WorldWideScience

Sample records for fiber long-reach wdm

  1. OFDM RF power-fading circumvention for long-reach WDM-PON.

    Science.gov (United States)

    Chow, C W; Yeh, C H; Sung, J Y

    2014-10-06

    We propose and demonstrate an orthogonal frequency division multiplexing (OFDM) radio-frequency (RF) power-fading circumvention scheme for long-reach wavelength-division-multiplexed passive-optical-network (LR-WDM-PON); hence the same capacity of 40 Gb/s can be provided to all the optical-networking-units (ONUs) in the LR-WDM-PON. Numerical analysis and proof-of-concept experiment are performed.

  2. A Novel Line Coding Pair for Fully Passive Long Reach {WDM-PON}s

    DEFF Research Database (Denmark)

    Presi, Marco; Proietti, Roberto; Prince, Kamau

    2008-01-01

    A novel line coding pair allows to use unsaturated flective-SOAs as upstream remodulator in long-reach WDM-PONs. Full-duplex and symmetric 80 km reach is demonstrated without in-line amplification at 1.25 Gb/s......A novel line coding pair allows to use unsaturated flective-SOAs as upstream remodulator in long-reach WDM-PONs. Full-duplex and symmetric 80 km reach is demonstrated without in-line amplification at 1.25 Gb/s...

  3. On-the-field performance of quintuple-play long-reach OFDM-based WDM-PON optical access networks.

    Science.gov (United States)

    Llorente, Roberto; Morant, Maria; Pellicer, Eloy; Herman, Milan; Nagy, Zsolt; Alves, Tiago; Cartaxo, Adolfo; Herrera, Javier; Correcher, Jose; Quinlan, Terence; Walker, Stuart; Rodrigues, Cláudio; Cluzeaud, Pierre; Schmidt, Axel; Piesiewicz, Radoslaw; Sambaraju, Rakesh

    2014-03-24

    In this paper the on-the-field performance of a WDM-PON optical access providing quintuple-play services using orthogonal frequency division multiplexing (OFDM) modulation is evaluated in a real fiber-to-the-home (FTTH) network deployed by Towercom operator in Bratislava (Slovakia). A bundle of quintuple-play services comprising full-standard OFDM-based signals (LTE, WiMAX, UWB and DVB-T) and an ad-hoc OFDM-GbE signal is transmitted in coexistence per single user. Both downstream and upstream transmission performances are evaluated in different on-the-field long-reach optical link distance configurations. Four wavelength multi-user transmission of quintuple-play OFDM services is demonstrated exceeding 60.8 km reach in standard single mode fiber.

  4. Long Reach RFID-over-Fiber Distribution and Collection Network

    DEFF Research Database (Denmark)

    Madsen, Peter; Suhr, Lau Frejstrup; Vegas Olmos, Juan José

    This paper presents an RFID-over-Fiber wireless track and trace system using active RFID tags. This paper demonstrates a system, operating over distances up to 30km of optical fiber and 50m of wireless readability.......This paper presents an RFID-over-Fiber wireless track and trace system using active RFID tags. This paper demonstrates a system, operating over distances up to 30km of optical fiber and 50m of wireless readability....

  5. Combining DPSK and duobinary for the downstream in 40-Gb/s long-reach WDM-PONs

    DEFF Research Database (Denmark)

    Huang, Bo; An, Yi; Chi, Nan

    2013-01-01

    detection at the ONUs. DPSK is deployed in the trunk span as it provides stronger robustness to fiber nonlinearity. Duobinary is used in the access span where its higher chromatic dispersion tolerance relieves the need for dispersion compensation. All-optical multichannel modulation format conversion from...... DPSK to duobinary is realized in the local exchange in a single delay interferometer to reduce system cost. Single and multi-channel 80-km long-reach DPSK transmission and up to 5-km duobinary access transmission are experimentally demonstrated at 40Gb/s. The proposed approach shows great potential...... for future high data rate optical access networks....

  6. Distributed fiber Raman amplification in long reach PON bidirectional access links

    DEFF Research Database (Denmark)

    Tafur Monroy, Idelfonso; Kjær, Rasmus; Öhman, Filip

    2008-01-01

    Distributed Raman fiber amplification is proposed and experimentally demonstrated to support long reach passive optical network (PON) links. An 80 km, bidirectional, single fiber link is demonstrated using both standard intensity optical modulators at 10 Gb/s and up to 7.5 Gb/s using novel...

  7. 85 km Long Reach PON System Using a Reflective SOA-EA Modulator and Distributed Raman Fiber Amplification

    DEFF Research Database (Denmark)

    Tafur Monroy, Idelfonso; Öhman, Filip; Yvind, Kresten

    2006-01-01

    We report on a bidirectional 85 km long reach PON system supported by distributed fiber Raman amplification with a record 7.5 Gb/s remote carrier modulated upstream signal by employing a reflective SOA-EA monolithically integrated circuit......We report on a bidirectional 85 km long reach PON system supported by distributed fiber Raman amplification with a record 7.5 Gb/s remote carrier modulated upstream signal by employing a reflective SOA-EA monolithically integrated circuit...

  8. 100G WDM Transmission over 100 meter Multimode Fiber

    DEFF Research Database (Denmark)

    Cimoli, Bruno; Estaran Tolosa, Jose Manuel; Rodes Lopez, Guillermo Arturo

    We present a comparative performance analysis for wavelength-grid selection in WDM shortrange multimode-fibers. We study 100Gbps links over OM2, OM3 and OM4 fibers and show it is feasible to reach over 100 m transmission distances....

  9. 85 km long reach PON system using a reflective SOA-EA modulator and distributed Raman fiber amplification

    NARCIS (Netherlands)

    Tafur Monroy, I.; Öhman, F.; Yvind, K.; Kjaer, R.; Peucheret, C.; Koonen, A.M.J.; Jeppesen, P.

    2006-01-01

    We report on a bidirectional 85 km long reach PON system supported by distributed fiber Raman amplification with a record 7.5 Gb/s remote carrier modulated upstream signal by employing a reflective SOA-EA monolithically integrated circuit.

  10. WDM Phase-Modulated Millimeter-Wave Fiber Systems

    DEFF Research Database (Denmark)

    Yu, Xianbin; Prince, Kamau; Gibbon, Timothy Braidwood

    2012-01-01

    This chapter presents a computer simulation case study of two typical WDM phase-modulated millimeter-wave systems. The phase-modulated 60 GHz fiber multi-channel transmission systems employ single sideband (SSB) and double sideband subcarrier modulation (DSB-SC) schemes and present one of the lat......This chapter presents a computer simulation case study of two typical WDM phase-modulated millimeter-wave systems. The phase-modulated 60 GHz fiber multi-channel transmission systems employ single sideband (SSB) and double sideband subcarrier modulation (DSB-SC) schemes and present one...... of the latest research efforts in the rapidly emerging Radio-over-Fiber (RoF) application space for in-house access networks....

  11. Fiber-optic perimeter security system based on WDM technology

    Science.gov (United States)

    Polyakov, Alexandre V.

    2017-10-01

    Intelligent underground fiber optic perimeter security system is presented. Their structure, operation, software and hardware with neural networks elements are described. System allows not only to establish the fact of violation of the perimeter, but also to locate violations. This is achieved through the use of WDM-technology division spectral information channels. As used quasi-distributed optoelectronic recirculation system as a discrete sensor. The principle of operation is based on registration of the recirculation period change in the closed optoelectronic circuit at different wavelengths under microstrain exposed optical fiber. As a result microstrain fiber having additional power loss in a fiber optical propagating pulse, which causes a time delay as a result of switching moments of the threshold device. To separate the signals generated by intruder noise and interference, the signal analyzer is used, based on the principle of a neural network. The system detects walking, running or crawling intruder, as well as undermining attempts to register under the perimeter line. These alarm systems can be used to protect the perimeters of facilities such as airports, nuclear reactors, power plants, warehouses, and other extended territory.

  12. Fiber nonlinearity compensation of an 8-channel WDM PDM-QPSK signal using multiple phase conjugations

    DEFF Research Database (Denmark)

    Hu, Hao; Jopson, R. M.; Dinu, M.

    2013-01-01

    We demonstrate compensation of fiber nonlinearities using optical phase conjugation of an 8-chamiel WDM 32-Gbaud PDM QPSK signal. Conjugating phase every 600 km in a fiber loop enabled a 6000 km transmission over True Wave fiber. © 2013 Optical Society of America....

  13. Photonic crystal fibers used in a multi-wavelength source and as transmission fiber in a WDM system

    DEFF Research Database (Denmark)

    Andersen, Peter Andreas; Zsigri, Beata; Peucheret, Christophe

    2004-01-01

    We present a WDM system based entirely on photonic crystal fibers. It includes a novel dispersion flattened highly nonlinear PCF to generate supercontinuum used in a multiwavelength pulse source and a 5.6 km transmission PCF.......We present a WDM system based entirely on photonic crystal fibers. It includes a novel dispersion flattened highly nonlinear PCF to generate supercontinuum used in a multiwavelength pulse source and a 5.6 km transmission PCF....

  14. THEORETICAL EVALUATION OF NONLINEAR EFFECTS ON OPTICAL WDM NETWORKS WITH VARIOUS FIBER TYPES

    Directory of Open Access Journals (Sweden)

    YASIN M. KARFAA

    2010-09-01

    Full Text Available A theoretical study is carried out to evaluate the performance of an opticalwavelength division multiplexing (WDM network transmission system in the presenceof crosstalk due to optical fiber nonlinearities. The most significant nonlinear effects inthe optical fiber which are Cross-Phase Modulation (XPM, Four-Wave Mixing (FWM,and Stimulated Raman Scattering (SRS are investigated. Four types of optical fiber areincluded in the analysis; these are: single-mode fiber (SMF, dispersion compensationfiber (DCF, non-zero dispersion fiber (NZDF, and non-zero dispersion shifted fiber(NZDSF. The results represent the standard deviation of nonlinearity induced crosstalknoise power due to FWM and SRS, XPM power penalty for SMF, DCF, NZDF, andNZDSF types of fiber, besides the Bit Error Rate (BER for the three nonlinear effectsusing standard fiber type (SMF. It is concluded that three significant fiber nonlinearitiesare making huge limitations against increasing the launched power which is desired,otherwise, lower values of launched power limit network expansion including length,distance, covered areas, and number of users accessing the WDM network, unlesssuitable precautions are taken to neutralize the nonlinear effects. Besides, various fibertypes are not behaving similarly towards network parameters.

  15. Low-Complexity Tracking of Laser and Nonlinear Phase Noise in WDM Optical Fiber Systems

    DEFF Research Database (Denmark)

    Yankov, Metodi Plamenov; Fehenberger, Tobias; Barletta, Luca

    2015-01-01

    In this paper, the wavelength division multiplexed (WDM) fiber optic channel is considered. It is shown that for ideal distributed Raman amplification (IDRA), the Wiener process model is suitable for the non-linear phase noise due to cross phase modulation from neighboring channels. Based......, at the moderate received SNR region. The performance in these cases is close to the information rate achieved by the above mentioned trellis processing....

  16. Convergent optical wired and wireless long-reach access network using high spectral-efficient modulation.

    Science.gov (United States)

    Chow, C W; Lin, Y H

    2012-04-09

    To provide broadband services in a single and low cost perform, the convergent optical wired and wireless access network is promising. Here, we propose and demonstrate a convergent optical wired and wireless long-reach access networks based on orthogonal wavelength division multiplexing (WDM). Both the baseband signal and the radio-over-fiber (ROF) signal are multiplexed and de-multiplexed in optical domain, hence it is simple and the operation speed is not limited by the electronic bottleneck caused by the digital signal processing (DSP). Error-free de-multiplexing and down-conversion can be achieved for all the signals after 60 km (long-reach) fiber transmission. The scalability of the system for higher bit-rate (60 GHz) is also simulated and discussed.

  17. 40Gbit/s MDM-WDM Laguerre-Gaussian Mode with Equalization for Multimode Fiber in Access Networks

    Science.gov (United States)

    Fazea, Yousef; Amphawan, Angela

    2018-04-01

    Modal dispersion is seen as the primary impairment for multimode fiber. Mode division multiplexing (MDM) is a promising technology that has been realized as a favorable technology for considerably upsurges the capacity and distance of multimode fiber in conjunction with Wavelength Division Multiplexing (WDM) for fiber-to-the-home. This paper reveals the importance of an equalization technique in conjunction with controlling the modes spacing of mode division multiplexing-wavelength division multiplexing of Laguerre-Gaussian modes to alleviate modal dispersion for multimode fiber. The effects of channel spacing of 20 channels MDM-WDM were examined through controlling the azimuthal mode number and the radial mode number of Laguerre-Gaussian modes. A data rate of 40Gbit/s was achieved for a distance of 1,500 m for MDM-WDM.

  18. Transmission of 2.5 Gbit/s Spectrum-sliced WDM System for 50 km Single-mode Fiber

    Science.gov (United States)

    Ahmed, Nasim; Aljunid, Sayed Alwee; Ahmad, R. Badlisha; Fadil, Hilal Adnan; Rashid, Mohd Abdur

    2011-06-01

    The transmission of a spectrum-sliced WDM channel at 2.5 Gbit/s for 50 km of single mode fiber using an system channel spacing only 0.4 nm is reported. We have investigated the system performance using NRZ modulation format. The proposed system is compared with conventional system. The system performance is characterized as the bit-error-rate (BER) received against the system bit rates. Simulation results show that the NRZ modulation format performs well for 2.5 Gbit/s system bit rates. Using this narrow channel spectrum-sliced technique, the total number of multiplexed channels can be increased greatly in WDM system. Therefore, 0.4 nm channel spacing spectrum-sliced WDM system is highly recommended for the long distance optical access networks, like the Metro Area Network (MAN), Fiber-to-the-Building (FTTB) and Fiber-to-the-Home (FTTH).

  19. Fiber nonlinearity mitigation of WDM-PDM QPSK/16-QAM signals using fiber-optic parametric amplifiers based multiple optical phase conjugations

    DEFF Research Database (Denmark)

    Hu, Hao; Jopson, Robert M.; Gnauck, Alan H.

    2017-01-01

    We demonstrate fiber nonlinearity mitigation by using multiple optical phase conjugations (OPCs) in the WDM transmission systems of both 8 x 32-Gbaud PDM QPSK channels and 8 x 32-Gbaud PDM 16-QAM channels, showing improved performance over a single mid-span OPC and no OPC in terms of nonlinear...... threshold and a best achievable Q(2) factor after transmission. In addition, after an even number of OPCs, the signal wavelength can be preserved after transmission. The performance of multiple OPCs for fiber nonlinearity mitigation was evaluated independently for WDM PDM QPSK signals and WDM PDM 16QAM...... to 1 dB compared to the case of mid-span OPC. The improvements in the best achievable Q(2) factors were more modest, ranging from 0.2 dB to 1.1 dB for the results presented. (C) 2017 Optical Society of America...

  20. WDM-Coherent OCDMA over one single device based on short chip Super Structured Fiber Bragg Gratings.

    Science.gov (United States)

    Amaya, Waldimar; Pastor, Daniel; Baños, Rocio; Garcia-Munoz, Victor

    2011-11-21

    We theoretically propose and demonstrate experimentally a Coherent Direct Sequence OCDMA en/decoder for multi-channel WDM operation based on a single device. It presents a broadband spectral envelope and a periodic spectral pattern that can be employed for en/decoding multiple sub-bands simultaneously. Multi-channel operation is verified experimentally by means of Multi-Band Super Structured Fiber Bragg Gratings with binary phase encoded chips fabricated with 1mm inter-chip separation that provides 4x100 GHz ITU sub-band separation at 1.25 Gbps. The WDM-OCDMA system verification was carried out employing simultaneous encoding of four adjacent sub-bands and two different OCDMA codes. © 2011 Optical Society of America

  1. Adaptive upstream rate adjustment by RSOA-ONU depending on different injection power of seeding light in standard-reach and long-reach PON systems

    Science.gov (United States)

    Yeh, C. H.; Chow, C. W.; Shih, F. Y.; Pan, C. L.

    2012-08-01

    The wavelength division multiplexing-time division multiplexing (WDM-TDM) passive optical network (PON) using reflective semiconductor optical amplifier (RSOA)-based colorless optical networking units (ONUs) is considered as a promising candidate for the realization of fiber-to-the-home (FTTH). And this architecture is actively considered by Industrial Technology Research Institute (ITRI) for the realization of FTTH in Taiwan. However, different fiber distances and optical components would introduce different power budgets to different ONUs in the PON. Besides, due to the aging of optical transmitter (Tx), the power decay of the distributed optical carrier from the central office (CO) could also reduce the injection power into each ONU. The situation will be more severe in the long-reach (LR) PON, which is considered as an option for the future access. In this work, we investigate a WDM-TDM PON using RSOA-based ONU for upstream data rate adjustment depending on different continuous wave (CW) injection powers. Both standard-reach (25 km) and LR (100 km) transmissions are evaluated. Moreover, a detail analysis of the upstream signal bit-error rate (BER) performances at different injection powers, upstream data rates, PON split-ratios under stand-reach and long-reach is presented.

  2. The radio-on-fiber-wavelength-division-multiplexed-passive-optical network (WDM-RoF-PON) for wireless and wire layout with linearly-polarized dual-wavelength fiber laser and carrier reusing

    Science.gov (United States)

    Ji, Wei; Chang, Jun

    2013-07-01

    In this paper, we design a WDM-RoF-PON based on linearly-polarized dual-wavelength fiber laser and CSRZ-DPSK, which can achieve wire-line and wireless access synchronously. With the CSRZ-DPSK modulation, the wireless access in ONU can save RF source and the frequency of radio carrier can be controlled by OLT. The dual-wavelength fiber laser is the union light source of WDM-PON with polarization multiplexing. By the RSOA and downstream light source reusing, the ONU can save omit laser source and makes the WDM-PON to be colorless. The networking has the credible transmission property, including wireless access and fiber transmission. The networking also has excellent covering range.

  3. WDM PONs based on colorless technology

    Science.gov (United States)

    Saliou, Fabienne; Simon, Gael; Chanclou, Philippe; Pizzinat, Anna; Lin, Huafeng; Zhou, Enyu; Xu, Zhiguang

    2015-12-01

    Wavelength Division Multiplexing (WDM) Passive Optical Network (PON) is foreseen to be part of the Next Generation Passive Optical Networks. Business and mobile fronthaul networks already express the need to develop WDM PONs in the access segment. Fixed wavelength transceivers based on Coarse WDM are already available to respond to today's market needs but Dense WDM technologies will be needed and colorless technologies are essential to provide simple and cost-effective WDM PON systems. We propose in this paper to demonstrate the capabilities of a DWDM PON system prototype based on self-seeded RSOAs and designed to transmit CPRI over 60 km of fiber at 2.5 Gbit/s.

  4. Optical chaos and hybrid WDM/TDM based large capacity quasi-distributed sensing network with real-time fiber fault monitoring.

    Science.gov (United States)

    Luo, Yiyang; Xia, Li; Xu, Zhilin; Yu, Can; Sun, Qizhen; Li, Wei; Huang, Di; Liu, Deming

    2015-02-09

    An optical chaos and hybrid wavelength division multiplexing/time division multiplexing (WDM/TDM) based large capacity quasi-distributed sensing network with real-time fiber fault monitoring is proposed. Chirped fiber Bragg grating (CFBG) intensity demodulation is adopted to improve the dynamic range of the measurements. Compared with the traditional sensing interrogation methods in time, radio frequency and optical wavelength domains, the measurand sensing and the precise locating of the proposed sensing network can be simultaneously interrogated by the relative amplitude change (RAC) and the time delay of the correlation peak in the cross-correlation spectrum. Assisted with the WDM/TDM technology, hundreds of sensing units could be potentially multiplexed in the multiple sensing fiber lines. Based on the proof-of-concept experiment for axial strain measurement with three sensing fiber lines, the strain sensitivity up to 0.14% RAC/με and the precise locating of the sensors are achieved. Significantly, real-time fiber fault monitoring in the three sensing fiber lines is also implemented with a spatial resolution of 2.8 cm.

  5. Novel tunable optical filter employing a fiber loop mirror for synthesis applications in WDM

    OpenAIRE

    Vázquez García, María Carmen; Vargas Palma, Salvador Elías; Sánchez-Pena, José Manuel

    2001-01-01

    A novel optical filter employing a fiber loop mirror within an amplified ring resonator is presented. The fiber loop mirror allows tuning by changing the coupling factor of a coupler. The device can be used as a building block to synthesize optical filters, as previously reported, saving components. Publicado

  6. High Power (50W) WDM Space Lasercom 1.5um Fiber Laser Transmitter, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Fibertek proposes to develop and demonstrate a spaceflight prototype of a wideband, high power (up to 50W), polarization maintaining (PM), 1.5-um fiber laser...

  7. Optical stealth transmission based on super-continuum generation in highly nonlinear fiber over WDM network.

    Science.gov (United States)

    Zhu, Huatao; Wang, Rong; Pu, Tao; Fang, Tao; Xiang, Peng; Zheng, Jilin; Chen, Dalei

    2015-06-01

    In this Letter, the optical stealth transmission carried by super-continuum spectrum optical pulses generated in highly nonlinear fiber is proposed and experimentally demonstrated. In the proposed transmission scheme, super-continuum signals are reshaped in the spectral domain through a wavelength-selective switch and are temporally spread by a chromatic dispersion device to achieve the same noise-like characteristic as the noise in optical networks, so that in both the time domain and the spectral domain, the stealth signals are hidden in public channel. Our experimental results show that compared with existing schemes where stealth channels are carried by amplified spontaneous emission noise, super-continuum signal can increase the transmission performance and robustness.

  8. 2x2 MIMO-OFDM Gigabit fiber-wireless access system based on polarization division multiplexed WDM-PON

    DEFF Research Database (Denmark)

    Deng, Lei; Pang, Xiaodan; Zhao, Ying

    2012-01-01

    We propose a spectral efficient radio over wavelength division multiplexed passive optical network (WDM-PON) system by combining optical polarization division multiplexing (PDM) and wireless multiple input multiple output (MIMO) spatial multiplexing techniques. In our experiment, a training-based...

  9. Generation of 1.024-Tb/s Nyquist-WDM phase-conjugated twin vector waves through polarization-insensitive optical parametric amplification enabling transmission over 4000-km dispersion-managed TWRS fiber

    DEFF Research Database (Denmark)

    Liu, Xiang; Hu, Hao; Chandrasekhar, S.

    2013-01-01

    We experimentally demonstrate the first Tb/s Nyquist-WDM phase-conjugated twin waves, consisting of eight 128-Gb/s PDM-QPSK signals and their idlers, by a broadband polarization-insensitive fiber optical parametric amplifier, enabling more than doubled reach in dispersion-managed transmission. © ...

  10. Generation of 1.024-Tb/s Nyquist-WDM phase-conjugated twin vector waves by a polarization-insensitive optical parametric amplifier for fiber-nonlinearity-tolerant transmission

    DEFF Research Database (Denmark)

    Liu, Xiang; Hu, Hao; Chandrasekhar, S.

    2014-01-01

    We experimentally demonstrate the generation of 1.024-Tb/s Nyquist-WDM phase-conjugated vector twin waves (PCTWs), consisting of eight 128-Gb/s polarization-division-multiplexed QPSK signals and their idlers, by a broadband polarization-insensitive fiber optic parametric amplifier. This novel all...

  11. Study on the capability of four-level partial response equalization in RSOA-based WDM-PON

    Science.gov (United States)

    Guo, Qi; Tran, An Vu

    2010-12-01

    The expected development of advanced video services with HDTV quality demands the delivery of more than Gb/s link to end users across the last mile connection. Future access networks are also required to have long reach for reduction in the number of central offices (CO). Fueled by those requirements, we propose a novel equalization scheme that increases the capacity and reach of the wavelength division multiplexing passive optical network (WDM-PON) based on a low bandwidth reflective semiconductor optical amplifier (RSOA). We investigate the characteristics of 10 Gb/s upstream transmission in WDM-PON using RSOA with only 1.2 GHz electrical bandwidth and various lengths of fiber. It is proven that the proposed four-level partial response equalizer (PRE) is capable of mitigating the impact of ISI in the received signals from optical network units (ONU) located 0 km to 75 km away from the optical line terminal (OLT).

  12. Concurrent support of higher-layer protocols over WDM

    NARCIS (Netherlands)

    Theelen, B.D.; Voeten, J.P.M.; Putten, van der P.H.A.; Stevens, M.P.J.; Dorren, H.J.S.

    2002-01-01

    To satisfy the severe requirements involved in future communication networks, commercial and research interest in the applicability of wavelength division multiplexing (WDM) is growing. However, since WDM is merely concerned with transmitting bits over optical fibers, full advantage can only be

  13. Konsep Dan Kinerja Dari Sistem Hybrid OCDMA/WDM Untuk Local Area Network

    OpenAIRE

    Nasaruddin, Nasaruddin

    2011-01-01

    Peningkatan kapasitas, distribusi bandwidth dan daya merupakan beberapa isu penting untuk aplikasi local area network (LAN). Saat ini, teknologi fiber optik sudah dapat mendukung jaringan akses dengan kecepatan tinggi untuk layanan multimedia diantaranya teknologi OCDMA dan WDM. Penambahan kapasitas transmisi LAN bisa dilakukan dengan penggabungan sistem transmisi OCDMA dengan WDM. Untuk itu, paper ini mengusulkan konsep dan kinerja dari sistem hybrid OCDMA/WDM. Sistem hybrid OCDMA/WDM ini be...

  14. A Novel Reliable WDM-PON System

    Science.gov (United States)

    Chen, Benyang; Gan, Chaoqin; Qi, Yongqian; Xia, Lei

    2011-12-01

    In this paper, a reliable Wavelength-Division-Multiplexing Passive Optical Network (WDM-PON) system is proposed. It can provide the protection against both the feeder fiber failure and the distribution fiber failure. When the fiber failure occurs, the corresponding switches in the OLT and in the ONU can switch to the protection link without affecting the users in normal status. That is to say, the protection for one ONU is independent of the other ONUs.

  15. All-optical equalization of power transients on four 40 Gbit/s WDM channels using a fiber-based device

    DEFF Research Database (Denmark)

    Kjær, Rasmus; Oxenløwe, Leif Katsuo; Palsdottir, Bera

    2008-01-01

    Simultaneous transient suppression of four transient-impaired 40 Gbit/s RZ-ASK WDM channels is demonstrated. Sensitivity improvements are in excess of 5 dB and transmission penalties are significantly reduced.......Simultaneous transient suppression of four transient-impaired 40 Gbit/s RZ-ASK WDM channels is demonstrated. Sensitivity improvements are in excess of 5 dB and transmission penalties are significantly reduced....

  16. Performance evaluation of coherent WDM PS-QPSK (HEXA) accounting for non-linear fiber propagation effects.

    Science.gov (United States)

    Poggiolini, P; Bosco, G; Carena, A; Curri, V; Forghieri, F

    2010-05-24

    Coherent-detection (CoD) permits to fully exploit the four-dimensional (4D) signal space consisting of the in-phase and quadrature components of the two fiber polarizations. A well-known and successful format exploiting such 4D space is Polarization-multiplexed QPSK (PM-QPSK). Recently, new signal constellations specifically designed and optimized in 4D space have been proposed, among which polarization-switched QPSK (PS-QPSK), consisting of a 8-point constellation at the vertices of a 4D polychoron called hexadecachoron. We call it HEXA because of its geometrical features and to avoid acronym mix-up with PM-QPSK, as well as with other similar acronyms. In this paper we investigate the performance of HEXA in direct comparison with PM-QPSK, addressing non-linear propagation over realistic links made up of 20 spans of either standard single mode fiber (SSMF) or non-zero dispersion-shifted fiber (NZDSF). We show that HEXA not only confirms its theoretical sensitivity advantage over PM-QPSK in back-to-back, but also shows a greater resilience to non-linear effects, allowing for substantially increased span loss margins. As a consequence, HEXA appears as an interesting option for dual-format transceivers capable to switch on-the-fly between PM-QPSK and HEXA when channel propagation degrades. It also appears as a possible direct competitor of PM-QPSK, especially over NZDSF fiber and uncompensated links.

  17. 1 Tb/s x km multimode fiber link combining WDM transmission and low-linewidth lasers.

    Science.gov (United States)

    Gasulla, I; Capmany, J

    2008-05-26

    We have successfully demonstrated an error-free transmission of 10 x 20 Gb/s 200 GHz-spaced ITU channels through a 5 km link of 62.5-microm core-diameter graded-index multimode silica fiber. The overall figure corresponds to an aggregate bit rate per length product of 1 Tb/s x km, the highest value ever reported to our knowledge. Successful transmission is achieved by a combination of low-linewidth DFB lasers and the central launch technique.

  18. Telerobotic operation of structurally flexible, long-reach manipulators

    International Nuclear Information System (INIS)

    Kwon, D.S.; Hwang, D.H.; Babcock, S.M.

    1994-01-01

    As a part of the Department of Energy's Environmental Restoration and Waste Management Program, long-reach manipulators are being considered for the retrieval of waste from large storage tanks. Long-reach manipulators may have characteristics significantly different from those of typical industrial robots because of the flexibility of long links needed to cover the large workspace. To avoid structural vibrations during operation, control algorithms employing various types of shaping filters were investigated. A new approach that uses embedded simulation was developed and compared with others. In the new approach, generation of joint trajectories considering link flexibility was also investigated

  19. On stiffening cables of a long reach manipulator

    International Nuclear Information System (INIS)

    Wang, S.L.; Santiago, P.

    1996-01-01

    A long reach manipulator will be used for waste remediation in large underground storage tanks. The manipulator's slenderness makes it flexible and difficult to control. A low-cost and effective method to enhance the manipulator's stiffness is proposed in this research by using suspension cables. These cables can also be used to accurately measure the position of the manipulator's wrist

  20. Key Design Requirements for Long-Reach Manipulators

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, D.S.

    2001-01-01

    Long-reach manipulators differ from industrial robots and teleoperators typically used in the nuclear industry in that the aspect ratio (length to diameter) of links is much greater and link flexibility, as well as joint or drive train flexibility, is likely to be significant. Long-reach manipulators will be required for a variety of applications in the Environmental Restoration and Waste Management Program. While each application will present specific functional, kinematic, and performance requirements, an approach for determining the kinematic applicability and performance characteristics is presented, with a focus on waste storage tank remediation. Requirements are identified, kinematic configurations are considered, and a parametric study of link design parameters and their effects on performance characteristics is presented.

  1. Key design requirements for long-reach manipulators

    International Nuclear Information System (INIS)

    Kwon, D.S.; March-Leuba, S.; Babcock, S.M.; Hamel, W.R.

    1993-09-01

    Long-reach manipulators differ from industrial robots and teleoperators typically used in the nuclear industry in that the aspect ratio (length to diameter) of links is much greater and link flexibility, as well as joint or drive train flexibility, is likely to be significant. Long-reach manipulators will be required for a variety of applications in the Environmental Restoration and Waste Management Program. While each application will present specific functional kinematic, and performance requirements an approach for determining the kinematic applicability and performance characteristics is presented, with a focus on waste storage tank remediation. Requirements are identified, kinematic configurations are considered, and a parametric study of link design parameters and their effects on performance characteristics is presented

  2. Key Design Requirements for Long-Reach Manipulators

    International Nuclear Information System (INIS)

    Kwon, D.S.

    2001-01-01

    Long-reach manipulators differ from industrial robots and teleoperators typically used in the nuclear industry in that the aspect ratio (length to diameter) of links is much greater and link flexibility, as well as joint or drive train flexibility, is likely to be significant. Long-reach manipulators will be required for a variety of applications in the Environmental Restoration and Waste Management Program. While each application will present specific functional, kinematic, and performance requirements, an approach for determining the kinematic applicability and performance characteristics is presented, with a focus on waste storage tank remediation. Requirements are identified, kinematic configurations are considered, and a parametric study of link design parameters and their effects on performance characteristics is presented

  3. PAM4 based symmetrical 112-Gbps long-reach TWDM-PON

    Science.gov (United States)

    Wu, Liyu; Gao, Fan; Zhang, Minming; Fu, Songnian; Deng, Lei; Choi, Michael; Chang, Donald; Lei, Gordon K. P.; Liu, Deming

    2018-02-01

    We experimentally demonstrate cost effective symmetrical 112-Gbps long-reach passive optical network (LR-PON) over 70-km standard signal mode fiber (SSMF), based on pulse amplitude modulation (PAM)-4. Four 10G-class directly modulated lasers (DMLs) at C-band are used for achieving 4 × 28-Gbps downstream transmission, while two 18G-class DMLs at O-band are used to realize 2 × 56-Gbps upstream transmission, without any optical amplification in optical distributed network (ODN). Both dispersion compensation fiber (DCF) for downstream signal and praseodymium-doped fiber amplifier (PDFA) for upstream signal are equipped at optical line terminal (OLT). Meanwhile, sparse Volterra filter (SVF) equalizer is proposed to mitigate the transmission impairments with substantial reduction of computation complexity. Finally, we can successfully provide a loss budget of 33 dB per downstream wavelength channel, indicating of 64 optical network units (ONUs) with more than 1.25 Gbps per ONU.

  4. The emerging WDM EPON

    CERN Document Server

    Radivojević, Mirjana

    2017-01-01

    This book proposes dynamic wavelength and bandwidth allocation (DWBA), a hybrid of time-division multiplexing (TDM) and wavelength-division multiplexing (WDM), which offers a solution for service providers faced with multiservice networks. It discusses different models, architectures and implementations and evaluates their performance.

  5. Temporal Probabilistic Constellation Shaping for WDM Optical Communication Systems

    DEFF Research Database (Denmark)

    Yankov, Metodi Plamenov; Forchhammer, Søren

    2016-01-01

    Finite state machine sources transmitting QPSK are studied as input to WDM optical fiber systems with ideal distributed Raman amplification. The probabilities of successive constellation symbols are shaped for nonlinear transmission and gains of around 500km (5-10%) are demonstrated...

  6. Temporal Probabilistic Constellation Shaping for WDM Optical Communication Systems

    OpenAIRE

    Yankov, Metodi Plamenov; Forchhammer, Søren

    2016-01-01

    Finite state machine sources transmitting QPSK are studied as input to WDM optical fiber systems with ideal distributed Raman amplification. The probabilities of successive constellation symbols are shaped for nonlinear transmission and gains of around 500km (5-10%) are demonstrated

  7. Parametric design studies of long-reach manipulators

    International Nuclear Information System (INIS)

    Kwon, D.S.; March-Leuba, S.; Babcock, S.M.; Burks, B.L.; Hamel, W.R.

    1993-01-01

    A number of different approaches have been studied for remediation of waste storage tanks at various sites. One of the most promising approaches is the use of a high-capacity, long-reach manipulation (LRM) system with a variety of end effectors for dislodging the waste. LRMs may have characteristics significantly different from those of industrial robots due to the long links needed to cover the large workspace. Because link lengths are much greater than their diameters, link flexibility, as well as joint or drive train flexibility, is likely to be significant. LRMs will be required for a variety of applications in the Environmental Restoration and Waste Management Program. While each application will present specific functional, kinematic, and performance requirements, a design approach for determining the kinematic applicability and performance characteristics considering link flexibility is presented with a focus on waste storage tank remediation. This paper addresses key design issues for LRM-based waste retrieval systems. It discusses the effects of parameters such as payload capacity, storage tanks size, and access port diameter on manipulator structural design. The estimated weight, fundamental natural frequency, and static deflection of the manipulator have been calculated for various parameter conditions

  8. Self-healing ring-based WDM-PON

    Science.gov (United States)

    Zhou, Yang; Gan, Chaoqin; Zhu, Long

    2010-05-01

    In this paper, a survivable ring-based wavelength-division-multiplexing (WDM)-passive optical network (PON) for fiber protection is proposed. Protections for feeder fiber and distributed fiber are independent in the scheme. Optical line terminal (OLT) and optical network units (ONUs) can automatically switch to protection link when fiber failure occurs. Protection distributed fiber is not required in the scheme. Cost-effective components are used in ONUs to minimize costs of network. A simulation study is performed to demonstrate the scheme. Its result shows good performance of upstream and downstream signals.

  9. Adaptive Rates of High-Spectral-Efficiency WDM/SDM Channels Using PDM-1024-QAM Probabilistic Shaping

    DEFF Research Database (Denmark)

    Hu, Hao; Yankov, Metodi Plamenov; Da Ros, Francesco

    2017-01-01

    We demonstrate adaptive rates and spectral efficiencies in WDM/SDM transmission using probabilistically shaped PDM-1024-QAM signals, achieving up to 7-Tbit/s data rates per spatial-superchannel and up to 297.8-bit/s/Hz aggregate spectral efficiency using a 30-core fiber on 12.5 and 25GHz WDM grids...

  10. Chemical placement in heterogeneous and long reach horizontal wells

    Energy Technology Data Exchange (ETDEWEB)

    Stalker, Robert; Wahid, Fazrie; Graham, Gordon M.

    2006-03-15

    The effective placement of chemical squeeze treatments in heterogeneous wells and long reach horizontal wells has proved a significant challenge, with various factors including heterogeneity, crossflow and pressure gradients between otherwise non-communicating zones within the well, all contributing to an uneven placement of the scale squeeze treatment into the reservoir. Current methods to circumvent these problems often rely on extremely expensive coiled tubing operations, staged diversion (temporary shut off) treatments or by designing treatments to deliberately overdose some zones in order to gain placement in other (e.g. low permeability) zones. Moreover for deepwater sub sea horizontal wells the costs associated with ''spot'' treating along the length of horizontal wells by coil tubing tractor operations can often be prohibitively expensive. For other very near well bore treatments such as acid stimulation a number of self diverting strategies including gelled acid treatments, staged viscoelastic surfactant treatments and foams have been applied in field treatments with some success. However the properties which make such treatments applicable for acid stimulation may also make them inappropriate for bullhead scale squeeze treatments. Recent work by the current authors has however indicated the possible benefits of using modified injection fluids to aid uniform scale inhibitor placement in such wells in order to effect more even placement. In summary this paper will describe the various options available for achieving self diversion and describes the potential drawbacks associated with the viscous placement fluids commonly used for acid simulation techniques. In addition, various simulation packages commonly used for scale related calculations are reviewed and their limitations, primarily due to the inherent assumptions made and input parameters used, for modelling squeeze treatments using such modified fluids are described. The paper

  11. The Gain of Performance of Optical WDM Networks

    Directory of Open Access Journals (Sweden)

    Miroslav Bahleda

    2008-01-01

    Full Text Available We study the blocking probability and performance of single-fiber and multifiber optical networks with wavelength division multiplexing (WDM. We extend the well-known analytical blocking probability model by Barry and Humblet to the general model, which is proposed for both single-fiber and multifiber network paths with any kind of wavelength conversion (no, limited, or full wavelength conversion and for uniform and nonuniform link loads. We investigate the effect of the link load, wavelength conversion degree, and the number of wavelengths, fibers, and hops on blocking probability. We also extend the definition of the gain of wavelength conversion by Barry and Humblet to the gain of performance, which is fully general. Thanks to this definition and implementation of our model, we compare different WDM node architectures and present interesting results.

  12. Experimental 2.5-Gb/s QPSK WDM phase-modulated radio-over-fiber link with digital demodulation by a K-means algorithm

    DEFF Research Database (Denmark)

    Guerrero Gonzalez, Neil; Zibar, Darko; Caballero Jambrina, Antonio

    2010-01-01

    Highest reported bit rate of 2.5 Gb/s for optically phase modulated radio-over-fiber (RoF) link, employing digital coherent detection, is demonstrated. Demodulation of 3$,times,$ 2.5 Gb/s quadrature phase-shift keying modulated wavelength-division-multiplexed RoF channels is achieved after 79 km ...... of transmission through deployed fiber. Error-free performance (bit-error rate corresponding to $10^{{-}4}$) is achieved using a digital coherent receiver in combination with a $K$-means algorithm for radio-frequency phase recovery....

  13. WDM hybrid microoptical transceiver with Bragg volume grating

    Science.gov (United States)

    Jeřábek, Vitezslav; Armas, Julio; Mareš, David; Prajzler, Václav

    2012-02-01

    The paper presents the design, simulation and construction results of the wavelength division multiplex bidirectional transceiver module (WDM transceiver) for the passive optical network (PON) of a fiber to the home (FTTH) topology network. WDM transceiver uses a microoptical hybrid integration technology with volume holographic Bragg grating triplex filter -VHGT and a collimation lenses imagine system for wavelength multiplexing/ demultiplexing. This transmission type VHGT filter has high diffraction angle, very low insertion loses and optical crosstalk, which guide to very good technical parameters of transceiver module. WDM transceiver has been constructed using system of a four micromodules in the new circle topology. The optical micromodule with VHGT filter and collimation and decollimation lenses, two optoelectronics microwave receiver micromodules for receiving download information (internet and digital TV signals) and optoelectronic transmitter micromodule for transmitting upload information. In the paper is presented the optical analysis of the optical imagine system by ray-transfer matrix. We compute and measure VHGT characteristics such as diffraction angle, diffraction efficiency and diffraction crosstalk of the optical system for 1310, 1490 and 1550 nm wavelength radiation. For the design of optoelectronic receiver micromodule was used the low signal electrical equivalent circuit for the dynamic performance signal analysis. In the paper is presented the planar form WDM transceiver with polymer optical waveguides and two stage interference demultiplexing optical filter as well.

  14. An OTDM-To-WDM Converter Using Optical Fourier Transformation

    OpenAIRE

    Khin Su Myat Min; Zaw Myo Lwin; Hla Myo Tun

    2015-01-01

    We demonstrate serial-to-parallel conversion of 40 Gbps optical time division multiplexed OTDM signal to 4x10 Gbps wavelength division-multiplexed WDM individual channels by using Optical Fourier Transformation OFT method. OFT is also called time lens technique and it is implemented by the combination of dispersive fiber and phase modulation. In this research electro-optic phase modulator EOM is used as time lens. As our investigations simulation results and bit error rate BER measurements ar...

  15. Performance comparison of a wdm pon with tdm pon at 10 gbps

    International Nuclear Information System (INIS)

    Usman, M.

    2014-01-01

    Recent developments in optical technologies have realized wavelength division multiplexed passive optical network (WDM PON) as a promising and a cost-effective solution for the next generation networks. Due to the intrinsic optical transparency and extremely high transmission capacity, WDM PON is considered more future oriented than conventional TDM PON. In this paper we compare an eight channel WDM PON with an eight channel TDM PON, both operating at 10 Gbps data rate. Network parameters like input laser power, optical fiber length and optical amplifier gain are varied and their impact on performance parameters i.e. Q-factor, BER, OSNR, Eye opening and Extinction ratio penalty is recorded. Results reveal that WDM PON exhibits superior performance than TDM PON in each case. (author)

  16. Crosstalk in WDM communication networks

    NARCIS (Netherlands)

    Tafur Monroy, I.; Tangdiongga, E.

    2002-01-01

    The use of advanced transmission and switching techniques such as reconfigurable WDM optical crossconnects is enabling high capacity and flexible optical networking at ultra bit-rates reaching multi-terabits per second. These techniques also offer creative ways to improve the network connectivity

  17. A novel WDM monitoring method

    NARCIS (Netherlands)

    Bergh, van de M.P.H.; Tol, van der J.J.G.M.; Dorren, H.J.S.

    1999-01-01

    A novel method to monitor the performance of WDM channels in an optical network is presented by analyzing the photo-diode current of a detected optical signal. From the photo-diode current, an amplitude histogram is generated, hereafter to be called the probability density function (PDF). By

  18. VCSEL Transmission at 10 Gb/s for 20 km Single Mode Fiber WDM-PON without Dispersion Compensation or Injection Locking

    DEFF Research Database (Denmark)

    Gibbon, Timothy Braidwood; Prince, Kamau; Pham, Tien Thang

    2011-01-01

    how off-center wavelength filtering of the VCSEL spectrum at an array waveguide grating can be used to mitigate the effect of chirp and the dispersion penalty. Transmission at 10Gb/s VCSEL over 23.6 km of single mode fiber is experimentally demonstrated, with a dispersion penalty of only 2.9 d......B. Simulated results are also presented which show that off-center wavelength filtering can extend the 10 Gb/s network reach from 11.7 km to 25.8 km for a 4 dB dispersion penalty. This allows for cheap and simple dispersion mitigation in next generation VCSEL based optical access networks....

  19. A SURVEY ON WAVELENGTH DIVISION MULTIPLEXING (WDM NETWORKS

    Directory of Open Access Journals (Sweden)

    G. Ramesh

    2010-03-01

    Full Text Available Communication networks have emerged as a source of empowerment in today’s society. At the global level, the Internet is becoming the backbone of the modern economy. The new generations in developed countries cannot even conceive of a world without broadband access to the Internet. The inability of the current Internet infrastructure to cope with the wide variety and ever growing number of users, emerging networked applications, usage patterns and business models is increasingly being recognized worldwide. The dynamic growth of Internet traffic and its bursty nature requires high transmission rate. With the advances and the progress in Wavelength Division Multiplexing (WDM technology, the amount of raw bandwidth available in fiber links has increased to high magnitude. This paper presents a survey on WDM networks from its development to the current status. Also an analysis on buffer size in optical networks for real time traffic was performed.

  20. Parallel Void Thread in Long-Reach Ethernet Passive Optical Networks

    KAUST Repository

    Elrasad, Amr; Shihada, Basem

    2015-01-01

    This work investigates void filling (idle periods) in long-reach Ethernet passive optical networks. We focus on reducing grant delays and hence reducing the average packet delay. We introduce a novel approach called parallel void thread (PVT), which

  1. 10 Gb/s bidirectional single fibre long reach PON link with distributed Raman amplification

    DEFF Research Database (Denmark)

    Tafur Monroy, Idelfonso; Kjær, Rasmus; Jeppesen, Palle

    2006-01-01

    We report operation of a single fibre bidirectional 80 km long reach PON link with symmetric up- and-downstream data rate of 10 Gb/s supported by distributed Raman fibre amplification only.......We report operation of a single fibre bidirectional 80 km long reach PON link with symmetric up- and-downstream data rate of 10 Gb/s supported by distributed Raman fibre amplification only....

  2. Comparison of WDM/Pulse-Position-Modulation (WDM/PPM) with Code/Pulse-Position-Swapping (C/PPS) Based on Wavelength/Time Codes

    Energy Technology Data Exchange (ETDEWEB)

    Mendez, A J; Hernandez, V J; Gagliardi, R M; Bennett, C V

    2009-06-19

    Pulse position modulation (PPM) signaling is favored in intensity modulated/direct detection (IM/DD) systems that have average power limitations. Combining PPM with WDM over a fiber link (WDM/PPM) enables multiple accessing and increases the link's throughput. Electronic bandwidth and synchronization advantages are further gained by mapping the time slots of PPM onto a code space, or code/pulse-position-swapping (C/PPS). The property of multiple bits per symbol typical of PPM can be combined with multiple accessing by using wavelength/time [W/T] codes in C/PPS. This paper compares the performance of WDM/PPM and C/PPS for equal wavelengths and bandwidth.

  3. Demonstration of digital fronthaul over self-seeded WDM-PON in commercial LTE environment.

    Science.gov (United States)

    Ma, Yiran; Xu, Zhiguang; Zhang, Chengliang; Lin, Huafeng; Wang, Qing; Zhou, Min; Wang, Heng; Yu, Jingwen; Wang, Xiaomu

    2015-05-04

    CPRI between BBU and RRU equipment is carried by self-seeded WDM-PON prototype system within commercial LTE end-to-end environment. Delay and jitter meets CPRI requirements while services demonstrated show the same performance as bare fiber.

  4. GigaWaM—Next-Generation WDM-PON Enabling Gigabit Per-User Data Bandwidth

    DEFF Research Database (Denmark)

    Prince, Kamau; Gibbon, Timothy Braidwood; Rodes Lopez, Roberto

    2012-01-01

    The “Gigabit access passive optical network using wavelength division multiplexing” project aims to implement 64-Gb/s data transmission over 20-km single-mode fiber. Per-user symmetric data rates of 1-Gb/s will be achieved using wavelength division multiplexing passive optical network (WDM-PON) a...

  5. MIMO-OFDM WDM PON with DM-VCSEL for femtocells application

    DEFF Research Database (Denmark)

    Binti Othman, Maisara; Deng, Lei; Pang, Xiaodan

    2011-01-01

    We report on experimental demonstration of 2x2 MIMO-OFDM 5.6-GHz radio over fiber signaling over 20 km WDM-PON with directly modulated (DM) VCSELs for femtocells application. MIMO-OFDM algorithms effectively compensate for impairments in the wireless link. Error-free signal demodulation of 64...

  6. BER and total throughput of asynchronous DS-OCDMA/WDM systems with multiple user interference

    OpenAIRE

    Ghiringhelli, F.; Zervas, M.N.

    2003-01-01

    The BER and throughput of Direct-Sequence OCDMA/WDM systems based on quadripolar codes and superstructured fiber Bragg gratings are statistically derived under asynchronous operation, intensity detection, and Multiple User Interference. Performance improvements with Forward Error Correction are included.

  7. 300 Gb/s IM/DD based SDM-WDM-PON with laserless ONUs

    DEFF Research Database (Denmark)

    Bao, Fangdi; Morioka, Toshio; Oxenløwe, Leif Katsuo

    2018-01-01

    A low-cost, high-speed SDM-WDM-PON architecture is proposed by using a multi-core fiber (MCF) and intensity modulation/directly detection (IM/DD). One of the MCF cores is used for sending laser sources from optical line terminal (OLT) to optical network unit (ONU), thus facilitating laserless...

  8. The Advent of WDM and the All-Optical Network: A Reality Check.

    Science.gov (United States)

    Lutkowitz, Mark

    1998-01-01

    Discussion of the telecommunications industry focuses on WDM (wavelength division multiplexing) as a solution for dealing with capacity constraints. Highlights include fiber optic technology; cross-connecting and switching wavelengths; SONET (Synchronous Optical Network) and wavelength networking; and optical TDM (Time Division Multiplexing). (LRW)

  9. Ultrafast Hierarchical OTDM/WDM Network

    Directory of Open Access Journals (Sweden)

    Hideyuki Sotobayashi

    2003-12-01

    Full Text Available Ultrafast hierarchical OTDM/WDM network is proposed for the future core-network. We review its enabling technologies: C- and L-wavelength-band generation, OTDM-WDM mutual multiplexing format conversions, and ultrafast OTDM wavelengthband conversions.

  10. An OTDM-To-WDM Converter Using Optical Fourier Transformation

    Directory of Open Access Journals (Sweden)

    Khin Su Myat Min

    2015-08-01

    Full Text Available We demonstrate serial-to-parallel conversion of 40 Gbps optical time division multiplexed OTDM signal to 4x10 Gbps wavelength division-multiplexed WDM individual channels by using Optical Fourier Transformation OFT method. OFT is also called time lens technique and it is implemented by the combination of dispersive fiber and phase modulation. In this research electro-optic phase modulator EOM is used as time lens. As our investigations simulation results and bit error rate BER measurements are expressed.

  11. Hybrid RSOA and fibre raman amplified long reach feeder link for WiMAX-on-fibre

    DEFF Research Database (Denmark)

    Amaya Fernández, Ferney Orlando; Martinez, Javier; Yu, Xianbin

    2009-01-01

    A distributed fibre Raman amplified long reach optical access feeder link using a reflective semiconductor optical amplifier in the remote base station is experimentally demonstrated for supporting WiMAXover- fibre transmission. The measured values for the error vector magnitude for quadrature...

  12. First generation long-reach manipulator for retrieval of waste from Hanford single-shell tanks

    International Nuclear Information System (INIS)

    Gibbons, P.W.; McDaniel, L.B.

    1994-10-01

    The US Department of Energy, Richland Operations Office, has established the Tank Waste Remediation System to resolve environmental and safety issues related to underground waste-storage tanks at the Hanford Site. The Tank Waste Remediation System has identified the use of an advanced-technology, long-reach manipulator system as a low-water-addition retrieval alternative to past-practice sluicing

  13. Control of a long reach manipulator with suspension cables for waste storage tank remediation. Final report

    International Nuclear Information System (INIS)

    Wang, S.L.

    1994-01-01

    A long reach manipulator will be used for waste remediation in large underground storage tanks. The manipulator's slenderness makes it flexible and difficult to control. A low-cost and effective method to enhance the manipulator's stiffness is proposed in this research by using suspension cables. These cables can also be used to accurately measure the position of the manipulator's wrist

  14. Feasibility analysis of WDM links for radar applications

    Directory of Open Access Journals (Sweden)

    D. Meena

    2015-03-01

    Full Text Available Active phased array antennas enhances the performance of modern radars by using multiple low power transmit/receive modules in place of a high power transmitter in conventional radars. Fully distributed phased array radars demand the distribution of various signals in radio frequency (RF and digital domain for real time operation. This is normally achieved through complex and bulky coaxial distribution networks. In this work, we intend to tap the inherent advantages of fiber links with wavelength division multiplexed (WDM technology and a feasibility study to adapt these links for radar applications is carried out. This is done by analysing various parameters like amplitude, delay, frequency and phase variation response of various radar waveforms over WDM links. This also includes performance evaluation of non-linear frequency modulation (NLFM signals, known for better signal to noise ratio (SNR to specific side lobe levels. NLFM waveforms are further analysed using pulse compression (PC technique. Link evaluation is also carried out using a standard simulation environment and is then experimentally verified with other waveforms like RF continuous wave (CW, pulsed RF and digital signals. Synchronization signals are generated from this variable duty cycle digital signals during real time radar operation. During evaluation of digital signals, variable transient effects for different duty cycles are observed from an amplifier configuration. A suppression method is proposed to eliminate this transient effects. Further, the link delay response is investigated using different lengths of fiber spools. It can be inferred from the experimental results that WDM links are capable of handling various signals significant to radar applications.

  15. Input shaping methods for telerobotic operation of flexible, long-reach manipulators

    International Nuclear Information System (INIS)

    Kwon, Dong-Soo; Hwang, Dong-Hwan; Babcock, S.M.

    1994-01-01

    Among the Environmental Restoration and Waste Management Program of the U.S. Department of Energy, the remediation of radioactive waste from the underground storage tank challenges the state-of-the-art equipment and methods. Long-reach manipulators are being considered to be one of the most advantageous approaches for the retrieval of waste from large storage tanks. Because of long-reach manipulator's high payload capacity and high length-to-cross-section ratios, such manipulator system exhibits significant structural flexibility. To avoid structural vibrations during operation, control algorithms employing various types of shaping filters were investigated. A robust notch filtering method and an impulse shaping method were evaluated. In addition to that, a new approach that uses imbedded simulation was developed and compared with others. In the new approach, joint trajectories have been generated considering the flexible link dynamics

  16. Water brief-WDM & wastewater reuse

    International Development Research Centre (IDRC) Digital Library (Canada)

    aalfouns

    Wastewater Reuse for Water Demand Management in the Middle East and ... Among the substantial WDM tools in MENA is the use of wastewater to reduce the pressure on scarce freshwater .... recycled water to irrigate crops with associated ...

  17. WDM Research Series: Working Paper No. 2

    International Development Research Centre (IDRC) Digital Library (Canada)

    IDRC CRDI

    The other three papers of the Series focus on the issues of institutional structures ... Any approach that relates WDM to poverty and equity requires a set of working ..... If local irrigation system operation and maintenance investments and.

  18. WDM Question and Answers | IDRC - International Development ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    2011-01-04

    Jan 4, 2011 ... Why is there growing concern about water issues in the MENA region? ... tend to leak, taps tend to drip and little is done to prevent water pollution. ... water demand management (WDM) and water supply management (WSM)?.

  19. Monolithically integrated 8-channel WDM reflective modulator

    NARCIS (Netherlands)

    Stopinski, S.T.; Malinowski, M.; Piramidowicz, R.; Smit, M.K.; Leijtens, X.J.M.

    2013-01-01

    In this work the design and characterization of a monolithically integrated photonic circuit acting as a reflective modulator for eight WDM channels is presented. The chip was designed and fabricated in a generic integration technology

  20. WDM Network and Multicasting Protocol Strategies

    Directory of Open Access Journals (Sweden)

    Pinar Kirci

    2014-01-01

    Full Text Available Optical technology gains extensive attention and ever increasing improvement because of the huge amount of network traffic caused by the growing number of internet users and their rising demands. However, with wavelength division multiplexing (WDM, it is easier to take the advantage of optical networks and optical burst switching (OBS and to construct WDM networks with low delay rates and better data transparency these technologies are the best choices. Furthermore, multicasting in WDM is an urgent solution for bandwidth-intensive applications. In the paper, a new multicasting protocol with OBS is proposed. The protocol depends on a leaf initiated structure. The network is composed of source, ingress switches, intermediate switches, edge switches, and client nodes. The performance of the protocol is examined with Just Enough Time (JET and Just In Time (JIT reservation protocols. Also, the paper involves most of the recent advances about WDM multicasting in optical networks. WDM multicasting in optical networks is given as three common subtitles: Broadcast and-select networks, wavelength-routed networks, and OBS networks. Also, in the paper, multicast routing protocols are briefly summarized and optical burst switched WDM networks are investigated with the proposed multicast schemes.

  1. Working Paper 2: WDM, Poverty & Equity | IDRC - International ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    2010-12-08

    Dec 8, 2010 ... This paper shows that WDM can contribute to poverty reduction, defined ... Series contributes to setting the stage for the next phase of WDM research. ... that 20% of the country's population has some form of physical disability.

  2. Parametric Amplification, Wavelength Conversion, and Phase Conjugation of a 2.048-Tbit/s WDM PDM 16-QAM Signal

    DEFF Research Database (Denmark)

    Hu, Hao; Jopson, R. M.; Gnauck, A. H.

    2015-01-01

    We demonstrate polarization-independent parametric amplification of a 2.048-Tbit/s 8-WDM PDM 16-QAM signal and simultaneous wavelength conversion and phase conjugation in a highly nonlinear fiber. Two high-power continuous-wave pumps with orthogonal polarizations and counter-phase modulation are ...

  3. Ultrahigh-Spectral-Efficiency WDM/SDM Transmission Using PDM-1024-QAM Probabilistic Shaping With Adaptive Rate

    DEFF Research Database (Denmark)

    Hu, Hao; Yankov, Metodi Plamenov; Da Ros, Francesco

    2018-01-01

    We demonstrate wavelength-division-multiplexed (WDM) and space-division-multiplexed (SDM) transmission of probabilistically shaped polarization-division-multiplexed (PDM) 1024-state quadrature amplitude modulation (QAM) channels over a 9.7-km single-mode 30-core fiber, achieving aggregated spectr...

  4. A novel survivable architecture for hybrid WDM/TDM passive optical networks

    Science.gov (United States)

    Qiu, Yang; Chan, Chun-Kit

    2014-02-01

    A novel tree-ring survivable architecture, which consists of an organization of a wavelength-division-multiplexing (WDM) tree from optical line terminal (OLT) to remote nodes (RNs) and a time division multiplexing (TDM) ring in each RN, is proposed for hybrid WDM/TDM passive optical networks. By utilizing the cyclic property of arrayed waveguide gratings (AWGs) and the single-ring topology among a group of optical network units (ONUs) in the remote node, not only the feeder and distribution fibers, but also any fiber failures in the RN rings are protected simultaneously. Five-Gbit/s transmissions under both normal working and protection modes were experimentally demonstrated and a traffic restoration time was successfully measured.

  5. A method of simulating intensity modulation-direct detection WDM systems

    Institute of Scientific and Technical Information of China (English)

    HUANG Jing; YAO Jian-quan; LI En-bang

    2005-01-01

    In the simulation of Intensity Modulation-Direct Detection WDM Systems,when the dispersion and nonlinear effects play equally important roles,the intensity fluctuation caused by cross-phase modulation may be overestimated as a result of the improper step size.Therefore,the step size in numerical simulation should be selected to suppress false XPM intensity modulation (keep it much less than signal power).According to this criterion,the step size is variable along the fiber.For a WDM system,the step size depends on the channel separation.Different type of transmission fiber has different step size.In the split-step Fourier method,this criterion can reduce simulation time,and when the step size is bigger than 100 meters,the simulation accuracy can also be improved.

  6. Control issues related to bilateral teleoperation of long-reach, flexible manipulators

    International Nuclear Information System (INIS)

    Love, L.J.

    1997-01-01

    A challenging problem presently being addressed by the Department of Energy (DOE) is the extraction of large volumes of hazardous waste from underground waste storage facilities. The nature of the material requires the use of robotic and teleoperated systems. Furthermore, the constraints of the storage tanks require the use of long reach manipulators. These robots are characterized by their large workspace and reduced mass. Unfortunately, this reduction in mass increases structural compliance, making these robots susceptible to vibration. Until recently, no attempt has been made to provide the operator any type of force reflection due to the compliance of the slave robot. This paper addresses the control of bilateral teleoperation systems that use long-reach, flexible manipulators. Analysis and experiments show that the compliance of the slave robot directly affects the stability of the teleoperation system. This study suggests that this may be controlled by increasing the damping on the master robot. However, this increase in target damping increases the energy an operator must exert during the execution of a task. A new teleoperation strategy adapts the target impedance of the master robot to variations in the identified impedance of the remote environment coupled to the slave robot. Experiments show increased performance due to a decrease in the energy the operator must provide during task execution

  7. Combined long reach and dexterous manipulation for waste storage tank applications

    International Nuclear Information System (INIS)

    Burks, B.L.; Armstrong, G.A.; Butler, P.L.; Boissiere, P.

    1991-01-01

    One of the highest priority environmental restoration tasks within the Department of Energy (DOE) is the remediation of single-shell waste storage tanks (WSTs), especially those suspected of, or documented as, leakers. Most currently proposed approaches for remediation of large underground WSTs require application of remotely operated long-reach (greater than 10 m), high-lift capacity (greater than 200 kg) manipulator systems. Because of the complexity of in-tank hardware, waste forms, remediation tasks, and variety of end-effector tools, these manipulator systems must also be capable of performing a diverse set of dexterous manipulations. This presentation will describe the integration of a Spar RMS 2500 manipulator system, a Schilling Titan-7F manipulator, and control systems developed at ORNL and SNL to provide a combined long reach and dexterous manipulation system. The purpose of integrating these two manipulator systems was to study and demonstrate their combined performance, evaluate design requirements for a deployed system, and provide a testbed for control and end-effector technologies that might be applicable to remediation of WSTs. 5 refs

  8. Input shaping filter methods for the control of structurally flexible, long-reach manipulators

    International Nuclear Information System (INIS)

    Kwon, Dong-Soo; Hwang, Dong-Hwan; Babcock, S.M.; Burks, B.L.

    1993-01-01

    Within the Environmental Restoration and Waste Management Program of the US Department of Energy, the remediation of single-shell radioactive waste storage tanks is one of the areas that challenge state-of-the-art equipment and methods. Concepts that utilize long-reach manipulators are being seriously considered for this task. Due to high payload capacity and high length-to-cross-section ratio requirements, these long-reach manipulator systems are expected to exhibit significant structural flexibility. To avoid structural vibrations during operation, various types of shaping filter methods have been investigated. A robust notch filtering method and an impulse shaping method were used as simulation benchmarks. In addition to that, two very different approaches have been developed and compared. One new approach, referred to as a ''feedforward simulation filter,'' uses imbedded simulation with complete knowledge of the system dynamics. The other approach, ''fuzzy shaping method,'' employs a fuzzy logic method to modify the joint trajectory from the desired end-position trajectory without precise knowledge of the system dynamics

  9. SPM and XPM crosstalk in WDM systems with DRA: Channel spacing and attenuation effects

    Science.gov (United States)

    Morsy, Emadeldeen; Fayed, Heba A.; Abd El Aziz, Ahmed; Aly, Moustafa H.

    2018-06-01

    This paper presents a theoretical analysis of a closed formula for nonlinear crosstalk due to self-phase modulation (SPM) and cross phase modulation (XPM) in wavelength division multiplexing (WDM) systems. The influence of channel spacing and attenuation on the system behavior is modeled and investigated. The system under consideration is a standard single-mode fiber (SSMF) with a single-span distributed Raman amplifier (DRA) and is operating at 100 Gbps.

  10. Mathematical Verification for Transmission Performance of Centralized Lightwave WDM-RoF-PON with Quintuple Services Integrated in Each Wavelength Channel

    Directory of Open Access Journals (Sweden)

    Shuai Chen

    2015-01-01

    Full Text Available Wavelength-division-multiplexing passive-optical-network (WDM-PON has been recognized as a promising solution of the “last mile” access as well as multibroadband data services access for end users, and WDM-RoF-PON, which employs radio-over-fiber (RoF technique in WDM-PON, is even a more attractive approach for future broadband fiber and wireless access for its strong availability of centralized multiservices transmission operation and its transparency for bandwidth and signal modulation formats. As for multiservices development in WDM-RoF-PON, various system designs have been reported and verified via simulation or experiment till now, and the scheme with multiservices transmitted in each single wavelength channel is believed as the one that has the highest bandwidth efficiency; however, the corresponding mathematical verification is still hard to be found in state-of-the-art literature. In this paper, system design and data transmission performance of a quintuple services integrated WDM-RoF-PON which jointly employs carrier multiplexing and orthogonal modulation techniques, have been theoretically analyzed and verified in detail; moreover, the system design has been duplicated and verified experimentally and the theory system of such WDM-RoF-PON scheme has thus been formed.

  11. A hybrid WDM/OCDMA ring with a dynamic add/drop function based on Fourier code for local area networks.

    Science.gov (United States)

    Choi, Yong-Kyu; Hosoya, Kenta; Lee, Chung Ghiu; Hanawa, Masanori; Park, Chang-Soo

    2011-03-28

    We propose and experimentally demonstrate a hybrid WDM/OCDMA ring with a dynamic add/drop function based on Fourier code for local area networks. Dynamic function is implemented by mechanically tuning the Fourier encoder/decoder for optical code division multiple access (OCDMA) encoding/decoding. Wavelength division multiplexing (WDM) is utilized for node assignment and 4-chip Fourier code recovers the matched signal from the codes. For an optical source well adapted to WDM channels and its short optical pulse generation, reflective semiconductor optical amplifiers (RSOAs) are used with a fiber Bragg grating (FBG) and gain-switched. To demonstrate we experimentally investigated a two-node hybrid WDM/OCDMA ring with a 4-chip Fourier encoder/decoder fabricated by cascading four FBGs with the bit error rate (BER) of <10(-9) for the node span of 10.64 km at 1.25 Gb/s.

  12. Strain measurement using multiplexed fiber optic sensors

    International Nuclear Information System (INIS)

    Kwon, Il Bum; Kim, Chi Yeop; Yoon, Dong Jin; Lee, Seung Seok

    2003-01-01

    FBG(Fiber Bragg grating) sensor, which is one of the fiber optic sensors for the application of smart structures, can not only measure one specific point but also multiple points by multiplexing techniques. We have proposed a novel multiplexing technique of FBG sensor by the intensity modulation of light source. This technique is applicable to WDM(Wavelength Division Multiplexing) technique and number of sensors in this system can be increased by using this technique with WDM technique.

  13. Massive WDM and TDM Soliton Transmission Systems : a ROSC Symposium

    CERN Document Server

    2002-01-01

    This book summarizes the proceedings of the invited talks presented at the “International Symposium on Massive TDM and WDM Optical Soliton Tra- mission Systems” held in Kyoto during November 9–12, 1999. The symposium is the third of the series organized by Research Group for Optical Soliton C- munications (ROSC) chaired by Akira Hasegawa. The research group, ROSC, was established in Japan in April 1995 with a support of the Japanese Ministry of Post and Telecommunications to promote collaboration and information - change among communication service companies, communication industries and academic circles in the theory and application of optical solitons. The symposium attracted enthusiastic response from worldwide researchers in the field of soliton based communications and intensive discussions were made. In the symposium held in 1997, new concept of soliton transmission based on dispersion management of optical fibers were presented. This new soliton is now called the dispersion managed soliton. The p...

  14. Experimental demonstrations of all-optical networking functions for WDM optical networks

    Science.gov (United States)

    Gurkan, Deniz

    The deployment of optical networks will enable high capacity links between users but will introduce the problems associated with transporting and managing more channels. Many network functions should be implemented in optical domain; main reasons are: to avoid electronic processing bottlenecks, to achieve data-format and data-rate independence, to provide reliable and cost efficient control and management information, to simultaneously process multiple wavelength channel operation for wavelength division multiplexed (WDM) optical networks. The following novel experimental demonstrations of network functions in the optical domain are presented: Variable-bit-rate recognition of the header information in a data packet. The technique is reconfigurable for different header sequences and uses optical correlators as look-up tables. The header is processed and a signal is sent to the switch for a series of incoming data packets at 155 Mb/s, 622 Mb/s, and 2.5 Gb/s in a reconfigurable network. Simultaneous optical time-slot-interchange and wavelength conversion of the bits in a 2.5-Gb/s data stream to achieve a reconfigurable time/wavelength switch. The technique uses difference-frequency-generation (DFG) for wavelength conversion and fiber Bragg gratings (FBG) as wavelength-dependent optical time buffers. The WDM header recognition module simultaneously recognizing two header bits on each of two 2.5-Gbit/s WDM packet streams. The module is tunable to enable reconfigurable look-up tables. Simultaneous and independent label swapping and wavelength conversion of two WDM channels for a multi-protocol label switching (MPLS) network. Demonstration of label swapping of distinct 8-bit-long labels for two WDM data channels is presented. Two-dimensional code conversion module for an optical code-division multiple-access (O-CDMA) local area network (LAN) system. Simultaneous wavelength conversion and time shifting is achieved to enable flexible code conversion and increase code re

  15. A CLS-based survivable and energy-saving WDM-PON architecture

    Science.gov (United States)

    Zhu, Min; Zhong, Wen-De; Zhang, Zhenrong; Luan, Feng

    2013-11-01

    We propose and demonstrate an improved survivable and energy-saving WDM-PON with colorless ONUs. It incorporates both energy-saving and self-healing operations. A simple effective energy-saving scheme is proposed by including an energy-saving control unit in the OLT and a control unit at each ONU. The energy-saving scheme realizes both dozing and sleep (offline) modes, which greatly improves the energy-saving efficiency for WDM-PONs. An intelligent protection switching scheme is designed in the OLT, which can distinguish if an ONU is in dozing/sleep (offline) state or a fiber is faulty. Moreover, by monitoring the optical power of each channel on both working and protection paths, the OLT can know the connection status of every fiber path, thus facilitating an effective protection switching and a faster failure recovery. The improved WDM-PON architecture not only significantly reduces energy consumption, but also performs self-healing operation in practical operation scenarios. The scheme feasibility is experimentally verified with 10 Gbit/s downstream and 1.25 Gbit/s upstream transmissions. We also examine the energy-saving efficiency of our proposed energy-saving scheme by simulation, which reveals that energy saving mainly arises from the dozing mode, not from the sleep mode when the ONU is in the online state.

  16. A high performance long-reach passive optical network with a novel excess bandwidth distribution scheme

    Science.gov (United States)

    Chao, I.-Fen; Zhang, Tsung-Min

    2015-06-01

    Long-reach passive optical networks (LR-PONs) have been considered to be promising solutions for future access networks. In this paper, we propose a distributed medium access control (MAC) scheme over an advantageous LR-PON network architecture that reroutes the control information from and back to all ONUs through an (N + 1) × (N + 1) star coupler (SC) deployed near the ONUs, thereby overwhelming the extremely long propagation delay problem in LR-PONs. In the network, the control slot is designed to contain all bandwidth requirements of all ONUs and is in-band time-division-multiplexed with a number of data slots within a cycle. In the proposed MAC scheme, a novel profit-weight-based dynamic bandwidth allocation (P-DBA) scheme is presented. The algorithm is designed to efficiently and fairly distribute the amount of excess bandwidth based on a profit value derived from the excess bandwidth usage of each ONU, which resolves the problems of previously reported DBA schemes that are either unfair or inefficient. The simulation results show that the proposed decentralized algorithms exhibit a nearly three-order-of-magnitude improvement in delay performance compared to the centralized algorithms over LR-PONs. Moreover, the newly proposed P-DBA scheme guarantees low delay performance and fairness even when under attack by the malevolent ONU irrespective of traffic loads and burstiness.

  17. Direct-detection optical OFDM superchannel for long-reach PON using pilot regeneration.

    Science.gov (United States)

    Hu, Rong; Yang, Qi; Xiao, Xiao; Gui, Tao; Li, Zhaohui; Luo, Ming; Yu, Shaohua; You, Shanhong

    2013-11-04

    We demonstrate a novel long-reach PON downstream scheme based on the regenerated pilot assisted direct-detection optical orthogonal frequency division multiplexing (DDO-OFDM) superchannel transmission. We use the optical comb source to form DDO-OFDM superchannel, and reserve the center carrier as a seed pilot. The seed pilot is further tracked and reused to generate multiple optical carriers at the local exchange. Each regenerated pilot carrier is selected to beat with an adjacent OFDM sub-band at ONU, so that the electrical bandwidth limitation can be much released compared to the conventional DDO-OFDM superchannel detection. With the proposed proof-of-concept architecture, we experimentally demonstrated a 116.7 Gb/s superchannel OFDM-PON system with transmission reach of 100 km, and 1:64 splitting ratio. We analyze the impact of carrier-to-sideband power ratio (CSPR) on system performance. The experiment result shows that, 5 dB power margin is still remained at ONU using such technique.

  18. ITER Articulated Inspection Arm (AIA): Geometric calibration issues of a long-reach flexible robot

    International Nuclear Information System (INIS)

    Arhur, D.; Perrot, Y.; Bidard, C.; Friconneau, J.P.; Palmer, J.D.; Semeraro, L.

    2005-01-01

    This paper is part of the Remote Handling (RH) activities for the future fusion reactor ITER. Specifically it relates to the possibility to carry out close inspection tasks of the Vacuum Vessel first wall using a long reach robot called the 'Articulated Inspection Arm' (AIA). Early studies for this device identified the need of improving the accuracy of the end-effector position in such robot structures. Therefore, the aim of this R and D program performed under the European Fusion Development Agreement (EFDA) work program is to develop a flexible parametric model with localised compliances of an AIA-like system, in order to compensate for its flexibilities. The geometric calibration is performed using a non-linear multivariable optimisation technique, which minimizes the average error between the simulated and real robot position. The optimised set of parameters, tested on the first segment of the robot, enables to divide by 3 the error on the end-effector position, in comparison to a rigid model. We expect better prediction after mechanical improvements to reduce the serious backlash in the joints. The prediction model applied to the whole arm will enable errors to be reduced from more than 1 m, in some configurations, to a final accuracy of a few centimetres

  19. A Grooming Nodes Optimal Allocation Method for Multicast in WDM Networks

    Directory of Open Access Journals (Sweden)

    Chengying Wei

    2016-01-01

    Full Text Available The grooming node has the capability of grooming multicast traffic with the small granularity into established light at high cost of complexity and node architecture. In the paper, a grooming nodes optimal allocation (GNOA method is proposed to optimize the allocation of the grooming nodes constraint by the blocking probability for multicast traffic in sparse WDM networks. In the proposed GNOA method, the location of each grooming node is determined by the SCLD strategy. The improved smallest cost largest degree (SCLD strategy is designed to select the nongrooming nodes in the proposed GNOA method. The simulation results show that the proposed GNOA method can reduce the required number of grooming nodes and decrease the cost of constructing a network to guarantee a certain request blocking probability when the wavelengths per fiber and transmitter/receiver ports per node are sufficient for the optical multicast in WDM networks.

  20. Key lessons — Twelve factors critical to the success of WDM at the ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    2010-12-22

    Dec 22, 2010 ... Water demand management (WDM) programs have been widely ... The criteria below are intended to help policymakers determine how best to ... implement and monitor WDM activities and to further the concept of WDM as ...

  1. Traffic Scheduling in WDM Passive Optical Network with Delay Guarantee

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    WDM passive optical network becomes more favorable as the required bandwidth increases, but currently few media access control algorithms adapted to WDM access network. This paper presented a new scheduling algorithm for bandwidth sharing in WDM passive optical networks, which provides per-flow delay guarantee and supports variable-length packets scheduling. Through theoretical analysis and simulation, the end-to-end delay bound and throughput fairness of the algorithm was demonstrated.

  2. Active plasmonics in WDM traffic switching applications

    DEFF Research Database (Denmark)

    Papaioannou, S.; Kalavrouziotis, D.; Vyrsokinos, K.

    2012-01-01

    -enabling characteristics of active plasmonic circuits with an ultra-low power 3 response time product represents a crucial milestone in the development of active plasmonics towards real telecom and datacom applications, where low-energy and fast TO operation with small-size circuitry is targeted........ The first active Dielectric-Loaded Surface Plasmon Polariton (DLSPP) thermo-optic (TO) switches with successful performance in single-channel 10 Gb/s data traffic environments have led the inroad towards bringing low-power active plasmonics in practical traffic applications. In this article, we introduce...... active plasmonics into Wavelength Division Multiplexed (WDM) switching applications, using the smallest TO DLSPP-based Mach-Zehnder interferometric switch reported so far and showing its successful performance in 4310 Gb/s low-power and fast switching operation. The demonstration of the WDM...

  3. 1-Pb/s (32 SDM/46 WDM/768 Gb/s) C-band Dense SDM Transmission over 205.6-km of Single-mode Heterogeneous Multi-core Fiber using 96-Gbaud PDM-16QAM Channels

    DEFF Research Database (Denmark)

    Kobayashi, Takayuki; Nakamura, M.; Hamaoka, F.

    2017-01-01

    We demonstrate the first 1-Pb/s unidirectional inline-amplified transmission over 205.6-km of single-mode 32-core fiber within C-band only. 96-Gbaud LDPC-coded PDM-16QAM channels with FEC redundancy of 12.75% realize high-aggregate spectral efficiency of 217.6 b/s/Hz...

  4. Experimental 2.5 Gbit/s QPSK WDM coherent phase modulated radio-over-fibre link with digital demodulation by a K-means algorithm

    DEFF Research Database (Denmark)

    Guerrero Gonzalez, Neil; Caballero Jambrina, Antonio; Amaya Fernández, Ferney Orlando

    2009-01-01

    Highest reported bit rate of 2.5 Gbit/s for optically phase modulated radio-over-fibre link employing coherent detection is demonstrated. Demodulation of 3·2.5 Gbit/s QPSK modulated WDM channels, is achieved after 79km of transmission through deployed fiber....

  5. Working Paper 2: WDM, Poverty & Equity | IDRC - International ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    2012-01-23

    Jan 23, 2012 ... Despite the growing practical and policy-level engagement with WDM, there has been little analytical or empirical effort devoted to its potential social implications. Establishing a better foundation for understanding the linkages between WDM and poverty is, therefore, very important. This paper shows that ...

  6. POLICY BRIEF 1 - WDM Criteria | IDRC - International Development ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    2012-01-18

    Jan 18, 2012 ... Water demand management ― WDM ― can be hard to define. More an issue of policy than of technology, it is about managing and moderating our ... critical to the success of WDM at the policy and at the operational levels.

  7. Wavelength-agnostic WDM-PON System

    DEFF Research Database (Denmark)

    Wagner, Christoph; Eiselt, Michael; Zou, S.

    2016-01-01

    on the standardization status of this lowcost system in the new ITU-T G.metro draft recommendation, in the context of autonomous tuning. We also discuss some low-effort implementations of the pilot-tone labels and investigate the impact of these labels on the transmission channels.......Next-generation WDM-PON solutions for metro and access systems will take advantage of remotely controlled wavelength-tunable ONUs to keep system costs as low as possible. For such a purpose, each ONU signal can be labeled by a pilot tone modulated onto the optical data stream. We report...

  8. Dispersion Compensation Requirements for Optical CDMA Using WDM Lasers

    International Nuclear Information System (INIS)

    Mendez, A J; Hendandez, V J; Feng, H X C; Heritage, J P; Lennon, W J

    2001-01-01

    Optical code division multiple access (O-CDMA) uses very narrow transmission pulses and is thus susceptible to fiber optic link impairments. When the O-CDMA is implemented as wavelength/time (W/T) matrices which use wavelength division multiplexing (WDM) sources such as multi-frequency laser transmitters, the susceptibility may be higher due to: (a) the large bandwidth utilized and (b) the requirement that the various wavelength components of the codes be synchronized at the point of modulation and encoding as well as after (optical) correlation. A computer simulation based on the nonlinear Schroedinger equation, developed to study optical networking on the National Transparent Optical Network (NTON), was modified to characterize the impairments on the propagation and decoding of W/T matrix codes over a link of the NTON. Three critical link impairments were identified by the simulation: group velocity dispersion (GVD); the flatness of the optical amplifier gain; and the slope of the GVD. Subsequently, experiments were carried out on the NTON link to verify and refine the simulations as well as to suggest improvements in the W/T matrix signal processing design. The NTON link measurements quantified the O-CDMA dispersion compensation requirements. Dispersion compensation management is essential to assure the performance of W/T matrix codes

  9. Gender & WDM in the Middle East & North Africa

    International Development Research Centre (IDRC) Digital Library (Canada)

    nkhaled

    WDM Research Report Series: Working Paper No. ... water-users themselves, coupled with an adequate enabling policy environment with the commitment ..... affect water quality, as well as, decrease food security and safety and are exposed ...

  10. Gaussian Process Regression for WDM System Performance Prediction

    DEFF Research Database (Denmark)

    Wass, Jesper; Thrane, Jakob; Piels, Molly

    2017-01-01

    Gaussian process regression is numerically and experimentally investigated to predict the bit error rate of a 24 x 28 CiBd QPSK WDM system. The proposed method produces accurate predictions from multi-dimensional and sparse measurement data.......Gaussian process regression is numerically and experimentally investigated to predict the bit error rate of a 24 x 28 CiBd QPSK WDM system. The proposed method produces accurate predictions from multi-dimensional and sparse measurement data....

  11. Protocol and networking design issues for local access WDM networks

    OpenAIRE

    Salvador, M.R.; Heemstra de Groot, S.M.; Niemegeers, I.G.M.M.

    1999-01-01

    This report gives an overview of some of the protocol and networking design issues that have been addressed in Flamingo, a major ongoing project which investigates the use of WDM optical technology in local access networks. Quality of service delivery and wavelength assignment are focused on in this report. A brief introduction to optical networks and WDM as well as a brief description of Flamingo are also included in this report.

  12. Export policies for multi-domain WDM networks

    DEFF Research Database (Denmark)

    Manolova, Anna Vasileva; Ruepp, Sarah Renée

    2010-01-01

    We analyze the performance of six export policies for a multi-domain routing protocol in WDM networks. We show that providing many AS-disjoint paths for survivability and load-balancing does not necessarily guarantee the lowest connection blocking......We analyze the performance of six export policies for a multi-domain routing protocol in WDM networks. We show that providing many AS-disjoint paths for survivability and load-balancing does not necessarily guarantee the lowest connection blocking...

  13. Vertical‐cavity surface‐emitting laser based digital coherent detection for multigigabit long reach passive optical links

    DEFF Research Database (Denmark)

    Rodes Lopez, Roberto; Jensen, Jesper Bevensee; Zibar, Darko

    2011-01-01

    We report on experimental demonstration of digital coherent detection based on a directly modulated vertical‐cavity surface‐emitting laser with bit rate up to 10 Gbps. This system allows a cooler‐less, free running, and unamplified transmission without optical dispersion compensation up to 105 km...... at 5 Gbps long reach passive optical links. © 2011 Wiley Periodicals, Inc. Microwave Opt Technol Lett 53:2462–2464, 2011; View this article online at wileyonlinelibrary.com. DOI 10.1002/mop.26331...

  14. Low-cost coherent receiver for long-reach optical access network using single-ended detection.

    Science.gov (United States)

    Zhang, Xuebing; Li, Zhaohui; Li, Jianping; Yu, Changyuan; Lau, Alan Pak Tao; Lu, Chao

    2014-09-15

    A low-cost coherent receiver using two 2×3 optical hybrids and single-ended detection is proposed for long-reach optical access network. This structure can detect the two polarization components of polarization division multiplexing (PDM) signals. Polarization de-multiplexing and signal-to-signal beat interference (SSBI) cancellation are realized by using only three photodiodes. Simulation results for 40 Gb/s PDM-OFDM transmissions indicate that the low-cost coherent receiver has 3.2 dB optical signal-to-noise ratio difference compared with the theoretical value.

  15. Experimental study of coexistence of multi-band OFDM-UWB and OFDM-baseband signals in long-reach PONs using directly modulated lasers.

    Science.gov (United States)

    Morgado, José A P; Fonseca, Daniel; Cartaxo, Adolfo V T

    2011-11-07

    Transmission of coexisting Orthogonal Frequency Division Multiplexing (OFDM)-baseband (BB) and multi-band OFDM-ultra-wideband (UWB) signals along long-reach passive optical networks using directly modulated lasers (DML) is experimentally demonstrated.When optimized modulation indexes are used, bit error ratios not exceeding 5 × 10⁻⁴ can be achieved by all (OFDM-BB and three OFDM-UWB sub-bands) signals for a reach of 100 km of standard single-mode fiber (SSMF) and optical signal-to-noise ratios not lower than 25dB@0.1 nm. It is experimentally shown that, for the SSMF reach of 100km, the optimized performance of coexisting OFDM-BB and OFDM-UWB signals is mainly imposed by the combination of two effects: the SSMF dispersion-induced nonlinear distortion of the OFDM-UWB signals caused by the OFDM-BB and OFDM-UWB signals, and the further degradation of the OFDM-UWB signals with higher frequency, due to the reduced DML bandwidth.

  16. Single Source 5-dimensional (Space-, Wavelength-, Time-, Polarization-, Quadrature-) 43 Tbit/s Data Transmission of 6 SDM × 6 WDM × 1.2 Tbit/s Nyquist-OTDM-PDM-QPSK

    DEFF Research Database (Denmark)

    Hu, Hao; Ye, Feihong; Medhin, Ashenafi Kiros

    2014-01-01

    We demonstrate 43-Tbit/s transmission over 67.4-km seven-core fiber using a single source. Each of the 6 outer cores carries 6 Nyquist-WDM channels using 320-Gbaud Nyquist- OTDM-PDM-QPSK 330-GHz spaced, and the center core carries 10-GHz clock pulses....

  17. On the fly all-optical packet switching based on hybrid WDM/OCDMA labeling scheme

    Science.gov (United States)

    Brahmi, Houssem; Giannoulis, Giannis; Menif, Mourad; Katopodis, Vasilis; Kalavrouziotis, Dimitrios; Kouloumentas, Christos; Groumas, Panos; Kanakis, Giannis; Stamatiadis, Christos; Avramopoulos, Hercules; Erasme, Didier

    2014-02-01

    We introduce a novel design of an all-optical packet routing node that allows for the selection and forwarding of optical packets based on the routing information contained in hybrid wavelength division multiplexing/optical code division multiple access (WDM/OCDMA) labels. A stripping paradigm of optical code-label is adopted. The router is built around an optical-code gate that consists in an optical flip-flop controlled by two fiber Bragg grating correlators and is combined with a Mach-Zehnder interferometer (MZI)-based forwarding gate. We experimentally verify the proof-of-principle operation of the proposed self-routing node under NRZ and OCDMA packet traffic conditions. The successful switching of elastic NRZ payload at 40 Gb/s controlled by DS-OCDMA coded labels and the forwarding operation of encoded data using EQC codes are presented. Proper auto-correlation functions are obtained with higher than 8.1 dB contrast ratio, suitable to efficiently trigger the latching device with a contrast ratio of 11.6 dB and switching times below 3.8 ns. Error-free operation is achieved with 1.5 dB penalty for 40 Gb/s NRZ data and with 2.1 dB penalty for DS-OCDMA packets. The scheme can further be applied to large-scale optical packet switching networks by exploiting efficient optical coders allocated at different WDM channels.

  18. WDM production with intense relativistic electrons

    Science.gov (United States)

    Coleman, Josh; Andrews, Heather; Klasky, Mark; Colgan, James; Burris-Mog, Trevor; Creveling, Dan; Miller, Craig; Welch, Dale; Berninger, Mike

    2016-10-01

    The production of warm dense matter (WDM) through collisional heating with intense relativistic electrons is underway. A 100-ns-long monochromatic bunch of electrons with energies of 19.1-19.8 MeV and currents of 0.2-1.7 kA is used to heat 100- μm-thick foils with Z measuring the equation of state with particle beams and benchmark numerical models. Measurements indicate the formation of a warm dense plasma near the end of the pulse, which is on the order of the beam size. These plasmas expand 5 mm in the first microsecond and slow down to 1018 cm-3. At these densities our plasma is collisionally dominated making it possible to spectrally model the density and temperature in LTE. Preliminary density gradient measurements will also be presented indicating the spatial extent of the solid density cutoff. This work was supported by the National Nuclear Se- curity Administration of the U.S. Department of Energy under Contract No. DE-AC52-06NA25396.

  19. Estudo de topologias para redes WDM-PON

    OpenAIRE

    Guilherme Enéas Vaz Silva

    2010-01-01

    A demanda de largura de banda exigida pelos usuários de redes de acesso vem aumentando rapidamente e a rede óptica passiva baseada em multiplexação por divisão de comprimento de onda (WDM-PON) tem se destacado como a tecnologia capaz de suprir essa demanda. Dessa forma, este trabalho conduz, inicialmente, uma comparação entre uma rede WDM-PON ideal e uma rede TDM-PON, discutindo também aspectos de segurança desta última, bem como estratégias de migração entre estes dois esquemas. Devido ao cu...

  20. Multichannel silicon WDM ring filters fabricated with DUV lithography

    Science.gov (United States)

    Lee, Jong-Moo; Park, Sahnggi; Kim, Gyungock

    2008-09-01

    We have fabricated 9-channel silicon wavelength-division-multiplexing (WDM) ring filters using 193 nm deep-ultraviolet (DUV) lithography and investigated the spectral properties of the ring filters by comparing the transmission spectra with and without an upper cladding. The average channel-spacing of the 9-channel WDM ring filter with a polymeric upper cladding is measured about 1.86 nm with the standard deviation of the channel-spacing about 0.34 nm. The channel crosstalk is about -30 dB, and the minimal drop loss is about 2 dB.

  1. Advanced integrated WDM system for POF communication

    Science.gov (United States)

    Haupt, M.; Fischer, U. H. P.

    2009-01-01

    Polymer Optical Fibres (POFs) show clear advantages compared to copper and glass fibres. In essence, POFs are inexpensive, space-saving and not susceptible to electromagnetic interference. Thus, the usage of POFs have become a reasonable alternative in short distance data communication. Today, POFs are applied in a wide number of applications due to these specific advantages. These applications include automotive communication systems and in-house-networks. State-of-the-art is to transmit data with only one channel over POF, this limits the bandwidth. To solve this problem, an integrated MUX/DEMUX-element for WDM over POF is designed and developed to use multiple channels. This integration leads to low costs, therefore this component is suitable for mass market applications. The fundamental idea is to separate the chromatic parts of the light in its monochromatic components by means of a grating based on an aspheric mirror. Due to the high NA of the POF the setup has to be designed in a 3D-approach. Therefore this setup cannot be compared with the planar solutions available on market, they would result high losses in the 3rd dimension. To achieve a fast and optimized design an optical simulation program is used. Particular attention has to be paid to the design of the POF as a light source in the simulation program and the optimisation of the grating. The following realization of the demultiplexer is planed to be done with injection molding. This technology offers easy and very economical processing. These advantages make this technology first choice for optical components in the low-cost array.

  2. Fiber

    Science.gov (United States)

    ... meals instead of white rice. Add beans (kidney, black, navy, and pinto) to rice dishes for even more fiber. Spice up salads with berries and almonds, chickpeas, cooked artichokes, and beans (kidney, black, navy, or pinto). Use whole-grain (corn or ...

  3. Vibration control of an IVVS long-reach deployer using unknown visual features from inside the ITER vessel

    Energy Technology Data Exchange (ETDEWEB)

    Dubus, G., E-mail: gregory.dubus@f4e.europa.e [Fusion for Energy, Remote Handling group, Josep Pla 2, Torres Diagonal Litoral B3, Barcelona E-08019 (Spain); David, O.; Measson, Y. [CEA LIST, Interactive Robotics Unit, 18 route du Panorama, BP6, Fontenay-aux-Roses F-92265 (France)

    2010-12-15

    The In-Vessel Viewing System (IVVS) project assumes that a long reach deployer equipped with a probe penetrates the ITER chamber to perform periodic inspections. By giving the operator the capability and flexibility to examine unplanned targets, man-in-the-loop technology would be very helpful. But vibrations due to the high flexibility of the structure are probably the main problem in such a master-slave mode, which therefore needs the integration of a high level compensation scheme. However the ITER RH equipment will be confronted with strong electromagnetic interferences as well as a cumulated radiation dose up to several MGy. Short of costly developments, these constraints limit the use of dedicated electronics such as accelerometers or strain gauges. Our main idea is to control the vibrational behaviour of the flexible carrier without considering any extra sensor apart from its embedded probe. In this pre-study we propose to use the kind of rad-hardened viewing system already developed for the AIA demonstrator in order to feed an oscillation observer with visual information. The visual data are extracted from the environment without a priori knowledge of the examined scene. Our approach is quite open-ended and can be extended to other flexible systems. Moreover it has been designed to damp the oscillatory behaviour of the arm whatever its origins may be. As a consequence it should yield good performance when vibrations result from a critical trajectory imposed by the operator, from an interaction with the environment, or from internal dynamics of the carried process, e.g. the rotating prism of the IVVS 3D Inspection System. Experimental results validate the proposed strategy.

  4. All-optical virtual private network system in OFDM based long-reach PON using RSOA re-modulation technique

    Science.gov (United States)

    Kim, Chang-Hun; Jung, Sang-Min; Kang, Su-Min; Han, Sang-Kook

    2015-01-01

    We propose an all-optical virtual private network (VPN) system in an orthogonal frequency division multiplexing (OFDM) based long reach PON (LR-PON). In the optical access network field, technologies based on fundamental upstream (U/S) and downstream (D/S) have been actively researched to accommodate explosion of data capacity. However, data transmission among the end users which is arisen from cloud computing, file-sharing and interactive game takes a large weight inside of internet traffic. Moreover, this traffic is predicted to increase more if Internet of Things (IoT) services are activated. In a conventional PON, VPN data is transmitted through ONU-OLT-ONU via U/S and D/S carriers. It leads to waste of bandwidth and energy due to O-E-O conversion in the OLT and round-trip propagation between OLT and remote node (RN). Also, it causes inevitable load to the OLT for electrical buffer, scheduling and routing. The network inefficiency becomes more critical in a LR-PON which has been researched as an effort to reduce CAPEX and OPEX through metro-access consolidation. In the proposed system, the VPN data is separated from conventional U/S and re-modulated on the D/S carrier by using RSOA in the ONUs to avoid bandwidth consumption of U/S and D/S unlike in previously reported system. Moreover, the transmitted VPN data is re-directed to the ONUs by wavelength selective reflector device in the RN without passing through the OLT. Experimental demonstration for the VPN communication system in an OFDM based LR-PON has been verified.

  5. Vibration control of an IVVS long-reach deployer using unknown visual features from inside the ITER vessel

    International Nuclear Information System (INIS)

    Dubus, G.; David, O.; Measson, Y.

    2010-01-01

    The In-Vessel Viewing System (IVVS) project assumes that a long reach deployer equipped with a probe penetrates the ITER chamber to perform periodic inspections. By giving the operator the capability and flexibility to examine unplanned targets, man-in-the-loop technology would be very helpful. But vibrations due to the high flexibility of the structure are probably the main problem in such a master-slave mode, which therefore needs the integration of a high level compensation scheme. However the ITER RH equipment will be confronted with strong electromagnetic interferences as well as a cumulated radiation dose up to several MGy. Short of costly developments, these constraints limit the use of dedicated electronics such as accelerometers or strain gauges. Our main idea is to control the vibrational behaviour of the flexible carrier without considering any extra sensor apart from its embedded probe. In this pre-study we propose to use the kind of rad-hardened viewing system already developed for the AIA demonstrator in order to feed an oscillation observer with visual information. The visual data are extracted from the environment without a priori knowledge of the examined scene. Our approach is quite open-ended and can be extended to other flexible systems. Moreover it has been designed to damp the oscillatory behaviour of the arm whatever its origins may be. As a consequence it should yield good performance when vibrations result from a critical trajectory imposed by the operator, from an interaction with the environment, or from internal dynamics of the carried process, e.g. the rotating prism of the IVVS 3D Inspection System. Experimental results validate the proposed strategy.

  6. Flexible Transport Network Expansion via Open WDM Interfaces

    DEFF Research Database (Denmark)

    Fagertun, Anna Manolova; Skjoldstrup, Bjarke

    2013-01-01

    This paper presents a successful test-bed implementation of a multi-vendor transport network interconnection via open WDM interfaces. The concept of applying Alien Wavelengths (AWs) for network expansion was successfully illustrated via deployment of multi-domain/multi-vendor end-to-end OTN servi...

  7. POLICY BRIEF 1 - WDM Criteria | CRDI - Centre de recherches pour ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    18 janv. 2012 ... Water demand management ― WDM ― can be hard to define. More an issue of policy than of technology, it is about managing and moderating our demands for good quality fresh water. It is less a matter of piping and pumps and more a tool for changing the ways we use water and the rates at which we ...

  8. WDM Question and Answers | CRDI - Centre de recherches pour le ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    Why is there growing concern about water issues in the MENA region? ... Sometimes it is easier to define what is WDM is not about than to define what it is about. ... You can take part in this on-going regional effort by writing articles and ...

  9. Five Wavelength DFB Fibre Laser Source for WDM Systems

    DEFF Research Database (Denmark)

    Hübner, Jörg; Varming, Poul; Kristensen, Martin

    1997-01-01

    Singlemode UV-induced distributed feedback (DFB) fibre lasers with a linewidth of lasers is verified by a 10 Gbit/s transmission experiment. Five DFB fibre lasers are cascaded and pumped by a single...... semiconductor laser, thereby forming a multiwavelength source for WDM systems...

  10. Protocol and networking design issues for local access WDM networks

    NARCIS (Netherlands)

    Salvador, M.R.; Heemstra de Groot, S.M.; Niemegeers, I.G.M.M.

    This report gives an overview of some of the protocol and networking design issues that have been addressed in Flamingo, a major ongoing project which investigates the use of WDM optical technology in local access networks. Quality of service delivery and wavelength assignment are focused on in this

  11. Performance Analysis of Long-Reach Coherent Detection OFDM-PON Downstream Transmission Using m-QAM-Mapped OFDM Signal

    Science.gov (United States)

    Pandey, Gaurav; Goel, Aditya

    2017-12-01

    In this paper, orthogonal frequency division multiplexing (OFDM)-passive optical network (PON) downstream transmission is demonstrated over different lengths of fiber at remote node (RN) for different m-QAM (quadrature amplitude modulation)-mapped OFDM signal (m=4, 16, 32 and 64) transmission from the central office (CO) for different data rates (10, 20 30 and 40 Gbps) using coherent detection at the user end or optical network unit (ONU). Investigation is performed with different number of subcarriers (32, 64, 128, 512 and 1,024), back-to-back optical signal-to-noise ratio (OSNR) along with transmitted and received constellation diagrams for m-QAM-mapped coherent OFDM downstream transmission at different speeds over different transmission distances. Received optical power is calculated for different bit error rates (BERs) at different speeds using m-QAM-mapped coherent detection OFDM downstream transmission. No dispersion compensation is utilized in between the fiber span. Simulation results suggest the different lengths and data rates that can be used for different m-QAM-mapped coherent detection OFDM downstream transmission, and the proposed system may be implemented in next-generation high-speed PONs (NG-PONs).

  12. High Speed and High Spatial Density Parameter Measurement Using Fiber Optic Sensing Technology

    Science.gov (United States)

    Parker, Allen R. Jr. (Inventor); Chan, Hon Man (Inventor); Richards, William Lance (Inventor); Piazza, Anthony (Inventor); Hamory, Philip J (Inventor)

    2017-01-01

    The present invention is an improved fiber optic sensing system (FOSS) having the ability to provide both high spatial resolution and high frequency strain measurements. The inventive hybrid FOSS fiber combines sensors from high acquisition speed and low spatial resolution Wavelength-Division Multiplexing (WDM) systems and from low acquisition speed and high spatial resolution Optical Frequency Domain Reflection (OFDR) systems. Two unique light sources utilizing different wavelengths are coupled with the hybrid FOSS fiber to generate reflected data from both the WDM sensors and OFDR sensors operating on a single fiber optic cable without incurring interference from one another. The two data sets are then de-multiplexed for analysis, optionally with conventionally-available WDM and OFDR system analyzers.

  13. All-optical ultra-high-speed OFDM to Nyquist-WDM conversion

    DEFF Research Database (Denmark)

    Guan, Pengyu; Røge, Kasper Meldgaard; Mulvad, Hans Christian Hansen

    2015-01-01

    We propose an all-optical ultra-high-speed OFDM to Nyquist-WDM conversion scheme based on complete OFT. An 8-subcarrier 640 Gbit/s DPSK OFDM super-channel is converted to eight 80-Gbit/s Nyquist-WDM channels with BER <10−9 performance for all channels.......We propose an all-optical ultra-high-speed OFDM to Nyquist-WDM conversion scheme based on complete OFT. An 8-subcarrier 640 Gbit/s DPSK OFDM super-channel is converted to eight 80-Gbit/s Nyquist-WDM channels with BER

  14. All-optical WDM Regeneration of DPSK Signals using Optical Fourier Transformation and Phase Sensitive Amplification

    DEFF Research Database (Denmark)

    Guan, Pengyu; Røge, Kasper Meldgaard; Kjøller, Niels-Kristian

    2015-01-01

    We propose a novel all-optical WDM regeneration scheme for DPSK signals based on optical Fourier transformation and phase sensitive amplification. Phase regeneration of a WDM signal consisting of 4x10-Gbit/s phase noise degraded DPSK channels is demonstrated for the first time.......We propose a novel all-optical WDM regeneration scheme for DPSK signals based on optical Fourier transformation and phase sensitive amplification. Phase regeneration of a WDM signal consisting of 4x10-Gbit/s phase noise degraded DPSK channels is demonstrated for the first time....

  15. WDM Systems and Networks Modeling, Simulation, Design and Engineering

    CERN Document Server

    Ellinas, Georgios; Roudas, Ioannis

    2012-01-01

    WDM Systems and Networks: Modeling, Simulation, Design and Engineering provides readers with the basic skills, concepts, and design techniques used to begin design and engineering of optical communication systems and networks at various layers. The latest semi-analytical system simulation techniques are applied to optical WDM systems and networks, and a review of the various current areas of optical communications is presented. Simulation is mixed with experimental verification and engineering to present the industry as well as state-of-the-art research. This contributed volume is divided into three parts, accommodating different readers interested in various types of networks and applications. The first part of the book presents modeling approaches and simulation tools mainly for the physical layer including transmission effects, devices, subsystems, and systems), whereas the second part features more engineering/design issues for various types of optical systems including ULH, access, and in-building system...

  16. Optical switching properties of VO2 films driven by using WDM-aligned lasers

    International Nuclear Information System (INIS)

    Tsai, K.Y.; Wu, F.-H.; Shieh, H.-P.D.; Chin, T.-S.

    2006-01-01

    Vanadium dioxide (VO 2 ) film had been demonstrated a high speed IR shutter driven by total optical modulation. However, it usually required a higher power heating laser of high power and precise optical systems to cover the probe beam on the sample with a heating beam of larger area. A new optical system, simply composed of wavelength division multiplexing (WDM), fiber lens or convex lens system, and a glass sheet with VO 2 thin film on it, was easily assembled to utilize VO 2 film as an IR shutter, implying the possibility to highly miniaturize the VO 2 -based optical shutter. A permanent low-transmittance (PLT) region forms on the film within the probe beam, resulting in a decrease in average power of the probe beam. Another ring-type switching area (switching ring) forms around the PLT region, resulting in the transmittance switching of the probe beam synchronously with the heating signal. VO 2 films can be switched with the highest rate of a continuous square heating signal of 3 mW at 120 kHz. A heating pulse of 0.7 ns and 13 mW can be used to stimulate an IR pulse with fiber lens

  17. Upstream vertical cavity surface-emitting lasers for fault monitoring and localization in WDM passive optical networks

    Science.gov (United States)

    Wong, Elaine; Zhao, Xiaoxue; Chang-Hasnain, Connie J.

    2008-04-01

    As wavelength division multiplexed passive optical networks (WDM-PONs) are expected to be first deployed to transport high capacity services to business customers, real-time knowledge of fiber/device faults and the location of such faults will be a necessity to guarantee reliability. Nonetheless, the added benefit of implementing fault monitoring capability should only incur minimal cost associated with upgrades to the network. In this work, we propose and experimentally demonstrate a fault monitoring and localization scheme based on a highly-sensitive and potentially low-cost monitor in conjunction with vertical cavity surface-emitting lasers (VCSELs). The VCSELs are used as upstream transmitters in the WDM-PON. The proposed scheme benefits from the high reflectivity of the top distributed Bragg reflector (DBR) mirror of optical injection-locked (OIL) VCSELs to reflect monitoring channels back to the central office for monitoring. Characterization of the fault monitor demonstrates high sensitivity, low bandwidth requirements, and potentially low output power. The added advantage of the proposed fault monitoring scheme incurs only a 0.5 dB penalty on the upstream transmissions on the existing infrastructure.

  18. Ultra-wideband WDM VCSEL arrays by lateral heterogeneous integration

    Science.gov (United States)

    Geske, Jon

    Advancements in heterogeneous integration are a driving factor in the development of evermore sophisticated and functional electronic and photonic devices. Such advancements will merge the optical and electronic capabilities of different material systems onto a common integrated device platform. This thesis presents a new lateral heterogeneous integration technology called nonplanar wafer bonding. The technique is capable of integrating multiple dissimilar semiconductor device structures on the surface of a substrate in a single wafer bond step, leaving different integrated device structures adjacent to each other on the wafer surface. Material characterization and numerical simulations confirm that the material quality is not compromised during the process. Nonplanar wafer bonding is used to fabricate ultra-wideband wavelength division multiplexed (WDM) vertical-cavity surface-emitting laser (VCSEL) arrays. The optically-pumped VCSEL arrays span 140 nm from 1470 to 1610 nm, a record wavelength span for devices operating in this wavelength range. The array uses eight wavelength channels to span the 140 nm with all channels separated by precisely 20 nm. All channels in the array operate single mode to at least 65°C with output power uniformity of +/- 1 dB. The ultra-wideband WDM VCSEL arrays are a significant first step toward the development of a single-chip source for optical networks based on coarse WDM (CWDM), a low-cost alternative to traditional dense WDM. The CWDM VCSEL arrays make use of fully-oxidized distributed Bragg reflectors (DBRs) to provide the wideband reflectivity required for optical feedback and lasing across 140 rim. In addition, a novel optically-pumped active region design is presented. It is demonstrated, with an analytical model and experimental results, that the new active-region design significantly improves the carrier uniformity in the quantum wells and results in a 50% lasing threshold reduction and a 20°C improvement in the peak

  19. Solutions for 400 Gbit/s inter data center WDM transmission

    DEFF Research Database (Denmark)

    Dochhan, Annika; Eiselt, Nicklas; Griesser, Helmut

    2016-01-01

    We review some currently discussed solutions for 400 Gbit/s inter-data center WDM transmission for up to 100 km. We focus on direct detected solutions, namely PAM4 and DMT, and present two WDM systems based on these formats....

  20. Twelve factors critical to the success of WDM at the policy and at the ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    IDRC CRDI

    and monetary units. A WDM agency has to be able to show results (such as water savings measured in cubic meters for example) in order to compete for attention with older and better established supply-side agencies. Such data may be hard to find, or estimate, but it can be very persuasive in furthering the WDM agenda.

  1. Self-homodyne optical OFDM for broadband WDM-PONs with crosstalk-free remodulation and enhanced tolerance to Rayleigh noise

    Science.gov (United States)

    Lyu, WeiChao; Wang, Andong; Xie, Dequan; Zhu, Long; Guan, Xun; Wang, Jian; Xu, Jing

    2018-05-01

    We propose a novel architecture for wavelength-division-multiplexed passive optical network (WDM-PON) that can simultaneously circumvent both remodulation crosstalk and Rayleigh noise, based on self-homodyne detection and optical orthogonal frequency-division multiplexing (OFDM) remodulation. The proposed self-homodyne detection at optical network unit (ONU) requires neither frequency offset compensation nor phase noise compensation, and thus can significantly reduce system complexity and power consumption. Bidirectional transmission of 12.5 Gb/s down- and up-stream signals, via single 25 km single-mode fiber without dispersion compensation, is demonstrated in a proof-of-concept experiment.

  2. High capacity fiber optic sensor networks using hybrid multiplexing techniques and their applications

    Science.gov (United States)

    Sun, Qizhen; Li, Xiaolei; Zhang, Manliang; Liu, Qi; Liu, Hai; Liu, Deming

    2013-12-01

    Fiber optic sensor network is the development trend of fiber senor technologies and industries. In this paper, I will discuss recent research progress on high capacity fiber sensor networks with hybrid multiplexing techniques and their applications in the fields of security monitoring, environment monitoring, Smart eHome, etc. Firstly, I will present the architecture of hybrid multiplexing sensor passive optical network (HSPON), and the key technologies for integrated access and intelligent management of massive fiber sensor units. Two typical hybrid WDM/TDM fiber sensor networks for perimeter intrusion monitor and cultural relics security are introduced. Secondly, we propose the concept of "Microstructure-Optical X Domin Refecltor (M-OXDR)" for fiber sensor network expansion. By fabricating smart micro-structures with the ability of multidimensional encoded and low insertion loss along the fiber, the fiber sensor network of simple structure and huge capacity more than one thousand could be achieved. Assisted by the WDM/TDM and WDM/FDM decoding methods respectively, we built the verification systems for long-haul and real-time temperature sensing. Finally, I will show the high capacity and flexible fiber sensor network with IPv6 protocol based hybrid fiber/wireless access. By developing the fiber optic sensor with embedded IPv6 protocol conversion module and IPv6 router, huge amounts of fiber optic sensor nodes can be uniquely addressed. Meanwhile, various sensing information could be integrated and accessed to the Next Generation Internet.

  3. Ultra-high capacity WDM-SDM optical access network with self-homodyne detection downstream and 32QAM-FBMC upstream.

    Science.gov (United States)

    Feng, Zhenhua; Xu, Liang; Wu, Qiong; Tang, Ming; Fu, Songnian; Tong, Weijun; Shum, Perry Ping; Liu, Deming

    2017-03-20

    Towards 100G beyond large-capacity optical access networks, wavelength division multiplexing (WDM) techniques incorporating with space division multiplexing (SDM) and affordable spectrally efficient advanced modulation formats are indispensable. In this paper, we proposed and experimentally demonstrated a cost-efficient multicore fiber (MCF) based hybrid WDM-SDM optical access network with self-homodyne coherent detection (SHCD) based downstream (DS) and direct detection optical filter bank multi carrier (DDO-FBMC) based upstream (US). In the DS experiments, the inner core of the 7-core fiber is used as a dedicated channel to deliver the local oscillator (LO) lights while the other 6 outer cores are used to transmit 4 channels of wavelength multiplexed 200-Gb/s PDM-16QAM-OFDM signals. For US transmission, 4 wavelengths with channel spacing of 100 GHz are intensity modulated with 30 Gb/s 32-QAM-FBMC and directly detected by a ~7 GHz bandwidth receiver after transmission along one of the outer core. The results show that a 4 × 6 × 200-Gb/s DS transmission can be realized over 37 km 7-core fiber without carrier frequency offset (CFO) and phase noise (PN) compensation even using 10 MHz linewidth DFB lasers. The SHCD based on MCF provides a compromise and cost efficient scheme between conventional intradyne coherent detection and intensity modulation and direct detection (IM/DD) schemes. Both US and DS have acceptable BER performance and high spectral efficiency.

  4. WDM-PON-compatible system for simultaneous distribution of gigabit baseband and wireless ultrawideband services with flexible bandwidth allocation

    DEFF Research Database (Denmark)

    Pham, Tien Thang; Yu, Xianbin; Gibbon, Timothy Braidwood

    2011-01-01

    In this paper, a novel and simple scheme to realize flexible access for gigabit wireline and impulse radio ultrawideband (IR-UWB) wireless services is proposed. The UWB signals are generated by multi-carrier upconverting and reshaping the baseband signals.The proposed system was experimentally...... demonstrated with the performances of 2.0-Gbps data in both baseband and UWB formats after 46-km single mode fiber transmission and further 0.5-m wireless for UWB data. The flexibility of the system is confirmed by investigating the system performance at different data rates including 1.0 Gbps and 1.6 Gbps....... Optical wavelength independency and data-rate variability of UWB signal generation makes the system attractive for potential wireline and wireless applications in existing WDM-PON systems....

  5. Bandwidth Allocation Method by Service for WDM EPON

    Institute of Scientific and Technical Information of China (English)

    Yongseok; Chang; Changgyu; Choi; Jonghoon; Eom; Sungho; Kim

    2003-01-01

    A WDM(Wavelength Division Multiplexing) EPON(Ethernet Passive Optical Network) is an economical and efficient access network that has attracted significant research attention in recent years. A MAC(Media Access Control) Protocol of PON is based on TDMA(Time Division Multiple Access) basically, we can classify this protocol into a fixed length slot assignment method suitable for leased line supporting Qos(Quality of Service) and a variable length slot assignment method suitable for LAN/MAN with the best ...

  6. Long-reach articulated robots for inspection and mini-invasive interventions in hazardous environments: Recent robotics research, qualification testing, and tool developments

    International Nuclear Information System (INIS)

    Perrot, Yann; Kammerer, Nolwenn; Measson, Yvan; Verney, Alexandre; Gargiulo, Laurent; Houry, Michael; Keller, Delphine; Piolain, Gerard

    2012-01-01

    The Interactive Robotics Laboratory of CEA LIST is in charge of the development of remote handling technologies to meet energy industry requirements. This paper reports the research and development activities in advanced robotics systems for inspection or light intervention in hazardous environments with limited access such as blind hot cells in the nuclear industry or the thermonuclear experimental Tokamak fusion reactor. A long-reach carrier robot called the articulated inspection arm (AIA) and diagnostics and tools for inspection or intervention are described. Finally experimental field tests are presented and actual challenges in modeling the robot's flexibilities are discussed. (authors)

  7. A slotted access control protocol for metropolitan WDM ring networks

    Science.gov (United States)

    Baziana, P. A.; Pountourakis, I. E.

    2009-03-01

    In this study we focus on the serious scalability problems that many access protocols for WDM ring networks introduce due to the use of a dedicated wavelength per access node for either transmission or reception. We propose an efficient slotted MAC protocol suitable for WDM ring metropolitan area networks. The proposed network architecture employs a separate wavelength for control information exchange prior to the data packet transmission. Each access node is equipped with a pair of tunable transceivers for data communication and a pair of fixed tuned transceivers for control information exchange. Also, each access node includes a set of fixed delay lines for synchronization reasons; to keep the data packets, while the control information is processed. An efficient access algorithm is applied to avoid both the data wavelengths and the receiver collisions. In our protocol, each access node is capable of transmitting and receiving over any of the data wavelengths, facing the scalability issues. Two different slot reuse schemes are assumed: the source and the destination stripping schemes. For both schemes, performance measures evaluation is provided via an analytic model. The analytical results are validated by a discrete event simulation model that uses Poisson traffic sources. Simulation results show that the proposed protocol manages efficient bandwidth utilization, especially under high load. Also, comparative simulation results prove that our protocol achieves significant performance improvement as compared with other WDMA protocols which restrict transmission over a dedicated data wavelength. Finally, performance measures evaluation is explored for diverse numbers of buffer size, access nodes and data wavelengths.

  8. Digital non-linear equalization for flexible capacity ultradense WDM channels for metro core networking

    DEFF Research Database (Denmark)

    Arlunno, Valeria; Zhang, Xu; Larsen, Knud J.

    2011-01-01

    carriers, we demonstrate that a digital non-linear equalization allow to mitigate inter-channel interference and improve overall system performance in terms of OSNR. Evaluation of the algorithm and comparison with an ultradense WDM system with coherent carriers generated from a single laser are also......An experimental demonstration of Ultradense WDM with advanced digital signal processing is presented. The scheme proposed allows the use of independent tunable DFB lasers spaced at 12.5 GHz for ultradense WDM PM-QPSK flexible capacity channels for metro core networking. To allocate extremely closed...

  9. Low-peak-to-average power ratio and low-complexity asymmetrically clipped optical orthogonal frequency-division multiplexing uplink transmission scheme for long-reach passive optical network.

    Science.gov (United States)

    Zhou, Ji; Qiao, Yaojun

    2015-09-01

    In this Letter, we propose a discrete Hartley transform (DHT)-spread asymmetrically clipped optical orthogonal frequency-division multiplexing (DHT-S-ACO-OFDM) uplink transmission scheme in which the multiplexing/demultiplexing process also uses the DHT algorithm. By designing a simple encoding structure, the computational complexity of the transmitter can be reduced from O(Nlog(2)(N)) to O(N). At the probability of 10(-3), the peak-to-average power ratio (PAPR) of 2-ary pulse amplitude modulation (2-PAM)-modulated DHT-S-ACO-OFDM is approximately 9.7 dB lower than that of 2-PAM-modulated conventional ACO-OFDM. To verify the feasibility of the proposed scheme, a 4-Gbit/s DHT-S-ACO-OFDM uplink transmission scheme with a 1∶64 way split has been experimentally implemented using 100-km standard single-mode fiber (SSMF) for a long-reach passive optical network (LR-PON).

  10. Enhanced noise tolerance for 10 Gb/s Bi-directional cross-wavelength reuse colorless WDM-PON by using spectrally shaped OFDM signals

    Science.gov (United States)

    Choudhury, Pallab K.

    2018-05-01

    Spectrally shaped orthogonal frequency division multiplexing (OFDM) signal for symmetric 10 Gb/s cross-wavelength reuse reflective semiconductor optical amplifier (RSOA) based colorless wavelength division multiplexed passive optical network (WDM-PON) is proposed and further analyzed to support broadband services of next generation high speed optical access networks. The generated OFDM signal has subcarriers in separate frequency ranges for downstream and upstream, such that the re-modulation noise can be effectively minimized in upstream data receiver. Moreover, the cross wavelength reuse approach improves the tolerance against Rayleigh backscattering noise due to the propagation of different wavelengths in the same feeder fiber. The proposed WDM-PON is successfully demonstrated for 25 km fiber with 16-QAM (quadrature amplitude modulation) OFDM signal having bandwidth of 2.5 GHz for 10 Gb/s operation and subcarrier frequencies in 3-5.5 GHz and DC-2.5 GHz for downstream (DS) and upstream (US) transmission respectively. The result shows that the proposed scheme maintains a good bit error rate (BER) performance below the forward error correction (FEC) limit of 3.8 × 10-3 at acceptable receiver sensitivity and provides a high resilience against re-modulation and Rayleigh backscattering noises as well as chromatic dispersion.

  11. Fiber-distributed feedback lasers for high-speed wavelength-division multiplexed networks

    DEFF Research Database (Denmark)

    Sejka, Milan; Hübner, Jörg; Varming, Poul

    1996-01-01

    Summary form only given. In conclusion, we have demonstrated that fiber DFB lasers constitute an excellent alternative to commercially available semiconductor DFB lasers. We have also shown that two fiber DFB lasers can be spliced together without any BER power penalty. Therefore, we suggest...... the possibility of using a single pump source for pumping a WDM laser array consisting of a number of fiber lasers spliced in series....

  12. Performance Analysis of a Threshold-Based Parallel Multiple Beam Selection Scheme for WDM FSO Systems

    KAUST Repository

    Nam, Sung Sik; Alouini, Mohamed-Slim; Ko, Young-Chai

    2018-01-01

    In this paper, we statistically analyze the performance of a threshold-based parallel multiple beam selection scheme for a free-space optical (FSO) based system with wavelength division multiplexing (WDM) in cases where a pointing error has occurred

  13. A reconfigurable all-optical VPN based on XGM effect of SOA in WDM PON

    Science.gov (United States)

    Hu, Xiaofeng; Zhang, Liang; Cao, Pan; Wang, Tao; Su, Yikai

    2010-12-01

    We propose and experimentally demonstrate a reconfigurable all-optical VPN scheme enabling intercommunications among different ONUs in a WDM PON. Reconfiguration is realized by dynamically setting wavelength conversion of optical VPN signal using a SOA in the OLT.

  14. SDN-enabled dynamic WDM networks to address routing information inaccuracy

    CSIR Research Space (South Africa)

    Ravhuanzwo, Lusani

    2016-11-01

    Full Text Available Large dynamic wavelength-division multiplexed (WDM) networks based on the distributed control mechanism are susceptible to routing information inaccuracies. Factors such as non-negligible propagation delays, infrequent network state updates...

  15. A new architecture and MAC protocol for fully flexible hybrid WDM/TDM PON

    NARCIS (Netherlands)

    Das, G.; Lannoo, B.; Jung, H.D.; Koonen, A.M.J.; Colle, D.; Pickavet, M.; Demeester, P.

    2009-01-01

    In this paper we propose a novel architecture and MAC protocol for a scalable, cost effective WDM / TDM PON providing fully flexible dynamic bandwidth allocation for upstream and downstream data transmission.

  16. Remotely controllable WDM-PON technology for wireless fronthaul/backhaul application

    DEFF Research Database (Denmark)

    Eiselt, Michael H.; Wagner, Christoph; Lawin, Mirko

    2016-01-01

    Low-cost WDM-PON solutions for fronthaul and backhaul applications will include remotely controlled tail-end transceivers. We report on control aspects of these transceivers and how standardization is evolving to enable these applications.......Low-cost WDM-PON solutions for fronthaul and backhaul applications will include remotely controlled tail-end transceivers. We report on control aspects of these transceivers and how standardization is evolving to enable these applications....

  17. Real time algorithm temperature compensation in tunable laser / VCSEL based WDM-PON system

    DEFF Research Database (Denmark)

    Iglesias Olmedo, Miguel; Rodes Lopez, Roberto; Pham, Tien Thang

    2012-01-01

    We report on a real time experimental validation of a centralized algorithm for temperature compensation of tunable laser/VCSEL at ONU and OLT, respectively. Locking to a chosen WDM channel is shown for temperature changes over 40°C.......We report on a real time experimental validation of a centralized algorithm for temperature compensation of tunable laser/VCSEL at ONU and OLT, respectively. Locking to a chosen WDM channel is shown for temperature changes over 40°C....

  18. Optical fronthauling for 5G mobile: A perspective of passive metro WDM technology

    DEFF Research Database (Denmark)

    Zou, Shihuan Jim; Wagner, Christoph; Eiselt, Michael

    2017-01-01

    We discuss the necessity of passive WDM technology in the 5G fronthaul application. The proof-of-concept field trial showed that the proposed system integrated seamlessly with the current wireless equipment and had no impact on services.......We discuss the necessity of passive WDM technology in the 5G fronthaul application. The proof-of-concept field trial showed that the proposed system integrated seamlessly with the current wireless equipment and had no impact on services....

  19. Novel OSNR Monitoring Technique in Dense WDM Systems using Inherently Generated CW Monitoring Channels

    DEFF Research Database (Denmark)

    Petersen, Martin Nordal

    2007-01-01

    We present a simple, yet effective OSNR monitoring technique based on an inherent effect in the optical modulator. Highly accurate OSNR monitoring is demonstrated in a 40 Gb/s dense WDM system with 50 GHz channel spacing.......We present a simple, yet effective OSNR monitoring technique based on an inherent effect in the optical modulator. Highly accurate OSNR monitoring is demonstrated in a 40 Gb/s dense WDM system with 50 GHz channel spacing....

  20. Polarization Insensitive One-to-Six WDM Multicasting in a Silicon Nanowire

    DEFF Research Database (Denmark)

    Pu, Minhao; Hu, Hao; Peucheret, Christophe

    2012-01-01

    We present polarization insensitive one-to-six WDM multicasting based on nondegenerate four-wave mixing in a silicon nanowire with angled-pump scheme. Bit-error rate measurements are performed and error-free operation is achieved.......We present polarization insensitive one-to-six WDM multicasting based on nondegenerate four-wave mixing in a silicon nanowire with angled-pump scheme. Bit-error rate measurements are performed and error-free operation is achieved....

  1. An efficient mechanism for dynamic multicast traffic grooming in overlay IP/MPLS over WDM networks

    Science.gov (United States)

    Yu, Xiaojun; Xiao, Gaoxi; Cheng, Tee Hiang

    2014-08-01

    This paper proposes an efficient overlay multicast provisioning (OMP) mechanism for dynamic multicast traffic grooming in overlay IP/MPLS over WDM networks. To facilitate request provisioning, OMP jointly utilizes a data learning (DL) scheme on the IP/MPLS layer for logical link cost estimation, and a lightpath fragmentation (LPF) based method on the WDM layer for improving resource sharing in grooming process. Extensive simulations are carried out to evaluate the performance of OMP mechanism under different traffic loads, with either limited or unlimited port resources. Simulation results demonstrate that OMP significantly outperforms the existing methods. To evaluate the respective influences of the DL scheme and the LPF method on OMP performance, provisioning mechanisms only utilizing either the IP/MPLS layer DL scheme or the WDM layer LPF method are also devised. Comparison results show that both DL and LPF methods help improve OMP blocking performance, and contribution from the DL scheme is more significant when the fixed routing and first-fit wavelength assignment (RWA) strategy is adopted on the WDM layer. Effects of a few other factors, including definition of connection cost to be reported by the WDM layer to the IP/MPLS layer and WDM-layer routing method, on OMP performance are also evaluated.

  2. Fiber-optic communication systems

    CERN Document Server

    Agrawal, Govind P

    2010-01-01

    This book provides a comprehensive account of fiber-optic communication systems. The 3rd edition of this book is used worldwide as a textbook in many universities. This 4th edition incorporates recent advances that have occurred, in particular two new chapters. One deals with the advanced modulation formats (such as DPSK, QPSK, and QAM) that are increasingly being used for improving spectral efficiency of WDM lightwave systems. The second chapter focuses on new techniques such as all-optical regeneration that are under development and likely to be used in future communication systems. All othe

  3. Information rates of next-generation long-haul optical fiber systems using coded modulation

    NARCIS (Netherlands)

    Liga, G.; Alvarado, A.; Agrell, E.; Bayvel, P.

    2017-01-01

    A comprehensive study of the coded performance of long-haul spectrally-efficient WDM optical fiber transmission systems with different coded modulation decoding structures is presented. Achievable information rates are derived for three different square QAM formats and the optimal format is

  4. Silicon photonics WDM transmitter with single section semiconductor mode-locked laser

    Science.gov (United States)

    Müller, Juliana; Hauck, Johannes; Shen, Bin; Romero-García, Sebastian; Islamova, Elmira; Azadeh, Saeed Sharif; Joshi, Siddharth; Chimot, Nicolas; Moscoso-Mártir, Alvaro; Merget, Florian; Lelarge, François; Witzens, Jeremy

    2015-04-01

    We demonstrate a wavelength domain-multiplexed (WDM) optical link relying on a single section semiconductor mode-locked laser (SS-MLL) with quantum dash (Q-Dash) gain material to generate 25 optical carriers spaced by 60.8 GHz, as well as silicon photonics (SiP) resonant ring modulators (RRMs) to modulate individual optical channels. The link requires optical reamplification provided by an erbium-doped fiber amplifier (EDFA) in the system experiments reported here. Open eye diagrams with signal quality factors (Q-factors) above 7 are measured with a commercial receiver (Rx). For higher compactness and cost effectiveness, reamplification of the modulated channels with a semiconductor optical amplifier (SOA) operated in the linear regime is highly desirable. System and device characterization indicate compatibility with the latter. While we expect channel counts to be primarily limited by the saturation output power level of the SOA, we estimate a single SOA to support more than eight channels. Prior to describing the system experiments, component design and detailed characterization results are reported including design and characterization of RRMs, ring-based resonant optical add-drop multiplexers (RR-OADMs) and thermal tuners, S-parameters resulting from the interoperation of RRMs and RR-OADMs, and characterization of Q-Dash SS-MLLs reamplified with a commercial SOA. Particular emphasis is placed on peaking effects in the transfer functions of RRMs and RR-OADMs resulting from transient effects in the optical domain, as well as on the characterization of SS-MLLs in regard to relative intensity noise (RIN), stability of the modes of operation, and excess noise after reamplification.

  5. All-optical OXC transition strategy from WDM optical network to elastic optical network.

    Science.gov (United States)

    Chen, Xin; Li, Juhao; Guo, Bingli; Zhu, Paikun; Tang, Ruizhi; Chen, Zhangyuan; He, Yongqi

    2016-02-22

    Elastic optical network (EON) has been proposed recently as a spectrum-efficient optical layer to adapt to rapidly-increasing traffic demands instead of current deployed wavelength-division-multiplexing (WDM) optical network. In contrast with conventional WDM optical cross-connect (OXCs) based on wavelength selective switches (WSSs), the EON OXCs are based on spectrum selective switches (SSSs) which are much more expensive than WSSs, especially for large-scale switching architectures. So the transition cost from WDM OXCs to EON OXCs is a major obstacle to realizing EON. In this paper, we propose and experimentally demonstrate a transition OXC (TOXC) structure based on 2-stage cascading switching architectures, which make full use of available WSSs in current deployed WDM OXCs to reduce number and port count of required SSSs. Moreover, we propose a contention-aware spectrum allocation (CASA) scheme for EON built with the proposed TOXCs. We show by simulation that the TOXCs reduce the network capital expenditure transiting from WDM optical network to EON about 50%, with a minor traffic blocking performance degradation and about 10% accommodated traffic number detriment compared with all-SSS EON OXC architectures.

  6. Distributed Weak Fiber Bragg Grating Vibration Sensing System Based on 3 × 3 Fiber Coupler

    Science.gov (United States)

    Li, Wei; Zhang, Jian

    2018-06-01

    A novel distributed weak fiber Bragg gratings (FBGs) vibration sensing system has been designed to overcome the disadvantages of the conventional methods for optical fiber sensing networking, which are: low signal intensity in the usually adopted time-division multiplexing (TDM) technology, insufficient quantity of multiplexed FBGs in the wavelength-division multiplexing (WDM) technology, and that the mixed WDM/TDM technology measures only the physical parameters of the FBG locations but cannot perform distributed measurement over the whole optical fiber. This novel system determines vibration events in the optical fiber line according to the intensity variation of the interference signals between the adjacent weak FBG reflected signals and locates the vibration points accurately using the TDM technology. It has been proven by tests that this system performs vibration signal detection and demodulation in a way more convenient than the conventional methods for the optical fiber sensing system. It also measures over the whole optical fiber, therefore, distributed measurement is fulfilled, and the system locating accuracy is up to 20 m, capable of detecting any signals of whose drive signals lower limit voltage is 0.2 V while the frequency range is 3 Hz‒1 000 Hz. The system has the great practical significance and application value for perimeter surveillance systems.

  7. System performance of a 4-channel PHASAR WDM receiver operating at 1.2 Gbit/s

    NARCIS (Netherlands)

    Steenbergen, C.A.M.; van Deventer, M.O.; Vreede, de L.C.N.; Dam, van C.; Smit, M.K.; Verbeek, B.H.

    1996-01-01

    Phased arrays are important key components in wavelength-division multiplexing (WDM) systems. We have realized a 4-channel WDM receiver combining a phased array with photodetectors on InP with a Si bipolar transimpedance amplifier. The channels are spaced at 2.0 nm with a 1.0-nm flat passband. On

  8. All-Optical Ultra-High-Speed OFDM to Nyquist-WDM Conversion Based on Complete Optical Fourier Transformation

    DEFF Research Database (Denmark)

    Guan, Pengyu; Røge, Kasper Meldgaard; Mulvad, Hans Christian Hansen

    2016-01-01

    We propose a novel all-optical ultra-high-speed orthogonal frequency-division multiplexing (OFDM) to Nyquist wavelength-division multiplexing (Nyquist-WDM) conversion scheme, achieved by exchanging the temporal and spectral profiles using a complete optical Fourier transformation (OFT). This scheme...... enables high-speed OFDM to Nyquist-WDM conversion without complex optical/electrical/optical conversion. The all-optical OFDM transmitter is based on the generation of OFDM symbols with a low duty cycle by rectangular temporal gating, which in combination with optical time-division multiplexing yields...... a higher symbol-rate OFDM signal. In the receiver, the converted Nyquist-WDM super-channel is WDM demultiplexed into individual Nyquist-WDM channels using a rectangular optical bandpass filter, followed by optical sampling at the intersymbol-interference free point. In the experimental demonstration...

  9. Performance evaluation of distributed wavelength assignment in WDM optical networks

    Science.gov (United States)

    Hashiguchi, Tomohiro; Wang, Xi; Morikawa, Hiroyuki; Aoyama, Tomonori

    2004-04-01

    In WDM wavelength routed networks, prior to a data transfer, a call setup procedure is required to reserve a wavelength path between the source-destination node pairs. A distributed approach to a connection setup can achieve a very high speed, while improving the reliability and reducing the implementation cost of the networks. However, along with many advantages, several major challenges have been posed by the distributed scheme in how the management and allocation of wavelength could be efficiently carried out. In this thesis, we apply a distributed wavelength assignment algorithm named priority based wavelength assignment (PWA) that was originally proposed for the use in burst switched optical networks to the problem of reserving wavelengths of path reservation protocols in the distributed control optical networks. Instead of assigning wavelengths randomly, this approach lets each node select the "safest" wavelengths based on the information of wavelength utilization history, thus unnecessary future contention is prevented. The simulation results presented in this paper show that the proposed protocol can enhance the performance of the system without introducing any apparent drawbacks.

  10. Dynamic multicast routing scheme in WDM optical network

    Science.gov (United States)

    Zhu, Yonghua; Dong, Zhiling; Yao, Hong; Yang, Jianyong; Liu, Yibin

    2007-11-01

    During the information era, the Internet and the service of World Wide Web develop rapidly. Therefore, the wider and wider bandwidth is required with the lower and lower cost. The demand of operation turns out to be diversified. Data, images, videos and other special transmission demands share the challenge and opportunity with the service providers. Simultaneously, the electrical equipment has approached their limit. So the optical communication based on the wavelength division multiplexing (WDM) and the optical cross-connects (OXCs) shows great potentials and brilliant future to build an optical network based on the unique technical advantage and multi-wavelength characteristic. In this paper, we propose a multi-layered graph model with inter-path between layers to solve the problem of multicast routing wavelength assignment (RWA) contemporarily by employing an efficient graph theoretic formulation. And at the same time, an efficient dynamic multicast algorithm named Distributed Message Copying Multicast (DMCM) mechanism is also proposed. The multicast tree with minimum hops can be constructed dynamically according to this proposed scheme.

  11. λ-Selection Strategy in C+L Band 1-Pbit/s (448 WDM/19-Core/128 Gbit/s/channel) Flex-Grid Space Division Multiplexed Transmission

    DEFF Research Database (Denmark)

    Asif, Rameez; Ye, Feihong; Morioka, Toshio

    2015-01-01

    In this paper, an inter-core crosstalk based wavelength selection scheme has been proposed for flex-grid superchannels in space division multiplexed transmission. The two λ-selection strategies are categorized as: (a) aligned wavelength super-channels (Aλ-SCs), where all super-channels are placed...... at same λ in all the cores and (b) interleaved wavelength super-channels (Iλ-SCs), where all super-channels are placed at different λ in all the neighboring cores. It is depicted that system performance is improved for DP-16QAM channels in 1-Pbit/s (448 WDM/19 Core/128 Gbit/s/channel) 60 km fiber link...

  12. Combined Optical and Electrical Spectrum Shaping for High-Baud-Rate Nyquist-WDM Transceivers

    DEFF Research Database (Denmark)

    Porto da Silva, Edson; Borkowski, Robert; Preussler, Stefan

    2016-01-01

    bandwidth is related to the optical comb parameters 25 and the pulse shaping of the modulating waveforms in the electrical domain. Such de- 26 pendence may result in broadening of the modulated spectra, which can degrade the 27 performance of Nyquist-WDM systems due to interchannel crosstalk penalties....... To investigate the benefits of the proposed approach, we demonstrate 32 the first WDM Nyquist-OTDM signal generation based on the periodic train of sinc pulses 33 and electrical spectrum shaping. Straight line transmission of five 112.5-Gbd Nyquist- 34 OTDM dual-polarization quadrature phase-shift keying (QPSK......We discuss the benefits and limitations of optical time-division multiplexing 22 (OTDM) techniques based on the optical generation of a periodic train of sinc pulses for 23 wavelength-division multiplexing (WDM) transmission at high baud rates. It is shown 24 how the modulated OTDM spectrum...

  13. Energy-efficient WDM-OFDM-PON employing shared OFDM modulation modules in optical line terminal.

    Science.gov (United States)

    Hu, Xiaofeng; Zhang, Liang; Cao, Pan; Wang, Kongtao; Su, Yikai

    2012-03-26

    We propose and experimentally demonstrate a scheme to improve the energy efficiency of wavelength division multiplexing - orthogonal frequency division multiplexing - passive optical networks (WDM-OFDM-PONs). By using an N × M opto-mechanic switch in optical line terminal (OLT), an OFDM modulation module is shared by several channels to deliver data to multiple users with low traffic demands during non-peak hours of the day, thus greatly reducing the number of operating devices and minimizing the energy consumption of the OLT. An experiment utilizing one OFDM modulation module to serve three optical network units (ONUs) in a WDM-OFDM-PON is performed to verify the feasibility of our proposal. Theoretical analysis and numerical calculation show that the proposed scheme can achieve a saving of 23.6% in the energy consumption of the OFDM modulation modules compared to conventional WDM-OFDM-PON.

  14. Dynamic Bandwidth Allocation with Effective Utilization of Polling Interval over WDM/TDM PON

    Science.gov (United States)

    Ni, Cuiping; Gan, Chaoqin; Gao, Ziyue

    2014-12-01

    WDM/TDM (wavelength-division multiplexing/time-division multiplexing) PON (passive optical network) appears to be an attractive solution for the next generation optical access networks. Dynamic bandwidth allocation (DBA) plays a crucial role in efficiently and fairly allocating the bandwidth among all users in WDM/TDM PON. In this paper, two dynamic bandwidth allocation schemes (DBA1 and DBA2) are proposed to eliminate the idle time of polling cycles (i.e. polling interval), improve bandwidth utilization and make full use of bandwidth resources. The two DBA schemes adjust the time slot of sending request information and make fair scheduling among users to achieve the effective utilization of polling interval in WDM/TDM PON. The simulation and theoretical analyses verify that the proposed schemes outperform the conventional DBA scheme. We also make comparisons between the two schemes in terms of bandwidth utilization and average packet delay to further demonstrate the effectiveness of the scheme of DBA2.

  15. Thermal tuning On narrow linewidth fiber laser

    Science.gov (United States)

    Han, Peiqi; Liu, Tianshan; Gao, Xincun; Ren, Shiwei

    2010-10-01

    At present, people have been dedicated to high-speed and large-capacity optical fiber communication system. Studies have been shown that optical wavelength division multiplexing (WDM) technology is an effective means of communication to increase the channel capacity. Tunable lasers have very important applications in high-speed, largecapacity optical communications, and distributed sensing, it can provide narrow linewidth and tunable laser for highspeed optical communication. As the erbium-doped fiber amplifier has a large gain bandwidth, the erbium-doped fiber laser can be achieved lasing wavelength tunable by adding a tunable filter components, so tunable filter device is the key components in tunable fiber laser.At present, fiber laser wavelength is tuned by PZT, if thermal wavelength tuning is combined with PZT, a broader range of wavelength tuning is appearance . Erbium-doped fiber laser is used in the experiments,the main research is the physical characteristics of fiber grating temperature-dependent relationship and the fiber grating laser wavelength effects. It is found that the fiber laser wavelength changes continuously with temperature, tracking several temperature points observed the self-heterodyne spectrum and found that the changes in spectra of the 3dB bandwidth of less than 1kHz, and therefore the fiber laser with election-mode fiber Bragg grating shows excellent spectral properties and wavelength stability.

  16. A 80 km reach fully passive WDM-PON based on reflective ONUs

    DEFF Research Database (Denmark)

    Presi, Marco; Proietti, Roberto; Prince, Kamau

    2008-01-01

    We propose a novel line coding combination (Inverse RZ coding in downlink and RZ in uplink) that extends the reach of WDM Passive Optical Networks based on Reflective SOAs with no in-line amplification. We achieved full downstream remodulation even when feeding the reflective SOA with power level...... as low as -35dBm, thus increasing the system power budget. We experimentally assessed this scheme for a fully passive, full-duplex and symmetrical 1.25Gb/s WDM-PON over a 80km G.652 feeder....

  17. OTDM-WDM Conversion Based on Time-Domain Optical Fourier Transformation with Spectral Compression

    DEFF Research Database (Denmark)

    Mulvad, Hans Christian Hansen; Palushani, Evarist; Galili, Michael

    2011-01-01

    We propose a scheme enabling direct serial-to-parallel conversion of OTDM data tributaries onto a WDM grid, based on optical Fourier transformation with spectral compression. Demonstrations on 320 Gbit/s and 640 Gbit/s OTDM data are shown.......We propose a scheme enabling direct serial-to-parallel conversion of OTDM data tributaries onto a WDM grid, based on optical Fourier transformation with spectral compression. Demonstrations on 320 Gbit/s and 640 Gbit/s OTDM data are shown....

  18. Full distortion induced by dispersion evaluation and optical bandwidth constraining of fiber Bragg grating demultiplexers over analogue SCM systems.

    Science.gov (United States)

    Martinez, Alfonso; Pastor, Daniel; Capmany, Jose

    2002-12-30

    We provide a full analysis of the distortion effects produced by the first and second order in-band dispersion of fiber Bragg grating based optical demultiplexers over analogue SCM (Sub Carrier Multiplexed) signals. Optical bandwidth utilization ranges for Dense WDM network are calculated considering different SCM system cases of frequency extension and modulation conditions.

  19. Multicast traffic grooming in flexible optical WDM networks

    Science.gov (United States)

    Patel, Ankitkumar N.; Ji, Philip N.; Jue, Jason P.; Wang, Ting

    2012-12-01

    In Metropolitan Area Networks (MANs), point-to-multipoint applications, such as IPTV, video-on-demand, distance learning, and content distribution, can be efficiently supported through light-tree-based multicastcommunications instead of lightpath-based unicast-communications. The application of multicasting for such traffic is justified by its inherent benefits of reduced control and management overhead and elimination of redundant resource provisioning. Supporting such multicast traffic in Flexible optical WDM (FWDM) networks that can provision light-trees using optimum amount of spectrum within flexible channel spacing leads to higher wavelength and spectral efficiencies compared to the conventional ITU-T fixed grid networks. However, in spite of such flexibility, the residual channel capacity of stranded channels may not be utilized if the network does not offer channels with arbitrary line rates. Additionally, the spectrum allocated to guard bands used to isolate finer granularity channels remains unutilized. These limitations can be addressed by using traffic grooming in which low-rate multicast connections are aggregated and switched over high capacity light-trees. In this paper, we address the multicast traffic grooming problem in FWDM networks, and propose a novel auxiliary graph-based algorithm for the first time. The performance of multicast traffic grooming is evaluated in terms of spectral, cost, and energy efficiencies compared to lightpath-based transparent FWDM networks, lightpathbased traffic grooming-capable FWDM networks, multicast-enabled transparent FWDM networks, and multicast traffic grooming-capable fixed grid networks. Simulation results demonstrate that multicast traffic grooming in FWDM networks not only improves spectral efficiency, but also cost, and energy efficiencies compared to other multicast traffic provisioning approaches of FWDM and fixed grid networks.

  20. Impairment analysis of WDM-PON based on low-cost tunable lasers

    DEFF Research Database (Denmark)

    Wagner, Christoph; Eiselt, Michael H.; Lawin, Mirko

    2016-01-01

    channel must be kept below 15%. Similar values result for the upstream pilot tones. In order to limit crosstalk, such systems require reduced launch power during wavelength tuning and can cover up to 40 km differential reach. These results confirm that WDM-PON based on low-cost lasers is a technically...

  1. Cost and Availability Analysis of 2- and 3-Connected WDM Networks Physical Interconnection

    DEFF Research Database (Denmark)

    Gutierrez Lopez, Jose Manuel; Riaz, M. Tahir; Pedersen, Jens Myrup

    2012-01-01

    for the best trade-off among the relevant parameters for the network. In this paper we analyze this trade-off by studying 2-and 3-connected graphs to be used as WDM (Wavelength Division Multiplexing) networks physical infrastructure. The experiments show how the way links are distributed to interconnect...

  2. Field Trial of 40 Gb/s Optical Transport Network using Open WDM Interfaces

    DEFF Research Database (Denmark)

    Fagertun, Anna Manolova; Ruepp, Sarah Renée; Petersen, Martin Nordal

    2013-01-01

    An experimental field-trail deployment of a 40Gb/s open WDM interface in an operational network is presented, in cross-carrier interconnection scenario. Practical challenges of integration and performance measures for both native and alien channels are outlined....

  3. Key lessons: Twelve factors critical to the success of WDM at the ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    English · Français ... Key lessons: Twelve factors critical to the success of WDM at the policy and at the operational levels ... from slums in central New Delhi to the city's desolate periphery face daily indignities and danger as they collect water o.

  4. An enhanced DWBA algorithm in hybrid WDM/TDM EPON networks with heterogeneous propagation delays

    Science.gov (United States)

    Li, Chengjun; Guo, Wei; Jin, Yaohui; Sun, Weiqiang; Hu, Weisheng

    2011-12-01

    An enhanced dynamic wavelength and bandwidth allocation (DWBA) algorithm in hybrid WDM/TDM PON is proposed and experimentally demonstrated. In addition to the fairness of bandwidth allocation, this algorithm also considers the varying propagation delays between ONUs and OLT. The simulation based on MATLAB indicates that the improved algorithm has a better performance compared with some other algorithms.

  5. Integration of Optically Generated Impulse Radio UWB Signals into Baseband WDM-PON

    DEFF Research Database (Denmark)

    Pham, Tien Thang; Yu, Xianbin; Dittmann, Lars

    2011-01-01

    We propose a compact integration system to simultaneously provide wireline and wireless (baseband and ultra-wide band (UWB)) services to end-users in a WDM-PON. A 1-Gbps UWB signal is optically generated and shares the same wavelength with the baseband signal. Error-free performance was achieved...

  6. 16 channel WDM regeneration in a single phase-sensitive amplifier through optical Fourier transformation

    DEFF Research Database (Denmark)

    Guan, Pengyu; Da Ros, Francesco; Lillieholm, Mads

    2016-01-01

    We demonstrate simultaneous phase regeneration of 16-WDM DPSK channels using optical Fourier transformation and a single phase-sensitive amplifier. The BERs of 16-WDM×10-Gbit/s phase noise degraded DPSK signals are improved by 0.4-1.3 orders of magnitude...

  7. Experimental Study of Nonlinear Phase Noise and its Impact on WDM Systems with DP-256QAM

    DEFF Research Database (Denmark)

    Yankov, Metodi Plamenov; Da Ros, Francesco; Porto da Silva, Edson

    2016-01-01

    A probabilistic method for mitigating the phase noise component of the non-linear interference in WDM systems with Raman amplification is experimentally demonstrated. The achieved gains increase with distance and are comparable to the gains of single-channel digital back-propagation....

  8. Design of device driver program for PCI data acquisition adapters based on WDM of windows 2000

    International Nuclear Information System (INIS)

    Yuan Weihua; Qiao Weimin; Jing Lan; Zhu Haijun

    2003-01-01

    The paper describes the design of device driver program for PCI data acquisition adapters based on WDM of Windows 2000. Give an actual example of PCI6208. Now, several data acquisition adapters based in this method are using in national big science engineer HIRFL-CSR. (authors)

  9. Revenue-driven Lightpaths Provisioning over Optical WDM Networks Using Bee Colony Optimization

    Directory of Open Access Journals (Sweden)

    Goran Z. Marković

    2017-01-01

    s, i.e. solution with maximal revenue value (Fb=Fmax . Ob=Omax=1, then that bee will fly in the next forward pass s+1 along the same path with the probability (see Eq. 8.10 The higher the b-th objective function value Fb, the greater the probability of flying again along the same path. The described procedure iterates through the pre-specified number of iterations I 10,11. The best solution obtained throughout all iterations is a final (global best solution of the considered Max-Rev problem. 5. Experimental Evaluations We evaluated the performances of the described Max-Rev BCOi framework by performing a numerous simulation experiments. The simulation parameters and the obtained numerical results are given below. Fig. 3. Considered physical network topologies: (a small network (N=8 nodes, (b NSFNet, (c EON, (d USA network 5.1. Simulation parameters We have carried out a number of simulation experiments in four optical WDM network topologies shown by Fig.3: (a a small network with N=8 nodes and L= 11 links together with three realistic size network topologies such as the (b NSFNet (National Science Foundation Network with N=14 nodes L=21 links, (c EON (European Optical Network with N=20 nodes and L=39 links and (d USA network with N=40 nodes and L=58 links. Each physical link in all network topologies is assumed to be bidirectional, i.e. it consists of two fibers going in opposite directions. We assumed that same number of wavelengths |W| is available on each link in a network as well as up to Pk =3 pre-calculated shortest paths for every node pair (s,d. We performed a huge number of simulation experiments, but due to limited space we present here only a part of the results, as given in Table 1. For example, in case of small network with N=8 nodes there are 50 experiments (30 experiments for 5 tested algorithms with |W|=6 different wavelengths in case of |K|=50 demands and 20 additional tests for different number of demands |K|.50. Table 1. The number of simulation

  10. Distributed dual-parameter optical fiber sensor based on cascaded microfiber Fabry-Pérot interferometers

    Science.gov (United States)

    Xiang, Yang; Luo, Yiyang; Zhang, Wei; Liu, Deming; Sun, Qizhen

    2017-04-01

    We propose and demonstrate a distributed fiber sensor based on cascaded microfiber Fabry-Perot interferometers (MFPI) for simultaneous refractive index (SRI) and temperature measurement. By employing MFPI which is fabricated by taper-drawing the center of a uniform fiber Bragg grating (FBG) on standard fiber into a section of microfiber, dual parameters including SRI and temperature can be detected through demodulating the reflection spectrum of the MFPI. Further, wavelength-division-multiplexing (WDM) is applied to realize distributed dual-parameter fiber sensor by using cascaded MFPIs with different Bragg wavelengths. A prototype sensor system with 5 cascaded MFPIs is constructed to experimentally demonstrate the sensing performance.

  11. Loss mechanisms in hollow-core fibers

    DEFF Research Database (Denmark)

    Lyngsøe, Jens Kristian; Mangan, B.J.; Jakobsen, C.

    2009-01-01

    With the recent advances in digital signal processing (DSP), coherent detection is currently living its second life in the world of fiber-optics. First generation transponders using coherent detection are coming to the market, and a significant amount of research is being invested in this area....... With the rise of digital signal processing as an integral part of optical communication systems, most of the complexity is shifted from the optical/analogue to the electrical/digital domain. This will fundamentally change the way we should design our systems. At the same time, new generations of WDM systems...

  12. 200 Gbit/s 16QAM WDM transmission over a fully integrated cladding pumped 7-Core MCF System

    DEFF Research Database (Denmark)

    Castro, C.; Jain, S.; Jung, Y.

    2017-01-01

    A complete, realistic integrated system is investigated, consisting of directly spliced 7-core MCF, cladding-pumped 7-core amplifiers, isolators, and couplers. The system is demonstrated in a 16QAM C-band WDM scenario over 720 km....

  13. Analizar el rendimiento de los receptores en una red TDM/WDM pon (red óptica pasiva)

    OpenAIRE

    Romero Chafla, Luis Fernando

    2016-01-01

    The rapid increase of Internet users deserve transmission rates higher data rates and greater capacity in terms of number of users. However, this should be achieved at a reasonable cost. TDM (Time Division Multiplexing) and WDM (Wavelength Division Multiplexing) technologies are most used. TDM allows us to offer extend services to many users (sacrificing bandwidth), low speed, at a reasonable cost. WDM meanwhile has the capacity to serve a greater number of users and provide higher transmissi...

  14. Time lens based optical fourier transformation for advanced processing of spectrally-efficient OFDM and N-WDM signals

    DEFF Research Database (Denmark)

    Guan, Pengyu; Røge, Kasper Meldgaard; Morioka, Toshio

    2016-01-01

    We review recent progress in the use of time lens based optical Fourier transformation for advanced optical signal processing, with focus on all-optical generation, detection and format conversion of spectrally-efficient OFDM and N-WDM signals.......We review recent progress in the use of time lens based optical Fourier transformation for advanced optical signal processing, with focus on all-optical generation, detection and format conversion of spectrally-efficient OFDM and N-WDM signals....

  15. Exploring crosstalk noise generated in the N-port router used in the WDM-based ONoC

    Science.gov (United States)

    Zhang, Zhendong; Xie, Yiyuan; Song, Tingting; He, Chao; Li, Jiachao; Liu, Yong

    2017-07-01

    Compared with optical network-on-chip (ONoC) with single wavelength, ONoC adopting wavelength division multiplexing (WDM) technology possesses a very prominent advantage-higher bandwidth. Therefore, WDM-based ONoC has been considered one of the most promising ways to relieve the rapidly increasing traffic load in communication systems. A WDM-based router, as the core equipment of WDM-based ONoC, is influenced by crosstalk noise, especially the nonlinear crosstalk noise generated by the four-wave mixing effect. Thus, to explore the performance of the N-port nonblocking optical router using WDM, we propose a universal analytic model to analyze the transmission loss, crosstalk noise, optical signal-to-noise ratio (OSNR), and bit error ratio (BER). The research results show that crosstalk noise varies along with signals at different wavelengths in the same channel. For signals with the same wavelength, the noises generated in the different transmission paths are obviously different from each other. For research of transmission loss, OSNR, and BER, similar results can be obtained. Based on the eye diagrams, we can learn that crosstalk noise will cause signal distortion to a certain extent. With this model, capability of this kind of multiport optical router using WDM can be understood conveniently.

  16. Serial topology of wide-band erbium-doped fiber amplifier for WDM applications

    Czech Academy of Sciences Publication Activity Database

    Karásek, Miroslav; Menif, M.

    2001-01-01

    Roč. 13, č. 9 (2001), s. 939-941 ISSN 1041-1135 R&D Projects: GA ČR GA102/99/0393 Institutional research plan: CEZ:AV0Z2067918 Keywords : erbium * wavelength division multiplexing * optical fibre amplifiers * optical fibre communication Subject RIV: BH - Optics, Masers, Lasers Impact factor: 2.004, year: 2001

  17. High-Capacity Multi-Core Fibers for Space-Division Multiplexing

    DEFF Research Database (Denmark)

    Ye, Feihong

    The transmission capacity of the present optical fiber communication systems based on time division multiplexing (TDM) and wavelength-division multiplexing (WDM) using single-mode fibers (SMFs) is reaching its limit of around 100 Tbit/s per fiber due to the fiber nonlinearities, fiber fuse...... phenomenon and the optical amplifier bandwidth. To meet the ever increasing global data traffic growth and to overcome the looming capacity crunch, a new multiplexing technology using new optical fibers is urgently needed. Space-division multiplexing (SDM) is a promising scheme to overcome the capacity limit...... of the present SMF-based systems. Among the proposed SDM schemes, the one based on uncoupled multi-core fibers (MCFs) having multiple cores in a mutual cladding has proven effective in substantially increasing the transmission capacity per fiber with least system complexity as demonstrated in several state...

  18. Fiber to the Home Using a PON Infrastructure

    Science.gov (United States)

    Lee, Chang-Hee; Sorin, Wayne V.; Kim, Byoung Yoon

    2006-12-01

    Traffic patterns in access networks have evolved from voice- and text-oriented services to video- and image-based services. This change will require new access networks that support high-speed (> 100 Mb/s), symmetric, and guaranteed bandwidths for future video services with high-definition TV quality. To satisfy the required bandwidth over a 20-km transmission distance, single-mode optical fiber is currently the only practical choice. To minimize the cost of implementing an FTTP solution, a passive optical network (PON) that uses a point-to-multipoint architecture is generally considered to be the best approach. There are several multiple-access techniques to share a single PON architecture, and the authors addressed several of these approaches such as time-division multiple access, wavelength-division multiple access, subcarrier multiple access, and code-division multiple access. Among these multiple techniques, they focus on time-division multiplexing (TDM)-PON and wavelength-division multiplexing (WDM)-PON, which will be the most promising candidates for practical future systems. A TDM-PON shares a single-transmission channel with multiple subscribers in time domain. Then, there exists tight coupling between subscribers. A WDM-PON provides point-to-point optical connectivity using a dedicated pair of wavelengths per user. While a TDM-PON appears to be a satisfactory solution for current bandwidth demands, the combination of future data-rate projections and traffic patterns coupled with recent advances in WDM technology may result in WDM-PON becoming the preferred solution for a future proof fiber-based access network.

  19. Multicast backup reprovisioning problem for Hamiltonian cycle-based protection on WDM networks

    Science.gov (United States)

    Din, Der-Rong; Huang, Jen-Shen

    2014-03-01

    As networks grow in size and complexity, the chance and the impact of failures increase dramatically. The pre-allocated backup resources cannot provide 100% protection guarantee when continuous failures occur in a network. In this paper, the multicast backup re-provisioning problem (MBRP) for Hamiltonian cycle (HC)-based protection on WDM networks for the link-failure case is studied. We focus on how to recover the protecting capabilities of Hamiltonian cycle against the subsequent link-failures on WDM networks for multicast transmissions, after recovering the multicast trees affected by the previous link-failure. Since this problem is a hard problem, an algorithm, which consists of several heuristics and a genetic algorithm (GA), is proposed to solve it. The simulation results of the proposed method are also given. Experimental results indicate that the proposed algorithm can solve this problem efficiently.

  20. Real-time distributed scheduling algorithm for supporting QoS over WDM networks

    Science.gov (United States)

    Kam, Anthony C.; Siu, Kai-Yeung

    1998-10-01

    Most existing or proposed WDM networks employ circuit switching, typically with one session having exclusive use of one entire wavelength. Consequently they are not suitable for data applications involving bursty traffic patterns. The MIT AON Consortium has developed an all-optical LAN/MAN testbed which provides time-slotted WDM service and employs fast-tunable transceivers in each optical terminal. In this paper, we explore extensions of this service to achieve fine-grained statistical multiplexing with different virtual circuits time-sharing the wavelengths in a fair manner. In particular, we develop a real-time distributed protocol for best-effort traffic over this time-slotted WDM service with near-optical fairness and throughput characteristics. As an additional design feature, our protocol supports the allocation of guaranteed bandwidths to selected connections. This feature acts as a first step towards supporting integrated services and quality-of-service guarantees over WDM networks. To achieve high throughput, our approach is based on scheduling transmissions, as opposed to collision- based schemes. Our distributed protocol involves one MAN scheduler and several LAN schedulers (one per LAN) in a master-slave arrangement. Because of propagation delays and limits on control channel capacities, all schedulers are designed to work with partial, delayed traffic information. Our distributed protocol is of the `greedy' type to ensure fast execution in real-time in response to dynamic traffic changes. It employs a hybrid form of rate and credit control for resource allocation. We have performed extensive simulations, which show that our protocol allocates resources (transmitters, receivers, wavelengths) fairly with high throughput, and supports bandwidth guarantees.

  1. Investigation of a Pulsed 1550 nm Fiber Laser System (Briefing Charts)

    Science.gov (United States)

    2016-02-14

    Pump dump and splice Pump dump and splice MFA 976 nm 15 W TFB TFB Pump dump and splice Waveform shaping Delay Power meter...filter 976 nm 7.6 W TFB WDM Pump dump and splice Pump dump and splice MFA 976 nm 15 W TFB TFB Pump dump and splice Waveform shaping...Multimode fiber to OSA or photodiode EOM EOM ASE filter ASE filter 976 nm 7.6 W TFB

  2. Optical fiber cabling technologies for flexible access network

    Science.gov (United States)

    Tanji, Hisashi

    2008-07-01

    Fiber-to-the-home (FTTH) outside plant infrastructure should be so designed and constructed as to flexibly deal with increasing subscribers and system evolution to be expected in the future, taking minimization of total cost (CAPEX and OPEX) into consideration. With this in mind, fiber access architectures are reviewed and key technologies on optical fiber and cable for supporting flexible access network are presented. Low loss over wide wavelength (low water peak) and bend-insensitive single mode fiber is a future proof solution. Enhanced separable ribbon facilitates mid-span access to individual fibers in a cable installed, improving fiber utilizing efficiency and flexibility of distribution design. It also contributes to an excellent low PMD characteristic which could be required for video RF overlay system or high capacity long reach metro-access convergence network in the future. Bend-insensitive fiber based cabling technique including field installable connector greatly improves fiber/cable handling in installation and maintenance work.

  3. One-to-six WDM multicasting of DPSK signals based on dual-pump four-wave mixing in a silicon waveguide

    DEFF Research Database (Denmark)

    Pu, Minhao; Hu, Hao; Ji, Hua

    2011-01-01

    We present WDM multicasting based on dual-pump four-wave mixing in a 3-mm long dispersion engineered silicon waveguide. One-to-six phase-preserving WDM multicasting of 10-Gb/s differential phase-shiftkeying (DPSK) data is experimentally demonstrated with bit-error rate measurements. All the six...

  4. Building new WDM regulations for the Namibian tourism sector on factors influencing current water-management practices at the enterprise level

    Science.gov (United States)

    Schachtschneider, Klaudia

    Namibia's aridity is forcing its water sector to resort to new water resource management approaches, including water demand management (WDM). Such a change in management approach is facilitated through the country's opportunity at independence to rewrite and adapt its old policies, including those for water and tourism. Legal support for WDM through the Water Act and other sector-specific Acts is crucial to plan the practical implementation of WDM throughout the different water use sectors of Namibia. In order to be able to put the policy into practice, it is imperative to understand which factors motivate people to adopt WDM initiatives. Within the Namibian tourism industry three main factors have been identified which influence the water-management approaches at tourist facilities. This paper discusses how the water and tourism decision makers can consider these factors when developing new regulations to introduce WDM in the tourism sector.

  5. Energy-Saving Mechanism in WDM/TDM-PON Based on Upstream Network Traffic

    Directory of Open Access Journals (Sweden)

    Paola Garfias

    2014-08-01

    Full Text Available One of the main challenges of Passive Optical Networks (PONs is the resource (bandwidth and wavelength management. Since it has been shown that access networks consume a significant part of the overall energy of the telecom networks, the resource management schemes should also consider energy minimization strategies. To sustain the increased bandwidth demand of emerging applications in the access section of the network, it is expected that next generation optical access networks will adopt the wavelength division/time division multiplexing (WDM/TDM technique to increase PONs capacity. Compared with traditional PONs, the architecture of a WDM/TDM-PON requires more transceivers/receivers, hence they are expected to consume more energy. In this paper, we focus on the energy minimization in WDM/TDM-PONs and we propose an energy-efficient Dynamic Bandwidth and Wavelength Allocation mechanism whose objective is to turn off, whenever possible, the unnecessary upstream traffic receivers at the Optical Line Terminal (OLT. We evaluate our mechanism in different scenarios and show that the proper use of upstream channels leads to relevant energy savings. Our proposed energy-saving mechanism is able to save energy at the OLT while maintaining the introduced penalties in terms of packet delay and cycle time within an acceptable range. We might highlight the benefits of our proposal as a mechanism that maximizes the channel utilization. Detailed implementation of the proposed algorithm is presented, and simulation results are reported to quantify energy savings and effects on network performance on different network scenarios.

  6. A multicast tree aggregation algorithm in wavelength-routed WDM networks

    Science.gov (United States)

    Cheng, Hsu-Chen; Kuo, Chin-Chun; Lin, Frank Y.

    2005-02-01

    Wavelength division multiplexing (WDM) has been considered a promising transmission technology in optical communication networks. With the continuous advance in optical technology, WDM network will play an important role in wide area backbone networks. Optical wavelength switching, compared with optical packet switching, is a more mature and more cost-effective choice for optical switching technologies. Besides, the technology of time division multiplexing in optical communication networks has been working smoothly for a long time. In the proposed research, the problem of multicast groups aggregation and multicast routing and wavelength assignment in wavelength-routed WDM network is studied. The optical cross connect switches in the problem are assumed to have limited optical multicast/splitting and TDM functionalities. Given the physical network topology and capacity, the objective is to maximize the total revenue by means of utmost merging multicast groups into larger macro-groups. The groups in the same macro-group will share a multicast tree to conduct data transmission. The problem is formulated as an optimization problem, where the objective function is to maximize the total revenue subject to capacity constraints of components in the optical network, wavelength continuity constraints, and tree topology constraints. The decision variables in the formulations include the merging results between groups, multicast tree routing assignment and wavelength assignment. The basic approach to the algorithm development for this model is Lagrangean relaxation in conjunction with a number of optimization techniques. In computational experiments, the proposed algorithms are evaluated on different network topologies and perform efficiently and effectively according to the experiment results.

  7. Long-reach manipulators for decommissioning

    International Nuclear Information System (INIS)

    Webster, D.A.; Challinor, S.F.

    1993-01-01

    A survey of redundant facilities at Sellafield has identified that in many cases the conventional means of deploying remote handling equipment are not appropriate and that novel means must be employed. However, decommissioning is not a value adding activity and so expensive one off designs must be avoided. The paper will describe BNFL's approach to the synthesis from proprietary parts of a manipulator which can lift 3 te at a horizontal reach of over 5 metres and yet can still perform the dextrous manipulation necessary to remove small items. It will also cover the development of the manipulator control systems and the adaption of commercial handtools to be manipulator friendly. (author)

  8. The Long Reach of Teachers Unions

    Science.gov (United States)

    Antonucci, Mike

    2010-01-01

    The largest political campaign spender in America is not a megacorporation, such as Wal-Mart, Microsoft, or ExxonMobil. It isn't an industry association, like the American Bankers Association or the National Association of Realtors. It's not even a labor federation, like the AFL-CIO. If one combines the campaign spending of all those entities it…

  9. THE LONG REACH OF EDUCATION: EARLY RETIREMENT.

    Science.gov (United States)

    Venti, Steven; Wise, David A

    2015-12-01

    The goal of this paper is to draw attention to the long lasting effect of education on economic outcomes. We use the relationship between education and two routes to early retirement - the receipt of Social Security Disability Insurance (DI) and the early claiming of Social Security retirement benefits - to illustrate the long-lasting influence of education. We find that for both men and women with less than a high school degree the median DI participation rate is 6.6 times the participation rate for those with a college degree or more. Similarly, men and women with less than a high school education are over 25 percentage points more likely to claim Social Security benefits early than those with a college degree or more. We focus on four critical "pathways" through which education may indirectly influence early retirement - health, employment, earnings, and the accumulation of assets. We find that for women health is the dominant pathway through which education influences DI participation. For men, the health, earnings, and wealth pathways are of roughly equal magnitude. For both men and women the principal channel through which education influences early Social Security claiming decisions is the earnings pathway. We also consider the direct effect of education that does not operate through these pathways. The direct effect of education is much greater for early claiming of Social Security benefits than for DI participation, accounting for 72 percent of the effect of education for men and 67 percent for women. For women the direct effect of education on DI participation is not statistically significant, suggesting that the total effect may be through the four pathways.

  10. A novel WDM passive optical network architecture supporting two independent multicast data streams

    Science.gov (United States)

    Qiu, Yang; Chan, Chun-Kit

    2012-01-01

    We propose a novel scheme to perform optical multicast overlay of two independent multicast data streams on a wavelength-division-multiplexed (WDM) passive optical network. By controlling a sinusoidal clock signal and shifting the wavelength at the optical line terminal (OLT), the delivery of the two multicast data, being carried by the generated optical tones, can be independently and flexibly controlled. Simultaneous transmission of 10-Gb/s unicast downstream and upstream data as well as two independent 10-Gb/s multicast data was successfully demonstrated.

  11. Single channel and WDM transmission of 28 Gbaud zero-guard-interval CO-OFDM.

    Science.gov (United States)

    Zhuge, Qunbi; Morsy-Osman, Mohamed; Mousa-Pasandi, Mohammad E; Xu, Xian; Chagnon, Mathieu; El-Sahn, Ziad A; Chen, Chen; Plant, David V

    2012-12-10

    We report on the experimental demonstration of single channel 28 Gbaud QPSK and 16-QAM zero-guard-interval (ZGI) CO-OFDM transmission with only 1.34% overhead for OFDM processing. The achieved transmission distance is 5120 km for QPSK assuming a 7% forward error correction (FEC) overhead, and 1280 km for 16-QAM assuming a 20% FEC overhead. We also demonstrate the improved tolerance of ZGI CO-OFDM to residual inter-symbol interference compared to reduced-guard-interval (RGI) CO-OFDM. In addition, we report an 8-channel wavelength-division multiplexing (WDM) transmission of 28 Gbaud QPSK ZGI CO-OFDM signals over 4160 km.

  12. WDM packet switch architectures and analysis of the influence of tunable wavelength converters on the performance

    DEFF Research Database (Denmark)

    Danielsen, Søren Lykke; Mikkelsen, Benny; Jørgensen, Carsten

    1997-01-01

    A detailed analytical traffic model for a photonic wavelength division multiplexing (WDM) packet switch block is presented and the requirements to the buffer size is analyzed. Three different switch architectures are considered, each of them representing different complexities in terms of component.......e., the possibility of several outlets sharing the same physical buffer. For the three architectures presented here, a tradeoff in the buffer architectures is addressed: a buffer physically shared among an outlets requires many wavelengths internally in the switch block, whereas, architectures with buffers dedicated...

  13. Remote-seeded WDM-PON upgrade using linear semiconductor opticalamplifiers

    Science.gov (United States)

    Martínez, J. J.; Merayo, N.; Villafranca, A.; Garcés, I.

    2013-05-01

    In this work we have assessed the capacity of a linear (gain-clamped) semiconductor optical amplifier to enhance the budget of WDM PON network links for their evolution from FTTC to FTTH access. A wavelength-seeded network architecture has been considered, evaluating the performance improvement obtained by the use of an amplifier for the cases of link reach extension and optical splitting to reach end users. The evaluation measurements have shown that the extra budget is enough to compensate for the losses of a passive splitter up to atleast 1:16 division rate or to highly increment reach of the network.

  14. Tradeoffs in process strategy games with application in the WDM reconfiguration problem

    DEFF Research Database (Denmark)

    Cohen, Nathann; Coudert, David; Mazauric, Dorian

    2011-01-01

    We consider a variant of the graph searching games that models the routing reconfiguration problem in WDM networks. In the digraph processing game, a team of agents aims at processing, or clearing, the vertices of a digraph D. We are interested in two different measures: (1) the total number...... tradeoffs may happen even for a basic class of digraphs. On the other hand, we exhibit classes of graphs for which good tradeoffs can be achieved. We finally detail the relationship between this game and the routing reconfiguration problem. In particular, we prove that any instance of the processing game, i...

  15. Reconfigurable WDM-PON empowered by a low-cost 8-channel directly modulated laser module

    Science.gov (United States)

    Zhang, Yi-ming; Liu, Yu; Zhang, Zhi-ke; Zhao, Ze-ping; Tian, Ye; Zhu, Ning-hua

    2017-11-01

    A 10 Gbit/s 16-km-long reconfigurable wavelength-division-multiplexing passive optical network (WDM-PON) is presented empowered by a low-cost multi-channel directly modulated laser (DML) module. Compared with the case using discrete devices in conventional scheme, the proposed DML module provides a cost-effective solution with reduced complexity. The clear eye diagram and the bit error rate ( BER) of less than 2×10-7 with a sensitivity of -7 dBm are obtained. Due to the special packaging design, the crosstalk between channels under condition of simultaneous operation can be negligible.

  16. Traffic grooming in WDM optical network with grooming resources at Max Connectivity nodes

    Science.gov (United States)

    Paul, Partha; Rawat, Balbeer Singh; Ghorai, S. K.

    2012-12-01

    In this paper, we propose Max Connectivity grooming in WDM mesh networks under static lightpath connection requests. The grooming and wavelength conversion resources are placed at the nodes having maximum connections. We propose a heuristic genetic algorithm (GA) model to solve grooming, routing and wavelength assignment. The GA algorithm has been used to optimize the cost of grooming and wavelength conversion resources. The blocking probability has been investigated under different lightpath connections. The performance of Max Connectivity grooming has been compared with other grooming policies. Our results indicate the improvement of resource utilization with minimum blocking probability.

  17. An agent-based QoS provisioning mechanism for WDM optical networks

    Science.gov (United States)

    Ouyang, Yong; Zeng, Qingji; Yue, Ling

    2004-04-01

    This paper addresses QoS provisioning mechanisms in the WDM optical networks. With the appearance of metropolitan optical network, a hierarchical metro and wide area optical network will be envisioned in the near future. This hierarchical optical transport network is often divided into optical domains by geography, administration and technology, which usually employ different QoS routing algorithms and policies. To provide end-to-end optical QoS is becoming a new challenge for the optical network design. In this paper, we first give an overview of issues on the QoS provisioning in data, control and management planes of the WDM optical network. And then three provisioning approaches are analyzed and compared. Finally, we propose an agent-based hybrid centralized/distributed QoS provisioning mechanism based on the concept of domain agent. This agent-based hybrid mechanism employs centralized approach in the domain and distributed approach between domains. It offers scalability and intra-domain optimal QoS routing. It also keeps independence and interoperability between domains.

  18. Multicast routing for wavelength-routed WDM networks with dynamic membership

    Science.gov (United States)

    Huang, Nen-Fu; Liu, Te-Lung; Wang, Yao-Tzung; Li, Bo

    2000-09-01

    Future broadband networks must support integrated services and offer flexible bandwidth usage. In our previous work, we explore the optical link control layer on the top of optical layer that enables the possibility of bandwidth on-demand service directly over wavelength division multiplexed (WDM) networks. Today, more and more applications and services such as video-conferencing software and Virtual LAN service require multicast support over the underlying networks. Currently, it is difficult to provide wavelength multicast over the optical switches without optical/electronic conversions although the conversion takes extra cost. In this paper, based on the proposed wavelength router architecture (equipped with ATM switches to offer O/E and E/O conversions when necessary), a dynamic multicast routing algorithm is proposed to furnish multicast services over WDM networks. The goal is to joint a new group member into the multicast tree so that the cost, including the link cost and the optical/electronic conversion cost, is kept as less as possible. The effectiveness of the proposed wavelength router architecture as well as the dynamic multicast algorithm is evaluated by simulation.

  19. Multi-granularity Bandwidth Allocation for Large-Scale WDM/TDM PON

    Science.gov (United States)

    Gao, Ziyue; Gan, Chaoqin; Ni, Cuiping; Shi, Qiongling

    2017-12-01

    WDM (wavelength-division multiplexing)/TDM (time-division multiplexing) PON (passive optical network) is being viewed as a promising solution for delivering multiple services and applications, such as high-definition video, video conference and data traffic. Considering the real-time transmission, QoS (quality of services) requirements and differentiated services model, a multi-granularity dynamic bandwidth allocation (DBA) in both domains of wavelengths and time for large-scale hybrid WDM/TDM PON is proposed in this paper. The proposed scheme achieves load balance by using the bandwidth prediction. Based on the bandwidth prediction, the wavelength assignment can be realized fairly and effectively to satisfy the different demands of various classes. Specially, the allocation of residual bandwidth further augments the DBA and makes full use of bandwidth resources in the network. To further improve the network performance, two schemes named extending the cycle of one free wavelength (ECoFW) and large bandwidth shrinkage (LBS) are proposed, which can prevent transmission from interruption when the user employs more than one wavelength. The simulation results show the effectiveness of the proposed scheme.

  20. An Optical Multicast Routing with Minimal Network Coding Operations in WDM Networks

    Directory of Open Access Journals (Sweden)

    Huanlin Liu

    2014-01-01

    Full Text Available Network coding can improve the optical multicast routing performance in terms of network throughput, bandwidth utilization, and traffic load balance. But network coding needs high encoding operations costs in all-optical WDM networks due to shortage of optical RAM. In the paper, the network coding operation is defined to evaluate the number of network coding operation cost in the paper. An optical multicast routing algorithm based on minimal number of network coding operations is proposed to improve the multicast capacity. Two heuristic criteria are designed to establish the multicast routing with low network coding cost and high multicast capacity. One is to select one path from the former K shortest paths with the least probability of dropping the multicast maximal capacity. The other is to select the path with lowest potential coding operations with the highest link shared degree among the multiple wavelength disjoint paths cluster from source to each destination. Comparing with the other multicast routing based on network coding, simulation results show that the proposed multicast routing algorithm can effectively reduce the times of network coding operations, can improve the probability of reaching multicast maximal capacity, and can keep the less multicast routing link cost for optical WDM networks.

  1. Testing FSO WDM communication system in simulation software optiwave OptiSystem in different atmospheric environments

    Science.gov (United States)

    Vanderka, Ales; Hajek, Lukas; Bednarek, Lukas; Latal, Jan; Vitasek, Jan; Hejduk, Stanislav; Vasinek, Vladimir

    2016-09-01

    In this article the author's team deals with using Wavelength Division Multiplexing (WDM) for Free Space Optical (FSO) Communications. In FSO communication occurs due to the influence of atmospheric effect (attenuation, and fluctuation of the received power signal, influence turbulence) and the WDM channel suffers from interchannel crosstalk. There is considered only the one direction. The behavior FSO link was tested for one or eight channels. Here we will be dealing with modulation schemes OOK (On-Off keying), QAM (Quadrature Amplitude Modulation) and Subcarrier Intensity Modulation (SIM) based on a BPSK (Binary Phase Shift Keying). Simulation software OptiSystem 14 was used for tasting. For simulation some parameters were set according to real FSO link such as the datarate 1.25 Gbps, link range 1.4 km. Simulated FSO link used wavelength of 1550 nm with 0.8 nm spacing. There is obtained the influence of crosstalk and modulation format for the BER, depending on the amount of turbulence in the propagation medium.

  2. Fiber webs

    Science.gov (United States)

    Roger M. Rowell; James S. Han; Von L. Byrd

    2005-01-01

    Wood fibers can be used to produce a wide variety of low-density three-dimensional webs, mats, and fiber-molded products. Short wood fibers blended with long fibers can be formed into flexible fiber mats, which can be made by physical entanglement, nonwoven needling, or thermoplastic fiber melt matrix technologies. The most common types of flexible mats are carded, air...

  3. Parametric amplification and wavelength conversion of a 2.048-Tbit/s WDM PDM 16-QAM signal

    DEFF Research Database (Denmark)

    Hu, Hao; Jopson, R. M.; Gnauck, A. H.

    2014-01-01

    We demonstrate polarisation-insensitive parametric amplification in highly nonlinear fibre of a 2.048-Tbit/s dense WDM PDM 16-QAM signal with ∼10 dB on-off gain and simultaneous wavelength conversion and phase conjugation, with mean Q2 penalties of only 0.6 dB and 0.4 dB....

  4. Evaluation of the Impact of Coherent and Incoherent Crosstalk on the Performance of Wavelength-agnostic WDM-PON Systems

    DEFF Research Database (Denmark)

    Wagner, Christoph; Eiselt, Michael; Grobe, Klaus

    2015-01-01

    Wavelength-agnostic WDM-PON systems recently got a lot of interest as low-cost solution for metro area networking. Here, wavelength-agnostic means that the wavelength from the optical network unit to the optical line terminal is not known by the optical network unit a priori. Furthermore, calibra...

  5. Integrated 1 GHz 4-channel InP phasar based WDM-receiver with Si bipolar frontend array

    NARCIS (Netherlands)

    Steenbergen, C.A.M.; Vreede, de L.C.N.; Dam, van C.; Scholtes, T.L.M.; Smit, M.K.; Tauritz, J.L.; Pedersen, J.W.; Moerman, I.; Verbeek, B.H.; Baets, R.G.F.

    1995-01-01

    An integrated 4-channel WDM-receiver frontend with 1 GHz channel bandwidth is described. The receiver consists of an integrated wavelength demultiplexer with photodiodes in InP technology connected through bond wires with a 4 channel Si bipolar transimpedance amplifier mounted on an epoxy board. The

  6. Two-dimensional priority-based dynamic resource allocation algorithm for QoS in WDM/TDM PON networks

    Science.gov (United States)

    Sun, Yixin; Liu, Bo; Zhang, Lijia; Xin, Xiangjun; Zhang, Qi; Rao, Lan

    2018-01-01

    Wavelength division multiplexing/time division multiplexing (WDM/TDM) passive optical networks (PON) is being viewed as a promising solution for delivering multiple services and applications. The hybrid WDM / TDM PON uses the wavelength and bandwidth allocation strategy to control the distribution of the wavelength channels in the uplink direction, so that it can ensure the high bandwidth requirements of multiple Optical Network Units (ONUs) while improving the wavelength resource utilization. Through the investigation of the presented dynamic bandwidth allocation algorithms, these algorithms can't satisfy the requirements of different levels of service very well while adapting to the structural characteristics of mixed WDM / TDM PON system. This paper introduces a novel wavelength and bandwidth allocation algorithm to efficiently utilize the bandwidth and support QoS (Quality of Service) guarantees in WDM/TDM PON. Two priority based polling subcycles are introduced in order to increase system efficiency and improve system performance. The fixed priority polling subcycle and dynamic priority polling subcycle follow different principles to implement wavelength and bandwidth allocation according to the priority of different levels of service. A simulation was conducted to study the performance of the priority based polling in dynamic resource allocation algorithm in WDM/TDM PON. The results show that the performance of delay-sensitive services is greatly improved without degrading QoS guarantees for other services. Compared with the traditional dynamic bandwidth allocation algorithms, this algorithm can meet bandwidth needs of different priority traffic class, achieve low loss rate performance, and ensure real-time of high priority traffic class in terms of overall traffic on the network.

  7. Bend-insensitive single-mode photonic crystal fiber with ultralarge effective area for dual applications

    Science.gov (United States)

    Islam, Md. Asiful; Alam, M. Shah

    2013-05-01

    A novel photonic crystal fiber (PCF) having circular arrangement of cladding air holes has been designed and numerically optimized to obtain a bend insensitive single mode fiber with large mode area for both wavelength division multiplexing (WDM) communication and fiber-to-the-home (FTTH) application. The bending loss of the proposed bent PCF lies in the range of 10-3 to 10-4 dB/turn or lower over 1300 to 1700 nm, and 2 × 10-4 dB/turn at the wavelength of 1550 nm for a 30-mm bend radius with a higher order mode (HOM) cut-off frequency below 1200 nm for WDM application. When the whole structure of the PCF is scaled down, a bending loss of 6.78×10-4 dB/turn at 1550 nm for a 4-mm bend radius is obtained, and the loss remains in the order of 10-4 dB/turn over the same range of wavelength with an HOM cut-off frequency below 700 nm, and makes the fiber useful for FTTH applications. Furthermore, this structure is also optimized to show a splice loss near zero for fusion-splicing to a conventional single-mode fiber (SMF).

  8. Performance analysis of a threshold-based parallel multiple beam selection scheme for WDM-based systems for Gamma-Gamma distributions

    KAUST Repository

    Nam, Sung Sik; Yoon, Chang Seok; Alouini, Mohamed-Slim

    2017-01-01

    In this paper, we statistically analyze the performance of a threshold-based parallel multiple beam selection scheme (TPMBS) for Free-space optical (FSO) based system with wavelength division multiplexing (WDM) in cases where a pointing error has

  9. Turbo Equalization Techniques Toward Robust PDM 16-QAM Optical Fiber Transmission

    DEFF Research Database (Denmark)

    Arlunno, Valeria; Caballero Jambrina, Antonio; Borkowski, Robert

    2014-01-01

    In this paper, we show numerically and experimentally that turbo equalization (TE) is an efficient technique to mitigate performance degradations stemming from optical fiber propagation effects in both optical fiber dispersion managed and unmanaged coherent detection links. The effectiveness....... As TE can be included in the current coherent detection transceiver technologies and complement other equalization techniques, it has prospects for application in next-generation high-capacity and long-reach optical transmission links....

  10. Integration of FBG Strain Sensors in WDM Networks, Effects on Quality Factor

    Directory of Open Access Journals (Sweden)

    Ali Al-Lawati

    2009-06-01

    Full Text Available A study of the effect of integrating an FBG sensor in a four wavelength WDM communications system operating at 1550 nm is presented. The simulations considered focus on the mutual effects of both the sensing and the communications systems. The effect of power levels of the interrogating optical source on the performance of the two systems is also investigated under excitation levels of up to 10 dBm. The network layout used in the simulations is based on an actual optical link in Oman having a variety of spans. The results obtained at data rates of 2.5 and 10 Gbps with variable strains up to ±600 μs show a good tolerance in terms of quality of transmission for the two systems. However, the greater the strain values, the more noticeable are the degradations of transmission quality parameters of the communications system.

  11. Cost-effective TCM-based WDM-PON for highly asymmetric traffic conditions.

    Science.gov (United States)

    Lee, Danbi; Kwon, Won-Bae; Chae, Chang-Joon; Park, Chang-Soo

    2015-11-16

    A time compression multiplexing (TCM)-based wavelength division multiplexing passive optical network (WDM-PON) using a reflective semiconductor optical amplifier (RSOA) is proposed, and its feasibility is experimentally demonstrated. In the proposed system, the RSOA pre-amplifies a 10 Gb/s downstream signal and modulates the RSOA output, wavelength-locked to the downstream signal, with a 1.25 Gb/s upstream signal simultaneously. The sensitivity of the downstream signal is improved by about 3 dB through the RSOA. The downstream and upstream signals have power penalties of about 0.1 dB and 1.1 dB, respectively, at bit error rates (BERs) of 10(-9) after 20 km transmission.

  12. Optical RAM row access using WDM-enabled all-passive row/column decoders

    Science.gov (United States)

    Papaioannou, Sotirios; Alexoudi, Theoni; Kanellos, George T.; Miliou, Amalia; Pleros, Nikos

    2014-03-01

    Towards achieving a functional RAM organization that reaps the advantages offered by optical technology, a complete set of optical peripheral modules, namely the Row (RD) and Column Decoder (CD) units, is required. In this perspective, we demonstrate an all-passive 2×4 optical RAM RD with row access operation and subsequent all-passive column decoding to control the access of WDM-formatted words in optical RAM rows. The 2×4 RD exploits a WDM-formatted 2-bit-long memory WordLine address along with its complementary value, all of them encoded on four different wavelengths and broadcasted to all RAM rows. The RD relies on an all-passive wavelength-selective filtering matrix (λ-matrix) that ensures a logical `0' output only at the selected RAM row. Subsequently, the RD output of each row drives the respective SOA-MZI-based Row Access Gate (AG) to grant/block the entry of the incoming data words to the whole memory row. In case of a selected row, the data word exits the row AG and enters the respective CD that relies on an allpassive wavelength-selective Arrayed Waveguide Grating (AWG) for decoding the word bits into their individual columns. Both RD and CD procedures are carried out without requiring any active devices, assuming that the memory address and data word bits as well as their inverted values will be available in their optical form by the CPU interface. Proof-of-concept experimental verification exploiting cascaded pairs of AWGs as the λ-matrix is demonstrated at 10Gb/s, providing error-free operation with a peak power penalty lower than 0.2dB for all optical word channels.

  13. Upgrade of optical WDM transport systems introducing linerates at 40 Gbit/s per channel

    Science.gov (United States)

    Schneiders, Malte; Vorbeck, Sascha; Aust, Nora

    2006-10-01

    Driven by high growth rates of internet traffic the question of upgrading existing optical metro-, regio- and long haul transport networks introducing 40 Gbit/s/λ is one of the most important questions today and in the near future. Current WDM Systems in photonic networks are commonly operated at linerates of 2.5 and 10 Gbit/s/λ. Induced by market analyses and the historical development of transport systems some work has already been carried out to evaluate update scenarios from 10 to 40 Gbit/s channel data rates. Due to the inherent quadruplication of the bandwidth per channel, limitations due to linear and non-linear transmission impairments become stronger resulting in a highly increased complexity of link engineering, potentially increasing the capital and operational expenditures. A lot of work is therefore in progress, which targets at the relaxation of constraints for 40 Gbit/s transmission to find the most efficient upgrade strategies. One approach towards an increased robustness against signal distortions is the introduction of more advanced modulation formats. Different modulation schemes show strongly different optical WDM transmission characteristics. The choice of the appropriate format does not only depend on the technical requirements, but also on economical considerations as an increased transmitter- and receiver-complexity will drive the transponder price. This article presents investigations on different modulation formats for the upgrade of existing metro-/ regio and long haul transport networks. Tolerances and robustness against the main degrading effects dispersion, noise and nonlinearities are considered together with mitigation strategies like the adaptation of dispersion maps. Results from numerical simulations are provided for some of the most promising modulation formats like NRZ, RZ, CS-RZ, Optical Duobinary and DPSK.

  14. Photorefractive Fibers

    National Research Council Canada - National Science Library

    Kuzyk, Mark G

    2003-01-01

    ... scope of the project. In addition to our work in optical limiting fibers, spillover results included making fiber-based light-sources, writing holograms in fibers, and developing the theory of the limits of the nonlinear...

  15. Fiber-Optic Communication Links Suitable for On-Board Use in Modern Aircraft

    Science.gov (United States)

    Nguyen, Hung; Ngo, Duc; Alam, Mohammad F.; Atiquzzaman, Mohammed; Sluse, James; Slaveski, Filip

    2004-01-01

    The role of the Advanced Air Transportation Technologies program undertaken at the NASA Glenn Research Centers has been focused mainly on the improvement of air transportation safety, with particular emphasis on air transportation communication systems in on-board aircraft. The conventional solutions for digital optical communications systems specifically designed for local/metro area networks are, unfortunately, not capable of transporting the microwave and millimeter RF signals used in avionics systems. Optical networks capable of transporting RF signals are substantially different from the standard digital optical communications systems. The objective of this paper is to identify a number of different communication link architectures for RF/fiber optic transmission using a single backbone fiber for carrying VHF and UHF RF signals in the aircraft. To support these architectures, two approaches derived from both hybrid RF-optical and all-optical processing methodologies are discussed with single and multiple antennas for explicitly transporting VHF and UHF signals, while the relative merits and demerits of each architecture are also addressed. Furthermore, the experimental results of wavelength division multiplexing (WDM) link architecture from our test-bed platform, configured for aircraft environment to support simultaneous transmission of multiple RF signals over a single optical fiber, exhibit no appreciable signal degradation at wavelengths of both 1330 and 1550 nm, respectively. Our measurements of signal to noise ratio carried out for the transmission of FM and AM analog modulated signals at these wavelengths indicate that WDM is a fiber optic technology which is potentially suitable for avionics applications.

  16. Health monitoring of unmanned aerial vehicle based on optical fiber sensor array

    Science.gov (United States)

    Luo, Yuxiang; Shen, Jingshi; Shao, Fei; Guo, Chunhui; Yang, Ning; Zhang, Jiande

    2017-10-01

    The unmanned aerial vehicle (UAV) in flight needs to face the complicated environment, especially to withstand harsh weather conditions, such as the temperature and pressure. Compared with conventional sensors, fiber Bragg grating (FBG) sensor has the advantages of small size, light weight, high reliability, high precision, anti-electromagnetic interference, long lift-span, moistureproof and good resistance to causticity. It's easy to be embedded in composite structural components of UAVs. In the paper, over 1000 FBG sensors distribute regularly on a wide range of UAVs body, combining wavelength division multiplexing (WDM), time division multiplexing (TDM) and multichannel parallel architecture. WDM has the advantage of high spatial resolution. TDM has the advantage of large capacity and wide range. It is worthful to constitute a sensor network by different technologies. For the signal demodulation of FBG sensor array, WDM works by means of wavelength scanning light sources and F-P etalon. TDM adopts the technology of optical time-domain reflectometry. In order to demodulate efficiently, the most proper sensor multiplex number with some reflectivity is given by the curves fitting. Due to the regular array arrangement of FBG sensors on the UAVs, we can acquire the health state of UAVs in the form of 3D visualization. It is helpful to master the information of health status rapidly and give a real-time health evaluation.

  17. Fiber dielectrophoresis

    International Nuclear Information System (INIS)

    Lipowicz, P.J.; Yeh, H.C.

    1988-01-01

    Dielectrophoresis is the motion of uncharged particles in nonuniform electric fields. We find that the theoretical dielectrophoretic velocity of a conducting fiber in an insulating medium is proportional to the square of the fiber length, and is virtually independent of fiber diameter. This prediction has been verified experimentally. The results point to the development of a fiber length classifier based on dielectrophoresis. (author)

  18. Fiber Amplifiers

    DEFF Research Database (Denmark)

    Rottwitt, Karsten

    2017-01-01

    The chapter provides a discussion of optical fiber amplifiers and through three sections provides a detailed treatment of three types of optical fiber amplifiers, erbium doped fiber amplifiers (EDFA), Raman amplifiers, and parametric amplifiers. Each section comprises the fundamentals including...... the basic physics and relevant in-depth theoretical modeling, amplifiers characteristics and performance data as a function of specific operation parameters. Typical applications in fiber optic communication systems and the improvement achievable through the use of fiber amplifiers are illustrated....

  19. Fabrication and stability of fiber bragg gratings for WDM applications using a 266 nm cw-laser

    DEFF Research Database (Denmark)

    Deyerl, Hans-Jürgen; Sørensen, Henrik Rokkjær; Jensen, Jesper Bo Damm

    2003-01-01

    Diode pumped continuous wave all solid state UV-lasers operating at 266 nm offer an interesting alternative to frequency doubled argon ion lasers. We compare photosensitivity, UV-writing of Bragg gratings and thermal decay at 244, 257 and 266 nm.......Diode pumped continuous wave all solid state UV-lasers operating at 266 nm offer an interesting alternative to frequency doubled argon ion lasers. We compare photosensitivity, UV-writing of Bragg gratings and thermal decay at 244, 257 and 266 nm....

  20. Performance Analysis of a Threshold-Based Parallel Multiple Beam Selection Scheme for WDM FSO Systems

    KAUST Repository

    Nam, Sung Sik

    2018-04-09

    In this paper, we statistically analyze the performance of a threshold-based parallel multiple beam selection scheme for a free-space optical (FSO) based system with wavelength division multiplexing (WDM) in cases where a pointing error has occurred under independent identically distributed Gamma-Gamma fading conditions. To simplify the mathematical analysis, we additionally consider Gamma turbulence conditions, which are a good approximation of Gamma-Gamma distribution. Specifically, we statistically analyze the characteristics in operation under conventional detection schemes (i.e., heterodyne detection (HD) and intensity modulation/direct detection (IM/DD) techniques) for both adaptive modulation (AM) case in addition to non-AM case (i.e., coherent/non-coherent binary modulation). Then, based on the statistically derived results, we evaluate the outage probability of a selected beam, the average spectral efficiency (ASE), the average number of selected beams (ANSB) and the average bit error rate (BER). Selected results show that we can obtain higher spectral efficiency and simultaneously reduce the potential for increasing the complexity of implementation caused by applying the selection-based beam selection scheme without considerable performance loss. Especially for the AM case, the ASE can be increased further compared to the non- AM cases. Our derived results based on the Gamma distribution as an approximation of the Gamma-Gamma distribution can be used as approximated performance measure bounds, especially, they may lead to lower bounds on the approximated considered performance measures.

  1. A Multicast Sparse-Grooming Algorithm Based on Network Coding in WDM Networks

    Science.gov (United States)

    Zhang, Shengfeng; Peng, Han; Sui, Meng; Liu, Huanlin

    2015-03-01

    To improve the limited number of wavelength utilization and decrease the traffic blocking probability in sparse-grooming wavelength-division multiplexing (WDM) networks, a multicast sparse-grooming algorithm based on network coding (MCSA-NC) is put forward to solve the routing problem for dynamic multicast requests in this paper. In the proposed algorithm, a traffic partition strategy, that the coarse-granularity multicast request with grooming capability on the source node is split into several fine-granularity multicast requests, is designed so as to increase the probability for traffic grooming successfully in MCSA-NC. Besides considering that multiple destinations should receive the data from source of the multicast request at the same time, the traditional transmission mechanism is improved by constructing edge-disjoint paths for each split multicast request. Moreover, in order to reduce the number of wavelengths required and further decrease the traffic blocking probability, a light-tree reconfiguration mechanism is presented in the MCSA-NC, which can select a minimal cost light tree from the established edge-disjoint paths for a new multicast request.

  2. Quad 14Gbps L-Band VCSEL-based System for WDM Migration of 4-lanes 56 Gbps Optical Data Links

    DEFF Research Database (Denmark)

    Estaran Tolosa, Jose Manuel; Rodes Lopez, Roberto; Pham, Tien Thang

    2012-01-01

    We report on migrating multiple lane link into a single WDM L-band VCSEL-based system. Experimental validation successfully achieves 10 km of SMF reach with 4x14Gbps and less than 0.5dB inter-channel crosstalk penalty.......We report on migrating multiple lane link into a single WDM L-band VCSEL-based system. Experimental validation successfully achieves 10 km of SMF reach with 4x14Gbps and less than 0.5dB inter-channel crosstalk penalty....

  3. Multi-channel WDM RZ-to-NRZ format conversion at 50 Gbit/s based on single silicon microring resonator

    DEFF Research Database (Denmark)

    Ding, Yunhong; Peucheret, Christophe; Pu, Minhao

    2010-01-01

    We comprehensively analyze multiple WDM channels RZ-to- NRZ format conversion using a single microring resonator. The scheme relies on simultaneous suppression of the first order harmonic components in the spectra of all the RZ channels. An optimized silicon microring resonator with free spectral...... range of 100 GHz and Q value of 7900 is designed and fabricated for this purpose. Multi-channel RZ-to-NRZ format conversion is demonstrated experimentally at 50 Gbit/s for WDM channels with 200 GHz channel spacing using the fabricated device. Bit error rate (BER)measurements show very good conversion...

  4. A New Wavelength Optimization and Energy-Saving Scheme Based on Network Coding in Software-Defined WDM-PON Networks

    Science.gov (United States)

    Ren, Danping; Wu, Shanshan; Zhang, Lijing

    2016-09-01

    In view of the characteristics of the global control and flexible monitor of software-defined networks (SDN), we proposes a new optical access network architecture dedicated to Wavelength Division Multiplexing-Passive Optical Network (WDM-PON) systems based on SDN. The network coding (NC) technology is also applied into this architecture to enhance the utilization of wavelength resource and reduce the costs of light source. Simulation results show that this scheme can optimize the throughput of the WDM-PON network, greatly reduce the system time delay and energy consumption.

  5. Optimal Golomb Ruler Sequences Generation for Optical WDM Systems: A Novel Parallel Hybrid Multi-objective Bat Algorithm

    Science.gov (United States)

    Bansal, Shonak; Singh, Arun Kumar; Gupta, Neena

    2017-02-01

    In real-life, multi-objective engineering design problems are very tough and time consuming optimization problems due to their high degree of nonlinearities, complexities and inhomogeneity. Nature-inspired based multi-objective optimization algorithms are now becoming popular for solving multi-objective engineering design problems. This paper proposes original multi-objective Bat algorithm (MOBA) and its extended form, namely, novel parallel hybrid multi-objective Bat algorithm (PHMOBA) to generate shortest length Golomb ruler called optimal Golomb ruler (OGR) sequences at a reasonable computation time. The OGRs found their application in optical wavelength division multiplexing (WDM) systems as channel-allocation algorithm to reduce the four-wave mixing (FWM) crosstalk. The performances of both the proposed algorithms to generate OGRs as optical WDM channel-allocation is compared with other existing classical computing and nature-inspired algorithms, including extended quadratic congruence (EQC), search algorithm (SA), genetic algorithms (GAs), biogeography based optimization (BBO) and big bang-big crunch (BB-BC) optimization algorithms. Simulations conclude that the proposed parallel hybrid multi-objective Bat algorithm works efficiently as compared to original multi-objective Bat algorithm and other existing algorithms to generate OGRs for optical WDM systems. The algorithm PHMOBA to generate OGRs, has higher convergence and success rate than original MOBA. The efficiency improvement of proposed PHMOBA to generate OGRs up to 20-marks, in terms of ruler length and total optical channel bandwidth (TBW) is 100 %, whereas for original MOBA is 85 %. Finally the implications for further research are also discussed.

  6. WDM Optical Access Network for Full-Duplex and Reconfigurable Capacity Assignment Based on PolMUX Technique

    Directory of Open Access Journals (Sweden)

    Jose Mora

    2014-12-01

    Full Text Available We present a novel bidirectional WDM-based optical access network featuring reconfigurable capacity assignment. The architecture relies on the PolMUX technique allowing a compact, flexible, and bandwidth-efficient router in addition to source-free ONUs and color-less ONUs for cost/complexity minimization. Moreover, the centralized architecture contemplates remote management and control of polarization. High-quality transmission of digital signals is demonstrated through different routing scenarios where all channels are dynamically assigned in both downlink and uplink directions.

  7. Projeto de EDFAs com controle automatico de ganho totalmente optico para aplicações em redes WDM

    OpenAIRE

    Julio Cesar Rodrigues Fernandes de Oliveira

    2004-01-01

    Resumo: A variação na potência da entrada em amplificadores ópticos a fibra dopada com Érbio (EDFAs) induz alterações em seu ganho. No caso de sistemas ou redes WDM onde o número de canais acoplados ao amplificador varia, o ganho torna-se dependente do número de canais que estão sendo transmitidos, especialmente se o amplificador opera saturado. Este trabalho apresenta o desenvolvimento e a avaliação experimental de uma técnica de controle de ganho totalmente óptica para EDFAs. Esta técnica d...

  8. All-optical multi-wavelength conversion with negative power penalty by a commercial SOA-MZI for WDM wavelength multicast

    NARCIS (Netherlands)

    Yan, N.; Jung, H.D.; Tafur Monroy, I.; Waardt, de H.; Koonen, A.M.J.

    2007-01-01

    WDM wavelength multicast is demonstrated by all-optical multi-wavelength conversion at 10 Gb/s using a commercial SOA-MZI. We report for the first time simultaneous one-to-four conversion with negative power penalty of 1.84 dB.

  9. Compact and high-sensitivity 100-Gb/s (4 × 25 Gb/s) APD-ROSA with a LAN-WDM PLC demultiplexer.

    Science.gov (United States)

    Yoshimatsu, Toshihide; Nada, Masahiro; Oguma, Manabu; Yokoyama, Haruki; Ohno, Tetsuichiro; Doi, Yoshiyuki; Ogawa, Ikuo; Takahashi, Hiroshi; Yoshida, Eiji

    2012-12-10

    We demonstrate an integrated 100 GbE receiver optical sub-assembly (ROSA) that incorporates a monolithic four-channel avalanche photodiode (APD) array and a planer lightwave circuit (PLC) based LAN-WDM demultiplexer. A record minimum receiver sensitivity of -20 dBm and 50-km error-free SMF transmission without an optical amplifier have been achieved.

  10. Experimental Comparison of Gains in Achievable Information Rates from Probabilistic Shaping and Digital Backpropagation for DP-256QAM/1024QAM WDM Systems

    DEFF Research Database (Denmark)

    Porto da Silva, Edson; Yankov, Metodi Plamenov; Da Ros, Francesco

    2016-01-01

    Gains in achievable information rates from probabilistic shaping and digital backpropagation are compared for WDM transmission of 5 × 10 GBd DP-256QAM/1024QAM up to 1700 km of reach. The combination of both techniques its shown to provide gains of up to ∼0.5 bits/QAM symbol...

  11. Quad 14 Gbps L-band VCSEL-based system for WDM migration of 4-lanes 56 Gbps optical data links

    DEFF Research Database (Denmark)

    Estaran Tolosa, Jose Manuel; Rodes Lopez, Roberto; Pham, Tien Thang

    2012-01-01

    We report on migrating multiple-lane link into an L-band VCSEL-based WDM system. Experimental validation achieves successful transmission over 10 km of SMF at 4x14Gbps. Inter-channel crosstalk penalty is observed to be less than 0.5 dB and a transmission penalty around 1 dB. The power budget margin...

  12. W-band radio-over-fiber propagation of two optically encoded wavelength channels

    Science.gov (United States)

    Eghbal, Morad Khosravi; Shadaram, Mehdi

    2018-01-01

    We propose a W-band wavelength-division multiplexing (WDM)-over-optical code-division multiple access radio-over-fiber system. This system offers capacity expansion by increasing the working frequency to millimeter wave region and by introducing optical encoding and multiwavelength multiplexing. The system's functionality is investigated by software modeling, and the results are presented. The generated signals are data modulated at 10 Gb/s and optically encoded for two wavelength channels and transmitted with a 20-km length of fiber. The received signals are optically decoded and detected. Also, encoding has improved the bit error rate (BER) versus the received optical power margin for the WDM setting by about 4 dB. In addition, the eye-diagram shows that the difference between received optical power levels at the BER of 10-12 to 10-3 is about 1.3% between two encoded channels. This method of capacity improvement is significantly important for the next generation of mobile communication, where millimeter wave signals will be widely used to deliver data to small cells.

  13. Adaptive Neuro-Fuzzy Based Gain Controller for Erbium-Doped Fiber Amplifiers

    Directory of Open Access Journals (Sweden)

    YUCEL, M.

    2017-02-01

    Full Text Available Erbium-doped fiber amplifiers (EDFA must have a flat gain profile which is a very important parameter such as wavelength division multiplexing (WDM and dense WDM (DWDM applications for long-haul optical communication systems and networks. For this reason, it is crucial to hold a stable signal power per optical channel. For the purpose of overcoming performance decline of optical networks and long-haul optical systems, the gain of the EDFA must be controlled for it to be fixed at a high speed. In this study, due to the signal power attenuation in long-haul fiber optic communication systems and non-equal signal amplification in each channel, an automatic gain controller (AGC is designed based on the adaptive neuro-fuzzy inference system (ANFIS for EDFAs. The intelligent gain controller is implemented and the performance of this new electronic control method is demonstrated. The proposed ANFIS-based AGC-EDFA uses the experimental dataset to produce the ANFIS-based sets and the rule base. Laser diode currents are predicted within the accuracy rating over 98 percent with the proposed ANFIS-based system. Upon comparing ANFIS-based AGC-EDFA and experimental results, they were found to be very close and compatible.

  14. Optical Switching for Dynamic Distribution of Wireless-over-Fiber Signals

    DEFF Research Database (Denmark)

    Rodes Lopez, Guillermo Arturo; Vegas Olmos, Juan José; Karinou, Fotini

    2012-01-01

    In this paper, we report on an experimental validation of dynamic distribution of wireless-over-fiber by employing optical switching using semiconductor optical amplifiers; the rest of the network was designed according to the channel distribution over the optical spectra required by the optical...... switch. An experimental validation was also conducted. The experiment consists of a four wavelength division multiplexed (WDM) channel system operating on a WiMax frequency band, and employing an orthogonal frequency-division multiplexing (OFDM) modulation at 625 Mbit/s per channel, transmission...... of the data over 20 km of optical fiber, and active switching in a one-by-sixteen active optical switch. The results show a negligible power penalty on each channel, for both the best and the worst case in terms of inter-channel crosstalk....

  15. Empirical multichannel power consumption model for erbium-doped fiber amplifiers

    DEFF Research Database (Denmark)

    Saldaña Cercos, Silvia; de Paiva, Getulio E. R.; Argentato, Marcio Colazza

    2015-01-01

    In this paper we report on the first experimental power consumption analysis and model of single and multi-stage booster erbium-doped fiber amplifiers (EDFAs) with automatic gain control (AGC), accounting for channel number dependency. Results show that the amount of channels being amplified simu......-users, it is relevant to study channel number dependent power consumption for devising EDFA power efficient control and design.......In this paper we report on the first experimental power consumption analysis and model of single and multi-stage booster erbium-doped fiber amplifiers (EDFAs) with automatic gain control (AGC), accounting for channel number dependency. Results show that the amount of channels being amplified...... simultaneously contributes significantly, up to 48%, to the total power consumption due to the circuitry used for controlling the EDFA. As the number of simultaneous amplified WDM channels in high capacity long and medium reach transmission links reflects closely traffic patterns generated by end...

  16. Fiber-wireless convergence in next-generation communication networks systems, architectures, and management

    CERN Document Server

    Chang, Gee-Kung; Ellinas, Georgios

    2017-01-01

    This book investigates new enabling technologies for Fi-Wi convergence. The editors discuss Fi-Wi technologies at the three major network levels involved in the path towards convergence: system level, network architecture level, and network management level. The main topics will be: a. At system level: Radio over Fiber (digitalized vs. analogic, standardization, E-band and beyond) and 5G wireless technologies; b. Network architecture level: NGPON, WDM-PON, BBU Hotelling, Cloud Radio Access Networks (C-RANs), HetNets. c. Network management level: SDN for convergence, Next-generation Point-of-Presence, Wi-Fi LTE Handover, Cooperative MultiPoint. • Addresses the Fi-Wi convergence issues at three different levels, namely at the system level, network architecture level, and network management level • Provides approaches in communication systems, network architecture, and management that are expected to steer the evolution towards fiber-wireless convergence • Contributions from leading experts in the field of...

  17. Two Fiber Optical Fiber Thermometry

    Science.gov (United States)

    Jones, Mathew R.; Farmer, Jeffery T.; Breeding, Shawn P.

    2000-01-01

    An optical fiber thermometer consists of an optical fiber whose sensing tip is given a metallic coating. The sensing tip of the fiber is essentially an isothermal cavity, so the emission from this cavity will be approximately equal to the emission from a blackbody. Temperature readings are obtained by measuring the spectral radiative heat flux at the end of the fiber at two wavelengths. The ratio of these measurements and Planck's Law are used to infer the temperature at the sensing tip. Optical fiber thermometers have high accuracy, excellent long-term stability and are immune to electromagnetic interference. In addition, they can be operated for extended periods without requiring re-calibration. For these reasons. it is desirable to use optical fiber thermometers in environments such as the International Space Station. However, it has recently been shown that temperature readings are corrupted by emission from the fiber when extended portions of the probe are exposed to elevated temperatures. This paper will describe several ways in which the reading from a second fiber can be used to correct the corrupted temperature measurements. The accuracy and sensitivity to measurement uncertainty will be presented for each method.

  18. Bandwidth efficient bidirectional 5 Gb/s overlapped-SCM WDM PON with electronic equalization and forward-error correction.

    Science.gov (United States)

    Buset, Jonathan M; El-Sahn, Ziad A; Plant, David V

    2012-06-18

    We demonstrate an improved overlapped-subcarrier multiplexed (O-SCM) WDM PON architecture transmitting over a single feeder using cost sensitive intensity modulation/direct detection transceivers, data re-modulation and simple electronics. Incorporating electronic equalization and Reed-Solomon forward-error correction codes helps to overcome the bandwidth limitation of a remotely seeded reflective semiconductor optical amplifier (RSOA)-based ONU transmitter. The O-SCM architecture yields greater spectral efficiency and higher bit rates than many other SCM techniques while maintaining resilience to upstream impairments. We demonstrate full-duplex 5 Gb/s transmission over 20 km and analyze BER performance as a function of transmitted and received power. The architecture provides flexibility to network operators by relaxing common design constraints and enabling full-duplex operation at BER ∼ 10(-10) over a wide range of OLT launch powers from 3.5 to 8 dBm.

  19. WDM compatible and electrically tunable SPE-OCDMA system based on the temporal self-imaging effect.

    Science.gov (United States)

    Tainta, S; Amaya, W; Erro, M J; Garde, M J; Sales, S; Muriel, M A

    2011-02-01

    A coding/decoding setup for a spectral phase encoding optical code-division multiple access (SPE-OCDMA) system has been developed. The proposal is based on the temporal self-imaging effect and the use of an easily tunable electro-optic phase modulator to achieve line-by-line coding of the transmitted signal, thus assuring compatibility with WDM techniques. Modulation of the code is performed at the same rate as the data, avoiding the use of high-bandwidth electro-optic modulators. As proof of concept of the technique, experimental results are presented for a back-to-back coder/decoder setup transmitting a 10 GHz unmodulated optical pulse train within an 80 GHz optical window and using 8-chip Hadamard codes.

  20. THE VELOCITY FUNCTION IN THE LOCAL ENVIRONMENT FROM ΛCDM AND ΛWDM CONSTRAINED SIMULATIONS

    International Nuclear Information System (INIS)

    Zavala, J.; Jing, Y. P.; Faltenbacher, A.; Yepes, G.; Hoffman, Y.; Gottloeber, S.; Catinella, B.

    2009-01-01

    Using constrained simulations of the local universe for generic cold dark matter (CDM) and for 1 keV warm dark matter (WDM), we investigate the difference in the abundance of dark matter halos in the local environment. We find that the mass function (MF) within 20 h -1 Mpc of the Local Group is ∼2 times larger than the universal MF in the 10 9 -10 13 h -1 M sun mass range. Imposing the field of view of the ongoing H I blind survey Arecibo Legacy Fast ALFA (ALFALFA) in our simulations, we predict that the velocity function (VF) in the Virgo-direction region (VdR) exceeds the universal VF by a factor of 3. Furthermore, employing a scheme to translate the halo VF into a galaxy VF, we compare the simulation results with a sample of galaxies from the early catalog release of ALFALFA. We find that our simulations are able to reproduce the VF in the 80-300 km s -1 velocity range, having a value ∼10 times larger than the universal VF in the VdR. In the low-velocity regime, 35-80 km s -1 , the WDM simulation reproduces the observed flattening of the VF. In contrast, the simulation with CDM predicts a steep rise in the VF toward lower velocities; for V max = 35 km s -1 , it forecasts ∼10 times more sources than the ones observed. If confirmed by the complete ALFALFA survey, our results indicate a potential problem for the CDM paradigm or for the conventional assumptions about energetic feedback in dwarf galaxies.

  1. The Audacity of Fiber-Wireless (FiWi) Networks

    Science.gov (United States)

    Maier, Martin; Ghazisaidi, Navid; Reisslein, Martin

    A plethora of enabling optical and wireless technologies have been emerging that can be used to build future-proof bimodal fiber-wireless (FiWi) broadband access networks. After overviewing key enabling radio-over-fiber (RoF) and radio-and-fiber (R&F) technologies and briefly surveying the state of the art of FiWi networks, we introduce an Ethernet-based access-metro FiWi network, called SuperMAN, that integrates next-generation WiFi and WiMAX networks with WDM-enhanced EPON and RPR networks. Throughout the paper we pay close attention to the technical challenges and opportunities of FiWi networks, but also elaborate on their societal benefits and potential to shift the current research focus from optical-wireless networking to the exploitation of personal and in-home computing facilities to create new unforeseen services and applications as we are about to enter the Petabyte age.

  2. A cost-effective structure of a centralized-light-source WDM-PON utilizing inverse-duobinary-RZ downstream and DPSK upstream

    International Nuclear Information System (INIS)

    Chen Long-Quan; Qiao Yao-Jun; Ji Yue-Feng

    2013-01-01

    In this paper, we propose a new structure of a centralized-light-source wavelength division multiplexed passive optical network (WDM-PON) utilizing inverse-duobinary-return-to-zero (inverse-duobinary-RZ) downstream and DPSK upstream. It reuses downstream light for the upstream modulation, which retrenches lasers assembled at each optical network unit (ONU), and ultimately cuts down the cost of ONUs a great deal. Meanwhile, a 50-km-reach WDM-PON experiment with 10-Gb/s inverse-duobinary-RZ downstream and 6-Gb/s DPSK upstream is demonstrated here. It is revealed to be a novel cost-effective alternative for the next generation access network. (electromagnetism, optics, acoustics, heat transfer, classical mechanics, and fluid dynamics)

  3. High-efficient full-duplex WDM-RoF system with sub-central station

    Science.gov (United States)

    Liu, Anliang; Yin, Hongxi; Wu, Bin

    2018-05-01

    With an additional sub-central station (S-CS), a high-efficient full-duplex radio-over-fiber (RoF) system compatible with the wavelength-division-multiplexing technology is proposed and experimentally demonstrated in this paper. To improve the dispersion tolerance of the RoF system, the baseband data format for the downlink and an all-optical down-conversion approach for the uplink are employed. In addition, this RoF system can not only make full use of the fiber link resources but also realize the upstream transmission without any local light sources at remote base stations (BSs). A 10-GHz RoF experimental system with a 1.25-Gb/s rate bidirectional transmission is established based on the S-CS structure. The feasibility and reliability of this RoF system are verified through eye diagrams and bit error rate (BER) curves experimentally obtained.

  4. Analytical Characterization of SPM Impact on XPM-Induced Degradation in Dispersion-Compensated WDM Systems

    Science.gov (United States)

    Luís, Ruben S.; Cartaxo, Adolfo V. T.

    2005-03-01

    This paper proposes the definition of a cross-phase modulation (XPM)-induced power penalty for intensity modulation/direct detection (IM-DD) systems as a function of the normalized variance of the XPM-induced IM. This allows the definition of 1-dB power penalty reference values. New expressions of the equivalent linear model transfer functions for the XPM-induced IM and phase modulation (PM) that include the influence of self-phase modulation (SPM) as well as group-velocity dispersion are derived. The new expressions allow a significant extension for higher powers and dispersion parameters of expressions derived in previous papers for single-segment and multisegment fiber systems with dispersion compensation. Good agreement between analytical results and numerical simulations is obtained. Consistency with work performed numerically and experimentally by other authors is shown, validating the proposed model. Using the proposed model, the influence of residual dispersion and SPM on the limitations imposed by XPM on the performance of dispersion-compensated systems is assessed. It is shown that inline residual dispersion may lead to performance improvement for a properly tuned total residual dispersion. The influence of SPM is shown to degrade the system performance when nonzero-dispersion-shifted fiber is used. However, systems using standard single-mode fiber may benefit from the presence of SPM.

  5. A rigorous analysis of digital pre-emphasis and DAC resolution for interleaved DAC Nyquist-WDM signal generation in high-speed coherent optical transmission systems

    Science.gov (United States)

    Weng, Yi; Wang, Junyi; He, Xuan; Pan, Zhongqi

    2018-02-01

    The Nyquist spectral shaping techniques facilitate a promising solution to enhance spectral efficiency (SE) and further reduce the cost-per-bit in high-speed wavelength-division multiplexing (WDM) transmission systems. Hypothetically, any Nyquist WDM signals with arbitrary shapes can be generated by the use of the digital signal processing (DSP) based electrical filters (E-filter). Nonetheless, in actual 100G/ 200G coherent systems, the performance as well as DSP complexity are increasingly restricted by cost and power consumption. Henceforward it is indispensable to optimize DSP to accomplish the preferred performance at the least complexity. In this paper, we systematically investigated the minimum requirements and challenges of Nyquist WDM signal generation, particularly for higher-order modulation formats, including 16 quadrature amplitude modulation (QAM) or 64QAM. A variety of interrelated parameters, such as channel spacing and roll-off factor, have been evaluated to optimize the requirements of the digital-to-analog converter (DAC) resolution and transmitter E-filter bandwidth. The impact of spectral pre-emphasis has been predominantly enhanced via the proposed interleaved DAC architecture by at least 4%, and hence reducing the required optical signal to noise ratio (OSNR) at a bit error rate (BER) of 10-3 by over 0.45 dB at a channel spacing of 1.05 symbol rate and an optimized roll-off factor of 0.1. Furthermore, the requirements of sampling rate for different types of super-Gaussian E-filters are discussed for 64QAM Nyquist WDM transmission systems. Finally, the impact of the non-50% duty cycle error between sub-DACs upon the quality of the generated signals for the interleaved DAC structure has been analyzed.

  6. Design and implementation of flexible TWDM-PON with PtP WDM overlay based on WSS for next-generation optical access networks

    Science.gov (United States)

    Wu, Bin; Yin, Hongxi; Qin, Jie; Liu, Chang; Liu, Anliang; Shao, Qi; Xu, Xiaoguang

    2016-09-01

    Aiming at the increasing demand of the diversification services and flexible bandwidth allocation of the future access networks, a flexible passive optical network (PON) scheme combining time and wavelength division multiplexing (TWDM) with point-to-point wavelength division multiplexing (PtP WDM) overlay is proposed for the next-generation optical access networks in this paper. A novel software-defined optical distribution network (ODN) structure is designed based on wavelength selective switches (WSS), which can implement wavelength and bandwidth dynamical allocations and suits for the bursty traffic. The experimental results reveal that the TWDM-PON can provide 40 Gb/s downstream and 10 Gb/s upstream data transmission, while the PtP WDM-PON can support 10 GHz point-to-point dedicated bandwidth as the overlay complement system. The wavelengths of the TWDM-PON and PtP WDM-PON are allocated dynamically based on WSS, which verifies the feasibility of the proposed structure.

  7. Low-fiber diet

    Science.gov (United States)

    ... residue; Low-fiber diet; Fiber restricted diet; Crohn disease - low fiber diet; Ulcerative colitis - low fiber diet; ... them if they do not contain seeds or pulp: Yellow squash (without seeds) Spinach Pumpkin Eggplant Potatoes, ...

  8. Photovoltaic fibers

    Science.gov (United States)

    Gaudiana, Russell; Eckert, Robert; Cardone, John; Ryan, James; Montello, Alan

    2006-08-01

    It was realized early in the history of Konarka that the ability to produce fibers that generate power from solar energy could be applied to a wide variety of applications where fabrics are utilized currently. These applications include personal items such as jackets, shirts and hats, to architectural uses such as awnings, tents, large covers for cars, trucks and even doomed stadiums, to indoor furnishings such as window blinds, shades and drapes. They may also be used as small fabric patches or fiber bundles for powering or recharging batteries in small sensors. Power generating fabrics for clothing is of particular interest to the military where they would be used in uniforms and body armor where portable power is vital to field operations. In strong sunlight these power generating fabrics could be used as a primary source of energy, or they can be used in either direct sunlight or low light conditions to recharge batteries. Early in 2002, Konarka performed a series of proof-of-concept experiments to demonstrate the feasibility of building a photovoltaic cell using dye-sensitized titania and electrolyte on a metal wire core. The approach taken was based on the sequential coating processes used in making fiber optics, namely, a fiber core, e.g., a metal wire serving as the primary electrode, is passed through a series of vertically aligned coating cups. Each of the cups contains a coating fluid that has a specific function in the photocell. A second wire, used as the counter electrode, is brought into the process prior to entering the final coating cup. The latter contains a photopolymerizable, transparent cladding which hardens when passed through a UV chamber. Upon exiting the UV chamber, the finished PV fiber is spooled. Two hundred of foot lengths of PV fiber have been made using this process. When the fiber is exposed to visible radiation, it generates electrical power. The best efficiency exhibited by these fibers is 6% with an average value in the 4

  9. The long reach of Alzheimer's disease: patients, practice, and policy.

    Science.gov (United States)

    Bynum, Julie P W

    2014-04-01

    The impact of Alzheimer's disease and related dementias reaches well beyond the health care needs of the person with dementia. As dementia inexorably progresses, the patient becomes increasingly dependent on others for basic daily care and routine tasks, a physically safe environment, and protection from exploitation or abuse. Addressing the diverse medical and social care needs of the burgeoning US population with Alzheimer's disease and related dementias requires the adoption of a broad-based policy framework and agenda that explicitly acknowledge the complex and unique needs of people with dementia and the impacts of dementia on caregivers and society at large. Public policies related to social service providers, agencies that provide appropriate housing, financial and legal services, and law enforcement must complement other policies focused on prevention and risk reduction, effective treatment development, and efficient health care delivery.

  10. Wavelength-converted long-reach reconfigurable optical access network

    NARCIS (Netherlands)

    Tran, N.C.; Tangdiongga, E.; Koonen, A.M.J.

    2012-01-01

    Next generation optical access networks should not only increase the capacity but also be able to redistribute the capacity on the fly in order to manage more fluctuated traffic patterns. Wavelength reconfigurability is the instrument to enable such capability of network-wide bandwidth

  11. Long-reach manipulation for waste storage tank remediation

    International Nuclear Information System (INIS)

    Jansen, J.F.; Burks, B.L.; Babcock, S.M.; Kress, R.L.; Hamel, W.R.

    1991-01-01

    Remediation of large underground storage tanks containing hazardous waste provides an application for state-of-the-art technology in flexible link manipulator design and control and a need for additional research and development. Application requirements are described, and preliminary analyses associated with this problem are summarized. Inherent physical limitations of flexible manipulators are discussed. Potential kinematic configurations, drive-train elements, and control issues for both free-space motion and damping of forced vibration are addressed. Also included are future directions for research and development in mechanical components and control strategies. 21 refs., 4 figs., 4 tabs

  12. Novel all-optical dispersion monitoring technique for ultra-high-speed WDM networks

    Energy Technology Data Exchange (ETDEWEB)

    Cui Sheng; Li Li; Liu Deming, E-mail: cuisheng@mail.hust.edu.cn [Wuhan National Laboratory for Optoelectronics, No.1037, Luoyu Road, Wuhan, Hubei, 430074 (China)

    2011-02-01

    This paper represents a novel all-optical dispersion monitoring technique based on fiber parametric amplifiers (FOPAs). The monitoring method is truly bit-rate transparent because it is enabled by the exponential power transfer function (PTF) provided by the FOPA gain. The slope of the PTF is increased from 2 to 3 by choosing appropriate phase-matching conditions. Due to the steeper PTF the monitoring sensitivity is greatly improved compared to the other PTF-based methods proposed before. The PTF obtained by numerical simulations agrees very well with the experimental results. Numerical simulations are then used to demonstrate that our method can be used to monitor signals in various modulation formats.

  13. Application Specific Optical Fibers

    OpenAIRE

    Pal, Bishnu P.

    2010-01-01

    In this chapter we have attempted to provide a unified summary description of the most important propagation characteristics of an optical fiber followed by discussion on several variety of special fibers for realizing fiber amplifiers, dispersion compensating fibers, microstructured optical fibers, and so on. Even though huge progress has been made on development of optical fibers for telecom application, a need for developing special fibers, not necessarily for telecom alone, has arisen. Th...

  14. Analysis of self-homodyne detection for 6-mode fiber with low-modal crosstalk

    Science.gov (United States)

    Guo, Meng; Hu, Guijun

    2017-12-01

    In this paper, we present an appropriate analysis on self-homodyne coherent system with 56 × 5 × 3 Gb / s WDM-PDM-MDM quadrature phase-shift keying (QPSK) signals using 6-mode weakly coupled few mode fiber. The mode division technology can effectively improve the spectral efficiency (SE) of self-homodyne detection. Of all the LP modes, LP01 mode is used to transmit the pilot tone (PT), while the others for signal channels. The influence of inter-mode crosstalk is analyzed. The proposed frequency domain MMA shows a better BER performance for intra-mode crosstalk elimination. The path-length misalignment's influence caused by mode differential group delay (MDGD) is also investigated. The system tolerance for different laser's line-width is compared as well as the influence of PT filter's bandwidth.

  15. Contribución al estudio y optimización de dispositivos basados en holografía dinámica para su uso en redes ópticas pasivas multiplexadas en longitud de onda Wdm-Pon

    OpenAIRE

    Martín Minguez, Alfredo

    2007-01-01

    La utilización de Redes Ópticas Pasivas Multiplexadas por División en el Tiempo (TDMPON), y más recientemente de las Redes Ópticas Pasivas Multiplexadas en Longitud de Onda (WDM-PON), con sus dos principales tecnologías, CWDM y DWDM, en distintas topologías de red para optimizar los recursos disponibles, implica el uso de diversos componentes ópticos como transmisores, receptores, de/multiplexores, filtros, etc. Es en este contexto donde el uso de dispositivos holográficos, WDM sintonizables,...

  16. Watershed Data Management (WDM) database for West Branch DuPage River streamflow simulation, DuPage County, Illinois, January 1, 2007, through September 30, 2013

    Science.gov (United States)

    Bera, Maitreyee

    2017-10-16

    The U.S. Geological Survey (USGS), in cooperation with the DuPage County Stormwater Management Department, maintains a database of hourly meteorological and hydrologic data for use in a near real-time streamflow simulation system. This system is used in the management and operation of reservoirs and other flood-control structures in the West Branch DuPage River watershed in DuPage County, Illinois. The majority of the precipitation data are collected from a tipping-bucket rain-gage network located in and near DuPage County. The other meteorological data (air temperature, dewpoint temperature, wind speed, and solar radiation) are collected at Argonne National Laboratory in Argonne, Ill. Potential evapotranspiration is computed from the meteorological data using the computer program LXPET (Lamoreux Potential Evapotranspiration). The hydrologic data (water-surface elevation [stage] and discharge) are collected at U.S.Geological Survey streamflow-gaging stations in and around DuPage County. These data are stored in a Watershed Data Management (WDM) database.This report describes a version of the WDM database that is quality-assured and quality-controlled annually to ensure datasets are complete and accurate. This database is named WBDR13.WDM. It contains data from January 1, 2007, through September 30, 2013. Each precipitation dataset may have time periods of inaccurate data. This report describes the methods used to estimate the data for the periods of missing, erroneous, or snowfall-affected data and thereby improve the accuracy of these data. The other meteorological datasets are described in detail in Over and others (2010), and the hydrologic datasets in the database are fully described in the online USGS annual water data reports for Illinois (U.S. Geological Survey, 2016) and, therefore, are described in less detail than the precipitation datasets in this report.

  17. Evaluation of correlated digital back propagation and extended Kalman filtering for non-linear mitigation in PM-16-QAM WDM systems

    Science.gov (United States)

    Pakala, Lalitha; Schmauss, Bernhard

    2017-01-01

    We investigate the individual and combined performance of correlated digital back propagation (CDBP) and extended Kalman filtering (EKF) in mitigating inter and intra-channel non-linearities in wavelength division multiplexed (WDM) systems. The afore-mentioned algorithms are verified through numerical simulations on 28 Gbaud polarization multiplexed (PM) 16-quadrature amplitude modulation (16-QAM) 9-channel WDM system with 50 GHz spacing. A single channel CDBP with one-step-per-span based on asymmetric split step Fourier method (A-SSFM) with optimized non-linear coefficient has been employed. We also study an amplitude dependent optimization (AO) of the non-linear coefficient for CDBP which shows an improvement of ≍ 0.8 dB compared to the conventional optimized CDBP, in the non-linear regime. Moreover, our proposed carrier phase and amplitude noise estimation (CPANE) algorithm based on EKF outperforms AO-CDBP in both linear and non-linear regimes with an enhanced performance besides significantly reduced complexity. We further investigate the combined performance of AO-CDBP and EKF which results in an enhanced non-linear tolerance at the expense of increased computational cost trading off to the number of required CDBP steps per span. Furthermore, we also analyze the impact of cross phase modulation (XPM) on the combined performance of AO-CDBP and EKF by varying the number of WDM channels. Numerical results show that the obtained gain from employing AO-CDBP prior to EKF reduces with increasing effects of XPM. Additionally, we also discuss the computational complexity of the aforementioned algorithms.

  18. Cascaded Mach-Zehnder wavelength filters in silicon photonics for low loss and flat pass-band WDM (de-)multiplexing.

    Science.gov (United States)

    Horst, Folkert; Green, William M J; Assefa, Solomon; Shank, Steven M; Vlasov, Yurii A; Offrein, Bert Jan

    2013-05-20

    We present 1-to-8 wavelength (de-)multiplexer devices based on a binary tree of cascaded Mach-Zehnder-like lattice filters, and manufactured using a 90 nm CMOS-integrated silicon photonics technology. We demonstrate that these devices combine a flat pass-band over more than 50% of the channel spacing with low insertion loss of less than 1.6 dB, and have a small device size of approximately 500 × 400 µm. This makes this type of filters well suited for application as WDM (de-)multiplexer in silicon photonics transceivers for optical data communication in large scale computer systems.

  19. OPTIMIZATION OF DISJOINTS FOR MINIMIZATION OF FAILURE IN WDM OPTICAL NETWORK

    Directory of Open Access Journals (Sweden)

    A. Renugadevi

    2015-06-01

    Full Text Available In an optical network, the fiber optic cable is used for communication between the nodes in a network by passing lights. The main problem in optical network is finding the link disjoints as well as optimal solution for the disjoints. To tolerate a single link failure in the network, the enhanced active path first algorithm is used which computes the re-routed back-up path. The multiple link failure in a network called fibre span disjoint path problem is solved using integer linear programming algorithm. The loop back recovery is used to provide pre-planned recovery of link or node failures in a network which allows dynamic choice of routes over pre-planned directions. Considering reliability in a mesh networks, the reliability algorithm helps to achieve the maximum reliability in two-path protection. It addresses the multiple disjoint failures that arise in a network and discusses the best solution between paths shared nodes or links. The unified algorithm is used to generate the optimal results with minimum cost for multiple link failures. The heuristic algorithm namely maximum arbitrary double-link protection algorithm helps to pre-compute the back-up path for double-link failures. In all the above approaches the shortest optimized path must be improved. To find the best shortest path, link-disjoint lightpath algorithm is designed to compute the disjoint occurred in a network and it also satisfies the wavelength continuity constraint in wavelength division multiplexing. A polynomial time algorithm Wavelength Division Multiplexing – Passive Optical Networking is used to compute the disjoint happen in the network. The overall time efficiency is analyzed and performance is evaluated through simulations.

  20. Tailoring Chirped Moiré Fiber Bragg Gratings for Wavelength-Division-Multiplexing and Optical Code-Division Multiple-Access Applications

    Science.gov (United States)

    Chen, Lawrence R.; Smith, Peter W. E.

    The design and fabrication of chirped Moiré fiber Bragg gratings (CMGs) are presented, which can be used in either (1) transmission as passband filters for providing wavelength selectivity in wavelength-division-multiplexed (WDM) systems or (2) reflection as encoding/decoding elements to decompose short broadband pulses in both wavelength and time in order to implement an optical code-division multiple-access (OCDMA) system. In transmission, the fabricated CMGs have single or multiple flattened passbands ( 12 dB isolation and near constant in-band group delay. It is shown that these filters do not produce any measurable dispersion-induced power penalties when used to provide wavelength selectivity in 2.5 Gbit/s systems. It is also demonstrated how CMGs can be used in reflection to encode/decode short pulses from a wavelength-tunable mode-locked Er-doped fiber laser.

  1. Thin film technologies for optoelectronic components in fiber optic communication

    Science.gov (United States)

    Perinati, Agostino

    1998-02-01

    will grow at an annual average rate of 22 percent from 1.3 million fiber-km in 1995 to 3.5 million fiber-km in 2000. The worldwide components market-cable, transceivers and connectors - 6.1 billion in 1994, is forecasted to grow and show a 19 percent combined annual growth rate through the year 2000 when is predicted to reach 17.38 billion. Fiber-in-the-loop and widespread use of switched digital services will dominate this scenario being the fiber the best medium for transmitting multimedia services. As long as communication will partially replace transportation, multimedia services will push forward technology for systems and related components not only for higher performances but for lower cost too in order to get the consumers wanting to buy the new services. In the long distance transmission area (trunk network) higher integration of electronic and optoelectronic functions are required for transmitter and receiver in order to allow for higher system speed, moving from 2.5 Gb/s to 5, 10, 40 Gb/s; narrow band wavelength division multiplexing (WDM) filters are required for higher transmission capacity through multiwavelength technique and for optical amplifier. In the access area (distribution network) passive components as splitters, couplers, filters are needed together with optical amplifiers and transceivers for point-to-multipoint optical signal distribution: main issue in this area is the total cost to be paid by the customer for basic and new services. Multimedia services evolution, through fiber to the home and to the desktop approach, will be mainly affected by the availability of technologies suitable for component consistent integration, high yield manufacturing processes and final low cost. In this paper some of the optoelectronic components and related thin film technologies expected to mainly affect the fiber optic transmission evolution, either for long distance telecommunication systems or for subscriber network, are presented.

  2. INFLUENCE OF POLARIZATION MODE DISPERSION ON THE EFFECT OF CROSS-PHASE MODULATION IN INTENSITY MODULATION-DIRECT DETECTION WDM TRANSMISSION SYSTEM

    Directory of Open Access Journals (Sweden)

    M S Islam

    2010-03-01

    Full Text Available Cross-phase modulation (XPM changes the state-of-polarization (SOP of the channels through nonlinear polarization rotation and induces nonlinear time dependent phase shift for polarization components that leads to amplitude modulation of the propagating waves in a wavelength division multiplexing (WDM system. Due to the presence of birefringence, the angle between the SOP changes randomly and as a result polarization mode dispersion (PMD causes XPM modulation amplitude fluctuation random in the perturbed channel. In this paper we analytically determine the probability density function of the random angle between the SOP of pump and probe, and evaluate the impact of polarization mode dispersion on XPM in terms of bit error rate, channel spacing etc for a two channel intensity modulation-direct detection WDM system at 10 Gb/s. It is found that the XPM induced crosstalk is polarization independent for channel spacing greater than 3 nm or PMD coefficient larger than 2 ps/√km. We also investigate the dependence of SOP variance on PMD coefficient and channel spacing.

  3. Fibered F-Algebra

    OpenAIRE

    Kleyn, Aleks

    2007-01-01

    The concept of F-algebra and its representation can be extended to an arbitrary bundle. We define operations of fibered F-algebra in fiber. The paper presents the representation theory of of fibered F-algebra as well as a comparison of representation of F-algebra and of representation of fibered F-algebra.

  4. Photonic crystal fibers

    DEFF Research Database (Denmark)

    Lægsgaard, Jesper; Hansen, K P; Nielsen, M D

    2003-01-01

    Photonic crystal fibers having a complex microstructure in the transverse plane constitute a new and promising class of optical fibers. Such fibers can either guide light through total internal reflection or the photonic bandgap effect, In this paper, we review the different types and applications...... of photonic crystal fibers with particular emphasis on recent advances in the field....

  5. Photonic crystal fibers -

    DEFF Research Database (Denmark)

    Libori, Stig E. Barkou

    2002-01-01

    . Such micro-structured fibers are the ones most often trated in literature concerning micro-structured fibers. These micro-structured fibers offer a whole range of novel wave guiding characteristics, including the possibility of fibers that guide only one mode irrespective of the frequency of light...

  6. Fiber optic connector

    Science.gov (United States)

    Rajic, Slobodan; Muhs, Jeffrey D.

    1996-01-01

    A fiber optic connector and method for connecting composite materials within which optical fibers are imbedded. The fiber optic connector includes a capillary tube for receiving optical fibers at opposing ends. The method involves inserting a first optical fiber into the capillary tube and imbedding the unit in the end of a softened composite material. The capillary tube is injected with a coupling medium which subsequently solidifies. The composite material is machined to a desired configuration. An external optical fiber is then inserted into the capillary tube after fluidizing the coupling medium, whereby the optical fibers are coupled.

  7. Nonlinear Photonic Crystal Fibers

    DEFF Research Database (Denmark)

    Hansen, Kim Per

    2004-01-01

    Despite the general recession in the global economy and the collapse of the optical telecommunication market, research within specialty fibers is thriving. This is, more than anything else, due to the technology transition from standard all-glass fibers to photonic crystal fibers, which, instead....... The freedom to design the dispersion profile of the fibers is much larger and it is possible to create fibers, which support only a single spatial mode, regardless of wavelength. In comparison, the standard dispersion-shifted fibers are limited by a much lower index-contrast between the core and the cladding...... in 1996, and are today on their way to become the dominating technology within the specialty fiber field. Whether they will replace the standard fiber in the more traditional areas like telecommunication transmission, is not yet clear, but the nonlinear photonic crystal fibers are here to stay....

  8. Optical Fiber Fusion Splicing

    CERN Document Server

    Yablon, Andrew D

    2005-01-01

    This book is an up-to-date treatment of optical fiber fusion splicing incorporating all the recent innovations in the field. It provides a toolbox of general strategies and specific techniques that the reader can apply when optimizing fusion splices between novel fibers. It specifically addresses considerations important for fusion splicing of contemporary specialty fibers including dispersion compensating fiber, erbium-doped gain fiber, polarization maintaining fiber, and microstructured fiber. Finally, it discusses the future of optical fiber fusion splicing including silica and non-silica based optical fibers as well as the trend toward increasing automation. Whilst serving as a self-contained reference work, abundant citations from the technical literature will enable readers to readily locate primary sources.

  9. Amplitude-modulated fiber-ring laser

    DEFF Research Database (Denmark)

    Caputo, J. G.; Clausen, Carl A. Balslev; Sørensen, Mads Peter

    2000-01-01

    Soliton pulses generated by a fiber-ring laser are investigated by numerical simulation and perturbation methods. The mathematical modeling is based on the nonlinear Schrödinger equation with perturbative terms. We show that active mode locking with an amplitude modulator leads to a self......-starting of stable solitonic pulses from small random noise, provided the modulation depth is small. The perturbative analysis leads to a nonlinear coupled return map for the amplitude, phase, and position of the soliton pulses circulating in the fiber-ring laser. We established the validity of this approach...

  10. Optical self-injection mode-locking of semiconductor optical amplifier fiber ring with electro-absorption modulation—fundamentals and applications

    International Nuclear Information System (INIS)

    Chi, Yu-Chieh; Lin, Gong-Ru

    2013-01-01

    The optical self-injection mode-locking of a semiconductor optical amplifier incorporated fiber ring laser (SOAFL) with spectrally sliced multi-channel carriers is demonstrated for applications. The synthesizer-free SOAFL pulse-train is delivered by optical injection mode-locking with a 10 GHz self-pulsed electro-absorption modulator (EAM). Such a coupled optical and electronic resonator architecture facilitates a self-feedback oscillation with a higher Q-factor and lower phase/intensity noises when compared with conventional approaches. The theoretical model of such an injection-mode-locking SOAFL is derived to improve the self-pulsating performance of the optical return-to-zero (RZ) carrier, thus providing optimized pulsewidth, pulse extinction ratio, effective Q-factor, frequency variation and timing jitter of 11.4 ps, 9.1 dB, 4 × 10 5 , −1 bi-directional WDM transmission network with down-stream RZ binary phase-shift keying (RZ-BPSK) and up-stream re-modulated RZ on–off-keying (RZ-OOK) formats. Under BPSK/OOK bi-directional data transmission, the self-pulsed harmonic mode-locking SOAFL simultaneously provides four to six WDM channels for down-stream RZ-BPSK and up-stream RZ-OOK formats with receiving sensitivities of −17 and −15.2 dBm at a bit error rate of 10 −9 , respectively. (paper)

  11. Self-Seeded RSOA-Fiber Cavity Lasers vs. ASE Spectrum-Sliced or Externally Seeded Transmitters—A Comparative Study

    Directory of Open Access Journals (Sweden)

    Simon A. Gebrewold

    2015-12-01

    Full Text Available Reflective semiconductor optical amplifier fiber cavity lasers (RSOA-FCLs are appealing, colorless, self-seeded, self-tuning and cost-efficient upstream transmitters. They are of interest for wavelength division multiplexed passive optical networks (WDM-PONs based links. In this paper, we compare RSOA-FCLs with alternative colorless sources, namely the amplified spontaneous emission (ASE spectrum-sliced and the externally seeded RSOAs. We compare the differences in output power, signal-to-noise ratio (SNR, relative intensity noise (RIN, frequency response and transmission characteristics of these three sources. It is shown that an RSOA-FCL offers a higher output power over an ASE spectrum-sliced source with SNR, RIN and frequency response characteristics halfway between an ASE spectrum-sliced and a more expensive externally seeded RSOA. The results show that the RSOA-FCL is a cost-efficient WDM-PON upstream source, borrowing simplicity and cost-efficiency from ASE spectrum slicing with characteristics that are, in many instances, good enough to perform short-haul transmission. To substantiate our statement and to quantitatively compare the potential of the three schemes, we perform data transmission experiments at 5 and 10 Gbit/s.

  12. Ceramic fiber reinforced filter

    Science.gov (United States)

    Stinton, David P.; McLaughlin, Jerry C.; Lowden, Richard A.

    1991-01-01

    A filter for removing particulate matter from high temperature flowing fluids, and in particular gases, that is reinforced with ceramic fibers. The filter has a ceramic base fiber material in the form of a fabric, felt, paper of the like, with the refractory fibers thereof coated with a thin layer of a protective and bonding refractory applied by chemical vapor deposition techniques. This coating causes each fiber to be physically joined to adjoining fibers so as to prevent movement of the fibers during use and to increase the strength and toughness of the composite filter. Further, the coating can be selected to minimize any reactions between the constituents of the fluids and the fibers. A description is given of the formation of a composite filter using a felt preform of commercial silicon carbide fibers together with the coating of these fibers with pure silicon carbide. Filter efficiency approaching 100% has been demonstrated with these filters. The fiber base material is alternately made from aluminosilicate fibers, zirconia fibers and alumina fibers. Coating with Al.sub.2 O.sub.3 is also described. Advanced configurations for the composite filter are suggested.

  13. Steel fiber reinforced concrete

    International Nuclear Information System (INIS)

    Baloch, S.U.

    2005-01-01

    Steel-Fiber Reinforced Concrete is constructed by adding short fibers of small cross-sectional size .to the fresh concrete. These fibers reinforce the concrete in all directions, as they are randomly oriented. The improved mechanical properties of concrete include ductility, impact-resistance, compressive, tensile and flexural strength and abrasion-resistance. These uniqlte properties of the fiber- reinforcement can be exploited to great advantage in concrete structural members containing both conventional bar-reinforcement and steel fibers. The improvements in mechanical properties of cementitious materials resulting from steel-fiber reinforcement depend on the type, geometry, volume fraction and material-properties of fibers, the matrix mix proportions and the fiber-matrix interfacial bond characteristics. Effects of steel fibers on the mechanical properties of concrete have been investigated in this paper through a comprehensive testing-programme, by varying the fiber volume fraction and the aspect-ratio (Lid) of fibers. Significant improvements are observed in compressive, tensile, flexural strength and impact-resistance of concrete, accompanied by marked improvement in ductility. optimum fiber-volume fraction and aspect-ratio of steel fibers is identified. Test results are analyzed in details and relevant conclusions drawn. The research is finally concluded with future research needs. (author)

  14. Fiber optics in adverse environments

    International Nuclear Information System (INIS)

    Lyous, P.B.

    1982-01-01

    Radiation effects in optical fibers are considered, taking into account recent progress in the investigation of radiation resistant optical fibers, radiation damage in optical fibers, radiation-induced transient absorption in optical fibers, X-ray-induced transient attenuation at low temperatures in polymer clad silica (PCS) fibers, optical fiber composition and radiation hardness, the response of irradiated optical waveguides at low temperatures, and the effect of ionizing radiation on fiber-optic waveguides. Other topics explored are related to environmental effects on components of fiber optic systems, and radiation detection systems using optical fibers. Fiber optic systems in adverse environments are also discussed, giving attention to the survivability of Army fiber optics systems, space application of fiber optics systems, fiber optic wavelength multiplexing for civil aviation applications, a new fiber optic data bus topology, fiber optics for aircraft engine/inlet control, and application of fiber optics in high voltage substations

  15. 6.4 Tb/s (32 × 200 Gb/s) WDM direct-detection transmission with twin-SSB modulation and Kramers-Kronig receiver

    Science.gov (United States)

    Zhu, Yixiao; Jiang, Mingxuan; Ruan, Xiaoke; Chen, Zeyu; Li, Chenjia; Zhang, Fan

    2018-05-01

    We experimentally demonstrate 6.4 Tb/s wavelength division multiplexed (WDM) direct-detection transmission based on Nyquist twin-SSB modulation over 25 km SSMF with bit error rates (BERs) below the 20% hard-decision forward error correction (HD-FEC) threshold of 1.5 × 10-2. The two sidebands of each channel are separately detected using Kramers-Kronig receiver without MIMO equalization. We also carry out numerical simulations to evaluate the system robustness against I/Q amplitude imbalance, I/Q phase deviation and the extinction ratio of modulator, respectively. Furthermore, we show in simulation that the requirement of steep edge optical filter can be relaxed if multi-input-multi-output (MIMO) equalization between the two sidebands is used.

  16. 3.375-Gb/s RGB-LED based WDM visible light communication system employing PAM-8 modulation with phase shifted Manchester coding.

    Science.gov (United States)

    Chi, Nan; Zhang, Mengjie; Zhou, Yingjun; Zhao, Jiaqi

    2016-09-19

    Optical background noise and second-order nonlinear distortions are two main challenges faced by indoor high-speed VLC system. In this paper, a novel phase shifted Manchester (PS-Manchester) coding based on PAM-8 is proposed and experimentally demonstrated to mitigate these noise and distortions. With the aid of PS-Manchester coding and WDM, a total data rate of 3.375-Gb/s can be successfully achieved in the RGB-LED based VLC system. The BER is under 7% HD-FEC limit of 3.8x10-3 after 1-m indoor free space transmission. To the best of our knowledge, this is the highest data rate ever achieved in PAM VLC systems.

  17. All-VCSEL based digital coherent detection link for multi Gbit/s WDM passive optical networks

    DEFF Research Database (Denmark)

    Rodes Lopez, Roberto; Jensen, Jesper Bevensee; Zibar, Darko

    2010-01-01

    with record receiver sensitivity of -36 dBm after transmission over 40 km standard single mode fiber. Digital signal processing compensates for frequency offset between the transmitter and the local oscillator VCSELs, and for chromatic dispersion. This system allows for uncooled VCSEL operation and fully...

  18. Fiber Optics Technology.

    Science.gov (United States)

    Burns, William E.

    1986-01-01

    Discusses various applications of fiber optics technology: information systems, industrial robots, medicine, television, transportation, and training. Types of jobs that will be available with fiber optics training (such as electricians and telephone cable installers and splicers) are examined. (CT)

  19. Fiber Optics Instrumentation Development

    Science.gov (United States)

    Chan, Patrick Hon Man; Parker, Allen R., Jr.; Richards, W. Lance

    2010-01-01

    This is a general presentation of fiber optics instrumentation development work being conducted at NASA Dryden for the past 10 years and recent achievements in the field of fiber optics strain sensors.

  20. Shaped fiber composites

    Science.gov (United States)

    Kinnan, Mark K.; Roach, Dennis P.

    2017-12-05

    A composite article is disclosed that has non-circular fibers embedded in a polymer matrix. The composite article has improved damage tolerance, toughness, bending, and impact resistance compared to composites having traditional round fibers.

  1. Advances in Fiber Lasers

    National Research Council Canada - National Science Library

    Morse, T

    1999-01-01

    Most of the time of this contract has been devoted toward improvements in optical fiber lasers and toward gathering experience to improve our program in high power, cladding pumped optical fiber lasers...

  2. Hierarchically Structured Electrospun Fibers

    Science.gov (United States)

    2013-01-07

    in the natural lotus and silver ragwort leaves. Figure 4. Examples of electrospun bio-mimics of natural hierarchical structures. (A) Lotus leaf...B) pillared poly(methyl methacrylate) (PMMA) electrospun fiber mimic; (C) silver ragwort leaf; (D) electrospun fiber mimic made from nylon 6 and...domains containing the protein in the surrounding EVA fibers [115]. A wide variety of core-shell fibers have been generated, including PCL/ gelatin

  3. Superlattice Microstructured Optical Fiber

    Science.gov (United States)

    Tse, Ming-Leung Vincent; Liu, Zhengyong; Cho, Lok-Hin; Lu, Chao; Wai, Ping-Kong Alex; Tam, Hwa-Yaw

    2014-01-01

    A generic three-stage stack-and-draw method is demonstrated for the fabrication of complex-microstructured optical fibers. We report the fabrication and characterization of a silica superlattice microstructured fiber with more than 800 rhomboidally arranged air-holes. A polarization-maintaining fiber with a birefringence of 8.5 × 10−4 is demonstrated. The birefringent property of the fiber is found to be highly insensitive to external environmental effects, such as pressure. PMID:28788693

  4. High-fiber foods

    Science.gov (United States)

    ... page: //medlineplus.gov/ency/patientinstructions/000193.htm High-fiber foods To use the sharing features on this page, ... Read food labels carefully to see how much fiber they have. Choose foods that have higher amounts of fiber, such as ...

  5. Resonant filtered fiber amplifiers

    DEFF Research Database (Denmark)

    Alkeskjold, Thomas Tanggaard; Laurila, Marko; Olausson, Christina Bjarnal Thulin

    2013-01-01

    In this paper we present our recent result on utilizing resonant/bandgap fiber designs to achieve high performance ytterbium doped fiber amplifers for achieving diffraction limited beam quality in large mode area fibers, robust bending performance and gain shaping for long wavelength operation...

  6. Fiber Singular Optics

    OpenAIRE

    A. V. Volyar

    2002-01-01

    The present review is devoted to the optical vortex behavior both in free space and optical fibers. The processes of the vortex transformations in perturbed optical fibers are analyzed on the base of the operator of the spin – orbit interaction in order to forecast the possible ways of manufacturing the vortex preserving fibers and their applications in supersensitive optical devices.

  7. Superconducting tin core fiber

    International Nuclear Information System (INIS)

    Homa, Daniel; Liang, Yongxuan; Hill, Cary; Kaur, Gurbinder; Pickrell, Gary

    2015-01-01

    In this study, we demonstrated superconductivity in a fiber with a tin core and fused silica cladding. The fibers were fabricated via a modified melt-draw technique and maintained core diameters ranging from 50-300 microns and overall diameters of 125-800 microns. Superconductivity of this fiber design was validated via the traditional four-probe test method in a bath of liquid helium at temperatures on the order of 3.8 K. The synthesis route and fiber design are perquisites to ongoing research dedicated all-fiber optoelectronics and the relationships between superconductivity and the material structures, as well as corresponding fabrication techniques. (orig.)

  8. Airclad fiber laser technology

    DEFF Research Database (Denmark)

    Hansen, Kim P.; Olausson, Christina Bjarnal Thulin; Broeng, Jes

    2011-01-01

    High-power fiber lasers and amplifiers have gained tremendous momentum in the last 5 years. Many of the traditional manufacturers of gas and solid-state lasers are now pursuing the fiber-based systems, which are displacing the conventional technology in many areas. High-power fiber laser systems...... require reliable fibers with large cores, stable mode quality, and good power handling capabilities-requirements that are all met by the airclad fiber technology. In the present paper we go through many of the building blocks needed to build high-power systems and we show an example of a complete airclad...... laser system. We present the latest advancements within airclad fiber technology including a new 100 m single-mode polarization-maintaining rod-type fiber capable of amplifying to megawatt power levels. Furthermore, we describe the novel airclad-based pump combiners and their use in a completely...

  9. Airclad fiber laser technology

    DEFF Research Database (Denmark)

    Hansen, Kim P.; Olausson, Christina Bjarnal Thulin; Broeng, Jes

    2008-01-01

    High-power fiber lasers and amplifiers have gained tremendous momentum in the last five years, and many of the traditional manufactures of gas and solid-state lasers are pursuing the attractive fiber-based systems, which are now displacing the old technology in many areas. High-power fiber laser...... systems require specially designed fibers with large cores and good power handling capabilities - requirements that are all met by the airclad fiber technology. In the present paper we go through many of the building blocks needed to build high-power systems and we show an example of a complete airclad...... laser system. We present the latest advancements within airclad fiber technology including a new 70 μm single-mode polarization-maintaining rod-type fiber capable of amplifying to MW power levels. Furthermore we describe the novel airclad based pump combiners and their use in a completely monolithic 350...

  10. Internet Protocol-Hybrid Opto-Electronic Ring Network (IP-HORNET): A Novel Internet Protocol-Over-Wavelength Division Multiplexing (IP-Over-WDM) Multiple-Access Metropolitan Area Network (MAN)

    Science.gov (United States)

    2003-04-01

    IP-HORNET, Metropolitan Optical Networks 16. PRICE CODE 17. SECURITY CLASSIFICATION OF REPORT UNCLASSIFIED 18. SECURITY CLASSIFICATION...OF THIS PAGE UNCLASSIFIED 19. SECURITY CLASSIFICATION OF ABSTRACT UNCLASSIFIED 20. LIMITATION OF ABSTRACT UL NSN 7540-01-280-5500...Gemelos, and L. G. Kazovsky, “CSMA/CA MAC protocols for IP-HORNET: An IP over WDM metropolitan area ring netowrk ,” in Proceedings of GLOBE- COM’00

  11. Hierarchically Structured Electrospun Fibers

    Directory of Open Access Journals (Sweden)

    Nicole E. Zander

    2013-01-01

    Full Text Available Traditional electrospun nanofibers have a myriad of applications ranging from scaffolds for tissue engineering to components of biosensors and energy harvesting devices. The generally smooth one-dimensional structure of the fibers has stood as a limitation to several interesting novel applications. Control of fiber diameter, porosity and collector geometry will be briefly discussed, as will more traditional methods for controlling fiber morphology and fiber mat architecture. The remainder of the review will focus on new techniques to prepare hierarchically structured fibers. Fibers with hierarchical primary structures—including helical, buckled, and beads-on-a-string fibers, as well as fibers with secondary structures, such as nanopores, nanopillars, nanorods, and internally structured fibers and their applications—will be discussed. These new materials with helical/buckled morphology are expected to possess unique optical and mechanical properties with possible applications for negative refractive index materials, highly stretchable/high-tensile-strength materials, and components in microelectromechanical devices. Core-shell type fibers enable a much wider variety of materials to be electrospun and are expected to be widely applied in the sensing, drug delivery/controlled release fields, and in the encapsulation of live cells for biological applications. Materials with a hierarchical secondary structure are expected to provide new superhydrophobic and self-cleaning materials.

  12. Experimental evaluation of prefiltering for 56 Gbaud DP-QPSK signal transmission in 75 GHz WDM grid

    DEFF Research Database (Denmark)

    Borkowski, Robert; de Carvalho, Luis Henrique H.; Silva, Edson Porto da

    2014-01-01

    We investigate optical prefiltering for 56Gbaud (224Gbit/s) electrical time-division multiplexed (ETDM) dual polarization (DP) quaternary phase shift keying (QPSK) transmission. Different transmitter-side optical filter shapes are tested and their bandwidths are varied. Comparison of studied filter...... shapes shows an advantage of a pre-emphasis filter. Subsequently, we perform a fiber transmission of the 56Gbaud DP QPSK signal filtered with the 65GHz pre-emphasis filter to fit the 75GHz transmission grid. Bit error rate (BER) of the signal remains below forward error correction (FEC) limit after 300km...

  13. Fiber optics in SHIVA

    International Nuclear Information System (INIS)

    Severyn, J.; Parker, J.

    1978-01-01

    SHIVA is a twenty arm laser which is controlled with a network of fifty computers, interconnected with digital fiber optic links. Three different fiber optic systems employed on the Shiva laser will be described. Two of the systems are for digital communications, one at 9600 baud and the other at 1 megabaud. The third system uses fiber optics to distribute diagnostic triggers with subnanosecond jitter

  14. Continuous Fiber Ceramic Composites

    Energy Technology Data Exchange (ETDEWEB)

    Fareed, Ali [Honeywell Advanced Composites Inc. (HACI), Newark, DE (United States); Craig, Phillip A. [Honeywell Advanced Composites Inc. (HACI), Newark, DE (United States)

    2002-09-01

    Fiber-reinforced ceramic composites demonstrate the high-temperature stability of ceramics--with an increased fracture toughness resulting from the fiber reinforcement of the composite. The material optimization performed under the continuous fiber ceramic composites (CFCC) included a series of systematic optimizations. The overall goals were to define the processing window, to increase the robustinous of the process, to increase process yield while reducing costs, and to define the complexity of parts that could be fabricated.

  15. Agave Americana Leaf Fibers

    Directory of Open Access Journals (Sweden)

    Ashish Hulle

    2015-02-01

    Full Text Available The growing environmental problems, the problem of waste disposal and the depletion of non-renewable resources have stimulated the use of green materials compatible with the environment to reduce environmental impacts. Therefore, there is a need to design products by using natural resources. Natural fibers seem to be a good alternative since they are abundantly available and there are a number of possibilities to use all the components of a fiber-yielding crop; one such fiber-yielding plant is Agave Americana. The leaves of this plant yield fibers and all the parts of this plant can be utilized in many applications. The “zero-waste” utilization of the plant would enable its production and processing to be translated into a viable and sustainable industry. Agave Americana fibers are characterized by low density, high tenacity and high moisture absorbency in comparison with other leaf fibers. These fibers are long and biodegradable. Therefore, we can look this fiber as a sustainable resource for manufacturing and technical applications. Detailed discussion is carried out on extraction, characterization and applications of Agave Americana fiber in this paper.

  16. USDA Flax fiber utilization research

    Science.gov (United States)

    The United States is pursuing natural fibers as sustainable, environmentally friendly sources for a variety of industrial applications. Flax (Linum usitatissimum L.) fiber offers many possibilities towards this goal. Research on flax fiber production, processing, and standards development is urgen...

  17. Ultrafine PBI fibers and yarns

    Science.gov (United States)

    Leal, J. R.; Tan, M.

    1979-01-01

    Gentle precisely controlled process is used to draw polybenzimidazole (PBI) fibers to denier as low as 0.17 per fiber. Yarns of lightweight fibers could be useful in applications where lightweight textiles must withstand high temperatures, corrosion, or radiation.

  18. Applications of nonlinear fiber optics

    CERN Document Server

    Agrawal, Govind

    2008-01-01

    * The only book describing applications of nonlinear fiber optics * Two new chapters on the latest developments: highly nonlinear fibers and quantum applications* Coverage of biomedical applications* Problems provided at the end of each chapterThe development of new highly nonlinear fibers - referred to as microstructured fibers, holey fibers and photonic crystal fibers - is the next generation technology for all-optical signal processing and biomedical applications. This new edition has been thoroughly updated to incorporate these key technology developments.The bo

  19. Multimode optical fiber

    Science.gov (United States)

    Bigot-Astruc, Marianne; Molin, Denis; Sillard, Pierre

    2014-11-04

    A depressed graded-index multimode optical fiber includes a central core, an inner depressed cladding, a depressed trench, an outer depressed cladding, and an outer cladding. The central core has an alpha-index profile. The depressed claddings limit the impact of leaky modes on optical-fiber performance characteristics (e.g., bandwidth, core size, and/or numerical aperture).

  20. Fiber Lasers V

    DEFF Research Database (Denmark)

    Hansen, Kim P.; Olausson, Christina Bjarnal Thulin; Broeng, Jes

    2008-01-01

    laser system. We present the latest advancements within airclad fiber technology including a new 70 μm single-mode polarization-maintaining rod-type fiber capable of amplifying to MW power levels. Furthermore we describe the novel airclad based pump combiners and their use in a completely monolithic 350...

  1. Fiber Sensor Technology Today

    Science.gov (United States)

    Hotate, Kazuo

    2006-08-01

    Fiber sensor technologies are overviewed. Since the early 1970s, this field has been developed, on the basis of the same devices and photonic principles as fiber communication technologies. Besides simple configurations, in which the fiber acts only as a data transmission line, sophisticated configurations have also been developed, in which the fiber is used as a device to realize unique sensing mechanisms. The fiber optic gyroscope (FOG) is a good example, and has been developed as an absolute rotation sensor used, for example, for navigation and/or attitude control applications. Compared with traditional spinning-mass gyroscopes, the FOG has advantages, such as a short warming-up time, a light weight, and easy handling. A Japanese satellite, which was launched in August 2005 with a mission to observe the aurora, is controlled with a FOG. The FOG has also been used in consumer applications, such as the camera stabilizer, radio-controlled (RC) helicopter navigation, and the control of humanoid robots. Recently, distributed and multiplexed sensing schemes, in particular, have been studied and developed, in which a long fiber acts like a “nerve” for feeling the strain and/or the temperature distribution along the fiber. Performances of artificial nerve systems have markedly improved within the last couple of years, in spatial resolution and measurement speed. By embedding the “fiber-optic nerve system” in aircraft wings, bridges and tall buildings, these materials and structures can sense damage to prevent disasters.

  2. Ways to Boost Fiber

    Science.gov (United States)

    ... can help to lower cholesterol. Third, it helps prevent constipation and diverticulosis. And fourth, adequate fiber from food ... is similar to a new sponge; it needs water to plump up pass smoothly. If you ... or constipation. Before you reach for the fiber supplements, consider ...

  3. Quartz fiber calorimeter

    International Nuclear Information System (INIS)

    Akchurin, N.; Doulas, S.; Ganel, O.; Gershtein, Y.; Gavrilov, V.; Kolosov, V.; Kuleshov, S.; Litvinsev, D.; Merlo, J.-P.; Onel, Y.; Osborne, D.; Rosowsky, A.; Stolin, V.; Sulak, L.; Sullivan, J.; Ulyanov, A.; Wigmans, R.; Winn, D.

    1996-01-01

    A calorimeter with optical quartz fibers embedded into an absorber matrix was proposed for the small angle region of the CMS detector at LHC (CERN). This type of calorimeter is expected to be radiation hard and to produce extremely fast signal. Some results from beam tests of the quartz fiber calorimeter prototype are presented. (orig.)

  4. High-density multicore fibers

    DEFF Research Database (Denmark)

    Takenaga, K.; Matsuo, S.; Saitoh, K.

    2016-01-01

    High-density single-mode multicore fibers were designed and fabricated. A heterogeneous 30-core fiber realized a low crosstalk of −55 dB. A quasi-single-mode homogeneous 31-core fiber attained the highest core count as a single-mode multicore fiber.......High-density single-mode multicore fibers were designed and fabricated. A heterogeneous 30-core fiber realized a low crosstalk of −55 dB. A quasi-single-mode homogeneous 31-core fiber attained the highest core count as a single-mode multicore fiber....

  5. Green insulation: hemp fibers

    Energy Technology Data Exchange (ETDEWEB)

    Anon,

    2011-09-15

    Indian hemp (Cannabis indica) is known for its psychotropic values and it is banned in most countries. However, industrial hemp (Cannabis sativa) is known for its tough fibers. Several manufactures in Europe including, small niche players, have been marketing hemp insulation products for several years. Hemp is a low environmental impact material. Neither herbicide nor pesticide is used during the growth of hemp. The fibers are extracted in a waste-free and chemical-free mechanical process. Hemp can consume CO2 during its growth. In addition, hemp fiber can be disposed of harmlessly by composting or incineration at the end of its life. Hemp fibers are processed and treated only minimally to resist rot and fungal activity. There is little health risk when producing and installing the insulation, thanks to the absence of toxic additive. Its thermal resistance is comparable to mineral wool. But the development and marketing of hemp fibers may be restricted in North America.

  6. Raman fiber lasers

    CERN Document Server

    2017-01-01

    This book serves as a comprehensive, up-to-date reference about this cutting-edge laser technology and its many new and interesting developments. Various aspects and trends of Raman fiber lasers are described in detail by experts in their fields. Raman fiber lasers have progressed quickly in the past decade, and have emerged as a versatile laser technology for generating high power light sources covering a spectral range from visible to mid-infrared. The technology is already being applied in the fields of telecommunication, astronomy, cold atom physics, laser spectroscopy, environmental sensing, and laser medicine. This book covers various topics relating to Raman fiber laser research, including power scaling, cladding and diode pumping, cascade Raman shifting, single frequency operation and power amplification, mid-infrared laser generation, specialty optical fibers, and random distributed feedback Raman fiber lasers. The book will appeal to scientists, students, and technicians seeking to understand the re...

  7. Birefringent hollow core fibers

    DEFF Research Database (Denmark)

    Roberts, John

    2007-01-01

    Hollow core photonic crystal fiber (HC-PCF), fabricated according to a nominally non-birefringent design, shows a degree of un-controlled birefringence or polarization mode dispersion far in excess of conventional non polarization maintaining fibers. This can degrade the output pulse in many...... applications, and places emphasis on the development of polarization maintaining (PM) HC-PCF. The polarization cross-coupling characteristics of PM HC-PCF are very different from those of conventional PM fibers. The former fibers have the advantage of suffering far less from stress-field fluctuations...... and an increased overlap between the polarization modes at the glass interfaces. The interplay between these effects leads to a wavelength for optimum polarization maintenance, lambda(PM), which is detuned from the wavelength of highest birefringence. By a suitable fiber design involving antiresonance of the core...

  8. Fiber optic hydrophone

    Science.gov (United States)

    Kuzmenko, Paul J.; Davis, Donald T.

    1994-01-01

    A miniature fiber optic hydrophone based on the principles of a Fabry-Perot interferometer. The hydrophone, in one embodiment, includes a body having a shaped flexible bladder at one end which defines a volume containing air or suitable gas, and including a membrane disposed adjacent a vent. An optic fiber extends into the body with one end terminating in spaced relation to the membrane. Acoustic waves in the water that impinge on the bladder cause the pressure of the volume therein to vary causing the membrane to deflect and modulate the reflectivity of the Fabry-Perot cavity formed by the membrane surface and the cleaved end of the optical fiber disposed adjacent to the membrane. When the light is transmitted down the optical fiber, the reflected signal is amplitude modulated by the incident acoustic wave. Another embodiment utilizes a fluid filled volume within which the fiber optic extends.

  9. Performance analysis of a threshold-based parallel multiple beam selection scheme for WDM-based systems for Gamma-Gamma distributions

    KAUST Repository

    Nam, Sung Sik

    2017-03-02

    In this paper, we statistically analyze the performance of a threshold-based parallel multiple beam selection scheme (TPMBS) for Free-space optical (FSO) based system with wavelength division multiplexing (WDM) in cases where a pointing error has occurred for practical consideration over independent identically distributed (i.i.d.) Gamma-Gamma fading conditions. Specifically, we statistically analyze the characteristics in operation under conventional heterodyne detection (HD) scheme for both adaptive modulation (AM) case in addition to non-AM case (i.e., coherentnon-coherent binary modulation). Then, based on the statistically derived results, we evaluate the outage probability (CDF) of a selected beam, the average spectral efficiency (ASE), the average number of selected beams (ANSB), and the average bit error rate (BER). Some selected results shows that we can obtain the higher spectral efficiency and simultaneously reduce the potential increasing of the complexity of implementation caused by applying the selection based beam selection scheme without a considerable performance loss.

  10. Sub-symbol-rate sampling for PDM-QPSK signals in super-Nyquist WDM systems using quadrature poly-binary shaping.

    Science.gov (United States)

    Xu, Cheng; Gao, Guanjun; Chen, Sai; Zhang, Jie; Luo, Ming; Hu, Rong; Yang, Qi

    2016-11-14

    We compare the performance of sub-symbol-rate sampling for polarization-division-multiplexed quadrature-phase-shift-keying (PDM-QPSK) signals in super-Nyquist wavelength division multiplexing (WDM) system by using quadrature duo-binary (QDB) and quadrature four-level poly-binary (4PB) shaping together with maximum likelihood sequence estimation (MLSE). PDM-16QAM is adopted in the simulation to be compared with PDM-QPSK. The numerical simulations show that, for a software defined communication system, the level number of quadrature poly-binary modulation should be adjusted to achieve the optimal performance according to channel spacing, required OSNR and sampling rate restrictions of optics. In the experiment, we demonstrate 3-channel 12-Gbaud PDM-QPSK transmission with 10-GHz channel spacing and only 8.4-GSa/s ADC sampling rate at lowest. By using QDB or 4PB shaping with 3tap-MLSE, the sampling rate can be reduced to the signal baud rate (1 samples per symbol) without penalty.

  11. Method for the preparation of carbon fiber from polyolefin fiber precursor, and carbon fibers made thereby

    Science.gov (United States)

    Naskar, Amit Kumar; Hunt, Marcus Andrew; Saito, Tomonori

    2015-08-04

    Methods for the preparation of carbon fiber from polyolefin fiber precursor, wherein the polyolefin fiber precursor is partially sulfonated and then carbonized to produce carbon fiber. Methods for producing hollow carbon fibers, wherein the hollow core is circular- or complex-shaped, are also described. Methods for producing carbon fibers possessing a circular- or complex-shaped outer surface, which may be solid or hollow, are also described.

  12. Fiber Pulling Apparatus

    Science.gov (United States)

    Workman, Gary L.; Smith, Guy A.; OBrien, Sue; Adcock, Leonard

    1998-01-01

    The fiber optics industry has grown into a multi-billion marketplace that will continue to grow into the 21st century. Optical fiber communications is currently dominated by silica glass technology. Successful efforts to improve upon the low loss transmission characteristics of silica fibers have propelled the technology into the forefront of the communications industry. However, reaching the theoretical transmission capability of silica fiber through improved processing has still left a few application areas in which other fiber systems can provide an influential role due to specific characteristics of high theoretical transmission in the 2 - 3 micron wavelength region. One of the other major materials used for optical fibers is the systems based upon Heavy Metal Fluoride Glass (HMFG). Commercial interest is driven primarily by the potential for low loss repeaterless infrared fibers. An example of the major communications marketplace which would benefit from the long distance repeaterless capability of infrared fibers is the submarine cables which link the continents. When considering commercial interests, optical fiber systems provide a healthy industrial position which continues to expand. Major investments in the systems used for optical fiber communications have continued to increase each year and are predicted to continue well into the next century. Estimates of 8.5% compounded annually are predicted through 1999 for the North American market and 1 1 % worldwide. The growth for the optical fiber cable itself is expected to continue between 44 and 50 per cent of the optical fiber communications budget through 1999. The total budget in 1999 world-wide is expected to be in the neighborhood of $9 billion. Another survey predicts that long haul telecommunications represents 15% of a world-wide fiber optics market in 1998. The actual amount allotted to cable was not specified. However, another market research had predicted that the cable costs alone represents more

  13. Fiber Optic Microphone

    Science.gov (United States)

    Cho, Y. C.; George, Thomas; Norvig, Peter (Technical Monitor)

    1999-01-01

    Research into advanced pressure sensors using fiber-optic technology is aimed at developing compact size microphones. Fiber optic sensors are inherently immune to electromagnetic noise, and are very sensitive, light weight, and highly flexible. In FY 98, NASA researchers successfully designed and assembled a prototype fiber-optic microphone. The sensing technique employed was fiber optic Fabry-Perot interferometry. The sensing head is composed of an optical fiber terminated in a miniature ferrule with a thin, silicon-microfabricated diaphragm mounted on it. The optical fiber is a single mode fiber with a core diameter of 8 micron, with the cleaved end positioned 50 micron from the diaphragm surface. The diaphragm is made up of a 0.2 micron thick silicon nitride membrane whose inner surface is metallized with layers of 30 nm titanium, 30 nm platinum, and 0.2 micron gold for efficient reflection. The active sensing area is approximately 1.5 mm in diameter. The measured differential pressure tolerance of this diaphragm is more than 1 bar, yielding a dynamic range of more than 100 dB.

  14. Optical fiber spectrophotometer

    International Nuclear Information System (INIS)

    Zhuang Weixin; Tian Guocheng; Ye Guoan; Zhou Zhihong; Cheng Weiwei; Huang Lifeng; Liu Suying; Tang Yanji; Hu Jingxin; Zhao Yonggang

    1998-12-01

    A method called 'Two Arm's Photo out and Electricity Send-back' is introduced. UV-365 UV/VIS/NIR spectrophotometer has been reequipped by this way with 5 meters long optical fiber. Another method called 'One Arm's Photo out and Photo Send-back' is also introduced. λ 19 UV/VIS/NIR spectrophotometer has been reequipped by this way with 10 meters long optical fiber. Optical fiber spectrophotometer can work as its main set. So it is particularly applicable to radio activity work

  15. Chemistry Research of Optical Fibers.

    Science.gov (United States)

    1982-09-27

    BROADENING IN OPTICAL FIBERS Herbert B. Rosenstock* Naval Research Laboratory Washington, DC 20375 ABSTRACT A light pulse transmitted through a fiber...Marcatili, Marcuse , and Personick, "Dispersion Properties of Fibers" (Ch. 4 in "Optical Fiber Telecommunications," S. E. Miller and A. C. Chynoweth, eds

  16. Robust fiber clustering of cerebral fiber bundles in white matter

    Science.gov (United States)

    Yao, Xufeng; Wang, Yongxiong; Zhuang, Songlin

    2014-11-01

    Diffusion tensor imaging fiber tracking (DTI-FT) has been widely accepted in the diagnosis and treatment of brain diseases. During the rendering pipeline of specific fiber tracts, the image noise and low resolution of DTI would lead to false propagations. In this paper, we propose a robust fiber clustering (FC) approach to diminish false fibers from one fiber tract. Our algorithm consists of three steps. Firstly, the optimized fiber assignment continuous tracking (FACT) is implemented to reconstruct one fiber tract; and then each curved fiber in the fiber tract is mapped to a point by kernel principal component analysis (KPCA); finally, the point clouds of fiber tract are clustered by hierarchical clustering which could distinguish false fibers from true fibers in one tract. In our experiment, the corticospinal tract (CST) in one case of human data in vivo was used to validate our method. Our method showed reliable capability in decreasing the false fibers in one tract. In conclusion, our method could effectively optimize the visualization of fiber bundles and would help a lot in the field of fiber evaluation.

  17. Power budget of direct-detection ultra-dense WDM-Nyquist-SCM PON with low-complexity SSBI mitigation

    Science.gov (United States)

    Soeiro, Ricardo O. J.; Alves, Tiago M. F.; Cartaxo, Adolfo V. T.

    2017-07-01

    The power budget (PB) of a direct-detection ultra-dense wavelength division/subcarrier multiplexing (SCM) passive optical network (PON) is assessed numerically for downstream, when a low-complexity iterative signal-to-signal beat interference (SSBI) mitigation technique is employed. Each SCM signal, inserted in a 12.5 GHz width optical channel, is comprised of two or three electrically generated and multiplexed 16-quadrature-amplitude-modulation (QAM) or 32-QAM Nyquist pulse-shaped subcarriers, each with a 7% forward error correction bit rate of 10.7 Gbit/s. The PB and maximum number of optical network units (ONUs) served by each optical line terminal (OLT) are compared with and without SSBI mitigation. When SSBI mitigation is realized, PB gains up to 4.5 dB are attained relative to the PB in the absence of SSBI mitigation. The PB gain enabled by the SSBI mitigation technique proposed in this work increases the number of ONUs served per OLT at least by a factor of 2, for the cases of higher spectral efficiency. In particular, for a SCM signal comprised of three subcarriers, the maximum number of ONUs served per OLT is between 2 and 32, and between 8 and 64, in the absence of SSBI mitigation, and when SSBI mitigation is employed, respectively, depending on the fiber length (up to 50 km) and order of QAM.

  18. Fiber optics standard dictionary

    CERN Document Server

    Weik, Martin H

    1997-01-01

    Fiber Optics Vocabulary Development In 1979, the National Communications System published Technical InfonnationBulle­ tin TB 79-1, Vocabulary for Fiber Optics and Lightwave Communications, written by this author. Based on a draft prepared by this author, the National Communications System published Federal Standard FED-STD-1037, Glossary of Telecommunications Terms, in 1980 with no fiber optics tenns. In 1981, the first edition of this dictionary was published under the title Fiber Optics and Lightwave Communications Standard Dictionary. In 1982, the then National Bureau of Standards, now the National Institute of Standards and Technology, published NBS Handbook 140, Optical Waveguide Communications Glossary, which was also published by the General Services Admin­ istration as PB82-166257 under the same title. Also in 1982, Dynamic Systems, Inc. , Fiberoptic Sensor Technology Handbook, co-authored and edited by published the this author, with an extensive Fiberoptic Sensors Glossary. In 1989, the handbook w...

  19. Fiber Optics: No Illusion.

    Science.gov (United States)

    American School and University, 1983

    1983-01-01

    A campus computer center at Hofstra University (New York) that holds 70 terminals for student use was first a gymnasium, then a language laboratory. Strands of fiber optics are used for the necessary wiring. (MLF)

  20. Fiber optic gas sensor

    Science.gov (United States)

    Chen, Peng (Inventor); Buric, Michael P. (Inventor); Swinehart, Philip R. (Inventor); Maklad, Mokhtar S. (Inventor)

    2010-01-01

    A gas sensor includes an in-fiber resonant wavelength device provided in a fiber core at a first location. The fiber propagates a sensing light and a power light. A layer of a material is attached to the fiber at the first location. The material is able to absorb the gas at a temperature dependent gas absorption rate. The power light is used to heat the material and increases the gas absorption rate, thereby increasing sensor performance, especially at low temperatures. Further, a method is described of flash heating the gas sensor to absorb more of the gas, allowing the sensor to cool, thereby locking in the gas content of the sensor material, and taking the difference between the starting and ending resonant wavelengths as an indication of the concentration of the gas in the ambient atmosphere.

  1. Photonic Crystal Fibers

    National Research Council Canada - National Science Library

    Kristiansen, Rene E

    2005-01-01

    This report results from a contract tasking Crystal Fibre A/S as follows: Crystal Fibre will conduct research and development of large mode area, dual clad multi-core Yb-doped photonic crystal fiber...

  2. Fiber Laser Array

    National Research Council Canada - National Science Library

    Simpson, Thomas

    2002-01-01

    ...., field-dependent, loss within the coupled laser array. During this program, Jaycor focused on the construction and use of an experimental apparatus that can be used to investigate the coherent combination of an array of fiber lasers...

  3. Robust Fiber Coatings

    National Research Council Canada - National Science Library

    Goettler, Richard

    2002-01-01

    The highly desired ceramic matrix composite is the one in which the high strength and strain-to-failure is achieved through judicious selection of a fiber coating that can survive the high-temperature...

  4. Fiber Optic Bragg Gratings

    National Research Council Canada - National Science Library

    Battiato, James

    1998-01-01

    Coupled mode theory was used to model reflection fiber gratings. The effects of experimental parameters on grating characteristics were modeled for both uniform and non-uniform grating profiles using this approach...

  5. Cerenkov fiber sampling calorimeters

    International Nuclear Information System (INIS)

    Arrington, K.; Kefford, D.; Kennedy, J.; Pisani, R.; Sanzeni, C.; Segall, K.; Wall, D.; Winn, D.R.; Carey, R.; Dye, S.; Miller, J.; Sulak, L.; Worstell, W.; Efremenko, Y.; Kamyshkov, Y.; Savin, A.; Shmakov, K.; Tarkovsky, E.

    1994-01-01

    Clear optical fibers were used as a Cerenkov sampling media in Pb (electromagnetic) and Cu (hadron) absorbers in spaghetti calorimeters, for high rate and high radiation dose experiments, such as the forward region of high energy colliders. The fiber axes were aligned close to the direction of the incident particles (1 degree--7 degree). The 7 λ deep hadron tower contained 2.8% by volume 1.5 mm diameter core clear plastic fibers. The 27 radiation length deep electromagnetic towers had packing fractions of 6.8% and 7.2% of 1 mm diameter core quartz fibers as the active Cerenkov sampling medium. The energy resolution on electrons and pions, energy response, pulse shapes and angular studies are presented

  6. Simulation and measurement of optical access network with different types of optical-fiber amplifiers

    Science.gov (United States)

    Latal, Jan; Vogl, Jan; Koudelka, Petr; Vitasek, Jan; Siska, Petr; Liner, Andrej; Papes, Martin; Vasinek, Vladimir

    2012-01-01

    The optical access networks are nowadays swiftly developing in the telecommunications field. These networks can provide higher data transfer rates, and have great potential to the future in terms of transmission possibilities. Many local internet providers responded to these facts and began gradually installing optical access networks into their originally built networks, mostly based on wireless communication. This allowed enlargement of possibilities for end-users in terms of high data rates and also new services such as Triple play, IPTV (Internet Protocol television) etc. However, with this expansion and building-up is also related the potential of reach in case of these networks. Big cities, such as Prague, Brno, Ostrava or Olomouc cannot be simply covered, because of their sizes and also because of their internal regulations given by various organizations in each city. Standard logical and also physical reach of EPON (IEEE 802.3ah - Ethernet Passive Optical Network) optical access network is about 20 km. However, for networks based on Wavelength Division Multiplex the reach can be up to 80 km, if the optical-fiber amplifier is inserted into the network. This article deals with simulation of different types of amplifiers for WDM-PON (Wavelength Division Multiplexing-Passive Optical Network) network in software application Optiwave OptiSystem and than are the values from the application and from real measurement compared.

  7. Fiber optics welder

    Science.gov (United States)

    Higgins, R.W.; Robichaud, R.E.

    A system is described for welding fiber optic waveguides together. The ends of the two fibers to be joined together are accurately, collinearly aligned in a vertical orientation and subjected to a controlled, diffuse arc to effect welding and thermal conditioning. A front-surfaced mirror mounted at a 45/sup 0/ angle to the optical axis of a stereomicroscope mounted for viewing the junction of the ends provides two orthogonal views of the interface during the alignment operation.

  8. FIBER OPTIC LIGHTING SYSTEMS

    Directory of Open Access Journals (Sweden)

    Munir BATUR

    2013-01-01

    Full Text Available Recently there have been many important and valuable developments in the communication industry. The huge increase in the sound, data and visual communications has caused a parallel increase in the demand for systems with wider capacity, higher speed and higher quality. Communication systems that use light to transfer data are immensely increased. There have recently many systems in which glass or plastic fiber cables were developed for light wave to be transmitted from a source to a target place. Fiber optic systems, are nowadays widely used in energy transmission control systems, medicine, industry and lighting. The basics of the system is, movement of light from one point to another point in fiber cable with reflections. Fiber optic lighting systems are quite secure than other lighting systems and have flexibility for realizing many different designs. This situation makes fiber optics an alternative for other lighting systems. Fiber optic lighting systems usage is increasing day-by-day in our life. In this article, these systems are discussed in detail.

  9. Electrospun amplified fiber optics.

    Science.gov (United States)

    Morello, Giovanni; Camposeo, Andrea; Moffa, Maria; Pisignano, Dario

    2015-03-11

    All-optical signal processing is the focus of much research aiming to obtain effective alternatives to existing data transmission platforms. Amplification of light in fiber optics, such as in Erbium-doped fiber amplifiers, is especially important for efficient signal transmission. However, the complex fabrication methods involving high-temperature processes performed in a highly pure environment slow the fabrication process and make amplified components expensive with respect to an ideal, high-throughput, room temperature production. Here, we report on near-infrared polymer fiber amplifiers working over a band of ∼20 nm. The fibers are cheap, spun with a process entirely carried out at room temperature, and shown to have amplified spontaneous emission with good gain coefficients and low levels of optical losses (a few cm(-1)). The amplification process is favored by high fiber quality and low self-absorption. The found performance metrics appear to be suitable for short-distance operations, and the large variety of commercially available doping dyes might allow for effective multiwavelength operations by electrospun amplified fiber optics.

  10. Continuous Natural Fiber Reinforced Thermoplastic Composites by Fiber Surface Modification

    Directory of Open Access Journals (Sweden)

    Patcharat Wongsriraksa

    2013-01-01

    Full Text Available Continuous natural fiber reinforced thermoplastic materials are expected to replace inorganic fiber reinforced thermosetting materials. However, in the process of fabricating the composite, it is difficult to impregnate the thermoplastic resin into reinforcement fiber because of the high melt viscosity. Therefore, intermediate material, which allows high impregnation during molding, has been investigated for fabricating continuous fiber reinforced thermoplastic composite by aligning resin fiber alongside reinforcing fiber with braiding technique. This intermediate material has been called “microbraid yarn (MBY.” Moreover, it is well known that the interfacial properties between natural fiber and resin are low; therefore, surface treatment on continuous natural fiber was performed by using polyurethane (PU and flexible epoxy (FLEX to improve the interfacial properties. The effect of surface treatment on the mechanical properties of continuous natural fiber reinforced thermoplastic composites was examined. From these results, it was suggested that surface treatment by PU with low content could produce composites with better mechanical properties.

  11. Thulium fiber laser lithotripsy using a muzzle brake fiber tip

    Science.gov (United States)

    Hutchens, Thomas C.; Gonzalez, David A.; Irby, Pierce B.; Fried, Nathaniel M.

    2017-02-01

    The Thulium fiber laser (TFL) is being explored as an alternative to Holmium:YAG laser for lithotripsy. TFL beam profile allows coupling of higher power into smaller fibers than multimode Holmium laser beam, without proximal fiber tip degradation. A smaller fiber provides more space in ureteroscope working channel for increased saline irrigation and allows maximum ureteroscope flexion. However, distal fiber tip burnback increases as fiber diameter decreases. Previous studies utilizing hollow steel sheaths around recessed distal fiber tips reduced fiber burnback, but increased retropulsion. In this study, a "fiber muzzle brake" was tested for reducing fiber burnback and stone retropulsion. TFL lithotripsy studies were performed at 1908 nm, 35 mJ, 500 μs, and 300 Hz using a 100-μm-core fiber. The optimal stainless steel muzzle brake tip tested consisted of a 1-cm-long, 560-μm-OD, 360-μm-ID tube with 275-μm thru hole located 250-μm from the distal end. The fiber tip was recessed a distance of 500 μm. Stone phantom retropulsion, fiber tip burnback, and calcium oxalate stone ablation studies were performed, ex vivo. Small stones with a mass of 40 +/- 4 mg and 4-mm-diameter were ablated over a 1.5-mm sieve in 25 +/- 4 s (n=10), without distal fiber tip burnback. Reduction in stone phantom retropulsion distance by 50% and 85% was observed when using muzzle brake tips versus 100-μm-core bare fibers and hollow steel tip fibers. The muzzle brake fiber tip provided efficient stone ablation, reduced stone retropulsion, and minimal fiber degradation during TFL lithotripsy.

  12. Cellulosic Fibers: Effect of Processing on Fiber Bundle Strength

    DEFF Research Database (Denmark)

    Thygesen, Anders; Madsen, Bo; Thomsen, Anne Belinda

    2011-01-01

    A range of differently processed cellulosic fibers from flax and hemp plants were investigated to study the relation between processing of cellulosic fibers and fiber bundle strength. The studied processing methods are applied for yarn production and include retting, scutching, carding, and cotto......A range of differently processed cellulosic fibers from flax and hemp plants were investigated to study the relation between processing of cellulosic fibers and fiber bundle strength. The studied processing methods are applied for yarn production and include retting, scutching, carding...

  13. Study on basalt fiber parameters affecting fiber-reinforced mortar

    Science.gov (United States)

    Orlov, A. A.; Chernykh, T. N.; Sashina, A. V.; Bogusevich, D. V.

    2015-01-01

    This article considers the effect of different dosages and diameters of basalt fibers on tensile strength increase during bending of fiberboard-reinforced mortar samples. The optimal dosages of fiber, providing maximum strength in bending are revealed. The durability of basalt fiber in an environment of cement, by means of microscopic analysis of samples of fibers and fiberboard-reinforced mortar long-term tests is examined. The article also compares the behavior of basalt fiber in the cement stone environment to a glass one and reveals that the basalt fiber is not subject to destruction.

  14. Optical fiber stripper positioning apparatus

    Science.gov (United States)

    Fyfe, Richard W.; Sanchez, Jr., Amadeo

    1990-01-01

    An optical fiber positioning apparatus for an optical fiber stripping device is disclosed which is capable of providing precise axial alignment between an optical fiber to be stripped of its outer jacket and the cutting blades of a stripping device. The apparatus includes a first bore having a width approximately equal to the diameter of an unstripped optical fiber and a counter bore axially aligned with the first bore and dimensioned to precisely receive a portion of the stripping device in axial alignment with notched cutting blades within the stripping device to thereby axially align the notched cutting blades of the stripping device with the axis of the optical fiber to permit the notched cutting blades to sever the jacket on the optical fiber without damaging the cladding on the optical fiber. In a preferred embodiment, the apparatus further includes a fiber stop which permits determination of the length of jacket to be removed from the optical fiber.

  15. Natural Fiber Composites: A Review

    Energy Technology Data Exchange (ETDEWEB)

    Westman, Matthew P.; Fifield, Leonard S.; Simmons, Kevin L.; Laddha, Sachin; Kafentzis, Tyler A.

    2010-03-07

    The need for renewable fiber reinforced composites has never been as prevalent as it currently is. Natural fibers offer both cost savings and a reduction in density when compared to glass fibers. Though the strength of natural fibers is not as great as glass, the specific properties are comparable. Currently natural fiber composites have two issues that need to be addressed: resin compatibility and water absorption. The following preliminary research has investigated the use of Kenaf, Hibiscus cannabinus, as a possible glass replacement in fiber reinforced composites.

  16. Enhanced radiation resistant fiber optics

    International Nuclear Information System (INIS)

    Lyons, P.B.; Looney, L.D.

    1993-01-01

    A process for producing an optical fiber having enhanced radiation resistance is provided, the process including maintaining an optical fiber within a hydrogen-containing atmosphere for sufficient time to yield a hydrogen-permeated optical fiber having an elevated internal hydrogen concentration, and irradiating the hydrogen-permeated optical fiber at a time while the optical fiber has an elevated internal hydrogen concentration with a source of ionizing radiation. The radiation source is typically a cobalt-60 source and the fiber is pre-irradiated with a dose level up to about 1000 kilorads of radiation. 4 figures

  17. Fiber-optic technology review

    International Nuclear Information System (INIS)

    Lyons, P.B.

    1980-01-01

    A history of fiber technology is presented. The advantages of fiber optics are discussed (bandwidth, cost, weight and size, nonmetallic construction and isolation). Some aspects of the disadvantages of fiber systems briefly discussed are fiber and cable availability, fiber components, radiation effects, receivers and transmitters, and material dispersion. Particular emphasis over the next several years will involve development of fibers and systems optimized for use at wavelengths near 1.3 μm and development of wavelengths multiplexers for simultaneous system operation at several wavelengths

  18. Enhanced radiation resistant fiber optics

    Science.gov (United States)

    Lyons, P.B.; Looney, L.D.

    1993-11-30

    A process for producing an optical fiber having enhanced radiation resistance is provided, the process including maintaining an optical fiber within a hydrogen-containing atmosphere for sufficient time to yield a hydrogen-permeated optical fiber having an elevated internal hydrogen concentration, and irradiating the hydrogen-permeated optical fiber at a time while the optical fiber has an elevated internal hydrogen concentration with a source of ionizing radiation. The radiation source is typically a cobalt-60 source and the fiber is pre-irradiated with a dose level up to about 1000 kilorads of radiation. 4 figures.

  19. Anisotropic elliptic optical fibers

    Science.gov (United States)

    Kang, Soon Ahm

    1991-05-01

    The exact characteristic equation for an anisotropic elliptic optical fiber is obtained for odd and even hybrid modes in terms of infinite determinants utilizing Mathieu and modified Mathieu functions. A simplified characteristic equation is obtained by applying the weakly guiding approximation such that the difference in the refractive indices of the core and the cladding is small. The simplified characteristic equation is used to compute the normalized guide wavelength for an elliptical fiber. When the anisotropic parameter is equal to unity, the results are compared with the previous research and they are in close agreement. For a fixed value normalized cross-section area or major axis, the normalized guide wavelength lambda/lambda(sub 0) for an anisotropic elliptic fiber is small for the larger value of anisotropy. This condition indicates that more energy is carried inside of the fiber. However, the geometry and anisotropy of the fiber have a smaller effect when the normalized cross-section area is very small or very large.

  20. Hybrid Fiber Layup and Fiber-Reinforced Polymeric Composites Produced Therefrom

    Science.gov (United States)

    Barnell, Thomas J. (Inventor); Garrigan, Sean P. (Inventor); Rauscher, Michael D. (Inventor); Dietsch, Benjamin A. (Inventor); Cupp, Gary N. (Inventor)

    2018-01-01

    Embodiments of a hybrid fiber layup used to form a fiber-reinforced polymeric composite, and a fiber-reinforced polymeric composite produced therefrom are disclosed. The hybrid fiber layup comprises one or more dry fiber strips and one or more prepreg fiber strips arranged side by side within each layer, wherein the prepreg fiber strips comprise fiber material impregnated with polymer resin and the dry fiber strips comprise fiber material without impregnated polymer resin.

  1. Graphene fiber: a new trend in carbon fibers

    OpenAIRE

    Zhen Xu; Chao Gao

    2015-01-01

    New fibers with increased strength and rich functionalities have been untiringly pursued by materials researchers. In recent years, graphene fiber has arisen as a new carbonaceous fiber with high expectations in terms of mechanical and functional performance. In this review, we elucidated the concept of sprouted graphene fibers, including strategies for their fabrication and their basic structural attributes. We examine the rapid advances in the promotion of mechanical/functional properties o...

  2. Optical fiber switch

    Science.gov (United States)

    Early, James W.; Lester, Charles S.

    2002-01-01

    Optical fiber switches operated by electrical activation of at least one laser light modulator through which laser light is directed into at least one polarizer are used for the sequential transport of laser light from a single laser into a plurality of optical fibers. In one embodiment of the invention, laser light from a single excitation laser is sequentially transported to a plurality of optical fibers which in turn transport the laser light to separate individual remotely located laser fuel ignitors. The invention can be operated electro-optically with no need for any mechanical or moving parts, or, alternatively, can be operated electro-mechanically. The invention can be used to switch either pulsed or continuous wave laser light.

  3. Fiber Optic Calorimetry

    International Nuclear Information System (INIS)

    Rudy, C.; Bayliss, S.; Bracken, D.; Bush, J.; Davis, P.

    1997-01-01

    A twin-bridge calorimeter using optical fiber as the sensor element was constructed and tested. This system demonstrates the principle and capability of using optical fibers for heat-flow measurements of special nuclear material. This calorimeter uses piezoelectric-generated phase-carrier modulation with subsequent electronic signal processes to allow phase shifts as small as 1 microradian (microrad) to be measured. The sensing element consists of 21-m lengths of single-mode optical fiber wrapped around sample and reference chambers. The sensitivity of the calorimeter was determined to be 74 radians (rad) of phase shift per milliwatt of thermal power. One milliwatt of thermal power is equivalent to 400 mg of plutonium (6% 240 Pu). The system noise base was about 0.2 rad, equivalent to about 1 mg of plutonium

  4. Femtosecond Fiber Lasers

    Science.gov (United States)

    Bock, Katherine J.

    This thesis focuses on research I have done on ytterbium-doped femtosecond fiber lasers. These lasers operate in the near infrared region, lasing at 1030 nm. This wavelength is particularly important in biomedical applications, which includes but is not limited to confocal microscopy and ablation for surgical incisions. Furthermore, fiber lasers are advantageous compared to solid state lasers in terms of their cost, form factor, and ease of use. Solid state lasers still dominate the market due to their comparatively high energy pulses. High energy pulse generation in fiber lasers is hindered by either optical wave breaking or by multipulsing. One of the main challenges for fiber lasers is to overcome these limitations to achieve high energy pulses. The motivation for the work done in this thesis is increasing the output pulse peak power and energy. The main idea of the work is that decreasing the nonlinearity that acts on the pulse inside the cavity will prevent optical wave breaking, and thus will generate higher energy pulses. By increasing the output energy, ytterbium-doped femtosecond fiber lasers can be competitive with solid state lasers which are used commonly in research. Although fiber lasers tend to lack the wavelength tuning ability of solid state lasers, many biomedical applications take advantage of the 1030 microm central wavelength of ytterbium-doped fiber lasers, so the major limiting factor of fiber lasers in this field is simply the output power. By increasing the output energy without resorting to external amplification, the cavity is optimized and cost can remain low and economical. During verification of the main idea, the cavity was examined for possible back-reflections and for components with narrow spectral bandwidths which may have contributed to the presence of multipulsing. Distinct cases of multipulsing, bound pulse and harmonic mode-locking, were observed and recorded as they may be of more interest in the future. The third

  5. Higher Order Mode Fibers

    DEFF Research Database (Denmark)

    Israelsen, Stine Møller

    This PhD thesis considers higher order modes (HOMs) in optical fibers. That includes their excitation and characteristics. Within the last decades, HOMs have been applied both for space multiplexing in optical communications, group velocity dispersion management and sensing among others......-radial polarization as opposed to the linear polarization of the LP0X modes. The effect is investigated numerically in a double cladding fiber with an outer aircladding using a full vectorial modesolver. Experimentally, the bowtie modes are excited using a long period grating and their free space characteristics...... and polarization state are investigated. For this fiber, the onset of the bowtie effect is shown numerically to be LP011. The characteristics usually associated with Bessel-likes modes such as long diffraction free length and selfhealing are shown to be conserved despite the lack of azimuthal symmetry...

  6. Fiber optic calorimetry

    International Nuclear Information System (INIS)

    Rudy, C.R.; Bayliss, S.C.; Bracken, D.S.; Bush, I.J.; Davis, P.G.

    1998-01-01

    A twin-bridge calorimeter using optical fiber as the sensor element was constructed and tested. This system demonstrates the principle and capability of using optical fibers for heat-flow measurements of special nuclear material. This calorimeter uses piezoelectric-generated phase-carrier modulation with subsequent electronic signal processing to allow phase shifts as small as 1 microrad to be measured. The sensing element consists of 21-m lengths of single-mode optical fiber wrapped around sample and reference chambers. The sensitivity of the calorimeter was determined to be 74 rad of phase shift per mW of thermal power. One milliwatt of thermal power is equivalent to 400 mg of plutonium (6% 240 Pu). The system noise base was about 0.2 rad, equivalent to about 1 mg of plutonium

  7. Fiber optic calorimetry

    International Nuclear Information System (INIS)

    Rudy, C.; Bayliss, S.; Bracken, D.; Bush, J.; Davis, P.

    1998-01-01

    A twin-bridge calorimeter using optical fiber as the sensor element was constructed and tested. This system demonstrates the principle and capability of using fiber for heat-flow measurements of special nuclear material. This calorimeter uses piezoelectric-generated phase-carrier modulation with subsequent electronic signal processing to allow phase shifts as small as 1 microradian (μrad) to be measured. The sensing element consists of 21-m lengths of single-mode optical fiber wrapped around sample and reference chambers. The sensitivity of the calorimeter was determined to be 74 radians (rad) of phase shift per milliwatt of thermal power. One milliwatt of thermal power is equivalent to 400 mg of plutonium (6% 240 Pu). The system noise base was about 0.2 rad, equivalent to about 1 mg of plutonium

  8. Multibeam fiber laser cutting

    DEFF Research Database (Denmark)

    Olsen, Flemming Ove; Hansen, Klaus Schütt; Nielsen, Jakob Skov

    2009-01-01

    The appearance of the high power high brilliance fiber laser has opened for new possibilities in laser materials processing. In laser cutting this laser has demonstrated high cutting performance compared to the dominating Cutting laser, the CO2 laser. However, quality problems in fiber......-laser cutting have until now limited its application to metal cutting. In this paper the first results of proof-of-principle Studies applying a new approach (patent pending) for laser cutting with high brightness and short wavelength lasers will be presented. In the approach, multibeam patterns are applied...... to control the melt flow out of the cut kerf resulting in improved cut quality in metal cutting. The beam patterns in this study are created by splitting up beams from two single mode fiber lasers and combining these beams into a pattern in the cut kerf. The results are obtained with a total of 550 W...

  9. Monolithic Yb-fiber femtosecond laser using photonic crystal fiber

    DEFF Research Database (Denmark)

    Liu, Xiaomin; Lægsgaard, Jesper; Turchinovich, Dmitry

    2008-01-01

    We demonstrate, both experimentally and theoretically, an environmentally stable monolithic all-PM modelocked femtosecond Yb-fiber laser, with laser output pulse compressed in a spliced-on low-loss hollow-core photonic crystal fiber. Our laser provides direct fiber-end delivery of 4 nJ pulses...

  10. K3-fibered Calabi-Yau threefolds II, singular fibers

    OpenAIRE

    Hunt, Bruce

    1999-01-01

    In part I of this paper we constructed certain fibered Calabi-Yaus by a quotient construction in the context of weighted hypersurfaces. In this paper look at the case of K3 fibrations more closely and study the singular fibers which occur. This differs from previous work since the fibrations we discuss have constant modulus, and the singular fibers have torsion monodromy.

  11. Single fiber pullout from hybrid fiber reinforced concrete

    NARCIS (Netherlands)

    Markovich, I.; Van Mier, J.G.M.; Walraven, J.C.

    2001-01-01

    Hybrid fiber reinforcement can be very efficient for improving the tensile response of the composite. In such materials, fibers of different geometries can act as bridging mechanisms over cracks of different widths. The fiber bridging efficiency depends on the interface properties, which makes

  12. Fluoride glass fiber optics

    CERN Document Server

    Aggarwal, Ishwar D

    1991-01-01

    Fluoride Glass Fiber Optics reviews the fundamental aspects of fluoride glasses. This book is divided into nine chapters. Chapter 1 discusses the wide range of fluoride glasses with an emphasis on fluorozirconate-based compositions. The structure of simple fluoride systems, such as BaF2 binary glass is elaborated in Chapter 2. The third chapter covers the intrinsic transparency of fluoride glasses from the UV to the IR, with particular emphasis on the multiphonon edge and electronic edge. The next three chapters are devoted to ultra-low loss optical fibers, reviewing methods for purifying and

  13. Nonlinear fiber optics

    CERN Document Server

    Agrawal, Govind

    2012-01-01

    Since the 4e appeared, a fast evolution of the field has occurred. The 5e of this classic work provides an up-to-date account of the nonlinear phenomena occurring inside optical fibers, the basis of all our telecommunications infastructure as well as being used in the medical field. Reflecting the big developments in research, this new edition includes major new content: slow light effects, which offers a reduction in noise and power consumption and more ordered network traffic-stimulated Brillouin scattering; vectorial treatment of highly nonlinear fibers; and a brand new chapter o

  14. Silicon photonics for multicore fiber communication

    DEFF Research Database (Denmark)

    Ding, Yunhong; Kamchevska, Valerija; Dalgaard, Kjeld

    2016-01-01

    We review our recent work on silicon photonics for multicore fiber communication, including multicore fiber fan-in/fan-out, multicore fiber switches towards reconfigurable optical add/drop multiplexers. We also present multicore fiber based quantum communication using silicon devices.......We review our recent work on silicon photonics for multicore fiber communication, including multicore fiber fan-in/fan-out, multicore fiber switches towards reconfigurable optical add/drop multiplexers. We also present multicore fiber based quantum communication using silicon devices....

  15. Fiber-optic seismic sensor

    International Nuclear Information System (INIS)

    Finch, G. W.; Udd, E.

    1985-01-01

    A vibration sensor is constructed by providing two preferably matched coils of fiber-optic material. When the sensor experiences vibration, a differential pressure is exerted on the two fiber coils. The differential pressure results in a variation in the relative optical path lengths between the two fibers so that light beams transmitted through the two fibers are differently delayed, the phase difference therebetween being a detectable indication of the vibration applied to the sensor

  16. Tunable femtosecond Cherenkov fiber laser

    DEFF Research Database (Denmark)

    Liu, Xiaomin; Svane, Ask Sebastian; Lægsgaard, Jesper

    2014-01-01

    We demonstrate electrically-tunable femtosecond Cherenkov fiber laser output at the visible range. Using an all-fiber, self-starting femtosecond Yb-doped fiber laser as the pump source and nonlinear photonic crystal fiber link as the wave-conversion medium, ultrafast, milliwatt-level, tunable...... and spectral isolated Cherenkov radiation at visible wavelengths are reported. Such a femtosecond Cherenkov laser source is promising for practical biophotonics applications....

  17. In-fiber integrated Michelson interferometer.

    Science.gov (United States)

    Yuan, Libo; Yang, Jun; Liu, Zhihai; Sun, Jiaxing

    2006-09-15

    A novel fiber-optic in-fiber integrated Michelson interferometer has been proposed and demonstrated. It consists of a segment of two-core fiber with a mirrored fiber end. The sensing characteristics based on the two-core fiber bending, corresponding to the shift of the phase of the two-core in-fiber integrated Michelson interferometer, are investigated.

  18. Transient attenuation in optical fibers

    International Nuclear Information System (INIS)

    Hopkins, A.A.; Kelly, R.E.; Looney, L.D.; Lyons, P.B.

    1984-01-01

    Low and high energy pulsed electron beams were used to generate radiation-induced transient attenuation in high-OH, Suprasil core, PCS fibers, demonstrating the energy dependence of the radiation damage and recovery mechanisms. A radiation resistant low-OH fiber was studied and its performance contrasted to that of high-OH materials. Several fibers with differing core compositions were also studied

  19. Fiber Optics and Library Technology.

    Science.gov (United States)

    Koenig, Michael

    1984-01-01

    This article examines fiber optic technology, explains some of the key terminology, and speculates about the way fiber optics will change our world. Applications of fiber optics to library systems in three major areas--linkage of a number of mainframe computers, local area networks, and main trunk communications--are highlighted. (EJS)

  20. Water-core Fresnel fiber

    NARCIS (Netherlands)

    Martelli, C.; Canning, J.; Lyytikainen, K.; Groothoff, N.

    2005-01-01

    A water core photonic crystal Fresnel fiber exploiting a hole distribution on zone plates of a cylindrical waveguide was developed and characterized. This fiber has similar guiding properties as the pristine air-hole guiding fiber although a large loss edge ~900nm is observed indicating that the

  1. Optical fibers for FTTH application

    Science.gov (United States)

    Guzowski, Bartlomiej; Tosik, Grzegorz; Lisik, Zbigniew; Bedyk, Michal; Kubiak, Andrzej

    2013-07-01

    In this paper the specifics of FTTH (Fiber To The Home) networks in terms of requirements for optical fibers has been presented. Optical fiber samples used in FTTH applications acquired from the worldwide leading manufacturers were subjected to small diameter mandrel wraps tests. The detailed procedures of performed tests and the measurement results has been presented.

  2. Photonic-crystal fibers gyroscope

    Directory of Open Access Journals (Sweden)

    Ali Muse Haider

    2015-01-01

    Full Text Available In this paper we proposed to use of a photonic crystal fiber with an inner hollow defect. The use of such fibers is not affected by a material medium on the propagation of optical radiation. Photonic crystal fibers present special properties and capabilities that lead to an outstanding potential for sensing applications

  3. Thermal properties of Fiber ropes

    DEFF Research Database (Denmark)

    Bossolini, Elena; Nielsen, Ole Wennerberg; Oland, Espen

    There is a trend within the oil and gas market to shift from steel wire ropes to fiber ropes for lifting, hoisting and mooring applications. The cost of fiber ropes is about 2-3 times that of steel wire ropes, but the natural buoyancy of fiber ropes reduces the overall weight resulting in smaller...

  4. Shedding Light on Fiber Optics.

    Science.gov (United States)

    Bunch, Robert M.

    1994-01-01

    Explains the principles of fiber optics as a medium for light-wave communication. Current uses of fiber systems on college campuses include voice, video, and local area network applications. A group of seven school districts in Minnesota are linked via fiber-optic cables. Other uses are discussed. (MLF)

  5. Fabrication of Optical Fiber Devices

    Science.gov (United States)

    Andres, Miguel V.

    In this paper we present the main research activities of the Laboratorio de Fibras Opticas del Instituto de Ciencia de los Materiales de la Universidad de Valencia. We show some of the main results obtained for devices based on tapered fibers, fiber Bragg gratings, acousto-optic effects and photonic crystal fibers.

  6. Microstructured Fibers: Design and Applications

    DEFF Research Database (Denmark)

    Bjarklev, Anders Overgaard; Broeng, Jes

    2006-01-01

    Holey fibers, in which airholes are introduced in the cladding region and extended in the axial direction of the fiber, have been known since the early days of silica waveguide research. Early work demonstrated the first low-loss fibers, which featured very small silica cores held in air by thin...

  7. Illustrative white matter fiber bundles

    NARCIS (Netherlands)

    Otten, R.J.G.; Vilanova, A.; Wetering, van de H.M.M.

    2010-01-01

    Diffusion Tensor Imaging (DTI) has made feasible the visualization of the fibrous structure of the brain whitematter. In the last decades, several fiber-tracking methods have been developed to reconstruct the fiber tracts fromDTI data. Usually these fiber tracts are shown individually based on some

  8. Bluebonnet Fiber Collages

    Science.gov (United States)

    Sterling, Joan

    2009-01-01

    This article presents a lesson that uses stitching and applique techniques to create a fiber collage in which every child is successful with high-quality work. This lesson was inspired by Tomie dePaola's "The Legend of the Bluebonnet." The back cover had a lovely illustration of the bluebonnet flower the author thought would translate easily to a…

  9. The dentate mossy fibers

    DEFF Research Database (Denmark)

    Blaabjerg, Morten; Zimmer, Jens

    2007-01-01

    Hippocampal mossy fibers are the axons of the dentate granule cells and project to hippocampal CA3 pyramidal cells and mossy cells of the dentate hilus (CA4) as well as a number of interneurons in the two areas. Besides their role in hippocampal function, studies of which are still evolving...

  10. Optical Fiber Protection

    Science.gov (United States)

    1999-01-01

    F&S Inc. developed and commercialized fiber optic and microelectromechanical systems- (MEMS) based instrumentation for harsh environments encountered in the aerospace industry. The NASA SBIR programs have provided F&S the funds and the technology to develop ruggedized coatings and coating techniques that are applied during the optical fiber draw process. The F&S optical fiber fabrication facility and developed coating methods enable F&S to manufacture specialty optical fiber with custom designed refractive index profiles and protective or active coatings. F&S has demonstrated sputtered coatings using metals and ceramics and combinations of each, and has also developed techniques to apply thin coatings of specialized polyimides formulated at NASA Langley Research Center. With these capabilities, F&S has produced cost-effective, reliable instrumentation and sensors capable of withstanding temperatures up to 800? C and continues building commercial sales with corporate partners and private funding. More recently, F&S has adapted the same sensing platforms to provide the rapid detection and identification of chemical and biological agents

  11. Optical Fiber Spectroscopy

    Science.gov (United States)

    Buoncristiani, A. M.

    1999-01-01

    This is the final report of work done on NASA Grant NAG-1-443. The work covers the period from July 1, 1992 to December 1, 1998. During this period several distinct but related research studies and work tasks were undertaken. These different subjects are enumerated below with a description of the work done on each of them. The focus of the research was the development of optical fibers for use as distributed temperature and stress sensors. The initial concept was to utilize the utilize the temperature and stress dependence of emission from rare earth and transition metal ions substitutionally doped into crystalline or glass fibers. During the course of investigating this it became clear that fiber Bragg gratings provided a alternative for making the desired measurements and there was a shift of research focus on to include the photo-refractive properties of germano-silicate glasses used for most gratings and to the possibility of developing fiber laser sources for an integrated optical sensor in the research effort. During the course of this work several students from Christopher Newport University and other universities participated in this effort. Their names are listed below. Their participation was an important part of their education.

  12. Fiber and Your Child

    Science.gov (United States)

    ... meals instead of white rice. Add beans (kidney, black, navy, and pinto) to rice dishes for even more fiber. Spice up salads with berries and almonds, chickpeas, artichoke hearts, and beans (kidney, black, navy, or pinto). Use whole-grain (corn or ...

  13. Polymer-Derived Ceramic Fibers

    Science.gov (United States)

    Ichikawa, Hiroshi

    2016-07-01

    SiC-based ceramic fibers are derived from polycarbosilane or polymetallocarbosilane precursors and are classified into three groups according to their chemical composition, oxygen content, and C/Si atomic ratio. The first-generation fibers are Si-C-O (Nicalon) fibers and Si-Ti-C-O (Tyranno Lox M) fibers. Both fibers contain more than 10-wt% oxygen owing to oxidation during curing and lead to degradation in strength at temperatures exceeding 1,300°C. The maximum use temperature is 1,100°C. The second-generation fibers are SiC (Hi-Nicalon) fibers and Si-Zr-C-O (Tyranno ZMI) fibers. The oxygen content of these fibers is reduced to less than 1 wt% by electron beam irradiation curing in He. The thermal stability of these fibers is improved (they are stable up to 1,500°C), but their creep resistance is limited to a maximum of 1,150°C because their C/Si atomic ratio results in excess carbon. The third-generation fibers are stoichiometric SiC fibers, i.e., Hi-Nicalon Type S (hereafter Type S), Tyranno SA, and Sylramic™ fibers. They exhibit improved thermal stability and creep resistance up to 1,400°C. Stoichiometric SiC fibers meet many of the requirements for the use of ceramic matrix composites for high-temperature structural application. SiBN3C fibers derived from polyborosilazane also show promise for structural applications, remain in the amorphous state up to 1,800°C, and have good high-temperature creep resistance.

  14. Improved Optical Fiber Chemical Sensors

    Science.gov (United States)

    Egalon, Claudio O.; Rogowski, Robert S.

    1994-01-01

    Calculations, based on exact theory of optical fiber, have shown how to increase optical efficiency sensitivity of active-core, step-index-profile optical-fiber fluorosensor. Calculations result of efforts to improve efficiency of optical-fiber chemical sensor of previous concept described in "Making Optical-Fiber Chemical Sensors More Sensitive" (LAR-14525). Optical fiber chemical detector of enhanced sensitivity made in several configurations. Portion of fluorescence or chemiluminescence generated in core, and launched directly into bound electromagnetic modes that propagate along core to photodetector.

  15. Solid fiber Z-pinches

    International Nuclear Information System (INIS)

    Lindemuth, I.R.

    1989-01-01

    One- and two-dimensional magnetohydrodynamic computations have been performed to study the behavior of solid deuterium fiber Z-pinch experiments performed at Los Alamos and the Naval Research Laboratory. The computations use a tabulated atomic data base and ''cold-start'' initial conditions. The computations predict that the solid fiber persists longer in existing experiments than previously expected and that the discharge actually consists of a relatively low-density, hot plasma which has been ablated from the fiber. The computations exhibit m = 0 behavior in the hot, exterior plasma prior to complete ablation of the solid fiber. The m = 0 behavior enhances the fiber ablation rate. 10 refs., 5 figs

  16. Introduction to optical fiber sensors

    International Nuclear Information System (INIS)

    Moukdad, S.

    1991-01-01

    Optical fiber sensors have many advantages over other types of sensors, for example: Low weight, immunity from EMI, electrical isolation, chemical passivity, and high sensitivity. In this seminar, a brief explanation of the optical fiber sensors, their use, and their advantages will be given. After, a description of the main optical fiber sensor components will be presented. Principles of some kinds of optical fiber sensors will be presented, and the principle of the fiber-optic rotation sensor and its realization will be discussed in some details, as well as its main applications. (author). 5 refs, 8 figs, 2 tabs

  17. Bonding Properties of Basalt Fiber and Strength Reduction According to Fiber Orientation

    OpenAIRE

    Choi, Jeong-Il; Lee, Bang

    2015-01-01

    The basalt fiber is a promising reinforcing fiber because it has a relatively higher tensile strength and a density similar to that of a concrete matrix as well as no corrosion possibility. This study investigated experimentally the bonding properties of basalt fiber with cementitious material as well as the effect of fiber orientation on the tensile strength of basalt fiber for evaluating basalt fiber?s suitability as a reinforcing fiber. Single fiber pullout tests were performed and then th...

  18. Fiber optics: A brief introduction

    International Nuclear Information System (INIS)

    Gruchalla, M.E.

    1989-01-01

    A basic introduction into the principles of fiber optics is presented. A review of both the underlying physical principles and the individual elements of typical fiber-optic systems are presented. The optical phenomenon of total internal reflection is reviewed. The basic construction of the optical fiber is presented. Both step-index and graded-index fiber designs are reviewed. Multimode and single-mode fiber constructions are considered and typical performance parameters given. Typical optical-fiber bandwidth and loss characteristics are compared to various common coaxial cables, waveguides, and air transmission. The constructions of optical-fiber cables are reviewed. Both loose-tube and tightly-buffered designs are considered. Several optical connection approaches are presented. Photographs of several representative optical connectors are included. Light Emitting Diode and Laser Diode emitters for fiber-optic applications are reviewed, and some advantages and shortcomings of each are considered. The phenomenon of modal noise is briefly explained. Both PIN and Avalanche photodetectors are reviewed and their performance parameters compared. Methods of data transmission over optical fiber are introduced. Principles of Wavelength, Frequency, and Time Division Multiplexing are briefly presented. The technology of fiber-optic sensors is briefly reviewed with basic principles introduced. The performance of a fiber-optic strain sensor is included as a practical example. 7 refs., 10 figs

  19. All-Fiber Raman Probe

    DEFF Research Database (Denmark)

    Brunetti, Anna Chiara

    by means of fiber components. Assuming the possibility to use a fiber laser with a fundamental radiation at 1064nm, in-fiber efficient second harmonic generation is achieved by optically poling the core of the waveguide delivering the excitation light to the sample. In this way, Raman spectroscopy...... in the visible range can be performed. The simultaneous delivery of the excitation light and collection of the Raman signal from the sample are achieved by means of a doubleclad fiber, whose core and inner cladding act as \\independent" transmission channels. A double-clad fiber coupler allows for the recovery...... of the collected Raman scattering from the inner-cladding region of the double-clad fiber, thus replacing the bulk dichroic component normally used to demultiplex the pump and Raman signal. A tunable Rayleigh-rejection filter based on a liquid filled-photonic bandgap fiber is also demonstrated in this work...

  20. Chemically modified carbon fibers and their applications

    International Nuclear Information System (INIS)

    Ermolenko, I.N.; Lyubliner, I.P.; Gulko, N.V.

    1990-01-01

    This book gives a comprehensive review about chemically modified carbon fibers (e.g. by incorporation of other elements) and is structured as follows: 1. Types of carbon fibers, 2. Structure of carbon fibers, 3. Properties of carbon fibers, 4. The cellulose carbonization process, 5. Formation of element-carbon fiber materials, 6. Surface modification of carbon fibers, and 7. Applications of carbon fibers (e.g. adsorbents, catalysts, constituents of composites). (MM)

  1. Multispot fiber laser welding

    DEFF Research Database (Denmark)

    Schutt Hansen, Klaus

    This dissertation presents work and results achieved in the field of multi beam fiber laser welding. The project has had a practical approach, in which simulations and modelling have been kept at a minimum. Different methods to produce spot patterns with high power single mode fiber lasers have...... been examined and evaluated. It is found that both diamond turned DOE’s in zinc sulphide and multilevel etched DOE’s (Diffractive Optical Elements) in fused silica have a good performance. Welding with multiple beams in a butt joint configuration has been tested. Results are presented, showing it has...... been possible to control the welding width in incremental steps by adding more beams in a row. The laser power was used to independently control the keyhole and consequently the depth of fusion. An example of inline repair of a laser weld in butt joint configuration was examined. Zinc powder was placed...

  2. Fiber optic fluid detector

    Science.gov (United States)

    Angel, S.M.

    1987-02-27

    Particular gases or liquids are detected with a fiber optic element having a cladding or coating of a material which absorbs the fluid or fluids and which exhibits a change of an optical property, such as index of refraction, light transmissiveness or fluoresence emission, for example, in response to absorption of the fluid. The fluid is sensed by directing light into the fiber optic element and detecting changes in the light, such as exit angle changes for example, that result from the changed optical property of the coating material. The fluid detector may be used for such purposes as sensing toxic or explosive gases in the atmosphere, measuring ground water contamination or monitoring fluid flows in industrial processes, among other uses. 10 figs.

  3. Fiber optic fluid detector

    Science.gov (United States)

    Angel, S. Michael

    1989-01-01

    Particular gases or liquids are detected with a fiber optic element (11, 11a to 11j) having a cladding or coating of a material (23, 23a to 23j) which absorbs the fluid or fluids and which exhibits a change of an optical property, such as index of refraction, light transmissiveness or fluoresence emission, for example, in response to absorption of the fluid. The fluid is sensed by directing light into the fiber optic element and detecting changes in the light, such as exit angle changes for example, that result from the changed optical property of the coating material. The fluid detector (24, 24a to 24j) may be used for such purposes as sensing toxic or explosive gases in the atmosphere, measuring ground water contamination or monitoring fluid flows in industrial processes, among other uses.

  4. Optical fiber communications

    CERN Document Server

    Keiser, Gerd

    2008-01-01

    The fourth edition of this popular text and reference book presents the fundamental principles for understanding and applying optical fiber technology to sophisticated modern telecommunication systems. Optical-fiber-based telecommunication networks have become a major information-transmission-system, with high capacity links encircling the globe in both terrestrial and undersea installations. Numerous passive and active optical devices within these links perform complex transmission and networking functions in the optical domain, such as signal amplification, restoration, routing, and switching. Along with the need to understand the functions of these devices comes the necessity to measure both component and network performance, and to model and stimulate the complex behavior of reliable high-capacity networks.

  5. A new design of photonic crystal fiber with ultra-flattened dispersion to simultaneously minimize the dispersion and confinement loss

    Science.gov (United States)

    Olyaee, Saeed; Taghipour, Fahimeh

    2011-02-01

    Photonic crystal fibers (PCFs) are highly suitable transmission media for wavelength-division-multiplexing (WDM) systems, in which low and ultra-flattened dispersion of PCFs is extremely desirable. It is also required to concurrently achieve both a low confinement loss as well as a large effective area in a wide range of wavelengths. Relatively low dispersion with negligible variation has become feasible in the wavelength range of 1.1 to 1.8μm through the proposed design in this paper. According to a new structure of PCF presented in this study, the dispersion slope is 6.8×10-4ps/km.nm2 and the confinement loss reaches below 10-6 dB/km in this range, while at the same time an effective area of more than 50μm2 has been attained. For the analysis of this PCF, finite-difference time-domain (FDTD) method with the perfectly matched layers (PML) boundary conditions has been used.

  6. Stable fiber interferometer

    International Nuclear Information System (INIS)

    Izmajlov, G.N.; Nikolaev, F.A.; Ozolin, V.V.; Grigor'yants, V.V.; Chamorovskij, Yu.K.

    1989-01-01

    The problem of construction the long-base Michelson interferometer for gravitational wave detection is discussed. Possible sources of noise and instability are considered. It is shown that evacuation of fiber interferometer, the winding of its arms on the glass ceramic bases, stabilization of radiation source frequency and seismic isolation of the base allow one to reduce its instability to the level, typical of mirror interferometer with the comparable optical base. 10 refs.; 2 figs

  7. Deriving muscle fiber diameter from recorded single fiber potential.

    Science.gov (United States)

    Zalewska, Ewa

    2017-12-01

    The aim of the study was to estimate muscle fiber diameters through analysis of single muscle fiber potentials (SFPs) recorded in the frontalis muscle of a healthy subject. Our previously developed analytical and graphic method to derive fiber diameter from the analysis of the negative peak duration and the amplitude of SFP, was applied to a sample of ten SFPs recorded in vivo. Muscle fiber diameters derived from the simulation method for the sample of frontalis muscle SFPs are consistent with anatomical data for this muscle. The results confirm the utility of proposed simulation method. Outlying data could be considered as the result of a contribution of other fibers to the potential recorded using an SFEMG electrode. Our graphic tool provides a rapid estimation of muscle fiber diameter. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  8. Carbon fiber reinforced asphalt concrete

    International Nuclear Information System (INIS)

    Jahromi, Saeed G.

    2008-01-01

    Fibers are often used in the manufacture of other materials. For many years, they have been utilized extensively in numerous applications in civil engineering. Fiber-reinforcement refers to incorporating materials with desired properties within some other materials lacking those properties. Use of fibers is not a new phenomenon, as the technique of fiber-reinforced bitumen began early as 1950. In all industrialized countries today, nearly all concretes used in construction are reinforced. A multitude of fibers and fiber materials are being introduced in the market regularly. The present paper presents characteristics and properties of carbon fiber-reinforced asphalt mixtures, which improve the performance of pavements. To evaluate the effect of fiber contents on bituminous mixtures, laboratory investigations were carried out on the samples with and without fibers. During the course of this study, various tests were undertaken, applying Marshall Test indirect tensile test, creep test and resistance to fatigue cracking by using repeated load indirect tensile test. Carbon fiber exhibited consistency in results and as such it was observed that the addition of fiber does affect the properties of bituminous mixtures, i.e. an increase in its stability and decrease in the flow value as well as an increase in voids in the mix. Results indicate that fibers have the potential to resist structural distress in pavement, in the wake of growing traffic loads and thus improve fatigue by increasing resistance to cracks or permanent deformation. On the whole, the results show that the addition of carbon fiber will improve some of the mechanical properties like fatigue and deformation in the flexible pavement. (author)

  9. Monolithic femtosecond Yb-fiber laser with photonic crystal fibers

    DEFF Research Database (Denmark)

    Liu, Xiaomin; Lægsgaard, Jesper; Turchinovich, Dmitry

    We demonstrate a monolithic stable SESAM-modelocked self-starting Yb-fiber laser. A novel PM all-solid photonic bandgap fiber is used for intra-cavity of dispersion management. The ex-cavity final pulse compression is performed in a spliced-on PM hollow-core photonic crystal fiber. The laser...... directly delivers 9 nJ pulses of 275 fs duration with pulse repetition of 26.7MHz....

  10. Homogenization of long fiber reinforced composites including fiber bending effects

    DEFF Research Database (Denmark)

    Poulios, Konstantinos; Niordson, Christian Frithiof

    2016-01-01

    This paper presents a homogenization method, which accounts for intrinsic size effects related to the fiber diameter in long fiber reinforced composite materials with two independent constitutive models for the matrix and fiber materials. A new choice of internal kinematic variables allows...... of the reinforcing fibers is captured by higher order strain terms, resulting in an accurate representation of the micro-mechanical behavior of the composite. Numerical examples show that the accuracy of the proposed model is very close to a non-homogenized finite-element model with an explicit discretization...

  11. Modelo de asignación predictivo de longitudes de ondas en redes WDM teniendo en cuenta dispersión residual y tráficos unicast/multicast con QoS

    Directory of Open Access Journals (Sweden)

    Javier Sierra

    2009-01-01

    Full Text Available El tráfico de Internet está en constante crecimiento y con él las aplicaciones del tipo unicast/multicast con diferentes requerimientos de Calidad de Servicio (QoS. Esto es motivo para que las Redes de Transporte Ópticas (OTN deban continuar su evolución hacia redes completamente ópticas (sin conversiones Óptico-Electrónico-Óptico: OEO. S/G Light-tree es una arquitectura de los nodos de las redes all-OTN que permite el optimo enrutamiento y/o manejo de tráficos unicast/multicast empleando el concepto de Traffic Grooming (TG, granularidad de tráfico en un ambiente óptico. Las técnicas de grooming así como los algoritmos de asignación y enrutamiento propuestos hasta el momento no tienen en cuenta los fenómenos que se pueden prestar en la fibra óptica, los cuales atenúan o alteran las diferentes longitudes de onda en las redes WDM (Wavelength Division Multiplexing. La dispersión cromática es un fenómeno que deforma los pulsos transmitidos en una fibra óptica y el efecto depende de la longitud de onda empleada en la transmisión. En este artículo, se propone un modelo predictivo de asignación de longitudes de ondas basado en cadenas de Markov que tiene en cuenta la dispersión residual en redes WDM que soportan traffic grooming y tráficos unicast/multicast con requerimientos de QoS. Los resultados de las simulaciones realizadas muestran que el modelo propuesto mejora la probabilidad de bloqueo de tráficos con requerimientos de QoS.

  12. Raman fiber distributed feedback lasers.

    Science.gov (United States)

    Westbrook, Paul S; Abedin, Kazi S; Nicholson, Jeffrey W; Kremp, Tristan; Porque, Jerome

    2011-08-01

    We demonstrate fiber distributed feedback (DFB) lasers using Raman gain in two germanosilicate fibers. Our DFB cavities were 124 mm uniform fiber Bragg gratings with a π phase shift offset from the grating center. Our pump was at 1480 nm and the DFB lasers operated on a single longitudinal mode near 1584 nm. In a commercial Raman gain fiber, the maximum output power, linewidth, and threshold were 150 mW, 7.5 MHz, and 39 W, respectively. In a commercial highly nonlinear fiber, these figures improved to 350 mW, 4 MHz, and 4.3 W, respectively. In both lasers, more than 75% of pump power was transmitted, allowing for the possibility of substantial amplification in subsequent Raman gain fiber. © 2011 Optical Society of America

  13. Flexible optical fiber sensor based on polyurethane

    DEFF Research Database (Denmark)

    Kaysir, Md Rejvi; Stefani, Alessio; Lwin, Richard

    Polyurethane (PU) based hollow core fibers are investigated as optical sensors. The flexibility of PU fibers makes it suitable for sensing mechanical perturbations. We fabricated a PU fiber using the fiber drawing method, characterized the fiber and experimentally demonstrated a simple way...... to measure deformation, in the form of applied pressure....

  14. A fiber-optic polarimetric demonstration kit

    International Nuclear Information System (INIS)

    Eftimov, T; Dimitrova, T L; Ivanov, G

    2012-01-01

    A simple and multifunctional fiber-optic polarimetric kit on the basis of highly birefringent single-mode fibers is presented. The fiber-optic polarimetric kit allows us to perform the following laboratory exercises: (i) fiber excitation and the measurement of numerical aperture, (ii) polarization preservation and (iii) obtain polarization-sensitive fiberized interferometers.

  15. Dynamic drainage of froth with wood fibers

    Science.gov (United States)

    J.Y. Zhu; Freya Tan

    2005-01-01

    Understanding froth drainage with fibers (or simply called fiber drainage in froth) is important for improving fiber yield in the flotation deinking operation. In this study, the data of water and fiber mass in foams collected at different froth heights were used to reconstruct the time dependent and spatially resolved froth density and fiber volumetric concentration...

  16. Fiber optic sensor and method for making

    Science.gov (United States)

    Vartuli, James Scott; Bousman, Kenneth Sherwood; Deng, Kung-Li; McEvoy, Kevin Paul; Xia, Hua

    2010-05-18

    A fiber optic sensor including a fiber having a modified surface integral with the fiber wherein the modified surface includes an open pore network with optical agents dispersed within the open pores of the open pore network. Methods for preparing the fiber optic sensor are also provided. The fiber optic sensors can withstand high temperatures and harsh environments.

  17. Electrochromic fiber-shaped supercapacitors.

    Science.gov (United States)

    Chen, Xuli; Lin, Huijuan; Deng, Jue; Zhang, Ye; Sun, Xuemei; Chen, Peining; Fang, Xin; Zhang, Zhitao; Guan, Guozhen; Peng, Huisheng

    2014-12-23

    An electrochromic fiber-shaped super-capacitor is developed by winding aligned carbon nanotube/polyaniline composite sheets on an elastic fiber. The fiber-shaped supercapacitors demonstrate rapid and reversible chromatic transitions under different working states, which can be directly observed by the naked eye. They are also stretchable and flexible, and are woven into textiles to display designed signals in addition to storing energy. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. System for testing optical fibers

    Science.gov (United States)

    Golob, John E. [Olathe, KS; Looney, Larry D. [Los Alamos, NM; Lyons, Peter B. [Los Alamos, NM; Nelson, Melvin A. [Santa Barbara, CA; Davies, Terence J. [Santa Barbara, CA

    1980-07-15

    A system for measuring a combination of optical transmission properties of fiber optic waveguides. A polarized light pulse probe is injected into one end of the optical fiber. Reflections from discontinuities within the fiber are unpolarized whereas reflections of the probe pulse incident to its injection remain polarized. The polarized reflections are prevented from reaching a light detector whereas reflections from the discontinuities reaches the detector.

  19. Fiber-Optic Sensor Facility

    Data.gov (United States)

    Federal Laboratory Consortium — FUNCTION: Constructs and evaluates fiber-optic sensors for a variety of measurands. These measurands include acoustic, pressure, magnetic, and electric field as well...

  20. Development of scintillating fiber tracker

    International Nuclear Information System (INIS)

    Ishikawa, Shuzo; Kawai, Toshihide; Kozaki, Tetsuo

    1995-01-01

    In order to use thin scintillating fiber (diameter 500 micron) as a particle tracking detector, we have developed a method to construct precise multi-layer scintillating fiber sheets. We have also developed dedicated machines for this purpose. This paper presents the details of the method and the machines. Using these machines, we have produced fiber sheets for CERN WA95/CHORUS, which intend to detect a neutrino oscillation in the νμ-ντ channel using Hybrid Emulsion Set-up. Fiber Trackers are used as a vertex detector which support the neutrino event location in the nuclear emulsion target. (author)

  1. Impairments due to Burst-Mode Transmission in a Raman-based Long Reach PON Link

    DEFF Research Database (Denmark)

    Kjær, Rasmus; Tafur Monroy, Idelfonso; Oxenløwe, Leif Katsuo

    2007-01-01

    A recently proposed passive-optical-network (PON) link based on distributed Raman amplification is tested with disturbing burst-mode traffic. The resulting impairments are quantified through penalty measurements on a single surviving data channel as a function of the disturbing channel power. When...... the disturbing channels co- or counter propagate with the data channel, penalties of less than 1 dB are found for disturbing input powers up to 7 and 11 dBm, respectively. The penalty is further reduced when a moderate amount of continuous-wave light is used to clamp the gain. The results indicate...

  2. The Long Reach of Divorce: Divorce and Child Well-Being across Three Generations

    Science.gov (United States)

    Amato, Paul R.; Cheadle, Jacob

    2005-01-01

    We used data from the study of Marital Instability Over the Life Course to examine links between divorce in the grandparent generation and outcomes in the grandchild generation (N= 691). Divorce in the first (G1) generation was associated with lower education, more marital discord, weaker ties with mothers, and weaker ties with fathers in the…

  3. The long reach of childhood. Childhood experiences influence close relationships and loneliness across life

    NARCIS (Netherlands)

    Merz, E.M.; Jak, S.

    2013-01-01

    This paper intends to gain insight into the role of childhood relationships and experiences within the parental home for the formation and meaning of later family relationships and loneliness. Particularly, childhood attachment to mother and father and stressful childhood experiences were studied in

  4. The long reach of childhood: childhood experiences influence close relationships and loneliness across life

    NARCIS (Netherlands)

    Merz, E.-M.; Jak, S.

    2013-01-01

    This paper intends to gain insight into the role of childhood relationships and experiences within the parental home for the formation and meaning of later family relationships and loneliness. Particularly, childhood attachment to mother and father and stressful childhood experiences were studied in

  5. Project W-340 long reach arm retrieval system balance of plant instrumentation workshop engineering study

    International Nuclear Information System (INIS)

    Schneider, T.C.

    1994-01-01

    This engineering study documents the results of a workshop held to resolve Issue No. 26 generated at a Arm Based Retrieval Functional Analysis Value Engineering Session. The issue deals with the scope of the Balance of Plant Instrumentation needs for the LRARS

  6. The long reach of one's spouse: spouses' personality influences occupational success.

    Science.gov (United States)

    Solomon, Brittany C; Jackson, Joshua J

    2014-12-01

    You marry your spouse "for better, for worse" and "for richer, for poorer," but does your choice of partner make you richer or poorer? It is unknown whether people's dispositional characteristics can seep into their spouses' workplace. Using a representative, longitudinal sample of married individuals (N=4,544), we examined whether Big Five personality traits of participants' spouses related to three measures of participants' occupational success: job satisfaction, income, and likelihood of being promoted. For both male and female participants, partner conscientiousness predicted future job satisfaction, income, and likelihood of promotion, even after accounting for participants' conscientiousness. These associations occurred because more conscientious partners perform more household tasks, exhibit more pragmatic behaviors that their spouses are likely to emulate, and promote a more satisfying home life, enabling their spouses to focus more on work. These results demonstrate that the dispositional characteristics of the person one marries influence important aspects of one's professional life. © The Author(s) 2014.

  7. Transmission analysis in WDM networks

    DEFF Research Database (Denmark)

    Rasmussen, Christian Jørgen

    1999-01-01

    This thesis describes the development of a computer-based simulator for transmission analysis in optical wavelength division multiplexing networks. A great part of the work concerns fundamental optical network simulator issues. Among these issues are identification of the versatility and user...... the different component models are invoked during the simulation of a system. A simple set of rules which makes it possible to simulate any network architectures is laid down. The modelling of the nonlinear fibre and the optical receiver is also treated. The work on the fibre concerns the numerical solution...

  8. Fiber Tracking Cylinder Nesting

    International Nuclear Information System (INIS)

    Stredde, H.

    1999-01-01

    The fiber tracker consists of 8 concentric carbon fiber cylinders of varying diameters, from 399mm to 1032.2mm and two different lengths. 1.66 and 2.52 meters. Each completed cylinder is covered over the entire o.d. with scintillating fiber ribbons with a connector on each ribbon. These ribbons are axial (parallel to the beam line) at one end and stereo (at 3 deg. to the beam line) at the other. The ribbon connectors have dowel pins which are used to match with the connectors on the wave guide ribbons. These dowel pins are also used during the nesting operation, locating and positioning measurements. The nesting operation is the insertion of one cylinder into another, aligning them with one another and fastening them together into a homogeneous assembly. For ease of assembly. the nesting operation is accomplished working from largest diameter to smallest. Although the completed assembly of all 8 cylinders glued and bolted together is very stiff. individual cylinders are relatively flexible. Therefore. during this operation, No.8 must be supported in a manner which maintains its integrity and yet allows the insertion of No.7. This is accomplished by essentially building a set of dummy end plates which replicate a No.9 cylinder. These end plates are mounted on a wheeled cart that becomes the nesting cart. Provisions for a protective cover fastened to these rings has been made and will be incorporated in finished product. These covers can be easily removed for access to No.8 and/or the connection of No.8 to No.9. Another wheeled cart, transfer cart, is used to push a completed cylinder into the cylinder(s) already mounted in the nesting cart.

  9. Fiber sample presentation system for spectrophotometer cotton fiber color measurements

    Science.gov (United States)

    The Uster® High Volume Instrument (HVI) is used to class U.S. cotton for fiber color, yielding the industry accepted, cotton-specific color parameters Rd and +b. The HVI examines a 9 square inch fiber sample, and it is also used to test large AMS standard cotton “biscuits” or rectangles. Much inte...

  10. Random fiber laser based on artificially controlled backscattering fibers.

    Science.gov (United States)

    Wang, Xiaoliang; Chen, Daru; Li, Haitao; She, Lijuan; Wu, Qiong

    2018-01-10

    The random fiber laser (RFL), which is a milestone in laser physics and nonlinear optics, has attracted considerable attention recently. Most previously reported RFLs are based on distributed feedback of Rayleigh scattering amplified through the stimulated Raman-Brillouin scattering effect in single-mode fibers, which require long-distance (tens of kilometers) single-mode fibers and high threshold, up to watt level, due to the extremely small Rayleigh scattering coefficient of the fiber. We proposed and demonstrated a half-open-cavity RFL based on a segment of an artificially controlled backscattering single-mode fiber with a length of 210 m, 310 m, or 390 m. A fiber Bragg grating with a central wavelength of 1530 nm and a segment of artificially controlled backscattering single-mode fiber fabricated by using a femtosecond laser form the half-open cavity. The proposed RFL achieves thresholds of 25 mW, 30 mW, and 30 mW, respectively. Random lasing at a wavelength of 1530 nm and extinction ratio of 50 dB is achieved when a segment of 5 m erbium-doped fiber is pumped by a 980 nm laser diode in the RFL. A novel RFL with many short cavities has been achieved with low threshold.

  11. Carbon Fiber Biocompatibility for Implants

    Directory of Open Access Journals (Sweden)

    Richard Petersen

    2016-01-01

    Full Text Available Carbon fibers have multiple potential advantages in developing high-strength biomaterials with a density close to bone for better stress transfer and electrical properties that enhance tissue formation. As a breakthrough example in biomaterials, a 1.5 mm diameter bisphenol-epoxy/carbon-fiber-reinforced composite rod was compared for two weeks in a rat tibia model with a similar 1.5 mm diameter titanium-6-4 alloy screw manufactured to retain bone implants. Results showed that carbon-fiber-reinforced composite stimulated osseointegration inside the tibia bone marrow measured as percent bone area (PBA to a great extent when compared to the titanium-6-4 alloy at statistically significant levels. PBA increased significantly with the carbon-fiber composite over the titanium-6-4 alloy for distances from the implant surfaces of 0.1 mm at 77.7% vs. 19.3% (p < 10−8 and 0.8 mm at 41.6% vs. 19.5% (p < 10−4, respectively. The review focuses on carbon fiber properties that increased PBA for enhanced implant osseointegration. Carbon fibers acting as polymer coated electrically conducting micro-biocircuits appear to provide a biocompatible semi-antioxidant property to remove damaging electron free radicals from the surrounding implant surface. Further, carbon fibers by removing excess electrons produced from the cellular mitochondrial electron transport chain during periods of hypoxia perhaps stimulate bone cell recruitment by free-radical chemotactic influences. In addition, well-studied bioorganic cell actin carbon fiber growth would appear to interface in close contact with the carbon-fiber-reinforced composite implant. Resulting subsequent actin carbon fiber/implant carbon fiber contacts then could help in discharging the electron biological overloads through electrochemical gradients to lower negative charges and lower concentration.

  12. Polymer optical fiber bragg grating sensors

    DEFF Research Database (Denmark)

    Stefani, Alessio; Yuan, Scott Wu; Andresen, Søren

    2010-01-01

    Fiber-optical accelerometers based on polymer optical fiber Bragg gratings are reported. We have written fiber Bragg gratings for 1550 nm and 850 nm operations, characterized their temperature and strain response, and tested their performance in a prototype accelerometer....

  13. Extraction and characterization of Retama monosperma fibers

    African Journals Online (AJOL)

    XPERT

    monosperma leaves and their mechanical, physical and chemical characteristics. The fibers .... The hook was removed gently, and the behavior of the fiber was observed ..... fibers reinforced cement mortar slabs: a comparative study. Cement.

  14. Actively doped solid core Photonic Bandgap Fiber

    DEFF Research Database (Denmark)

    Broeng, Jes; Olausson, Christina Bjarnal Thulin; Lyngsøe, Jens Kristian

    2010-01-01

    Solid photonic bandgap fibers offer distributed spectral filtering with extraordinary high suppression. This opens new possibilities of artificially tailoring the gain spectrum of fibers. We present record-performance of such fibers and outline their future applications....

  15. Fiber breakage phenomena in long fiber reinforced plastic preparation

    International Nuclear Information System (INIS)

    Huang, Chao-Tsai; Tseng, Huan-Chang; Chang, Rong-Yeu; Vlcek, Jiri

    2015-01-01

    Due to the high demand of smart green, the lightweight technologies have become the driving force for the development of automotives and other industries in recent years. Among those technologies, using short and long fiber-reinforced plastics (FRP) to replace some metal components can reduce the weight of an automotive significantly. However, the microstructures of fibers inside plastic matrix are too complicated to manage and control during the injection molding through the screw, the runner, the gate, and then into the cavity. This study focuses on the fiber breakage phenomena during the screw plastification. Results show that fiber breakage is strongly dependent on screw design and operation. When the screw geometry changes, the fiber breakage could be larger even with lower compression ratio. (paper)

  16. Generation of Flattened Multicarrier Signals from a Single Laser Source for 330 Gbps WDM-PON Transmission over 25 km SSMF

    Science.gov (United States)

    Ullah, Sibghat; Liu, Bo; Ullah, Rahat; Ahmad, Muhammad; Wang, Fu; Zhang, Lijia; Xin, Xiangjun; Memon, Kamran Ali; Khalid, Hafiz Ahmad

    2017-12-01

    A novel technique is proposed for optical frequency comb generation with a budget friendly system. A Mach-Zehnder modulator is used in connectivity with continuous wave optical signal which is filtered by rectangle optical filter and the signal is then amplified by erbium-doped fiber amplifier. With a frequency spacing of 10 GHz 33 useable OFC lines were generated with good tone to noise ratio which is quite impressive for such a cost effective setup. Each generated carrier carries differential phase shift keying based data of 10 Gbps. A total of 330 Gbps multiplexed data is successfully transmitted through a standard single mode fiber length of 25-km. During the downlink transmission the power penalties are observed to be negligible. The resulted eye diagrams are wide and promises to be a good system for wavelength division multiplexed-passive optical network.

  17. High-birefringent photonic crystal fiber

    DEFF Research Database (Denmark)

    Libori, Stig E. Barkou; Broeng, Jes; Knudsen, Erik

    2001-01-01

    A highly birefringent photonic crystal fiber design is analysed. Birefringence up to 10-3 is found. Random fluctuations in the cladding design are analysed, and the fiber is found to be a feasible polarization maintaining fiber.......A highly birefringent photonic crystal fiber design is analysed. Birefringence up to 10-3 is found. Random fluctuations in the cladding design are analysed, and the fiber is found to be a feasible polarization maintaining fiber....

  18. Quantitive DNA Fiber Mapping

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Chun-Mei; Wang, Mei; Greulich-Bode, Karin M.; Weier, Jingly F.; Weier, Heinz-Ulli G.

    2008-01-28

    Several hybridization-based methods used to delineate single copy or repeated DNA sequences in larger genomic intervals take advantage of the increased resolution and sensitivity of free chromatin, i.e., chromatin released from interphase cell nuclei. Quantitative DNA fiber mapping (QDFM) differs from the majority of these methods in that it applies FISH to purified, clonal DNA molecules which have been bound with at least one end to a solid substrate. The DNA molecules are then stretched by the action of a receding meniscus at the water-air interface resulting in DNA molecules stretched homogeneously to about 2.3 kb/{micro}m. When non-isotopically, multicolor-labeled probes are hybridized to these stretched DNA fibers, their respective binding sites are visualized in the fluorescence microscope, their relative distance can be measured and converted into kilobase pairs (kb). The QDFM technique has found useful applications ranging from the detection and delineation of deletions or overlap between linked clones to the construction of high-resolution physical maps to studies of stalled DNA replication and transcription.

  19. Optical fiber powered pressure sensor

    International Nuclear Information System (INIS)

    Schweizer, P.; Neveux, L.; Ostrowsky, D.B.

    1987-01-01

    In the system described, a pressure sensor and its associated electronics are optically powered by a 20 mw laser and a photovoltaic cell via an optical fiber. The sensor is periodically interrogated and sends the measures obtained back to the central unit using an LED and a second fiber. The results obtained as well as the expected evolution will be described

  20. Microstructured hollow fibers for ultrafiltration

    NARCIS (Netherlands)

    Culfaz, Pmar Zeynep; Culfaz, P.Z.; Rolevink, Hendrikus H.M.; van Rijn, C.J.M.; Lammertink, Rob G.H.; Wessling, Matthias

    2010-01-01

    Hollow fiber ultrafiltration membranes with a corrugated outer microstructure were prepared from a PES/PVP blend. The effect of spinning parameters such as air gap, take-up speed, polymer dope viscosity and coagulation value on the microstructure and membrane characteristics was investigated. Fibers

  1. Fiber optic-based biosensor

    Science.gov (United States)

    Ligler, Frances S.

    1991-01-01

    The NRL fiber optic biosensor is a device which measures the formation of a fluorescent complex at the surface of an optical fiber. Antibodies and DNA binding proteins provide the mechanism for recognizing an analyze and immobilizing a fluorescent complex on the fiber surface. The fiber optic biosensor is fast, sensitive, and permits analysis of hazardous materials remote from the instrumentation. The fiber optic biosensor is described in terms of the device configuration, chemistry for protein immobilization, and assay development. A lab version is being used for assay development and performance characterization while a portable device is under development. Antibodies coated on the fiber are stable for up to two years of storage prior to use. The fiber optic biosensor was used to measure concentration of toxins in the parts per billion (ng/ml) range in under a minute. Immunoassays for small molecules and whole bacteria are under development. Assays using DNA probes as the detection element can also be used with the fiber optic sensor, which is currently being developed to detect biological warfare agents, explosives, pathogens, and toxic materials which pollute the environment.

  2. Handbook of fiber optics theory and applications

    CERN Document Server

    Yeh, Chai

    2013-01-01

    Dr. Yeh supplies a firm theoretical foundation in such topics as propagation of light through fibers, fiber fabrication, loss mechanisms, and dispersion properties. He then expands from this into such practical areas as fiber splicing, measuring loss in fibers, fiber-based communications networks, remote fiber sensors, and integrated optics. Whether involved in fiber optics research, design, or practical implementation of systems, this handbook will be extremely useful.Key Features* Here is a comprehensive, ""one-stop"" reference with state-of-the-art information on fiber optics Included is da

  3. Radiation damage in optical fibers

    International Nuclear Information System (INIS)

    Lyons, P.B.; Looney, L.D.; Ogle, J.W.

    1983-01-01

    Optical fibers provide important advantages over coaxial cables for many data transmission applications. Some of these applications require that the fibers transmit data during a radiation pulse. Other applications utilize the fiber as a radiation-to-light transducer. In either case, radiation-induced luminescence and absorption must be understood. Most studies of radiation effects in fibers have emphasized time scales of interest in telecommunication systems, from the msec to hour range. Few studies have concentrated on response at times below 1 + s. At Los Alamos, both laboratory electron accelerators and nuclear tests have been used as radiation sources to probe this early time region. The use of a fiber (or any optical medium) as a Cerenkov radiation-to-light transducer is discussed. Since the radiation induces attenuation in the medium, the light output is not proportional to the radiation input. The nonlinearity introduced by this attenuation is calculated

  4. Photometric device using optical fibers

    International Nuclear Information System (INIS)

    Boisde, Gilbert; Perez, J.-J.

    1981-02-01

    Remote measurements in radioactive environment are now possible with optical fibers. Measurement instruments developed by CEA are constitued of: - an optical probe (5 mm to 1 meter optical path length), - a photometric measurement device, - optical fiber links. 'TELEPHOT' is a photometric device for industrial installations. It is uses interferentiel filters for 2 to 5 simultaneous wave lengths. 'CRUDMETER' measures the muddiness of water. It can be equipped with a high sensitivity cell of 50 cm optical path length tested up to 250 bars. Coupling a double beam spectrophotometer to a remote optical probe, up to 1 meter optical path length, is carried out by means of an optical device using optical fibers links, eventually several hundred meter long. For these equipments special step index large core fibers, 1 to 1.5 mm in diameter, have been developed as well connectors. For industrial control and research these instruments offer new prospect thanks to optical fibers use [fr

  5. Benefits of glass fibers in solar fiber optic lighting systems.

    Science.gov (United States)

    Volotinen, Tarja T; Lingfors, David H S

    2013-09-20

    The transmission properties and coupling of solar light have been studied for glass core multimode fibers in order to verify their benefits for a solar fiber optic lighting system. The light transportation distance can be extended from 20 m with plastic fibers to over 100 m with the kind of glass fibers studied here. A high luminous flux, full visible spectrum, as well as an outstanding color rendering index (98) and correlated color temperature similar to the direct sun light outside have been obtained. Thus the outstanding quality of solar light transmitted through these fibers would improve the visibility of all kinds of objects compared to fluorescent and other artificial lighting. Annual relative lighting energy savings of 36% in Uppsala, Sweden, and 76% in Dubai were estimated in an office environment. The absolute savings can be doubled by using glass optical fibers, and are estimated to be in the order of 550 kWh/year in Sweden and 1160 kWh/year in Dubai for one system of only 0.159 m(2) total light collecting area. The savings are dependent on the fiber length, the daily usage time of the interior, the type of artificial lighting substituted, the system light output flux, and the available time of sunny weather at the geographic location.

  6. Green Fiber Bottle

    DEFF Research Database (Denmark)

    Didone, Mattia; Tosello, Guido

    has to have an inner coating barrier. The most reliable solution proposed is to coat the inner walls with silicon dioxide, which is not biodegradable but rather environmentally inert. To enhance the environmental footprint and sustainability of the bottle, and to be competitive with the existing...... technologies, the manufacturing technology for the production of the bottle has to offer the possibility of significant energy savings. Molded pulp products are made from wood fibers dispersed in water, and then they are formed, drained and dried. A relatively large quantity of resources (i.e. energy and time......) is consumed during the drying process. It is in this process stage that an innovative way of drying the products can be exploited by using the concept of impulse drying. Impulse drying is an advance drying technique in which water is removed from a wet paper pulp by the combination of mechanical pressure...

  7. Carbon Fiber from Biomass

    Energy Technology Data Exchange (ETDEWEB)

    Milbrandt, Anelia [Clean Energy Manufacturing Analysis Center, Godlen, CO (United States); Booth, Samuel [Clean Energy Manufacturing Analysis Center, Godlen, CO (United States)

    2016-09-01

    Carbon fiber (CF), known also as graphite fiber, is a lightweight, strong, and flexible material used in both structural (load-bearing) and non-structural applications (e.g., thermal insulation). The high cost of precursors (the starting material used to make CF, which comes predominately from fossil sources) and manufacturing have kept CF a niche market with applications limited mostly to high-performance structural materials (e.g., aerospace). Alternative precursors to reduce CF cost and dependence on fossil sources have been investigated over the years, including biomass-derived precursors such as rayon, lignin, glycerol, and lignocellulosic sugars. The purpose of this study is to provide a comprehensive overview of CF precursors from biomass and their market potential. We examine the potential CF production from these precursors, the state of technology and applications, and the production cost (when data are available). We discuss their advantages and limitations. We also discuss the physical properties of biomass-based CF, and we compare them to those of polyacrylonitrile (PAN)-based CF. We also discuss manufacturing and end-product considerations for bio-based CF, as well as considerations for plant siting and biomass feedstock logistics, feedstock competition, and risk mitigation strategies. The main contribution of this study is that it provides detailed technical and market information about each bio-based CF precursor in one document while other studies focus on one precursor at a time or a particular topic (e.g., processing). Thus, this publication allows for a comprehensive view of the CF potential from all biomass sources and serves as a reference for both novice and experienced professionals interested in CF production from alternative sources.

  8. Secure Communications in High Speed Fiber Optical Networks Using Code Division Multiple Access (CDMA) Transmission

    Energy Technology Data Exchange (ETDEWEB)

    Han, I; Bond, S; Welty, R; Du, Y; Yoo, S; Reinhardt, C; Behymer, E; Sperry, V; Kobayashi, N

    2004-02-12

    This project is focused on the development of advanced components and system technologies for secure data transmission on high-speed fiber optic data systems. This work capitalizes on (1) a strong relationship with outstanding faculty at the University of California-Davis who are experts in high speed fiber-optic networks, (2) the realization that code division multiple access (CDMA) is emerging as a bandwidth enhancing technique for fiber optic networks, (3) the realization that CDMA of sufficient complexity forms the basis for almost unbreakable one-time key transmissions, (4) our concepts for superior components for implementing CDMA, (5) our expertise in semiconductor device processing and (6) our Center for Nano and Microtechnology, which is where the majority of the experimental work was done. Here we present a novel device concept, which will push the limits of current technology, and will simultaneously solve system implementation issues by investigating new state-of-the-art fiber technologies. This will enable the development of secure communication systems for the transmission and reception of messages on deployed commercial fiber optic networks, through the CDMA phase encoding of broad bandwidth pulses. CDMA technology has been developed as a multiplexing technology, much like wavelength division multiplexing (WDM) or time division multiplexing (TDM), to increase the potential number of users on a given communication link. A novel application of the techniques created for CDMA is to generate secure communication through physical layer encoding. Physical layer encoding devices are developed which utilize semiconductor waveguides with fast carrier response times to phase encode spectral components of a secure signal. Current commercial technology, most commonly a spatial light modulator, allows phase codes to be changed at rates of only 10's of Hertz ({approx}25ms response). The use of fast (picosecond to nanosecond) carrier dynamics of semiconductors

  9. Fabrication of elastomeric silk fibers.

    Science.gov (United States)

    Bradner, Sarah A; Partlow, Benjamin P; Cebe, Peggy; Omenetto, Fiorenzo G; Kaplan, David L

    2017-09-01

    Methods to generate fibers from hydrogels, with control over mechanical properties, fiber diameter, and crystallinity, while retaining cytocompatibility and degradability, would expand options for biomaterials. Here, we exploited features of silk fibroin protein for the formation of tunable silk hydrogel fibers. The biological, chemical, and morphological features inherent to silk were combined with elastomeric properties gained through enzymatic crosslinking of the protein. Postprocessing via methanol and autoclaving provided tunable control of fiber features. Mechanical, optical, and chemical analyses demonstrated control of fiber properties by exploiting the physical cross-links, and generating double network hydrogels consisting of chemical and physical cross-links. Structure and chemical analyses revealed crystallinity from 30 to 50%, modulus from 0.5 to 4 MPa, and ultimate strength 1-5 MPa depending on the processing method. Fabrication and postprocessing combined provided fibers with extensibility from 100 to 400% ultimate strain. Fibers strained to 100% exhibited fourth order birefringence, revealing macroscopic orientation driven by chain mobility. The physical cross-links were influenced in part by the drying rate of fabricated materials, where bound water, packing density, and microstructural homogeneity influenced cross-linking efficiency. The ability to generate robust and versatile hydrogel microfibers is desirable for bottom-up assembly of biological tissues and for broader biomaterial applications. © 2017 Wiley Periodicals, Inc.

  10. New all-fiber velocimeter

    International Nuclear Information System (INIS)

    Weng Jidong; Tan Hua; Hu Shaolou; Ma Yun; Wan Xiang

    2005-01-01

    A new all-fiber velocity interferometer system for any reflector (AFVISAR) was developed. It was conceived and realized with the purpose of using it as the basic measuring element of a complete system for multiple point velocity measurements. Its main features are that it works at 532 nm and partly adopts the multimode optical fiber. The velocimeter consists of only fibers or fiber coupled components and has no optic elements such as optic lenses or reflectors. It is therefore very compact and easy to operate. Unlike the conventional AFVISAR, which uses single-mode optic fiber components, the laser beam in this new interferometer system arrives at and reflects from the target surface through a multimode optical fiber component, and then enters and interferes in a [3x3] single-mode fiber coupler. Its working principle is elaborated on in this article. Preliminary experiments using a split Hopkins pressure bar (SHPB) device show that the new interferometer can successfully measure the velocity profiles of the metal specimen along the axial or radial direction. Further experiments on a one-stage gas gun are under consideration

  11. Dimensional stability of natural fibers

    Energy Technology Data Exchange (ETDEWEB)

    Driscoll, Mark S. [Ultraviolet Light/Electron Beam (UV/EB) Technology Center, State University of New York College of Environmental Science and Forestry (SUNY-ESF), 1 Forestry Drive, Syracuse, NY 13210 (United States); Smith, Jennifer L.; Woods, Sean; Tiss, Kenneth J. [Ultraviolet Light/Electron Beam (UV/EB) Technology Center, State University of New York College of Environmental Science and Forestry (SUNY-ESF), 1 Forestry Drive, Syracuse, NY 13210 and Sustainable Construction Management and Engineering, SUNY-ESF (United States); Larsen, L. Scott [New York State Energy Research and Development Authority (NYSERDA), 17 Columbia Circle, Albany, NY 12203 (United States)

    2013-04-19

    One of the main problems associated with the use of natural fibers as reinforcing agents in composites is their uptake of moisture. Many natural fibers are lignocellulosic, which causes them to swell and shrink as the amount of available moisture changes. Swelling and shrinking can cause composites to prematurely fail. This paper presents the results of a preliminary study that considers the use of two different low molecular weight monomers, hydroxyethyl methacrylate (HEMA) and hydroxyethyl acrylate (HEA), polymerized by electron beam ionizing radiation, to dimensionally stabilize natural fibers. Eight different treatments consisting of varying amounts of monomer, encapsulating agent, and cross-linkers, were evaluated for their ability to dimensionally stabilize sisal fiber. Results indicate that both polymerized HEA and HEMA can reduce the swelling of sisal fiber. The effectiveness of HEA and HEMA can be further enhanced with the use of a cross-linker (SR 454). The use of hydroxylated monomers to dimensionally stabilize natural fibers may play an important role in reducing delamination and improving fiber-resin adhesion in composites.

  12. Dimensional stability of natural fibers

    International Nuclear Information System (INIS)

    Driscoll, Mark S.; Smith, Jennifer L.; Woods, Sean; Tiss, Kenneth J.; Larsen, L. Scott

    2013-01-01

    One of the main problems associated with the use of natural fibers as reinforcing agents in composites is their uptake of moisture. Many natural fibers are lignocellulosic, which causes them to swell and shrink as the amount of available moisture changes. Swelling and shrinking can cause composites to prematurely fail. This paper presents the results of a preliminary study that considers the use of two different low molecular weight monomers, hydroxyethyl methacrylate (HEMA) and hydroxyethyl acrylate (HEA), polymerized by electron beam ionizing radiation, to dimensionally stabilize natural fibers. Eight different treatments consisting of varying amounts of monomer, encapsulating agent, and cross-linkers, were evaluated for their ability to dimensionally stabilize sisal fiber. Results indicate that both polymerized HEA and HEMA can reduce the swelling of sisal fiber. The effectiveness of HEA and HEMA can be further enhanced with the use of a cross-linker (SR 454). The use of hydroxylated monomers to dimensionally stabilize natural fibers may play an important role in reducing delamination and improving fiber-resin adhesion in composites.

  13. Optical Fiber Sensors Based on Fiber Ring Laser Demodulation Technology.

    Science.gov (United States)

    Xie, Wen-Ge; Zhang, Ya-Nan; Wang, Peng-Zhao; Wang, Jian-Zhang

    2018-02-08

    A review for optical fiber sensors based on fiber ring laser (FRL) demodulation technology is presented. The review focuses on the principles, main structures, and the sensing performances of different kinds of optical fiber sensors based on FRLs. First of all, the theory background of the sensors has been discussed. Secondly, four different types of sensors are described and compared, which includes Mach-Zehnder interferometer (MZI) typed sensors, Fabry-Perot interferometer (FPI) typed sensors, Sagnac typed sensors, and fiber Bragg grating (FBG) typed sensors. Typical studies and main properties of each type of sensors are presented. Thirdly, a comparison of different types of sensors are made. Finally, the existing problems and future research directions are pointed out and analyzed.

  14. Multiplexed displacement fiber sensor using thin core fiber exciter.

    Science.gov (United States)

    Chen, Zhen; Hefferman, Gerald; Wei, Tao

    2015-06-01

    This letter reports a multiplexed optical displacement sensor using a thin core fiber (TCF) exciter. The TCF exciter is followed by a stripped single mode optical fiber. A small section of buffer is used as the movable component along the single mode fiber. Ultra-weak cladding mode reflection (< - 75 dB) was employed to probe the refractive index discontinuity between the air and buffer coating boundary. The position change of the movable buffer segment results in a delay change of the cladding mode reflection. Thus, it is a measure of the displacement of the buffer segment with respect to the glass fiber. The insertion loss of one sensor was measured to be less than 3 dB. A linear relationship was evaluated between the measurement position and absolute position of the moving actuator. Multiplexed capability was demonstrated and no cross talk was found between the sensors.

  15. SBIR-Long fluoride fiber

    Science.gov (United States)

    Jaeger, Raymond E.; Vacha, Lubos J.

    1987-08-01

    This report summarizes results obtained under a program aimed at developing new techniques for fabricating long lengths of heavy metal fluoride glass (HMFG) optical fiber. A new method for overcladding conventional HMFG preforms with a low melting oxide glass was developed, and improvements in the rotational casting method were made to increase preform length. The resulting composite glass canes consist of a fluoride glass overcoat layer to enhance strength and chemical durability. To show feasibility, prototype optical fiber preforms up to 1.6 cm in diameter with lengths of 22 cm were fabricated. These were drawn into optical fibers with lengths up to 900 meters.

  16. All-fiber polarization switch

    Science.gov (United States)

    Knape, Harald; Margulis, Walter

    2007-03-01

    We report an all-fiber polarization switch made out of silica-based microstructured fiber suitable for Q-switching all-fiber lasers. Nanosecond high-voltage pulses are used to heat and expand an internal electrode to cause λ/2-polarization rotation in less than 10 ns for 1.5 μm light. The 10 cm long component has an experimentally measured optical insertion loss of 0.2 dB and a 0-10 kHz repetition frequency capacity and has been durability tested for more than 109 pulses.

  17. Use of optical fibers in spectrophotometry

    Science.gov (United States)

    Ramsey, Lawrence W.

    1988-01-01

    The use of single or small numbers of fiber optic fibers in astronomical spectroscopy with the goal of greater spectrophotometric and radial velocity accuracy is discussed. The properties of multimode step index fibers which are most important for this application are outlined, as are laboratory tests of currently available fibers.

  18. Optical fiber communication — An overview

    Indian Academy of Sciences (India)

    Fabrication of single mode fibers is very difficult and so the fiber is .... of waveguide dispersion depends on the fiber design like core radius, since the .... production reducing the water content in the fiber to below 10 parts per billion. 5. ..... Connectors of the same type must be compatible from one manufacturer to another. 3.

  19. Optical Fiber Thermometer Based on Fiber Bragg Gratings

    Science.gov (United States)

    Rosli, Ekbal Bin; Mohd. Noor, Uzer

    2018-03-01

    Fiber Bragg grating has generated much interest in use as sensors to measure strain, temperature, and other physical parameters. It also the most common component used to develop this sensor with the advantages of simple, intrinsic sensing elements, electrically passive operation, EMI immunity, high sensitivity, compact size and potentially low cost [6]. This paper reports the design of an optical fiber thermometer based on fiber Bragg gratings. The system was developed for detecting temperature and strain by monitoring the shift of Bragg wavelength. The shifting of Bragg wavelength is used to indicate the temperature and strain due to the change in the surrounding temperature and strain. When the temperature and strain reach the exact wavelength level of the system, the temperature and strain value will display on the Arduino liquid crystal display (LCD). The optical fiber will provide the broadband light source and after passing the FBG the Bragg wavelength into the optical spectrum analyzer (OSA). The system is based on FBG as a physical quantity sensor. The temperatures measured is taken from the water bath and that of the strain is provided by amount of slotted mass used. The outcome of this project is to characterize the Bragg wavelength shifting from the fiber Bragg grating output. As the conclusion, this project provides an efficient optical fiber thermometer in measuring temperature and strain in order to replace the use of conventional electrical instruments.

  20. Enhancing Optical Communications with Brand New Fibers

    DEFF Research Database (Denmark)

    Morioka, Toshio; Awaji, Yoshinari; Ryf, Roland

    2012-01-01

    Optical fibers have often been considered to offer effectively infinite capacity to support the rapid traffic growth essential to our information society. However, as demand has grown and technology has developed, we have begun to realize that there is a fundamental limit to fiber capacity of ~ 100...... Tb/s per fiber for systems based on conventional single-core single-mode optical fiber as the transmission medium. This limit arises from the interplay of a number of factors including the Shannon limit, optical fiber nonlinearities, the fiber fuse effect, as well as optical amplifier bandwidth...... new fibers for space-division multiplexing and mode-division multiplexing....

  1. Ethanol extraction of phytosterols from corn fiber

    Science.gov (United States)

    Abbas, Charles; Beery, Kyle E.; Binder, Thomas P.; Rammelsberg, Anne M.

    2010-11-16

    The present invention provides a process for extracting sterols from a high solids, thermochemically hydrolyzed corn fiber using ethanol as the extractant. The process includes obtaining a corn fiber slurry having a moisture content from about 20 weight percent to about 50 weight percent solids (high solids content), thermochemically processing the corn fiber slurry having high solids content of 20 to 50% to produce a hydrolyzed corn fiber slurry, dewatering the hydrolyzed corn fiber slurry to achieve a residual corn fiber having a moisture content from about 30 to 80 weight percent solids, washing the residual corn fiber, dewatering the washed, hydrolyzed corn fiber slurry to achieve a residual corn fiber having a moisture content from about 30 to 80 weight percent solids, and extracting the residual corn fiber with ethanol and separating at least one sterol.

  2. Direct writing of fiber optic components in photonic crystal fibers and other specialty fibers

    Science.gov (United States)

    Fernandes, Luis Andre; Sezerman, Omur; Best, Garland; Ng, Mi Li; Kane, Saidou

    2016-04-01

    Femtosecond direct laser writing has recently shown great potential for the fabrication of complex integrated devices in the cladding of optical fibers. Such devices have the advantage of requiring no bulk optical components and no breaks in the fiber path, thus reducing the need for complicated alignment, eliminating contamination, and increasing stability. This technology has already found applications using combinations of Bragg gratings, interferometers, and couplers for the fabrication of optical filters, sensors, and power monitors. The femtosecond laser writing method produces a local modification of refractive index through non-linear absorption of the ultrafast laser pulses inside the dielectric material of both the core and cladding of the fiber. However, fiber geometries that incorporate air or hollow structures, such as photonic crystal fibers (PCFs), still present a challenge since the index modification regions created by the writing process cannot be generated in the hollow regions of the fiber. In this work, the femtosecond laser method is used together with a pre-modification method that consists of partially collapsing the hollow holes using an electrical arc discharge. The partial collapse of the photonic band gap structure provides a path for femtosecond laser written waveguides to couple light from the core to the edge of the fiber for in-line power monitoring. This novel approach is expected to have applications in other specialty fibers such as suspended core fibers and can open the way for the integration of complex devices and facilitate miniaturization of optical circuits to take advantage of the particular characteristics of the PCFs.

  3. Carbon Fiber Technology Facility (CFTF)

    Data.gov (United States)

    Federal Laboratory Consortium — Functionally within the MDF, ORNL operates DOE’s unique Carbon Fiber Technology Facility (CFTF)—a 42,000 ft2 innovative technology facility and works with leading...

  4. Nanomechanics of electrospun phospholipid fiber

    Energy Technology Data Exchange (ETDEWEB)

    Mendes, Ana C., E-mail: anac@food.dtu.dk, E-mail: ioach@food.dtu.dk; Chronakis, Ioannis S., E-mail: anac@food.dtu.dk, E-mail: ioach@food.dtu.dk [Technical University of Denmark, DTU-Food, Søltofts Plads B227, DK-2800, Kgs. Lyngby (Denmark); Nikogeorgos, Nikolaos; Lee, Seunghwan [Department of Mechanical Engineering, Technical University of Denmark, DK-2800 Kgs. Lyngby (Denmark)

    2015-06-01

    Electrospun asolectin phospholipid fibers were prepared using isooctane as a solvent and had an average diameter of 6.1 ± 2.7 μm. Their mechanical properties were evaluated by nanoindentation using Atomic Force Microscopy, and their elastic modulus was found to be approximately 17.2 ± 1 MPa. At a cycle of piezo expansion-retraction (loading-unloading) of a silicon tip on a fiber, relatively high adhesion was observed during unloading. It is proposed that this was primarily due to molecular rearrangements at the utmost layers of the fiber caused by the indentation of the hydrophilic tip. The phospholipid fibers were shown to be stable in ambient conditions, preserving the modulus of elasticity up to 24 h.

  5. Nanomechanics of electrospun phospholipid fiber

    DEFF Research Database (Denmark)

    Mendes, Ana Carina Loureiro; Nikogeorgos, Nikolaos; Lee, Seunghwan

    2015-01-01

    Electrospun asolectin phospholipid fibers were prepared using isooctane as a solvent and had an average diameter of 6.1 +/- 2.7 mu m. Their mechanical properties were evaluated by nanoindentation using Atomic Force Microscopy, and their elastic modulus was found to be approximately 17.2 +/- 1MPa....... At a cycle of piezo expansion-retraction (loading-unloading) of a silicon tip on a fiber, relatively high adhesion was observed during unloading. It is proposed that this was primarily due to molecular rearrangements at the utmost layers of the fiber caused by the indentation of the hydrophilic tip....... The phospholipid fibers were shown to be stable in ambient conditions, preserving the modulus of elasticity up to 24 h. (c) 2015 AIP Publishing LLC....

  6. Fiber Optics: A Bright Future.

    Science.gov (United States)

    Rice, James, Jr.

    1980-01-01

    Presents an overview of the impact of fiber optics on telecommunications and its application to information processing and library services, including information retrieval, news services, remote transmission of library services, and library networking. (RAA)

  7. Application of Fiber Optic Instrumentation

    Science.gov (United States)

    Richards, William Lance; Parker, Allen R., Jr.; Ko, William L.; Piazza, Anthony; Chan, Patrick

    2012-01-01

    Fiber optic sensing technology has emerged in recent years offering tremendous advantages over conventional aircraft instrumentation systems. The advantages of fiber optic sensors over their conventional counterparts are well established; they are lighter, smaller, and can provide enormous numbers of measurements at a fraction of the total sensor weight. After a brief overview of conventional and fiber-optic sensing technology, this paper presents an overview of the research that has been conducted at NASA Dryden Flight Research Center in recent years to advance this promising new technology. Research and development areas include system and algorithm development, sensor characterization and attachment, and real-time experimentally-derived parameter monitoring for ground- and flight-based applications. The vision of fiber optic smart structure technology is presented and its potential benefits to aerospace vehicles throughout the lifecycle, from preliminary design to final retirement, are presented.

  8. High performance polyethylene nanocomposite fibers

    Directory of Open Access Journals (Sweden)

    A. Dorigato

    2012-12-01

    Full Text Available A high density polyethylene (HDPE matrix was melt compounded with 2 vol% of dimethyldichlorosilane treated fumed silica nanoparticles. Nanocomposite fibers were prepared by melt spinning through a co-rotating twin screw extruder and drawing at 125°C in air. Thermo-mechanical and morphological properties of the resulting fibers were then investigated. The introduction of nanosilica improved the drawability of the fibers, allowing the achievement of higher draw ratios with respect to the neat matrix. The elastic modulus and creep stability of the fibers were remarkably improved upon nanofiller addition, with a retention of the pristine tensile properties at break. Transmission electronic microscope (TEM images evidenced that the original morphology of the silica aggregates was disrupted by the applied drawing.

  9. All-optical fiber compressor

    International Nuclear Information System (INIS)

    Ivanov, Luben M.

    2015-01-01

    A simple all-optical fiber compressor, based on an idea of dispersion management using a fiber of positive dispersion in the first part and of negative dispersion in the second one at the working wavelength, is investigated. The method allows a combination of the advantages of the classic fiber-grating and of the multisoliton compression. It is possible to improve substantially the quality of the compressed pulse compared to the multisoliton compression. The compression factor could be increased up to 2-2.5 times when the fraction of the input pulse energy appearing within the compressed pulse enhances more than 2 times. Thus, the peak power of the compressed pulse is able to increase about 5 times and the quality of the obtained pulses should be comparable with those obtained by the fiber-grating compressor

  10. Influence of forming conditions on fiber tilt

    Science.gov (United States)

    David W. Vahey; John M. Considine; Michael A. and MacGregor

    2013-01-01

    Fiber tilt describes the projection of fiber length in the thickness direction of paper. The projection is described by the tilt angle of fibers with respect to the plane of the sheet. A simple model for fiber tilt is based on jet-to-wire velocity differential in combination with cross-flows on the wire. The tilt angle of a fiber is found to vary as the sine of its in-...

  11. Engineering modes in optical fibers with metamaterial

    DEFF Research Database (Denmark)

    Yan, Min; Mortensen, Asger; Qiu, Min

    2009-01-01

    In this paper, we report a preliminary theoretical study on optical fibers with fine material inclusions whose geometrical inhomogeneity is almost indistinguishable by the operating wavelength.We refer to such fibers as metamaterial optical fibers, which can conceptually be considered...... as an extension from the previously much publicized microstructured optical fibers. Metamaterials can have optical properties not obtainable in naturally existing materials, including artificial anisotropy as well as graded material properties. Therefore, incorporation of metamaterial in optical fiber designs can...

  12. Fundamentals of plastic optical fibers

    CERN Document Server

    Koike, Yasuhiro

    2014-01-01

    Polymer photonics is an interdisciplinary field which demands excellence both in optics (photonics) and materials science (polymer). However, theses disciplines have developed independently, and therefore the demand for a comprehensive work featuring the fundamentals of photonic polymers is greater than ever.This volume focuses on Polymer Optical Fiber and their applications. The first part of the book introduces typical optical fibers according to their classifications of material, propagating mode, and structure. Optical properties, the high bandwidth POF and transmission loss are discussed,

  13. Fiber Arts and Generative Justice

    Directory of Open Access Journals (Sweden)

    Sarah Kuhn

    2016-12-01

    Full Text Available The fiber arts, because they are practiced in different forms around the globe, have the potential to teach us much about generative justice that unites labor, ecological, and expressive values. The ecological mutualism documented in Navajo corrals supports traditional weaving, dyeing, food, and medicinal practices in a sustainable and generative cycle that survives despite disruption and exploitation. The network of fiber craftspeople, retailers, ranchers, teachers, spinners, and dyers and their organizations supports the social mutualism of fiber communities. Fiber arts practices can benefit individuals, communities, the environment, and public health, among other things. Conscious fiber activism and critical making can also be used to explicitly draw attention to problems such as overconsumption, waste, industrial “fast fashion,” labor exploitation, environmental degradation, toxic risks, intolerance, and the devaluing of women and their work. Fiber arts have the potential to support environmental and social mutualism and catalyze a new aesthetic of long-term attachment to meaningful objects and communities, reinforcing the creation and conservation of expressive, ecological, and labor value. 

  14. Advanced specialty fiber designs for high power fiber lasers

    Science.gov (United States)

    Gu, Guancheng

    The output power of fiber lasers has increased rapidly over the last decade. There are two major limiting factors, namely nonlinear effects and transverse mode instability, prohibiting the power scaling capability of fiber lasers. The nonlinear effects, originating from high optical intensity, primarily limit the peak power scaling. The mode instability, on the other hand, arises from quantum-defect driven heating, causing undesired mode coupling once the power exceeds the threshold and degradation of beam quality. The mode instability has now become the bottleneck for average output power scaling of fiber lasers. Mode area scaling is the most effective way to mitigate nonlinear effects. However, the use of large mode area may increase the tendency to support multiple modes in the core, resulting in lower mode instability threshold. Therefore, it is critical to maintain single mode operation in a large mode area fiber. Sufficient higher order mode suppression can lead to effective single-transverse-mode propagation. In this dissertation, we explore the feasibility of using specialty fiber to construct high power fiber lasers with robust single-mode output. The first type of fiber discussed is the resonantly-enhanced leakage channel fiber. Coherent reflection at the fiber outer boundary can lead to additional confinement especially for highly leaky HOM, leading to lower HOM losses than what are predicted by conventional finite element mothod mode solver considering infinite cladding. In this work, we conducted careful measurements of HOM losses in two leakage channel fibers (LCF) with circular and rounded hexagonal boundary shapes respectively. Impact on HOM losses from coiling, fiber boundary shapes and coating indexes were studied in comparison to simulations. This work demonstrates the limit of the simulation method commonly used in the large-mode-area fiber designs and the need for an improved approach. More importantly, this work also demonstrates that a

  15. Optical fiber inspection system

    Science.gov (United States)

    Moore, Francis W.

    1987-01-01

    A remote optical inspection system including an inspection head. The inspection head has a passageway through which pellets or other objects are passed. A window is provided along the passageway through which light is beamed against the objects being inspected. A plurality of lens assemblies are arranged about the window so that reflected light can be gathered and transferred to a plurality of coherent optical fiber light guides. The light guides transfer the light images to a television or other image transducer which converts the optical images into a representative electronic signal. The electronic signal can then be displayed on a signal viewer such as a television monitor for inspection by a person. A staging means can be used to support the objects for viewing through the window. Routing means can be used to direct inspected objects into appropriate exit passages for accepted or rejected objects. The inspected objects are advantageously fed in a singular manner to the staging means and routing means. The inspection system is advantageously used in an enclosure when toxic or hazardous materials are being inspected.

  16. Photonic bandgap fiber lasers and multicore fiber lasers for next generation high power lasers

    DEFF Research Database (Denmark)

    Shirakawa, A.; Chen, M.; Suzuki, Y.

    2014-01-01

    Photonic bandgap fiber lasers are realizing new laser spectra and nonlinearity mitigation that a conventional fiber laser cannot. Multicore fiber lasers are a promising tool for power scaling by coherent beam combination. © 2014 OSA....

  17. Hybrid Effect Evaluation of Steel Fiber and Carbon Fiber on the Performance of the Fiber Reinforced Concrete.

    Science.gov (United States)

    Song, Weimin; Yin, Jian

    2016-08-18

    Fiber reinforcement is an important method to enhance the performance of concrete. In this study, the compressive test and impact test were conducted, and then the hybrid effect between steel fiber (SF) and carbon fiber (CF) was evaluated by employing the hybrid effect index. Compressive toughness and impact toughness of steel fiber reinforced concrete (SFRC), carbon fiber reinforced concrete (CFRC) and hybrid fiber reinforced concrete (HFRC) were explored at steel fiber volume fraction 0.5%, 1%, 1.5% and carbon fiber 0.1%, 0.2%, 0.3%. Results showed that the addition of steel fiber and carbon fiber can increase the compressive strength. SF, CF and the hybridization between them could increase the compressive toughness significantly. The impact test results showed that as the volume of fiber increased, the impact number of the first visible crack and the ultimate failure also increased. The improvement of toughness mainly lay in improving the crack resistance after the first crack. Based on the test results, the positive hybrid effect of steel fiber and carbon fiber existed in hybrid fiber reinforced concrete. The relationship between the compressive toughness and impact toughness was also explored.

  18. Fiber optic muzzle brake tip for reducing fiber burnback and stone retropulsion during thulium fiber laser lithotripsy

    Science.gov (United States)

    Hutchens, Thomas C.; Gonzalez, David A.; Irby, Pierce B.; Fried, Nathaniel M.

    2017-01-01

    The experimental thulium fiber laser (TFL) is being explored as an alternative to the current clinical gold standard Holmium:YAG laser for lithotripsy. The near single-mode TFL beam allows coupling of higher power into smaller optical fibers than the multimode Holmium laser beam profile, without proximal fiber tip degradation. A smaller fiber is desirable because it provides more space in the ureteroscope working channel for increased saline irrigation rates and allows maximum ureteroscope deflection. However, distal fiber tip burnback increases as fiber diameter decreases. Previous studies utilizing hollow steel sheaths around recessed distal fiber tips reduced fiber burnback but increased stone retropulsion. A "fiber muzzle brake" was tested for reducing both fiber burnback and stone retropulsion by manipulating vapor bubble expansion. TFL lithotripsy studies were performed at 1908 nm, 35 mJ, 500 μs, and 300 Hz using a 100-μm-core fiber. The optimal stainless steel muzzle brake tip tested consisted of a 1-cm-long, 560-μm-outer-diameter, 360-μm-inner-diameter tube with a 275-μm-diameter through hole located 250 μm from the distal end. The fiber tip was recessed a distance of 500 μm. Stone phantom retropulsion, fiber tip burnback, and calcium oxalate stone ablation studies were performed ex vivo. Small stones with a mass of 40±4 mg and 4-mm-diameter were ablated over a 1.5-mm sieve in 25±4 s (n=10) without visible distal fiber tip burnback. Reduction in stone phantom retropulsion distance by 50% and 85% was observed when using muzzle brake tips versus 100-μm-core bare fibers and hollow steel tip fibers, respectively. The muzzle brake fiber tip simultaneously provided efficient stone ablation, reduced stone retropulsion, and minimal fiber degradation during TFL lithotripsy.

  19. Method for the preparation of carbon fiber from polyolefin fiber precursor

    Energy Technology Data Exchange (ETDEWEB)

    Naskar, Amit Kumar; Hunt, Marcus Andrew; Saito, Tomonori

    2017-11-28

    Methods for the preparation of carbon fiber from polyolefin fiber precursor, wherein the polyolefin fiber precursor is partially sulfonated and then carbonized to produce carbon fiber. Methods for producing hollow carbon fibers, wherein the hollow core is circular- or complex-shaped, are also described. Methods for producing carbon fibers possessing a circular- or complex-shaped outer surface, which may be solid or hollow, are also described.

  20. WDM cross-connect cascade based on all-optical wavelength converters for routing and wavelength slot interchanging using a reduced number of internal wavelengths

    DEFF Research Database (Denmark)

    Pedersen, Rune Johan Skullerud; Mikkelsen, Benny; Jørgensen, Bo Foged

    1998-01-01

    interchanging can be used to create a robust and nonblocking OXC. However, for an OXC with n fiber inlets each carrying m wavelengths the OXC requires n×m internal wavelengths, which constrains the size of the cross-connect. In this paper we therefore propose and demonstrate an architecture that uses a reduced......Optical transport layers need rearrangeable wavelength-division multiplexing optical cross-connects (OXCs) to increase the capacity and flexibility of the network. It has previously been shown that a cross-connect based on all-optical wavelength converters for routing as well as wavelength slot...... set of internal wavelengths without sacrificing cross-connecting capabilities. By inserting a partly equipped OXC with the new architecture in a 10-Gbit/s re-circulating loop setup we demonstrate the possibility of cascading up to ten OXCs. Furthermore, we investigate the regenerating effect...

  1. Demonstration of 575-Mb/s downlink and 225-Mb/s uplink bi-directional SCM-WDM visible light communication using RGB LED and phosphor-based LED.

    Science.gov (United States)

    Wang, Yuanquan; Wang, Yiguang; Chi, Nan; Yu, Jianjun; Shang, Huiliang

    2013-01-14

    We propose and experimentally demonstrate a novel full-duplex bi-directional subcarrier multiplexing (SCM)-wavelength division multiplexing (WDM) visible light communication (VLC) system based on commercially available red-green-blue (RGB) light emitting diode (LED) and phosphor-based LED (P-LED) with 575-Mb/s downstream and 225-Mb/s upstream transmission, employing various modulation orders of quadrature amplitude modulation (QAM) orthogonal frequency division multiplexing (OFDM). For the downlink, red and green colors/wavelengths are assigned to carry useful information, while blue chip is just kept lighting to maintain the white color illumination, and for the uplink, the low-cost P-LED is implemented. In this demonstration, pre-equalization and post-equalization are also adopted to compensate the severe frequency response of LEDs. Using this scheme, 4-user downlink and 1-user uplink transmission can be achieved. Furthermore, it can support more users by adjusting the bandwidth of each sub-channel. Bit error rates (BERs) of all links are below pre-forward-error-correction (pre-FEC) threshold of 3.8x 10(-3) after 66-cm free-space delivery. The results show that this scheme has great potential in the practical VLC system.

  2. Advanced ultrafast fiber laser sources enabled by fiber nonlinearities

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Wei

    2017-05-15

    Development of high power/energy ultrafast fiber lasers for scientific research and industrial applications is one of the most exciting fields in ultrafast optics. This thesis demonstrated new means to improve two essential properties - which are indispensable for novel applications such as high-harmonic generation (HHG) and multiphoton microscopy (MPM) - of an ultrafast fiber laser system: energy scaling capability and wavelength tunability. High photon-flux extreme ultraviolet sources enabled by HHG desire high power (>100 W), high repetition-rate (>1 MHz) ultrafast driving laser sources. We have constructed from scratch a high-power Yb-fiber laser system using the well-known chirped-pulse amplification (CPA) technique. Such a CPA system capable of producing ∝200-W average power consists of a monolithic Yb-fiber oscillator, an all-fiber stretcher, a pre-amplifier chain, a main amplifier constructed from rode-type large pitch fiber, and a diffraction-grating based compressor. To increase the HHG efficiency, ultrafast pulses with duration <60 fs are highly desired. We proposed and demonstrated a novel amplification technique, named as pre-chirp managed amplification (PCMA). We successfully constructed an Yb-fiber based PCMA system that outputs 75-MHz spectrally broadened pulses with >130-W average power. The amplified pulses are compressed to 60-fs pulses with 100-W average power, constituting a suitable HHG driving source. MPM is a powerful biomedical imaging tool, featuring larger penetration depth while providing the capability of optical sectioning. Although femtosecond solid-state lasers have been widely accepted as the standard option as MPM driving sources, fiber-based sources have received growing research efforts due to their superior performance. In the second part of this thesis, we both theoretically and experimentally demonstrated a new method of producing wavelength widely tunable femtosecond pulses for driving MPM. We employed self-phase modulation

  3. Brillouin lasing in single-mode tapered optical fiber with inscribed fiber Bragg grating array

    Directory of Open Access Journals (Sweden)

    S.M. Popov

    2018-06-01

    Full Text Available A tapered optical fiber has been manufactured with an array of fiber Bragg gratings (FBG inscribed during the drawing process. The total fiber peak reflectivity is 5% and the reflection bandwidth is ∼3.5 nm. A coherent frequency domain reflectometry has been applied for precise profiling of the fiber core diameter and grating reflectivity both distributed along the whole fiber length. These measurements are in a good agreement with the specific features of Brillouin lasing achieved in the semi-open fiber cavity configuration. Keywords: Tapered optical fibers, Fiber Bragg gratings, Random lasers

  4. Bonding Properties of Basalt Fiber and Strength Reduction According to Fiber Orientation.

    Science.gov (United States)

    Choi, Jeong-Il; Lee, Bang Yeon

    2015-09-30

    The basalt fiber is a promising reinforcing fiber because it has a relatively higher tensile strength and a density similar to that of a concrete matrix as well as no corrosion possibility. This study investigated experimentally the bonding properties of basalt fiber with cementitious material as well as the effect of fiber orientation on the tensile strength of basalt fiber for evaluating basalt fiber's suitability as a reinforcing fiber. Single fiber pullout tests were performed and then the tensile strength of fiber was measured according to fiber orientation. The test results showed that basalt fiber has a strong chemical bond with the cementitious matrix, 1.88 times higher than that of polyvinyl alcohol fibers with it. However, other properties of basalt fiber such as slip-hardening coefficient and strength reduction coefficient were worse than PVA and polyethylene fibers in terms of fiber bridging capacity. Theoretical fiber-bridging curves showed that the basalt fiber reinforcing system has a higher cracking strength than the PVA fiber reinforcing system, but the reinforcing system showed softening behavior after cracking.

  5. Toward a compact fibered squeezing parametric source.

    Science.gov (United States)

    Brieussel, Alexandre; Ott, Konstantin; Joos, Maxime; Treps, Nicolas; Fabre, Claude

    2018-03-15

    In this work, we investigate three different compact fibered systems generating vacuum squeezing that involve optical cavities limited by the end surface of a fiber and by a curved mirror and containing a thin parametric crystal. These systems have the advantage to couple squeezed states directly to a fiber, allowing the user to benefit from the flexibility of fibers in the use of squeezing. Three types of fibers are investigated: standard single-mode fibers, photonic-crystal large-mode-area single-mode fibers, and short multimode fibers taped to a single-mode fiber. The observed squeezing is modest (-0.56  dB, -0.9  dB, -1  dB), but these experiments open the way for miniaturized squeezing devices that could be a very interesting advantage in scaling up quantum systems for quantum processing, opening new perspectives in the domain of integrated quantum optics.

  6. Fiber optic fire detection technology

    International Nuclear Information System (INIS)

    Hering, D.W.

    1990-01-01

    Electrostatic application of paint was, and still is, the most technically feasible method of reducing VOC (volatile organic compounds) emissions, while reducing the cost to apply the coatings. Prior to the use of electrostatics, only two sides of the traditional fire triangle were normally present in the booth, fuel (solvent), and oxygen (air). Now the third leg (the ignition source) was present at virtually all times during the production operation in the form of the electrostatic charge and the resulting energy in the system. The introduction of fiber optics into the field of fire detection was for specific application to the electrostatic painting industry, but specifically, robots used in the application of electrostatic painting in the automotive industry. The use of fiber optics in this hazard provided detection for locations that have been previously prohibited or inaccessible with the traditional fire detection systems. The fiber optic technology that has been adapted to the field of fire detection operates on the principle of transmission of photons through a light guide (optic fiber). When the light guide is subjected to heat, the cladding on the light guide melts away from the core and allows the light (photons) to escape. The controller, which contains the emitter and receiver is set-up to distinguish between partial loss of light and a total loss of light. Glass optical fibers carrying light offer distinct advantages over wires or coaxial cables carrying electricity as a transmission media. The uses of fiber optic detection will be expanded in the near future into such areas as aircraft, cable trays and long conveyor runs because fiber optics can carry more information and deliver it with greater clarity over longer distances with total immunity to all kinds of electrical interference

  7. Fiber-Optic Vibration Sensor Based on Multimode Fiber

    Directory of Open Access Journals (Sweden)

    I. Lujo

    2008-06-01

    Full Text Available The purpose of this paper is to present a fiberoptic vibration sensor based on the monitoring of the mode distribution in a multimode optical fiber. Detection of vibrations and their parameters is possible through observation of the output speckle pattern from the multimode optical fiber. A working experimental model has been built in which all used components are widely available and cheap: a CCD camera (a simple web-cam, a multimode laser in visible range as a light source, a length of multimode optical fiber, and a computer for signal processing. Measurements have shown good agreement with the actual frequency of vibrations, and promising results were achieved with the amplitude measurements although they require some adaptation of the experimental model. Proposed sensor is cheap and lightweight and therefore presents an interesting alternative for monitoring large smart structures.

  8. Preliminary characterization of glass fiber sizing

    DEFF Research Database (Denmark)

    Petersen, Helga Nørgaard; Kusano, Yukihiro; Brøndsted, Povl

    2013-01-01

    Glass fiber surfaces are treated with sizing during manufacturing. Sizing consists of several components, including a film former and a silane coupling agent that is important for adhesion between glass fibers and a matrix. Although the sizing highly affects the composite interface and thus...... the strength of the composites, little is known about the structure and chemistry of the sizing. A part of sizing was extracted by soxhlet extraction. The fibers were subsequently burned and some fibers were merely burned for analysis of glass fiber and sizing. The results showed that the analyzed fibers had...

  9. Generation of non-overlapping fiber architecture

    DEFF Research Database (Denmark)

    Chapelle, Lucie; Lévesque, M.; Brøndsted, Povl

    2015-01-01

    and polymer networks. The model takes into account the complex geometry of the fiber arrangement in which a fiber can be modeled with a certain degree of bending while keeping a main fiber orientation. The model is built in two steps. First, fibers are generated as a chain of overlapping spheres or as a chain......: a repulsion force to suppress the overlap between two fibers and a bending and stretching force to ensure that the fiber structure is kept unchanged. The model can be used as the geometrical basis for further finite-element modelling....

  10. Carbon nanotube fiber spun from wetted ribbon

    Science.gov (United States)

    Zhu, Yuntian T; Arendt, Paul; Zhang, Xiefei; Li, Qingwen; Fu, Lei; Zheng, Lianxi

    2014-04-29

    A fiber of carbon nanotubes was prepared by a wet-spinning method involving drawing carbon nanotubes away from a substantially aligned, supported array of carbon nanotubes to form a ribbon, wetting the ribbon with a liquid, and spinning a fiber from the wetted ribbon. The liquid can be a polymer solution and after forming the fiber, the polymer can be cured. The resulting fiber has a higher tensile strength and higher conductivity compared to dry-spun fibers and to wet-spun fibers prepared by other methods.

  11. Simulation of Compressive Failure in Fiber Composites

    DEFF Research Database (Denmark)

    Veluri, Badrinath; Jensen, Henrik Myhre

    Kinkband formation is a non-linear phenomenon involving interacting effects of non-linear material behavior of the matrix materials and fiber buckling including fiber misalignment in fiber composites under compressive loading. Taking into account the non-linearties of the constituents a constitut......Kinkband formation is a non-linear phenomenon involving interacting effects of non-linear material behavior of the matrix materials and fiber buckling including fiber misalignment in fiber composites under compressive loading. Taking into account the non-linearties of the constituents...

  12. Photonic Crystal Fibers for Sensing Applications

    Directory of Open Access Journals (Sweden)

    Ana M. R. Pinto

    2012-01-01

    Full Text Available Photonic crystal fibers are a kind of fiber optics that present a diversity of new and improved features beyond what conventional optical fibers can offer. Due to their unique geometric structure, photonic crystal fibers present special properties and capabilities that lead to an outstanding potential for sensing applications. A review of photonic crystal fiber sensors is presented. Two different groups of sensors are detailed separately: physical and biochemical sensors, based on the sensor measured parameter. Several sensors have been reported until the date, and more are expected to be developed due to the remarkable characteristics such fibers can offer.

  13. Fiber optic evanescent wave biosensor

    Science.gov (United States)

    Duveneck, Gert L.; Ehrat, Markus; Widmer, H. M.

    1991-09-01

    The role of modern analytical chemistry is not restricted to quality control and environmental surveillance, but has been extended to process control using on-line analytical techniques. Besides industrial applications, highly specific, ultra-sensitive biochemical analysis becomes increasingly important as a diagnostic tool, both in central clinical laboratories and in the doctor's office. Fiber optic sensor technology can fulfill many of the requirements for both types of applications. As an example, the experimental arrangement of a fiber optic sensor for biochemical affinity assays is presented. The evanescent electromagnetic field, associated with a light ray guided in an optical fiber, is used for the excitation of luminescence labels attached to the biomolecules in solution to be analyzed. Due to the small penetration depth of the evanescent field into the medium, the generation of luminescence is restricted to the close proximity of the fiber, where, e.g., the luminescent analyte molecules combine with their affinity partners, which are immobilized on the fiber. Both cw- and pulsed light excitation can be used in evanescent wave sensor technology, enabling the on-line observation of an affinity assay on a macroscopic time scale (seconds and minutes), as well as on a microscopic, molecular time scale (nanoseconds or microseconds).

  14. Advanced ultrafast fiber laser sources enabled by fiber nonlinearities

    International Nuclear Information System (INIS)

    Liu, Wei

    2017-05-01

    Development of high power/energy ultrafast fiber lasers for scientific research and industrial applications is one of the most exciting fields in ultrafast optics. This thesis demonstrated new means to improve two essential properties - which are indispensable for novel applications such as high-harmonic generation (HHG) and multiphoton microscopy (MPM) - of an ultrafast fiber laser system: energy scaling capability and wavelength tunability. High photon-flux extreme ultraviolet sources enabled by HHG desire high power (>100 W), high repetition-rate (>1 MHz) ultrafast driving laser sources. We have constructed from scratch a high-power Yb-fiber laser system using the well-known chirped-pulse amplification (CPA) technique. Such a CPA system capable of producing ∝200-W average power consists of a monolithic Yb-fiber oscillator, an all-fiber stretcher, a pre-amplifier chain, a main amplifier constructed from rode-type large pitch fiber, and a diffraction-grating based compressor. To increase the HHG efficiency, ultrafast pulses with duration 130-W average power. The amplified pulses are compressed to 60-fs pulses with 100-W average power, constituting a suitable HHG driving source. MPM is a powerful biomedical imaging tool, featuring larger penetration depth while providing the capability of optical sectioning. Although femtosecond solid-state lasers have been widely accepted as the standard option as MPM driving sources, fiber-based sources have received growing research efforts due to their superior performance. In the second part of this thesis, we both theoretically and experimentally demonstrated a new method of producing wavelength widely tunable femtosecond pulses for driving MPM. We employed self-phase modulation to broaden a narrowband spectrum followed by bandpass filters to select the rightmost/leftmost spectral lobes. Widely tunable in 820-1225 nm, the resulting sources generated nearly transform-limited, ∝100 fs pulses. Using short fibers with large

  15. Modal noise impact in radio over fiber multimode fiber links.

    Science.gov (United States)

    Gasulla, I; Capmany, J

    2008-01-07

    A novel analysis is given on the statistics of modal noise for a graded-index multimode fiber (MMF) link excited by an analog intensity modulated laser diode. We present the speckle contrast as a function of the power spectrum of the modulated source and the transfer function of the MMF which behaves as an imperfect transversal microwave photonic filter. The theoretical results confirm that the modal noise is directly connected with the coherence properties of the optical source and show that the performance of high-frequency Radio Over Fiber (ROF) transmission through MMF links for short and middle reach distances is not substantially degraded by modal noise.

  16. Bonding Properties of Basalt Fiber and Strength Reduction According to Fiber Orientation

    Directory of Open Access Journals (Sweden)

    Jeong-Il Choi

    2015-09-01

    Full Text Available The basalt fiber is a promising reinforcing fiber because it has a relatively higher tensile strength and a density similar to that of a concrete matrix as well as no corrosion possibility. This study investigated experimentally the bonding properties of basalt fiber with cementitious material as well as the effect of fiber orientation on the tensile strength of basalt fiber for evaluating basalt fiber’s suitability as a reinforcing fiber. Single fiber pullout tests were performed and then the tensile strength of fiber was measured according to fiber orientation. The test results showed that basalt fiber has a strong chemical bond with the cementitious matrix, 1.88 times higher than that of polyvinyl alcohol fibers with it. However, other properties of basalt fiber such as slip-hardening coefficient and strength reduction coefficient were worse than PVA and polyethylene fibers in terms of fiber bridging capacity. Theoretical fiber-bridging curves showed that the basalt fiber reinforcing system has a higher cracking strength than the PVA fiber reinforcing system, but the reinforcing system showed softening behavior after cracking.

  17. Hybrid photonic-crystal fiber

    DEFF Research Database (Denmark)

    Markos, Christos; Travers, John C.; Abdolvand, Amir

    2017-01-01

    This article offers an extensive survey of results obtained using hybrid photonic-crystal fibers (PCFs) which constitute one of the most active research fields in contemporary fiber optics. The ability to integrate novel and functional materials in solid- and hollow-core PCFs through various...... is reviewed from scientific and technological perspectives, focusing on how different fluids, solids, and gases can significantly extend the functionality of PCFs. The first part of this review discusses the efforts to develop tunable linear and nonlinear fiber-optic devices using PCFs infiltrated...... with various liquids, glasses, semiconductors, and metals. The second part concentrates on recent and state-of-the-art advances in the field of gas-filled hollow-core PCFs. Extreme ultrafast gas-based nonlinear optics toward light generation in the extreme wavelength regions of vacuum ultraviolet, pulse...

  18. A helical scintillating fiber hodoscope

    CERN Document Server

    Altmeier, M; Bisplinghoff, J; Bissel, T; Bollmann, R; Busch, M; Büsser, K; Colberg, T; Demiroers, L; Diehl, O; Dohrmann, F; Engelhardt, H P; Eversheim, P D; Felden, O; Gebel, R; Glende, M; Greiff, J; Gross, A; Gross-Hardt, R; Hinterberger, F; Jahn, R; Jeske, M; Jonas, E; Krause, H; Lahr, U; Langkau, R; Lindemann, T; Lindlein, J; Maier, R; Maschuw, R; Mayer-Kuckuck, T; Meinerzhagen, A; Naehle, O; Pfuff, M; Prasuhn, D; Rohdjess, H; Rosendaal, D; Von Rossen, P; Sanz, B; Schirm, N; Schulz-Rojahn, M; Schwarz, V; Scobel, W; Thomas, S; Trelle, H J; Weise, E; Wellinghausen, A; Wiedmann, W; Woller, K; Ziegler, R

    1999-01-01

    A novel scintillating fiber hodoscope in helically cylindric geometry has been developed for detection of low multiplicity events of fast protons and other light charged particles in the internal target experiment EDDA at the Cooler Synchrotron COSY. The hodoscope consists of 640 scintillating fibers (2.5 mm diameter), arranged in four layers surrounding the COSY beam pipe. The fibers are helically wound in opposing directions and read out individually using 16-channel photomultipliers connected to a modified commercial encoding system. The detector covers an angular range of 9 deg. <= THETA<=72 deg. and 0 deg. <=phi (cursive,open) Greek<=360 deg. in the lab frame. The detector length is 590 mm, the inner diameter 161 mm. Geometry and granularity of the hodoscope afford a position resolution of about 1.3 mm. The detector design took into consideration a maximum of reliability and a minimum of maintenance. An LED array may be used for monitoring purposes. (author)

  19. Diffraction by disordered polycrystalline fibers

    International Nuclear Information System (INIS)

    Stroud, W.J.; Millane, R.P.

    1995-01-01

    X-ray diffraction patterns from some polycrystalline fibers show that the constituent microcrystallites are disordered. The relationship between the crystal structure and the diffracted intensities is then quite complicated and depends on the precise kind and degree of disorder present. The effects of disorder on diffracted intensities must be included in structure determinations using diffraction data from such specimens. Theory and algorithms are developed here that allow the full diffraction pattern to be calculated for a disordered polycrystalline fiber made up of helical molecules. The model accommodates various kinds of disorder and includes the effects of finite crystallite size and cylindrical averaging of the diffracted intensities from a fiber. Simulations using these methods show how different kinds, or components, of disorder produce particular diffraction effects. General properties of disordered arrays of helical molecules and their effects on diffraction patterns are described. Implications for structure determination are discussed. (orig.)

  20. Optical Fiber Grating based Sensors

    DEFF Research Database (Denmark)

    Michelsen, Susanne

    2003-01-01

    In this thesis differenct optical fiber gratings are used for sensor purposes. If a fiber with a core concentricity error (CCE) is used, a directional dependent bend sensor can be produced. The CCE direction can be determined by means of diffraction. This makes it possible to produce long......-period gratings in a fiber with a CCE direction parallel or perpendicular to the writing direction. The maximal bending sensitivity is independent on the writing direction, but the detailed bending response is different in the two cases. A temperature and strain sensor, based on a long-period grating and two...... sampled gratings, was produced and investigated. It is based on the different temperature and strain response of these gratings. Both a transfer matrix method and an overlap calculation is performed to explain the sensor response. Another type of sensor is based on tuning and modulation of a laser...