition involved in membrane dehumidification, neither the contact between the fresh air stream and the desiccants. Hence, membrane dehumidification would not only require less energy consumption but also avoid cross-contamination problems. A pilot scale air dehumidification system is built in this study which comprises nine pieces of one-inch PAN/PDMS hollow fiber membrane modules. A 150 h long-term test shows that the membrane modules has good water vapor transport properties by using a low vacuum force of only 0.78 bar absolute pressure at the lumen side. The water vapor concentration of the feed humid air decreases dramatically from a range of 18–22 g/m3 to a range of 13.5–18.3 g/m3. Most importantly, the total energy saving is up to 26.2% compared with the conventional air conditioning process.

  8. Microfluidic Liquid-Liquid Contactors

    Energy Technology Data Exchange (ETDEWEB)

    Mcculloch, Quinn [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-07-25

    This report describes progress made on the microfluidic contactor. A model was developed to predict its failure, a surrogate chemical system was selected to demonstrate mass transfer, and an all-optical system has been invented and implemented to monitor carryover and flowrates.

  9. High performance micro-engineered hollow fiber membranes by smart spinneret design

    NARCIS (Netherlands)

    de Jong, J.; Nijdam, W.; van Rijn, C.J.M.; Visser, Tymen; Bolhuis-Versteeg, Lydia A.M.; Kapantaidakis, G.; Koops, G.H.; Wessling, Matthias

    2005-01-01

    Can hollow fiber membranes be produced in other geometries than circular? If so, are membrane properties maintained and what could be the possible benefits of other geometries? This article gives answers and describes the fabrication of micro-structured hollow fiber membranes using micro-fabricated

  10. Ethylene glycol as bore fluid for hollow fiber membrane preparation

    KAUST Repository

    Le, Ngoc Lieu

    2017-03-31

    We proposed the use of ethylene glycol and its mixture with water as bore fluid for the preparation of poly(ether imide) (PEI) hollow fiber membranes and compared their performance and morphology with membranes obtained with conventional coagulants (water and its mixture with the solvent N-methylpyrrolidone (NMP)). Thermodynamics and kinetics of the systems were investigated. Water and 1:1 water:EG mixtures lead to fast precipitation rates. Slow precipitation is observed for both pure EG and 9:1 NMP:water mixture, but the reasons for that are different. While low osmotic driving force leads to slow NMP and water transport when NMP:water is used, the high EG viscosity is the reason for the slow phase separation when EG is the bore fluid. The NMP:water mixture produces fibers with mixed sponge-like and finger-like structure with large pores in the inner and outer layers; and hence leading to a high water permeance and a high MWCO suitable for separation of large-sized proteins. As compared to NMP:water, using EG as bore fluid provides fibers with a finger-like bilayered structure and sponge-like layers near the surfaces, and hence contributing to the higher water permeance. It also induces small pores for better protein rejection.

  11. Optimization of Deacetylation Process for Regenerated Cellulose Hollow Fiber Membranes

    Directory of Open Access Journals (Sweden)

    Xuezhong He

    2017-01-01

    Full Text Available Cellulose acetate (CA hollow fibers were spun from a CA+ Polyvinylpyrrolidone (PVP/N-methyl-2-pyrrolidone (NMP/H2O dope solution and regenerated by deacetylation. The complete deacetylation time of 0.5 h was found at a high concentration (0.2 M NaOH ethanol (96% solution. The reaction rate of deacetylation with 0.5 M NaOH was faster in a 50% ethanol compared to a 96 vol.% ethanol. The hydrogen bond between CA and tertiary amide group of PVP was confirmed. The deacetylation parameters of NaOH concentration, reaction time, swelling time, and solution were investigated by orthogonal experimental design (OED method. The degree of cross-linking, the residual acetyl content, and the PVP content in the deacetylated membranes were determined by FTIR analysis. The conjoint analysis in the Statistical Product and Service Solutions (SPSS software was used to analyze the OED results, and the importance of the deacetylation parameters was sorted as Solution > Swelling time > Reaction time > Concentration. The optimal deacetylation condition of 96 vol.% ethanol solution, swelling time 24 h, the concentration of NaOH (0.075 M, and the reaction time (2 h were identified. The regenerated cellulose hollow fibers under the optimal deacetylation condition can be further used as precursors for preparation of hollow fiber carbon membranes.

  12. Ethylene glycol as bore fluid for hollow fiber membrane preparation

    KAUST Repository

    Le, Ngoc Lieu; Nunes, Suzana Pereira

    2017-01-01

    We proposed the use of ethylene glycol and its mixture with water as bore fluid for the preparation of poly(ether imide) (PEI) hollow fiber membranes and compared their performance and morphology with membranes obtained with conventional coagulants (water and its mixture with the solvent N-methylpyrrolidone (NMP)). Thermodynamics and kinetics of the systems were investigated. Water and 1:1 water:EG mixtures lead to fast precipitation rates. Slow precipitation is observed for both pure EG and 9:1 NMP:water mixture, but the reasons for that are different. While low osmotic driving force leads to slow NMP and water transport when NMP:water is used, the high EG viscosity is the reason for the slow phase separation when EG is the bore fluid. The NMP:water mixture produces fibers with mixed sponge-like and finger-like structure with large pores in the inner and outer layers; and hence leading to a high water permeance and a high MWCO suitable for separation of large-sized proteins. As compared to NMP:water, using EG as bore fluid provides fibers with a finger-like bilayered structure and sponge-like layers near the surfaces, and hence contributing to the higher water permeance. It also induces small pores for better protein rejection.

  13. Matrimid® derived carbon molecular sieve hollow fiber membranes for ethylene/ethane separation

    KAUST Repository

    Xu, Liren; Rungta, Meha; Koros, William J.

    2011-01-01

    materials in realistic gas separations. The very challenging ethylene/ethane separation is the primary target of this work. Matrimid® derived CMS hollow fiber membranes have been investigated in this work. Resultant CMS fiber showed interesting separation

  14. Preparation of TiO2 hollow fibers using poly(vinylidene fluoride) hollow fiber microfiltration membrane as a template

    International Nuclear Information System (INIS)

    Lu Haiqiang; Zhang Lixiong; Xing Weihong; Wang Huanting; Xu Nanping

    2005-01-01

    TiO 2 hollow fibers were successfully prepared by using poly(vinylidene fluoride) hollow fiber microfiltration membrane as a template. The preparation procedure includes repeated impregnation of the TiO 2 precursor in the pores of the polymeric membrane, and calcination to burn off the template, producing the TiO 2 hollow fibers. The TiO 2 hollow fibers were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM). TiO 2 hollow fibers with other structures, such as honeycomb monolith and spring, were also prepared by preshaping the polymeric membranes into the honeycomb structure and spring, respectively. The phase structure of the TiO 2 hollow fibers could be readily adjusted by changing the calcination temperature

  15. Electrospun polyacrylonitrile nanofibrous membranes with varied fiber diameters and different membrane porosities as lithium-ion battery separators

    International Nuclear Information System (INIS)

    Ma, Xiaojing; Kolla, Praveen; Yang, Ruidong; Wang, Zhao; Zhao, Yong; Smirnova, Alevtina L.; Fong, Hao

    2017-01-01

    Highlights: • Nine types of electrospun polyacrylonitrile nanofibrous membranes were prepared. • These membranes had varied fiber diameters and different membrane porosities. • The membranes were explored as innovative Li-ion battery (LIB) separators. • The hot-pressed membrane with thin fibers had superior performance as LIB separator. - Abstract: In this study, nine types of polyacrylonitrile (PAN) nanofibrous membranes with varied fiber diameters and different membrane porosities are prepared by electrospinning followed by hot-pressing. Subsequently, these membranes are explored as Li-ion battery (LIB) separators. The impacts of fiber diameter and membrane porosity on electrolyte uptake, Li"+ ion transport through the membrane, electrochemical oxidation potential, and membrane performance as LIB separator (during charge/discharge cycling and rate capability tests of a cathodic half-cell) have been investigated. When compared to commercial Celgard PP separator, hot-pressed electrospun PAN nanofibrous membranes exhibit larger electrolyte uptake, higher thermal stability, wider electrochemical potential window, higher Li"+ ion permeability, and better electrochemical performance in LiMn_2O_4/separator/Li half-cell. The results also indicate that the PAN-based membrane/separator with small fiber diameters of 200–300 nm and hot-pressed under high pressure of 20 MPa surpasses all other membranes/separators and demonstrates the best performance, leading to the highest discharge capacity (89.5 mA h g"−"1 at C/2 rate) and cycle life (with capacity retention ratio being 97.7%) of the half-cell. In summary, this study has revealed that the hot-pressed electrospun PAN nanofibrous membranes (particularly those consisting of thin nanofibers) are promising as high-performance LIB separators.

  16. Pertraction of Penicillin G in Hollow Fiber Contained Liquid Membranes

    International Nuclear Information System (INIS)

    Miesiac, I.; Szymanowski, J.

    1998-01-01

    Pertraction of Penicillin G in Hollow Fiber Contained Liquid Membranes was investigated in a system consisting of 2 Liqui Cel 106 modules from Hoechst Celanese. The flux of Pen G depended upon the content of n-octanol and of Amberlite LA2 in kerosene used as a membrane phase. During the pertraction of Pen G in HFCLM system the pH difference between the both buffered aqueous phases diminished proportionally to the contact time with the membrane phase. The flux of citric acid used as a buffer component in the feed phase attained 11.8 mM/m 2 x h and was comparable with the flux of Pen G equal to 18.4 mM/m 2 x h. In order to eliminate the undesired transport of citric acid, CO 2 was used as a volatile buffer component. Although the pH values were stabilised in the range of 5.47 and 7.45 in the feed and strip phase, respectively, the achieved Pen G flux was significantly lower. (author)

  17. Preparation and Characterization of Soluble Eggshell Membrane Protein/PLGA Electro spun Nano fibers for Guided Tissue Regeneration Membrane

    International Nuclear Information System (INIS)

    Jia, J.; Liu, G.; Duan, Y.; Guo, Z.; Yu, J.

    2012-01-01

    Guided tissue regeneration (GTR) is a widely used method in periodontal therapy, which involves the placement of a barrier membrane to exclude migration of epithelium and ensure repopulation of periodontal ligament cells. The objective of this study is to prepare and evaluate a new type of soluble eggshell membrane protein (SEP)/poly (lactic-co-glycolic acid) (PLGA) nano fibers using electro spinning method for GTR membrane application. SEP/PLGA nano fibers were successfully prepared with various blending ratios. The morphology, chemical composition, surface wettability, and mechanical properties of the nano fibers were characterized using scanning electron microscopy (SEM), contact angle measurement, Fourier transform-infrared spectroscopy (FTIR), and a universal testing machine. L-929 fibroblast cells were used to evaluate the biocompatibility of SEP/PLGA nano fibers and investigate the interaction between cells and nano fibers. Results showed that the SEP/PLGA electro spun membrane was composed of uniform, bead-free nano fibers, which formed an interconnected porous network structure. Mechanical property of SEP has been greatly improved by the addition of PLGA. The biological study results showed that SEP/PLGA nano fibers could enhance cell attachment, spreading, and proliferation. The study indicated the potential of SEP/PLGA nano fibers for GTR application and provided a basis for future optimization

  18. Development of centrifugal contactors [Paper No. : IIIB-5

    International Nuclear Information System (INIS)

    Koganti, S.B.; Nagarajan, S.; Balasubramanian, G.R.

    1979-01-01

    Development of short residence contactors is one of the main objectives of Reprocessing Programme for fast reactor fuels in Reactor Research Centre, Kalpakkam. Paper discusses the suitability of centrifugal contactor as one of the candidate solvent contactors. Description of various stages of development of this work in the Reprocessing Development Laboratory, RRC and also characteristics of small contactor developed are given. (author)

  19. Preparation and properties of homogeneous-reinforced polyvinylidene fluoride hollow fiber membrane

    International Nuclear Information System (INIS)

    Zhang Xuliang; Xiao Changfa; Hu Xiaoyu; Bai Qianqian

    2013-01-01

    Highlights: ► The homogeneous-reinforced method has been adopted firstly in preparing of PVDF membranes. ► The HR membranes have a favorable interfacial bonding between the coating layer and the matrix membrane. ► The better performance of the HR membranes in protein solution can indirectly improve the service life of membranes. - Abstract: Homogeneous-reinforced (HR) polyvinylidene fluoride (PVDF) hollow fiber membranes include PVDF polymer solutions (coating layer) and the matrix membrane prepared through the dry-wet spinning process. The performance of HR membranes varies with the polymer concentration in the polymer solutions and is characterized in terms of pure water flux, rejection of protein, porosity, infiltration property, a mechanical strength test, and morphology observations by a field emission scanning electron microscope (FESEM). The results of this study indicate that the tensile strength of the HR PVDF membranes decreases slights compared with that of the matrix membrane, but the elongation at break increases much more and the hollow fiber membranes are endowed with better flexibility performance. The HR PVDF hollow fiber membranes have a favorable interfacial bonding between the coating layer and the matrix membrane, as shown by FESEM. The infiltration property is characterized by the contact angle experiments. Pure water flux decreases while the rejection ratio with an increase in polymer concentration increasing. The protein solution flux of the HR PVDF membranes is higher than that of the matrix membrane after 100 min of infiltration.

  20. Preparation and properties of homogeneous-reinforced polyvinylidene fluoride hollow fiber membrane

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Xuliang [State Key Laboratory of Hollow Fiber Membrane Materials and Processes, Tianjin Polytechnic University, Tianjin 300387 (China); Xiao Changfa, E-mail: xiaotjpu@163.com [State Key Laboratory of Hollow Fiber Membrane Materials and Processes, Tianjin Polytechnic University, Tianjin 300387 (China); Hu Xiaoyu; Bai Qianqian [State Key Laboratory of Hollow Fiber Membrane Materials and Processes, Tianjin Polytechnic University, Tianjin 300387 (China)

    2013-01-01

    Highlights: Black-Right-Pointing-Pointer The homogeneous-reinforced method has been adopted firstly in preparing of PVDF membranes. Black-Right-Pointing-Pointer The HR membranes have a favorable interfacial bonding between the coating layer and the matrix membrane. Black-Right-Pointing-Pointer The better performance of the HR membranes in protein solution can indirectly improve the service life of membranes. - Abstract: Homogeneous-reinforced (HR) polyvinylidene fluoride (PVDF) hollow fiber membranes include PVDF polymer solutions (coating layer) and the matrix membrane prepared through the dry-wet spinning process. The performance of HR membranes varies with the polymer concentration in the polymer solutions and is characterized in terms of pure water flux, rejection of protein, porosity, infiltration property, a mechanical strength test, and morphology observations by a field emission scanning electron microscope (FESEM). The results of this study indicate that the tensile strength of the HR PVDF membranes decreases slights compared with that of the matrix membrane, but the elongation at break increases much more and the hollow fiber membranes are endowed with better flexibility performance. The HR PVDF hollow fiber membranes have a favorable interfacial bonding between the coating layer and the matrix membrane, as shown by FESEM. The infiltration property is characterized by the contact angle experiments. Pure water flux decreases while the rejection ratio with an increase in polymer concentration increasing. The protein solution flux of the HR PVDF membranes is higher than that of the matrix membrane after 100 min of infiltration.

  1. Fabrication of Polybenzimidazole/Palladium Nanoparticles Hollow Fiber Membranes for Hydrogen Purification

    KAUST Repository

    Villalobos, Luis Francisco

    2017-09-13

    A novel scheme to fabricate polybenzimidazole (PBI) hollow fiber membranes with a thin skin loaded with fully dispersed palladium nanoparticles is proposed for the first time. Palladium is added to the membrane during the spinning process in the form of ions that coordinate to the imidazole groups of the polymer. This is attractive for membrane production because agglomeration of nanoparticles is minimized and the high-cost metal is incorporated in only the selective layer—where it is required. Pd-containing membranes achieve three orders of magnitude higher H2 permeances and a twofold improvement in H2/CO2 selectivity compared to pure PBI hollow fiber membranes.

  2. Foulant analysis of hollow fine fiber (HFF) membranes in Red Sea SWRO plants using membrane punch autopsy (MPA)

    KAUST Repository

    Green, Troy N.

    2017-06-12

    Membrane punch autopsy (MPA) is a procedure for quantitative foulant analysis of hollow fine fiber (HFF) permeators. In the past, quantitative autopsies of membranes were restricted to spiral wound. This procedure was developed at SWCC laboratories and tested on permeators of two commercial Red Sea reverse osmosis plants. For membrane autopsies, stainless steel hollow bore picks were penetrated to membrane cores and fibers extracted for foulant analysis. Quantitative analysis of extracted materials contained inorganic and organic foulants including bacteria. Fourier transform infrared spectroscopy analysis confirmed the presence of organic fouling functional groups and scanning electron microscopy with energy dispersive X-ray spectroscopy in the presence of diatoms and silica most likely not from particulate sand. API analysis revealed the presence of Shewanella and two Vibrio microbial species confirmed by 16S rDNA sequence library. It was observed that fouling content of HFF cellulose triacetate (CTA) membranes were more than 800 times than polyamide spiral wound membranes.

  3. Multifunctional nanocomposite hollow fiber membranes by solvent transfer induced phase separation.

    Science.gov (United States)

    Haase, Martin F; Jeon, Harim; Hough, Noah; Kim, Jong Hak; Stebe, Kathleen J; Lee, Daeyeon

    2017-11-01

    The decoration of porous membranes with a dense layer of nanoparticles imparts useful functionality and can enhance membrane separation and anti-fouling properties. However, manufacturing of nanoparticle-coated membranes requires multiple steps and tedious processing. Here, we introduce a facile single-step method in which bicontinuous interfacially jammed emulsions are used to form nanoparticle-functionalized hollow fiber membranes. The resulting nanocomposite membranes prepared via solvent transfer-induced phase separation and photopolymerization have exceptionally high nanoparticle loadings (up to 50 wt% silica nanoparticles) and feature densely packed nanoparticles uniformly distributed over the entire membrane surfaces. These structurally well-defined, asymmetric membranes facilitate control over membrane flux and selectivity, enable the formation of stimuli responsive hydrogel nanocomposite membranes, and can be easily modified to introduce antifouling features. This approach forms a foundation for the formation of advanced nanocomposite membranes comprising diverse building blocks with potential applications in water treatment, industrial separations and as catalytic membrane reactors.

  4. Surface monofunctionalized polymethyl pentene hollow fiber membranes by plasma treatment and hemocompatibility modification for membrane oxygenators

    Science.gov (United States)

    Huang, Xin; Wang, Weiping; Zheng, Zhi; Fan, Wenling; Mao, Chun; Shi, Jialiang; Li, Lei

    2016-01-01

    The hemocompatibility of polymethyl pentene (PMP) hollow fiber membranes (HFMs) was improved through surface modification for membrane oxygenator applications. The modification was performed stepwise with the following: (1) oxygen plasma treatment, (2) functionalization of monosort hydroxyl groups through NaBH4 reduction, and (3) grafting 2-methacryloyloxyethyl phosphorylcholine (MPC) or heparin. SEM, ATR-FTIR, and XPS analyses were conducted to confirm successful grafting during the modification. The hemocompatibility of PMP HFMs was analyzed and compared through protein adsorption, platelet adhesion, and coagulation tests. Pure CO2 and O2 permeation rates, as well as in vitro gas exchange rates, were determined to evaluate the mass transfer properties of PMP HFMs. SEM results showed that different nanofibril topographies were introduced on the HFM surface. ATR-FTIR and XPS spectra indicated the presence of functionalization of monosort hydroxyl group and the grafting of MPC and heparin. Hemocompatibility evaluation results showed that the modified PMP HFMs presented optimal hemocompatibility compared with pristine HFMs. Gas permeation results revealed that gas permeation flux increased in the modified HFMs because of dense surface etching during the plasma treatment. The results of in vitro gas exchange rates showed that all modified PMP HFMs presented decreased gas exchange rates because of potential surface fluid wetting. The proposed strategy exhibits a potential for fabricating membrane oxygenators for biomedical applications to prevent coagulation formation and alter plasma-induced surface topology and composition.

  5. Study on surface adhesion of Plasma modified Polytetrafluoroethylene hollow fiber membrane

    Science.gov (United States)

    Chen, Jiangrong; Zhang, Huifeng; Liu, Guochang; Guo, Chungang; Lv, Jinglie; Zhangb, Yushan

    2018-01-01

    Polytetrafluoroethylene (PTFE) is popular membrane material because of its excellent thermal stability, chemical stability and mechanical stability. However, the low surface energy and non-sticky property of PTFE present challenges for modification. In the present study, plasma treatment was performed to improve the surface adhesion of PTFE hollow fiber membrane. The effect of discharge voltage, treatment time on the adhesion of PTFE hollow fiber membrane was symmetrically evaluated. Results showed that the plasma treatment method contributed to improve the surface activity and roughness of PTFE hollow fiber membrane, and the adhesion strength depend significantly on discharge voltage, which was beneficial to seepage pressure of PTFE hollow fiber membrane module. The adhesion strength of PTFE membrane by plasma treated at 220V for 3min reached as high as 86.2 N, far surpassing the adhesion strength 12.7 N of pristine membrane. Furthermore, improvement of content of free radical and composition analysis changes of the plasma modified PTFE membrane were investigated. The seepage pressure of PTFE membrane by plasma treated at 220V for 3min was 0.375 MPa, which means that the plasma treatment is an effective technique to improve the adhesion strength of membrane.

  6. Factors Determining the Oxygen Permeability of Biological Membranes: Oxygen Transport Across Eye Lens Fiber-Cell Plasma Membranes.

    Science.gov (United States)

    Subczynski, Witold Karol; Widomska, Justyna; Mainali, Laxman

    2017-01-01

    Electron paramagnetic resonance (EPR) spin-label oximetry allows the oxygen permeability coefficient to be evaluated across homogeneous lipid bilayer membranes and, in some cases, across coexisting membrane domains without their physical separation. The most pronounced effect on oxygen permeability is observed for cholesterol, which additionally induces the formation of membrane domains. In intact biological membranes, integral proteins induce the formation of boundary and trapped lipid domains with a low oxygen permeability. The effective oxygen permeability coefficient across the intact biological membrane is affected not only by the oxygen permeability coefficients evaluated for each lipid domain but also by the surface area occupied by these domains in the membrane. All these factors observed in fiber cell plasma membranes of clear human eye lenses are reviewed here.

  7. Block copolymer hollow fiber membranes with catalytic activity and pH-response

    KAUST Repository

    Hilke, Roland

    2013-08-14

    We fabricated block copolymer hollow fiber membranes with self-assembled, shell-side, uniform pore structures. The fibers in these membranes combined pores able to respond to pH and acting as chemical gates that opened above pH 4, and catalytic activity, achieved by the incorporation of gold nanoparticles. We used a dry/wet spinning process to produce the asymmetric hollow fibers and determined the conditions under which the hollow fibers were optimized to create the desired pore morphology and the necessary mechanical stability. To induce ordered micelle assembly in the doped solution, we identified an ideal solvent mixture as confirmed by small-angle X-ray scattering. We then reduced p-nitrophenol with a gold-loaded fiber to confirm the catalytic performance of the membranes. © 2013 American Chemical Society.

  8. Block copolymer hollow fiber membranes with catalytic activity and pH-response

    KAUST Repository

    Hilke, Roland; Neelakanda, Pradeep; Madhavan, Poornima; Vainio, Ulla; Behzad, Ali Reza; Sougrat, Rachid; Nunes, Suzana Pereira; Peinemann, Klaus-Viktor

    2013-01-01

    We fabricated block copolymer hollow fiber membranes with self-assembled, shell-side, uniform pore structures. The fibers in these membranes combined pores able to respond to pH and acting as chemical gates that opened above pH 4, and catalytic activity, achieved by the incorporation of gold nanoparticles. We used a dry/wet spinning process to produce the asymmetric hollow fibers and determined the conditions under which the hollow fibers were optimized to create the desired pore morphology and the necessary mechanical stability. To induce ordered micelle assembly in the doped solution, we identified an ideal solvent mixture as confirmed by small-angle X-ray scattering. We then reduced p-nitrophenol with a gold-loaded fiber to confirm the catalytic performance of the membranes. © 2013 American Chemical Society.

  9. A Pilot-Scale System for Carbon Molecular Sieve Hollow Fiber Membrane Manufacturing

    KAUST Repository

    Karvan, O.; Johnson, J. R.; Williams, P. J.; Koros, W. J.

    2012-01-01

    research on these materials with a variety of applications being studied. The results from a pilot-scale CMS production system are presented. This system was designed based on extensive laboratory research, and hollow fiber membranes produced in this system

  10. Development and characterization of polyacrylonitrile (PAN based carbon hollow fiber membrane

    Directory of Open Access Journals (Sweden)

    Syed Mohd Saufi

    2002-11-01

    Full Text Available This paper reports the development and characterization of polyacrylonitrile (PAN based carbon hollow fiber membrane. Nitrogen was used as an inert gas during pyrolysis of the PAN hollow fiber membrane into carbon membrane. PAN membranes were pyrolyzed at temperature ranging from 500oC to 800oC for 30 minutes of thermal soak time. Scanning Electron Microscope (SEM, Fourier Transform Infrared Spectroscopy (FTIR and gas sorption analysis were applied to characterize the PAN based carbon membrane. Pyrolysis temperature was found to significantly change the structure and properties of carbon membrane. FTIR results concluded that the carbon yield still could be increased by pyrolyzing PAN membranes at temperature higher than 800oC since the existence of other functional group instead of CH group. Gas adsorption analysis showed that the average pore diameter increased up to 800oC.

  11. Annular centrifugal contactors for TRPO process test

    International Nuclear Information System (INIS)

    Duan, W.H.; Wang, J.C.; Chen, J.; Zhou, X.Z.; Zhou, J.Z.; Song, C.L.

    2005-01-01

    The TRPO process has been developed in China for removing TRU elements from high-level liquid waste (HLLW) since 1980s. Centrifugal contactors have several advantages such as low hold-up volume, short residence time, low solvent degradation, small space requirements and short start-up time. Therefore, they are favored for both the reprocessing of spent fuel and the treatment of HLLW. In order to meet study on the TRPO test, a series of annular centrifugal contactors have been developed in Institute of Nuclear and -New Energy Technology, Tsinghua University, China (INET). In particular, the 10-mm annular centrifugal contactor for the laboratory-scale test has been applied successfully in the cold and hot tests of the TRPO process. The 70-mm annular centrifugal contactor for the industry-scale test has two new design characteristics, namely a modular design and an overflow structure. The modular design makes the contactor to be disassembled and assembled fast by simply moving the modules up and down. With the overflow structure, even though one stage or non-adjacent stages of the multi-stage cascade in operation are ceased to work, the cascade can continue to operate. Both the hydraulic performance and the mass-transfer efficiency of these contactors are excellent, and the extraction stage efficiency is greater than 95% at suitable operating conditions.

  12. Enzymatic Treatments to Improve Mechanical Properties and Surface Hydrophobicity of Jute Fiber Membranes

    Directory of Open Access Journals (Sweden)

    Aixue Dong

    2016-02-01

    Full Text Available Fiber membranes prepared from jute fragments can be valuable, low cost, and renewable. They have broad application prospects in packing bags, geotextiles, filters, and composite reinforcements. Traditionally, chemical adhesives have been used to improve the properties of jute fiber membranes. A series of new laccase, laccase/mediator systems, and multi-enzyme synergisms were attempted. After the laccase treatment of jute fragments, the mechanical properties and surface hydrophobicity of the produced fiber membranes increased because of the cross-coupling of lignins with ether bonds mediated by laccase. The optimum conditions were a buffer pH of 4.5 and an incubation temperature of 60 °C with 0.92 U/mL laccase for 3 h. Laccase/guaiacol and laccase/alkali lignin treatments resulted in remarkable increases in the mechanical properties; in contrast, the laccase/2,2’-azino-bis-(3-ethylthiazoline-6-sulfonate (ABTS and laccase/2,6-dimethoxyphenol treatments led to a decrease. The laccase/ guaiacol system was favorable to the surface hydrophobicity of jute fiber membranes. However, the laccase/alkali lignin system had the opposite effect. Xylanase/laccase and cellulase/laccase combined treatments were able to enhance both the mechanical properties and the surface hydrophobicity of jute fiber membranes. Among these, cellulase/laccase treatment performed better; compared to mechanical properties, the surface hydrophobicity of the jute fiber membranes showed only a slight increase after the enzymatic multi-step processes.

  13. Matrimid® derived carbon molecular sieve hollow fiber membranes for ethylene/ethane separation

    KAUST Repository

    Xu, Liren

    2011-09-01

    Carbon molecular sieve (CMS) membranes have shown promising separation performance compared to conventional polymeric membranes. Translating the very attractive separation properties from dense films to hollow fibers is important for applying CMS materials in realistic gas separations. The very challenging ethylene/ethane separation is the primary target of this work. Matrimid® derived CMS hollow fiber membranes have been investigated in this work. Resultant CMS fiber showed interesting separation performance for several gas pairs, especially high selectivity for C2H4/C2H6. Our comparative study between dense film and hollow fiber revealed very similar selectivity for both configurations; however, a significant difference exists in the effective separation layer thickness between precursor fibers and their resultant CMS fibers. SEM results showed that the deviation was essentially due to the collapse of the porous substructure of the precursor fiber. Polymer chain flexibility (relatively low glass transition temperature (Tg) for Matrimid® relative to actual CMS formation) appears to be the fundamental cause of substructure collapse. This collapse phenomenon must be addressed in all cases involving intense heat-treatment near or above Tg. We also found that the defect-free property of the precursor fiber was not a simple predictor of CMS fiber performance. Even some precursor fibers with Knudsen diffusion selectivity could be transformed into highly selective CMS fibers for the Matrimid® precursor. To overcome the permeance loss problem caused by substructure collapse, several engineering approaches were considered. Mixed gas permeation results under realistic conditions demonstrate the excellent performance of CMS hollow fiber membrane for the challenging ethylene/ethane separation. © 2011 Elsevier B.V.

  14. Lipid-protein interactions in plasma membranes of fiber cells isolated from the human eye lens.

    Science.gov (United States)

    Raguz, Marija; Mainali, Laxman; O'Brien, William J; Subczynski, Witold K

    2014-03-01

    The protein content in human lens membranes is extremely high, increases with age, and is higher in the nucleus as compared with the cortex, which should strongly affect the organization and properties of the lipid bilayer portion of intact membranes. To assess these effects, the intact cortical and nuclear fiber cell plasma membranes isolated from human lenses from 41- to 60-year-old donors were studied using electron paramagnetic resonance spin-labeling methods. Results were compared with those obtained for lens lipid membranes prepared from total lipid extracts from human eyes of the same age group [Mainali, L., Raguz, M., O'Brien, W. J., and Subczynski, W. K. (2013) Biochim. Biophys. Acta]. Differences were considered to be mainly due to the effect of membrane proteins. The lipid-bilayer portions of intact membranes were significantly less fluid than lipid bilayers of lens lipid membranes, prepared without proteins. The intact membranes were found to contain three distinct lipid environments termed the bulk lipid domain, boundary lipid domain, and trapped lipid domain. However, the cholesterol bilayer domain, which was detected in cortical and nuclear lens lipid membranes, was not detected in intact membranes. The relative amounts of bulk and trapped lipids were evaluated. The amount of lipids in domains uniquely formed due to the presence of membrane proteins was greater in nuclear membranes than in cortical membranes. Thus, it is evident that the rigidity of nuclear membranes is greater than that of cortical membranes. Also the permeability coefficients for oxygen measured in domains of nuclear membranes were significantly lower than appropriate coefficients measured in cortical membranes. Relationships between the organization of lipids into lipid domains in fiber cells plasma membranes and the organization of membrane proteins are discussed. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Modeling of hydrodynamics in hollow fiber membrane bioreactor for mammalian cells cultivation

    Directory of Open Access Journals (Sweden)

    N. V. Menshutina

    2016-01-01

    Full Text Available The mathematical modelling in CFD-packages are powerfull instrument for design and calculation of any engineering tasks. CFD-package contains the set of programs that allow to model the different objects behavior based on the mathematical lows. ANSYS Fluent are widely used for modelling of biotechnological and chemical-technological processes. This package is convenient to describe their hydrodynamics. As cell cultivation is one of the actual scientific direction in modern biotechnology ANSYS Fluent was used to create the model of hollow fiber membrane bioreactor. The fibers are hollow cylindrical membrane to be used for cell cultivation. The criterion of process effectiveness for cell growth is full filling of the membrane surface by cells in the bioreactor. While the cell growth the fiber permeability is decreased which effects to feed flow through membrane pores. The specific feature of this process is to ensure such feed flow to deliver the optimal nutrition for the cells on the external membrane surface. The velocity distribution inside the fiber and in all bioreactor as a whole has been calculated based on mass an impulse conservation equations taking into account the mathematical model assumptions. The hydrodynamics analysis in hollow fiber membrane bioreactor is described by the three-dimensional model created in ANSYS Fluent. The specific features of one membrane model are considered and for whole bioreactor too.

  16. Formation of defect-free 6FDA-DAM asymmetric hollow fiber membranes for gas separations

    KAUST Repository

    Xu, Liren; Zhang, Chen; Rungta, Meha; Qiu, Wulin; Liu, Junqiang; Koros, William J.

    2014-01-01

    This paper reports the formation of defect-free 6FDA-DAM asymmetric hollow fiber membranes. 6FDA-polyimides are of great interest for advanced gas separation membranes, and 6FDA-DAM polyimide is a representative polymer in this family

  17. Effects of CO 2 on a High Performance Hollow-Fiber Membrane for Natural Gas Purification

    KAUST Repository

    Omole, Imona C.; Adams, Ryan T.; Miller, Stephen J.; Koros, William J.

    2010-01-01

    A 6FDA-based, cross-linkable polyimide was characterized in the form of a defect-free asymmetric hollow-fiber membrane. The novel membrane was cross-linked at various temperatures and tested for natural gas purification in the presence of high CO2

  18. Effects of CO 2 on a High Performance Hollow-Fiber Membrane for Natural Gas Purification

    KAUST Repository

    Omole, Imona C.

    2010-05-19

    A 6FDA-based, cross-linkable polyimide was characterized in the form of a defect-free asymmetric hollow-fiber membrane. The novel membrane was cross-linked at various temperatures and tested for natural gas purification in the presence of high CO2 partial pressures. The cross-linked membrane material shows high intrinsic separation performance for CO2 and CH4 (selectivity ∼49, CO2 permeability ∼161 barrer, with a feed at 65 psia, 35 °C, and 10% CO2). Cross-linked asymmetric hollow-fiber membranes made from the material show good resistance to CO2-induced plasticization. Carbon dioxide partial pressures as high as ∼400 psia were employed, and the membrane was shown to be promisingly stable under these aggressive conditions. The performance of the membrane was also analyzed using the dual-mode sorption/transport model. © 2010 American Chemical Society.

  19. Highly scalable ZIF-based mixed-matrix hollow fiber membranes for advanced hydrocarbon separations

    KAUST Repository

    Zhang, Chen

    2014-05-29

    ZIF-8/6FDA-DAM, a proven mixed-matrix material that demonstrated remarkably enhanced C3H6/C3H8 selectivity in dense film geometry, was extended to scalable hollow fiber geometry in the current work. We successfully formed dual-layer ZIF-8/6FDA-DAM mixed-matrix hollow fiber membranes with ZIF-8 nanoparticle loading up to 30 wt % using the conventional dry-jet/wet-quench fiber spinning technique. The mixed-matrix hollow fibers showed significantly enhanced C3H6/C3H8 selectivity that was consistent with mixed-matrix dense films. Critical variables controlling successful formation of mixed-matrix hollow fiber membranes with desirable morphology and attractive transport properties were discussed. Furthermore, the effects of coating materials on selectivity recovery of partially defective fibers were investigated. To our best knowledge, this is the first article reporting successful formation of high-loading mixed-matrix hollow fiber membranes with significantly enhanced selectivity for separation of condensable olefin/paraffin mixtures. Therefore, it represents a major step in the research area of advanced mixed-matrix membranes. © 2014 American Institute of Chemical Engineers.

  20. Transport of Carbonate Ions by Novel Cellulose Fiber Supported Solid Membrane

    Directory of Open Access Journals (Sweden)

    A. G. Gaikwad

    2012-06-01

    Full Text Available Transport of carbonate ions was explored through fiber supported solid membrane. A novel fiber supported solid membrane was prepared by chemical modification of cellulose fiber with citric acid, 2′2-bipyridine and magnesium carbonate. The factors affecting the permeability of carbonate ions such as immobilization of citric acid-magnesium metal ion -2′2-bipyridine complex (0 to 2.5 mmol/g range over cellulose fiber, carbon-ate ion concentration in source phase and NaOH concentration in receiving phase were investigated. Ki-netic of carbonate, sulfate, and nitrate ions was investigated through fiber supported solid membrane. Transport of carbonate ions with/without bubbling of CO2 (0 to 10 ml/min in source phase was explored from source to receiving phase. The novel idea is to explore the adsorptive transport of CO2 from source to receiving phase through cellulose fiber containing magnesium metal ion organic framework. Copyright © 2012 BCREC UNDIP. All rights reserved.Received: 25th November 2011; Revised: 17th December 2011; Accepted: 19th December 2011[How to Cite: A.G. Gaikwad. (2012. Transport of Carbonate Ions by Novel Cellulose Fiber Supported Solid Membrane. Bulletin of Chemical Reaction Engineering & Catalysis, 7 (1: 49– 57.  doi:10.9767/bcrec.7.1.1225.49-57][How to Link / DOI: http://dx.doi.org/10.9767/bcrec.7.1.1225.49-57 ] | View in 

  1. Characteristics of centrifugal rapid contactor, (3)

    International Nuclear Information System (INIS)

    Nakanishi, Mitsuo; Hirayama, Hiroshi; Takasu, Nobuyuki; Takeda, Hiroshi; Hoshino, Tadaya

    1979-01-01

    Organic solvent yields the degradation product as a result of irradiation, in the extraction process of spent fuel reprocessing. The development of a centrifugal rapid contactor is required for the reduction of the solvent degradation by shortening the contact time. The effects of fine solid particles were investigated with a SGN-Robatel LX-208N contactor, following the uranium extraction and re-extraction performance tests. It was found as the experimental result that the considerable quantity of solids accumulated in the rotor of the centrifugal contactor. As for this experimental apparatus, the flow diagram for the centrifugal rapid contactor and auxiliary apparatuses is shown, which are the same system used for the uranium extraction and re-extraction tests. The schematic diagram, the typical stage construction and fluid transfer path of the LX-208 contactor are illustrated. The main specifications of the LX-208 contactor are as follows: the internal diameter of a rotating bowl 200 mm, the material SUS 316, the number of stages 8, and the total hold-up volume of the contactor 1.8 l. Most tests were carried out with aqueous feed only, because white Alundum is easily deposited in the rotor, and the particle concentration in effluent stream becomes undetectable when organic and aqueous feeds are supplied simultaneously. As the experimental results, the correlation of Alundum concentration in effluent and running time, the effect of rotor speed on effluent stream concentration, the particle size distribution curves for No. 6000 and No. 8000 white Alundum, the effect of flow rate on effluent stream concentration and the effect of flow rate on particle size distribution for both No. 6000 and No. 8000 white Alundum are presented. (Nakai, Y.)

  2. A Scale for Rating Fire-Prevention Contactors

    Science.gov (United States)

    M.L. Doolittle

    1979-01-01

    A scale is constructed to help fire-prevention program administrators determine if an individual contactor is effective at influencing people. The 24 items in the scale indicate the qualities that an effective contactor should have.

  3. Extracellular ultrathin fibers sensitive to intracellular reactive oxygen species: Formation of intercellular membrane bridges

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Se-Hui; Park, Jin-Young; Joo, Jung-Hoon; Kim, Young-Myeong; Ha, Kwon-Soo, E-mail: ksha@kangwon.ac.kr

    2011-07-15

    Membrane bridges are key cellular structures involved in intercellular communication; however, dynamics for their formation are not well understood. We demonstrated the formation and regulation of novel extracellular ultrathin fibers in NIH3T3 cells using confocal and atomic force microscopy. At adjacent regions of neighboring cells, phorbol 12-myristate 13-acetate (PMA) and glucose oxidase induced ultrathin fiber formation, which was prevented by Trolox, a reactive oxygen species (ROS) scavenger. The height of ROS-sensitive ultrathin fibers ranged from 2 to 4 nm. PMA-induced formation of ultrathin fibers was inhibited by cytochalasin D, but not by Taxol or colchicine, indicating that ultrathin fibers mainly comprise microfilaments. PMA-induced ultrathin fibers underwent dynamic structural changes, resulting in formation of intercellular membrane bridges. Thus, these fibers are formed by a mechanism(s) involving ROS and involved in formation of intercellular membrane bridges. Furthermore, ultrastructural imaging of ultrathin fibers may contribute to understanding the diverse mechanisms of cell-to-cell communication and the intercellular transfer of biomolecules, including proteins and cell organelles.

  4. Development of a mechanistic model for prediction of CO2 capture from gas mixtures by amine solutions in porous membranes.

    Science.gov (United States)

    Ghadiri, Mehdi; Marjani, Azam; Shirazian, Saeed

    2017-06-01

    A mechanistic model was developed in order to predict capture and removal of CO 2 from air using membrane technology. The considered membrane was a hollow-fiber contactor module in which gas mixture containing CO 2 was assumed as feed while 2-amino-2-metyl-1-propanol (AMP) was used as an absorbent. The mechanistic model was developed according to transport phenomena taking into account mass transfer and chemical reaction between CO 2 and amine in the contactor module. The main aim of modeling was to track the composition and flux of CO 2 and AMP in the membrane module for process optimization. For modeling of the process, the governing equations were computed using finite element approach in which the whole model domain was discretized into small cells. To confirm the simulation findings, model outcomes were compared with experimental data and good consistency was revealed. The results showed that increasing temperature of AMP solution increases CO 2 removal in the hollow-fiber membrane contactor.

  5. Solvent extraction studies in miniature centrifugal contactors

    International Nuclear Information System (INIS)

    Siczek, A.A.; Meisenhelder, J.H.; Bernstein, G.J.; Steindler, M.J.

    1980-01-01

    A miniature short-residence-time centrifugal solvent extraction contactor and an eight-stage laboratory minibank of centrifugal contactors were used for testing the possibility of utilizing kinetic effects for improving the separation of uranium from ruthenium and zirconium in the Purex process. Results of these tests showed that a small improvement found in ruthenium and zirconium decontamination in single-stage solvent extraction tests was lost in the multistage extraction tests- in fact, the extent of saturation of the solvent by uranium, rather than the stage residence time, controlled the extent of ruthenium and zirconium extraction. In applying the centrifugal contactor to the Purex process, the primary advantages would be less radiolytic damage to the solvent, high troughput, reduced solvent inventory, and rapid attainment of steady-state operating conditions. The multistage mini contactor was also tested to determine the suitability of short-residence-time contactors for use with the Civex and Thorex processes and was found to be compatible with the requirements of these processes. (orig.) [de

  6. Optimizing the recovery of copper from electroplating rinse bath solution by hollow fiber membrane.

    Science.gov (United States)

    Oskay, Kürşad Oğuz; Kul, Mehmet

    2015-01-01

    This study aimed to recover and remove copper from industrial model wastewater solution by non-dispersive solvent extraction (NDSX). Two mathematical models were developed to simulate the performance of an integrated extraction-stripping process, based on the use of hollow fiber contactors using the response surface method. The models allow one to predict the time dependent efficiencies of the two phases involved in individual extraction or stripping processes. The optimal recovery efficiency parameters were determined as 227 g/L of H2SO4 concentration, 1.22 feed/strip ratio, 450 mL/min flow rate (115.9 cm/min. flow velocity) and 15 volume % LIX 84-I concentration in 270 min by central composite design (CCD). At these optimum conditions, the experimental value of recovery efficiency was 95.88%, which was in close agreement with the 97.75% efficiency value predicted by the model. At the end of the process, almost all the copper in the model wastewater solution was removed and recovered as CuSO4.5H2O salt, which can be reused in the copper electroplating industry.

  7. A Pilot-Scale System for Carbon Molecular Sieve Hollow Fiber Membrane Manufacturing

    KAUST Repository

    Karvan, O.

    2012-12-21

    Carbon molecular sieve (CMS) membranes offer advantages over traditional polymeric membrane materials, but scale-up of manufacturing systems has not received much attention. In the recent decade, there has been a dramatic increase in fundamental research on these materials with a variety of applications being studied. The results from a pilot-scale CMS production system are presented. This system was designed based on extensive laboratory research, and hollow fiber membranes produced in this system show similar performance compared to membranes produced using a smaller bench-scale system. After optimizing the system design, a 93% recovery of the precursor fibers for use in membrane module preparation were obtained. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Gypsum (CaSO42H2O) scaling on polybenzimidazole and cellulose acetate hollow fiber membranes under forward osmosis

    KAUST Repository

    Chen, Si Cong; Su, Jincai; Fu, Feng-Jiang; Mi, Baoxia; Chung, Neal Tai-Shung

    2013-01-01

    We have examined the gypsum (CaSO42H2O) scaling phenomena on membranes with different physicochemical properties in forward osmosis (FO) processes. Three hollow fiber membranes made of (1) cellulose acetate (CA), (2) polybenzimidazole (PBI

  9. Formation of defect-free 6FDA-DAM asymmetric hollow fiber membranes for gas separations

    KAUST Repository

    Xu, Liren

    2014-06-01

    This paper reports the formation of defect-free 6FDA-DAM asymmetric hollow fiber membranes. 6FDA-polyimides are of great interest for advanced gas separation membranes, and 6FDA-DAM polyimide is a representative polymer in this family with attractive dense film properties for several potential applications. The work reported here for the 6FDA-DAM polyimide provides insight for the challenging fabrication of defect-free asymmetric hollow fiber membranes for this class of 6FDA-polyimides, which behave rather different from lower free volume polymers. Specifically, the 6FDA based materials show relatively slow phase separation rate in water quench baths, which presents a challenge for fiber spinning. For convenience, we refer to the behavior as more "non-solvent resistant" in comparison to other lower free volume polymers, since the binodal phase boundary is displaced further from the conventional position near the pure polymer-solvent axis on a ternary phase diagram in conventional polymers like Matrimid® and Ultem®. The addition of lithium nitrate to promote phase separation has a useful impact on 6FDA-DAM asymmetric hollow fiber formation. 6FDA-DAM phase diagrams using ethanol and water as non-solvent are reported, and it was found that water is less desirable as a non-solvent dope additive for defect-free fiber spinning. Phase diagrams are also reported for 6FDA-DAM dope formulation with and without the addition of lithium nitrate, and defect-free asymmetric hollow fiber membranes are reported for both cases. The effect of polymer molecular weight on defect-free fiber spinning was also investigated. Gas transport properties and morphology of hollow fibers were characterized. With several thorough case studies, this work provides a systematic guideline for defect-free fiber formation from 6FDA-polymers. © 2014 Elsevier B.V.

  10. A vibration model for centrifugal contactors

    Energy Technology Data Exchange (ETDEWEB)

    Leonard, R.A.; Wasserman, M.O.; Wygmans, D.G.

    1992-11-01

    Using the transfer matrix method, we created the Excel worksheet ``Beam`` for analyzing vibrations in centrifugal contactors. With this worksheet, a user can calculate the first natural frequency of the motor/rotor system for a centrifugal contactor. We determined a typical value for the bearing stiffness (k{sub B}) of a motor after measuring the k{sub B} value for three different motors. The k{sub B} value is an important parameter in this model, but it is not normally available for motors. The assumptions that we made in creating the Beam worksheet were verified by comparing the calculated results with those from a VAX computer program, BEAM IV. The Beam worksheet was applied to several contactor designs for which we have experimental data and found to work well.

  11. A vibration model for centrifugal contactors

    International Nuclear Information System (INIS)

    Leonard, R.A.; Wasserman, M.O.; Wygmans, D.G.

    1992-11-01

    Using the transfer matrix method, we created the Excel worksheet ''Beam'' for analyzing vibrations in centrifugal contactors. With this worksheet, a user can calculate the first natural frequency of the motor/rotor system for a centrifugal contactor. We determined a typical value for the bearing stiffness (k B ) of a motor after measuring the k B value for three different motors. The k B value is an important parameter in this model, but it is not normally available for motors. The assumptions that we made in creating the Beam worksheet were verified by comparing the calculated results with those from a VAX computer program, BEAM IV. The Beam worksheet was applied to several contactor designs for which we have experimental data and found to work well

  12. Characterization of Thermally Cross-Linkable Hollow Fiber Membranes for Natural Gas Separation

    KAUST Repository

    Chen, Chien-Chiang

    2013-01-23

    The performance of thermally cross-linkable hollow fiber membranes for CO2/CH4 separation and the membrane stability against CO2 plasticization was investigated. The fiber membranes were thermally cross-linked at various conditions. Cross-linking temperature was found to have a significant effect, while shorter soak time and the presence of trace oxidizer (O2 or N2O) had a negligible effect. The cross-linked fibers were tested using high CO2 content feeds (50-70% CO2) at a variety of feed pressures (up to 1000 psia), temperatures, and permeate pressures (up to 100 psia) to evaluate membrane performance under various realistic operating conditions. The results demonstrated that cross-linking improves membrane selectivity and effectively eliminates swelling-induced hydrocarbon loss at high pressures. Excellent stability under aggressive feeds (with CO2 partial pressure up to 700 psia) suggests that cross-linked hollow fiber membranes have great potential for use in diverse aggressive applications, even beyond the CO2/CH4 example explored in this work. © 2012 American Chemical Society.

  13. Preparation and characterization of regenerated cellulose membranes from natural cotton fiber

    Directory of Open Access Journals (Sweden)

    Yanjuan CAO

    2015-06-01

    Full Text Available A series of organic solutions with different cellulose concentrations are prepared by dissolving natural cotton fibers in lithium chloride/dimethyl acetamide (LiCl/DMAC solvent system after the activation of cotton fibers. Under different coagulating bath, the regenerated cellulose membranes are formed in two kinds of coagulation baths, and two coating methods including high-speed spin technique (KW-4A spin coating machine and low-speed scraping (AFA-Ⅱ Film Applicator are selected in this paper. The macromolecular structure, mechanical properties, crystallinity, thermal stability and wetting property of the regenerated cellulose membrane are characterized by Scanning Electron Microscope(SEM, Fourier Transform Infrared Spectroscopy (FT-IR,X-ray diffraction (XRD, Thermogravimetric analysis (TG and contacting angle tester. The effects of mass fraction, coagulation bath type, membrane forming process on the regenerated membrane properties are investigated. Experimental results show that the performance of regenerated cellulose membrane is relatively excellent under the condition of using the KW-4A high-speed spin method, water coagulation bath, and when mass fraction of cellulose is 3.5%. The crystallinity of the regenerated cellulose membrane changes a lot compared with natural cotton fibers. The variation trend of thermal stability is similar with that of cotton fiber. But thermal stability is reduced to some degree, while the wetting ability is improved obviously.

  14. Fabrication and Characterization of Polymeric Hollow Fiber Membranes with Nano-scale Pore Sizes

    International Nuclear Information System (INIS)

    Amir Mansourizadeh; Ahmad Fauzi Ismail

    2011-01-01

    Porous polyvinylidene fluoride (PVDF) and polysulfide (PSF) hollow fiber membranes were fabricated via a wet spinning method. The membranes were characterized in terms of gas permeability, wetting pressure, overall porosity and water contact angle. The morphology of the membranes was examined by FESEM. From gas permeation test, mean pore sizes of 7.3 and 9.6 nm were obtained for PSF and PVDF membrane, respectively. Using low polymer concentration in the dopes, the membranes demonstrated a relatively high overall porosity of 77 %. From FESEM examination, the PSF membrane presented a denser outer skin layer, which resulted in significantly lower N 2 permeance. Therefore, due to the high hydrophobicity and nano-scale pore sizes of the PVDF membrane, a good wetting pressure of 4.5x10 -5 Pa was achieved. (author)

  15. Plasticization-resistant hollow fiber membranes for CO2/CH4 separation based on a thermally crosslinkable polyimide

    KAUST Repository

    Chen, Chien-Chiang

    2011-10-01

    Decarboxylation-induced thermal crosslinking has been demonstrated to be effective for stabilizing membranes against plasticization in dense films. This study extends this promising crosslinking approach from dense films to industrially relevant asymmetric hollow fiber membranes. Crosslinkable asymmetric hollow fiber membranes were spun from a carboxylic acid containing polyimide, 6FDA-DAM:DABA. Dope and spinning conditions were optimized to obtain fibers with a defect-free selective skin layer. It is found that slightly defective fibers suffered severe selectivity loss after thermal crosslinking, suggesting that defect-free property is essential to the performance of the resulting crosslinked hollow fiber membranes. The crosslinked fibers were tested for CO 2/CH 4 separation. The excellent plasticization resistance under high pressure feeds (with highest CO 2 partial pressure of 400psia) suggests that these robust membranes are promising for aggressive natural gas purification. © 2011 Elsevier B.V.

  16. Plasticization-resistant hollow fiber membranes for CO2/CH4 separation based on a thermally crosslinkable polyimide

    KAUST Repository

    Chen, Chien-Chiang; Qiu, Wulin; Miller, Stephen J.; Koros, William J.

    2011-01-01

    Decarboxylation-induced thermal crosslinking has been demonstrated to be effective for stabilizing membranes against plasticization in dense films. This study extends this promising crosslinking approach from dense films to industrially relevant asymmetric hollow fiber membranes. Crosslinkable asymmetric hollow fiber membranes were spun from a carboxylic acid containing polyimide, 6FDA-DAM:DABA. Dope and spinning conditions were optimized to obtain fibers with a defect-free selective skin layer. It is found that slightly defective fibers suffered severe selectivity loss after thermal crosslinking, suggesting that defect-free property is essential to the performance of the resulting crosslinked hollow fiber membranes. The crosslinked fibers were tested for CO 2/CH 4 separation. The excellent plasticization resistance under high pressure feeds (with highest CO 2 partial pressure of 400psia) suggests that these robust membranes are promising for aggressive natural gas purification. © 2011 Elsevier B.V.

  17. Nuclear material inventory estimation in solvent extraction contactors

    International Nuclear Information System (INIS)

    Beyerlein, A.; Geldard, J.

    1986-06-01

    This report describes the development of simple nuclear material (uranium and plutonium) inventory relations for mixer-settler solvent extraction contactors used in reprocessing spent nuclear fuels. The relations are developed for light water reactor fuels where the organic phase is 30% tri-n-butylphosphate (TBP) by volume. For reprocessing plants using mixer-settler contactors as much as 50% of the nuclear material within the contactors is contained in A type (aqueous to organic extraction) contactors. Another very significant portion of the contactor inventory is in the partitioning contactors. The stripping contactors contain a substantial uranium inventory but contain a very small plutonium inventory (about 5 to 10% of the total contactor inventory). The simplified inventory relations developed in this work for mixer-settler contactors reproduce the PUBG databases within about a 5% standard deviation. They can be formulated to explicitly show the dependence of the inventory on nuclear material concentrations in the aqueous feed streams. The dependence of the inventory on contactor volumes, phase volume ratios, and acid and TBP concentrations are implicitly contained in parameters that can be calculated for a particular reprocessing plant from nominal flow sheet data. The terms in the inventory relations that represent the larger portion of the inventory in A type and partitioning contactors can be extended to pulsed columns virtually without change

  18. Tri-bore PVDF hollow fibers with a super-hydrophobic coating for membrane distillation

    KAUST Repository

    Lu, Kang-Jia; Zuo, Jian; Chung, Tai-Shung

    2016-01-01

    Membranes with good mechanical strength, high vapor flux and outstanding anti-wetting properties are essential for membrane distillation (MD) applications. In this work, porous polyvinylidene fluoride (PVDF) tri-bore hollow fiber membranes with super-hydrophobicity are developed to achieve these desired properties. The tri-bore hollow fiber offers better mechanical strength than the conventional single-bore fiber. To improve its anti-wetting properties, Teflon® AF 2400 is coated on the membrane surface. The effects of coating on membrane morphology, performance and anti-wetting properties have been thoroughly investigated. With an optimal coating condition (0.025 wt% of Teflon® AF 2400, 30 s), a super-hydrophobic surface with a contact angle of 151o is achieved. The resultant membrane shows an increase of 109% in liquid entry pressure (LEP) with a slight sacrifice of 21% in flux. Long term direct contact MD tests have confirmed that the Teflon® AF 2400 coated membrane has enhanced stability with an average flux of 21 kg m-2 h-1 and rejection of 99.99% at 60 °° C for desalination application.

  19. Tri-bore PVDF hollow fibers with a super-hydrophobic coating for membrane distillation

    KAUST Repository

    Lu, Kang-Jia

    2016-04-26

    Membranes with good mechanical strength, high vapor flux and outstanding anti-wetting properties are essential for membrane distillation (MD) applications. In this work, porous polyvinylidene fluoride (PVDF) tri-bore hollow fiber membranes with super-hydrophobicity are developed to achieve these desired properties. The tri-bore hollow fiber offers better mechanical strength than the conventional single-bore fiber. To improve its anti-wetting properties, Teflon® AF 2400 is coated on the membrane surface. The effects of coating on membrane morphology, performance and anti-wetting properties have been thoroughly investigated. With an optimal coating condition (0.025 wt% of Teflon® AF 2400, 30 s), a super-hydrophobic surface with a contact angle of 151o is achieved. The resultant membrane shows an increase of 109% in liquid entry pressure (LEP) with a slight sacrifice of 21% in flux. Long term direct contact MD tests have confirmed that the Teflon® AF 2400 coated membrane has enhanced stability with an average flux of 21 kg m-2 h-1 and rejection of 99.99% at 60 °° C for desalination application.

  20. Green Modification of Outer Selective P84 Nanofiltration (NF) Hollow Fiber Membranes for Cadmium Removal

    KAUST Repository

    Gao, Jie

    2015-10-26

    Outer-selective thin-film composite (TFC) hollow fiber membranes are normally made from interfacial polymerization of m-phenylenediamine (MPD) and trimesoyl chloride (TMC). However, the removal of excess MPD solution and the large consumption of alkane solvents are their technical bottlenecks. In this study, green methods to prepare the outer selective TFC hollow fiber membranes were explored by firstly modifying the membrane substrate with polyethyleneimine (PEI) and then by water soluble small molecules such as glutaraldehyde (GA) and epichlorohydrin (ECH). Using P84 polyimide as the substrate, not only do these modifications decrease substrate\\'s pore size, but also vary surface charge by making the membranes less positively charged. As a result, the resultant membranes have higher rejections against salts such as Na2SO4, NaCl and MgSO4. The PEI and then GA modified membrane has the best separation performance with a NaCl rejection over 90% and a pure water permeability (PWP) of 1.74±0.01 Lm−2bar−1h−1. It also shows an impressive rejection to CdCl2 (94%) during long-term stability tests. The CdCl2 rejection remains higher than 90% at operating temperatures from 5 to 60 °C. This study may provide useful insights for green manufacturing of outer-selective nanofiltration (NF) hollow fiber membranes.

  1. Influence of nano-fiber membranes on the silver ions released from hollow fibers containing silver particles

    Directory of Open Access Journals (Sweden)

    Li Huigai

    2016-01-01

    Full Text Available Polyether sulfone was dissolved into dimethylacetamide with the concentration of 20% to prepare a uniform solution for fabrication of nanofiber membranes by bubble electrospinning technique. Morphologies of the nanofiber film were carried out with a scanning electron microscope. The influence on the silver ions escaped from hollow fiber loaded with silver particles was exerted by using different release liquid. The water molecular clusters obtained from the nanofiber membranes filter can slow down the release of silver ions. However, the effect of slowing was weakened with the time increasing. In the end, the trend of change is gradually consistent with the trend of release of silver ions in the deionized water.

  2. Assembly of contactors-separators in an extraction unit

    International Nuclear Information System (INIS)

    Beaujard, Jean; Menes, J.-C.; Ravoire, Jean.

    1977-01-01

    A description is given of an assembly of contactors-separators of an installation in which a transfer of mass or an isotope exchange occurs between two non miscible phases, characterized in that the contactors-separators are associated in m lines and n columns, one of the phases issuing from a contactor-separator being sent directly to the next contactor-separator of the same line, whilst the other phase, issuing from the same contactor-separator is sent directly to the next contactor-separator of the same column, each of the m lines and n columns being provided with one only pumping facility, the instantaneous flow rate of each phase, at the intake and outlet of each contactor-separator being appreciably identical [fr

  3. Molecularly Designed Stabilized Asymmetric Hollow Fiber Membranes for Aggressive Natural Gas Separation.

    Science.gov (United States)

    Liu, Gongping; Li, Nanwen; Miller, Stephen J; Kim, Danny; Yi, Shouliang; Labreche, Ying; Koros, William J

    2016-10-24

    New rigid polyimides with bulky CF 3 groups were synthesized and engineered into high-performance hollow fiber membranes. The enhanced rotational barrier provided by properly positioned CF 3 side groups prohibited fiber transition layer collapse during cross-linking, thereby greatly improving CO 2 /CH 4 separation performance compared to conventional materials for aggressive natural gas feeds. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Modeling of Multicomponent Mixture Separation Processes Using Hollow fiber Membrane

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sin-Ah; Kim, Jin-Kuk; Lee, Young Moo; Yeo, Yeong-Koo [Hanyang University, Seoul (Korea, Republic of)

    2015-02-15

    So far, most of research activities on modeling of membrane separation processes have been focused on binary feed mixture. But, in actual separation operations, binary feed is hard to find and most separation processes involve multicomponent feed mixture. In this work models for membrane separation processes treating multicomponent feed mixture are developed. Various model types are investigated and validity of proposed models are analysed based on experimental data obtained using hollowfiber membranes. The proposed separation models show quick convergence and exhibit good tracking performance.

  5. Steady-state coupled transport of HNO3 through a hollow-fiber supported liquid membrane

    International Nuclear Information System (INIS)

    Noble, R.D.; Danesi, P.R.

    1987-01-01

    Nitric acid removal from an aqueous stream was accomplished by continuously passing the fluid through a hollow fiber supported liquid membrane (SLM). The nitric acid was extracted through the membrane wall by coupled transport. The system was modeled as a series of (SLM)-continuous stirred tank reactor (CSTR) pairs. An approximate technique was used to predict the steady state nitric acid concentration in the system. The comparison with experimental data was very good

  6. Performance of Hollow Fiber Ultrafiltration Membranes in the Clarification of Blood Orange Juice

    Directory of Open Access Journals (Sweden)

    Carmela Conidi

    2015-12-01

    Full Text Available The clarification of blood orange juice by ultrafiltration (UF was investigated by using three hollow fiber membrane modules characterized by different membrane materials (polysulfone (PS and polyacrylonitrile (PAN and molecular weight cut-off (MWCO (50 and 100 kDa. The performance of selected membranes was investigated in terms of productivity and selectivity towards total anthocyanin content (TAC, total phenolic content (TPC, and total antioxidant activity (TAA. All selected membranes allowed a good preservation of antioxidant compounds; however, the most suitable membrane for the clarification of the juice was found to be the PS 100 kDa membrane. In optimized operating conditions this membrane exhibited steady-state fluxes of 7.12 L/m2h, higher than those measured for other investigated membranes. Rejections towards TPC and TAA were of the order of 17.5% and 15%, respectively. These values were lower than those determined for PS 50 kDa and PAN 50 kDa membranes. In addition, the PS 100 kDa membrane exhibited a lower rejection (7.3% towards TAC when compared to the PS 50 kDa membrane (9.2%.

  7. Amino-functionalized surface modification of polyacrylonitrile hollow fiber-supported polydimethylsiloxane membranes

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Leiqing; Cheng, Jun, E-mail: juncheng@zju.edu.cn; Li, Yannan; Liu, Jianzhong; Zhou, Junhu; Cen, Kefa

    2017-08-15

    Highlights: • Amino group was introduced to improve surface polarity of PDMS membrane. • The water contact angle of PDMS membrane decreased after the modification. • The concentration of N atom on surface of PDMS membrane reached up to ∼6%. • The density of PDMS membrane decreased while the swelling degree increased. • CO{sub 2} permeability increased while selectivity decreased after the modification. - Abstract: This study aimed to improve surface polarity of polydimethylsiloxane (PDMS) membranes and provide surface active sites which were easy to react with other chemicals. 3-Aminopropyltriethoxysilane (APTES) containing an amino group was introduced into a PDMS membrane by crosslinking to prepare polyacrylonitrile hollow fiber-supported PDMS membranes with an amino-functionalized surface. Fourier transform infrared and X-ray photoelectron spectroscopic analyses proved the existence of APTES and its amino group in the PDMS membrane. The concentration of N atoms on the PDMS membrane surface reached ∼6% when the mass ratio of APTES/PDMS oligomer in the PDMS coating solution was increased to 4/3. The water contact angle decreased from ∼114° to ∼87.5°, indicating the improved surface polarization of the PDMS membrane. The density and swelling degree of the PDMS membrane decreased and increased, respectively, with increasing APTES content in PDMS. This phenomenon increased CO{sub 2} permeability and decreased CO{sub 2}/H{sub 2} selectivity, CO{sub 2}/CH{sub 4} selectivity, and CO{sub 2}/N{sub 2} selectivity. When the mass ratio of APTES/PDMS oligomer was increased from 0 to 4/3, the CO{sub 2} permeation rate of the hollow fiber-supported PDMS membranes initially decreased from ∼2370 GPU to ∼860 GPU and then increased to ∼2000 GPU due to the change in coating solution viscosity.

  8. Preparation and performance of biofouling resistant PAN/chitosan hollow fiber membranes.

    Science.gov (United States)

    Shanthana Lakshmi, D; Jaiswar, Santlal; Saxena, Mayank; Tasselli, Franco; Raval, Hiren D

    2017-07-01

    The preparation of polyacrylonitrile (PAN) hollow fiber (HF) membranes has been carried out by dry-jet wet spinning. PAN HF membranes were coated with chitosan biopolymers 2 wt% by dip coating and further crosslinked by chemical reagents (Tri sodium polyphosphate). PAN HF (Virgin) and PAN/chitosan coated membrane were characterized by SEM and tested for water flux. Proteins Pepsin, Albumin, and Clay of 1000 ppm concentration were tested for separation efficiency. In addition, bacterial species Escherichia coli and Bacillus subtilis were tested for fouling control efficiency and found out that PAN/chitosan membranes were quite superior to virgin PAN fibers. The adhesion of bacterial cells on the surface of the hollow fiber membranes assessed through alcian blue staining and SEM analysis. It was observed that PAN/chitosan membranes (310A and 310C) possessed best antibacterial activities (based on SEM results), qualifying them as a very promising candidates for anti-biofouling coatings.

  9. Proteomic Analysis of Lipid Raft-Like Detergent-Resistant Membranes of Lens Fiber Cells.

    Science.gov (United States)

    Wang, Zhen; Schey, Kevin L

    2015-12-01

    Plasma membranes of lens fiber cells have high levels of long-chain saturated fatty acids, cholesterol, and sphingolipids-key components of lipid rafts. Thus, lipid rafts are expected to constitute a significant portion of fiber cell membranes and play important roles in lens biology. The purpose of this study was to characterize the lens lipid raft proteome. Quantitative proteomics, both label-free and iTRAQ methods, were used to characterize lens fiber cell lipid raft proteins. Detergent-resistant, lipid raft membrane (DRM) fractions were isolated by sucrose gradient centrifugation. To confirm protein localization to lipid rafts, protein sensitivity to cholesterol removal by methyl-β-cyclodextrin was quantified by iTRAQ analysis. A total of 506 proteins were identified in raft-like detergent-resistant membranes. Proteins identified support important functions of raft domains in fiber cells, including trafficking, signal transduction, and cytoskeletal organization. In cholesterol-sensitivity studies, 200 proteins were quantified and 71 proteins were strongly affected by cholesterol removal. Lipid raft markers flotillin-1 and flotillin-2 and a significant fraction of AQP0, MP20, and AQP5 were found in the DRM fraction and were highly sensitive to cholesterol removal. Connexins 46 and 50 were more abundant in nonraft fractions, but a small fraction of each was found in the DRM fraction and was strongly affected by cholesterol removal. Quantification of modified AQP0 confirmed that fatty acylation targeted this protein to membrane raft domains. These data represent the first comprehensive profile of the lipid raft proteome of lens fiber cells and provide information on membrane protein organization in these cells.

  10. Ultem®/ZIF-8 mixed matrix hollow fiber membranes for CO2/N2 separations

    KAUST Repository

    Dai, Ying

    2012-05-01

    Organic-inorganic hybrid (mixed matrix) membranes can potentially extend the separation performance of traditional polymeric materials while maintaining processing convenience. Although many dense films studies have been reported, there have been few reported cases of these materials being successfully extended to asymmetric hollow fibers. In this work we report the first successful production of mixed matrix asymmetric hollow fiber membranes containing metal-organic-framework (MOF) ZIF-8 fillers. Specifically, we have incorporated ZIF-8 into a polyetherimide (Ultem ® 1000) matrix and produced dual-layer asymmetric hollow fiber membranes via the dry jet-wet quench method. The outer separating layer of these composite fibers contains 13wt% (17vol%) of ZIF-8 filler. These membranes have been tested over a range of temperatures and pressures for a variety of gas pairs. An increase in separation performance for the CO 2/N 2 gas pairs was observed for both pure gas and mixed gas feeds. © 2012 Elsevier B.V.

  11. Polymeric hollow fiber membranes for bioartificial organs and tissue engineering applications

    NARCIS (Netherlands)

    Diban-Ibrahim Gomez, Nazely; Stamatialis, Dimitrios

    2014-01-01

    Polymeric hollow fiber (HF) membranes are commercially available, i.e. microfiltration and ultrafiltration cartridges or reverse osmosis and gas separation modules, to be applied for separation purposes in industry, for instance to recover valuable raw materials or products, or for the treatment of

  12. Characterization of polyethersulfone-polyimide hollow fiber membranes by atomic force microscopy and contact angle goniometery

    NARCIS (Netherlands)

    Khulbe, K.C.; Feng, C.; Matsuura, T.; Kapantaidakis, G.; Wessling, Matthias; Koops, G.H.

    2003-01-01

    Asymmetric blend polyethersulfone-polyimide (PES-PI) hollow fiber membranes prepared at different air gap and used for gas separation are characterized by atomic force microscopy (inside and out side surfaces) and by measuring the contact angle of out side surface. The outer surface was entirely

  13. Ultem®/ZIF-8 mixed matrix hollow fiber membranes for CO2/N2 separations

    KAUST Repository

    Dai, Ying; Johnson, J.R.; Karvan, Oğuz; Sholl, David S.; Koros, W.J.

    2012-01-01

    Organic-inorganic hybrid (mixed matrix) membranes can potentially extend the separation performance of traditional polymeric materials while maintaining processing convenience. Although many dense films studies have been reported, there have been few reported cases of these materials being successfully extended to asymmetric hollow fibers. In this work we report the first successful production of mixed matrix asymmetric hollow fiber membranes containing metal-organic-framework (MOF) ZIF-8 fillers. Specifically, we have incorporated ZIF-8 into a polyetherimide (Ultem ® 1000) matrix and produced dual-layer asymmetric hollow fiber membranes via the dry jet-wet quench method. The outer separating layer of these composite fibers contains 13wt% (17vol%) of ZIF-8 filler. These membranes have been tested over a range of temperatures and pressures for a variety of gas pairs. An increase in separation performance for the CO 2/N 2 gas pairs was observed for both pure gas and mixed gas feeds. © 2012 Elsevier B.V.

  14. A new-generation asymmetric multi-bore hollow fiber membrane for sustainable water production via vacuum membrane distillation.

    Science.gov (United States)

    Wang, Peng; Chung, Tai-Shung

    2013-06-18

    Due to the growing demand for potable water, the capacities for wastewater reclamation and saline water desalination have been increasing. More concerns are raised on the poor efficiency of removing certain contaminants by the current water purification technologies. Recent studies demonstrated superior separation performance of the vacuum membrane distillation (VMD) technology for the rejection of trace contaminants such as boron, dye, endocrine-disruptive chemical, and chloro-compound. However, the absence of suitable membranes with excellent wetting resistance and high permeation flux has severely hindered the VMD application as an effective water production process. This work presents a new generation multibore hollow fiber (MBF) membrane with excellent mechanical durability developed for VMD. Its micromorphology was uniquely designed with a tight surface and a fully porous matrix to maximize both high wetting resistance and permeation flux. Credit to the multibore configuration, a 65% improvement was obtained on the antiwetting property. Using a synthetic seawater feed, the new membrane with optimized fabrication condition exhibits a high flux and the salt rejection is consistently greater than 99.99%. In addition, a comparison of 7-bore and 6-bore MBF membranes was performed to investigate the optimum geometry design. The newly designed MBF membrane not only demonstrates its suitability for VMD but also makes VMD come true as an efficient process for water production.

  15. Carbon molecular sieve membranes prepared from porous fiber precursor

    NARCIS (Netherlands)

    Barsema, J.N.; van der Vegt, N.F.A.; Koops, G.H.; Wessling, Matthias

    2002-01-01

    Carbon molecular sieve (CMS) membranes are usually prepared from dense polymeric precursors that already show intrinsic gas separation properties. The rationale behind this approach is that the occurrence of any kind of initial porosity will deteriorate the final CMS performance. We will show that

  16. Modeling and parametric analysis of hollow fiber membrane system for carbon capture from multicomponent flue gas

    KAUST Repository

    Khalilpour, Rajab

    2011-08-12

    The modeling and optimal design/operation of gas membranes for postcombustion carbon capture (PCC) is presented. A systematic methodology is presented for analysis of membrane systems considering multicomponent flue gas with CO 2 as target component. Simplifying assumptions is avoided by namely multicomponent flue gas represented by CO 2/N 2 binary mixture or considering the co/countercurrent flow pattern of hollow-fiber membrane system as mixed flow. Optimal regions of flue gas pressures and membrane area were found within which a technoeconomical process system design could be carried out. High selectivity was found to not necessarily have notable impact on PCC membrane performance, rather, a medium selectivity combined with medium or high permeance could be more advantageous. © 2011 American Institute of Chemical Engineers (AIChE).

  17. Numerical Study on Flow Characteristics of Hollow Fiber Membrane Module for Water Recovery Cooling Tower

    Energy Technology Data Exchange (ETDEWEB)

    Park, Chang Cheol; Shin, Weon Gyu [Chungnam Nat’l Univ., Daejeon (Korea, Republic of); Park, Hyun Seol; Lee, Hyung Keun [Korea Institute of Energy Research, Daejeon (Korea, Republic of)

    2017-08-15

    The purpose of this study is to analyze the flow characteristics when a staggered hollow fiber membrane module is modeled as a porous medium. The pressure-velocity equation was used for modeling the porous medium, using pressure drop data. In terms of flow characteristics, we compared the case of the 'porous medium' when the membrane module was modeled as a porous medium with the case of the 'membrane module' when considering the original shape of the membrane module. The difference in pressure drop between the 'porous medium' and 'membrane module' was less than 0.6%. However, the maximum flow velocity and mean turbulent kinetic energy of the 'porous medium' were 2.5 and 95 times larger than those of the 'membrane module,' respectively. Our results indicate that modeling the hollow fiber module as a porous medium is useful for predicting pressure drop, but not sufficient for predicting the maximum flow velocity and mean turbulent kinetic energy.

  18. EFFECTS OF PRESSURE AND TEMPERATURE ON ULTRAFILTRATION HOLLOW FIBER MEMBRANE IN MOBILE WATER TREATMENT SYSTEM

    Directory of Open Access Journals (Sweden)

    ROSDIANAH RAMLI

    2016-07-01

    Full Text Available In Sabah, Malaysia, there are still high probability of limited clean water access in rural area and disaster site. Few villages had been affected in Pitas due to improper road access, thus building a water treatment plant there might not be feasible. Recently, Kundasang area had been affected by earthquake that caused water disruption to its people due to the damage in the underground pipes and water tanks. It has been known that membrane technology brought ease in making mobile water treatment system that can be transported to rural or disaster area. In this study, hollow fiber membrane used in a mobile water treatment system due to compact and ease setup. Hollow fiber membrane was fabricated into small module at 15 and 30 fibers to suit the mobile water treatment system for potable water production of at least 80 L/day per operation. The effects of transmembrane pressure (TMP and feed water temperature were investigated. It was found that permeate flux increases by more than 96% for both 15 and 30 fiber bundles with increasing pressure in the range of 0.25 to 3.0 bar but dropped when the pressure reached maximum. Lower temperature of 17 to 18˚C increase the water viscosity by 15% from normal temperature of water at 24˚C, making the permeate flux decreases. The fabricated modules effectively removed 96% turbidity of the surface water sample tested.

  19. Fiber Temperature Sensor Based on Micro-mechanical Membranes and Optical Interference Structure

    International Nuclear Information System (INIS)

    Liu Yueming; Tian Weijian; Hua Jing

    2011-01-01

    A novel fiber temperature sensor is presented theoretically and experimentally in this paper. Its working principle is based on Optical Fabry-Perot interference structure that is formed between a polished optical fiber end and micro-mechanical Bi-layered membranes. When ambient temperature is varying, Bi-layered membranes will be deflected and the length of Fabry-Perot cavity will be changed correspondingly. By detecting the reflecting optical intensity from the Fabry-Perot cavity, the ambient temperature can be measured. Using finite element software ANSYS, the sensor structure was optimized based on optical Interference theory and Bi-layered membranes thermal expansion theory, and theoretical characteristics was simulated by computer software. In the end, using optical fiber 2x2 coupler and photo-electrical detector, the fabricated sample sensor was tested successfully by experiment that demonstrating above theoretical analysis and simulation results. This sensor has some favorable features, such as: micro size owing to its micro-mechanical structure, high sensitivity owing to its working Fabry-Perot interference cavity structure, and optical integration character by using optical fiber techniques.

  20. A direct approach to fiber and membrane reinforced bodies. Part II. Membrane reinforced bodies

    Czech Academy of Sciences Publication Activity Database

    Lucchesi, M.; Šilhavý, Miroslav; Zani, N.

    2014-01-01

    Roč. 26, č. 3 (2014), s. 343-372 ISSN 0935-1175 Institutional support: RVO:67985840 Keywords : equilibrium of forces * linearly membrane * membranes in the bulk matter Subject RIV: BA - General Mathematics Impact factor: 1.779, year: 2014 http://link.springer.com/article/10.1007%2Fs00161-013-0305-x

  1. Recent advances in centrifugal contactors design

    International Nuclear Information System (INIS)

    Leonard, R.A.

    1987-10-01

    Advances in thedesign of the Argonne centrifugal contactor for solvent extaction are being realized as these contactors are built, tested, and used to implement the TRUEX process for the cleanup of nuclear waste liquids. These advances include (1) using off-the-shelf, face-mounted motors, (2) modifying the contractor so that relatively volatile solvents can be used, (3) adding a high-level liquid detector that can be used to alert the plant operator of process upsets, (4) providing secondary feed ports, (5) optimizing support frame design, (6) maintaining a linear design with external interstage lines so the stages can be allocated as needed for extraction, scrub, strip, and solvent cleanup operations, and (7) developing features that facilitate contractor operation in remote facilities. 11 refs., 8 figs

  2. Coupling fiber optics to a permeation liquid membrane for heavy metal sensor development.

    Science.gov (United States)

    Ueberfeld, Jörn; Parthasarathy, Nalini; Zbinden, Hugo; Gisin, Nicolas; Buffle, Jacques

    2002-02-01

    We present the first sensing system for metal ions based on the combination of separation/preconcentration by a permeation liquid membrane (PLM) and fluorescence detection with an optical fiber. As a model, a system for the detection of Cu(II) ions was developed. The wall of a polypropylene hollow fiber serves as support for the permeable liquid membrane. The lumen of the fiber contains the strip solution in which Cu(II) is accumulated. Calcein, a fluorochromic dye, acts as stripping agent and at the same time as metal indicator. The quenching of the calcein fluorescence upon metal accumulation in the strip phase is detected with a multimode optical fiber, which is incorporated into the lumen. Fluorescence is excited with a blue LED and detected with a photon counter. Taking advantage of the high selectivity and sensitivity of PLM preconcentration, a detection limit for Cu(II) of approximately 50 nM was achieved. Among five tested heavy metal ions, Pb(II) was the only major interfering species. The incorporation of small silica optical fibers into the polypropylene capillary allows for real-time monitoring of the Cu(II) accumulation process.

  3. Rotating biological contactors: the Canadian experience

    Energy Technology Data Exchange (ETDEWEB)

    Cuenca, Manuel A. [Ryerson Polytechnical Univ., Toronto, ON (Canada). Chemical Engineering Dept.; Smith, Tom [CMS Rotordisk Inc., Concord, ON (Canada); Vianna, Arlinda C. [Servico Nacional de Aprendizagem Industrial (SENAI), Salvador, BA (Brazil)

    1993-12-31

    In fifteen years, Rotating Biological Contactors (RBC) have become one of the most attractive technologies for secondary wastewater treatment. The present work is a review of the evolution of RBC technology in the last twenty years. In addition, the status of the technology in Canada is described, emphasizing industrial facilities and landfill leachate treatment. An enumeration of the most relevant development areas is included. (author). 34 refs., 3 figs., 7 tabs.

  4. Rotating biological contactors: the Canadian experience

    Energy Technology Data Exchange (ETDEWEB)

    Cuenca, Manuel A [Ryerson Polytechnical Univ., Toronto, ON (Canada). Chemical Engineering Dept.; Smith, Tom [CMS Rotordisk Inc., Concord, ON (Canada); Vianna, Arlinda C [Servico Nacional de Aprendizagem Industrial (SENAI), Salvador, BA (Brazil)

    1994-12-31

    In fifteen years, Rotating Biological Contactors (RBC) have become one of the most attractive technologies for secondary wastewater treatment. The present work is a review of the evolution of RBC technology in the last twenty years. In addition, the status of the technology in Canada is described, emphasizing industrial facilities and landfill leachate treatment. An enumeration of the most relevant development areas is included. (author). 34 refs., 3 figs., 7 tabs.

  5. Development of Novel ECTFE Coated PP Composite Hollow-Fiber Membranes

    Directory of Open Access Journals (Sweden)

    Sergio Santoro

    2016-09-01

    Full Text Available In this work composite hollow-fibers were prepared by dip-coating of commercial polypropylene (PP with a thin layer of ethylene–chlorotrifluoroethylene copolymer (ECTFE. The employment of N-methyl pyrrolidone (NMP as solvent improved the polymer processability favoring dip-coating at lower temperature (135 °C. Scanning electron microscopy (SEM analyses showed that after dip-coating the PP support maintained its microstructure, whereas a thin coated layer of ECTFE on the external surface of the PP hollow-fiber was clearly distinguishable. Membrane characterization evidenced the effects of the concentration of ECTFE in the dope-solution and the time of dip-coating on the thickness of ECTFE layer and membrane properties (i.e., contact angle and pore size. ECTFE coating decreased the surface roughness reducing, as a consequence, the hydrophobicity of the membrane. Moreover, increasing the ECTFE concentration and dip-coating time enabled the preparation of a thicker layer of ECTFE with low and narrow pore size that negatively affected the water transport. On the basis of the superior chemical resistance of ECTFE, ECTFE/PP composite hollow fibers could be considered as very promising candidates to be employed in membrane processes involving harsh conditions.

  6. Preparation and Preliminary Dialysis Performance Research of Polyvinylidene Fluoride Hollow Fiber Membranes

    Science.gov (United States)

    Zhang, Qinglei; Lu, Xiaolong; Liu, Juanjuan; Zhao, Lihua

    2015-01-01

    In this study, the separation properties of Polyvinylidene fluoride (PVDF) hollow fiber hemodialysis membranes were improved by optimizing membrane morphology and structure. The results showed that the PVDF membrane had better mechanical and separation properties than Fresenius Polysulfone High-Flux (F60S) membrane. The PVDF membrane tensile stress at break, tensile elongation and bursting pressure were 11.3 MPa, 395% and 0.625 MPa, respectively. Ultrafiltration (UF) flux of pure water reached 108.2 L∙h−1∙m−2 and rejection of Albumin from bovine serum was 82.3%. The PVDF dialyzers were prepared by centrifugal casting. The influences of membrane area and simulate fluid flow rate on dialysis performance were investigated. The results showed that the clearance rate of urea and Lysozyme (LZM) were improved with increasing membrane area and fluid flow rate while the rejection of albumin from bovine serum (BSA) had little influence. The high-flux PVDF dialyzer UF coefficient reached 62.6 mL/h/mmHg. The PVDF dialyzer with membrane area 0.69 m2 has the highest clearance rate to LZM and urea. The clearance rate of LZM was 66.8% and urea was 87.7%. PMID:25807890

  7. Desorption of trihalomethanes in gas liquid contactors

    International Nuclear Information System (INIS)

    Ramirez Quesada, Kenneth

    2000-01-01

    Updated studies show that gastric cancer is related with the existence of trihalomethanes (THMs) in the drinking water. The trihalomethanes are sub products from the degradation of humic acids and your reaction with chlorine and bromine used like decontaminates. The desorption process is used to eliminate the THMs with air in contact with the water. The experimental design was used in three contactors. The contactors selected were: the bubbling's column, the packed column and the shaken tank without screen. There were selected three variable: initial concentration of THMs, the residence time and the turbulence degree (measured with the Reynolds number). The concentrations were made with a gas chromatograph. The objective of this project is to do a comparison with the gas liquid contactors more used in the industrial level to determinate which ones are the best in the desorption process. The conclusion of the experimental design is that the tank is the equipment with the best capacity to eliminate THMs. Too it includes other techniques to eliminate THMs of the water and your treatment [es

  8. Toluene impurity effects on CO2 separation using a hollow fiber membrane for natural gas

    KAUST Repository

    Omole, Imona C.

    2011-03-01

    The performance of defect-free cross-linkable polyimide asymmetric hollow fiber membranes was characterized using an aggressive feed stream containing up to 1000ppm toluene. The membrane was shown to be stable against toluene-induced plasticization compared with analogs made from Matrimid®, a commercial polyimide. Permeation and sorption analysis suggest that the introduction of toluene vapors in the feed subjects the membrane to antiplasticization, as the permeance decreases significantly (to less than 30%) under the most aggressive conditions tested. Separation efficiencies reflected by permselectivities were less affected. The effect of the toluene on the membrane was shown to be reversible when the toluene was removed. © 2010 Elsevier B.V.

  9. Selective enantioseparation of levocetirizine via a hollow fiber supported liquid membrane and mass transfer prediction

    International Nuclear Information System (INIS)

    Sunsandee, Niti; Leepipatpiboon, Natchanun; Ramakul, Prakorn

    2013-01-01

    The enantioselective separation of levocetirizine via a hollow fiber supported liquid membrane was examined. O,O'-dibenzoyl-(2R,3R)-tartaric acid ((-)-DBTA) diluted in 1-decanol was used as a chiral selector extractant. The influence of concentrations of feed and stripping phases, and extractant concentration in the membrane phase, was also investigated. A mathematical model focusing on the extraction side of the liquid membrane system was presented to predict the concentration of levocetirizine at different times. The extraction and recovery of levocetirizine from feed phase were 75.00% and 72.00%, respectively. The mass transfer coefficients at aqueous feed boundary layer (k_f) and the organic liquid membrane phase (k_m) were calculated as 2.41x10"2 and 1.89x10"2 cm/s, respectively. The validity of the developed model was evaluated through a comparison with experimental data, and good agreement was obtained

  10. Selective enantioseparation of levocetirizine via a hollow fiber supported liquid membrane and mass transfer prediction

    Energy Technology Data Exchange (ETDEWEB)

    Sunsandee, Niti [Government Pharmaceutical Organization, Bangkok (Thailand); Leepipatpiboon, Natchanun [Chulalongkorn University, Bangkok (Thailand); Ramakul, Prakorn [Silpakorn University, Nakhon Pathom (Thailand)

    2013-06-15

    The enantioselective separation of levocetirizine via a hollow fiber supported liquid membrane was examined. O,O'-dibenzoyl-(2R,3R)-tartaric acid ((-)-DBTA) diluted in 1-decanol was used as a chiral selector extractant. The influence of concentrations of feed and stripping phases, and extractant concentration in the membrane phase, was also investigated. A mathematical model focusing on the extraction side of the liquid membrane system was presented to predict the concentration of levocetirizine at different times. The extraction and recovery of levocetirizine from feed phase were 75.00% and 72.00%, respectively. The mass transfer coefficients at aqueous feed boundary layer (k{sub f}) and the organic liquid membrane phase (k{sub m}) were calculated as 2.41x10{sup 2} and 1.89x10{sup 2} cm/s, respectively. The validity of the developed model was evaluated through a comparison with experimental data, and good agreement was obtained.

  11. Toluene impurity effects on CO2 separation using a hollow fiber membrane for natural gas

    KAUST Repository

    Omole, Imona C.; Bhandari, Dhaval A.; Miller, Stephen J.; Koros, William J.

    2011-01-01

    The performance of defect-free cross-linkable polyimide asymmetric hollow fiber membranes was characterized using an aggressive feed stream containing up to 1000ppm toluene. The membrane was shown to be stable against toluene-induced plasticization compared with analogs made from Matrimid®, a commercial polyimide. Permeation and sorption analysis suggest that the introduction of toluene vapors in the feed subjects the membrane to antiplasticization, as the permeance decreases significantly (to less than 30%) under the most aggressive conditions tested. Separation efficiencies reflected by permselectivities were less affected. The effect of the toluene on the membrane was shown to be reversible when the toluene was removed. © 2010 Elsevier B.V.

  12. Polyoxadiazole hollow fibers for produced water treatment by direct contact membrane distillation

    KAUST Repository

    Xu, Jingli

    2018-01-08

    Treatment of produced water in the petroleum industry has been a challenge worldwide. In this study, we evaluated the use of direct contact membrane distillation (DCMD) for this purpose, removing oil and dissolved elements and supplying clean water from waste. We synthesized fluorinated polyoxadiazole, a highly hydrophobic polymer, to fabricate hollow fiber membranes, which were optimized and tested for simulated produced water and real produced water treatment. The process performance was investigated under different operating parameters, such as feed temperature, feed flow velocity and length of the membrane module for 4 days. The results indicate that by increasing feed temperature and feed flow rate the vapor flux increases. The flux decreased with increasing the length of the module due to the decrease of the driving force along the module. The fouling behavior, which corresponds to flux decline and cleaning efficiency of the membrane, was studied. The performance of the fabricated hollow fiber membranes was demonstrated for the treatment of produced water, complying with the industrial reuse and discharge limits.

  13. Bench Scale Thin Film Composite Hollow Fiber Membranes for Post-Combustion Carbon Dioxide Capture

    Energy Technology Data Exchange (ETDEWEB)

    Glaser, Paul [General Electric Global Research, Niskayuna, NY (United States); Bhandari, Dhaval [General Electric Global Research, Niskayuna, NY (United States); Narang, Kristi [General Electric Global Research, Niskayuna, NY (United States); McCloskey, Pat [General Electric Global Research, Niskayuna, NY (United States); Singh, Surinder [General Electric Global Research, Niskayuna, NY (United States); Ananthasayanam, Balajee [General Electric Global Research, Niskayuna, NY (United States); Howson, Paul [General Electric Global Research, Niskayuna, NY (United States); Lee, Julia [General Electric Global Research, Niskayuna, NY (United States); Wroczynski, Ron [General Electric Global Research, Niskayuna, NY (United States); Stewart, Frederick [Idaho National Lab. (INL), Idaho Falls, ID (United States); Orme, Christopher [Idaho National Lab. (INL), Idaho Falls, ID (United States); Klaehn, John [Idaho National Lab. (INL), Idaho Falls, ID (United States); McNally, Joshua [Idaho National Lab. (INL), Idaho Falls, ID (United States); Rownaghi, Ali [Georgia Inst. of Technology, Atlanta, GA (United States); Lu, Liu [Georgia Inst. of Technology, Atlanta, GA (United States); Koros, William [Georgia Inst. of Technology, Atlanta, GA (United States); Goizueta, Roberto [Georgia Inst. of Technology, Atlanta, GA (United States); Sethi, Vijay [Western Research Inst., Laramie, WY (United States)

    2015-04-01

    GE Global Research, Idaho National Laboratory (INL), Georgia Institute of Technology (Georgia Tech), and Western Research Institute (WRI) proposed to develop high performance thin film polymer composite hollow fiber membranes and advanced processes for economical post-combustion carbon dioxide (CO2) capture from pulverized coal flue gas at temperatures typical of existing flue gas cleanup processes. The project sought to develop and then optimize new gas separations membrane systems at the bench scale, including tuning the properties of a novel polyphosphazene polymer in a coating solution and fabricating highly engineered porous hollow fiber supports. The project also sought to define the processes needed to coat the fiber support to manufacture composite hollow fiber membranes with high performance, ultra-thin separation layers. Physical, chemical, and mechanical stability of the materials (individual and composite) towards coal flue gas components was considered via exposure and performance tests. Preliminary design, technoeconomic, and economic feasibility analyses were conducted to evaluate the overall performance and impact of the process on the cost of electricity (COE) for a coal-fired plant including capture technologies. At the onset of the project, Membranes based on coupling a novel selective material polyphosphazene with an engineered hollow fiber support was found to have the potential to capture greater than 90% of the CO2 in flue gas with less than 35% increase in COE, which would achieve the DOE-targeted performance criteria. While lab-scale results for the polyphosphazene materials were very promising, and the material was incorporated into hollow-fiber modules, difficulties were encountered relating to the performance of these membrane systems over time. Performance, as measured by both flux of and selectivity for CO2 over other flue gas constituents was found to deteriorate over time, suggesting a system that was

  14. Impact of operation conditions, foulant adsorption, and chemical cleaning on the nanomechanical properties of ultrafiltraion hollow fiber membranes

    KAUST Repository

    Gutierrez, Leonardo; Keucken, Alexander; Aubry, Cyril; Zaouri, Noor A.; Teychene, Benoit; Croue, Jean-Philippe

    2018-01-01

    This study analyzed the change in nanomechanical properties of ultrafiltration hollow fiber membranes harvested from pilot-scale units after twelve months of operation. Quantitative Nanomechanical Mapping technique was used to distinguish between

  15. Air filtration media from electrospun waste high-impact polystyrene fiber membrane

    Science.gov (United States)

    Zulfi, Akmal; Miftahul Munir, Muhammad; Hapidin, Dian Ahmad; Rajak, Abdul; Edikresnha, Dhewa; Iskandar, Ferry; Khairurrijal, Khairurrijal

    2018-03-01

    Nanofiber membranes were synthesized from waste high-impact polystyrene (HIPS) using electrospinning method and then applied as air filtration media. The waste HIPS precursor solution with the concentration of 20 wt.% was prepared by dissolving waste HIPS into the mixture of d-limonene and DMF solvents. Beaded or fine nanofibers could be achieved by adjusting the ratio of solvents mixture (d-limonene and DMF). Using the ratios of solvents (d-limonene: DMF) of 3:1, 1:1, and 1:3, it was obtained beaded HIPS nanofibers with the average diameter of 272 nm, beaded HIPS nanofibers with the average diameter of 937, and fine HIPS nanofibers with the average diameter of 621 nm, respectively. From the FTIR spectral analysis, it was found that the FTIR peaks of the HIPS nanofiber membranes are the same as those of the cleaned waste HIPS and there are no FTIR peaks of DMF and d-limonene solvents. These findings implied that the electrospinning process allows the recycling of waste HIPS into HIPS nanofibers without any trapped solvent phases or apparent degradation of the original material. From the contact angle measurement, it was confirmed that the HIPS nanofiber membranes are hydrophobic and the presence of the beads in the HIPS nanofiber membranes varies their contact angles. From the air-filtration test, it was shown that the fiber morphology (beaded or fine nanofibers) considerably affects the filtration performance of the membranes. The presence of beads increased the distance between the fibers so that the pressure drop decreased. Moreover, the basis weight of the membrane greatly affected the filtration efficiency. The HIPS nanofiber membrane with the basis weight of 12.22 g m‑2 had the efficiency greater than 99.999%, which was equivalent to that of the HEPA filter.

  16. Design of robust hollow fiber membranes with high power density for osmotic energy production

    KAUST Repository

    Zhang, Sui; Sukitpaneenit, Panu; Chung, Neal Tai-Shung

    2014-01-01

    This study highlights the design strategy of highly asymmetric hollow fiber membranes that possess both characteristics of high flux and high mechanical strength to effectively reap the osmotic energy from seawater brine with an ultrahigh power density. An advanced co-extrusion technology was employed to fabricate the polyethersulfone (PES) hollow fiber supports with diversified structures from macrovoid to sponge-like. The microstructure of the supports is found critical for the stability and water permeability of the thin film composite (TFC) membranes. A high porosity in the porous layer is needed to reduce internal concentration polarization, while a thick and relatively dense skin layer underneath the TFC layer is required to maintain good mechanical stability and stress dissipation. The pore size of the supporting layer underneath the TFC layer must be small with a narrow pore size distribution to ensure the formation of a less-defective, highly permeable and mechanically stable TFC layer. The newly developed hollow fiber comprising high asymmetry, high porosity, and a thick skin layer with a small and narrow pore size distribution underneath the TFC layer produces a maximum power density of 24.3W/m2 at 20.0bar by using 1M NaCl as the concentrated brine and deionized (DI) water as the feed. The proposed design strategy for ultrahigh power density membranes clearly advances the osmotic energy production close to commercialization with a quite cost-effective and practicable approach. © 2013 Elsevier B.V.

  17. Design of robust hollow fiber membranes with high power density for osmotic energy production

    KAUST Repository

    Zhang, Sui

    2014-04-01

    This study highlights the design strategy of highly asymmetric hollow fiber membranes that possess both characteristics of high flux and high mechanical strength to effectively reap the osmotic energy from seawater brine with an ultrahigh power density. An advanced co-extrusion technology was employed to fabricate the polyethersulfone (PES) hollow fiber supports with diversified structures from macrovoid to sponge-like. The microstructure of the supports is found critical for the stability and water permeability of the thin film composite (TFC) membranes. A high porosity in the porous layer is needed to reduce internal concentration polarization, while a thick and relatively dense skin layer underneath the TFC layer is required to maintain good mechanical stability and stress dissipation. The pore size of the supporting layer underneath the TFC layer must be small with a narrow pore size distribution to ensure the formation of a less-defective, highly permeable and mechanically stable TFC layer. The newly developed hollow fiber comprising high asymmetry, high porosity, and a thick skin layer with a small and narrow pore size distribution underneath the TFC layer produces a maximum power density of 24.3W/m2 at 20.0bar by using 1M NaCl as the concentrated brine and deionized (DI) water as the feed. The proposed design strategy for ultrahigh power density membranes clearly advances the osmotic energy production close to commercialization with a quite cost-effective and practicable approach. © 2013 Elsevier B.V.

  18. Hollow Fiber Space Suit Water Membrane Evaporator Development for Lunar Missions

    Science.gov (United States)

    Bue, Grant C.; Trevino, Luis A.; Hanford, Anthony J.; Mitchell, Keith

    2009-01-01

    The Space Suit Water Membrane Evaporator (SWME) is the baseline heat rejection technology selected for development for the Constellation lunar suit. The Hollow Fiber (HoFi) SWME is being considered for service in the Constellation Space Suit Element (CSSE) Portable Life Support Subsystem (PLSS) to provide cooling to the thermal loop through water evaporation to the vacuum of space. Previous work described the test methodology and planning to compare the test performance of three commercially available hollow fiber materials as alternatives to the sheet membrane prototype for SWME: 1) porous hydrophobic polypropylene, 2) porous hydrophobic polysulfone, and 3) ion exchange through nonporous hydrophilic modified Nafion. Contamination tests were performed to probe for sensitivities of the candidate SWME elements to organics and non-volative inorganics expected to be found in the target feedwater source, i.e., potable water provided by the vehicle. The resulting presence of precipitate in the coolant water could plug pores and tube channels and affect the SWME performance. From this prior work, a commercial porous hydrophobic hollow fiber was selected to satisfy both the sensitivity question and the need to provide 800 W of heat rejection. This paper describes the trade studies, the design methodology, and the hollow fiber test data used to design a full

  19. Sludge behavior in centrifugal contactor operation for nuclear fuel reprocessing

    International Nuclear Information System (INIS)

    Sakamoto, Atsushi; Sano, Yuichi; Takeuchi, Masayuki; Okamura, Nobuo; Koizumi, Kenji

    2015-01-01

    The Japan Atomic Energy Agency (JAEA) has been developing the centrifugal contactor for spent fuel reprocessing. In this study, we investigated the sludge behavior in centrifugal contactors at three different scales. The operational conditions (the flow rate and rotor speed) were varied. Most insoluble particles such as sludge remained in the rotor via centrifugal force. The capture ratio of sludge in the contactor was measured as a function of particle size at various flow rates, rotor speeds, and contactor scales. The sludge adhered and accumulated inside the rotor as the operational time increased, and the operational conditions influenced the capture ratio of the sludge; a lower flow rate and higher rotor speed increased the capture ratio. The results confirmed that Stokes' law can be applied to estimate the experimental result on the behavior of the capture ratio for centrifugal contactors with different scales. (author)

  20. Olefins-selective asymmetric carbon molecular sieve hollow fiber membranes for hybrid membrane-distillation processes for olefin/paraffin separations

    KAUST Repository

    Xu, Liren

    2012-12-01

    In this paper, the development of asymmetric carbon molecular sieve (CMS) hollow fiber membranes and advanced processes for olefin/paraffin separations based on the CMS membranes are reported. Membrane-based olefin/paraffin separations have been pursued extensively over the past decades. CMS membranes are promising to exceed the performance upper bound of polymer materials and have demonstrated excellent stability for gas separations. Previously, a substructure collapse phenomenon was found in Matrimid ® precursor derived CMS fiber. To overcome the permeance loss due to the increased separation layer thickness, 6FDA-DAM and 6FDA/BPDA-DAM precursors were selected as potential new precursors for carbon membrane formation. Defect-free asymmetric 6FDA-DAM and 6FDA/BPDA-DAM hollow fibers were successfully fabricated from a dry-jet/wet-quench spinning process. Polymer rigidity, glass-rubber transition and asymmetric morphology were correlated. CMS hollow fiber membranes produced from 6FDA-polymer precursors showed significant improvement in permeance for ethylene/ethane and propylene/propane separations. Further studies revealed that the CMS membranes are olefins-selective, which means the membranes are able to effectively separate olefins (ethylene and propylene) from paraffins (ethane and propane). This unique feature of CMS materials enables advanced hybrid membrane-distillation process designs. By using the olefins-selective membranes, these new processes may provide advantages over previously proposed retrofitting concepts. Further applications of the membranes are explored for hydrocarbons processes. Significant energy savings and even reduced footprint may be achieved in olefins production units. © 2012 Elsevier B.V.

  1. Hollow Fiber Spacesuit Water Membrane Evaporator Development and Testing for Advanced Spacesuits

    Science.gov (United States)

    Bue, Grant C.; Trevino, Luis A.; Tsioulos, Gus; Settles, Joseph; Colunga, Aaron; Vogel, Matthew; Vonau, Walt

    2010-01-01

    The spacesuit water membrane evaporator (SWME) is being developed to perform the thermal control function for advanced spacesuits to take advantage of recent advances in micropore membrane technology in providing a robust heat-rejection device that is potentially less sensitive to contamination than is the sublimator. Principles of a sheet membrane SWME design were demonstrated using a prototypic test article that was tested in a vacuum chamber at JSC in July 1999. The Membrana Celgard X50-215 microporous hollow fiber (HoFi) membrane was selected after recent contamination tests as the most suitable candidate among commercial alternatives for HoFi SWME prototype development. A design that grouped the fiber layers into stacks, which were separated by small spaces and packaged into a cylindrical shape, was developed into a full-scale prototype consisting 14,300 tube bundled into 30 stacks, each of which are formed into a chevron shape and separated by spacers and organized into three sectors of ten nested stacks. Vacuum chamber testing has been performed characterize heat rejection as a function of inlet water temperature and water vapor backpressure and to show contamination resistance to the constituents expected to be found in potable water produced by the distillation processes. Other tests showed the tolerance to freezing and suitability to reject heat in a Mars pressure environment.

  2. Beer Clarification by Novel Ceramic Hollow-Fiber Membranes: Effect of Pore Size on Product Quality.

    Science.gov (United States)

    Cimini, Alessio; Moresi, Mauro

    2016-10-01

    In this work, the crossflow microfiltration performance of rough beer samples was assessed using ceramic hollow-fiber (HF) membrane modules with a nominal pore size ranging from 0.2 to 1.4 μm. Under constant operating conditions (that is, transmembrane pressure difference, TMP = 2.35 bar; feed superficial velocity, v S = 2.5 m/s; temperature, T = 10 °C), quite small steady-state permeation fluxes (J * ) of 32 or 37 L/m 2 /h were achieved using the 0.2- or 0.5-μm symmetric membrane modules. Both permeates exhibited turbidity beer quality parameters. Moreover, it exhibited J * values of the same order of magnitude of those claimed for the polyethersulfone HF membrane modules currently commercialized. The 1.4-μm asymmetric membrane module yielded quite a high steady-state permeation flux (196 ± 38 L/m 2 /h), and a minimum decline in permeate quality parameters, except for the high levels of turbidity at room temperature and chill haze. In the circumstances, such a membrane module might be regarded as a real valid alternative to conventional powder filters on condition that the resulting permeate were submitted to a final finishing step using 0.45- or 0.65-μm microbially rated membrane cartridges prior to aseptic bottling. A novel combined beer clarification process was thus outlined. © 2016 Institute of Food Technologists®.

  3. Enhanced forward osmosis from chemically modified polybenzimidazole (PBI) nanofiltration hollow fiber membranes with a thin wall

    KAUST Repository

    Wang, Kai Yu; Yang, Qian; Chung, Tai-Shung; Rajagopalan, Raj

    2009-01-01

    To develop high-flux and high-rejection forward osmosis (FO) membranes for water reuses and seawater desalination, we have fabricated polybenzimidazole (PBI) nanofiltration (NF) hollow fiber membranes with a thin wall and a desired pore size via non-solvent induced phase inversion and chemically cross-linking modification. The cross-linking by p-xylylene dichloride can finely tune the mean pore size and enhance the salt selectivity. High water permeation flux and improved salt selectivity for water reuses were achieved by using the 2-h modified PBI NF membrane which has a narrow pore size distribution. Cross-linking at a longer time produces even a lower salt permeation flux potentially suitable for desalination but at the expense of permeation flux due to tightened pore sizes. It is found that draw solution concentration and membrane orientations are main factors determining the water permeation flux. In addition, effects of membrane morphology and operation conditions on water and salt transport through membrane have been investigated. © 2008 Elsevier Ltd. All rights reserved.

  4. Enhanced forward osmosis from chemically modified polybenzimidazole (PBI) nanofiltration hollow fiber membranes with a thin wall

    KAUST Repository

    Wang, Kai Yu

    2009-04-01

    To develop high-flux and high-rejection forward osmosis (FO) membranes for water reuses and seawater desalination, we have fabricated polybenzimidazole (PBI) nanofiltration (NF) hollow fiber membranes with a thin wall and a desired pore size via non-solvent induced phase inversion and chemically cross-linking modification. The cross-linking by p-xylylene dichloride can finely tune the mean pore size and enhance the salt selectivity. High water permeation flux and improved salt selectivity for water reuses were achieved by using the 2-h modified PBI NF membrane which has a narrow pore size distribution. Cross-linking at a longer time produces even a lower salt permeation flux potentially suitable for desalination but at the expense of permeation flux due to tightened pore sizes. It is found that draw solution concentration and membrane orientations are main factors determining the water permeation flux. In addition, effects of membrane morphology and operation conditions on water and salt transport through membrane have been investigated. © 2008 Elsevier Ltd. All rights reserved.

  5. Hydrodynamic effects of air sparging on hollow fiber membranes in a bubble column reactor.

    Science.gov (United States)

    Xia, Lijun; Law, Adrian Wing-Keung; Fane, Anthony G

    2013-07-01

    Air sparging is now a standard approach to reduce concentration polarization and fouling of membrane modules in membrane bioreactors (MBRs). The hydrodynamic shear stresses, bubble-induced turbulence and cross flows scour the membrane surfaces and help reduce the deposit of foulants onto the membrane surface. However, the detailed quantitative knowledge on the effect of air sparging remains lacking in the literature due to the complex hydrodynamics generated by the gas-liquid flows. To date, there is no valid model that describes the relationship between the membrane fouling performance and the flow hydrodynamics. The present study aims to examine the impact of hydrodynamics induced by air sparging on the membrane fouling mitigation in a quantitative manner. A modelled hollow fiber module was placed in a cylindrical bubble column reactor at different axial heights with the trans-membrane pressure (TMP) monitored under constant flux conditions. The configuration of bubble column without the membrane module immersed was identical to that studied by Gan et al. (2011) using Phase Doppler Anemometry (PDA), to ensure a good quantitative understanding of turbulent flow conditions along the column height. The experimental results showed that the meandering flow regime which exhibits high flow instability at the 0.3 m is more beneficial to fouling alleviation compared with the steady flow circulation regime at the 0.6 m. The filtration tests also confirmed the existence of an optimal superficial air velocity beyond which a further increase is of no significant benefit on the membrane fouling reduction. In addition, the alternate aeration provided by two air stones mounted at the opposite end of the diameter of the bubble column was also studied to investigate the associated flow dynamics and its influence on the membrane filtration performance. It was found that with a proper switching interval and membrane module orientation, the membrane fouling can be effectively

  6. Outer-selective thin film composite (TFC) hollow fiber membranes for osmotic power generation

    KAUST Repository

    Le, Ngoc Lieu

    2016-01-14

    The pressure-retarded osmosis (PRO) process is a green technique for power generation to respond the world\\'s need of energy sustainability. In this study, we have developed the vital component of the process, i.e. membrane, in the configuration of the outer-selective thin-film composite (TFC) hollow fiber, which is more practical than other configurations in the real applications. The support layer morphology and the formation of the selective polyamide layer have been optimized for a good PRO performance. The results show that the bore fluid with higher amount of the solvent N-methyl-2-pyrrolidone leads to full finger-like hollow fibers, which provide higher flux but lower pressure tolerance. The addition of higher amount of diethylene glycol into the dope solution, improves the pore formation and suppresses the macrovoid formation, while properly lowering the take-up speed increases their wall thickness and pressure tolerance. A simple alcohol-pre-wetting approach on the fiber support leads to a smooth and thin polyamide layer, which is favorable for a high water flux and power density. Its efficiency follows this order: n-propanol>ethanol>methanol>water. The n-propanol pre-wetted TFC membrane can tolerate 17 bar with a peak power density of 9.59 W/m2 at room temperature, using 1 M NaCl solution as the draw solution and DI water as feed. This work demonstrates the potential of outer-selective TFC hollow fiber membranes for energy conversion via PRO process, provides useful database to fabricate suitable support morphology and raise a simple technique to practically form a thin and smooth polyamide layer.

  7. Lipase kinetics: hydrolysis of triacetin by lipase from Candida cylindracea in a hollow-fiber membrane reactor

    NARCIS (Netherlands)

    Guit, R.P.M.; Kloosterman, M.; Meindersma, G.W.; Mayer, M.; Meijer, E.M.

    1991-01-01

    The aptitude of a hollow-fiber membrane reactor to det. lipase kinetics was investigated using the hydrolysis of triacetin catalyzed by lipase from C. cylindracea as a model system. The binding of the lipase to the membrane appears not to be very specific (surface adsorption), and probably its

  8. Characterization and Modification of Electrospun Fiber Mats for Use in Composite Proton Exchange Membranes

    Science.gov (United States)

    Mannarino, Matthew Marchand

    . Post-spin thermal annealing was used to modify the fiber morphology, inter-fiber welding, and crystallinity within the fibers. Morphological changes, in-plane tensile response, friction coefficient, and wear rate were characterized as functions of the annealing temperature. The Young's moduli, yield stresses and toughnesses of the PA 6(3)T nonwoven mats improved by two- to ten-fold when annealed slightly above the glass transition temperature, but at the expense of mat porosity. The mechanical and tribological properties of the thermally annealed P A 6,6 fiber mats exhibited significant improvements through the Brill transition temperature, comparable to the improvements observed for amorphous P A 6(3)T electrospun mats annealed near the glass transition temperature. The wear rates for both polymer systems correlate with the yield properties of the mat, in accordance with a modified Ratner-Lancaster model. The variation in mechanical and tribological properties of the mats with increasing annealing temperature is consistent with the formation of fiber-to-fiber junctions and a mechanism of abrasive wear that involves the breakage of these junctions between fibers. A mechanically robust proton exchange membrane with high ionic conductivity and selectivity is an important component in many electrochemical energy devices such as fuel cells, batteries, and photovoltaics. The ability to control and improve independently the mechanical response, ionic conductivity, and selectivity properties of a membrane is highly desirable in the development of next generation electrochemical devices. In this thesis, the use of layer-by-layer (LbL) assembly of polyelectrolytes is used to generate three different polymer film morphologies on highly porous electrospun fiber mats: webbed, conformal coating, and pore-bridging films. Specifically, depending on whether a vacuum is applied to the backside of the mat or not, the spray-LbL assembly either fills the voids of the mat with the proton

  9. Anti-fouling behavior of hyperbranched polyglycerol-grafted poly(ether sulfone) hollow fiber membranes for osmotic power generation.

    Science.gov (United States)

    Li, Xue; Cai, Tao; Chung, Tai-Shung

    2014-08-19

    To sustain high performance of osmotic power generation by pressure-retarded osmosis (PRO) processes, fouling on PRO membranes must be mitigated. This is especially true for the porous support of PRO membranes because its porous structure is very prone to fouling by feeding river water. For the first time, we have successfully designed antifouling PRO thin-film composite (TFC) membranes by synthesizing a dendritic hydrophilic polymer with well-controlled grafting sites, hyperbranched polyglycerol (HPG), and then grafting it on poly(ether sulfone) (PES) hollow fiber membrane supports. Compared to the pristine PES membranes, polydopamine modified membranes, and conventional poly(ethylene glycol) (PEG)-grafted membranes, the HPG grafted membranes show much superior fouling resistance against bovine serum albumin (BSA) adsorption, E. coli adhesion, and S. aureus attachment. In high-pressure PRO tests, the PES TFC membranes are badly fouled by model protein foulants, causing a water flux decline of 31%. In comparison, the PES TFC membrane grafted by HPG not only has an inherently higher water flux and a higher power density but also exhibits better flux recovery up to 94% after cleaning and hydraulic pressure impulsion. Clearly, by grafting the properly designed dendritic polymers to the membrane support, one may substantially sustain PRO hollow fiber membranes for power generation.

  10. Antiplasticization and plasticization of Matrimid® asymmetric hollow fiber membranes. Part B. Modeling

    KAUST Repository

    Lee, Jong Suk; Madden, William; Koros, William J.

    2010-01-01

    A previous paper characterized effects of exposure of Matrimid® asymmetric fibers to either toluene or n-heptane or a combination of both contaminants during permeation. In all cases, reductions in the carbon dioxide permeance and the carbon dioxide/methane selectivity were observed for both annealed and non-annealed samples. In this paper, the respective potential impacts of competitive sorption, fiber compaction, and antiplasticization/plasticization on membrane performance during contaminant exposure are quantified and analyzed. The combined impact of competitive sorption and antiplasticization/plasticization are shown to account for the loss in membrane performance observed during exposure to highly sorbing feed stream contaminants. The dual mode transport model for penetrant mixtures was used to explain reduction in CO2 permeance due to competitive sorption effects, while free volume-based modeling explained decrease in CO2 permeance due to antiplasticization. Finally, the impact on CO2 permeance during exposure of the annealed Matrimid® fibers to contaminants is analyzed. The analysis is based on reduction in segmental mobility expected due to reduction of residual unrelaxed volume as compared to unanealed sample. © 2010.

  11. Antiplasticization and plasticization of Matrimid® asymmetric hollow fiber membranes. Part B. Modeling

    KAUST Repository

    Lee, Jong Suk

    2010-03-15

    A previous paper characterized effects of exposure of Matrimid® asymmetric fibers to either toluene or n-heptane or a combination of both contaminants during permeation. In all cases, reductions in the carbon dioxide permeance and the carbon dioxide/methane selectivity were observed for both annealed and non-annealed samples. In this paper, the respective potential impacts of competitive sorption, fiber compaction, and antiplasticization/plasticization on membrane performance during contaminant exposure are quantified and analyzed. The combined impact of competitive sorption and antiplasticization/plasticization are shown to account for the loss in membrane performance observed during exposure to highly sorbing feed stream contaminants. The dual mode transport model for penetrant mixtures was used to explain reduction in CO2 permeance due to competitive sorption effects, while free volume-based modeling explained decrease in CO2 permeance due to antiplasticization. Finally, the impact on CO2 permeance during exposure of the annealed Matrimid® fibers to contaminants is analyzed. The analysis is based on reduction in segmental mobility expected due to reduction of residual unrelaxed volume as compared to unanealed sample. © 2010.

  12. Polyethersulfone flat sheet and hollow fiber membranes from solutions in ionic liquids

    KAUST Repository

    Kim, Dooli

    2017-06-10

    We fabricated flat-sheet and hollow fiber membranes from polyethersulfone (PES) solutions in two ionic liquids: 1-ethyl-3-methylimidazolium diethyl phosphate ([EMIM]DEP) and 1,3-dimethylimidazolium dimethyl phosphate ([MMIM]DMP). The solvents are non-volatile and less toxic than organic solvents, such as dimethylformamide (DMF). The membranes morphologies were compared with those of membranes prepared from solutions in DMF, using electron microscopy. Water permeance, solute rejection and mechanical strengths were evaluated. Membranes were applied to DNA separation. While membranes based on PES were successfully prepared, polysulfone (PSf) does not dissolve in the same ionic liquids. The discrepancy between PES and PSf could not be explained using classical Flory-Huggins theory, which does not consider the coulombic contributions in ionic liquids. The differences in solubility could be understood, by applying density functional theory to estimate the interaction energy between the different polymers and solvents. The theoretical results were supported by experimental measurements of intrinsic viscosity and dynamic light scattering (DLS).

  13. Flue gas carbon capture using hollow fiber membrane diffuser-separator

    Science.gov (United States)

    Ariono, D.; Chandranegara, A. S.; Widodo, S.; Khoiruddin; Wenten, I. G.

    2018-01-01

    In this work, CO2 removal from flue gas using membrane diffuser-separator was investigated. Hollow fiber polypropylene membrane was used as the diffuser while pure water was used as the absorbent. Separation performance of the membrane diffuser-separator as a function of CO2 concentration (6-28%-vol.) and flow rate (gas: 0.8-1.55 L.min-1 and liquid: 0.2-0.7 L.min-1) was investigated and optimized. It was found that CO2 removal was significantly affected by CO2 concentration in the feed gas. On the other hand, CO2 flux was more influenced by flow rates of liquid and gas rather than concentration. The optimized CO2 removal (64%) and flux (1 x 10-4 mol.m-2.s-1) were obtained at the highest gas flow rate (1.55 L.min-1), the lowest liquid flow rate (0.2 L.min-1), and 6.2%-vol. of CO2 concentration. Outlet gas of the membrane diffuser system tends to carry some water vapor, which is affected by gas and liquid flow rate. Meanwhile, in the steady-state operation of the separator, the gas bubbles generated by the membrane diffuser take a long time to be completely degassed from the liquid phase, thus a portion of gas stream was exiting separator through liquid outlet.

  14. Experimental investigation and modeling of industrial oily wastewater treatment using modified polyethersulfone ultrafiltration hollow fiber membranes

    International Nuclear Information System (INIS)

    Salahi, Abdolhamid; Mohammadi, Toraj; Behbahani, Reza Mosayebi; Hemmati, Mahmood

    2015-01-01

    Hollow fiber membranes were prepared from polyethersulfone/additives/NMP and DMSO system via phase inversion induced by precipitation in non-solvent coagulation bath. The interaction effects of polyethylene-glycol (PEG), propionic-acid (PA), Tween-20, PEG molecular weight and polyvinyl-pyrrolidone (PVP) on morphology and performance of synthesized membranes were investigated. Taguchi method (L 16 orthogonal array) was used initially to plan a minimum number of experiments. 32 membranes were synthesized (with two replications) and their permeation flux and TOC rejection properties to oily wastewater treatment were studied. The obtained results indicated that addition of PA to spinning dope decreases flux while it increases TOC rejection of prepared membranes. Also, the result shows that addition of PVP, Tween-20 and PEG content in spinning dope enhances permeation flux while reducing TOC rejection. The obtained results indicated that the synthesized membranes was effective and suitable for treatment of the oily wastewater to achieve up to 92.6, 98.2, and 98.5% removal of TOC, TSS, and OGC, respectively with a flux of 247.19 L/(m 2 h). Moreover, Hermia's models were used for permeation flux decline prediction. Experimental data and models predictions were compared. The results showed that there is reasonable agreement between experimental data and the cake layer model followed by the intermediate blocking model

  15. Experimental investigation and modeling of industrial oily wastewater treatment using modified polyethersulfone ultrafiltration hollow fiber membranes

    Energy Technology Data Exchange (ETDEWEB)

    Salahi, Abdolhamid; Mohammadi, Toraj [Iran University of Science and Technology (IUST), Tehran (Iran, Islamic Republic of); Behbahani, Reza Mosayebi [Petroleum University of Technology (PUT), Ahwaz (Iran, Islamic Republic of); Hemmati, Mahmood [Research Institute of Petroleum Industry, Tehran (Iran, Islamic Republic of)

    2015-06-15

    Hollow fiber membranes were prepared from polyethersulfone/additives/NMP and DMSO system via phase inversion induced by precipitation in non-solvent coagulation bath. The interaction effects of polyethylene-glycol (PEG), propionic-acid (PA), Tween-20, PEG molecular weight and polyvinyl-pyrrolidone (PVP) on morphology and performance of synthesized membranes were investigated. Taguchi method (L{sub 16} orthogonal array) was used initially to plan a minimum number of experiments. 32 membranes were synthesized (with two replications) and their permeation flux and TOC rejection properties to oily wastewater treatment were studied. The obtained results indicated that addition of PA to spinning dope decreases flux while it increases TOC rejection of prepared membranes. Also, the result shows that addition of PVP, Tween-20 and PEG content in spinning dope enhances permeation flux while reducing TOC rejection. The obtained results indicated that the synthesized membranes was effective and suitable for treatment of the oily wastewater to achieve up to 92.6, 98.2, and 98.5% removal of TOC, TSS, and OGC, respectively with a flux of 247.19 L/(m{sup 2}h). Moreover, Hermia's models were used for permeation flux decline prediction. Experimental data and models predictions were compared. The results showed that there is reasonable agreement between experimental data and the cake layer model followed by the intermediate blocking model.

  16. Analysis of flux reduction behaviors of PRO hollow fiber membranes: Experiments, mechanisms, and implications

    KAUST Repository

    Xiong, Jun Ying

    2016-01-15

    Pressure retarded osmosis (PRO) is a promising technology to harvest renewable osmotic energy using a semipermeable membrane. However, a significant flux reduction has been always observed that severely shrinks the harvestable power to a level only marginally higher or even lower than the economically feasible value. This work focuses on the elucidation of various underlying mechanisms responsible for the flux reduction. First, both inner-selective and outer-selective thin film composite (TFC) hollow fiber membranes are employed to examine how the fundamental internal factors (such as the surface salinity of the selective layer at the feed side (CF,m) and its components) interact with one another under the fixed bulk salinity gradient, resulting in various behaviours of external performance indexes such as water flux, reverse salt flux, and power density. Then, the research is extended to investigate the effects of the growing bulk feed salinity due to the accumulated reverse salt flux along PRO modules. Finally, the insights obtained from the prior two stationary conditions are combined with the advanced nucleation theory to elucidate the dynamic scaling process by visualizing how the multiple fundamental factors (such as local supersaturation, nucleation rate and nuclei size) evolve and interplay with one another in various membrane regimes during the whole scaling process. To our best knowledge, it is the first time that the advanced nucleation theory is applied to study the PRO scaling kinetics in order to provide subtle and clear pictures of the events occurring inside the membrane. This study may provide useful insights to design more suitable TFC hollow fiber membranes and to operate them with enhanced water flux so that the PRO process may become more promising in the near future.

  17. Polyimide hollow fiber membranes for CO2 separation from wet gas mixtures

    Directory of Open Access Journals (Sweden)

    F. Falbo

    2014-12-01

    Full Text Available Matrimid®5218 hollow fiber membranes were prepared using the dry-wet spinning process. The transport properties were measured with pure gases (H2, CO2, N2, CH4 and O2 and with a mixture (30% CO2 and 70% N2 in dry and wet conditions at 25 ºC, 50 ºC, 60 ºC and 75 ºC and up to 600 kPa. Interesting values of single gas selectivity up to 60 ºC (between 31 and 28 for CO2/N2 and between 33 and 30 for CO2/CH4 in dry condition were obtained. The separation factor measured for the mixture was 20% lower compared to the single gas selectivity, in the whole temperature range analyzed. In saturation conditions the data showed that water influences the performance of the membranes, inducing a reduction of the permeance of all gases. Moreover, the presence of water caused a decrease of single gas selectivity and separation factor, although not so significant, highlighting the very high water resistance of hollow fiber membrane modules.

  18. Hollow Fiber Flight Prototype Spacesuit Water Membrane Evaporator Design and Testing

    Science.gov (United States)

    Bue, Grant; Vogel, Matt; Makinen, Janice; Tsioulos, Gus

    2010-01-01

    The spacesuit water membrane evaporator (SWME) is being developed to perform thermal control for advanced spacesuits and to take advantage of recent advances in micropore membrane technology. This results in a robust heat-rejection device that is potentially less sensitive to contamination than is the sublimator. The Membrana Celgard X50-215 microporous hollow-fiber (HoFi) membrane was selected after recent extensive testing as the most suitable candidate among commercial alternatives for continued SWME prototype development. The current design was based on a previous design that grouped the fiber layers into stacks, which were separated by small spaces and packaged into a cylindrical shape. This was developed into a full-scale prototype consisting of 14,300 tube bundled into 30 stacks, each of which is formed into a chevron shape and separated by spacers and organized into three sectors of 10 nested stacks. The new design replaced metal components with plastic ones, and has a custom built flight like backpressure valve mounted on the side of the SWME housing to reduce backpressure when fully open. The spacers that provided separation of the chevron fiber stacks were eliminated. Vacuum chamber testing showed improved heat rejection as a function of inlet water temperature and water vapor backpressure compared with the previous design. Other tests pushed the limits of tolerance to freezing and showed suitability to reject heat in a Mars pressure environment with and without a sweep gas. Tolerance to contamination by constituents expected to be found in potable water produced by distillation processes was tested in a conventional way by allowing constituents to accumulate in the coolant as evaporation occurs. For this purpose, the SWME cartridge has endured an equivalent of 30 EVAs exposure and demonstrated minimal performance decline.

  19. PEBAX®/PAN Hollow Fiber Membranes for CO2/CH4 Separation

    Czech Academy of Sciences Publication Activity Database

    Esposito, E.; Clarizia, G.; Bernardo, P.; Jansen, J. C.; Sedláková, Zuzana; Izák, Pavel; Curcio, S.; de Cindio, B.; Tasselli, F.

    2015-01-01

    Roč. 94, SI (2015), s. 53-61 ISSN 0255-2701. [International Congress of Chemical and Process Engineering CHISA 2014 /21./ and Conference PRES 2014 /17./. Prague, 23.08.2014-27.08.2014] R&D Projects: GA ČR GA14-12695S Grant - others:INRP(IT) MicroPERLA:PON01_01840 Institutional support: RVO:67985858 Keywords : composite membrane * hollow fibers * CO2/CH4 separation Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.154, year: 2015

  20. A simulation model for transient response of a gas separation module using a hollow fiber membrane

    Energy Technology Data Exchange (ETDEWEB)

    Sugiyama, Takahiko, E-mail: t-sugiyama@nucl.nagoya-u.ac.jp [Nagoya University, Fro-cho, Chikusa-ku, Nagoya 464-8603 (Japan); Miyahara, Naoya [Nagoya University, Fro-cho, Chikusa-ku, Nagoya 464-8603 (Japan); Tanaka, Masahiro [National Institute for Fusion Science, Oroshi-cho 322-6, Toki 509-5292 (Japan); Munakata, Kenzo [Akita University, Tegata Gakuen-cho 1-1, Akita-shi, Akita 010-8502 (Japan); Yamamoto, Ichiro [Nagoya University, Fro-cho, Chikusa-ku, Nagoya 464-8603 (Japan)

    2011-10-15

    A simulation model has been developed for transient response of a gas separation module using a hollow fiber membrane for the removal of tritium from the atmosphere of the confinement space. The mass transfer process such as sorption and desorption of gases at the surface of the dense layer and the porous support layer, diffusive transfer in the both layers are treated in the model. Sorption isotherm, mass transfer rate and permeance are estimated through step-wise transient response experiments. The present model represents well not only separation factors and recovery ratio at the steady state but also responses to the multi-step wise change in the sweep gas rate.

  1. Paper-based microfluidics with high resolution, cut on a glass fiber membrane for bioassays.

    Science.gov (United States)

    Fang, Xueen; Wei, Shasha; Kong, Jilie

    2014-03-07

    In this report, we describe a simple, low-cost, straight forward and highly reproducible fabrication method of microfluidic systems. This system was cut on a glass fiber membrane by a common cutter without using any other sophisticated equipment or organic solvents. This format represents a novel type of paper-based microfluidics with high resolution of the microchannel down to ~137 μm, comparable to those made by conventional photolithography. We successfully applied this method to microfluidics to create a star micro-array format of multiplexed urine tests in this study.

  2. Role of 17 beta-estradiol on type IV collagen fibers volumetric density in the basement membrane of bladder wall.

    Science.gov (United States)

    de Fraga, Rogerio; Dambros, Miriam; Miyaoka, Ricardo; Riccetto, Cássio Luís Zanettini; Palma, Paulo César Rodrigues

    2007-10-01

    The authors quantified the type IV collagen fibers volumetric density in the basement membrane of bladder wall of ovariectomized rats with and without estradiol replacement. This study was conducted on 40 Wistar rats (3 months old) randomly divided in 4 groups: group 1, remained intact (control); group 2, submitted to bilateral oophorectomy and daily replacement 4 weeks later of 17 beta-estradiol for 12 weeks; group 3, sham operated and daily replacement 4 weeks later of sesame oil for 12 weeks; and group 4, submitted to bilateral oophorectomy and killed after 12 weeks. It was used in immunohistochemistry evaluation using type IV collagen polyclonal antibody to stain the fibers on paraffin rat bladder sections. The M-42 stereological grid system was used to analyze the fibers. Ovariectomy had an increase effect on the volumetric density of the type IV collagen fibers in the basement membrane of rat bladder wall. Estradiol replacement in castrated animals demonstrated a significative difference in the stereological parameters when compared to the castrated group without hormonal replacement. Surgical castration performed on rats induced an increasing volumetric density of type IV collagen fibers in the basement membrane of rats bladder wall and the estradiol treatment had a significant effect in keeping a low volumetric density of type IV collagen fibers in the basement membrane of rats bladder wall.

  3. Full-Scale Hollow Fiber Spacesuit Water Membrane Evaporator Prototype Development and Testing for Advanced Spacesuits

    Science.gov (United States)

    Bue, Grant; Trevino, Luis; Tsioulos, Gus; Mitchell, Keith; Dillon, Paul; Weaver, Gregg

    2009-01-01

    The spacesuit water membrane evaporator (SWME) is being developed to perform the thermal control function for advanced spacesuits to take advantage of recent advances in micropore membrane technology in providing a robust heat-rejection device that is potentially less sensitive to contamination than is the sublimator. Principles of a sheet membrane SWME design were demonstrated using a prototypic test article that was tested in a vacuum chamber at JSC in July 1999. The Membrana Celgard X50-215 microporous hollow fiber (HoFi) membrane was selected after recent contamination tests as the superior candidate among commercial alternatives for HoFi SWME prototype development. Although a number of design variants were considered, one that grouped the fiber layers into stacks, which were separated by small spaces and packaged into a cylindrical shape, was deemed best for further development. An analysis of test data showed that eight layer stacks of the HoFi sheets that had good exposure on each side of the stack would evaporate water with high efficiency. A design that has 15,000 tubes, with 18 cm of exposed tubes between headers has been built and tested that meets the size, weight, and performance requirements of the SWME. This full-scale prototype consists of 30 stacks, each of which are formed into a chevron shape and separated by spacers and organized into three sectors of ten nested stacks. Testing has been performed to show contamination resistance to the constituents expected to be found in potable water produced by the distillation processes. Other tests showed the sensitivity to surfactants.

  4. Electrospun polyimide-based fiber membranes as polymer electrolytes for lithium-ion batteries

    International Nuclear Information System (INIS)

    Wang, Qiujun; Song, Wei-Li; Wang, Luning; Song, Yu; Shi, Qiao; Fan, Li-Zhen

    2014-01-01

    Polymer electrolytes based on electrospun polyimide (PI) membranes are incorporated with electrolyte solution containing 1 mol L −1 LiPF 6 /ethylene carbonate/ethylmethyl carbonate/dimethyl carbonate to examine their potential application for lithium ion batteries. The as-electrospun non-woven membranes demonstrate a uniformly interconnected structure with an average fiber diameter of 800 nm. The membranes, showing superior thermal stability and flame retardant property compared to the commercial Celgard® membranes, exhibit high porosity and high uptake when activated with the liquid electrolyte. The resulting PI electrolytes (PIs) have a high ionic conductivity up to 2.0 × 10 −3 S cm −1 at 25 °C, and exhibit a high electrochemical stability potential more than 5.0 V (vs. Li/Li + ). They also possess excellent charge/discharge performance and capacity retention. The initial discharge capacities of the Li/PIs/Li 4 Ti 5 O 12 cells are 178.4, 167.4, 160.3, 148.3 and 135.9 mAh g −1 at the charge/discharge rates of 0.2 C, 1 C, 2 C, 5 C and 10 C, respectively. After 200 cycles at 5 C, a capacity around ∼146.8 mAh g −1 can be still achieved. The PI-based polymer electrolytes with strong mechanical properties and good electrochemical performance are proved to be promising electrolytes for lithium ion batteries

  5. Graphene-coated hollow fiber membrane as the cathode in anaerobic electrochemical membrane bioreactors – Effect of configuration and applied voltage on performance and membrane fouling

    KAUST Repository

    Werner, Craig M.; Katuri, Krishna; Rao, Hari Ananda; Chen, Wei; Lai, Zhiping; Logan, Bruce E.; Amy, Gary L.; Saikaly, Pascal

    2015-01-01

    Electrically conductive, graphene-coated hollow-fiber porous membranes were used as cathodes in anaerobic electrochemical membrane bioreactors (AnEMBRs) operated at different applied voltages (0.7 V and 0.9 V) using a new rectangular reactor configuration, compared to a previous tubular design (0.7 V). The onset of biofouling was delayed and minimized in rectangular reactors operated at 0.9 V, compared to those at 0.7 V due to higher rates of hydrogen production. Maximum transmembrane pressures for the rectangular reactor were only 0.10 bar (0.7 V) or 0.05 bar (0.9 V) after 56 days of operation, compared to 0.46 bar (0.7 V) for the tubular reactor after 52 days. The thickness of the membrane biofouling layer was approximately 0.4 µm for rectangular reactors and 4 µm for the tubular reactor. Higher permeate quality (TSS = 0.05 mg/L) was achieved in the rectangular AnEMBR than the tubular AnEMBR (TSS = 17 mg/L), likely due to higher current densities that minimized the accumulation of cells in suspension. These results show that the new rectangular reactor design, which had increased rates of hydrogen production, successfully delayed the onset of cathode biofouling and improved reactor performance.

  6. Graphene-coated hollow fiber membrane as the cathode in anaerobic electrochemical membrane bioreactors – Effect of configuration and applied voltage on performance and membrane fouling

    KAUST Repository

    Werner, Craig M.

    2015-12-22

    Electrically conductive, graphene-coated hollow-fiber porous membranes were used as cathodes in anaerobic electrochemical membrane bioreactors (AnEMBRs) operated at different applied voltages (0.7 V and 0.9 V) using a new rectangular reactor configuration, compared to a previous tubular design (0.7 V). The onset of biofouling was delayed and minimized in rectangular reactors operated at 0.9 V, compared to those at 0.7 V due to higher rates of hydrogen production. Maximum transmembrane pressures for the rectangular reactor were only 0.10 bar (0.7 V) or 0.05 bar (0.9 V) after 56 days of operation, compared to 0.46 bar (0.7 V) for the tubular reactor after 52 days. The thickness of the membrane biofouling layer was approximately 0.4 µm for rectangular reactors and 4 µm for the tubular reactor. Higher permeate quality (TSS = 0.05 mg/L) was achieved in the rectangular AnEMBR than the tubular AnEMBR (TSS = 17 mg/L), likely due to higher current densities that minimized the accumulation of cells in suspension. These results show that the new rectangular reactor design, which had increased rates of hydrogen production, successfully delayed the onset of cathode biofouling and improved reactor performance.

  7. Effect of sludge behavior on performance of centrifugal contactor

    Energy Technology Data Exchange (ETDEWEB)

    Sakamoto, A.; Sano, Y.; Takeuchi, M. [Japan Atomic Energy Agency - JAEA, 4-33 Muramatsu Tokai-mura Naka-gun Ibaraki-pref. 319-1194 (Japan)

    2016-07-01

    The Japan Atomic Energy Agency has been developing an annular centrifugal contactor for solvent extraction in spent fuel reprocessing, which allows the mixing of aqueous and organic phases in the annular area and their separation from the mixed phase in the rotor. The effects of sludge behavior on the performance of a centrifugal contactor were investigated. Sludge accumulation during the operation of the centrifugal contactor was observed only in the rotor. Based on the sludge accumulation behavior, the effects of rotor sludge accumulation on the performance of phase separation and extraction were investigated using several types of rotors, which simulated different sludge accumulation levels in the separation area. It was confirmed that rotor sludge accumulation would affect the phase separation performance but not the extraction performance. This can be explained by the structure of the centrifugal contactor, wherein the extraction reaction and phase separation mainly proceed in the housing and rotor, respectively.

  8. Silicon carbide hollow fiber membranes: obtainment and characterization; Membranas de fibra oca de carbeto de silicio: obtencao e caracterizacao

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, S.S.L.; Ferreira, R.S.B.; Araujo, B.A.; Medeiros, K.M.; Lucena, H.L.; Araujo, E.M., E-mail: sandriely_sonaly@hotmail.com [Universidade Federal de Campina Grande (UFCG), PB (Brazil). Departamento de Engenharia de Materiais

    2016-07-01

    Silicon carbide is a promising material for the production of membranes due to its high melting temperature, thermal shock resistance, excellent mechanical and chemical stability. So, this study aims to characterize silicon carbide membranes in order to apply them in the separation of oil-water. A solution (SiC + PES + 1-Methyl- 2-Pyrrolidone) and through the extrusion technique by immersion precipitation membranes were obtained with hollow fiber geometry was prepared. And then sintered at 1500 ° C. For the characterization analyzes were made XRD, FTIR and SEM to evaluate the morphology and composition of the membranes obtained before and after sintering. (author)

  9. Response surface methodology to evaluation the recovery of amylases by hollow fiber membrane

    Directory of Open Access Journals (Sweden)

    João Baptista Severo Júnior

    2007-07-01

    Full Text Available This work aimed to study the pH and the transmembrane pressure effects during the recovery of alpha and beta amylases enzymes from corn malt (Zea mays by hollow fiber membrane. The optimal condition was obtained for a statistical model, established by response surface methodology (RSM. The response surface analysis showed that the best operation condition for amylolitics enzymes recovery by hollow fiber membrane was 0.05 bar and pH 5.00, while the enzymes were purified about of 26 times.Este trabalho objetivou estudar o efeito do pH e da pressão trans-membrana durante a recuperação das enzimas alfa e beta amilases do malte de milho (Zea mays por membranas de fibras ocas, a obtenção das condições ótimas foi feita por um modelo estatístico, estabelecido pela metodologia de superfície de resposta (RSM. A análise da superfície de resposta mostrou que as melhores condições operacionais para a recuperação das enzimas amiloliticas por membranas de fibras ocas foi 0,05 bar e pH 5,00; onde as enzimas foram purificadas cerca de 26 vezes.

  10. CALmsu contactor for solvent extraction with integrated flowrate meters

    International Nuclear Information System (INIS)

    Siddiqui, I.A.; Shah, B.V.; Theyyunni, T.K.

    1994-01-01

    Mixer-settlers are widely used as contactors in solvent extraction processes. In the nuclear industry, solvent extraction techniques are used for the separation and purification of a range of materials. A major difficulty is faced in the nuclear industry due to the constraints on the design of the equipment and its operation by the presence of radioactive materials in process solutions. The development of CALmsu contactor was necessitated by the requirements of the operating environment in radiochemical plants. This contactor is a mixer-settler designed to use a CALMIX (combined air lifting and mixing device) static mixer. The CALMIX comprises two air lifts which raise the liquid phases to a highly turbulent mixing zone situated above the lifts. Its principle and construction are simple, and it is compact in size. It is a passive device and needs no maintenance. It has proved to be efficient during extensive testing. The simple and efficient CALmsu contactor internals are specially engineered for use of CALMIX mixer. It has been extensively tested in pilot plant for extraction and stripping of uranium, recovery of uranium from thorium by THOREX process and for treatment of degraded solvents. A model for the design of CALmsu contactors has been evolved and based on this model a software for engineering design of CALMIX and CALmsu contactors of throughput between 50 and 3000 lph has been developed. (author)

  11. CALmsu contactor for solvent extraction with integrated flowrate meters

    Energy Technology Data Exchange (ETDEWEB)

    Siddiqui, I A; Shah, B V; Theyyunni, T K [Process Engineering and Systems Development Division, Bhabha Atomic Research Centre, Mumbai (India)

    1994-06-01

    Mixer-settlers are widely used as contactors in solvent extraction processes. In the nuclear industry, solvent extraction techniques are used for the separation and purification of a range of materials. A major difficulty is faced in the nuclear industry due to the constraints on the design of the equipment and its operation by the presence of radioactive materials in process solutions. The development of CALmsu contactor was necessitated by the requirements of the operating environment in radiochemical plants. This contactor is a mixer-settler designed to use a CALMIX (combined air lifting and mixing device) static mixer. The CALMIX comprises two air lifts which raise the liquid phases to a highly turbulent mixing zone situated above the lifts. Its principle and construction are simple, and it is compact in size. It is a passive device and needs no maintenance. It has proved to be efficient during extensive testing. The simple and efficient CALmsu contactor internals are specially engineered for use of CALMIX mixer. It has been extensively tested in pilot plant for extraction and stripping of uranium, recovery of uranium from thorium by THOREX process and for treatment of degraded solvents. A model for the design of CALmsu contactors has been evolved and based on this model a software for engineering design of CALMIX and CALmsu contactors of throughput between 50 and 3000 lph has been developed. (author). 8 refs., 1 fig.

  12. Synthesis of ceramic hollow fiber supported zeolitic imidazolate framework-8 (ZIF-8) membranes with high hydrogen permeability

    KAUST Repository

    Pan, Yichang; Wang, Bo; Lai, Zhiping

    2012-01-01

    Purification and recovery of hydrogen from hydrocarbons in refinery streams in the petrochemical industry is an emerging research field in the study of membrane gas separation. Hollow fiber membrane modules can be easily implemented into separation processes at the industrial scale. In this report, hollow yttria-stabilized zirconia (YSZ) fiber-supported zeolitic imidazole framework-8 (ZIF-8) membranes were successfully prepared using a mild and environmentally friendly seeded growth method. Our single-component permeation studies demonstrated that the membrane had a very high hydrogen permeance (~15×10 -7mol/m 2sPa) and an ideal selectivity of H 2/C 3H 8 of more than 1000 at room temperature. This high membrane permeability and selectivity caused serious concentration polarization in the separation of H 2/C 3H 8 mixtures, which led to almost 50% drop in both the H 2 permeance and the separation factor. Enhanced mixing on the feed side could reduce the effect of the concentration polarization. Our experimental data also indicated that the membranes had excellent reproducibility and long-term stability, indicating that the hollow fiber-supported ZIF-8 membranes developed in this study have great potential in industry-scale separation of hydrogen. © 2012 Elsevier B.V.

  13. Synthesis of ceramic hollow fiber supported zeolitic imidazolate framework-8 (ZIF-8) membranes with high hydrogen permeability

    KAUST Repository

    Pan, Yichang

    2012-12-01

    Purification and recovery of hydrogen from hydrocarbons in refinery streams in the petrochemical industry is an emerging research field in the study of membrane gas separation. Hollow fiber membrane modules can be easily implemented into separation processes at the industrial scale. In this report, hollow yttria-stabilized zirconia (YSZ) fiber-supported zeolitic imidazole framework-8 (ZIF-8) membranes were successfully prepared using a mild and environmentally friendly seeded growth method. Our single-component permeation studies demonstrated that the membrane had a very high hydrogen permeance (~15×10 -7mol/m 2sPa) and an ideal selectivity of H 2/C 3H 8 of more than 1000 at room temperature. This high membrane permeability and selectivity caused serious concentration polarization in the separation of H 2/C 3H 8 mixtures, which led to almost 50% drop in both the H 2 permeance and the separation factor. Enhanced mixing on the feed side could reduce the effect of the concentration polarization. Our experimental data also indicated that the membranes had excellent reproducibility and long-term stability, indicating that the hollow fiber-supported ZIF-8 membranes developed in this study have great potential in industry-scale separation of hydrogen. © 2012 Elsevier B.V.

  14. Development of Polysulfone Hollow Fiber Porous Supports for High Flux Composite Membranes: Air Plasma and Piranha Etching

    Directory of Open Access Journals (Sweden)

    Ilya Borisov

    2017-02-01

    Full Text Available For the development of high efficiency porous supports for composite membrane preparation, polysulfone (PSf hollow fiber membranes (outer diameter 1.57 mm, inner diameter 1.12 mm were modified by air plasma using the low temperature plasma treatment pilot plant which is easily scalable to industrial level and the Piranha etch (H2O2 + H2SO4. Chemical and plasma modification affected only surface layers and did not cause PSf chemical structure change. The modifications led to surface roughness decrease, which is of great importance for further thin film composite (TFC membranes fabrication by dense selective layer coating, and also reduced water and ethylene glycol contact angle values for modified hollow fibers surface. Furthermore, the membranes surface energy increased two-fold. The Piranha mixture chemical modification did not change the membranes average pore size and gas permeance values, while air plasma treatment increased pore size 1.5-fold and also 2 order enhanced membranes surface porosity. Since membranes surface porosity increased due to air plasma treatment the modified membranes were used as efficient supports for preparation of high permeance TFC membranes by using poly[1-(trimethylsilyl-1-propyne] as an example for selective layer fabrication.

  15. Effects of fiber density and plasma modification of nanofibrous membranes on the adhesion and growth of HaCaT keratinocytes.

    Science.gov (United States)

    Bacakova, Marketa; Lopot, Frantisek; Hadraba, Daniel; Varga, Marian; Zaloudkova, Margit; Stranska, Denisa; Suchy, Tomas; Bacakova, Lucie

    2015-01-01

    It may be possible to regulate the cell colonization of biodegradable polymer nanofibrous membranes by plasma treatment and by the density of the fibers. To test this hypothesis, nanofibrous membranes of different fiber densities were treated by oxygen plasma with a range of plasma power and exposure times. Scanning electron microscopy and mechanical tests showed significant modification of nanofibers after plasma treatment. The intensity of the fiber modification increased with plasma power and exposure time. The exposure time seemed to have a stronger effect on modifying the fiber. The mechanical behavior of the membranes was influenced by the plasma treatment, the fiber density, and their dry or wet state. Plasma treatment increased the membrane stiffness; however, the membranes became more brittle. Wet membranes displayed significantly lower stiffness than dry membranes. X-ray photoelectron spectroscopy (XPS) analysis showed a slight increase in oxygen-containing groups on the membrane surface after plasma treatment. Plasma treatment enhanced the adhesion and growth of HaCaT keratinocytes on nanofibrous membranes. The cells adhered and grew preferentially on membranes of lower fiber densities, probably due to the larger area of void spaces between the fibers. © The Author(s) 2014 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.

  16. High-throughput hydrolysis of starch during permeation across α-amylase-immobilized porous hollow-fiber membranes

    Science.gov (United States)

    Miura, Suguru; Kubota, Noboru; Kawakita, Hidetaka; Saito, Kyoichi; Sugita, Kazuyuki; Watanabe, Kohei; Sugo, Takanobu

    2002-02-01

    Two kinds of supporting porous membranes, ethanolamine (EA) and phenol (Ph) fibers, for immobilization of α-amylase were prepared by radiation-induced graft polymerization of an epoxy-group-containing monomer, glycidyl methacrylate, onto a porous hollow-fiber membrane, and subsequent ring-opening with EA and Ph, respectively. An α-amylase solution was forced to permeate radially outward through the pores of the EA and Ph fibers. α-Amylase was captured at a density of 0.15 and 6.6 g/L of the membrane by the graft chain containing 2-hydroxyethylamino and phenyl groups, respectively. A permeation pressure of 0.10 MPa provided a space velocity of 780 and 1500 h -1 for the α-amylase-immobilized EA and Ph fibers, respectively. Quantitative hydrolysis of starch during permeation of a 20 g/L starch solution in the buffer across the α-amylase-immobilized Ph fiber was attained up to a space velocity of about 2000 h -1; this was achieved because of negligible diffusional mass-transfer resistance of the starch to the α-amylase due to convective flow, whereas an enzyme reaction-controlled system was observed for the α-amylase-immobilized EA fiber.

  17. High-throughput hydrolysis of starch during permeation across α-amylase-immobilized porous hollow-fiber membranes

    International Nuclear Information System (INIS)

    Miura, Suguru; Kubota, Noboru; Kawakita, Hidetaka; Saito, Kyoichi; Sugita, Kazuyuki; Watanabe, Kohei; Sugo, Takanobu

    2002-01-01

    Two kinds of supporting porous membranes, ethanolamine (EA) and phenol (Ph) fibers, for immobilization of α-amylase were prepared by radiation-induced graft polymerization of an epoxy-group-containing monomer, glycidyl methacrylate, onto a porous hollow-fiber membrane, and subsequent ring-opening with EA and Ph, respectively. An α-amylase solution was forced to permeate radially outward through the pores of the EA and Ph fibers. α-Amylase was captured at a density of 0.15 and 6.6 g/L of the membrane by the graft chain containing 2-hydroxyethylamino and phenyl groups, respectively. A permeation pressure of 0.10 MPa provided a space velocity of 780 and 1500 h -1 for the α-amylase-immobilized EA and Ph fibers, respectively. Quantitative hydrolysis of starch during permeation of a 20 g/L starch solution in the buffer across the α-amylase-immobilized Ph fiber was attained up to a space velocity of about 2000 h -1 ; this was achieved because of negligible diffusional mass-transfer resistance of the starch to the α-amylase due to convective flow/ whereas an enzyme reaction-controlled system was observed for the α-amylase-immobilized EA fiber.

  18. High-throughput hydrolysis of starch during permeation across {alpha}-amylase-immobilized porous hollow-fiber membranes

    Energy Technology Data Exchange (ETDEWEB)

    Miura, Suguru; Kubota, Noboru; Kawakita, Hidetaka; Saito, Kyoichi E-mail: marukyo@xtal.tf.chiba-u.ac.jp; Sugita, Kazuyuki; Watanabe, Kohei; Sugo, Takanobu

    2002-02-01

    Two kinds of supporting porous membranes, ethanolamine (EA) and phenol (Ph) fibers, for immobilization of {alpha}-amylase were prepared by radiation-induced graft polymerization of an epoxy-group-containing monomer, glycidyl methacrylate, onto a porous hollow-fiber membrane, and subsequent ring-opening with EA and Ph, respectively. An {alpha}-amylase solution was forced to permeate radially outward through the pores of the EA and Ph fibers. {alpha}-Amylase was captured at a density of 0.15 and 6.6 g/L of the membrane by the graft chain containing 2-hydroxyethylamino and phenyl groups, respectively. A permeation pressure of 0.10 MPa provided a space velocity of 780 and 1500 h{sup -1} for the {alpha}-amylase-immobilized EA and Ph fibers, respectively. Quantitative hydrolysis of starch during permeation of a 20 g/L starch solution in the buffer across the {alpha}-amylase-immobilized Ph fiber was attained up to a space velocity of about 2000 h{sup -1}; this was achieved because of negligible diffusional mass-transfer resistance of the starch to the {alpha}-amylase due to convective flow/ whereas an enzyme reaction-controlled system was observed for the {alpha}-amylase-immobilized EA fiber.

  19. Development of a High Performance PES Ultrafiltration Hollow Fiber Membrane for Oily Wastewater Treatment Using Response Surface Methodology

    Directory of Open Access Journals (Sweden)

    Noor Adila Aluwi Shakir

    2015-12-01

    Full Text Available This study attempts to optimize the spinning process used for fabricating hollow fiber membranes using the response surface methodology (RSM. The spinning factors considered for the experimental design are the dope extrusion rate (DER, air gap length (AGL, coagulation bath temperature (CBT, bore fluid ratio (BFR, and post-treatment time (PT whilst the response investigated is rejection. The optimal spinning conditions promising the high rejection performance of polyethersulfone (PES ultrafiltration hollow fiber membranes for oily wastewater treatment are at the dope extrusion rate of 2.13 cm3/min, air gap length of 0 cm, coagulation bath temperature of 30 °C, and bore fluid ratio (NMP/H2O of 0.01/99.99 wt %. This study will ultimately enable the membrane fabricators to produce high-performance membranes that contribute towards the availability of a more sustainable water supply system.

  20. Structural Contraction of Zeolitic Imidazolate Frameworks: Membrane Application on Porous Metallic Hollow Fibers for Gas Separation.

    Science.gov (United States)

    Cacho-Bailo, Fernando; Etxeberría-Benavides, Miren; David, Oana; Téllez, Carlos; Coronas, Joaquín

    2017-06-21

    Positive thermal expansion coefficients (TECs) of 52 × 10 -6 and 35 × 10 -6 K -1 were experimentally calculated in the -116 to 250 °C range for the III-phases of zeolitic imidazolate frameworks (ZIF) ZIF-9(Co) and ZIF-7(Zn), respectively, by means of the unit cell dimensions and volume of the materials in the monoclinic crystal system calculated from the XRD patterns. The unit cell dimensions and volume showed a significant expansion phenomenon as the temperature increased, by as much as 5.5% for ZIF-9-III in the studied range. To exploit the advantages of such thermal behavior, a new approach to the fabrication of ZIF-9-III membranes on thin, flexible, and highly porous nickel hollow fiber (Ni HF) supports by a versatile and easy-controllable microfluidic setup is herein reported. These Ni HF supports result from the sintering of 25-μm Ni particles and display very positive mechanical properties and bending resistance. As compared to the traditional polymer-based HF membranes, the ZIF metal-supported membrane exhibited good durability and robustness throughout its operation in a wide temperature range and after heating and cooling cycles. These benefits derive from (1) the pore-plugging membrane configuration resulting from the high porosity of the support and (2) the similarity between the TECs of the ZIF and the metallic support, both positive, which enhances their mutual compatibility. An increase in the H 2 /CO 2 separation selectivity at low temperatures (as high as 22.2 at -10 °C, along with 102 GPU permeance of H 2 ) was achieved, in agreement with the structural variations observed in the ZIF material.

  1. Outer-selective pressure-retarded osmosis hollow fiber membranes from vacuum-assisted interfacial polymerization for osmotic power generation

    KAUST Repository

    Sun, Shipeng; Chung, Neal Tai-Shung

    2013-01-01

    In this paper, we report the technical breakthroughs to synthesize outer-selective thin-film composite (TFC) hollow fiber membranes, which is in an urgent need for osmotic power generation with the pressure-retarded osmosis (PRO) process. In the first step, a defect-free thin-film composite membrane module is achieved by vacuum-assisted interfacial polymerization. The PRO performance is further enhanced by optimizing the support in terms of pore size and mechanical strength and the TFC layer with polydopamine coating and molecular engineering of the interfacial polymerization solution. The newly developed membranes can stand over 20 bar with a peak power density of 7.63 W/m2, which is equivalent to 13.72 W/m2 of its inner-selective hollow fiber counterpart with the same module size, packing density, and fiber dimensions. The study may provide insightful guidelines for optimizing the interfacial polymerization procedures and scaling up of the outer-selective TFC hollow fiber membrane modules for PRO power generation. © 2013 American Chemical Society.

  2. The human periodontal membrane: focusing on the spatial interrelation between the epithelial layer of Malassez, fibers, and innervation

    DEFF Research Database (Denmark)

    Kjaer, Inger; Nolting, Dorrit

    2009-01-01

    OBJECTIVE: The purpose of the present study was to map the spatial interrelation of fibers, peripheral nerves, and epithelial layer of Malassez in human periodontal membrane in areas close to the root surfaces. MATERIAL AND METHODS: Four healthy permanent teeth extracted from four patients during...

  3. On the subtle balance between competitive sorption and plasticization effects in asymmetric hollow fiber gas separation membranes

    NARCIS (Netherlands)

    Visser, Tymen; Koops, G.H.; Wessling, Matthias

    2005-01-01

    The paper describes the influence of a varying feed composition of CO2/CH4 and CO2/N2 mixtures on the gas separation performance of integrally skinned asymmetric PES/PI hollow fibers with an effective skin thickness of 0.27 ¿m. Normally, thin membrane structures (<3 ¿m) show accelerated

  4. Hollow fiber membrane based H-2 diffusion for efficient in situ biogas upgrading in an anaerobic reactor

    DEFF Research Database (Denmark)

    Luo, Gang; Angelidaki, Irini

    2013-01-01

    Bubbleless gas transfer through a hollow fiber membrane (HFM) module was used to supply H2 to an anaerobic reactor for in situ biogas upgrading, and it creates a novel system that could achieve a CH4 content higher than 90 % in the biogas. The increase of CH4 content and pH, and the decrease...

  5. Outer-selective pressure-retarded osmosis hollow fiber membranes from vacuum-assisted interfacial polymerization for osmotic power generation.

    Science.gov (United States)

    Sun, Shi-Peng; Chung, Tai-Shung

    2013-11-19

    In this paper, we report the technical breakthroughs to synthesize outer-selective thin-film composite (TFC) hollow fiber membranes, which is in an urgent need for osmotic power generation with the pressure-retarded osmosis (PRO) process. In the first step, a defect-free thin-film composite membrane module is achieved by vacuum-assisted interfacial polymerization. The PRO performance is further enhanced by optimizing the support in terms of pore size and mechanical strength and the TFC layer with polydopamine coating and molecular engineering of the interfacial polymerization solution. The newly developed membranes can stand over 20 bar with a peak power density of 7.63 W/m(2), which is equivalent to 13.72 W/m(2) of its inner-selective hollow fiber counterpart with the same module size, packing density, and fiber dimensions. The study may provide insightful guidelines for optimizing the interfacial polymerization procedures and scaling up of the outer-selective TFC hollow fiber membrane modules for PRO power generation.

  6. Outer-selective pressure-retarded osmosis hollow fiber membranes from vacuum-assisted interfacial polymerization for osmotic power generation

    KAUST Repository

    Sun, Shipeng

    2013-11-19

    In this paper, we report the technical breakthroughs to synthesize outer-selective thin-film composite (TFC) hollow fiber membranes, which is in an urgent need for osmotic power generation with the pressure-retarded osmosis (PRO) process. In the first step, a defect-free thin-film composite membrane module is achieved by vacuum-assisted interfacial polymerization. The PRO performance is further enhanced by optimizing the support in terms of pore size and mechanical strength and the TFC layer with polydopamine coating and molecular engineering of the interfacial polymerization solution. The newly developed membranes can stand over 20 bar with a peak power density of 7.63 W/m2, which is equivalent to 13.72 W/m2 of its inner-selective hollow fiber counterpart with the same module size, packing density, and fiber dimensions. The study may provide insightful guidelines for optimizing the interfacial polymerization procedures and scaling up of the outer-selective TFC hollow fiber membrane modules for PRO power generation. © 2013 American Chemical Society.

  7. Hollow Fiber Space Water Membrane Evaporator Flight Prototype Design and Testing

    Science.gov (United States)

    Bue, Grant C.; Makinen, Janice; Vogel, Mtthew; Honas, Matt; Dillon, Paul; Colunga, Aaron; Truong, Lily; Porwitz, Darwin; Tsioulos, Gus

    2011-01-01

    The spacesuit water membrane evaporator (SWME) is being developed to perform thermal control for advanced spacesuits and to take advantage of recent advances in micropore membrane technology. This results in a robust heat-rejection device that is potentially less sensitive to contamination than is the sublimator. The current design was based on a previous design that grouped the fiber layers into stacks, which were separated by small spaces and packaged into a cylindrical shape. This was developed into a full-scale prototype consisting of 14,300 tube bundled into 30 stacks, each of which is formed into a chevron shape and separated by spacers and organized into three sectors of 10 nested stacks. The new design replaced metal components with plastic ones, eliminated the spacers, and has a custom built flight like backpressure valve mounted on the side of the SWME housing to reduce backpressure when fully open. A number of tests were performed in order to improve the strength of the polyurethane header that holds the fibers in place while the system is pressurized. Vacuum chamber testing showed similar heat rejection as a function of inlet water temperature and water vapor backpressure was similar to the previous design. Other tests pushed the limits of tolerance to freezing and showed suitability to reject heat in a Mars pressure environment with and without a sweep gas. Tolerance to contamination by constituents expected to be found in potable water produced by distillation processes was tested in a conventional way by allowing constituents to accumulate in the coolant as evaporation occurs. For this purpose, the SWME cartridge has endured an equivalent of 30 EVAs exposure and demonstrated acceptable performance decline.

  8. Development and evaluation of elastomeric hollow fiber membranes as small diameter vascular graft substitutes

    Energy Technology Data Exchange (ETDEWEB)

    Mercado-Pagán, Ángel E.; Kang, Yunqing [Department of Orthopedic Surgery, Stanford University, Stanford, CA (United States); Findlay, Michael W. [Department of Plastic and Reconstructive Surgery, Stanford University, Stanford, CA (United States); University of Melbourne Department of Surgery, Royal Melbourne Hospital, Parkville, VIC (Australia); Yang, Yunzhi, E-mail: ypyang@stanford.edu [Department of Orthopedic Surgery, Stanford University, Stanford, CA (United States); Department of Materials Science and Engineering, Stanford University, Stanford, CA (United States)

    2015-04-01

    Engineering of small diameter (< 6 mm) vascular grafts (SDVGs) for clinical use remains a significant challenge. Here, elastomeric polyester urethane (PEU)-based hollow fiber membranes (HFMs) are presented as an SDVG candidate to target the limitations of current technologies and improve tissue engineering designs. HFMs are fabricated by a simple phase inversion method. HFM dimensions are tailored through adjustments to fabrication parameters. The walls of HFMs are highly porous. The HFMs are very elastic, with moduli ranging from 1–4 MPa, strengths from 1–5 MPa, and max strains from 300–500%. Permeability of the HFMs varies from 0.5–3.5 × 10{sup −6} cm/s, while burst pressure varies from 25 to 35 psi. The suture retention forces of HFMs are in the range of 0.8 to 1.2 N. These properties match those of blood vessels. A slow degradation profile is observed for all HFMs, with 71 to 78% of the original mass remaining after 8 weeks, providing a suitable profile for potential cellular incorporation and tissue replacement. Both human endothelial cells and human mesenchymal stem cells proliferate well in the presence of HFMs up to 7 days. These results demonstrate a promising customizable PEU HFMs for small diameter vascular repair and tissue engineering applications. - Highlights: • Hollow fiber membranes (HFMs) were fabricated and evaluated. • HFM properties could be tailored through adjustments to fabrication parameters. • Properties could match or exceed those of blood vessels. • HFM showed excellent compatibility in vitro. • HFMs have the potential to be used for small diameter vascular grafts.

  9. Synthesis and characterization of polycaprolactone urethane hollow fiber membranes as small diameter vascular grafts

    Energy Technology Data Exchange (ETDEWEB)

    Mercado-Pagán, Ángel E. [Department of Orthopedic Surgery, Stanford University, Stanford, CA (United States); Stahl, Alexander M. [Department of Orthopedic Surgery, Stanford University, Stanford, CA (United States); Department of Chemistry, Stanford University, Stanford, CA (United States); Ramseier, Michelle L. [Department of Orthopedic Surgery, Stanford University, Stanford, CA (United States); Department of Chemical Engineering, Stanford University, Stanford, CA (United States); Behn, Anthony W. [Department of Orthopedic Surgery, Stanford University, Stanford, CA (United States); Yang, Yunzhi, E-mail: ypyang@stanford.edu [Department of Orthopedic Surgery, Stanford University, Stanford, CA (United States); Department of Materials Science and Engineering, Stanford University, Stanford, CA (United States); Department of Bioengineering, Stanford University, Stanford, CA (United States)

    2016-07-01

    The design of bioresorbable synthetic small diameter (< 6 mm) vascular grafts (SDVGs) capable of sustaining long-term patency and endothelialization is a daunting challenge in vascular tissue engineering. Here, we synthesized a family of biocompatible and biodegradable polycaprolactone (PCL) urethane macromers to fabricate hollow fiber membranes (HFMs) as SDVG candidates, and characterized their mechanical properties, degradability, hemocompatibility, and endothelial development. The HFMs had smooth surfaces and porous internal structures. Their tensile stiffness ranged from 0.09 to 0.11 N/mm and their maximum tensile force from 0.86 to 1.03 N, with minimum failure strains of approximately 130%. Permeability varied from 1 to 14 × 10{sup −6} cm/s, burst pressures from 1158 to 1468 mm Hg, and compliance from 0.52 to 1.48%/100 mm Hg. The suture retention forces ranged from 0.55 to 0.81 N. HFMs had slow degradation profiles, with 15 to 30% degradation after 8 weeks. Human endothelial cells proliferated well on the HFMs, creating stable cell layer coverage. Hemocompatibility studies demonstrated low hemolysis (< 2%), platelet activation, and protein adsorption. There were no significant differences in the hemocompatibility of HFMs in the absence and presence of endothelial layers. These encouraging results suggest great promise of our newly developed materials and biodegradable elastomeric HFMs as SDVG candidates. - Highlights: • Polyester urethane hollow fiber membranes (HFMs) were fabricated and evaluated. • HFM properties varied according to composition. • HFM inner and outer surfaces were successfully seeded with cells. • HFMs showed excellent hemocompatibility in vitro. • HFM has the potential to be used for small diameter vascular grafts.

  10. Development and evaluation of elastomeric hollow fiber membranes as small diameter vascular graft substitutes

    International Nuclear Information System (INIS)

    Mercado-Pagán, Ángel E.; Kang, Yunqing; Findlay, Michael W.; Yang, Yunzhi

    2015-01-01

    Engineering of small diameter (< 6 mm) vascular grafts (SDVGs) for clinical use remains a significant challenge. Here, elastomeric polyester urethane (PEU)-based hollow fiber membranes (HFMs) are presented as an SDVG candidate to target the limitations of current technologies and improve tissue engineering designs. HFMs are fabricated by a simple phase inversion method. HFM dimensions are tailored through adjustments to fabrication parameters. The walls of HFMs are highly porous. The HFMs are very elastic, with moduli ranging from 1–4 MPa, strengths from 1–5 MPa, and max strains from 300–500%. Permeability of the HFMs varies from 0.5–3.5 × 10 −6 cm/s, while burst pressure varies from 25 to 35 psi. The suture retention forces of HFMs are in the range of 0.8 to 1.2 N. These properties match those of blood vessels. A slow degradation profile is observed for all HFMs, with 71 to 78% of the original mass remaining after 8 weeks, providing a suitable profile for potential cellular incorporation and tissue replacement. Both human endothelial cells and human mesenchymal stem cells proliferate well in the presence of HFMs up to 7 days. These results demonstrate a promising customizable PEU HFMs for small diameter vascular repair and tissue engineering applications. - Highlights: • Hollow fiber membranes (HFMs) were fabricated and evaluated. • HFM properties could be tailored through adjustments to fabrication parameters. • Properties could match or exceed those of blood vessels. • HFM showed excellent compatibility in vitro. • HFMs have the potential to be used for small diameter vascular grafts

  11. Impact of operation conditions, foulant adsorption, and chemical cleaning on the nanomechanical properties of ultrafiltraion hollow fiber membranes

    KAUST Repository

    Gutierrez, Leonardo

    2018-04-06

    This study analyzed the change in nanomechanical properties of ultrafiltration hollow fiber membranes harvested from pilot-scale units after twelve months of operation. Quantitative Nanomechanical Mapping technique was used to distinguish between adhesion, dissipation, deformation, and modulus while simultaneously generating a topographic image of membranes. Nanomechanical maps of virgin membranes evidenced surfaces of heterogeneous properties and were described by probability density functions. Operating conditions and feed quality exerted an impact on membranes. Clean harvested membranes showed a higher mean modulus and dissipation, and a lower deformation than virgin membranes, indicating stiffer membranes of lower elastic deformation. A significant fraction of these measurements displayed peak values deviating from the distribution; which represents regions of the membrane with properties highly differing from the probability density function. The membrane polymeric material experienced severe physicochemical changes by foulant adsorption and reaction with cleaning agents. Foulant adsorption on membranes was heterogeneous in both morphology and mechanical properties and could not be statistically described. Foulants, i.e., mainly consisting of polysaccharides and proteinaceous structures, displayed low elastic deformation and high roughness and adhesion. The presence of foulants after chemical cleaning and their high adhesion would be a direct nanoscale evidence of irreversible fouling. By the end of the operation, the Trans-Membrane Pressure experienced a 40% increase. The cleaning process was not able to fully recover the initial TMP, indicating irreversible fouling, i.e., permanent change in membrane characteristics and decrease in performance. These results suggest a link between the macroscopic properties and nanomechanical characteristics of membranes. This study advances our nanoscale understanding of the impact of fouling and operating conditions on

  12. Properties of Fiber Cell Plasma Membranes Isolated from the Cortex and Nucleus of the Porcine Eye Lens

    Science.gov (United States)

    Mainali, Laxman; Raguz, Marija; O’Brien, William J.; Subczynski, Witold K.

    2012-01-01

    The organization and physical properties of the lipid bilayer portion of intact cortical and nuclear fiber cell plasma membranes isolated from the eyes lenses of two-year-old pigs were studied using electron paramagnetic resonance (EPR) spin-labeling. Membrane fluidity, hydrophobicity, and the oxygen transport parameter (OTP) were assessed from the EPR spectra of precisely positioned spin labels. Intact cortical and nuclear membranes, which include membrane proteins, were found to contain three distinct lipid environments. These lipid environments were termed the bulk lipid domain, boundary lipid domain, and trapped lipid domain (lipids in protein aggregates). The amount of boundary and trapped lipids was greater in intact nuclear membranes than in cortical membranes. The properties of intact membranes were compared with the organization and properties of lens lipid membranes made of the total lipid extracts from the lens cortex or nucleus. In cortical lens lipid membranes, only one homogenous environment was detected, which was designated as a bulk lipid domain (phospholipid bilayer saturated with cholesterol). Lens lipid membranes prepared from the lens nucleus possessed two domains, assigned as a bulk lipid domain and a cholesterol bilayer domain (CBD). In intact nuclear membranes, it was difficult to discriminate the CBD, which was clearly detected in nuclear lens lipid membranes because the OTP measured in the CBD is the same as in the domain formed by trapped lipids. The two domains unique to intact membranes—namely, the domain formed by boundary lipids and the domain formed by trapped lipids—were most likely formed due to the presence of membrane proteins. It is concluded that formation of rigid and practically impermeable domains is enhanced in the lens nucleus, indicating changes in membrane composition that may help to maintain low oxygen concentration in this lens region. PMID:22326289

  13. Oral fast-dissolving drug delivery membranes prepared from electrospun polyvinylpyrrolidone ultrafine fibers

    International Nuclear Information System (INIS)

    Yu Dengguang; Shen Xiaxia; Zhu Limin; Branford-White, Chris; White, Kenneth; Annie Bligh, S W

    2009-01-01

    Oral fast-dissolving drug delivery membranes (FDMs) for poorly water-soluble drugs were prepared via electrospinning technology with ibuprofen as the model drug and polyvinylpyrrolidone (PVP) K30 as the filament-forming polymer and drug carrier. Results from differential scanning calorimetry, x-ray diffraction, and morphological observations demonstrated that ibuprofen was distributed in the ultrafine fibers in the form of nanosolid dispersions and the physical status of drug was an amorphous or molecular form, different from that of the pure drug and a physical mixture of PVP and ibuprofen. Fourier-transform infrared spectroscopy results illustrated that the main interactions between PVP and ibuprofen were mediated through hydrogen bonding. Pharmacotechnical tests showed that FDMs with different drug contents had almost the same wetting and disintegrating times, about 15 and 8 s, respectively, but significantly different drug dissolution rates due to the different physical status of the drug and the different drug-release-controlled mechanisms. 84.9% and 58.7% of ibuprofen was released in the first 20 s for FDMs with a drug-to-PVP ratio of 1:4 and 1:2, respectively. Electrospun ultrafine fibers have the potential to be used as solid dispersions to improve the dissolution profiles of poorly water-soluble drugs or as oral fast disintegrating drug delivery systems.

  14. Development of centrifugal contactor for FBR fuel reprocessing

    International Nuclear Information System (INIS)

    Washiya, Tadahiro; Takeuchi, Masayuki; Suganuma, Takashi; Aose, Shinichi; Ogino, Hideki

    2003-01-01

    In the Feasibility Study on Commercialized Fast Reactor Cycle Systems, the aqueous reprocessing technology is nominated as a candidate for future reprocessing system, which supposes to apply a centrifugal contactor in the extraction process. For the reprocessing plant, the centrifugal contactor has great advantages such as reducing solvent degradation, improving of equipment utilization rate, compact designing of equipment layout and critical safety domination. From these advantages, the centrifugal contactor is crucial equipment in the aqueous reprocessing process. Since 1985, JNC has been developing the centrifugal contactor. The single unit development has been accomplished and basic characteristics such as extraction performance, fluidic performance and remote maintenance performance have been determined. A durability test has been conducted for high longevity, with consideration given to the nitric acid mist and estimation of the equipment lifetime. System test equipment with centrifugal contactors of engineering scale was installed, and uranium test was conducted. Up to now, a standard flow sheet test in the extraction process and mal-operation test assuming the one stage shutdown condition have been performed. (author)

  15. Transport of strontium and some 1. and 2. group's cations through hollow fiber supported liquid membranes using crowns

    International Nuclear Information System (INIS)

    Mackova, J.

    1996-01-01

    Models which describe the permeation of strontium cation through liquid membranes are shown in this paper. Partition coefficients have been determined radiometrically, using Sr-85 tracer. The results were treated according to the theory developed by Danesi using simple equation. The permeation of Sr 2+ using 18-crown-6 crown ether (18C6) and picric acid in bulk liquid toluene membrane systems with and without surface/active substances (SPAN 80, ECA 4360) has been studied. The transport of Sr 2+ using 18-C-6 ether as a carrier and picrate as a co-counter ion through hollow fiber supported dichlorobenzene liquid membrane has been studied too. A polypropylene hollow fiber ACCUREL PP type S6/ENKA and a permeation device with a single hollow fiber module with on-line radiometric detection of strontium using Sr-85 tracer, was used. This type of permeation system has shown reproducible results, fast and effective permeation. Results prove the possible mechanism of strontium cation transport though liquid membrane. Another subject of study was the transport of metal ions (Ca 2+ , Sr 2+ , Ba 2+ , Na + , K + , Cs + ) using (18C6) as a carrier and picrate as co/counter ion through hollow fiber supported dichlorobenzene liquid membrane using capillary isotachophoresis (ITP) measurement of the cations concentration. The experimental results obtained using ITP method for Sr 2+ concentration determination are in good agreement with those obtained by on-line radiometric detection using Sr-85 tracer, under the same conditions (feed, membrane, strip, hollow fiber and the same pertraction device). The ITP method could be successfully used for analyses of samples containing a mixture of all separated cations. The results of this study indicate that the polypropylene hollow fiber supported dichlorobenzene membrane is suitable for studied metal cation transport using 18C6 as a carrier and a picrate as co-counter ion. This combination enables fast and effective cation separation. The

  16. Understanding the risk of scaling and fouling in hollow fiber forward osmosis membrane application

    KAUST Repository

    Majeed, Tahir; Phuntsho, Sherub; Jeong, Sanghyun; Zhao, Yanxia; Gao, Baoyu; Shon, Ho Kyong

    2016-01-01

    Fouling studies of forward osmosis (FO) were mostly conducted based on fouling evaluation principals applied to pressure membrane processes such as reverse osmosis (RO)/nanofiltration (NF)/microfiltration (MF)/ultrafiltration (UF). For RO/NF/MF/UF processes, the single flux driving force (hydraulic pressure) remains constant, thus the fouling effect is easily evaluated by comparing flux data with the baseline. Whilst, the scenario of fouling effects for FO process is entirely different from RO/NF/MF/UF processes. Continuously changing driving force (osmotic pressure difference), the changes in concentration polarization associated with the varying draw solution/feed solution concentration and the fouling layer effects collectively influence the FO flux. Thus, usual comparison of the FO flux outcome with the baseline results can not exactly indicate the real affect of membrane fouling, rather presents a misleading cumulative effect. This study compares the existing FO fouling technique with an alternate fouling evaluation approach using two FO set-ups. Scaling and fouling risk for hollow fiber FO was separately investigated using synthetic water samples and model organic foulants as alginate, humic acid and bovine serum albumin. Results indicated that FO flux declines up to 5% and 49% in active layer-feed solution and active layer-draw solution orientations respectively.

  17. Understanding the risk of scaling and fouling in hollow fiber forward osmosis membrane application

    KAUST Repository

    Majeed, Tahir

    2016-06-23

    Fouling studies of forward osmosis (FO) were mostly conducted based on fouling evaluation principals applied to pressure membrane processes such as reverse osmosis (RO)/nanofiltration (NF)/microfiltration (MF)/ultrafiltration (UF). For RO/NF/MF/UF processes, the single flux driving force (hydraulic pressure) remains constant, thus the fouling effect is easily evaluated by comparing flux data with the baseline. Whilst, the scenario of fouling effects for FO process is entirely different from RO/NF/MF/UF processes. Continuously changing driving force (osmotic pressure difference), the changes in concentration polarization associated with the varying draw solution/feed solution concentration and the fouling layer effects collectively influence the FO flux. Thus, usual comparison of the FO flux outcome with the baseline results can not exactly indicate the real affect of membrane fouling, rather presents a misleading cumulative effect. This study compares the existing FO fouling technique with an alternate fouling evaluation approach using two FO set-ups. Scaling and fouling risk for hollow fiber FO was separately investigated using synthetic water samples and model organic foulants as alginate, humic acid and bovine serum albumin. Results indicated that FO flux declines up to 5% and 49% in active layer-feed solution and active layer-draw solution orientations respectively.

  18. Simulation of photobioreaction for hydrogen production in membrane bioreactor with an optical fiber

    Science.gov (United States)

    Yang, Yanxia; Li, Jing

    2018-05-01

    A generalized lattice Boltzmann (LB) model for porous media is adopted to simulate the hydrodynamics and mass transport combined with biodegradation in membrane bioreactor with a circular optical fiber. The LB model is coupled with a multi-block scheme, as well as non-equilibrium extrapolation method for boundary condition treatment. The effect of porosity and permeability (represented by Darcy number Da) of biofilm on flow and concentration fields are investigated. The performance of biodegradation is evaluated by substrate consumption efficiency. Higher porosity and permeability of biofilm facilitate mass transport of substance and enhance the metabolic activity of bacteria in biofilm, which results in the optimal biodegradation performance is obtained under the condition of Da = 0.001 and ɛ =0.3. For further increasing of these parameters, the substrate consumption efficiency decreases due to the inhibition effect of substrate and shorter hydraulic retention time. Furthermore, the LB results coincide with experimental results, demonstrating that the LB model for porous media is available to optimize the membrane bioreactor for efficient biodegradation.

  19. Fabrication of Functionalized MOFs Incorporated Mixed Matrix Hollow Fiber Membrane for Gas Separation

    Directory of Open Access Journals (Sweden)

    Haitao Zhu

    2017-01-01

    Full Text Available The metal-organic framework (MOFs of MIL-53 was functionalized by aminosilane grafting and then incorporated into Ultem®1000 polymer matrix to fabricate mixed matrix hollow fiber membrane (MMHFM with high separation performance. SEM, XRD, and TGA were performed to characterize the functionalized MIL-53 and prepared MMHFM. The filler particles were embedded in membrane successfully and dispersed well in the polymer matrix. The incorporation of MOFs endowed MMHFM better thermal stability. Moreover, effects of solvent ratio in spinning dope, spinning condition, and testing temperature on gas separation performance of MMHFM were investigated. By optimizing dope composition, air gap distance, and bore fluid composition, MMHFM containing functionalized MIL-53 achieved excellent gas permeance and CO2/N2 selectivity. The CO2 permeance increased from 12.2 GPU for pure Ultem HFM to 30.9 GPU and the ideal CO2/N2 selectivity was enhanced from 25.4 to 34.7 simultaneously. Additionally, gas permeance increased but the selectivity decreased with the temperature increase, which followed the solution-diffusion based transport mechanism.

  20. Ion-Exchanged SAPO-34 Membranes for Krypton-Xenon Separation: Control of Permeation Properties and Fabrication of Hollow Fiber Membranes.

    Science.gov (United States)

    Kwon, Yeon Hye; Min, Byunghyun; Yang, Shaowei; Koh, Dong-Yeun; Bhave, Ramesh R; Nair, Sankar

    2018-02-21

    Separation of radioisotope 85 Kr from 136 Xe is of importance in used nuclear fuel reprocessing. Membrane separation based on zeolite molecular sieves such as chabazite SAPO-34 is an attractive alternative to energy-intensive cryogenic distillation. We report the synthesis of SAPO-34 membranes with considerably enhanced performance via thickness reduction based upon control of a steam-assisted vapor-solid conversion technique followed by ion exchange with alkali metal cations. The reduction of membrane thickness leads to a large increase in Kr permeance from 7.5 to 26.3 gas permeation units (GPU) with ideal Kr/Xe selectivities >20 at 298 K. Cation-exchanged membranes show large (>50%) increases in selectivity at ambient or slight subambient conditions. The adsorption, diffusion, and permeation characteristics of ion-exchanged SAPO-34 materials and membranes are investigated in detail, with potassium-exchanged SAPO-34 membranes showing particularly attractive performance. We then demonstrate the fabrication of selective SAPO-34 membranes on α-alumina hollow fibers.

  1. Voltage-Gated Transport of Nanoparticles across Free-Standing All-Carbon-Nanotube-Based Hollow-Fiber Membranes.

    Science.gov (United States)

    Wei, Gaoliang; Quan, Xie; Chen, Shuo; Fan, Xinfei; Yu, Hongtao; Zhao, Huimin

    2015-07-15

    Understanding the mechanism underlying controllable transmembrane transport observed in biological membranes benefits the development of next-generation separation membranes for a variety of important applications. In this work, on the basis of common structural features of cell membranes, a very simple biomimetic membrane system exhibiting gated transmembrane performance has been constructed using all-carbon-nanotube (CNT)-based hollow-fiber membranes. The conductive CNT membranes with hydrophobic pore channels can be positively or negatively charged and are consequently capable of regulating the transport of nanoparticles across their pore channels by their "opening" or "closing". The switch between penetration and rejection of nanoparticles through/by CNT membranes is of high efficiency and especially allows dynamic control. The underlying mechanism is that CNT pore channels with different polarities can prompt or prevent the formation of their noncovalent interactions with charged nanoparticles, resulting in their rejection or penetration by/through the CNT membranes. The theory about noncovalent interactions and charged pore channels may provide new insight into understanding the complicated ionically and bimolecularly gated transport across cell membranes and can contribute to many other important applications beyond the water purification and resource recovery demonstrated in this study.

  2. A high-flux polyimide hollow fiber membrane to minimize footprint and energy penalty for CO2 recovery from flue gas

    KAUST Repository

    Lively, Ryan P.; Dose, Michelle E.; Xu, Liren; Vaughn, Justin T.; Johnson, J.R.; Thompson, Joshua A.; Zhang, Ke; Lydon, Megan E.; Lee, Jong-Suk; Liu, Lu; Hu, Zushou; Karvan, Oĝuz; Realff, Matthew J.; Koros, William J.

    2012-01-01

    FDA-DAM:DABA(4:1) matrix was observed. CO 2 capture costs of $27/ton of CO 2 using the current, "non-optimized" membrane are estimated using a custom counterflow membrane model. Hollow fiber membrane modules were estimated to have order

  3. Highly Sensitive Temperature Sensors Based on Fiber-Optic PWM and Capacitance Variation Using Thermochromic Sensing Membrane

    Directory of Open Access Journals (Sweden)

    Md. Rajibur Rahaman Khan

    2016-07-01

    Full Text Available In this paper, we propose a temperature/thermal sensor that contains a Rhodamine-B sensing membrane. We applied two different sensing methods, namely, fiber-optic pulse width modulation (PWM and an interdigitated capacitor (IDC-based temperature sensor to measure the temperature from 5 °C to 100 °C. To the best of our knowledge, the fiber-optic PWM-based temperature sensor is reported for the first time in this study. The proposed fiber-optic PWM temperature sensor has good sensing ability; its sensitivity is ~3.733 mV/°C. The designed temperature-sensing system offers stable sensing responses over a wide dynamic range, good reproducibility properties with a relative standard deviation (RSD of ~0.021, and the capacity for a linear sensing response with a correlation coefficient of R2 ≈ 0.992 over a wide sensing range. In our study, we also developed an IDC temperature sensor that is based on the capacitance variation principle as the IDC sensing element is heated. We compared the performance of the proposed temperature-sensing systems with different fiber-optic temperature sensors (which are based on the fiber-optic wavelength shift method, the long grating fiber-optic Sagnac loop, and probe type fiber-optics in terms of sensitivity, dynamic range, and linearity. We observed that the proposed sensing systems have better sensing performance than the above-mentioned sensing system.

  4. Applicability of hydroxylamine nitrate reductant in pulse-column contactors

    International Nuclear Information System (INIS)

    Reif, D.J.

    1983-05-01

    Uranium and plutonium separations were made from simulated breeder reactor spent fuel dissolver solution with laboratory-sized pulse column contactors. Hydroxylamine nitrate (HAN) was used for reduction of plutonium (1V). An integrated extraction-partition system, simulating a breeder fuel reprocessing flowsheet, carried out a partial partition of uranium and plutonium in the second contactor. Tests have shown that acceptable coprocessing can be ontained using HAN as a plutonium reductant. Pulse column performance was stable even though gaseous HAN oxidation products were present in the column. Gas evolution rates up to 0.27 cfm/ft 2 of column cross section were tested and found acceptable

  5. Pressure retarded osmosis dual-layer hollow fiber membranes developed by co-casting method and ammonium persulfate (APS) treatment

    KAUST Repository

    Fu, Fengjiang; Sun, Shipeng; Zhang, Sui; Chung, Neal Tai-Shung

    2014-01-01

    Delamination and low water permeability are two issues limiting the applications of dual-layer hollow fiber membranes in the pressure retarded osmosis (PRO) process. In this work, we first developed a universal co-casting method that is able to co-cast highly viscous dope solutions to form homogeneous dual-layer flat sheet membranes. By employing this method prior to the tedious dual-layer hollow fiber spinning process, both time and material consumptions are significantly saved. The addition of polyvinylpyrrolidone (PVP) is found to eliminate delamination at the sacrifice of water flux. A new post-treatment method that involves flowing ammonium persulfate (APS) solution and DI water counter-currently is potentially to remove the PVP molecules entrapped in the substrate while keeps the integrity of the interface. As the APS concentration increases, the water flux in the PRO process is increased while the salt leakage is slightly decreased. With the optimized APS concentration of 5wt%, the post-treated membrane shows a maximum power density of 5.10W/m2 at a hydraulic pressure of 15.0bar when 1M NaCl and 10mM NaCl were used as the draw and feed solutions, respectively. To the extent of our knowledge, this is the best phase inversion dual-layer hollow fiber membrane with an outer selective layer for osmotic power generation. © 2014 Elsevier B.V.

  6. Pressure retarded osmosis dual-layer hollow fiber membranes developed by co-casting method and ammonium persulfate (APS) treatment

    KAUST Repository

    Fu, Fengjiang

    2014-11-01

    Delamination and low water permeability are two issues limiting the applications of dual-layer hollow fiber membranes in the pressure retarded osmosis (PRO) process. In this work, we first developed a universal co-casting method that is able to co-cast highly viscous dope solutions to form homogeneous dual-layer flat sheet membranes. By employing this method prior to the tedious dual-layer hollow fiber spinning process, both time and material consumptions are significantly saved. The addition of polyvinylpyrrolidone (PVP) is found to eliminate delamination at the sacrifice of water flux. A new post-treatment method that involves flowing ammonium persulfate (APS) solution and DI water counter-currently is potentially to remove the PVP molecules entrapped in the substrate while keeps the integrity of the interface. As the APS concentration increases, the water flux in the PRO process is increased while the salt leakage is slightly decreased. With the optimized APS concentration of 5wt%, the post-treated membrane shows a maximum power density of 5.10W/m2 at a hydraulic pressure of 15.0bar when 1M NaCl and 10mM NaCl were used as the draw and feed solutions, respectively. To the extent of our knowledge, this is the best phase inversion dual-layer hollow fiber membrane with an outer selective layer for osmotic power generation. © 2014 Elsevier B.V.

  7. A novel anaerobic electrochemical membrane bioreactor (AnEMBR) with conductive hollow-fiber membrane for treatment of low-organic strength solutions

    KAUST Repository

    Katuri, Krishna; Werner, Craig M.; Jimenez Sandoval, Rodrigo J.; Chen, Wei; Jeon, Sungil; Logan, Bruce E.; Lai, Zhiping; Amy, Gary L.; Saikaly, Pascal

    2014-01-01

    A new anaerobic treatment system that combined a microbial electrolysis cell (MEC) with membrane filtration using electrically conductive, porous, nickel-based hollow-fiber membranes (Ni-HFMs) was developed to treat low organic strength solution and recover energy in the form of biogas. This new system is called an anaerobic electrochemical membrane bioreactor (AnEMBR). The Ni-HFM served the dual function as the cathode for hydrogen evolution reaction (HER) and the membrane for filtration of the effluent. The AnEMBR system was operated for 70 days with synthetic acetate solution having a chemical oxygen demand (COD) of 320 mg/L. Removal of COD was >95% at all applied voltages tested. Up to 71% of the substrate energy was recovered at an applied voltage of 0.7 V as methane rich biogas (83% CH4; < 1% H2) due to biological conversion of the hydrogen evolved at the cathode to methane. A combination of factors (hydrogen bubble formation, low cathode potential and localized high pH at the cathode surface) contributed to reduced membrane fouling in the AnEMBR compared to the control reactor (open circuit voltage). The net energy required to operate the AnEMBR system at an applied voltage of 0.7 V was significantly less (0.27 kWh/m3) than that typically needed for wastewater treatment using aerobic membrane bioreactors (1-2 kWh/m3).

  8. A novel anaerobic electrochemical membrane bioreactor (AnEMBR) with conductive hollow-fiber membrane for treatment of low-organic strength solutions

    KAUST Repository

    Katuri, Krishna

    2014-11-04

    A new anaerobic treatment system that combined a microbial electrolysis cell (MEC) with membrane filtration using electrically conductive, porous, nickel-based hollow-fiber membranes (Ni-HFMs) was developed to treat low organic strength solution and recover energy in the form of biogas. This new system is called an anaerobic electrochemical membrane bioreactor (AnEMBR). The Ni-HFM served the dual function as the cathode for hydrogen evolution reaction (HER) and the membrane for filtration of the effluent. The AnEMBR system was operated for 70 days with synthetic acetate solution having a chemical oxygen demand (COD) of 320 mg/L. Removal of COD was >95% at all applied voltages tested. Up to 71% of the substrate energy was recovered at an applied voltage of 0.7 V as methane rich biogas (83% CH4; < 1% H2) due to biological conversion of the hydrogen evolved at the cathode to methane. A combination of factors (hydrogen bubble formation, low cathode potential and localized high pH at the cathode surface) contributed to reduced membrane fouling in the AnEMBR compared to the control reactor (open circuit voltage). The net energy required to operate the AnEMBR system at an applied voltage of 0.7 V was significantly less (0.27 kWh/m3) than that typically needed for wastewater treatment using aerobic membrane bioreactors (1-2 kWh/m3).

  9. Preparation of Sulfobetaine-Grafted PVDF Hollow Fiber Membranes with a Stably Anti-Protein-Fouling Performance

    Directory of Open Access Journals (Sweden)

    Qian Li

    2014-04-01

    Full Text Available Based on a two-step polymerization method, two sulfobetaine-based zwitterionic monomers, including 3-(methacryloylamino propyl-dimethyl-(3-sulfopropyl ammonium hydroxide (MPDSAH and 2-(methacryloyloxyethyl ethyl-dimethyl-(3-sulfopropyl ammonium (MEDSA, were successfully grafted from poly(vinylidene fluoride (PVDF hollow fiber membrane surfaces in the presence of N,N′-methylene bisacrylamide (MBAA as a cross-linking agent. The mechanical properties of the PVDF membrane were improved by the zwitterionic surface layers. The surface hydrophilicity of PVDF membranes was significantly enhanced and the polyMPDSAH-g-PVDF membrane showed a higher hydrophilicity due to the higher grafting amount. Compared to the polyMEDSA-g-PVDF membrane, the polyMPDSAH-g-PVDF membrane showed excellent significantly better anti-protein-fouling performance with a flux recovery ratio (RFR higher than 90% during the cyclic filtration of a bovine serum albumin (BSA solution. The polyMPDSAH-g-PVDF membrane showed an obvious electrolyte-responsive behavior and its protein-fouling-resistance performance was improved further during the filtration of the protein solution with 100 mmol/L of NaCl. After cleaned with a membrane cleaning solution for 16 days, the grafted MPDSAH layer on the PVDF membrane could be maintain without any chang; however, the polyMEDSA-g-PVDF membrane lost the grafted MEDSA layer after this treatment. Therefore, the amide group of sulfobetaine, which contributed significantly to the higher hydrophilicity and stability, was shown to be imperative in modifying the PVDF membrane for a stable anti-protein-fouling performance via the two-step polymerization method.

  10. Water reclamation from emulsified oily wastewater via effective forward osmosis hollow fiber membranes under the PRO mode.

    Science.gov (United States)

    Han, Gang; de Wit, Jos S; Chung, Tai-Shung

    2015-09-15

    By using a novel hydrophilic cellulose acetate butyrate (CAB) as the membrane material for the hollow fiber substrate and modifying its outer surface by polydopamine (PDA) coating and inner surface by interfacial polymerization, we have demonstrated that the thin-film composite (TFC) membranes can be effectively used for sustainable water reclamation from emulsified oil/water streams via forward osmosis (FO) under the pressure retarded osmosis (PRO) mode. The newly developed TFC-FO hollow fiber membrane shows characteristics of high water flux, outstanding salt and oil rejection, and low fouling propensity. Under the PRO mode, the newly developed TFC-FO membrane exhibits a water flux of 37.1 L m(-2) h(-1) with an oil rejection of 99.9% using a 2000 ppm soybean oil/water emulsion as the feed and 1 M NaCl as the draw solution. Remarkable anti-fouling behaviors have also been observed. Under the PRO mode, the water flux decline is only 10% of the initial value even after a 12 h test for oil/water separation. The water flux of the fouled membrane can be effectively restored to 97% of the original value by water rinses on the fiber outer surface without using any chemicals. Furthermore, the flux declines are only 25% and 52% when the water recovery of a 2000 ppm soybean oil/water emulsion and a 2000 ppm petroleum oil/water emulsion containing 0.04 M NaCl reaches 82%, respectively. This study may not only provide insightful guidelines for the fabrication of effective TFC-FO membranes with high performance and low fouling behaviors for oily wastewater under the PRO mode but also add an alternative perspective to the design of new materials for water purification purposes. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Lipid domains in intact fiber-cell plasma membranes isolated from cortical and nuclear regions of human eye lenses of donors from different age groups.

    Science.gov (United States)

    Raguz, Marija; Mainali, Laxman; O'Brien, William J; Subczynski, Witold K

    2015-03-01

    The results reported here clearly document changes in the properties and the organization of fiber-cell membrane lipids that occur with age, based on electron paramagnetic resonance (EPR) analysis of lens membranes of clear lenses from donors of age groups from 0 to 20, 21 to 40, and 61 to 80 years. The physical properties, including profiles of the alkyl chain order, fluidity, hydrophobicity, and oxygen transport parameter, were investigated using EPR spin-labeling methods, which also provide an opportunity to discriminate coexisting lipid domains and to evaluate the relative amounts of lipids in these domains. Fiber-cell membranes were found to contain three distinct lipid environments: bulk lipid domain, which appears minimally affected by membrane proteins, and two domains that appear due to the presence of membrane proteins, namely boundary and trapped lipid domains. In nuclear membranes the amount of boundary and trapped phospholipids as well as the amount of cholesterol in trapped lipid domains increased with the donors' age and was greater than that in cortical membranes. The difference between the amounts of lipids in domains uniquely formed due to the presence of membrane proteins in nuclear and cortical membranes increased with the donors' age. It was also shown that cholesterol was to a large degree excluded from trapped lipid domains in cortical membranes. It is evident that the rigidity of nuclear membranes was greater than that of cortical membranes for all age groups. The amount of lipids in domains of low oxygen permeability, mainly in trapped lipid domains, were greater in nuclear than cortical membranes and increased with the age of donors. These results indicate that the nuclear fiber cell plasma membranes were less permeable to oxygen than cortical membranes and become less permeable to oxygen with age. In clear lenses, age-related changes in the lens lipid and protein composition and organization appear to occur in ways that increase fiber

  12. Enhanced mechanical properties and cytocompatibility of electrospun poly(L-lactide) composite fiber membranes assisted by polydopamine-coated halloysite nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Chuang; Zou, Ziping [Biomaterial Research Laboratory, Department of Material Science and Engineering, College of Science and Engineering, Jinan University, Guangzhou 510632 (China); Luo, Binghong, E-mail: tluobh@jnu.edu.cn [Biomaterial Research Laboratory, Department of Material Science and Engineering, College of Science and Engineering, Jinan University, Guangzhou 510632 (China); Engineering Research Center of Artificial Organs and Materials, Ministry of Education, Guangzhou 510632 (China); Wen, Wei [Biomaterial Research Laboratory, Department of Material Science and Engineering, College of Science and Engineering, Jinan University, Guangzhou 510632 (China); Engineering Research Center of Artificial Organs and Materials, Ministry of Education, Guangzhou 510632 (China); Li, Huihua [Biomaterial Research Laboratory, Department of Material Science and Engineering, College of Science and Engineering, Jinan University, Guangzhou 510632 (China); Liu, Mingxian [Biomaterial Research Laboratory, Department of Material Science and Engineering, College of Science and Engineering, Jinan University, Guangzhou 510632 (China); Engineering Research Center of Artificial Organs and Materials, Ministry of Education, Guangzhou 510632 (China); Zhou, Changren, E-mail: tcrz9@jnu.edu.cn [Biomaterial Research Laboratory, Department of Material Science and Engineering, College of Science and Engineering, Jinan University, Guangzhou 510632 (China); Engineering Research Center of Artificial Organs and Materials, Ministry of Education, Guangzhou 510632 (China)

    2016-04-30

    Graphical abstract: - Highlights: • D-HNTs was prepared by a facile approach based on the self-polymerization of DOPA. • The D-HNTs can disperse more uniformly in PLLA matrix than untreated HNTs. • The interfacial adhesion between D-HNTs and PLLA matrix was obviously improved. • D-HNTs/PLLA fiber membrane has better tensile properties compared with HNTs/PLLA. • The D-HNTs/PLLA fiber membrane is favorable to cell adhesion and proliferation. - Abstract: To improve the dispersion and interfacial interaction between halloysite nanotubes (HNTs) and poly(L-lactide) (PLLA) matrix, and hence to increase the mechanical properties and cytocompatibility of the HNTs/PLLA composite, a facile approach was developed to prepare polydopamine-coated HNTs (D-HNTs) by the self-polymerization of dopamine (DOPA), and then HNTs and D-HNTs were further introduced into PLLA matrix to fabricate HNTs/PLLA and D-HNTs/PLLA fiber membranes based on electrospinning technique. The successful immobilization of the polydopamine (PDOPA) coating on the surfaces of HNTs was confirmed, and such PDOPA coating played an important role in improving the interfacial interaction between the nanotubes and PLLA matrix. The D-HNTs were dispersed in the matrix more uniformly than untreated HNTs, and relative smooth and uniform fiber were obtained for the D-HNTs/PLLA fiber membrane. As a result, the tensile strength and modulus of the D-HNTs/PLLA fiber membrane were obviously superior to those of the HNTs/PLLA fiber membrane. Cell culture results revealed that D-HNTs/PLLA fiber membrane was more effectively to promote MC3T3-E1 cells adhesion and proliferation than neat PLLA and HNTs/PLLA fiber membrane.

  13. Enhanced mechanical properties and cytocompatibility of electrospun poly(L-lactide) composite fiber membranes assisted by polydopamine-coated halloysite nanotubes

    International Nuclear Information System (INIS)

    Luo, Chuang; Zou, Ziping; Luo, Binghong; Wen, Wei; Li, Huihua; Liu, Mingxian; Zhou, Changren

    2016-01-01

    Graphical abstract: - Highlights: • D-HNTs was prepared by a facile approach based on the self-polymerization of DOPA. • The D-HNTs can disperse more uniformly in PLLA matrix than untreated HNTs. • The interfacial adhesion between D-HNTs and PLLA matrix was obviously improved. • D-HNTs/PLLA fiber membrane has better tensile properties compared with HNTs/PLLA. • The D-HNTs/PLLA fiber membrane is favorable to cell adhesion and proliferation. - Abstract: To improve the dispersion and interfacial interaction between halloysite nanotubes (HNTs) and poly(L-lactide) (PLLA) matrix, and hence to increase the mechanical properties and cytocompatibility of the HNTs/PLLA composite, a facile approach was developed to prepare polydopamine-coated HNTs (D-HNTs) by the self-polymerization of dopamine (DOPA), and then HNTs and D-HNTs were further introduced into PLLA matrix to fabricate HNTs/PLLA and D-HNTs/PLLA fiber membranes based on electrospinning technique. The successful immobilization of the polydopamine (PDOPA) coating on the surfaces of HNTs was confirmed, and such PDOPA coating played an important role in improving the interfacial interaction between the nanotubes and PLLA matrix. The D-HNTs were dispersed in the matrix more uniformly than untreated HNTs, and relative smooth and uniform fiber were obtained for the D-HNTs/PLLA fiber membrane. As a result, the tensile strength and modulus of the D-HNTs/PLLA fiber membrane were obviously superior to those of the HNTs/PLLA fiber membrane. Cell culture results revealed that D-HNTs/PLLA fiber membrane was more effectively to promote MC3T3-E1 cells adhesion and proliferation than neat PLLA and HNTs/PLLA fiber membrane.

  14. Examination of Organic Carryover from 2-cm Contactors to Support the Modular CSSX Unit

    International Nuclear Information System (INIS)

    Nash, Charles A.; Norato, Michael A.; Walker; D. Douglas; Pierce, Robert A.; Eubanks, Ronnye A.; Clark, James D.; Smith, Wilson M. Jr.; Crump, Stephen L.; Nelson, D. Zane; Fink, Samuel D.; Peters, Thomas B.; May, Cecil G.; Herman, David T.; Bolton, Henry L.

    2005-01-01

    A bank of four 2-cm centrifugal contactors was operated in countercurrent fashion to help address questions about organic carryover for the Modular Caustic Side Solvent Extraction (CSSX) Unit (MCU). The contactors, having weirs sized for strip operation, were used to examine carryover for both strip effluent (SE) and decontaminated salt solution (DSS). Since only one bank of contactors was available in the short time frame of this work, the organic phase and only one aqueous phase were present in the flow loops at a time. Personnel maintained flowsheet-typical organic phase to aqueous phase (O:A) flow ratios when varying flow rates. Solvent from two different batches were tested with strip solution. In addition, potential mitigations of pH adjustment and coalescing media were examined. The experiment found that organic carryover after decanting averaged 220 ppm by mass with a range of 74 to 417 ppm of Isopar(reg s ign) L for strip effluent (SE)/organic solvent contacts. These values are based on measured modifier. Values were bounded by a value of 95 ppm based upon Isopar(reg s ign) L values as reported. The higher modifier-based numbers are considered more reliable at this time. Carryover of Isopar(reg s ign) L in DSS simulant averaged 77 ppm by mass with a range of 70 to 88 ppm of Isopar(reg s ign) L based on modifier content. The carryover was bounded by a value of 19 ppm based upon Isopar(reg s ign) L values as reported. More work is needed to resolve the discrepancy between modifier and Isopar(reg s ign) L values. The work did not detect organic droplets greater than 18 microns in SE. Strip output contained droplets down to 0.5 micron in size. Droplets in DSS were almost monodisperse by comparison, having a size range 4.7 +/- 1.6 micron in one test and 5.2 +/- 0.8 micron in the second demonstration. Optical microscopy provided qualitative results confirming the integrity of droplet size measurements in this work. Acidic or basic adjustments of aqueous strip

  15. Examination of Organic Carryover from 2-cm Contactors to Support the Modular CSSX Unit

    Energy Technology Data Exchange (ETDEWEB)

    Nash, Charles A.; Norato, Michael A.; Walker; D. Douglas; Pierce, Robert A.; Eubanks, Ronnye A.; Clark, James D.; Smith, Wilson M. Jr.; Crump, Stephen L.; Nelson, D. Zane; Fink, Samuel D.; Peters, Thomas B.; May, Cecil G.; Herman, David T.; Bolton, Henry L.

    2005-04-29

    A bank of four 2-cm centrifugal contactors was operated in countercurrent fashion to help address questions about organic carryover for the Modular Caustic Side Solvent Extraction (CSSX) Unit (MCU). The contactors, having weirs sized for strip operation, were used to examine carryover for both strip effluent (SE) and decontaminated salt solution (DSS). Since only one bank of contactors was available in the short time frame of this work, the organic phase and only one aqueous phase were present in the flow loops at a time. Personnel maintained flowsheet-typical organic phase to aqueous phase (O:A) flow ratios when varying flow rates. Solvent from two different batches were tested with strip solution. In addition, potential mitigations of pH adjustment and coalescing media were examined. The experiment found that organic carryover after decanting averaged 220 ppm by mass with a range of 74 to 417 ppm of Isopar{reg_sign} L for strip effluent (SE)/organic solvent contacts. These values are based on measured modifier. Values were bounded by a value of 95 ppm based upon Isopar{reg_sign} L values as reported. The higher modifier-based numbers are considered more reliable at this time. Carryover of Isopar{reg_sign} L in DSS simulant averaged 77 ppm by mass with a range of 70 to 88 ppm of Isopar{reg_sign} L based on modifier content. The carryover was bounded by a value of 19 ppm based upon Isopar{reg_sign} L values as reported. More work is needed to resolve the discrepancy between modifier and Isopar{reg_sign} L values. The work did not detect organic droplets greater than 18 microns in SE. Strip output contained droplets down to 0.5 micron in size. Droplets in DSS were almost monodisperse by comparison, having a size range 4.7 +/- 1.6 micron in one test and 5.2 +/- 0.8 micron in the second demonstration. Optical microscopy provided qualitative results confirming the integrity of droplet size measurements in this work. Acidic or basic adjustments of aqueous strip solution

  16. Spinning process variables and polymer solution effects in the die-swell phenomenon during hollow fiber membranes formation

    Directory of Open Access Journals (Sweden)

    Pereira C.C.

    2000-01-01

    Full Text Available During hollow fiber spinning many variables are involved whose effects are still not completely clear. However, its understanding is of great interest because the control of these variables may originate membranes with the desired morphologies and physical properties. In this work, the phase inversion process induced by the immersion precipitation technique was applied to prepare hollow fibers membranes. It was verified that some of the variables involved, can promote a visco-elastic polymer solution expansion, called die-swell phenomenon, which is undesired since it may lead to low reproducibility of the permeation properties. The effects of the distance between spinneret and precipitation bath, the bore liquid composition, and the polymer solution composition were analyzed and discussed in order to avoid this phenomenon. According to the results, it was verified that the parameters investigated might promote a delay precipitation, which restrained the visco-elastic expansion.

  17. Effectiveness of Forestry Agency Personnel as Fire Prevention Contactors

    Science.gov (United States)

    M.L. Doolittle

    1980-01-01

    A major responsibility of county forest rangers in North Carolina is fire prevention. Personal contact with the public is essential to the successful performance of this function. A survey of 50 North Carolina rangers revealed that the degree of success for each ranger was directly related to the specific effort put forth as a contactor.

  18. Ionic liquid performance in pilot plant contactors for aromatics extraction

    NARCIS (Netherlands)

    Onink, S.A.F.

    2011-01-01

    The main objectives of this study were an investigation into the applicability, in this case extraction capacity and equipment performance, of room temperature ionic liquids as solvent in the extraction of aromatics from aliphatics and a comparison of three types of contactors (a rotating disc

  19. Model for the dynamic study of AC contactors

    Energy Technology Data Exchange (ETDEWEB)

    Corcoles, F.; Pedra, J.; Garrido, J.P.; Baza, R. [Dep. d' Eng. Electrica ETSEIB. UPC, Barcelona (Spain)

    2000-08-01

    This paper proposes a model for the dynamic analysis of AC contactors. The calculation algorithm and implementation are discussed. The proposed model can be used to study the influence of the design parameters and the supply in their dynamic behaviour. The high calculation speed of the implemented algorithm allows extensive ranges of parameter variations to be analysed. (orig.)

  20. Flame Retardancy Effects of Graphene Nanoplatelet/Carbon Nanotube Hybrid Membranes on Carbon Fiber Reinforced Epoxy Composites

    Directory of Open Access Journals (Sweden)

    Dongxian Zhuo

    2013-01-01

    Full Text Available Carbon nanotube/graphene nanoplatelet (MWCNT/GNP hybrid membranes with lower liquid permeability and better barrier effect compared to MWCNT membranes were successfully synthesized by vacuum filtering. Their morphologies, water permeability, and pore structures were characterized by a scanning electron microscope (SEM and nitrogen adsorption isotherms. Furthermore, MWCNT/GNP membranes were used to improve the flame retardancy of carbon fiber reinforced polymer (CFRP composites, and the influence of weight percentage of GNPs on the permeability and flame retardancy of MWCNT/GNP membranes was systematically investigated. Results show that incorporation of MWCNT/GNP membranes on CFRP composite plates can remarkably improve the flame retardancy of CFRP composites. Specifically, the incorporation of hierarchical MWCNT/GNP membrane with 7.5 wt% of GNP displays a 35% reduction in the peak heat release rate (PHRR for a CFRP composite plate with the epoxy as matrix and a 11% reduction in PHRR compared with the incorporation of MWCNT membrane only. A synergistic flame retarding mechanism is suggested to be attributed to these results, which includes controlling the pore size and penetrative network structure.

  1. Multi-objective Optimization of Solar-driven Hollow-fiber Membrane Distillation Systems

    Energy Technology Data Exchange (ETDEWEB)

    Nenoff, Tina M. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Moore, Sarah E. [Univ. of Arizona, Tucson, AZ (United States); Mirchandani, Sera [Univ. of Arizona, Tucson, AZ (United States); Karanikola, Vasiliki [Univ. of Arizona, Tucson, AZ (United States); Arnold, Robert G. [Univ. of Arizona, Tucson, AZ (United States); Saez, Eduardo [Univ. of Arizona, Tucson, AZ (United States)

    2017-09-01

    Securing additional water sources remains a primary concern for arid regions in both the developed and developing world. Climate change is causing fluctuations in the frequency and duration of precipitation, which can be can be seen as prolonged droughts in some arid areas. Droughts decrease the reliability of surface water supplies, which forces communities to find alternate primary water sources. In many cases, ground water can supplement the use of surface supplies during periods of drought, reducing the need for above-ground storage without sacrificing reliability objectives. Unfortunately, accessible ground waters are often brackish, requiring desalination prior to use, and underdeveloped infrastructure and inconsistent electrical grid access can create obstacles to groundwater desalination in developing regions. The objectives of the proposed project are to (i) mathematically simulate the operation of hollow fiber membrane distillation systems and (ii) optimize system design for off-grid treatment of brackish water. It is anticipated that methods developed here can be used to supply potable water at many off-grid locations in semi-arid regions including parts of the Navajo Reservation. This research is a collaborative project between Sandia and the University of Arizona.

  2. Hollow-fiber membrane bioreactor for the treatment of high-strength landfill leachate

    KAUST Repository

    Rizkallah, Marwan

    2013-07-15

    Performance assessment of membrane bioreactor (MBR) technology for the treatability of high-strength landfill leachate is relatively limited or lacking. This study examines the feasibility of treating high-strength landfill leachate using a hollow-fiber MBR. For this purpose, a laboratory-scale MBR was constructed and operated to treat leachate with a chemical oxygen demand (COD) of 9000-11,000 mg/l, a 5-day biochemical oxygen demand (BOD5) of 4000-6,000 mg/l, volatile suspended solids (VSS) of 300-500 mg/l, total nitrogen (TN) of 2000-6000 mg/l, and an ammonia-nitrogen (NH3-N) of 1800-4000 mg/l. VSS was used with the BOD and COD data to simulate the biological activity in the activated sludge. Removal efficiencies > 95-99% for BOD5, VSS, TN and NH3-N were attained. The coupled experimental and simulation results contribute in filling a gap in managing high-strength landfill leachate and providing guidelines for corresponding MBR application. © The Author(s) 2013.

  3. Hydrodynamic Study of a Hollow Fiber Membrane System Using Experimental and Numerical Derived Surface Shear Stresses

    DEFF Research Database (Denmark)

    Ratkovich, Nicolas Rios; Hunze, M.; Nopens, I.

    2012-01-01

    .39 – 0.69 Pa) were in good agreement, with an error less that 15 %. Based on comparison of the cumulative frequency distribution of shear stresses from experiments and simulation: (i) moderate shear stresses (i.e. 50th percentile) were found to be accurately predicted (model: 0.24 – 0.45 Pa; experimental......Computational Fluids Dynamics (CFD) models can be used to gain insight into the shear stresses induced by air sparging on submerged hollow fiber Membrane BioReactor (MBR) systems. It was found that the average range of shear stresses obtained by the CFD model (0.30 – 0.60 Pa) and experimentally (0......: 0.25 – 0.49 Pa) with an error of less than 5 %; (ii) high shear stresses (i.e. 90th percentile) predictions were much less accurate (model: 0.60 – 1.23 Pa; experimental: 1.04 – 1.90 Pa) with an error up to 38 %. This was attributed to the fact that the CFD model only considers the two-phase flow (50...

  4. Acidic sweep gas with carbonic anhydrase coated hollow fiber membranes synergistically accelerates CO2 removal from blood

    OpenAIRE

    Arazawa, D. T.; Kimmel, J. D.; Finn, M.C.; Federspiel, W. J.

    2015-01-01

    The use of extracorporeal carbon dioxide removal (ECCO2R) is well established as a therapy for patients suffering from acute respiratory failure. Development of next generation low blood flow (< 500 mL/min) ECCO2R devices necessitates more efficient gas exchange devices. Since over 90% of blood CO2 is transported as bicarbonate (HCO3−), we previously reported development of a carbonic anhydrase (CA) immobilized bioactive hollow fiber membrane (HFM) which significantly accelerates CO2 removal ...

  5. Osmotic Power Generation by Inner Selective Hollow Fiber Membranes: An investigation of thermodynamics, mass transfer, and module scale modelling

    KAUST Repository

    Xiong, Jun Ying

    2016-12-29

    A comprehensive analysis of fluid motion, mass transport, thermodynamics and power generation during pressure retarded osmotic (PRO) processes was conducted. This work aims to (1) elucidate the fundamental relationship among various membrane properties and operation parameters and (2) analyse their individual and combined impacts on PRO module performance. A state-of-the-art inner-selective thin-film composite (TFC) hollow fiber membrane was employed in the modelling. The analyses of mass transfer and Gibbs free energy of mixing indicate that the asymmetric nature of hollow fibers results in more significant external concentration polarization (ECP) in the lumen side of the inner-selective hollow fiber membranes. In addition, a trade-off relationship exists between the power density (PD) and the specific energy (SE). The PD vs. SE trade-off upper bound may provide a useful guidance whether the flowrates of the feed and draw solutions should be further optimized in order to (1) minimize the boundary thickness and (2) maximize the osmotic power generation. Two new terms, mass transfer efficiency and power harvesting efficiency for osmotic power generation, have been proposed. This work may provide useful insights to design and operate PRO modules with enhanced performance so that the PRO process becomes more promising in real applications in the near future.

  6. Integrating nanohybrid membranes of reduced graphene oxide: chitosan: silica sol gel with fiber optic SPR for caffeine detection

    Science.gov (United States)

    Kant, Ravi; Tabassum, Rana; Gupta, Banshi D.

    2017-05-01

    Caffeine is the most popular psychoactive drug consumed in the world for improving alertness and enhancing wakefulness. However, caffeine consumption beyond limits can result in lot of physiological complications in human beings. In this work, we report a novel detection scheme for caffeine integrating nanohybrid membranes of reduced graphene oxide (rGO) in chitosan modified silica sol gel (rGO: chitosan: silica sol gel) with fiber optic surface plasmon resonance. The chemically synthesized nanohybrid membrane forming the sensing route has been dip coated over silver coated unclad central portion of an optical fiber. The sensor works on the mechanism of modification of dielectric function of sensing layer on exposure to analyte solution which is manifested in terms of red shift in resonance wavelength. The concentration of rGO in polymer network of chitosan and silica sol gel and dipping time of the silver coated probe in the solution of nanohybrid membrane have been optimized to extricate the supreme performance of the sensor. The optimized sensing probe possesses a reasonably good sensitivity and follows an exponentially declining trend within the entire investigating range of caffeine concentration. The sensor boasts of an unparalleled limit of detection value of 1.994 nM and works well in concentration range of 0-500 nM with a response time of 16 s. The impeccable sensor methodology adopted in this work combining fiber optic SPR with nanotechnology furnishes a novel perspective for caffeine determination in commercial foodstuffs and biological fluids.

  7. The delayed rectifier potassium conductance in the sarcolemma and the transverse tubular system membranes of mammalian skeletal muscle fibers

    Science.gov (United States)

    DiFranco, Marino; Quinonez, Marbella

    2012-01-01

    A two-microelectrode voltage clamp and optical measurements of membrane potential changes at the transverse tubular system (TTS) were used to characterize delayed rectifier K currents (IKV) in murine muscle fibers stained with the potentiometric dye di-8-ANEPPS. In intact fibers, IKV displays the canonical hallmarks of KV channels: voltage-dependent delayed activation and decay in time. The voltage dependence of the peak conductance (gKV) was only accounted for by double Boltzmann fits, suggesting at least two channel contributions to IKV. Osmotically treated fibers showed significant disconnection of the TTS and displayed smaller IKV, but with similar voltage dependence and time decays to intact fibers. This suggests that inactivation may be responsible for most of the decay in IKV records. A two-channel model that faithfully simulates IKV records in osmotically treated fibers comprises a low threshold and steeply voltage-dependent channel (channel A), which contributes ∼31% of gKV, and a more abundant high threshold channel (channel B), with shallower voltage dependence. Significant expression of the IKV1.4 and IKV3.4 channels was demonstrated by immunoblotting. Rectangular depolarizing pulses elicited step-like di-8-ANEPPS transients in intact fibers rendered electrically passive. In contrast, activation of IKV resulted in time- and voltage-dependent attenuations in optical transients that coincided in time with the peaks of IKV records. Normalized peak attenuations showed the same voltage dependence as peak IKV plots. A radial cable model including channels A and B and K diffusion in the TTS was used to simulate IKV and average TTS voltage changes. Model predictions and experimental data were compared to determine what fraction of gKV in the TTS accounted simultaneously for the electrical and optical data. Best predictions suggest that KV channels are approximately equally distributed in the sarcolemma and TTS membranes; under these conditions, >70% of IKV

  8. Removal of Pb(II) from wastewater using Al2O3-NaA zeolite composite hollow fiber membranes synthesized from solid waste coal fly ash.

    Science.gov (United States)

    Zhu, Li; Ji, Jiayou; Wang, Shulin; Xu, Chenxi; Yang, Kun; Xu, Man

    2018-09-01

    Al 2 O 3 -NaA zeolite composite hollow fiber membranes were successfully fabricated via hydrothermal synthesis by using industrial solid waste coal fly ash and porous Al 2 O 3 hollow fiber supports. The as-synthesized Al 2 O 3 -NaA zeolite composite hollow fiber membranes were then characterized by scanning electron microscopy (SEM) and X-ray diffraction (XRD). The hollow fiber membranes were used to remove lead ions (Pb(II), 50 mg L -1 ) from synthetic wastewater with a removal efficiency of 99.9% at 0.1 MPa after 12 h of filtration. This study showed that the Al 2 O 3 -NaA zeolite composite hollow fiber membranes (the pore size of the membrane was about 0.41 nm in diameter) synthesized from coal fly ash could be efficiently used for treating low concentration Pb(II) wastewater. It recycled solid waste coal fly ash not only to solve its environment problems, but also can produce high-value Al 2 O 3 -NaA zeolite composite hollow fiber membranes for separation application in treating wastewater containing Pb(II). Copyright © 2018 Elsevier Ltd. All rights reserved.

  9. Synthesis of highly conductive cotton fiber/nanostructured silver/polyaniline composite membranes for water sterilization application

    International Nuclear Information System (INIS)

    Abu-Thabit, Nedal Y; Basheer, Rafil A

    2014-01-01

    Electrically conductive composite membranes (ECCMs) composed of cotton fibers, conductive polyaniline and silver nanostructures were prepared and utilized as electrifying filter membranes for water sterilization. Silver metal and polyaniline were formed in situ during the oxidative polymerization of aniline monomers in the presence of silver nitrate as weak oxidizing agent. The reaction was characterized by long induction period and the morphology of the obtained ECCMs contained silver nanoparticles and silver flakes of 500–1000 nm size giving a membrane electrical resistance in the range of 10–30 Ohm sq −1 . However, when dimethylformamide (DMF) was employed as an auxiliary reducing agent to trigger and speed up the polymerization reaction, silver nanostructures such as wires, ribbons, plates were formed and were found to be embedded between polyaniline coating and cotton fibers. These ECCMs exhibited a slightly lower resistance in the range of 2–10 Ohm sq. −1 and, therefore, were utilized for the fabrication of a bacteria inactivation device. When water samples containing 10 7 –10 8 CFU mL −1 E. coli bacteria were passed through the prepared ECCMs by gravity force, with a filtration rate of 0.8 L h −1 and at an electric potential of 20 V, the fabricated device showed 92% bacterial inactivation efficiency. When the treated solution was passed through the membrane for a second time under the same conditions, no E. coli bacteria was detected. (paper)

  10. Synthesis of highly conductive cotton fiber/nanostructured silver/polyaniline composite membranes for water sterilization application

    Science.gov (United States)

    Abu-Thabit, Nedal Y.; Basheer, Rafil A.

    2014-09-01

    Electrically conductive composite membranes (ECCMs) composed of cotton fibers, conductive polyaniline and silver nanostructures were prepared and utilized as electrifying filter membranes for water sterilization. Silver metal and polyaniline were formed in situ during the oxidative polymerization of aniline monomers in the presence of silver nitrate as weak oxidizing agent. The reaction was characterized by long induction period and the morphology of the obtained ECCMs contained silver nanoparticles and silver flakes of 500-1000 nm size giving a membrane electrical resistance in the range of 10-30 Ohm sq-1. However, when dimethylformamide (DMF) was employed as an auxiliary reducing agent to trigger and speed up the polymerization reaction, silver nanostructures such as wires, ribbons, plates were formed and were found to be embedded between polyaniline coating and cotton fibers. These ECCMs exhibited a slightly lower resistance in the range of 2-10 Ohm sq.-1 and, therefore, were utilized for the fabrication of a bacteria inactivation device. When water samples containing 107-108 CFU mL-1 E. coli bacteria were passed through the prepared ECCMs by gravity force, with a filtration rate of 0.8 L h-1 and at an electric potential of 20 V, the fabricated device showed 92% bacterial inactivation efficiency. When the treated solution was passed through the membrane for a second time under the same conditions, no E. coli bacteria was detected.

  11. Gypsum (CaSO42H2O) scaling on polybenzimidazole and cellulose acetate hollow fiber membranes under forward osmosis

    KAUST Repository

    Chen, Si Cong

    2013-11-08

    We have examined the gypsum (CaSO42H2O) scaling phenomena on membranes with different physicochemical properties in forward osmosis (FO) processes. Three hollow fiber membranes made of (1) cellulose acetate (CA), (2) polybenzimidazole (PBI)/polyethersulfone (PES) and (3) PBI-polyhedral oligomeric silsesquioxane (POSS)/polyacrylonitrile (PAN) were studied. For the first time in FO processes, we have found that surface ionic interactions dominate gypsum scaling on the membrane surface. A 70% flux reduction was observed on negatively charged CA and PBI membrane surfaces, due to strong attractive forces. The PBI membrane surface also showed a slightly positive charge at a low pH value of 3 and exhibited a 30% flux reduction. The atomic force microscopy (AFM) force measurements confirmed a strong repulsive force between gypsum and PBI at a pH value of 3. The newly developed PBI-POSS/PAN membrane had ridge morphology and a contact angle of 51.42 14.85 after the addition of hydrophilic POSS nanoparticles and 3 min thermal treatment at 95 C. Minimal scaling and an only 1.3% flux reduction were observed at a pH value of 3. Such a ridge structure may reduce scaling by not providing a locally flat surface to the crystallite at a pH value of 3; thus, gypsum would be easily washed away from the surface. 2013 by the authors; licensee MDPI, Basel, Switzerland.

  12. RED WINE EXTRACT OBTAINED BY MEMBRANE-BASED SUPERCRITICAL FLUID EXTRACTION: PRELIMINARY CHARACTERIZATION OF CHEMICAL PROPERTIES.

    Directory of Open Access Journals (Sweden)

    W. Silva

    Full Text Available ABSTRACT This study aims to obtain an extract from red wine by using membrane-based supercritical fluid extraction. This technique involves the use of porous membranes as contactors during the dense gas extraction process from liquid matrices. In this work, a Cabernet Sauvignon wine extract was obtained from supercritical fluid extraction using pressurized carbon dioxide as solvent and a hollow fiber contactor as extraction setup. The process was continuously conducted at pressures between 12 and 18 MPa and temperatures ranged from 30 to 50ºC. Meanwhile, flow rates of feed wine and supercritical CO2 varied from 0.1 to 0.5 mL min-1 and from 60 to 80 mL min-1 (NCPT, respectively. From extraction assays, the highest extraction percentage value obtained from the total amount of phenolic compounds was 14% in only one extraction step at 18MPa and 35ºC. A summarized chemical characterization of the obtained extract is reported in this work; one of the main compounds in this extract could be a low molecular weight organic acid with aromatic structure and methyl and carboxyl groups. Finally, this preliminary characterization of this extract shows a remarkable ORAC value equal to 101737 ± 5324 µmol Trolox equivalents (TE per 100 g of extract.

  13. A direct approach to fiber and membrane reinforced bodies. Part I. Stress concentrated on curves for modelling fiber reinforced materials

    Czech Academy of Sciences Publication Activity Database

    Lucchesi, M.; Šilhavý, Miroslav; Zani, N.

    2013-01-01

    Roč. 25, 2-4 (2013), s. 537-558 ISSN 0935-1175 Institutional support: RVO:67985840 Keywords : fiber in the bulk matter * equilibrium of forces Subject RIV: BA - General Mathematics Impact factor: 1.431, year: 2013 http://link.springer.com/article/10.1007%2Fs00161-012-0285-2

  14. Hybrid indirect/direct contactor for thermal management of counter-current processes

    Science.gov (United States)

    Hornbostel, Marc D.; Krishnan, Gopala N.; Sanjurjo, Angel

    2018-03-20

    The invention relates to contactors suitable for use, for example, in manufacturing and chemical refinement processes. In an aspect is a hybrid indirect/direct contactor for thermal management of counter-current processes, the contactor comprising a vertical reactor column, an array of interconnected heat transfer tubes within the reactor column, and a plurality of stream path diverters, wherein the tubes and diverters are configured to block all straight-line paths from the top to bottom ends of the reactor column.

  15. Comparison of TEVAR resin beads, PAN fibers, and ePTFE membranes as a solid support for Aliquat-336 in immobilized liquid extraction chromatography for separation of actinides

    International Nuclear Information System (INIS)

    Joe Dauner; Steve Workman

    2012-01-01

    The following paper covers a comparison of two new systems to traditional TEVA R resin systems for the analytical separation of actinides by immobilized liquid-liquid extraction using Aliquat-336. The new systems are using expanded polytetrafluroethane (ePTFE) membrane or polyacrylonitrile (PAN) fibers as the solid support. The systems are compared in two ways. First in how much Aliquat-336 they contain with the Vs, ratio of volume of Aliquat-336 to volume of polymeric support, being 0.158, 0.483, and 0.590 for the TEVA R resin, PAN fibers, and the ePTFE systems, respectively. The second comparison is in their performance capacity of extraction of uranyl chloride anion complex. The fiber and resins systems show similar capacities, and the membrane system being an order of magnitude less than the other systems. A cost comparison demonstrates the savings advantages of using a fiber based support compared with resin and membrane support systems. (author)

  16. A heat pump driven and hollow fiber membrane-based liquid desiccant air dehumidification system: Modeling and experimental validation

    International Nuclear Information System (INIS)

    Zhang, Li-Zhi; Zhang, Ning

    2014-01-01

    A compression heat pump driven and membrane-based liquid desiccant air dehumidification system is presented. The dehumidifier and the regenerator are made of two hollow fiber membrane bundles packed in two shells. Water vapor can permeate through these membranes effectively, while the liquid desiccant droplets are prevented from cross-over. Simultaneous heating and cooling of the salt solution are realized with a heat pump system to improve energy efficiency. In this research, the system is built up and a complete modeling is performed for the system. Heat and mass transfer processes in the membrane modules, as well as in the evaporator, the condenser, and other key components are modeled in detail. The whole model is validated by experiment. The performances of SDP (specific dehumidification power), dehumidification efficiency, EER (energy efficiency ratio) of heat pump, and the COP (coefficient of performance) of the system are investigated numerically and experimentally. The results show that the model can predict the system accurately. The dehumidification capabilities and the energy efficiencies of the system are high. Further, it performs well even under the harsh hot and humid South China weather conditions. - Highlights: • A membrane-based and heat pump driven air dehumidification system is proposed. • A real experimental set up is built and used to validate the model for the whole system. • Performance under design and varying operation conditions is investigated. • The system performs well even under harsh hot and humid conditions

  17. Polyethersulfone flat sheet and hollow fiber membranes from solutions in ionic liquids

    KAUST Repository

    Kim, Dooli; Vovusha, Hakkim; Schwingenschlö gl, Udo; Nunes, Suzana Pereira

    2017-01-01

    and mechanical strengths were evaluated. Membranes were applied to DNA separation. While membranes based on PES were successfully prepared, polysulfone (PSf) does not dissolve in the same ionic liquids. The discrepancy between PES and PSf could not be explained

  18. Process for fabricating PBI hollow fiber asymmetric membranes for gas separation and liquid separation

    Science.gov (United States)

    Jayaweera, Indira; Krishnan, Gopala N.; Sanjurjo, Angel; Jayaweera, Palitha; Bhamidi, Srinivas

    2016-04-26

    The invention provides methods for preparing an asymmetric hollow fiber, the asymmetric hollow fibers prepared by such methods, and uses of the asymmetric hollow fibers. One method involves passing a polymeric solution through an outer annular orifice of a tube-in-orifice spinneret, passing a bore fluid though an inner tube of the spinneret, dropping the polymeric solution and bore fluid through an atmosphere over a dropping distance, and quenching the polymeric solution and bore fluid in a bath to form an asymmetric hollow fiber.

  19. Hydraulic performance of a multistage array of advanced centrifugal contactors

    International Nuclear Information System (INIS)

    Hodges, M.E.

    1984-01-01

    The hydraulic characteristics of an advanced design centrifugal contactor array have been determined at the Savannah River Laboratory (SRL). The advanced design utilizes couette mixing (Taylor vortices) in the annulus between the rotating and stationary bowls. Excellent phase separation over a wide range of flow conditions was obtained. Interfaces within an entire eight-stage array were controlled with a single weir air pressure. 2 references, 5 figures

  20. A flexible, robust and antifouling asymmetric membrane based on ultra-long ceramic/polymeric fibers for high-efficiency separation of oil/water emulsions.

    Science.gov (United States)

    Wang, Kui; Yiming, Wubulikasimu; Saththasivam, Jayaprakash; Liu, Zhaoyang

    2017-07-06

    Polymeric and ceramic asymmetric membranes have dominated commercial membranes for water treatment. However, polymeric membranes are prone to becoming fouled, while ceramic membranes are mechanically fragile. Here, we report a novel concept to develop asymmetric membranes based on ultra-long ceramic/polymeric fibers, with the combined merits of good mechanical stability, excellent fouling resistance and high oil/water selectivity, in order to meet the stringent requirements for practical oil/water separation. The ultra-long dimensions of ceramic nanofibers/polymeric microfibers endow this novel membrane with mechanical flexibility and robustness, due to the integrated and intertwined structure. This membrane is capable of separating oil/water emulsions with high oil-separation efficiency (99.9%), thanks to its nanoporous selective layer made of ceramic nanofibers. Further, this membrane also displays superior antifouling properties due to its underwater superoleophobicity and ultra-low oil adhesion of the ceramic-based selective layer. This membrane exhibits high water permeation flux (6.8 × 10 4 L m -2 h -1 bar -1 ) at low operation pressures, which is attributed to its 3-dimensional (3D) interconnected fiber-based structure throughout the membrane. In addition, the facile fabrication process and inexpensive materials required for this membrane suggest its significant potential for industrial applications.

  1. Integration issues of a plasma contactor Power Electronics Unit

    Science.gov (United States)

    Pinero, Luis R.; York, Kenneth W.; Bowers, Glen E.

    1995-01-01

    A hollow cathode-based plasma contactor is baselined on International Space Station Alpha (ISSA) for spacecraft charge control. The plasma contactor system consists of a hollow cathode assembly (HCA), a power electronics unit (PEU), and an expellant management unit (EMU). The plasma contactor has recently been required to operate in a cyclic mode to conserve xenon expellant and extend system life. Originally, a DC cathode heater converter was baselined for a continuous operation mode because only a few ignitions of the hollow cathode were expected. However, for cyclic operation, a DC heater supply can potentially result in hollow cathode heater component failure due to the DC electrostatic field. This can prevent the heater from attaining the proper cathode tip temperature for reliable ignition of the hollow cathode. To mitigate this problem, an AC cathode heater supply was therefore designed, fabricated, and installed into a modified PEU. The PEU was tested using resistive loads and then integrated with an engineering model hollow cathode to demonstrate stable steady-state operation. Integration issues such as the effect of line and load impedance on the output of the AC cathode heater supply and the characterization of the temperature profile of the heater under AC excitation were investigated.

  2. Composite perfluorohydrocarbon membranes, their preparation and use

    Energy Technology Data Exchange (ETDEWEB)

    Ding, Yong; Bikson, Benjamin

    2017-04-04

    Composite porous hydrophobic membranes are prepared by forming a perfluorohydrocarbon layer on the surface of a preformed porous polymeric substrate. The substrate can be formed from poly (aryl ether ketone) and a perfluorohydrocarbon layer can be chemically grafted to the surface of the substrate. The membranes can be utilized for a broad range of fluid separations, such as microfiltration, nanofiltration, ultrafiltration as membrane contactors for membrane distillation and for degassing and dewatering of fluids. The membranes can further contain a dense ultra-thin perfluorohydrocarbon layer superimposed on the porous poly (aryl ether ketone) substrate and can be utilized as membrane contactors or as gas separation. membranes for natural gas treatment and gas dehydration.

  3. Preparation and properties of hexagonal boron nitride fibers used as high temperature membrane filter

    Energy Technology Data Exchange (ETDEWEB)

    Hou, Xinmei, E-mail: houxinmei@ustb.edu.cn; Yu, Ziyou; Li, Yang; Chou, Kuo-Chih

    2014-01-01

    Graphical abstract: - Highlights: • h-BN fibers were successfully fabricated using H{sub 3}BO{sub 3} and C{sub 3}H{sub 6}N{sub 6} as raw materials. • The obtained BN fibers were polycrystalline and uniform in morphology. • It exhibited good oxidation resistance and low thermal expansion coefficient. - Abstract: Hexagonal boron nitride fibers were synthesized via polymeric precursor method using boric acid (H{sub 3}BO{sub 3}) and melamine (C{sub 3}H{sub 6}N{sub 6}) as raw materials. The precursor fibers were synthesized by water bath and BN fibers were prepared from the precursor at 1873 K for 3 h in flowing nitrogen atmosphere. The crystalline phase and microstructures of BN fibers were examined by X-ray diffraction, field emission scanning electron microscopy, transmission electron microscopy and high resolution electron microscopy. The results showed that h-BN fibers with uniform morphology were successfully fabricated. The well-synthesized BN fibers were polycrystalline with 0.4–1.5 μm in diameter and 200–500 μm in length. The as-prepared samples exhibited good oxidation resistance and low thermal expansion coefficient at high temperature.

  4. Porous stainless steel hollow fiber membranes via dry-wet spinning

    NARCIS (Netherlands)

    Luiten-Olieman, Maria W.J.; Winnubst, Aloysius J.A.; Nijmeijer, Arian; Wessling, Matthias; Benes, Nieck Edwin

    2011-01-01

    Porous stainless steel hollow fibers have been prepared via the dry–wet spinning process, based on phase inversion of a particle loaded polymer solution, followed by sintering. The morphology of the green fibers combines sponge like structures and macro voids, and is related to the dynamics of the

  5. Preparation and study on the structure of keratin/PVA membrane containing wool fibers

    Science.gov (United States)

    Wu, Min; Shen, Shuming; Yang, Xuhong; Tang, Rencheng

    2017-10-01

    The urea / sodium sulfide / sodium dodecyl sulfate (SDS) method was used to dissolve the wool in this study. Then the Wool fiber/keratin/PVA composites with different proportions were prepared, and the surface morphology, molecular structure, mechanical property of the composite films and the influence of the proportions on their structure and properties were studied. The results showed that, there are α-helix structure, β-sheet and random coil conformations in the pure keratin film, as well as in the wool fiber. Compared with wool fiber, the crystallinity of keratin decreased. PVA can obviously improve the mechanical property of the blended film. When the blended ratio of keratin/PVA is 20/80, the mechanical property of the blended film is greatly improved. The composite films with 8%-16% of wool fibers have better flexibility than those without wool fibers.

  6. Comparative analysis of CO2 separation from flue gas by membrane gas absorption technology and chemical absorption technology in China

    International Nuclear Information System (INIS)

    Yan, Shuiping; Fang, Mengxiang; Zhang, Weifeng; Zhong, Weilong; Luo, Zhongyang; Cen, Kefa

    2008-01-01

    This paper firstly evaluated the CO 2 absorption performance of a membrane gas absorption system (MAS) and chemical absorption system (CAS) using the overall mass transfer coefficient (K G a V ) as a basis for comparison. MAS selected microporous polypropylene (PP) hollow fiber membrane contactors to capture CO 2 from the simulated flue gas while CAS used a randomly packed column containing stainless Pall packing. Aqueous monoethanolamine (MEA) solution was adopted in both absorbers. Experimental results show that if the fresh membranes were tested, MAS has the higher K G a V values than that of CAS. However, when all the membrane pores were completely wetted or 50% pores were plugged, CAS inversely performs better than MAS in terms of K G a V values. In addition, the economic performance of MAS and CAS was also estimated. Results indicate that if the real operational time of membrane module is reduced to less than the critical value affected by the membrane price, the CO 2 captured cost of MAS is inversely higher than that of CAS. Therefore, the current well-accepted statement that MAS is superior to CAS in any case may be somewhat arbitrary unless membrane pore-wetting and pore-plugging problems, how to reduce the membrane price and how to prolong the membrane lifetime can be solved perfectly in the future. (author)

  7. Persistent alterations in active and passive electrical membrane properties of regenerated nerve fibers of man and mice

    DEFF Research Database (Denmark)

    Moldovan, Mihai; Alvarez Herrero, Susana; Rosberg, Mette R.

    2016-01-01

    Excitability of regenerated fibers remains impaired due to changes in both passive cable properties and alterations in the voltage-dependent membrane function. These abnormalities were studied by mathematical modeling in human regenerated nerves and experimental studies in mice. In three adult male...... activity protocol triggered partial Wallerian degeneration in regenerated nerves but not in control nerves from age-matched mice. The current data suggest that the nodal voltage-gated ion channel machinery is restored in regenerated axons, although the electrical separation from the internodal compartment...... remains compromised. Due to the persistent increase in number of nodes, the increased activity-dependent Na+ influx could lead to hyperactivity of the Na+/K+ pump resulting in membrane hyperpolarization and neurotoxic energy insufficiency during strenuous activity....

  8. Preparation of robust braid-reinforced poly(vinyl chloride) ultrafiltration hollow fiber membrane with antifouling surface and application to filtration of activated sludge solution.

    Science.gov (United States)

    Zhou, Zhuang; Rajabzadeh, Saeid; Fang, Lifeng; Miyoshi, Taro; Kakihana, Yuriko; Matsuyama, Hideto

    2017-08-01

    Braid-reinforced hollow fiber membranes with high mechanical properties and considerable antifouling surface were prepared by blending poly(vinyl chloride) (PVC) with poly(vinyl chloride-co-poly(ethylene glycol) methyl ether methacrylate) (poly(VC-co-PEGMA)) copolymer via non-solvent induced phase separation (NIPS). The tensile strength of the braid-reinforced PVC hollow fiber membranes were significantly larger than those of previously reported various types of PVC hollow fiber membranes. The high interfacial bonding strength indicated the good compatibility between the coating materials and the surface of polyethylene terephthalate (PET)-braid. Owing to the surface segregation phenomena, the membrane surface PEGMA coverage increased upon increasing the poly(VC-co-PEGMA)/PVC blending ratio, resulting in higher hydrophilicities and bovine serum albumin (BSA) repulsion. To compare the fouling properties, membranes with similar PWPs were prepared by adjusting the dope solution composition to eliminate the effect of hydrodynamic conditions on the membrane fouling performance. The blend membranes surface exhibited considerable fouling resistance to the molecular adsorption from both BSA solution and activated sludge solution. In both cases, the flux recovered to almost 80% of the initial flux using only water backflush. Considering their great mechanical properties and antifouling resistance to activated sludge solution, these novel membranes show good potential for application in wastewater treatment. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Bio surfactants production in bioreactor assisted with membrane process; Producao de biossurfactantes em biorreator assistido por processos com membranas

    Energy Technology Data Exchange (ETDEWEB)

    Kronemberger, Frederico de Araujo; Borges, Cristiano Piacsek [Universidade Federal do Rio de Janeiro (UFRJ). COPPE. Programa de Engenharia Quimica, RJ (Brazil)], e-mails: frederico@peq.coppe.ufrj.br, cristiano@peq.coppe.ufrj.br, s.noblat@csn.com.br; Freire, Denise Maria Guimaraes [Universidade Federal do Rio de Janeiro (UFRJ). Instituto de Quimica. Departamento de Bioquimica, RJ (Brazil)], e-mail: freire@iq.ufrj.br

    2010-04-15

    Chemically synthesized surfactants are widely used in the pharmaceutical, food and oil industries. However, they may eventually be replaced by bio surfactants, which are biodegradable and produced from renewable substrates, the surface active molecules produced by micro-organisms. Currently bio surfactants use is limited to some specific applications as they are not economically competitive. The fermentation technology needs to be improved to expand the production scale and lower costs. The most studied bio surfactants are produced by aerobic microorganisms. The main difficulty of this fermentation process is the excess foam caused by injecting air into the vessel. To overcome this problem, a membrane contactor can be used for the non-dispersive transfer of oxygen from the gas to liquid phase. The main objective of this study was to produce rhamno lipidic type bio surfactants from a strain of Pseudomonas aeruginosa (PA1), isolated from oil wells. This production used a hollow-fiber membrane contactor to oxygenate the culture medium. The study results indicate this bio surfactant is economically viable in large scale production. (author)

  10. Hybrid Membrane/Absorption Process for Post-combustion CO2 Capture

    Energy Technology Data Exchange (ETDEWEB)

    Li, Shiguang; Shou, S.; Pyrzynski, Travis; Makkuni, Ajay; Meyer, Howard

    2013-12-31

    This report summarizes scientific/technical progress made for bench-scale membrane contactor technology for post-combustion CO2 capture from DOE Contract No. DE-FE-0004787. Budget Period 1 (BP1) membrane absorber, Budget Period 2 (BP2) membrane desorber and Budget Period 3 (BP3) integrated system and field testing studies have been completed successfully and met or exceeded the technical targets (≥ 90% CO2 removal and CO2 purity of 97% in one membrane stage). Significant breakthroughs are summarized below: BP1 research: The feasibility of utilizing the poly (ether ether ketone), PEEK, based hollow fiber contractor (HFC) in combination with chemical solvents to separate and capture at least 90% of the CO2 from simulated flue gases has been successfully established. Excellent progress has been made as we have achieved the BP1 goal: ≥ 1,000 membrane intrinsic CO2 permeance, ≥ 90% CO2 removal in one stage, ≤ 2 psi gas side pressure drop, and ≥ 1 (sec)-1 mass transfer coefficient. Initial test results also show that the CO2 capture performance, using activated Methyl Diethanol Amine (aMDEA) solvent, was not affected by flue gas contaminants O2 (~3%), NO2 (66 ppmv), and SO2 (145 ppmv). BP2 research: The feasibility of utilizing the PEEK HFC for CO2-loaded solvent regeneration has been successfully established High CO2 stripping flux, one order of magnitude higher than CO2 absorption flux, have been achieved. Refined economic evaluation based on BP1 membrane absorber and BP2 membrane desorber laboratory test data indicate that the CO2 capture costs are 36% lower than DOE’s benchmark amine absorption technology. BP3 research: A bench-scale system utilizing a membrane absorber and desorber was integrated into a continuous CO2 capture process using contactors containing 10 to 20 ft2 of membrane area. The integrated process operation was stable through a 100-hour laboratory test, utilizing a simulated flue gas stream. Greater than 90% CO2 capture combined with 97

  11. Fouling behaviors of polybenzimidazole (PBI)-polyhedral oligomeric silsesquioxane (POSS)/polyacrylonitrile (PAN) hollow fiber membranes for engineering osmosis processes

    KAUST Repository

    Chen, Sicong; Fu, Xiuzhu; Chung, Neal Tai-Shung

    2014-01-01

    This paper investigated the individual effects of reverse salt flux and permeate flux on fouling behaviors of as-spun and annealed polybenzimidazole (PBI)-polyhedral oligomeric silsesquioxane (POSS)/polyacrylonitrile (PAN) hollow fiber membranes under forward osmosis (FO) and pressure retarded osmosis (PRO) processes. Two types of membrane fouling had been studied; namely, inorganic fouling (CaSO4·2H2O gypsum scaling) during FO operations and organic fouling (sodium alginate fouling) during PRO operations. It is found that gypsum scaling on the membrane surface may be inhibited and even eliminated with an increase in reverse MgCl2 flux due to competitive formations of MgSO4° and CaSO4·2H2O. In contrast, the increase of reverse NaCl flux exhibits a slight enhancement on alginate fouling in both FO and PRO processes. Comparing to the reverse salt flux, the permeate flux always plays a dominant role in fouling. Therefore, lesser fouling has been observed on the membrane surface under the pressurized PRO process than FO process because the reduced initial flux mitigates the fouling phenomena more significantly than the enhancement caused by an increase in reverse NaCl flux. © 2013 Elsevier B.V.

  12. Fouling behaviors of polybenzimidazole (PBI)-polyhedral oligomeric silsesquioxane (POSS)/polyacrylonitrile (PAN) hollow fiber membranes for engineering osmosis processes

    KAUST Repository

    Chen, Sicong

    2014-02-01

    This paper investigated the individual effects of reverse salt flux and permeate flux on fouling behaviors of as-spun and annealed polybenzimidazole (PBI)-polyhedral oligomeric silsesquioxane (POSS)/polyacrylonitrile (PAN) hollow fiber membranes under forward osmosis (FO) and pressure retarded osmosis (PRO) processes. Two types of membrane fouling had been studied; namely, inorganic fouling (CaSO4·2H2O gypsum scaling) during FO operations and organic fouling (sodium alginate fouling) during PRO operations. It is found that gypsum scaling on the membrane surface may be inhibited and even eliminated with an increase in reverse MgCl2 flux due to competitive formations of MgSO4° and CaSO4·2H2O. In contrast, the increase of reverse NaCl flux exhibits a slight enhancement on alginate fouling in both FO and PRO processes. Comparing to the reverse salt flux, the permeate flux always plays a dominant role in fouling. Therefore, lesser fouling has been observed on the membrane surface under the pressurized PRO process than FO process because the reduced initial flux mitigates the fouling phenomena more significantly than the enhancement caused by an increase in reverse NaCl flux. © 2013 Elsevier B.V.

  13. The practical use of resistance modelling to interpret the gas separation properties of hollow fiber membranes

    International Nuclear Information System (INIS)

    Ahmad Fauzi Ismail; Shilton, S.J.

    2000-01-01

    A simple resistance modelling methodology is presented for gas transport through asymmetric polymeric membranes. The methodology allows fine structural properties such as active layer thickness and surface porosity, to be determined from experimental gas permeation data. This paper, which could be regarded as a practical guide, shows that resistance modeling, if accompanied by realistic working assumptions, need not be difficult and can provide a valuable insight into the relationships between the membrane fabrication conditions and performance of gas separation membranes. (Author)

  14. Fiber

    Science.gov (United States)

    ... meals instead of white rice. Add beans (kidney, black, navy, and pinto) to rice dishes for even more fiber. Spice up salads with berries and almonds, chickpeas, cooked artichokes, and beans (kidney, black, navy, or pinto). Use whole-grain (corn or ...

  15. In situ derivatization and hollow fiber membrane microextraction for gas chromatographic determination of haloacetic acids in water

    International Nuclear Information System (INIS)

    Varanusupakul, Pakorn; Vora-adisak, Narongchai; Pulpoka, Bancha

    2007-01-01

    An alternative method for gas chromatographic determination of haloacetic acids (HAAs) in water using direct derivatization followed by hollow fiber membrane liquid-phase microextraction (HF-LPME) has been developed. The method has improved the sample preparation step according to the conventional US EPA Method 552.2 by combining the derivatization and the extraction into one step prior to determination by gas chromatography electron captured detector (GC-ECD). The HAAs were derivatized with acidic methanol into their methyl esters and simultaneously extracted with supported liquid hollow fiber membrane in headspace mode. The derivatization was attempted directly in water sample without sample evaporation. The HF-LPME was performed using 1-octanol as the extracting solvent at 55 deg. C for 60 min with 20% Na 2 SO 4 . The linear calibration curves were observed for the concentrations ranging from 1 to 300 μg L -1 with the correlation coefficients (R 2 ) being greater than 0.99. The method detection limits of most analytes were below 1 μg L -1 except DCAA and MCAA that were 2 and 18 μg L -1 , respectively. The recoveries from spiked concentration ranged from 97 to 109% with %R.S.D. less than 12%. The method was applied for determination of HAAs in drinking water and tap water samples. The method offers an easy one step high sample throughput sample preparation for gas chromatographic determination of haloacetic acids as well as other contaminants in water

  16. Effects of dope extrusion rate on the morphology and gas separation performance of asymmetric polysulfone hollow fiber membranes for O2/N2 separation

    Directory of Open Access Journals (Sweden)

    Ahmad Fausi Ismail

    2002-11-01

    Full Text Available The objective of this study was to investigate the influence of dope extrusion rates on morphology and gas separation performance of asymmetric polysulfone hollow fiber membranes. Asymmetric polysulfone hollow fiber membranes for gas separation were prepared from a solution consisting of 26.0 wt. % of polysulfone, 30.4 wt. % of N, N-dimethylacetamide, 30.4 wt. % of tetrahydrofuran and 13.2 wt. % ethanol. The dry/wet phase separation process was applied to a dry/wet spinning process. Fibers were spun at various dope extrusion rates (DER ranging from 1.5 - 3.0 cm3/min and hence at different levels of shear. The results suggest that as the dope extrusion rate is increased, the selectivity will increase until a critical level of shear is reached, beyond which the membrane performance deteriorates. Pressure-normalized-fluxes and selectivities were evaluated by using pure oxygen and nitrogen as test gases.

  17. Membrane processes in biotechnology: an overview.

    Science.gov (United States)

    Charcosset, Catherine

    2006-01-01

    Membrane processes are increasingly reported for various applications in both upstream and downstream technology, such as the established ultrafiltration and microfiltration, and emerging processes as membrane bioreactors, membrane chromatography, and membrane contactors for the preparation of emulsions and particles. Membrane systems exploit the inherent properties of high selectivity, high surface-area-per-unit-volume, and their potential for controlling the level of contact and/or mixing between two phases. This review presents these various membrane processes by focusing more precisely on membrane materials, module design, operating parameters and the large range of possible applications.

  18. THE TESTING OF COMMERCIALLY AVAILABLE ENGINEERING AND PLANT SCALE ANNULAR CENTRIFUGAL CONTACTORS FOR THE PROCESSING OF SPENT NUCLEAR FUEL

    International Nuclear Information System (INIS)

    Jack D. Law; David Meikrantz; Troy Garn; Nick Mann; Scott Herbst

    2006-01-01

    Annular centrifugal contactors are being evaluated for process scale solvent extraction operations in support of United State Advanced Fuel Cycle Initiative goals. These contactors have the potential for high stage efficiency if properly employed and optimized for the application. Commercially available centrifugal contactors are being tested at the Idaho National Laboratory to support this program. Hydraulic performance and mass transfer efficiency have been measured for portions of an advanced nuclear fuel cycle using 5-cm diameter annular centrifugal contactors. Advanced features, including low mix sleeves and clean-in-place rotors, have also been evaluated in 5-cm and 12.5-cm contactors

  19. A Centrifugal Contactor Design to Facilitate Remote Replacement

    International Nuclear Information System (INIS)

    Meikrantz, David H.; Law, Jack D.; Garn, Troy G.; Macaluso, Lawrence L.

    2011-01-01

    Advanced designs of nuclear fuel recycling and radioactive waste treatment plants are expected to include more ambitious goals for solvent extraction based separations including; higher separations efficiency, high-level waste minimization, and a greater focus on continuous processes to minimize cost and footprint. Therefore, Annular Centrifugal Contactors (ACCs) are destined to play a more important role for such future processing schemes. This work continues the development of remote designs for ACCs that can process the large throughputs needed for future nuclear fuel recycling and radioactive waste treatment plants. A three stage, 12.5 cm diameter rotor module has been constructed and is being evaluated for use in highly radioactive environments. This prototype assembly employs three standard CINC V-05 clean-in-place (CIP) units modified for remote service and replacement via new methods of connection for solution inlets, outlets, drain and CIP. Hydraulic testing and functional checks were successfully conducted and then the prototype was evaluated for remote handling and maintenance. Removal and replacement of the center position V-05R contactor in the three stage assembly was demonstrated using an overhead rail mounted PaR manipulator. Initial evaluation indicates a viable new design for interconnecting and cleaning individual stages while retaining the benefits of commercially reliable ACC equipment. Replacement of a single stage via remote manipulators and tools is estimated to take about 30 minutes, perhaps fast enough to support a contactor change without loss of process equilibrium. The design presented in this work is scalable to commercial ACC models from V-05 to V-20 with total throughput rates ranging from 20 to 650 liters per minute.

  20. Carbon nanotube- and carbon fiber-reinforcement of ethylene-octene copolymer membranes for gas and vapor separation.

    Science.gov (United States)

    Sedláková, Zuzana; Clarizia, Gabriele; Bernardo, Paola; Jansen, Johannes Carolus; Slobodian, Petr; Svoboda, Petr; Kárászová, Magda; Friess, Karel; Izak, Pavel

    2014-01-03

    Gas and vapor transport properties were studied in mixed matrix membranes containing elastomeric ethylene-octene copolymer (EOC or poly(ethylene-co-octene)) with three types of carbon fillers: virgin or oxidized multi-walled carbon nanotubes (CNTs) and carbon fibers (CFs). Helium, hydrogen, nitrogen, oxygen, methane, and carbon dioxide were used for gas permeation rate measurements. Vapor transport properties were studied for the aliphatic hydrocarbon (hexane), aromatic compound (toluene), alcohol (ethanol), as well as water for the representative samples. The mechanical properties and homogeneity of samples was checked by stress-strain tests. The addition of virgin CNTs and CFs improve mechanical properties. Gas permeability of EOC lies between that of the more permeable PDMS and the less permeable semi-crystalline polyethylene and polypropylene. Organic vapors are more permeable than permanent gases in the composite membranes, with toluene and hexane permeabilities being about two orders of magnitude higher than permanent gas permeability. The results of the carbon-filled membranes offer perspectives for application in gas/vapor separation with improved mechanical resistance.

  1. Sensitivity of Hollow Fiber Spacesuit Water Membrane Evaporator Systems to Potable Water Constituents, Contaminants and Air Bubbles

    Science.gov (United States)

    Bue, Grant C.; Trevino, Luis A.; Fritts, Sharon; Tsioulos, Gus

    2008-01-01

    The Spacesuit Water Membrane Evaporator (SWME) is the baseline heat rejection technology selected for development for the Constellation lunar suit. The first SWME prototype, designed, built, and tested at Johnson Space Center in 1999 used a Teflon hydrophobic porous membrane sheet shaped into an annulus to provide cooling to the coolant loop through water evaporation to the vacuum of space. This present study describes the test methodology and planning and compares the test performance of three commercially available hollow fiber materials as alternatives to the sheet membrane prototype for SWME, in particular, a porous hydrophobic polypropylene, and two variants that employ ion exchange through non-porous hydrophilic modified Nafion. Contamination tests will be performed to probe for sensitivities of the candidate SWME elements to ordinary constituents that are expected to be found in the potable water provided by the vehicle, the target feedwater source. Some of the impurities in potable water are volatile, such as the organics, while others, such as the metals and inorganic ions are nonvolatile. The non-volatile constituents will concentrate in the SWME as evaporated water from the loop is replaced by the feedwater. At some point in the SWME mission lifecycle as the concentrations of the non-volatiles increase, the solubility limits of one or more of the constituents may be reached. The resulting presence of precipitate in the coolant water may begin to plug pores and tube channels and affect the SWME performance. Sensitivity to macroparticles, lunar dust simulant, and air bubbles will also be investigated.

  2. Carbon Nanotube- and Carbon Fiber-Reinforcement of Ethylene-Octene Copolymer Membranes for Gas and Vapor Separation

    Directory of Open Access Journals (Sweden)

    Zuzana Sedláková

    2014-01-01

    Full Text Available Gas and vapor transport properties were studied in mixed matrix membranes containing elastomeric ethylene-octene copolymer (EOC or poly(ethylene-co-octene with three types of carbon fillers: virgin or oxidized multi-walled carbon nanotubes (CNTs and carbon fibers (CFs. Helium, hydrogen, nitrogen, oxygen, methane, and carbon dioxide were used for gas permeation rate measurements. Vapor transport properties were studied for the aliphatic hydrocarbon (hexane, aromatic compound (toluene, alcohol (ethanol, as well as water for the representative samples. The mechanical properties and homogeneity of samples was checked by stress-strain tests. The addition of virgin CNTs and CFs improve mechanical properties. Gas permeability of EOC lies between that of the more permeable PDMS and the less permeable semi-crystalline polyethylene and polypropylene. Organic vapors are more permeable than permanent gases in the composite membranes, with toluene and hexane permeabilities being about two orders of magnitude higher than permanent gas permeability. The results of the carbon-filled membranes offer perspectives for application in gas/vapor separation with improved mechanical resistance.

  3. Polyoxadiazole hollow fibers for produced water treatment by direct contact membrane distillation

    KAUST Repository

    Xu, Jingli; Srivatsa Bettahalli, N.M.; Chisca, Stefan; Khalid, Mohammed Khalil; Ghaffour, NorEddine; Vilagines, Ré gis; Nunes, Suzana Pereira

    2018-01-01

    Treatment of produced water in the petroleum industry has been a challenge worldwide. In this study, we evaluated the use of direct contact membrane distillation (DCMD) for this purpose, removing oil and dissolved elements and supplying clean water

  4. Enhanced fouling by inorganic and organic foulants on pressure retarded osmosis (PRO) hollow fiber membranes under high pressures

    KAUST Repository

    Chen, Sicong; Wan, Chunfeng; Chung, Neal Tai-Shung

    2015-01-01

    We have studied, for the first time, the fouling behavior of pressure retarded osmosis (PRO) hollow fiber membranes under low, moderate and high hydraulic pressures. The thin film composite (TFC) polyethersulfone (PES) membrane has a high water permeability and good mechanical strength. Membrane fouling by gypsum (CaSO4·2H2O) scalants, sodium alginate, and the combined foulants was examined under various pressures up to an ultrahigh hydraulic pressure of 18bar. In the combined fouling experiments, the membranes were conditioned by one of foulants followed by the other. Flux decline results suggested that such conditioning could increase the rate of combined fouling because of the change in membrane surface chemistry. Specially, the co-existence of gypsum crystals and alginate under 0bar led to the synergistic combined fouling and resulted in a greater flux decline than the sum of individual fouling. Interestingly, such gypsum-alginate synergistic fouling was not observed under high pressure PRO tests because the increased reverse salt flux inhibited the formation of gypsum crystals. Therefore, alginate fouling could be the dominant fouling mechanism for both (1) alginate conditioning and then scalants fouling, and (2) scalants conditioning and then alginate fouling PRO processes under 8bar and 18bar. Since the reverse salt flux increases from 5.6±1.1g/m2h at 0bar to 74.3±9.7g/m2h at 8bar, and finally to 150.5±2.5g/m2h under 18bar, the reverse salt ions lead to substantial declines of normalized flux under 8bar and 18bar because the reverse sodium ions not only reduce the effective driving force across the PRO membrane but also induce a significant cake-enhanced sodium concentration polarization layer and facilitate alginate gelation near the membrane surface. Therefore, the removal of alginate type foulants from the feed water stream may become essential for the success of PRO processes under high pressures.

  5. Enhanced fouling by inorganic and organic foulants on pressure retarded osmosis (PRO) hollow fiber membranes under high pressures

    KAUST Repository

    Chen, Sicong

    2015-04-01

    We have studied, for the first time, the fouling behavior of pressure retarded osmosis (PRO) hollow fiber membranes under low, moderate and high hydraulic pressures. The thin film composite (TFC) polyethersulfone (PES) membrane has a high water permeability and good mechanical strength. Membrane fouling by gypsum (CaSO4·2H2O) scalants, sodium alginate, and the combined foulants was examined under various pressures up to an ultrahigh hydraulic pressure of 18bar. In the combined fouling experiments, the membranes were conditioned by one of foulants followed by the other. Flux decline results suggested that such conditioning could increase the rate of combined fouling because of the change in membrane surface chemistry. Specially, the co-existence of gypsum crystals and alginate under 0bar led to the synergistic combined fouling and resulted in a greater flux decline than the sum of individual fouling. Interestingly, such gypsum-alginate synergistic fouling was not observed under high pressure PRO tests because the increased reverse salt flux inhibited the formation of gypsum crystals. Therefore, alginate fouling could be the dominant fouling mechanism for both (1) alginate conditioning and then scalants fouling, and (2) scalants conditioning and then alginate fouling PRO processes under 8bar and 18bar. Since the reverse salt flux increases from 5.6±1.1g/m2h at 0bar to 74.3±9.7g/m2h at 8bar, and finally to 150.5±2.5g/m2h under 18bar, the reverse salt ions lead to substantial declines of normalized flux under 8bar and 18bar because the reverse sodium ions not only reduce the effective driving force across the PRO membrane but also induce a significant cake-enhanced sodium concentration polarization layer and facilitate alginate gelation near the membrane surface. Therefore, the removal of alginate type foulants from the feed water stream may become essential for the success of PRO processes under high pressures.

  6. Robust outer-selective thin-film composite polyethersulfone hollow fiber membranes with low reverse salt flux for renewable salinity-gradient energy generation

    KAUST Repository

    Cheng, Zhen Lei; Li, Xue; Liu, Ying Da; Chung, Neal Tai-Shung

    2016-01-01

    This study reports outer-selective thin-film composite (TFC) hollow fiber membranes with extremely low reverse salt fluxes and robustness for harvesting salinity-gradient energy from pressure retarded osmosis (PRO) processes. Almost defect-free polyamide layers with impressive low salt permeabilities were synthesized on top of robust polyethersulfone porous supports. The newly developed TFC-II membrane shows a maximum power density of 7.81 W m−2 using 1 M NaCl and DI water as feeds at 20 bar. Reproducible data obtained in the 2nd and 3rd runs confirm its stability under high hydraulic pressure differences. Comparing to other PRO membranes reported in the literature, the newly developed membrane exhibits not only the smallest slope between water flux decline and ΔPΔP increase but also the lowest ratio of reverse salt flux to water flux. Thus, the effective osmotic driving force could be well maintained even under high pressure operations. For the first time, the effect of feed pressure buildup induced by feed flowrate was evaluated towards PRO performance. A slight increment in feed pressure buildup was found to be beneficial to water flux and power density up to 10.06 W m−2 without comprising the reverse salt flux. We believe this study may open up new perspectives on outer-selective PRO hollow fiber membranes and provide useful insights to understand and design next-generation outer-selective TFC hollow fiber membranes for osmotic power generation.

  7. Robust outer-selective thin-film composite polyethersulfone hollow fiber membranes with low reverse salt flux for renewable salinity-gradient energy generation

    KAUST Repository

    Cheng, Zhen Lei

    2016-01-08

    This study reports outer-selective thin-film composite (TFC) hollow fiber membranes with extremely low reverse salt fluxes and robustness for harvesting salinity-gradient energy from pressure retarded osmosis (PRO) processes. Almost defect-free polyamide layers with impressive low salt permeabilities were synthesized on top of robust polyethersulfone porous supports. The newly developed TFC-II membrane shows a maximum power density of 7.81 W m−2 using 1 M NaCl and DI water as feeds at 20 bar. Reproducible data obtained in the 2nd and 3rd runs confirm its stability under high hydraulic pressure differences. Comparing to other PRO membranes reported in the literature, the newly developed membrane exhibits not only the smallest slope between water flux decline and ΔPΔP increase but also the lowest ratio of reverse salt flux to water flux. Thus, the effective osmotic driving force could be well maintained even under high pressure operations. For the first time, the effect of feed pressure buildup induced by feed flowrate was evaluated towards PRO performance. A slight increment in feed pressure buildup was found to be beneficial to water flux and power density up to 10.06 W m−2 without comprising the reverse salt flux. We believe this study may open up new perspectives on outer-selective PRO hollow fiber membranes and provide useful insights to understand and design next-generation outer-selective TFC hollow fiber membranes for osmotic power generation.

  8. Hollow-fiber membrane bioreactor for the treatment of high-strength landfill leachate

    KAUST Repository

    Rizkallah, Marwan; El-Fadel, Mutasem E.; Saikaly, Pascal; Ayoub, George M.; Darwiche, Nadine D.; Hashisho, Jihan

    2013-01-01

    -fiber MBR. For this purpose, a laboratory-scale MBR was constructed and operated to treat leachate with a chemical oxygen demand (COD) of 9000-11,000 mg/l, a 5-day biochemical oxygen demand (BOD5) of 4000-6,000 mg/l, volatile suspended solids (VSS) of 300

  9. Characterization of Thermally Cross-Linkable Hollow Fiber Membranes for Natural Gas Separation

    KAUST Repository

    Chen, Chien-Chiang; Miller, Stephen J.; Koros, William J.

    2013-01-01

    -linking temperature was found to have a significant effect, while shorter soak time and the presence of trace oxidizer (O2 or N2O) had a negligible effect. The cross-linked fibers were tested using high CO2 content feeds (50-70% CO2) at a variety of feed pressures (up

  10. High-functionalization of fiber-forming materials. Polymer membrane as separation media

    Energy Technology Data Exchange (ETDEWEB)

    Kamide, Kenji; Iijima, Hideki (Asahi Chemical Industry Co. Ltd., Osaka, (Japan))

    1989-07-05

    For obtaining higher functions by donating specific functions to the fiber, it is effective to change its structure. Various separating films which is known as an example of the high-functionalization of the fiber materials is an example of the fiber structure conversion from the view-point of substance-permeating function. This report firstly describes the features and types of the film separation method and the production of films, and then on the correlation between the structure and functions of the fibers, the correlation of the structure and the separating characteristics of the films, and the mechanism of the emergence of the film structure. Finally, applied examples of the film separating method in the medical field are described. In the medical liquid film separation, blood or plasma are the object of the separation. Blood has various components whose concentration and particle size are multiplicated, and yet requires a tremendous separating accuracy when compared with the industrial separation. Examples are a blood dialyzer film and an ultrafiltration film (film for plasma separation and virus separation), etc.. 28 refs., 6 figs., 2 tabs.

  11. High flux polyethersulfone-polyimide blend hollow fiber membranes for gas separation

    NARCIS (Netherlands)

    Kapantaidakis, G.; Koops, G.H.

    2002-01-01

    In this work, the preparation of gas separation hollow fibers based on polyethersulfone Sumikaexcel (PES) and polyimide Matrimid 5218 (PI) blends, for three different compositions (i.e. PES/PI: 80/20, 50/50 and 20/80 wt.%), is reported. The dry/wet spinning process has been applied to prepare

  12. Extended residence time centrifugal contactor design modification and centrifugal contactor vane plate valving apparatus for extending mixing zone residence time

    Science.gov (United States)

    Wardle, Kent E.

    2017-06-06

    The present invention provides an annular centrifugal contactor, having a housing adapted to receive a plurality of flowing liquids; a rotor on the interior of the housing; an annular mixing zone, wherein the annular mixing zone has a plurality of fluid retention reservoirs with ingress apertures near the bottom of the annular mixing zone and egress apertures located above the ingress apertures of the annular mixing zone; and an adjustable vane plate stem, wherein the stem can be raised to restrict the flow of a liquid into the rotor or lowered to increase the flow of the liquid into the rotor.

  13. Characterization of morphology controlled polyethersulfone hollow fiber membranes by the addition of polyethylene glycol to the dope and bore liquid solution

    NARCIS (Netherlands)

    Koops, G.H.; Liu, Y.; Liu, Y.; Strathmann, H.

    2003-01-01

    The preparation of polyethersulfone (PES) hollow fiber membranes has been studied using N-methylpyrrolidone (NMP) as solvent, polyethylene glycol 400 (PEG 400) as weak nonsolvent and water as strong nonsolvent. When PEG 400 is used as polymeric additive to the spinning dope the viscosity of the PES

  14. Morphology and performance of polyvinylidene fluoride/perfluoro sulphonic acid hollow fiber ultrafiltration blend membranes

    International Nuclear Information System (INIS)

    Yuan, Guo-Lin; Xu, Zhen-Liang; Wei, Yong-Ming; Yu, Li-Yun

    2009-01-01

    Polyvinylidene fluoride-perfluoro sulphonic acid hollow fibre ultrafiltration blend membranes were prepared by wet-spinning method. Polyvinylpyrrolidone and ethanol aqueous solutions were employed as additive and coagulants, respectively. The effect of Polyvinylpyrrolidone concentration in the dopes and ethanol concentration in the coagulants on morphology and performance of Polyvinylidene fluoride -perfluoro sulphonic acid hollow fibre ultrafiltration blend membranes were investigated. Blend membranes were characterized in terms of precipitation kinetics, morphology, thermal property and separation performance. The results showed that the increments of Polyvinylpyrrolidone concentration in the dopes and ethanol concentration in coagulants both resulted in higher pure water permeation flux and worse rejection (R) of bovine serum albumin (with the increment of Polyvinylpyrrolidone concentration from 0 to 5 wt% in the dopes, pure water permeation increased from 41.7 L.m -2 .h -1 to 134 L.m -2 .h -1 and R decreased from 99.8% to 84.4% as well as with the increase in ethanol concentration in coagulants from 0 to 40 wt%, pure water permeation increased from 33.5 L.m -2 .h- 1 to 123 L.m -2 .h -1 and R decreased from 97.7% to 88.7%). However, the proportion of sponge-like structure in the cross-section of membranes decreased with the increasing Polyvinylpyrrolidone concentration in the dopes and the proportion increased with the increased ethanol concentration in the coagulations. In addition, the location of the sponge-like structure in the cross-section of membranes was significantly influenced by ethanol concentrations in the coagulants and differential scanning calorimeter results revealed that the crystallinity (X c ) of the blend membrane was in accordance with the proportion of sponge-like structure. These behaviours were attributed to the different roles of Polyvinylpyrrolidone in the dopes and ethanol in the coagulants, respectively. Polyvinylidene fluoride

  15. Bioreduction of para-chloronitrobenzene in drinking water using a continuous stirred hydrogen-based hollow fiber membrane biofilm reactor

    Energy Technology Data Exchange (ETDEWEB)

    Xia Siqing, E-mail: siqingxia@gmail.com [State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092 (China); Li Haixiang; Zhang Zhiqiang [State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092 (China); Zhang Yanhao [College of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan 250101 (China); Yang Xin; Jia Renyong; Xie Kang; Xu Xiaotian [State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092 (China)

    2011-08-30

    Highlights: {yields} We designed a novel hollow fiber membrane biofilm reactor for p-CNB removal. {yields} Biotransformation pathway of p-CNB in the reactor was investigated in this study. {yields} Nitrate and sulfate competed more strongly for hydrogen than p-CNB. {yields} This reactor achieved high removal efficiency and hydrogen utilization efficiency. - Abstract: para-Chloronitrobenzene (p-CNB) is particularly harmful and persistent in the environment and is one of the priority pollutants. A feasible degradation pathway for p-CNB is bioreduction under anaerobic conditions. Bioreduction of p-CNB using a hydrogen-based hollow fiber membrane biofilm reactor (HFMBfR) was investigated in the present study. The experiment results revealed that p-CNB was firstly reduced to para-chloraniline (p-CAN) as an intermediate and then reduced to aniline that involves nitro reduction and reductive dechlorination with H{sub 2} as the electron donor. The HFMBfR had reduced p-CNB to a major extent with a maximum removal percentage of 99.3% at an influent p-CNB concentration of 2 mg/L and a hydraulic residence time of 4.8 h, which corresponded to a p-CNB flux of 0.058 g/m{sup 2} d. The H{sub 2} availability, p-CNB loading, and the presence of competing electron acceptors affected the p-CNB reduction. Flux analysis indicated that the reduction of p-CNB and p-CAN could consume fewer electrons than that of nitrate and sulfate. The HFMBfR had high average hydrogen utilization efficiencies at different steady states in this experiment, with a maximum efficiency at 98.2%.

  16. In situ derivatization and hollow fiber membrane microextraction for gas chromatographic determination of haloacetic acids in water

    Energy Technology Data Exchange (ETDEWEB)

    Varanusupakul, Pakorn [Chromatography and Separation Research Unit, Department of Chemistry, Faculty of Science, Chulalongkorn University, Phayathai Road, Patumwan, Bangkok 10330 (Thailand)], E-mail: pakorn.v@chula.ac.th; Vora-adisak, Narongchai; Pulpoka, Bancha [Chromatography and Separation Research Unit, Department of Chemistry, Faculty of Science, Chulalongkorn University, Phayathai Road, Patumwan, Bangkok 10330 (Thailand)

    2007-08-15

    An alternative method for gas chromatographic determination of haloacetic acids (HAAs) in water using direct derivatization followed by hollow fiber membrane liquid-phase microextraction (HF-LPME) has been developed. The method has improved the sample preparation step according to the conventional US EPA Method 552.2 by combining the derivatization and the extraction into one step prior to determination by gas chromatography electron captured detector (GC-ECD). The HAAs were derivatized with acidic methanol into their methyl esters and simultaneously extracted with supported liquid hollow fiber membrane in headspace mode. The derivatization was attempted directly in water sample without sample evaporation. The HF-LPME was performed using 1-octanol as the extracting solvent at 55 deg. C for 60 min with 20% Na{sub 2}SO{sub 4}. The linear calibration curves were observed for the concentrations ranging from 1 to 300 {mu}g L{sup -1} with the correlation coefficients (R{sup 2}) being greater than 0.99. The method detection limits of most analytes were below 1 {mu}g L{sup -1} except DCAA and MCAA that were 2 and 18 {mu}g L{sup -1}, respectively. The recoveries from spiked concentration ranged from 97 to 109% with %R.S.D. less than 12%. The method was applied for determination of HAAs in drinking water and tap water samples. The method offers an easy one step high sample throughput sample preparation for gas chromatographic determination of haloacetic acids as well as other contaminants in water.

  17. Fabrication of Polybenzimidazole/Palladium Nanoparticles Hollow Fiber Membranes for Hydrogen Purification

    KAUST Repository

    Villalobos, Luis Francisco; Hilke, Roland; Akhtar, Faheem Hassan; Peinemann, Klaus-Viktor

    2017-01-01

    in the form of ions that coordinate to the imidazole groups of the polymer. This is attractive for membrane production because agglomeration of nanoparticles is minimized and the high-cost metal is incorporated in only the selective layer—where it is required

  18. Outer-selective thin film composite (TFC) hollow fiber membranes for osmotic power generation

    KAUST Repository

    Le, Ngoc Lieu; Bettahalli Narasimha, Murthy Srivatsa; Nunes, Suzana Pereira; Chung, Neal Tai-Shung

    2016-01-01

    The pressure-retarded osmosis (PRO) process is a green technique for power generation to respond the world's need of energy sustainability. In this study, we have developed the vital component of the process, i.e. membrane, in the configuration

  19. The development of a high-throughput measurement method of octanol/water distribution coefficient based on hollow fiber membrane solvent microextraction technique.

    Science.gov (United States)

    Bao, James J; Liu, Xiaojing; Zhang, Yong; Li, Youxin

    2014-09-15

    This paper describes the development of a novel high-throughput hollow fiber membrane solvent microextraction technique for the simultaneous measurement of the octanol/water distribution coefficient (logD) for organic compounds such as drugs. The method is based on a designed system, which consists of a 96-well plate modified with 96 hollow fiber membrane tubes and a matching lid with 96 center holes and 96 side holes distributing in 96 grids. Each center hole was glued with a sealed on one end hollow fiber membrane tube, which is used to separate the aqueous phase from the octanol phase. A needle, such as microsyringe or automatic sampler, can be directly inserted into the membrane tube to deposit octanol as the accepted phase or take out the mixture of the octanol and the drug. Each side hole is filled with aqueous phase and could freely take in/out solvent as the donor phase from the outside of the hollow fiber membranes. The logD can be calculated by measuring the drug concentration in each phase after extraction equilibrium. After a comprehensive comparison, the polytetrafluoroethylene hollow fiber with the thickness of 210 μm, an extraction time of 300 min, a temperature of 25 °C and atmospheric pressure without stirring are selected for the high throughput measurement. The correlation coefficient of the linear fit of the logD values of five drugs determined by our system to reference values is 0.9954, showed a nice accurate. The -8.9% intra-day and -4.4% inter-day precision of logD for metronidazole indicates a good precision. In addition, the logD values of eight drugs were simultaneously and successfully measured, which indicated that the 96 throughput measure method of logD value was accurate, precise, reliable and useful for high throughput screening. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. PERIPAPILLARY RETINAL NERVE FIBER THICKNESS CHANGES AFTER VITRECTOMY FOR EPIRETINAL MEMBRANE IN EYES WITH AND WITHOUT VITREOUS DETACHMENT.

    Science.gov (United States)

    Mariotti, Cesare; Nicolai, Michele; Longo, Antonio; Viti, Francesca; Bambini, Elisa; Saitta, Andrea; Pirani, Vittorio; Orsini, Emanuele; Baruffa, Daniela; Reibaldi, Michele

    2017-12-01

    To compare the changes in postoperative peripapillary retinal nerve fiber layer (p-RNFL) thickness after vitrectomy for epiretinal membrane in eyes with preexisting posterior vitreous detachment (PVD) and eyes with surgically induced PVD. This study included consecutive patients who underwent 25-gauge vitrectomy for epiretinal membrane. Eyes were divided, according to intraoperative PVD status, into a preexisting PVD group and surgically induced PVD group. Best-corrected visual acuity, p-RNFL thickness, and central retinal thickness were performed before and at 1, 3, and 6 months after surgery. One hundred and twenty eyes of 120 patients were enrolled: 64 eyes in the preexisting PVD group and 56 eyes in the surgically induced PVD group. In the preexisting PVD group at 6 months, the mean global p-RNFL thickness did not change, whereas it was reduced in the temporal sector (P = 0.034). In the surgically induced PVD group at 6 months, significant decreases were observed in global p-RNFL thickness (P = 0.027), temporal (P = 0.021), temporal inferior (P = 0.030), and nasal inferior sectors (P = 0.010). At 6 months, the two groups differed significantly in temporal (P PVD.

  1. Energy Demand Comparison between Hollow Fiber Membrane Based Dehumidification and Evaporative Cooling Dehumidification Using TRNSYS

    Directory of Open Access Journals (Sweden)

    Jeachul Jang

    2018-05-01

    Full Text Available This communication presents the performance evaluation and comparative study between two different techniques: a membrane-based dehumidification system (MDS and evaporative cooling dehumidification (ECD for a typical climate of South Korea. Although there are different ways to dehumidify the air in living and work spaces, the membrane-based dehumidification system (MDS is the most effective way as it neither causes a change in the temperature nor harms the environment. Moreover, it consumes significantly less energy when compared to other methods. There are also limitations concerning products that are sensitive to temperature such as food and pharmaceutical products; the method of evaporative cooling dehumidification is not suitable for such applications. The present work demonstrated the excellent energy-saving performance of the membrane-based dehumidification system against evaporative cooling dehumidification by comparing the performance of these two systems during the rainy season using a transient system simulation. The results showed that the MDS helped to reduce the dehumidification load by more than 47.6% when compared to the ECD system, which is a significant achievement in this regard.

  2. Numerical Analysis for Separation of Methane by Hollow Fiber Membrane with Cocurrent Flow

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Seungmin; Seo, Yeonhee; Kang, Hanchang; Lee, Yongtaek [Chungnam National University, Daejeon (Korea, Republic of); Kim, Jeonghoon [Korea Research Institute of Chemical Technology, Daejeon (Korea, Republic of)

    2015-02-15

    A theoretical analysis was carried out to examine the concentration behavior of methane from a biogas using a polysulfone membrane. After the governing equations were derived for the cocurrent flow mode in a membrane module, the coupled nonlinear differential equations were numerically solved with the Compaq Visual Fortran 6.6 software. At the typical operating condition of mole fraction of 0.7 in a feed stream, the mole fraction of methane in the retentate increased to 0.76 while the normalized retentate flow rate to the feed flow rate decreased from 1 to 0.79. When either the mole fraction of methane in a feed increased or the pressure of the feed stream increased, the methane mole fraction in the retentate increased. On the other hand, it was found that as either the membrane area decreased or the ratio of the permeate pressure to the feed pressure increased, the methane mole fraction in the retentate decreased. In case that the stage cut increased, the methane mole fraction in the retentate increased while the recovery of methane slightly decreased.

  3. Tests of a Higgins contactor for the engineering-scale resin loading of uranium

    International Nuclear Information System (INIS)

    Spence, R.D.; Haas, P.A.

    1978-01-01

    The loading of uranium on weak-acid ion exchange resin is a basic step in the production of fuel particles for high-temperature gas-cooled reactors (HTGRs). In the work reported here, an engineering-scale continuous resin loader (2-in.-ID Higgins contactor) was tested with existing engineering-scale process equipment. The Higgins contactor was first successfully used to convert Na + -form resin to the H + -form; then it was evaluated as a uranium loader. Results show that the 2-in.-ID Higgins contactor can easily load 25 kg of uranium per day, indicating that a 4-in.-ID contactor could load 100 kg/day. Process control was achieved by monitoring and controlling the density, pH, and inventory volume of the uranium feed solution. This control scheme is amenable to remote operation

  4. Improved annular centrifugal contactor for solvent extraction reprocessing of nuclear reactor fuel

    International Nuclear Information System (INIS)

    Bernstein, G.J.; Leonard, R.A.; Ziegler, A.A.; Steindler, M.J.

    1978-01-01

    An improved annular centrifugal contactor has been developed for solvent extraction reprocessing of spent nuclear reactor fuel. The design is an extension of a contactor developed several years ago at Argonne National Laboratory. Its distinguishing features are high throughput, high stage efficiency and the ability to handle a broad range of aqueous-to-organic phase flow ratios and density ratios. Direct coupling of the mixing and separating rotor to a motorized spindle simplifies the design and makes the contactor particularly suitable for remote maintenance. A unit that is critically safe by geometry is under test and a larger unit is being fabricated. Multi-stage miniature contactors operating on the annular mixing principle are being used for laboratory flow sheet studies. 8 figures

  5. Evaluation of a respiratory assist catheter that uses an impeller within a hollow fiber membrane bundle.

    Science.gov (United States)

    Mihelc, Kevin M; Frankowski, Brian J; Lieber, Samuel C; Moore, Nathan D; Hattler, Brack G; Federspiel, William J

    2009-01-01

    Respiratory assist using an intravenous catheter may be a potential treatment for patients suffering from acute or acute-on-chronic lung failure. The objective of this study was to evaluate a novel respiratory catheter that uses an impeller within the fiber bundle to enhance gas exchange efficiency, thus requiring a smaller fiber bundle and insertional size (25 Fr) and permitting simple percutaneous insertion. Bench testing of gas exchange in deionized water was used to evaluate eight impeller designs. The three best performing impeller designs were evaluated in acute studies in four calves (122 + or - 10 kg). Gas exchange increased significantly with increasing impeller rotation rate. The degree of enhancement varied with impeller geometry. The maximum gas exchange efficiency (exchange per unit surface area) for the catheter with the best performing impeller was 529 + or - 20 ml CO(2)/min/m(2) and 513 + or - 21 ml CO(2)/min/m(2) for bench and animal studies, respectively, at a rotation rate of 20,000 rpm. Absolute CO(2) exchange was 37 and 36 ml CO(2)/min, respectively. Active mixing by rotating impellers produced 70% higher gas exchange efficiency than pulsating balloon catheters. The sensitivity of gas exchange to impeller design suggests that further improvements can be made by computational fluid dynamics-based optimization of the impeller.

  6. Engineering test of stripping performance by multi-centrifugal contactors system for spent nuclear reprocessing

    International Nuclear Information System (INIS)

    Masayuki Takeuchi; Tadahiro Washiya; Hiroki Nakabayashi; Takashi Suganuma; Shinnichi Aose

    2005-01-01

    Japan Nuclear Cycle Development Institute (JNC) has been developing centrifugal contactors which are compact and high performance for solvent extraction process in industrial reprocessing plant. The stripping performance including equilibrium time for distribution and hydraulic behavior of the multi-centrifugal contactors were mainly evaluated by using uranium nitrite solution on engineering scale (10 kgHM/hr). In particular, the effects of feed temperature of stripping solution and O/A on the stripping performance were focused in this test. As results, no hydraulic problem such as overflow and entrainment were observed in multi-centrifugal contactors system through all conditions, and the uranium and acid concentrations showed desirable profiles which were nearly consistent with calculated one by MIXSET-X code. As to stripping performance, uranium leak concentration in solvent reached to less than 0.01 g/L, which is target of the stripping performance on this centrifugal contactors system, within nine stages on all conditions. It was also found that the effect of feed temperature of stripping solution (35 degree C → 60 degree C) or O/A (1.0→0.8) on stripping performance corresponds to distribution capacity of two contactors, respectively. The stage efficiency for a contactor was estimated as 97-98% on stripping stage. There were no uranium leaks (less than 40μg/L) in spent solvent discharged from the final stage. The profiles of uranium concentration in multi-contactors become stable within 10 minutes after the stripping test starting. In this way, it was demonstrated that the centrifugal contactors system has good stripping performance on engineering scale. (authors)

  7. Treatment of Antibiotic Pharmaceutical Wastewater Using a Rotating Biological Contactor

    Directory of Open Access Journals (Sweden)

    Rongjun Su

    2015-01-01

    Full Text Available Rotating biological contactors (RBC are effective for treating wastewater, while they are rarely reported to be used for treating antibiotic pharmaceutical wastewater (APW. The current study investigates treatment of APW using an RBC. The effects of influent concentration, number of stages, and temperature on the remediation of APW were studied. The results indicated, even at low ambient temperature, 45% COD and 40% NH4+-N removal efficiencies. Moreover, the BOD5 removal efficiency was 85%. Microscopic observations illustrated that there were various active microorganisms displayed in the biofilms and their distribution changed from stage to stage. Compared with activated sludge, the biofilms in this study have higher content of dry matter and are easier to dehydrate and settle. Compared with current commercial incineration processes or advanced oxidation processes, RBC can greatly reduce the treatment cost. This research shows RBC is effective for such an inherently biorecalcitrant wastewater even at low ambient temperature.

  8. Preparation and Characterization of Polymeric-Hybrid PES/TiO2 Hollow Fiber Membranes for Potential Applications in Water Treatment

    Directory of Open Access Journals (Sweden)

    Silvia Simone

    2017-04-01

    Full Text Available In this work, poly(ethersulfone (PES ultrafiltration (UF hollow fibers (HF were modified by introducing TiO2 nanoparticles (TiO2-NPs in the polymeric dope, to endow them with photocatalytic properties. Different dope compositions and spinning conditions for producing “blank” PES UF fibers with suitable properties were investigated. PEO–PPO–PEO (Poly(ethylene glycol-block-poly(propylene glycol-block-poly(ethylene glycol, Pluronic® (Sigma-Aldrich, Milan, Italy was finally selected as the additive and a suitable dope composition was identified. After the detection of an appropriate dope composition and the optimization of the spinning parameters, PES-TiO2 HF was produced. The optimized composition was employed for preparing the mixed matrix HF loaded with TiO2 NPs. The effect of different TiO2 NP (0.3–1 wt % concentrations and bore fluid compositions on the fiber morphology and properties were explored. The morphology of the produced fibers was analyzed by Scanning Electron Microscopy (SEM. Fibers were further characterized by measuring: pore size diameters and thickness, porosity, and pure water permeability (PWP. The photocatalytic activity of the new membranes was also tested by UV light irradiation. The model “foulant” methylene blue (MB was used in order to prove the efficiency of the novel UF membrane for dye photo-degradation.

  9. Oxygen Transfer Model for a Flow-Through Hollow-Fiber Membrane Biofilm Reactor

    DEFF Research Database (Denmark)

    Gilmore, K. R.; Little, J. C.; Smets, Barth F.

    2009-01-01

    overpredicted the oxygen transfer by a factor of 1.3 relative to the result calculated from the outlet gas oxygen concentration, which was considered the most accurate of the measured benchmarks. A mass transfer coefficient derived from the clean water testing with oxygen sensors at the membrane......-liquid interface was the most accurate of the predictive models (overpredicted by a factor of 1.1) while a coefficient determined by measuring bulk liquid dissolved oxygen underpredicted the oxygen transfer by a factor of 3. The mechanistic model was found to be an adequate tool for design because it used...

  10. Extraction separation of toluene/cyclohexane with hollow fiber supported ionic liquid membrane

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Fan; Sun, Wei; Liu, Junteng; Zhang, Weidong; Ren, Zhongqi [Beijing University of Chemical Technology, Beijing (China)

    2014-06-15

    A supported liquid membrane with ionic liquid was used for the separation of toluene/cyclohexane. The interactions of ionic liquid with toluene and cyclohexane were calculated and experimentally studied by quantum chemical calculation and liquid-liquid extraction process. The results showed [BPy][BF{sub 4}] have stronger interaction with toluene than that with cyclohexane. The selectivity of SILM processes was larger than 10 at the temperature of 323 K and the flow rate of 13.5 mL·min{sup -1} on both shell side and lumen side. Due to the higher viscosity of IL, SILM process had good long-term stability. As the effects of mass transfer driving force of SILM process, the flux and removal efficiency increased with increase of initial toluene concentration, while the selectivity decreased because of the competitive transport. Base on the resistance in-series model and experimental results, the mass transfer resistance was mainly lay liquid membrane phase. The influence of flow rates on both sides was slight. The higher temperature could enhance the mass transfer performance significantly. The removal efficiency increased from 28.2% to 45.1% with the increasing of operation temperature from 298 K to 323 K.

  11. Testing and performance analysis of a hollow fiber-based core for evaporative cooling and liquid desiccant dehumidification

    DEFF Research Database (Denmark)

    Jradi, Muhyiddine; Riffat, Saffa

    2016-01-01

    In this study, an innovative heat and mass transfer core is proposed to provide thermal comfort and humidity control using a hollow fiber contactor with multiple bundles of micro-porous hollow fibers. The hollow fiberbased core utilizes 12 bundles aligned vertically, each with 1,000 packed...

  12. A New Microextraction Technique for the Assay of Alkaloids in Chinese Compound Formula-Based Polyether Sulfone Membrane Fiber Decorated by TiO2 Nanoparticles.

    Science.gov (United States)

    Sun, Xinjie; Wei, Yingqin; Hou, Baojuan; Zhou, Guowei

    2017-03-01

    A new nanocomposite membrane was used to clean up impurities from complex samples and the obvious synergy was obtained in this paper. The nanocomposite membrane was prepared by dispersing TiO2 nanoparticles in chloroform and filled in the pores and lumen of polyether sulfone membrane fiber. The novel microextraction method showed the ideal selective extraction effect for alkaloids in the formulae composed of Rhizoma coptidis and the excellent clean-up efficiency compared with the single membrane method. The optimum extraction conditions were as follows: chloroform as accepted phase; the number of nanocomposite membrane fiber bars, 7; extraction time, 30 min; pH of the sample solution, 10.55; desorption solvent, methanol. The limit of detection for the described alkaloids was estimated at 0.122 μg mL-1. The recovery of the four alkaloids in complex samples ranged from 93.24% to 97.94% with relative standard deviation of <4.99 (n = 5). The validated method had been successfully applied to study the transfer rate of alkaloids in the producing process of Qihuang capsule and the ideal transfer rate of alkaloids was obtained in this paper. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  13. A comparison of mass transfer coefficients between trickle-bed, hollow fiber membrane and stirred tank reactors.

    Science.gov (United States)

    Orgill, James J; Atiyeh, Hasan K; Devarapalli, Mamatha; Phillips, John R; Lewis, Randy S; Huhnke, Raymond L

    2013-04-01

    Trickle-bed reactor (TBR), hollow fiber membrane reactor (HFR) and stirred tank reactor (STR) can be used in fermentation of sparingly soluble gasses such as CO and H2 to produce biofuels and bio-based chemicals. Gas fermenting reactors must provide high mass transfer capabilities that match the kinetic requirements of the microorganisms used. The present study compared the volumetric mass transfer coefficient (K(tot)A/V(L)) of three reactor types; the TBR with 3 mm and 6 mm beads, five different modules of HFRs, and the STR. The analysis was performed using O2 as the gaseous mass transfer agent. The non-porous polydimethylsiloxane (PDMS) HFR provided the highest K(tot)A/V(L) (1062 h(-1)), followed by the TBR with 6mm beads (421 h(-1)), and then the STR (114 h(-1)). The mass transfer characteristics in each reactor were affected by agitation speed, and gas and liquid flow rates. Furthermore, issues regarding the comparison of mass transfer coefficients are discussed. Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. Simultaneous enrichment of denitrifying anaerobic methane-oxidizing microorganisms and anammox bacteria in a hollow-fiber membrane biofilm reactor.

    Science.gov (United States)

    Ding, Zhao-Wei; Lu, Yong-Ze; Fu, Liang; Ding, Jing; Zeng, Raymond J

    2017-01-01

    In this study, the coculture system of denitrifying anaerobic methane oxidation (DAMO) microbes and anaerobic ammonium oxidation (anammox) bacteria was successfully enriched in a hollow-fiber membrane biofilm reactor (HfMBR) using freshwater sediment as the inoculum. The maximal removal rates of nitrate and ammonium were 78 mg N/L/day (131 mg N/m 2 /day) and 26 mg N/L/day (43 mg N/m 2 /day), respectively. Due to the high rate of methane mass transfer in HfMBR, the activity of DAMO archaea continued to increase during the enrichment period, indicating that HfMBR could be a powerful tool to enrich DAMO microorganisms. Effects of partial methane pressure, temperature, and pH on the cocultures were obvious. However, the microbial activity in HfMBR could be recovered quickly after the shock change of environmental factors. Furthermore, the result also found that DAMO bacteria likely had a stronger competitive advantage than anammox bacteria under the operating conditions in this study. High-throughput sequencing 16S rRNA genes illustrated that the dominant microbes were NC10, Euryarchaeota, Proteobacteria, Planctomycetes, and Chlorobi with relative abundance of 38.8, 26.2, 13.78, 6.2, and 3.6 %, respectively.

  15. ISS And Space Environment Interactions Without Operating Plasma Contactor

    Science.gov (United States)

    Carruth, M. R., Jr.; Ferguson, Dale; Suggs,Rob; McCollum, Matt

    2001-01-01

    The International Space Station (ISS) will be the largest, highest power spacecraft placed in orbit. Because of this the design of the electrical power system diverged markedly from previous systems. The solar arrays will operate at 160 V and the power distribution voltage will be 120 V. The structure is grounded to the negative side of the solar arrays so under the right circumstances it is possible to drive the ISS potential very negative. A plasma contactor has been added to the ISS to provide control of the ISS structure potential relative to the ambient plasma. The ISS requirement is that the ISS structure not be greater than 40 V positive or negative of local plasma. What are the ramifications of operating large structures with such high voltage power systems? The application of a plasma contactor on ISS controls the potential between the structure and the local plasma, preventing degrading effects. It is conceivable that there can be situations where the plasma contactor might be non-functional. This might be due to lack of power, the need to turn it off during some of the build-up sequences, the loss of functionality for both plasma contactors before a replacement can be installed, similar circumstances. A study was undertaken to understand how important it is to have the contactor functioning and how long it might be off before unacceptable degradation to ISS could occur. The details of interaction effects on spacecraft have not been addressed until driven by design. This was true for ISS. If the structure is allowed to float highly negative impinging ions can sputter exposed conductors which can degrade the primary surface and also generate contamination due to the sputtered material. Arcing has been known to occur on solar arrays that float negative of the ambient plasma. This can also generate electromagnetic interference and voltage transients. Much of the ISS structure and pressure module surfaces exposed to space is anodized aluminum. The anodization

  16. A high-flux polyimide hollow fiber membrane to minimize footprint and energy penalty for CO2 recovery from flue gas

    KAUST Repository

    Lively, Ryan P.

    2012-12-01

    Using a process-guided approach, a new 6FDA-based polyimide - 6FDA-DAM:DABA(4:1) - has been developed in the form of hollow fiber membranes for CO 2 recovery from post-combustion flue gas streams. Dense film studies on this polymer reveal a CO 2 permeability of 224 Barrers at 40°C at a CO 2 feed pressure of 10psia. The dense films exhibit an ideal CO 2/N 2 permselectivity of 20 at 40°C, which permits their use in a two-step counter-flow/sweep membrane process. Dry-jet, wet-quench, non-solvent-induced phase inversion spinning was used to create defect-free hollow fibers from 6FDA-DAM:DABA(4:1). Membranes with defect-free skin layers, approximately 415nm thick, were obtained with a pure CO 2 permeance of 520GPU at 30°C and an ideal CO 2/N 2 permselectivity of 24. Mixed gas permeation and wet gas permeation are presented for the fibers. The CO 2 permeance in the fibers was reduced by approximately a factor of 2 in feeds with 80% humidity. As a proof-of-concept path forward to increase CO 2 flux, we incorporated microporous ZIF-8 fillers into 6FDA-DAM:DABA(4:1) dense films. Our 6FDA-DAM:DABA(4:1)/ZIF-8 dense film composites (20wt% ZIF-8) had a CO 2 permeability of 550 Barrers and a CO 2/N 2 selectivity of 19 at 35°C. Good adhesion between the ZIF and the 6FDA-DAM:DABA(4:1) matrix was observed. CO 2 capture costs of $27/ton of CO 2 using the current, "non-optimized" membrane are estimated using a custom counterflow membrane model. Hollow fiber membrane modules were estimated to have order-of-magnitude reductions in system footprint relative to spiral-wound modules, thereby making them attractive in current space-constrained coal-fired power stations. © 2012 Elsevier B.V.

  17. PB1-F2 influenza A virus protein adopts a beta-sheet conformation and forms amyloid fibers in membrane environments.

    Science.gov (United States)

    Chevalier, Christophe; Al Bazzal, Ali; Vidic, Jasmina; Février, Vincent; Bourdieu, Christiane; Bouguyon, Edwige; Le Goffic, Ronan; Vautherot, Jean-François; Bernard, Julie; Moudjou, Mohammed; Noinville, Sylvie; Chich, Jean-François; Da Costa, Bruno; Rezaei, Human; Delmas, Bernard

    2010-04-23

    The influenza A virus PB1-F2 protein, encoded by an alternative reading frame in the PB1 polymerase gene, displays a high sequence polymorphism and is reported to contribute to viral pathogenesis in a sequence-specific manner. To gain insights into the functions of PB1-F2, the molecular structure of several PB1-F2 variants produced in Escherichia coli was investigated in different environments. Circular dichroism spectroscopy shows that all variants have a random coil secondary structure in aqueous solution. When incubated in trifluoroethanol polar solvent, all PB1-F2 variants adopt an alpha-helix-rich structure, whereas incubated in acetonitrile, a solvent of medium polarity mimicking the membrane environment, they display beta-sheet secondary structures. Incubated with asolectin liposomes and SDS micelles, PB1-F2 variants also acquire a beta-sheet structure. Dynamic light scattering revealed that the presence of beta-sheets is correlated with an oligomerization/aggregation of PB1-F2. Electron microscopy showed that PB1-F2 forms amorphous aggregates in acetonitrile. In contrast, at low concentrations of SDS, PB1-F2 variants exhibited various abilities to form fibers that were evidenced as amyloid fibers in a thioflavin T assay. Using a recombinant virus and its PB1-F2 knock-out mutant, we show that PB1-F2 also forms amyloid structures in infected cells. Functional membrane permeabilization assays revealed that the PB1-F2 variants can perforate membranes at nanomolar concentrations but with activities found to be sequence-dependent and not obviously correlated with their differential ability to form amyloid fibers. All of these observations suggest that PB1-F2 could be involved in physiological processes through different pathways, permeabilization of cellular membranes, and amyloid fiber formation.

  18. PB1-F2 Influenza A Virus Protein Adopts a β-Sheet Conformation and Forms Amyloid Fibers in Membrane Environments

    Science.gov (United States)

    Chevalier, Christophe; Al Bazzal, Ali; Vidic, Jasmina; Février, Vincent; Bourdieu, Christiane; Bouguyon, Edwige; Le Goffic, Ronan; Vautherot, Jean-François; Bernard, Julie; Moudjou, Mohammed; Noinville, Sylvie; Chich, Jean-François; Da Costa, Bruno; Rezaei, Human; Delmas, Bernard

    2010-01-01

    The influenza A virus PB1-F2 protein, encoded by an alternative reading frame in the PB1 polymerase gene, displays a high sequence polymorphism and is reported to contribute to viral pathogenesis in a sequence-specific manner. To gain insights into the functions of PB1-F2, the molecular structure of several PB1-F2 variants produced in Escherichia coli was investigated in different environments. Circular dichroism spectroscopy shows that all variants have a random coil secondary structure in aqueous solution. When incubated in trifluoroethanol polar solvent, all PB1-F2 variants adopt an α-helix-rich structure, whereas incubated in acetonitrile, a solvent of medium polarity mimicking the membrane environment, they display β-sheet secondary structures. Incubated with asolectin liposomes and SDS micelles, PB1-F2 variants also acquire a β-sheet structure. Dynamic light scattering revealed that the presence of β-sheets is correlated with an oligomerization/aggregation of PB1-F2. Electron microscopy showed that PB1-F2 forms amorphous aggregates in acetonitrile. In contrast, at low concentrations of SDS, PB1-F2 variants exhibited various abilities to form fibers that were evidenced as amyloid fibers in a thioflavin T assay. Using a recombinant virus and its PB1-F2 knock-out mutant, we show that PB1-F2 also forms amyloid structures in infected cells. Functional membrane permeabilization assays revealed that the PB1-F2 variants can perforate membranes at nanomolar concentrations but with activities found to be sequence-dependent and not obviously correlated with their differential ability to form amyloid fibers. All of these observations suggest that PB1-F2 could be involved in physiological processes through different pathways, permeabilization of cellular membranes, and amyloid fiber formation. PMID:20172856

  19. The Permeation Property of Hollow Fiber Membrane in Environmental Monitoring of Noble Gases%中空纤维膜在环境惰性气体取样中的渗透性能

    Institute of Scientific and Technical Information of China (English)

    陆小军; 张艾明; 李园; 马雄楠; 张勇

    2013-01-01

    Two kinds of domestic commercial hollow fiber membrane materials were used to study the separation performance of the major components of the air including krypton .The result indicates that a polyimide hollow fiber membrane separation performance superior to the polysulfone hollow fiber membrane and can be used as an ideal material of hollow fiber rich krypton membrane .%研究了同温同压下,两种国产商业用中空纤维膜材料对空气各主要组成成分及氪的分离浓集性能,得到聚酰亚胺中空纤维膜选择分离性能优于聚砜中空纤维膜,可用作中空纤维富氪膜材料的结论。

  20. Reduced graphene oxide-NH2 modified low pressure nanofiltration composite hollow fiber membranes with improved water flux and antifouling capabilities

    Science.gov (United States)

    Li, Xipeng; Zhao, Changwei; Yang, Mei; Yang, Bin; Hou, Deyin; Wang, Tao

    2017-10-01

    Reduced graphene oxide-NH2 (R-GO-NH2), a kind of amino graphene oxide, was embedded into the polyamide (PA) layer of nanofiltration (NF) composite hollow fiber membranes via interfacial polymerization to enhance the permeate flux and antifouling properties of NF membranes under low pressure conditions. In addition, it could mitigate the poor compatibility issue between graphene oxide materials and PA layer. To evaluate the influence of R-GO-NH2 on the performance of the NF composite hollow fiber membrane, SEM, AFM, FTIR, XPS and Zeta potentials were used to characterize the membranes. The results indicated that the compatibility and interactions between R-GO-NH2 and PA layer were enhanced, which was mainly due to the polymerization reaction between amino groups of R-GO-NH2 and acyl chloride groups of TMC. Therefore, salts rejection of the current membranes was improved significantly, and the modified membranes with 50 mg/L R-GO-NH2 demonstrated highest performance in terms of the rejections, which were 26.9%, 98.5%, 98.1%, and 96.1%, for NaCl, Na2SO4, MgSO4, and CaCl2 respectively. It was found that with the R-GO-NH2 contents rasing from 0 to 50 mg/L, pure water flux increased from 30.44 ± 1.71 to 38.57 ± 2.01 L/(m2.h) at 2 bar. What's more, the membrane demonstrated improved antifouling properties.

  1. Performance study of a heat pump driven and hollow fiber membrane-based two-stage liquid desiccant air dehumidification system

    International Nuclear Information System (INIS)

    Zhang, Ning; Yin, Shao-You; Zhang, Li-Zhi

    2016-01-01

    Graphical abstract: A heat pump driven, hollow fiber membrane-based two-stage liquid desiccant air dehumidification system. - Highlights: • A two-stage hollow fiber membrane based air dehumidification is proposed. • It is heat pump driven liquid desiccant system. • Performance is improved 20% upon single stage system. • The optimal first to second stage dehumidification area ratio is 1.4. - Abstract: A novel compression heat pump driven and hollow fiber membrane-based two-stage liquid desiccant air dehumidification system is presented. The liquid desiccant droplets are prevented from crossing over into the process air by the semi-permeable membranes. The isoenthalpic processes are changed to quasi-isothermal processes by the two-stage dehumidification processes. The system is set up and a model is proposed for simulation. Heat and mass capacities in the system, including the membrane modules, the condenser, the evaporator and the heat exchangers are modeled in detail. The model is also validated experimentally. Compared with a single-stage dehumidification system, the two-stage system has a lower solution concentration exiting from the dehumidifier and a lower condensing temperature. Thus, a better thermodynamic system performance is realized and the COP can be increased by about 20% under the typical hot and humid conditions in Southern China. The allocations of heat and mass transfer areas in the system are also investigated. It is found that the optimal regeneration to dehumidification area ratio is 1.33. The optimal first to second stage dehumidification area ratio is 1.4; and the optimal first to second stage regeneration area ratio is 1.286.

  2. Mass transfer modeling on the separation of tantalum and niobium from dilute hydrofluoric media through a hollow fiber supported liquid membrane

    International Nuclear Information System (INIS)

    Buachuang, Duenphen; Ramakul, Prakorn; Leepipatpiboon, Natchanun; Pancharoen, Ura

    2011-01-01

    Highlights: → Simultaneous separation of tantalum and niobium from the mixture solution. → An extraction through a hollow fiber supported liquid membrane (HFSLM). → The effect on tantalum removal found from Aliquat 336. → The mathematical model focusing on the extraction side of the liquid membrane system was presented. → The mass transfer coefficients of the aqueous feed (k i ) and the organic membrane phase (k m ) for the system were estimated as 1.19 x 10 -5 and 1.39 x 10 -7 cm/s, respectively. → Experimental data and theoretical values were found to be in good agreement when the concentration of Aliquat336 in the membrane phase was below 4% (v/v). - Abstract: The separation of a mixture of tantalum and niobium in dilute hydrofluoric media via hollow fiber supported liquid membrane (HFSLM) was examined. Quaternary ammonium salt (Aliquat336) diluted in kerosene was used as a carrier. The various effects on the transport and separation of tantalum and niobium were studied: concentration of hydrofluoric acid in the feed solution, concentration of the carrier (Aliquat336) in the membrane phase, types of stripping solutions (NaClO 4 , thiourea and HCl) and their concentration. The extraction of tantalum in the membrane phase from 0.3 M hydrofluoric acid (HF) by 3% (v/v) Aliquat336 was achieved by leaving niobium in the feed solution. Quantitative recovery of tantalum was achieved by 0.2 M NaClO 4 . Furthermore, a mathematical model focusing on the extraction side of the liquid membrane system was presented in order to predict the concentration of tantalum at different times. The mass transfer coefficients of the aqueous feed (k i ) and the organic membrane phase (k m ) were estimated as 1.19 x 10 -5 and 1.39 x 10 -7 cm/s, respectively. Therefore, the mass transfer limiting step is the diffusion of tantalum-Aliquat336 through the liquid membrane. Moreover, mass transfer modeling was performed and the validity of the developed model evaluated. Experimental

  3. Mass transfer modeling on the separation of tantalum and niobium from dilute hydrofluoric media through a hollow fiber supported liquid membrane

    Energy Technology Data Exchange (ETDEWEB)

    Buachuang, Duenphen [Department of Chemical Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok 10330 (Thailand); Ramakul, Prakorn [Department of Chemical Engineering, Faculty of Engineering and Industrial Technology, Silpakorn University, Nakhon Pathom 73000 (Thailand); Leepipatpiboon, Natchanun [Chromatography and Separation Research Unit, Department of Chemistry, Faculty of Science, Chulalongkorn University, Patumwan, Bangkok 10330 (Thailand); Pancharoen, Ura, E-mail: ura.p.@chula.ac.th [Department of Chemical Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok 10330 (Thailand)

    2011-09-29

    Highlights: > Simultaneous separation of tantalum and niobium from the mixture solution. > An extraction through a hollow fiber supported liquid membrane (HFSLM). > The effect on tantalum removal found from Aliquat 336. > The mathematical model focusing on the extraction side of the liquid membrane system was presented. > The mass transfer coefficients of the aqueous feed (k{sub i}) and the organic membrane phase (k{sub m}) for the system were estimated as 1.19 x 10{sup -5} and 1.39 x 10{sup -7} cm/s, respectively. > Experimental data and theoretical values were found to be in good agreement when the concentration of Aliquat336 in the membrane phase was below 4% (v/v). - Abstract: The separation of a mixture of tantalum and niobium in dilute hydrofluoric media via hollow fiber supported liquid membrane (HFSLM) was examined. Quaternary ammonium salt (Aliquat336) diluted in kerosene was used as a carrier. The various effects on the transport and separation of tantalum and niobium were studied: concentration of hydrofluoric acid in the feed solution, concentration of the carrier (Aliquat336) in the membrane phase, types of stripping solutions (NaClO{sub 4}, thiourea and HCl) and their concentration. The extraction of tantalum in the membrane phase from 0.3 M hydrofluoric acid (HF) by 3% (v/v) Aliquat336 was achieved by leaving niobium in the feed solution. Quantitative recovery of tantalum was achieved by 0.2 M NaClO{sub 4}. Furthermore, a mathematical model focusing on the extraction side of the liquid membrane system was presented in order to predict the concentration of tantalum at different times. The mass transfer coefficients of the aqueous feed (k{sub i}) and the organic membrane phase (k{sub m}) were estimated as 1.19 x 10{sup -5} and 1.39 x 10{sup -7} cm/s, respectively. Therefore, the mass transfer limiting step is the diffusion of tantalum-Aliquat336 through the liquid membrane. Moreover, mass transfer modeling was performed and the validity of the

  4. Utilization of composite membrane polyethyleneglycol-polystyrene-cellulose acetate from pineapple leaf fibers in lowering levels of methyl orange batik waste

    Science.gov (United States)

    Delsy, E. V. Y.; Irmanto; Kazanah, F. N.

    2017-02-01

    Pineapple leaves are agricultural waste from the pineapple that the fibers can be utilized as raw material in cellulose acetate membranes. First, made pineapple leaf fibers into pulp and then converted into cellulose acetate by acetylation process in four stages consisting of activation, acetylation, hydrolysis and purification. Cellulose acetate then used as the raw material to manufacture composite membrane with addition of polystyrene and poly (ethylene glycol) as porogen. Composite membrane is made using phase inversion method with dichloromethane-acetone as a solvent. The result of FTIR analysis (Fourier transform infra-red) showed that the absorption of the carbonyl group (C=O) is at 1643.10 cm-1 and acetyl group (C-O ) at 1227.01 cm-1, with a molecular weight of 8.05 x 104 g/mol and the contents (rate) of acetyl is 37.31%. PS-PEG-CA composite membrane had also been characterized by measuring the water flux values and its application to decrease methyl orange content (level) in batik waste. The results showed that the water flux value is of 25.62 L/(m2.hour), and the decrease percentage of methyl orange content in batik waste is 71.53%.

  5. Membrane Technologies in Wine Industry: An Overview.

    Science.gov (United States)

    El Rayess, Youssef; Mietton-Peuchot, Martine

    2016-09-09

    Membrane processes are increasingly reported for various applications in wine industry such as microfiltration, electrodialysis, and reverse osmosis, but also emerging processes as bipolar electrodialysis and membrane contactor. Membrane-based processes are playing a critical role in the field of separation/purification, clarification, stabilization, concentration, and de-alcoholization of wine products. They begin to be an integral part of the winemaking process. This review will provide an overview of recent developments, applications, and published literature in membrane technologies applied in wine industry.

  6. Gypsum (CaSO4·2H2O) Scaling on Polybenzimidazole and Cellulose Acetate Hollow Fiber Membranes under Forward Osmosis

    Science.gov (United States)

    Chen, Si Cong; Su, Jincai; Fu, Feng-Jiang; Mi, Baoxia; Chung, Tai-Shung

    2013-01-01

    We have examined the gypsum (CaSO4·2H2O) scaling phenomena on membranes with different physicochemical properties in forward osmosis (FO) processes. Three hollow fiber membranes made of (1) cellulose acetate (CA), (2) polybenzimidazole (PBI)/polyethersulfone (PES) and (3) PBI-polyhedral oligomeric silsesquioxane (POSS)/polyacrylonitrile (PAN) were studied. For the first time in FO processes, we have found that surface ionic interactions dominate gypsum scaling on the membrane surface. A 70% flux reduction was observed on negatively charged CA and PBI membrane surfaces, due to strong attractive forces. The PBI membrane surface also showed a slightly positive charge at a low pH value of 3 and exhibited a 30% flux reduction. The atomic force microscopy (AFM) force measurements confirmed a strong repulsive force between gypsum and PBI at a pH value of 3. The newly developed PBI-POSS/PAN membrane had ridge morphology and a contact angle of 51.42° ± 14.85° after the addition of hydrophilic POSS nanoparticles and 3 min thermal treatment at 95 °C. Minimal scaling and an only 1.3% flux reduction were observed at a pH value of 3. Such a ridge structure may reduce scaling by not providing a locally flat surface to the crystallite at a pH value of 3; thus, gypsum would be easily washed away from the surface. PMID:24957062

  7. Development of a Power Electronics Unit for the Space Station Plasma Contactor

    Science.gov (United States)

    Hamley, John A.; Hill, Gerald M.; Patterson, Michael J.; Saggio, Joseph, Jr.; Terdan, Fred; Mansell, Justin D.

    1994-01-01

    A hollow cathode plasma contactor has been baselined as a charge control device for the Space Station (SS) to prevent deleterious interactions of coated structural components with the ambient plasma. NASA LeRC Work Package 4 initiated the development of a plasma contactor system comprised of a Power Electronics Unit (PEU), an Expellant Management Unit (EMU), a command and data interface, and a Plasma Contactor Unit (PCU). A breadboard PEU was designed and fabricated. The breadboard PEU contains a cathode heater and discharge power supply, which were required to operate the PCU, a control and auxiliary power converter, an EMU interface, a command and telemetry interface, and a controller. The cathode heater and discharge supplies utilized a push-pull topology with a switching frequency of 20 kHz and pulse-width-modulated (PWM) control. A pulse ignition circuit derived from that used in arcjet power processors was incorporated in the discharge supply for discharge ignition. An 8088 based microcontroller was utilized in the breadboard model to provide a flexible platform for controller development with a simple command/data interface incorporating a direct connection to SS Mulitplexer/Demultiplexer (MDM) analog and digital I/O cards. Incorporating this in the flight model would eliminate the hardware and software overhead associated with a 1553 serial interface. The PEU autonomously operated the plasma contactor based on command inputs and was successfully integrated with a prototype plasma contactor unit demonstrating reliable ignition of the discharge and steady-state operation.

  8. Assessment of bacterial growth and total organic carbon removal on granular activated carbon contactors.

    Science.gov (United States)

    Bancroft, K; Maloney, S W; McElhaney, J; Suffet, I H; Pipes, W O

    1983-01-01

    The overall growth rate of bacteria on granular activated carbon (GAC) contactors at the Philadelphia Torresdale Water Treatment Pilot Plant facility was found to decrease until steady state was reached. The growth rate was found to fluctuate between 6.94 X 10(-3) and 8.68 X 10(-4) doublings per h. The microbiological removal of total organic carbon (TOC) was calculated by considering the GAC contactors as semiclosed continuous culture systems and using growth yield factors determined in laboratory experiments. After ozonation, the average TOC entering the contactors was 1,488 micrograms/liter, and the average effluent TOC was 497 micrograms/liter. Microbiological TOC removal was found to average 240 micrograms/liter on GAC contactors, which was not significantly different from microbiological TOC (220 micrograms/liter) removal across a parallel sand contactor where no adsorption took place. Thus, GAC did not appear to enhance biological TOC removal. Bacterial growth and maintenance was responsible for approximately 24% of the TOC removal on GAC under the conditions of this study. PMID:6639023

  9. ISS and Space Environment Interactions in Event of Plasma Contactor Failure

    Science.gov (United States)

    Carruth, M. R., Jr.; Munafo, Paul M. (Technical Monitor)

    2000-01-01

    The International Space Station (ISS), illustrated in Figure 1, will be the largest, highest power spacecraft placed in orbit. Because of this the design of the electrical power system diverged markedly from previous systems. The solar arrays will operate at 160 V and the power distribution voltage will be 120 V. The structure is grounded to the negative side of the solar arrays so under the right circumstances it is possible to drive the ISS potential very negative. A plasma contactor has been added to the ISS to provide control of the ISS structure potential relative to the ambient plasma. The ISS requirement is that the ISS structure not be greater than 40 V positive or negative of local plasma. What are the ramifications of operating large structures with such high voltage power systems? The application of a plasma contactor on ISS controls the potential between the structure and the local plasma, preventing degrading effects. It is conceivable that there can be situations where the plasma contactor might be non-functional. This might be due to lack of power, the need to turn it off during some of the build-up sequences, the loss of functionality for both plasma contactors before a replacement can be installed, and similar circumstances. A study was undertaken to understand how important it is to have the contactor functioning and how long it might be off before unacceptable degradation to ISS could occur.

  10. Assessment of bacterial growth and total organic carbon removal on granular activated carbon contactors.

    Science.gov (United States)

    Bancroft, K; Maloney, S W; McElhaney, J; Suffet, I H; Pipes, W O

    1983-09-01

    The overall growth rate of bacteria on granular activated carbon (GAC) contactors at the Philadelphia Torresdale Water Treatment Pilot Plant facility was found to decrease until steady state was reached. The growth rate was found to fluctuate between 6.94 X 10(-3) and 8.68 X 10(-4) doublings per h. The microbiological removal of total organic carbon (TOC) was calculated by considering the GAC contactors as semiclosed continuous culture systems and using growth yield factors determined in laboratory experiments. After ozonation, the average TOC entering the contactors was 1,488 micrograms/liter, and the average effluent TOC was 497 micrograms/liter. Microbiological TOC removal was found to average 240 micrograms/liter on GAC contactors, which was not significantly different from microbiological TOC (220 micrograms/liter) removal across a parallel sand contactor where no adsorption took place. Thus, GAC did not appear to enhance biological TOC removal. Bacterial growth and maintenance was responsible for approximately 24% of the TOC removal on GAC under the conditions of this study.

  11. Preliminary Study of Greywater Treatment through Rotating Biological Contactor

    Directory of Open Access Journals (Sweden)

    Ashfaq Ahmed Pathan

    2011-07-01

    Full Text Available The characteristics of the greywater vary from country to country and it depends upon the cultural and social behavior of the respective country. There was a considerable need to characterize and recycle the greywater. In this regard greywater was separated from the black water and analyzed for various physiochemical parameters. Among various greywater recycling treatment technologies, RBC (Rotating Biological Contactor is more effective treatment technique in reducing COD (Chemical Oxygen Demand and organic matters from the greywater. But this technology was not applied and tested in Pakistan. There was extensive need to investigate the RBC technology for greywater recycling at small scale before applying at mass scale. To treat the greywater, a single-stage RBC simulator was designed and developed at laboratory scale. An electric motor equipped with gear box to control the rotations of the disks was mounted on the tank. The simulator was run at the rate of 1.7 rpm. The disc area of the RBC was immersed about 40% in the greywater. Water samples were collected at each HRT (Hydraulic Retention Time and analyzed for the parameters such as pH, conductivity, TDS (Total Dissolved Solids, salinity, BOD5 (Biochemical Oxygen Demand, COD and suspended solids by using standard methods. The results are encouraging with percentage removal of BOD5 and COD being 53 and 60% respectively.

  12. Modified rotating biological contactor for removal of dichloromethane vapours.

    Science.gov (United States)

    Ravi, R; Philip, Ligy; Swaminathan, T

    2015-01-01

    Bioreactors are used for the treatment of waste gas and odour that has gained much acceptance in the recent years to treat volatile organic compounds (VOCs). The different types of bioreactors (biofilter, biotrickling filter and bioscrubber) have been used for waste gas treatment. Each of these reactors has some advantages and some limitations. Though biodegradation is the main process for the removal of the pollutants, the mechanisms of removal and the microbial communities may differ among these bioreactors. Consequently, their performance or removal efficiency may also be different. Clogging of reactor and pressure drop are the main problems. In this study attempts are made to use the principle of rotating biological contactor (RBC) used for wastewater treatment for the removal of VOC. To overcome the above problem the RBC is modified which is suitable for the treatment of VOC (dichloromethane, DCM). DCM is harmful to human health and hazardous to the atmospheric environment. Modified RBC had no clogging problems and no pressure drop. So, it can handle the pollutant load for a longer period of time. A maximum elimination capacity of 25.7 g/m3 h has been achieved in this study for the DCM inlet load of 58 g/m3 h. The average biofilm thickness is 1 mm. The transient behaviour of the modified RBC treating DCM was investigated. The modified RBC is able to handle shutdown, restart and shock loading operations.

  13. Theoretical studies on membrane-based gas separation using computational fluid dynamics (CFD) of mass transfer

    International Nuclear Information System (INIS)

    Sohrabi, M.R.; Marjani, A.; Davallo, M.; Moradi, S.; Shirazian, S.

    2011-01-01

    A 2D mass transfer model was developed to study carbon dioxide removal by absorption in membrane contactors. The model predicts the steady state absorbent and carbon dioxide concentrations in the membrane by solving the conservation equations. The continuity equations for three sub domains of the membrane contactor involving the tube; membrane and shell were obtained and solved by finite element method (FEM). The model was based on 'non-wetted mode' in which the gas phase filled the membrane pores. Laminar parabolic velocity profile was used for the liquid flow in the tube side; whereas, the gas flow in the shell side was characterized by Happel's free surface model. Axial and radial diffusion transport inside the shell, through the membrane, and within the tube side of the contactor was considered in the mass transfer model. The predictions of percent CO/sub 2/ removal obtained by modeling were compared with the experimental values obtained from literature. They were the experimental results for CO/sub 2/ removal from CO/sub 2//N/sub 2/ gas mixture with amines aqueous solutions as the liquid solvent using polypropylene membrane contactor. The modeling predictions were in good agreement with the experimental values for different values of gas and liquid flow rates. (author)

  14. Electrospun LiFePO₄/C Composite Fiber Membrane as a Binder-Free, Self-Standing Cathode for Power Lithium-Ion Battery.

    Science.gov (United States)

    Chen, Li-Li; Shen, Xiang-Qian; Jing, Mao-Xiang; Zhu, Sheng-Wen; Pi, Zhi-Chao; Li, Jing-Quan; Zhai, Hong-Ai; Xiao, Ke-Song

    2018-07-01

    A LiFePO4/C composite fiber membrane was fabricated by the electrospinning method and subsequent thermal treatment. The thermal decomposition process was analyzed by TG/DSC, the morphology, microstructure and composition were studied using SEM, TEM, XRD, Raman, respectively. The results indicated that the prepared LiFePO4/C composite fibers were composed of nanosized LiFePO4 crystals and amorphous carbon coatings, which formed a three dimensional (3D) long-range networks, greatly enhanced the electronic conductivity of LiFePO4 electrode up to 3.59× 10-2 S · cm-2. The 3D LiFePO4/C fiber membrane could be directly used as a binder-free, self-standing cathode for lithium-ion battery, and exhibited an improved capacity and rate performance. The LiFePO4/C composite electrode delivered a discharge capacity of 116 mAh·g-1, 109 mAh·g-1, 103 mAh·g-1, 91 mAh·g-1, 80 mAh·g-1 at 0.1 C, 0.5 C, 1 C, 3 C, 5 C, respectively. And a stable cycling performance was also achieved that the specific capacity could retain 75 mA·g-1 after 500 cycles at 5 C. Therefore, this LiFePO4/C composite fiber membrane was promising to be used as a cathode for power lithium ion battery.

  15. Periodic harvesting of embryonic stem cells from a hollow-fiber membrane based four-compartment bioreactor.

    Science.gov (United States)

    Knöspel, Fanny; Freyer, Nora; Stecklum, Maria; Gerlach, Jörg C; Zeilinger, Katrin

    2016-01-01

    Different types of stem cells have been investigated for applications in drug screening and toxicity testing. In order to provide sufficient numbers of cells for such in vitro applications a scale-up of stem cell culture is necessary. Bioreactors for dynamic three-dimensional (3D) culture of growing cells offer the option for culturing large amounts of stem cells at high densities in a closed system. We describe a method for periodic harvesting of pluripotent stem cells (PSC) during expansion in a perfused 3D hollow-fiber membrane bioreactor, using mouse embryonic stem cells (mESC) as a model cell line. A number of 100 × 10(6) mESC were seeded in bioreactors in the presence of mouse embryonic fibroblasts (MEF) as feeder cells. Over a cultivation interval of nine days cells were harvested by trypsin perfusion and mechanical agitation every second to third culture day. A mean of 380 × 10(6) mESC could be removed with every harvest. Subsequent to harvesting, cells continued growing in the bioreactor, as determined by increasing glucose consumption and lactate production. Immunocytochemical staining and mRNA expression analysis of markers for pluripotency and the three germ layers showed a similar expression of most markers in the harvested cells and in mESC control cultures. In conclusion, successful expansion and harvesting of viable mESC from bioreactor cultures with preservation of sterility was shown. The present study is the first one showing the feasibility of periodic harvesting of adherent cells from a continuously perfused four-compartment bioreactor including further cultivation of remaining cells. © 2015 American Institute of Chemical Engineers.

  16. Thermo-responsive poly(N-isopropylacrylamide)-grafted hollow fiber membranes for osteoblasts culture and non-invasive harvest

    Energy Technology Data Exchange (ETDEWEB)

    Zhuang, Meiling, E-mail: zhuangmeiling2006@126.com; Liu, Tianqing, E-mail: liutq@dlut.edu.cn; Song, Kedong, E-mail: kedongsong@dlut.edu.cn; Ge, Dan, E-mail: gedan@dlut.edu.cn; Li, Xiangqin, E-mail: xiangqinli@163.com

    2015-10-01

    Hollow fiber membrane (HFM) culture system is one of the most important bioreactors for the large-scale culture and expansion of therapeutic cells. However, enzymatic and mechanical treatments are traditionally applied to harvest the expanded cells from HFMs, which inevitably causes harm to the cells. In this study, thermo-responsive cellulose acetate HFMs for cell culture and non-invasive harvest were prepared for the first time via free radical polymerization in the presence of cerium (IV). ATR-FTIR and elemental analysis results indicated that the poly(N-isopropylacrylamide) (PNIPAAm) was covalently grafted on HFMs successfully. Dynamic contact angle measurements at different temperatures revealed that the magnitude of volume phase transition was decreased with increasing grafted amount of PNIPAAm. And the amount of serum protein adsorbed on HFMs surface also displayed the same pattern. Meanwhile osteoblasts adhered and spread well on the surface of PNIPAAm-grafted HFMs at 37 °C. And Calcein-AM/PI staining, AB assay, ALP activity and OCN protein expression level all showed that PNIPAAm-grafted HFMs had good cell compatibility. After incubation at 20 °C for 120 min, the adhering cells on PNIPAAm-grafted HFMs turned to be round and detached after being gently pipetted. These results suggest that thermo-responsive HFMs are attractive cell culture substrates which enable cell culture, expansion and the recovery without proteolytic enzyme treatment for the application in tissue engineering and regenerative medicine. - Highlights: • PNIPAAm-grafted HFMs exhibited thermoresponsive characteristic. • The OB cells could adhere and spread well on the surface of PNIPAAm-grafted HFMs. • PNIPAAm-grafted HFMs do not significantly impact ALP activity and OCN protein expression level of OB cells. • Cell could be detached from PNIPAAm-grafted HFMs when temperature decreased from 37 °C to 20 °C.

  17. Mesoporous fluorocarbon-modified silica aerogel membranes enabling long-term continuous CO2 capture with large absorption flux enhancements.

    Science.gov (United States)

    Lin, Yi-Feng; Chen, Chien-Hua; Tung, Kuo-Lun; Wei, Te-Yu; Lu, Shih-Yuan; Chang, Kai-Shiun

    2013-03-01

    The use of a membrane contactor combined with a hydrophobic porous membrane and an amine absorbent has attracted considerable attention for the capture of CO2 because of its extensive use, low operational costs, and low energy consumption. The hydrophobic porous membrane interface prevents the passage of the amine absorbent but allows the penetration of CO2 molecules that are captured by the amine absorbent. Herein, highly porous SiO2 aerogels modified with hydrophobic fluorocarbon functional groups (CF3 ) were successfully coated onto a macroporous Al2 O3 membrane; their performance in a membrane contactor for CO2 absorption is discussed. The SiO2 aerogel membrane modified with CF3 functional groups exhibits the highest CO2 absorption flux and can be continuously operated for CO2 absorption for extended periods of time. This study suggests that a SiO2 aerogel membrane modified with CF3 functional groups could potentially be used in a membrane contactor for CO2 absorption. Also, the resulting hydrophobic SiO2 aerogel membrane contactor is a promising technology for large-scale CO2 absorption during the post-combustion process in power plants. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Simulation of time variation of Uranium, Plutonium and fission product hold up in mixer settler contactors

    International Nuclear Information System (INIS)

    Dionisi, M.; D'Agostino, F.; Remetti, R.

    1990-01-01

    A simulation model of PUREX process extraction phase for a contactors (mixer-settlers) battery has been developed. This model has been implemented in a FORTRAN code tailored both for mainframe and PC. The main goal of the code is to determine Uranium and Plutonium hold-ups vs.time within contactors in order to implement a NRTA project for a reprocessing plant. These results are extremely important for a complete analysis of NRTA system perfomance particularly to overcome the difficulty of executing physical inventory within liquid-liquid contactors of extraction lines. The chemical process simulation has been carried out conventional theoretical models with the exeption of hydrodynamic simulation which has been developed utilizing a model based on experimental results

  19. Uranium and zirconium mass transfer testing of 5.5-cm-diam centrifugal contactors

    International Nuclear Information System (INIS)

    DeMuth, S.F.; Randolph, J.D.

    1988-01-01

    As part of the Consolidated Fuel Reprocessing Program of the Oak Ridge National Laboratory, compact centrifugal contacts were designed and prototypes build for the Breeder Reprocessing Engineering Test (BRET) facility with a throughput capacity of 0.1 t/d of heavy metals. While the construction of BRET has been put on hold indefinitely, development of the 5.5-cm-diam centrifugal contactors has advanced due to the contactor's broad applicability in other areas of fuel reprocessing and other liquid-liquid extraction. Due to the short residence time of the process fluids in a centrifugal contactor, it was necessary to measure the mass transfer efficiency for a typical process flowsheet. This was done with depleted uranium and 91 Zr. The results of mass transfer tests with uranium and zirconium are reported in this paper

  20. Influence of ethanol as bore fluid component on the morphological structure and performance of PES hollow fiber membrane for oil in water separation

    Energy Technology Data Exchange (ETDEWEB)

    Otitoju, Tunmise Ayode; Ahmad, Abdul Latif; Ooi, Boon Seng [Universiti Sains Malaysia, Penang (Malaysia)

    2017-10-15

    The relationships among varying bore fluid compositions containing ethanol/water were studied. The ethanol composition was varied in the ratio of 0%, 25%, 50%, 75% and 100%. The membrane dope solutions were prepared from 17.25 wt% polyethersulfone (PES), 0.75 wt% polyethylene glycol (PEG), 3 wt% silicon dioxide sol and 78.25 wt% of 1-methyl-2-pyrrolidone (NMP) via dry-jet spinning process. The membranes’ morphology as a result of varying ethanol ratio in the bore fluid composition was characterized and their effects on crude oil/water emulsion separation were evaluated. Results show that the membrane pore size and porosity decreased with increasing ethanol content in the bore fluid mixture, whereas the inner wall thickness of fibers increased. Furthermore, an increase in ethanol concentration also resulted in a slight increase in water contact angle. The use of 100/0 of ethanol/water resulted in UF membranes with the lowest performance. On the other hand, bore fluid mixture containing 25/75 ethanol/water produced membrane with the best performance for crude oil/water separation. Overall, the use of bore fluid mixture containing 25/75 ethanol/water mixture was found to be a powerful way to tune the morphological properties and performance of HF membrane.

  1. Influence of ethanol as bore fluid component on the morphological structure and performance of PES hollow fiber membrane for oil in water separation

    International Nuclear Information System (INIS)

    Otitoju, Tunmise Ayode; Ahmad, Abdul Latif; Ooi, Boon Seng

    2017-01-01

    The relationships among varying bore fluid compositions containing ethanol/water were studied. The ethanol composition was varied in the ratio of 0%, 25%, 50%, 75% and 100%. The membrane dope solutions were prepared from 17.25 wt% polyethersulfone (PES), 0.75 wt% polyethylene glycol (PEG), 3 wt% silicon dioxide sol and 78.25 wt% of 1-methyl-2-pyrrolidone (NMP) via dry-jet spinning process. The membranes’ morphology as a result of varying ethanol ratio in the bore fluid composition was characterized and their effects on crude oil/water emulsion separation were evaluated. Results show that the membrane pore size and porosity decreased with increasing ethanol content in the bore fluid mixture, whereas the inner wall thickness of fibers increased. Furthermore, an increase in ethanol concentration also resulted in a slight increase in water contact angle. The use of 100/0 of ethanol/water resulted in UF membranes with the lowest performance. On the other hand, bore fluid mixture containing 25/75 ethanol/water produced membrane with the best performance for crude oil/water separation. Overall, the use of bore fluid mixture containing 25/75 ethanol/water mixture was found to be a powerful way to tune the morphological properties and performance of HF membrane.

  2. Adlayers of palladium particles and their aggregates on porous polypropylene hollow fiber membranes as hydrogenization contractors/reactors

    NARCIS (Netherlands)

    Volkov, V.V.; Lebedeva, V.I.; Petrova, I.V.; Bobyl, A.V.; Konnikov, S.G.; Roldughin, V.I.; Erkel, J. van; Tereshchenko, G.F.

    2011-01-01

    Principal approaches for the preparation of catalytic membrane reactors based on polymer membranes containing palladium nanoparticles and for the description of their characteristics are presented. The method for the development of adlayers composed of palladium nanoparticles and their aggregates on

  3. Single Stage Contactor Testing Of The Next Generation Solvent Blend

    Energy Technology Data Exchange (ETDEWEB)

    Herman, D. T.; Peters, T. B.; Duignan, M. R.; Williams, M. R.; Poirier, M. R.; Brass, E. A.; Garrison, A. G.; Ketusky, E. T.

    2014-01-06

    The Modular Caustic Side Solvent Extraction (CSSX) Unit (MCU) facility at the Savannah River Site (SRS) is actively pursuing the transition from the current BOBCalixC6 based solvent to the Next Generation Solvent (NGS)-MCU solvent to increase the cesium decontamination factor. To support this integration of NGS into the MCU facility the Savannah River National Laboratory (SRNL) performed testing of a blend of the NGS (MaxCalix based solvent) with the current solvent (BOBCalixC6 based solvent) for the removal of cesium (Cs) from the liquid salt waste stream. This testing utilized a blend of BOBCalixC6 based solvent and the NGS with the new extractant, MaxCalix, as well as a new suppressor, tris(3,7dimethyloctyl) guanidine. Single stage tests were conducted using the full size V-05 and V-10 liquid-to-liquid centrifugal contactors installed at SRNL. These tests were designed to determine the mass transfer and hydraulic characteristics with the NGS solvent blended with the projected heel of the BOBCalixC6 based solvent that will exist in MCU at time of transition. The test program evaluated the amount of organic carryover and the droplet size of the organic carryover phases using several analytical methods. The results indicate that hydraulically, the NGS solvent performed hydraulically similar to the current solvent which was expected. For the organic carryover 93% of the solvent is predicted to be recovered from the stripping operation and 96% from the extraction operation. As for the mass transfer, the NGS solvent significantly improved the cesium DF by at least an order of magnitude when extrapolating the One-stage results to actual Seven-stage extraction operation with a stage efficiency of 95%.

  4. Asymmetric Hollow Fiber Membranes for Separation of CO 2 from Hydrocarbons and Fluorocarbons at High-Pressure Conditions Relevant to C 2 F 4 Polymerization

    KAUST Repository

    Kosuri, Madhava R.

    2009-12-02

    Separation of high-pressure carbon dioxide from fluorocarbons is important for the production of fluoropolymers such as poly(tetrafluoroethylene). Typical polymeric membranes plasticize under high CO2 partial pressure conditions and fail to provide adequate selective separations. Torlon, a polyamide-imide polymer, with the ability to form interchain hydrogen bonding, is shown to provide stability against aggressive CO2 plasticization. Torlon membranes in the form of asymmetric hollow fibers (the most productive form of membranes) are considered for an intended separation of CO 2/C2F4. To avoid safety issues with tetrafluoroethylene (C2F4), which could detonate under testing conditions, safer surrogate mixtures (C2H2F 2 and C2H4) are considered in this paper. Permeation measurements (at 35 °C) indicate that the Torlon membranes are not plasticized even up to 1250 psi of CO2. The membranes provide mixed gas CO2/C2H2F2 and CO 2/C2H4 selectivities of 100 and 30, respectively, at 1250 psi partial pressures of CO2. On the basis of the measured separation performances of CO2/C2H 2F2 and CO2/C2H4 mixtures, the selectivity of the CO2/C2F4 mixture is expected to be greater than 100. Long-term stability studies indicate that the membranes provide stable separations over a period of 5 days at 1250 psi partial pressures of CO2, thereby making the membrane approach attractive. © 2009 American Chemical Society.

  5. Asymmetric Hollow Fiber Membranes for Separation of CO 2 from Hydrocarbons and Fluorocarbons at High-Pressure Conditions Relevant to C 2 F 4 Polymerization

    KAUST Repository

    Kosuri, Madhava R.; Koros, William J.

    2009-01-01

    Separation of high-pressure carbon dioxide from fluorocarbons is important for the production of fluoropolymers such as poly(tetrafluoroethylene). Typical polymeric membranes plasticize under high CO2 partial pressure conditions and fail to provide adequate selective separations. Torlon, a polyamide-imide polymer, with the ability to form interchain hydrogen bonding, is shown to provide stability against aggressive CO2 plasticization. Torlon membranes in the form of asymmetric hollow fibers (the most productive form of membranes) are considered for an intended separation of CO 2/C2F4. To avoid safety issues with tetrafluoroethylene (C2F4), which could detonate under testing conditions, safer surrogate mixtures (C2H2F 2 and C2H4) are considered in this paper. Permeation measurements (at 35 °C) indicate that the Torlon membranes are not plasticized even up to 1250 psi of CO2. The membranes provide mixed gas CO2/C2H2F2 and CO 2/C2H4 selectivities of 100 and 30, respectively, at 1250 psi partial pressures of CO2. On the basis of the measured separation performances of CO2/C2H 2F2 and CO2/C2H4 mixtures, the selectivity of the CO2/C2F4 mixture is expected to be greater than 100. Long-term stability studies indicate that the membranes provide stable separations over a period of 5 days at 1250 psi partial pressures of CO2, thereby making the membrane approach attractive. © 2009 American Chemical Society.

  6. Modeling transcranial magnetic stimulation from the induced electric fields to the membrane potentials along tractography-based white matter fiber tracts

    Science.gov (United States)

    De Geeter, Nele; Dupré, Luc; Crevecoeur, Guillaume

    2016-04-01

    Objective. Transcranial magnetic stimulation (TMS) is a promising non-invasive tool for modulating the brain activity. Despite the widespread therapeutic and diagnostic use of TMS in neurology and psychiatry, its observed response remains hard to predict, limiting its further development and applications. Although the stimulation intensity is always maximum at the cortical surface near the coil, experiments reveal that TMS can affect deeper brain regions as well. Approach. The explanation of this spread might be found in the white matter fiber tracts, connecting cortical and subcortical structures. When applying an electric field on neurons, their membrane potential is altered. If this change is significant, more likely near the TMS coil, action potentials might be initiated and propagated along the fiber tracts towards deeper regions. In order to understand and apply TMS more effectively, it is important to capture and account for this interaction as accurately as possible. Therefore, we compute, next to the induced electric fields in the brain, the spatial distribution of the membrane potentials along the fiber tracts and its temporal dynamics. Main results. This paper introduces a computational TMS model in which electromagnetism and neurophysiology are combined. Realistic geometry and tissue anisotropy are included using magnetic resonance imaging and targeted white matter fiber tracts are traced using tractography based on diffusion tensor imaging. The position and orientation of the coil can directly be retrieved from the neuronavigation system. Incorporating these features warrants both patient- and case-specific results. Significance. The presented model gives insight in the activity propagation through the brain and can therefore explain the observed clinical responses to TMS and their inter- and/or intra-subject variability. We aspire to advance towards an accurate, flexible and personalized TMS model that helps to understand stimulation in the connected

  7. The adult brain tissue response to hollow fiber membranes of varying surface architecture with or without cotransplanted cells

    Science.gov (United States)

    Zhang, Ning

    A variety of biomaterials have been chronically implanted into the central nervous system (CNS) for repair or therapeutic purposes. Regardless of the application, chronic implantation of materials into the CNS induces injury and elicits a wound healing response, eventually leading to the formation of a dense extracellular matrix (ECM)-rich scar tissue that is associated with the segregation of implanted materials from the surrounding normal tissue. Often this reaction results in impaired performance of indwelling CNS devices. In order to enhance the performance of biomaterial-based implantable devices in the CNS, this thesis investigated whether adult brain tissue response to implanted biomaterials could be manipulated by changing biomaterial surface properties or further by utilizing the biology of co-transplanted cells. Specifically, the adult rat brain tissue response to chronically implanted poly(acrylonitrile-vinylchloride) (PAN-PVC) hollow fiber membranes (HFMs) of varying surface architecture were examined temporally at 2, 4, and 12 weeks postimplantation. Significant differences were discovered in the brain tissue response to the PAN-PVC HFMs of varying surface architecture at 4 and 12 weeks. To extend this work, whether the soluble factors derived from a co-transplanted cellular component further affect the brain tissue response to an implanted HFM in a significant way was critically exploited. The cells used were astrocytes, whose ability to influence scar formation process following CNS injury by physical contact with the host tissue had been documented in the literature. Data indicated for the first time that astrocyte-derived soluble factors ameliorate the adult brain tissue reactivity toward HFM implants in an age-dependent manner. While immature astrocytes secreted soluble factors that suppressed the brain tissue reactivity around the implants, mature astrocytes secreted factors that enhanced the gliotic response. These findings prove the feasibility

  8. Acidic sweep gas with carbonic anhydrase coated hollow fiber membranes synergistically accelerates CO2 removal from blood.

    Science.gov (United States)

    Arazawa, D T; Kimmel, J D; Finn, M C; Federspiel, W J

    2015-10-01

    The use of extracorporeal carbon dioxide removal (ECCO2R) is well established as a therapy for patients suffering from acute respiratory failure. Development of next generation low blood flow (carbonic anhydrase (CA) immobilized bioactive hollow fiber membrane (HFM) which significantly accelerates CO2 removal from blood in model gas exchange devices by converting bicarbonate to CO2 directly at the HFM surface. This present study tested the hypothesis that dilute sulfur dioxide (SO2) in oxygen sweep gas could further increase CO2 removal by creating an acidic microenvironment within the diffusional boundary layer adjacent to the HFM surface, facilitating dehydration of bicarbonate to CO2. CA was covalently immobilized onto poly (methyl pentene) (PMP) HFMs through glutaraldehyde activated chitosan spacers, potted in model gas exchange devices (0.0151 m(2)) and tested for CO2 removal rate with oxygen (O2) sweep gas and a 2.2% SO2 in oxygen sweep gas mixture. Using pure O2 sweep gas, CA-PMP increased CO2 removal by 31% (258 mL/min/m(2)) compared to PMP (197 mL/min/m(2)) (Premoval by 17% (230 mL/min/m(2)) compared to pure oxygen sweep gas control (Premoval increased by 109% (411 mL/min/m(2)) (Premoval, and when used in combination with bioactive CA-HFMs has a synergistic effect to more than double CO2 removal while maintaining physiologic pH. Through these technologies the next generation of intravascular and paracorporeal respiratory assist devices can remove more CO2 with smaller blood contacting surface areas. A clinical need exists for more efficient respiratory assist devices which utilize low blood flow rates (removal efficiency by shifting equilibrium from bicarbonate to gaseous CO2, through either a bioactive carbonic anhydrase enzyme coating or bulk blood acidification with lactic acid. In this study we demonstrate a novel approach to local blood acidification using an acidified sweep gas in combination with a bioactive coating to more than double CO2 removal

  9. Application of hollow fiber supported liquid membrane as a chemical reactor for esterification of lactic acid and ethanol to ethyl lactate

    Energy Technology Data Exchange (ETDEWEB)

    Teerachaiyapat, Thanyarutt; Ramakul, Prakorn [Faculty of Engineering and Industrial Technology, Silpakorn University, Nakhon Pathom (Thailand)

    2016-01-15

    Hollow fiber supported liquid membrane was applied as a reactor to synthesize ethyl lactate from lactic acid. Lactic acid in the feed solution was extracted by tri-n-octylamine (TOA) and stripped by ethanol with p-toluene sulfonic acid acting as the catalyst to form ethyl lactate. Central composite design (CCD) was used to determine the significant factors and their interactions. The response surface was applied for optimization. An optimized yield of 30% was predicted and its validity was evaluated by comparison with experimental results at different concentrations of lactic acid in the feed solution, with good agreement achieved.

  10. Application of hollow fiber supported liquid membrane as a chemical reactor for esterification of lactic acid and ethanol to ethyl lactate

    International Nuclear Information System (INIS)

    Teerachaiyapat, Thanyarutt; Ramakul, Prakorn

    2016-01-01

    Hollow fiber supported liquid membrane was applied as a reactor to synthesize ethyl lactate from lactic acid. Lactic acid in the feed solution was extracted by tri-n-octylamine (TOA) and stripped by ethanol with p-toluene sulfonic acid acting as the catalyst to form ethyl lactate. Central composite design (CCD) was used to determine the significant factors and their interactions. The response surface was applied for optimization. An optimized yield of 30% was predicted and its validity was evaluated by comparison with experimental results at different concentrations of lactic acid in the feed solution, with good agreement achieved.

  11. Syngas fermentation to biofuel: evaluation of carbon monoxide mass transfer and analytical modeling using a composite hollow fiber (CHF) membrane bioreactor.

    Science.gov (United States)

    Munasinghe, Pradeep Chaminda; Khanal, Samir Kumar

    2012-10-01

    In this study, the volumetric mass transfer coefficients (Ka) for CO were examined in a composite hollow fiber (CHF) membrane bioreactor. The mass transfer experiments were conducted at various inlet gas pressures (from 5 to 30 psig (34.5-206.8 kPa(g))) and recirculation flow rates (300, 600, 900, 1200 and 1500 mL/min) through CHF module. The highest Ka value of 946.6 1/h was observed at a recirculation rate of 1500 mL/min and at an inlet gas pressure of 30 psig(206.8 kPa(g)). The findings of this study confirm that the use of CHF membranes is effective and improves the efficiency CO mass transfer into the aqueous phase. Copyright © 2012 Elsevier Ltd. All rights reserved.

  12. Biodiesel synthesis from Jatropha curcas L. oil and ethanol in a continuous centrifugal contactor separator

    NARCIS (Netherlands)

    Abduh, Muhammad Yusuf; van Ulden, Wouter; Kalpoe, Vijay; van de Bovenkamp, Hendrik H.; Manurung, Robert; Heeres, Hero J.

    The synthesis of fatty acid ethyl esters (FAEE) from Jatropha curcas L. oil was studied in a batch reactor and a continuous centrifugal contactor separator (CCCS) using sodium ethoxide as the catalyst. The effect of relevant process variables like rotational speed, temperature, catalyst

  13. Dynamic behaviour of solvent contactors in fuel reprocessing plants- an analysis

    Energy Technology Data Exchange (ETDEWEB)

    Raju, R P; Siddiqui, H R [Nuclear Waste Management Group, Bhabha Atomic Research Centre, Mumbai (India); Murthy, K K; Kansra, V P [Fuel Reprocessing Group, Bhabha Atomic Research Centre, Mumbai (India)

    1994-06-01

    Fuel reprocessing plants carry out separation of useful fissile and fertile materials from spent nuclear fuels by isolating highly radioactive fission products using solvent extraction method. In the fuel reprocessing step of nuclear fuel cycle, optimisation of process parameters in the PUREX flowsheet design is of great importance particularly on account of the need to realize high degree of recovery of fissile and fertile materials and to ensure proper control on concentrations of fissile element in process streams for avoidance of criticality. In counter-current solvent contactors of PUREX flowsheet there are a variety of processes conditions which may cause plutonium accumulations that requires attention to ascertain safe Pu concentrations within the contactors. A study was carried out using the PUREX process mathematical model Solvent Extraction Program Having Interacting Solutes (SEPHIS) for pulsed solvent contactors in PREFRE-1, Tarapur and PREFRE-2, Kalpakkam flowsheets for optimising the process parameters in plutonium purification cycles. The study was extended to predict the behaviour of contactors handling plutonium bearing solutions under certain anticipated deviations in the process parameters. Modifications wherever necessary were carried out to the original SEPHIS code. This paper discusses the results obtained during this analysis. (author). 2 figs., 2 tabs.

  14. Validation of a simple method for predicting the disinfection performance in a flow-through contactor.

    Science.gov (United States)

    Pfeiffer, Valentin; Barbeau, Benoit

    2014-02-01

    Despite its shortcomings, the T10 method introduced by the United States Environmental Protection Agency (USEPA) in 1989 is currently the method most frequently used in North America to calculate disinfection performance. Other methods (e.g., the Integrated Disinfection Design Framework, IDDF) have been advanced as replacements, and more recently, the USEPA suggested the Extended T10 and Extended CSTR (Continuous Stirred-Tank Reactor) methods to improve the inactivation calculations within ozone contactors. To develop a method that fully considers the hydraulic behavior of the contactor, two models (Plug Flow with Dispersion and N-CSTR) were successfully fitted with five tracer tests results derived from four Water Treatment Plants and a pilot-scale contactor. A new method based on the N-CSTR model was defined as the Partially Segregated (Pseg) method. The predictions from all the methods mentioned were compared under conditions of poor and good hydraulic performance, low and high disinfectant decay, and different levels of inactivation. These methods were also compared with experimental results from a chlorine pilot-scale contactor used for Escherichia coli inactivation. The T10 and Extended T10 methods led to large over- and under-estimations. The Segregated Flow Analysis (used in the IDDF) also considerably overestimated the inactivation under high disinfectant decay. Only the Extended CSTR and Pseg methods produced realistic and conservative predictions in all cases. Finally, a simple implementation procedure of the Pseg method was suggested for calculation of disinfection performance. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. Solvent Carryover Characterization and Recovery for a 10-inch Single Stage Centrifugal Contactor

    International Nuclear Information System (INIS)

    Lentsch, R.D.; Stephens, A.B.; Leung, D.T.; Baffling, K.E.; Harmon, H.D.; Suggs, P.C.

    2006-01-01

    A test program has been performed to characterize the organic solvent carryover and recovery from centrifugal contactors in the Caustic-side Solvent Extraction (CSSX) process. CSSX is the baseline design for removing cesium from salt solutions for Department of Energy (DOE) Savannah River Site's Salt Waste Processing Facility. CSSX uses a custom solvent to extract cesium from the salt solution in a series of single stage centrifugal contactors. Meeting the Waste Acceptance Criteria at the Defense Waste Processing Facility and Saltstone, as well as plant economics, dictate that solvent loss should be kept to a minimum. Solvent droplet size distribution in the aqueous outlet streams of the CSSX contactors is of particular importance to the design of solvent recovery equipment. Because insufficient solvent droplet size data existed to form a basis for the recovery system design, DOE funded the CSSX Solvent Carryover Characterization and Recovery Test (SCCRT). This paper presents the droplet size distribution of solvent and concentration in the contactor aqueous outlet streams as a function of rotor speed, bottom plate type, and flow rate. It also presents the performance data of a prototype coalescer. (authors)

  16. Modeling Cryptosporidium spp. Oocyst Inactivation in Bubble-Diffuser Ozone Contactors

    Science.gov (United States)

    1998-07-01

    requirements for Giardia lamblia (G. lamblia) and viruses under the Surface Water Treatment Rule (SWTR). Minimum CT requirements include relatively...parvum and C. muris ) oocysts in ozone bubble-diffuser contactors. The model is calibrated with semi-batch kinetic data, verified with pilot-scale

  17. Dynamics of a microbial biofilm in a rotating biological contactor for ...

    African Journals Online (AJOL)

    Wastewater from wine-related industries is characterised by high variability in COD and pH. Disposal of these effluents with little or no treatment could lead to heavy financial penalties or pollution of soil and water resources. A pilot-scale rotating biological contactor (RBC) was evaluated for the treatment of winery effluent, ...

  18. Liquid flow rate effects during partial evaporation in a falling film micro contactor

    NARCIS (Netherlands)

    Moschou, P.; Croon, de M.H.J.M.; Schaaf, van der J.; Schouten, J.C.

    2013-01-01

    The focus of this study is the investigation of the effect of liquid flow rate on partial evaporation, enhanced by convective nitrogen flow, in a falling film micro contactor. Experiments are performed at different flow rates and for a certain heating liquid temperature. The temperatures of the gas

  19. Deviations from mass transfer equilibrium and mathematical modeling of mixer-settler contactors

    International Nuclear Information System (INIS)

    Beyerlein, A.L.; Geldard, J.F.; Chung, H.F.; Bennett, J.E.

    1980-01-01

    This paper presents the mathematical basis for the computer model PUBG of mixer-settler contactors which accounts for deviations from mass transfer equilibrium. This is accomplished by formulating the mass balance equations for the mixers such that the mass transfer rate of nuclear materials between the aqueous and organic phases is accounted for. 19 refs

  20. Novel highly integrated biodiesel production technology in a centrifugal contactor separator device

    NARCIS (Netherlands)

    Kraai, G. N.; Schuur, B.; van Zwol, F.; van de Bovenkamp, H. H.; Heeres, H. J.

    2009-01-01

    The base catalyzed production of biodiesel (FAME) from sunflower oil and methanol in a continuous centrifugal contactor separator (CCS) with integrated reaction and phase separation was studied. The effect of catalyst loading (sodium methoxide), temperature, rotational frequency and flow rates of

  1. Synthesis and refining of sunflower biodiesel in a cascade of continuous centrifugal contactor separators

    NARCIS (Netherlands)

    Bin Abu Ghazali, Yusuf; van Ulden, Wouter; van de Bovenkamp, Hendrik; Teddy, T; Picchioni, Francesco; Manurung, Robert; Heeres, Hero J.

    The synthesis of fatty acid methyl esters (FAME) from sunflower oil and methanol was studied in a continuous centrifugal contactor separator (CCCS) using sodium methoxide as the catalyst. The effect of relevant process variables like oil and methanol flow rate, rotational speed and catalyst

  2. PLLA-PHB fiber membranes obtained by solvent-free electrospinning for short-time drug delivery.

    Science.gov (United States)

    Cao, K; Liu, Y; Olkhov, A A; Siracusa, V; Iordanskii, A L

    2018-02-01

    Fibers of poly(L-lactic acid) (PLLA)/polyhydroxybutyrate (PHB) with different concentrations of the drug dipyridamole (DPD) were prepared using solvent-free melt electrospinning to obtain a polymeric drug delivery system. The electrospun fibers were morphologically, structurally, thermally, and dynamically characterized. Crazes that resemble lotus root crevices were interestingly observed in the 7:3 PLLA/PHB fibers with 1% DPD. The crystallinity of PLLA slightly decreased as PHB was incorporated, and the addition of DPD significantly reduced the melting temperature of the composite. The interactions between PLLA and PHB mainly occurred at a proportion of 7:3, and drug encapsulation in the fibers was verified. The kinetic profiles of drug release demonstrated the predominant multiple patterns involving a diffusional stage in the short-term mode of release and kinetic process related to the hydrolysis of the biopolymers. Furthermore, the dynamic behavior of the polymer molecules was evaluated based on the segmental mobility using probe electron spin resonance spectroscopy. The segmental mobility in the amorphous fraction of PLLA decreased with increasing PLLA content. The 9:1 PLLA/PHB system was more resistant to polymer hydrolysis than to the 7:3 system and the rate of diffusion transport was approximately two times higher for the 7:3 PLLA/PHB fibers than for the 9:1 PLLA/PHB fibers.

  3. CsPbBr3 Perovskite Quantum Dots-Based Monolithic Electrospun Fiber Membrane as an Ultrastable and Ultrasensitive Fluorescent Sensor in Aqueous Medium.

    Science.gov (United States)

    Wang, Yuanwei; Zhu, Yihua; Huang, Jianfei; Cai, Jin; Zhu, Jingrun; Yang, Xiaoling; Shen, Jianhua; Jiang, Hao; Li, Chunzhong

    2016-11-03

    Perovskite quantum dots with excellent optical properties and robust durability stand as an appealing and desirable candidate for fluorescence resonance energy transfer (FRET) based fluorescence detection, a powerful technique featuring excellent accuracy and convenience. In this work, a monolithic superhydrophobic polystyrene fiber membrane with CsPbBr 3 perovskite quantum dots encapsulated within (CPBQDs/PS FM) was prepared via one-step electrospinning. Coupling CPBQDs with PS matrix, this CPBQDs/PS FM composite exhibits high quantum yields (∼91%), narrow half-peak width (∼16 nm), nearly 100% fluorescence retention after being exposed to water for 10 days and 79.80% fluorescence retention after 365 nm UV-light (1 mW/cm 2 ) illumination for 60 h. Thanks to the outstanding optical property of CPBQDs, an ultralow detection limit of 0.01 ppm was obtained for Rhodamine 6G (R6G) detection, with the FRET efficiency calculated to be 18.80% in 1 ppm R6G aqueous solution. Electrospun as well-designed fiber membranes, CPBQDs/PS FM composite also possesses good tailorability and recyclability, showing exciting potential for future implementation into practical applications.

  4. Tunable permeability and selectivity : Heatable inorganic porous hollow fiber membrane with a thermo-responsive microgel coating

    NARCIS (Netherlands)

    Lohaus, T.; de Wit, P.; Kather, M.; Menne, D.; Benes, N. E.; Pich, A.; Wessling, M.

    2017-01-01

    In recent years, the interest in responsive materials to design membranes with tunable properties increased in order to customize membranes for adaptable process requirements. The majority of development methods require external adjustment of the feed stream temperature to achieve a responsiveness

  5. Computational modeling of adherent cell growth in a hollow-fiber membrane bioreactor for large-scale 3-D bone tissue engineering.

    Science.gov (United States)

    Mohebbi-Kalhori, Davod; Behzadmehr, Amin; Doillon, Charles J; Hadjizadeh, Afra

    2012-09-01

    The use of hollow-fiber membrane bioreactors (HFMBs) has been proposed for three-dimensional bone tissue growth at the clinical scale. However, to achieve an efficient HFMB design, the relationship between cell growth and environmental conditions must be determined. Therefore, in this work, a dynamic double-porous media model was developed to determine nutrient-dependent cell growth for bone tissue formation in a HFMB. The whole hollow-fiber scaffold within the bioreactor was treated as a porous domain in this model. The domain consisted of two interpenetrating porous regions, including a porous lumen region available for fluid flow and a porous extracapillary space filled with a collagen gel that contained adherent cells for promoting long-term growth into tissue-like mass. The governing equations were solved numerically and the model was validated using previously published experimental results. The contributions of several bioreactor design and process parameters to the performance of the bioreactor were studied. The results demonstrated that the process and design parameters of the HFMB significantly affect nutrient transport and thus cell behavior over a long period of culture. The approach presented here can be applied to any cell type and used to develop tissue engineering hollow-fiber scaffolds.

  6. Effects of membrane-filtered soy hull pectin and pre-emulsified fiber/oil on chemical and technological properties of low fat and low salt meat emulsions.

    Science.gov (United States)

    Kim, Hyun-Wook; Lee, Yong Jae; Kim, Yuan H Brad

    2016-06-01

    The objectives of this study were to determine efficacy of a membrane filtration in soy hull pectin purification and evaluate combined effects of soy hull pectin and pre-emulsified fiber/oil (PE) on chemical composition and technological properties of low fat and low salt meat emulsions. Soy hull pectin was purified through two different methods (alcohol-washed (ASP) and membrane-filtered (MSP)). Insoluble soy hull residues after pectin extraction were incorporated with sunflower oil and water for the PE preparation. Meat emulsion was formulated with 58 % pork, 20 % ice, 20 % pork backfat, and 2 % NaCl as control. A total of six low fat and low salt meat emulsions (1 % NaCl and 10 % backfat) was manufactured with 1 % pectin (with/without ASP or MSP) and 10 % PE (with/without). The pectin content of ASP and MSP was 0.84 and 0.64 g L-galacturonic acid/g dry sample, respectively. The inclusion of soy hull pectin caused similar results on chemical composition, color, cooking loss, and texture of the meat emulsions, regardless of the purification method. In addition, positive impacts of the combined treatments with soy hull pectin and PE compared to single treatments on cooking loss and texture of the meat emulsions were observed. Results suggest that membrane filtration could be an effective alternative method to purify pectin, instead of alcohol-washing, and both soluble pectin and insoluble fiber from soy hulls could be used as a functional non-meat ingredient to manufacture various low fat and low salt meat products.

  7. Fiber optic hydrophone

    Science.gov (United States)

    Kuzmenko, Paul J.; Davis, Donald T.

    1994-01-01

    A miniature fiber optic hydrophone based on the principles of a Fabry-Perot interferometer. The hydrophone, in one embodiment, includes a body having a shaped flexible bladder at one end which defines a volume containing air or suitable gas, and including a membrane disposed adjacent a vent. An optic fiber extends into the body with one end terminating in spaced relation to the membrane. Acoustic waves in the water that impinge on the bladder cause the pressure of the volume therein to vary causing the membrane to deflect and modulate the reflectivity of the Fabry-Perot cavity formed by the membrane surface and the cleaved end of the optical fiber disposed adjacent to the membrane. When the light is transmitted down the optical fiber, the reflected signal is amplitude modulated by the incident acoustic wave. Another embodiment utilizes a fluid filled volume within which the fiber optic extends.

  8. Hollow Fiber Supported Liquid Membrane Extraction Combined with HPLC-UV for Simultaneous Preconcentration and Determination of Urinary Hippuric Acid and Mandelic Acid

    Directory of Open Access Journals (Sweden)

    Abdulrahman Bahrami

    2017-02-01

    Full Text Available This work describes a new extraction method with hollow-fiber liquid-phase microextraction based on facilitated pH gradient transport for analyzing hippuric acid and mandelic acid in aqueous samples. The factors affecting the metabolites extraction were optimized as follows: the volume of sample solution was 10 mL with pH 2 containing 0.5 mol·L−1 sodium chloride, liquid membrane containing 1-octanol with 20% (w/v tributyl phosphate as the carrier, the time of extraction was 150 min, and stirring rate was 500 rpm. The organic phase immobilized in the pores of a hollow fiber was back-extracted into 24 µL of a solution containing sodium carbonate with pH 11, which was placed inside the lumen of the fiber. Under optimized conditions, the high enrichment factors of 172 and 195 folds, detection limit of 0.007 and 0.009 µg·mL−1 were obtained. The relative standard deviation (RSD (% values for intra- and inter-day precisions were calculated at 2.5%–8.2% and 4.1%–10.7%, respectively. The proposed method was successfully applied to the analysis of these metabolites in real urine samples. The results indicated that hollow-fiber liquid-phase microextraction (HF-LPME based on facilitated pH gradient transport can be used as a sensitive and effective method for the determination of mandelic acid and hippuric acid in urine specimens.

  9. A Novel Seeding Method of Interfacial Polymerization-Assisted Dip Coating for the Preparation of Zeolite NaA Membranes on Ceramic Hollow Fiber Supports.

    Science.gov (United States)

    Cao, Yue; Wang, Ming; Xu, Zhen-Liang; Ma, Xiao-Hua; Xue, Shuang-Mei

    2016-09-28

    A novel seeding method combining interfacial polymerization (IP) technique with dip-coating operation was designed for directly coating nanosized NaA seed crystals (150 nm) onto the micrometer-sized α-Al2O3 hollow fiber support, in which the polyamide (PA) produced by IP acted as an effective medium to freeze and fix seed crystals at the proper position so that the controlled seed layer could be accomplished. While a coating suspension with only 0.5 wt % seed content was used, a very thin seed layer with high quality and good adhesion was achieved through dip coating twice without drying between, and the whole seeding process was operated at ambient conditions. The resulting zeolite NaA membranes not only exhibited high pervaporation (PV) performance with an average separation factor above 10000 and flux nearly 9.0 kg/m(2)·h in dehydration of 90 wt % ethanol aqueous solution at 348 K but also demonstrated great reproducibility by testing more than eight batches of zeolite membranes. In addition, this seeding strategy could be readily extended to the preparation of other supported zeolite membranes for a wide range of separation applications.

  10. Osmotic Power Generation by Inner Selective Hollow Fiber Membranes: An investigation of thermodynamics, mass transfer, and module scale modelling

    KAUST Repository

    Xiong, Jun Ying; Cai, Dong Jun; Chong, Qing Yu; Lee, Swin Hui; Chung, Neal Tai-Shung

    2016-01-01

    A comprehensive analysis of fluid motion, mass transport, thermodynamics and power generation during pressure retarded osmotic (PRO) processes was conducted. This work aims to (1) elucidate the fundamental relationship among various membrane

  11. Carbon Nanotube- and Carbon Fiber-Reinforcement of Ethylene-Octene Copolymer Membranes for Gas and Vapor Separation

    Czech Academy of Sciences Publication Activity Database

    Sedláková, Zuzana; Clarizia, G.; Bernardo, P.; Jansen, J.C.; Slobodian, P.; Svoboda, P.; Kárászová, Magda; Friess, K.; Izák, Pavel

    2014-01-01

    Roč. 4, č. 1 (2014), s. 20-39 ISSN 2077-0375 R&D Projects: GA ČR GAP106/10/1194 Grant - others:GA MŠk(CZ) ED2.1.00/03.0111; MicroPERLA(IT) PON01_01840 Institutional support: RVO:67985858 Keywords : membrane separation * mixed membrane matrix * transport properties Subject RIV: CI - Industrial Chemistry, Chemical Engineering

  12. Temperature Profile Measurements in a Newly Constructed 30-Stage 5 cm Centrifugal Contactor Pilot Plant

    International Nuclear Information System (INIS)

    Garn, Troy G.; Meikrantz, Dave H.; Greenhalgh, Mitchell R.; Law, Jack D.

    2008-01-01

    An annular centrifugal contactor pilot plant incorporating 30 stages of commercial 5 cm CINC V-02 units has been built and operated at INL during the past year. The pilot plant includes an automated process control and data acquisitioning system. The primary purpose of the pilot plant is to evaluate the performance of a large number of inter-connected centrifugal contactors and obtain temperature profile measurements within a 30-stage cascade. Additional solvent extraction flowsheet testing using stable surrogates is also being considered. Preliminary hydraulic testing was conducted with all 30 contactors interconnected for continuous counter-current flow. Hydraulic performance and system operational tests were conducted successfully but with higher single-stage rotor speeds found necessary to maintain steady interstage flow at flowrates of 1 L/min and higher. Initial temperature profile measurements were also completed in this configuration studying the performance during single aqueous and two-phase counter-current flow at ambient and elevated inlet solution temperatures. Temperature profile testing of two discreet sections of the cascade required additional feed and discharge connections. Lamp oil, a commercially available alkane mixture of C14 to C18 chains, and tap water adjusted to pH 2 were the solution feeds for all the testing described in this report. Numerous temperature profiles were completed using a newly constructed 30-stage centrifugal contactor pilot plant. The automated process control and data acquisition system worked very well throughout testing. Temperature data profiles for an array of total flowrates (FT) and contactor rpm values for both single-phase and two-phase systems have been collected with selected profiles and comparisons reported. Total flowrates (FT) ranged from 0.5-1.4 L/min with rotor speeds from 3500-4000 rpm. Solution inlet temperatures ranging from ambient up to 50 C were tested. Ambient temperature testing shows that a small

  13. The effective recovery of praseodymium from mixed rare earths via a hollow fiber supported liquid membrane and its mass transfer related

    International Nuclear Information System (INIS)

    Wannachod, Pharannalak; Chaturabul, Srestha; Pancharoen, Ura; Lothongkum, Anchaleeporn W.; Patthaveekongka, Weerawat

    2011-01-01

    Graphical abstract: Display Omitted Research highlights: → Maximum percentage of praseodymium extraction at 91.7% from 10% (v/v) bis (2,4,4-trimethylpentyl) phosphinic acid as extractant carrier in multi cycle operation through single HFLSM module. → Mass transfer mechanism of this system was investigated. → The rate-controlling step of this system was the diffusion of praseodymium ions through the film layer between the feed solution and the liquid membrane. → Model prediction of the dimensionless concentrations and separation factors showed promising agreement with the experimental data. - Abstract: The recovery of praseodymium from mixed rare earths via a hollow fiber supported liquid membrane (HFSLM) was examined. Bis(2,4,4-trimethylpentyl) phosphinic acid - known as Cyanex 272 - was used as an extractant carrier. The stripping solution was hydrochloric acid solution. The experiments examined in functions of the concentrations of the carrier in liquid membrane, the (initial) pH's of initial feed solution within the acidic-pH range, the concentrations of hydrochloric acid, the flow rates of feed and stripping solution, and the operation mode of runs through the hollow fiber module. In addition, the influence of circulation of the stripping solution at various numbers of runs through the HFSLM on the outlet concentration of praseodymium ions in the stripping solution was observed. Mass transfer mechanism in the system was investigated. Extraction equilibrium constant (K ex ), distribution ratio (D), permeability (P) and mass transfer coefficients were determined. The aqueous-phase mass-transfer coefficient (k i ) and organic-phase mass-transfer coefficient (k m ) were reported to 0.0103 and 0.788 cm s -1 , respectively, in which k m is much higher than the k i . Thus it suggests the rate-controlling step is the diffusion of praseodymium ions through the film layer between the feed solution and the liquid membrane. Model prediction of the dimensionless

  14. Effects of solvent-extraction contactor selection on flowsheet and facility design

    International Nuclear Information System (INIS)

    Whatley, M.E.

    1982-01-01

    The notion is developed that the selection of a solvent extraction contactor is part of a more general development of principles and philosophy guiding the overall plant design. Specifically, the requirements and constraints placed on the plant by the solvent extraction system must be consistent with those imposed by the other operations, which generally are more expensive and more complicated. Were a conservative philosophy employed throughout the plant, the choice of pulsed columns seem correct. Were the plant intended to employ modern techniques and state-of-the-art technology, particularly in remote maintenance and process control, the selection of centrifugal contactors seems appropriate. The process improvements attainable from employing more stages in a more tightly controlled solvent extraction system seem marginal at present when applied to conventional flowsheets, although the cost-benefit may be attractive in a modern plant. The potential for improvement through major flowsheet modification can not presently be assessed quantitatively

  15. Study on the performance of the hydraulic and mass-transfer with miniature centrifugal contactor

    International Nuclear Information System (INIS)

    Wang Jianchen; Tang Wencheng; Fan Shilei; Lian Jun

    1997-01-01

    The hydraulic performance and the mass-transfer properties of HNO 3 , Fe 3+ , Nd 3+ are studied in H 2 O-30% TRPO-kerosene system at different conditions with single-stage φ = 10 mm miniature centrifugal contactor. The rotor's speed varies from 4000 r/min to 4500 r/min. The total throughput is less than 600 mL/h. the phase ratio(o/a) changes from 1/10 to 10/1. Under the above experimental conditions, the single contactor operates very well and gives good performance. The stage efficiencies of HNO 3 and Nd 3+ are about 90%. The Fe 3+ extraction is very slow kinetically and the stage efficiency of Fe 3+ is low

  16. Analysis of Microbial Communities in Biofilms from CSTR-Type Hollow Fiber Membrane Biofilm Reactors for Autotrophic Nitrification and Hydrogenotrophic Denitrification.

    Science.gov (United States)

    Shin, Jung-Hun; Kim, Byung-Chun; Choi, Okkyoung; Kim, Hyunook; Sang, Byoung-In

    2015-10-01

    Two hollow fiber membrane biofilm reactors (HF-MBfRs) were operated for autotrophic nitrification and hydrogenotrophic denitrification for over 300 days. Oxygen and hydrogen were supplied through the hollow fiber membrane for nitrification and denitrification, respectively. During the period, the nitrogen was removed with the efficiency of 82-97% for ammonium and 87-97% for nitrate and with the nitrogen removal load of 0.09-0.26 kg NH4(+)-N/m(3)/d and 0.10-0.21 kg NO3(-)-N/m(3)/d, depending on hydraulic retention time variation by the two HF-MBfRs for autotrophic nitrification and hydrogenotrophic denitrification, respectively. Biofilms were collected from diverse topological positions in the reactors, each at different nitrogen loading rates, and the microbial communities were analyzed with partial 16S rRNA gene sequences in denaturing gradient gel electrophoresis (DGGE). Detected DGGE band sequences in the reactors were correlated with nitrification or denitrification. The profile of the DGGE bands depended on the NH4(+) or NO3(-) loading rate, but it was hard to find a major strain affecting the nitrogen removal efficiency. Nitrospira-related phylum was detected in all biofilm samples from the nitrification reactors. Paracoccus sp. and Aquaspirillum sp., which are an autohydrogenotrophic bacterium and an oligotrophic denitrifier, respectively, were observed in the denitrification reactors. The distribution of microbial communities was relatively stable at different nitrogen loading rates, and DGGE analysis based on 16S rRNA (341f /534r) could successfully detect nitrate-oxidizing and hydrogen-oxidizing bacteria but not ammonium-oxidizing bacteria in the HF-MBfRs.

  17. Application showcases for a small scale membrane contactor for fine chemical processes

    NARCIS (Netherlands)

    Roelands, C.P.M.; Ngene, I.S.

    2011-01-01

    The transition from batch to continuous processing in fine-chemicals industries offers many advantages; among these are a high volumetric productivity, improved control over reaction conditions resulting in a higher yield and selectivity, a small footprint and a safer process due to a smaller

  18. Effect of interactions between Co(2+) and surface goethite layer on the performance of α-FeOOH coated hollow fiber ceramic ultrafiltration membranes.

    Science.gov (United States)

    Zhu, Zhiwen; Zhu, Li; Li, Jianrong; Tang, Jianfeng; Li, Gang; Hsieh, Yi-Kong; Wang, TsingHai; Wang, Chu-Fang

    2016-03-15

    The consideration of water energy nexus inspires the environmental engineering community to pursue a more sustainable strategy in the wastewater treatment. One potential response would be to enhance the performance of the low-pressure driven filtration system. To reach this objective, it is essential to have a better understanding regarding the surface interaction between the target substance and the surface of membrane. In this study, the hollow fiber ceramic membranes were coated with a goethite layer in order to enhance the Co(2+) rejection. Experimental results indicate that higher Co(2+) rejections are always accompanied with the significant reduction in the permeability. Based on the consideration of electroviscous effect, the surface interactions including the induced changes in viscosity, pore radius and Donnan effect in the goethite layer are likely responsible for the pH dependent behaviors in the rejection and permeability. These results could be valuable references to develop the filtration system with high rejection along with acceptable degree of permeability in the future. Copyright © 2015 Elsevier Inc. All rights reserved.

  19. High Antifouling Property of Ion-Selective Membrane: toward In Vivo Monitoring of pH Change in Live Brain of Rats with Membrane-Coated Carbon Fiber Electrodes.

    Science.gov (United States)

    Hao, Jie; Xiao, Tongfang; Wu, Fei; Yu, Ping; Mao, Lanqun

    2016-11-15

    In vivo monitoring of pH in live brain remains very essential to understanding acid-base chemistry in various physiological processes. This study demonstrates a potentiometric method for in vivo monitoring of pH in the central nervous system with carbon fiber-based proton-selective electrodes (CF-H + ISEs) with high antifouling property. The CF-H + ISEs are prepared by formation of a H + -selective membrane (H + ISM) with polyvinyl chloride polymeric matrixes containing plasticizer bis(2-ethylhexyl)sebacate, H + ionophore tridodecylamine, and ion exchanger potassium tetrakis(4-chlorophenyl)borate onto carbon fiber electrodes (CFEs). Both in vitro and in vivo studies demonstrate that the H + ISM exhibits strong antifouling property against proteins, which enables the CF-H + ISEs to well maintain the sensitivity and reversibility for pH sensing after in vivo measurements. Moreover, the CF-H + ISEs exhibit a good response to pH changes within a narrow physiological pH range from 6.0 to 8.0 in quick response time with high reversibility and selectivity against species endogenously existing in the central nervous system. The applicability of the CF-H + ISEs is illustrated by real-time monitoring of pH changes during acid-base disturbances, in which the brain acidosis is induced by CO 2 inhalation and brain alkalosis is induced by bicarbonate injections. The results demonstrate that brain pH value rapidly decreases in the amygdaloid nucleus by ca. 0.14 ± 0.01 (n = 5) when the rats breath in pure CO 2 gas, while increases in the cortex by about 0.77 ± 0.12 (n = 3) following intraperitoneal injection of 5 mmol/kg NaHCO 3 . This study demonstrates a new potentiometric method for in vivo measurement of pH change in the live brain of rats with high reliability.

  20. Visual test of subparts per billion-level mercuric ion with a gold nanoparticle probe after preconcentration by hollow fiber supported liquid membrane.

    Science.gov (United States)

    Tan, Zhi-qiang; Liu, Jing-fu

    2010-05-15

    With the combination of the gold nanoparticle (AuNP)-based visual test with hollow fiber supported liquid membrane (HFSLM) extraction, a highly sensitive and selective method was developed for field detection of mercuric ion (Hg(2+)) in environmental waters. Hg(2+) in water samples was extracted through HFSLM and trapped in the aqueous acceptor and then visually detected based on the red-to-blue color change of 3-mercaptopropionic acid-functionalized AuNP (MPA-AuNP) probe. The highest extraction efficiency of Hg(2+) was obtained by using a 600 mL sample (pH 8.0, 2.0% (w/v) NaCl), approximately 35 microL of acceptor (10 mM of 2,6-pyridinedicarboxylic acid, pH 4.0) filled in the lumen of a polypropylene hollow fiber tubing (55 cm in length, 50 microm wall thickness, 280 microm inner diameter), a liquid membrane of 2.0% (w/v) trioctycphosphine oxide in undecane, and a shaking rate of 250 rpm. The chromegenic reaction was conducted by incubating the mixture of MPA-AuNP stock solution (12 microL, 15 nM), Tris-borate buffer solution (18 microL, 0.2 M, pH 9.5), and acceptor (30 microL) at 30 degrees C for 1 h. The detection limit can be adjusted to 0.8 microg/L Hg(2+) (corresponding to an enrichment factor of approximately 1000 in the HFSLM) and 2.0 microg/L Hg(2+) (the U.S. Environmental Protection Agency limit of [Hg(2+)] for drinkable water) by using extraction times of 3 and 1 h, respectively. The proposed method is extremely specific for Hg(2+) with tolerance to at least 1000-fold of other environmentally relevant heavy and transition metal ions and was successfully applied to detect Hg(2+) in a certified reference water sample, as well as real river, lake, and tap water samples.

  1. DETERMINATION OF LIQUID FILM THICKNESS FOLLOWING DRAINING OF CONTACTORS, VESSELS, AND PIPES IN THE MCU PROCESS

    International Nuclear Information System (INIS)

    Poirier, M; Fernando Fondeur, F; Samuel Fink, S

    2006-01-01

    The Department of Energy (DOE) identified the caustic side solvent extraction (CSSX) process as the preferred technology to remove cesium from radioactive waste solutions at the Savannah River Site (SRS). As a result, Washington Savannah River Company (WSRC) began designing and building a Modular CSSX Unit (MCU) in the SRS tank farm to process liquid waste for an interim period until the Salt Waste Processing Facility (SWPF) begins operations. Both the solvent and the strip effluent streams could contain high concentrations of cesium which must be removed from the contactors, process tanks, and piping prior to performing contactor maintenance. When these vessels are drained, thin films or drops will remain on the equipment walls. Following draining, the vessels will be flushed with water and drained to remove the flush water. The draining reduces the cesium concentration in the vessels by reducing the volume of cesium-containing material. The flushing, and subsequent draining, reduces the cesium in the vessels by diluting the cesium that remains in the film or drops on the vessel walls. MCU personnel requested that Savannah River National Laboratory (SRNL) researchers conduct a literature search to identify models to calculate the thickness of the liquid films remaining in the contactors, process tanks, and piping following draining of salt solution, solvent, and strip solution. The conclusions from this work are: (1) The predicted film thickness of the strip effluent is 0.010 mm on vertical walls, 0.57 mm on horizontal walls and 0.081 mm in horizontal pipes. (2) The predicted film thickness of the salt solution is 0.015 mm on vertical walls, 0.74 mm on horizontal walls, and 0.106 mm in horizontal pipes. (3) The predicted film thickness of the solvent is 0.022 mm on vertical walls, 0.91 mm on horizontal walls, and 0.13 mm in horizontal pipes. (4) The calculated film volume following draining is: (a) Salt solution receipt tank--1.6 gallons; (b) Salt solution feed

  2. Separation of Am(III) from SHLW using a hollow fiber supported liquid membrane containing TODGA as the carrier

    International Nuclear Information System (INIS)

    Ansari, S.A.; Raut, D.R.; Mohapatra, P.K.; Manchanda, V.K.

    2008-01-01

    Facilitated transport of Am(III) from nitrate medium has been investigated through a hollow fibre supported liquid membrane using N,N,N',N'-tetraoctyl diglycolamide (TODGA) as the carrier. The influence of aqueous feed composition on the permeability of Am(III) is reported. Quantitative transport of Am(III) was observed in 45 min from a feed solution containing 1g/l Nd(III) at 3.5M HNO 3 . Similarly, quantitative transport of Am(III) was observed in 30 min from a synthetic high level waste containing ∼0.6g/l total lanthanides, in addition to the other non-extractable metal ions. (author)

  3. Operating experience of centrifugal contactors used in a third plutonium purification cycle at the Marcoule reprocessing plant

    International Nuclear Information System (INIS)

    Coste, J.A.; Breschet, C.A.; Delafontaine, G.L.

    1991-01-01

    Multistage centrifugal contactors of the type SGN-ROBATEL LX 208 NSC are used in a third plutonium cycle at the Marcoule Reprocessing Plant, they have been smooth-running since the commissioning in 1984. The four centrifugal contactors, totalling 32 stages, are used for Extraction. Scrub and Acidic Strip, and a bank of three flat mixer-settlers is used for plutonium blocking, and soda washing of the solvent. The plutonium product, the residual activity of which is less than one microcurie per gram, is diluent washed in a bank of three flat mixer-settlers, before been concentrated in a zirconium evaporator to 200 g. 1 -1

  4. Water reuse potential in truck wash using a Rotating Biological Contactor

    OpenAIRE

    Eduardo Lucas Subtil; José Carlos Mierzwa; Ivanildo Hespanhol; Raphael Rodrigues

    2016-01-01

    This study evaluated the water reuse potential for truck washing using the effluent treated by a Rotating Biological Contactor (RBC) operated in full scale. In order to evaluate the reuse potential, a mass balance was performed for the reuse system taking into account the concentration of Total Dissolved Solids as the critical contaminant. The treatment system produced an effluent with average concentration of color, turbidity, TDS and BOD5 of 45 ± 14 uC, 15 ± 6.0 NTU, 244 ± 99 mg TDS / L and...

  5. Exchange between the stagnant and flowing zone in gas-flowing solids-fixed bed contactors

    Directory of Open Access Journals (Sweden)

    ALEKSANDAR P. DUDUKOVIC

    2005-02-01

    Full Text Available In countercurrent gas – flowing solids – fixed bed contactors, a fraction of the flowing solids is in motion (dynamic holdup, while the other fraction is resting on the fixed bed elements. In this study it was experimentally proved that the stagnant zone should not be considered as a dead part of the column, but that there is a dynamic exchange between these two portions of flowing solids particles. Combining a mathematical model with tracer experiments, the rate of exchange was determined and it was shown that only a small part (ca. 20 % of the stagnant region should be considered as a dead one.

  6. Nickel (II) Preconcentration and Speciation Analysis During Transport from Aqueous Solutions Using a Hollow-fiber Permeation Liquid Membrane (HFPLM) Device.

    Science.gov (United States)

    Bautista-Flores, Ana Nelly; De San Miguel, Eduardo Rodríguez; Gyves, Josefina de; Jönsson, Jan Åke

    2011-08-18

    Nickel (II) preconcentration and speciation analysis using a hollow fiber supported liquid membrane (HFSLM) device was studied. A counterflow of protons coupled to complexation with formate provided the driving force of the process, while Kelex 100 was employed as carrier. The influence of variables related to module configuration (acceptor pH and carrier concentration) and to the sample properties (donor pH) on the preconcentration factor, E, was simultaneously studied and optimized using a 3 factor Doehlert matrix response surface methodology. The effect of metal concentration was studied as well. Preconcentration factors as high as 4240 were observed  depending on the values of the different variables. The effects of the presence of inorganic anions (NO2-, SO42-, Cl-, NO3-, CO32-, CN-) and dissolved organic matter (DOM) in the form of humic acids were additionally considered in order to carry out a speciation analysis study. Nickel preconcentration was observed to be independent of both effects, except when cyanide was present in the donor phase. A characterization of the transport regime was performed through the analysis of the dependence of E on the temperature. E increases with the increase in temperature according to the equation E(K) = -8617.3 + 30.5T with an activation energy of 56.7 kJ mol-1 suggesting a kinetic-controlled regime. Sample depletion ranged from 12 to 1.2% depending on the volume of the donor phase (100 to 1000 mL, respectively).

  7. Nickel (II Preconcentration and Speciation Analysis During Transport from Aqueous Solutions Using a Hollow-fiber Permeation Liquid Membrane (HFPLM Device

    Directory of Open Access Journals (Sweden)

    Jan Åke Jönsson

    2011-08-01

    Full Text Available Nickel (II preconcentration and speciation analysis using a hollow fiber supported liquid membrane (HFSLM device was studied. A counterflow of protons coupled to complexation with formate provided the driving force of the process, while Kelex 100 was employed as carrier. The influence of variables related to module configuration (acceptor pH and carrier concentration and to the sample properties (donor pH on the preconcentration factor, E, was simultaneously studied and optimized using a 3 factor Doehlert matrix response surface methodology. The effect of metal concentration was studied as well. Preconcentration factors as high as 4240 were observed  depending on the values of the different variables. The effects of the presence of inorganic anions (NO2-, SO42-, Cl-, NO3-, CO32-, CN- and dissolved organic matter (DOM in the form of humic acids were additionally considered in order to carry out a speciation analysis study. Nickel preconcentration was observed to be independent of both effects, except when cyanide was present in the donor phase. A characterization of the transport regime was performed through the analysis of the dependence of E on the temperature. E increases with the increase in temperature according to the equation E(K = -8617.3 + 30.5T with an activation energy of 56.7 kJ mol-1 suggesting a kinetic-controlled regime. Sample depletion ranged from 12 to 1.2% depending on the volume of the donor phase (100 to 1000 mL, respectively.

  8. Effect of DS Concentration on the PRO Performance Using a 5-Inch Scale Cellulose Triacetate-Based Hollow Fiber Membrane Module

    Directory of Open Access Journals (Sweden)

    Masahiro Yasukawa

    2018-05-01

    Full Text Available In this study, pressure-retarded osmosis (PRO performance of a 5-inch scale cellulose triacetate (CTA-based hollow fiber (HF membrane module was evaluated under a wide range of operating conditions (0.0–6.0 MPa of applied pressure, 0.5–2.0 L/min feed solution (FS inlet flow rate, 1.0–6.0 L/min DS inlet flow rate and 0.1–0.9 M draw solution (DS concentration by using a PRO/reverse osmosis (RO hybrid system. The subsequent RO system for DS regeneration enabled the evaluation of the steady-stated module performance. In the case of pilot-scale module operation, since the DS dilution and the feed solution (FS up-concentration had occurred and was not negligible, unlike the lab-scale experiment, PRO performance strongly depended on operating conditions such as inlet flow rates of both the DS and FS concentration. To compare the module performance with different configurations, we proposed a converted parameter in which a difference of the packing density between the spiral wound (SW and the HF module was fairly considered. In the case of HF configuration, because of high packing density, volumetric-based performance was higher than that of SW module, that is, the required number of the module would be less than that of SW module in a full-scale PRO plant.

  9. Bubble coalescence suppression driven carbon monoxide (CO)-water mass transfer increase by electrolyte addition in a hollow fiber membrane bioreactor (HFMBR) for microbial CO conversion to ethanol.

    Science.gov (United States)

    Jang, Nulee; Yasin, Muhammad; Kang, Hyunsoo; Lee, Yeubin; Park, Gwon Woo; Park, Shinyoung; Chang, In Seop

    2018-05-04

    This study investigated the effects of electrolytes (CaCl 2 , K 2 HPO 4 , MgSO 4 , NaCl, and NH 4 Cl) on CO mass transfer and ethanol production in a HFMBR. The hollow fiber membranes (HFM) were found to generate tiny gas bubbles; the bubble coalescence was significantly suppressed in electrolyte solution. The volumetric gas-liquid mass transfer coefficients (k L a) increased up to 414% compared to the control. Saturated CO (C ∗ ) decreased as electrolyte concentrations increased. Overall, the maximum mass transfer rate (R max ) in electrolyte solution ranged from 106% to 339% of the value obtained in water. The electrolyte toxicity on cell growth was tested using Clostridium autoethanogenum. Most electrolytes, except for MgSO 4 , inhibited cell growth. The HFMBR operation using a medium containing 1% MgSO 4 achieved 119% ethanol production compared to that without electrolytes. Finally, a kinetic simulation using the parameters got from the 1% MgSO 4 medium predicted a higher ethanol production compared to the control. Copyright © 2018 Elsevier Ltd. All rights reserved.

  10. The Impact of Lens Opacity on SD-OCT Retinal Nerve Fiber Layer and Bruch's Membrane Opening Measurements Using the Anatomical Positioning System (APS).

    Science.gov (United States)

    Mauschitz, Matthias M; Roth, Felix; Holz, Frank G; Breteler, Monique M B; Finger, Robert P

    2017-05-01

    To evaluate the impact of lens opacity on retinal nerve fiber layer thickness (RNFLT) and Bruch's membrane opening (BMO) measurements. Fifty-nine randomly selected patients without any other relevant ocular pathology undergoing elective routine cataract surgery in two specialized eye clinics were enrolled. RNFLT, BMO area, and BMO minimum rim width (BMO-MRW) were assessed with the Heidelberg Engineering Spectralis OCT using the anatomical positioning system (APS) prior to and 1 day after cataract surgery using a ring scan at different eccentricities of the disc (3.5, 4.1 and 4.7 mm). Lens opacity was quantified using densitometry based on Scheimpflug images (Oculus Pentacam AXL). RNFLT, BMO area, and BMO-MRW were virtually identical before and following removal of the cataractous lens. This held when assessed overall, within the six sectors for the 3.5-mm scan, or at any other eccentricity. Baseline RNFLT was not associated with lens opacity. Using the APS, RNFLT remained unchanged following cataract surgery, contrary to results reported by previous studies. Our results imply that the APS may have contributed to more precise spectral-domain optical coherence measurements, minimizing the influence of cataract on RNFLT and BMO assessments in our cohort.

  11. Microstructured hollow fibers for ultrafiltration

    NARCIS (Netherlands)

    Culfaz, Pmar Zeynep; Culfaz, P.Z.; Rolevink, Hendrikus H.M.; van Rijn, C.J.M.; Lammertink, Rob G.H.; Wessling, Matthias

    2010-01-01

    Hollow fiber ultrafiltration membranes with a corrugated outer microstructure were prepared from a PES/PVP blend. The effect of spinning parameters such as air gap, take-up speed, polymer dope viscosity and coagulation value on the microstructure and membrane characteristics was investigated. Fibers

  12. Hollow Fiber Membrane Bioreactor Systems for Wastewater Processing: Effects of Environmental Stresses Including Dormancy Cycling and Antibiotic Dosing

    Science.gov (United States)

    Coutts, Janelle L.; Hummerick, Mary E.; Lunn, Griffin M.; Larson, Brian D.; Spencer, LaShelle E.; Kosiba, Michael L.; Khodadad, Christina L.; Catechis, John A.; Birmele, Michele N.; Wheeler, Raymond M.

    2016-01-01

    Membrane-aerated biofilm reactors (MABRs) have been studied for a number of years as an alternate approach for treating wastewater streams during space exploration. While the technology provides a promising pre-treatment for lowering organic carbon and nitrogen content without the need for harsh stabilization chemicals, several challenges must be addressed before adoption of the technology in future missions. One challenge is the transportation of bioreactors containing intact, active biofilms as a means for rapid start-up on the International Space Station or beyond. Similarly, there could be a need for placing these biological systems into a dormant state for extended periods when the system is not in use, along with the ability for rapid restart. Previous studies indicated that there was little influence of storage condition (4 or 25 C, with or without bulk fluid) on recovery of bioreactors with immature biofilms (48 days old), but that an extensive recovery time was required (20+ days). Bioreactors with fully established biofilms (13 months) were able to recover from a 7-month dormancy within 4 days (approximately 1 residence). Further dormancy and recovery testing is presented here that examines the role of biofilm age on recovery requirements, repeated dormancy cycle capabilities, and effects of long-duration dormancy cycles (8-9 months) on HFMB systems. Another challenge that must be addressed is the possibility of antibiotics entering the wastewater stream. Currently, for most laboratory tests of biological water processors, donors providing urine may not contribute to the study when taking antibiotics because the effects on the system are yet uncharacterized. A simulated urinary tract infection event, where an opportunistic, pathogenic organism, E. coli, was introduced to the HFMBs followed by dosing with an antibiotic, ciprofloxacin, was completed to study the effect of the antibiotic on reactor performance and to also examine the development of

  13. Partitioning of Tank Waste Sludge in a 5-cm Centrifugal Contactor Under Caustic-Side Solvent Extraction Conditions

    International Nuclear Information System (INIS)

    Birdwell, Jr. J.F.

    2001-01-01

    A test program has been performed to evaluate the effect of solids on the hydraulic performance of a 5-cm centrifugal contactor under conditions present in the extraction section of the Caustic-Side Solvent Extraction (CSSX) process. In addition to determining if the ability to separate the aqueous and organic phases is affected by the presence of solids in a feed solution, the extent to which solids are accumulated in the contactor was also assessed. The reported task was motivated by the need to determine if removal of cesium from Savannah River Site tank waste can be performed using a contactor-based CSSX process without first removing sludge that is suspended in the feed solution. The ability to pass solids through the CSSX process could facilitate placement of CSSX upstream of a process in which alpha-decaying actinides and strontium are removed from the waste stream by precipitation with monosodium titanate (MST). This relative placement of the CSSX and MST processes is desirable because removal of cesium would greatly reduce the activity level of the feed stream to the MST process, thereby reducing the level of shielding needed and mitigating remote maintenance design features of MST equipment. Both results would significantly reduce the cost of the Salt Processing Project. Test results indicate conclusively that a large fraction of suspended sludge that enters the centrifugal contactor remains inside. It is expected that extended operation would result in continued accumulation of solids and that hydraulic performance would be adversely affected. Results also indicate that a fraction of the solids partitions to the phase boundary and could affect phase separation as contactor operations progress

  14. Thickness of the Macula, Retinal Nerve Fiber Layer, and Ganglion Cell Layer in the Epiretinal Membrane: The Repeatability Study of Optical Coherence Tomography.

    Science.gov (United States)

    Lee, Haeng-Jin; Kim, Min-Su; Jo, Young-Joon; Kim, Jung-Yeul

    2015-07-01

    To analyze the repeatability of measurements of the thicknesses of the macula, retinal nerve fiber layer (RNFL), and ganglion cell inner plexiform layer (GCIPL) using spectral-domain optical coherence tomography (SD-OCT) in the epiretinal membrane (ERM). The prospective study analyzed patients who visited our retinal clinic from June 2013 to January 2014. An experienced examiner measured the thicknesses twice using macular cube 512 × 128 and optic disc cube 200 × 200 scans. The repeatability of the thicknesses of the macula, RNFL, and GCIPL were compared using the intraclass correlation coefficient (ICC) of two groups based on the central macular thickness (group A, ≤ 450 μm; group B, > 450 μm). A total of 88 patients were analyzed. The average thicknesses of the central macula, RNFL, and GCIPL were 256.5, 96.6, and 84.4 μm, respectively, in the normal fellow eye and 412.3, 94.6, and 56.7 μm in the affected eye. The ICCs of the central macula, RNFL, and GCIPL were 0.995, 0.994, and 0.996, respectively, for the normal fellow eye and 0.991, 0.973, and 0.881 for the affected eye. The average thicknesses of the central macula, RNFL, and GCIPL in group A were 360.9, 93.5, and 63.4 μm, respectively, and the ICCs were 0.997, 0.987, and 0.995. The thicknesses in group B were 489.5, 96.2, and 46.6 μm, respectively, and the ICCs were 0.910, 0.942, and 0.603, significantly lower repeatability compared with group A (P macula.

  15. Reactor performance in terms of COD and nitrogen removal and bacterial community structure of a three-stage rotating bioelectrochemical contactor

    KAUST Repository

    Sayess, Rassil R.; Saikaly, Pascal; El-Fadel, Mutasem E.; Li, Dong; Semerjian, Lucy A.

    2013-01-01

    contactor (referred to as RBC-MFC unit) integrating MFC with RBC technology was constructed for simultaneous removal of carbonaceous and nitrogenous compounds and electricity generation from a synthetic medium containing acetate and ammonium. The performance

  16. Reduction stripping of plutonium (IV) with hydroxylamine nitrate in the centrifugal contactor

    International Nuclear Information System (INIS)

    Zhang Zefu; Ding Dachun; Fei Hongcheng

    1989-01-01

    Reduction stripping of Pu(IV) with hydroxylamine nitrate under conditions of Purex 3B contactor is carried out with 16-stage mixer-centrifugal settler in laboratory scale. Results show that the apparent recovery of Pu is more than 99.9%. But there is a great difference in the concentration of plutonium of every stage in extraction equipment at different temperature. For example, plutonium concentrations in organic phase of several stages near the organic effluent at 45-50 deg C are lower than that at 20-24 deg C. Thus, recovery efficiency of plutonium can be assured only for the former. However, plutonium will probably be lost, if operating conditions are fluctuated. In addition, plutonium accumulated in the extraction equipment increased appreciably for the case of 20-24 deg C. Therefore, in order to ensure recovery efficiency of Pu, reduction stripping of Pu should be made at higher temperature

  17. Dynamic performance analysis of permanent magnet contactor with a flux-weakening control strategy

    Science.gov (United States)

    Wang, Xianbing; Lin, Heyun; Fang, Shuhua; Jin, Ping; Wang, Junhua; Ho, S. L.

    2011-04-01

    A new flux-weakening control strategy for permanent magnet contactors is proposed. By matching the dynamic attraction force and the antiforce, the terminal velocity and collision energy of the movable iron in the closing process are significantly reduced. The movable iron displacement is estimated by detecting the closing voltage and current with the proposed control. A dynamic mathematical model is also established under four kinds of excitation scenarios. The attraction force and flux linkage are predicted by finite element method and the dynamics of the closing process is simulated using the 4th-order Runge-Kutta algorithm. Experiments are carried out on a 250A prototype with an intelligent control unit to verify the proposed control strategy.

  18. Uranium, neptunium and plutonium kinetics of extraction by tributylphosphate and trilaurylamine in a centrifugal contactor

    International Nuclear Information System (INIS)

    Bergeonneau, P.; Jaouen, C.; Germain, M.; Bathellier, A.

    1977-01-01

    Uranium, plutonium and neptunium kinetics of transfer between various aqueous nitric solutions and solvents have been measured at the laboratory scale, using a centrifugal contactor especially developed in the laboratory. The transfer kinetics of nitric acid, hexavalent U, tetravalent U, Np and Pu from nitric acid solutions into 30% TBP in r-dodecane and 10% trilaurylamine in r-dodecane have been studied. The effects of rotation speed, temperature, initial nitric acid concentration, metal concentration on extraction and stripping kinetics have been investigated. The results obtained show that TBP extraction and stripping are more rapid than trilaurylamine ones. The low activation energies of transfer reactions with TBP suggest that both in extraction and stripping, the transfer rate is limited by the diffusion of the species in the aqueous and organic phases. For trilaurylamine, the transfer mechanism appears more complex

  19. Americium-curium separation by means of selective extraction of hexavalent americium using a centrifugal contactor

    International Nuclear Information System (INIS)

    Musikas, C.; Germain, M.; Bathellier, A.

    1979-01-01

    This paper deals with Am (VI) - Cm (III) separation in nitrate media. The kinetics of oxidation of Am (III) by sodium persulfate in the presence of Ag + ions were reinvestigated by studying the effect of additions of small amounts of reagents which do not drastically change the distribution coefficients of Am (VI) or Cm (III) ions. Organo phosphorus solvents were selected because they are radiation resistant, possess weak reductant properties and that their affinity for hexavalent ion is high. The operating procedure was selected by consideration of the results of the two previous investigations. This can be done by using a centrifugal contactor enabling in to set organic-aqueous phase contact time in accordance with the kinetics of extraction of Am (VI), oxidation of Am (III) in aqueous phase, and reduction of Am (VI) in organic phase

  20. Rapid Temperature Swing Adsorption using Polymeric/Supported Amine Hollow Fibers

    Energy Technology Data Exchange (ETDEWEB)

    Chance, Ronald [Georgia Tech Research Corporation, Atlanta, GA (United States); Chen, Grace [Georgia Tech Research Corporation, Atlanta, GA (United States); Dai, Ying [Georgia Tech Research Corporation, Atlanta, GA (United States); Fan, Yanfang [Georgia Tech Research Corporation, Atlanta, GA (United States); Jones, Christopher [Georgia Tech Research Corporation, Atlanta, GA (United States); Kalyanaraman, Jayashree [Georgia Tech Research Corporation, Atlanta, GA (United States); Kawajiri, Yoshiaki [Georgia Tech Research Corporation, Atlanta, GA (United States); Koros, William [Georgia Tech Research Corporation, Atlanta, GA (United States); Lively, Ryan [Georgia Tech Research Corporation, Atlanta, GA (United States); McCool, Benjamin [Georgia Tech Research Corporation, Atlanta, GA (United States); Pang, Simon [Georgia Tech Research Corporation, Atlanta, GA (United States); Realff, Matthew [Georgia Tech Research Corporation, Atlanta, GA (United States); Rezaei, Fateme [Georgia Tech Research Corporation, Atlanta, GA (United States); Searcy, Katherine [Georgia Tech Research Corporation, Atlanta, GA (United States); Sholl, David [Georgia Tech Research Corporation, Atlanta, GA (United States); Subramanian, Swernath [Georgia Tech Research Corporation, Atlanta, GA (United States); Pang, Simon [Georgia Tech Research Corporation, Atlanta, GA (United States)

    2015-03-31

    This project is a bench-scale, post-combustion capture project carried out at Georgia Tech (GT) with support and collaboration with GE, Algenol Biofuels, Southern Company and subcontract to Trimeric Corporation. The focus of the project is to develop a process based on composite amine-functionalized oxide / polymer hollow fibers for use as contactors in a rapid temperature swing adsorption post-combustion carbon dioxide capture process. The hollow fiber morphology allows coupling of efficient heat transfer with effective gas contacting, potentially giving lower parasitic loads on the power plant compared to traditional contacting strategies using solid sorbents.

  1. Development of a Novel Intravenous Membrane Oxygenator

    National Research Council Canada - National Science Library

    Heinrich, Shelly

    1997-01-01

    .... The current IMO device consists of several hundred hollow fiber membranes (H:FMs) manifolded to gas supply lines for O2 delivery, CO2 removal, and helium supply to a balloon integer located within the fiber bundle...

  2. Nuclear material inventory estimation in solvent extraction contactors III. Final report for the period 1 January 1988 - 28 February 1989

    International Nuclear Information System (INIS)

    Beyerlein, A.L.; Geldard, J.F.

    1989-03-01

    Simple mathematical models have been developed for estimating the nuclear material inventory in the solvent extraction contactors of nuclear fuel reprocessing facilities from measured nuclear material concentrations in the tanks feeding the purification cycles. The report describes the models and their application to the Eurochemic Reprocessing Plant in Belgium, and the development of a computer simulation program, PUPART, for investigating the effects of process variation as well as measurement error on near-real-time accounting methods. Figs and tabs

  3. Clean-in-Place and Reliability Testing of a Commercial 12.5-cm Annular Centrifugal Contactor at the INL

    International Nuclear Information System (INIS)

    N. R. Mann; T. G. Garn; D. H. Meikrantz; J. D. Law; T. A. Todd

    2007-01-01

    The renewed interest in advancing nuclear energy has spawned the research of advanced technologies for recycling nuclear fuel. A significant portion of the advanced fuel cycle includes the recovery of selected actinides by solvent extraction methods utilizing centrifugal contactors. Although the use of centrifugal contactors for solvent extraction is widely known, their operation is not without challenges. Solutions generated from spent fuel dissolution contain unknown quantities of undissolved solids. A majority of these solids will be removed via various methods of filtration. However, smaller particles are expected to carry through to downstream solvent extraction processes and equipment. In addition, solids/precipitates brought about by mechanical or chemical upsets are another potential area of concern. During processing, particulate captured in the rotor assembly by high centrifugal forces eventually forms a cake-like structure on the inner wall introducing balance problems and negatively affecting phase separations. One of the features recently developed for larger engineering scale Annular Centrifugal Contactors (ACCs) is the Clean-In-Place (CIP) capability. Engineered spray nozzles were installed into the hollow central rotor shaft in all four quadrants of the rotor assembly. This arrangement allows for a very convenient and effective method of solids removal from within the rotor assembly

  4. Clean-in-Place and Reliability Testing of a Commercial 12.5 cm Annular Centrifugal Contactor at the INL

    International Nuclear Information System (INIS)

    N. R. Mann; T. G. Garn; D. H. Meikrantz; J. D. Law; T. A. Todd

    2007-01-01

    The renewed interest in advancing nuclear energy has spawned the research of advanced technologies for recycling nuclear fuel. A significant portion of the advanced fuel cycle includes the recovery of selected actinides by solvent extraction methods utilizing centrifugal contactors. Although the use of centrifugal contactors for solvent extraction is widely known, their operation is not without challenges. Solutions generated from spent fuel dissolution contain unknown quantities of undissolved solids. A majority of these solids will be removed via various methods of filtration. However, smaller particles are expected to carry through to downstream solvent extraction processes and equipment. In addition, solids/precipitates brought about by mechanical or chemical upsets are another potential area of concern. During processing, particulate captured in the rotor assembly by high centrifugal forces eventually forms a cake-like structure on the inner wall introducing balance problems and negatively affecting phase separations. One of the features recently developed for larger engineering scale Annular Centrifugal Contactors (ACCs) is the Clean-In-Place (CIP) capability. Engineered spray nozzles were installed into the hollow central rotor shaft in all four quadrants of the rotor assembly. This arrangement allows for a very convenient and effective method of solids removal from within the rotor assembly

  5. Periodic mesoporous organosilica-doped nanocomposite membranes and systems including same

    KAUST Repository

    Hammami, Mohamed Amen

    2017-12-28

    A periodic mesoporous organosilica (PMO) nanoparticle functionalized nanocomposite membrane (NCM) for membrane distillation, the NCM including: polymer fibers such as polyetherimide fibers aggregated into a matrix; and hydrophobic PMO nanoparticles disposed on the polymer fibers. The PMO nanoparticles include a framework connected by organic groups and pentafluorophenyl groups. Good membrane flux and anti-fouling was demonstrated. Membranes can be prepared by electrospinning.

  6. Periodic mesoporous organosilica-doped nanocomposite membranes and systems including same

    KAUST Repository

    Hammami, Mohamed Amen; Francis, Lijo; Croissant, Jonas; Ghaffour, NorEddine; Alsaiari, Shahad; Khashab, Niveen M.

    2017-01-01

    A periodic mesoporous organosilica (PMO) nanoparticle functionalized nanocomposite membrane (NCM) for membrane distillation, the NCM including: polymer fibers such as polyetherimide fibers aggregated into a matrix; and hydrophobic PMO nanoparticles disposed on the polymer fibers. The PMO nanoparticles include a framework connected by organic groups and pentafluorophenyl groups. Good membrane flux and anti-fouling was demonstrated. Membranes can be prepared by electrospinning.

  7. Fiber webs

    Science.gov (United States)

    Roger M. Rowell; James S. Han; Von L. Byrd

    2005-01-01

    Wood fibers can be used to produce a wide variety of low-density three-dimensional webs, mats, and fiber-molded products. Short wood fibers blended with long fibers can be formed into flexible fiber mats, which can be made by physical entanglement, nonwoven needling, or thermoplastic fiber melt matrix technologies. The most common types of flexible mats are carded, air...

  8. PERBANDINGAN DESAIN IPAL ANAEROBIC BIOFILTER DENGAN ROTATING BIOLOGICAL CONTACTOR UNTUK LIMBAH CAIR TEKSTIL DI SURABAYA

    Directory of Open Access Journals (Sweden)

    Yogie Restu Firmansyah

    2017-01-01

    Full Text Available Effluen Instalasi Pengolahan Air Limbah (IPAL di Pabrik Tekstil X belum memenuhi kriteria yang ada, terutama untuk masalah warna. Sistem pengolahan IPAL menggunakan Anaerobic Biofilter memiliki kelebihan menyisihkan bahan organik yang tinggi, kebutuhan lahan yang relatif tidak besar, dan biaya operasi yang murah dibandingkan dengan sistem lumpur aktif yang menggunakan proses aerasi. Rotating Biological Contactor (RBC juga memiliki kelebihan yang sama dengan anaerobic biofilter. Perbandingan antara kedua sistem tersebut diperlukan untuk mengetahui sistem yang paling efektif untuk mengolah air limbah di Pabrik Textil X. Pengolahan adsorbsi batok arang kelapa dipilih untuk menghilangkan warna. Perencanaan ini dilakukan dengan menggunakan metode yang sistematis dimulai pengumpulan data primer dan sekunder yang berupa data karakteristik dan debit air limbah, lalu dilakukan perhitungan dan penggambaran Detail Engineering Desan (DED, volume pekerjaan dan Rancangan Anggaran Biaya (RAB, setelah itu dilakukan pembahasan untuk membandingkan kelebihan dan kekurangan dari unit anaerobic Biofilter yang dilengkapi adsorbsi arang batok kelapa dan Rotating Biological Contactor yang dilengkapi adsorbsi arang batok kelapa, lalu diambil kesimpulan dan saran yang relevan dengan tujuan dari perancanaan ini. Dari perhitungan DED didapat dimensi untuk masing masing unit IPAL sebagai berikut Bak ekualisasi (2,6 m x 2,6 m x 2 m, Septic tank (1,75 m x 1,5m x 2,5m, Anaerobic Filter 4 kompartemen (4,5m x 2,5m x 2,5m, , RBC 2 shaft  (2,75m x 2,75 m x 1m, Adsorbsi (3,5 mx 6,75m x 0,55m. Biaya investasi alternative 1 sebesar Rp   700.193.694,29, biaya operasi sebesar Rp 50.222.462,40, biaya perawatan sebesar Rp 3.495.000,00. Alternatif 2 biaya investasi sebesar Rp 777.526.655,53, biaya operasi sebesar Rp Rp 53.012.599,20  , biaya perawatan sebesar Rp 3.495.000,00. Kelebihan anaerobic filter adalah biaya investasi yang lebih kecil, kebutuhan lahan yang lebih sedikit yaitu

  9. Evaluation of a New Remote Handling Design for High Throughput Annular Centrifugal Contactors

    International Nuclear Information System (INIS)

    Meikrantz, David H.; Garn, Troy G.; Law, Jack D.; Macaluso, Lawrence L.

    2009-01-01

    Advanced designs of nuclear fuel recycling plants are expected to include more ambitious goals for aqueous based separations including; higher separations efficiency, high-level waste minimization, and a greater focus on continuous processes to minimize cost and footprint. Therefore, Annular Centrifugal Contactors (ACCs) are destined to play a more important role for such future processing schemes. Previous efforts defined and characterized the performance of commercial 5 cm and 12.5 cm single-stage ACCs in a 'cold' environment. The next logical step, the design and evaluation of remote capable pilot scale ACCs in a 'hot' or radioactive environment was reported earlier. This report includes the development of remote designs for ACCs that can process the large throughput rates needed in future nuclear fuel recycling plants. Novel designs were developed for the remote interconnection of contactor units, clean-in-place and drain connections, and a new solids removal collection chamber. A three stage, 12.5 cm diameter rotor module has been constructed and evaluated for operational function and remote handling in highly radioactive environments. This design is scalable to commercial CINC ACC models from V-05 to V-20 with total throughput rates ranging from 20 to 650 liters per minute. The V-05R three stage prototype was manufactured by the commercial vendor for ACCs in the U.S., CINC mfg. It employs three standard V-05 clean-in-place (CIP) units modified for remote service and replacement via new methods of connection for solution inlets, outlets, drain and CIP. Hydraulic testing and functional checks were successfully conducted and then the prototype was evaluated for remote handling and maintenance suitability. Removal and replacement of the center position V-05R ACC unit in the three stage prototype was demonstrated using an overhead rail mounted PaR manipulator. This evaluation confirmed the efficacy of this innovative design for interconnecting and cleaning

  10. Towards an optimized flow-sheet for a SANEX demonstration process using centrifugal contactors

    International Nuclear Information System (INIS)

    Magnusson, D.; Christiansen, B.; Glatz, J.P.; Malmbeck, R.; Serrano-Purroy, D.; Modolo, G.; Sorel, C.

    2008-01-01

    The design of an efficient process flow-sheet requires accurate extraction data for the experimental set-up used. Often this data is provided as equilibrium data. Due to the small hold-up volume compared to the flow rate in centrifugal contactors the time for extraction is often too short to reach the equilibrium D-ratios. In this work single stage kinetics experiments have been carried out to investigate the D-ratio dependence of the flow rate and also to compare with equilibrium batch experiments for CyMe 4 - BTBP. The first centrifuge experiment was run with spiked solutions while in the second a genuine actinide/lanthanide fraction from a TODGA process was used. Three different flow rates were tested with each set-up. The results show that even with low flow rates, around 8% of the equilibrium D-ratio (Am) was reached for the extraction in the spiked test and around 16% in the hot test (the difference is due to the size of the centrifuges). The general conclusion is that the development of a process flow sheet needs investigation of the kinetic behaviour in the actual equipment used. (authors)

  11. Degradation of phenolics, nitrogen-heterocyclics and polynuclear aromatic hydrocarbons in a rotating biological contactor.

    Science.gov (United States)

    Jeswani, Hansa; Mukherji, Suparna

    2012-05-01

    The degradation of phenolics, heterocyclics and polynuclear aromatic hydrocarbons (PAHs) in a synthetic biomass gasifier wastewater with average COD of 1388 mg/L was studied in a three stage rotating biological contactor (RBC) using the pyrene degrader, Exiguobacterium aurantiacum and activated sludge consortia (1:3 v/v). As the organic loading rate (OLR) was varied from 3.3 to 14 g/m(2)/d, the COD removal ranged from 63.3% to 92.6%. Complete removal of all the constituents was observed at the lowest OLR of 3.3g/m(2)/d. At 24h hydraulic retention time (HRT) and OLR of 6.6g/m(2)/d complete removal of pyridine, quinoline and benzene and 85-96% removal of phenol, naphthalene, phenanthrene, fluoranthene and pyrene was observed. E. aurantiacum was found to be the dominant bacteria in the biofilm. Clark's model provided good fits to data for all the three stages of the RBC. Copyright © 2012 Elsevier Ltd. All rights reserved.

  12. Water reuse potential in truck wash using a Rotating Biological Contactor

    Directory of Open Access Journals (Sweden)

    Eduardo Lucas Subtil

    2016-11-01

    Full Text Available This study evaluated the water reuse potential for truck washing using the effluent treated by a Rotating Biological Contactor (RBC operated in full scale. In order to evaluate the reuse potential, a mass balance was performed for the reuse system taking into account the concentration of Total Dissolved Solids as the critical contaminant. The treatment system produced an effluent with average concentration of color, turbidity, TDS and BOD5 of 45 ± 14 uC, 15 ± 6.0 NTU, 244 ± 99 mg TDS / L and 14 ± 7.3 mg O2 / L, respectively. Based on the mass balance, and considering the TDS concentration established in NBR 13.696, if the final rinse does not use clean water, the potential for effluent reuse can reach 40%. However, if clean water is used as 30% of the total rinsing volume, it would be possible to reuse 70% of the treated effluent without compromising truck washing performance. This water reuse approach would result in an operational cost reduction of R$ 2,590.75/month.

  13. New design centrifugal contactor remotely controlled for solvent extraction operations for feed clarification

    International Nuclear Information System (INIS)

    Candelieri, T.; Gerardi, A.; Petrigliano, G.; Siepe, V.

    1987-01-01

    The project concept of the nuclear facilities has gone through an important evolution in the past years in relation to the need of: garantiing the remote maintenance reducing workers exposure when operating in high-risk areas; making easier final decommissioning operations of the plants. In this way the ITREC pilot plant (built in 1970s') for its modular characteristic based on Rack Removal System (R.R.S.) was the first example of this new concept of project. A further development, in the field of remote maintenance and decommissioning operations, we can obtain associating to the R.R.S. concept that of projecting the single components (only for the critical ones) remotely demountable in their higher radioactive parts to consent the maintenance-substitution and/or decommissioning operations without interfering with remaining parts of the plant which it is connected. All of this helps in the realization of the aim making better plant operations reducing drastically work time and therefore non-functioning period of the plants. These principles have been applicated in the realization of two important components in reprocessing plant: the centrifugal contactor for solvent extraction and feed clarification centrifuge

  14. Novel carbon fiber cathode membrane with Fe/Mn/C/F/O elements in bio-electrochemical system (BES) to enhance wastewater treatment

    Science.gov (United States)

    Gao, Changfei; Liu, Lifen; Yang, Fenglin

    2018-03-01

    A novel conductive membrane with Fe/Mn/C/F/O elements is developed, it functions as the catalytic cathode of MFC and the antifouling filter of MBR simultaneously, in a newly designed integrated wastewater treatment system, without proton exchange membrane (PEM). The optimal conductive membrane is characterized using SEM-EDX, XRD and XPS. BET and porous structure analysis of the grounded membrane material indicate a narrow and small pore size (2-7 nm). The membrane surface is rich in Fe species (Fe - Fe2O3- Fe3O4) and manganese oxide (MnO2). Its characteristics such as excellent electro-chemical oxygen reduction reaction (ORR) activity, high clear water flux (>240 L/(m2·h)) and better antifouling filtration performance are further confirmed. The new system features bio-electrochemical system (BES) and integrates bio-filtration (trickling filter and air contact oxidation bed) and proton transfer through quartz sand chamber (QSC) which eliminates the use of expensive proton exchange membrane. The system removes chemical oxygen demand (>97.4%), ammonia nitrogen (>96.7%), total phosphorus (>98.0%) effectively, and it simultaneously generates electricity (446 mW/m3). The low cost and high performances, economic and advantageous system has good compatibility with existing wastewater treatment facilities and a wide application prospect.

  15. Nanoengineered membranes for controlled transport

    Science.gov (United States)

    Doktycz, Mitchel J [Oak Ridge, TN; Simpson, Michael L [Knoxville, TN; McKnight, Timothy E [Greenback, TN; Melechko, Anatoli V [Oak Ridge, TN; Lowndes, Douglas H [Knoxville, TN; Guillorn, Michael A [Knoxville, TN; Merkulov, Vladimir I [Oak Ridge, TN

    2010-01-05

    A nanoengineered membrane for controlling material transport (e.g., molecular transport) is disclosed. The membrane includes a substrate, a cover definining a material transport channel between the substrate and the cover, and a plurality of fibers positioned in the channel and connected to an extending away from a surface of the substrate. The fibers are aligned perpendicular to the surface of the substrate, and have a width of 100 nanometers or less. The diffusion limits for material transport are controlled by the separation of the fibers. In one embodiment, chemical derivitization of carbon fibers may be undertaken to further affect the diffusion limits or affect selective permeability or facilitated transport. For example, a coating can be applied to at least a portion of the fibers. In another embodiment, individually addressable carbon nanofibers can be integrated with the membrane to provide an electrical driving force for material transport.

  16. Parallel artificial liquid membrane extraction

    DEFF Research Database (Denmark)

    Gjelstad, Astrid; Rasmussen, Knut Einar; Parmer, Marthe Petrine

    2013-01-01

    This paper reports development of a new approach towards analytical liquid-liquid-liquid membrane extraction termed parallel artificial liquid membrane extraction. A donor plate and acceptor plate create a sandwich, in which each sample (human plasma) and acceptor solution is separated by an arti......This paper reports development of a new approach towards analytical liquid-liquid-liquid membrane extraction termed parallel artificial liquid membrane extraction. A donor plate and acceptor plate create a sandwich, in which each sample (human plasma) and acceptor solution is separated...... by an artificial liquid membrane. Parallel artificial liquid membrane extraction is a modification of hollow-fiber liquid-phase microextraction, where the hollow fibers are replaced by flat membranes in a 96-well plate format....

  17. Analysis and study on the membrane method of CO2 removal of coal-fired boilers

    International Nuclear Information System (INIS)

    Fangqin, Li; Henan, Li; Jianxing, Ren; Jiang, Wu; Zhongzhu, Qiu

    2010-01-01

    Carbon dioxide (CO 2 ) is one kind of harmful substances from the burning process of fossil fuel. CO 2 emissions cause serious pollution on atmospheric environment, especially greenhouse effect. In this paper, CO 2 formation mechanism and control methods were researched. Membrane technology was studied to control CO 2 emissions from coal-fired boilers. The relationship between CO 2 removal efficiency and parameters of membrane contactor was analyzed. Through analysis and study, factors affecting on CO 2 removal efficiency were gotten. How to choose the best parameters was known. This would provide theoretical basis for coal-fired utility boilers choosing effective way of CO 2 removal. (author)

  18. Wrinkles in reinforced membranes

    Science.gov (United States)

    Takei, Atsushi; Brau, Fabian; Roman, Benoît; Bico, José.

    2012-02-01

    We study, through model experiments, the buckling under tension of an elastic membrane reinforced with a more rigid strip or a fiber. In these systems, the compression of the rigid layer is induced through Poisson contraction as the membrane is stretched perpendicularly to the strip. Although strips always lead to out-of-plane wrinkles, we observe a transition from out-of-plane to in plane wrinkles beyond a critical strain in the case of fibers embedded into the elastic membranes. The same transition is also found when the membrane is reinforced with a wall of the same material depending on the aspect ratio of the wall. We describe through scaling laws the evolution of the morphology of the wrinkles and the different transitions as a function of material properties and stretching strain.

  19. Accomplishing equilibrium in ALSEP: demonstrations of modified process chemistry on 3-D printed enhanced annular centrifugal contactors

    Energy Technology Data Exchange (ETDEWEB)

    Brown, M.A.; Wardle, K.E.; Gelis, A.V. [Nuclear Engineering Division, Argonne National Laboratory, Lemont, IL, 60439 (United States); Lumetta, G. [Paccific Northwest National Laboratory, Richland, WA (United States)

    2016-07-01

    The ALSEP (Actinide Lanthanide Separation Process) was developed to treat a PUREX raffinate stream by liquid-liquid extraction with the intent of separating trivalent minor actinides (Am/Cm; An) from trivalent fission-product lanthanides (Ln) and selected transition metals. The major components of the modified ALSEP process have been demonstrated on a modified 2-cm annular centrifugal contactor with an enhanced mixing zone using stable fission products and radiotracers. The results show that by decreasing the pH of the minor actinide stripping solution, using HEDTA instead of DTPA, and increasing contact time, the process is very effective in separating americium from the lanthanides and the fission products.

  20. Photorefractive Fibers

    National Research Council Canada - National Science Library

    Kuzyk, Mark G

    2003-01-01

    ... scope of the project. In addition to our work in optical limiting fibers, spillover results included making fiber-based light-sources, writing holograms in fibers, and developing the theory of the limits of the nonlinear...

  1. Microporous hollow fibre membrane modules as gas-liquid contactors. Part 2. Mass transfer with chemical reaction

    NARCIS (Netherlands)

    Kreulen, H.; Versteeg, G.F.; Swaaij, W.P.M. van

    1993-01-01

    Absorption determined by mass transfer in the liquid is described well with the Graetz-Lévèque equation adapted from heat transfer. The influence of a chemical reaction on the mass transfer was simulated with a numerical model and tested on the absorption of CO2 in a hydroxide solution. Absorption

  2. Study of RBC Efficiency in Aniline Removal by Increasing Contactor Specific Surface

    Directory of Open Access Journals (Sweden)

    Seyed Hossein Mousavi Aliani

    2011-01-01

    Full Text Available Aniline is a first type amino aromatic compound and has various applications in different pharmaceutical, synthetic dye, plastic, and petrochemical industries. It is poisonous and its discharge into the environment causes serious hazards that warrant it removal by an efficient treatment process.  In this study, the efficiency of rotating biological contactors in aniline removal was investigated using four 3-liter parallel systems (in two series. Two reactors in the first series had 27 disks. The second series had 14 discs with packings in each reactor with the same specific surfaces as compared to the first system.Aniline concentrations from 100 to 1200 mg/L and hydraulic loading rates from 1.57 to 6.28 L/m2.d were used throughout the study period in two treatments. The effect of disc rotation speed on system efficiency was also investigated. The results indicated that COD removal efficiency decreased with increasing hydraulic loading rate but increased with increasing disc speed from 5 to 15 rpm. The best removal efficiencies of 88 and 86 percent for RBCI and RBCII, respectively, were obtained for an aniline concentration of 400 mg/L, a hydraulic loading rate of 1.57 L/m2.d, and a disc speed of 15 rpm. Based on the results, although both systems yield almost equal efficiencies, the start-up period was shorter in RBCII with a clearer effluent due to the lower quantity of suspended microorganisms in the reactor than that in RBCI. Use of packing may decrease energy consumption for disc rotation due to the overall weight reduction of the system.

  3. Proteomic profiling of cellulase-aid-extracted membrane proteins for functional identification of cellulose synthase complexes and their potential associated- components in cotton fibers.

    Science.gov (United States)

    Li, Ao; Wang, Ruyi; Li, Xianliang; Liu, Mingyong; Fan, Jian; Guo, Kai; Luo, Bing; Chen, Tingting; Feng, Shengqiu; Wang, Yanting; Wang, Bingrui; Peng, Liangcai; Xia, Tao

    2016-05-19

    Cotton fibers are an excellent model for understanding of cellulose biosynthesis in higher plants. In this study, we determined a high cellulose biosynthesis activity in vitro by optimizing biochemical reaction conditions in cotton fibers. By adding a commercial cellulase enzyme into fibers extraction process, we extracted markedly higher levels of GhCESA1 and GhCESA8 proteins and observed an increase in β-1,4-glucan and β-1,3-glucan products in vitro. LC-MS/MS analysis of anti-GhCESA8-immunoprecipitated proteins showed that 19 proteins could be found in three independent experiments including four CESAs (GhCESA1,2,7,8), five well-known non-CESA proteins, one callose synthase (CALS) and nine novel proteins. Notably, upon the cellulase treatment, four CESAs, one CALS and four novel proteins were measured at relatively higher levels by calculating total peptide counts and distinct peptide numbers, indicating that the cellulase-aid-extracted proteins most likely contribute to the increase in β-glucan products in vitro. These results suggest that the cellulase treatment may aid to release active cellulose synthases complexes from growing glucan chains and make them more amenable to extraction. To our knowledge, it is the first time report about the functional identification of the potential proteins that were associated with plant cellulose and callose synthases complexes by using the cellulase-aided protein extraction.

  4. THE IMPACT OF THE COOKED SAUSAGE ENRICHED WITH LACTULOSE AND FOOD FIBERS ON THE MORPHOFUNCTIONAL CONDITION OF THE MUCOUS MEMBRANE OF THE LARGE INTESTINE AND MICROBIOTA (MICROBIOCENOSIS IN RATS

    Directory of Open Access Journals (Sweden)

    Leonid S. Kudryashov

    2018-01-01

    Full Text Available The researches on the development of medical and medical-preventive food products for people with violation of normal intestinal microflora are presented in the article. It was found that,  the introduction into the formulation of cooked sausage food beet  fibers based on sugar beet, hydrated in a ratio 1:5, in amount 10 %  to weight of mince and lactulose, synthesized from lactose, in  amount 640 mg/kg mince retains the traditional organoleptic  properties of the product. There were carried out comparative  morphometric, histochemical and bacterioscopic studies of boiled  sausage effect without additives and sausage enriched with food  fibers and lactulose on the morphofunctional condition of the mucous membrance of the colon (MMC of rats. Was shown a significant  height  increase of epithelial surface of epithelium, an increase of frequency mitoses in the epithelium crypts of intestinal glands (from 0.6 ± 0.08 % to 1.1 ± 0.04 %, there is a tendency of increasing  content of goblet ekzokrinnye (from 21.3 ± 5.5 % to 32.4 ± 18.7  %, while the mucosal were intensively produced allopathically  mucus, which indicates the stimulation of sausage, enriched with  lactulose on the functional status of the surface epithelium and intestinal glands of the mucous membrane of the colon. Based on the studies results of the effect of food beet fibers and lactulose,  contained in the ration of rats in large and small intestine were fixed  on order greater amount of bifido- and lactobacteries in comparison  with the animals control group. Same time, it was found that in the  large intestine the number of lactobacilli were much higher in  animals receiving experimental sausage.

  5. Alternative energy efficient membrane bioreactor using reciprocating submerged membrane.

    Science.gov (United States)

    Ho, J; Smith, S; Roh, H K

    2014-01-01

    A novel membrane bioreactor (MBR) pilot system, using membrane reciprocation instead of air scouring, was operated at constant high flux and daily fluctuating flux to demonstrate its application under peak and diurnal flow conditions. Low and stable transmembrane pressure was achieved at 40 l/m(2)/h (LMH) by use of repetitive membrane reciprocation. The results reveal that the inertial forces acting on the membrane fibers effectively propel foulants from the membrane surface. Reciprocation of the hollow fiber membrane is beneficial for the constant removal of solids that may build up on the membrane surface and inside the membrane bundle. The membrane reciprocation in the reciprocating MBR pilot consumed less energy than coarse air scouring used in conventional MBR systems. Specific energy consumption for the membrane reciprocation was 0.072 kWh/m(3) permeate produced at 40 LMH flux, which is 75% less than for a conventional air scouring system as reported in literature without consideration of energy consumption for biological aeration (0.29 kWh/m(3)). The daily fluctuating flux test confirmed that the membrane reciprocation is effective to handle fluctuating flux up to 50 LMH. The pilot-scale reciprocating MBR system successfully demonstrated that fouling can be controlled via 0.43 Hz membrane reciprocation with 44 mm or higher amplitude.

  6. Fiber Optic Microphone

    Science.gov (United States)

    Cho, Y. C.; George, Thomas; Norvig, Peter (Technical Monitor)

    1999-01-01

    Research into advanced pressure sensors using fiber-optic technology is aimed at developing compact size microphones. Fiber optic sensors are inherently immune to electromagnetic noise, and are very sensitive, light weight, and highly flexible. In FY 98, NASA researchers successfully designed and assembled a prototype fiber-optic microphone. The sensing technique employed was fiber optic Fabry-Perot interferometry. The sensing head is composed of an optical fiber terminated in a miniature ferrule with a thin, silicon-microfabricated diaphragm mounted on it. The optical fiber is a single mode fiber with a core diameter of 8 micron, with the cleaved end positioned 50 micron from the diaphragm surface. The diaphragm is made up of a 0.2 micron thick silicon nitride membrane whose inner surface is metallized with layers of 30 nm titanium, 30 nm platinum, and 0.2 micron gold for efficient reflection. The active sensing area is approximately 1.5 mm in diameter. The measured differential pressure tolerance of this diaphragm is more than 1 bar, yielding a dynamic range of more than 100 dB.

  7. Electro-membrane processes for flue gas cleaning

    Energy Technology Data Exchange (ETDEWEB)

    Larsen, T. F.

    1997-12-31

    Various techniques for NO removal in Membrane Contactor were considered. However the NO absorption in a liquid adsorbent with chemical enhancement and its ease for regeneration, was selected as the most practicable choice. Various different compounds for chemical enhancement were studied and Fe(II)-chelate enhanced adsorbent was selected for further studies. The technical feasibility of Fe(II)-chelate enhanced adsorbent for obtaining greater than 80% NO removal have been successfully established. Even though the membrane area required for greater than 80% NO removal has been found to be about 500 m{sup 2}/MW{sub c} (compared to 50 - 150 m{sup 2}/MW{sub c}, for 95% SO{sub 2} removal, depending on the membrane characteristics), suitable Membrane Contactor design has been proposed for carrying out the process at an acceptable gas side pressure drop. The electro-membrane processes for the regeneration of adsorbents have been studied both theoretically and experimentally. The theoretical studies have concerned the study of basic functions of both the bipolar membranes and charge laden (anion/cation) membranes. Suitable experimental techniques have been devised for studying of these basic parameters (e.g. charge transport number, salt diffusion through membranes, current-voltage characteristics of bipolar membranes and electrical resistance of charge laden membranes). These parameters have further been utilized in the mechanistic model of combined membranes in an ED cell (electrodialysis). Based on these fundamental studies and analysis of process requirements, suitable configuration of ED cell has been developed and verified by experimental studies. The effect of both the stack design parameters (e.g. number of cells, membrane type and spacer design) and the operational parameters (e.g. temperature, electrolyte concentration, liquid velocity and current density) have been studied for optimization of energy consumption for regeneration of loaded adsorbents. As a result

  8. Fiber dielectrophoresis

    International Nuclear Information System (INIS)

    Lipowicz, P.J.; Yeh, H.C.

    1988-01-01

    Dielectrophoresis is the motion of uncharged particles in nonuniform electric fields. We find that the theoretical dielectrophoretic velocity of a conducting fiber in an insulating medium is proportional to the square of the fiber length, and is virtually independent of fiber diameter. This prediction has been verified experimentally. The results point to the development of a fiber length classifier based on dielectrophoresis. (author)

  9. Process intensification of catalytic liquid-liquid solid processes : Continuous biodiesel production using an immobilized lipase in a centrifugal contactor separator

    NARCIS (Netherlands)

    Ilmi, M.; Kloekhorst, A.; Winkelman, J. G. M.; Euverink, G. J. W.; Hidayat, C.; Heeres, H. J.

    Biodiesel or fatty acid methyl ester (FAME) synthesis from sunflower oil and methanol using an immobilized lipase, an example of a liquid-liquid solid reaction, was studied in batch and various continuous reactor set-ups including the use of a centrifugal contactor separator (CCCS). The latter is an

  10. Experimental and modelling studies on continuous synthesis and refining of biodiesel in a dedicated bench scale unit using centrifugal contactor separator technology

    NARCIS (Netherlands)

    Abduh, Muhammad Yusuf; Martinez, Alberto Fernandez; Kloekhorst, Arjan; Manurung, Robert; Heeres, Hero J.

    Continuous synthesis and refining of biodiesel (FAME) using a laboratory scale bench scale unit was explored. The unit consists of three major parts: (i) a continuous centrifugal contactor separator (CCCS) to perform the reaction between sunflower oil and methanol; (ii) a washing unit for the crude

  11. Evaluation of the Hydraulic Performance and Mass Transfer Efficiency of the CSSX Process with the Optimized Solvent in a Single Stage of 5.5-Cm Diameter Centrifugal Contactor

    International Nuclear Information System (INIS)

    Law, J.D.; Tillotson, R.D.; Todd, T.A.

    2002-01-01

    The Caustic-Side Solvent Extraction (CSSX) process has been selected for the separation of cesium from Savannah River Site high-level waste. The solvent composition used in the CSSX process was recently optimized so that the solvent is no longer supersaturated with respect to the calixarene crown ether extractant. Hydraulic performance and mass transfer efficiency testing of a single stage of 5.5-cm ORNL-designed centrifugal contactor has been performed for the CSSX process with the optimized solvent. Maximum throughputs of the 5.5-cm centrifugal contactor, as a function of contactor rotor speed, have been measured for the extraction, scrub, strip, and wash sections of the CSSX flowsheet at the baseline organic/aqueous flow ratios (O/A) of the process, as well as at O/A's 20% higher and 20% lower than the baseline. Maximum throughputs are comparable to the design throughput of the contactor, as well as with throughputs obtained previously in a 5-cm centrifugal contactor with the non-optimized CSSX solvent formulation. The 20% variation in O/A had minimal effect on contactor throughput. Additionally, mass transfer efficiencies have been determined for the extraction and strip sections of the flowsheet. Efficiencies were lower than the process goal of greater than or equal to 80%, ranging from 72 to 75% for the extraction section and from 36 to 60% in the strip section. Increasing the mixing intensity and/or the solution level in the mixing zone of the centrifugal contactor (residence time) could potentially increase efficiencies. Several methods are available to accomplish this including (1) increasing the size of the opening in the bottom of the rotor, resulting in a contactor which is partially pumping instead of fully pumping, (2) decreasing the number of vanes in the contactor, (3) increasing the vane height, or (4) adding vanes on the rotor and baffles on the housing of the contactor. The low efficiency results obtained stress the importance of proper design of

  12. Fiber Amplifiers

    DEFF Research Database (Denmark)

    Rottwitt, Karsten

    2017-01-01

    The chapter provides a discussion of optical fiber amplifiers and through three sections provides a detailed treatment of three types of optical fiber amplifiers, erbium doped fiber amplifiers (EDFA), Raman amplifiers, and parametric amplifiers. Each section comprises the fundamentals including...... the basic physics and relevant in-depth theoretical modeling, amplifiers characteristics and performance data as a function of specific operation parameters. Typical applications in fiber optic communication systems and the improvement achievable through the use of fiber amplifiers are illustrated....

  13. An innovative membrane bioreactor for methane biohydroxylation.

    Science.gov (United States)

    Pen, N; Soussan, L; Belleville, M-P; Sanchez, J; Charmette, C; Paolucci-Jeanjean, D

    2014-12-01

    In this study, a membrane bioreactor (MBR) was developed for efficient, safe microbial methane hydroxylation with Methylosinus trichosporium OB3b. This innovative MBR, which couples a bioreactor with two gas/liquid macroporous membrane contactors supplying the two gaseous substrates (methane and oxygen) was operated in fed-batch mode. The feasibility and the reproducibility of this new biohydroxylation process were first demonstrated. The mass transfer within this MBR was twice that observed in a batch reactor in similar conditions. The productivity reached with this MBR was 75±25mgmethanol(gdrycell)(-1)h(-1). Compared to the literature, this value is 35times higher than that obtained with the only other fed-batch membrane bioreactor reported, which was run with dense membranes, and is comparable to those obtained with bioreactors fed by bubble-spargers. However, in the latter case, an explosive gas mixture can be formed, a problem that is avoided with the MBR. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Low-Cost Fiber Optic Pressure Sensor

    Science.gov (United States)

    Sheem, Sang K.

    2003-07-22

    The size and cost of fabricating fiber optic pressure sensors is reduced by fabricating the membrane of the sensor in a non-planar shape. The design of the sensors may be made in such a way that the non-planar membrane becomes a part of an air-tight cavity, so as to make the membrane resilient due to the air-cushion effect of the air-tight cavity. Such non-planar membranes are easier to make and attach.

  15. Membranes for corrosive oxidations. Final CRADA report.

    Energy Technology Data Exchange (ETDEWEB)

    Snyder, S. W.; Energy Systems

    2010-02-01

    The objective of this project is to develop porous hydrophilic membranes that are highly resistant to oxidative and corrosive conditions and to deploy them for recovery and purification of high tonnage chemicals such as hydrogen peroxide and other oxychemicals. The research team patented a process for membrane-based separation of hydrogen peroxide (US Patent No. 5,662,878). The process is based on using a hydrophilic membrane to separate hydrogen peroxide from the organic working solution. To enable this process, a new method for producing hydrophilic membrane materials (Patent No.6,464,880) was reported. We investigated methods of producing these hydrophilic materials and evaluated separations performance in comparison to membrane stability. It was determined that at the required membrane flux, membrane stability was not sufficient to design a commercial process. This work was published (Hestekin et al., J. Membrane Science 2006). To meet the performance needs of the process, we developed a membrane contactor method to extract the hydrogen peroxide, then we surveyed several commercial and pre-commercial membrane materials. We identified pre-commercial hydrophilic membranes with the required selectivity, flux, and stability to meet the needs of the process. In addition, we invented a novel reaction/separations format that greatly increases the performance of the process. To test the performance of the membranes and the new formats we procured and integrated reactor/membrane separations unit that enables controlled mixing, flow, temperature control, pressure control, and sampling. The results were used to file a US non-provisional patent application (ANL-INV 03-12). Hydrogen peroxide is widely used in pulp and paper applications, environmental treatment, and other industries. Virtually all hydrogen peroxide production is now based on a process featuring catalytic hydrogenation followed by auto-oxidation of suitable organic carrier molecules. This process has several

  16. Membrane assisted liquid-liquid extraction of cerium

    International Nuclear Information System (INIS)

    Soldenhoff, K.M.

    2000-02-01

    Membrane assisted liquid-liquid extraction of cerium was investigated, with emphasis placed on the study of the reaction chemistry and the kinetics of non-dispersive solvent extraction and stripping with microporous membranes. A bulk liquid membrane process was developed for the purification of cerium(IV) from sulfate solutions containing other rare earth elements. The cerium process was studied in both a flat sheet contained liquid membrane configuration and with hollow fibre contactors. Di-2-ethylhexyl phosphoric acid (DEHPA) was identified as a suitable extractant for cerium(IV) from sulfuric acid solution, with due consideration of factors such as extraction ability, resistance to degradation, solvent selectivity and potential for sulfate transfer into a strip solution. A detailed study of the extraction of cerium(IV) with DEHPA defined the extraction reaction chemistry. The Ce/DEHPA/sulfate system was also investigated with a flat sheet bulk liquid membrane configuration, using both sulfuric and hydrochloric acid as receiver solutions. These tests identified that hydrophobic membranes provide better mass transfer for extraction and hydrophilic membranes are better for stripping. The presence of an impurity, mono 2-ethylhexyl phosphoric acid (MEHPA), was found to have a dramatic accelerating effect on the rate of the chemical extraction reaction. This was attributed to its higher interfacial activity and population compared to DEHPA, and the fact that MEHPA was also found to be an active carrier for cerium(IV). The mass transfer rate of membrane assisted extraction and stripping of cerium, using hydrophobic and hydrophilic microporous membranes, respectively, was investigated using a modified Lewis-type cell. It was quantitatively demonstrated that the extraction process was mainly controlled by membrane diffusion and the stripping process was controlled by the chemical reaction rate, with membrane diffusion becoming important at low distribution coefficients

  17. Membrane Protrusion Coarsening and Nanotubulation within Giant Unilamellar Vesicles

    KAUST Repository

    Węgrzyn, Ilona; Jeffries, Gavin D. M.; Nagel, Birgit; Katterle, Martin; Gerrard, Simon R.; Brown, Tom; Orwar, Owe; Jesorka, Aldo

    2011-01-01

    implementation of an IR laser via an optical fiber, enabling localized directed heating. Polymer-membrane interactions were monitored using confocal imaging techniques as subsequent membrane protrusions occurred and lipid nanotubes formed in response

  18. Membrane dynamics

    DEFF Research Database (Denmark)

    Bendix, Pól Martin

    2015-01-01

    Current topics include membrane-protein interactions with regard to membrane deformation or curvature sensing by BAR domains. Also, we study the dynamics of membrane tubes of both cells and simple model membrane tubes. Finally, we study membrane phase behavior which has important implications...... for the lateral organization of membranes as wells as for physical properties like bending, permeability and elasticity...

  19. 3D printed modular centrifugal contactors and method for separating moieties using 3D printed optimized surfaces

    Science.gov (United States)

    Wardle, Kent E.

    2017-08-29

    The present invention provides an annular centrifugal contactor, having a housing to receive a plurality of liquids; a rotor inside the housing; an annular mixing zone, with a plurality of fluid retention reservoirs; and an adjustable stem that can be raised to restrict the flow of a liquid into the rotor or lowered to increase the flow of liquid into the rotor. The invention also provides a method for transferring moieties from a first liquid to a second liquid, the method having the steps of combining the fluids in a housing whose interior has helically shaped first channels; subjecting the fluids to a spinning rotor to produce a mixture, whereby the channels simultaneously conduct the mixture downwardly and upwardly; and passing the mixture through the rotor to contact second channels, whereby the channels pump the second liquid through a first aperture while the first fluid exits a second aperture.

  20. International Space Station (ISS) Plasma Contactor Unit (PCU) Utilization Plan Assessment Update

    Science.gov (United States)

    Hernandez-Pellerano, Amri; Iannello, Christopher J.; Garrett, Henry B.; Ging, Andrew T.; Katz, Ira; Keith, R. Lloyd; Minow, Joseph I.; Willis, Emily M.; Schneider, Todd A.; Whittlesey, Edward J.; hide

    2014-01-01

    The International Space Station (ISS) vehicle undergoes spacecraft charging as it interacts with Earth's ionosphere and magnetic field. The interaction can result in a large potential difference developing between the ISS metal chassis and the local ionosphere plasma environment. If an astronaut conducting extravehicular activities (EVA) is exposed to the potential difference, then a possible electrical shock hazard arises. The control of this hazard was addressed by a number of documents within the ISS Program (ISSP) including Catastrophic Safety Hazard for Astronauts on EVA (ISS-EVA-312-4A_revE). The safety hazard identified the risk for an astronaut to experience an electrical shock in the event an arc was generated on an extravehicular mobility unit (EMU) surface. A catastrophic safety hazard, by the ISS requirements, necessitates mitigation by a two-fault tolerant system of hazard controls. Traditionally, the plasma contactor units (PCUs) on the ISS have been used to limit the charging and serve as a "ground strap" between the ISS structure and the surrounding ionospheric plasma. In 2009, a previous NASA Engineering and Safety Center (NESC) team evaluated the PCU utilization plan (NESC Request #07-054-E) with the objective to assess whether leaving PCUs off during non-EVA time periods presented risk to the ISS through assembly completion. For this study, in situ measurements of ISS charging, covering the installation of three of the four photovoltaic arrays, and laboratory testing results provided key data to underpin the assessment. The conclusion stated, "there appears to be no significant risk of damage to critical equipment nor excessive ISS thermal coating damage as a result of eliminating PCU operations during non- EVA times." In 2013, the ISSP was presented with recommendations from Boeing Space Environments for the "Conditional" Marginalization of Plasma Hazard. These recommendations include a plan that would keep the PCUs off during EVAs when the

  1. Evaluation of the measurement of Cu(II) bioavailability in complex aqueous media using a hollow-fiber supported liquid membrane device (HFSLM) and two microalgae species (Pseudokirchneriella subcapitata and Scenedesmus acutus)

    International Nuclear Information System (INIS)

    Rodríguez-Morales, Erik A.; Rodríguez de San Miguel, Eduardo; Gyves, Josefina de

    2015-01-01

    The environmental bioavailability of copper was determined using a hollow-fiber supported liquid membrane (HFSLM) device as a chemical surrogate and two microalgae species (Scenedesmus acutus and Pseudokirchneriella subcapitata). Several experimental conditions were studied: pH, the presence of organic matter, inorganic anions, and concomitant cations. The results indicated a strong relationship between the response given by the HFSLM and the microalgae species with free copper concentrations measured by an ion selective electrode (ISE), in accordance with the free-ion activity model (FIAM). A significant positive correlation was evident when comparing the bioavailability results measured by the HFSLM and the S. acutus microalga species, showing that the synthetic device may emulate biological uptake and, consequently, be used as a chemical test for bioavailability measurements using this alga as a biological reference. - Highlights: • The environmental bioavailability of copper(II) was determined using an HFSLM. • Two microalgae species were used as references for bioavailability evaluation. • Bioavailability is affected by the chemical conditions of the medium. • HFSLM and microalgae bioavailabilities depend on free copper(II) concentrations. • HFSLM emulates better the biological uptake of the Scenedesmus acutus microalga. - An HFSLM device may emulate the biological uptake of copper (II) of the Scenedesmus acutus microalga and, consequently, be used as a chemical test for bioavailability measurements.

  2. Removal of transmissible spongiform encephalopathy prion from large volumes of cell culture media supplemented with fetal bovine serum by using hollow fiber anion-exchange membrane chromatography.

    Science.gov (United States)

    Chou, Ming Li; Bailey, Andy; Avory, Tiffany; Tanimoto, Junji; Burnouf, Thierry

    2015-01-01

    Cases of variant Creutzfeldt-Jakob disease in people who had consumed contaminated meat products from cattle with bovine spongiform encephalopathy emphasize the need for measures aimed at preventing the transmission of the pathogenic prion protein (PrPSc) from materials derived from cattle. Highly stringent scrutiny is required for fetal bovine serum (FBS), a growth-medium supplement used in the production of parenteral vaccines and therapeutic recombinant proteins and in the ex vivo expansion of stem cells for transplantation. One such approach is the implementation of manufacturing steps dedicated to removing PrPSc from materials containing FBS. We evaluated the use of the QyuSpeed D (QSD) adsorbent hollow-fiber anion-exchange chromatographic column (Asahi Kasei Medical, Tokyo, Japan) for the removal of PrPSc from cell culture media supplemented with FBS. We first established that QSD filtration had no adverse effect on the chemical composition of various types of culture media supplemented with 10% FBS or the growth and viability characteristics of human embryonic kidney (HEK293) cells, baby hamster kidney (BHK-21) cells, African green monkey kidney (Vero) cells, and Chinese hamster ovary (CHO-k1) cells propagated in the various culture-medium filtrates. We used a 0.6-mL QSD column for removing PrPSc from up to 1000 mL of Dulbecco's modified Eagle's medium containing 10% FBS previously spiked with the 263K strain of hamster-adapted scrapie. The Western blot analysis, validated alongside an infectivity assay, revealed that the level of PrPSc in the initial 200mL flow-through was reduced by 2.5 to > 3 log10, compared with that of the starting material. These results indicate that QSD filtration removes PrPSc from cell culture media containing 10% FBS, and demonstrate the ease with which QSD filtration can be implemented in at industrial-scale to improve the safety of vaccines, therapeutic recombinant proteins, and ex vivo expanded stem cells produced using growth

  3. αA-crystallin R49Cneo mutation influences the architecture of lens fiber cell membranes and causes posterior and nuclear cataracts in mice

    Directory of Open Access Journals (Sweden)

    Andley Usha P

    2009-07-01

    Full Text Available Abstract Background αA-crystallin (CRYAA/HSPB4, a major component of all vertebrate eye lenses, is a small heat shock protein responsible for maintaining lens transparency. The R49C mutation in the αA-crystallin protein is linked with non-syndromic, hereditary human cataracts in a four-generation Caucasian family. Methods This study describes a mouse cataract model generated by insertion of a neomycin-resistant (neor gene into an intron of the gene encoding mutant R49C αA-crystallin. Mice carrying the neor gene and wild-type Cryaa were also generated as controls. Heterozygous knock-in mice containing one wild type gene and one mutated gene for αA-crystallin (WT/R49Cneo and homozygous knock-in mice containing two mutated genes (R49Cneo/R49Cneo were compared. Results By 3 weeks, WT/R49Cneo mice exhibited large vacuoles in the cortical region 100 μm from the lens surface, and by 3 months posterior and nuclear cataracts had developed. WT/R49Cneo mice demonstrated severe posterior cataracts at 9 months of age, with considerable posterior nuclear migration evident in histological sections. R49Cneo/R49Cneo mice demonstrated nearly complete lens opacities by 5 months of age. In contrast, R49C mice in which the neor gene was deleted by breeding with CreEIIa mice developed lens abnormalities at birth, suggesting that the neor gene may suppress expression of mutant R49C αA-crystallin protein. Conclusion It is apparent that modification of membrane and cell-cell interactions occurs in the presence of the αA-crystallin mutation and rapidly leads to lens cell pathology in vivo.

  4. Mass Transfer And Hydraulic Testing Of The V-05 And V-10 Contactors With The Next Generation Solvent

    Energy Technology Data Exchange (ETDEWEB)

    Herman, D. T.; Duignan, M. R.; Williams, M. R.; Peters, T. B.; Poirier, M. R.; Fondeur, F. F.

    2013-07-31

    The Modular Caustic Side Solvent Extraction (CSSX) Unit (MCU) facility is actively pursuing the transition from the current BOBCalixC6 based solvent to the Next Generation Solvent (NGS)-MCU solvent. To support this integration of NGS into the MCU facilities, Savannah River Remediation (SRR) requested that Savannah River National Laboratory (SRNL) perform testing of a blend of the NGS (MaxCalix based solvent) with the current solvent (BOBCalixC6 based solvent) for the removal of cesium (Cs) from the liquid salt waste stream. This testing differs from prior testing by utilizing a blend of BOBCalixC6 based solvent and the NGS with the full (0.05 M) concentration of the MaxCalix as well as a new suppressor, tris(3,7dimethyloctyl) guanidine. Single stage tests were conducted using the full size V-05 and V-10 centrifugal contactors installed at SRNL. These tests were designed to determine the mass transfer and hydraulic characteristics with the NGS solvent blended with the projected heel of the BOBCalixC6 based solvent that will exist in MCU at time of transition. The test program evaluated the amount of organic carryover and the droplet size of the organic carryover phases using several analytical methods. Stage efficiency and mass distribution ratios were determined by measuring Cs concentration in the aqueous and organic phases during single contactor testing. The nominal cesium distribution ratio, D(Cs) measured for extraction ranged from 37-60. The data showed greater than 96% stage efficiency for extraction. No significant differences were noted for operations at 4, 8 or 12 gpm aqueous salt simulant feed flow rates. The first scrub test (contact with weak caustic solution) yielded average scrub D(Cs) values of 3.3 to 5.2 and the second scrub test produced an average value of 1.8 to 2.3. For stripping behavior, the “first stage” D Cs) values ranged from 0.04 to 0.08. The efficiency of the low flow (0.27 gpm aqueous) was calculated to be 82.7%. The Spreadsheet

  5. Mass Transfer And Hydraulic Testing Of The V-05 And V-10 Contactors With The Next Generation Solvent

    International Nuclear Information System (INIS)

    Herman, D. T.; Duignan, M. R.; Williams, M. R.; Peters, T. B.; Poirier, M. R.; Fondeur, F. F.

    2013-01-01

    The Modular Caustic Side Solvent Extraction (CSSX) Unit (MCU) facility is actively pursuing the transition from the current BOBCalixC6 based solvent to the Next Generation Solvent (NGS)-MCU solvent. To support this integration of NGS into the MCU facilities, Savannah River Remediation (SRR) requested that Savannah River National Laboratory (SRNL) perform testing of a blend of the NGS (MaxCalix based solvent) with the current solvent (BOBCalixC6 based solvent) for the removal of cesium (Cs) from the liquid salt waste stream. This testing differs from prior testing by utilizing a blend of BOBCalixC6 based solvent and the NGS with the full (0.05 M) concentration of the MaxCalix as well as a new suppressor, tris(3,7 dimethyloctyl) guanidine. Single stage tests were conducted using the full size V-05 and V-10 centrifugal contactors installed at SRNL. These tests were designed to determine the mass transfer and hydraulic characteristics with the NGS solvent blended with the projected heel of the BOBCalixC6 based solvent that will exist in MCU at time of transition. The test program evaluated the amount of organic carryover and the droplet size of the organic carryover phases using several analytical methods. Stage efficiency and mass distribution ratios were determined by measuring Cs concentration in the aqueous and organic phases during single contactor testing. The nominal cesium distribution ratio, D(Cs) measured for extraction ranged from 37-60. The data showed greater than 96% stage efficiency for extraction. No significant differences were noted for operations at 4, 8 or 12 gpm aqueous salt simulant feed flow rates. The first scrub test (contact with weak caustic solution) yielded average scrub D(Cs) values of 3.3 to 5.2 and the second scrub test produced an average value of 1.8 to 2.3. For stripping behavior, the ''first stage'' D Cs) values ranged from 0.04 to 0.08. The efficiency of the low flow (0.27 gpm aqueous) was calculated to be 82.7%. The Spreadsheet

  6. Sulfonamide antibiotic removal and nitrogen recovery from synthetic urine by the combination of rotating advanced oxidation contactor and methylene urea synthesis process

    OpenAIRE

    Fukahori, S.; Fujiwara, T.; Ito, R.; Funamizu, N.

    2015-01-01

    The combination of nitrogen recovery and pharmaceutical removal processes for livestock urine treatment were investigated to suppress the discharge of pollutants and recover nitrogen as resources. We combined methylene urea synthesis from urea and adsorption and photocatalytic decomposition of sulfonamide antibiotic using rotating advanced oxidation contactor (RAOC) contained for obtaining both safe fertilizer and reclaimed water. The methylene urea synthesis could recover urea in synthetic u...

  7. Mechanical properties of electrospun bilayer fibrous membranes as potential scaffolds for tissue engineering.

    Science.gov (United States)

    Pu, Juan; Komvopoulos, Kyriakos

    2014-06-01

    Bilayer fibrous membranes of poly(l-lactic acid) (PLLA) were fabricated by electrospinning, using a parallel-disk mandrel configuration that resulted in the sequential deposition of a layer with fibers aligned across the two parallel disks and a layer with randomly oriented fibers, both layers deposited in a single process step. Membrane structure and fiber alignment were characterized by scanning electron microscopy and two-dimensional fast Fourier transform. Because of the intricacies of the generated electric field, bilayer membranes exhibited higher porosity than single-layer membranes consisting of randomly oriented fibers fabricated with a solid-drum collector. However, despite their higher porosity, bilayer membranes demonstrated generally higher elastic modulus, yield strength and toughness than single-layer membranes with random fibers. Bilayer membrane deformation at relatively high strain rates comprised multiple abrupt microfracture events characterized by discontinuous fiber breakage. Bilayer membrane elongation yielded excessive necking of the layer with random fibers and remarkable fiber stretching (on the order of 400%) in the layer with fibers aligned in the stress direction. In addition, fibers in both layers exhibited multiple localized necking, attributed to the nonuniform distribution of crystalline phases in the fibrillar structure. The high membrane porosity, good mechanical properties, and good biocompatibility and biodegradability of PLLA (demonstrated in previous studies) make the present bilayer membranes good scaffold candidates for a wide range of tissue engineering applications. Copyright © 2014 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  8. Functional Nano fibers: Production and Applications

    International Nuclear Information System (INIS)

    Khatri, Z.; Kim, I.S.; Kim, S.H.

    2016-01-01

    Nano fibers are lighter material with higher surface area in comparison to polymeric film. The ease of producing functional nano fiber is another advantage over many nano materials. Functional nano fiber in particular has attained a greater interest in recent years. The applications of functional nano fibers are increasing in various technical fields such as water filter membranes, tissue engineering, biosensors, drug delivery systems, wound dressings, catalysis, antibacterial. This special issue is comprised of well-selective articles that discuss production of functional nano fibers their applications in different emerging fields. M. Zhang et al. have presented exciting work on drug delivery using nano fibers. They used collagen that was extracted from abandoned Rana chensinensis skin in northeastern China via an acid enzymatic extraction method. They demonstrated two different nano fiber-vancomycin (VCM) systems, that is, VCM blended nano fibers and core-shell nano fibers with VCM in the core, and both systems sustained control release for a period of 80 hours. Another work was presented by R. Takai et al. on blood purification using composite nano fibers. About 10% of the population worldwide is affected by chronic kidney disease (CKD). The authors developed nano fiber meshes zeolite-polymer composite nano fibers for efficient adsorption of creatinine, which is a simpler and more accessible method for hemodialysis (HD) patients.

  9. Membrane fusion

    DEFF Research Database (Denmark)

    Bendix, Pól Martin

    2015-01-01

    At Stanford University, Boxer lab, I worked on membrane fusion of small unilamellar lipid vesicles to flat membranes tethered to glass surfaces. This geometry closely resembles biological systems in which liposomes fuse to plasma membranes. The fusion mechanism was studied using DNA zippering...... between complementary strands linked to the two apposing membranes closely mimicking the zippering mechanism of SNARE fusion complexes....

  10. Charge transport in the electrospun nanofiber composite membrane's three-dimensional fibrous structure

    Science.gov (United States)

    DeGostin, Matthew B.; Peracchio, Aldo A.; Myles, Timothy D.; Cassenti, Brice N.; Chiu, Wilson K. S.

    2016-03-01

    In this paper, a Fiber Network (FN) ion transport model is developed to simulate the three-dimensional fibrous microstructural morphology that results from the electrospinning membrane fabrication process. This model is able to approximate fiber layering within a membrane as well as membrane swelling due to water uptake. The discrete random fiber networks representing membranes are converted to resistor networks and solved for current flow and ionic conductivity. Model predictions are validated by comparison with experimental conductivity data from electrospun anion exchange membranes (AEM) and proton exchange membranes (PEM) for fuel cells as well as existing theories. The model is capable of predicting in-plane and thru-plane conductivity and takes into account detailed membrane characteristics, such as volume fraction, fiber diameter, fiber conductivity, and membrane layering, and as such may be used as a tool for advanced electrode design.

  11. Role of functional nanoparticles to enhance the polymeric membrane performance for mixture gas separation

    NARCIS (Netherlands)

    Ingole, Pravin G.; Baig, Muhammad Irshad; Choi, Wook; An, Xinghai; Choi, Won Kil; Lee, Hyung Keun

    2017-01-01

    To improve the water vapor/gas separation the hydroxylated TiO2(OH-TiO2) nanopartilces have been synthesized and surface of polysulfone (PSf) hollow fiber membrane (HFM) has been coated as thin film nanocomposite (TFN) membranes. To remove the water vapor from mixture gas, hollow fiber membrane has

  12. Effect of flow rate and disc area increment on the efficiency of rotating biological contactor for treating greywater

    International Nuclear Information System (INIS)

    Pathan, A.A.

    2015-01-01

    The performance of greywater treatment through RBC (Rotating Biological Contactor) is related to many factors including rotational speed of disc, surface area of the media, thickness of biological film; quality and flow rate of influent. The plastic media provides surface for biological slime. The slime is rotated alternatively into the settled wastewater and then into atmosphere to provide aerobic conditions for the microorganisms. In this study the performance of RBC is investigated at different flow rates and disk areas of media by introducing additional discs on the shaft of RBC. Initially efficiency of the RBC was observed on six flow rates at the disc area of 9.78m/sup 2/. Furthermore optimized three flow rates were used to augment the disk area. The efficiency of RBC system was improved significantly at disk area of 11.76m/sup 2/ and flow rate of 20 L/h. Under these conditions the removal of BOD5 (Biochemical Oxygen Demand) COD (Chemical Oxygen Demand) and TSS (Total Suspended Solid) was observed 83, 57 and 90% respectively. (author)

  13. Determination of Polycyclic Aromatic Hydrocarbons (PAHs in Persian Gulf and its Biodegradability Using a Rotating Biological Contactor

    Directory of Open Access Journals (Sweden)

    Parvin Nahid

    2005-11-01

    Full Text Available Polycyclic aromatic hydrocarbons (PAHs are the main pollutants in oil pollution. PAHs accumulation in aqueous phase causes some aquatic and human diseases Biodegradation methods of PAHs removal were studied using flasks and a reactor. Standard sampling was performed from polluted areas in Persian Gulf and samples were analyzed. COD, TOC, PAHs and heavy metals were determined. Results Showed that, Emam Hassan (EM, Deilam and Shaghab were most polluted areas (PAHs equals 9.8, 4.2, 2.7ppm respectively and samples from the dept showed more pollution than from the surface. For the biological treatment, most active species of bacteria were isolated from the soil of the polluted stations. Most of them are among Pseudomonas, gram and catalazet+. Rotating biological contactor packed (RBCp by providing high acclimation time for the microbial mass, found very suitable process for removal of PHAs. The pure bacterial culture from EM showed, 80% removal efficiency for naphthalene. As the biodegradation of PAHs take a long time, RBCp reactor was selected and the ability of mixed culture in removal of pollutants was studied. The bioreactor was run in two stages. The acclimatization stage took place in 30 days and evaluation of bioreactor in terms of effluent COD concentration and MLSS with initial COD influent of 600 mg/l was operated. COD and PAHs removal of 73 and 66 percent were found respectively while the influent COD was 1200 mg/l.

  14. Application of annular centrifugal contactors in the hot test of the improved total partitioning process for high level liquid waste.

    Science.gov (United States)

    Duan, Wuhua; Chen, Jing; Wang, Jianchen; Wang, Shuwei; Feng, Xiaogui; Wang, Xinghai; Li, Shaowei; Xu, Chao

    2014-08-15

    High level liquid waste (HLLW) produced from the reprocessing of the spent nuclear fuel still contains moderate amounts of uranium, transuranium (TRU) actinides, (90)Sr, (137)Cs, etc., and thus constitutes a permanent hazard to the environment. The partitioning and transmutation (P&T) strategy has increasingly attracted interest for the safe treatment and disposal of HLLW, in which the partitioning of HLLW is one of the critical technical issues. An improved total partitioning process, including a TRPO (tri-alkylphosphine oxide) process for the removal of actinides, a CESE (crown ether strontium extraction) process for the removal of Sr, and a CECE (calixcrown ether cesium extraction) process for the removal of Cs, has been developed to treat Chinese HLLW. A 160-hour hot test of the improved total partitioning process was carried out using 72-stage 10-mm-dia annular centrifugal contactors (ACCs) and genuine HLLW. The hot test results showed that the average DFs of total α activity, Sr and Cs were 3.57 × 10(3), 2.25 × 10(4) and 1.68 × 10(4) after the hot test reached equilibrium, respectively. During the hot test, 72-stage 10-mm-dia ACCs worked stable, continuously with no stage failing or interruption of the operation. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Two Fiber Optical Fiber Thermometry

    Science.gov (United States)

    Jones, Mathew R.; Farmer, Jeffery T.; Breeding, Shawn P.

    2000-01-01

    An optical fiber thermometer consists of an optical fiber whose sensing tip is given a metallic coating. The sensing tip of the fiber is essentially an isothermal cavity, so the emission from this cavity will be approximately equal to the emission from a blackbody. Temperature readings are obtained by measuring the spectral radiative heat flux at the end of the fiber at two wavelengths. The ratio of these measurements and Planck's Law are used to infer the temperature at the sensing tip. Optical fiber thermometers have high accuracy, excellent long-term stability and are immune to electromagnetic interference. In addition, they can be operated for extended periods without requiring re-calibration. For these reasons. it is desirable to use optical fiber thermometers in environments such as the International Space Station. However, it has recently been shown that temperature readings are corrupted by emission from the fiber when extended portions of the probe are exposed to elevated temperatures. This paper will describe several ways in which the reading from a second fiber can be used to correct the corrupted temperature measurements. The accuracy and sensitivity to measurement uncertainty will be presented for each method.

  16. A tale of two charges: zwitterionic polyelectrolyte multilayer membranes

    NARCIS (Netherlands)

    de Grooth, Joris

    2015-01-01

    In this thesis, the development of selective membranes for water treatment facilities to cope with the aforementioned issues is covered. By using hollow fiber membranes, the water purification process can be simplified compared to using spiral wound membranes, a significant advantage for

  17. Membrane Disordering is not Sufficient for Membrane Permeabilization by Islet Amyloidogenic Polypeptide: Studies of IAPP(20-29) Fragments

    Science.gov (United States)

    Brender, Jeffrey R.; Heyl, Deborah L.; Samisetti, Shyamprasad; Kotler, Samuel A.; Osborne, Joshua M.; Pesaru, Ranadheer R.; Ramamoorthy, Ayyalusamy

    2013-01-01

    A key factor in the development of type II diabetes is the loss of insulin-producing beta-cells. Human islet amyloid polypeptide protein (human-IAPP) is believed to play a crucial role in this process by forming small aggregates that exhibit toxicity by disrupting the cell membrane. The actual mechanism of membrane disruption is complex and appears to involve an early component before fiber formation and later component associated with fiber formation on the membrane. By comparing the peptide-lipid interactions derived from solid-state NMR experiments of two IAPP fragments that bind the membrane and cause membrane disordering to IAPP derived peptides known to cause significant early membrane permeabilization, we show here that membrane disordering is not likely to be sufficient by itself to cause the early membrane permeabilization observed by IAPP, and may play a lesser role in IAPP membrane disruption than expected. PMID:23493863

  18. The plasma properties and electron emission characteristics of near-zero differential resistance of hollow cathode-based plasma contactors with a discharge chamber

    Energy Technology Data Exchange (ETDEWEB)

    Xie, Kan, E-mail: xiekan@bit.edu.cn [School of Aerospace Engineering, Beijing Institute of Technology, Beijing 100081 (China); Farnell, Casey C.; Williams, John D. [Department of Mechanical Engineering, Colorado State University, Fort Collins, Colorado 80524 (United States)

    2014-08-15

    The formation of electron emission-bias voltage (I-V) characteristics of near-zero differential resistance in the cathodic plasma contactor for bare electrodynamic tether applications, based on a hollow cathode embedded in a ring-cusp ionization stage, is studied. The existence of such an I-V regime is important to achieve low impedance performance without being affected by the space plasma properties for a cathodic plasma contactor. Experimental data on the plasma structure and properties downstream from the ionization stage are presented as functions of the xenon flow rate and the electron emission current. The electrons were emitted from the cathode to the cylindrical vacuum chamber wall (r = 0.9 m) under ≈10{sup −5 }Torr of vacuum pressure. The ring-cusp configuration selected for the plasma contactor created a 125-Gauss axial field near the cathode orifice, along with a large-volume 50-Gauss magnitude pocket in the stage. A baseline ion energy cost of ≈300 eV/ion was measured in the ionization stage when no electrons were emitted to the vacuum chamber wall. In addition, the anode fall growth limited the maximum propellant unitization to below ≈75% in the discharge loss curves for this ion stage. Detailed measurements on the plasma properties were carried out for the no-electron emission and 3 A emission conditions. The experimental data are compared with 1-D models, and the effectiveness of the model is discussed. The four key issues that played important roles in the process of building the near-zero different resistance I-V regime are: a significant amount of ionization by the emission electrons, a decrease in the number of reflected electrons in the plume, the electron-temperature increment, and low initial ion energy at the source outlet.

  19. Various Characteristics of Electromagnetic Contactor when Arc Discharge are Generated only Make Arc(Researches and Overseas Activities)--(Reports of Overseas Activities)

    OpenAIRE

    Kiyoshi, Yoshida

    2017-01-01

    Experiments are carried out to clarify the influence on the current and voltage for various characteristics.A small electromagnetic contactor that has two contacts is used.The arc discharge with only a make arc is generated and various characteristics are measured.Source voltage is set to 100V DC, closed contacts currents are changed from 10A 20A and 30A.From the waveforms, the arc duration time and the bounce time are read out.Arc energy is calculated from the arc voltage and arc current.The...

  20. Pilot demonstration of energy-efficient membrane bioreactor (MBR) using reciprocating submerged membrane.

    Science.gov (United States)

    Ho, Jaeho; Smith, Shaleena; Patamasank, Jaren; Tontcheva, Petia; Kim, Gyu Dong; Roh, Hyung Keun

    2015-03-01

    Membrane bioreactor (MBR) is becoming popular for advanced wastewater treatment and water reuse. Air scouring to "shake" the membrane fibers is most suitable and applicable to maintain filtration without severe and rapidfouling. However, membrane fouling mitigating technologies are energy intensive. The goal of this research is to develop an alternative energy-saving MBR system to reduce energy consumption; a revolutionary system that will directly compete with air scouring technologies currently in the membrane water reuse market. The innovative MBR system, called reciprocation MBR (rMBR), prevents membrane fouling without the use of air scouring blowers. The mechanism featured is a mechanical reciprocating membrane frame that uses inertia to prevent fouling. Direct strong agitation of the fiber is also beneficial for the constant removal of solids built up on the membrane surface. The rMBR pilot consumes less energy than conventional coarse air scouring MBR systems. Specific energy consumption for membrane reciprocation for the pilot rMBR system was 0.072 kWh/m3 permeate produced at 40 LMH, which is 75% less than the conventional air scouring in an MBR system (0.29 kWh/m3). Reciprocation of the hollow-fiber membrane can overcome the hydrodynamic limitations of air scouring or cross-flow membrane systems with less energy consumption and/or higher energy efficiency.

  1. Mass transfer studies in miniature Rotating Disc Contactor (RDC) with 30% TBP/nitric acid biphasic system

    International Nuclear Information System (INIS)

    Balasubramonian, S.; Sivakumar, D.; Kumar, Shekhar; Kamachi Mudali, U.

    2014-01-01

    The rotating disc contactor is the widely used liquid-liquid extraction equipment for its high throughput and efficiency. In this work mass transfer performance of the miniature RDC column for the 30% TBP/nitric acid biphasic system was studied in terms of the operating variables such as rotor speed and flow rate of the aqueous and organic phase. The RDC column used in the experiments was shown. The column shell is made up of thick glass having diameter of 10.5 cm and height 100 cm. The rotor diameter is 5.3 cm and stator opening diameter is 6.3 cm. Totally 25 number of rotor discs were welded in the rotating shaft. This shaft was aligned in such a way that each rotor was placed in the centre of the compartment formed in between the two stator rings. The experiments were carried out to study the effect of rotor speed and superficial velocity of the dispersed and continuous phase on mass transfer efficiency. The organic solvent was made as the continuous phase and O/A ratio was set as 4 in both the continuous to dispersed phase(c-d) and dispersed to continuous phase (d-c) mass transfer experiments. The Number of Transfer Units (NTU) was estimated based on the solvent phase. The graphical representation of NTU was shown. The NTU value was observed as 4 and 3 respectively for extraction and stripping at the combined through put of 60 L/h and the rotor speed of 1000 rpm. This corresponds to the Height of Transfer Unit (HTU) value of 15 cm and 20 cm respectively for d-c and c-d mass transfer. The estimated overall mass transfer coefficient was increasing with rotor speed and superficial velocity of the liquid phases. The overall mass transfer coefficient also increases with increase in hold up

  2. Two-Step Mechanism of Membrane Disruption by Aβ through Membrane Fragmentation and Pore Formation

    Science.gov (United States)

    Sciacca, Michele F.M.; Kotler, Samuel A.; Brender, Jeffrey R.; Chen, Jennifer; Lee, Dong-kuk; Ramamoorthy, Ayyalusamy

    2012-01-01

    Disruption of cell membranes by Aβ is believed to be one of the key components of Aβ toxicity. However, the mechanism by which this occurs is not fully understood. Here, we demonstrate that membrane disruption by Aβ occurs by a two-step process, with the initial formation of ion-selective pores followed by nonspecific fragmentation of the lipid membrane during amyloid fiber formation. Immediately after the addition of freshly dissolved Aβ1–40, defects form on the membrane that share many of the properties of Aβ channels originally reported from single-channel electrical recording, such as cation selectivity and the ability to be blockaded by zinc. By contrast, subsequent amyloid fiber formation on the surface of the membrane fragments the membrane in a way that is not cation selective and cannot be stopped by zinc ions. Moreover, we observed that the presence of ganglioside enhances both the initial pore formation and the fiber-dependent membrane fragmentation process. Whereas pore formation by freshly dissolved Aβ1–40 is weakly observed in the absence of gangliosides, fiber-dependent membrane fragmentation can only be observed in their presence. These results provide insights into the toxicity of Aβ and may aid in the design of specific compounds to alleviate the neurodegeneration of Alzheimer’s disease. PMID:22947931

  3. Reduction of the barium concentration presents in liquid effluents by mean of non-dispersive extraction in hollow fiber modules

    International Nuclear Information System (INIS)

    Duperle Yaruro, Gladys; Pena, Dario Yesid; Escalante Hernandez, Humberto

    2008-01-01

    This work has been focused on the study of the viability of barium removal, present in a waste liquid phase, by means of non-dispersive extraction (NDE) in hollow fiber modules. An organic solution based on DEPHA (Bis-2-ethylhexyl phosphate) 30% (v/v), isopropilic alcohol 30% (v/v) and kerosene is used as selective extraction medium. For the extraction process was made a contactor with five hollow microporous propilenic fibers. A solution contained 100 ppm of BaCl 2 H 2 O, level concentration very equal as generated on the petroleum industrial wastes, is used as liquid phase. a efficiency of 95,25% is obtained when the NDE take place at pH = 9, and them 9 hours of process

  4. Membrane Biophysics

    CERN Document Server

    Ashrafuzzaman, Mohammad

    2013-01-01

    Physics, mathematics and chemistry all play a vital role in understanding the true nature and functioning of biological membranes, key elements of living processes. Besides simple spectroscopic observations and electrical measurements of membranes we address in this book the phenomena of coexistence and independent existence of different membrane components using various theoretical approaches. This treatment will be helpful for readers who want to understand biological processes by applying both simple observations and fundamental scientific analysis. It provides a deep understanding of the causes and effects of processes inside membranes, and will thus eventually open new doors for high-level pharmaceutical approaches towards fighting membrane- and cell-related diseases.

  5. Low-fiber diet

    Science.gov (United States)

    ... residue; Low-fiber diet; Fiber restricted diet; Crohn disease - low fiber diet; Ulcerative colitis - low fiber diet; ... them if they do not contain seeds or pulp: Yellow squash (without seeds) Spinach Pumpkin Eggplant Potatoes, ...

  6. Nanomechanical Optical Fiber with Embedded Electrodes Actuated by Joule Heating.

    Science.gov (United States)

    Lian, Zhenggang; Segura, Martha; Podoliak, Nina; Feng, Xian; White, Nicholas; Horak, Peter

    2014-07-31

    Nanomechanical optical fibers with metal electrodes embedded in the jacket were fabricated by a multi-material co-draw technique. At the center of the fibers, two glass cores suspended by thin membranes and surrounded by air form a directional coupler that is highly temperature-dependent. We demonstrate optical switching between the two fiber cores by Joule heating of the electrodes with as little as 0.4 W electrical power, thereby demonstrating an electrically actuated all-fiber microelectromechanical system (MEMS). Simulations show that the main mechanism for optical switching is the transverse thermal expansion of the fiber structure.

  7. Recovery of uranium from seawater using amidoxime hollow fibers

    International Nuclear Information System (INIS)

    Saito, K.; Uezu, K.; Hori, T.; Furusaki, S.; Sugo, T.; Okamoto, J.

    1988-01-01

    A novel amidoxime-group-containing adsorbent of hollow-fiber form (AO-H fiber) was prepared by radiation-induced graft polymerization of acrylonitrile onto a polyethylene hollow fiber, followed by chemical conversion of the produced cyano group to an amidoxime group. Distribution of the amidoxime group was uniform throughout hollow-fiber membrane. The fixed-bed adsorption column, 30 cm in length and charged with the bundle of AO-H fibers, was found to adsorb uranium from natural seawater at a sufficiently high rate: 0.66 mg uranium per g of adsorbent in 25 days

  8. Nanomechanical Optical Fiber with Embedded Electrodes Actuated by Joule Heating

    Science.gov (United States)

    Lian, Zhenggang; Segura, Martha; Podoliak, Nina; Feng, Xian; White, Nicholas; Horak, Peter

    2014-01-01

    Nanomechanical optical fibers with metal electrodes embedded in the jacket were fabricated by a multi-material co-draw technique. At the center of the fibers, two glass cores suspended by thin membranes and surrounded by air form a directional coupler that is highly temperature-dependent. We demonstrate optical switching between the two fiber cores by Joule heating of the electrodes with as little as 0.4 W electrical power, thereby demonstrating an electrically actuated all-fiber microelectromechanical system (MEMS). Simulations show that the main mechanism for optical switching is the transverse thermal expansion of the fiber structure. PMID:28788148

  9. Photovoltaic fibers

    Science.gov (United States)

    Gaudiana, Russell; Eckert, Robert; Cardone, John; Ryan, James; Montello, Alan

    2006-08-01

    It was realized early in the history of Konarka that the ability to produce fibers that generate power from solar energy could be applied to a wide variety of applications where fabrics are utilized currently. These applications include personal items such as jackets, shirts and hats, to architectural uses such as awnings, tents, large covers for cars, trucks and even doomed stadiums, to indoor furnishings such as window blinds, shades and drapes. They may also be used as small fabric patches or fiber bundles for powering or recharging batteries in small sensors. Power generating fabrics for clothing is of particular interest to the military where they would be used in uniforms and body armor where portable power is vital to field operations. In strong sunlight these power generating fabrics could be used as a primary source of energy, or they can be used in either direct sunlight or low light conditions to recharge batteries. Early in 2002, Konarka performed a series of proof-of-concept experiments to demonstrate the feasibility of building a photovoltaic cell using dye-sensitized titania and electrolyte on a metal wire core. The approach taken was based on the sequential coating processes used in making fiber optics, namely, a fiber core, e.g., a metal wire serving as the primary electrode, is passed through a series of vertically aligned coating cups. Each of the cups contains a coating fluid that has a specific function in the photocell. A second wire, used as the counter electrode, is brought into the process prior to entering the final coating cup. The latter contains a photopolymerizable, transparent cladding which hardens when passed through a UV chamber. Upon exiting the UV chamber, the finished PV fiber is spooled. Two hundred of foot lengths of PV fiber have been made using this process. When the fiber is exposed to visible radiation, it generates electrical power. The best efficiency exhibited by these fibers is 6% with an average value in the 4

  10. Patterned functional carbon fibers from polyethylene

    Energy Technology Data Exchange (ETDEWEB)

    Hunt, Marcus A [ORNL; Saito, Tomonori [ORNL; Brown, Rebecca H [ORNL; Kumbhar, Amar S [University of North Carolina, Chapel Hill; Naskar, Amit K [ORNL

    2012-01-01

    Patterned, continuous carbon fibers with controlled surface geometry were produced from a novel melt-processible carbon precursor. This portends the use of a unique technique to produce such technologically innovative fibers in large volume for important applications. The novelties of this technique include ease of designing and fabricating fibers with customized surface contour, the ability to manipulate filament diameter from submicron scale to a couple of orders of magnitude larger scale, and the amenable porosity gradient across the carbon wall by diffusion controlled functionalization of precursor. The geometry of fiber cross-section was tailored by using bicomponent melt-spinning with shaped dies and controlling the melt-processing of the precursor polymer. Circular, trilobal, gear-shaped hollow fibers, and solid star-shaped carbon fibers of 0.5 - 20 um diameters, either in self-assembled bundle form, or non-bonded loose filament form, were produced by carbonizing functionalized-polyethylene fibers. Prior to carbonization, melt-spun fibers were converted to a char-forming mass by optimizing the sulfonation on polyethylene macromolecules. The fibers exhibited distinctly ordered carbon morphologies at the outside skin compared to the inner surface or fiber core. Such order in carbon microstructure can be further tuned by altering processing parameters. Partially sulfonated polyethylene-derived hollow carbon fibers exhibit 2-10 fold surface area (50-500 m2/g) compared to the solid fibers (10-25 m2/g) with pore sizes closer to the inside diameter of the filaments larger than the sizes on the outer layer. These specially functionalized carbon fibers hold promise for extraordinary performance improvements when used, for example, as composite reinforcements, catalyst support media, membranes for gas separation, CO2 sorbents, and active electrodes and current collectors for energy storage applications.

  11. Impact of PAC Fines in Fouling of Polymeric and Ceramic Low-Pressure Membranes for Drinking Water Treatment.

    Science.gov (United States)

    Oligny, Laurent; Bérubé, Pierre R; Barbeau, Benoit

    2016-07-07

    This study assessed the issue of membrane fouling in a Hybrid Membrane Process (HMP) due to the export of powdered activated carbon (PAC) fines from a pretreatment contactor. Two parallel pilot-scale ceramic and polymeric membranes were studied. Reversible and irreversible foulings were measured following three cleaning procedures: Physical backwashing (BW), chemically enhanced backwashing (CEB) and Clean-in-Place (CIP). The impacts on fouling of membrane type, operation flux increase and the presence/absence of the PAC pretreatment were investigated. Membranes without pretreatment were operated in parallel as a control. In addition, CIP washwaters samples were analyzed to measure organic and inorganic foulants removed from the membranes. It was observed that for the polymeric membranes, fouling generally increased with the presence of the PAC pretreatment because of the export of fines. On the contrary, the ceramic membranes were not significantly impacted by their presence. The analysis of CIP washwaters showed a greater total organic carbon (TOC) content on membranes with a PAC pretreatment while no similar conclusion could be made for inorganic foulants.

  12. Impact of PAC Fines in Fouling of Polymeric and Ceramic Low-Pressure Membranes for Drinking Water Treatment

    Science.gov (United States)

    Oligny, Laurent; Bérubé, Pierre R.; Barbeau, Benoit

    2016-01-01

    This study assessed the issue of membrane fouling in a Hybrid Membrane Process (HMP) due to the export of powdered activated carbon (PAC) fines from a pretreatment contactor. Two parallel pilot-scale ceramic and polymeric membranes were studied. Reversible and irreversible foulings were measured following three cleaning procedures: Physical backwashing (BW), chemically enhanced backwashing (CEB) and Clean-in-Place (CIP). The impacts on fouling of membrane type, operation flux increase and the presence/absence of the PAC pretreatment were investigated. Membranes without pretreatment were operated in parallel as a control. In addition, CIP washwaters samples were analyzed to measure organic and inorganic foulants removed from the membranes. It was observed that for the polymeric membranes, fouling generally increased with the presence of the PAC pretreatment because of the export of fines. On the contrary, the ceramic membranes were not significantly impacted by their presence. The analysis of CIP washwaters showed a greater total organic carbon (TOC) content on membranes with a PAC pretreatment while no similar conclusion could be made for inorganic foulants. PMID:27399788

  13. Impact of PAC Fines in Fouling of Polymeric and Ceramic Low-Pressure Membranes for Drinking Water Treatment

    Directory of Open Access Journals (Sweden)

    Laurent Oligny

    2016-07-01

    Full Text Available This study assessed the issue of membrane fouling in a Hybrid Membrane Process (HMP due to the export of powdered activated carbon (PAC fines from a pretreatment contactor. Two parallel pilot-scale ceramic and polymeric membranes were studied. Reversible and irreversible foulings were measured following three cleaning procedures: Physical backwashing (BW, chemically enhanced backwashing (CEB and Clean-in-Place (CIP. The impacts on fouling of membrane type, operation flux increase and the presence/absence of the PAC pretreatment were investigated. Membranes without pretreatment were operated in parallel as a control. In addition, CIP washwaters samples were analyzed to measure organic and inorganic foulants removed from the membranes. It was observed that for the polymeric membranes, fouling generally increased with the presence of the PAC pretreatment because of the export of fines. On the contrary, the ceramic membranes were not significantly impacted by their presence. The analysis of CIP washwaters showed a greater total organic carbon (TOC content on membranes with a PAC pretreatment while no similar conclusion could be made for inorganic foulants.

  14. Development of a new miniature short-residence-time annular centrifugal solvent extraction contactor for tests of process flowsheets in hot cells

    International Nuclear Information System (INIS)

    Lanoe, J.Y.; Rivalier, P.

    2000-01-01

    Researches undertaken on new nuclear fuel reprocessing extraction processes need tests of process flowsheets in hot cells. To this goal, a new miniature short residence-time annular centrifugal solvent extraction contactor was conceived and developed at Marcoule. This single stage contactor is composed of an outer stationary cylinder (made of transparent plexiglas on prototype and of stainless steel on models for hot cells) and a suspended inner rotating cylinder of stainless steel; the inside diameter of the rotor is 12 mm. Aqueous and organic phases are fed into the gap between the two cylinders. The mixture flows down the annular space and then up through an orifice at the bottom of the rotor. Into the rotor, the emulsion breaks rapidly under the centrifugal force (up to 600 g with rotor speed of 10,000 rpm). The separated phases flow over their weirs and discharge at the top in their collector rings. The liquid hold-up of this centrifugal contactor is approximately 6 mL. The use in hots cells needed original designs for: - the assembly of a single-stage contactor: every part (motor, rotor, stationary housing) is simply inserted on the other one without screws and nuts; - the assembly of multistage group: every stage is stacking in two rails and an intermediate part (supported on the two rails) links exit ports and their corresponding inlet ports. All the parts are pressed and sealed against a terminal plate with a screw. Separating capacity tests with. a prototype were conducted using water as the aqueous phase and hydrogenated tetra-propylene (TPH) as the organic phase with aqueous to organic (A/O) flow ratio equal to 1. The best performances were obtained with rotor speed ranging from 4000 to 5000 rpm; the total throughput was then up to 2 L.h -1 . For a total throughput of 300 mL.h -1 , the hold-up in the annular mixing zone varied from 0.5 to 1.5 mL according to the A/O ratio and the starting mode. A number of tests were also performed to measure the

  15. Pressure Retarded Osmosis and Forward Osmosis Membranes: Materials and Methods

    Directory of Open Access Journals (Sweden)

    May-Britt Hägg

    2013-03-01

    Full Text Available In the past four decades, membrane development has occurred based on the demand in pressure driven processes. However, in the last decade, the interest in osmotically driven processes, such as forward osmosis (FO and pressure retarded osmosis (PRO, has increased. The preparation of customized membranes is essential for the development of these technologies. Recently, several very promising membrane preparation methods for FO/PRO applications have emerged. Preparation of thin film composite (TFC membranes with a customized polysulfone (PSf support, electorspun support, TFC membranes on hydrophilic support and hollow fiber membranes have been reported for FO/PRO applications. These novel methods allow the use of other materials than the traditional asymmetric cellulose acetate (CA membranes and TFC polyamide/polysulfone membranes. This review provides an outline of the membrane requirements for FO/PRO and the new methods and materials in membrane preparation.

  16. Membrane paradigm

    International Nuclear Information System (INIS)

    Price, R.H.; Thorne, K.S.

    1986-01-01

    The membrane paradigm is a modified frozen star approach to modeling black holes, with particles and fields assuming a complex, static, boundary-layer type structure (membrane) near the event horizon. The membrane has no effects on the present or future evolution of particles and fields above itself. The mathematical representation is a combination of a formalism containing terms for the shear and bulk viscosity, surface pressure, momentum, temperature, entropy, etc., of the horizon and the 3+1 formalism. The latter model considers a family of three-dimensional spacelike hypersurfaces in one-dimensional time. The membrane model considers a magnetic field threading the hole and undergoing torque from the hole rotation. The field is cleaned by the horizon and distributed over the horizon so that ohmic dissipation is minimized. The membrane paradigm is invalid inside the horizon, but is useful for theoretically probing the properties of slowly evolving black holes

  17. Membrane processes

    Science.gov (United States)

    Staszak, Katarzyna

    2017-11-01

    The membrane processes have played important role in the industrial separation process. These technologies can be found in all industrial areas such as food, beverages, metallurgy, pulp and paper, textile, pharmaceutical, automotive, biotechnology and chemical industry, as well as in water treatment for domestic and industrial application. Although these processes are known since twentieth century, there are still many studies that focus on the testing of new membranes' materials and determining of conditions for optimal selectivity, i. e. the optimum transmembrane pressure (TMP) or permeate flux to minimize fouling. Moreover the researchers proposed some calculation methods to predict the membrane processes properties. In this article, the laboratory scale experiments of membrane separation techniques, as well their validation by calculation methods are presented. Because membrane is the "heart" of the process, experimental and computational methods for its characterization are also described.

  18. Application Specific Optical Fibers

    OpenAIRE

    Pal, Bishnu P.

    2010-01-01

    In this chapter we have attempted to provide a unified summary description of the most important propagation characteristics of an optical fiber followed by discussion on several variety of special fibers for realizing fiber amplifiers, dispersion compensating fibers, microstructured optical fibers, and so on. Even though huge progress has been made on development of optical fibers for telecom application, a need for developing special fibers, not necessarily for telecom alone, has arisen. Th...

  19. Primordial membranes

    DEFF Research Database (Denmark)

    Hanczyc, Martin M; Monnard, Pierre-Alain

    2017-01-01

    Cellular membranes, which are self-assembled bilayer structures mainly composed of lipids, proteins and conjugated polysaccharides, are the defining feature of cell physiology. It is likely that the complexity of contemporary cells was preceded by simpler chemical systems or protocells during...... the various evolutionary stages that led from inanimate to living matter. It is also likely that primitive membranes played a similar role in protocell 'physiology'. The composition of such ancestral membranes has been proposed as mixtures of single hydrocarbon chain amphiphiles, which are simpler versions...

  20. Sulfonamide antibiotic removal and nitrogen recovery from synthetic urine by the combination of rotating advanced oxidation contactor and methylene urea synthesis process.

    Science.gov (United States)

    Fukahori, S; Fujiwara, T; Ito, R; Funamizu, N

    2015-01-01

    The combination of nitrogen recovery and pharmaceutical removal processes for livestock urine treatment were investigated to suppress the discharge of pollutants and recover nitrogen as resources. We combined methylene urea synthesis from urea and adsorption and photocatalytic decomposition of sulfonamide antibiotic using rotating advanced oxidation contactor (RAOC) contained for obtaining both safe fertilizer and reclaimed water. The methylene urea synthesis could recover urea in synthetic urine, however, almost all sulfonamide antibiotic was also incorporated, which is unfavorable from a safety aspect if the methylene urea is to be used as fertilizer. Conversely, RAOC could remove sulfonamide antibiot