WorldWideScience

Sample records for fiber laser system

  1. Fiber laser coupled optical spark delivery system

    Science.gov (United States)

    Yalin, Azer [Fort Collins, CO; Willson, Bryan [Fort Collins, CO; Defoort, Morgan [Fort Collins, CO; Joshi, Sachin [Fort Collins, CO; Reynolds, Adam [Fort Collins, CO

    2008-03-04

    A spark delivery system for generating a spark using a laser beam is provided, and includes a laser light source and a laser delivery assembly. The laser delivery assembly includes a hollow fiber and a launch assembly comprising launch focusing optics to input the laser beam in the hollow fiber. The laser delivery assembly further includes exit focusing optics that demagnify an exit beam of laser light from the hollow fiber, thereby increasing the intensity of the laser beam and creating a spark. Other embodiments use a fiber laser to generate a spark. Embodiments of the present invention may be used to create a spark in an engine. Yet other embodiments include collecting light from the spark or a flame resulting from the spark and conveying the light for diagnostics. Methods of using the spark delivery systems and diagnostic systems are provided.

  2. DFB fiber laser as source for optical communication systems

    DEFF Research Database (Denmark)

    Varming, Poul; Hübner, Jörg; Kristensen, Martin

    1997-01-01

    The results demonstrate that DFB fiber lasers are an attractive alternative as sources in telecommunication systems. The lasers show excellent long-term stability with very high signal to noise ratio and a reasonable output power, combined with exceptional temperature stability and inherent fiber...

  3. Fiber laser system for cesium and rubidium atom interferometry

    CERN Document Server

    Diboune, Clément; Bidel, Yannick; Cadoret, Malo; Bresson, Alexandre

    2016-01-01

    We present an innovative fiber laser system for both cesium and rubidium manipulation. The architecture is based on frequency conversion of two lasers at 1560 nm and 1878 nm. By taking advantage of existing fiber components at these wavelengths, we demonstrate an all fiber laser system delivering 350 mW at 780 nm for rubidium and 210 mW at 852 nm for cesium. This result highlights the promising nature of such laser system especially for Cs manipulation for which no fiber laser system has been reported. It offers new perspectives for the development of atomic instruments dedicated to onboard applications and opens the way to a new generation of atom interferometers involving three atomic species $^{85}$Rb, $^{87}$Rb and $^{133}$Cs for which we propose an original laser architecture.

  4. High power fiber lasers

    Institute of Scientific and Technical Information of China (English)

    LOU Qi-hong; ZHOU Jun

    2007-01-01

    In this review article, the development of the double cladding optical fiber for high power fiber lasers is reviewed. The main technology for high power fiber lasers, including laser diode beam shaping, fiber laser pumping techniques, and amplification systems, are discussed in de-tail. 1050 W CW output and 133 W pulsed output are ob-tained in Shanghai Institute of Optics and Fine Mechanics, China. Finally, the applications of fiber lasers in industry are also reviewed.

  5. Synchronous Chaos Generation in an ^-Doped Fiber Laser System

    National Research Council Canada - National Science Library

    Gomez-Pavon, L. C; Munoz-Pacheco, J. M; Luis-Ramos, A

    2015-01-01

    ...+ -doped fiber lasers is experimentally analyzed. Using a single amplitude modulator in the system, synchronous chaos generation is obtained at two different modulation frequencies, i.e., 10.38 and 3.85 MHz...

  6. Fiber-Based Ultraviolet Laser System Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The purpose of this program is to develop a compact and efficient ultraviolet laser system for use in space-based uv-Raman instruments. The basis for this system...

  7. Laser heated pedestal growth system commissioning and fiber processing

    Science.gov (United States)

    Buric, Michael; Yip, M. J.; Chorpening, Ben; Ohodnicki, Paul

    2016-05-01

    A new Laser Heated Pedestal Growth system was designed and fabricated using various aspects of effective legacy designs for the growth of single-crystal high-temperature-compatible optical fibers. The system is heated by a 100-watt, DC driven, CO2 laser with PID power control. Fiber diameter measurements are performed using a telecentric video system which identifies the molten zone and utilizes edge detection algorithms to report fiber-diameter. Beam shaping components include a beam telescope; along with gold-coated reflaxicon, turning, and parabolic focusing mirrors consistent with similar previous systems. The optical system permits melting of sapphire-feedstock up to 1.5mm in diameter for growth. Details regarding operational characteristics are reviewed and properties of single-crystal sapphire fibers produced by the system are evaluated. Aspects of the control algorithm efficacy will be discussed, along with relevant alternatives. Finally, some new techniques for in-situ processing making use of the laser-heating system are discussed. Ex-situ fiber modification and processing are also examined for improvements in fiber properties.

  8. Fiber laser master oscillators for optical synchronization systems

    Energy Technology Data Exchange (ETDEWEB)

    Winter, A.

    2008-04-15

    New X-ray free electron lasers (e.g. the European XFEL) require a new generation of synchronization system to achieve a stability of the FEL pulse, such that pump-probe experiments can fully utilize the ultra-short pulse duration (50 fs). An optical synchronization system has been developed based on the distribution of sub-ps optical pulses in length-stabilized fiber links. The synchronization information is contained in the precise repetition frequency of the optical pulses. In this thesis, the design and characterization of the laser serving as laser master oscillator is presented. An erbium-doped mode-locked fiber laser was chosen. Amplitude and phase noise were measured and record-low values of 0.03 % and 10 fs for the frequency range of 1 kHz to the Nyquist frequency were obtained. Furthermore, an initial proof-of-principle experiment for the optical synchronization system was performed in an accelerator environment. In this experiment, the fiber laser wase phase-locked to a microwave reference oscillator and a 500 meter long fiber link was stabilized to 12 fs rms over a range of 0.1 Hz to 20 kHz. RF signals were obtained from a photodetector without significant degradation at the end of the link. Furthermore, the laser master oscillator for FLASH was designed and is presently in fabrication and the initial infrastructure for the optical synchronization system was setup. (orig.)

  9. Synchronous pulse generation in a multicavity fiber laser system

    Science.gov (United States)

    Gómez-Pavón, L. C.; Martí-Panameño, E.; Gómez-de la Fuente, O.; Luis-Ramos, A.

    2006-09-01

    We report the experimental synchronous pulse generation in a multicavity fiber laser system with two Erbium-doped fiber laser cavities. We have demonstrated that through the evanescent fields interaction between one cavity with active modulation and other one in continuous wave it is possible to generate more intense pulses in both cavities. Moreover, the synchronous pulse generation between cavities is achieved with an appropriate selection of pump intensity, modulation frequency and coupling ratio. We found that the pulse intensity is 2.5 times greater and the pulse duration lowers than a single Erbium-doper fiber laser. Furthermore, by means of the synchronous diagram we determined the synchronization strength in temporal pulse emission between cavities.

  10. Erbium - doped fiber laser systems: Routes to chaos

    Directory of Open Access Journals (Sweden)

    Rubežić Vesna

    2014-01-01

    Full Text Available Erbium-doped fiber laser systems exhibit a large variety of complex dynamical behaviors, bifurcations and attractors. In this paper, the chaotic behavior which can be achieved under certain conditions in a laser system with erbium-doped fiber, is discussed. The chaos in this system occurs through several standard scenarios. In this paper, the simulation sequence of quasiperiodic, intermittent and period-doubling scenario transitions to chaos is shown. Quasiperiodic and intermittent transitions to chaos are shown on the example system with a single ring. The electro-optical modulator was applied to the system for modulating the loss in the cavity. We used the sinusoidal and rectangular signals for modulation. Generation of chaos is achieved by changing the parameters of signal for modulation. Period-doubling transition to chaos is illustrated in a system with two rings. Simulation results are shown in the time domain and phase space.

  11. Components for monolithic fiber chirped pulse amplification laser systems

    Science.gov (United States)

    Swan, Michael Craig

    The first portion of this work develops techniques for generating femtosecond-pulses from conventional fabry-perot laser diodes using nonlinear-spectral-broadening techniques in Yb-doped positive dispersion fiber ampliers. The approach employed an injection-locked fabry-perot laser diode followed by two stages of nonlinear-spectral-broadening to generate sub-200fs pulses. This thesis demonstrated that a 60ps gain-switched fabry-perot laser-diode can be injection-locked to generate a single-longitudinal-mode pulse and compressed by nonlinear spectral broadening to 4ps. Two problems have been identified that must be resolved before moving forward with this approach. First, gain-switched pulses from a standard diode-laser have a number of characteristics not well suited for producing clean self-phase-modulation-broadened pulses, such as an asymmetric temporal shape, which has a long pulse tail. Second, though parabolic pulse formation occurs for any arbitrary temporal input pulse profile, deviation from the optimum parabolic input results in extensively spectrally modulated self-phase-modulation-broadened pulses. In conclusion, the approach of generating self-phase-modulation-broadened pulses from pulsed laser diodes has to be modified from the initial approach explored in this thesis. The first Yb-doped chirally-coupled-core ber based systems are demonstrated and characterized in the second portion of this work. Robust single-mode performance independent of excitation or any other external mode management techniques have been demonstrated in Yb-doped chirally-coupled-core fibers. Gain and power efficiency characteristics are not compromised in any way in this novel fiber structure up to the 87W maximum power achieved. Both the small signal gain at 1064nm of 30.3dB, and the wavelength dependence of the small signal gain were comparable to currently deployed large-mode-area-fiber technology. The efficiencies of the laser and amplifier were measured to be 75% and 54

  12. Airclad fiber laser technology

    DEFF Research Database (Denmark)

    Hansen, Kim P.; Olausson, Christina Bjarnal Thulin; Broeng, Jes

    2011-01-01

    High-power fiber lasers and amplifiers have gained tremendous momentum in the last 5 years. Many of the traditional manufacturers of gas and solid-state lasers are now pursuing the fiber-based systems, which are displacing the conventional technology in many areas. High-power fiber laser systems...... laser system. We present the latest advancements within airclad fiber technology including a new 100 m single-mode polarization-maintaining rod-type fiber capable of amplifying to megawatt power levels. Furthermore, we describe the novel airclad-based pump combiners and their use in a completely...... monolithic 350 W cw fiber laser system with an M2 of less than 1.1. © 2011 Society of Photo-Optical Instrumentation Engineers (SPIE)....

  13. Diode Pumped Fiber Laser.

    Science.gov (United States)

    1984-12-01

    FIBER LASERS I. Nd:YAG FIBER LASER FABRICATION .............. 5 A. FIBER GROWTH .......................... 5 B. FIBER PROCESSING 7...1.32 pm FIBER LASERS I. Nd:YAG FIBER LASER FABRICATION A. FIBER GROWTH The single crystal fibers used in this work were grown at Stanford University

  14. Fiber Lasers V

    DEFF Research Database (Denmark)

    Hansen, Kim P.; Olausson, Christina Bjarnal Thulin; Broeng, Jes

    2008-01-01

    High-power fiber lasers and amplifiers have gained tremendous momentum in the last five years, and many of the traditional manufactures of gas and solid-state lasers are pursuing the attractive fiber-based systems, which are now displacing the old technology in many areas. High-power fiber laser...... laser system. We present the latest advancements within airclad fiber technology including a new 70 μm single-mode polarization-maintaining rod-type fiber capable of amplifying to MW power levels. Furthermore we describe the novel airclad based pump combiners and their use in a completely monolithic 350...... W CW fiber laser system with an M2 of less than 1.1. Finally, we briefly touch upon the subject of photo darkening and its origin....

  15. Airclad fiber laser technology

    DEFF Research Database (Denmark)

    Hansen, Kim P.; Olausson, Christina Bjarnal Thulin; Broeng, Jes

    2008-01-01

    High-power fiber lasers and amplifiers have gained tremendous momentum in the last five years, and many of the traditional manufactures of gas and solid-state lasers are pursuing the attractive fiber-based systems, which are now displacing the old technology in many areas. High-power fiber laser...... laser system. We present the latest advancements within airclad fiber technology including a new 70 μm single-mode polarization-maintaining rod-type fiber capable of amplifying to MW power levels. Furthermore we describe the novel airclad based pump combiners and their use in a completely monolithic 350...... W CW fiber laser system with an M2 of less than 1.1. Finally, we briefly touch upon the subject of photo darkening and its origin....

  16. Galvanometer beam-scanning system for laser fiber drawing.

    Science.gov (United States)

    Oehrle, R C

    1979-02-15

    A major difficulty in using a laser to draw optical fibers from a glass preform has been uniformally distributing the laser's energy around the melt zone. Several systems have evolved in recent years, but to date the most successful technique has been the off-axis rotating lens system (RLS). The inability of this device to structure efficiently and dynamically the heat zone longitudinally along the preform has restricted its use to preform of less than 8-mm diameter. A new technique reported here employs two orthogonal mounted mirrors, driven by galvanometers to distribute the laser energy around the preform. This system can be retrofitted into the RLS to replace the rotating lens element. The new system, the galvanometer scanning system (GSS), operates at ten times the rotational speed of the RLS and can instantaneously modify the melt zone. The ability of the GSS to enlarge the melt zone reduces the vaporization rate at the surface of the preform permitting efficient use of higher laser power. Experiments i dicate that fibers can be drawn from significantly larger preforms by using the expanded heat zone provided by the GSS.

  17. Random Fiber Laser

    CERN Document Server

    de Matos, Christiano J S; Brito-Silva, Antônio M; Gámez, M A Martinez; Gomes, Anderson S L; de Araújo, Cid B

    2007-01-01

    We investigate the effects of two dimensional confinement on the lasing properties of a classical random laser system operating in the incoherent feedback (diffusive) regime. A suspension of 250nm rutile (TiO2) particles in a Rhodamine 6G solution was inserted into the hollow core of a photonic crystal fiber (PCF) generating the first random fiber laser and a novel quasi-one-dimensional RL geometry. Comparison with similar systems in bulk format shows that the random fiber laser presents an efficiency that is at least two orders of magnitude higher.

  18. Nondestructive thickness measurement system for multiple layers of paint based on femtosecond fiber laser technologies

    Science.gov (United States)

    Sudo, Masaaki; Takayanagi, Jun; Ohtake, Hideyuki

    2016-11-01

    Because optical fiber-based optical systems are generally robust against external interference, they can be used as reliable systems in industrial applications in various fields. This paper describes fiber lasers generating femtosecond pulses that use optical fibers as gain media and optical paths. Additionally, the nondestructive paint multilayer thickness measurement of automotive parts using terahertz waves generated and detected by femtosecond fiber laser systems was conducted.

  19. Highly-stable monolithic femtosecond Yb-fiber laser system based on photonic crystal fibers

    DEFF Research Database (Denmark)

    Liu, Xiaomin; Lægsgaard, Jesper; Turchinovich, Dmitry

    2010-01-01

    of around 297 fs duration. Our laser shows exceptional stability. No Q-switched modelocking events were detected during 4-days long observation. An average fluctuation of only 7.85 · 10−4 over the mean output power was determined as a result of more than 6-hours long measurement. The laser is stable towards......A self-starting, passively stabilized, monolithic all polarizationmaintaining femtosecond Yb-fiber master oscillator / power amplifier with very high operational and environmental stability is demonstrated. The system is based on the use of two different photonic crystal fibers. One is used...... in the oscillator cavity for dispersion balancing and nonlinear optical limiting, and another one is used for low nonlinearity final pulse recompression. The chirped-pulse amplification and recompression of the 232-fs, 45-pJ/pulse oscillator output yields a final direct fiber-end delivery of 7.3-nJ energy pulses...

  20. Beam shaping design for compact and high-brightness fiber-coupled laser-diode system.

    Science.gov (United States)

    Yu, Junhong; Guo, Linui; Wu, Hualing; Wang, Zhao; Tan, Hao; Gao, Songxin; Wu, Deyong; Zhang, Kai

    2015-06-20

    Fiber-coupled laser diodes have become essential sources for fiber laser pumping and direct energy applications. A compact and high-brightness fiber-coupled system has been designed based on a significant beam shaping method. The laser-diode stack consists of eight mini-bars and is effectively coupled into a standard 100 μm core diameter and NA=0.22 fiber. The simulative result indicates that the module will have an output power over 440 W. Using this technique, compactness and high-brightness production of a fiber-coupled laser-diode module is possible.

  1. Chaos synchronization characteristics in erbium-doped fiber laser systems

    Science.gov (United States)

    Imai, Y.; Murakawa, H.; Imoto, T.

    2003-03-01

    Chaos synchronization characteristics in the master-slave and slave-slave systems with modulated erbium-doped fiber lasers are investigated numerically. We find that synchronization state of chaos becomes better, i.e., the correlation coefficient between the two outputs reaches unity, as the difference in the input power between the two subsystems decreases and is not dependent strongly upon the difference in the modulation index in both the master-slave and slave-slave systems. In the master-slave system, the highest correlation coefficient is attained at the smaller pump power and the larger modulation index in the slave subsystem than those in the master subsystem. On the other hand, the correlation coefficient equal to unity is achieved with the identical parameters in the slave 1 and 2 subsystems in the slave-slave system.

  2. Impact of fiber ring laser configuration on detection capabilities in FBG based sensor systems

    Science.gov (United States)

    Osuch, Tomasz; Kossek, Tomasz; Markowski, Konrad

    2014-11-01

    In this paper fiber ring lasers (FRL) as interrogation units for distributed fiber Bragg grating (FBG) based sensor networks are studied. In particular, two configurations of the fiber laser with erbium-doped fiber amplifier (EDFA) and semiconductor optical amplifier (SOA) as gain medium were analyzed. In the case of EDFA-based fiber interrogation systems, CW as well as active-mode locking operation were taken into account. The influence of spectral overlapping of FBGs spectra on detection capabilities of examined FRLs are presented. Experimental results show that the SOA-based fiber laser interrogation unit can operate as a multi-parametric sensing system. In turn, using an actively mode-locked fiber ring laser with an EDFA, an electronically switchable FBG based sensing system can be realized.

  3. A 158 fs 5.3 nJ fiber-laser system at 1 mu m using photonic bandgap fibers for dispersion control and pulse compression

    DEFF Research Database (Denmark)

    Nielsen, C.K.; Jespersen, Kim Giessmann; Keiding, S.R.

    2006-01-01

    We demonstrate a 158 fs 5.3 nJ mode-locked laser system based on a fiber oscillator, fiber amplifier and fiber compressor. Dispersion compensation in the fiber oscillator was obtained with a solid-core photonic bandgap (SC-PBG) fiber spliced to standard fibers, and external compression is obtaine...

  4. Industrial fiber beam delivery system for ultrafast lasers: applications and recent advances

    Science.gov (United States)

    Eilzer, Sebastian; Funck, Max C.; Wedel, Björn

    2016-03-01

    Fiber based laser beam delivery is the method of choice for high power laser applications whenever great flexibility is required. For cw-lasers fiber beam delivery has long been established but has recently also become available for ultrafast lasers. Using micro-structured hollow core fibers that guide the laser beam mostly inside a hollow core, nonlinear effects and catastrophic damage that arise in conventional glass fibers can be avoided. Today, ultrafast pulses with several 100 μJ and hundreds of MW can be transmitted in quasi single mode fashion. In addition, the technology opens new possibilities for beam delivery systems as the pulse propagation inside the fiber can be altered on purpose. For example to shorten the pulse duration of picosecond lasers down into the femtosecond regime. We present a modular fiber beam delivery system for micromachining applications with industrial pico- and femtosecond lasers that is flexibly integrated into existing applications. Micro-structured hollow core fibers inside the sealed laser light cable efficiently guide high-power laser pulses over distances of several meters with excellent beam quality, while power, pulse duration and polarization are maintained. Robust and stable beam transport during dynamic operation as in robot or gantry systems will be discussed together with optional pulse compression.

  5. Final Scientific and Technical Report - Practical Fiber Delivered Laser Ignition Systems for Vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Yalin, Azer [Seaforth, LLC

    2014-03-30

    Research has characterized advanced kagome fiber optics for their use in laser ignition systems. In comparison to past fibers used in laser ignition, these fibers have the important advantage of being relatively bend-insensitivity, so that they can be bent and coiled without degradation of output energy or beam quality. The results are very promising for practical systems. For pulse durations of ~12 ns, the fibers could deliver >~10 mJ pulses before damage onset. A study of pulse duration showed that by using longer pulse duration (~20 – 30 ns), it is possible to carry even higher pulse energy (by factor of ~2-3) which also provides future opportunities to implement longer duration sources. Beam quality measurements showed nearly single-mode output from the kagome fibers (i.e. M2 close to 1) which is the optimum possible value and, combined with their high pulse energy, shows the suitability of the fibers for laser ignition. Research has also demonstrated laser ignition of an engine including reliable (100%) ignition of a single-cylinder gasoline engine using the laser ignition system with bent and coiled kagome fiber. The COV of IMEP was <2% which is favorable for stable engine operation. These research results, along with the continued reduction in cost of laser sources, support our commercial development of practical laser ignition systems.

  6. Non-invasive image-guided laser microsurgery by a dual-wavelength fiber laser and an integrated fiber-optic multi-modal system.

    Science.gov (United States)

    Tsai, Meng-Tsan; Li, Dean-Ru; Chan, Ming-Che

    2016-10-15

    A new approach to non-invasive image-guided laser micro-treatment is demonstrated by a dual-wavelength fiber laser source and an integrated fiber-based multi-modal system. The fiber-based source, operated in 1.55 and 1.2 μm simultaneously, was directly connected to an integrated fiber-based multi-modal system for imaging and laser micro-treatment at the same time. The 1.2 μm radiations, within the 1.2-1.35 μm bio-penetration window of skin, were utilized for spectral domain optical coherence tomography imaging. The 1.55 μm radiations, highly absorptive to waters, were utilized for laser microsurgery. The new approach, which is simple in configuration and accurately controls the positions and exposure time of the laser microsurgery, shows great promises for future clinical applications.

  7. Tunable Laser Development for In-flight Fiber Optic Based Structural Health Monitoring Systems

    Science.gov (United States)

    Richards, Lance; Parker, Allen; Chan, Patrick

    2014-01-01

    The objective of this task is to investigate, develop, and demonstrate a low-cost swept lasing light source for NASA DFRC's fiber optics sensing system (FOSS) to perform structural health monitoring on current and future aerospace vehicles. This is the regular update of the Tunable Laser Development for In-flight Fiber Optic Based Structural Health Monitoring Systems website.

  8. Cable television monitoring system based on fiber laser and FBG sensor

    Science.gov (United States)

    Peng, Peng-Chun; Huang, Jun-Han; Wu, Shin-Shian; Yang, Wei-Yuan; Shen, Po-Tso

    2015-05-01

    We propose and experimentally demonstrate a cable television monitoring system based on a linear-cavity fiber laser and fiber Bragg grating (FBG) sensors. The linear-cavity fiber laser comprises a hybrid amplifier with an erbium-doped fiber amplifier and a semiconductor optical amplifier, a fiber loop mirror with a polarization controller and an optical coupler as a cavity mirror, and the FBG sensors acting as another cavity mirrors. Experimental results showed the feasibility of the monitoring system with sufficient of signal-to-noise ratio over 30 dB and stable output power, and the link of cable television signals on fiber link can monitored in real time. Excellent performances of carrier-to-noise ratio after long-distance transmission are obtained for cable television applications.

  9. Raman fiber lasers

    Science.gov (United States)

    Supradeepa, V. R.; Feng, Yan; Nicholson, Jeffrey W.

    2017-02-01

    High-power fiber lasers have seen tremendous development in the last decade, with output powers exceeding multiple kilowatts from a single fiber. Ytterbium has been at the forefront as the primary rare-earth-doped gain medium owing to its inherent material advantages. However, for this reason, the lasers are largely confined to the narrow emission wavelength region of ytterbium. Power scaling at other wavelength regions has lagged significantly, and a large number of applications rely upon the diversity of emission wavelengths. Currently, Raman fiber lasers are the only known wavelength agile, scalable, high-power fiber laser technology that can span the wavelength spectrum. In this review, we address the technology of Raman fiber lasers, specifically focused on the most recent developments. We will also discuss several applications of Raman fiber lasers in laser pumping, frequency conversion, optical communications and biology.

  10. Design and characterization of a novel power over fiber system integrating a high power diode laser

    Science.gov (United States)

    Perales, Mico; Yang, Mei-huan; Wu, Cheng-liang; Hsu, Chin-wei; Chao, Wei-sheng; Chen, Kun-hsein; Zahuranec, Terry

    2017-02-01

    High power 9xx nm diode lasers along with MH GoPower's (MHGP's) flexible line of Photovoltaic Power Converters (PPCs) are spurring high power applications for power over fiber (PoF), including applications for powering remote sensors and sensors monitoring high voltage equipment, powering high voltage IGBT gate drivers, converters used in RF over Fiber (RFoF) systems, and system power applications, including powering UAVs. In PoF, laser power is transmitted over fiber, and is converted to electricity by photovoltaic cells (packaged into Photovoltaic Power Converters, or PPCs) which efficiently convert the laser light. In this research, we design a high power multi-channel PoF system, incorporating a high power 976 nm diode laser, a cabling system with fiber break detection, and a multichannel PPC-module. We then characterizes system features such as its response time to system commands, the PPC module's electrical output stability, the PPC-module's thermal response, the fiber break detection system response, and the diode laser optical output stability. The high power PoF system and this research will serve as a scalable model for those interested in researching, developing, or deploying a high power, voltage isolated, and optically driven power source for high reliability utility, communications, defense, and scientific applications.

  11. Spatial-Resolution Improvement in Optical Frequency Domain Reflectometry System Based on Tunable Linear Fiber Laser

    Energy Technology Data Exchange (ETDEWEB)

    Li Guoyu; Li Yan [Institute of Information Engineering, Handan College, Handan, 056005 (China); Zhao Peng, E-mail: guoyu_li@yahoo.cn [School of Physics and Optoelectronic Engineering, Dalian University of Technology, Dalian 116024 (China)

    2011-02-01

    In optical frequency domain reflectometry (OFDR) system, the spatial resolution is obtained by using the total frequency-sweep span of the tunable laser. However, in practice, the spatial resolution is severely limited by nonlinearity in the lightwave-frequency sweep of the tunable laser. A closed-loop PZT modulated DBR linear fiber laser is proposed to improve the spatial resolution of the OFDR system. Experimental results show that the spatial resolution of OFDR system has improved greatly. When the frequency sweep excursion is 66GHz and the fiber under test (FUT) is 7 m, the OFDR system has a spatial resolution of 1.5 m with open-loop PZT modulated laser. But the spatial resolution increases to 35 cm with closed-loop PZT modulated laser.

  12. Multibeam fiber laser cutting

    DEFF Research Database (Denmark)

    Olsen, Flemming Ove; Hansen, Klaus Schütt; Nielsen, Jakob Skov

    2009-01-01

    The appearance of the high power high brilliance fiber laser has opened for new possibilities in laser materials processing. In laser cutting this laser has demonstrated high cutting performance compared to the dominating Cutting laser, the CO2 laser. However, quality problems in fiber-laser...... cutting have until now limited its application to metal cutting. In this paper the first results of proof-of-principle Studies applying a new approach (patent pending) for laser cutting with high brightness and short wavelength lasers will be presented. In the approach, multibeam patterns are applied...... to control the melt flow out of the cut kerf resulting in improved cut quality in metal cutting. The beam patterns in this study are created by splitting up beams from two single mode fiber lasers and combining these beams into a pattern in the cut kerf. The results are obtained with a total of 550 W...

  13. Spectrally Tailored Pulsed Thulium Fiber Laser System for Broadband Lidar CO2 Sensing

    Science.gov (United States)

    Heaps, William S.; Georgieva, Elena M.; McComb, Timothy S.; Cheung, Eric C.; Hassell, Frank R.; Baldauf, Brian K.

    2011-01-01

    Thulium doped pulsed fiber lasers are capable of meeting the spectral, temporal, efficiency, size and weight demands of defense and civil applications for pulsed lasers in the eye-safe spectral regime due to inherent mechanical stability, compact "all-fiber" master oscillator power amplifier (MOPA) architectures, high beam quality and efficiency. Thulium fiber's longer operating wavelength allows use of larger fiber cores without compromising beam quality, increasing potential single aperture pulse energies. Applications of these lasers include eye-safe laser ranging, frequency conversion to longer or shorter wavelengths for IR countermeasures and sensing applications with otherwise tough to achieve wavelengths and detection of atmospheric species including CO2 and water vapor. Performance of a portable thulium fiber laser system developed for CO2 sensing via a broadband lidar technique with an etalon based sensor will be discussed. The fielded laser operates with approximately 280 J pulse energy in 90-150ns pulses over a tunable 110nm spectral range and has a uniquely tailored broadband spectral output allowing the sensing of multiple CO2 lines simultaneously, simplifying future potentially space based CO2 sensing instruments by reducing the number and complexity of lasers required to carry out high precision sensing missions. Power scaling and future "all fiber" system configurations for a number of ranging, sensing, countermeasures and other yet to be defined applications by use of flexible spectral and temporal performance master oscillators will be discussed. The compact, low mass, robust, efficient and readily power scalable nature of "all-fiber" thulium lasers makes them ideal candidates for use in future space based sensing applications.

  14. A DFB Fiber Laser Sensor System with Ultra-High Resolution and Its Noise Analysis

    Institute of Scientific and Technical Information of China (English)

    Hao Xiao; Fang Li; Jun He; Yu-Liang Liu

    2008-01-01

    A distributed feedback fiber laser (DFB FL) sensor system with ultra-high resolution is described. The sensor is made by writing distributed feedback structures into a high gain active fiber, and the system employs an unbalanced Michelson interferometer to translate laser wavelength shifts induced by weak measurands into phase shifts. A digital phase generated carrier demodulation scheme is introduced to achieve ultra-high resolution interrogation. A detailed noise analysis of the system is presented, and it is shown that the system resolution is limited by the frequency noise of the DFB FL.

  15. Design and analysis of spectral beam combining system for fiber lasers based on a concave grating

    Institute of Scientific and Technical Information of China (English)

    WU Zhuo-liang; ZHAO Shang-hong; CHU Xing-chun; ZHANG Xi; ZHAN Sheng-bao; MA Li-hua

    2012-01-01

    Anovel fiber laser spectral beam combining scheme based on a concave grating is presented.The principle of the presented system is analyzed,and a concave grating with blazed structure for spectral beam combining is designed.The combining potential of the system is analyzed,and the results show that 39 Yb-doped fiber laser can be spectrally beam combined via the designed system.By using scalar diffraction theory,the combining effect of the system is analyzed.The results show that the diffraction efficiency of the designed concave grating is higher than 72% over the whole gain bandwidth,and the combining efficiency is 73.4%.With output power of 1 kW for individual fiber laser,combined power of 28.6 kW can be achieved.

  16. Vector Soliton Fiber Lasers

    CERN Document Server

    Zhang, Han

    2011-01-01

    Solitons, as stable localized wave packets that can propagate long distance in dispersive media without changing their shapes, are ubiquitous in nonlinear physical systems. Since the first experimental realization of optical bright solitons in the anomalous dispersion single mode fibers (SMF) by Mollenauer et al. in 1980 and optical dark solitons in the normal dispersion SMFs by P. Emplit et al. in 1987, optical solitons in SMFs had been extensively investigated. In reality a SMF always supports two orthogonal polarization modes. Taking fiber birefringence into account, it was later theoretically predicted that various types of vector solitons, including the bright-bright vector solitons, dark-dark vector solitons and dark-bright vector solitons, could be formed in SMFs. However, except the bright-bright type of vector solitons, other types of vector solitons are so far lack of clear experimental evidence. Optical solitons have been observed not only in the SMFs but also in mode locked fiber lasers. It has be...

  17. Theoretical model of optical fiber secure communication system with chaotic multiple-quantum-well lasers

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Chaotic synchronization of injected multiple-quantum-well lasers of optical fiber system and a theoretical model of optical fiber chaotic secure communication system are presented by coupling a chaotic multiple-quantum-well laser synchronization system and a fiber channel. A new chaotic encoding method of chaos phase shift keying On/Off is proposed for optical fiber secure communications. Chaotic synchronization is achieved numerically in long-haul fiber system at wavelength 1.55μm. The effect of the nonlinear-phase of fiber is analyzed on chaotic signal and synchronization. A sinusoidal signal of 0.2 GHz frequency is simulated numerically with chaos masking in long-haul fiber analog communication at wavelength 1.55μm while a digital signal of 0.5 Gbit/s bit rate is simulated numerically with c1 haos masking and a rate of 0.05 Gbit/s are also simulated numerically with chaos shift keying and chaos phase shift keying On/Off in long-haul fiber digital communications at wavelength 1.55μm

  18. Industrial grade fiber-coupled laser systems delivering ultrashort high-power pulses for micromachining

    Science.gov (United States)

    Pricking, Sebastian; Welp, Petra; Overbuschmann, Johannes; Nutsch, Sebastian; Gebs, Raphael; Fleischhaker, Robert; Kleinbauer, Jochen; Wolf, Martin; Budnicki, Aleksander; Sutter, Dirk H.; Killi, Alexander; Mielke, Michael

    2016-03-01

    We report on an industrial fiber-delivered laser system producing ultra-short pulses in the range of a few picoseconds down to a few hundred femtoseconds with high average power suitable for high-precision micromachining. The delivery fiber is a hollow-core photonic crystal fiber with a Kagomé shaped lattice and a hypocycloid core wall enabling the guiding of laser radiation over several meters with exceptionally low losses and preservation of high beam quality (M2laser head providing a compact footprint without the need for external boxes. The laser head is carefully designed regarding its thermo-mechanical properties to allow a highly reliable coupling stability. The exchangeable delivery fiber is packaged using Trumpf's well established LLK-D connectors which offer a very high mechanical precision, the possibility to add water cooling, as well as full featured safety functions. The fiber is hermetically sealed and protected by a robust but flexible shield providing bend protection and break detection. We show the linear and nonlinear optical properties of the transported laser radiation and discuss its feasibility for pulse compression. Measurements are supported by simulation of pulse propagation by solving the nonlinear Schrödinger equation implementing the split-step Fourier method. In addition, mode properties are measured and confirmed by finite element method simulations. The presented industrial laser system offers the known advantages of ultra-short pulses combined with the flexibility of fiber delivery yielding a versatile tool perfectly suitable for all kinds of industrial micromachining applications.

  19. An automatic mode-locked system for passively mode-locked fiber laser

    Science.gov (United States)

    Li, Sha; Xu, Jun; Chen, Guoliang; Mei, Li; Yi, Bo

    2013-12-01

    This paper designs and implements one kind of automatic mode-locked system. It can adjust a passively mode-locked fiber laser to keep steady mode-locked states automatically. So the unsteadiness of traditional passively mode-locked fiber laser can be avoided. The system transforms optical signals into electrical pulse signals and sends them into MCU after processing. MCU calculates the frequency of the signals and judges the state of the output based on a quick judgment algorithm. A high-speed comparator is used to check the signals and the comparison voltage can be adjusted to improve the measuring accuracy. Then by controlling two polarization controllers at an angle of 45degrees to each other, MCU extrudes the optical fibers to change the polarization until it gets proper mode-locked output. So the system can continuously monitor the output signal and get it back to mode-locked states quickly and automatically. States of the system can be displayed on the LCD and PC. The parameters of the steady mode-locked states can be stored into an EEPROM so that the system will get into mode-locked states immediately next time. Actual experiments showed that, for a 6.238MHz passively mode-locked fiber lasers, the system can get into steady mode-locked states automatically in less than 90s after starting the system. The expected lock time can be reduced to less than 20s after follow up improvements.

  20. Fundamentals of fiber lasers and fiber amplifiers

    CERN Document Server

    Ter-Mikirtychev, Valerii (Vartan)

    2014-01-01

    This book covers the fundamental aspects of fiber lasers and fiber amplifiers, and includes a wide range of material from laser physics fundamentals to state-of-the-art topics in this rapidly growing field of quantum electronics. Emphasis is placed on the nonlinear processes taking place in fiber lasers and amplifiers, their similarities, differences to, and their advantages over other solid-state lasers. The reader will learn basic principles of solid-state physics and optical spectroscopy of laser active centers in fibers, main operational laser regimes, and practical recommendations and suggestions on fiber laser research, laser applications, and laser product development. The book will be useful for students, researchers, and professionals who work with lasers, in the optical communications, chemical and biological industries, etc.

  1. An efficient low-noise single-frequency 1033 nm Yb3+-doped MOPA phosphate fiber laser system

    Science.gov (United States)

    Deng, Huaqiu; Chen, Dan; Zhao, Qilai; Yang, Changsheng; Zhang, Yuanfei; Zhang, Yuning; Feng, Zhouming; Yang, Zhongmin; Xu, Shanhui

    2017-06-01

    An efficient low-noise, single-frequency 1033 nm master oscillator power amplifier (MOPA) Yb3+-doped phosphate fiber (YPF) laser system is demonstrated. A maximal output power of 612 mW with a laser linewidth of 65 dB and relative intensity noise (RIN) of laser system has applications in the fields of optical frequency standards and beam combining.

  2. Fiber laser-microscope system for femtosecond photodisruption of biological samples.

    Science.gov (United States)

    Yavaş, Seydi; Erdogan, Mutlu; Gürel, Kutan; Ilday, F Ömer; Eldeniz, Y Burak; Tazebay, Uygar H

    2012-03-01

    We report on the development of a ultrafast fiber laser-microscope system for femtosecond photodisruption of biological targets. A mode-locked Yb-fiber laser oscillator generates few-nJ pulses at 32.7 MHz repetition rate, amplified up to ∼125 nJ at 1030 nm. Following dechirping in a grating compressor, ∼240 fs-long pulses are delivered to the sample through a diffraction-limited microscope, which allows real-time imaging and control. The laser can generate arbitrary pulse patterns, formed by two acousto-optic modulators (AOM) controlled by a custom-developed field-programmable gate array (FPGA) controller. This capability opens the route to fine optimization of the ablation processes and management of thermal effects. Sample position, exposure time and imaging are all computerized. The capability of the system to perform femtosecond photodisruption is demonstrated through experiments on tissue and individual cells.

  3. Autogeneous Laser and Hybrid Laser Arc Welding of T-joint Low Alloy Steel with Fiber Laser Systems

    Science.gov (United States)

    Unt, A.; Lappalainen, E.; Salminen, A.

    This paper is focused on the welding of low alloy steels S355 and AH36 in thicknesses 6, 8 and 10 mm in T-joint configuration using either autogeneous laser welding or laser-arc hybrid welding (HLAW) with high power fiber lasers. The aim was to obtain understanding of the factors influencing the size of the fillet and weld geometry through methodologically studying effects of laser power, welding speed, beam alignment relative to surface, air gap, focal point position and order of processes (in case of HLAW) and to get a B quality class welds in all thicknesses after parameter optimization.

  4. Optical coatings for fiber lasers

    Institute of Scientific and Technical Information of China (English)

    HONG Dong-mei; ZHU Zhen; YUE Wei

    2005-01-01

    Fiber laser is the future development direction for the high energy lasers. This paper describs two kinds of optical coatings for fiber laser, including long and short wave pass filters. The one characteristic of fiber laser coatings lies in that coatings should separate two closely wavelength light including laser pump wavelength (980 nm) and laser irradiation wavelength(1 050~1 100 nm). At the same time, the coatings should have high laser damage threshold.

  5. A compact terahertz burst emission system driven with 1 μm fiber laser

    Science.gov (United States)

    Adamonis, Juozas; Rusteika, Nerijus; Danilevičius, Rokas; Krotkus, Arūnas

    2013-04-01

    In this work we propose a compact, easily tunable terahertz burst generation system based on the mixing of two linearly chirped optical pulses in the Michelson interferometer. The use of linearly chirped optical pulses ejected straight from the fiber laser enabled us to avoid bulky external optical pulse stretching schemes. Even for non-compensated third and higher order dispersion that is taking place in the optical fiber terahertz bursts of relatively narrow bandwidth of 55 GHz were registered. The system operation range determined from the power measurements reached 2 THz.

  6. Bragg grating-based fiber laser vibration sensing system with novel phase detection

    Science.gov (United States)

    Yang, Xiufeng; Chen, Zhihao; Teo, Ju Teng; Ng, Soon Huat

    2014-01-01

    We characterized the dynamic response of a Bragg grating-based fiber laser sensing system. The sensing system comprises of a narrow line width fiber laser based on π-phase-shifted fiber Bragg grating formed in an active fiber, an unbalanced fiber Michelson interferometer (FMI), which performs wavelength-to-phase mapping, and a phase detection algorithm, which acquires the phase change from the interferometric output signal. The novel phase detection algorithm is developed based on the combination of the two traditional phase generated carrier algorithms: differential-cross-multiplying and arctangent algorithms, and possesses the advantages of the two algorithms. The modulation depth fluctuation of the carrier does not affect the performance of the sensing system. A relatively high side mode suppression ratio of above 50 dB has been achieved within a wide range of carrier amplitude from 1.6 to 5.0 V which correspond to the modulation depth from 1.314 to 4.106 rad. The linearity is 99.082% for the relationship between the power spectral density (dBm/Hz) of the detected signal and the amplitude (mv) of the test signal. The unbalanced FMI is used to eliminate the polarization effect.

  7. Femtosecond Fiber Lasers

    Science.gov (United States)

    Bock, Katherine J.

    This thesis focuses on research I have done on ytterbium-doped femtosecond fiber lasers. These lasers operate in the near infrared region, lasing at 1030 nm. This wavelength is particularly important in biomedical applications, which includes but is not limited to confocal microscopy and ablation for surgical incisions. Furthermore, fiber lasers are advantageous compared to solid state lasers in terms of their cost, form factor, and ease of use. Solid state lasers still dominate the market due to their comparatively high energy pulses. High energy pulse generation in fiber lasers is hindered by either optical wave breaking or by multipulsing. One of the main challenges for fiber lasers is to overcome these limitations to achieve high energy pulses. The motivation for the work done in this thesis is increasing the output pulse peak power and energy. The main idea of the work is that decreasing the nonlinearity that acts on the pulse inside the cavity will prevent optical wave breaking, and thus will generate higher energy pulses. By increasing the output energy, ytterbium-doped femtosecond fiber lasers can be competitive with solid state lasers which are used commonly in research. Although fiber lasers tend to lack the wavelength tuning ability of solid state lasers, many biomedical applications take advantage of the 1030 microm central wavelength of ytterbium-doped fiber lasers, so the major limiting factor of fiber lasers in this field is simply the output power. By increasing the output energy without resorting to external amplification, the cavity is optimized and cost can remain low and economical. During verification of the main idea, the cavity was examined for possible back-reflections and for components with narrow spectral bandwidths which may have contributed to the presence of multipulsing. Distinct cases of multipulsing, bound pulse and harmonic mode-locking, were observed and recorded as they may be of more interest in the future. The third

  8. Multispot fiber laser welding

    DEFF Research Database (Denmark)

    Schutt Hansen, Klaus

    This dissertation presents work and results achieved in the field of multi beam fiber laser welding. The project has had a practical approach, in which simulations and modelling have been kept at a minimum. Different methods to produce spot patterns with high power single mode fiber lasers have...... been possible to control the welding width in incremental steps by adding more beams in a row. The laser power was used to independently control the keyhole and consequently the depth of fusion. An example of inline repair of a laser weld in butt joint configuration was examined. Zinc powder was placed...... in the weld causing expulsion of the melt pool. Trailing beams were applied to melt additional material and ensure a melt pool. The method showed good results for increasing tolerances to impurities and reduction of scrapped parts from blowouts during laser welding....

  9. 2 micron femtosecond fiber laser

    Science.gov (United States)

    Liu, Jian; Wan, Peng; Yang, Lihmei

    2014-07-29

    Methods and systems for generating femtosecond fiber laser pulses are disclose, including generating a signal laser pulse from a seed laser oscillator; using a first amplifier stage comprising an input and an output, wherein the signal laser pulse is coupled into the input of the first stage amplifier and the output of the first amplifier stage emits an amplified and stretched signal laser pulse; using an amplifier chain comprising an input and an output, wherein the amplified and stretched signal laser pulse from the output of the first amplifier stage is coupled into the input of the amplifier chain and the output of the amplifier chain emits a further amplified, stretched signal laser pulse. Other embodiments are described and claimed.

  10. Impact of Line Width and Power of Laser on Radio over Fiber System

    Science.gov (United States)

    Sharma, Sakshi; Bhatia, Kamaljeet Singh; Kaur, Harsimrat

    2015-03-01

    In order to increase the capacity of the existing optical communication networks advanced modulation schemes are utilized. Keeping this in view, an radio-over-fiber subcarrier multiplexing (SCM) employing ASK modulation technique is proposed. Response of the system is analysed by varying the linewidth and the power of the CW Laser and the optimum value is concluded for the same so as to achieve reliable communication.

  11. Photonic bandgap fiber lasers and multicore fiber lasers for next generation high power lasers

    DEFF Research Database (Denmark)

    Shirakawa, A.; Chen, M.; Suzuki, Y.

    2014-01-01

    Photonic bandgap fiber lasers are realizing new laser spectra and nonlinearity mitigation that a conventional fiber laser cannot. Multicore fiber lasers are a promising tool for power scaling by coherent beam combination. © 2014 OSA.......Photonic bandgap fiber lasers are realizing new laser spectra and nonlinearity mitigation that a conventional fiber laser cannot. Multicore fiber lasers are a promising tool for power scaling by coherent beam combination. © 2014 OSA....

  12. Large field distributed aperture laser semiactive angle measurement system design with imaging fiber bundles.

    Science.gov (United States)

    Xu, Chunyun; Cheng, Haobo; Feng, Yunpeng; Jing, Xiaoli

    2016-09-01

    A type of laser semiactive angle measurement system is designed for target detecting and tracking. Only one detector is used to detect target location from four distributed aperture optical systems through a 4×1 imaging fiber bundle. A telecentric optical system in image space is designed to increase the efficiency of imaging fiber bundles. According to the working principle of a four-quadrant (4Q) detector, fiber diamond alignment is adopted between an optical system and a 4Q detector. The structure of the laser semiactive angle measurement system is, we believe, novel. Tolerance analysis is carried out to determine tolerance limits of manufacture and installation errors of the optical system. The performance of the proposed method is identified by computer simulations and experiments. It is demonstrated that the linear region of the system is ±12°, with measurement error of better than 0.2°. In general, this new system can be used with large field of view and high accuracy, providing an efficient, stable, and fast method for angle measurement in practical situations.

  13. Pulsed and CW adjustable 1942 nm single-mode all-fiber Tm-doped fiber laser system for surgical laser soft tissue ablation applications.

    Science.gov (United States)

    Huang, Yize; Jivraj, Jamil; Zhou, Jiaqi; Ramjist, Joel; Wong, Ronnie; Gu, Xijia; Yang, Victor X D

    2016-07-25

    A surgical laser soft tissue ablation system based on an adjustable 1942 nm single-mode all-fiber Tm-doped fiber laser operating in pulsed or CW mode with nitrogen assistance is demonstrated. Ex vivo ablation on soft tissue targets such as muscle (chicken breast) and spinal cord (porcine) with intact dura are performed at different ablation conditions to examine the relationship between the system parameters and ablation outcomes. The maximum laser average power is 14.4 W, and its maximum peak power is 133.1 W with 21.3 μJ pulse energy. The maximum CW power density is 2.33 × 106 W/cm2 and the maximum pulsed peak power density is 2.16 × 107 W/cm2. The system parameters examined include the average laser power in CW or pulsed operation mode, gain-switching frequency, total ablation exposure time, and the input gas flow rate. The ablation effects were measured by microscopy and optical coherence tomography (OCT) to evaluate the ablation depth, superficial heat-affected zone diameter (HAZD) and charring diameter (CD). Our results conclude that the system parameters can be tailored to meet different clinical requirements such as ablation for soft tissue cutting or thermal coagulation for future applications of hemostasis.

  14. Using Brillouin fiber-optic ring laser to provide base station with uplink optical carrier in a 10 GHz radio over fiber system

    Institute of Scientific and Technical Information of China (English)

    CHEN Hao-shuo; LIN Ru-jian; YE Jia-jun

    2009-01-01

    In this paper, a 10 GHz radio over fiber system is analyzed. The Brillouin fiber-optic ring laser is used in the center station (CS) to suppress the optical carrier for the modulation depth enhancement. Simultaneously, the Stockes waveinduced by the Brillouin amplification injects and locks the Fabry-Perot (FP) laser to output a signal-mode optical source,which works as the uplink optical carrier.

  15. Cladded single crystal fibers for high power fiber lasers

    Science.gov (United States)

    Kim, W.; Shaw, B.; Bayya, S.; Askins, C.; Peele, J.; Rhonehouse, D.; Meyers, J.; Thapa, R.; Gibson, D.; Sanghera, J.

    2016-09-01

    We report on the recent progress in the development of cladded single crystal fibers for high power single frequency lasers. Various rare earth doped single crystal YAG fibers with diameters down to 17 μm with length > 1 m have been successfully drawn using a state-of-the-art Laser Heated Pedestal Growth system. Single and double cladding on rare earth doped YAG fibers have been developed using glasses where optical and physical properties were precisely matched to doped YAG core single crystal fiber. The double clad Yb:YAG fiber structures have dimensions analogous to large mode area (LMA) silica fiber. We also report successful fabrications of all crystalline core/clad fibers where thermal and optical properties are superior over glass cladded YAG fibers. Various fabrication methods, optical characterization and gain measurements on these cladded YAG fibers are reported.

  16. Tunable femtosecond Cherenkov fiber laser

    DEFF Research Database (Denmark)

    Liu, Xiaomin; Svane, Ask Sebastian; Lægsgaard, Jesper

    2014-01-01

    We demonstrate electrically-tunable femtosecond Cherenkov fiber laser output at the visible range. Using an all-fiber, self-starting femtosecond Yb-doped fiber laser as the pump source and nonlinear photonic crystal fiber link as the wave-conversion medium, ultrafast, milliwatt-level, tunable...... and spectral isolated Cherenkov radiation at visible wavelengths are reported. Such a femtosecond Cherenkov laser source is promising for practical biophotonics applications....

  17. A novel 852-nm tunable fiber laser

    Institute of Scientific and Technical Information of China (English)

    Yanlong Shen; Chun Gu; LixinXu; Anting Wang; Hai Ming; Yang Liu; Xiaobing Wang

    2009-01-01

    @@ We report a novel fiber laser operating at 850-nm band by using semiconductor optical amplifier and fiber grating.The laser system is stable, compact, and the operating wavelength can be tuned continuously from about 851 to 854 nm for Cs atomic clock system by stretching the fiber grating.An output power up to 20 mW is obtained with a signal-to-background ratio beyond 30 dB.

  18. Scaling of Fiber Laser Systems Based on Novel Components and High Power Capable Packaging and Joining Technologies

    Science.gov (United States)

    2010-09-01

    l ri Laser Splicing/ Welding r li i / l i Contact Bonding t t i Wafer Level Bonding Mineralic, Fusion. Anodic, Eutectic, Glass-frit, liquid...diode Bonding and Packaging of Optical Components Solder Bumping Thickfilm Au Metallization Laser diode Fiber Assembly element Asphere Ceramic System

  19. Design of an all-fiber erbium-doped laser system for simulating power load in backbone networks

    Science.gov (United States)

    Pobořil, Radek; Bednárek, Lukáš; Vanderka, Aleš; Hájek, Lukáš; Zbořil, Ondřej; Vašinek, Vladimír

    2016-12-01

    This article is focused on the design of an all-fiber laser that was supposed to be used for simulating power load similar to the power load in backbone networks. The first part of the article is a brief introduction to the topic of lasers and erbium doped fiber amplifiers. The following parts present design of a fiber laser with ring cavity, and measuring the ideal length of a doped fiber and the split ratio of the output coupler. After proposing the first stage -a laser- we focused on the construction of the two following stages -EDFA preamplifier and EDFA amplifier. There were used fibers with various levels of erbium ion density, namely ISO-GAIN I6, and Liekki ER110-4/125. The resulting output power of the whole system was 320 mW. This value is sufficient when we take into account that we used only single-mode fibers with energy pumped directly to the fiber core. The output wavelength of the whole laser system was 1559 nm.

  20. Investigation of a Pulsed 1550 nm Fiber Laser System

    Science.gov (United States)

    2015-12-15

    pulses would be to pulse the pump diodes . Currently , the pump diodes in this system are run continuous wave. In the future, the plan is to investigate...information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. 1. REPORT DATE (DD-MM-YYYY) 2...for illuminator applications. Considerations which impact the wavelength to be used are the transmissivity of the atmosphere and the responsivity of

  1. Amplitude-modulated fiber-ring laser

    DEFF Research Database (Denmark)

    Caputo, J. G.; Clausen, Carl A. Balslev; Sørensen, Mads Peter

    2000-01-01

    Soliton pulses generated by a fiber-ring laser are investigated by numerical simulation and perturbation methods. The mathematical modeling is based on the nonlinear Schrödinger equation with perturbative terms. We show that active mode locking with an amplitude modulator leads to a self-starting......Soliton pulses generated by a fiber-ring laser are investigated by numerical simulation and perturbation methods. The mathematical modeling is based on the nonlinear Schrödinger equation with perturbative terms. We show that active mode locking with an amplitude modulator leads to a self......-starting of stable solitonic pulses from small random noise, provided the modulation depth is small. The perturbative analysis leads to a nonlinear coupled return map for the amplitude, phase, and position of the soliton pulses circulating in the fiber-ring laser. We established the validity of this approach...

  2. Amplitude-modulated fiber-ring laser

    DEFF Research Database (Denmark)

    Caputo, J. G.; Clausen, Carl A. Balslev; Sørensen, Mads Peter

    2000-01-01

    Soliton pulses generated by a fiber-ring laser are investigated by numerical simulation and perturbation methods. The mathematical modeling is based on the nonlinear Schrödinger equation with perturbative terms. We show that active mode locking with an amplitude modulator leads to a self-starting......Soliton pulses generated by a fiber-ring laser are investigated by numerical simulation and perturbation methods. The mathematical modeling is based on the nonlinear Schrödinger equation with perturbative terms. We show that active mode locking with an amplitude modulator leads to a self......-starting of stable solitonic pulses from small random noise, provided the modulation depth is small. The perturbative analysis leads to a nonlinear coupled return map for the amplitude, phase, and position of the soliton pulses circulating in the fiber-ring laser. We established the validity of this approach...

  3. Laser linewidth and fiber nonlinearity tolerance study of C-16QAM compared to square 16QAM in coherent OFDM system

    Science.gov (United States)

    Xu, Fei; Qiao, Yaojun; Zhou, Ji; Guo, Mengqi; Tian, Huiping

    2017-03-01

    We introduced an effective modulation format circle 16 quadrature amplitude modulation (C-16QAM) to improve the laser linewidth induced phase noise and fiber nonlinear effects tolerance in coherent orthogonal frequency division multiplexing (OFDM) system without other losses compared to square 16QAM. Although C-16QAM has improved the performance of single channel system with Viterbi-Viterbi carrier phase estimation, C-16QAM using in coherent OFDM system has not been performed and such configuration of system may solve many problems in the next generation access networks. Here we numerically studied two separate manifestations of phase noise generated by laser linewidth and fiber nonlinear effects. We take these two kinds of phase noise into consideration separately by investigating the influence of laser linewidth with fixed launch power into transmission fiber and the influence of fiber nonlinear effects with fixed laser linewidth. We find that the C-16QAM improves the laser linewidth induced phase noise significantly and improves fiber nonlinear effects tolerance to a certain degree compared to square 16QAM. This coherent C-16QAM OFDM system may have great prospects for the next generation access networks for these significantly improvements.

  4. Nanosecond laser damage of optical multimode fibers

    Science.gov (United States)

    Mann, Guido; Krüger, Jörg

    2016-07-01

    For pulse laser materials processing often optical step index and gradient index multimode fibers with core diameters ranging from 100 to 600 μm are used. The design of a high power fiber transmission system must take into account limitations resulting from both surface and volume damage effects. Especially, breakdown at the fiber end faces and selffocusing in the fiber volume critically influence the fiber performance. At least operation charts are desirable to select the appropriate fiber type for given laser parameters. In industry-relevant studies the influence of fiber core diameter and end face preparation on laser-induced (surface) damage thresholds (LIDT) was investigated for frequently used all-silica fiber types (manufacturer LEONI). Experiments on preform material (initial fiber material) and compact specimens (models of the cladding and coating material) accompanied the tests performed in accordance with the relevant LIDT standards ISO 21254-1 and ISO 21254-2 for 1-on-1 and S-on-1 irradiation conditions, respectively. The relation beam diameter vs. LIDT was investigated for fused silica fibers. Additionally, laser-induced (bulk) damage thresholds of fused silica preform material F300 (manufacturer Heraeus) in dependence on external mechanical stress simulating fiber bending were measured. All experiments were performed with 10-ns laser pulses at 1064 and 532 nm wavelength with a Gaussian beam profile.

  5. Fiber laser development for LISA

    Energy Technology Data Exchange (ETDEWEB)

    Numata, Kenji [Department of Astronomy, University of Maryland, College Park, Maryland, 20742 (United States); Chen, Jeffrey R [NASA Goddard Space Flight Center, Laser and electro-optics branch, Code 554, Greenbelt, Maryland, 20771 (United States); Camp, Jordan, E-mail: kenji.numata@nasa.go [NASA Goddard Space Flight Center, Gravitational astrophysics branch, Code 663, Greenbelt, Maryland, 20771 (United States)

    2010-05-01

    We have developed a linearly-polarized Ytterbium-doped fiber ring laser with single longitudinal-mode output at 1064 nm for LISA and other space applications. Single longitudinal-mode selection was achieved by using a fiber Bragg grating (FBG) and a fiber Fabry-Perot (FFP). The FFP also serves as a frequency-reference within our ring laser. Our laser exhibits comparable low frequency and intensity noise to Non-Planar Ring Oscillator (NPRO). By using a fiber-coupled phase modulator as a frequency actuator, the laser frequency can be electro-optically tuned at a rate of 100 kHz. It appears that our fiber ring laser is promising for space applications where robustness of fiber optics is desirable.

  6. Fiber laser development for LISA

    CERN Document Server

    Numata, Kenji; Camp, Jordan

    2010-01-01

    We have developed a linearly-polarized Ytterbium-doped fiber ring laser with single longitudinal-mode output at 1064nm for LISA and other space applications. Single longitudinal-mode selection was achieved by using a fiber Bragg grating (FBG) and a fiber Fabry-Perot (FFP). The FFP also serves as a frequency-reference within our ring laser. Our laser exhibits comparable low frequency and intensity noise to Non-Planar Ring Oscillator (NPRO). By using a fiber-coupled phase modulator as a frequency actuator, the laser frequency can be electro-optically tuned at a rate of 100kHz. It appears that our fiber ring laser is promising for space applications where robustness of fiber optics is desirable.

  7. Fiber Laser Development for LISA

    Science.gov (United States)

    Numata, Kenji; Chen, Jeffrey R.

    2009-01-01

    We have developed a linearly-polarized Ytterbium-doped fiber ring laser with single longitudinal-mode output at 1064nm for LISA and other space applications. Single longitudinal-mode selection was achieved by using a fiber Bragg grating (FBG) and a fiber Fabry-Perot (FFP). The FFP also serves as a frequency-reference within our ring laser. Our laser exhibits comparable low frequency and intensity noise to Non-Planar Ring Oscillator (NPRO). By using a fiber-coupled phase modulator as a frequency actuator, the laser frequency can be electro-optically tuned at a rate of 100kHz. It appears that our fiber ring laser is promising for space applications where robustness of fiber optics is desirable.

  8. Visible fiber lasers excited by GaN laser diodes

    Science.gov (United States)

    Fujimoto, Yasushi; Nakanishi, Jun; Yamada, Tsuyoshi; Ishii, Osamu; Yamazaki, Masaaki

    2013-07-01

    This paper describes and discusses visible fiber lasers that are excited by GaN laser diodes. One of the attractive points of visible light is that the human eye is sensitive to it between 400 and 700 nm, and therefore we can see applications in display technology. Of course, many other applications exist. First, we briefly review previously developed visible lasers in the gas, liquid, and solid-state phases and describe the history of primary solid-state visible laser research by focusing on rare-earth doped fluoride media, including glasses and crystals, to clarify the differences and the merits of primary solid-state visible lasers. We also demonstrate over 1 W operation of a Pr:WPFG fiber laser due to high-power GaN laser diodes and low-loss optical fibers (0.1 dB/m) made by waterproof fluoride glasses. This new optical fiber glass is based on an AlF3 system fluoride glass, and its waterproof property is much better than the well known fluoride glass of ZBLAN. The configuration of primary visible fiber lasers promises highly efficient, cost-effective, and simple laser systems and will realize visible lasers with photon beam quality and quantity, such as high-power CW or tunable laser systems, compact ultraviolet lasers, and low-cost ultra-short pulse laser systems. We believe that primary visible fiber lasers, especially those excited by GaN laser diodes, will be effective tools for creating the next generation of research and light sources.

  9. Long distance high power optical laser fiber break detection and continuity monitoring systems and methods

    Energy Technology Data Exchange (ETDEWEB)

    Rinzler, Charles C.; Gray, William C.; Faircloth, Brian O.; Zediker, Mark S.

    2016-02-23

    A monitoring and detection system for use on high power laser systems, long distance high power laser systems and tools for performing high power laser operations. In particular, the monitoring and detection systems provide break detection and continuity protection for performing high power laser operations on, and in, remote and difficult to access locations.

  10. Long distance high power optical laser fiber break detection and continuity monitoring systems and methods

    Energy Technology Data Exchange (ETDEWEB)

    Rinzler, Charles C.; Gray, William C.; Faircloth, Brian O.; Zediker, Mark S.

    2016-02-23

    A monitoring and detection system for use on high power laser systems, long distance high power laser systems and tools for performing high power laser operations. In particular, the monitoring and detection systems provide break detection and continuity protection for performing high power laser operations on, and in, remote and difficult to access locations.

  11. System simulation method for fiber-based homodyne multiple target interferometers using short coherence length laser sources

    Science.gov (United States)

    Fox, Maik; Beuth, Thorsten; Streck, Andreas; Stork, Wilhelm

    2015-09-01

    Homodyne laser interferometers for velocimetry are well-known optical systems used in many applications. While the detector power output signal of such a system, using a long coherence length laser and a single target, is easily modelled using the Doppler shift, scenarios with a short coherence length source, e.g. an unstabilized semiconductor laser, and multiple weak targets demand a more elaborated approach for simulation. Especially when using fiber components, the actual setup is an important factor for system performance as effects like return losses and multiple way propagation have to be taken into account. If the power received from the targets is in the same region as stray light created in the fiber setup, a complete system simulation becomes a necessity. In previous work, a phasor based signal simulation approach for interferometers based on short coherence length laser sources has been evaluated. To facilitate the use of the signal simulation, a fiber component ray tracer has since been developed that allows the creation of input files for the signal simulation environment. The software uses object oriented MATLAB code, simplifying the entry of different fiber setups and the extension of the ray tracer. Thus, a seamless way from a system description based on arbitrarily interconnected fiber components to a signal simulation for different target scenarios has been established. The ray tracer and signal simulation are being used for the evaluation of interferometer concepts incorporating delay lines to compensate for short coherence length.

  12. Kagome fiber based industrial laser beam delivery

    Science.gov (United States)

    Maurel, M.; Gorse, A.; Beaudou, B.; Lekiefs, Q.; Chafer, M.; Debord, B.; Gérôme, F.; Benabid, F.

    2017-02-01

    We report on a Hollow Core-Photonic Crystal Fiber (HC-PCF) based high power ultra-short pulse laser beam delivery system (GLO-BDS) that combines ease-of-use, high laser-coupling efficiency, robustness and industrial compatible cabling. The GLO-BDS comprises a pre-aligned laser-injection head, a sheath cable protected HC-PCF and a modular fiber-output head. It enables fiber-core gas loading and evacuation in a hermetic fashion. 5 m long GLO-BDS were demonstrated for Yb USP laser, Ti:Sapphire laser and frequency-doubled Yb USP laser. They all exhibit a transmission coefficient larger than 80%, and a laser output profile close to single mode (M2 <1.3).

  13. Mobile fiber-optic laser Doppler anemometer.

    Science.gov (United States)

    Stieglmeier, M; Tropea, C

    1992-07-20

    A laser Doppler anemometer (LDA) has been developed that combines the compactness and low power consumption of laser diodes and avalanche photodiodes with the flexibility and possibility of miniaturization by using fiber-optic probes. The system has been named DFLDA for laser diode fiber LDA and is especially suited for mobile applications, for example, in trains, airplanes, or automobiles. Optimization considerations of fiber-optic probes are put forward and several probe examples are described in detail. Measurement results from three typical applications are given to illustrate the use of the DFLDA. Finally, a number of future configurations of the DFLDA concept are discussed.

  14. Suppresion of Self-Phase Modulation in a Laser Transfer System using Optical Fiber on the Subaru Telescope

    CERN Document Server

    Ito, Meguru; Saito, Yoshihiko; Takami, Hideki; Saito, Norihito; Akagawa, Kazuyuki; Iye, Masanori

    2012-01-01

    We are developing the Laser Guide Star Adaptive Optics (LGS/AO188) system for the Subaru Telescope at Mauna Kea, Hawaii. This system utilizes a combination of an all-solid-state mode-locked sum-frequency generation (SFG) laser (1.7-GHz bandwidth, 0.7-ns pulse width) as a light source and a single-mode optical fiber for beam transference. However, optical fibers induce nonlinear effects, especially self-phase modulation (SPM). We studied SPM in our photonic crystal fiber (PCF). SPM broadens the spectrum of a laser beam and decrease the efficiency of bright laser guide star generation. We measured the spectrum width using a spectrum analyzer. We found a spectrum width of 8.4 GHz at full width at half maximum (FWHM). The original FWHM of our laser spectrum was 1.4 GHz. This was equivalent to a 70 % loss in laser energy. We also measured the brightness of the sodium cell and evaluated its performance as a function of laser wavelength. The cell's brightness showed a peculiar tendency; specifically, it did not exti...

  15. Low-cost bidirectional hybrid fiber-visible laser light communication system based on carrier-less amplitude phase modulation

    Science.gov (United States)

    He, Jing; Dong, Huan; Deng, Rui; Chen, Lin

    2016-08-01

    We propose a bidirectional hybrid fiber-visible laser light communication (fiber-VLC) system. To reduce the cost of the system, the cheap and easy integration red vertical cavity surface emitting lasers, low-complexity carrier-less amplitude phase modulation format, and wavelength reuse technique are utilized. Meanwhile, the automatic gain control amplifier voltage and bias voltage for downlink and uplink are optimized. The simulation results show that, by using the proposed system, the bit error rate of 3.8×10-3 can be achieved for 16-Gbps CAP signal after 30-km standard single mode fiber and 8-m VLC bidirectional transmission. Therefore, it indicates the feasibility and potential of proposed system for indoor access network.

  16. High power fiber laser system for a high repetition rate laserwire

    Directory of Open Access Journals (Sweden)

    L. J. Nevay

    2014-07-01

    Full Text Available We present the development of a high power fiber laser system to investigate its suitability for use in a transverse electron beam profile monitor, i.e., a laserwire. A system capable of producing individual pulses up to 165.8±0.4  μJ at 1036 nm with a full width at half maximum of 1.92±0.12  ps at 6.49 MHz is demonstrated using a master oscillator power amplifier design with a final amplification stage in a rod-type photonic crystal fiber. The pulses are produced in trains of 1 ms in a novel burst mode amplification scheme to match the bunch pattern of the charged particles in an accelerator. This method allows pulse energies up to an order of magnitude greater than the steady-state value of 17.0±0.6  μJ to be achieved at the beginning of the burst with a demonstrated peak power of 25.8±1.7  MW after compression. The system is also shown to demonstrate excellent spatial quality with an M^{2}=1.26±0.01 in both dimensions, which would allow nearly diffraction limited focusing to be achieved.

  17. Hollow Core Optical Fiber Gas Lasers: Toward Novel and Practical Systems in Fused Silica

    Science.gov (United States)

    2017-05-18

    Nampoothiri, University of New Mexico Fetah Benabid, GPPMM group, Xlim, CNRS Research Institute, Limoges, France Project Summary/Abstract Abstract (>500...Kagome lattice fiber has been demonstrated: 8 dB/km at 1 um. Furthermore, we have pushed the state-of-the art in tubular lattice fiber; a loss of...Laser, University of New Mexico .................................................................................. 4  E.2.  Acetylene HOFGLAS, Kansas

  18. LIBS system with compact fiber spectrometer, head mounted spectra display and hand held eye-safe erbium glass laser gun

    Science.gov (United States)

    Myers, Michael J.; Myers, John D.; Sarracino, John T.; Hardy, Christopher R.; Guo, Baoping; Christian, Sean M.; Myers, Jeffrey A.; Roth, Franziska; Myers, Abbey G.

    2010-02-01

    LIBS (Laser Induced Breakdown Spectroscopy) systems are capable of real-time chemical analysis with little or no sample preparation. A Q-switched laser is configured such that laser induced plasma is produced on targeted material. Chemical element line spectra are created, collected and analyzed by a fiber spectrometer. Line spectra emission data is instantly viewed on a head mounted display. "Eye-safe" Class I erbium glass lasers provide for insitu LIBS applications without the need for eye-protection goggles. This is due to the fact that Megawatt peak power Q-switched lasers operating in the narrow spectral window between 1.5um and 1.6um are approximately 8000 times more "eye-safe" than other laser devices operating in the UV, visible and near infrared. In this work we construct and demonstrate a LIBS system that includes a hand held eye-safe laser gun. The laser gun is fitted with a micro-integrating sphere in-situ target interface and is designed to facilitate chemical analysis in remote locations. The laser power supply, battery pack, computer controller and spectrophotometer components are packaged into a utility belt. A head mounted display is employed for "hands free" viewing of the emitted line spectra. The system demonstrates that instant qualitative and semi-quantitative chemical analyses may be performed in remote locations utilizing lightweight commercially available system components ergonomically fitted to the operator.

  19. Fiber laser performance in industrial applications

    Science.gov (United States)

    McCulloch, S.; Hassey, A.; Harrison, P.

    2013-02-01

    Fiber lasers are competing with the traditional CO2 Laser, Plasma, Water Jet and Press Punch technology. This paper concentrates on the drivers behind the progress that cutting and welding market. Thin metal cutting in this case is defined as below 4mm and the dominant technology has been the Press Punch for higher quality, large volume components and Plasma for lower quality, small quantities. Up until the fiber lasers were commercially available many machine manufacturers were deterred from incorporating lasers due to the technical barriers posed by the lasers available at that time. In particular fiber laser requires no maintenance does not necessitate a beam path to be aligned and kept free of contaminant so have encouraged many traditionally non-laser machine builders to integrate fiber sources into a variety of applications and push the performance envelope. All of the components to build a fibre laser cutting or welding system are now available "off-the shelf" which is even allowing end users to design and build their own systems directly in production environments.

  20. Multi-watt 589nm fiber laser source

    Energy Technology Data Exchange (ETDEWEB)

    DAWSON, J W; DROBSHOFF, A D; BEACH, R J; MESSERLY, M J; PAYNE, S A; BROWN, A; PENNINGTON, D M; BAMFORD, D J; SHARPE, S J; COOK, D J

    2006-01-19

    We have demonstrated 3.5W of 589nm light from a fiber laser using periodically poled stoichiometric Lithium Tantalate (PPSLT) as the frequency conversion crystal. The system employs 938nm and 1583nm fiber lasers, which were sum-frequency mixed in PPSLT to generate 589nm light. The 938nm fiber laser consists of a single frequency diode laser master oscillator (200mW), which was amplified in two stages to >15W using cladding pumped Nd{sup 3+} fiber amplifiers. The fiber amplifiers operate at 938nm and minimize amplified spontaneous emission at 1088nm by employing a specialty fiber design, which maximizes the core size relative to the cladding diameter. This design allows the 3-level laser system to operate at high inversion, thus making it competitive with the competing 1088nm 4-level laser transition. At 15W, the 938nm laser has an M{sup 2} of 1.1 and good polarization (correctable with a quarter and half wave plate to >15:1). The 1583nm fiber laser consists of a Koheras 1583nm fiber DFB laser that is pre-amplified to 100mW, phase modulated and then amplified to 14W in a commercial IPG fiber amplifier. As a part of our research efforts we are also investigating pulsed laser formats and power scaling of the 589nm system. We will discuss the fiber laser design and operation as well as our results in power scaling at 589nm.

  1. Gain-switched all-fiber laser with narrow bandwidth

    DEFF Research Database (Denmark)

    Larsen, Casper; Giesberts, M.; Nyga, S.;

    2013-01-01

    Gain-switching of a CW fiber laser is a simple and cost-effective approach to generate pulses using an all-fiber system. We report on the construction of a narrow bandwidth (below 0.1 nm) gain-switched fiber laser and optimize the pulse energy and pulse duration under this constraint. The extracted...

  2. Erbium 3-µm fiber lasers

    NARCIS (Netherlands)

    Pollnau, Markus; Jackson, Stuart D.

    2001-01-01

    With its recent breakthrough in terms of output power, the erbium 3- mfiber laser has become an object of intense scientific research and an increasingly attractive tool for medical applications. This paper reviews the research on the erbium 3-um fiber laser since its first demonstration. Its develo

  3. Novel Applications of Chirp Managed Laser in Optical Fiber Communication Systems

    Science.gov (United States)

    Jia, Wei

    Nowadays, with the dramatically growing bandwidth requirement of Internet, the number of wavelength division multiplexing (WDM) channels of the optical fiber communication systems is increasing rapidly. Hence, optical transmitters with cost effectiveness, high power efficiency, and excellent transmission performance are necessary. Especially, for access and metropolitan applications, simple configuration is the essential factor. The conventional optical transmitter is composed of a laser as continuous-wave (CW) source and one or more external modulators for modulation. However, the high insertion loss, large driving voltage, and extra cost of external modulator make it relatively bulky and power-hungry. Chirp managed laser (CML), comprising a directly modulated semiconductor laser (DML) and a passive optical filter, is an alternative promising transmitter candidate. It has the merits of smaller device size, lower cost, less power consumption, and higher fiber chromatic dispersion (CD) tolerance, compared with that based on external modulator. In this thesis, we have investigated several novel applications of CML in optical fiber communication systems, taking advantage of its unique phase modulating and spectral reshaping properties. These topics include optical return-to-zero (RZ) pulses generation using CML, M-ary RZ differential phase-shift-keying (RZ-DPSK) signals generation using CML, and enhanced CD tolerance of CML with pre-emphasis. These CML-based designs consume low power for less electrical pre-coding, require reduced or no external modulator, and show notable transmission performances. Optical RZ pulses generation using CML: RZ pulses have been widely used in optical fiber communication systems together with on-off-keying (OOK) and DPSK modulation formats, for its high robustness towards inter symbol interference (ISI) and nonlinear distortions. In this thesis, we propose and experimentally demonstrate the technique of 10-Gb/s optical RZ pulses

  4. Ho:YLF Laser Pumped by TM:Fiber Laser

    Directory of Open Access Journals (Sweden)

    Mizutani Kohei

    2016-01-01

    Full Text Available A 2-micron Ho:YLF laser end-pumped by 1.94-micron Tm:fiber laser is described. A ring resonator of 3m length is adopted for the oscillator. The laser is a master oscillator and an amplifier system. It is operated at high repetition rate of 200-5000 Hz in room temperature. The laser outputs were about 9W in CW and more than 6W in Q-switched operation. This laser was developed to be used for wind and CO2 measurements.

  5. Compact Ultra-Wideband Optical Frequency Comb Fiber Laser Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Based on our success in developing the world first commercial 10 W femtosecond fiber laser system and our leading technology development in ultrashort pulsed fiber...

  6. Analysis of Laser & Detector Placement in MIMO Multimode Optical Fiber Systems

    CERN Document Server

    Appaiah, Kumar; Vishwanath, Sriram; Bank, Seth R

    2011-01-01

    Multimode fibers (MMFs) offer a cost-effective connection solution for small and medium length networks. However, data rates through multimode fibers are traditionally limited by modal dispersion. Signal processing and Multiple-Input Multiple-Output (MIMO) have been shown to be effective at combating these limitations, but device design for the specific purpose of MIMO in MMFs is still an open issue. This paper utilizes a statistical field propagation model for MMFs to aid the analysis and designs of MMF laser and detector arrays, and aims to improve data rates of the fiber. Simulations reveal that optimal device designs could possess 2-3 times the data carrying capacity of suboptimal ones.

  7. All-passive phase locking of a compact Er:fiber laser system.

    Science.gov (United States)

    Krauss, Günther; Fehrenbacher, David; Brida, Daniele; Riek, Claudius; Sell, Alexander; Huber, Rupert; Leitenstorfer, Alfred

    2011-02-15

    A passively phase-locked laser source based on compact femtosecond Er:fiber technology is introduced. The carrier-envelope offset frequency is set to zero via difference frequency generation between a soliton at a wavelength of 2 μm and a dispersive wave at 860 nm generated in the same highly nonlinear fiber. This process results in a broadband output centered at 1.55 μm. Subsequently, the 40 MHz pulse train seeds a second Er:fiber amplifier, which boosts the pulse energy up to 8 nJ at a duration of 125 fs. Excellent phase stability is demonstrated via f-to-2f spectral interferometry.

  8. Photonic crystal fibers for supercontinuum generation pumped by a gain-switched CW fiber laser

    DEFF Research Database (Denmark)

    Larsen, Casper; Noordegraaf, Danny; Hansen, Kim P.

    2012-01-01

    Supercontinuum generation in photonics crystal fibers (PCFs) pumped by CW lasers yields high spectral power density and average power. However, such systems require very high pump power and long nonlinear fibers. By on/off modulating the pump diodes of the fiber laser, the relaxation oscillations...

  9. Ultrafast fiber lasers for homeland security

    Science.gov (United States)

    Okhotnikov, O. G.

    2005-09-01

    Detecting weapons concealed underneath clothing, analyzing the contents of suspicious-looking envelopes, or even spotting the onset of cancer: these are just some of the exciting prospects that have been turning terahertz wave research into one of the most important topics in photonics. Most broadband pulsed THz sources are based on the excitation of different materials with ultrashort laser pulses. So far, generation of tunable narrow-band THz radiation has been demonstrated using ultrafast solid state lasers as a source of high-intensity optical pulses. The lack of a high-power, low-cost, portable room-temperature THz source is the most significant limitation of modern THz systems. Advances in fiber laser technology can be used to further the capabilities of the homeland security. Using semiconductor saturable absorber mirrors allows for reliable mode-locked operation with different values of cavity dispersion in a broad spectrum ranged from 900 to 1600 nm. Semiconductor saturable absorbers mirrors have been used successfully to initiate and to sustain mode-locking in a wide range of core-pumped fiber lasers. The main advantage of the semiconductor saturable absorber mirrors (SESAM) is the possibility to control important parameters such as absorption recovery time, saturation fluence and modulation depth through the device design, growth conditions and post-growth processing. The SESAM as a cavity mirror in the fiber laser results in compact size, environmentally stable and simple ultrashort pulse lasers that can cover wide wavelength range and generate optical pulses with durations from picoseconds to femtoseconds. Employing SESAM technology for mode-locking, the double-clad fiber laser promises superior pulse quality, high stability and pulse energy without need for power booster that eventually degrades the pulse quality due to nonlinear distortions in the amplifier fiber. We give an overview of recent achievements in ultrafast fiber lasers; discuss basic

  10. Supercontinuum generation employing the high-energy wave-breaking-free pulse in a compact all-fiber laser system

    Science.gov (United States)

    Wang, L. R.; Liu, X. M.; Gong, Y. K.; Mao, D.; Duan, L. N.

    2011-10-01

    Supercontinuum (SC) generation is experimentally achieved in a compact all-fiber laser system by using high-energy wave-breaking-free dissipative soliton (DS) pulses. The pulses exhibit Gaussian (rectangular) shape profiles in spectral (temporal) domain, which is even reversed of the typical rectangular-spectrum DSs. With the increase of pump power the pulse duration enlarges dramatically whereas the bandwidth and peak power of the pulse keep almost constant, which enables the pulse to accumulate much higher energy during the pulse-shaping process. When inputting the amplified pulse into the single-mode fiber, SC with excellent flatness is generated with the spectral range from about 1550 to 1700 nm. Broader SC with the bandwidth of even larger than 1000 nm can also be generated by this kind of pulse in the near-zero-dispersion-flattened photonic-crystal fiber through strong nonlinear effects.

  11. Germanate Glass Fiber Lasers for High Power

    Science.gov (United States)

    2016-01-04

    evidence of crystallisation after thermal cycling, and is of a low enough loss to realize a fiber laser. The glass stability is demonstrated by...2low-loss fiber can be realized . 15. SUBJECT TERMS Germanate fiber Laser, Fiber Laser, Structured Fiber 16. SECURITY CLASSIFICATION OF: 17. LIMITATION...the profile of bare fibres and the loss value at 630 matches with the spot loss measurement done by Naveed. DISTRIBUTION A: Distribution

  12. Advanced ultrafast fiber laser sources enabled by fiber nonlinearities

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Wei

    2017-05-15

    Development of high power/energy ultrafast fiber lasers for scientific research and industrial applications is one of the most exciting fields in ultrafast optics. This thesis demonstrated new means to improve two essential properties - which are indispensable for novel applications such as high-harmonic generation (HHG) and multiphoton microscopy (MPM) - of an ultrafast fiber laser system: energy scaling capability and wavelength tunability. High photon-flux extreme ultraviolet sources enabled by HHG desire high power (>100 W), high repetition-rate (>1 MHz) ultrafast driving laser sources. We have constructed from scratch a high-power Yb-fiber laser system using the well-known chirped-pulse amplification (CPA) technique. Such a CPA system capable of producing ∝200-W average power consists of a monolithic Yb-fiber oscillator, an all-fiber stretcher, a pre-amplifier chain, a main amplifier constructed from rode-type large pitch fiber, and a diffraction-grating based compressor. To increase the HHG efficiency, ultrafast pulses with duration <60 fs are highly desired. We proposed and demonstrated a novel amplification technique, named as pre-chirp managed amplification (PCMA). We successfully constructed an Yb-fiber based PCMA system that outputs 75-MHz spectrally broadened pulses with >130-W average power. The amplified pulses are compressed to 60-fs pulses with 100-W average power, constituting a suitable HHG driving source. MPM is a powerful biomedical imaging tool, featuring larger penetration depth while providing the capability of optical sectioning. Although femtosecond solid-state lasers have been widely accepted as the standard option as MPM driving sources, fiber-based sources have received growing research efforts due to their superior performance. In the second part of this thesis, we both theoretically and experimentally demonstrated a new method of producing wavelength widely tunable femtosecond pulses for driving MPM. We employed self-phase modulation

  13. Innovations in high power fiber laser applications

    Science.gov (United States)

    Beyer, Eckhard; Mahrle, Achim; Lütke, Matthias; Standfuss, Jens; Brückner, Frank

    2012-02-01

    Diffraction-limited high power lasers represent a new generation of lasers for materials processing, characteristic traits of which are: smaller, cost-effective and processing "on the fly". Of utmost importance is the high beam quality of fiber lasers which enables us to reduce the size of the focusing head incl. scanning mirrors. The excellent beam quality of the fiber laser offers a lot of new applications. In the field of remote cutting and welding the beam quality is the key parameter. By reducing the size of the focusing head including the scanning mirrors we can reach scanning frequencies up to 1.5 kHz and in special configurations up to 4 kHz. By using these frequencies very thin and deep welding seams can be generated experienced so far with electron beam welding only. The excellent beam quality of the fiber laser offers a high potential for developing new applications from deep penetration welding to high speed cutting. Highly dynamic cutting systems with maximum speeds up to 300 m/min and accelerations up to 4 g reduce the cutting time for cutting complex 2D parts. However, due to the inertia of such systems the effective cutting speed is reduced in real applications. This is especially true if complex shapes or contours are cut. With the introduction of scanner-based remote cutting systems in the kilowatt range, the effective cutting speed on the contour can be dramatically increased. The presentation explains remote cutting of metal foils and sheets using high brightness single mode fiber lasers. The presentation will also show the effect of optical feedback during cutting and welding with the fiber laser, how those feedbacks could be reduced and how they have to be used to optimize the cutting or welding process.

  14. Nonlinear frequency conversion in fiber lasers

    DEFF Research Database (Denmark)

    Svane, Ask Sebastian

    The concept of nonlinear frequency conversion entails generating light at new frequencies other than those of the source light. The emission wavelength of typical fiber laser systems, relying on rare-earth dopants, are constrained within specific bands of the infrared region. By exploiting...... nonlinear processes, light from these specific wavelength bands can be used to generate light at new frequencies otherwise not obtainable by rare-earth elements. This thesis describes work covering Raman fiber lasers (RFLs) and amplifiers for nonlinear frequency down-conversion, and also the method...

  15. Diode Pumped Fiber Laser

    Science.gov (United States)

    1983-07-01

    numerical aperture is assumed to be small, the fiber modes are taken to be of the LP-type, described for example by Marcuse (Reference 11). In an (x...Fort Washington, PA. 11. D. Marcuse in Theory of Dielectric Optical Waveguides, Quantum Electronics, Principles and Applications, (Academic...10, 2252-2258, October 1971. 17. D. Marcuse , "Gaussian approximation of the fundamental modes of graded- index fibers," J. Opt. Soc. Am., Vol

  16. All fiber passively Q-switched laser

    Science.gov (United States)

    Soh, Daniel B. S.; Bisson, Scott E

    2015-05-12

    Embodiments relate to an all fiber passively Q-switched laser. The laser includes a large core doped gain fiber having a first end. The large core doped gain fiber has a first core diameter. The laser includes a doped single mode fiber (saturable absorber) having a second core diameter that is smaller than the first core diameter. The laser includes a mode transformer positioned between a second end of the large core doped gain fiber and a first end of the single mode fiber. The mode transformer has a core diameter that transitions from the first core diameter to the second core diameter and filters out light modes not supported by the doped single mode fiber. The laser includes a laser cavity formed between a first reflector positioned adjacent the large core doped gain fiber and a second reflector positioned adjacent the doped single mode fiber.

  17. Efficient Tm-Fiber-Pumped Ho:YLF Laser System for Coherent LIDAR Applications Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The primary objective of the proposed Phase II program is to develop and deliver a ruggedized, compact single-frequency 2050-nm-laser system suitable for coherent...

  18. All-Fiber Configuration Laser Self-Mixing Doppler Velocimeter Based on Distributed Feedback Fiber Laser.

    Science.gov (United States)

    Wu, Shuang; Wang, Dehui; Xiang, Rong; Zhou, Junfeng; Ma, Yangcheng; Gui, Huaqiao; Liu, Jianguo; Wang, Huanqin; Lu, Liang; Yu, Benli

    2016-07-27

    In this paper, a novel velocimeter based on laser self-mixing Doppler technology has been developed for speed measurement. The laser employed in our experiment is a distributed feedback (DFB) fiber laser, which is an all-fiber structure using only one Fiber Bragg Grating to realize optical feedback and wavelength selection. Self-mixing interference for optical velocity sensing is experimentally investigated in this novel system, and the experimental results show that the Doppler frequency is linearly proportional to the velocity of a moving target, which agrees with the theoretical analysis commendably. In our experimental system, the velocity measurement can be achieved in the range of 3.58 mm/s-2216 mm/s with a relative error under one percent, demonstrating that our novel all-fiber configuration velocimeter can implement wide-range velocity measurements with high accuracy.

  19. High Power Fiber Lasers

    Science.gov (United States)

    2012-08-02

    Optics, Information and Photonics, University of Erlangen- Nuremberg , Germany, June 2007. INVITED 14. A. Siegman, “Index Antiguided Optical Fibers and...Lasers” seminar given at the Institute for Optics, Information and Photonics, University of Erlangen- Nuremberg , Germany, June 2007. INVITED 14. A

  20. Green and ultraviolet pulse generation with a compact, fiber laser, chirped-pulse amplification system for aerosol fluorescence measurements

    Science.gov (United States)

    Lou, Janet W.; Currie, Marc; Sivaprakasam, Vasanthi; Eversole, Jay D.

    2010-10-01

    We use a compact chirped-pulse amplified system to harmonically generate ultrashort pulses for aerosol fluorescence measurements. The seed laser is a compact, all-normal dispersion, mode-locked Yb-doped fiber laser with a 1050 nm center wavelength operating at 41 MHz. Average powers of more than 1.2 W at 525 nm and 350 mW at 262 nm are generated with biofluorescence measurements as it allows faster sampling rates as well as the higher peak powers as compared to previously demonstrated Q-switched systems while maintaining a pulse period that is longer than the typical fluorescence lifetimes. Thus, the fluorescence excitation can be considered to be quasicontinuous and requires no external synchronization and triggering.

  1. Superluminescent diode versus Fabry-Perot laser diode seeding in pulsed MOPA fiber laser systems for SBS suppression

    Science.gov (United States)

    Melo, M.; Sousa, J. M.; Salcedo, J. R.

    2015-03-01

    We demonstrate the use of a pulsed superluminescent diode (SLD) through direct current injection modulation as seeding source in a master oscillator power amplifier (MOPA) configuration when compared to a Fabry-Perot (FP) laser diode in the same system. The performance limitations imposed by the use of the Fabry-Perot lasers, caused by the backward high peak power pulses triggered due to stimulated Brillouin scattering (SBS) are not observed in the case of the SLD. Compared to conventional Fabry-Perot laser diodes, the SLD provides a smooth and broad output spectrum which is independent of the input pulse parameters. Moreover, the spectrum can be sliced and tailored to the application. Thus, free SBS operation is shown when using the SLD seeder in the same system, allowing for a significant increase on the extractable power and energy.

  2. The truth about laser fiber diameters.

    Science.gov (United States)

    Kronenberg, Peter; Traxer, Olivier

    2014-12-01

    To measure the various diameters of laser fibers from various manufacturers and compare them with the advertised diameter. Fourteen different unused laser fibers from 6 leading manufacturers with advertised diameters of 200, 270, 272, 273, 365, and 400 μm were measured by light microscopy. The outer diameter (including the fiber coating, cladding, and core), cladding diameter (including the cladding and the fiber core), and core diameter were measured. Industry representatives of the manufacturers were interviewed about the diameter of their fibers. For all fibers, the outer and cladding diameters differed significantly from the advertised diameter (P cladding, and core diameters of fibers with equivalent advertised diameters differed by up to 180, 100, and 78 μm, respectively. Some 200-μm fibers had larger outer diameters than the 270- to 273-μm fibers. All packaging material and all laser fibers lacked clear and precise fiber diameter information labels. Of 12 representatives interviewed, 8, 3, and 1 considered the advertised diameter to be the outer, the cladding, and the core diameter, respectively. Representatives within the same company frequently gave different answers. This study suggests that, at present, there is a lack of uniformity between laser fiber manufacturers, and most of the information conveyed to urologists regarding laser fiber diameter may be incorrect. Because fibers larger than the advertised laser fibers are known to influence key interventional parameters, this misinformation can have surgical repercussions. Copyright © 2014 Elsevier Inc. All rights reserved.

  3. Recent development on high-power tandem-pumped fiber laser

    Science.gov (United States)

    Zhou, Pu; Xiao, Hu; Leng, Jinyong; Zhang, Hanwei; Xu, Jiangmin; Wu, Jian

    2016-11-01

    High power fiber laser is attracting more and more attention due to its advantage in excellent beam quality, high electricto- optical conversion efficiency and compact system configuration. Power scaling of fiber laser is challenged by the brightness of pump source, nonlinear effect, modal instability and so on. Pumping active fiber by using high-brightness fiber laser instead of common laser diode may be the solution for the brightness limitation. In this paper, we will present the recent development of various kinds of high power fiber laser based on tandem pumping scheme. According to the absorption property of Ytterbium-doped fiber, Thulium-doped fiber and Holmium-doped fiber, we have theoretically studied the fiber lasers that operate at 1018 nm, 1178 nm and 1150 nm, respectively in detail. Consequently, according to the numerical results we have optimized the fiber laser system design, and we have achieved (1) 500 watt level 1018nm Ytterbium-doped fiber laser (2) 100 watt level 1150 nm fiber laser and 100 watt level random fiber laser (3) 30 watt 1178 nm Ytterbium-doped fiber laser, 200 watt-level random fiber laser. All of the above-mentioned are the record power for the corresponded type of fiber laser to the best of our knowledge. By using the high-brightness fiber laser operate at 1018 nm, 1178 nm and 1150 nm that we have developed, we have achieved the following high power fiber laser (1) 3.5 kW 1090 nm Ytterbium-doped fiber amplifier (2) 100 watt level Thulium-doped fiber laser and (3) 50 watt level Holmium -doped fiber laser.

  4. Lasers and optical fibers in medicine

    CERN Document Server

    Katzir, Abraham

    1993-01-01

    The increasing use of fiber optics in the field of medicine has created a need for an interdisciplinary perspective of the technology and methods for physicians as well as engineers and biophysicists. This book presents a comprehensive examination of lasers and optical fibers in an hierarchical, three-tier system. Each chapter is divided into three basic sections: the Fundamentals section provides an overview of basic concepts and background; the Principles section offers an in-depth engineering approach; and the Advances section features specific information on systems an

  5. An 11.6 W output, 6 kHz linewidth, single-polarization EDFA-MOPA system with a (13)C(2)H(2) frequency stabilized fiber laser.

    Science.gov (United States)

    Fujisaki, Akira; Matsushita, Shunichi; Kasai, Keisuke; Yoshida, Masato; Hirooka, Toshihiko; Nakazawa, Masataka

    2015-01-26

    We demonstrate a record high CW output power of 11.6 W and an ultra-narrow linewidth of 6 kHz in an all-fiber master oscillator and power amplifier (MOPA) fiber laser system. The master oscillator is a (13)C(2)H(2) frequency-stabilized single-polarization fiber laser with a 100 mW output. The power amplifier section consists of a core-pumped polarization-maintained erbium-doped fiber pumped by a 1480 nm cascaded Raman fiber laser. A total electric-to-optical conversion efficiency with a record high value of 12% was achieved with an all-fiber configuration.

  6. 10 Watts Double-Cladding Fiber Laser

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    Considering the wavelength characteristics of the pump high-power laser diode, a modified Fabry-Perot fiber laser resonator is designed. And a fiber laser with more than 10Watts output, near diffraction-limited and operating in the 1110nm region is developed.

  7. A precision fiber bragg grating interrogation system using long-wavelength vertical-cavity surface-emitting laser

    Science.gov (United States)

    Hu, Binxin; Jin, Guangxian; Liu, Tongyu; Wang, Jinyu

    2016-09-01

    This paper presents the development of a cost-effective precision fiber Bragg grating (FBG) interrogation system using long-wavelength vertical-cavity surface-emitting laser (VCSEL). Tuning properties of a long-wavelength VCSEL have been studied experimentally. An approximately quadratic dependence of its wavelength on the injection current has been observed. The overall design and key operations of this system including intensity normalization, peak detection, and quadratic curve fitting are introduced in detail. The results show that the system achieves an accuracy of 1.2 pm with a tuning range of 3 nm and a tuning rate of 1 kHz. It is demonstrated that this system is practical and effective by applied in the FBG transformer temperature monitoring.

  8. Handheld nonlinear microscope system comprising a 2 MHz repetition rate, mode-locked Yb-fiber laser for in vivo biomedical imaging.

    Science.gov (United States)

    Krolopp, Ádám; Csákányi, Attila; Haluszka, Dóra; Csáti, Dániel; Vass, Lajos; Kolonics, Attila; Wikonkál, Norbert; Szipőcs, Róbert

    2016-09-01

    A novel, Yb-fiber laser based, handheld 2PEF/SHG microscope imaging system is introduced. It is suitable for in vivo imaging of murine skin at an average power level as low as 5 mW at 200 kHz sampling rate. Amplified and compressed laser pulses having a spectral bandwidth of 8 to 12 nm at around 1030 nm excite the biological samples at a ~1.89 MHz repetition rate, which explains how the high quality two-photon excitation fluorescence (2PEF) and second harmonic generation (SHG) images are obtained at the average power level of a laser pointer. The scanning, imaging and detection head, which comprises a conventional microscope objective for beam focusing, has a physical length of ~180 mm owing to the custom designed imaging telescope system between the laser scanner mirrors and the entrance aperture of the microscope objective. Operation of the all-fiber, all-normal dispersion Yb-fiber ring laser oscillator is electronically controlled by a two-channel polarization controller for Q-switching free mode-locked operation. The whole nonlinear microscope imaging system has the main advantages of the low price of the fs laser applied, fiber optics flexibility, a relatively small, light-weight scanning and detection head, and a very low risk of thermal or photochemical damage of the skin samples.

  9. Fiber-Coupled Planar Light-Wave Circuit for Seed Laser Control in High Spectral Resolution Lidar Systems

    Science.gov (United States)

    Cook, Anthony; McNeil, Shirley; Switzer, Gregg; Battle, Philip

    2010-01-01

    Precise laser remote sensing of aerosol extinction and backscatter in the atmosphere requires a high-power, pulsed, frequency doubled Nd:YAG laser that is wavelength- stabilized to a narrow absorption line such as found in iodine vapor. One method for precise wavelength control is to injection seed the Nd:YAG laser with a low-power CW laser that is stabilized by frequency converting a fraction of the beam to 532 nm, and to actively frequency-lock it to an iodine vapor absorption line. While the feasibility of this approach has been demonstrated using bulk optics in NASA Langley s Airborne High Spectral Resolution Lidar (HSRL) program, an ideal, lower cost solution is to develop an all-waveguide, frequency-locked seed laser in a compact, robust package that will withstand the temperature, shock, and vibration levels associated with airborne and space-based remote sensing platforms. A key technology leading to this miniaturization is the integration of an efficient waveguide frequency doubling element, and a low-voltage phase modulation element into a single, monolithic, planar light-wave circuit (PLC). The PLC concept advances NASA's future lidar systems due to its compact, efficient and reliable design, thus enabling use on small aircraft and satellites. The immediate application for this technology is targeted for NASA Langley's HSRL system for aerosol and cloud characterization. This Phase I effort proposes the development of a potassium titanyl phosphate (KTP) waveguide phase modulator for future integration into a PLC. For this innovation, the proposed device is the integration of a waveguide-based frequency doubler and phase modulator in a single, fiber pigtail device that will be capable of efficient second harmonic generation of 1,064-nm light and subsequent phase modulation of the 532 nm light at 250 MHz, providing a properly spectrally formatted beam for HSRL s seed laser locking system. Fabrication of the integrated PLC chip for NASA Langley, planned for

  10. Fiber lasers and their applications [Invited].

    Science.gov (United States)

    Shi, Wei; Fang, Qiang; Zhu, Xiushan; Norwood, R A; Peyghambarian, N

    2014-10-01

    Fiber lasers have seen progressive developments in terms of spectral coverage and linewidth, output power, pulse energy, and ultrashort pulse width since the first demonstration of a glass fiber laser in 1964. Their applications have extended into a variety of fields accordingly. In this paper, the milestones of glass fiber laser development are briefly reviewed and recent advances of high-power continuous wave, Q-switched, mode-locked, and single-frequency fiber lasers in the 1, 1.5, 2, and 3 μm regions and their applications in such areas as industry, medicine, research, defense, and security are addressed in detail.

  11. Continuously tunable wideband semiconductor fiber-ring laser

    Science.gov (United States)

    Mao, Xuefeng; Zhao, Shiwei; Yuan, Suzhen; Wang, Xiaofa; Zheng, Peichao

    2017-08-01

    We demonstrate a wideband tunable semiconductor fiber-ring laser that can be continuously tuned from 1498 nm to 1623 nm. The proposed laser uses a semiconductor optical amplifier (SOA) as a gain medium and a fiber Fabry-Perot tunable filter as a selective wavelength filter. The optimized drive current of the SOA and the output coupling ratio are obtained by experimental research. This laser has a simple configuration, low threshold, flat laser output power and high optical signal-to-noise ratio.

  12. Progress in Cherenkov femtosecond fiber lasers

    DEFF Research Database (Denmark)

    Liu, Xiaomin; Svane, Ask Sebastian; Lægsgaard, Jesper

    2016-01-01

    systems are highlighted—dependent on the realization scheme, the Cherenkov lasers can generate the femtosecond output tunable across the entire visible and even the UV range, and for certain designs more than 40% conversion efficiency from the pump to Cherenkov signal can be achieved. The femtosecond...... Cherenkov laser with all-fiber architecture is presented and discussed. Operating in the visible range, it delivers 100–200 fs wavelength-tunable pulses with multimilliwatt output power and exceptionally low noise figure an order of magnitude lower than the traditional wavelength tunable supercontinuumbased...

  13. Tandem-pumped 1120-nm actively Q-switched fiber laser

    Institute of Scientific and Technical Information of China (English)

    王建华; 胡金萌; 张世强; 陈露璐; 房勇; 冯衍

    2015-01-01

    We report on a tandem-pumped actively Q-switched fiber laser system emitting at 1120 nm. Parasitic oscillation is challenging in Yb-doped Q-switched 1120-nm fiber laser, which is suppressed by pumping with a fiber laser at 1018 nm. At least 4 times improvement in output peak power is demonstrated in a single laser setup with 1018-nm fiber laser pumping instead of 976-nm laser diode pumping. This is, to the best of our knowledge, the first demonstration of a tandem-pumped Q-switched fiber laser.

  14. Laser-jamming analysis of combined fiber lasers to imaging CCD

    Science.gov (United States)

    Jie, Xu; Shanghong, Zhao; Rui, Hou; Xiaoliang, Li; Jili, Wu; Yunxia, Li; Wen, Meng; Yanhui, Ni; Lihua, Ma

    2009-07-01

    To complete a successful laser jamming to imaging charge coupled device (CCD) based on combined fiber lasers, the interactions between CCD and combined fiber lasers were analyzed in detail. The saturation and crosstalk thresholds of CCD were achieved, which are lower than 10 mW/cm 2. Through theoretical analysis and numerical simulations, the thermal processes under single pulse, multi-pulses and continuous laser irradiations were developed. The simulation results have proved the possibility of hard damage caused by multi-pulses and continuous laser irradiations. The combined fiber lasers is suitable to deploy optical saturation jamming at present. The further applications of combined fiber lasers need a more powerful laser source and a more accurate tracking and pointing system.

  15. Silver Halide Fibers For Surgical Applications Of CO2 Laser

    Science.gov (United States)

    Gal, Dov; Eldar, Michael; Valden, Refael; Batler, Alexander; Neufeld, Henry N.; Gaton, Edith; Volman, Moshe; Akselrod, Solange; Levite, Arie; Katzir, Abraham

    1984-10-01

    Carbon dioxide laser energy was used for the dissolution of atheromatous plaques. Delivery system was based on a AgCl:AgBr fiber which was inserted in a loose teflon tube. The system was used to vaporize human plaques in vitro as well as blocked human arteries which were transplanted in dogs. Preliminary results indicate that a system based on a CO2 laser and an infrared transmitting fiber may be useful in cardiology.

  16. PM Raman fiber laser at 1679 nm

    DEFF Research Database (Denmark)

    Svane, Ask Sebastian; Rottwitt, Karsten

    2012-01-01

    We demonstrate a PM Raman fiber laser emitting light at 1679 nm. The laser has an slope efficiency of 67 % and an output power of more than 275mWwith a 27 pm linewidth.......We demonstrate a PM Raman fiber laser emitting light at 1679 nm. The laser has an slope efficiency of 67 % and an output power of more than 275mWwith a 27 pm linewidth....

  17. Theory of a random fiber laser

    Energy Technology Data Exchange (ETDEWEB)

    Kolokolov, I. V., E-mail: kolokolov@itp.ac.ru; Lebedev, V. V., E-mail: lebede@itp.ac.ru [Russian Academy of Sciences, Landau Institute for Theoretical Physics (Russian Federation); Podivilov, E. V. [Siberian Branch of Russian Academy of Sciences, Institute of Automation and Electrometry (Russian Federation); Vergeles, S. S. [Russian Academy of Sciences, Landau Institute for Theoretical Physics (Russian Federation)

    2014-12-15

    We develop the theory explaining the role of nonlinearity in generation of radiation in a fiber laser that is pumped by external light. The pumping energy is converted into the generating signal due to the Raman scattering supplying an effective gain for the signal. The signal is generated with frequencies near the one corresponding to the maximum value of the gain. Generation conditions and spectral properties of the generated signal are examined. We focus mainly on the case of a random laser where reflection of the signal occurs on impurities of the fiber. From the theoretical standpoint, kinetics of a wave system close to an integrable one are investigated. We demonstrate that in this case, the perturbation expansion in the kinetic equation has to use the closeness to the integrable case.

  18. Erbium doped random fiber laser and fiber mixing effect

    OpenAIRE

    Yao, Can; Thévenaz, Luc; Brès, Camille Sophie

    2017-01-01

    We demonstrate an active random fiber laser by directly pumping a 100 m erbium-doped fiber at 980 nm wavelength, with a fiber loop mirror forming a half-open cavity. Random lasing with competing spectral modes in the range from 1535 nm to 1560 nm is achieved, with the maximum lasing slope efficiency around 10%. We also study the effect of combining a dispersion compensated fiber with the erbium-doped fiber. The kilometers long dispersion compensated fiber reduces the random lasing threshold a...

  19. Efficient Tm-Fiber-Pumped Ho:YLF Laser System for Coherent LIDAR Applications Project

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose to employ a recently developed, efficient, high-power, heavily-doped Tm:silica-fiber technology as a high-gain fiber pre-amplifier and as a...

  20. Multi-function Fiber Laser Kinetic Aviation Hazard Sensor Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Fibertek proposes a multi-function, high energy, eye-safe 1550 nm band pulsed fiber-laser lidar system for airborne sensing of various kinetic aviation hazards. The...

  1. Moldable AR microstructures for improved laser transmission and damage resistance in CIRCM fiber optic beam delivery systems

    Science.gov (United States)

    MacLeod, Bruce D.; Hobbs, Douglas S.; Sabatino, Ernest, III

    2011-06-01

    Anti-reflecting (AR) surface relief microstructures (ARMs) are being developed as a replacement for thin-film AR coatings in laser-based systems to improve light transmission, power handling, operational bandwidth, and system reliability. Because ARMs textures have the potential to be replicated using simple embossing methods, the performance advantage and robustness of ARMs can be extended to moldable mid-infrared transmitting materials such as chalcogenide optical fibers. In this work, the optical performance of mid-infrared transparencies incorporating ARMs textures replicated from a master template has been modeled, and multiple master stamping tools have been fabricated in materials such as diamond, silicon carbide, nickel, silicon, and sapphire. Images from ARMs texture embossing trials using arsenic sulfide and arsenic selenide (AMTIR2) glasses, and fluoride glasses such as ZBLAN and indium fluoride provided by IRPhotonics, show excellent pattern transfer and fidelity. Transmission measurements of ARMs textures stamped into arsenic sulfide and arsenic selenide windows show broadband infrared performance equivalent to ARMs textured windows processed by direct patterning and etch methods. A system for molding ARMs textures directly into the end facets of multi-mode mid-infrared transmitting fibers is yielding promising initial results.

  2. Fiber Optic Laser Delivery For Endarterectomy Of Experimental Atheromas

    Science.gov (United States)

    Eugene, John; Pollock, Marc E.; McColgan, Stephen J.; Hammer-Wilson, Marie; Berns, Michael W.

    1986-08-01

    Fiber optic delivery of argon ion laser energy and Nd-YAG laser energy were compared by the performance of open laser endarterectomy in the rabbit arteriosclerosis model. In Group I, 6 open laser endarterectomies were performed with an argon ion laser (488 nm and 514.5 nm) with the laser beam directed through a 400 pm quartz fiber optic. In Group II, 6 open laser endarterectomies were performed with a Nd-YAG laser (1.06 pm) with the laser beam directed through a 600 pm quartz fiber optic. Gross and light microscopic examination revealed smooth endarterectomy surfaces with tapered end points in Group I. In Group II, the endarterectomy surfaces were uneven and perforation occurred at 5/6 end points. Although energy could be precisely delivered with each laser by fiber optics, satisfactory results could only be achieved with the argon ion laser because argon ion energy was well absorbed by atheromas. Successful intravascular laser use requires a strong interaction between wavelength and atheroma as well as a precise delivery system.

  3. A multi-wavelength fiber-optic temperature-controlled laser soldering system for upper aerodigestive tract reconstruction: an animal model.

    Science.gov (United States)

    Abergel, Avraham; Gabay, Ilan; Fliss, Dan M; Katzir, Abraham; Gil, Ziv

    2011-06-01

    Laser soldering of a thick multilayer organ using conventional CO(2) lasers is ineffective. The purpose of this work was to develop a method for bonding the multilayer tissue of the upper aerodigestive tracts (UADT) without the need of sutures or stapling. Animal model. Academic research laboratory. The authors developed a multi-wavelength laser system, based on 2 fiber-optic lasers applied simultaneously. A highly absorbable CO(2) laser interacts with the muscular layer, and a nonabsorbable GaAs laser interacts with indocyanine-green solid albumin, placed between the mucosa and the muscular layer. The authors used an ex vivo porcine model to examine the capability of this system to effectively correct esophageal tears. The soldered esophagi burst pressure was >175 cm H(2)O (98% success rate) in 88 of the 90 experiments. A conventional CO(2) laser soldering resulted in insufficient bonding (mean burst pressure of 40 ± 7 cm H(2)O, n = 5), while the multi-wavelength laser system provided an ~9-fold tighter seal (359 ± 75.4 cm H(2)O, P system. Bonding of the UADT mucosa using a multi-wavelength, temperature-controlled laser soldering system can support significantly higher pressures then conventional CO(2) laser soldering and suture repair. The mean bonding pressure was 3.5-fold higher than the maximal swallowing pressure. Our findings provide a basis for implementation of new surgical tools for repair of esophageal perforations.

  4. High speed laser drilling of metals using a high repetition rate, high average power ultrafast fiber CPA system.

    Science.gov (United States)

    Ancona, A; Röser, F; Rademaker, K; Limpert, J; Nolte, S; Tünnermann, A

    2008-06-09

    We present an experimental study on the drilling of metal targets with ultrashort laser pulses at high repetition rates (from 50 kHz up to 975 kHz) and high average powers (up to 68 Watts), using an ytterbium-doped fiber CPA system. The number of pulses to drill through steel and copper sheets with thicknesses up to 1 mm have been measured as a function of the repetition rate and the pulse energy. Two distinctive effects, influencing the drilling efficiency at high repetition rates, have been experimentally found and studied: particle shielding and heat accumulation. While the shielding of subsequent pulses due to the ejected particles leads to a reduced ablation efficiency, this effect is counteracted by heat accumulation. The experimental data are in good qualitative agreement with simulations of the heat accumulation effect and previous studies on the particle emission. However, for materials with a high thermal conductivity as copper, both effects are negligible for the investigated processing parameters. Therefore, the full power of the fiber CPA system can be exploited, which allows to trepan high-quality holes in 0.5mm-thick copper samples with breakthrough times as low as 75 ms.

  5. Completely monolithic linearly polarized high-power fiber laser oscillator

    Science.gov (United States)

    Belke, Steffen; Becker, Frank; Neumann, Benjamin; Ruppik, Stefan; Hefter, Ulrich

    2014-03-01

    We have demonstrated a linearly polarized cw all-in-fiber oscillator providing 1 kW of output power and a polarization extinction ratio (PER) of up to 21.7 dB. The design of the laser oscillator is simple and consists of an Ytterbium-doped polarization maintaining large mode area (PLMA) fiber and suitable fiber Bragg gratings (FBG) in matching PLMA fibers. The oscillator has nearly diffraction-limited beam quality (M² high power 6+1:1 pump coupler. The slope efficiency of the laser is 75 %. The electro/optical efficiency of the complete laser system is ~30 % and hence in the range of Rofin's cw non-polarized fiber lasers. Choosing an adequate bending diameter for the Yb-doped PLMA fiber, one polarization mode as well as higher order modes are sufficiently supressed1. Resulting in a compact and robust linearly polarized high power single mode laser without external polarizing components. Linearly polarized lasers are well established for one dimensional cutting or welding applications. Using beam shaping optics radially polarized laser light can be generated to be independent from the angle of incident to the processing surface. Furthermore, high power linearly polarized laser light is fundamental for nonlinear frequency conversion of nonlinear materials.

  6. High-temperature diode laser pumps for directed energy fiber lasers (Conference Presentation)

    Science.gov (United States)

    Kanskar, Manoj; Bao, Ling; Chen, Zhigang; DeVito, Mark; Dong, Weimin; Grimshaw, Mike P.; Guan, Xinguo; Hemenway, David M.; Martinsen, Robert; Zhang, Jim; Zhang, Shiguo

    2017-05-01

    Kilowatt-class fiber lasers and amplifiers are becoming increasingly important building blocks for power-scaling laser systems in various different architectures for directed energy applications. Currently, state-of-the-art Yb-doped fiber lasers operating near 1060 nm operate with optical-to-optical power-conversion efficiency of about 66%. State-of-the-art fiber-coupled pump diodes near 975 nm operate with about 50% electrical-to-fiber-coupled optical power conversion efficiency at 25C heatsink temperature. Therefore, the total system electrical-to-optical power conversion efficiency is about 33%. As a result, a 50-kW fiber laser will generate 75 kW of heat at the pump module and 25 kW at the fiber laser module with a total waste heat of 100 kW. It is evident that three times as much waste heat is generated at the pump module. While improving the efficiency of the diodes primarily reduces the input power requirement, increasing the operating temperature primarily reduces the size and weight for thermal management systems. We will discuss improvement in diode laser design, thermal resistance of the package as well as improvement in fiber-coupled optical-to-optical efficiency to achieve high efficiency at higher operating temperature. All of these factors have a far-reaching implication in terms of significantly improving the overall SWAP requirements thus enabling DEW-class fiber lasers on airborne and other platforms.

  7. 122-W high-power single-frequency MOPA fiber laser in all-fiber format

    Institute of Scientific and Technical Information of China (English)

    Xiaolin Dong; Hu Xiao; Shanhui Xu; Zhiyong Pan; Yanxing Ma; Xiaolin Wang; Pu Zhou; Zhongmin Yang

    2011-01-01

    High-power single-frequency lasers have been found widespread applications in science and industries,such as gravitational wave detection,coherent and spectrum beam combining,range finding,and lidar[1- 7].In such cases,the localization of high-power single-frequency fiber laser is extremely important for domestic researchers.The power of single-frequency fiber lasers has increased dramatically in recent years.Most previously presented high-power single-frequency fiber lasers are based on bulk optics configuration,which have big sizes and massive weights.The use of aIl-fiber-based components can significantly simplify the system configuration and make the system more compact and robust[8-10].In this letter,we report a high-power single-frequency master oscillator power amplifier (MOPA) fiber laser in all-fiber format.The MOPA fiber laser consists of twostage amplification architecture.The maximum output power is 122 W,with slope efficiency of 72%.%We demonstrate a high-power single-frequency master oscillator power amplifier (MOPA) fiber laser. The central wavelength of the single-frequency fiber lager seed is 1 063.8 nm, with a linewidth narrower than 20 kHz and output power of 120 mW. By using two-stage amplification, a single-frequency fiber laser with an output power of 122 W is obtained, and the optical-optical conversion efficiency is 72%. No significant amplified spontaneous emission (ASE) or stimulated Brillouin scattering (SBS) is observed. The output power can be further increased by launching more pump power.

  8. Optical fiber sensors measurement system and special fibers improvement

    Science.gov (United States)

    Jelinek, Michal; Hrabina, Jan; Hola, Miroslava; Hucl, Vaclav; Cizek, Martin; Rerucha, Simon; Lazar, Josef; Mikel, Bretislav

    2017-06-01

    We present method for the improvement of the measurement accuracy in the optical frequency spectra measurements based on tunable optical filters. The optical filter was used during the design and realization of the measurement system for the inspection of the fiber Bragg gratings. The system incorporates a reference block for the compensation of environmental influences, an interferometric verification subsystem and a PC - based control software implemented in LabView. The preliminary experimental verification of the measurement principle and the measurement system functionality were carried out on a testing rig with a specially prepared concrete console in the UJV Řež. The presented system is the laboratory version of the special nuclear power plant containment shape deformation measurement system which was installed in the power plant Temelin during last year. On the base of this research we started with preparation other optical fiber sensors to nuclear power plants measurement. These sensors will be based on the microstructured and polarization maintaining optical fibers. We started with development of new methods and techniques of the splicing and shaping optical fibers. We are able to made optical tapers from ultra-short called adiabatic with length around 400 um up to long tapers with length up to 6 millimeters. We developed new techniques of splicing standard Single Mode (SM) and Multimode (MM) optical fibers and splicing of optical fibers with different diameters in the wavelength range from 532 to 1550 nm. Together with development these techniques we prepared other techniques to splicing and shaping special optical fibers like as Polarization-Maintaining (PM) or hollow core Photonic Crystal Fiber (PCF) and theirs cross splicing methods with focus to minimalize backreflection and attenuation. The splicing special optical fibers especially PCF fibers with standard telecommunication and other SM fibers can be done by our developed techniques. Adjustment

  9. The SMAT fiber laser for industrial applications

    Science.gov (United States)

    Ding, Jianwu; Liu, Jinghui; Wei, Xi; Xu, Jun

    2017-02-01

    With the increased adoption of high power fiber laser for various industrial applications, the downtime and the reliability of fiber lasers become more and more important. Here we present our approach toward a more reliable and more intelligent laser source for industrial applications: the SMAT fiber laser with the extensive sensor network and multi-level protection mechanism, the mobile connection and the mobile App, and the Smart Cloud. The proposed framework is the first IoT (Internet of Things) approach integrated in an industrial laser not only prolongs the reliability of an industrial laser but open up enormous potential for value-adding services by gathering and analyzing the Big data from the connected SMAT lasers.

  10. High-power thulium-doped fiber laser in an all-fiber configuration

    Science.gov (United States)

    Baravets, Yauhen; Todorov, Filip; Honzatko, Pavel

    2016-12-01

    High-power Tm-doped fiber lasers are greatly suitable for various applications, such as material processing, medicine, environmental monitoring and topography. In this work we present an all-fiber narrowband CW laser in near fundamental mode operation based on a Tm-doped double-clad active fiber pumped by 793 nm laser diodes with a central wavelength stabilized at 2039 nm by a fiber Bragg grating. The achieved output power is 60 W with a slope efficiency of 46%. The measured beam quality factor is less than 1.4. Further increasing of the output power is possible using various power scaling techniques, for example, coherent combination of several Tm-doped fiber lasers. The developed fiber laser could be employed for welding, cutting and marking of thermoplastics in industry, minimally invasive surgery in medicine or sensors in lidar systems. Future improvements of thulium fiber lasers are possible due to the extremely wide gain-bandwidth of the active medium and the rapid growth of 2-μm fiber components production.

  11. Simplified method for numerical modeling of fiber lasers.

    Science.gov (United States)

    Shtyrina, O V; Yarutkina, I A; Fedoruk, M P

    2014-12-29

    A simplified numerical approach to modeling of dissipative dispersion-managed fiber lasers is examined. We present a new numerical iteration algorithm for finding the periodic solutions of the system of nonlinear ordinary differential equations describing the intra-cavity dynamics of the dissipative soliton characteristics in dispersion-managed fiber lasers. We demonstrate that results obtained using simplified model are in good agreement with full numerical modeling based on the corresponding partial differential equations.

  12. Portable Fiber Laser System and Method to Remove Pits and Cracks on Sensitized Surfaces of Aluminum Alloys

    Science.gov (United States)

    2015-08-01

    2017 0 2) Selection and test of fiber laser 11/1/2017 4/29/2019 0 3) Selection, test, and program a galvano scanner 11/1/2017 4/29/2019 0 4...used to study the morphology of the laser-peened samples. A 3D profiler (New View 8000, Zygo Corporation) was used to measure the 3D profiles of the...profile Scanning probe microscopy (SPM), SEM, and a 3D profiler were used to characterize the surface roughness and profile variations of the laser

  13. Mode profiling of optical fibers at high laser powers

    DEFF Research Database (Denmark)

    Nielsen, Peter Carøe; Pedersen, David Bue; Simonsen, R.B.

    2008-01-01

    This paper describes the development of a measuring equipment capable of analysing the beam profile at high optical powers emitted by delivery fibers used in manufacturing processes. Together with the optical delivery system, the output beam quality from the delivery fiber and the shape...... of the focused spot can be determined. The analyser is based on the principle of a rotating wire being swept though the laser beam, while the reflected signal is recorded [1]. By changing the incident angle of the rotating rod from 0° to 360° in relation to the fiber, the full profile of the laser beam...... is obtained. Choosing a highly reflective rod material and a sufficiently high rotation speed, these measurements can be done with high laser powers, without any additional optical elements between the fiber and analyzer. The performance of the analyzer was evaluated by coupling laser light into different...

  14. Multi-channel photon counting three-dimensional imaging laser radar system using fiber array coupled Geiger-mode avalanche photodiode

    Science.gov (United States)

    Shu, Rong; Huang, Genghua; Hou, Libing; He, Zhiping; Hu, Yihua

    2012-09-01

    Photon counting laser radar is the most sensitive and efficiency detection method of direct-detection laser radar. With the use of Geiger-mode avalanche photodiode (APD) or other single photon detectors, every laser photon could be sufficiently used for ranging and three-dimensional imaging. The average energy of received laser signal could be as low as a single photon, or even less than one. This feature of photon counting laser radar enables ranging under conditions of long range, low laser pulse energy, and multi-pixel detection, while receiver size, mass, power, and complexity of laser radar are reduced. In this paper, a latest multi-channel photon counting 3D imaging laser radar system using fiber array coupled Geiger-mode avalanche photodiode (APD) is introduced. Detection model based on Poisson statistics of a photon counting laser radar is discussed. A laser radar system, working under daylight condition with ultra-low signal level (less than single photon per pulse), has been designed and analyzed with the detection model and photon counting three-dimensional imaging theory. A passively Q-switched microchip laser is used to transmit short sub-nanosecond laser pulses at 532nm. The output laser is divided into 1×8 laser spots, which correspond to 8 Geiger-mode avalanche photodiodes coupled by a 1×8-pixel fiber array. A FPGA based time-to-digital converter (TDC), which is designed by delay line interpolation technology, is used for multi-hit signal acquisition. The algorithm of photon counting three-dimensional imaging is developed for signal photon events extraction and noise filter. Three-dimensional images under daylight conditions were acquired and analyzed. The results show that system could operate at strong solar background. The ranging accuracy of the system is 6.3cm (σ) while received laser pulse signal level is only 0.04 photoelectrons on average. The advantages and feasibility of photon counting laser radar working at daylight have been

  15. Comparative assessment of erbium fiber ring lasers and reflective SOA linear lasers for fiber Bragg grating dynamic strain sensing.

    Science.gov (United States)

    Wei, Heming; Krishnaswamy, Sridhar

    2017-05-01

    Fiber Bragg grating (FBG) dynamic strain sensors using both an erbium-based fiber ring laser configuration and a reflective semiconductor optical amplifier (RSOA)-based linear laser configuration are investigated theoretically and experimentally. Fiber laser models are first presented to analyze the output characteristics of both fiber laser configurations when the FBG sensor is subjected to dynamic strains at high frequencies. Due to differences in the transition times of erbium and the semiconductor (InP/InGaAsP), erbium-doped fiber amplifier (EDFA)- and RSOA-based fiber lasers exhibit different responses and regimes of stability when the FBG is subjected to dynamic strains. The responses of both systems are experimentally verified using an adaptive photorefractive two-wave mixing (TWM) spectral demodulation technique. The experimental results show that the RSOA-FBG fiber linear cavity laser is stable and can stably respond to dynamic strains at high frequencies. An example application using a multiplexed TWM interferometer to demodulate multiple FBG sensors is also discussed.

  16. Fiber Bragg filters For laser- and multicore fibers

    Science.gov (United States)

    Becker, Martin; Elsmann, Tino; Lorenz, Adrian; Rothhardt, Manfred

    2017-05-01

    Fiber Bragg gratings (FBGs) have widespread applications in security, information, structural health monitoring, and biophotonics. In telecom applications, FBG inscription has reached a high level of maturity, but remains mainly limited to germanium doped photosensitive single mode fibers. Special applications, like filtering in light harvesting fibers or resonator mirrors for fiber lasers have to deal with special aspects which make the design and realization of FBGs a challenging task. One aspect is the extended wavelength range of these applications. Another aspect is the increasing demand to inscribe fiber Bragg gratings in non-photosensitive germanium-free fibers. Therefore, novel concepts of photosensitivity are proposed. Finally, to increase the amount of captured light the size of the fiber core and the numerical aperture have also to be increased. This goes along with multimode operation and prevents good filtering properties of Bragg gratings.

  17. The efficacy and safety of the flexible fiber CO2 laser delivery system in the endoscopic management of pediatric airway problems: Our long term experience.

    Science.gov (United States)

    Lee, Gi Soo; Irace, Alexandra; Rahbar, Reza

    2017-06-01

    To report the use of flexible fiber CO2 laser in the endoscopic management of pediatric airway cases. A retrospective review was conducted of patients who underwent CO2 laser-assisted airway procedures between September 2007 and January 2014 at a tertiary pediatric hospital. Sixty-eight patients underwent 80 procedures utilizing flexible fiber CO2 laser. Procedures included supraglottoplasty (n = 32), laryngeal cleft repair (type I [n = 10], type II [n = 7], type III [n = 6]), suprastomal granuloma excision (n = 6), cordotomy (n = 4), laryngeal neurofibroma excision (n = 4), laryngeal granulomatous mass excision (n = 1), subglottic stenosis excision (n = 6), division of glottic web (n = 2), subglottic cyst excision (n = 1), and supraglottic biopsy (n = 1). Ages ranged from 8 days to 21 years (median 11 months). No intraoperative or postoperative complications related to the use of laser were noted. The flexible fiber CO2 laser can be safely and effectively used to address a variety of pediatric airway lesions. Previously, the use of CO2 laser in minimally invasive airway surgery has been limited due to the articulating arm carrier, absence of a hand piece, and the direct line-of sight view required. The fiber allows the cutting beam to be directed at the site of the lesion and bypasses limitations posed by other laser systems. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Phase generated carrier technique for fiber laser hydrophone

    Science.gov (United States)

    Li, Rizhong; Wang, Xinbing; Huang, Junbin; Gu, Hongcan

    2013-08-01

    A distributed feedback (DFB) fiber laser is compact, and is very suitable for using as a hydrophone to sense acoustic pressure. A DFB fiber laser hydrophone was researched. In the fiber laser hydrophone signal demodulating system, an unbalanced Michelson fiber interferometer and a Phase Generated Carrier (PGC) method were used. The PGC method can be used to demodulating the acoustic signal from the interference signal. Comparing with the Naval Research Laboratory (NRL) method and Naval Postgraduate School (NPS) method, the digitized PGC method requires a greater amount of computation because of the high signal sampling, but it demands only one interference signal which makes the less fiber connections of the fiber laser hydrophone array. So the fiber laser hydrophone array based on the PGC method has lower complexity and higher reliability than that based on the NRL method or NPS method. The experimental results approve that the PGC method can demodulate acoustic signal between 20~2000 Hz frequency range with good signal-to-noise ratio (SNR) when the PZT driving frequency is 20 kHz.

  19. 1570 nm High Energy Fiber Laser Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This SBIR phase I project proposes a single frequency high energy fiber laser for remote sensing. Current state-of-art technologies can not provide all features of...

  20. High Power Fiber Laser Test Bed

    Data.gov (United States)

    Federal Laboratory Consortium — This facility, unique within DoD, power-combines numerous cutting-edge fiber-coupled laser diode modules (FCLDM) to integrate pumping of high power rare earth-doped...

  1. Photonic crystal distributed feedback fiber lasers with Bragg gratings

    DEFF Research Database (Denmark)

    Søndergaard, Thomas

    2000-01-01

    Two new types of optical fibers, where air-holes are running down their length, are considered for making fiber lasers with Bragg gratings. The mode areas for pump and signal in these fiber lasers may be either larger or smaller compared to the corresponding mode areas for fiber lasers based on s...... on standard step index fibers. This makes possible realization of fiber lasers with a low pump threshold (small mode area), and fiber lasers suitable for high-power applications (large mode area)......Two new types of optical fibers, where air-holes are running down their length, are considered for making fiber lasers with Bragg gratings. The mode areas for pump and signal in these fiber lasers may be either larger or smaller compared to the corresponding mode areas for fiber lasers based...

  2. Low-Complexity Tracking of Laser and Nonlinear Phase Noise in WDM Optical Fiber Systems

    DEFF Research Database (Denmark)

    Yankov, Metodi Plamenov; Fehenberger, Tobias; Barletta, Luca;

    2015-01-01

    In this paper, the wavelength division multiplexed (WDM) fiber optic channel is considered. It is shown that for ideal distributed Raman amplification (IDRA), the Wiener process model is suitable for the non-linear phase noise due to cross phase modulation from neighboring channels. Based...

  3. The 532-nm 180-W (GreenLight®) laser vaporization of the prostate for the treatment of lower urinary tract symptoms: how durable is the new side-fire fiber with integrated cooling system?

    Science.gov (United States)

    Brunken, Claus; Munsch, Maximilian; Tauber, Stephan; Schmidt, Rainer; Seitz, Christian

    2014-05-01

    The 532-nm side-fire laser vaporization is established for the treatment of symptomatic benign prostate hyperplasia. Meanwhile, the third generation of this system is offered by American Medical Systems, Inc. The laser power increased from 80 and 120 to 180 W from the first to the third generation. Despite good functional results, with the 80- and 120-W systems, the removal of prostate tissue is limited because of fiber degradation. To overcome this problem, the fiber was designed newly with an integrated cooling system and a sensor for decreasing the laser energy in case of overheating. We evaluate whether the new fiber still suffers from degradation with consecutive drop of power transmission during the procedure. The power output of the cooled fiber was measured in vitro and during prostate vaporization in ten patients. Laser beam power was measured at baseline and after the application each of 50 kJ during laser vaporization. Power emission of the fiber remains constant at 20, 80, and 180 W of power settings over the whole 40-kJ lifespan. During the transurethral procedure, a median total energy of 276 kJ (standard deviation 153 kJ) was applied for vaporization. Median power output from the fiber at the end of the procedure was 97% from the baseline value. There were no fiber malfunctions observed. In contrast to former generations, the third-generation laser fiber is durable without significant power loss during prostate vaporization.

  4. Synchronization and coherent combining of two pulsed fiber lasers

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    We demonstrate a scalable architecture for coherent combining of pulsed fiber lasers.A new method for generating synchronous pulsed fiber lasers by direct phase modulation is proposed and investigated.It is shown that phase modulated mutually coupled laser array can be a steady synchronous pulsed fiber laser source.The synchronous pulsed fiber lasers are coherently combined with an invariable phase difference of π in adjacent lasers.Neither active phase control nor polarization control is taken in our experiment.

  5. Fiber Optic Coupling of CW Linear Laser Diode Array

    Institute of Scientific and Technical Information of China (English)

    WANG Xiaowei; XIAO Jianwei; MA Xiaoyu; WANG Zhongming; FANG Gaozhan

    2002-01-01

    Based on a set of microoptics the output radiation from a continuous wave (CW) linear laser diode array is coupled into a multi-mode optical fiber of 400 μm diameter.The CW linear laser diode array is a 1 cm laser diode bar with 19 stripes with 100 μm aperture spaced on 500 μm centers.The coupling system contains packaged laser diode bar,fast axis collimator,slow axis collimation array,beam transformation system and focusing system.The high brightness,high power density and single fiber output of a laser diode bar is achieved.The coupling efficiency is 65% and the power density is up to 1.03×104 W/cm2.

  6. Ultra Small Integrated Optical Fiber Sensing System

    Directory of Open Access Journals (Sweden)

    Peter Van Daele

    2012-09-01

    Full Text Available This paper introduces a revolutionary way to interrogate optical fiber sensors based on fiber Bragg gratings (FBGs and to integrate the necessary driving optoelectronic components with the sensor elements. Low-cost optoelectronic chips are used to interrogate the optical fibers, creating a portable dynamic sensing system as an alternative for the traditionally bulky and expensive fiber sensor interrogation units. The possibility to embed these laser and detector chips is demonstrated resulting in an ultra thin flexible optoelectronic package of only 40 μm, provided with an integrated planar fiber pigtail. The result is a fully embedded flexible sensing system with a thickness of only 1 mm, based on a single Vertical-Cavity Surface-Emitting Laser (VCSEL, fiber sensor and photodetector chip. Temperature, strain and electrodynamic shaking tests have been performed on our system, not limited to static read-out measurements but dynamically reconstructing full spectral information datasets.

  7. Comparison of fiber lasers based on distributed side-coupled cladding-pumped fibers and double-cladding fibers.

    Science.gov (United States)

    Huang, Zhihe; Cao, Jianqiu; Guo, Shaofeng; Chen, Jinbao; Xu, Xiaojun

    2014-04-01

    We compare both analytically and numerically the distributed side-coupled cladding-pumped (DSCCP) fiber lasers and double cladding fiber (DCF) lasers. We show that, through optimization of the coupling and absorbing coefficients, the optical-to-optical efficiency of DSCCP fiber lasers can be made as high as that of DCF lasers. At the same time, DSCCP fiber lasers are better than the DCF lasers in terms of thermal management.

  8. Multi-wavelength narrow linewidth fiber laser based on distributed feedback fiber lasers

    Science.gov (United States)

    Lv, Jingsheng; Qi, Haifeng; Song, Zhiqiang; Guo, Jian; Ni, Jiasheng; Wang, Chang; Peng, Gangding

    2016-09-01

    A narrow linewidth laser configuration based on distributed feedback fiber lasers (DFB-FL) with eight wavelengths in the international telecommunication union (ITU) grid is presented and realized. In this laser configuration, eight phase-shifted gratings in series are bidirectionally pumped by two 980-nm laser diodes (LDs). The final laser output with over 10-mW power for each wavelength can be obtained, and the maximum power difference within eight wavelengths is 1.2 dB. The laser configuration with multiple wavelengths and uniform power outputs can be very useful in large scaled optical fiber hydrophone fields.

  9. Fiber Lasers:Emerging in Major Markets

    Institute of Scientific and Technical Information of China (English)

    Bill Shiner

    2006-01-01

    @@ Since its inception,the fiber laser has attracted Since its inception, the fiber laser has attracted users because of its large gain and the ability to produce continuous lasing. The modern fiber laser is pumped by high-power multimode single-emitter diodes or diode bars, typically through a cladding surrounding a single-mode core.This single-mode core is typically 5~12 μm in diameter. The double-clad fiber consists of an inner singlemode core doped with the appropriate rare-earth ions such as neodymium, erbium, ytterbium and thulium.The cladding is made of undoped glass that has a lower index of refraction. The pump light is injected into the cladding and then propagates along the structure, passing through the active core and producing a population inversion.

  10. Raman spectroscopy system with hollow fiber probes

    Science.gov (United States)

    Liu, Bing-hong; Shi, Yi-Wei

    2012-11-01

    A Raman remote spectroscopy system was realized using flexible hollow optical fiber as laser emittion and signal collection probes. A silver-coated hollow fiber has low-loss property and flat transmission characteristics in the visible wavelength regions. Compared with conventional silica optical fiber, little background fluorescence noise was observed with optical fiber as the probe, which would be of great advantages to the detection in low frequency Raman shift region. The complex filtering and focusing system was thus unnecessary. The Raman spectra of CaCO3 and PE were obtained by using the system and a reasonable signal to noise ratio was attained without any lens. Experiments with probes made of conventional silica optical fibers were also conducted for comparisons. Furthermore, a silver-coated hollow glass waveguide was used as sample cell to detect liquid phase sample. We used a 6 cm-long hollow fiber as the liquid cell and Butt-couplings with emitting and collecting fibers. Experiment results show that the system obtained high signal to noise ratio because of the longer optical length between sample and laser light. We also give the elementary theoretical analysis for the hollow fiber sample cell. The parameters of the fiber which would affect the system were discussed. Hollow fiber has shown to be a potential fiber probe or sample cell for Raman spectroscopy.

  11. DFB diode seeded low repetition rate fiber laser system operating in burst mode

    Science.gov (United States)

    Šajn, M.; Petelin, J.; Agrež, V.; Vidmar, M.; Petkovšek, R.

    2017-02-01

    A distributed feedback (DFB) diode, gain switched to produce pulses from 60 ps at high peak power of over 0.5 W, is used in burst mode to seed a fiber amplifier chain. High seed power, spectral filtering between amplifier stages and pulsed pumping are used to mitigate amplified spontaneous emission (ASE). The effect of pulse pumping synchronized with the seed on the ASE is explored for the power amplifier at low repetition. Different input and output energies at different burst repetition rates are examined and up to 85% reduction in ASE is achieved compared to continuous pumping. Finally, a numerical model is used to predict further reduction of ASE.

  12. High-brightness, fiber-coupled pump modules in fiber laser applications

    Science.gov (United States)

    Hemenway, Marty; Urbanek, Wolfram; Hoener, Kylan; Kennedy, Keith W.; Bao, Ling; Dawson, David; Cragerud, Emily S.; Balsley, David; Burkholder, Gary; Reynolds, Mitch; Price, Kirk; Haden, Jim; Kanskar, Manoj; Kliner, Dahv A.

    2014-03-01

    High-power, high-brightness, fiber-coupled pump modules enable high-performance industrial fiber lasers with simple system architectures, multi-kW output powers, excellent beam quality, unsurpassed reliability, and low initial and operating costs. We report commercially available (element™), single-emitter-based, 9xx nm pump sources with powers up to 130 W in a 105 μm fiber and 250 W in a 200 μm fiber. This combination of high power and high brightness translates into improved fiber laser performance, e.g., simultaneously achieving high nonlinear thresholds and excellent beam quality at kW power levels. Wavelength-stabilized, 976 nm versions of these pumps are available for applications requiring minimization of the gain-fiber length (e.g., generation of high-peak-power pulses). Recent prototypes have achieved output powers up to 300 W in a 200 μm fiber. Extensive environmental and life testing at both the chip and module level under accelerated and real-world operating conditions have demonstrated extremely high reliability, with innovative designs having eliminated package-induced-failure mechanisms. Finally, we report integrated Pump Modules that provide conveniently formatted for fiber-laser pumping or direct-diode applications; these 19" rack-mountable, 2U units combine the outputs of up to 14 elements™ using fused-fiber combiners, and they include high-efficiency diode drivers and safety sensors.

  13. Temperature Sensor Using a Multiwavelength Erbium-Doped Fiber Ring Laser

    Directory of Open Access Journals (Sweden)

    Silvia Diaz

    2017-01-01

    Full Text Available A novel temperature sensor is presented based on a multiwavelength erbium-doped fiber ring laser. The laser is comprised of fiber Bragg grating reflectors as the oscillation wavelength selecting filters. The performance of the temperature sensor in terms of both wavelength and laser output power was investigated, as well as the application of this system for remote temperature measurements.

  14. Femtosecond fiber laser additive manufacturing of tungsten

    Science.gov (United States)

    Bai, Shuang; Liu, Jian; Yang, Pei; Zhai, Meiyu; Huang, Huan; Yang, Lih-Mei

    2016-04-01

    Additive manufacturing (AM) is promising to produce complex shaped components, including metals and alloys, to meet requirements from different industries such as aerospace, defense and biomedicines. Current laser AM uses CW lasers and very few publications have been reported for using pulsed lasers (esp. ultrafast lasers). In this paper, additive manufacturing of Tungsten materials is investigated by using femtosecond (fs) fiber lasers. Various processing conditions are studied, which leads to desired characteristics in terms of morphology, porosity, hardness, microstructural and mechanical properties of the processed components. Fully dense Tungsten part with refined grain and increased hardness was obtained and compared with parts made with different pulse widths and CW laser. The results are evidenced that the fs laser based AM provides more dimensions to modify mechanical properties with controlled heating, rapid melting and cooling rates compared with a CW or long pulsed laser. This can greatly benefit to the make of complicated structures and materials that could not be achieved before.

  15. Low-Complexity Tracking of Laser and Nonlinear Phase Noise in WDM Optical Fiber Systems

    DEFF Research Database (Denmark)

    Yankov, Metodi Plamenov; Fehenberger, Tobias; Barletta, Luca

    2015-01-01

    In this paper, the wavelength division multiplexed (WDM) fiber optic channel is considered. It is shown that for ideal distributed Raman amplification (IDRA), the Wiener process model is suitable for the non-linear phase noise due to cross phase modulation from neighboring channels. Based...... compared to previous trellis-based approaches, which require numerical integration. Further, the proposed method performs very well in low-to-moderate signal-to-noise ratio (SNR), where standard decision directed (DD) methods, especially for high-order modulation, fail. The proposed algorithm does not rely...... on this model, a phase noise tracking algorithm is presented. We approximate the distribution of the phase noise at each time instant by a mixture of Tikhonov distributions, and derive a closed form expression for the posterior probabilities of the input symbols. This reduces the complexity dramatically...

  16. Towards high-quality optical ceramic YAG fibers for high-energy laser (HEL) applications

    Science.gov (United States)

    Lee, HeeDong; Keller, Kristin; Sirn, Brian

    2012-06-01

    There is a critical demand for high quality, transparent ceramic YAG fibers for high powered fiber lasers. The production of laser quality ceramic fibers hinges on advanced ceramic processing technology, along with the availability of highly sinterable powder with high phase and chemical purity. These two fundamental technologies have been successfully developed at UES. Nd (1.1 a/o) and Yb (1.0 a/o)-doped yttrium aluminum garnet (YAG) fibers with high optical quality were produced by combining UES's tailored powders with advanced consolidation processes including fiber extrusion and vacuum sintering. The as-sintered and as-annealed fibers, approximately 30 microns in diameter, appeared transparent and successfully transmitted laser beams; further development will allow for the production of doped ceramic YAG fiber lasers for advanced high power and high energy fiber laser systems.

  17. Technology and applications of ultrafast fiber lasers

    Science.gov (United States)

    Lang, Marion; Hellerer, Thomas; Stuhler, Juergen

    2012-03-01

    We briefly review the key technology of modern fiber based femtosecond laser sources summarizing advantages and disadvantages of different mode-locking solutions. A description of possible extensions of a FemtoFiber-type modelocked Er-doped fiber laser oscillator (1560 nm) reveals the flexibility with respect to wavelength coverage (488 nm .. 2200 nm) and pulse duration (10 fs .. 10 ps). The resulting FemtoFiber family and its versions for instrument integration allow one to use these state-of-the-art light sources in many important applications, e.g. THz spectroscopy and microscopy. We show that, depending on the fiber laser model and the THz emitter, THz radiation can be produced with 4-10 THz bandwidth and detected with up to 60 dB signal-to-noise ratio (SNR). Electronically controlled optical scanning (ECOPS) - a unique method for fast, precise and comfortable sampling of the THz pulse or other pump-probe experiments - is described and recommended for efficient data acquisition. As examples for modern microscopy with ultrafast fiber lasers we present results of two-photon fluorescence, coherent microscopy techniques (SHG/THG/CARS) and fluorescence lifetime imaging (FLIM).

  18. Laser Cooled High-Power Fiber Amplifier

    CERN Document Server

    Nemova, Galina

    2009-01-01

    A theoretical model for laser cooled continuous-wave fiber amplifier is presented. The amplification process takes place in the Tm3+-doped core of the fluoride ZBLAN (ZrF4-BaF2-LaF3-AlF3-NaF) glass fiber. The cooling process takes place in the Yb3+:ZBLAN fiber cladding. It is shown that for each value of the pump power and the amplified signal there is a distribution of the concentration of the Tm3+ along the length of the fiber amplifier, which provides its athermal operation. The influence of a small deviation in the value of the amplified signal on the temperature of the fiber with the fixed distribution of the Tm3+ions in the fiber cladding is investigated.

  19. Precision laser processing for micro electronics and fiber optic manufacturing

    Science.gov (United States)

    Webb, Andrew; Osborne, Mike; Foster-Turner, Gideon; Dinkel, Duane W.

    2008-02-01

    The application of laser based materials processing for precision micro scale manufacturing in the electronics and fiber optic industry is becoming increasingly widespread and accepted. This presentation will review latest laser technologies available and discuss the issues to be considered in choosing the most appropriate laser and processing parameters. High repetition rate, short duration pulsed lasers have improved rapidly in recent years in terms of both performance and reliability enabling flexible, cost effective processing of many material types including metal, silicon, plastic, ceramic and glass. Demonstrating the relevance of laser micromachining, application examples where laser processing is in use for production will be presented, including miniaturization of surface mount capacitors by applying a laser technique for demetalization of tracks in the capacitor manufacturing process and high quality laser machining of fiber optics including stripping, cleaving and lensing, resulting in optical quality finishes without the need for traditional polishing. Applications include telecoms, biomedical and sensing. OpTek Systems was formed in 2000 and provide fully integrated systems and sub contract services for laser processes. They are headquartered in the UK and are establishing a presence in North America through a laser processing facility in South Carolina and sales office in the North East.

  20. Advanced Optical Fiber Development for kW Fiber Lasers with Sub-GHz Linewidth

    Science.gov (United States)

    2016-01-12

    Advanced Optical Fiber Development for kW Fiber Lasers with Sub-GHz Linewidth The project is for acquiring an optical spectrum analyzer (OSA) covering...27709-2211 Specialty optical fibers , optical fiber lasers REPORT DOCUMENTATION PAGE 11. SPONSOR/MONITOR’S REPORT NUMBER(S) 10. SPONSOR/MONITOR’S...Number of Papers published in non peer-reviewed journals: Final Report: Advanced Optical Fiber Development for kW Fiber Lasers with Sub-GHz Linewidth

  1. Development of a fiber-optic laser delivery system capable of delivering 213 and 266 nm pulsed Nd:YAG laser radiation for tissue ablation in a fluid environment.

    Science.gov (United States)

    Miller, Joe; Yu, Xiao-Bo; Yu, Paula K; Cringle, Stephen J; Yu, Dao-Yi

    2011-02-20

    Ultraviolet (UV) lasers have the capability to precisely remove tissue via ablation; however, due to strong absorption of the applicable portion the UV spectrum, their surgical use is currently limited to extraocular applications at the air/tissue boundary. Here we report the development and characterization of a fiber-optic laser delivery system capable of outputting high-fluence UV laser pulses to internal tissue surfaces. The system has been developed with a view to intraocular surgical applications and has been demonstrated to ablate ocular tissue at the fluid/tissue boundary. The fifth (213 nm) and fourth(266 nm) harmonics of a Nd:YAG laser were launched into optical fibers using a hollow glass taper to concentrate the beam. Standard and modified silica/silica optical fibers were used, all commercially available. The available energy and fluence as a function of optical fiber length was evaluated and maximized. The maximum fluence available to ablate tissue was affected by the wavelength dependence of the fiber transmission; this maximum fluence was greater for 266 nm pulses (8.4 J/cm2) than for 213 nm pulses (1.4 J/cm2). The type of silica/silica optical fiber used did not affect the transmission efficiency of 266 nm pulses, but transmission of 213 nm pulses was significantly greater through modified silica/silica optical fiber. The optical fiber transmission efficiency of 213 nm pulses decreased as a function of number of pulses transmitted, whereas the transmission efficiency of 266 nm radiation was unchanged. Single pulses have been used to ablate fresh porcine ocular tissue. In summary, we report a method for delivering the fifth (213 nm) and fourth (266 nm) harmonics of a Nd:YAG laser to the surface of immersed tissue, the reliability and stability of the system has been characterized, and proof of concept via tissue ablation of porcine ocular tissue demonstrates the potential for the intraocular surgical application of this

  2. Fiber Lasers and Amplifiers for Space-based Science and Exploration

    Science.gov (United States)

    Yu, Anthony W.; Krainak, Michael A.; Stephen, Mark A.; Chen, Jeffrey R.; Coyle, Barry; Numata, Kenji; Camp, Jordan; Abshire, James B.; Allan, Graham R.; Li, Steven X.; Riris, Haris

    2012-01-01

    We present current and near-term uses of high-power fiber lasers and amplifiers for NASA science and spacecraft applications. Fiber lasers and amplifiers offer numerous advantages for the deployment of instruments on exploration and science remote sensing satellites. Ground-based and airborne systems provide an evolutionary path to space and a means for calibration and verification of space-borne systems. NASA fiber-laser-based instruments include laser sounders and lidars for measuring atmospheric carbon dioxide, oxygen, water vapor and methane and a pulsed or pseudo-noise (PN) code laser ranging system in the near infrared (NIR) wavelength band. The associated fiber transmitters include high-power erbium, ytterbium, and neodymium systems and a fiber laser pumped optical parametric oscillator. We discuss recent experimental progress on these systems and instrument prototypes for ongoing development efforts.

  3. 100 W all fiber picosecond MOPA laser.

    Science.gov (United States)

    Chen, Sheng-Ping; Chen, Hong-Wei; Hou, Jing; Liu, Ze-Jin

    2009-12-21

    A high power picosecond laser is constructed in an all fiber master oscillator power amplifier (MOPA) configuration. The seed source is an ytterbium-doped single mode fiber laser passively mode-locked by a semiconductor saturable absorber mirror (SESAM). It produces 20 mW average power with 13 ps pulse width and 59.8 MHz repetition rate. A direct amplification of this seed source encounters obvious nonlinear effects hence serious spectral broadening at only ten watt power level. To avoid these nonlinear effects, we octupled the repetition rate to about 478 MHz though a self-made all fiber device before amplification. The ultimate output laser exhibits an average power of 96 W, a pulse width of 16 ps, a beam quality M2 of less than 1.5, and an optical conversion efficiency of 61.5%.

  4. Continuously Tunable Erbium-Doped Fiber Ring Laser Using Fiber Bragg Grating

    Directory of Open Access Journals (Sweden)

    S. W. Harun H. Ahmad and P. Poopalan

    2012-08-01

    Full Text Available An efficient tunable erbium-doped fiber (EDF ring laser utilizing a single fiber Bragg grating (FBG and an optical circulator is investigated. The laser demonstrates a threshold of 3.43 mW and a slope efficiency of 12.5%. Tunability of the fiber laser is obtained by thermal tuning of the FBG. Simultaneous temperature tuning demonstrates a 0.01 nm/oC variation in laser wavelength.Key Words:  Fiber Bragg grating, fiber laser, tunable laser, ring laser, thermal tuning

  5. Diode pumped erbium cascade fiber lasers

    NARCIS (Netherlands)

    Jackson, Stuart D.; Pollnau, Markus; Li, Jianfeng

    Cascading the 4I11/2 -> 4I13/2 transition at 2.8 μm and 4I13/2 -> 4I15/2 transition at 1.6 μm offers a solution to the thermal management of high power Er3+-doped fluoride fiber lasers. We demonstrate an output power of 8.2 W at 2.8 μm from an Er3+-doped fluorozirconate fiber laser with 56 W of

  6. 157 W all-fiber high-power picosecond laser.

    Science.gov (United States)

    Song, Rui; Hou, Jing; Chen, Shengping; Yang, Weiqiang; Lu, Qisheng

    2012-05-01

    An all-fiber high-power picosecond laser is constructed in a master oscillator power amplifier configuration. The self-constructed fiber laser seed is passively mode locked by a semiconductor saturable absorber mirror. Average output power of 157 W is obtained after three stages of amplification at a fundamental repetition rate of 60 MHz. A short length of ytterbium double-clad fiber with a high doping level is used to suppress nonlinear effects. However, a stimulated Raman scattering (SRS) effect occurs owing to the 78 kW high peak power. A self-made all-fiber repetition rate increasing system is used to octuple the repetition rate and decrease the high peak power. Average output power of 156.6 W is obtained without SRS under the same pump power at a 480 MHz repetition rate with 0.6 nm line width.

  7. Subhertz linewidth laser by locking to a fiber delay line.

    Science.gov (United States)

    Dong, Jing; Hu, Yongqi; Huang, Junchao; Ye, Meifeng; Qu, Qiuzhi; Li, Tang; Liu, Liang

    2015-02-10

    An ultralow-noise, subhertz 1.55 μm erbium-doped fiber laser that is locked on an all-fiber-based Michelson interferometer is presented in this paper. The interferometer uses 500 m SMF-28 optical fiber and an acousto-optic modulator to allow heterodyne detection. By comparing two identical laser systems, a 0.67 (0.21) Hz linewidth beat-note signal is achieved and we obtain fractional frequency instability of 7×10(-15) at short timescales (0.1-1 s). The frequency noise power spectral density of two identical lasers is below -1  dB Hz(2)/Hz at 1 Hz and it reaches -18  dB Hz(2)/Hz from 200 Hz to 1 kHz.

  8. A unidirectional Er3+-doped fiber ring laser without isolator

    DEFF Research Database (Denmark)

    Shi, Yuan; Sejka, Milan; Poulsen, Ove

    1995-01-01

    An Er3+-doped fiber ring laser with unidirectional operation without optical isolator has been investigated for different cavity conditions. The fiber ring laser cavity is built in such a way that the optical fields propagating in the two directions suffer different losses. As a consequence, the ......, the laser oscillation appears in a quasi-unidirectional form. By incorporating a fiber pigtailed bandpass filter to enhance mode competition, a purely unidirectional tunable fiber ring laser is obtained with high efficiency and broad tunability...

  9. Theoretical analysis of radiation-balanced double clad fiber laser

    Institute of Scientific and Technical Information of China (English)

    CHEN Ji-xin; SUI Zhan; CHEN Fu-shen; LI Ming-zhong; WANG Jian-jun

    2005-01-01

    In this letter,a theoretical model of radiation-balanced double clad fiber laser is presented.The characteristic of the laser with Yb doped double clad fiber is analyzed numerically.It is concluded that high output laser power can be obtained by selecting output coupling mirror with lower reflectivity,improving Yb doped concentration and choosing fiber length. This result can help us to design radiation balanced fiber laser.

  10. Coherent laser vision system

    Energy Technology Data Exchange (ETDEWEB)

    Sebastion, R.L. [Coleman Research Corp., Springfield, VA (United States)

    1995-10-01

    The Coherent Laser Vision System (CLVS) is being developed to provide precision real-time 3D world views to support site characterization and robotic operations and during facilities Decontamination and Decommissioning. Autonomous or semiautonomous robotic operations requires an accurate, up-to-date 3D world view. Existing technologies for real-time 3D imaging, such as AM laser radar, have limited accuracy at significant ranges and have variability in range estimates caused by lighting or surface shading. Recent advances in fiber optic component technology and digital processing components have enabled the development of a new 3D vision system based upon a fiber optic FMCW coherent laser radar. The approach includes a compact scanner with no-moving parts capable of randomly addressing all pixels. The system maintains the immunity to lighting and surface shading conditions which is characteristic to coherent laser radar. The random pixel addressability allows concentration of scanning and processing on the active areas of a scene, as is done by the human eye-brain system.

  11. Coding for stable transmission of W-band radio-over-fiber system using direct-beating of two independent lasers.

    Science.gov (United States)

    Yang, L G; Sung, J Y; Chow, C W; Yeh, C H; Cheng, K T; Shi, J W; Pan, C L

    2014-10-20

    We demonstrate experimentally Manchester (MC) coding based W-band (75 - 110 GHz) radio-over-fiber (ROF) system to reduce the low-frequency-components (LFCs) signal distortion generated by two independent low-cost lasers using spectral shaping. Hence, a low-cost and higher performance W-band ROF system is achieved. In this system, direct-beating of two independent low-cost CW lasers without frequency tracking circuit (FTC) is used to generate the millimeter-wave. Approaches, such as delayed self-heterodyne interferometer and heterodyne beating are performed to characterize the optical-beating-interference sub-terahertz signal (OBIS). Furthermore, W-band ROF systems using MC coding and NRZ-OOK are compared and discussed.

  12. Experimental study on kilowatt fiber laser in an all-fiber configuration

    Institute of Scientific and Technical Information of China (English)

    Hu Xiao; Yanxing Ma; Pu Zhou; Lei Si; Jinbao Chen

    2012-01-01

    A high-power fiber laser in an all-fiber format is reported.The system consists of 36 pump ports,which use both counter and forward pump configuration.In the experiment,1 008-W output power is obtained when 24 pump ports are used with a total pump power of 1 477 W.The optical-to-optical conversion efficiency is 68% and the 3-dB bandwidth of laser output increases with output power.Presently,the output power is only limited by the pump source.It can be predicted that the laser power can be further scaled if more pump sources are utilized.%A high-power fiber laser in an all-fiber format is reported. The system consists of 36 pump ports, which use both counter and forward pump configuration. In the experiment, 1008-W output power is obtained when 24 pump ports are used with a total pump power of 1 477 W. The optical-to-optical conversion efficiency is 68% and the 3-dB bandwidth of laser output increases with output power. Presently, the output power is only limited by the pump source. It can be predicted that the laser power can be further scaled if more pump sources are utilized.

  13. Optical Cutting Interruption Sensor for Fiber Lasers

    Directory of Open Access Journals (Sweden)

    Benedikt Adelmann

    2015-09-01

    Full Text Available We report on an optical sensor system attached to a 4 kW fiber laser cutting machine to detect cutting interruptions. The sensor records the thermal radiation from the process zone with a modified ring mirror and optical filter arrangement, which is placed between the cutting head and the collimator. The process radiation is sensed by a Si and InGaAs diode combination with the detected signals being digitalized with 20 kHz. To demonstrate the function of the sensor, signals arising during fusion cutting of 1 mm stainless steel and mild steel with and without cutting interruptions are evaluated and typical signatures derived. In the recorded signals the piercing process, the laser switch on and switch off point and waiting period are clearly resolved. To identify the cutting interruption, the signals of both Si and InGaAs diodes are high pass filtered and the signal fluctuation ranges being subsequently calculated. Introducing a correction factor, we identify that only in case of a cutting interruption the fluctuation range of the Si diode exceeds the InGaAs diode. This characteristic signature was successfully used to detect 80 cutting interruptions of 83 incomplete cuts (alpha error 3.6% and system recorded no cutting interruption from 110 faultless cuts (beta error of 0. This particularly high detection rate in combination with the easy integration of the sensor, highlight its potential for cutting interruption detection in industrial applications.

  14. Holey fiber amplifiers and lasers

    OpenAIRE

    Richardson, D J; Furusawa, K.; Kogure, T.; Price, J.H.V.; Lee, J.H.; Monro, T.M.

    2004-01-01

    We review our recent activities in the development of small-core, active holey fibers and describe a number of experiments that highlight the advantages of this technology within a range of both linear and nonlinear devices.

  15. Electrically tunable liquid crystal photonic bandgap fiber laser

    DEFF Research Database (Denmark)

    Olausson, Christina Bjarnal Thulin; Scolari, Lara; Wei, Lei;

    2010-01-01

    We demonstrate electrical tunability of a fiber laser by using a liquid crystal photonic bandgap fiber. Tuning of the laser is achieved by combining the wavelength filtering effect of a liquid crystal photonic bandgap fiber device with an ytterbium-doped photonic crystal fiber. We fabricate an al...

  16. Fiber lasers and amplifiers for science and exploration at NASA Goddard Space Flight Center

    Science.gov (United States)

    Krainak, Michael A.; Abshire, James; Allan, Graham R.; Stephen Mark

    2005-01-01

    We discuss present and near-term uses for high-power fiber lasers and amplifiers for NASA- specific applications including planetary topography and atmospheric spectroscopy. Fiber lasers and amplifiers offer numerous advantages for both near-term and future deployment of instruments on exploration and science remote sensing orbiting satellites. Ground-based and airborne systems provide an evolutionary path to space and a means for calibration and verification of space-borne systems. We present experimental progress on both the fiber transmitters and instrument prototypes for ongoing development efforts. These near-infrared instruments are laser sounders and lidars for measuring atmospheric carbon dioxide, oxygen, water vapor and methane and a pseudo-noise (PN) code laser ranging system. The associated fiber transmitters include high-power erbium, ytterbium, neodymium and Raman fiber amplifiers. In addition, we will discuss near-term fiber laser and amplifier requirements and programs for NASA free space optical communications, planetary topography and atmospheric spectroscopy.

  17. Experimental demonstration of attractor annihilation in a multistable fiber laser

    Science.gov (United States)

    Pisarchik, A. N.; Barmenkov, Yu. O.; Kir'yanov, A. V.

    2003-12-01

    We report on the experimental open-loop control of generalized multistability in a system with coexisting attractors. The experimental system is an erbium-doped fiber laser with pump modulation of the diode laser. We demonstrate that additional weak harmonic modulation of the diode current annihilates one or two stable limit cycles in the laser. The ability of the method to select a desired state is illustrated through a codimension-two bifurcation diagram in the parameter space of the frequency and amplitude of the control modulation. We identify main resonances on the bifurcation lines (annihilation curves) and evaluate conditions for attractor annihilation.

  18. Novel discretely tunable narrow linewidth fiber laser with uniform wavelength spacing

    Institute of Scientific and Technical Information of China (English)

    Xiaopeng Dong; Yong Chen

    2007-01-01

    A novel configuration of the tunable fiber laser with uniform wavelength spacing in dense wavelength division multiplexing (DWDM) application is proposed. The ring type tunable fiber laser consists of an all-fiber comb filter which determines the wavelength spacing, and a piece of adjustable fiber grating to select the discrete lasing wavelength for WDM application. The proposed all-fiber ring type tunable laser has potential application in the DWDM and other optical systems due to its advantages such as narrow linewidth, easy tuning, uniform wavelength interval, etc..

  19. Nonlinear distortion evaluation in a directly modulated distributed feedback laser diode-based fiber-optic cable television transport system

    Science.gov (United States)

    Li, Chung-Yi; Ying, Cheng-Ling; Lin, Chun-Yu; Chu, Chien-An

    2015-12-01

    This study evaluated a directly modulated distributed feedback (DFB) laser diode (LD) for cable TV systems with respect to carrier-to-nonlinear distortion of LDs. The second-order distortion-to-carrier ratio is found to be proportional to that of the second-order coefficient-to-first-order coefficient of the DFB laser diode driving current and to the optical modulation index (OMI). Furthermore, the third-order distortion-to-carrier ratio is proportional to that of the third-order coefficient-to-first-order coefficient of the DFB laser diode driving current, and to the OMI2.

  20. High power lasers & systems

    OpenAIRE

    Chatwin, Chris; Young, Rupert; Birch, Philip

    2015-01-01

    Some laser history;\\ud Airborne Laser Testbed & Chemical Oxygen Iodine Laser (COIL);\\ud Laser modes and beam propagation;\\ud Fibre lasers and applications;\\ud US Navy Laser system – NRL 33kW fibre laser;\\ud Lockheed Martin 30kW fibre laser;\\ud Conclusions

  1. Status on Technology Development of Optic Fiber-Coupled Laser Ignition System for Rocket Engine Applications

    Science.gov (United States)

    Trinh, Huu P.; Early, Jim; Osborne, Robin; Thomas, Matthew; Bossard, John

    2003-01-01

    To pursue technology developments for future launch vehicles, NASA/Marshall Space Flight Center (MSFC) is examining vortex chamber concepts for liquid rocket engine applications. Past studies indicated that the vortex chamber schemes potentially have a number of advantages over conventional chamber methods. Due to the nature of the vortex flow, relatively cooler propellant streams tend to flow along the chamber wall. Hence, the thruster chamber can be operated without the need of any cooling techniques. This vortex flow also creates strong turbulence, which promotes the propellant mixing process. Consequently, the subject chamber concept: not only offer system simplicity, but also enhance the combustion performance. Test results have shown that chamber performance is markedly high even at a low chamber length-to-diameter ratio. This incentive can be translated to a convenience in the thrust chamber packaging.

  2. Equivalente esférico e valores da espessura da camada de fibras nervosas obtidas com o GDX TM Scanning Laser System® Spherical equivalent and nerve fiber layer thickness assessed with GDX TM Scanning Laser System®

    Directory of Open Access Journals (Sweden)

    Lênio Souza Alvarenga

    1999-12-01

    Full Text Available Objetivo: Estudar a influência do equivalente esférico nos valores obtidos pelo GDX TM Scanning Laser System®. Métodos: Foram avaliados 41 olhos de 41 voluntários sem doenças oculares e com campo visual sem alterações. Foi realizada a polarimetria de varredura a laser com o GDX TM Scanning Laser System® de acordo com as instruções contidas no manual do aparelho. Foram comparados os valores obtidos nesse exame em um grupo de pacientes com equivalente esférico positivo e em um outro com este valor nulo ou negativo, pelo teste de Mann-Whitney. Resultados: Não se verificou diferença estatística entre os valores obtidos nos olhos de pacientes do grupo I e os do grupo II. Não foi encontrada correlação entre o equivalente esférico e os valores obtidos com o GDX TM Scanning Laser System®. Conclusões: Na amostra estudada não houve diferença estatística entre os valores obtidos em um grupo de olhos com equivalente esférico positivo e outro com este valor negativo ou nulo, usando-se o GDX TM Scanning Laser System®.Purpose: To evaluate the effect of spherical equivalent on the acquisition of nerve fiber layer (NFL thickness with GDX TM Scanning Laser System®. Methods: Forty-one eyes of 41 volunteers were enrolled in this study. All of them presented with no ocular disease and no visual field defect. The NFL thickness was measured with GDX TM Scanning Laser System® as described in its manual. The values obtained in a group of volunteers with negative spherical equivalent (group I were compared to those from a group with a positive spherical equivalent (group II by the Mann-Whitney test. Results: There was no statistical difference between mea-surements in eyes of group I and those in group II. The NFL thickness measurements were not correlated with the sphe-rical equivalent. Conclusions: In the studied group there was no statistical difference in the GDX TM Scanning Laser System® parameters related to spherical equivalent.

  3. Nanographene-Based Saturable Absorbers for Ultrafast Fiber Lasers

    Directory of Open Access Journals (Sweden)

    Hsin-Hui Kuo

    2014-01-01

    Full Text Available The generation of femtosecond pulse laser in the erbium-doped fiber laser system is presented by integrating of the nanographene-based saturable absorbers (SAs. A simplified method of dispersed nanographene-based SAs side-polished fiber device with controllable polished length and depth was also developed. The dependence of geometry of a graphene-deposited side-polished fiber device on optical nonlinear characteristics and on the performance of the MLFL was screened. We found that the 10 mm polished length with 1.68 dB insertion loss had the highest modulation depth (MD of 1.2%. A stable MLFL with graphene-based SAs employing the optimized side-polished fiber device showed a pulse width, a 3 dB bandwidth, a time-bandwidth product (TBP, a repetition rate, and pulse energy of 523 fs, 5.4 nm, 0.347, 16.7 MHz, and 0.18 nJ, respectively, at fundamental soliton-like operation. The femtosecond pulse laser is achieved by evanescent field coupling through graphene-deposited side-polished fiber devices in the laser cavity. This study demonstrates that the polished depth is the key fabrication geometric parameter affecting the overall optical performance and better results exist within the certain polished range.

  4. Torsion sensing characteristics of long period fiber gratings fabricated by femtosecond laser in optical fiber

    Science.gov (United States)

    Duan, Ji'an; Xie, Zheng; Wang, Cong; Zhou, Jianying; Li, Haitao; Luo, Zhi; Chu, Dongkai; Sun, Xiaoyan

    2016-09-01

    With the alignment of the fiber core systems containing dual-CCDs and high-precision electric displacement platform, twisted long period fiber gratings (T-LPFGs) were fabricated in two different twisted SMF-28 fibers by femtosecond laser. The torsion characteristics of the T-LPFGs were experimentally and theoretical investigated and demonstrated in this study. The achieved torsion sensitivity is 117.4 pm/(rad/m) in the torsion range -105-0 rad/m with a linearity of 0.9995. Experimental results show that compared with the ordinary long period fiber gratings, the resonance wavelength of the gratings presents an opposite symmetrical shift depending on the twisting direction after the applied torsion is removed. In addition, high sensitivity could be obtained, which is very suitable for the applications in the torsion sensor. These results are important for the design of new torsion sensors based on T-LPFGs fabricated by femtosecond laser.

  5. Fiber ring laser with a feedback mirror.

    Science.gov (United States)

    Abitan, H; Bohr, H; Pedersen, C F

    2005-12-20

    We describe the spectral and power features of a ytterbium-doped double-clad photonic crystal fiber laser that is operated in a ring configuration with an external mirror that feeds back only one of its two output beams. We compare the operation of the laser with and without an external feedback mirror. We find that the feedback mirror reduces significantly the spectral and power fluctuations. It is also responsible for an interesting spectral phenomenon: The laser frequency is drifting periodically over 9 nm at a rate of 2 nm/s from a short wavelength to a longer wavelength and vice versa.

  6. Reverse spontaneous laser line sweeping in ytterbium fiber laser

    Science.gov (United States)

    Navratil, P.; Peterka, P.; Honzatko, P.; Kubecek, V.

    2017-03-01

    Self-induced laser line sweeping of various regimes of sweep direction is reported for an experimental ytterbium fiber laser. The regimes involve sweeping from shorter to longer wavelengths (1076~\\text{nm}\\to 1083 nm)—so-called normal self-sweeping; from longer to shorter wavelengths (1079~\\text{nm}\\to 1073 nm)—so-called reverse self-sweeping; and a mixed regime in which a precarious balance of the normal and reverse sweeping exists and the sweep direction can change between consecutive sweeps. The regimes of sweeping were selected by changing the pump wavelength only. A detailed explanation of this sweep direction dynamics is presented based on a semi-empirical model. This model also provides a way to predict the sweep direction of fiber lasers based on other rare-earth-doped laser media.

  7. Erbium-doped photonic crystal fiber chaotic laser

    Science.gov (United States)

    Martín, Juan C.; Used, Javier; Sánchez-Martín, José A.; Berdejo, Víctor; Vallés, Juan A.; Álvarez, José M.; Rebolledo, Miguel A.

    2011-09-01

    An erbium-doped photonic crystal fiber laser has been designed, constructed and characterized in order to examine the feasibility of this kind of devices for secure communications applications based on two identical chaotic lasers. Inclusion of a tailored photonic crystal fiber as active medium improves considerably the security of the device because it allows customization of the mode transversal profile, very influential on the laser dynamics and virtually impossible to be cloned by undesired listeners. The laser design has been facilitated by the combination of characterization procedures and models developed by us, which allow prediction of the most suitable laser features (losses, length of active fiber, etc.) to a given purpose (in our case, a laser that emits chaotically for a wide assortment of pump modulation conditions). The chaotic signals obtained have been characterized by means of topological analysis techniques. The underlying chaotic attractors found present topological structures belonging to classes of which very scarce experimental results have been reported. This fact is interesting from the point of view of the study of nonlinear systems and, besides, it is promising for secure communications: the stranger the signals, the more difficult for an eavesdropper to synthesize another system with similar dynamics.

  8. Powerful narrow linewidth random fiber laser

    Science.gov (United States)

    Ye, Jun; Xu, Jiangming; Zhang, Hanwei; Zhou, Pu

    2017-03-01

    In this paper, we demonstrate a narrow linewidth random fiber laser, which employs a tunable pump laser to select the operating wavelength for efficiency optimization, a narrow-band fiber Bragg grating (FBG) and a section of single mode fiber to construct a half-open cavity, and a circulator to separate pump light input and random lasing output. Spectral linewidth down to 42.31 GHz is achieved through filtering by the FBG. When 8.97 W pump light centered at the optimized wavelength 1036.5 nm is launched into the half-open cavity, 1081.4 nm random lasing with the maximum output power of 2.15 W is achieved, which is more powerful than the previous reported results.

  9. Electrically tunable liquid crystal photonic bandgap fiber laser

    DEFF Research Database (Denmark)

    Olausson, Christina Bjarnal Thulin; Scolari, Lara; Wei, Lei

    2010-01-01

    We demonstrate electrical tunability of a fiber laser by using a liquid crystal photonic bandgap fiber. Tuning of the laser is achieved by combining the wavelength filtering effect of a liquid crystal photonic bandgap fiber device with an ytterbium-doped photonic crystal fiber. We fabricate an all......-spliced laser cavity based on a liquid crystal photonic bandgap fiber mounted on a silicon assembly, a pump/signal combiner with single-mode signal feed-through and an ytterbium-doped photonic crystal fiber. The laser cavity produces a single-mode output and is tuned in the range 1040-1065nm by applying...

  10. Generation of a hollow laser beam by a multimode fiber

    Institute of Scientific and Technical Information of China (English)

    Hongyu Ma; Huadong Cheng; Wenzhuo Zhang; Liang Liu; Yuzhu Wang

    2007-01-01

    A simple method to generate a hollow laser beam by multimode fiber is reported. A dark hollow laser beam is generated from a multimode fiber and the dependence of the output beam profile on the incident angle of laser beam is analyzed. The results show that this hollow laser beam can be used to trap and guide cold atoms.

  11. High power fiber delivery for laser ignition applications.

    Science.gov (United States)

    Yalin, Azer P

    2013-11-01

    The present contribution provides a concise review of high power fiber delivery research for laser ignition applications. The fiber delivery requirements are discussed in terms of exit energy, intensity, and beam quality. Past research using hollow core fibers, solid step-index fibers, and photonic crystal and bandgap fibers is summarized. Recent demonstrations of spark delivery using large clad step-index fibers and Kagome photonic bandgap fibers are highlighted.

  12. Performance analysis of CO2 laser polished angled ribbon fiber

    Science.gov (United States)

    Sohn, Ik-Bu; Choi, Hun-Kook; Noh, Young-Chul; Lee, Man-Seop; Oh, Jin-Kyoung; Kim, Seong-min; Ahsan, Md. Shamim

    2017-01-01

    This paper demonstrates CO2 laser assisted simultaneous polishing of angled ribbon fibers consisting eight set of optical fibers. The ribbon fibers were rotated vertically at an angle of 12° and polished by repetitive irradiation of CO2 laser beam at the end faces of the fibers. Compared to mechanically polished sharp edged angled fibers, CO2 laser polishing forms curve edged angled fibers. Increase in the curvature of the end faces of the ribbon fibers causes the increase of the fibers' strength, which in turn represents great robustness against fiber connections with other devices. The CO2 laser polished angled fibers have great smoothness throughout the polished area. The smoothness of the fiber end faces have been controlled by varying the number of laser irradiation. After CO2 laser polishing, the average value of the fiber angle of the ribbon fibers is ∼8.28°. The laser polished ribbon fibers show low insertion and return losses when connecting with commercial optical communication devices. The proposed technique of polishing the angled ribbon fibers is highly replicable and reliable and thus suitable for commercial applications.

  13. All-fiber passively mode-locked Ho-laser pumped by ytterbium fiber laser

    Science.gov (United States)

    Filatova, S. A.; Kamynin, V. A.; Zhluktova, I. V.; Trikshev, A. I.; Tsvetkov, V. B.

    2016-11-01

    We report an all-fiber mode-lock holmium-doped ring laser passively mode-locked by nonlinear polarization rotation without dispersion compensation. The laser produced picosecond pulses at 2.057 µm. The average output power was 4.5 mW.

  14. Generation of a 650 nm - 2000 nm Laser Frequency Comb based on an Erbium-Doped Fiber Laser

    CERN Document Server

    Ycas, Gabriel; Diddams, Scott A

    2012-01-01

    We present a laser frequency comb based upon a 250 MHz mode-locked erbium-doped fiber laser that spans more than 300 terahertz of bandwidth, from 660 nm to 2000 nm. The system generates 1.2 nJ, 70 fs pulses at 1050 nm by amplifying the 1580 nm laser light in Er:fiber, followed by nonlinear broadening to 1050 nm and amplification in Yb:fiber. Extension of the frequency comb into the visible is achieved by supercontinuum generation from the 1050 nm light. Comb coherence is verified with cascaded f-2f interferometry and comparison to a frequency stabilized laser.

  15. Laser Communications and Fiber Optics Lab Manual. High-Technology Training Module.

    Science.gov (United States)

    Biddick, Robert

    This laboratory training manual on laser communications and fiber optics may be used in a general technology-communications course for ninth graders. Upon completion of this exercise, students achieve the following goals: match concepts with laser communication system parts; explain advantages of fiber optic cable over conventional copper wire;…

  16. QUANTITATIVE DETECTION OF ENVIRONMENTALLY IMPORTANT DYES USING DIODE LASER/FIBER-OPTIC RAMAN

    Science.gov (United States)

    A compact diode laser/fiber-optic Raman spectrometer is used for quantitative detection of environmentally important dyes. This system is based on diode laser excitation at 782 mm, fiber optic probe technology, an imaging spectrometer, and state-of-the-art scientific CCD camera. ...

  17. Fiber Coupled Laser Diodes with Even Illumination Pattern

    Science.gov (United States)

    Howard, Richard T. (Inventor)

    2007-01-01

    An optical fiber for evenly illuminating a target. The optical fiber is coupled to a laser emitting diode and receives laser light. The la ser light travels through the fiber optic and exits at an exit end. T he exit end has a diffractive optical pattern formed thereon via etch ing, molding or cutting, to reduce the Gaussian profile present in co nventional fiber optic cables The reduction of the Gaussian provides an even illumination from the fiber optic cable.

  18. Electrically tunable Yb-doped fiber laser based on a liquid crystal photonic bandgap fiber device

    DEFF Research Database (Denmark)

    Olausson, Christina Bjarnal Thulin; Scolari, Lara; Wei, Lei

    2010-01-01

    We demonstrate electrical tunability of a fiber laser using a liquid crystal photonic bandgap fiber. Tuning of the laser is achieved by combining the wavelength filtering effect of a tunable liquid crystal photonic bandgap fiber device with an ytterbium-doped photonic crystal fiber. We fabricate...... an all-spliced laser cavity based on the liquid crystal photonic bandgap fiber mounted on a silicon assembly, a pump/signal combiner with single-mode signal feed-through and an ytterbium-doped photonic crystal fiber. The laser cavity produces a single-mode output and is tuned in the range 1040-1065 nm...

  19. Fiber optic and laser sensors V; Proceedings of the Meeting, San Diego, CA, Aug. 17-19, 1987

    Science.gov (United States)

    De Paula, Ramon P. (Editor); Udd, Eric (Editor)

    1988-01-01

    The papers contained in this volume focus on recent developments in fiber optic and laser sensors. Topics discussed include electric and magnetic field sensors, fiber optic pressure sensors, fiber optic gyros, fiber optic sensors for aerospace applications, fiber sensor multiplexing, temperature sensors, and specialized fiber optic sensors. Papers are presented on remote fiber optic sensors for angular orientation; fiber optic rotation sensor for space missions; adaptation of an electro-optic monitoring system to aerospace structures; optical fiber sensor for dust concentration measurements; and communication-sensing system using a single optical fiber.

  20. Holmium-doped ZBLAN fiber lasers at 1.2 μm

    Science.gov (United States)

    Zhu, X.; Zong, J.; Norwood, R. A.; Chavez-Person, A.; Peyghambarian, N.; Prasad, N.

    2012-02-01

    Holmium (Ho3+)-doped ZBLAN glasses have been investigated for the purpose of achieving efficient fiber lasers at 1.2 μm. Because of the long lifetime of the upper laser level and the small phonon energy in Ho3+-doped ZBLAN glasses, strong fluorescence at 1.2 μm that usually cannot be observed in Ho-doped silica glass has been measured. Fluorescence of 1 mol%, 3 mol%, and 6 mol% Ho3+-doped ZBLAN glasses are reported. The effect of cerium and terbium ions on the emission of Ho3+-doped ZBLAN glass has also been studied. Obstacles to achieving an efficient Ho3+-doped ZBLAN laser are analyzed and discussed. In studies of a commercial Ho3+-doped ZBLAN fiber laser, it was found that the 3 μm four-energy-level laser can easily overwhelm the 1.2 μm laser, which is a three-energy-level system having the same upper laser level with the 3 μm laser. In order to effectively suppress the competiting 3 μm transition, advanced Ho3+-doped ZBLAN fiber has been designed and fabricated for 1.2 μm fiber lasers. Fiber lasers at 1.2 μm using the new Ho3+-doped ZBLAN fiber have been developed. Our experiments demonstrate that the new Ho3+-doped ZBLAN fiber is an efficient gain medium for lasers at 1.2 μm.

  1. Femtosecond Fiber Lasers Based on Dissipative Processes for Nonlinear Microscopy

    Science.gov (United States)

    Wise, Frank W.

    2012-01-01

    Recent progress in the development of femtosecond-pulse fiber lasers with parameters appropriate for nonlinear microscopy is reviewed. Pulse-shaping in lasers with only normal-dispersion components is briefly described, and the performance of the resulting lasers is summarized. Fiber lasers based on the formation of dissipative solitons now offer performance competitive with that of solid-state lasers, but with the benefits of the fiber medium. Lasers based on self-similar pulse evolution in the gain section of a laser also offer a combination of short pulse duration and high pulse energy that will be attractive for applications in nonlinear bioimaging. PMID:23869163

  2. Quality and performance of laser cutting with a high power SM fiber laser

    DEFF Research Database (Denmark)

    Kristiansen, Morten; Selchau, Jacob; Olsen, F. O.

    2013-01-01

    The introduction of high power single mode fiber lasers allows for a beam of high power and a good beam quality factor (M2 ” 1.2), compared to the multimode fiber lasers often utilised in macro laser metal cutting. This paper describes fundamental studies of macro laser metal cutting with a single...... mode fiber laser to study the performance of such lasers in terms of cut quality and process performance. Linear cut experiments have been performed applying a 3kW single mode fiber laser and varying the following parameters: laser power, cutting speed, focal length, focus position, cutting gas...... influence the cut quality and the maximum cutting speed in the investigated parameter space. Furthermore the achieved cutting performance is benchmarked to laser cutting with other types of lasers, CO2-lasers, disc-lasers as well as multimode fiber lasers....

  3. Synchronization of chaotic oscillations in doped fiber ring lasers

    CERN Document Server

    Lewis, C T; Kennel, M B; Buhl, M; Illing, L; Lewis, Clifford Tureman; Abarbanel, Henry D I; Kennel, Matthew B; Buhl, Michael; Illing, Lucas

    1999-01-01

    We investigate synchronization and subsequently communication using chaotic rare-earth-doped fiber ring lasers, represented by a physically realistic model. The lasers are coupled by transmitting a fraction c of the circulating electric field in the transmitter and injecting it into the optical cavity of the receiver. We then analyze a coupling strategy which relies on modulation of the intensity of the light alone. This avoids problems associated with the polarization and phase of the laser light. We study synchronization as a function of the coupling strength and see excellent convergence, even with small coupling constants. We prove that in an open-loop configuration (c=1) synchronization is guaranteed due to the particular structure of our equations and of the injection method we use for these coupled laser systems. We also analyze the generalized synchronization of these model lasers when there is parameter mismatch between the transmitter and the receiver. We then address communicating information betwe...

  4. Soliton modulation instability in fiber lasers

    Science.gov (United States)

    Tang, D. Y.; Zhao, L. M.; Wu, X.; Zhang, H.

    2009-08-01

    We report experimental evidence of soliton modulation instability in erbium-doped fiber lasers. An alternate type of spectral sideband generation was always experimentally observed on the soliton spectrum of the erbium-doped soliton fiber lasers when energy of the formed solitons reached beyond a certain threshold value. Following this spectral sideband generation, if the pump power of the lasers was further increased, either a new soliton would be formed or the existing solitons would experience dynamical instabilities, such as the period-doubling bifurcations or period-doubling route to chaos. We point out that the mechanism for this soliton spectral sideband generation is the modulation instability of the solitons in the lasers. We further show that, owing to the internal energy balance of a dissipative soliton, modulation instability itself does not destroy the stable soliton evolution in a laser cavity. It is the strong resonant wave coupling between the soliton and dispersive waves that leads to the dynamic instability of the solitons.

  5. High-Energy Passive Mode-Locking of Fiber Lasers

    Directory of Open Access Journals (Sweden)

    Edwin Ding

    2012-01-01

    Full Text Available Mode-locking refers to the generation of ultrashort optical pulses in laser systems. A comprehensive study of achieving high-energy pulses in a ring cavity fiber laser that is passively mode-locked by a series of waveplates and a polarizer is presented in this paper. Specifically, it is shown that the multipulsing instability can be circumvented in favor of bifurcating to higher-energy single pulses by appropriately adjusting the group velocity dispersion in the fiber and the waveplate/polarizer settings in the saturable absorber. The findings may be used as practical guidelines for designing high-power lasers since the theoretical model relates directly to the experimental settings.

  6. Dual-kind Q-switching of erbium fiber laser

    Energy Technology Data Exchange (ETDEWEB)

    Barmenkov, Yuri O., E-mail: yuri@cio.mx; Kir' yanov, Alexander V. [Centro de Investigaciones en Optica, Loma del Bosque 115, Col. Lomas del Campestre, 37150 Leon, Guanajuato (Mexico); Cruz, Jose L.; Andres, Miguel V. [Department of Applied Physics and Electromagnetism, University of Valencia, Dr. Moliner 50, Burjassot 46100 (Spain)

    2014-03-03

    Two different regimes of Q-switching in the same implementation of an actively Q-switched erbium-doped fiber laser are demonstrated. Depending on the active fiber length and repetition rate of an intracavity Q-cell (acousto-optic modulator), the laser operates either in the regime of common, rather long and low-power, pulses composed of several sub-pulses or in the one of very short and powerful stimulated Brillouin scattering-induced pulses. The basic physical reason of the laser system to oscillate in one of these two regimes is the existence or absence of CW narrow-line “bad-cavity” lasing in the intervals when the Q-cell is blocked.

  7. Laser cutting of carbon fiber reinforced thermo-plastics (CFRTP) by single-mode fiber laser irradiation

    Science.gov (United States)

    Niino, Hiroyuki; Kawaguchi, Yoshizo; Sato, Tadatake; Narazaki, Aiko; Kurosaki, Ryozo; Muramatsu, Mayu; Harada, Yoshihisa; Anzai, Kenji; Aoyama, Mitsuaki; Matsushita, Masafumi; Furukawa, Koichi; Nishino, Michiteru; Fujisaki, Akira; Miyato, Taizo; Kayahara, Takashi

    2014-03-01

    We report on the laser cutting of carbon fiber reinforced thermo-plastics (CFRTP) with a cw IR fiber laser (single-mode fiber laser, average power: 350 W). CFRTP is a high strength composite material with a lightweight, and is increasingly being used various applications. A well-defined cutting of CFRTP which were free of debris and thermal-damages around the grooves, were performed by the laser irradiation with a fast beam galvanometer scanning on a multiple-scanpass method.

  8. Monolithic Highly Stable Yb-Doped Femtosecond Fiber Lasers for Applications in Practical Biophotonics

    DEFF Research Database (Denmark)

    Liu, Xiaomin; Lægsgaard, Jesper; Turchinovich, Dmitry

    2012-01-01

    Operational and environmental stability of ultrafast laser systems is critical for their applications in practical biophotonics. Mode-locked fiber lasers show great promise in applications such as supercontinuum sources or multiphoton microscopy systems. Recently, substantial progress has been made...... in the development of all-fiber nonlinear-optical laser control schemes, which resulted in the demonstration of highly stable monolithic, i.e., not containing any free-space elements, lasers with direct fiber-end delivery of femtosecond pulses. This paper provides an overview of the progress in the development...... of such all-fiber mode-locked lasers based on Yb-fiber as gain medium, operating at the wavelength around 1 $\\mu$m, and delivering femtosecond pulses reaching tens of nanojoules of energy....

  9. Single frequency 1083nm ytterbium doped fiber master oscillator power amplifier laser.

    Science.gov (United States)

    Huang, Shenghong; Qin, Guanshi; Shirakawa, Akira; Musha, Mitsuru; Ueda, Ken-Ichi

    2005-09-05

    Single frequency 1083nm ytterbium fiber master oscillator power amplifier system was demonstrated. The oscillator was a linear fiber cavity with loop mirror filter and polarization controller. The loop mirror with unpumped ytterbium fiber as a narrow bandwidth filter discriminated and selected laser longitudinal modes efficiently. Spatial hole burning effect was restrained by adjusting polarization controller appropriately in the linear cavity. The amplifier was 5 m ytterbium doped fiber pumped by 976nm pigtail coupled laser diode. The linewidth of the single frequency laser was about 2 KHz. Output power up to 177 mW was produced under the launched pump power of 332 mW.

  10. High Power Fiber Lasers and Applications to Manufacturing

    Science.gov (United States)

    Richardson, Martin; McComb, Timothy; Sudesh, Vikas

    2008-09-01

    We summarize recent developments in high power fiber laser technologies and discuss future trends, particularly in their current and future use in manufacturing technologies. We will also describe our current research programs in fiber laser development, ultra-fast and new lasers, and will mention the expectations in these areas for the new Townes Laser Institute. It will focus on new core laser technologies and their applications in medical technologies, advanced manufacturing technologies and defense applications. We will describe a program on large mode area fiber development that includes results with the new gain-guiding approach, as well as high power infra-red fiber lasers. We will review the opportunities for high power fiber lasers in various manufacturing technologies and illustrate this with applications we are pursuing in the areas of femtosecond laser applications, advanced lithographies, and mid-IR technologies.

  11. Characterization of the Los Alamos IPG YLR-6000 fiber laser using multiple optical paths and laser focusing optics

    Energy Technology Data Exchange (ETDEWEB)

    Milewski, John O [Los Alamos National Laboratory; Bernal, John E [Los Alamos National Laboratory

    2009-01-01

    Fiber laser technology has been identified as the replacement power source for the existing Los Alamos TA-55 production laser welding system. An IPG YLR-6000 fiber laser was purchased, installed at SM-66 R3, and accepted in February 2008. No characterization of the laser and no welding was performed in the Feb 2008 to May 2009 interval. T. Lienert and J. Bernal (Ref. 1, July 2009) determined the existing 200 mm Rofin collimator and focus heads used with the Rofin diode pumped lasers were inadequate for use with the IPG laser due to clipping of the IPG laser beam. Further efforts in testing of the IPG laser with Optoskand fiber delivery optics and a Rofin 120 mm collimator proved problematic due to optical fiber damage. As a result, IPG design optical fibers were purchased as replacements for subsequent testing. Within the same interval, an IPG fiber-to-fiber (F2F) connector, custom built for LANL, (J. Milewski, S. Gravener, Ref.2) was demonstrated and accepted at IPG Oxford, MA in August 2009. An IPG service person was contracted to come to LANL to assist in the installation, training, troubleshooting and characterization of the multiple beam paths and help perform laser head optics characterization. The statement of work is provided below: In summary the laser system, optical fibers, F2F connector, Precitec head, and a modified Rofin type (w/120mm Optoskand collimator) IWindowIBoot system focus head (Figure 1) were shown to perform well at powers up to 6 kW CW. Power measurements, laser spot size measurements, and other characterization data and lessons learned are contained within this report. In addition, a number of issues were identified that will require future resolution.

  12. Electrospun Polymer Fiber Lasers for Applications in Vapor Sensing

    DEFF Research Database (Denmark)

    Krämmer, Sarah; Laye, Fabrice; Friedrich, Felix

    2017-01-01

    A sensing approach based on laser emissionfrom polymer fiber networks is presented. Poly(methyl methacrylate) (PMMA) fibers doped with a laser dye are fabricated by electrospinning. They form random loop resonators, which show laser emission upon optical pumping. The shift of the spectral position...

  13. Mechanical reliability of double clad fibers in typical fiber laser deployment conditions

    Science.gov (United States)

    Walorny, Michael; Abramczyk, Jaroslaw; Jacobson, Nick; Tankala, Kanishka

    2016-03-01

    With the rapid acceptance of fiber lasers and amplifiers for various materials processing and defense applications the long term optical and mechanical reliability of the fiber laser, and therefore the components that make up the laser, is of significant interest to the industrial and defense communities. The double clad fiber used in a fiber laser is a key component whose lifetime in typical deployment conditions needs to be understood. The optical reliability of double clad fiber has recently been studied and a predictive model of fiber lifetime has been published. In contrast, a rigorous model for the mechanical reliability of the fiber and an analysis of the variables affecting the lifetime of the fiber in typical deployment conditions has not been studied. This paper uses the COST-218 model which is widely used for analyzing the mechanical lifetime of fiber used in the telecom industry. The factors affecting lifetime are analyzed to make the reader aware of the design choices a laser manufacturer can make, and the information they must seek from fiber suppliers, to ensure excellent lifetime for double clad fiber and consequently for the fiber laser. It is shown that the fiber's stress corrosion susceptibility, its proof strength, the coil diameter and the length of fiber coiled to achieve good beam quality all have important implications on fiber lifetime.

  14. High Energy Single Frequency Fiber Laser at Low Repetition Rate Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This SBIR phase II project proposes a single frequency high energy fiber laser system operating at low repetition rate of 10 Hz to 1 kHz for coherent Lidar systems...

  15. High Energy Single Frequency Fiber Laser at Low Repetition Rate Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This SBIR phase I project proposes a tunable single frequency high energy fiber laser system for coherent Lidar systems for remote sensing. Current state-of-art...

  16. A High Energy and High Efficiency Spectral Shaping Single Frequency Fiber Laser Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This SBIR phase I project proposes a tunable single frequency high energy fiber laser system for coherent Lidar systems for remote sensing. Current state-of-art...

  17. A High Energy and High Efficiency Spectral Shaping Single Frequency Fiber Laser Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This SBIR phase II project proposes a single frequency high energy fiber laser system for coherent Lidar systems for remote sensing. Current state-of-art...

  18. Multi-wavelength hybrid gain fiber ring laser based on Raman and erbium-doped fiber

    Institute of Scientific and Technical Information of China (English)

    Shan Qin; Yongbo Tang; Daru Chen

    2006-01-01

    A stable and uniform multi-wavelength fiber laser based on the hybrid gain of a dispersion compensating fiber as the Raman gain medium and an erbium-doped fiber (EDF) is introduced. The gain competition effects in the fiber Raman amplification (FRA) and EDF amplification are analyzed and compared experimentaUy. The FRA gain mechanism can suppress the gain competition effectively and make the present multi-wavelength laser stable at room temperature. The hybrid gain medium can also increase the lasing bandwidth compared with a pure EDF laser, and improve the power conversion efficiency compared with a pure fiber Raman laser.

  19. Fiber-laser-pumped Ti:sapphire laser

    CERN Document Server

    Samanta, G K; Devi, Kavita; Ebrahim-Zadeh, M

    2010-01-01

    We report the first experimental demonstration of efficient and high-power operation of a Ti:sapphire laser pumped by a simple, compact, continuous-wave (cw) fiber-laser-based green source. The pump radiation is obtained by direct single-pass second-harmonic-generation (SHG) of a 33-W, cw Yb-fiber laser in 30-mm-long MgO:sPPLT crystal, providing 11 W of single-frequency green power at 532 nm in TEM00 spatial profile with power and frequency stability better than 3.3% and 32 MHz, respectively, over one hour. The Ti:sapphire laser is continuously tunable across 743-970 nm and can deliver an output power up to 2.7 W with a slope efficiency as high as 32.8% under optimum output coupling of 20%. The laser output has a TEM00 spatial profile with M2<1.44 across the tuning range and exhibits a peak-to-peak power fluctuation below 5.1% over 1 hour.

  20. FIBER LASER CONSTRUCTION AND THEORY INCLUDING FIBER BRAGG GRATINGS Photonic Crystal Fibers (PCFs) and applications of gas filled PCFs

    Energy Technology Data Exchange (ETDEWEB)

    Sutton, Jacob O. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-03-08

    The principles used in fiber lasers have been around for a while but it is only within the past few years that fiber lasers have become commercially available and used in high power laser applications. This paper will focus on the basic design principles of fiber lasers, including fiber Bragg gratings, principles of operation, and forms of non-linear effects. It will describe the type and associated doping of the fiber used and difficult designs used to guide energy from the pump to the active medium. Topics covered include fiber laser design, fiber Bragg gratings, materials used, differences in quantum energy loss, thermo-optical effects, stimulated Raman scattering, Brillouin scattering, photonic crystal fibers and applications of gas filled Photonic Crystal Fibers (PCFs). Thanks to fiber lasers, the energy required to produce high power lasers has greatly dropped and as such we can now produce kW power using a standard 120V 15A circuit. High power laser applications are always requiring more power. The fiber laser can now deliver the greater power that these applications demand. Future applications requiring more power than can be combined using standard materials or configurations will need to be developed to overcome the high energy density and high non-linear optical scattering effects present during high power operations.

  1. Development and evaluation of fiber optic probe-based helium-neon low-level laser therapy system for tissue regeneration--an in vivo experimental study.

    Science.gov (United States)

    Prabhu, Vijendra; Rao, Satish B S; Rao, Nageshwara B; Aithal, Kiran B; Kumar, Pramod; Mahato, Krishna K

    2010-01-01

    We report the design and development of an optical fiber probe-based Helium-Neon (He-Ne) low-level laser therapy system for tissue regeneration. Full thickness excision wounds on Swiss albino mice of diameter 15 mm were exposed to various laser doses of 1, 2, 3, 4, 6, 8 and 10 J cm(-2) of the system with appropriate controls, and 2 J cm(-2) showing optimum healing was selected. The treatment schedule for applying the selected laser dose was also standardized by irradiating the wounds at different postwounding times (0, 24 and 48 h). The tissue regeneration potential was evaluated by monitoring the progression of wound contraction and mean wound healing time along with the hydroxyproline and glucosamine estimation on wound ground tissues. The wounds exposed to 2 J cm(-2) immediately after wounding showed considerable contraction on days 5, 9, 12, 14, 16 and 19 of postirradiation compared with the controls and other treatment schedules, showing significant (P < 0.001) decrease in the healing time. A significant increase in hydroxyproline and glucosamine levels was observed for the 2 J cm(-2) irradiation group compared with the controls and other treatment groups. In conclusion, the wounds treated with 2 J cm(-2) immediately after the wounding show better healing compared with the controls.

  2. Fiber laser pumped burst-mode operated picosecond mid-infrared laser

    Institute of Scientific and Technical Information of China (English)

    魏凯华; 姜培培; 吴波; 陈滔; 沈永行

    2015-01-01

    We demonstrate a compact periodically poled MgO-doped lithium niobate (MgO:PPLN)-based optical parametric oscillator (OPO) quasi-synchronously pumped by a fiber laser system with burst-mode operation. The pump source is a peak-power-selectable pulse-multiplied picosecond Yb fiber laser. The chirped pulses from a figure of eight-cavity mode-locked fiber laser seed are narrowed to a duration of less than 50 ps using an FBG refl ector and a circulator. The narrowed pulses are directed to pass through a pulse multiplier and to form pulse bunches, each of which is composed of 13 sub-pulses. The obtained pulse bunches are amplified by two-stage fiber pre-amplifiers:one-stage is core-pumped and the other is cladding-pumped. A fiberized acousto–optic modulator is inserted to control the pulse repetition rate (PRR) of the pulse bunches before they are power-amplified in the final amplifier stage with a large mode area (LMA) PM Yb-doped fiber. The maximum average powers from the final amplifier are 85 W, 60 W, and 45 W respectively, corresponding to the PRR of 2.72 MHz, 1.36 MHz, and 0.68 MHz. The amplified pulses are directed to pump an MgO:PPLN-based optical parametric oscillator (OPO). A maximum peak power at 3.45 µm is obtained approximately to be 8.4 kW. Detailed performance characteristics are presented.

  3. 53 W average power few-cycle fiber laser system generating soft x rays up to the water window.

    Science.gov (United States)

    Rothhardt, Jan; Hädrich, Steffen; Klenke, Arno; Demmler, Stefan; Hoffmann, Armin; Gotschall, Thomas; Eidam, Tino; Krebs, Manuel; Limpert, Jens; Tünnermann, Andreas

    2014-09-01

    We report on a few-cycle laser system delivering sub-8-fs pulses with 353 μJ pulse energy and 25 GW of peak power at up to 150 kHz repetition rate. The corresponding average output power is as high as 53 W, which represents the highest average power obtained from any few-cycle laser architecture so far. The combination of both high average and high peak power provides unique opportunities for applications. We demonstrate high harmonic generation up to the water window and record-high photon flux in the soft x-ray spectral region. This tabletop source of high-photon flux soft x rays will, for example, enable coherent diffractive imaging with sub-10-nm resolution in the near future.

  4. Development of fiber lasers and devices for coherent Raman scattering microscopy

    Science.gov (United States)

    Lamb, Erin Stranford

    As ultrafast laser technology has found expanding application in machining, spectroscopy, microscopy, surgery, and numerous other areas, the desire for inexpensive and robust laser sources has grown. Until recently, nonlinear effects in fiber systems due to the tight confinement of the light in the core have limited their performance. However, with advances in managing nonlinearity through pulse propagation physics and the use of large core fibers, the performance of fiber lasers can compete with that of their solid-state counterparts. As specific applications, such as coherent Raman scattering microscopy, emerge that stand to benefit from fiber technology, new performance challenges in areas such as laser noise are anticipated. This thesis studies nonlinear pulse propagation in fiber lasers and fiber parametric devices. Applications of dissipative solitons and self-similar pulse propagation to low-repetition rate oscillators that have the potential to simplify short-pulse amplification schemes will be examined. The rest of this thesis focuses on topics relevant to fiber laser development for coherent Raman scattering microscopy sources. Coherent pulse division and recombination inside the laser cavity will be introduced as an energy-scaling mechanism and demonstrated for a fiber soliton laser. The relative intensity noise properties of mode-locked fiber lasers, with a particular emphasis on normal dispersion lasers, will be explored in simulation and experiment. A fiber optical parametric oscillator will be studied in detail for low noise frequency conversion of picosecond pulses, and its utility for coherent Raman imaging will be demonstrated. Spectral compression of femtosecond pulses is used to generate picosecond pulses to pump this device, and this technique provides a route to future noise reduction in the system. Furthermore, this device forms a multimodal source capable of providing the picosecond pulses for coherent Raman scattering microscopy and the

  5. Highly-efficient high-power pumps for fiber lasers

    Science.gov (United States)

    Gapontsev, V.; Moshegov, N.; Berezin, I.; Komissarov, A.; Trubenko, P.; Miftakhutdinov, D.; Berishev, I.; Chuyanov, V.; Raisky, O.; Ovtchinnikov, A.

    2017-02-01

    We report on high efficiency multimode pumps that enable ultra-high efficiency high power ECO Fiber Lasers. We discuss chip and packaged pump design and performance. Peak out-of-fiber power efficiency of ECO Fiber Laser pumps was reported to be as high as 68% and was achieved with passive cooling. For applications that do not require Fiber Lasers with ultimate power efficiency, we have developed passively cooled pumps with out-of-fiber power efficiency greater than 50%, maintained at operating current up to 22A. We report on approaches to diode chip and packaged pump design that possess such performance.

  6. Vector Dissipative Solitons in Graphene Mode Locked Fiber Lasers

    CERN Document Server

    Zhang, Han; Zhao, Luming; Bao, Qiaoliang; Loh, Kian Ping

    2010-01-01

    Vector soliton operation of erbium-doped fiber lasers mode locked with atomic layer graphene was experimentally investigated. Either the polarization rotation or polarization locked vector dissipative solitons were experimentally obtained in a dispersion-managed cavity fiber laser with large net cavity dispersion, while in the anomalous dispersion cavity fiber laser, the phase locked NLSE solitons and induced NLSE soliton were experimentally observed. The vector soliton operation of the fiber lasers unambiguously confirms the polarization insensitive saturable absorption of the atomic layer graphene when the light is incident perpendicular to its 2D atomic layer.

  7. Analysis of New Q-switched Erbium Doped Fiber Laser Based on Fiber Grating Loop Mirror

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    An all-fiber wavelength selective Q-switching modulator based on fiber grating loop mirror is proposed. A newly configured Q-switched erbium doped fiber laser using this all-fiber modulator is numerically analyzed taking into account the effects of the spontaneous emission.

  8. Highly Efficient Fiber Lasers for Wireless Power Transmission Project

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose to develop ytterbium (Yb) fiber lasers with an electrical-to-optical efficiency of nominally 64% by directly coupling 80%-efficient diode lasers with Yb...

  9. Novel fiber optic tip designs and devices for laser surgery

    Science.gov (United States)

    Hutchens, Thomas Clifton

    Fiber optic delivery of laser energy has been used for years in various types of surgical procedures in the human body. Optical energy provides several benefits over electrical or mechanical surgery, including the ability to selectively target specific tissue types while preserving others. Specialty fiber optic tips have also been introduced to further customize delivery of laser energy to the tissue. Recent evolution in lasers and miniaturization has opened up opportunities for many novel surgical techniques. Currently, ophthalmic surgeons use relatively invasive mechanical tools to dissect retinal deposits which occur in proliferative diabetic retinopathy. By using the tight focusing properties of microspheres combined with the short optical penetration depth of the Erbium:YAG laser and mid-IR fiber delivery, a precise laser scalpel can be constructed as an alternative, less invasive and more precise approach to this surgery. Chains of microspheres may allow for a self limiting ablation depth of approximately 10 microm based on the defocusing of paraxial rays. The microsphere laser scalpel may also be integrated with other surgical instruments to reduce the total number of handpieces for the surgeon. In current clinical laser lithotripsy procedures, poor input coupling of the Holmium:YAG laser energy frequently damages and requires discarding of the optical fiber. However, recent stone ablation studies with the Thulium fiber laser have provided comparable results to the Ho:YAG laser. The improved spatial beam profile of the Thulium fiber laser can also be efficiently coupled into a fiber approximately one third the diameter and reduces the risk of damaging the fiber input. For this reason, the trunk optical fiber minus the distal fiber tip can be preserved between procedures. The distal fiber tip, which degrades during stone ablation, could be made detachable and disposable. A novel, low-profile, twist-locking, detachable distal fiber tip interface was designed

  10. Optical fiber link for transmission of 1-nJ femtosecond laser pulses at 1550 nm

    DEFF Research Database (Denmark)

    Eichhorn, Finn; Olsson, Rasmus Kjelsmark; Buron, Jonas Christian Due

    2010-01-01

    We report on numerical and experimental characterization of the performance of a fiber link optimized for the delivery of sub-100-fs laser pulses at 1550 nm over several meters of fiber. We investigate the power handling capacity of the link, and demonstrate all-fiber delivery of 1-nJ pulses over...... a distance of 5.3 m. The fiber link consists of dispersion-compensating fiber (DCF) and standard single-mode fiber. The optical pulses at different positions in the fiber link are measured using frequency-resolved optical gating (FROG). The results are compared with numerical simulations of the pulse...... propagation based on the generalized nonlinear Schrödinger equation. The high input power capacity of the fiber link allows the splitting and distribution of femtosecond pulses to an array of fibers with applications in multi-channel fiber-coupled terahertz time-domain spectroscopy and imaging systems. We...

  11. Can one passively phase lock 25 fiber lasers?

    CERN Document Server

    Fridman, Moti; Davidson, Nir; Friesem, Asher A

    2010-01-01

    Yes, it is possible to phase lock 25 fiber lasers but only for a short time. Our experiments on passively phase locking two-dimensional arrays of coupled fiber lasers reveal that the average phase locking level of 25 lasers is low ($20%-30%$) but can exceed 90% on rare instantaneous events. The average phase locking level was found to decrease for larger number of lasers in the array and increase with the connectivity of the array.

  12. Highly Stable PM Raman Fiber Laser at 1680 nm

    DEFF Research Database (Denmark)

    Svane, Ask Sebastian; Liu, Xiaomin; Rottwitt, Karsten

    2013-01-01

    We demonstrate thermal stabilization of a Raman fiber laser. At 1680 nm the laser emission exceeds 500 mW with a power variation below 0.5 %, both linewidth and wavelength variations are under 1 pm.......We demonstrate thermal stabilization of a Raman fiber laser. At 1680 nm the laser emission exceeds 500 mW with a power variation below 0.5 %, both linewidth and wavelength variations are under 1 pm....

  13. Property and Shape Modulation of Carbon Fibers Using Lasers.

    Science.gov (United States)

    Blaker, Jonny J; Anthony, David B; Tang, Guang; Shamsuddin, Siti-Ros; Kalinka, Gerhard; Weinrich, Malte; Abdolvand, Amin; Shaffer, Milo S P; Bismarck, Alexander

    2016-06-29

    An exciting challenge is to create unduloid-reinforcing fibers with tailored dimensions to produce synthetic composites with improved toughness and increased ductility. Continuous carbon fibers, the state-of-the-art reinforcement for structural composites, were modified via controlled laser irradiation to result in expanded outwardly tapered regions, as well as fibers with Q-tip (cotton-bud) end shapes. A pulsed laser treatment was used to introduce damage at the single carbon fiber level, creating expanded regions at predetermined points along the lengths of continuous carbon fibers, while maintaining much of their stiffness. The range of produced shapes was quantified and correlated to single fiber tensile properties. Mapped Raman spectroscopy was used to elucidate the local compositional and structural changes. Irradiation conditions were adjusted to create a swollen weakened region, such that fiber failure occurred in the laser treated region producing two fiber ends with outwardly tapered ends. Loading the tapered fibers allows for viscoelastic energy dissipation during fiber pull-out by enhanced friction as the fibers plough through a matrix. In these tapered fibers, diameters were locally increased up to 53%, forming outward taper angles of up to 1.8°. The tensile strength and strain to failure of the modified fibers were significantly reduced, by 75% and 55%, respectively, ensuring localization of the break in the expanded region; however, the fiber stiffness was only reduced by 17%. Using harsher irradiation conditions, carbon fibers were completely cut, resulting in cotton-bud fiber end shapes. Single fiber pull-out tests performed using these fibers revealed a 6.75-fold increase in work of pull-out compared to pristine carbon fibers. Controlled laser irradiation is a route to modify the shape of continuous carbon fibers along their lengths, as well as to cut them into controlled lengths leaving tapered or cotton-bud shapes.

  14. Adaptive ultrasonic sensor using a fiber ring laser with tandem fiber Bragg gratings.

    Science.gov (United States)

    Liu, Tongqing; Hu, Lingling; Han, Ming

    2014-08-01

    We propose and demonstrate an intensity-demodulated fiber-optic ultrasonic sensor system that can be self-adaptive to large quasi-static background strain perturbations. The sensor system is based on a fiber ring laser (FRL) whose laser cavity includes a pair of fiber Bragg gratings (FBGs). Self-adaptive ultrasonic detection is achieved by a tandem design where the two FBGs are engineered to have differential spectral responses to ultrasonic waves and are installed side-by-side at the same location on a structure. As a result, ultrasonic waves lead to relative spectral shifts of the FBGs and modulations to the cold-cavity loss of the FRL. Ultrasonic waves can then be detected directly from the laser intensity variations in response to the cold-cavity loss modulation. The sensor system is insensitive to quasi-static background strains because they lead to identical responses of the tandem FBGs. Based on the principle, a FRL sensor system was demonstrated and tested for adaptive ultrasonic detection when large static strains as well as dynamic sinusoidal vibrations were applied to the sensor.

  15. High-power diode-pumped Q-switched Er3+:YAG single-crystal fiber laser for active imaging system

    CERN Document Server

    Martial, Igor; Balembois, François; Georges, Patrick

    2012-01-01

    We describe an efficient laser emission from a directly grown Er3+:YAG single-crystal fiber that is resonantly pumped using a continuous-wave (CW) laser diode at 1532 nm. In a longitudinal pumping, it emits 12.5 W at 1645 nm with a slope efficiency of 32%, which is the highest ever reported for a directly grown Er:YAG single-crystal fiber laser. Using an off-axis pumping scheme, CW output powers up to 7.3 W can be reached and in Q-switched operation, the laser produces 2 mJ pulses with a duration of 38 ns at the repetition rate of 1 kHz with an M^{2} factor below 1.8. To our knowledge this is the first directly grown Er3+:YAG single-crystal fiber Q-switched laser. In dual-side pumping scheme a laser emission at 1617 nm is achieved with output powers up to 5.7 W representing the highest output power ever achieved by a diode-pumped Er:YAG laser at this wavelength.

  16. Fiber delivery pulsed solid state laser cutting system%光纤传输脉冲固体激光切割机系统

    Institute of Scientific and Technical Information of China (English)

    杨晟; 何琼; 王英

    2011-01-01

    介绍了光纤传输脉冲固体激光切割机系统的设计原理及工作特点,主要是优化设计光纤传输系统,使光纤输出后的激光束聚焦光斑直径尽量小;满足激光切割所需功率密度要求。系统使用双灯单棒的聚光腔,光纤输出后的功率达到400W,最小光斑直径小于0.25mm,可满足1~4mm内的碳钢、不锈钢等金属材料的切割要求。该系统可配合数控工作台、机器人或手持使用,为钣金行业提供了一种较好的激光切割方案。%Introduce the designing theory and working characteristic of Fiber delivery pulsed solid state laser cutting system.The fiber delivery system was improved and achieved the smaller spot size after focusing.The system is adopted with double lamps one crystal pumping chamber.Fiber delivery output up to 400W,minimum spot size is 0.25mm.And it call fulfill 1-4mm metal cutting requirement,such as carbon steel,S.steel and etc.As a good solution for Sheet metal industrial,it can integrate with CNC table,robotic or joystick.

  17. Novel intra-cavity self-organization coherent erbium-doped fiber laser

    Institute of Scientific and Technical Information of China (English)

    JIA Xiu-jie; LIU Feng-nian; FU Sheng-gui; ZHANG Jian; LIU Yan-ge; GUO Zhan-cheng; YUAN Shu-zhong; KAI Gui-yun; DONG Xiao-yi

    2007-01-01

    A novel all-fiber self-organization coherent Erbium-doped fiber laser is proposed and demonstrated. The laser system is composed of two independent lasers. When each of the two branch lasers operates independently, the output power is 10.41 mW and 8.69 mW respectively. By adjusting a polarization controller (PC), the two lasers achieve coherent coupling,and the output power is 24.4 mW, which is more than two times that the single laser yields. Furthermore, we bring forward and discuss the factor estimating the effect of coherent combination-coherent coupling factor. The value of growth factor to evaluate the effect of coherent combining is 1.27. The coherent fiber laser has the advantages of simple structure, high efficiency and single frequency, which conduce to coherent coupling easily.

  18. Soliton-similariton switchable ultrafast fiber laser

    CERN Document Server

    Peng, Junsong; Guo, Pan; Gu, Zhaochang; Zou, Weiwen; Luo, Shouyu; Shen, Qishun

    2012-01-01

    For the first time, we demonstrated alternative generation of dispersion-managed (DM) solitons or similaritons in an all-fiber Erbium-doped laser. DM solitons or similaritons can be chosen to emit at the same output port by controlling birefringence in the cavity. The pulse duration of 87-fs for DM solitons and 248-fs for similaritons have been observed. For proof of similaritons, we demonstrate that the spectral width depends exponentially on the pump power, consistent with theoretical studies. Besides, the phase profile measured by a frequency-resolved optical gating (FROG) is quadratic corresponding to linear chirp. In contrast, DM solitons show non-quadratic phase profile.

  19. 100 kW peak power picosecond thulium-doped fiber amplifier system seeded by a gain-switched diode laser at 2 μm.

    Science.gov (United States)

    Heidt, A M; Li, Z; Sahu, J; Shardlow, P C; Becker, M; Rothhardt, M; Ibsen, M; Phelan, R; Kelly, B; Alam, S U; Richardson, D J

    2013-05-15

    We report on the generation of picosecond pulses at 2 μm directly from a gain-switched discrete-mode diode laser and their amplification in a multistage thulium-doped fiber amplifier chain. The system is capable of operating at repetition rates in the range of 2 MHz-1.5 GHz without change of configuration, delivering high-quality 33 ps pulses with up to 3.5 μJ energy and 100 kW peak power, as well as up to 18 W of average power. These results represent a major technological advance and a 1 order of magnitude increase in peak power and pulse energy compared to existing picosecond sources at 2 μm.

  20. Compact High Power Fiber Laser Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The goal of the proposed work is the development of a portable and efficient pulsed laser system for LIDAR and ranging applications, which make use of the latest...

  1. Femtosecond fiber laser welding of dissimilar metals.

    Science.gov (United States)

    Huang, Huan; Yang, Lih-Mei; Bai, Shuang; Liu, Jian

    2014-10-01

    In this paper, welding of dissimilar metals was demonstrated for the first time, to the best of our knowledge, by using a high-energy high-repetition-rate femtosecond fiber laser. Metallurgical and mechanical properties were investigated and analyzed under various processing parameters (pulse energy, repetition rate, and welding speed). Results showed that the formation of intermetallic brittle phases and welding defects could be effectively reduced. Strong welding quality with more than 210 MPa tensile strength for stainless steel-aluminum and 175 MPa tensile strength for stainless steel-magnesium has been demonstrated. A minimal heat affected zone and uniform and homogenous phase transformation in the welding region have been demonstrated. This laser-welding technique can be extended for various applications in semiconductor, automobile, aerospace, and biomedical industries.

  2. Novel Optical Fiber Materials With Engineered Brillouin Gain Coefficients SSL 1: Novel Fiber Lasers

    Science.gov (United States)

    2015-12-29

    NAME(S) AND ADDRESS (ES) U.S. Army Research Office P.O. Box 12211 Research Triangle Park, NC 27709-2211 High energy lasers, optical fiber, glass...Technologies workshop, Le Centre National de la Recherche Scientifique , Institute for Engineering and Systems Sciences (INSIS), Paris, France, October...Sub Contractors (DD882) Names of Personnel receiving masters degrees Names of personnel receiving PHDs Names of other research staff Number of

  3. High-efficiency resonantly pumped 1550-nm fiber-based laser transmitter Project

    Data.gov (United States)

    National Aeronautics and Space Administration — nLight proposes the development of high efficiency, high average power 1550-nm laser transmitter system that is based on Er-doped fiber amplifier resonantly pumped...

  4. Numerical modeling of mode-locked fiber lasers with a fiber-based saturable-absorber

    Science.gov (United States)

    Wang, Long; Chong, Andy; Haus, Joseph W.

    2017-01-01

    We report fiber laser simulations with a fiber compatible, self-focusing, saturable absorber (SA) device. The SA device consists of two tapered fiber ends separated by a bulk, nonlinear medium. An optical beam transmitted from one tapered fiber end, propagate through the nonlinear medium (chalcogenide glass As40 S e60) and couples back into the other tapered fiber end. Pulse propagation in the fiber laser cavity is performed using the Split Step Method. Stable pulses are generated with energies around 0.3 nJ and a transform limited pulse width around 200 fs.

  5. Thulium distributed-feedback fiber lasers

    DEFF Research Database (Denmark)

    Agger, Søren Dyøe

    2006-01-01

    in silica and the fabri- cation, design and characterization of coherent Distributed Feed-Back (DFB) ber lasers incorporating thulium as the active laser medium. Our recent results have proved that single-frequency, single-polarization, narrow-linewidth (tens of kHz) operation of thulium doped DFB ber...... lasers is possible. Demonstrations of single-frequency lasers have, until now, been achieved at 1740 nm, 1984 nm and at a record-breaking 2090 nm. The 1740 nm laser has been boosted to 60 mW of output power with a linewidth of only 3 kHz and implemented in a plug-and-play turnkey system with SMF28-APC...

  6. Air core Bragg fibers for delivery of near-infrared laser radiation

    Science.gov (United States)

    Jelínek, Michal; Frank, Milan; Kubeček, Václav; Matějec, Vlastimil; Kašík, Ivan; Podrazký, Ondřej

    2014-12-01

    Optical fibers designed for high power laser radiation delivery represent important tools in medicine, solar systems, or industry. For such purposes several different types of glass optical fibers such as silica, sapphire, or chalcogenide ones as well as hollow-glass fibers, photonic crystal fibers and Bragg fibers have been investigated. Air-core Bragg fibers or photonic crystal fibers offer us the possibility of light transmission in a low dispersive material - air having a high damage threshold and small non-linear coefficient. However, preforms for drawing Bragg fibers can be fabricated by MCVD method similarly as preforms of standard silica fibers. In this paper we present fundamental characteristics of laboratory-designed and fabricated Bragg fibers with air cores intended for delivery of laser radiation at a wavelength range from 0.9 to 1.5 μm. Bragg fibers with different air core diameters of 5, 45 and 73 mm were prepared. The fiber core was surrounded by three pairs of circular Bragg layers. Each pair was composed of one layer with a high and one layer with a low refractive index with a contrast up to 0.03. Several laser sources emitting at 0.975, 1.06, and 1.55 μm were used as radiation sources. Attenuation coefficients, overall transmissions, bending losses, and spatial profiles of output beams from fibers were determined at these wavelengths. The lowest attenuation coefficient of 70 dB/km was determined for the 45 μm and 73 mm air-core fiber when radiation from a laser was launched into the fibers by using optical lenses. However, multimodal transmission has been observed in such condition. It has also been found that bending losses of such fibers are negligible for bending diameters higher than 15 mm.

  7. Optical fiber cable for transmission of high power laser energy over great distances

    Science.gov (United States)

    Zediker, Mark S.; Rinzler, Charles C.; Faircloth, Brian O.; Moxley, Joel F.; Koblick, Yeshaya

    2016-05-24

    There is provided a system and apparatus for the transmission of high power laser energy over great distances without substantial power loss and without the presence of stimulated Raman scattering. There is further provided systems and optical fiber cable configurations and optical fiber structures for the delivering high power laser energy over great distances to a tool or surface to perform an operation or work with the tool or upon the surface.

  8. Optical fiber cable for transmission of high power laser energy over great distances

    Energy Technology Data Exchange (ETDEWEB)

    Zediker, Mark S.; Rinzler, Charles C.; Faircloth, Brian O.; Moxley, Joel F.; Koblick, Yeshaya

    2016-05-24

    There is provided a system and apparatus for the transmission of high power laser energy over great distances without substantial power loss and without the presence of stimulated Raman scattering. There is further provided systems and optical fiber cable configurations and optical fiber structures for the delivering high power laser energy over great distances to a tool or surface to perform an operation or work with the tool or upon the surface.

  9. Switchable dual-wavelength erbium-doped fiber laser with a tilted fiber grating

    Institute of Scientific and Technical Information of China (English)

    JIN Long; KAI Gui-yun; XU Ling-ling; LIU Bo; ZHANG Jian; LIU Yan-ge; YUAN Shu-zhong; DONG Xiao-yi

    2007-01-01

    A dual-wavelength erbium doped fiber laser with a tilted fiber Bragg grating and photonic crystal fiber is proposed and demonstrated. In the laser,a 2W EDFA provides gain for all the laser lines; the highly nonlinear photonic crystal fiber introduces dynamic energy transfer between the two wavelengths caused by four wave mixing effect,so that a stable dualwavelength oscillation at room temperature is implemented. Different switching modes can be achieved by adjusting the lateral offset between the fiber grating and the guiding single mode fiber or by varying the state of polarization in the laser cavity. The maximum of output power of the laser has reached 314 mW.

  10. Noise Suppression of a single Frequency Fiber Laser

    Institute of Scientific and Technical Information of China (English)

    LIU Kui; CUI Shu-Zhen; ZHANG Hai-Long; ZHANG Jun-Xiang; GAO Jiang-Rui

    2011-01-01

    We present an experimental demonstration of fiber laser noise suppression by the mode cleaner.The intensity noise of a single frequency fiber laser is suppressed near the shot noise limit after a sideband frequency of 3 MHz.Two series mode cleaners are used to improve the noise suppression.The noise reduction is over 27 dB at 3 MHz.

  11. Packaging considerations of fiber-optic laser sources

    Science.gov (United States)

    Heikkinen, Veli; Tukkiniemi, Kari; Vaehaekangas, Jouko; Hannula, Tapio

    1991-12-01

    The continuous progress in material and component technology has generated new laser-based applications that require special packaging techniques. Hybrid integration offers a flexible method to accomplish custom design needs. This paper discusses several aspects in fiber optic packaging including optical, thermal, and mechanical issues. Special emphasis is on optical coupling between a laser diode and a single-mode fiber.

  12. Coherent fiber supercontinuum laser for nonlinear biomedical imaging

    Science.gov (United States)

    Tu, Haohua; Liu, Yuan; Liu, Xiaomin; Lægsgaard, Jesper; Turchinovich, Dmitry; Boppart, Stephen A.

    2012-12-01

    Nonlinear biomedical imaging has not benefited from the well-known techniques of fiber supercontinuum generation for reasons such as poor coherence (or high noise), insufficient controllability, low spectral power intensity, and inadequate portability. Fortunately, a few techniques involving nonlinear fiber optics and femtosecond fiber laser development have emerged to overcome these critical limitations. These techniques pave the way for conducting point-of-care nonlinear biomedical imaging by a low-maintenance cost-effective coherent fiber supercontinuum laser, which covers a broad emission wavelength of 350-1700 nm. A prototype of this laser has been demonstrated in label-free multimodal nonlinear imaging of cell and tissue samples.

  13. Polarization dependence of laser interaction with carbon fibers and CFRP.

    Science.gov (United States)

    Freitag, Christian; Weber, Rudolf; Graf, Thomas

    2014-01-27

    A key factor for laser materials processing is the absorptivity of the material at the laser wavelength, which determines the fraction of the laser energy that is coupled into the material. Based on the Fresnel equations, a theoretical model is used to determine the absorptivity for carbon fiber fabrics and carbon fiber reinforced plastics (CFRP). The surface of each carbon fiber is considered as multiple layers of concentric cylinders of graphite. With this the optical properties of carbon fibers and their composites can be estimated from the well-known optical properties of graphite.

  14. Millijoule pulse energy picosecond fiber chirped-pulse amplification system

    Institute of Scientific and Technical Information of China (English)

    Zhi Yang; Xiaohong Hu; Yishan Wang; Wei Zhang; Wei Zhao

    2011-01-01

    @@ The efficient generation of a 1.17-mJ laser pul8e with 360 ps duration using an ytterbium (Yb)-doped fiber amplifier chain seeded by a homemade mode-locked fiber laser is demonstrated experimentally.A specially designed figure-of-eight fiber laser acts as the seed source of a chirped-pulse amplification (CPA) system and generates mode-locked pulse8 with hundreds of picosecond widths.Two kinds of large-mode-area (LMA) double-clad Yb-doped fibers are employed to construct the pre-amplifier and main amplifier, All of the adopted instruments help avoid severe nonlinearity in fibers to raise sub-nanosecond pulse energy with acceptable signal-to-noise ratio (SNR).The output spectrum of this fiber-based CPA system shows that amplified spontaneous emission (ASE) is suppressed to better than 30 dB, and the onset of stimulated Raman scattering is excluded.%The efficient generation of a 1.17-mJ laser pulse with 360 ps duration using an ytterbium (Yb)-doped fiber amplifier chain seeded by a homemade mode-locked fiber laser is demonstrated experimentally. A specially designed figure-of-eight fiber laser acts as the seed source of a chirped-pulse amplification (CPA) system and generates mode-locked pulses with hundreds of picosecond widths. Two kinds of large-mode-area (LMA) double-clad Yb-doped fibers are employed to construct the pre-amplifier and main amplifier. All of the adopted instruments help avoid severe nonlinearity in fibers to raise sub-nanosecond pulse energy with acceptable signal-to-noise ratio (SNR). The output spectrum of this fiber-based CPA system shows that amplified spontaneous emission (ASE) is suppressed to better than 30 dB, and the onset of stimulated Raman scattering is excluded.

  15. Ytterbium-Phosphate Glass for Microstructured Fiber Laser

    Directory of Open Access Journals (Sweden)

    Ryszard Stępień

    2014-06-01

    Full Text Available In the paper, we report on the development of a synthesis and melting method of phosphate glasses designed for active microstructured fiber manufacturing. Non-doped glass synthesized in a P2O5-Al2O3-BaO-ZnO-MgO-Na2O oxide system served as the matrix material; meanwhile, the glass was doped with 6 mol% (18 wt% of Yb2O3, as fiber core. The glasses were well-fitted in relation to optical (refractive index and thermal proprieties (thermal expansion coefficient, rheology. The fiber with the Yb3+-doped core, with a wide internal photonic microstructure for a laser pump, as well as with a high relative hole size in the photonic outer air-cladding, was produced. The laser built on the basis of this fiber enabled achieving 8.07 W of output power with 20.5% slope efficiency against the launched pump power, in single-mode operation M2 = 1.59, from a 53 cm-long cavity.

  16. Switchable dual-mode all-fiber laser with few-mode fiber Bragg grating

    Science.gov (United States)

    Jin, Wenxing; Qi, Yanhui; Yang, Yuguang; Jiang, Youchao; Wu, Yue; Xu, Yao; Yao, Shuzhi; Jian, Shuisheng

    2017-09-01

    We propose a new approach to realize switchable mode operation in a few-mode erbium-doped fiber laser. The ring fiber laser structure is constructed with a core-offset splicing between single-mode fiber and dual-mode fiber. Stable operating on the fundamental mode laser and second-order mode laser individually or simultaneously is realized by appropriately adjusting the state of the polarization controller and bending status of the few-mode fiber Bragg grating. The narrow 3 dB linewidth less than 0.02 nm and high optical signal to noise ratio more than 42 dB are obtained for both modes in either separate laser or simultaneous laser operating conditions.

  17. High-Power ZBLAN Glass Fiber Lasers: Review and Prospect

    Directory of Open Access Journals (Sweden)

    Xiushan Zhu

    2010-01-01

    Full Text Available ZBLAN (ZrF4-BaF2-LaF3-AlF3-NaF, considered as the most stable heavy metal fluoride glass and the excellent host for rare-earth ions, has been extensively used for efficient and compact ultraviolet, visible, and infrared fiber lasers due to its low intrinsic loss, wide transparency window, and small phonon energy. In this paper, the historical progress and the properties of fluoride glasses and the fabrication of ZBLAN fibers are briefly described. Advances of infrared, upconversion, and supercontinuum ZBLAN fiber lasers are addressed in detail. Finally, constraints on the power scaling of ZBLAN fiber lasers are analyzed and discussed. ZBLAN fiber lasers are showing promise of generating high-power emissions covering from ultraviolet to mid-infrared considering the recent advances in newly designed optical fibers, beam-shaped high-power pump diodes, beam combining techniques, and heat-dissipating technology.

  18. Apply high-power fiber laser in oil/gas wells drilling

    Science.gov (United States)

    Jiang, Houman; Guo, Shaofeng; Chen, Minsun; Wang, Wenliang

    2015-05-01

    The concept of using lasers to drill through rock has been discussed in the oil and gas industries since the development of the high-power laser. To evaluate the possibility of fielding a laser drilling system, two laser-related problems have to be investigated. The first is the irradiation effects of laser upon rocks; the second is the effects in laser transmission from the source to the rock deep in the well. This transmission includes two stages: the first stage is the transmission inside a fiber, which is packaged in a cable and has about the same length with the well depth; the second stage refers to the transmission process when the laser leaves the fiber and some transforming optics and transmits to the rock surface, during which the well conditions may impose tough restrictions. In this paper, experiment results of laser irradiation upon siliceous sandstone and granite are reported, and the fiber transmission loss is simulated, considering the main absorbing or scattering mechanisms inside fiber. And the laser transmission from the fiber end to the rock surface, in my view, may impose great challenge on the laser drilling technology.

  19. Ultrafast fiber beam delivery: system technology and industrial application

    Science.gov (United States)

    Funck, Max C.; Eilzer, Sebastian; Wedel, Björn

    2017-02-01

    Flexible beam delivery of high power pico- and femtosecond pulses offers great advantages in industrial applications. Complex free space beam delivery as found in robot or gantry systems can be replaced, laser safety and uptime increased and system integration in production environment simplified. Only recently fiber beam delivery has become available for ultrafast lasers while it has been an established standard for cw and pulsed laser sources for many years. Using special kinds of fiber that guide the laser beam mostly inside a hollow core, nonlinear effects and catastrophic damage that would arise in conventional glass fibers can be avoided. Today, ultrafast pulses with several 100 μJ and hundreds of MW can be transmitted in quasi single mode fashion with micro-structured hollow core fibers. During the last years we have developed a modular beam delivery system that suits industrial ultrafast lasers and can be integrated into existing processing machines. Micro-structured hollow core fibers inside the sealed laser light cable efficiently guide high-power laser pulses over distances of several meters with excellent beam quality, while power, pulse duration and polarization are maintained. We report on the technology required for fiber beam delivery of ultrafast laser pulses and discuss requirements for successful integration into industrial production as well as achievable performance under realistic operation and show examples of micromachining applications.

  20. All-optical, Three-axis Fiber Laser Magnetometer

    Science.gov (United States)

    2012-04-16

    E-1 1.  INTRODUCTION ...achieved with other magnetic field sensing technologies such as those based on flux gates and fiber optic magnetostrictive sensors. The deployed...ALL-OPTICAL, THREE-AXIS FIBER LASER MAGNETOMETER 1. INTRODUCTION This report describes the development of an undersea fiber optic magnetometer

  1. Optical fiber transmission of high power excimer laser radiation.

    Science.gov (United States)

    Pini, R; Salimbeni, R; Vannini, M

    1987-10-01

    An experimental investigation of optical fiber transmission of high power excimer laser radiation is presented. Different types of commercially available UV fiber have been tested, measuring energy handling capabilities and transmission losses of short samples at the XeCl (308-nm) and KrF (249-nm) wavelengths by using a standard excimer laser. A power density dependent damage process has been observed over 1 GW/cm(2). Fiber losses due to different radii of curvature are also reported. Experimental results have been examined to evaluate the effectiveness of excimer laser transmission through optical fibers for such medical uses as laser angioplasty, including also a comparison between the use of KrF or XeCl emission lines for this purpose. Finally, optimum excimer laser characteristics to increase the energy coupling in fibers are discussed.

  2. 10 Gb/s 16-quadrature amplitude modulation signal delivery over a wireless fiber system by using a directly modulated laser for electrical/optical conversion

    Institute of Scientific and Technical Information of China (English)

    Lun Zhao; Jianguo Yu

    2015-01-01

    We propose and experimentally demonstrate a novel scheme to realize electrical/optical (E/O) conversion on the receiver side of a wireless fiber integration system at the W band.At the receiver,a directly modulated laser (DML) is used to realize E/O conversion.The received 85 GHz wireless millimeter-wave (mm-wave) signal is first down-converted into a 10 GHz electrical intermediate-frequency (IF) signal to overcome the insufficient bandwidth of the subsequent DML.Then,two cascaded electrical amplifiers (EAs) are employed to boost the electrical IF signal before it is used to drive a DML.By using this scheme,we transmit a 10 Gb/s 16 quadrature amplitude modulation (16QAM) signal over a 10 m wireless link,and then deliver it over a 2 km single-mode fiber-28 (SMF-28) wire link with a bit error ratio (BER) that is less than the hard-decision forward error correction threshold of 3.8 × 10-3.Our experimental results show that the DML is good device to be used for the E/O conversion of a 16QAM signal.

  3. Optical diagnostics integrated with laser spark delivery system

    Science.gov (United States)

    Yalin, Azer; Willson, Bryan; Defoort, Morgan; Joshi, Sachin; Reynolds, Adam

    2008-09-02

    A spark delivery system for generating a spark using a laser beam is provided, and includes a laser light source and a laser delivery assembly. The laser delivery assembly includes a hollow fiber and a launch assembly comprising launch focusing optics to input the laser beam in the hollow fiber. The laser delivery assembly further includes exit focusing optics that demagnify an exit beam of laser light from the hollow fiber, thereby increasing the intensity of the laser beam and creating a spark. Other embodiments use a fiber laser to generate a spark. Embodiments of the present invention may be used to create a spark in an engine. Yet other embodiments include collecting light from the spark or a flame resulting from the spark and conveying the light for diagnostics. Methods of using the spark delivery systems and diagnostic systems are provided.

  4. Bidirectional fiber-wireless and fiber-VLLC transmission system based on an OEO-based BLS and a RSOA.

    Science.gov (United States)

    Lu, Hai-Han; Li, Chung-Yi; Lu, Ting-Chien; Wu, Chang-Jen; Chu, Chien-An; Shiva, Ajay; Mochii, Takao

    2016-02-01

    A bidirectional fiber-wireless and fiber-visible-laser-light-communication (VLLC) transmission system based on an optoelectronic oscillator (OEO)-based broadband light source (BLS) and a reflective semiconductor optical amplifier (RSOA) is proposed and experimentally demonstrated. Through an in-depth observation of such bidirectional fiber-wireless and fiber-VLLC transmission systems, good bit error rate performances are obtained over a 40 km single-mode fiber and a 10 m RF/optical wireless transport. Such a bidirectional fiber-wireless and fiber-VLLC transmission system is an attractive option for providing broadband integrated services.

  5. Dark pulse generation in fiber lasers incorporating carbon nanotubes.

    Science.gov (United States)

    Liu, H H; Chow, K K

    2014-12-01

    We demonstrate the generation of dark pulses from carbon nanotube (CNT) incorporated erbium-doped fiber ring lasers with net anomalous dispersion. A side-polished fiber coated with CNT layer by optically-driven deposition method is embedded into the laser in order to enhance the birefringence and nonlinearity of the laser cavity. The dual-wavelength domain-wall dark pulses are obtained from the developed CNT-incorporated fiber laser at a relatively low pump threshold of 50.6 mW. Dark pulses repeated at the fifth-order harmonic of the fundamental cavity frequency are observed by adjusting the intra-cavity polarization state.

  6. Analysis of influence factors on 2 μm Tm3+-doped fiber laser output characteristics

    Science.gov (United States)

    Yu, Miao; Jin, Guang-yong; Wang, Ji

    2016-10-01

    The affecting factors of 2 μm Tm3+-doped fiber laser output characteristics were theoretical analyzed. On the basis of the energy level structure and optical absorption properties of Tm3+ ion, combining with the basic principle of Tm3+-doped fiber laser, and starting from the energy level structures and the cross relaxation processes of Tm3+ ion, the three pumping methods of Tm doped fiber laser (TDF) were analyzed and discussed. The influences of output characteristics by different influence factors were simulated. Based on optimization of the equations, for different fiber lengths, doping concentrations and pumping absorption coefficients and other influence factors, the laser output characteristics under different conditions were obtained and analyzed. Combination the simulation analysis, through the reasonable design and the selection of the optimum parameters of the laser system, the high laser output performance scan be achieved by improving the injection power and controlling of fiber coil diameter. The influences of different factors on the output characteristics were analyzed in the issue. The high laser output performances can be obtained and the laser loss was reduced by selecting the parameters of the laser system properly.

  7. Fiber-optic Doppler velocimeter based on a dual-polarization fiber grating laser

    Science.gov (United States)

    Kuang, Zeyuang; Cheng, Linghao; Liang, Yizhi; Liang, Hao; Guan, Bai-Ou

    2015-07-01

    A fiber-optic Doppler velocimeter based on a dual-polarization fiber grating laser is demonstrated. The fiber grating laser produces two orthogonally polarized laser outputs with their frequency difference proportional to the intra-cavity birefringence. When the laser outputs are reflected from a moving targets, the laser frequencies will be shifted due to the Doppler effect. It shows that the frequency difference between the beat note of the laser outputs and the beat note of the reflected lasers is proportional to the velocity. The proposed fiber-optic Doppler velocimeter shows a high sensitivity of 0.64 MHz/m/s and is capable of measurement of wide range of velocity.

  8. All-fiber femtosecond Cherenkov laser at visible wavelengths

    DEFF Research Database (Denmark)

    Liu, Xiaomin; Lægsgaard, Jesper; Møller, Uffe Visbech

    2013-01-01

    electrically tunable femtosecond CR output in the visible (VIS) spectral range of 580-630 nm, with the 3 dB spectral bandwidth not exceeding 36 nm, with average power in the milliwatt range. Relative intensity noise (RIN) of this laser, affecting the sensitivity of bio-imaging and microscopy systems, is found...... to be as low as -103 dBc/Hz. This is 2 orders of magnitudes lower noise as compared to spectrally-sliced supercontinuum, which is the current standard of ultrafast fiber-optic generation at visible wavelength. The layout of the laser system is shown in Fig. 1(a). The system consists of two parts: an all...... fibers are used in the CR link to enhance the conversion efficiency. Fig. 1(b) shows the far-field saturated visible images of the CR emitted from the laser system, generated as the pump power increases in the range 150 mW - 300 mW. The emitted CR spectra corresponding to different average output powers...

  9. Welding of PMMA by a femtosecond fiber laser.

    Science.gov (United States)

    Volpe, Annalisa; Di Niso, Francesca; Gaudiuso, Caterina; De Rosa, Andrea; Vázquez, Rebeca Martínez; Ancona, Antonio; Lugarà, Pietro Mario; Osellame, Roberto

    2015-02-23

    Developing versatile joining techniques to weld transparent materials on a micrometer scale is of great importance in a growing number of applications, especially for the fabrication and assembly of biomedical devices. In this paper, we report on fs-laser microwelding of two transparent layers of polymethyl methacrylate (PMMA) based on nonlinear absorption and localized heat accumulation at high repetition rates. A fiber CPA laser system was used delivering 650-fs pulses at 1030 nm with repetition rates in the MHz regime. The laser-induced modifications produced by the focused beam into the bulk PMMA were firstly investigated, trying to find a suitable set of process parameters generating continuous and localized melting. Results have been evaluated based on existing heat accumulation models. Then, we have successfully laser welded two 1-mm-thick PMMA layers in a lap-joint configuration. Sealing of the sample was demonstrated through static and dynamic leakage tests. This fs-laser micro-welding process does not need any pre-processing of the samples or any intermediate absorbing layer. Furthermore, it offers several advantages compared to other joining techniques, because it prevents contamination and thermal distortion of the samples, thus being extremely interesting for application in direct laser fabrication of microfluidic devices.

  10. Efficient 521 nm all-fiber laser: splicing Pr(3+)-doped ZBLAN fiber to end-coated silica fiber.

    Science.gov (United States)

    Okamoto, Hideyuki; Kasuga, Ken; Kubota, Yoshinori

    2011-04-15

    We demonstrated a green all-fiber laser by splicing both ends of a Pr(3+)-doped ZBLAN fiber to silica fibers, whose ends were coated with a dielectric thin film. The output power and the slope efficiency were 322 mW and 53%, respectively, and the coupled pump power of the two blue GaN pump lasers in the silica fiber core was 652 mW. We estimated that the damage threshold of the spliced structure was at least 21 MW/cm². This splicing technique should be applicable for other wavelengths and glass fibers having low melting temperatures.

  11. Transmission of solar radiation through optical fiber and application to solar beam excited laser

    Energy Technology Data Exchange (ETDEWEB)

    Arashi, Haruo; Kaimai, Atsushi; Ishigame, Mareo

    1987-12-01

    This paper describes the transmission of high density solar radiation through optical fiber and application to a solar beam excited laser. Input solar beam, rendered a high density through a solar collector, is transmitted through optical fiber, and is separated into several fluxes. The fluxes of light are introduced into the side of a cylindrical laser mirror, where the optical fibres are made up into a rectangular form. The transmitted beam, passing through a side slit, excites a rod positioned at the centre of the laser. The separation of a solar collecting and an oscillating portion serves to increase the degree of freedom. The core of the optical fiber is composed of quartz, and a polymer cladding type having a large number of apertures. The input end of the fiber is a heat resistant air-cladding type. The fibre has a transmission of 93%, which is satisfactory for use. The optical excitation system is composed of, in combination, an elliptically cylindrical laser mirror and a cylindrical laser mirror, both of which have an internal surface gold-plated throughout. The output beam from the fiber is multiple-refracted to excite the laser efficiently. When laser beam with low intensity excited by a lamp is made to pass through a crystal of the above excitation system, the intensity is amplified. It is planned that direct laser oscillation is realized by increase of solar radiation intensity. (9 figs, 5 refs)

  12. Innovative fiber-laser architecture-based compact wind lidar

    Science.gov (United States)

    Prasad, Narasimha S.; Tracy, Allen; Vetorino, Steve; Higgins, Richard; Sibell, Russ

    2016-03-01

    This paper describes an innovative, compact and eyesafe coherent lidar system developed for use in wind and wake vortex sensing applications. This advanced lidar system is field ruggedized with reduced size, weight, and power consumption (SWaP) configured based on an all-fiber and modular architecture. The all-fiber architecture is developed using a fiber seed laser that is coupled to uniquely configured fiber amplifier modules and associated photonic elements including an integrated 3D scanner. The scanner provides user programmable continuous 360 degree azimuth and 180 degree elevation scan angles. The system architecture eliminates free-space beam alignment issues and allows plug and play operation using graphical user interface software modules. Besides its all fiber architecture, the lidar system also provides pulsewidth agility to aid in improving range resolution. Operating at 1.54 microns and with a PRF of up to 20 KHz, the wind lidar is air cooled with overall dimensions of 30" x 46" x 60" and is designed as a Class 1 system. This lidar is capable of measuring wind velocities greater than 120 +/- 0.2 m/s over ranges greater than 10 km and with a range resolution of less than 15 m. This compact and modular system is anticipated to provide mobility, reliability, and ease of field deployment for wind and wake vortex measurements. The current lidar architecture is amenable for trace gas sensing and as such it is being evolved for airborne and space based platforms. In this paper, the key features of wind lidar instrumentation and its functionality are discussed followed by results of recent wind forecast measurements on a wind farm.

  13. Opto-VLSI-based tunable single-mode fiber laser.

    Science.gov (United States)

    Xiao, Feng; Alameh, Kamal; Lee, Tongtak

    2009-10-12

    A new tunable fiber ring laser structure employing an Opto-VLSI processor and an erbium-doped fiber amplifier (EDFA) is reported. The Opto-VLSI processor is able to dynamically select and couple a waveband from the gain spectrum of the EDFA into a fiber ring, leading to a narrow-linewidth high-quality tunable laser output. Experimental results demonstrate a tunable fiber laser of linewidth 0.05 nm and centre wavelength tuned over the C-band with a 0.05 nm step. The measured side mode suppression ratio (SMSR) is greater than 35 dB and the laser output power uniformity is better than 0.25 dB. The laser output is very stable at room temperature.

  14. Multi-coupler side-pumped Yb-doped double-clad fiber laser

    Institute of Scientific and Technical Information of China (English)

    Pan Ou(欧攀); Ping Yan(闫平); Mali Gong(巩马理); Wenlou Wei(韦文楼)

    2004-01-01

    The side-coupler of angle polished method, using angle-polished multimode fiber and optical adhesive, is used to efficiently pump an Yb-doped double-clad fiber laser. The maximum coupling efficiency of 78.6% is achieved by the side-coupler for a multimode fiber with a circular core of 200 μm and a double-clad fiber with a 350/400 μm D-shaped inner cladding. While laser diodes (LDs) with three side-couplers are simultaneously used as pump sources, maximum output power of 1.38 W and slope efficiency of 48.9% are demonstrated in the fiber laser system.

  15. Multi-coupler side-pumped Yb-doped double-clad fiber laser

    Institute of Scientific and Technical Information of China (English)

    欧攀; 闫平; 巩马理; 韦文楼

    2004-01-01

    The side-coupler of angle polished method, using angle-polished multimode fiber and optical adhesive, is used to efficiently pump an Yb-doped double-clad fiber laser. The maximum coupling efficiency of 78.6%is achieved by the side-coupler for a multimode fiber with a circular core of 200 μm and a double-clad fiber with a 350/400 μm D-shaped inner cladding. While laser diodes (LDs) with three side-couplers are simultaneously used as pump sources, maximum output power of 1.38 W and slope efficiency of 48.9% are demonstrated in the fiber laser system.

  16. Ultra-short pulsed ytterbium-doped fiber laser and amplifier

    Institute of Scientific and Technical Information of China (English)

    Guanglei Ding; Xin Zhao; Yishan Wang; Wei Zhao; Guofu Chen

    2006-01-01

    @@ This paper investigates a high power all fiber ultrashort pulse laser system. This system consists of a modelocking laser oscillator, a multi-stage amplifier, a pulse selector, and a paired grating pulse compressor.With pulse energy of 12 μJ at repetition rate of 30 kHz, the laser at center wavelength of 1.05 μm was obtained. Pulse width of 525 fs was achieved after the grating pair compressor.

  17. Femtosecond laser bone ablation with a high repetition rate fiber laser source.

    Science.gov (United States)

    Mortensen, Luke J; Alt, Clemens; Turcotte, Raphaël; Masek, Marissa; Liu, Tzu-Ming; Côté, Daniel C; Xu, Chris; Intini, Giuseppe; Lin, Charles P

    2015-01-01

    Femtosecond laser pulses can be used to perform very precise cutting of material, including biological samples from subcellular organelles to large areas of bone, through plasma-mediated ablation. The use of a kilohertz regenerative amplifier is usually needed to obtain the pulse energy required for ablation. This work investigates a 5 megahertz compact fiber laser for near-video rate imaging and ablation in bone. After optimization of ablation efficiency and reduction in autofluorescence, the system is demonstrated for the in vivo study of bone regeneration. Image-guided creation of a bone defect and longitudinal evaluation of cellular injury response in the defect provides insight into the bone regeneration process.

  18. Development of a Fiber Laser Welding Capability for the W76, MC4702 Firing Set

    Energy Technology Data Exchange (ETDEWEB)

    Samayoa, Jose

    2010-05-12

    Development work to implement a new welding system for a Firing Set is presented. The new system is significant because it represents the first use of fiber laser welding technology at the KCP. The work used Six-Sigma tools for weld characterization and to define process performance. Determinations of workable weld parameters and comparison to existing equipment were completed. Replication of existing waveforms was done utilizing an Arbitrary Pulse Generator (APG), which was used to modulate the fiber laser’s exclusive continuous wave (CW) output. Fiber laser weld process capability for a Firing Set is demonstrated.

  19. Practical Method for engineering Erbium-doped fiber lasers from step-like pulse excitations

    Energy Technology Data Exchange (ETDEWEB)

    Causado-Buelvas, J D; Gomez-Cardona, N D; Torres, P, E-mail: jdcausad@unal.edu.co [Escuela de fisica, Universidad Nacional de Colombia-sede Medellin A.A.3840, Medellin (Colombia)

    2011-01-01

    A simple method, known as 'easy points', has been applied to the characterization of Erbium-doped fibers, aiming for the engineering of fiber lasers. Using low- optical-power flattop pulse excitations it has been possible to determine both the attenuation coefficients and the intrinsic saturation powers of doped single-mode fibers at 980 and 1550 nm. Laser systems have been projected for which the optimal fiber length and output power have been determined as a function of the input power. Ring and linear laser cavities have been set up, and the characteristics of the output laser have been obtained and compared with the theoretical predictions based on the 'easy points' parameters.

  20. Active mode-locking via pump modulation in a Tm-doped fiber laser

    Directory of Open Access Journals (Sweden)

    Yu Wang

    2016-10-01

    Full Text Available We propose and experimentally realize a new class of actively mode-locking technique using pump modulation for rare-earth doped fiber lasers. A Tm-doped fiber laser at 2 μm is mode-locked using the proposed active mode-locking via pump modulation technique. Low-threshold continuous-wave mode-locking is achieved with a transform-limited pulse width of 4.4 ps, a spectral bandwidth of 0.9 nm, and a repetition rate of 12.9 MHz. Second-harmonic mode-locking is also demonstrated by simply driving the pump current at an appropriate frequency. More importantly, we believe that this technique can be applied to mode-lock other rare-earth doped fiber laser systems such as erbium- and ytterbium-doped fiber lasers.

  1. Effects of the Facet Reflectivity of a Laser Diode on Fiber Bragg Grating Semiconductor Lasers

    Institute of Scientific and Technical Information of China (English)

    Honggang; Yu; Chang-Qing; Xu; Na; Li; Zhilin; Peng; Jacek; Wojcik; Peter; Mascher

    2003-01-01

    Effects of facet reflectivity of a laser diode on the performance of fiber Bragg grating semiconductor lasers are studied experimentally. Facet reflectivity of less than 10-4 is necessary to obtain stable oscillation wavelength.

  2. Optical Fiber Lasers and All Solid-State Passively Modulated Microchip Lasers

    Institute of Scientific and Technical Information of China (English)

    Junewen; Chen; Pie-Yau; Chien; Yu-Ting; Lee

    2003-01-01

    Erbium fiber lasers of continuous mode outputs and of pulsed picosecond and sub-picosecond pulses train are reported. Compact all solid state passively modulated microchip lasers are also developed to the same degree.

  3. Tunable Single-Longitudinal-Mode High-Power Fiber Laser

    Directory of Open Access Journals (Sweden)

    Jonas K. Valiunas

    2012-01-01

    Full Text Available We report a novel CW tunable high-power single-longitudinal-mode fiber laser with a linewidth of ∼9 MHz. A tunable fiber Bragg grating provided wavelength selection over a 10 nm range. An all-fiber Fabry-Perot filter was used to increase the longitudinal mode spacing of the laser cavity. An unpumped polarization-maintaining erbium-doped fiber was used inside the cavity to eliminate mode hopping and increase stability. A maximum output power of 300 mW was produced while maintaining single-longitudinal-mode operation.

  4. The dawn of computer-assisted robotic osteotomy with ytterbium-doped fiber laser.

    Science.gov (United States)

    Sotsuka, Yohei; Nishimoto, Soh; Tsumano, Tomoko; Kawai, Kenichiro; Ishise, Hisako; Kakibuchi, Masao; Shimokita, Ryo; Yamauchi, Taisuke; Okihara, Shin-ichiro

    2014-05-01

    Currently, laser radiation is used routinely in medical applications. For infrared lasers, bone ablation and the healing process have been reported, but no laser systems are established and applied in clinical bone surgery. Furthermore, industrial laser applications utilize computer and robot assistance; medical laser radiations are still mostly conducted manually nowadays. The purpose of this study was to compare the histological appearance of bone ablation and healing response in rabbit radial bone osteotomy created by surgical saw and ytterbium-doped fiber laser controlled by a computer with use of nitrogen surface cooling spray. An Ytterbium (Yb)-doped fiber laser at a wavelength of 1,070 nm was guided by a computer-aided robotic system, with a spot size of 100 μm at a distance of approximately 80 mm from the surface. The output power of the laser was 60 W at the scanning speed of 20 mm/s scan using continuous wave system with nitrogen spray level 0.5 MPa (energy density, 3.8 × 10(4) W/cm(2)). Rabbits radial bone osteotomy was performed by an Yb-doped fiber laser and a surgical saw. Additionally, histological analyses of the osteotomy site were performed on day 0 and day 21. Yb-doped fiber laser osteotomy revealed a remarkable cutting efficiency. There were little signs of tissue damage to the muscle. Lased specimens have shown no delayed healing compared with the saw osteotomies. Computer-assisted robotic osteotomy with Yb-doped fiber laser was able to perform. In rabbit model, laser-induced osteotomy defects, compared to those by surgical saw, exhibited no delayed healing response.

  5. Frequency-Locked Single-Frequency Fiber Laser at 2 Micron Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Based on our proprietary fiber technology and extensive experience in fiber laser development, a new single-frequency 2?]m fiber laser source will be developed. The...

  6. Laser spark distribution and ignition system

    Science.gov (United States)

    Woodruff, Steven; McIntyre, Dustin L.

    2008-09-02

    A laser spark distribution and ignition system that reduces the high power optical requirements for use in a laser ignition and distribution system allowing for the use of optical fibers for delivering the low peak energy pumping pulses to a laser amplifier or laser oscillator. An optical distributor distributes and delivers optical pumping energy from an optical pumping source to multiple combustion chambers incorporating laser oscillators or laser amplifiers for inducing a laser spark within a combustion chamber. The optical distributor preferably includes a single rotating mirror or lens which deflects the optical pumping energy from the axis of rotation and into a plurality of distinct optical fibers each connected to a respective laser media or amplifier coupled to an associated combustion chamber. The laser spark generators preferably produce a high peak power laser spark, from a single low power pulse. The laser spark distribution and ignition system has application in natural gas fueled reciprocating engines, turbine combustors, explosives and laser induced breakdown spectroscopy diagnostic sensors.

  7. Ultrafast laser inscribed fiber Bragg gratings for sensing applications

    Science.gov (United States)

    Mihailov, Stephen J.

    2016-05-01

    Because of their small size, passive nature, immunity to electromagnetic interference, and capability to directly measure physical parameters such as temperature and strain, fiber Bragg grating sensors have developed beyond a laboratory curiosity and are becoming a mainstream sensing technology. Recently, high temperature stable gratings based on femtosecond infrared laser-material processing have shown promise for use in extreme environments such as high temperature, pressure or ionizing radiation. Such gratings are ideally suited for energy production applications where there is a requirement for advanced energy system instrumentation and controls that are operable in harsh environments. This tutorial paper will present a review of some of the more recent developments.

  8. Emitting system of fiber-array 3D laser imaging using off-axis three-mirror system%离轴三反光纤阵列激光三维成像发射系统

    Institute of Scientific and Technical Information of China (English)

    侯佳; 何志平; 舒嵘

    2016-01-01

    离轴三反光纤阵列激光三维成像发射系统中,大功率激光器发出的激光经阵列光纤分束,由光纤的芯径和单元发散角计算离轴三反光学系统的焦距,由光纤的数值孔径确定系统的入瞳直径范围,光纤阵列的长度决定了光学系统的发射总视场.离轴三反光学系统采用正向设计、反向使用的思路,将光纤阵列置于离轴三反光学系统焦面位置,反向追迹光线,可以得到光纤阵列上各元激光经光学系统后的高斯光束发散角大小和相邻元之间的角度关系.文中的设计实例实现了51元激光,每一元以20μrad的较小发散角出射,实例表明,该发射系统能实现多元激光微弧度量级的发散角出射,在目标面上形成间隔均匀、圆对称性良好的足印光斑.该发射系统在设计的发射总视场内,理论上不存在波束数的限制,这是区别于其他发射系统的另一优势.%A novel emitting system of fiber-array 3D laser imaging using off-axis three-mirror system was proposed. High-power laser was split to certain number of beams by fiber splitting and output with fiber-array. The off-axis three-mirror was designed as normal telescope system, and its focus length was the divergence angle divided by the core diameter of the fiber, while the F number in image space was determined by the Numerical Aperture (NA) of the fiber. The total field of view was the focus length divided by the length of the fiber-array. The fiber-array was set on the focus plane of the off-axis three-mirror system, and rays were traced in the opposite way of design. The example system realized divergence angle as 20μrad of 51 fiber beams, and it showed that the divergence angle of every fiber beam satisfied the target value well and the footprint between the neighbouring beams has good uniformity on the target surface. Besides, this emitting system was suitable for any number of laser beams within the total design field of view.

  9. Ultrafast Optics: Vector Cavity Fiber Lasers - Physics and Technology

    Science.gov (United States)

    2016-06-14

    fiber lasers the effective cavity gain bandwidth could be far broader than the laser emission bandwidth, if the optical field is in resonance with the...periodic modulation on the CW laser field , where fc is the modulation frequency. Fig. 2.1 shows the evolution of the laser emission under existence of...real saturable absorber (SA) mode locking techniques, such as the carbon nanotube mode locking, 2D-nano-materials mode locking, formation of bound

  10. Long-term laser frequency stabilization using fiber interferometers

    CERN Document Server

    Kong, Jia; Jimenez-Martinez, Ricardo; Mitchell, Morgan W

    2014-01-01

    We report long-term laser frequency stabilization using only the target laser and a pair of 5 m fiber interferometers, one as a frequency reference and the second as a sensitive thermometer. When used to stabilize a distributed feedback laser at 795 nm, the frequency Allan deviation at 1000 s drops from 5.6*10^{-8} to 6.9*10^{-10}. The performance equals that of an offset lock employing a second laser and an atomic reference.

  11. Erbium-doped fiber ring laser based on few-mode-singlemode-few-mode fiber structure for refractive index measurement

    Science.gov (United States)

    Liu, Jingxuan; Wang, Muguang; Liang, Xiao; Dong, Yue; Xiao, Han; Jian, Shuisheng

    2017-08-01

    A novel Erbium-doped fiber ring cavity laser sensor for refractive index (RI) measurement based on a special designed few-mode-singlemode-few-mode structure is proposed and experimentally demonstrated. The few-mode fiber is a home-made concentric ring core fiber (CRCF) which can only support two scalar modes. Thus a stable mode interference occurs which functions as a sensing head and band-pass filter to select the lasing wavelength simultaneously. A sensitivity of -45.429 nm/RIU is obtained in the range of 1.333-1.363. High optical signal to noise ratio (OSNR) of ∼45 dB and narrow 3-dB bandwidth of ∼0.1 nm indicate that the fiber ring laser sensing system has a high resolution and accuracy RI measurement.

  12. Gas-Filled Hollow Core Fiber Lasers Based on Population Inversion

    Science.gov (United States)

    2013-12-05

    levels of C2H2 with the pump ( optical parametric oscillator in the telecom C band) and observed lasing transitions. The fiber ends were housed in...FA9550-10-1-0515 FA9550-10-1-0515 AFOSR unlimited Hollow-core Optical Fiber Gas LASer (HOFGLAS) have been created, and explored in pulsed mode with...were created. HOFGLAS, Optically -pumped gas lasers, photonic crystal fiber , microstructured fiber , hollow-core fiber , mid-IR lasers, IR lasers, fiber

  13. The application of tapered multi-mode fiber in laser signal simulation

    Science.gov (United States)

    Yin, Ruiguang; Guo, Hao; Liang, Weiwei; Zhang, Wenpan; Li, Hui

    2016-09-01

    According to laser signal simulation, the advantage of application of tapered multi-mode fiber on laser pulse signal transmission was analyzed. By optical system simulation, the effect on the coupling efficiency of 1.06μm laser pulse signal of different angle was analyzed. By optical experiment, the coupling efficiency and transmission mode of different incident angle and force condition were confirmed. Combining the application of simulation system, with convex lens, frosted glass and optical integrator on the outlet of fiber, the far-field energy distribution was measured. According the receiving optical system entrance pupil, the effect on the beam quality to the simulation result was analyzed. The results showed that the application of tapered multi-mode fiber on laser pulse signal simulation is feasible, and the equipment has been used in the engineering projects.

  14. All-fiber femtosecond Cherenkov laser at visible wavelengths

    DEFF Research Database (Denmark)

    Liu, Xiaomin; Lægsgaard, Jesper; Møller, Uffe Visbech

    2013-01-01

    -matching condition [1]. The resonant ultrafast wave conversion via the fiber-optic CR mechanism is instrumental for applications in biophotonics such as bio-imaging and microscopy [2]. In this work, we demonstrate a highly-stable all-fiber, fully monolithic CR system based on an Yb-fiber femtosecond laser, producing...... are shown in Fig. 1(c). When the average emitted CR power is increasing from 0.46 mW to 4.2 mW, the central wavelength is shifting from 630 nm to 580 nm, and the 3 dB bandwidth of the spectrum increases from 14 nm to 36 nm. The physical mechanism of wavelength tunability with changing the pump power...... for the generated CR pulse is 160 fs. The FWHM of the AC of the input pump pulse at 1035 nm is 832 fs. The CR pulse is more than 5 times shorter than the pump pulse, as a result of the nonlinear pump pulse compression in the CR fiber link. We are currently working on achieving an even broader electrical tunability...

  15. Development of a Fiber Laser with Independently Adjustable Properties for Optical Resolution Photoacoustic Microscopy.

    Science.gov (United States)

    Aytac-Kipergil, Esra; Demirkiran, Aytac; Uluc, Nasire; Yavas, Seydi; Kayikcioglu, Tunc; Salman, Sarper; Karamuk, Sohret Gorkem; Ilday, Fatih Omer; Unlu, Mehmet Burcin

    2016-12-08

    Photoacoustic imaging is based on the detection of generated acoustic waves through thermal expansion of tissue illuminated by short laser pulses. Fiber lasers as an excitation source for photoacoustic imaging have recently been preferred for their high repetition frequencies. Here, we report a unique fiber laser developed specifically for multiwavelength photoacoustic microscopy system. The laser is custom-made for maximum flexibility in adjustment of its parameters; pulse duration (5-10 ns), pulse energy (up to 10 μJ) and repetition frequency (up to 1 MHz) independently from each other and covers a broad spectral region from 450 to 1100 nm and also can emit wavelengths of 532, 355, and 266 nm. The laser system consists of a master oscillator power amplifier, seeding two stages; supercontinuum and harmonic generation units. The laser is outstanding since the oscillator, amplifier and supercontinuum generation parts are all-fiber integrated with custom-developed electronics and software. To demonstrate the feasibility of the system, the images of several elements of standardized resolution test chart are acquired at multiple wavelengths. The lateral resolution of optical resolution photoacoustic microscopy system is determined as 2.68 μm. The developed system may pave the way for spectroscopic photoacoustic microscopy applications via widely tunable fiber laser technologies.

  16. Development of a Fiber Laser with Independently Adjustable Properties for Optical Resolution Photoacoustic Microscopy

    Science.gov (United States)

    Aytac-Kipergil, Esra; Demirkiran, Aytac; Uluc, Nasire; Yavas, Seydi; Kayikcioglu, Tunc; Salman, Sarper; Karamuk, Sohret Gorkem; Ilday, Fatih Omer; Unlu, Mehmet Burcin

    2016-12-01

    Photoacoustic imaging is based on the detection of generated acoustic waves through thermal expansion of tissue illuminated by short laser pulses. Fiber lasers as an excitation source for photoacoustic imaging have recently been preferred for their high repetition frequencies. Here, we report a unique fiber laser developed specifically for multiwavelength photoacoustic microscopy system. The laser is custom-made for maximum flexibility in adjustment of its parameters; pulse duration (5-10 ns), pulse energy (up to 10 μJ) and repetition frequency (up to 1 MHz) independently from each other and covers a broad spectral region from 450 to 1100 nm and also can emit wavelengths of 532, 355, and 266 nm. The laser system consists of a master oscillator power amplifier, seeding two stages; supercontinuum and harmonic generation units. The laser is outstanding since the oscillator, amplifier and supercontinuum generation parts are all-fiber integrated with custom-developed electronics and software. To demonstrate the feasibility of the system, the images of several elements of standardized resolution test chart are acquired at multiple wavelengths. The lateral resolution of optical resolution photoacoustic microscopy system is determined as 2.68 μm. The developed system may pave the way for spectroscopic photoacoustic microscopy applications via widely tunable fiber laser technologies.

  17. Chaotic laser synchronization and its application in optical fiber secure communication

    Institute of Scientific and Technical Information of China (English)

    YAN Senlin; CHI Zeying; CHEN Wenjian

    2004-01-01

    In this paper, optical fiber chaotic secure communication is proposed by coupling chaotic laser synchronous system with optical fiber propagation channel.Feedback synchronous system of chaotic semiconductor lasers is presented and synchronous error and decoding formulae are demonstrated. Synchronization between two chaotic laser systems with distributed feedback semiconductor lasers at wavelength of 1.31 μm is simulatively achieved with almost zero synchronous error. Parameter mismatch, synchronous transient response and noise effect on the system are studied.Robustness of synchronization and anti-perturbation can increase by increasing the feedback coefficient of the system. Influence of group-velocity-dispersion and self-phase modulation of optical fiber on chaotic laser signal and synchronization are analyzed, and it is found that group-velocity-dispersion affects pulse shape, synchronization and decoding,and limits optical fiber propagation distances, and self-phase modulation does not affect pulse shape, while its product of nonlinear phase shift can affect synchronization and decoding, and restrict propagation distances of optical fiber chaotic communication system and hence the maximum optical power formula is educed. Injecting parameter secure communication systems.

  18. Optical fiber sensing based on reflection laser spectroscopy.

    Science.gov (United States)

    Gagliardi, Gianluca; Salza, Mario; Ferraro, Pietro; Chehura, Edmond; Tatam, Ralph P; Gangopadhyay, Tarun K; Ballard, Nicholas; Paz-Soldan, Daniel; Barnes, Jack A; Loock, Hans-Peter; Lam, Timothy T-Y; Chow, Jong H; De Natale, Paolo

    2010-01-01

    An overview on high-resolution and fast interrogation of optical-fiber sensors relying on laser reflection spectroscopy is given. Fiber Bragg-gratings (FBGs) and FBG resonators built in fibers of different types are used for strain, temperature and acceleration measurements using heterodyne-detection and optical frequency-locking techniques. Silica fiber-ring cavities are used for chemical sensing based on evanescent-wave spectroscopy. Various arrangements for signal recovery and noise reduction, as an extension of most typical spectroscopic techniques, are illustrated and results on detection performances are presented.

  19. Optical Fiber Sensing Based on Reflection Laser Spectroscopy

    Directory of Open Access Journals (Sweden)

    Gianluca Gagliardi

    2010-03-01

    Full Text Available An overview on high-resolution and fast interrogation of optical-fiber sensors relying on laser reflection spectroscopy is given. Fiber Bragg-gratings (FBGs and FBG resonators built in fibers of different types are used for strain, temperature and acceleration measurements using heterodyne-detection and optical frequency-locking techniques. Silica fiber-ring cavities are used for chemical sensing based on evanescent-wave spectroscopy. Various arrangements for signal recovery and noise reduction, as an extension of most typical spectroscopic techniques, are illustrated and results on detection performances are presented.

  20. Laser cutting system

    Science.gov (United States)

    Dougherty, Thomas J

    2015-03-03

    A workpiece cutting apparatus includes a laser source, a first suction system, and a first finger configured to guide a workpiece as it moves past the laser source. The first finger includes a first end provided adjacent a point where a laser from the laser source cuts the workpiece, and the first end of the first finger includes an aperture in fluid communication with the first suction system.

  1. Application of fiber laser for a Higgs factory

    Energy Technology Data Exchange (ETDEWEB)

    Chou, W.

    2014-06-04

    This paper proposes a medium size(~6km) circular Higgs factory based on a photon collider. The recent breakthrough in fiber laser technology by means of a coherent amplifier network makes such a collider feasible and probably also affordable.

  2. 1.26 Single Frequency Fiber Laser Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This proposal is for the development of an innovative compact, high power, and extremely reliable 1.26 micron Ho-doped single frequency fiber laser. The proposed...

  3. SURFACE MORPHOLOGY OF CARBON FIBER POLYMER COMPOSITES AFTER LASER STRUCTURING

    Energy Technology Data Exchange (ETDEWEB)

    Sabau, Adrian S [ORNL; Chen, Jian [ORNL; Jones, Jonaaron F. [University of Tennessee (UT); Alexandra, Hackett [University of Tennessee (UT); Jellison Jr, Gerald Earle [ORNL; Daniel, Claus [ORNL; Warren, Charles David [ORNL; Rehkopf, Jackie D. [Plasan Carbon Composites

    2015-01-01

    The increasing use of Carbon Fiber Polymer Composite (CFPC) as a lightweight material in automotive and aerospace industries requires the control of surface morphology. In this study, the composites surface was prepared by ablating the resin in the top fiber layer of the composite using an Nd:YAG laser. The CFPC specimens with T700S carbon fiber and Prepreg - T83 resin (epoxy) were supplied by Plasan Carbon Composites, Inc. as 4 ply thick, 0/90o plaques. The effect of laser fluence, scanning speed, and wavelength was investigated to remove resin without an excessive damage of the fibers. In addition, resin ablation due to the power variation created by a laser interference technique is presented. Optical property measurements, optical micrographs, 3D imaging, and high-resolution optical profiler images were used to study the effect of the laser processing on the surface morphology.

  4. Novel technique for mode selection in a multimode fiber laser.

    Science.gov (United States)

    Daniel, J M O; Chan, J S P; Kim, J W; Sahu, J K; Ibsen, M; Clarkson, W A

    2011-06-20

    A simple technique for transverse mode selection in a large-mode-area (multimode) fiber laser is described. The technique exploits the different spectral responses of feedback elements based on a fiber Bragg grating and a volume Bragg grating to achieve wavelength-dependent mode filtering. This approach has been applied to a cladding-pumped thulium-doped fiber laser with a multimode core to achieve a single-spatial-mode output beam with a beam propagation factor (M2) of 1.05 at 1923 nm. Without mode selection the free-running fiber laser has a multimode output beam with an M2 parameter of 3.3. Selective excitation of higher order modes is also possible via the technique and preliminary results for laser oscillation on the LP11 mode are also discussed along with the prospects for scaling to higher power levels.

  5. Tunable Single Frequency 1.55 Micron Fiber Laser Project

    Data.gov (United States)

    National Aeronautics and Space Administration — In this proposal, we propose to demonstrate and build a widely tunable, narrow linewidth, single frequency fiber laser by developing an innovative Er/Yb-co-doped...

  6. Fiber-optic laser Doppler turbine tip clearance probe.

    Science.gov (United States)

    Büttner, Lars; Pfister, Thorsten; Czarske, Jürgen

    2006-05-01

    A laser Doppler based method for in situ single blade tip clearance measurements of turbomachines with high precision is presented for what we believe is the first time. The sensor is based on two superposed fanlike interference fringe systems generated by two laser wavelengths from a fiber-coupled, passive, and therefore compact measurement head employing diffractive optics. Tip clearance measurements at a transonic centrifugal compressor performed during operation at 50,000 rpm (833 Hz, 586 m/s tip speed) are reported. At these speeds the measured uncertainty of the tip position was less than 20 microm, a factor of 2 more accurate than that of capacitive probes. The sensor offers great potential for in situ and online high-precision tip clearance measurements of metallic and nonmetallic turbine blades.

  7. 10-W cladding-pumped fiber laser with single transverse mode output

    Institute of Scientific and Technical Information of China (English)

    Ping Yan(闰平); Mali Gong(巩马理); Pan Ou(欧攀); Wenlou Wei(韦文楼); Ruizhen Cui(崔瑞贞); Qiang Liu(柳强); Weipu Jia(贾维溥)

    2003-01-01

    A Yb-doped double-clad fiber laser is demonstrated with a measured power output of 10.6 W and a fundamental spatial mode. The optical-to-optical conversion efficiency is 44% and the slope efficiency is 86% closed to quantum efficiency of optical conversion. In our laser system, a D-shape (340 μm/400 μm) inner cladding Yb-doped fiber is used as the gain material within the Fabry-Perot cavity. Multimode diode pump radiation is injected into the cladding through an end facet of the composite fiber.

  8. Supercontinuum generation in a photonic crystal fiber pumped by a gain-switched high-power fiber laser

    DEFF Research Database (Denmark)

    Larsen, Casper; Skovgaard, Peter M. W.; Noordegraaf, Danny;

    2011-01-01

    Supercontinuum (SC) generation in nonlinear photonic crystal fibers (NLF) using continuous-wave (CW) fiber lasers for pumping has been studied before[1,2]. The advantages of CW-SC are high spectral smoothness, high spectral power density, simplicity of the system, and lower noise than the more...... common picosecond-pumped SC. The cost of these features is increased nonlinear fiber lengths due to less efficient nonlinear processes at the lower power levels. Especially, the generation of light in the visible wavelength range has been a challenge. This has previously been tackled by increasing...

  9. Laser-induced Breakdown Spectroscopy and ablation threshold analysis using a megahertz Yb fiber laser oscillator

    Energy Technology Data Exchange (ETDEWEB)

    Parker, Gregory J.; Parker, Daniel E.; Nie, Bai; Lozovoy, Vadim [Department of Chemistry, Michigan State University, East Lansing, MI 48824 (United States); Dantus, Marcos, E-mail: dantus@msu.edu [Department of Chemistry, Michigan State University, East Lansing, MI 48824 (United States); Department of Physics and Astronomy, Michigan State University, East Lansing, MI 48824 (United States)

    2015-05-01

    A LIBS system is demonstrated using a 100 m cavity Yb fiber oscillator producing ~ 70 ps, 320 nJ clusters of 50–100 fs sub-pulses at 2 MHz. A new empirical model for femtosecond ablation is presented to explain the LIBS signal intensity's non-linear dependence on pulse fluence by accounting for the Gaussian beam's spatial distribution. This model is compared to experimental data and found to be superior to linear threshold fits. This model is then used to measure the ablation threshold of Cu using a typical amplified Ti:sapphire system, and found to reproduce previously reported values to within ~ 20%. The ablation threshold of Cu using the Yb fiber oscillator system was measured to be five times lower than on the amplified Ti:sapphire system. This effect is attributed to the formation of nanostructures on the surface, which have previously been shown to decrease the ablation threshold. The plasma lifetime is found to be ~ 1 ns, much shorter than that of nanosecond ablation, further indicating that the decreased threshold results from surface effects rather than laser–plasma interaction. The low threshold and high pulse energy of the Yb fiber oscillator allows the acquisition of LIBS spectra at megahertz repetition rates. This system could potentially be developed into a compact, fiber-based portable LIBS device taking advantage of the benefits of ultrafast pulses and high repetition rates. - Highlights: • We performed LIBS using a unique ultrafast fiber laser oscillator producing clusters of femtosecond pulses at 2 MHz. • We found the LIBS threshold to be lower than the ablation threshold for single femtosecond laser pulses. • We introduce a model for the LIBS threshold that leads to more accurate determination of threshold values. • We provide results for a number of different solid samples. • The new setup could lead to the design of very compact (portable) and femtosecond-LIBS setups.

  10. Polymer-coated hollow fiber for CO(2) laser delivery.

    Science.gov (United States)

    Abe, Y; Matsuura, Y; Shi, Y W; Wang, Y; Uyama, H; Miyagi, M

    1998-01-15

    Hollow fibers for CO(2) laser light have been fabricated with a cyclic olefin polymer as the inner dielectric. A film of cyclic olefin polymer was coated inside the glass capillary tubing by a simple liquid-flowing process. A polymer-coated fiber with a 700-microm bore showed a loss of 0.06 dB/m for CO(2) laser light because cyclic olefin polymer has low absorption at a 10.6-microm wavelength.

  11. Hybrid mode-locked ultrashort-pulse erbium-doped fiber laser

    Science.gov (United States)

    Lazarev, Vladimir A.; Sazonkin, Stanislav S.; Pniov, Alexey B.; Tsapenko, Konstantin P.; Krylov, Alexander A.; Obraztsova, Elena D.

    2014-03-01

    One of the implementations of fs-laser with CNT-film for mode-locking is considered. Scheme of single-pulse, self-starting, stable mode-locked laser generation by appropriate polarization controllers adjustment is suggested. The mechanism of cavity length stabilization for a femtosecond fiber laser based on the pump source modulation is considered. Bandwidth of the feedback frequency stabilization system based on pump source modulation method is defined.

  12. Application and the key technology on high power fiber-optic laser in laser weapon

    Science.gov (United States)

    Qu, Zhou; Li, Qiushi; Meng, Haihong; Sui, Xin; Zhang, Hongtao; Zhai, Xuhua

    2014-12-01

    The soft-killing laser weapon plays an important role in photoelectric defense technology. It can be used for photoelectric detection, search, blinding of photoelectric sensor and other devices on fire control and guidance devices, therefore it draws more and more attentions by many scholars. High power fiber-optic laser has many virtues such as small volume, simple structure, nimble handling, high efficiency, qualified light beam, easy thermal management, leading to blinding. Consequently, it may be used as the key device of soft-killing laser weapon. The present study introduced the development of high power fiber-optic laser and its main features. Meanwhile the key technology of large mode area (LMA) optical fiber design, the beam combination technology, double-clad fiber technology and pumping optical coupling technology was stated. The present study is aimed to design high doping LMA fiber, ensure single mode output by increasing core diameter and decrease NA. By means of reducing the spontaneous emission particle absorbed by fiber core and Increasing the power density in the optical fiber, the threshold power of nonlinear effect can increase, and the power of single fiber will be improved. Meantime, high power will be obtained by the beam combination technology. Application prospect of high power fiber laser in photoelectric defense technology was also set forth. Lastly, the present study explored the advantages of high power fiber laser in photoelectric defense technology.

  13. Compact Single-Mode Distributed Bragg Reflector Fiber Laser

    Institute of Scientific and Technical Information of China (English)

    XUE Yi-Yuan; AN Hong-Lin; FU Li-Bin; LIN Xiang-Zhi; LIU Hong-Du

    2000-01-01

    A compact single-mode distributed Bragg reflector (DBR) fiber laser with narrow spectral linewidth is investigated. Firstly, based on our theoretical analysis the single longitudinal mode operation domain is obtained. Then, a single-mode DBR fiber laser of 7.9cm long with master oscillator power amplifier (MOPA) configuration is designed and constructed to operate in the single-mode domain. The fiber laser is pumped by a semiconductor laser at 975.5nm. The master oscillator operates at 1556.91 nm with a cw output power of 1.43mW for a pump power of 55.35 mW. Its slope efficiency is 2.7% and the spectral linewidth is less than 1.2MHz (instrument resolution limited). With the MOPA configuration the laser output power and slope efficiency are increased to 7.8mW and 16.9%, respectively.

  14. High precision optical fiber alignment using tube laser bending

    NARCIS (Netherlands)

    Folkersma, Ger; Römer, Gerardus Richardus, Bernardus, Engelina; Brouwer, Dannis Michel; Herder, Justus Laurens

    2016-01-01

    In this paper, we present a method to align optical fibers within 0.2 μm of the optimal position, using tube laser bending and in situ measuring of the coupling efficiency. For near-UV wavelengths, passive alignment of the fibers with respect to the waveguides on photonic integrated circuit chips

  15. Delivery of 10-MW Nd:YAG laser pulses by large-core optical fibers: dependence of the laser-intensity profile on beam propagation.

    Science.gov (United States)

    Richou, B; Schertz, I; Gobin, I; Richou, J

    1997-03-01

    A large-core multimode optical fiber of a few meters length is studied as a 10-MW beam delivery system for a 15-ns pulsed Nd:YAG laser. A laser-to-fiber vacuum coupler is used to inhibit air breakdown and reduce the probability of dielectric breakdown on the fiber front surface. Laser-induced damage inside the fiber core is observed behind the fiber front surface. An explanation based on a high power density is illustrated by a ray trace. Damaged spots and measurements of fiber output energies are reported for two laser beam distributions: a flat-hat type and a near-Gaussian type. Experiments have been performed to deliver a 100-pulse mean energy between 100 and 230 mJ without catastrophic damage.

  16. Delivery of 10-MW Nd:YAG laser pulses by large-core optical fibers: Dependence of the laser-intensity profile on beam propagation

    Energy Technology Data Exchange (ETDEWEB)

    Richou, B.; Richou, J. [Laboratoire d` Optoelectronique, Faculte des Sciences, Universite de Toulon et du Var, BP 132, La Garde 83957 (France); Schertz, I.; Gobin, I. [Commissariat a l`Energie Atomique/Vaujours, Moronvilliers, BP 7, Courtry 77181 (France)

    1997-03-01

    A large-core multimode optical fiber of a few meters length is studied as a 10-MW beam delivery system for a 15-ns pulsed Nd:YAG laser. A laser-to-fiber vacuum coupler is used to inhibit air breakdown and reduce the probability of dielectric breakdown on the fiber front surface. Laser-induced damage inside the fiber core is observed behind the fiber front surface. An explanation based on a high power density is illustrated by a ray trace. Damaged spots and measurements of fiber output energies are reported for two laser beam distributions: a flat-hat type and a near-Gaussian type. Experiments have been performed to deliver a 100-pulse mean energy between 100 and 230 mJ without catastrophic damage. {copyright} 1997 Optical Society of America

  17. Fiber inline Michelson interferometer fabricated by a femtosecond laser.

    Science.gov (United States)

    Yuan, Lei; Wei, Tao; Han, Qun; Wang, Hanzheng; Huang, Jie; Jiang, Lan; Xiao, Hai

    2012-11-01

    A fiber inline Michelson interferometer was fabricated by micromachining a step structure at the tip of a single-mode optical fiber using a femtosecond laser. The step structure splits the fiber core into two reflection paths and produces an interference signal. A fringe visibility of 18 dB was achieved. Temperature sensing up to 1000°C was demonstrated using the fabricated assembly-free device.

  18. High-power ultrafast Yb:fiber laser frequency combs using commercially available components and basic fiber tools

    Science.gov (United States)

    Li, Xinlong; Reber, Melanie A. R.; Corder, Christopher; Chen, Yuning; Zhao, Peng; Allison, Thomas K.

    2016-09-01

    We present a detailed description of the design, construction, and performance of high-power ultrafast Yb:fiber laser frequency combs in operation in our laboratory. We discuss two such laser systems: an 87 MHz, 9 W, 85 fs laser operating at 1060 nm and an 87 MHz, 80 W, 155 fs laser operating at 1035 nm. Both are constructed using low-cost, commercially available components, and can be assembled using only basic tools for cleaving and splicing single-mode fibers. We describe practical methods for achieving and characterizing low-noise single-pulse operation and long-term stability from Yb:fiber oscillators based on nonlinear polarization evolution. Stabilization of the combs using a variety of transducers, including a new method for tuning the carrier-envelope offset frequency, is discussed. High average power is achieved through chirped-pulse amplification in simple fiber amplifiers based on double-clad photonic crystal fibers. We describe the use of these combs in several applications, including ultrasensitive femtosecond time-resolved spectroscopy and cavity-enhanced high-order harmonic generation.

  19. High-power ultrafast Yb:fiber laser frequency combs using commercially available components and basic fiber tools

    CERN Document Server

    Li, X L; Corder, C; Chen, Y; Zhao, P; Allison, T K

    2016-01-01

    We present a detailed description of the design, construction, and performance of high-power ultrafast Yb:fiber laser frequency combs in operation in our laboratory. We discuss two such laser systems: an 87 MHz, 9 W, 85 fs laser operating at 1060 nm and an 87 MHz, 80 W, 155 fs laser operating at 1035 nm. Both are constructed using low-cost, commercially available components, and can be assembled using only basic tools for cleaving and splicing single-mode fibers. We describe practical methods for achieving and characterizing low-noise single-pulse operation and long-term stability from Yb:fiber oscillators based on nonlinear polarization evolution. Stabilization of the combs using a variety of transducers, including a new method for tuning the carrier-envelope offset frequency, is discussed. High average power is achieved through chirped-pulse amplification in simple fiber amplifiers based on double-clad photonic crystal fibers. We describe the use of these combs in several applications, including ultrasensit...

  20. 1.6 Micron Fiber Laser Source for CH4 Gas Leak Detection

    Directory of Open Access Journals (Sweden)

    Cézard Nicolas

    2016-01-01

    Full Text Available We report on the development of a new pulsed fiber laser source at 1645.5 nm, based on stimulated Raman amplification. This laser source is intended to be used in a future lidar system, dedicated to methane gas leak monitoring in the vicinity of industrial facilities. In this paper we discuss reasons for choosing the 1645.5 nm wavelength, and then we present the two-stage amplification architecture of our fiber laser source under development. Recent experimental results are provided and perspectives are drawn.

  1. Ceramic bracket debonding with Tm:fiber laser

    Science.gov (United States)

    Demirkan, İrem; Sarp, Ayşe Sena Kabaş; Gülsoy, Murat

    2016-06-01

    Lasers have the potential for reducing the required debonding force and can prevent the mechanical damage given to the enamel surface as a result of conventional debonding procedure. However, excessive thermal effects limit the use of lasers for debonding purposes. The aim of this study was to investigate the optimal parameters of 1940-nm Tm:fiber laser for debonding ceramic brackets. Pulling force and intrapulpal temperature measurements were done during laser irradiation simultaneously. A laser beam was delivered in two different modes: scanning the fiber tip on the bracket surface with a Z shape movement or direct application of the fiber tip at one point in the center of the bracket. Results showed that debonding force could be decreased significantly compared to the control samples, in which brackets were debonded by only mechanical force. Intrapulpal temperature was kept equal or under the 5.5°C threshold value of probable thermal damage to pulp. Scanning was found to have no extra contribution to the process. It was concluded that using 1940-nm Tm:fiber laser would facilitate the debonding of ceramic brackets and can be proposed as a promising debonding tool with all the advantageous aspects of fiber lasers.

  2. 175-W continuous-wave master oscillator power amplifier structure ytterbium-doped all-fiber laser

    Institute of Scientific and Technical Information of China (English)

    Ping Yan; Shupeng Yin; Mali Gong

    2008-01-01

    We report on hundred watts range ytterbium-doped all-fiber laser assembly based on the master oscillator power amplifier structure. It consisted of an oscillator and an amplifier with all-fiber components. And fiber fusion splice made the laser be an integrated fiber system. It generated up to 175.5 W of continuouswave (CW) output power at 1085 nm with more than 75% extraction efficiency in the amplifier when the total coupled pump power into the double clad fiber was 270 W.

  3. A fiber-laser-based stimulated Raman scattering spectral microscope

    Science.gov (United States)

    Nose, Keisuke; Ozeki, Yasuyuki; Kishi, Tatsuya; Sumimura, Kazuhiko; Kanematsu, Yasuo; Itoh, Kazuyoshi

    2013-02-01

    Stimulated Raman scattering (SRS) spectral microscopy is a powerful technique for label-free biological imaging because it allows us to distinguish chemical species with overlapping Raman bands. Here we present an SRS spectral microscope based only on fiber lasers (FL's), which offer the possibilities of downsizing and simplification of the system. A femtosecond figure-8 Er-FL at a repetition rate of 54.4 MHz is used to generate pump pulses. After amplified by an Er doped fiber amplifier, Er-FL pulses are spectrally compressed to 2-ps second harmonic pulses. For generating Stokes pulses, a femtosecond Yb-FL pulses at a repetition rate of 27.2 MHz is used. Then these lasers are synchronized by a phase locked loop, which consists of a two-photon absorption photodetector, a loop filter, a phase modulator in the Er- FL cavity, and a piezo electric transducer in the Yb-FL cavity. The intensity noise of pump pulses is reduced by the collinear balanced detection (CBD) technique based on delay-and-add fiber lines. Experimentally, we confirmed that the intensity noise level of probe pulses was close to the shot noise limit. The Stokes pulses are introduced to a wavelength tunable band pass filter (BPF), which consists of a galvanomirror scanner, a 4-f optical system, a reflection grating, and a collimator. This system is able to scan the wavenumber from 2850 cm-1 to 3100 cm-1 by tuning the BPF. We succeeded in the spectral imaging of a mixture of polystyrene beads and poly(methyl methacrylate) beads.

  4. Ground Water Monitoring Using Laser Fluorescence And Fiber Optics

    Science.gov (United States)

    Chudyk, Wayne; Pohlig, Kenneth; Rico, Nicola; Johnson, Gregory

    1989-01-01

    In-situ measurement of aromatic ground water contaminants, including the benzene, ethylbenzene, toluene, and xylenes (BTEX) fraction of gasoline, has been demonstrated using fiber optic systems. A prototype field instrument has shown that this method has advantages over traditional sampling and analysis. Problems encountered and solved include coupling of the laser energy into to fiber, sensor design, and detector configuration to optimize instrument sensitivity. The effects of sensor length, corresponding to well depth, on limits of detection are presented. Effects of potential interferences, including external fluorescence quenchers, are discuss-ed. The resolution of complex mixtures is addressed, with modifications to the detector shown to be effective in separation of groups of contaminants. Instrument design considerations include the need for portability, ruggedness at field sites, and ease of operation. The modular instrument design used is shown to help solve these potential problems, while maintaining analytical sensitivity and reproducibility. Modular optical system design has also shown to be useful when modifications are made. Changes in the detector as well as provisions for multiple laser sources have allowed a flexible system to be configured to meet analytical demands as they arise. Sensor design considerations included high ultraviolet transmission, physical flexibility, resistance to breakage, and resistance to chemical and/or biological fouling. The approach to these problem areas is presented, as well as discussion of the methods used to minimize effects of fiber solarization. Results of testing the field portable prototype are presented for a variety of typical ground water analysis sites, illustrating the usefulness of this new technology in environmental monitoring.

  5. Single fiber laser based wavelength tunable excitation for CRS spectroscopy.

    Science.gov (United States)

    Su, Jue; Xie, Ruxin; Johnson, Carey K; Hui, Rongqing

    2013-06-01

    We demonstrate coherent Raman spectroscopy (CRS) using a tunable excitation source based on a single femtosecond fiber laser. The frequency difference between the pump and the Stokes pulses was generated by soliton self-frequency shifting (SSFS) in a nonlinear optical fiber. Spectra of C-H stretches of cyclohexane were measured simultaneously by stimulated Raman gain (SRG) and coherent anti-Stokes Raman scattering (CARS) and compared. We demonstrate the use of spectral focusing through pulse chirping to improve CRS spectral resolution. We analyze the impact of pulse stretching on the reduction of power efficiency for CARS and SRG. Due to chromatic dispersion in the fiber-optic system, the differential pulse delay is a function of Stokes wavelength. This differential delay has to be accounted for when performing spectroscopy in which the Stokes wavelength needs to be scanned. CARS and SRG signals were collected and displayed in two dimensions as a function of both the time delay between chirped pulses and the Stokes wavelength, and we demonstrate how to find the stimulated Raman spectrum from the two-dimensional plots. Strategies of system optimization consideration are discussed in terms of practical applications.

  6. Tunable Single Frequency 2.05 Micron Fiber Laser Using New Ho-Doped Fiber Project

    Data.gov (United States)

    National Aeronautics and Space Administration — In this proposal, we propose to demonstrate and build a widely tunable, narrow linewidth, single frequency fiber laser near 2.05 micron by developing an innovative...

  7. Switchable multiwavelength fiber laser using erbium-doped twin-core fiber and nonlinear polarization rotation

    Science.gov (United States)

    Lian, Yudong; Ren, Guobin; Zhu, Bofeng; Gao, Yixiao; Jian, Wei; Ren, Wenhua; Jian, Shuisheng

    2017-05-01

    We propose and demonstrate a switchable multiwavelength fiber laser using erbium-doped twin-core fiber (ED-TCF) and nonlinear polarization rotation (NPR). The number switchability of lasing wavelengths being switched from 1 to 4 and wavelength location switchability could be achieved simultaneously in the proposed configuration with a wavelength spacing of 1.1 nm and an optical signal to noise ratio (OSNR) larger than 43 dB. The output laser powers at different wavelengths are nearly the same with a fluctuation less than 2 dB. The proposed fiber laser shows good stability with wavelength shift within 0.01 nm and peak power fluctuation less than 5 dB. The proposed fiber laser has the advantages of simple structure and stable operation.

  8. Tunable Single Frequency 2.054 Micron Fiber Laser Using New Ho-Doped Fiber Project

    Data.gov (United States)

    National Aeronautics and Space Administration — In this proposal, we propose to demonstrate and build a near 2 micron widely tunable, narrow linewidth, single frequency fiber laser by developing an innovative...

  9. Highspeed laser welding of steel using a high-power single-mode continuous-wave fiber laser

    Science.gov (United States)

    Drechsel, J.; Loeschner, U.; Schwind, S.; Hartwig, L.; Schille, J.; Exner, H.; Huebner, P.; Eysert, A.

    2013-02-01

    Since a few years, high brilliance laser sources find their way into laser material processing. Laser micro processing by applying high brilliance laser radiation up to 3 kW of continuous wave laser power in combination with ultrafast beam deflection systems has been successfully demonstrated in 2008 for the first time. In the fields of laser welding, high brilliant laser radiation was mainly used for micro welding, but up to now the macro range is still insufficiently investigated. Hence, this study reports on detailed investigations of high speed laser welding of different steel grades, performed with a high power single mode fiber laser source. The laser beam was deflected relative to the sample by using both a fast galvanometer scanner system with f-theta focusing objective and a linear axis in combination with a welding optic, respectively. In the study, the mainly process influencing parameters such as laser power, welding speed, thickness of the metal sheets, angle of incidence and laser beam spot size were varied in a wide range. The weld seam quality was evaluated by structural analyses, static tensile tests and EDX measurements. Finally, the laser welding process has been optimized for different weld seam geometries, for example bead-on-plate welds and butt welds.

  10. Glue-free assembly of glass fiber reinforced thermoplastics using laser light

    Science.gov (United States)

    Binetruy, C.; Clement, S.; Deleglise, M.; Franz, C.; Knapp, W.; Oumarou, M.; Renard, J.; Roesner, A.

    2011-05-01

    The use of laser light for bonding of continuous fiber reinforced thermoplastic composites (CFTPC) offers new possibilities to overcome the constraints of conventional joining technologies. Laser bonding is environmentally friendly as no chemical additive or glue is necessary. Accuracy and flexibility of the laser process as well as the quality of the weld seams provide benefits which are already used in many industrial applications. Laser transmission welding has already been introduced in manufacturing of short fiber thermoplastic composites. The laser replaces hot air in tapelaying systems for pre-preg carbon fiber placement. The paper provides an overview concerning the technical basics of the joining process and outline some material inherent characteristics to be considered when using continuous glass fiber reinforced composites The technical feasibility and the mechanical characterization of laser bonded CFTPC are demonstrated. The influence of the different layer configurations on the laser interaction with the material is investigated and the dependency on the mechanical strength of the weld seem is analyzed. The results show that the laser provides an alternative joining technique and offers new perspectives to assemble structural components emerging in automotive or aeronautical manufacturing. It overcomes the environmental and technical difficulties related to existing gluing processes.

  11. Multiwavelength erbium-doped fiber laser exploiting intracavity polarization inhomogeneity

    Institute of Scientific and Technical Information of China (English)

    孙军强; 丘军林; 黄德修

    2000-01-01

    Simultaneous multiwavelength lasing is demonstrated exploiting intracavity polarization in-homogeneity in an erbium-doped fiber laser. Experiments indicate that polarization hole burning can be enhanced by the changes of optical MQW waveguide bias current and the polarization states in the laser cavity. Ten wavelengths with 0.9 nm spacing are generated at room temperature.

  12. Twin-Pulse Soliton Operation of a Fiber Laser

    Institute of Scientific and Technical Information of China (English)

    W.; S.; Man; H.; Y.; Tam

    2003-01-01

    We report on the experimental observation of a novel type of twin-pulse soliton in a passively mode-locked fiber ring laser. Twin-pulse soliton interaction in the laser cavity are also experimentally investigated and compared with those of the single pulse soliton.

  13. Multiwavelength erbium-doped fiber laser exploiting intracavity polarization inhomogeneity

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Simultaneous multiwavelength lasing is demonstrated exploiting intracavity polarization inhomogeneity in an erbium-doped fiber laser. Experiments indicate that polarization hole burning can be enhanced by the changes of optical MQW waveguide bias current and the polarization states in the laser cavity. Ten wavelengths with 0.9 nm spacing are generated at room temperature.

  14. Switchable and multi-wavelength linear fiber laser based on Fabry-Perot and Mach-Zehnder interferometers

    Science.gov (United States)

    Gutierrez-Gutierrez, J.; Rojas-Laguna, R.; Estudillo-Ayala, J. M.; Sierra-Hernández, J. M.; Jauregui-Vazquez, D.; Vargas-Treviño, M.; Tepech-Carrillo, L.; Grajales-Coutiño, R.

    2016-09-01

    In this manuscript, switchable and multi-wavelength erbium-doped fiber laser arrangement, based on Fabry-Perot (FPI) and Mach-Zehnder (MZI) interferometers is presented. Here, the FPI is composed by two air-microcavities set into the tip of conventional single mode fiber, this one is used as a partially reflecting mirror and lasing modes generator. And the MZI fabricated by splicing a segment of photonic crystal fiber (PCF) between a single-mode fiber section, was set into an optical fiber loop mirror that acts as full-reflecting and wavelength selective filter. Both interferometers, promotes a cavity oscillation into the fiber laser configuration, besides by curvature applied over the MZI, the fiber laser generates: single, double, triple and quadruple laser emissions with a signal to noise ratio (SNR) of 30 dB. These laser emissions can be switching between them from 1525 nm to 1534 nm by adjusting the curvature radius over the MZI. This laser fiber offers a wavelength and power stability at room temperature, compactness and low implementation cost. Moreover the linear laser proposed can be used in several fields such as spectroscopy, telecommunications and fiber optic sensing systems.

  15. Glassy behavior in a one-dimensional continuous-wave erbium-doped random fiber laser

    Science.gov (United States)

    Gomes, Anderson S. L.; Lima, Bismarck C.; Pincheira, Pablo I. R.; Moura, André L.; Gagné, Mathieu; Raposo, Ernesto P.; de Araújo, Cid B.; Kashyap, Raman

    2016-07-01

    The photonic analog of the paramagnetic to spin-glass phase transition in disordered magnetic systems, signaled by the phenomenon of replica symmetry breaking, has been reported using random lasers as the photonic platform. We report here a demonstration of replica symmetry breaking in a one-dimensional photonic system consisting of an erbium-doped random fiber laser operating in the continuous-wave regime. The system is based on a unique random fiber grating system which plays the role of random scattering, providing the disordered feedback mechanism. The clear transition from a photonic paramagnetic to a photonic spin-glass phase, characterized by the Parisi overlap parameter, was verified and indicates the glassy random-fiber-laser behavior.

  16. Application of ABCD Formalism in Theoretical and Experimental Analysis of Actively Modelocked Fiber Laser

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Time domain ABCD matrix formalism is a useful model for analyzing the characteristics of actively modelocked fiber laser. Based on this model and given more consideration on the influences of optical fiber dispersion and optical fiber nonlinearity, the laser characteristic of actively modelocked fiber laser is analyzed, and the comparision of the theoretical analysis results with experimental ones is given.

  17. Influence of nuclear radiation and laser beams on optical fibers and components

    Directory of Open Access Journals (Sweden)

    Pantelić Slađana N.

    2011-01-01

    Full Text Available The influence of nuclear radiation and particles has been the object of investigation for a long time. For new materials and systems the research should be continued. Human activities in various environments, including space, call for more detailed research. The role of fibers in contemporary communications, medicine, and industry increases. Fibers, their connections and fused optics components have one type of tasks - the transmission of information and power. The other type of tasks is reserved for fiber lasers: quantum generators and amplifiers. The third type of tasks is for fiber sensors, including high energy nuclear physics. In this paper we present some chosen topics in the mentioned areas as well as our experiments with nuclear radiation and laser beams to fiber and bulk materials of various nature (glass, polymer, metallic, etc..

  18. Development of ceramic fibers for high-energy laser applications

    Science.gov (United States)

    Fair, Geoff E.; Kim, Hyun Jun; Lee, HeeDong; Parthasarathy, Triplicane A.; Keller, Kristin A.; Miller, Zachary D.

    2011-06-01

    Polycrystalline ceramics offer a number of advantages relative to single crystal materials such as lower processing temperatures, improved mechanical properties, and higher doping levels with more uniform distribution of dopants for improved laser performance. Ceramic YAG (Y3Al5O12) and rare earth sesquioxide (RE2O3) fibers promise to enable a number of high power laser devices via high thermal conductivity and higher allowable dopant concentration; however, these materials are not currently available as fine diameter optical-quality fibers. Powder processing approaches for laser quality polycrystalline ceramic fibers are in development at AFRL. Current processing techniques will be reviewed. The effects of a number of processing variables on the resulting fibers as well as preliminary optical characterization will also be presented.

  19. Coherent fiber supercontinuum laser for nonlinear biomedical imaging

    DEFF Research Database (Denmark)

    Tu, Haohua; Liu, Yuan; Liu, Xiaomin;

    2012-01-01

    Nonlinear biomedical imaging has not benefited from the well-known techniques of fiber supercontinuum generation for reasons such as poor coherence (or high noise), insufficient controllability, low spectral power intensity, and inadequate portability. Fortunately, a few techniques involving...... nonlinear fiber optics and femtosecond fiber laser development have emerged to overcome these critical limitations. These techniques pave the way for conducting point-of-care nonlinear biomedical imaging by a low-maintenance cost-effective coherent fiber supercontinuum laser, which covers a broad emission...... wavelength of 350-1700 nm. A prototype of this laser has been demonstrated in label-free multimodal nonlinear imaging of cell and tissue samples.© (2012) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only....

  20. Characteristics of the Fiber Laser Sensor System Based on Etched-Bragg Grating Sensing Probe for Determination of the Low Nitrate Concentration in Water.

    Science.gov (United States)

    Pham, Thanh Binh; Bui, Huy; Le, Huu Thang; Pham, Van Hoi

    2016-12-22

    The necessity of environmental protection has stimulated the development of many kinds of methods allowing the determination of different pollutants in the natural environment, including methods for determining nitrate in source water. In this paper, the characteristics of an etched fiber Bragg grating (e-FBG) sensing probe-which integrated in fiber laser structure-are studied by numerical simulation and experiment. The proposed sensor is demonstrated for determination of the low nitrate concentration in a water environment. Experimental results show that this sensor could determine nitrate in water samples at a low concentration range of 0-80 ppm with good repeatability, rapid response, and average sensitivity of 3.5 × 10(-3) nm/ppm with the detection limit of 3 ppm. The e-FBG sensing probe integrated in fiber laser demonstrates many advantages, such as a high resolution for wavelength shift identification, high optical signal-to-noise ratio (OSNR of 40 dB), narrow bandwidth of 0.02 nm that enhanced accuracy and precision of wavelength peak measurement, and capability for optical remote sensing. The obtained results suggested that the proposed e-FBG sensor has a large potential for the determination of low nitrate concentrations in water in outdoor field work.

  1. Hollow polycarbonate fiber for Er:YAG laser light delivery.

    Science.gov (United States)

    Nakazawa, Masayuki; Shi, Yi-Wei; Matsuura, Yuji; Iwai, Katsumasa; Miyagi, Mitsunobu

    2006-05-15

    We developed hollow fibers with polycarbonate (PC) capillaries for use as a supporting tube. The PC capillaries were prepared by using a glass-drawing technique. Hollow PC fibers are safer and more flexible than hollow glass fibers because no fragments are released when the fibers are broken in various applications. Inner coating layers of silver and cyclic olefin polymer (COP) enhanced the reflection rate at the Er:YAG laser light wavelength. Using these fibers, we attained low loss for Er:YAG laser light transmission. By adjusting the drawing temperature in the fabrication of the PC capillaries, we created a smooth inner surface and uniform PC capillaries. We also demonstrated low-loss properties for visible pilot beams.

  2. Optical-fiber-based laser-induced breakdown spectroscopy for detection of early caries

    Science.gov (United States)

    Sasazawa, Shuhei; Kakino, Satoko; Matsuura, Yuji

    2015-06-01

    A laser-induced breakdown spectroscopy (LIBS) system targeting for the in vivo analysis of tooth enamel is described. The system is planned to enable real-time analysis of teeth during laser dental treatment by utilizing a hollow optical fiber that transmits both Q-switched Nd:YAG laser light for LIBS and infrared Er:YAG laser light for tooth ablation. The sensitivity of caries detection was substantially improved by expanding the spectral region under analysis to ultraviolet (UV) light and by focusing on emission peaks of Zn in the UV region. Subsequently, early caries were distinguished from healthy teeth with accuracy rates above 80% in vitro.

  3. Optical-fiber-based laser-induced breakdown spectroscopy for detection of early caries.

    Science.gov (United States)

    Sasazawa, Shuhei; Kakino, Satoko; Matsuura, Yuji

    2015-06-01

    A laser-induced breakdown spectroscopy (LIBS) system targeting for the in vivo analysis of tooth enamel is described. The system is planned to enable real-time analysis of teeth during laser dental treatment by utilizing a hollow optical fiber that transmits both Q-switched Nd:YAG laser light for LIBS and infrared Er:YAG laser light for tooth ablation. The sensitivity of caries detection was substantially improved by expanding the spectral region under analysis to ultraviolet (UV) light and by focusing on emission peaks of Zn in the UV region. Subsequently, early caries were distinguished from healthy teeth with accuracy rates above 80% in vitro.

  4. Wide and Fast Wavelength-Swept Fiber Laser Based on Dispersion Tuning for Dynamic Sensing

    Directory of Open Access Journals (Sweden)

    Shinji Yamashita

    2009-01-01

    Full Text Available We have developed a unique wide and fast wavelength-swept fiber laser for dynamic and accurate fiber sensing. The wavelength tuning is based on the dispersion tuning technique, which simply modulates the loss/gain in the dispersive laser cavity. By using wideband semiconductor optical amplifiers (SOAs, the sweep range could be as wide as ∼180 nm. Since the cavity contains no mechanical components, such as tunable filters, we could achieve very high sweep rate, as high as ∼200 kHz. We have realized the swept lasers at three wavelength bands, 1550 nm, 1300 nm, and 800 nm, using SOAs along with erbium-doped fiber amplifiers (EDFAs, and in two laser configurations, ring and linear ones. We also succeeded in applying the swept laser for a dynamic fiber-Bragg grating (FBG sensor system. In this paper, we review our researches on the wide and fast wavelength-swept fiber lasers.

  5. Ultra-high Frequency Linear Fiber Optic Systems

    CERN Document Server

    Lau, Kam

    2011-01-01

    This book provides an in-depth treatment of both linear fiber-optic systems and their key enabling devices. It presents a concise but rigorous treatment of the theory and practice of analog (linear) fiber-optics links and systems that constitute the foundation of Hybrid Fiber Coax infrastructure in present-day CATV distribution and cable modem Internet access. Emerging applications in remote fiber-optic feed for free-space millimeter wave enterprise campus networks are also described. Issues such as dispersion and interferometric noise are treated quantitatively, and means for mitigating them are explained. This broad but concise text will thus be invaluable not only to students of fiber-optics communication but also to practicing engineers. To the second edition of this book important new aspects of linear fiber-optic transmission technologies are added, such as high level system architectural issues, algorithms for deriving the optimal frequency assignment, directly modulated or externally modulated laser t...

  6. Beam shaping for kilowatt fiber-coupled diode lasers by using one-step beam cutting-rotating of prisms.

    Science.gov (United States)

    Wu, Yulong; Dong, Zhiyong; Chen, Yongqi; Qi, Yaoyao; Yuan, Xiandan; Qi, Yunfei; Xu, Li; Lin, Xuechun; Zou, Yonggang; Zhao, Pengfei

    2016-12-01

    The beam quality mismatch of laser diode stacks in both axes limits many direct applications for fiber or solid laser pumping and material processing. In this paper, a one-step cutting-rotating beam shaping system has been designed to homogenize the beam quality of two polarization-multiplexing laser diode stacks. Coupling laser diode stacks consisting of eight bars into a standard fiber with a core diameter of 600 μm and an NA of 0.22 is achieved. The simulative result shows that the system will have an output power over 1056 W. By using the technique, the production of compact and high brightness fiber-coupling diode lasers can be directly used for laser cladding and laser surface hardening processes.

  7. Efficient Ho:YLF laser pumped by a Tm:fiber laser

    CSIR Research Space (South Africa)

    Koen, W

    2013-10-01

    Full Text Available A thulium fiber laser pumped Ho:YLF laser delivering 45.1 W in a near diffraction limited beam when pumped with 84.7 W is demonstrated. The optical-to-optical efficiency of 53 % compares favorably with similar Ho:YAG lasers....

  8. Quasi mode-locking of coherent feedback random fiber laser

    Science.gov (United States)

    Ma, R.; Zhang, W. L.; Zeng, X. P.; Yang, Z. J.; Rao, Y. J.; Yao, B. C.; Yu, C. B.; Wu, Y.; Yu, S. F.

    2016-12-01

    Mode-locking is a milestone in the history of lasers that allows the generation of short light pulses and stabilization of lasers. This phenomenon is known to occur only in standard ordered lasers for long time and until recently it is found that it also occurs in disordered random lasers formed by nanoscale particles. Here, we report the realization of a so-called quasi mode-locking of coherent feedback random fiber laser which consists of a partially disordered linear cavity formed between a point reflector and a random distributed fiber Bragg grating array with an inserted graphene saturable absorber. We show that multi-groups of regular light pulses/sub-pulses with different repetition frequencies are generated within the quasi mode-locking regime through the so-called collective resonances phenomenon in such a random fiber laser. This work may provide a platform to study mode locking as well as pulse dynamic regulation of random lasing emission of coherent feedback disordered structures and pave the way to the development of novel multi-frequency pulse fiber lasers with potentially wide frequency tuning range.

  9. Fiber laser hydrogen sensor codified in the time domain

    Science.gov (United States)

    Barmenkov, Yuri O.; Ortigosa-Blanch, Arturo; Diez, Antonio; Cruz Munoz, Jose Luis; Andres, Miguel V.

    2004-10-01

    A novel scheme for a fiber optic hydrogen sensor is presented. The sensor is based on an erbium-doped fiber laser with a Pd-coated tapered fiber within the laser cavity acting as the hydrogen-sensing element. When the sensing element is exposed to a hydrogen atmosphere, its attenuation decreases changing the cavity losses, which leads to a modification of the switching-on laser transient. The hydrogen concentration can be obtained by a simple measurement of the build-up time of the laser. This technique translates the measurement of hydrogen concentration into the time domain. Sensing techniques translating the measurement to the time domain offer the possibility to acquire and process the information very easily and accurately using reliable and low-cost electronics. We have also studied the influence of the pumping conditions. We have found that changing from a 100% modulation depth of the pump to biasing the laser with a certain pump power (being this value always below the laser threshold) the sensitivity of the sensor is substantially enhanced. Hence the sensitivity of the fiber laser sensor can be adjusted to certain requirements by simply controlling the pump. Relative build-up times variations of up to 55% for 10% hydrogen concentration are demonstrated.

  10. Advanced components for multi-kW fiber lasers

    Science.gov (United States)

    Sipes, Donald L., Jr.; Tafoya, Jason D.; Schulz, Daniel S.; Ward, Benjamin G.; Carlson, Chad G.

    2012-02-01

    We report on the development and performance of a key components that enable the construction of multi-kW fiber amplifiers for government and industrial applications that are both reliable and highly affordable. The usefulness of these components span the range from single frequency near diffraction limited kW class fiber lasers to multimode wide linewidth fiber lasers for welding and cutting applications. The key components for these amplifiers are a novel multi fiber-coupled laser diode stack and a monolithic 6+1x1 large fiber pump/signal multiplexer. The precisely aligned 2-D laser diode emitter array found in laser diode stacks is utilized by way of a simple in-line imaging process with no mirror reflections to process a 2-D array of 380-450 elements into 3 400/440μm 0.22NA pump delivery fibers. The fiber combiner is an etched air taper design that transforms low numerical aperture (NA), large diameter pump radiation into a high NA, small diameter format for pump injection into an air-clad large mode area PCF, while maintaining a constant core size through the taper for efficient signal coupling and throughput. The fiber combiner has 6 400/440/0.22 core/clad/NA pump delivery fibers and a 20/440 PM step-index signal delivery fiber on the input side and a 40/525 PM undoped PCF on the output side. The etched air taper transforms the six 400/440 μm 0.22 NA pump fibers to the 500 μm 0.55 NA core of the PCF fiber with a measured pump combining efficiency of 92% with zero brightness drop. The combiner also operates as a stepwise mode converter via a 30 μm intermediate core region in the combiner between the 20 μm core of the input fiber and the 40 μm fiber core of the PCF with a measured signal efficiency of 90% while maintaining polarization with a measured PER of 20 dB. We report the signal coupling efficiency and power handling capability as well.

  11. Chemical-Assisted Femtosecond Laser Writing of Lab-in-Fiber Sensors

    Science.gov (United States)

    Haque, Moez

    Three-dimensional (3D) patterning inside optical fiber was shown to be a powerful tool for embedding refractive index and microfluidic structures inside the flexible glass fiber for enabling novel sensing opportunities with lab-in-fibers (LIFs). A femtosecond laser was tightly focused into optical fibers using an oil-immersion lens to eliminate extreme optical aberrations from the cladding-air interface. The laser interactions were then optimized to bring ˜12 nm rms surfaces for the first time inside the fiber cladding by precisely conforming planar nanograting structures when assembled by the writing laser. Further, the unprecedented integration of cladding waveguides, X-couplers, fiber Bragg gratings (FBGs), microholes, mirrors, optofluidic resonators, and microfluidic reservoirs defined the building blocks for facile interconnection of inline core-waveguide devices with fiber cladding optofluidics. Laser templating was restricted to the single mode fiber (SMF) cladding or formed inside all-fused silica coreless optical fibers to meet with buried laser-formed waveguides that were fused to SMFs for novel seamless inline probing while avoiding undesired concave surface profiles and negative lensing losses associated with writing optofluidic templates across the germanium-doped SMF core waveguide. With these components, more advanced, integrated, and multiplexed fiber microsystems were demonstrated for fluorescence detection, Fabry Perot interferometer (FPI) refractometry, and simultaneous sensing of refractive index, temperature, and bending strain. Tapered access ports were found to minimize fiber mechanical weakening and thereby avoid fiber breakage during optofluidic sensing. Optical resonator arrays (ORAs) were then explored to deepen fringe contrasts beyond that available with a single FPI for opening new prospects for fiber inline pass-band optical filters and broadband reflectors. Finally, wavefront splitting interferometers (WSIs) were targeted to improve

  12. Nearly-octave wavelength tuning of a continuous wave fiber laser

    Science.gov (United States)

    Zhang, Lei; Jiang, Huawei; Yang, Xuezong; Pan, Weiwei; Cui, Shuzhen; Feng, Yan

    2017-01-01

    The wavelength tunability of conventional fiber lasers are limited by the bandwidth of gain spectrum and the tunability of feedback mechanism. Here a fiber laser which is continuously tunable from 1 to 1.9 μm is reported. It is a random distributed feedback Raman fiber laser, pumped by a tunable Yb doped fiber laser. The ultra-wide wavelength tunability is enabled by the unique property of random distributed feedback Raman fiber laser that both stimulated Raman scattering gain and Rayleigh scattering feedback are available at any wavelength. The dispersion property of the gain fiber is used to control the spectral purity of the laser output. PMID:28198414

  13. Polarization insensitive graphene saturable absorbers using etched fiber for highly stable ultrafast fiber lasers.

    Science.gov (United States)

    Lee, Hyub; Kwon, Won Sik; Kim, Jin Hwan; Kang, Daewon; Kim, Soohyun

    2015-08-24

    In this paper, we introduce a graphene-based saturable absorber (GSA) with high damage threshold employing symmetrical evanescent wave interaction for highly stable mode-locking of ultrafast fiber lasers. To enhance the evanescent wave interaction between the graphene layer and the propagating light, graphene flakes are mixed with polydimethylsiloxane (PDMS), and the graphene/PDMS composite is coated onto a chemically etched fiber. The GSA exhibits polarization insensitivity due to its symmetric cross-section, which enables stable operation against environmental disturbance such as stress, bending, and temperature variation. Finally, we demonstrate a fiber laser generating 216 fs pulses with an 80 dB signal-to-noise ratio.

  14. Hierarchy, dimension, attractor and self-organization -- dynamics of mode-locked fiber lasers

    CERN Document Server

    Wei, Huai; Shi, Wei; Zhu, Xiushan; Norwood, Robert A; Peyghambarian, Nasser; Jian, Shuisheng

    2016-01-01

    Mode-locked fiber lasers are one of the most important sources of ultra-short pulses. However, A unified description for the rich variety of states and the driving forces behind the complex and diverse nonlinear behavior of mode-locked fiber lasers have yet to be developed. Here we present a comprehensive theoretical framework based upon complexity science, thereby offering a fundamentally new way of thinking about the behavior of mode-locked fiber lasers. This hierarchically structured frame work provide a model with and changeable variable dimensionality resulting in a simple and elegant view, with which numerous complex states can be described systematically. The existence of a set of new mode-locked fiber laser states is proposed for the first time. Moreover, research into the attractors' basins reveals the origin of stochasticity, hysteresis and multistability in these systems. These findings pave the way for dynamics analysis and new system designs of mode-locked fiber lasers. The paradigm will have a w...

  15. A fiber optic PD sensor using a balanced Sagnac interferometer and an EDFA-based DOP tunable fiber ring laser.

    Science.gov (United States)

    Wang, Lutang; Fang, Nian; Wu, Chunxu; Qin, Haijuan; Huang, Zhaoming

    2014-05-12

    A novel fiber-optic acoustic sensor using an erbium-doped fiber amplifier (EDFA)-based fiber ring laser and a balanced Sagnac interferometer for acoustic sensing of the partial discharge (PD) in power transformers is proposed and demonstrated. As a technical background, an experimental investigation on how the variations of the fiber birefringence affect the sensor performances was carried out, and the results are discussed. The operation principles are described, and the relevant formulas are derived. The analytical results show that an EDFA-based fiber ring laser operating in chaotic mode can provide a degree of polarization (DOP) tunable light beam for effectively suppressing polarization fading noises. The balanced Sagnac interferometer can eliminate command intensity noises and enhance the signal-to-noise ratio (SNR). Furthermore, it inherently operates at the quadrature point of the response curve without any active stabilizations. Several experiments are conducted for evaluating the performances of the sensor system, as well as for investigating the ability of the detection of high-frequency acoustic emission signals. The experimental results demonstrate that the DOP of the laser beam can be continuously tuned from 0.2% to 100%, and the power fluctuation in the whole DOP tuning range is less than 0.05 dBm. A high-frequency response up to 300 kHz is reached, and the high sensing sensitivity for detections of weak corona discharges, as well as partial discharges also is verified.

  16. A Fiber Optic PD Sensor Using a Balanced Sagnac Interferometer and an EDFA-Based DOP Tunable Fiber Ring Laser

    Directory of Open Access Journals (Sweden)

    Lutang Wang

    2014-05-01

    Full Text Available A novel fiber-optic acoustic sensor using an erbium-doped fiber amplifier (EDFA-based fiber ring laser and a balanced Sagnac interferometer for acoustic sensing of the partial discharge (PD in power transformers is proposed and demonstrated. As a technical background, an experimental investigation on how the variations of the fiber birefringence affect the sensor performances was carried out, and the results are discussed. The operation principles are described, and the relevant formulas are derived. The analytical results show that an EDFA-based fiber ring laser operating in chaotic mode can provide a degree of polarization (DOP tunable light beam for effectively suppressing polarization fading noises. The balanced Sagnac interferometer can eliminate command intensity noises and enhance the signal-to-noise ratio (SNR. Furthermore, it inherently operates at the quadrature point of the response curve without any active stabilizations. Several experiments are conducted for evaluating the performances of the sensor system, as well as for investigating the ability of the detection of high-frequency acoustic emission signals. The experimental results demonstrate that the DOP of the laser beam can be continuously tuned from 0.2% to 100%, and the power fluctuation in the whole DOP tuning range is less than 0.05 dBm. A high-frequency response up to 300 kHz is reached, and the high sensing sensitivity for detections of weak corona discharges, as well as partial discharges also is verified.

  17. A Fiber Optic PD Sensor Using a Balanced Sagnac Interferometer and an EDFA-Based DOP Tunable Fiber Ring Laser

    Science.gov (United States)

    Wang, Lutang; Fang, Nian; Wu, Chunxu; Qin, Haijuan; Huang, Zhaoming

    2014-01-01

    A novel fiber-optic acoustic sensor using an erbium-doped fiber amplifier (EDFA)-based fiber ring laser and a balanced Sagnac interferometer for acoustic sensing of the partial discharge (PD) in power transformers is proposed and demonstrated. As a technical background, an experimental investigation on how the variations of the fiber birefringence affect the sensor performances was carried out, and the results are discussed. The operation principles are described, and the relevant formulas are derived. The analytical results show that an EDFA-based fiber ring laser operating in chaotic mode can provide a degree of polarization (DOP) tunable light beam for effectively suppressing polarization fading noises. The balanced Sagnac interferometer can eliminate command intensity noises and enhance the signal-to-noise ratio (SNR). Furthermore, it inherently operates at the quadrature point of the response curve without any active stabilizations. Several experiments are conducted for evaluating the performances of the sensor system, as well as for investigating the ability of the detection of high-frequency acoustic emission signals. The experimental results demonstrate that the DOP of the laser beam can be continuously tuned from 0.2% to 100%, and the power fluctuation in the whole DOP tuning range is less than 0.05 dBm. A high-frequency response up to 300 kHz is reached, and the high sensing sensitivity for detections of weak corona discharges, as well as partial discharges also is verified. PMID:24824371

  18. Tunable Fiber Bragg Grating Ring Lasers using Macro Fiber Composite Actuators

    Science.gov (United States)

    Geddis, Demetris L.; Allison, Sidney G.; Shams, Qamar A.

    2006-01-01

    The research reported herein includes the fabrication of a tunable optical fiber Bragg grating (FBG) fiber ring laser (FRL)1 from commercially available components as a high-speed alternative tunable laser source for NASA Langley s optical frequency domain reflectometer (OFDR) interrogator, which reads low reflectivity FBG sensors. A Macro-Fiber Composite (MFC) actuator invented at NASA Langley Research Center (LaRC) was selected to tune the laser. MFC actuators use a piezoelectric sheet cut into uniaxially aligned rectangular piezo-fibers surrounded by a polymer matrix and incorporate interdigitated electrodes to deliver electric fields along the length of the piezo-fibers. This configuration enables MFC actuators to produce displacements larger than the original uncut piezoelectric sheet. The FBG filter was sandwiched between two MFC actuators, and when strained, produced approximately 3.62 nm of wavelength shift in the FRL when biasing the MFC actuators from 500 V to 2000 V. This tunability range is comparable to that of other tunable lasers and is adequate for interrogating FBG sensors using OFDR technology. Three different FRL configurations were studied. Configuration A examined the importance of erbium-doped fiber length and output coupling. Configuration B demonstrated the importance of the FBG filter. Configuration C added an output coupler to increase the output power and to isolate the filter. Only configuration C was tuned because it offered the best optical power output of the three configurations. Use of Plastic Optical Fiber (POF) FBG s holds promise for enhanced tunability in future research.

  19. Test Port for Fiber-Optic-Coupled Laser Altimeter

    Science.gov (United States)

    Ramos Izquierdo, Luis; Scott, V. Stanley; Rinis, Haris; Cavanaugh, John

    2011-01-01

    A test port designed as part of a fiber optic coupled laser altimeter receiver optical system allows for the back-illumination of the optical system for alignment verification, as well as illumination of the detector(s) for testing the receiver electronics and signal-processing algorithms. Measuring the optical alignment of a laser altimeter instrument is difficult after the instrument is fully assembled. The addition of a test port in the receiver aft-optics allows for the back-illumination of the receiver system such that its focal setting and boresight alignment can be easily verified. For a multiple-detector receiver system, the addition of the aft-optics test port offers the added advantage of being able to simultaneously test all the detectors with different signals that simulate the expected operational conditions. On a laser altimeter instrument (see figure), the aft-optics couple the light from the receiver telescope to the receiver detector(s). Incorporating a beam splitter in the aft-optics design allows for the addition of a test port to back-illuminate the receiver telescope and/or detectors. The aft-optics layout resembles a T with the detector on one leg, the receiver telescope input port on the second leg, and the test port on the third leg. The use of a custom beam splitter with 99-percent reflection, 1-percent transmission, and a mirrored roof can send the test port light to the receiver telescope leg as well as the detector leg, without unduly sacrificing the signal from the receiver telescope to the detector. The ability to test the receiver system alignment, as well as multiple detectors with different signals without the need to disassemble the instrument or connect and reconnect components, is a great advantage to the aft-optics test port. Another benefit is that the receiver telescope aperture is fully back-illuminated by the test port so the receiver telescope focal setting vs. pressure and or temperature can be accurately measured (as

  20. Sub-20-Attosecond Timing Jitter Mode-Locked Fiber Lasers

    CERN Document Server

    Kim, Hyoji; Song, Youjian; Yang, Heewon; Shin, Junho; Kim, Chur; Jung, Kwangyun; Wang, Chingyue; Kim, Jungwon

    2014-01-01

    We demonstrate 14.3-attosecond timing jitter [integrated from 10 kHz to 94 MHz offset frequency] optical pulse trains from 188-MHz repetition-rate mode-locked Yb-fiber lasers. In order to minimize the timing jitter, we shorten the non-gain fiber length to shorten the pulsewidth and reduce excessive higher-order nonlinearity and nonlinear chirp in the fiber laser. The measured jitter spectrum is limited by the amplified spontaneous emission limited quantum noise in the 100 kHz - 1 MHz offset frequency range, while it was limited by the relative intensity noise-converted jitter in the lower offset frequency range. This intrinsically low timing jitter enables sub-100-attosecond synchronization between the two mode-locked Yb-fiber lasers over the full Nyquist frequency with a modest 10-kHz locking bandwidth. The demonstrated performance is the lowest timing jitter measured from any free-running mode-locked fiber lasers, comparable to the performance of the lowest-jitter Ti:sapphire solid-state lasers.

  1. Soliton mode locking fiber laser with an all-fiber polarization interference filter.

    Science.gov (United States)

    Yan, Zhijun; Wang, Hushan; Zhou, Kaiming; Wang, Yishan; Li, Cheng; Zhao, Wei; Zhang, Lin

    2012-11-01

    An erbium doped fiber ring laser achieving soliton mode locking by the use of an intra-cavity all-fiber polarization interference filter (AFPIF) has been demonstrated. To incorporate an AFPIF with relative narrow transmission bandwidth, the laser has produced clean soliton pulses of 1.2 ps duration at a repetition rate of 14.98 MHz with a polarization extinction ratio up to 25.7 dB. Moreover, we have demonstrated that the operating wavelength of the mode locking laser can be tuned over 20 nm range from 1545 to 1565 nm by thermally tuning the AFPIF cavity.

  2. Novel microsphere chain fiber tips for use in mid-infrared ophthalmic laser surgery

    Science.gov (United States)

    Hutchens, Thomas C.; Darafsheh, Arash; Fardad, Amir; Antoszyk, Andrew N.; Ying, Howard S.; Astratov, Vasily N.; Fried, Nathaniel M.

    2012-01-01

    Ophthalmic surgery may benefit from the use of more precise fiber delivery systems for laser surgery. In this study, chains of sapphire microspheres integrated into the distal tip of a hollow waveguide are used for preliminary mid-infrared, Erbium:YAG laser ablation studies in contact mode with ophthalmic tissues, ex vivo. The combination of the Er:YAG laser's short optical penetration depth and small spot diameters achieved with this novel fiber probe may provide more precise tissue removal. One, three, and five microsphere chain structures were assembled and compared, resulting in spot diameters of 67, 32, and 30 μm, respectively. Single laser pulses of 0.1 mJ energy and 75 μs duration produced craters with average widths of 44, 30, and 17 μm and depths of 26, 10, and 8 μm, for one, three, and five sphere structures, respectively. Chains of microspheres produced spatial filtering of the multimode Er:YAG laser beam and fiber, thus providing spot diameters not otherwise available for precise tissue ablation using conventional fiber delivery systems. With further probe development, this novel approach to mid-IR laser ablation may provide an alternative to mechanical tools for ultra-precise surgical dissection and removal of ophthalmic tissues.

  3. Supercontinuum generation in nonlinear fibers using high-energy figure-of-eight mode-locked fiber laser for SD-OCT application

    Science.gov (United States)

    Xu, Bo; Nagata, Tsubasa; Yamashita, Shinji

    2014-05-01

    Generation of flat and broadband supercontinum is demonstrated in an all fiber system using the high-energy noise-like pulses from a stable figure-of-eight fiber laser and nonlinear fibers. This SC source is successfully applied to the spectral domain optical coherence tomography (SD-OCT). The axial resolution is significantly improved compared with the case of the superluminescent diode source. SD-OCT imaging is also demonstrated.

  4. Beam shaping element for compact fiber injection systems

    Energy Technology Data Exchange (ETDEWEB)

    Weichman, L.S.; Dickey, F.M.; Shagam, R.N.

    2000-01-05

    Injection of high power, multi-mode laser profiles into a fiber optic delivery system requires controlling a number of injection parameters to maximize throughput and minimize concerns for optical damage both at the entrance and exit faces of the fiber optic. A simple method for simultaneously achieving a compact fiber injection geometry and control of these injection parameters, independent of the input source characteristics, is provided by a refractive lenslet array and simple injection lens configuration. Design criteria together with analytical and experimental results for the refractive lenslet array and short focal length injection lens are presented. This arrangement provides a uniform spatial intensity distribution at the fiber injection plane to a large degree independent of the source mode structure, spatial profile, divergence, size, and/or alignment to the injection system. This technique has application to a number of laser systems where uniform illumination of a target or remote delivery of high peak power is desired.

  5. A gas laser system

    Energy Technology Data Exchange (ETDEWEB)

    Sydzo, Y.; Norio, T.

    1984-04-02

    It is reported that an improved gas laser system with active medium circulation has been developed. The design of the gas laser is given in block diagram form, and its principle of operation is described in detail. The gaseous active medium flows through the inlet hole to the laser system, and is uniformly dispersed as it flows through the cylindrical diffuser. Thus, a near uniform distribution in the flow velocity of the gas flow in the laser discharge tube is achieved. The gas flow velocity along the edges of the discharge tube exceeds somewhat the flow velocity in the central section, which aids in generating and maintaining a stable and uniform pumping discharge. It is established experimentally that when using the proposed design, the parameters of the output emission from the gas laser are improved significantly. A relationship is given which demonstrates the near linear relationship between the pumping voltage and the output emission power from a gas laser.

  6. Optical fiber link for transmission of 1-nJ femtosecond laser pulses at 1550 nm.

    Science.gov (United States)

    Eichhorn, Finn; Olsson, Rasmus Kjelsmark; Buron, Jonas C D; Grüner-Nielsen, Lars; Pedersen, Jens Engholm; Jepsen, Peter Uhd

    2010-03-29

    We report on numerical and experimental characterization of the performance of a fiber link optimized for the delivery of sub-100-fs laser pulses at 1550 nm over several meters of fiber. We investigate the power handling capacity of the link, and demonstrate all-fiber delivery of 1-nJ pulses over a distance of 5.3 m. The fiber link consists of dispersion-compensating fiber (DCF) and standard single-mode fiber. The optical pulses at different positions in the fiber link are measured using frequency-resolved optical gating (FROG). The results are compared with numerical simulations of the pulse propagation based on the generalized nonlinear Schrödinger equation. The high input power capacity of the fiber link allows the splitting and distribution of femtosecond pulses to an array of fibers with applications in multi-channel fiber-coupled terahertz time-domain spectroscopy and imaging systems. We demonstrate THz pulse generation and detection using a distributed fiber link with 32 channels and 2.6 nJ input pulse energy.

  7. Double nanosecond pulses generation in ytterbium fiber laser

    Energy Technology Data Exchange (ETDEWEB)

    Veiko, V. P.; Samokhvalov, A. A., E-mail: samokhvalov.itmo@gmail.com; Yakovlev, E. B.; Zhitenev, I. Yu.; Kliushin, A. N. [Saint-Petersburg State University of Information Technologies, Mechanics and Optics, Kronverksky Pr. 49, Saint Petersburg (Russian Federation); Lednev, V. N. [Prokhorov General Physics Institute of the Russian Academy of Sciences, Vavilov Str., 38, Moscow (Russian Federation); National University of Science and Technology MISiS, Leninskyave., 4, Moscow (Russian Federation); Pershin, S. M. [Prokhorov General Physics Institute of the Russian Academy of Sciences, Vavilov Str., 38, Moscow (Russian Federation)

    2016-06-15

    Double pulse generation mode for nanosecond ytterbium fiber laser was developed. Two sequential 60-200 ns laser pulses with variable delay between them were generated by acousto-optic modulator opening with continuous diode pumping. A custom radio frequency generator was developed to produce two sequential “opening” radio pulses with a delay of 0.2–1 μs. It was demonstrated that double pulse generation did not decrease the average laser power while providing the control over the laser pulse power profile. Surprisingly, a greater peak power in the double pulse mode was observed for the second laser pulse. Laser crater studies and plasma emission measurements revealed an improved efficiency of laser ablation in the double pulse mode.

  8. Precision laser aiming system

    Science.gov (United States)

    Ahrens, Brandon R.; Todd, Steven N.

    2009-04-28

    A precision laser aiming system comprises a disrupter tool, a reflector, and a laser fixture. The disrupter tool, the reflector and the laser fixture are configurable for iterative alignment and aiming toward an explosive device threat. The invention enables a disrupter to be quickly and accurately set up, aligned, and aimed in order to render safe or to disrupt a target from a standoff position.

  9. Phase-locking-level statistics of coupled random fiber lasers.

    Science.gov (United States)

    Fridman, Moti; Pugatch, Rami; Nixon, Micha; Friesem, Asher A; Davidson, Nir

    2012-10-01

    We measure the statistics of phase locking levels of coupled fiber lasers with fluctuating cavity lengths. We found that the measured distribution of the phase locking level of such coupled lasers can be described by the generalized extreme value distribution. For large number of lasers the distribution of the phase locking level can be approximated by a Gumbel distribution. We present a simple model, based on the spectral response of coupled lasers, and the calculated results are in good agreement with the experimental results.

  10. Long-term laser frequency stabilization using fiber interferometers

    Energy Technology Data Exchange (ETDEWEB)

    Kong, Jia, E-mail: jia.kong@icfo.es [ICFO – Institut de Ciencies Fotoniques, Mediterranean Technology Park, 08860 Castelldefels, Barcelona (Spain); Quantum Institute for Light and Atoms, Department of Physics, State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200062 (China); Lucivero, Vito Giovanni; Jiménez-Martínez, Ricardo [ICFO – Institut de Ciencies Fotoniques, Mediterranean Technology Park, 08860 Castelldefels, Barcelona (Spain); Mitchell, Morgan W. [ICFO – Institut de Ciencies Fotoniques, Mediterranean Technology Park, 08860 Castelldefels, Barcelona (Spain); ICREA – Institució Catalana de Recerca i Estudis Avançats, 08015 Barcelona (Spain)

    2015-07-15

    We report long-term laser frequency stabilization using only the target laser and a pair of 5 m fiber interferometers, one as a frequency reference and the second as a sensitive thermometer to stabilize the frequency reference. When used to stabilize a distributed feedback laser at 795 nm, the frequency Allan deviation at 1000 s drops from 5.6 × 10{sup −8} to 6.9 × 10{sup −10}. The performance equals that of an offset lock employing a second, atom-stabilized laser in the temperature control.

  11. Generation of pseudo-high-order group velocity locked vector solitons in fiber lasers

    CERN Document Server

    Jin, Xinxin; Li, Lei; Ge, Yanqi; Luo, Jiaolin; Zhang, Qian; Tang, Dingyuan; Shen, Deyuan; Fu, Songnian; Liu, Deming; Zhao, Luming

    2015-01-01

    We propose and experimentally demonstrate the generation of pseudo-high-order group velocity locked vector solitons (GVLVS) in a fiber laser using a SESAM as the mode locker. With the help of an external all-fiber polarization resolved system, a GVLVS with a two-humped pulse along one polarization while a single-humped pulse along the orthogonal polarization could be obtained. The phase difference between the two humps is 180 degree.

  12. Numerical simulation of a DFB - fiber laser sensor (part 1

    Directory of Open Access Journals (Sweden)

    Dan SAVASTRU

    2010-06-01

    Full Text Available This paper presents the preliminary results obtained in developing a numerical simulationanalysis of fiber optic bending sensitivity aiming to improve the design of fiber lasers. The developednumerical simulation method relies on an analysis of both the fundamental mode propagation alongan optical fiber and of how bending of this fiber influence the optical radiation losses. The cases ofsimple, undoped and of doped with Er3+ ions optical fibers are considered. The presented results arebased on numerical simulation of eigen-modes of a laser intensity distribution by the use of finiteelement method (FEM developed in the frame of COMSOL software package. The numericalsimulations are performed by considering the cases of both normal, non-deformed optic fiber and ofsymmetrically deformed optic fiber resembling micro-bending of it. Both types of fiber optic bendinglosses are analyzed, namely: the transition loss, associated with the abrupt or rapid change incurvature at the beginning and the end of a bend, and pure bend loss is associated with the loss fromthe bend of constant curvature in between.

  13. Femtosecond laser-induced surface structures on carbon fibers.

    Science.gov (United States)

    Sajzew, Roman; Schröder, Jan; Kunz, Clemens; Engel, Sebastian; Müller, Frank A; Gräf, Stephan

    2015-12-15

    The influence of different polarization states during the generation of periodic nanostructures on the surface of carbon fibers was investigated using a femtosecond laser with a pulse duration τ=300  fs, a wavelength λ=1025  nm, and a peak fluence F=4  J/cm². It was shown that linear polarization results in a well-aligned periodic pattern with different orders of magnitude concerning their period and an alignment parallel and perpendicular to fiber direction, respectively. For circular polarization, both types of uniform laser-induced periodic surface structures (LIPSS) patterns appear simultaneously with different dominance in dependence on the position at the fiber surface. Their orientation was explained by the polarization-dependent absorptivity and the geometrical anisotropy of the carbon fibers.

  14. A high-efficiency Brillouin fiber ring laser

    Institute of Scientific and Technical Information of China (English)

    Pingping Zhang; Shuling Hu; Shuying Chen; Yuanhong Yang; Chunxi Zhang

    2009-01-01

    A high-efficiency Brillouin fiber ring laser is demonstrated using the standard single-mode fiber.The laser exhibits a 3.6-mW threshold.The output power is 22 mW with 40-nlW pump power,and the maximum optical-to-optical efficiency is 55%. The output is single wavelength with a 3-dB linewidth of 5 MHz,and the interval of center frequency between the laser and the pump light is 11 GHz (0.088 nm).It is shown that the stimulated Brillouin scattering threshold of ring resonator is lower and the energy transfer efficiency is higher than those in fiber.

  15. Fiber optic and laser sensors IX; Proceedings of the Meeting, Boston, MA, Sept. 3-5, 1991

    Science.gov (United States)

    Depaula, Ramon P. (Editor); Udd, Eric (Editor)

    1991-01-01

    The present volume on fiber-optic and laser sensors discusses industrial applications of fiber-optic sensors, fiber-optic temperature sensors, fiber-optic current sensors, fiber-optic pressure/displacement/vibration sensors, and generic fiber-optic systems. Attention is given to a fiber-sensor design for turbine engines, fiber-optic remote Fourier transform IR spectroscopy, near-IR fiber-optic temperature sensors, and an intensity-type fiber-optic electric current sensor. Topics addressed include fiber-optic magnetic field sensors based on the Faraday effect in new materials, diaphragm size and sensitivity for fiber-optic pressure sensors, a microbend pressure sensor for high-temperature environments, and linear position sensing by light exchange between two lossy waveguides. Also discussed are two-mode elliptical-core fiber sensors for measurement of strain and temperature, a fiber-optic interferometric X-ray dosimeter, fiber-optic interferometric sensors using multimode fibers, and optical fiber sensing of corona discharges.

  16. Fiber optic and laser sensors IX; Proceedings of the Meeting, Boston, MA, Sept. 3-5, 1991

    Science.gov (United States)

    Depaula, Ramon P. (Editor); Udd, Eric (Editor)

    1991-01-01

    The present volume on fiber-optic and laser sensors discusses industrial applications of fiber-optic sensors, fiber-optic temperature sensors, fiber-optic current sensors, fiber-optic pressure/displacement/vibration sensors, and generic fiber-optic systems. Attention is given to a fiber-sensor design for turbine engines, fiber-optic remote Fourier transform IR spectroscopy, near-IR fiber-optic temperature sensors, and an intensity-type fiber-optic electric current sensor. Topics addressed include fiber-optic magnetic field sensors based on the Faraday effect in new materials, diaphragm size and sensitivity for fiber-optic pressure sensors, a microbend pressure sensor for high-temperature environments, and linear position sensing by light exchange between two lossy waveguides. Also discussed are two-mode elliptical-core fiber sensors for measurement of strain and temperature, a fiber-optic interferometric X-ray dosimeter, fiber-optic interferometric sensors using multimode fibers, and optical fiber sensing of corona discharges.

  17. Thin gas cell with GRIN fiber lens for intra-cavity fiber laser gas sensors

    Science.gov (United States)

    Li, Mo; Dai, Jing-min; Peng, Gang-ding

    2009-07-01

    Fiber laser gas sensors based on the intra-cavity absorption spectroscopy require the use of gas cells. We propose a simple and reliable gas cell using graded-index fiber lens (GFL) based all-fiber collimator. Conventional gas cells usually utilize direct fiber-to-fiber coupling without collimators or graded-index (GRIN) lens as collimators. Direct fiberto- fiber gas cell has simple configuration, but it suffers from high coupling loss and stray light interference. Gas cells applying fiber pigtailed GRIN lens are advantageous to achieve low coupling loss. However, fiber pigtailed GRIN lens requires accurate and complicated alignment and glue packaging which could compromise long term reliability and thermal stability. The proposed technique fabricates all-fiber collimators by simply splicing a short section of gradedindex fiber to single mode fiber which is both compact and durable. With that collimator, the gas cell can be fabricated very thin and are suitable for extreme environments with high temperature and vibration. In this paper, we have carried out experiment and analysis to evaluate the proposed technique. The coupling efficiency is studied versus different GFL gradient parameter profiles using ray matrix transformation of the complex beam parameter. Experiments are also done to prove the practical feasibility of the collimator. The analysis indicates that gas cell using GFLs can overcome the disadvantages of traditional design; it may replace the conventional gas cells in practical applications.

  18. Whispering Gallery Mode Resonator Stabilized Narrow Linewidth Fiber Loop Laser

    CERN Document Server

    Sprenger, B; Wang, L J; 10.1364/OL.34.003370

    2012-01-01

    We demonstrate a narrow line, fiber loop laser using Erbium-doped fiber as the gain material, stabilized by using a microsphere as a transmissive frequency selective element. Stable lasing with a linewidth of 170 kHz is observed, limited by the experimental spectral resolution. A linear increase in output power and a red-shift of the lasing mode were also observed with increasing pump power. Its potential application is also discussed.

  19. Directly modulated cable television transport systems using negative dispersion fiber

    Science.gov (United States)

    Lu, Hai-Han; Liaw, Je-Wei; Lee, Yi-Shiuan; Tsai, Wan-Lin; Ji, Yu-Jie

    2005-03-01

    A directly modulated AM-VSB cable-television transport system using negative dispersion fiber (NDF) as the transmission medium is proposed and successfully demonstrated. Good performances of carrier-to-noise radio, composite second order, and composite triple beat were obtained over a 70-km NDF transport without optical amplification. The directly modulated laser has a positive chirp, while NDF has a negative dispersion property in the transmission fiber. This negative dispersion property compensates for the laser chirp and results in a system with better transmission performance.

  20. Liquid level sensor based on fiber ring laser with single-mode-offset coreless-single-mode fiber structure

    Science.gov (United States)

    Wang, Zixiao; Tan, Zhongwei; Xing, Rui; Liang, Linjun; Qi, Yanhui; Jian, Shuisheng

    2016-10-01

    A novel reflective liquid level sensor based on single-mode-offset coreless-single-mode (SOCS) fiber structure is proposed and experimentally demonstrated. Theory analyses and experimental results indicate that offset fusion can remarkably enhance the sensitivity of sensor. Ending-reflecting structure makes the sensor compact and easy to deploy. Meanwhile, we propose a laser sensing system, and the SOCS structure is used as sensing head and laser filter simultaneously. Experimental results show that laser spectra with high optical signal-to-noise ratio (-30 dB) and narrow 3-dB bandwidth (<0.15 nm) are achieved. Various liquids with different indices are used for liquid level sensing, besides, the refractive index sensitivity is also investigated. In measurement range, the sensing system presents steady laser output.

  1. Fiber-Laser-Based Ultrasound Sensor for Photoacoustic Imaging

    Science.gov (United States)

    Liang, Yizhi; Jin, Long; Wang, Lidai; Bai, Xue; Cheng, Linghao; Guan, Bai-Ou

    2017-01-01

    Photoacoustic imaging, especially for intravascular and endoscopic applications, requires ultrasound probes with miniature size and high sensitivity. In this paper, we present a new photoacoustic sensor based on a small-sized fiber laser. Incident ultrasound waves exert pressures on the optical fiber laser and induce harmonic vibrations of the fiber, which is detected by the frequency shift of the beating signal between the two orthogonal polarization modes in the fiber laser. This ultrasound sensor presents a noise-equivalent pressure of 40 Pa over a 50-MHz bandwidth. We demonstrate this new ultrasound sensor on an optical-resolution photoacoustic microscope. The axial and lateral resolutions are 48 μm and 3.3 μm. The field of view is up to 1.57 mm2. The sensor exhibits strong resistance to environmental perturbations, such as temperature changes, due to common-mode cancellation between the two orthogonal modes. The present fiber laser ultrasound sensor offers a new tool for all-optical photoacoustic imaging.

  2. Fiber-Laser-Based Ultrasound Sensor for Photoacoustic Imaging

    Science.gov (United States)

    Liang, Yizhi; Jin, Long; Wang, Lidai; Bai, Xue; Cheng, Linghao; Guan, Bai-Ou

    2017-01-01

    Photoacoustic imaging, especially for intravascular and endoscopic applications, requires ultrasound probes with miniature size and high sensitivity. In this paper, we present a new photoacoustic sensor based on a small-sized fiber laser. Incident ultrasound waves exert pressures on the optical fiber laser and induce harmonic vibrations of the fiber, which is detected by the frequency shift of the beating signal between the two orthogonal polarization modes in the fiber laser. This ultrasound sensor presents a noise-equivalent pressure of 40 Pa over a 50-MHz bandwidth. We demonstrate this new ultrasound sensor on an optical-resolution photoacoustic microscope. The axial and lateral resolutions are 48 μm and 3.3 μm. The field of view is up to 1.57 mm2. The sensor exhibits strong resistance to environmental perturbations, such as temperature changes, due to common-mode cancellation between the two orthogonal modes. The present fiber laser ultrasound sensor offers a new tool for all-optical photoacoustic imaging. PMID:28098201

  3. Parabolic similariton Yb-fiber laser with triangular pulse evolution

    Science.gov (United States)

    Wang, Sijia; Wang, Lei

    2016-04-01

    We propose a novel mode-locked fiber laser design which features a passive nonlinear triangular pulse formation and self-similar parabolic pulse amplification intra cavity. Attribute to the nonlinear reshaping progress in the passive fiber, a triangular-profiled pulse with negative-chirp is generated and paved the way for rapid and efficient self-similar parabolic evolution in a following short-length high-gain fiber. In the meanwhile, the accompanied significantly compressed narrow spectrum from this passive nonlinear reshaping also gives the promise of pulse stabilization and gain-shaping robustness without strong filtering. The resulting short average intra-cavity pulse duration, low amplified spontaneous emission (ASE) and low intra-cavity power loss are essential for the low-noise operation. Simulations predict this modelocked fiber laser allows for high-energy ultra-short transform-limited pulse generation exceeding the gain bandwidth. The output pulse has a de-chirped duration (full-width at half maximum, FWHM) of 27 fs. In addition to the ultrafast laser applications, the proposed fiber laser scheme can support low-noise parabolic and triangular pulse trains at the same time, which are also attractive in optical pulse shaping, all-optical signal processing and high-speed communication applications.

  4. Space Applications Industrial Laser System (SAILS)

    Science.gov (United States)

    McCay, T. D.; Bible, J. B.; Mueller, R. E.

    1993-10-01

    A program is underway to develop a YAG laser based materials processing workstation to fly in the cargo bay of the Space Shuttle. This workstation, called Space Applications Industrial Laser System (SAILS), will be capable of cutting and welding steel, aluminum, and Inconel alloys of the type planned for use in constructing the Space Station Freedom. As well as demonstrating the ability of a YAG laser to perform remote (fiber-optic delivered) repair and fabrication operations in space, fundamental data will be collected on these interactions for comparison with terrestrial data and models. The flight system, scheduled to fly in 1996, will be constructed as three modules using standard Get-Away-Special (GAS) canisters. The first module holds the laser head and cooling system, while the second contains a high peak power electrical supply. The third module houses the materials processing workstation and the command and data acquisition subsystems. The laser head and workstation cansisters are linked by a fiber-optic cable to transmit the laser light. The team assembled to carry out this project includes Lumonics Industrial Products (laser), Tennessee Technological University (structural analysis and fabrication), Auburn University Center for Space Power (electrical engineering), University of Waterloo (low-g laser process consulting), and CSTAR/UTSI (data acquisition, control, software, integration, experiment design). This report describes the SAILS program and highlights recent activities undertaken at CSTAR.

  5. Space Applications Industrial Laser System (SAILS)

    Science.gov (United States)

    Mccay, T. D.; Bible, J. B.; Mueller, R. E.

    1993-01-01

    A program is underway to develop a YAG laser based materials processing workstation to fly in the cargo bay of the Space Shuttle. This workstation, called Space Applications Industrial Laser System (SAILS), will be capable of cutting and welding steel, aluminum, and Inconel alloys of the type planned for use in constructing the Space Station Freedom. As well as demonstrating the ability of a YAG laser to perform remote (fiber-optic delivered) repair and fabrication operations in space, fundamental data will be collected on these interactions for comparison with terrestrial data and models. The flight system, scheduled to fly in 1996, will be constructed as three modules using standard Get-Away-Special (GAS) canisters. The first module holds the laser head and cooling system, while the second contains a high peak power electrical supply. The third module houses the materials processing workstation and the command and data acquisition subsystems. The laser head and workstation cansisters are linked by a fiber-optic cable to transmit the laser light. The team assembled to carry out this project includes Lumonics Industrial Products (laser), Tennessee Technological University (structural analysis and fabrication), Auburn University Center for Space Power (electrical engineering), University of Waterloo (low-g laser process consulting), and CSTAR/UTSI (data acquisition, control, software, integration, experiment design). This report describes the SAILS program and highlights recent activities undertaken at CSTAR.

  6. Laser tissue coagulation and concurrent optical coherence tomography through a double-clad fiber coupler.

    Science.gov (United States)

    Beaudette, Kathy; Baac, Hyoung Won; Madore, Wendy-Julie; Villiger, Martin; Godbout, Nicolas; Bouma, Brett E; Boudoux, Caroline

    2015-04-01

    Double-clad fiber (DCF) is herein used in conjunction with a double-clad fiber coupler (DCFC) to enable simultaneous and co-registered optical coherence tomography (OCT) and laser tissue coagulation. The DCF allows a single channel fiber-optic probe to be shared: i.e. the core propagating the OCT signal while the inner cladding delivers the coagulation laser light. We herein present a novel DCFC designed and built to combine both signals within a DCF (>90% of single-mode transmission; >65% multimode coupling). Potential OCT imaging degradation mechanisms are also investigated and solutions to mitigate them are presented. The combined DCFC-based system was used to induce coagulation of an ex vivo swine esophagus allowing a real-time assessment of thermal dynamic processes. We therefore demonstrate a DCFC-based system combining OCT imaging with laser coagulation through a single fiber, thus enabling both modalities to be performed simultaneously and in a co-registered manner. Such a system enables endoscopic image-guided laser marking of superficial epithelial tissues or laser thermal therapy of epithelial lesions in pathologies such as Barrett's esophagus.

  7. Theoretical analysis of spectrum flattening in fiber laser oscillator

    Science.gov (United States)

    Shi, Chen; Wang, Xiaolin; Zhou, Pu; Wang, Zefeng; Xu, Xiaojun; Lu, Qisheng

    2017-01-01

    The flatness of laser spectrum is important in many applications. In this manuscript, a method of acquiring flattened spectrum directly from a fiber oscillator by optimizing the reflective spectrum of Fiber Bragg Gratings (FBG) was demonstrated and optimized result at wavelength around 1064 nm and 1080 nm was presented. An optimization path to alter the reflectivity of FBGs using greedy algorithm was interpreted by analyzing the single-trip gain inside the resonant cavity. Our method has a guiding significance of controlling the output spectrum of laser oscillator using FBGs.

  8. Topology optimization of free vibrations of fiber laser packages

    DEFF Research Database (Denmark)

    Hansen, Lars Voxen

    2005-01-01

    The optimization problems described in the present paper are inspired by the problem of fiber laser package design for vibrating environments. The optical frequency of tuned fiber lasers glued to stiff packages is sensitive to acoustic or other mechanical vibrations. The paper presents a method...... for reducing this sensitivity by limiting the glue point movement on the package while using only a limited knowledge of vibrating external forces. By use of topology optimization a density distribution for the package is obtained, where the critical eigenmode of the package only effects a small elongation...

  9. Multichannel polarization stabilization for coherently combined fiber laser arrays.

    Science.gov (United States)

    Goodno, Gregory D; McNaught, Stuart J; Weber, Mark E; Weiss, S Benjamin

    2012-10-15

    We demonstrate a simplified approach toward active polarization control in coherently combined laser architectures. By leveraging optical phase dithers applied by a phase controller, polarization error signals are generated for an entire laser array from a single beam sample of the combined output, enabling closed-loop polarization locking of non-polarization-maintaining fibers. The concept is shown to be compatible with both hill-climbing and synchronous multidither phase control methods. Simultaneous phase locking and polarization locking was demonstrated for a five-fiber array with >99% phasing efficiency and >20 dB polarization extinction ratio.

  10. Dynamics of an erbium-doped fiber laser subjected to harmonic modulation of a diode pump laser

    Science.gov (United States)

    Pisarchik, Alexander N.; Kir'yanov, Alexander V.; Barmenkov, Yuri O.; Reategui, R. J.

    2004-10-01

    An erbium-doped fiber laser is shown to operate as a bistable or multistable nonlinear system under harmonic modulation of the diode pump laser. Phase- and frequency-dependent states are demonstrated both experimentally and in numerical simulations through codimensional-one and codimensional-two bifurcation diagrams in the parameter space of the modulation frequency and amplitude. In particular, generalized bistability results in doubling of saddle-node bifurcation lines where different coexisting attractors born. The laser model describes well all experimental features.

  11. Observation of mode instability and coherence collapse in a single-frequency polarization-maintaining fiber ring laser

    Science.gov (United States)

    Ma, Mingxiang; Hu, Zhengliang; Xu, Pan; Hu, Yongming

    2014-06-01

    Mode instability acts as a common feature in single-frequency fiber ring lasers. The mechanism of coherence collapse by mode instability is theoretically analyzed and demonstrated with an unbalanced fiber Michelson interferometer utilizing phase modulation, which is illuminated by a single-frequency erbium-doped fiber ring laser. Multiform mode instability phenomena accompanied with coherence collapse are observed and discussed in detail by tracing the dynamics of the interference fringe visibility. The results show that mode instability would introduce extra phase noises like a false alarm to interferometric fiber optic sensing systems.

  12. All-optical fiber anemometer based on laser heated fiber Bragg gratings.

    Science.gov (United States)

    Gao, Shaorui; Zhang, A Ping; Tam, Hwa-Yaw; Cho, L H; Lu, Chao

    2011-05-23

    A fiber-optic anemometer based on fiber Bragg gratings (FBGs) is presented. A short section of cobalt-doped fiber was utilized to make a fiber-based "hot wire" for wind speed measurement. Fiber Bragg gratings (FBGs) were fabricated in the cobalt-doped fiber using 193 nm laser pulses to serve as localized temperature sensors. A miniature all-optical fiber anemometer is constructed by using two FBGs to determine the dynamic thermal equilibrium between the laser heating and air flow cooling through monitoring the FBGs' central wavelengths. It was demonstrated that the sensitivity of the sensor can be adjusted through the power of pump laser or the coating on the FBG. Experimental results reveal that the proposed FBG-based anemometer exhibits very good performance for wind speed measurement. The resolution of the FBG-based anemometer is about 0.012 m/s for wind speed range between 2.0 m/s and 8.0 m/s.

  13. Delivery of picosecond lasers in multimode fibers for coherent anti-Stokes Raman scattering imaging.

    Science.gov (United States)

    Wang, Zhiyong; Yang, Yaliang; Luo, Pengfei; Gao, Liang; Wong, Kelvin K; Wong, Stephen T C

    2010-06-07

    We investigated the possibility of using standard commercial multimode fibers (MMF), Corning SMF28 fibers, to deliver picosecond excitation lasers for coherent anti-Stokes Raman scattering (CARS) imaging. We theoretically and/or experimentally analyzed issues associated with the fiber delivery, such as dispersion length, walk-off length, nonlinear length, average threshold power for self-phase modulations, and four-wave mixing (FWM). These analyses can also be applied to other types of fibers. We found that FWM signals are generated in MMF, but they can be filtered out using a long-pass filter for CARS imaging. Finally, we demonstrated that MMF can be used for delivery of picosecond excitation lasers in the CARS imaging system without any degradation of image quality.

  14. Tunable Erbium-Doped Fiber Laser Based on Random Distributed Feedback

    National Research Council Canada - National Science Library

    Lulu Wang; Xinyong Dong; Shum, Perry Ping; Haibin Su

    2014-01-01

    A tunable erbium-doped fiber (EDF) laser based on random distributed feedback through backward Rayleigh scattering in a 20-km-long single-mode fiber and a tunable fiber Fabry-Perot interferometer filter is demonstrated...

  15. Long-distance remote characterization of ultrastable lasers via commercial telecommunication fiber network

    CERN Document Server

    Pape, Andre; Friebe, Jan; Riedmann, Matthias; Wübbena, Temmo; Rasel, Ernst-Maria; Predehl, Katharina; Lipphardt, Burghard; Schnatz, Harald; Grosche, Gesine

    2009-01-01

    We demonstrate a fully optical, remote characterization of independent ultrastable lasers separated by a geographical distance of more than 50 km via a 73 km long phase-stabilized fiber in a commercial telecommunication network. The phase-coherent comparison shows a fractional frequency instability between the independent ultrastable laser systems of s_y = 4E-15 for averaging times > 2 s; the remote analog transfer beat note shows a linewidth of 1 Hz. This demonstrates the potential of long-distance remote comparisons of ultrastable optical frequencies using commercial telecommunication fiber networks.

  16. Laser Processing of Carbon Fiber Reinforced Plastics - Release of Carbon Fiber Segments During Short-pulsed Laser Processing of CFRP

    Science.gov (United States)

    Walter, Juergen; Brodesser, Alexander; Hustedt, Michael; Bluemel, Sven; Jaeschke, Peter; Kaierle, Stefan

    Cutting and ablation using short-pulsed laser radiation are promising technologies to produce or repair CFRP components with outstanding mechanical properties e.g. for automotive and aircraft industry. Using sophisticated laser processing strategies and avoiding excessive heating of the workpiece, a high processing quality can be achieved. However, the interaction of laser radiation and composite material causes a notable release of hazardous substances from the process zone, amongst others carbon fiber segments or fibrous particles. In this work, amounts and geometries of the released fiber segments are analyzed and discussed in terms of their hazardous potential. Moreover, it is investigated to what extent gaseous organic process emissions are adsorbed at the fiber segments, similar to an adsorption of volatile organic compounds at activated carbon, which is typically used as filter material.

  17. Laser self-mixing interference fiber sensor

    Institute of Scientific and Technical Information of China (English)

    Zhu Jun; Zhao Yan; Jin Guo-fan

    2008-01-01

    Fibre sensors exhibit a number of advantages over other sensors such as high sensitivity, electric insulation, corrosion resistance, interference rejection and so on. And laser elf-mixing interference can accurately detect the phase difference of feedback light. In this paper, a novel laser self-mixing interference fibre sensor that combines the advantages of fibre sensors with those of laser self-mixing interference is presented. Experimental configurations are set up to study the relationship between laser power output and phase of laser feedback light when the fibre trembles or when the fibre is stretched or pressed. The theoretical analysis of pressure sensors based on laser self-mixing interference is indicated to accord with the experimental results.

  18. Characterization of novel microsphere chain fiber optic tips for potential use in ophthalmic laser surgery

    OpenAIRE

    Hutchens, Thomas C.; Darafsheh, Arash; Fardad, Amir; Antoszyk, Andrew N.; Ying, Howard S.; Astratov, Vasily N.; Fried, Nathaniel M.

    2012-01-01

    Ophthalmic surgery may benefit from use of more precise fiber delivery systems during laser surgery. Some current ophthalmic surgical techniques rely on tedious mechanical dissection of tissue layers. In this study, chains of sapphire microspheres integrated into a hollow waveguide distal tip are used for erbium:YAG laser ablation studies in contact mode with ophthalmic tissues, ex vivo. The laser’s short optical penetration depth combined with the small spot diameters achieved with this fibe...

  19. A new modality for minimally invasive CO2 laser surgery: flexible hollow-core photonic bandgap fibers.

    Science.gov (United States)

    Shurgalin, Max; Anastassiou, Charalambos

    2008-01-01

    Carbon dioxide (CO2) lasers have become one of the most common surgical lasers due to excellent tissue interaction properties that offer precise control of cutting and ablation depth, minimal thermal damage to surrounding tissue, and good hemostasis. However, realization of the benefits offered by using surgical CO2 lasers in many endoscopic, minimally invasive surgical procedures has been inhibited by the absence of reliable, flexible fiber laser beam delivery systems. Recently, novel hollow-core photonic bandgap optical fibers for CO2 lasers were developed that offer high flexibility and mechanical robustness with good optical performance under tight bends. These fibers can be used through rigid and flexible endoscopes and various handpieces and will allow surgeons to perform delicate and precise laser surgery procedures in a minimally invasive manner. This paper describes the basic design of laser beam delivery system, different surgical fiber designs and their characteristics, and usage with existing surgical CO2 laser models. A few examples of successful CO2 laser surgeries performed with these fibers are presented.

  20. Advanced Optical Fibers for High power Fiber lasers

    Science.gov (United States)

    2015-08-24

    cores, which are formed by spinning the preform during fiber drawing. Another notable example is based on the © 2015 The Author(s). Licensee InTech ...years later, single-mode operation in a record core diameter of ~180μm was demonstrated in a LCF [8]. Many other approaches based on conventional...however, be computationally very demanding. If only circular boundaries are involved, a Multipole mode solver is a good option [17, 18]. It is based on the

  1. A fiber micro-vibration sensor based on single-mode fiber ring laser

    Institute of Scientific and Technical Information of China (English)

    Shenglai Zhen; Renzhu Liu; Benli Yu; Jing Zhang; Baogang Han

    2009-01-01

    A new micro-vibration sensor based on single-mode fiber ring laser is put forward. The Mach-Zehnder interferometric (MZI) detection technique is presented for interrogating laser frequency shift due to the measurand (piezoelectric transducer (PZT) is used to simulate the micro-vibration) induced laser cavity strain from both single- and multi-mode lasers. In the experiment, compared with multi-mode laser sensors, the single-mode laser sensor is proved to be a sensor with high resolution. When the PZT is driven by the analog signal (0.03 rad near 2 kHz), the signal-to-noise ratio (SNR) of output signal from the single-mode laser sensor is close to 55 dB and the sensitivity of the sensor is about 5 x 10-5 rad/Hz1/2.

  2. Dual wavelength erbium-doped fiber laser with a lateral pressure-tuned Hi-Bi fiber Bragg grating

    Institute of Scientific and Technical Information of China (English)

    Lingyun Xiong(熊凌云); Guiyun Kai(开桂云); Lei Sun(孙磊); Xinhuan Feng(冯新焕); Chunxian Xiao(肖纯贤); Yange Liu(刘艳格); Shuzhong Yuan(袁树忠); Xiaoyi Dong(董孝义)

    2004-01-01

    Tunable dual wavelength erbium-doped fiber laser (EDFL) with stable oscillation at room temperature is proposed and demonstrated. This laser utilizes a Bragg grating fabricated in a high birefringence fiber as the wavelength-selective component, and then achieves the stable dual wavelength oscillation by introducing the polarization hole burning effect. Furthermore, by applying lateral strain upon the fiber Bragg grating (FBG), the space of the laser dual wavelengths can be tuned continuously.

  3. Hot bending with a fiber coupled solid state laser

    Science.gov (United States)

    Bammer, F.; Schumi, T.; Schuöcker, D.

    2010-09-01

    For bending of brittle materials it is necessary to heat up the forming zone. This can be done with a fiber coupled solid state laser, whose beam is evenly distributed on the bending line with a beam splitter installed in the lower tool (die) of a bending press. With polarization optics the laser beam is divided there into partial beams that are evenly distributed on the bending line with lenses and prisms. A setup for a bending length of 200mm heated by a fiber-coupled 3kW Nd:YAG-laser shows the feasibility of the concept. Successful operation was shown for the Mg-alloy AZ31, which breaks during forming at room temperature, but can be well formed at temperatures in the range of 200-300°C. Other materials benefiting from this method are Ti-alloys, high-strength-Al-alloys, and high-strength-steels. Typical heating times are in the range of up to 5s and much of the heat input is generated during the bending operation where the laser continues to work. Laser Assisted Bending with a fiber coupled solid state laser is a straightforward way to perform the bending of brittle materials in a process as simple as cold bending.

  4. Thulium fiber laser damage to Nitinol stone baskets

    Science.gov (United States)

    Wilson, Christopher R.; Hardy, Luke A.; Irby, Pierce B.; Fried, Nathaniel M.

    2015-02-01

    Our laboratory is studying the experimental Thulium fiber laser (TFL) as an alternative lithotripter to clinical gold standard Holmium:YAG laser. Safety studies characterizing undesirable Holmium laser-induced damage to Nitinol stone baskets have been previously reported. Similarly, this study characterizes TFL induced stone basket damage. A TFL beam with pulse energy of 35 mJ, pulse duration of 500 μs, and pulse rates of 50-500 Hz was delivered through 100-μm-core optical fibers, to a standard 1.9-Fr Nitinol stone basket wire. Stone basket damage was graded as a function of pulse rate, number of pulses, and working distance. Nitinol wire damage decreased with working distance and was non-existent at distances greater than 1.0 mm. In contact mode, 500 pulses delivered at pulse rates >= 200 Hz (Nitinol wires. The Thulium fiber laser, operated in low pulse energy and high pulse rate mode, may provide a greater safety margin than standard Holmium laser for lithotripsy, as evidenced by shorter non-contact working distances for stone basket damage than previously reported with Holmium laser.

  5. Experimental investigation on fiber laser cutting of aluminium thin sheets

    Science.gov (United States)

    Scintilla, Leonardo Daniele

    2014-02-01

    The most extensively used lasers for aluminum and its alloys cutting, are CO2 and Nd:YAG operating in continuous wave and pulsed mode. High power solid state fiber lasers operating in continuous wave mode offer a great potential in improving the cut quality and productivity of highly reflective materials cutting process due to the better absorptivity of 1 μm laser radiation. The high processing speeds of CW mode and a good cut quality could be achieved at the same time. In this work, cutting experiments were performed on Al1050 1mm thick sheets using a fiber laser and Nitrogen as assist gas. A DOE approach that consists of fitting the regression models by means of response surface method (RSM) was adopted. The effects of cutting speed, focal position and assist gas pressure on dross height, kerf width and roughness parameters were investigated. Results showed that processing in CW with fiber laser increases the cutting speed and gives a cut quality comparable with results obtained with CO2 and Nd:YAG lasers and reported in literature.

  6. A novel diode laser system for photodynamic therapy

    DEFF Research Database (Denmark)

    Samsøe, E.; Andersen, P. E.; Petersen, P.;

    2001-01-01

    In this paper a novel diode laser system for photodynamic therapy is demonstrated. The system is based on linear spatial filtering and optical phase conjugate feedback from a photorefractive BaTiO3 crystal. The spatial coherence properties of the diode laser are significantly improved. The system...... is extracted in a high-quality beam and 80 percent of the output power is extracted through the fiber. The power transmitted through tile fiber scales linearly with the power of the laser diode. which means that a laser diode emitting 1.7 W multi-mode radiation would provide 1 W of optical power through a 50...

  7. Erbium-doped CW and Q-switched fiber ring laser with fiber grating Michelson interferometer

    Institute of Scientific and Technical Information of China (English)

    Anting Wang(王安廷); Meishu Xing(邢美术); Hai Ming(明海); Jianping Xie(谢建平); Lixin Xu(许立新); Wencai Huang(黄文财); Liang Lü(吕亮); Xiyao Chen(陈曦曜); Feng Li(李锋); Yunxia Wu(吴云霞)

    2003-01-01

    The band-pass characteristic of fiber grating Michelson interferometer is analyzed, which acts as both band-pass filter and Q-switch. An erbium-doped fiber ring laser based on fiber grating Michelson interferometer is implemented for producing single longitudinal mode CW operation with 5 MHz spectral linewidth and up to 6 mW output power. In Q-switched operation, stable fiber laser output pulses with repetition rate of 800 Hz, pulse width of 0.6μs, average power of 1.8 mW and peak power of 3.4 W are demonstrated. The peak power and average power of the Q-switched pulses are varied with the repetition rate.

  8. Erbium-doped CW and Q-switched fiber ring laser with fiber grating Michelson interferometer

    Science.gov (United States)

    Wang, Anting; Ming, Hai; Xie, Jianping; Xu, Lixin; Huang, Wencai; Lv, Liang; Chen, Xiyao; Li, Feng; Wu, Yunxia; Xing, Meishu

    2003-01-01

    The band-pass characteristic of fiber grating Michelson interferometer is analyzed, which acts as both band-pass filter and Q-switch. An erbium-doped fiber ring laser based on fiber grating Michelson interferometer is implemented for producing single longitudinal mode CW operation with 5 MHz spectral linewidth and up to 6 mW output power. In Q-switched operation, stable fiber laser output pulses with repetition rate of 800 Hz, pulse width of 0.6 ?s, average power of 1.8 mW and peak power of 3.4 W are demonstrated. The peak power and average power of the Q-switched pulses are varied with the repetitionrate.

  9. Stable and high-performance multiwavelength erbium-doped fiber laser based on fiber delay interferometer

    Institute of Scientific and Technical Information of China (English)

    Shuang LIU; Junqiang SUN; Ping SHUM

    2009-01-01

    In this paper, we proposed a novel scheme to realize the multiwavelength erbium-doped fiber lasers. By adding a length of dispersion shifted fiber (DSF) in the ring cavity, we can suppress the cavity mode competition resulting from homogeneous line broadening (HLB) effect. In addition, a comb filter based on fiber delay inter-ferometer (DI) is used for frequency selecting. To enhance the extinction ratio while maintaining the free space range (FSR), the proposed isolator-assisted double-pass DI is utilized into the laser cavity, and a stable 7-wavelength simultaneous lasing spaced at 21.5GHz is accordingly achieved with an extinction ratio of higher than 40 dB. The lasers are stable with a maximum power fluctuation per channel of less than 0.6 dB during an hour test.

  10. Design of high-capacity fiber-optic transport systems

    Science.gov (United States)

    Liao, Zhi Ming

    2001-08-01

    We study the design of fiber-optic transport systems and the behavior of fiber amplifiers/lasers with the aim of achieving higher capacities with larger amplifier spacing. Solitons are natural candidates for transmitting short pulses for high-capacity fiber-optic networks because of its innate ability to use two of fiber's main defects, fiber dispersion and fiber nonlinearity to balance each other. In order for solitons to retain its dynamic nature, amplifiers must be placed periodically to restore powers to compensate for fiber loss. Variational analysis is used to study the long-term stability of a periodical- amplifier system. A new regime of operation is identified which allows the use of a much longer amplifier spacing. If optical fibers are the blood vessels of an optical communication system, then the optical amplifier based on erbium-doped fiber is the heart. Optical communication systems can avoid the use of costly electrical regenerators to maintain system performance by being able to optically amplify the weakened signals. The length of amplifier spacing is largely determined by the gain excursion experienced by the solitons. We propose, model, and demonstrate a distributed erbium-doped fiber amplifier which can drastically reduce the amount of gain excursion experienced by the solitons, therefore allowing a much longer amplifier spacing and superior stability. Dispersion management techniques have become extremely valuable tools in the design of fiber-optic communication systems. We have studied in depth the advantage of different arnplification schemes (lumped and distributed) for various dispersion compensation techniques. We measure the system performance through the Q factor to evaluate the added advantage of effective noise figure and smaller gain excursion. An erbium-doped fiber laser has been constructed and characterized in an effort to develop a test bed to study transmission systems. The presence of mode-partition noise in an erbium

  11. Fiber-distributed feedback lasers for high-speed wavelength-division multiplexed networks

    DEFF Research Database (Denmark)

    Sejka, Milan; Hübner, Jörg; Varming, Poul

    1996-01-01

    Summary form only given. In conclusion, we have demonstrated that fiber DFB lasers constitute an excellent alternative to commercially available semiconductor DFB lasers. We have also shown that two fiber DFB lasers can be spliced together without any BER power penalty. Therefore, we suggest the ...... the possibility of using a single pump source for pumping a WDM laser array consisting of a number of fiber lasers spliced in series....

  12. High power wavelength-defined all-fiber Yb3+-doped double clad fiber laser

    Institute of Scientific and Technical Information of China (English)

    Hongxin Su(苏红新); Kecheng Lü(吕可诚); Peiguang Yan(闫培光); Yigang Li(李乙钢); Xiaoyi Dong(董孝义)

    2003-01-01

    An all-fiber Yb3+-doped double-clad fiber laser using FBGs as cavity mirrors is investigated in this paper.Continuous-wave (CW) output power of 1.18 W with defined wavelength at 1.06 μm and narrow line-widthof less than 0.1 nm is obtained. The slope efficiency and the maximum optical-to-optical efficiency of laseroutput are 68% and 51%, respectively, with respect to absorbed pump power.

  13. Fiber ring laser for axial micro-strain measurement by employing few-mode concentric ring core fiber

    Science.gov (United States)

    Liu, Jingxuan; Liang, Xiao; Sun, Chunran; Jian, Shuisheng

    2017-01-01

    We proposed and demonstrated a novel few-mode concentric-ring core fiber (FM-CRCF) for axial micro-strain measurement with fiber ring laser based on few-mode-singlemode-few-mode fiber structure. The core area of CRCF consists of four concentric rings which refractive indices are 1.448, 1.441, 1.450, 1.441, respectively. LP01 and LP11 are two dominated propagating mode groups contributing in the CRCF. In this few-mode-singlemode-few-mode structure, two sections of CRCF act as the mode generator and coupler, respectively. The basis of sensing is the center single mode fiber. Moreover, this structure can be used as an optical band-pass filter. By using fiber ring cavity laser, the axial micro-strain sensing system has high intensity (∼20 dB), high optical signal to noise ratio (∼45 dB) and narrow 3 dB bandwidth (∼0.1 nm). In the axial micro-strain range from 0 to 1467 με , the lasing peak wavelength shifts from 1561.05 nm to 1559.9 nm with the experimentally sensitivity of ∼ 0.81pm / με .

  14. High-efficiency Q-switched erbium fiber laser using a Bragg grating-based modulator

    Science.gov (United States)

    Russo, N. A.; Duchowicz, R.; Mora, J.; Cruz, J. L.; Andrés, M. V.

    2002-09-01

    In this work we analyze the behavior of an erbium-doped fiber laser which is based on a simple scheme. Excitation of the active medium is performed in the 980 nm pump band with a CW semiconductor laser source. Two fiber Bragg gratings acting as mirrors of the Fabry-Perot laser cavity were used. One of these gratings was mounted over a piezoelectric (PZT) element. By applying voltage pulses to the piezoelectric, the laser cavity was temporally modulated and Q-switched laser pulses up to 530 mW peak powers at 3 kHz were obtained. Typical laser emission of 2-3 μs temporal widths and 0.1 nm of optical bandwidth have been achieved when the system was operated at 18.5 kHz repetition rates. Different behaviors were observed depending on the pumping level of the active medium and on the amplitude and frequency of the signal applied on the PZT. Q-switched laser output, in the erbium spectral gain region, with high laser efficiency of energy conversion was generated. Pumping at 76 mW and operating the laser at 18.5 kHz, an efficiency of 26% was obtained.

  15. The influence of probe fiber distance on laser Doppler perfusion monitoring measurements

    NARCIS (Netherlands)

    Morales, F; Graaff, R; Smit, AJ; Gush, R; Rakhorst, G

    2003-01-01

    Laser Doppler perfusion monitoring (LDPM) is a noninvasive technique for monitoring skin microcirculation. The aim of this article was to investigate the influence of fiber separation on clinical LDPM measurements. A dual-channel LDPM system was used in combination with a probe that consists of two

  16. Dynamic properties of a pulse-pumped fiber laser with a short, high-gain cavity

    Science.gov (United States)

    Yang, Chaolin; Guo, Junhong; Wei, Pu; Wan, Hongdan; Xu, Ji; Wang, Jin

    2016-09-01

    We demonstrate a pulsed high-gain all-fiber laser without intracavity modulators, where a short and heavily Erbium-doped fiber is used as the gain medium in a ring cavity. By pulsed-pumping this short high gain cavity and tuning an intracavity variable optical coupler, the laser generates optical pulses with a pulse-width of μs at a repetition rate in the order of kHz down to one-shot operation. Furthermore, dynamic properties of this laser are investigated theoretically based on a traveling-wave-model, in which an adaptive-discrete-grid-finite-difference-method is applied. The simulation results validate the experimental results. The demonstrated pulsed laser is compact, flexible and cost-effective, which will have great potential for applications in all-optical sensing and communication systems.

  17. CO2 laser-fabricated cladding light strippers for high-power fiber lasers and amplifiers.

    Science.gov (United States)

    Boyd, Keiron; Simakov, Nikita; Hemming, Alexander; Daniel, Jae; Swain, Robert; Mies, Eric; Rees, Simon; Andrew Clarkson, W; Haub, John

    2016-04-10

    We present and characterize a simple CO2 laser processing technique for the fabrication of compact all-glass optical fiber cladding light strippers. We investigate the cladding light loss as a function of radiation angle of incidence and demonstrate devices in a 400 μm diameter fiber with cladding losses of greater than 20 dB for a 7 cm device length. The core losses are also measured giving a loss of cladding light stripping of a 300 W laser diode with minimal heating of the fiber coating and packaging adhesives.

  18. Multi-parameter sensor based on random fiber lasers

    Directory of Open Access Journals (Sweden)

    Yanping Xu

    2016-09-01

    Full Text Available We demonstrate a concept of utilizing random fiber lasers to achieve multi-parameter sensing. The proposed random fiber ring laser consists of an erbium-doped fiber as the gain medium and a random fiber grating as the feedback. The random feedback is effectively realized by a large number of reflections from around 50000 femtosecond laser induced refractive index modulation regions over a 10cm standard single mode fiber. Numerous polarization-dependent spectral filters are formed and superimposed to provide multiple lasing lines with high signal-to-noise ratio up to 40dB, which gives an access for a high-fidelity multi-parameter sensing scheme. The number of sensing parameters can be controlled by the number of the lasing lines via input polarizations and wavelength shifts of each peak can be explored for the simultaneous multi-parameter sensing with one sensing probe. In addition, the random grating induced coupling between core and cladding modes can be potentially used for liquid medical sample sensing in medical diagnostics, biology and remote sensing in hostile environments.

  19. Endoluminal non-contact soft tissue ablation using fiber-based Er:YAG laser delivery

    Science.gov (United States)

    Kundrat, Dennis; Fuchs, Alexander; Schoob, Andreas; Kahrs, Lüder A.; Ortmaier, Tobias

    2016-03-01

    The introduction of Er:YAG lasers for soft and hard tissue ablation has proven promising results over the last decades due to strong absorption at 2.94 μm wavelength by water molecules. An extension to endoluminal applications demands laser delivery without mirror arms due to dimensional constraints. Therefore, fiber-based solutions are advanced to provide exible access while keeping space requirements to a minimum. Conventional fiber-based treatments aim at laser-tissue interactions in contact mode. However, this procedure is associated with disadvantages such as advancing decrease in power delivery due to particle coverage of the fiber tip, tissue carbonization, and obstructed observation of the ablation progress. The objective of this work is to overcome aforementioned limitations with a customized fiber-based module for non-contact robot-assisted endoluminal surgery and its associated experimental evaluation. Up to the authors knowledge, this approach has not been presented in the context of laser surgery at 2.94 μm wavelength. The preliminary system design is composed of a 3D Er:YAG laser processing unit enabling automatic laser to fiber coupling, a GeO2 solid core fiber, and a customized module combining collimation and focusing unit (focal length of 20 mm, outer diameter of 8 mm). The performance is evaluated with studies on tissue substitutes (agar-agar) as well as porcine samples that are analysed by optical coherence tomography measurements. Cuts (depths up to 3mm) with minimal carbonization have been achieved under adequate moistening and sample movement (1.5mms-1). Furthermore, an early cadaver study is presented. Future work aims at module miniaturization and integration into an endoluminal robot for scanning and focus adaptation.

  20. Development of pulse laser processing for mounting fiber Bragg grating

    Energy Technology Data Exchange (ETDEWEB)

    Nishimura, Aikihko; Shimada, Yukihiro; Yonemoto, Yukihiro; Suzuki, Hirokazu; Ishibashi, Hisayoshi [Quantum Beam Science Directorate, Japan Atomic Energy Agency, 8-1-7 Umebidai Kidugawa Kyoto 619-0215 (Japan); Applied Laser Technology Institute, Tsuruga Head Office, Japan Atomic Energy Agency, 65-20 Kizaki Tsuruga Fukui 914-8585 (Japan); Technical Research and Development Institute, Kumagai Gumi Co., Ltd., 2-1 Tsukudo, Shinjuku Tokyo 162-8557 (Japan)

    2012-07-11

    Pulse laser processing has been developed for the application of industrial plants in monitoring and maintenance. Surface cleaning by nano-second laser ablation was demonstrated for decontamination of oxide layers of Cr contained steel. Direct writing by femtosecond processing induced a Bragg grating in optical fiber to make it a seismic sensor for structural health monitoring. Adhesive cement was used to fix the seismic sensor on the surface of reactor coolant pipe material. Pulse laser processing and its related technologies were presented to overcome the severe accidents of nuclear power plants.

  1. Development of pulse laser processing for mounting fiber Bragg grating

    Science.gov (United States)

    Nishimura, Aikihko; Shimada, Yukihiro; Yonemoto, Yukihiro; Suzuki, Hirokazu; Ishibashi, Hisayoshi

    2012-07-01

    Pulse laser processing has been developed for the application of industrial plants in monitoring and maintenance. Surface cleaning by nano-second laser ablation was demonstrated for decontamination of oxide layers of Cr contained steel. Direct writing by femtosecond processing induced a Bragg grating in optical fiber to make it a seismic sensor for structural health monitoring. Adhesive cement was used to fix the seismic sensor on the surface of reactor coolant pipe material. Pulse laser processing and its related technologies were presented to overcome the severe accidents of nuclear power plants.

  2. Control of basins of attraction in a multistable fiber laser

    Energy Technology Data Exchange (ETDEWEB)

    Pisarchik, A.N., E-mail: apisarch@cio.m [Centro de Investigaciones en Optica, Loma del Bosque 115, Lomas del Campestre, Leon 37150, Guanajuato (Mexico); Jaimes-Reategui, R. [Universidad de Guadalajara, Centro Universitario de los Lagos, Enrique Diaz de Leon s/n, Paseo de las Montanas, Lagos de Moreno, Jalisco (Mexico)

    2009-12-28

    We study how the basins of attraction of coexisting states can be controlled by either harmonic modulation or small noise applied to the pump parameter in a multistable erbium-doped fiber laser. The results of numerical simulations using the three-level laser model display good agreement with previously reported experimental studies on attractor annihilation by periodic modulation. In the laser with stochastic modulation, the attraction basins' volumes have a noise-dependent probabilistic character displaying some resonances for each of the coexisting attractors.

  3. Control of basins of attraction in a multistable fiber laser

    Science.gov (United States)

    Pisarchik, A. N.; Jaimes-Reategui, R.

    2009-12-01

    We study how the basins of attraction of coexisting states can be controlled by either harmonic modulation or small noise applied to the pump parameter in a multistable erbium-doped fiber laser. The results of numerical simulations using the three-level laser model display good agreement with previously reported experimental studies on attractor annihilation by periodic modulation. In the laser with stochastic modulation, the attraction basins' volumes have a noise-dependent probabilistic character displaying some resonances for each of the coexisting attractors.

  4. Graphene mode locked, wavelength-tunable, dissipative soliton fiber laser

    CERN Document Server

    Zhang, Han; Knize, R J; Zhao, Luming; Bao, Qiaoliang; Loh, Kian Ping

    2010-01-01

    Atomic layer graphene possesses wavelength-insensitive ultrafast saturable absorption, which can be exploited as a full-band mode locker. Taking advantage of the wide band saturable absorption of the graphene, we demonstrate experimentally that wide range (1570 nm - 1600nm) continuous wavelength tunable dissipative solitons could be formed in an erbium doped fiber laser mode locked with few layer graphene.

  5. Coherent combining in an Yb doped double core fiber laser

    CERN Document Server

    Boullet, Johan; Desfarges-Berthelemot, Agnès; Kermène, Vincent; Pagnoux, Dominique; Roy, Philippe; Dussardier, Bernard; Blanc, Wilfried; 10.1364/OL.30.001962

    2012-01-01

    Coherent combining is demonstrated in a clad pumped Yb doped double core fiber laser. A slope efficiency of more than 70 % is achieved with 96 % of the total output power on the fundamental mode of one of the two cores. This high combining efficiency is obtained when both cores are coupled via a biconical fused taper in a Michelson interferometer configuration.

  6. All-fiber broad-range self-sweeping Yb-doped fiber laser

    Science.gov (United States)

    Lobach, Ivan A.; Kablukov, Sergey A.; Podivilov, Evgeniy V.; Babin, Sergey A.

    2012-02-01

    The effect of broad-range self-sweeping in Yb-doped fiber laser has been demonstrated experimentally for the first time. The self-sweeping effect is observed in an all-fiber laser configuration with a double-clad Yb-doped fiber and a cavity formed by a broad-band fiber loop mirror and Fresnel reflection from one cleaved end. The sweep range is limited by the width of the broad-band reflector and reaches up to 16nm. It is found that the self-sweeping effect is related to selfpulsations. So the sweep rate is increased with an increase in pump power and is decreased with increasing cavity length. RF and optical spectra (linewidth is measured to be not more than 100 MHz) show that during the evolution of a single pulse a small number of longitudinal modes take a part in lasing. Based on these results we propose a model describing dynamics of the laser frequency. The model is based on the spatial hole burning effect and the gain saturation in Yb laser transition, and takes into account self-pulsations of the laser. Theoretical estimation for pulse to pulse change of lasing frequency is in good agreement with experimental data.

  7. A novel fiber-laser-based fiber Bragg grating strain sensor with high-birefringence Sagnac fiber loop mirror

    Institute of Scientific and Technical Information of China (English)

    Ou Xu; Shaohua Lu; Suchun Feng; Shuisheng Jian

    2008-01-01

    A novel fiber-laser-based strain sensor is proposed and experimentally demonstrated. The laser cavity is composed of a high-birefringence Sagnac fiber loop mirror (HiBi-SFLM) and a fiher Bragg grating (FBG) which also acts as a strain-sensing element. In the linear region of the HiBi-SFI,M reflection spectrum, when the strain applied on the FBG makes the Bragg grating wavelength shift,, the laser output power changes due to reflectivity variation of the HiBi-SFLM. Experimental results show that the laser output power varies ahnost linearly with the applied strain. The measurement of the output power can be performed by a conventional photo-detector.

  8. Ultra-long fiber Raman lasers: design considerations

    Science.gov (United States)

    Koltchanov, I.; Kroushkov, D. I.; Richter, A.

    2015-03-01

    In frame of the European Marie Currie project GRIFFON [http://astonishgriffon.net/] the usage of a green approach in terms of reduced power consumption and maintenance costs is envisioned for long-span fiber networks. This shall be accomplished by coherent transmission in unrepeatered links (100 km - 350 km) utilizing ultra-long Raman fiber laser (URFL)-based distributed amplification, multi-level modulation formats, and adapted Digital Signal Processing (DSP) algorithms. The URFL uses a cascaded 2-order pumping scheme where two (co- and counter-) ˜ 1365 nm pumps illuminate the fiber. The URFL oscillates at ˜ 1450 nm whereas amplification is provided by stimulated Raman scattering (SRS) of the ˜ 1365 nm pumps and the optical feedback is realized by two Fiber Bragg gratings (FBGs) at the fiber ends reflecting at 1450 nm. The light field at 1450 nm provides amplification for signal waves in the 1550 nm range due to SRS. In this work we present URFL design studies intended to characterize and optimize the power and noise characteristics of the fiber links. We use a bidirectional fiber model describing propagation of the signal, pump and noise powers along the fiber length. From the numerical solution we evaluate the on/off Raman gain and its bandwidth, the signal excursion over the fiber length, OSNR spectra, and the accumulated nonlinearities. To achieve best performance for these characteristics the laser design is optimized with respect to the forward/backward pump powers and wavelengths, input/output signal powers, reflectivity profile of the FBGs and other parameters.

  9. Hybrid CATV/MMW/BB lightwave transmission system based on fiber-wired/fiber-wireless/fiber-VLLC integrations.

    Science.gov (United States)

    Li, Chung-Yi; Lu, Hai-Han; Lu, Ting-Chieh; Chu, Chien-An; Chen, Bo-Rui; Lin, Chun-Yu; Peng, Peng-Chun

    2015-12-14

    A hybrid lightwave transmission system for cable television (CATV)/millimeter-wave (MMW)/baseband (BB) signal transmission based on fiber-wired/fiber-wireless/fiber-visible laser light communication (VLLC) integrations is proposed and demonstrated. For down-link transmission, the light is intensity-modulated with 50-550 MHz CATV signal and optically promoted from 25 GHz radio frequency (RF) signal to 10 Gbps/50 GHz and 20 Gbps/100 GHz MMW data signals based on fiber-wired and fiber-wireless integrations. Good performances of carrier-to-noise ratio (CNR), composite second-order (CSO), composite triple-beat (CTB), and bit error rate (BER) are obtained over a 40-km single-mode fiber (SMF) and a 10-m RF wireless transport. For up-link transmission, the light is successfully intensity-remodulated with 5-Gbps BB data stream based on fiber-VLLC integration. Good BER performance is achieved over a 40-km SMF and a 10-m free-space VLLC transport. Such a hybrid CATV/MMW/BB lightwave transmission system is an attractive alternative, it gives the benefits of a communication link for broader bandwidth and higher transmission rate.

  10. Transmission characteristics of high-power 589-nm laser beam in photonic crystal fiber

    Science.gov (United States)

    Ito, Meguru; Hayano, Yutaka; Saito, Norihito; Akagawa, Kazuyuki; Kato, Mayumi; Saito, Yoshihiko; Takazawa, Akira; Takami, Hideki; Iye, Masanori; Wada, Satoshi; Colley, Stephen A.; Dinkins, Matthew C.; Eldred, Michael; Golota, Taras I.; Guyon, Olivier; Hattori, Masayuki; Oya, Shin; Watanabe, Makoto

    2006-06-01

    We are developing Laser Guide Star Adaptive Optics (LGSAO) system for Subaru Telescope at Hawaii, Mauna Kea. We achieved an all-solid-state 589.159 nm laser in sum-frequency generation. Output power at 589.159 nm reached 4W in quasi-continuous-wave operation. To relay the laser beam from laser location to laser launching telescope, we used an optical fiber because the optical fiber relay is more flexible and easier than mirror train. However, nonlinear scattering effect, especially stimulated Raman scattering (SRS) and stimulated Brillouin scattering (SBS), will happen when the inputted laser power increases, i.e., intensity at the fiber core exceed each threshold. In order to raise the threshold levels of each nonlinear scattering, we adopt photonic crystal fiber (PCF). Because the PCF can be made larger core than usual step index fiber (SIF), one can reduce the intensity in the core. We inputted the high power laser into the PCF whose mode field diameter (MFD) is 14 μm and the SIF whose MFD is 5 μm, and measured the transmission characteristics of them. In the case of the SIF, the SRS was happen when we inputted 2 W. On the other hand, the SRS and the SBS were not induced in the PCF even for an input power of 4 W. We also investigated polarization of the laser beam transmitting through the PCF. Because of the fact that the backscattering efficiency of exciting the sodium layer with a narrowband laser is dependent on the polarization state of the incident beam, we tried to control the polarization of the laser beam transmitted the PCF. We constructed the system which can control the polarization of input laser and measure the output polarization. The PCF showed to be able to assume as a double refraction optical device, and we found that the output polarization is controllable by injecting beam with appropriate polarization through the PCF. However, the Laser Guide Star made by the beam passed through the PCF had same brightness as the state of the polarization.

  11. Development of Miniaturized Difference Frequency Generation, Fiber Optic, and Quantum Cascade Laser Systems in Conjunction With Integrated Electronics for Global Studies of Atmospheric Tracers Using UAVs.

    Science.gov (United States)

    Witinski, M. F.; Lapson, L. B.; Anderson, J. G.

    2007-12-01

    In order to harness the power of UAVs (Unmanned Aerial Vehicles) for in situ atmospheric monitoring of tracers such as CO2, N2O, CH4, and H2O, we have developed small, lightweight, single mode laser systems with co- developed integrated electronics. The laser sources are of various types including newly developed cavity- enhanced difference frequency generation (CE DFG), distributed feedback quantum cascade lasers (DFB QCLs), and new types of commercially available DFB diode lasers. All are continuous wave (cw) and thermo-electrically cooled, ensuring a high instrument duty cycle in a compact, low maintenance package. The light sources are collimated with miniature aspherical lenses and coupled into a home-built astigmatic Herriott cell for detection of the various targets using direct absorption. In parallel with the optical components, we have developed integrated electrical systems for laser control, data processing, and acquisition. A prototype instrument suite is described that illustrates the importance of parallel development of optical and electrical components in achieving an apparatus that is compact, fully automated, and highly capable scientifically. Although the emphasis here is on atmospheric tracers, this technology could be applied to spectroscopic measurements of other atmospheric species such as isotopes, free radicals, and reactive intermediates.

  12. Short Tm3+-doped fiber lasers with watt-level output near 2 μm

    Institute of Scientific and Technical Information of China (English)

    Yulong Tang; Yong Yang; Xiaojin Cheng; Jianqiu Xu

    2008-01-01

    High-power operation of diode-pumped fiber lasers at wavelength near 2μm are demonstrated with short length of heavily Tm3+-doped silica glass fibers. With 7-cm long fiber, a laser at near 2 μm is obtained with the threshold of 135 mW, maximum output power of 1.09 W, and slope efficiency of 9.6% with respect to the launched power from a laser diode at 790 nm. The output stability of this fiber laser is within 5%.The dependence of the performance of fiber lasers on the operation temperature and cavity configuration parameters is also investigated.

  13. Single-frequency, single-polarization ytterbium-doped fiber laser by self-injection locking

    Institute of Scientific and Technical Information of China (English)

    Anting Wang(王安廷); Hai Ming(明海); Feng Li(李锋); Lixin Xu(许立新); Liang Lü(吕亮); Huaqiao Gui(桂华侨); Jing Huang(黄晶); Jianping Xie(谢建平)

    2004-01-01

    We demonstrated a stable single-frequency, single-polarization operation of ytterbium-doped fiber laser. As a novel practical method to realize single-polarization operation of fiber distributed Bragg reflector (DBR)laser, we proposed self-injection locking (SIL) with an active fiber ring feedback cavity. The laser has high output power exceeding 15 mW, wavelength of 1053.20 nm, and side-mode suppression ratio greater than 60 dB. The SIL fiber laser shows the improvements in output power and side-mode suppression compared with the fiber DBR laser. No mode-hopping is observed within 2 hours.

  14. Distributed feedback imprinted electrospun fiber lasers.

    Science.gov (United States)

    Persano, Luana; Camposeo, Andrea; Del Carro, Pompilio; Fasano, Vito; Moffa, Maria; Manco, Rita; D'Agostino, Stefania; Pisignano, Dario

    2014-10-01

    Imprinted, distributed feedback lasers are demonstrated on individual, active electrospun polymer nanofibers. In addition to advantages related to miniaturization, optical confinement and grating nanopatterning lead to a significant threshold reduction compared to conventional thin-film lasers. The possibility of imprinting arbitrary photonic crystal geometries on electrospun lasing nanofibers opens new opportunities for realizing optical circuits and chips. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Tungsten diselenide Q-switched erbium-doped fiber laser

    Science.gov (United States)

    Chen, Bohua; Zhang, Xiaoyan; Guo, Chaoshi; Wu, Kan; Chen, Jianping; Wang, Jun

    2016-08-01

    We report a tungsten diselenide (WSe2) polyvinyl alcohol (PVA)-based, saturable absorber and related experiment results of a Q-switched fiber laser. WSe2-PVA film is synthesized by liquid phase exfoliation method, and its saturable absorption is measured via a nonlinear transmission experiment. The result shows that WSe2-PVA saturable absorber has a modulation depth of 3.5%, which means it has potential for generating an ultrafast pulse laser. We apply this absorber into a ring-cavity erbium-doped fiber laser and obtain Q-switched pulses under appropriate pump power. Our work demonstrates the reliable nonlinear optical characteristics of WSe2 and the feasibility for this two-dimensional material to be applied in the field of nonlinear optics.

  16. Mid-infrared supercontinuum laser system and its biomedical applications

    Science.gov (United States)

    Xia, Chenan

    A mid-infrared supercontinuum (SC) laser system is developed, which provides a continuous spectrum from ˜0.8 to ˜4.5 microm and is pumped by amplified nanosecond laser diode pulses. The SC laser uses ZBLAN (ZrF4-BaF2-LaF3-AlF3-NaF) fluoride fibers. The SC light source is all-fiber-integrated with no moving parts, operates at room temperature, and eliminates the need of mode-locked lasers. The time-averaged power of the SC is scalable up to 10.5 W by amplifying the pump pulses using cladding-pumped erbium/ytterbium co-doped fiber power amplifiers. SC has also been generated in silica fibers with spectrum extending to ˜3 microm and an average power up to 5.3 W. The SC laser system comprises an all-fiber-spliced high power pump laser system followed by nonlinear optical generation fibers, i.e. ZBLAN and silica fibers. The SC generation is initiated by breaking up the nanosecond diode pulses into femtosecond pulses through modulation instability, and the spectrum is then broadened through the interplay of self-phase modulation, parametric four-wave mixing, and stimulated Raman scattering. Theoretical simulations have been carried out to study the SC generation mechanism by numerically solving the generalized nonlinear Schrodinger equation. The SC long wavelength edge is limited by the intrinsic fiber material absorption, i.e. ˜3 microm in silica fibers and ˜4.5 microm in ZBLAN fibers, respectively. Mid-infrared absorption spectroscopy of the constituents of normal artery, e.g. endothelial cells and smooth muscle cells, and atherosclerotic plaques, e.g. adipose tissue, macrophages and foam cells, and selective ablation of lipid-rich tissues have also been demonstrated using the SC laser system.

  17. Dynamics of ultra-long Brillouin fiber laser

    Science.gov (United States)

    Fotiadi, Andrei A.; Lobach, Ivan; Mégret, Patrice

    2013-02-01

    We report on experimental studies of random lasing realized in optical fibers with the use of Brillouin amplification and Rayleigh backscattering employed as a distributed feedback instead of a cavity mirror. In our experiment 25-km-long high quality standard telecom single-mode fiber was employed for Rayleigh reflection uniformly distributed over all fiber length. We have observed a clear competition between a classical Brillouin scattering and Brillouin lasing. Presence of extended fluctuation-free fragments in the recorded oscilloscope traces highlights Stokes power statistics typical for laser radiation rather than for Brillouin process. The results of the experiments are in a perfect agreement with the model of Brillouin - Rayleigh cooperative process in long fibers.

  18. High-power ultralong-wavelength Tm-doped silica fiber laser cladding-pumped with a random distributed feedback fiber laser

    Science.gov (United States)

    Jin, Xiaoxi; Du, Xueyuan; Wang, Xiong; Zhou, Pu; Zhang, Hanwei; Wang, Xiaolin; Liu, Zejin

    2016-07-01

    We demonstrated a high-power ultralong-wavelength Tm-doped silica fiber laser operating at 2153 nm with the output power exceeding 18 W and the slope efficiency of 25.5%. A random distributed feedback fiber laser with the center wavelength of 1173 nm was employed as pump source of Tm-doped fiber laser for the first time. No amplified spontaneous emissions or parasitic oscillations were observed when the maximum output power reached, which indicates that employing 1173 nm random distributed feedback fiber laser as pump laser is a feasible and promising scheme to achieve high-power emission of long-wavelength Tm-doped fiber laser. The output power of this Tm-doped fiber laser could be further improved by optimizing the length of active fiber, reflectivity of FBGs, increasing optical efficiency of pump laser and using better temperature management. We also compared the operation of 2153 nm Tm-doped fiber lasers pumped with 793 nm laser diodes, and the maximum output powers were limited to ~2 W by strong amplified spontaneous emission and parasitic oscillation in the range of 1900-2000 nm.

  19. Single Brillouin frequency shifted S-band multi-wavelength Brillouin-Raman fiber laser utilizing fiber Bragg grating and Raman amplifier in ring cavity

    Science.gov (United States)

    Reshak, A. H.; Hambali, N. A. M. Ahmad; Shahimin, M. M.; Wahid, M. H. A.; Anwar, Nur Elina; Alahmed, Zeyad A.; Chyský, J.

    2016-10-01

    This paper is focusing on simulation and analyzing of S-band multi-wavelength Brillouin-Raman fiber laser performance utilizing fiber Bragg grating and Raman amplifier in ring cavity. Raman amplifier-average power model is employed for signal amplification. This laser system is operates in S-band wavelength region due to vast demanding on transmitting the information. Multi-wavelength fiber lasers based on hybrid Brillouin-Raman gain configuration supported by Raman scattering effect have attracted significant research interest due to its ability to produced multi-wavelength signals from a single light source. In multi-wavelength Brillouin-Raman fiber, single mode fiber is utilized as the nonlinear gain medium. From output results, 90% output coupling ratio has ability to provide the maximum average output power of 43 dBm at Brillouin pump power of 20 dBm and Raman pump power of 14 dBm. Furthermore, multi-wavelength Brillouin-Raman fiber laser utilizing fiber Bragg grating and Raman amplifier is capable of generated 7 Brillouin Stokes signals at 1480 nm, 1510 nm and 1530 nm.

  20. Characterization of novel microsphere chain fiber optic tips for potential use in ophthalmic laser surgery

    Science.gov (United States)

    Hutchens, Thomas C.; Darafsheh, Arash; Fardad, Amir; Antoszyk, Andrew N.; Ying, Howard S.; Astratov, Vasily N.; Fried, Nathaniel M.

    2012-06-01

    Ophthalmic surgery may benefit from use of more precise fiber delivery systems during laser surgery. Some current ophthalmic surgical techniques rely on tedious mechanical dissection of tissue layers. In this study, chains of sapphire microspheres integrated into a hollow waveguide distal tip are used for erbium:YAG laser ablation studies in contact mode with ophthalmic tissues, ex vivo. The laser's short optical penetration depth combined with the small spot diameters achieved with this fiber probe may provide more precise tissue removal. One-, three-, and five-microsphere chain structures were characterized, resulting in FWHM diameters of 67, 32, and 30 μm in air, respectively, with beam profiles comparable to simulations. Single Er:YAG pulses of 0.1 mJ and 75-μs duration produced ablation craters with average diameters of 44, 30, and 17 μm and depths of 26, 10, and 8 μm, for one-, three-, and five-sphere structures, respectively. Microsphere chains produced spatial filtering of the multimode Er:YAG laser beam and fiber, providing spot diameters not otherwise available with conventional fiber systems. Because of the extremely shallow treatment depth, compact focused beam, and contact mode operation, this probe may have potential for use in dissecting epiretinal membranes and other ophthalmic tissues without damaging adjacent retinal tissue.

  1. Characterization of novel microsphere chain fiber optic tips for potential use in ophthalmic laser surgery.

    Science.gov (United States)

    Hutchens, Thomas C; Darafsheh, Arash; Fardad, Amir; Antoszyk, Andrew N; Ying, Howard S; Astratov, Vasily N; Fried, Nathaniel M

    2012-06-01

    Ophthalmic surgery may benefit from use of more precise fiber delivery systems during laser surgery. Some current ophthalmic surgical techniques rely on tedious mechanical dissection of tissue layers. In this study, chains of sapphire microspheres integrated into a hollow waveguide distal tip are used for erbium:YAG laser ablation studies in contact mode with ophthalmic tissues, ex vivo. The laser's short optical penetration depth combined with the small spot diameters achieved with this fiber probe may provide more precise tissue removal. One-, three-, and five-microsphere chain structures were characterized, resulting in FWHM diameters of 67, 32, and 30 μm in air, respectively, with beam profiles comparable to simulations. Single Er:YAG pulses of 0.1 mJ and 75-μs duration produced ablation craters with average diameters of 44, 30, and 17 μm and depths of 26, 10, and 8 μm, for one-, three-, and five-sphere structures, respectively. Microsphere chains produced spatial filtering of the multimode Er:YAG laser beam and fiber, providing spot diameters not otherwise available with conventional fiber systems. Because of the extremely shallow treatment depth, compact focused beam, and contact mode operation, this probe may have potential for use in dissecting epiretinal membranes and other ophthalmic tissues without damaging adjacent retinal tissue.

  2. High Performance Large Mode-Area Ytterbium-doped Photonic Crystal Fiber for Fiber Lasers

    Energy Technology Data Exchange (ETDEWEB)

    Chen Wei; Lu Peixiang [Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074 (China); Li Shiyu; Wang Dongxiang, E-mail: chenwei@fiberhome.com.cn [State Key Laboratory of Optical Communication Technologies and Networks, Fiberhome Telecommunication Technologies Co. Ltd, 430074 (China)

    2011-02-01

    In this letter, large-mode-area double-cladding ytterbium-doped photonic crystal fiber was designed in theory and fabricated in practice. This fiber we have fabricated successfully has endless single mode operation performance and large inner-cladding numerical aperture of more than 0.75. The struts width between large air-holes in the outer-cladding is about 0.22 {mu}m. The photonic crystal fiber has a mode-area about 1465.7{mu}m{sup 2}. Due to the material being pure silica and air, such structures have excellent capacity to with-stand high temperature. The laser light can have very good beam quality, even diffraction-limited beam quality because of the single-mode core. This fabrication technical breakthrough of novelty high performance double-cladding ytterbium-doped photonic crystal fibers will give contributions to the high power fiber lasers and promote the progress of technology in the fields of high power lasers.

  3. Q-Switched Thulium-Doped Domestic Silica Fiber Laser

    Institute of Scientific and Technical Information of China (English)

    HU Hui; DU Ge-Guo; YAN Pei-Guang; ZHAO Jun-Qing; GUO Chun-Yu; RUAN Shuang-Chen

    2011-01-01

    We report a cladding-pumped Tm3+-doped domestic silica fiber laser operated at 2μm and actively Q-switched with an acousto-optic modulator. Pulse trains are obtained as pumped by a 785nm laser diode. The maximum average output power is 1.27 W. Peak power up to 4.2 kW and pulse energy up to 840 μJ are obtained with the pulse duration of 200ns produced at a repetition rate of 1 kHz. The laser performance is studied under different repetition rates and pump powers. Lastly, we give some discussion.%@@ We report a cladding-pumped Tm3+-doped domestic silica fiber laser operated at 2pm and actively Q-switched with an acousto-optic modulator.Pulse trains are obtained as pumped by a 785nm laser diode.The maximum average output power is 1.27W.Peak power up to 4.2kW and pulse energy up to 840μJ are obtained with the pulse duration of 200ns produced at a repetition rate of 1 kHz.The laser performance is studied under different repetition rates and pump powers.Lastly, we give some discussion.

  4. Experimental investigations on fiber laser color marking of steels

    Energy Technology Data Exchange (ETDEWEB)

    Amara, E.H., E-mail: amara@cdta.dz; Haïd, F.; Noukaz, A.

    2015-10-01

    Highlights: • We develop an experimental approach with the aim to bring a contribution to the comprehension of the occurring phenomena during laser color marking of steels. • We have used a home-made marking device composed of a pulsed fiber laser and galvanometric mirrors. • Both commercial and elaborated in laboratory steels have been used as samples. • The experiments have been performed for different laser beam operating parameters, under normal atmospheric conditions. • The treated samples were analyzed either by optical and scanning electronic microscopy, as well as by energy dispersion spectroscopy. - Abstract: We develop an experimental approach with the aim to bring a contribution to the comprehension of the occurring phenomena during laser color marking of steels. A home-made marking device using a pulsed fiber laser has been used to treat steel samples under different laser beam operating parameters, for different compositions of the processed steel, and at normal atmospheric conditions. The treated samples were analyzed either by optical and scanning electronic microscopy, as well as by energy dispersion spectroscopy. The results show the influence of the operating parameters on the obtained colors.

  5. Fiber-optic communication systems

    CERN Document Server

    Agrawal, Govind P

    2010-01-01

    This book provides a comprehensive account of fiber-optic communication systems. The 3rd edition of this book is used worldwide as a textbook in many universities. This 4th edition incorporates recent advances that have occurred, in particular two new chapters. One deals with the advanced modulation formats (such as DPSK, QPSK, and QAM) that are increasingly being used for improving spectral efficiency of WDM lightwave systems. The second chapter focuses on new techniques such as all-optical regeneration that are under development and likely to be used in future communication systems. All othe

  6. Multiwavelength erbium-doped fiber laser based on an all-fiber polarization interference filter

    Science.gov (United States)

    Wang, Hushan; Yan, Zhijun; Zhou, Kaiming; Song, Jiazheng; Feng, Ye; Wang, Yishan

    2017-04-01

    We demonstrated a compact stable room-temperature multiwavelength erbium doped fiber laser by employing a 45° tilted fiber gratings (TFGs) based all-fiber polarization interference filter. Benefiting from the filter, the channel number, the linewidth, the uniformity and stabilization of the multiwavelength laser were greatly improved. The filter also worked as a polarizing functional device in nonlinear polarization rotation leading to multiwavelength operation. More than 60 wavelengths (within 3dB bandwidth) lasing with a linewidth of 0.03nm and a signal-to-noise ratio of 31dB were obtained. The wavelength spacing was 0.164nm agreeing with the value of the filter and it can be flexibly controlled by adjusting the length of the filter.

  7. 575 nm laser oscillation in Dy3+-doped waterproof fluoro-aluminate glass fiber pumped by violet GaN laser diodes

    Science.gov (United States)

    Fujimoto, Yasushi; Ishii, Osamu; Yamazaki, Masaaki

    2011-02-01

    We successfully drew a low-loss Dy-doped optical fiber (0.3dB/m at 532nm) of a waterproof fluoro-aluminate glass system and demonstrated yellow laser oscillation in the Dy3+-doped fluoride fiber pumped by a 398.8-nm GaN laser diode. The maximum output power was 10.3 mW and the slope efficiency was 17.1% at 575 nm. Since the fluoro-aluminate- glass system has a remarkable water resistance advantage compared to ZBLAN glass, Dy-doped fluoro-aluminate glass fiber is expected to contribute to making a solid-state yellow fiber laser with high chemical durability without a frequency doubling technique.

  8. Numerical Modeling of 3.5 micron Dual-Wavelength Pumped Erbium Doped Mid-Infrared Fiber Lasers

    CERN Document Server

    Malouf, Andrew; Gorjan, Martin; Ottaway, David J

    2016-01-01

    The performance of mid-infrared erbium doped fiber lasers has dramatically improved in the last few years. In this paper we present a numerical model that provides valuable insight into the dynamics of a dual-wavelength pumped fiber laser that can operate on the 3.5 micron and 2.8 micron bands. This model is a much needed tool for optimizing and understanding the performance of these laser systems. Comparisons between simulation and experimental results for three different systems are presented.

  9. Numerical Modeling of 3.5 micron Dual-Wavelength Pumped Erbium Doped Mid-Infrared Fiber Lasers

    OpenAIRE

    Malouf, Andrew; Henderson-Sapir, Ori; Gorjan, Martin; Ottaway, David J.

    2016-01-01

    The performance of mid-infrared erbium doped fiber lasers has dramatically improved in the last few years. In this paper we present a numerical model that provides valuable insight into the dynamics of a dual-wavelength pumped fiber laser that can operate on the 3.5 micron and 2.8 micron bands. This model is a much needed tool for optimizing and understanding the performance of these laser systems. Comparisons between simulation and experimental results for three different systems are presented.

  10. LASER ABLATION OF MONOCRYSTALLINE SILICON UNDER PULSED-FREQUENCY FIBER LASER

    Directory of Open Access Journals (Sweden)

    V. P. Veiko

    2015-05-01

    Full Text Available Subject of research. The paper deals with research of the surface ablation for single-crystal silicon wafers and properties of materials obtained in response to silicon ablation while scanning beam radiation of pulse fiber ytterbium laser with a wavelenght λ = 1062 nm in view of variation of radiation power and scanning modes. Method. Wafers of commercial p-type conductivity silicon doped with boron (111, n-type conductivity silicon doped with phosphorus (100 have been under research with a layer of intrinsical silicon oxide having the thickness equal to several 10 s of nanometers and SiO2 layer thickness from 120 to 300 nm grown by thermal oxidation method. The learning system comprises pulse fiber ytterbium laser with a wavelenght λ = 1062 nm. The laser rated-power output is equal to 20 W, pulse length is 100 ns. Pulses frequency is in the range from 20 kHz to 100 kHz. Rated energy in the pulse is equal to 1.0 mJ. Scanning has been carried out by means of two axial scanning device driven by VM2500+ and controlled by personal computer with «SinMarkТМ» software package. Scanning velocity is in the range from 10 mm/s to 4000 mm/s, the covering varies from 100 lines per mm to 3000 lines per mm. Control of samples has been carried out by means of Axio Imager A1m optical microscope Carl Zeiss production with a high definition digital video camera. All experiments have been carried out in the mode of focused laser beam with a radiation spot diameter at the substrate equal to 50 μm. The change of temperature and its distribution along the surface have been evaluated by FLIR IR imager of SC7000 series. Main results. It is shown that ablation occurs without silicon melting and with plasma torch origination. The particles of ejected silicon take part in formation of silicon ions plasma and atmosphere gases supporting the plasmo-chemical growth of SiO2. The range of beam scanning modes is determined where the growth of SiO2 layer is observed

  11. Laser emission from a solar-pumped fiber.

    Science.gov (United States)

    Mizuno, Shintaro; Ito, Hiroshi; Hasegawa, Kazuo; Suzuki, Takenobu; Ohishi, Yasutake

    2012-03-12

    We report the realization of a solar-pumped fiber laser (SPFL) using a double-clad (a center core/ an inner clad working also as optical waveguide/ an outer clad) Nd-doped fluoride optical fiber as a laser medium. With a compact off-axis parabolic mirror of 5 cm in aperture diameter, the natural sunlight is concentrated by a factor 10⁴, and introduced partly into the core of the fiber and partly into the inner clad in which the light is guided in some distance and transferred to the core after all. We have obtained clear laser spectrum characteristics with approximately 0.01 nm full-width-half-maximum of the laser line at the peak wavelength of 1053.7 nm, a low-lasing threshold of 49.1 mW, a slope efficiency of 6.6%, and a total efficiency of 1.76%. Further optimization of the medium properties, optical cavity, and concentration technique will yield higher efficiency and lower threshold.

  12. Stimulated Brillouin Scattering Suppression in Fiber Amplifiers via Chirped Diode Lasers

    Science.gov (United States)

    2011-09-01

    1.55-µm diode laser at 1014 Hz/s using a phase-locked loop and a fiber -optic Michelson interferometer (9). The chirp has now been extended to 5×1015...diode lasers. By incorporating a fiber interferometer , the technique has been extended to chirp a (single) laser diode at 1015 Hz/s in an extremely...Stimulated Brillouin Scattering Suppression in Fiber Amplifiers via Chirped Diode Lasers by Jeffrey O. White, George Rakuljic, and Carl E

  13. Coherent beam combination of adaptive fiber laser array with tilt-tip and phase-locking control

    Institute of Scientific and Technical Information of China (English)

    Wang Xiong; Wang Xiao-Lin; Zhou Pu; Su Rong-Tao; Geng Chao; Li Xin-Yang; Xu Xiao-Jun

    2013-01-01

    We present an experimental study on tilt-tip (TT) and phase-locking (PL) control in a coherent beam combination (CBC) system of adaptive fiber laser array.The TT control is performed using the adaptive fiber-optics collimator (AFOC),and the PL control is realized by the phase modulator (PM).Cascaded and simultaneous controls of TT and PL using stochastic parallel gradient descent (SPGD) algorithm are investigated in this paper.Two-fiber-laser-,four-fiber-laser-,and six-fiber-laser-arrays are employed to study the TT and PL control.In the cascaded control system,only one high-speed CMOS camera is used to collect beam data and a computer is used as the controller.In a simultaneous control system one high-speed CMOS camera and one photonic detector (PD) are employed,and a computer and a control circuit based on field programmable gate array (FPGA) are used as the controllers.Experimental results reveal that both cascaded and simultaneous controls of TT using AFOC and PL using PM in fiber laser array are feasible and effective.Cascaded control is more effective in static control situation and simultaneous control can be applied to the dynamic control system directly.The control signals of simultaneous PL and TT disturb each other obviously and TT and PL control may compete with each other,so the control effect is limited.

  14. Multi-core fiber undersea transmission systems

    DEFF Research Database (Denmark)

    Nooruzzaman, Md; Morioka, Toshio

    2017-01-01

    Various potential architectures of branching units for multi-core fiber undersea transmission systems are presented. It is also investigated how different architectures of branching unit influence the number of fibers and those of inline components.......Various potential architectures of branching units for multi-core fiber undersea transmission systems are presented. It is also investigated how different architectures of branching unit influence the number of fibers and those of inline components....

  15. High pressure fiber optic sensor system

    Science.gov (United States)

    Guida, Renato; Xia, Hua; Lee, Boon K; Dekate, Sachin N

    2013-11-26

    The present application provides a fiber optic sensor system. The fiber optic sensor system may include a small diameter bellows, a large diameter bellows, and a fiber optic pressure sensor attached to the small diameter bellows. Contraction of the large diameter bellows under an applied pressure may cause the small diameter bellows to expand such that the fiber optic pressure sensor may measure the applied pressure.

  16. Field Determination Of Ground Water Contamination Using Laser Fluorescence And Fiber Optics

    Science.gov (United States)

    Chudyk, Wayne; Pohlig, Kenneth; Wolf, Lisa; Fordiani, Rita

    1990-02-01

    Experience at over sixteen sites containing over one hundred wells has shown the feasibility of using fiber optic systems for in situ measurement of aromatic ground water contaminants. Aromatic solvents, as well as the benzene, ethylbenzene, toluene, and xylenes (BTEX) fraction of gasoline, have been detected using a prototype field instrument. Well depths have varied from 5 m to 30 m, and limits of detection at 10 m have been in the ppb range. We are routinely using two separate clear tefzel-coated optical fibers bound in a black teflon tubing for in situ sensing of aromatic organic ground water contaminants via laser-induced fluorescence. One fiber, the excitation fiber, carries the 266 nm, 15 nanosecond, laser pulse down to the sensor. The other fiber, used for detection, carries collected fluorescence plus scattered laser light back up to the surface to the detector. Optical crosstalk has been observed to occur along the entire length of the sensor tubing. This may be due to fiber fluorescence. The fiber crosstalk is eliminated by use of a 320 nm cutoff filter in the detector optics. Black tefzel-coated fibers are also commercially available which could eliminate this potential problem. Evaluation of fluorescence emission versus concentration using serial dilution of standards shows that fluorescence lifetimes are important when evaluating different concentrations as well as in evaluation of mixtures. Minimization of signal-to-noise ratios in the detector electronics involves tuning the gate width used in measuring the fluorescent pulse, in order to include the full fluorescent signal returning from the contaminants. Field tests of the modular prototype instrument have been successful in their demonstration of the feasibility of this new technology. Results at a variety of types of sites are presented, showing the flexibility of the modular approach used in the design and operation of this new instrument.

  17. Direct observation of Kramers-Kronig self-phasing in coherently combined fiber lasers.

    Science.gov (United States)

    Chiang, Hung-Sheng; Leger, James R; Nilsson, Johan; Sahu, Jayanta

    2013-10-15

    A highly stable coherent beam-combining system has been designed to measure self-phasing in fiber lasers due to nonlinear effects. Whereas self-phasing in previous coherent combination experiments has been principally attributed to wavelength shifting, these wavelength effects have been efficiently suppressed in our experiment by using a dual-core fiber with closely balanced optical path lengths. The self-phasing from nonlinear effects could then be measured independently and directly by common-path interferometry with a probe laser. The Kramers-Kronig effect in the fiber gain media was observed to induce a phase shift that effectively canceled the applied path length errors, resulting in efficient lasing under all phase conditions. This process was demonstrated to result in robust lasing over a large range of pump conditions.

  18. High-Power ZBLAN Glass Fiber Lasers: Review and Prospect

    OpenAIRE

    Xiushan Zhu; Peyghambarian, N.

    2010-01-01

    ZBLAN (ZrF4-BaF2-LaF3-AlF3-NaF), considered as the most stable heavy metal fluoride glass and the excellent host for rare-earth ions, has been extensively used for efficient and compact ultraviolet, visible, and infrared fiber lasers due to its low intrinsic loss, wide transparency window, and small phonon energy. In this paper, the historical progress and the properties of fluoride glasses and the fabrication of ZBLAN fibers are briefly described. Advances of infrared, upconversion, and supe...

  19. Ultra-fast laser system

    Science.gov (United States)

    Dantus, Marcos; Lozovoy, Vadim V

    2014-01-21

    A laser system is provided which selectively excites Raman active vibrations in molecules. In another aspect of the present invention, the system includes a laser, pulse shaper and detection device. A further aspect of the present invention employs a femtosecond laser and binary pulse shaping (BPS). Still another aspect of the present invention uses a laser beam pulse, a pulse shaper and remote sensing.

  20. Femtosecond laser inscription of asymmetric directional couplers for in-fiber optical taps and fiber cladding photonics.

    Science.gov (United States)

    Grenier, Jason R; Fernandes, Luís A; Herman, Peter R

    2015-06-29

    Precise alignment of femtosecond laser tracks in standard single mode optical fiber is shown to enable controllable optical tapping of the fiber core waveguide light with fiber cladding photonic circuits. Asymmetric directional couplers are presented with tunable coupling ratios up to 62% and bandwidths up to 300 nm at telecommunication wavelengths. Real-time fiber monitoring during laser writing permitted a means of controlling the coupler length to compensate for micron-scale alignment errors and to facilitate tailored design of coupling ratio, spectral bandwidth and polarization properties. Laser induced waveguide birefringence was harnessed for polarization dependent coupling that led to the formation of in-fiber polarization-selective taps with 32 dB extinction ratio. This technology enables the interconnection of light propagating in pre-existing waveguides with laser-formed devices, thereby opening a new practical direction for the three-dimensional integration of optical devices in the cladding of optical fibers and planar lightwave circuits.

  1. Fiber optic and laser sensors X; Proceedings of the Meeting, Boston, MA, Sept. 8-11, 1992

    Science.gov (United States)

    Udd, Eric (Editor); Depaula, Ramon P. (Editor)

    1993-01-01

    Topics addressed include acoustic and pressure sensors; fiber optic gyros; electric and magnetic field sensors; bend, strain, and temperature sensors; industrial applications of sensors; and processing techniques. Particular attention is given to fiber optic interferometric acoustic sensors for wind tunnel applications, polished coupler and resonator fabrication, second-harmonic detection for rotation sensing in fiber optic gyros, simplified control theory in closed-loop fiber optic gyroscopes, and a Fabry-Perot sensor with digital signal processing for the measurement of magnetostriction. Also discussed are a Bragg fiber laser sensor, commercialization of fiber optic strain gauge systems, thermal ignition in hazardous environments due to stray light from optical fibers, a system for absolute measurements by interferometric sensors, and high-performance interferometric demodulation techniques.

  2. Fiber optic and laser sensors X; Proceedings of the Meeting, Boston, MA, Sept. 8-11, 1992

    Science.gov (United States)

    Udd, Eric (Editor); Depaula, Ramon P. (Editor)

    1993-01-01

    Topics addressed include acoustic and pressure sensors; fiber optic gyros; electric and magnetic field sensors; bend, strain, and temperature sensors; industrial applications of sensors; and processing techniques. Particular attention is given to fiber optic interferometric acoustic sensors for wind tunnel applications, polished coupler and resonator fabrication, second-harmonic detection for rotation sensing in fiber optic gyros, simplified control theory in closed-loop fiber optic gyroscopes, and a Fabry-Perot sensor with digital signal processing for the measurement of magnetostriction. Also discussed are a Bragg fiber laser sensor, commercialization of fiber optic strain gauge systems, thermal ignition in hazardous environments due to stray light from optical fibers, a system for absolute measurements by interferometric sensors, and high-performance interferometric demodulation techniques.

  3. Sub-100 fs mode-locked erbium-doped fiber laser using a 45°-tilted fiber grating.

    Science.gov (United States)

    Zhang, Zuxing; Mou, Chengbo; Yan, Zhijun; Zhou, Kaiming; Zhang, Lin; Turitsyn, Sergei

    2013-11-18

    We demonstrate generation of sub-100 fs pulses at 1.5 µm in a mode-locked erbium-doped fiber laser using a 45°-tilted fiber grating element. The laser features a genuine all-fiber configuration. Based on the unique polarization properties of the 45°-tilted fiber grating, we managed to produce sub-100 fs laser pulses through proper dispersion management. To the best of our knowledge, this is the shortest pulse generated from mode-locked lasers with fiber gratings. The output pulse has an average power of 8 mW, with a repetition rate of 47.8 MHz and pulse energy of 1.68 nJ. The performance of laser also matches well the theoretical simulations.

  4. 一种便携式大气激光通信系统设计与实现%Research on atmosphere laser communication system based on fiber technology

    Institute of Scientific and Technical Information of China (English)

    曾文锋; 李东; 李申鹏; 谭威; 易志刚

    2012-01-01

    设计了一种以光纤技术为核心的大气激光通信系统,采用半导体激光器和PIN接收管收发合一的以太网端机和视、音频端机,并分别用光纤与光学天线连接,实现了端机与光学天线之间的软性连接,结合EDFA光纤放大技术实现对1550 nm半导体激光器的功率放大,使结构稳定可靠,安装调试方便,适于野外环境使用,通信距离可达2 km,传输带宽100 MBit/s,样机试验证明通信效果良好.%A kind of atmosphere laser communication system with fiber technology as its core is designed. Ethernet terminal and video-audio terminal with transceiver composed of semiconductor laser and PIN are used. They are connected to the optical antenna with fiber,so the flexible connection between terminal machine and optical antenna is realized. By EDFA technology,the power of the 1550 nm semiconductor laser is amplified. The scheme and structure of the system make it to be more steady and reliable and the installation is more convenient. It is suitable for field application. A prototype's communication distance reaches 2 kilometers and the transmission bandwidth is 100 Mbit/s. Experiments prove that the performance of the system is quite good.

  5. Spectral selectivity in optical fiber capillary dye lasers.

    Science.gov (United States)

    Mobini, Esmaeil; Abaie, Behnam; Peysokhan, Mostafa; Mafi, Arash

    2017-05-01

    We explore the spectral properties of a capillary dye laser in the highly multimode regime. Our experiments indicate that the spectral behavior of the laser does not conform to a simple Fabry-Perot (FP) analysis; rather, it is strongly dictated by a Vernier resonant mechanism involving multiple modes, which propagate with different group velocities. The laser operates over a very broad spectral range and the Vernier effect gives rise to a free spectral range, which is orders of magnitude larger than that expected from a simple FP mechanism. The theoretical calculations presented confirm the experimental results. Propagating modes of the capillary fiber are calculated using the finite-element method and it is shown that the optical path lengths resulting from simultaneous beatings of these modes are in close agreement with the optical path lengths directly extracted from the Fourier transform of the experimentally measured laser emission spectra.

  6. Narrow linewidth Yb-doped double-cladding fiber laser utilizing fiber Bragg gratings inscribed by femtosecond pulses

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Zhinan; Shi Jiawei; Zhang Jihuang; Wang Haiyan; Li Yuhua; Lu Peixiang, E-mail: oeyhli@gmail.com, E-mail: lupeixiang@mail.hust.edu.cn [Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074 (China)

    2011-02-01

    A narrow-linewidth high power laser in all fiber format at 1064 nm is demonstrated. The resonant cavity is composed of two distributed Bragg reflector (DBR) fiber gratings, which were inscribed into the core of the double-cladding fiber by use of 800 nm femtosecond laser pulses and a phase mask. The spectrum of the laser exhibited a narrow linewidth of 21 pm at the output power of 0.8 W. The wavelength and power of the laser featured long term stability.

  7. Comparison of photosensitivity in germanium doped silica fibers using 244 nm and 266 nm continuous wave lasers

    DEFF Research Database (Denmark)

    Jensen, Jesper Bo; Varming, Poul; Liu, B.;

    2001-01-01

    Diode pumped continuous-wave UV lasers offer an interesting alternative to frequency doubled argon-ion lasers. We report the first photosensitivity comparison using these lasers on deuterium loaded standard telecommunication fibers and unloaded experimental fibers....

  8. High-Power Continuous-Wave Directly-Diode-Pumped Fiber Raman Lasers

    Directory of Open Access Journals (Sweden)

    Tianfu Yao

    2015-11-01

    Full Text Available We describe novel fiber Raman lasers pumped directly by spectrally combined high power multimode laser diodes at 975 nm and emitting at 1019 nm. With a commercial multimode graded-index fiber, we reached 20 W of laser output power with a record slope efficiency of 80%. With an in-house double-clad fiber, the beam quality improved to M2 = 1.9, albeit with lower output power and slope efficiency due to higher fiber loss. We believe this is the first publication of a fiber Raman laser cladding-pumped directly by diodes.

  9. Comparative Study of Remote Fiber Laser and Water-Jet Guided Laser Cutting of Thin Metal Sheets

    Science.gov (United States)

    Hock, Klaus; Adelmann, Benedikt; Hellmann, Ralf

    This article presents a comparison between remote laser cutting with a fiber laser and water-jet guided laser cutting using a 532 nm solid state laser. Complex contours are processed in stainless steel and brass sheets (thickness ≤ 100 μm), respectively. Results for achievable quality and productivity as well as possible applications for both systems are shown and discussed. We sustained dross free cuts with almost no heat affected zone and small kerf width for the water-jet guided process, whereas small dross, notable heat affected zone and varying kerf width where observed for remote cutting. However, process times for the water-jet guided process where considerably higher than those for remote cutting.

  10. Terahertz generation and detection using femtosecond mode-locked Yb-doped fiber laser

    Science.gov (United States)

    Kong, Moon Sik; Kim, Ji Su; Han, Sang-Pil; Kim, Namje; Moon, Ki Won; Park, Kyung Hyun; Jeon, Min Yong

    2016-02-01

    We successfully demonstrate a THz generation using an ytterbium (Yb)-doped mode-locked femtosecond fiber laser and a home-made low-temperature grown (LTG) InGaAs Photoconductive antenna (PCA) module for THz Time-domain spectroscopy (TDS) systems. The Yb-doped fiber ring laser consists of a pump laser diode (PLD), a wavelength division multiplexer (WDM) coupler, a single-mode fiber (SMF), a 25 cm-long highly Yb-doped fiber, two collimators, two quarter wave plates (QWPs), a half-wave plate (HWP), a 10 nm broadband band pass filter, an isolator, and a polarizing beam splitter (PBS). In order to achieve the passively mode-locked optical short pulse, the nonlinear polarization rotation (NPR) effect is used. The achieved center wavelength and the 3 dB bandwidth of the modelocked fiber laser are 1.03 μm and ~ 15.6 nm, respectively. It has 175 fs duration after pulse compression with 66.2 MHz repetition rate. The average output power of mode-locked laser has more than 275 mW. The LTG-InGaAs PCA modules are used as the emitter and receiver in order to achieve the THz radiation. The PCA modules comprise a hyper-hemispherical Si lens and a log-spiral antenna-integrated LTG-InGaAs PCA chip electronically contacted on a printed circuit board (PCB). An excitation optical average pumping and probing power were ~ 6.3 mW and 5 mW, respectively. The free-space distance between the emitter and the receiver in the THz-TDS system was 70 mm. The spectrum of the THz radiation is achieved higher than 1.5 THz.

  11. 160 W high-power, high-efficiency, near-diffraction-limited beam quality all-fiber picosecond pulse laser

    Science.gov (United States)

    Sun, Chang; Ge, Tingwu; An, Na; Cao, Kang; Wang, Zhiyong

    2016-10-01

    We experimentally demonstrate a high-power, high-efficiency, near-diffraction-limited beam quality all-fiber picosecond pulse laser, which consists of a passively mode-locked seed laser and three-stage master power amplifiers. A repetition frequency multiplier and a high Yb-doped gain fiber with shorter length are utilized in the laser system to suppress the nonlinear effects and reduce the pulse broadening caused by dispersion. Moreover, the homemade light mode controllers based on a coiling and tapering fiber technique and the active fiber of the amplifier with a relatively small mode area are adopted to improve the beam quality. In addition, by experimentally adjusting the active fiber length, the optical conversion efficiency of the overall laser system can be optimized. Eventually, a 160 W high-power, high-efficiency, near-diffraction-limited picosecond pulse fiber laser is obtained, with the beam quality factor M2 at 1.12 and an optical conversion efficiency of the system of 75%.

  12. Doping management for high-power fiber lasers: 100 W, few-picosecond pulse generation from an all-fiber-integrated amplifier.

    Science.gov (United States)

    Elahi, P; Yılmaz, S; Akçaalan, O; Kalaycıoğlu, H; Oktem, B; Senel, C; Ilday, F Ö; Eken, K

    2012-08-01

    Thermal effects, which limit the average power, can be minimized by using low-doped, longer gain fibers, whereas the presence of nonlinear effects requires use of high-doped, shorter fibers to maximize the peak power. We propose the use of varying doping levels along the gain fiber to circumvent these opposing requirements. By analogy to dispersion management and nonlinearity management, we refer to this scheme as doping management. As a practical first implementation, we report on the development of a fiber laser-amplifier system, the last stage of which has a hybrid gain fiber composed of high-doped and low-doped Yb fibers. The amplifier generates 100 W at 100 MHz with pulse energy of 1 μJ. The seed source is a passively mode-locked fiber oscillator operating in the all-normal-dispersion regime. The amplifier comprises three stages, which are all-fiber-integrated, delivering 13 ps pulses at full power. By optionally placing a grating compressor after the first stage amplifier, chirp of the seed pulses can be controlled, which allows an extra degree of freedom in the interplay between dispersion and self-phase modulation. This way, the laser delivers 4.5 ps pulses with ~200 kW peak power directly from fiber, without using external pulse compression.

  13. Modulation characteristics of a DFB-laser with integrated spot-size converter for efficient laser fiber coupling

    Energy Technology Data Exchange (ETDEWEB)

    Zengerle, R.; Greus, C.; Burkhard, H.; Ries, R.; Janning, H.; Kuphal, E. [Deutsche Telekom AG, Technologiezentrum, Darmstadt (Germany); Huebner, B. [Univ. Wuerzburg (Germany). Technische Physik

    1996-12-31

    The RF-modulation emission characteristics of a MQW DFB laser monolithically integrated with a laterally tapered spot-size transformer on InGaAsP/InP were investigated and key results were presented. Despite the relatively simple design of the devices they are characterized by good high speed lasing properties with a direct modulation response exceeding 5 GHz. A simple low loss chip-fiber coupling arrangement with large optical alignment tolerances was demonstrated and is regarded as a particular advantage of these devices. Their experiments confirm the attractivity of this integration concept for low cost laser components in optical transmission systems.

  14. Optical system components for navigation grade fiber optic gyroscopes

    Science.gov (United States)

    Heimann, Marcus; Liesegang, Maximilian; Arndt-Staufenbiel, Norbert; Schröder, Henning; Lang, Klaus-Dieter

    2013-10-01

    Interferometric fiber optic gyroscopes belong to the class of inertial sensors. Due to their high accuracy they are used for absolute position and rotation measurement in manned/unmanned vehicles, e.g. submarines, ground vehicles, aircraft or satellites. The important system components are the light source, the electro optical phase modulator, the optical fiber coil and the photodetector. This paper is focused on approaches to realize a stable light source and fiber coil. Superluminescent diode and erbium doped fiber laser were studied to realize an accurate and stable light source. Therefor the influence of the polarization grade of the source and the effects due to back reflections to the source were studied. During operation thermal working conditions severely affect accuracy and stability of the optical fiber coil, which is the sensor element. Thermal gradients that are applied to the fiber coil have large negative effects on the achievable system accuracy of the optic gyroscope. Therefore a way of calculating and compensating the rotation rate error of a fiber coil due to thermal change is introduced. A simplified 3 dimensional FEM of a quadrupole wound fiber coil is used to determine the build-up of thermal fields in the polarization maintaining fiber due to outside heating sources. The rotation rate error due to these sources is then calculated and compared to measurement data. A simple regression model is used to compensate the rotation rate error with temperature measurement at the outside of the fiber coil. To realize a compact and robust optical package for some of the relevant optical system components an approach based on ion exchanged waveguides in thin glass was developed. This waveguides are used to realize 1x2 and 1x4 splitter with fiber coupling interface or direct photodiode coupling.

  15. 100  kHz Yb-fiber laser pumped 3  μm optical parametric amplifier for probing solid-state systems in the strong field regime.

    Science.gov (United States)

    Archipovaite, Giedre Marija; Petit, Stéphane; Delagnes, Jean-Christophe; Cormier, Eric

    2017-03-01

    We report on a laser source operating at 100 kHz repetition rate and delivering 8 μJ few-cycle mid-IR pulses at 3 μm. The system is based on optical parametric amplification pumped by a high repetition rate Yb-doped femtosecond fiber-chirped amplifier. This high-intensity ultrafast system is a promising tool for strong-field experiments (up to 50 GV/m and 186 T) in low ionization potential atomic and molecular systems, or solid-state physics with coincidence measurements. As a proof of principle, up to the sixth harmonic has been generated in a 1 mm zinc selenide sample.

  16. Development of high-brightness high-power fiber laser pump sources

    Science.gov (United States)

    Priest, J. A.; Faircloth, Brian O.; Swint, Reuel B.; Coleman, James J.; Forbes, David V.; Zediker, Mark S.

    2004-06-01

    High power fiber lasers have strong potential for use in both commercial and military applications. Improved wall plug efficiency over Nd:YAG and CO2 lasers combined with up to a 10-fold improvement in beam quality, make fiber lasers extremely attractive for industrial applications such as welding and cutting. In military applications, fiber lasers offer a simplified logistic train, a deep magazine limited only by electric power, and a compact footprint, allowing theater defense and self-protection of combat platforms with speed of light engagement and flexible response. Commercial viability of these systems, however, is limited by the availability of compact, cost effective, and reliable diode laser pump sources in the multi-kilowatt regime. The relatively low brightness of diode laser sources has complicated the task of building high power pumps at a reasonable cost. In response to this need, Nuvonyx, Inc. in conjunction with the University of Illinois at Urbana-Champaign, has been developing a new technology for producing high power, single lateral mode devices which do not suffer form the instabilities mentioned above. The waveguide consists of a narrow section, approximately 2 μm wide, which flares to approximately 12 μm wide at the output facet. The flaring of the waveguide increases the gain volume and reduces the optical power density at the facet allowing for higher output power capability. The index guide is defined using an epitaxial process which allows the confinement of the mode to be reduced as the width of the guide expands. Thus, the mode is confined in a single mode waveguide throughout the cavity maintaining stability of the mode to the emitting facet. In November 2002, Nuvonyx, Inc. was awarded a contract with the Air Force Research Lab, Kirtland AFB, Albuquerque, NM, to transition these devices to production quality for use in high-power fiber laser pumps. Partnered with Alfalight, Inc. and the University of Illinois, we have begun initial

  17. Power scaling of high efficiency 1.5micron cascaded Raman fiber lasers

    CERN Document Server

    Supradeepa, V R

    2013-01-01

    High power fiber lasers operating at the 1.5micron wavelength region have attractive features like eye-safety and atmospheric transparency, and cascaded Raman fiber lasers offer a convenient method to obtain high power sources at these wavelengths. A limitation to power scaling however has been the lower conversion efficiency of these lasers. We recently introduced a high efficiency architecture for high power cascaded Raman fiber lasers applicable for 1.5micron fiber lasers. Here we demonstrate further power scaling using this new architecture. Using numerical simulations we identify the ideal operating conditions for the new architecture. We demonstrate a high efficiency 1480nm cascaded Raman fiber laser with an output power of 301 W, comparable to record power levels achieved with rare-earth doped fiber lasers in the 1.5 micron wavelength region.

  18. 47-wavelength flat erbium-doped fiber ring laser with reduced operation power

    Institute of Scientific and Technical Information of China (English)

    Qing Wang; Yan Wang; Xiaoming Liu; Bingkun Zhou

    2005-01-01

    @@ A 47-wavelength flat erbium-doped fiber ring laser over whole C-band is experimentally achieved with only 21-dBm output power from erbium-doped fiber amplifier (EDFA). The spectrum flatness of the multiwavelength erbium-doped fiber laser (EDFL) is investigated.

  19. Core temperature in super-Gaussian pumped air-clad photonic crystal fiber lasers compared with double-clad fiber lasers

    Indian Academy of Sciences (India)

    P Elahi; H Nadgaran; F Kalantarifard

    2007-03-01

    In this paper we investigate the core temperature of air-clad photonic crystal fiber (PCF) lasers pumped by a super-Gaussian (SG) source of order four. The results are compared with conventional double-clad fiber (DCF) lasers pumped by the same super-Gaussian and by top-hat pump profiles.

  20. A switchable fiber laser based on an all-fiber Fabry-Perot filter

    Science.gov (United States)

    Lopez-Dieguez, Y.; Jauregui-Vázquez, D.; Estudillo-Ayala, J. M.; Herrera-Piad, L. A.; Rojas-Laguna, R.; Sierra-Hernandez, J. M.; Hernandez-Garcia, J. C.; Harush-Negari, A. B.

    2017-02-01

    In this experimental manuscript, a switchable Erbium-doped fiber ring laser based on an all-fiber Fabry-Perot filter was demonstrated. The filter is composed by several air micro-cavities formed into a section of a single-mode fiber splice joints with special hollow-core photonic crystal fiber. These micro-cavities are formed by air and silica, which produces several reflections generated at each silica-air-silica interfaces. Using this experimental setup we obtain a very high stable triple-laser emission at 1529.450nm, 1549.100nm and 1555.350nm with a linewidth of 0.2nm and a side-mode suppression ratio of 32dB, 37dB and 29dB respectively. These laser emission show a maximal peak power fluctuation around 0.4dB, 1.5dB and 2.6dB, with 0.025nm of wavelength oscillations. These results were observed after monitoring the laser cavity during an hour by recording the data each three minutes. By appropriately adjusting of transversal load applied over the Fabry-Perot filter between 0g and 550g, the ring laser cavity can be operated in double- wavelength, triple- wavelength, or quadruple- wavelength states. For this analysis, the all-fiber Fabry-Perot filter was set between a metal layer (below) and a thin glass layer (above) where transversal load was applied, here uniform load distribution over all the Fabry-Perot filter structure is achieved, as a result, the air intra-cavities that conform the filter are affected and the gain-losses profile is modified into the laser arrangement. The lasing emissions obtained in this work have a side-mode suppression ratio greater than 30dB. This ring laser cavity design offers a compact, simple and low-cost implementation and can be used in different applications where a very stable double, triple or quadruple laser lines are required.

  1. Flexible pulses from carbon nanotubes mode-locked fiber laser

    Science.gov (United States)

    Yang, Ling-Zhen; Yang, Yi; Wang, Juan-Fen

    2016-12-01

    We demonstrate a flexible erbium-doped pulsed fiber laser which achieves the wavelength and pulse width tuning by adjusting an intracavity filter. The intracavity filter is flexible to achieve any of the different wavelengths and bandwidths in the tuning range. The wavelength and width of pulse can be tuned in a range of ˜ 20 nm and from ˜ 0.8 ps to 87 ps, respectively. The flexible pulsed fiber laser can be accurately controlled, which is insensitive to environmental disturbance. Project supported by the National Natural Science Foundation of China (Grant No. 61575137) and the Program on Social Development by Department of Science and Technology of Shanxi Province, China (Grant No. 20140313023-3).

  2. Multi-meter fiber-delivery and pulse self-compression of milli-Joule femtosecond laser and fiber-aided laser-micromachining.

    Science.gov (United States)

    Debord, B; Alharbi, M; Vincetti, L; Husakou, A; Fourcade-Dutin, C; Hoenninger, C; Mottay, E; Gérôme, F; Benabid, F

    2014-05-01

    We report on damage-free fiber-guidance of milli-Joule energy-level and 600-femtosecond laser pulses into hypocycloid core-contour Kagome hollow-core photonic crystal fibers. Up to 10 meter-long fibers were used to successfully deliver Yb-laser pulses in robustly single-mode fashion. Different pulse propagation regimes were demonstrated by simply changing the fiber dispersion and gas. Self-compression to ~50 fs, and intensity-level nearing petawatt/cm(2) were achieved. Finally, free focusing-optics laser-micromachining was also demonstrated on different materials.

  3. Wavelength tunable stretched-pulse mode-locked all-fiber erbium ring laser with single polarization fiber.

    Science.gov (United States)

    Li, Shenping; Chen, Xin; Kuksenkov, Dmitri V; Koh, Joohyun; Li, Ming-Jun; Zenteno, Luis A; Nolan, Daniel A

    2006-06-26

    A wavelength tunable stretched-pulse mode-locked all-fiber ring laser using single polarization fiber (SPF) was demonstrated. In this laser, a segment of SPF was used simultaneously as a polarizer and a tunable filter in the laser cavity. Self-starting mode-locking with femtosecond output pulses was demonstrated. A wavelength tuning of ~20nm was achieved by bending the SPF with different radii.

  4. Frequency locking of an erbium-doped fiber ring laser to an external fiber Fabry-Perot resonator

    OpenAIRE

    Park, Namkyoo; Dawson, Jay W.; Vahala, Kerry J.

    1993-01-01

    An all-fiber, single-frequency, erbium-doped ring laser has been frequency locked to a resonance peak of an external fiber Fabry-Perot resonator by the Pound-Drever technique. In addition, feedback to the mode selection filter in the laser resonator eliminates occasional mode hopping completely, resulting in frequency-locked, stable, single-frequency operation of the laser for periods of several hours.

  5. Stable multi-wavelength erbium-doped fiber laser based on dispersion-shifted fiber and Sagnac loop filter

    Institute of Scientific and Technical Information of China (English)

    Ying Gao; Daru Chen; Shiming Gao

    2007-01-01

    @@ A multi-wavelength erbium-doped fiber laser (MEDFL) with simple line structure is experimentally demonstrated by using a Sagnac interferometer as a comb filter. It is shown that the multi-wavelength lasing is quite stable at room temperature due to the four-wave mixing (FWM) effect among different laser channels in the dispersion-shifted fiber cooperated in the laser cavity.

  6. Experimental Work With Photonic Band Gap Fiber: Building A Laser Electron Accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Lincoln, Melissa; Ischebeck, Rasmus; Nobel, Robert; Siemann, Robert; /SLAC

    2006-09-29

    In the laser acceleration project E-163 at the Stanford Linear Accelerator Center, work is being done toward building a traveling wave accelerator that uses as its accelerating structure a length of photonic band gap fiber. The small scale of the optical fiber allows radiation at optical wavelengths to be used to provide the necessary accelerating energy. Optical wavelength driving energy in a small structure yields higher accelerating fields. The existence of a speed-of-light accelerating mode in a photonic band gap fiber has been calculated previously [1]. This paper presents an overview of several of the experimental challenges posed in the development of the proposed photonic band gap fiber accelerator system.

  7. Laser autostereoscopic projection system

    Science.gov (United States)

    Wang, Yuchang; Huang, Junejei

    2013-09-01

    The current autostereoscopic projection system is accomplished by array projectors. It is easy to realize optically but has a drawback with size. Another type is to place the shutter on the screen. It saves the volume but reduces the efficiency depending on how many views are produced. The shutter in the lens aperture has the same efficiency problem, too. To overcome these problems, a full HD autostereoscopic projector based on the lens aperture switching type is proposed. It has RGB laser sources and can produce 16-views or even higher stereoscopic images. This system removes the shutter in the lens aperture by the opti-mechanism itself. The specific light on the lens aperture coming from the point on the DMD is reflected to different angles. The proper angle of light is generated in the object side by the relay and folding system. The UHP lamps or the LED rays are difficult to constrain in a relative small cone angle. For this reason, the laser is applied to the design. The very small etendue of the laser is good for this architecture. The rays are combined by dichroic filter from RGB laser sources then forming and expanding to the mirror. The mirror is synchronized with DMD by the DSP control system. The images of different views are generated by DMD and specific position of the mirror. By the double lenticular screen, the lens aperture is imaged to the observer's viewing zone and the 3D scene is created.

  8. Supermode analysis of the 18-core photonic crystal fiber laser

    Institute of Scientific and Technical Information of China (English)

    王远; 姚建铨; 郑一博; 温午麒; 陆颖; 王鹏

    2012-01-01

    The modal of 18-core photonic crystal fiber laser is discussed and calculated.And corresponding far-field distribution of the supermodes is given by Fresnel diffraction integral.For improving beam quality,the mode selection method based on the Talbot effect is introduced.The reflection coefficients are calculated,and the result shows that an in-phase supermode can be locked better at a large propagation distance.

  9. Erbium-doped fiber lasers as deep-sea hydrophones

    Energy Technology Data Exchange (ETDEWEB)

    Bagnoli, P.E. [Dipartimento di Ingegneria dell' Informazione University of Pisa, Via Diotisalvi, Pisa 56100 (Italy); Istituto Nazionale di Fisica Nucleare, Largo Pontecorvo 3, Pisa 56127 (Italy); Beverini, N. [Istituto Nazionale di Fisica Nucleare, Largo Pontecorvo 3, Pisa 56127 (Italy); Dipartimento di Fisica ' E.Fermi' University of Pisa, Largo Pontecorvo 3, 56127 (Italy); Bouhadef, B. [Istituto Nazionale di Fisica Nucleare, Largo Pontecorvo 3, Pisa 56127 (Italy); Dipartimento di Fisica ' E.Fermi' University of Pisa, Largo Pontecorvo 3, 56127 (Italy); Castorina, E. [Istituto Nazionale di Fisica Nucleare, Largo Pontecorvo 3, Pisa 56127 (Italy); Dipartimento di Fisica ' E.Fermi' University of Pisa, Largo Pontecorvo 3, 56127 (Italy); Falchini, E. [Istituto Nazionale di Fisica Nucleare, Largo Pontecorvo 3, Pisa 56127 (Italy); Dipartimento di Fisica ' E.Fermi' University of Pisa, Largo Pontecorvo 3, 56127 (Italy); Falciai, R. [Istituto di Fisica Applicata ' Nello Carrara' , IFAC-CNR, Florence (Italy); Flaminio, V. [Istituto Nazionale di Fisica Nucleare, Largo Pontecorvo 3, Pisa 56127 (Italy); Dipartimento di Fisica ' E.Fermi' University of Pisa, Largo Pontecorvo 3, 56127 (Italy); Maccioni, E. [Istituto Nazionale di Fisica Nucleare, Largo Pontecorvo 3, Pisa 56127 (Italy) and Dipartimento di Fisica ' E.Fermi' University of Pisa, Largo Pontecorvo 3, 56127 (Italy)]. E-mail: maccioni@df.unipi.it; Morganti, M. [Istituto Nazionale di Fisica Nucleare, Largo Pontecorvo 3, Pisa 56127 (Italy); Dipartimento di Fisica ' E.Fermi' University of Pisa, Largo Pontecorvo 3, 56127 (Italy); Sorrentino, F. [Dipartimento di Fisica ' E.Fermi' University of Pisa, Largo Pontecorvo 3, 56127 (Italy); Stefani, F. [Dipartimento di Ingegneria dell' Informazione University of Pisa, Via Diotisalvi, Pisa 56100 (Italy); Trono, C. [Dipartimento di Fisica ' E.Fermi' University of Pisa, Largo Pontecorvo 3, 56127 (Italy); Istituto di Fisica Applicata ' Nello Carrara' , IFAC-CNR, Florence (Italy)

    2006-11-15

    The present work describes the development of a hydrophone prototype for deep-sea acoustic detection. The base-sensitive element is a single-mode erbium-doped fiber laser. The high sensitivity of these sensors makes them particularly suitable for a wide range of deep-sea acoustic applications, including geological and marine mammals surveys and above all as acoustic detectors in under-water telescopes for high-energy neutrinos.

  10. Fiber laser hydrophone as possible detector of UHE neutrinos

    Energy Technology Data Exchange (ETDEWEB)

    Maccioni, E. [Istituto Nazionale di Fisica Nucleare, Pisa, Largo Pontecorvo 3, 56127 (Italy) and Dipartimento di Fisica, ' E.Fermi' University of Pisa, Pisa, Largo Pontecorvo 3, 56127 (Italy)]. E-mail: maccioni@df.unipi.it; Bagnoli, P.E. [Dipartimento di Ingegneria dell' Informazione, University of Pisa, Pisa, Via Diotisalvi, 56100 (Italy); Istituto Nazionale di Fisica Nucleare, Pisa, Largo Pontecorvo 3, 56127 (Italy); Beverini, N. [Istituto Nazionale di Fisica Nucleare, Pisa, Largo Pontecorvo 3, 56127 (Italy); Dipartimento di Fisica, ' E.Fermi' University of Pisa, Pisa, Largo Pontecorvo 3, 56127 (Italy); Bouhadef, B. [Istituto Nazionale di Fisica Nucleare, Pisa, Largo Pontecorvo 3, 56127 (Italy); Dipartimento di Fisica, ' E.Fermi' University of Pisa, Pisa, Largo Pontecorvo 3, 56127 (Italy); Castorina, E. [Istituto Nazionale di Fisica Nucleare, Pisa, Largo Pontecorvo 3, 56127 (Italy); Dipartimento di Fisica, ' E.Fermi' University of Pisa, Pisa, Largo Pontecorvo 3, 56127 (Italy); Falchini, E. [Istituto Nazionale di Fisica Nucleare, Pisa, Largo Pontecorvo 3, 56127 (Italy); Dipartimento di Fisica, ' E.Fermi' University of Pisa, Pisa, Largo Pontecorvo 3, 56127 (Italy); Falciai, R. [Istituto di Fisica Applicata ' Nello Carrara' , IFAC-CNR, Florence (Italy); Flaminio, V. [Istituto Nazionale di Fisica Nucleare, Pisa, Largo Pontecorvo 3, 56127 (Italy); Dipartimento di Fisica, ' E.Fermi' University of Pisa, Pisa, Largo Pontecorvo 3, 56127 (Italy); Morganti, M. [Istituto Nazionale di Fisica Nucleare, Pisa, Largo Pontecorvo 3, 56127 (Italy); Dipartimento di Fisica, ' E.Fermi' University of Pisa, Pisa, Largo Pontecorvo 3, 56127 (Italy); Stefani, F. [Dipartimento di Ingegneria dell' Informazione, University of Pisa, Pisa, Via Diotisalvi, 56100 (Italy); Trono, C. [Dipartimento di Fisica, ' E.Fermi' University of Pisa, Pisa, Largo Pontecorvo 3, 56127 (Italy); Istituto di Fisica Applicata ' Nello Carrara' , IFAC-CNR, Florence (Italy)

    2007-03-01

    The possibility to use a single mode erbium-doped fiber laser as hydrophone for deep sea acoustic detection is considered. The high sensitivity of these sensors, their immunity from electromagnetic fields and their faculty to work at high environmental pressure, make them particularly suitable for a wide range of deep sea acoustic applications, and in particular as acoustic detectors in under-water telescopes for high-energy neutrinos.

  11. Switchable and tunable erbium-doped fiber lasers using a hollow-core Bragg fiber

    Science.gov (United States)

    Zhao, Tanglin; Lian, Zhenggang; Wang, Xin; Shen, Yan; Lou, Shuqin

    2016-11-01

    A switchable and tunable erbium-doped fiber laser (EDFL) is proposed and experimentally demonstrated in this paper. A novel comb filter, which consists of a section of hollow-core Bragg fiber cascaded with Sagnac loop based on a polarization-maintaining fiber (PMF), is developed to suppress the mode competition in the EDFL. By carefully adjusting the polarization controllers, switchable and tunable single- or dual-wavelength lasing outputs with side-mode suppression ratios as high as 50 dB can be achieved. Single-wavelength lasing outputs with a 3 dB linewidth of 0.02 nm can be tuned within the wavelength range from 1562.4 nm to 1565.8 nm. Two kinds of dual-wavelength lasing outputs with different wavelength intervals of 1 nm and 2.1 nm can be obtained and the corresponding tunable wavelength range is 0.5 nm. Moreover, the wavelength shift and peak power fluctuation of both the single- and dual-wavelength lasing outputs are less than 0.1 nm and 2 dB over half an hour at room temperature, which indicates that the proposed fiber laser has good stability. To the best of our knowledge, it is the first time that a hollow-core Bragg fiber has been used as a comb filter in the EDFL.

  12. Pulsed Raman fiber laser and multispectral imaging in three dimensions

    DEFF Research Database (Denmark)

    Andersen, Joachim F.; Busck, Jens; Heiselberg, Henning

    2006-01-01

    Raman scattering in single-mode optical fibers is exploited to generate multispectral light from a green nanolaser with high pulse repetition rate. Each pulse triggers a picosecond camera and measures the distance by time-of-flight in each of the 0.5 Mpixels. Three-dimensional images are then con......Raman scattering in single-mode optical fibers is exploited to generate multispectral light from a green nanolaser with high pulse repetition rate. Each pulse triggers a picosecond camera and measures the distance by time-of-flight in each of the 0.5 Mpixels. Three-dimensional images...... are then constructed with submillimeter accuracy for all visible colors. The generation of a series of Stokes peaks by Raman scattering in a Si fiber is discussed in detail and the laser radar technique is demonstrated. The data recording takes only a few seconds, and the high accuracy 3D color imaging works at ranges...

  13. Molybdenum disulfide side-polished fiber saturable absorber Q-switched fiber laser

    Science.gov (United States)

    Ahmad, H.; Hassan, H.; Safaei, R.; Thambiratnam, K.; Ismail, M. F.; Amiri, I. S.

    2017-10-01

    A Q-switched fiber laser based on a Molybdenum disulfide (MoS2) saturable absorber (SA) is proposed and demonstrated. A 3 m long erbium-doped fiber with an absorption coefficient of 11.3 dB/m at 979 nm acts as the linear gain medium of the laser. The SA is formed by depositing a MoS2 layer on a self-fabricated side-polished fiber (SPF), which can be easily fabricated in less than 15 min. The proposed laser has a Q-switching threshold of 14.8 mW, and is capable of generating a pulsed output with a repetition rate and pulse-width of up to 25.27 kHz and 3.19 μs at a maximum pump power of 45.6 mW, as well as an average output power and pulse energy of 2.27 mW and 0.09 μJ at the same pump power. The pulses have an average signal-to-noise ratio of 37.8 dB, indicating a stable output and making the proposed laser highly suited for a variety of sensor, communications, and industrial applications.

  14. Diagnostics, Modeling and Simulation: Three Keys Towards Mastering the Cutting Process with Fiber, Disk and Diode Lasers

    Science.gov (United States)

    Petring, Dirk; Molitor, Thomas; Schneider, Frank; Wolf, Norbert

    Even established laser processing technologies such as cutting are far away from being completely understood. Nevertheless, the progress in industrially available laser cutting systems and applications is quite respectable. Fiber and disk laser cutting changed from a debatable newcomer to a serious part of the business while the diode laser appears at the horizon as the next player to be reckoned. Understanding of the process and its performance are continually improved. This paper highlights results of research and development from the recent years. Some speculations, simulations, diagnostics and facts about the process, its properties and capabilities are assessed. Earlier and latest diagnostics and CALCut simulation results of laser beam cutting processes are presented.

  15. Remote (250 km Fiber Bragg Grating Multiplexing System

    Directory of Open Access Journals (Sweden)

    Manuel Lopez-Amo

    2011-09-01

    Full Text Available We propose and demonstrate two ultra-long range fiber Bragg grating (FBG sensor interrogation systems. In the first approach four FBGs are located 200 km from the monitoring station and a signal to noise ratio of 20 dB is obtained. The second improved version is able to detect the four multiplexed FBGs placed 250 km away, offering a signal to noise ratio of 6–8 dB. Consequently, this last system represents the longest range FBG sensor system reported so far that includes fiber sensor multiplexing capability. Both simple systems are based on a wavelength swept laser to scan the reflection spectra of the FBGs, and they are composed by two identical-lengths optical paths: the first one intended to launch the amplified laser signal by means of Raman amplification and the other one is employed to guide the reflection signal to the reception system.

  16. Laser & Fiber Optics: Instructional Manual. The North Dakota High Technology Mobile Laboratory Project.

    Science.gov (United States)

    Eickhoff, Luvern R.

    This instructional manual contains 20 learning activity packets for use in a workshop on lasers and fiber optics. The lessons cover the following topics: what a laser; coherent light; setting up the laser; characteristics of the laser beam; scattering of light; laser beam divergence, intensity, color, ophthalmology, and reflections; directivity of…

  17. Laser & Fiber Optics: Instructional Manual. The North Dakota High Technology Mobile Laboratory Project.

    Science.gov (United States)

    Eickhoff, Luvern R.

    This instructional manual contains 20 learning activity packets for use in a workshop on lasers and fiber optics. The lessons cover the following topics: what a laser; coherent light; setting up the laser; characteristics of the laser beam; scattering of light; laser beam divergence, intensity, color, ophthalmology, and reflections; directivity of…

  18. Tolerance on tilt error for coherent combining of fiber lasers

    Institute of Scientific and Technical Information of China (English)

    Pu Zhou; Zilun Chen; Xiaolin Wang; Xiao Li; Zejin Liu; Xiaojun Xu

    2009-01-01

    Limited by the precision of optical machining and assembling, the optical axes of lasers in an array cannot be strictly parallel to each other, which will result in the beam quality degradation of the combined beam. The tolerance on tilt error for coherent combining of fiber lasers is studied in detail. The complex amplitude distribution in the far field for the Gaussian beam with tilt angle is obtained by a novel coordinate transform method. Effect of tilt error on coherent combining is modelled analytically. Beam propagation factor is used to evaluate the effect of coherent combining. Numerical results show that for ring-distributed fiber laser array with central wavelength 位 and geometry size D, if the root-mean-square (RMS) value of the tilt error is smaller than 0.72位/D, the energy encircled in the diffraction-limited bucket can be ensured to be more than 50% of the value when there is no tilt error. The results are helpful to the designing and manufacturing of fiber array for coherent combining.

  19. Fiber laser micromachining of magnesium alloy tubes for biocompatible and biodegradable cardiovascular stents

    Science.gov (United States)

    Demir, Ali Gökhan; Previtali, Barbara; Colombo, Daniele; Ge, Qiang; Vedani, Maurizio; Petrini, Lorenza; Wu, Wei; Biffi, Carlo Alberto

    2012-02-01

    Magnesium alloys constitute an attractive solution for cardiovascular stent applications due to their intrinsic properties of biocompatibility and relatively low corrosion resistance in human-body fluids, which results in as a less intrusive treatment. Laser micromachining is the conventional process used to cut the stent mesh, which plays the key role for the accurate reproduction of the mesh design and the surface quality of the produced stent that are important factors in ensuring the mechanical and corrosion resistance properties of such a kind of devices. Traditionally continuous or pulsed laser systems working in microsecond pulse regime are employed for stent manufacturing. Pulsed fiber lasers on the other hand, are a relatively new solution which could balance productivity and quality aspects with shorter ns pulse durations and pulse energies in the order of mJ. This work reports the study of laser micromachining and of AZ31 magnesium alloy for the manufacturing of cardiovascular stents with a novel mesh design. A pulsed active fiber laser system operating in nanosecond pulse regime was employed for the micromachining. Laser parameters were studied for tubular cutting on a common stent material, AISI 316L tubes with 2 mm in diameter and 0.2 mm in thickness and on AZ31 tubes with 2.5 mm in diameter and 0.2 in thickness. In both cases process parameters conditions were examined for reactive and inert gas cutting solutions and the final stent quality is compared.

  20. Tunable and switchable dual-wavelength Tm-doped mode-locked fiber laser by nonlinear polarization evolution.

    Science.gov (United States)

    Yan, Zhiyu; Li, Xiaohui; Tang, Yulong; Shum, Perry Ping; Yu, Xia; Zhang, Ying; Wang, Qi Jie

    2015-02-23

    We propose and demonstrate a tunable and switchable dual-wavelength ultra-fast Tm-doped fiber laser. The tunability is based on nonlinear polarization evolution (NPE) technique in a passively mode-locked laser cavity. The NPE effect induces wavelength-dependent loss in the cavity to effectively alleviate mode competition and enables the multiwavelength mode locking. The laser exhibits tunable dual-wavelength mode locking over a wide range from 1852 to 1886 nm. The system has compact structure and both the wavelength tuning and switching capabilities can be realized by controlling the polarization in the fiber ring cavity.